
An Improved Scheme in the Two Query
Adaptive Bitprobe Model

Mirza Galib Anwarul Husain Baig, Deepanjan Kesh(B), and Chirag Sodani

Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
{mirza.baig,deepkesh,chirag.sodani}@iitg.ac.in

Abstract. In this paper, we look into the adaptive bitprobe model that
stores subsets of size at most four from a universe of size m, and answers
membership queries using two bitprobes. We propose a scheme that
stores arbitrary subsets of size four using O(m5/6) amount of space.
This improves upon the non-explicit scheme proposed by Garg and Rad-
hakrishnan [5] which uses O(m16/17) amount of space, and the explicit
scheme proposed by Garg [4] which uses O(m14/15) amount of space. The
proposed scheme also answers an open problem posed by Nicholson [8] in
the affirmative. Furthermore, we look into a counterexample that shows
that our proposed scheme cannot be used to store five or more elements.

Keywords: Data structure · Set membership problem ·
Bitprobe model · Adaptive scheme

1 Introduction

Consider the following static membership problem – given a universe U contain-
ing m elements, we want to store an arbitrary subset S of U whose size is at
most n, such that we can answer membership queries of the form “Is x in S?”
Solutions to problems of this nature are called schemes in the literature. The
resources that are considered to evaluate the schemes are the size of the data
structure devised to store the subset S, and the number of bits read of the data
structure to answer the membership queries, called bitprobes. The notations for
the space used and the number of bitprobes required are s and t, respectively.
This model of the static membership problem is called the bitprobe model.

Schemes in the bitprobe model are classified as adaptive and non-adaptive.
If the location where the current bitprobe is going to be depends on the answers
obtained from the previous bitprobes, then such schemes are called adaptive
schemes. On the other hand, if the location of the current bitprobe is indepen-
dent of the answers obtained in the previous bitprobes, then such schemes are
called non-adaptive schemes. Radhakrishnan et al. [9] introduced the notation
(n,m, s, t)A and (n,m, s, t)N to denote the adaptive and non-adaptive schemes,
respectively. Sometimes the space requirement of the two classes of schemes will
also be denoted as sA(n,m, t) and sN (n,m, t), respectively.

c© Springer Nature Switzerland AG 2019
C. J. Colbourn et al. (Eds.): IWOCA 2019, LNCS 11638, pp. 22–34, 2019.
https://doi.org/10.1007/978-3-030-25005-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25005-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-25005-8_3

Two Query Four Element Bitprobe Scheme 23

A

B C

No Yes No Yes

0 1

0 1 0 1

Fig. 1. The decision tree of an element.

1.1 The Bitprobe Model

The scheme presented in this paper is an adaptive scheme that uses two bitprobes
to answer membership queries. We now discuss in detail the bitprobe model in
the context of two adaptive bitprobes.

The data structure in this model consists of three tables – A,B, and C –
arranged as shown in Fig. 1. Any element e in the universe U has a location in
each of these three tables, which are denoted by A(e),B(e), and C(e). By a little
abuse of notation, we will use the same symbols to denote the bits stored in
those locations.

Any bitprobe scheme has two components – the storage scheme, and the
query scheme. Given a subset S, the storage scheme sets the bits in the three
tables such that the membership queries can be answered correctly. The flow of
the query scheme is traditionally captured in a tree structure, called the decision
tree of the scheme (Fig. 1). It works as follows. Given a query “Is x in S?”, the
first bitprobe is made in table A at location A(x). If the bit stored is 0, the
second query is made in table B, else it is made in table C. If the answer received
in the second query is 1, then we declare that the element x is a member of S,
otherwise we declare that it is not.

1.2 The Problem Statement

As alluded to earlier, we look into adaptive schemes with two bitprobes (t = 2).
When the subset size is one (n = 1), the problem is well understood – the space
required by the data structure is Ω(m1/2), and we have a scheme that matches
this bound [1,7].

For subsets of size two (n = 2), Radhakrishnan et al. [9] proposed a scheme
that takes O(m2/3) amount of space, and further conjectured that it is the
minimum amount of space required for any scheme. Though progress has been
made to prove the conjecture [9,10], it as yet remains unproven.

For subsets of size three (n = 3), Baig and Kesh [2] have recently proposed
a scheme that takes O(m2/3) amount of space. It has been subsequently proven

24 M. G. A. H. Baig et al.

by Kesh [6] that Ω(m2/3) is the lower bound for this problem. So, the space
complexity question for n = 3 stands settled.

In this paper, we look into problem where the subset size is four (n = 4),
i.e. an adaptive bitprobe scheme that can store subsets of size atmost four, and
answers membership queries using two bitprobes. Garg and Radhakrishnan [5]
have proposed a generalised scheme that can store arbitrary subsets of size n(<
log m), and uses O(m1− 1

4n+1) amount of space. For the particular case of n = 4,
the space requirement turns out to be O(m16/17). Garg [4] further improved the
bounds to O(m1− 1

4n−1)(for n < (1/4)(log m)1/3)., which improved the scheme
for n = 4 to O(m14/15).

We propose a scheme for the problem whose space requirement is O(m5/6)
(Theorem 2), thus improving upon the existing schemes in the literature. Our
claim is the following:

sA(4,m, 2) = O(m5/6).(Theorem 2)

The existence of such a scheme also answers in the affirmative an open prob-
lem posed by Nicholson [8] which asked if a scheme using the idea of blocks due
to Radhakrishnan et al. [9] exists that stores four elements and answers mem-
bership queries using two bitprobes. As the description of our data structure in
the following section would show that our scheme extends the ideas of blocks
and superblocks using a geometric approach to solve the problem.

Finally, in Sect. 5 we provide an instance of a five-element subset of the
universe U which cannot be stored correctly in our data structure, illustrating
that a different construction is required to accommodate subsets of larger size.

2 Our Data Structure

In this section, we provide a detailed description of our data structure. To achieve
a space bound of o(m), more than one element must necessarily share the same
location in each of the three tables. We discuss how we arrange the elements of
the universe U , and which of the elements of the universe share the same location
in any given table.

Along with the arrangement of elements, we will also talk about the size of
our data structure. The next few sections prove the following theorem.

Theorem 1. The size of our data structure is O(m5/6).

2.1 Table A
Suppose we are given the following universe of elements –

U = { 1, 2, 3, . . . ,m } .

We partition the m elements of the universe into sets of size m1/6. Borrowing the
terminology from Radhakrishnan et al. [9], we will refer to these sets as blocks.
It follows that the total number of blocks in our universe is m5/6.

Two Query Four Element Bitprobe Scheme 25

The elements within a block are numbered as 1, 2, 3, . . . ,m1/6. We refer to
these numbers as the index of an element within a block. So, an element of U
can be addressed by the number of the block to which it belongs, and its index
within that block.

In table A of our data structure, we will have one bit for every block in our
universe. As there are m5/6 blocks, the size of table A is m5/6.

2.2 Superblocks

The blocks in our universe are partitioned into sets of size m4/6. Radhakrishnan
et al. [9] used the term superblocks to refer to these sets of blocks, and we will do
the same in our discussion. As there are m5/6 blocks, the number of superblocks
thus formed is m1/6. These superblocks are numbered as 1, 2, 3, . . . ,m1/6.

For a given superblock, we arrange the m4/6 blocks that it contains into
a square grid, whose sides are of size m2/6. The blocks of the superblock are
placed on the integral points of the grid. The grid is placed at the origin of a
two-dimensional coordinate space with its sides parallel to the coordinate axes.
This gives a unique coordinate to each of the integral points of the grid, and thus
to the blocks placed on those points. It follows that if (x, y) is the coordinate of
a point on the grid, then 0 ≤ x, y < m2/6.

We can now have a natural way of addressing the blocks of a given superblock
– we will use the x-coordinate and the y-coordinate of the point on which the
block lies. So, a given block can be uniquely identified by the number of the
superblock to which it belongs, and the x and y coordinates of the point on
which it lies. Henceforth, we will address any block by a three-tuple of the form
(s, x, y), where the s is its superblock number, and (x, y) are the coordinates of
the point on which it lies.

To address a particular element of the universe, apart from specifying the
block to which it belongs, we need to further state its index within that block.
So, an element will be addressed by a four-tuple such as (s, x, y, i), where the
first three components specify the block to which it belongs, and the fourth
component specifies its index.

2.3 Table C
Table C of our data structure has the space to store one block for every possible
point of the grid (described in the previous section). So, for the coordinate
(x, y) of the grid, table C has space to store one block; similarly for all other
coordinates. As every superblock has one block with coordinate (x, y), all of
these blocks share the same location in table C. So, we can imagine table C as a
square grid containing m4/6 points, where each point can store one block.

There are a total of m4/6 points in the grid, and the size of a block is m1/6,
so the space required by table C is m5/6.

26 M. G. A. H. Baig et al.

2.4 Lines for Superblocks

Given a superblock whose number is i, we associate a certain number of lines
with this superblock each of whose slopes are 1/i. In the grid arrangement of the
superblock (Sect. 2.2), we draw enough of these lines of slope 1/i so that every
grid point falls on one of these lines. Figure 2 shows the grid and the lines.

(a, b)

(a+ 2, b+ 1)

Fig. 2. The figure shows the grid for superblock 2, and some of the lines with slope
1/2. Note that the line passing through (a, b) intersects the y-axis at a non-integral
point.

So, all lines of a given superblock has the same slope, and lines from different
superblocks have different slopes. As there are m1/6 superblocks, and they are
numbered 1, 2, . . . ,m1/6, so, we have the slopes of the lines vary as

0 < i ≤ m1/6. (1)

There are two issues to consider – the number of lines needed to cover every
point of the grid, and the purpose of these lines. We address the issue of the
count of the lines in this section, and that of the purpose of the lines in the next.

We introduce the notation li(a, b) to denote the line that has slope 1/i, and
passes through the point (a, b). We now define the collection of all lines of slope
1/i that we are going to draw for the superblock i.

Li =
{

li(a, 0) | a ∈ Z, −i(m2/6 − 1) ≤ a < m2/6
}

. (2)

In the following three lemmas, we show the properties of this set of lines –
they follow from elementary coordinate geometry.

Lemma 1. Every line of Li contains at least one point of the grid.

Lemma 2. Every point of the grid belongs to some line of Li.

Lemma 3. | Li | = (i + 1)(m2/6 − 1) + 1.

Proof. The equality is a direct consequence of the definition of Li (Eq. 2).

Two Query Four Element Bitprobe Scheme 27

2.5 Table B
In table B, we have space to store one block for every line of every superblock.
That means that for a superblock, say i, all of its blocks that fall on the line
li(a, b) share the same block in table B; and the same is true for all lines of every
superblock.

The ith superblock contains | Li |= (i + 1)(m2/6 − 1) + 1 lines (Lemma 3),
so the total number of lines from all of the superblocks is

| L1 | + | L2 | + · · · + | Lm1/6 |
=

m1/6∑
i=1

(
(i + 1)(m2/6 − 1) + 1

)

=
(

(m1/6)(m1/6+1)
2 + m1/6

)
(m2/6 − 1) + m1/6

= O(m4/6).

As mentioned earlier, we reserve space for one block for each of these lines.
Combined with the fact that the size of a block is m1/6, we have

|C| = O(m5/6).

2.6 Notations

As described in Sect. 2.2, any element of the universe U can be addressed by
a four-tuple, such as (s, x, y, i), where s is the superblock to which it belongs,
(x, y) are the coordinates of its block within that superblock, and i is its index
within the block.

Table A has one bit for each block, so all elements of a block will query the
same location. As the block number of the element (s, x, y, i) is (s, x, y), so the
bit corresponding to the element is A(s, x, y); or in other words, the element
(s, x, y, i) will query the location A(s, x, y) in table A.

In table C, there is space for one block for every possible coordinates of the
grid. The coordinates of the element (s, x, y, i) is (x, y), and C has space to store
an entire block for this coordinate. So, there is one bit for every element of a
block, or, in other words, every index of a block. So, the bit corresponding to
the element (s, x, y, i) is C(x, y, i).

Table B has a block reserved for every line of every superblock. The element
(s, x, y, i) belongs to the line ls(x, y), and thus table B has space to store one
block corresponding to this line. As the index of the element is i, so the bit
corresponding to the element in table B is B(ls(x, y), i).

3 Query Scheme

The query scheme is easy enough to describe once the data structure has been
finalised; it follows the decision tree as discussed earlier (Fig. 1). Suppose we want
to answer the following membership query – “Is (s, x, y, i) in S?” We would make

28 M. G. A. H. Baig et al.

the first query in table A at location A(s, x, y). If the bit stored at that location
is 0, we query in table B at B(ls(x, y), i), otherwise we query table C at C(x, y, i).
If the answer from the second query is 1, then we declare the element to be a
member of S, else we declare that it is not a member of S.

4 The Storage Scheme

The essence of any bitprobe scheme is the storage scheme, i.e. given a subset S
of the universe U , how the bits of the data structure are set such that the query
scheme answers membership questions correctly. We start the description of the
storage scheme by giving an intuition for its construction.

4.1 Intuition

The basic unit of storage in the tables B and C of our data structure, in some
sense, is a block – table B can store one block of any line of any superblock, and
table C can store one block of a given coordinate from any superblock. We show
next that our storage scheme must ensure that an empty and a non-empty block
cannot be stored together in a table.

Suppose, the block (s, x, y) of table A is non-empty, and it contains the
member (s, x, y, i) of subset S. If we decide to store this member in table B,
then we have to store the block (s, x, y) in table B. So, we have to set in table A
the following – A(s, x, y) = 0. Thus, (s, x, y, i) upon first query will get a 0 and
go to table B. In table B, we store the block (s, x, y) at the storage reserved for
the line ls(x, y). Particularly, we have to set B(ls(x, y), i) = 1.

If (s, x′, y′) is a block that is empty, i.e. it does not contain any member of S,
and it falls on the aforementioned line, i.e. ls(x′, y′) = ls(x, y), then we cannot
store this block in table B, and hence A(s, x′, y′) must be set to 1. If this is not
the case, and A(s, x′, y′) = 0, then the first query for the element (s, x′, y′, i)
will get a 0, go to table B and query the location B(ls(x′, y′), i) which is same
as B(ls(x, y), i). We have set this bit to 1, and we would incorrectly deduce that
(s, x′, y′, i) is a member of S.

The same discussion holds true for table C. If we decide to store the block
(s, x, y) in table C, we have to set A(s, x, y) to 1. In table C, we have space
reserved for every possible coordinate for a block, and we would store the block
at the coordinate (x, y); particularly, we would set C(x, y, i) to 1. This implies
that all empty blocks from other superblocks having the same coordinate cannot
be stored in table C, and hence must necessarily be stored in table B. To take
an example, if (s′, x, y) is empty, then it must stored it table B, and hence
A(s′, x, y) = 0.

To summarise, for any configuration of the members of subset S, as long as
we are able to keep the empty and the non-empty blocks separate, our scheme
will work correctly. For the reasons discussed above, we note the following.

1. We have to keep the non-empty blocks and empty blocks separate.

Two Query Four Element Bitprobe Scheme 29

2. We have to keep the non-empty blocks separate from each other; and
3. The empty blocks can be stored together.

Our entire description of the storage scheme would emphasize on how to achieve
the aforementioned objective.

4.2 Description

Let the four members of subset S be

S =
{

(s1, x1, y1, i1), (s2, x2, y2, i2), (s3, x3, y3, i3), (s4, x4, y4, i4)
}

.

So, the relevant blocks are
{

(s1, x1, y1), (s2, x2, y2), (s3, x3, y3), (s4, x4, y4)
}

,

and the relevant lines are
{

ls1(x1, y1), ls2(x2, y2), ls3(x3, y3), ls4(x4, y4)
}

.

In the discussion below, we assume that no two members of S belong to
the same block. This implies that there are exactly four non-empty blocks. The
scenario where a block contains multiple members of S is handled in Sect. 4.3.

The lines for the members of S need not be distinct, say when two elements
belong to the same superblock and fall on the same line. We divide the descrip-
tion of our storage scheme into several cases based on the number of distinct
lines we have due to the members of S, and for each of those cases, we provide
the proof of correctness alongside it.

We provide the detailed description of the cases when there are four distinct
lines or when there is one line. The extended version of this paper (Baig et.
al [3]) contains the cases of three lines and two lines. The cases described here
would illustrate how to arrange the elements and how to argue its correctness.

Case I. Suppose we have four distinct lines for the four
members of S. The slopes of some of these lines could be
same, or they could all be different. We know that all lines
of a given superblock have the same slope, and lines from
different superblocks have different slopes (Sect. 2.4). We
also know that if two of these lines, say ls1(x1, y1) and
ls2(x2, y2), have the same slope, then the corresponding
members of S belong to the same superblock, i.e. s1 = s2.
On the other hand, if their slopes are distinct, then they
belong to different superblocks, and consequently, s1 �= s2.

Table B has space to store one block for every line in every superblock. As
the lines for the four members of S are distinct, the space reserved for the lines
are also distinct. So we can store the four non-empty blocks in table B, and all
of the empty blocks in table C.

30 M. G. A. H. Baig et al.

To achieve the objective, we set A(sj , xj , yj) = 0 for 1 ≤ j ≤ 4, and set
the bits in table A for every other block to 1. In table B, we set the bits
B(lsj (xj , yj), ij) = 1, for 1 ≤ j ≤ 4, and all the rest of the bits to 0. In table C,
all the bits are set to 0.

So, if e is an element that belongs to an empty block, it would, according to
the assignment above, get a 1 upon its first query in table A. Its second query
will be in table C, and as all the bits of table C are set to 0, we would conclude
that the element e is not a member of S.

Suppose, (s, x, y, i) be an element that belongs to one of the non-empty
blocks. Then, its coordinates must correspond to one of the four members of
S. Without loss of generality let us assume that s = s1, x = x1, and y = y1.

It follows that A(s, x, y), which is same as A(s1, x1, y1), is 0, and hence the
second query for this element will be in table B. The line corresponding to the
element is ls(x, y), which is same as ls1(x1, y1), and hence the second query will
be at the location B(ls(x, y), i) = B(ls1(x1, y1), i). As the four lines for the four
members of S are distinct, so B(ls1(x1, y1), i) will be 1 if and only if i = i1. So,
we will get a Yes answer for your query if and only if the element (s, x, y, i) is
actually the element (s1, x1, y1, i1), a member of S.

Case II. Let us consider the case when there is just
one line for the four members of S. As all of their lines
are identical, and consequently, the slopes of the lines
are the same, all the elements must belong to the same
superblock. So, we have s1 = s2 = s3 = s4.

As all the non-empty blocks belong to the same
superblock, all of their coordinates must be distinct. Table
C can store one block for each distinct coordinate of the
grid, and hence we can store the four non-empty blocks
there. All the empty blocks will be stored in table B.

To this end, we set A(sj , xj , yj) = 1 for 1 ≤ j ≤ 4,
and the rest of the bits of table A, which correspond to the empty blocks, to 0.
In table B, all bits are set to 0. In table C, the bits corresponding to the four
elements are set to 1, i.e. C(xj , yj , ij) = 1 for 1 ≤ j ≤ 4. The rest of the bits of
table C are set to 0.

The proof of correctness follows directly from the assignment, and the rea-
soning follows along the lines of the previous case. If the element e belongs to
an empty block, it will get a 0 from table A upon its first query, consequently
go to table B for its second query, and get a 0, implying e is not a member of S.

If the element (s, x, y, i) belongs to a non-empty block, then its coordinates
must correspond to one of the members of S. Without loss of generality, let
s = s1, x = x1, and y = y1.

The first query of the element will be at the location A(s, x, y) =
A(s1, x1, y1), and hence it will get a 1 from table A, and go to table C for its
second query. In this table, it will query the location C(x, y, i), which is same as
C(x1, y1, i). As the coordinates of the four members of S are distinct, C(x1, y1, i)

Two Query Four Element Bitprobe Scheme 31

will be 1 if and only if i = i1. So, we get a 1 in the second query if and only if
we have (s, x, y, i) = (s1, x1, y1, i1), a member of S.

4.3 Blocks with Multiple Members

In the discussion above, we had assumed that each block can contain at most
one member of the subset S, and we have shown for every configuration of
the members of S, the bits of the data structure can be so arranged that the
membership queries are answered correctly.

In general, a single block can contain upto four members of S, and we need
to propose a assignment for such a scenario. As has been noted in the previous
section, our basic unit of storage is a block and we differentiate between empty
and non-empty blocks. At a given location in table B or C, a block is stored in
its entirety, or it isn’t stored at all. This implies that the number of members of
S a non-empty block contains is of no consequence, as we always store an entire
block. The scheme from the previous section would thus hold true for blocks
containing multiple members.

We now summarise the result in the theorem below.

Theorem 2. There is an explicit adaptive scheme that stores subsets of size at
most four and answers membership queries using two bitprobes such that

sA(4,m, 2) = O(m5/6).

5 Counterexample

We now provide an instance of a five-member subset of the universe U which
cannot be stored correctly using our scheme; that is to say, if the storage scheme
does indeed store the five elements in our data structure, queries for certain
elements will be answered incorrectly.

5.1 The Arrangment

Consider four lines from four different superblocks which are arranged as shown
in Fig. 3. Let us suppose that the four superblocks are s1, s2, s3, and s4, and
the labels of the lines are L1, L2, L3, and L4, respectively. We will put in S one
element each from the first three superblocks, and two elements from the fourth
superblock.

Our subset S will contain the elements e1 and e2 from the superblocks s1 and
s2, respectively. These elements have the property that the blocks they belong
to share the same coordinates, and hence lie on the intersection of the lines L1

and L2. The fact that they have the same coordinates also implies thay they
share the same location in table C. Let the elements be e1 = (s1, x, y, i1) and
e2 = (s2, x, y, i2). We would also have i1 �= i2. This would imply that the two
non-empty blocks (s1, x, y) and (s2, x, y) cannot both be stored in table C.

32 M. G. A. H. Baig et al.

L1

L2

L3

L4

e1

e2

e3

e4,1

e4,2

Fig. 3. Counterexample

Consider that block of superblock s3 that lies on the intersection of the lines
L3 and L4. We will put one element from that block in our subset S. Let that
element be e3 = (s3, x3, y3, i3).

Finally we will put two elements of the superblock s4 in S – one element from
that block of s4 which lies on the intersection of the lines L4 and L1, namely e4,1,
and another from the block of s4 which lies on the intersection of the lines L4 and
L2, namely e4,2. These two elements are described as e4,1 = (s4, x4,1, y4,1, i4,1)
and e4,2 = (s4, x4,2, y4,2, i4,2).

5.2 The Contradiction

We can store the element e1 of superblock s1 in one of two tables B and C. Let
us assume that we store e1 in table B. As the block containing e1 lies on the line
L1, we cannot store any of the other empty blocks on the line L1 in table B, and
hence they must be stored in table C.

The non-empty block of s4 containing element e4,1 which falls on the line L1,
then, cannot be stored in table C, and hence must be stored in table B. So, the
other blocks of L4 must be stored in table C, including the block containing the
element e4,2.

The non-empty block of s3 containing the element e3 falls on the line L4,
and hence must be stored in table B. So, all blocks on the line L3 must now be
store in table C.

The element e2 of the superblock s2 falls on the line L3 and hence must be
stored in table B. So, all blocks of line L2 must be stored in table C.

Two Query Four Element Bitprobe Scheme 33

The block of s4 containing the element e4,2 must be stored in table B by the
same argument as above. But we have already argued that e4,2 has to be stored
in table C, and hence we arrive at a contradiction.

The preceding argument tells us that we cannot store the element e1 in table
B. So, we must store it in table C. If such is the case, and arguing as above,
we can show that this results e2 being stored in table B, which results in e4,2
being stored in table B. This, in turn, results in e3 being stored in table B, which
would force e1 to be stored in table B.

But we have started with the premise that e1 is being stored in table C,
and again we reach a contradiction. So, we conclude that this arrangement of
elements cannot be stored correctly in our data structure, and hence our data
structure is not suitable for storing sets of size five or higher.

6 Conclusion

In this paper, we have proposed an adaptive scheme for storing subsets of size
four and answering membership queries with two bitprobes that improves upon
the existing schemes in the literature. This scheme also resolves an open problem
due to Patrick K. Nicholson [8] about the existence of such a scheme that uses the
ideas of blocks and superblocks due to Radhakrishnan et al. [9]. The technique
used is that of arranging the blocks of a superblock in a two-dimensional grid,
and grouping them along lines. We hope that this technique can be extended to
store larger subsets by extending the idea of an arrangement in a two-dimensional
grid to arrangements in three and higher dimensional grids.

References

1. Alon, N., Feige, U.: On the power of two, three and four probes. In: Proceedings
of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2009, New York, NY, USA, 4–6 January 2009, pp. 346–354 (2009)

2. Baig, M.G.A.H., Kesh, D.: Two new schemes in the bitprobe model. In: Rahman,
M.S., Sung, W.-K., Uehara, R. (eds.) WALCOM 2018. LNCS, vol. 10755, pp. 68–
79. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75172-6 7

3. Baig, M.G.A.H., Kesh, D., Sodani, C.: An improved scheme in the two query adap-
tive bitprobe model. CoRR abs/1812.04802 (2018). http://arxiv.org/abs/1812.
04802

4. Garg, M.: The bit-probe complexity of set membership. Ph.D. thesis, School of
Technology and Computer Science, Tata Institute of Fundamental Research, Homi
Bhabha Road, Navy Nagar, Colaba, Mumbai 400005, India (2016)

5. Garg, M., Radhakrishnan, J.: Set membership with a few bit probes. In: Proceed-
ings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, 4–6 January 2015, pp. 776–784 (2015)

6. Kesh, D.: Space complexity of two adaptive bitprobe schemes storing three ele-
ments. In: 38th IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science, FSTTCS 2018, Ahmedabad, India, 11–13
December 2018, pp. 12:1–12:12 (2018)

https://doi.org/10.1007/978-3-319-75172-6_7
http://arxiv.org/abs/1812.04802
http://arxiv.org/abs/1812.04802

34 M. G. A. H. Baig et al.

7. Lewenstein, M., Munro, J.I., Nicholson, P.K., Raman, V.: Improved explicit data
structures in the bitprobe model. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014.
LNCS, vol. 8737, pp. 630–641. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44777-2 52

8. Nicholson, P.K.: Revisiting explicit adaptive two-probe schemes. Inf. Process. Lett.
143, 1–3 (2019)

9. Radhakrishnan, J., Raman, V., Srinivasa Rao, S.: Explicit deterministic construc-
tions for membership in the bitprobe model. In: auf der Heide, F.M. (ed.) ESA
2001. LNCS, vol. 2161, pp. 290–299. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44676-1 24

10. Radhakrishnan, J., Shah, S., Shannigrahi, S.: Data structures for storing small
sets in the bitprobe model. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS,
vol. 6347, pp. 159–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15781-3 14

https://doi.org/10.1007/978-3-662-44777-2_52
https://doi.org/10.1007/978-3-662-44777-2_52
https://doi.org/10.1007/3-540-44676-1_24
https://doi.org/10.1007/3-540-44676-1_24
https://doi.org/10.1007/978-3-642-15781-3_14
https://doi.org/10.1007/978-3-642-15781-3_14

	An Improved Scheme in the Two Query Adaptive Bitprobe Model
	1 Introduction
	1.1 The Bitprobe Model
	1.2 The Problem Statement

	2 Our Data Structure
	2.1 Table A
	2.2 Superblocks
	2.3 Table C
	2.4 Lines for Superblocks
	2.5 Table B
	2.6 Notations

	3 Query Scheme
	4 The Storage Scheme
	4.1 Intuition
	4.2 Description
	4.3 Blocks with Multiple Members

	5 Counterexample
	5.1 The Arrangment
	5.2 The Contradiction

	6 Conclusion
	References

