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habib@irif.fr

2 Department of Computer Science, University of Toronto, Toronto, ON, Canada
3 Gang Project, Inria, Paris, France

Abstract. We study here algorithmic aspects of modular decomposition
of hypergraphs. In the literature one can find three different definitions
of modules, namely: the standard one [19], the k-subset modules [6] and
the Courcelle’s one [11]. Using the fundamental tools defined for com-
binatorial decompositions such as partitive and orthogonal families, we
directly derive a linear time algorithm for Courcelle’s decomposition.
Then we introduce a general algorithmic tool for partitive families and
apply it for the other two definitions of modules to derive polynomial
algorithms. For standard modules it leads to an algorithm in O(n3 · l)
time (where n is the number of vertices and l is the sum of the size of the
edges). For k-subset modules we obtain O(n3 ·m · l) (where m is the num-
ber of edges). This is an improvement from the best known algorithms
for k-subset modular decomposition, which was not polynomial w.r.t. n
and m, and is in O(n3k−5) time [6] where k denotes the maximal size
of an edge. Finally we focus on applications of orthogonality to modular
decompositions of tournaments, simplifying the algorithm from [18]. The
question of designing a linear time algorithms for the standard modular
decomposition of hypergraphs remains open.

1 Introduction

In this paper we study hypergraph modular decomposition; an important gener-
alization of graph modular decomposition. Hypergraph modular decomposition
is equivalent to the modular decomposition of both set systems [19] as well
as monotone Boolean functions [20], while that of general Boolean functions
was shown to be NP-hard [5]. We study here algorithmic aspects of modular
decomposition of hypergraphs. In the literature one can find three different def-
initions of modules, namely: the standard one [19], the k-subset modules [6] and
Courcelle’s one [11]. In the following we recall the fundamental tools defined
for combinatorial decompositions such as partitive and orthogonal families. This
directly yields a linear time algorithm for Courcelle’s decomposition.
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In Sect. 3 we propose a general algorithmic tool for partitive families and
apply it for the other two definitions of modules to derive polynomial algo-
rithms. For standard modules it leads to an algorithm in O(n3 · l) time (where
n is the number of vertices and l the sum of the size of the m edges). For k-
subset modules we obtain O(n3 ·m · l) algorithm, improving the previous known
O(n3k−5) time algorithm [6]. In Sect. 5 we show that the orthogonality may also
bring some new insights to graph modular decomposition, i.e. application to fac-
torizing permutations and simplify decomposition algorithm for tournaments.

1.1 Definitions

Following Berge’s definition of hypergraphs [1], a hypergraph H over a finite
ground set V (H) is made by a family of subsets of V (H), denoted by E(H)
such that (i) ∀e ∈ E(H), e �= ∅ and (ii) ∪e∈E(H)e = V (H). In other words, a
hypergraph admits no empty edge and no isolated vertex. Furthermore we deal
only with simple hypergraphs, where E(H) ⊆ 2V (H) (no multiple edges). When
analyzing algorithms, we use the standard notations: |V (H)| = n, |E(H)| = m
and l = Σe∈E(H)|e|. For every edge e ∈ E(H), we denote by H(e) = {x ∈ V (H)
such that x ∈ e}, and for every vertex x ∈ V (H), we denote by N(x) = {e ∈
E(H) such that x ∈ H(e)}. To each hypergraph one can associate a bipartite
graph G, namely its incidence bipartite graph , such that: V (G) = V (H) ∪
E(H) and E(G) = {xe with x ∈ V (H) and e ∈ E(H) such that x ∈ H(e)}. For
a hypergraph H and a subset M ⊆ V (H), let H(M) denote the hypergraph
induced by M , where V (H(M)) = M and EH(M) = {e∩M ∈ E(H), for e∩M �=
∅}. Similarly, let HM denote the reduced hypergraph where V (HM ) = (V \
M)∪{m}) with m /∈ V , and E(HM ) = {e ∈ E(H) with e∩M = ∅}∪{(e\M)∪{m}
with e ∈ E(H) and e ∩ M �= ∅}. By convention in case of multiple occurrences
of a similar edge, only one edge is kept and so HM is a simple hypergraph.

Two non-empty sets A and B overlap if A∩B �= ∅, A\B �= ∅, and B\A �= ∅.
Sets that do not overlap are said to be orthogonal , which is denoted by A ⊥ B.
Let F be a family of subsets of a ground set V . We denote by F⊥ the family
of subsets of V which are orthogonal to every element of F . A set S ∈ F is
called strong if ∀S′ �= S ∈ F : S ⊥ S′. Let Δ denote the symmetric difference
operation.

Definition 1 [10]. A family of subsets F over a ground set V is partitive if
it satisfies the following properties:

(i) ∅, V and all singletons {x} for x ∈ V belong to F .
(ii) ∀A,B ∈ F that overlap, A ∩ B,A ∪ B,A \ B and AΔB ∈ F

Both orthogonal and partitive families play fundamental roles in combinato-
rial decompositions [10,17]. Every partitive family admits a unique decomposi-
tion tree, with only two types of nodes: complete and prime . As for graphs,
a node in a decomposition tree is said to be complete if the subgraph rooted at
that node is either a clique or an independent set, and said to prime if the sub-
graph rooted at that node cannot be decomposed any further. It is well known
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that the strong elements of F form a tree ordered by the inclusion relation [10].
In this decomposition tree, every node corresponds to a set of the elements of
the ground set V of F , and the leaves of the tree are single elements of V . For
a complete (resp. prime) node, every union of its child nodes (resp. no union
of its child nodes other than itself) belongs to the partitive family.

Here we introduce some properties on orthogonality that will be useful for
Courcelle’s module and applications on graphs.

Property 1 [16]. Given a family F of subsets over a ground set V , F⊥ is
partitive. Furthermore F is partitive iff F = (F⊥)⊥.

Moreover, if F and F ′ are two partitive families on the same ground set V , then
F ∩ F ′ is also partitive and thus we can search for the smallest partitive family
that contains a given family.

Definition 2. Let F be a family of subsets over a ground set V . Let P(F)
denote the smallest – by inclusion – completion of F that admits a unique tree
decomposition with nodes labeled prime and complete.

Property 2. For every subset family F , P(F) = (F⊥)⊥.

We denote by O(F) the overlap graph of F constructed as follows: The vertices
are the elements of F , and two vertices are adjacent if their corresponding subsets
overlap. A pair of vertices is said to be twins if the vertices appear in exactly
the same members of F . The block of twins are the equivalence classes of the
twin relation. Putting together Theorems 3.3 and 5.1 of [16] we get:

Theorem 1. Let F be a subset family on V . A subset N is a node of the decom-
position tree of F⊥ if and only if N is either:

1. V (the ground set), or {v} (a one-subset element), or a block of twins, or
2. ∪C for some connected component C of the overlap graph of O(F)

An internal node N is labeled prime if there exists a component C of O(F) with
at least two members of F such that N = ∪C. Otherwise N is labeled complete.

Non-trivial nodes are mostly given by Case 2, since in Case 1 we either get the
root of the tree, or a leaf, and all the siblings of any block-of-twins node are
leaves. In [16] the following theorem is proposed, using as a blackbox Dahlhaus’s
algorithm [12] plus some post-treatment. But it has been largely simplified by [9].

Theorem 2. Let F be a subset family on V . The decomposition tree of F⊥ can
be computed in O(n + l) time.

Corollary 1. P(F) can be computed in O(n + l) time.
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2 Hypergraph Modular Decomposition

Hypergraph Substitution: Substitution in general is the action of replacing
a vertex v in a graph G by a graph H(V ′, E′) while preserving the same neigh-
borhood properties. To apply this concept to hypergraphs, we use the following
definition presented in [19,20]:

Definition 3. Given two hypergraphs H,H1, and a vertex v ∈ V (H) the sub-
stitution of vertex v ∈ V (H) by hypergraph H1 is an hypergraph, denoted
H ′ = HH1

v , which satisfies V (H ′) = {V \ v} ∪ V (H1), and E(H ′) = {e ∈ E(H)
s.t. v /∈ e} ∪ {f \ v ∪ e1 s.t. f ∈ E(H) and v ∈ f and e1 ∈ E(H1)}.

Let us consider the example in Fig. 1 where hypergraphs are described using
their incidence matrices. In this example, we substitute vertex v3 in H by the
hypergraph H1 to create H ′. Note that even if H,H1 are undirected graphs, the
substitution operation may create edges of size 3, and therefore the resulting
hypergraph H ′ is no longer a graph.

Definition 4 (Standard Hypergraph Module) [19,20]. Given a hypergraph
H, a module M ⊆ V (H) satisfies: ∀A,B ∈ E(H) s.t. A ∩ M �= ∅, B ∩ M �= ∅
then (A \ M) ∪ (B ∩ M) ∈ E(H).

When M is a module of H then H = (HM )H(M)
m . On the previous example: let

us take A,B ∈ E (resp. 1st and 6th columns of H ′) then (A \ M) ∪ B ∩ M = 2nd

column of H ′ and therefore belongs to E . If M is a module of H then ∀e ∈ E(HM ),
the edges of H that strictly contain e and are not included in M are the same.
In other words, all edges in E(HM ) behave the same with respect to the
outside , which is an equivalence relation between edges.

Property 3 [20]. The family of modules of a simple hypergraph H is partitive.

Since every partitive family has a unique decomposition tree [10], it follows that
the family of the modules of a simple hypergraph admits a uniqueness decompo-
sition theorem and a unique hypermodular decomposition tree. For hypergraphs,
as for graphs we have 2 types of complete node, namely series and parallel. There-
fore the modular decomposition tree for hypergraphs has three types of nodes:
series, parallel and prime. If E(H) is the set of all singletons of V (H), then every
subset of V (H) is a module; this corresponds to the parallel case. On the other
hand if E(H) = 2|V (H)|, then also every subset of V (H) is a module, which
corresponds to the series case.

Modular decomposition, applied to bipartite graphs, just leads to the compu-
tation of sets of false twins in the bipartite graphs (vertices sharing the same
neighborhood) and connected components. As Fig. 1 example shows, hypergraph
modules are not always set of twins of the associated incidence bipartite.

Some authors [3,4] defined clutters hypergraphs, in which no edge is
included into another one. In this case, clutters modules are called commit-
tees [3]. Trivial clutters are closed under hypergraph substitution. The commit-
tees of a simple clutter also yields a partitive family which implies a uniqueness



Modular Decompositions of Hypergraphs 255

a 0 1 1
b 0 1 1
c 1 0 1

H1

v1 1 0 1 1
v2 1 0 0 0
v3 1 0 1 0
v4 1 1 0 0

H

v1 (u1) 1 1 1 0 1 1 1 1
v2 (u2) 1 1 1 0 0 0 0 0
a (u3) 0 1 1 0 0 1 1 0
b (u4) 0 1 1 0 0 1 1 0
c (u5) 1 0 1 0 1 0 1 0
v4 (u6) 1 1 1 1 0 0 0 0

H ′ = HH1
v3prime

u1 u2

series

parallel

u3 u4

u5

u6

e1 e2 e3 e4 e5 e6 e7 e8

u1 u2 u3 u4 u5 u6

Fig. 1. An exp. of substitution, its decomposition tree, and its incidence bipartite
graph. {u3, u4, u5} is a module, but only u3, u4 are false twins in the incidence bipartite.

decomposition theorem. From this one can recover a well-known Shapley’s theo-
rem on the modular decomposition of monotone Boolean functions. It should be
noted however that finding the modular decomposition of a Boolean function is
NP-hard [5]. It was shown in [7], that computing clutters in linear time would
contradict the SETH conjecture.

2.1 Variants of Modular Decomposition of Hypergraphs

Often when generalizing graph concepts to hypergraphs there are several poten-
tial generalizations. In fact we found in the literature two variations on the hyper-
graph module definition: the k-subset modules defined in [6] and the Courcelle’s
modules defined in [11]. In this section we will first recall them and study their
relationships to the standard one (Definition 4).

Definition 5 (k-subset module [6]). Given a hypergraph H, we call k-subset
module M ⊆ V (H) satisfies: ∀A,B ⊆ V (H) s.t. 2 ≤ |A|, |B| ≤ k and A ∩ M �=
∅, B ∩ M �= ∅ and A \ M = B \ M �= ∅ then A ∈ E(H) ⇔ B ∈ E(H).

If H is a 2-uniform hypergraph (i.e., an undirected graph) the 2-subset modules
are simply the usual graph modules. Families of k-subset modules also yield a
partitive family [6].

Definition 6 (Courcelle’s module [11]). Given a hypergraph H, we call
Courcelle’s module a set M ⊆ V (H) that satisfies ∀A ∈ E(H), A ⊥ M .

Courcelle’s modules using our notations of Sect. 1 just correspond to E(H)⊥.
Using Property 1 these modules yield a partitive family. This notion seems to
be far from the standard hypergraph module definition [19,20], this is why we
called them Courcelle’s modules. Indeed, applied to graphs, the orthogonal of
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the edge-set is the connected components (plus the vertex-set and the singletons)
of the graph, not the modules. A direct application of Theorem 2 on orthogonal
families gives the following corollary:

Corollary 2. Courcelle’s modular decomposition tree can be computed in O(l).

3 General Decomposition Scheme for Partitive Families

Definition 7. For a partitive family F on a ground set V , using the closure by
intersection of partitive families, we can define for every A ⊆ V , Minmodule(A)
as the smallest element of F that contains A. In particular, let us denote by Mx,y

the family of all Minmodule({x, y}) and ∀x, y ∈ V .

Although Mx,y does not contain all F , simply because |F| can be exponential
in |V | while |Mx,y| is always quadratic. In this section we propose an algo-
rithm scheme to compute the decomposition tree of a partitive family if the only
access to the family is a call of a function that computes: for every A ⊆ V ,
Minmodule(A). Thus designing an efficient algorithm is to minimize the total
number of calls. We will now show a simple way to extract the decomposition
tree, i.e., the strong elements from of Mx,y.

According to the definition, if a node has only two children, we cannot distin-
guish whether this node is prime or complete. We take the convention that the
node is prime in this case. After constructing the tree, we can easily transform
it into another convention just by labeling all nodes with only two children as
complete nodes.

Theorem 3. For every partitive family F over a ground set V , its decomposition
tree can be computed using O(|V |2) calls to Minmodule({x, y}), with x, y ∈ V .

Proof. First choose an initial vertex x0 and compute Minmodule({x0, x}),∀x �=
x0 ∈ V and add them to a set M. Then we add all singletons to M. Let μ the
unique path from x0 to the root in the decomposition tree.

Claim 1: Every prime node of μ, belongs to M.

Proof. Consider a prime strong element A ∈ μ, it corresponds to some node of
the tree which admits children A0, A1, . . . Ak, with k ≥ 1 in the decomposition
tree. If x0 ∈ A0, and take y ∈ A1, then Minmodule({x0, y} = A, since A is the
least common ancestor in the decomposition tree. 
�
Claim 2: For a complete node A ∈ μ, with children A0, . . . Ak, if x0 ∈ A0, then

(i) for every 1 ≤ i ≤ k the set A0 ∪ Ai belongs to M
(ii) when elements of M are sorted by their size, A0∪Ai appear consecutively.

Proof. (i) In fact for every y ∈ Ai, Minmodule({x0, y}) = A0 ∪ Ai. Note that it
may be possible that A0 = {x0}.

(ii) If there exists a prime node P such that ∃i, j such that |A0 ∪Ai| < |P | <
|A0 ∪ Aj |. Since x0 ∈ P and x0 ∈ A0 then P must overlap with A0 ∪ Ai or
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A0 ∪ Aj , which contradicts the fact that P is a prime node that overlaps no
other element in the family. 
�

The above arguments also show that any Minmodule({x0, y}) corresponds
to either a prime node, or the union of two children of a complete node. So
the family M is made up with prime nodes that overlap no other subsets and
some daisies, and they all contain x0, where daisies are these subsets A0 ∪ Ai,
all containing A0, the Ai’s being the petals of the daisy and A0 its center. Note
that a daisy is a simple particular case of overlap component.
Now to find the decomposition tree we can apply the following algorithm:

1. Sort elements in M by size, eliminate multiple occurrences of a subset in M.
2. Scan this list in increasing order and checking if the new considered subset

overlaps the previous, else merge it to the previous it with complete (label
both the two as complete) and continue. After the iteration, there is no unla-
beled set that overlaps with another unlabeled set, then mark every unlabeled
set with the label prime.
Then labeled sets X0,X1, . . . , Xh provide the path from x0 to the root of the
modular decomposition tree, namely: μ = [{x0} = X0,X1, . . . , Xh = V ].

3. Let us consider the partition {V0, . . . , Vh} of V defined as follows:
Vi = {x ∈ V |Minmodule(x0, x) = Xi} for 0 ≤ i ≤ h.
For every 0 ≤ i ≤ h recurse on the partitive family over the ground set Vi by
computing the path from a vertex x ∈ Vi that haven’t been computed and
attach its tree to Xi.

Claim 3: Every node constructed is a strong module.

Proof. Assume node X, x0 ∈ X overlapping with some module X ′. We take any
element x′ ∈ X ′ \ X, then XΔX ′ is a module and thus Minmodule(x0, x

′) ⊆
XΔX ′, which overlaps with X. Thus Minmodule(x0, x

′) must have been merged
into X, contradiction. 
�

The validity of the claim directly follows from Claims 1 to 3. For Step 1 we
can use any linear sorting by value algorithm, since the size of the subsets are
bounded by n = |V |. Clearly Step 2 can be done linear time in the size of M.
So the bottleneck of complexity is the number of calls of Minmodule({x, y}),
which is bounded by n2. 
�

Consequently, if computing the function Minimal of a given partitive family
can be done O(p(n))time, then the computation of the decomposition tree can be
done in O(n2 · p(n)). Applied to graphs it yields an O(n2m) algorithm, far from
being optimal. Such an approach was already used for graphs in [15]. Let us now
consider how to compute this function for the three variations of hypergraph
modules defined previously.

4 Computing Minimal-Modules for Hypergraphs

For undirected graphs, computing Minimal-modules can be done via a graph
search in linear time. We generalize this to hypergraphs for two out of the three
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Algorithm 1. Modular-closure
Data: H a simple hypergraph and W � V (H)
Result: The minimal module of H that contains W
Compute a lexicographic ordering τ of E(H) w.r.t an arbitrary ordering of V ,1

C ← W , X ← W ,2

Compute the induced hypergraph H(C),3

for 1 ≤ i ≤ |E(H(C))| do4

Compute the ordered lists Li of the restriction to V (G) \ C of the edges in5

E(H) that contain fi ∈ E(H(C))
Q(C) ← {L1, . . . , L|E(H(C))|} the ordered partition made up with these lists6

if |Q(C)| = 1 then7

C is a module, STOP8

else9

L ← First(Q(C)), {% the first class in the ordered partition%}10

while Next(L) �= NIL {% the next element of L in the ordered partition%}11

do
X ← Comparison(L, Next(L))12

if X = ∅ then13

L ← Next(L)14

else C ← C ∪ X, update Q(C) via partition refinement with X,15

L ← First(L)
{%if L has been split during the update we take its first part%}16

17

RESULT ← C {%C is a minimal module that contains W%}18

definitions of modules: the standard and the k-subset module. For efficiency
purposes, we represent our hypergraphs using for each vertex x a list to represent
N(x) i.e., the edges its belongs to, and for each edge e a list to represent H(e)
i.e., the vertices it contains. For a hypergraph this yields a representation using
O(n + m + l) memory. If the hypergraph is simple then O(n + m + l) = O(l).

4.1 Standard Modules

Definition 8. For a set C � V (H), an edge A ∈ E(H) is a edge-splitter for
C, if A \ C �= ∅ and A ∩ C �= ∅ and if there exists B ∈ E(H) s.t. B ∩ C �= ∅, and
(A \ C) ∪ (B ∩ C) /∈ E(H).

In other words, a set of vertices is a module iff it admits no edge-splitter.

Property 4. If X ⊆ V (H) is a splitter of C ⊆ V (H) respect to A,B as above.
Let B′ ∈ E(H) be the edge such that B′ ∩C = B∩C and with |(B′ \C)Δ(A\C)|
minimum.

Let X ′ = (B′ \C)Δ(A\C), then there is no module Y of H such that C � Y
but X ′ � Y .

Theorem 4. If H is a simple hypergraph, for every set W ⊆ V (H), Algorithm
Modular-closure computes Minmodule(W ) in O(n · l). And its modular decom-
position tree can be computed in O(n3 · l)).
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Algorithm 2. Procedure Comparison
Data: 2 lists L′, L′′ of the restriction to V (G) \ C of the edges in E(H) that

contain some f ∈ E(H(C)). They are supposed to be lexicographically
increasingly ordered using τ

Result: X a set of vertices forced be contained in Minmodule(C)
if L′ = L′′ then1

X ← ∅, STOP2

else3

Let e ∈ L′ and f ∈ L′′ be the first lexicographically difference,4

if (e <τ f)or(e �= ∅ and f = ∅) then5

{% e /∈ L′′ is a edge-splitter %}6

compute f ′ ∈ L′′ that minimizes |h(e)Δh(f ′)| with f ′ ∈ L′′
7

X ← h(e)Δh(f ′)
else8

{% (e >τ f)or(e = ∅ and f �= ∅), i.e. f /∈ L′ is a edge-splitter %}9

compute e′ ∈ L′ that minimizes |h(f)Δh(e′)| with e′ ∈ L′,10

X ← h(f)Δh(e′)11

12

{%Note that e = ∅, f �= ∅ (resp. e �= ∅, f = ∅) corresponds to the case13

|L| < |Next(L)| (resp. |L| > |Next(L)|)%}

Proof. (i) Correctness: First we notice that C is a module of H iff all the
lexicographically sorted lists Li are equal. At each step of the lexicographic
process a list can only be cut into parts, no lists are merged. If at some step
of the algorithm two lists Li, Lj are equal, and if afterwards they are cut into
sublists via the refinement process, equality between sublists is preserved since
the refinement act similarly on the lists. Thus the algorithm scan the lists form
left to right using a single sweep and the following invariant: at each step of the
while loop all the lists before the current list L are all equal to L.

Using the procedure Comparison either the lists are equal and then we pro-
ceed else using Property 4 we know that we can add this set of vertices. At the
end of the algorithm either all lists are equals and C �= V (H) and therefore C
is the non trivial minimal module containing W or C = V (H) and there is no
other module between W and V (H).

(ii) Complexity Analysis: To implement the first step (line 1) we can use
an ordered partition refinement technique on E(H) (see [13]) using the sets N(x)
for every x ∈ V (H) as pivot sets. This provides a total ordering τ of E(H). This
can be done in O(n + m + l).

To compute Q(C), we can use the same ordered partition refinement tech-
nique using the sets N(x) for every x ∈ C as pivot sets we can compute the
ordered partition of E(H). Starting from the partition P0 = {E(H)}, we refine
this partition successively using N(xi) for every xi ∈ C. Let us denote by Pf

the partition obtained after this round of refinements. Each part of Pf can be
ordered using τ , since partition refinement can maintain an initial ordering of its
elements within the same complexity. So if we start with the initial ordering τ in
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the unique part of P0. And the parts are lexicographically ordered with respect
to their intersection to C. This can be done in O(|C| + Σx∈C |N(x)|).

In fact after line 6 we can ignore the vertices of C, a similar remark holds
when C is updated.

Now we have to check if all edges lists Li are identical or not and stop at the
first difference. Since the lists are ordered lexicographically using an ordering
τ of the vertices, a simple scan of these ordered lists is enough to compute
(Comparison procedure) of Algorithm1.

When C and Q(C) are updated, the algorithm goes on with the first part
of the previous current list L. First means that if L has been split during the
update we take its first part. Therefore in the worst case some list can be analyzed
several times (at most n times) and therefore the overall complexity of the list
scan is bounded by O(n · l).

When a difference is found between two lists we have to search for an edge
that minimizes the symmetric distance with respect to the differentiating edge.
Even though it can be done several times for a given edge, but every time we
launch this search, at least one vertex will be added into C, thus at most search
for n times. So the overall complexity of these searches is O(n · l).

Therefore the whole process is in O(n+m+l+n·l) = O(n·l). Using Theorem
3 we obtain the decomposition tree in O(n3 · l). 
�

Up to our knowledge, [20] states there is a polynomial time decomposition
algorithm for clutters based on its O(n4m3) modular closure algorithm without
precising the complexity, our algorithm is an improvement because our total
decomposition time is already smaller than O(n4m3) s.

4.2 Decomposition into k-Subset Modules

Definition 9 [6]. A subset X �= ∅ is a k-subset splitter of the set C if there
exist A,B ⊆ V s.t. 2 ≤ |A|, |B| ≤ k and A ∩ C �= ∅, B ∩ C �= ∅ and A \ C =
B \ C = X, A ∈ E(H) but B /∈ E(H).

Lemma 1. Given a set C ⊆ V (H), any k-subset splitter of C is in the form of
H(e) \ C for some e ∈ E(H), |H(e)| ≤ k.

Such an edge will be called an k-edge-splitter of C. Let D(k, h) = Σi=k
i=1 (hi )

for 1 ≤ k ≤ h, where (hi ) denotes the binomial coefficient. All values of D(k, h)
strictly greater that |E(H)| will be set as Out-of-Range, a huge number.

Lemma 2. For a simple hypergraph H, given a set C ⊆ V (H) and an edge
e ∈ E(H) s.t. |H(e)| ≤ k, e ∩ C �= ∅ and X = e \ C �= ∅, let L be the list of edges
in E(H) with size ≤ k and whose intersection with V (H) \ C are identical to X
and intersection with C is not empty, i.e. L = {e′ ∈ E(H) | e′ \C = X, e′ ∩C �=
∅ and |H(e′)| ≤ k}. If |L| < D(k − |X|, |C|) then e is an edge-splitter of C.

Proof. It is equivalent to check for such an e given above and X = e\C, whether
every non empty subset B of size ≤ k − |X| in C has X ∪ B ∈ E(H). Since H is
simple and there are no identical elements in L, a counting argument captures
the condition. Moreover, the number of subsets checked this way is ≤ |E(H)|. 
�
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Algorithm 3. k-subset modular-closure
Algorithm: k-subset modular-closure1

Data: H a simple hypergraph, k an integer such that 1 ≤ k ≤ |V (H)| and
W � V (H)

Result: The minimal k-module of H that contains W
Compute all D(k, h) for |W | ≤ h ≤ |V (H)|,2

Compute a lexicographic ordering τ of E(H) with respect to some ordering of3

the vertices,
C ← W , X ← W ,4

while X �= ∅ do5

For every ei ∈ E(H) overlap C, |H(ei)| ≤ k, create the lists Li of edges in6

E(H) with size ≤ k whose intersection with V (H) \ C are identical to ei \ C
and of size h and intersection with C is not empty
if For some i, |Li| < D(k − h, |C|) then7

X ← X ∪ (H(ei) \ C),8

if V (G) = C ∪ X then9

% there is no non-trivial module between W and V (H) %10

RESULT ← V (H), STOP11

else12

%X is a splitter for C%,13

C ← C ∪ X14

15

else X ← ∅16

RESULT ← C %C is a non trivial module containing W%17

Theorem 5. For a simple hypergraph H and A � V (H), for any fixed integer
k ≤ |V (H)|, Algorithm3 (k-subset modular-closure) can compute the minimal
k-subset module that contains A in O(n · m · l) time, which gives a O(n3 · m · l)
decomposition algorithm.

5 Using Orthogonality for Graph Modular Decomposition

5.1 Factorizing Permutations and Fractures

Given a permutation σ of a set V , let σ(i) denote the ith element of V . An
interval [l, r] of σ is a set of elements that follow consecutively (1 ≤ l ≤ r ≤ n).

Definition 10. Let F be a family of subsets of V . A permutation σ of V is a
factorizing permutation if every strong set of F is an interval of σ. Further-
more, it is perfect if every set of F is an interval.

Factorizing permutations were defined in the context of modular decomposi-
tion [8] but can be generalized to any subset family, where a permutation can be
obtained by a traversal of its decomposition tree. We adapt a definition from [8]:
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Definition 11. Let G = (V,E) be a graph and σ a permutation of V . Let us
consider a pair {σ(i), σ(i + 1)} of two consecutive elements. The left fracture
(resp. right fracture) of i is the largest interval [s, i] (resp. [i+1, s]) where σ(s)
is a splitter of {σ(i), σ(i + 1)}. If that pair admits no splitter on its left (resp.
right) then i has no left (resp. right) fracture. The fracture family, denoted
Frac(σ), of a given permutation of the vertices of a graph is the set of all (left
and right) fractures for all 1 ≤ i < n.

Lemma 3. Given a graph G and a permutation σ of its vertices, an interval I
of σ is a module iff it does not overlap any fracture of Frac(σ).

Lemma 4. Let σ be a factorizing permutation of the modules family of G, F be
a fracture of σ, and M the smallest module containing F . M is a strong module.

Theorem 6. Given a graph G, the family M of its modules and a factorizing
permutation σ of M we have: P(M) = Frac(σ)⊥. Furthermore, if the graph is
undirected then M = Frac(σ)⊥.

5.2 Modular Decomposition of Tournaments

We can apply the theorem above to undirected graphs where we get a new algo-
rithm but no improvement of the existing algorithms, or to tournaments (orien-
tation of the complete graph), and we get an simple (much simpler than the exist-
ing algorithm in [18]) and optimal modular decomposition algorithm. Among the
families admitting a perfect factorizing permutation are the anti-symmetric-
partitive families, families where Axiom ii of Definition 1 is replaced with:
∀A,B ∈ F that overlap, A ∩ B,A ∪ B,A \ B ∈ F and AΔB /∈ F . Their decom-
position tree is often called a PQ-tree , whose nodes are labeled P (prime)
and Q (having a linear ordering of the siblings so that any union of siblings
that follow consecutively belong to the family, and no other union). Well-known
antisymmetric-partitive families are the intervals of the real line (their inter-
section model being an interval graph), the common intervals of two permuta-
tions [2], or the modules of a tournament.

Theorem 7. Let G be a tournament. The modular decomposition tree of G can
be computed in O(n2) time.

6 Conclusions

In this paper, using a general framework for decomposition of partitive families
or tools of orthogonality, we have proposed 3 polynomial algorithms to com-
pute hypergraph modular decomposition trees under 3 different definitions of
modules. Our general framework yields a O(n3 · l) algorithm for the standard
decomposition of hypergraphs, and a O(n3 · m · l) time for k-subset modules,
an improvement to the previously known non-polynomial O(n3k−5) time algo-
rithm [6], where k denotes the maximal size of an edge. Since our approach is
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brute force, there may exists linear time (in O(l)) algorithms for the standard
hypergraph decomposition, as for graphs [14]. One would have to develop new
hypergraph algorithms, for example one that computes in linear time some fac-
toring permutation which always exists for every partitive family and use some
orthogonality.

Conjecture 1. Simple hypergraphs admit a linear time O(l) modular decompo-
sition algorithm.
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