
Incremental Algorithm for Minimum Cut
and Edge Connectivity in Hypergraph

Rahul Raj Gupta and Sushanta Karmakar(B)

Department of Computer Science and Engineering,
IIT Guwahati, Guwahati, Assam, India

rahulrg.raj@gmail.com, sushantak@iitg.ac.in

Abstract. For an uncapacitated hypergraph H = (V, E) with n = |V |,
m = |E| and p = Σe∈E |e|, and edge connectivity λ, this paper presents
an insertion-only algorithm which updates minimum cut and edge con-
nectivity incrementally on addition of a set of hyperedges to an existing
hypergraph. The algorithm is deterministic and takes O(λn) amortized
time per insertion of a hyperedge. The algorithm can answer queries on
edge-connectivity in O(1) time and returns a cut of size λ in O(n) time.
First we propose a method to maintain a hypercactus [3] under the addi-
tion of a set of hyperedges. It is observed that the time for maintaining
a hypercactus on addition of a set U of hyperdeges is O(n + pu) where
pu = Σe∈U |e|. This method is then used as a subroutine in our incre-
mental algorithm for maintaining minimum cut and edge connectivity.

Keywords: Hypergraph · Minimum cut · Edge connectivity ·
Hypercactus

1 Introduction

Computing the minimum cut (or edge connectivity) is a fundamental problem in
graph algorithms. There are many algorithms to compute the edge connectivity
in a simple graph [6,12,16,19]. There are also a few algorithms that maintain the
edge connectivity in a simple graph under the addition of a few edges and vertices
[9,10]. Computing the minimum cut or the edge connectivity for a hypergraph is
also an important problem. It has applications in various fields e.g., circuit and
chip design, network communication, planning in transportation, circuit parti-
tioning and cluster analysis. There are a few algorithms to compute the edge
connectivity for a static hypergraph [2,13,15]. The best algorithm known so far
to compute the minimum cut for a static hypergraph is given by Chekuri and Xu
[2]. However, to the best of our knowledge, no algorithm exists in the literature
that maintains the minimum cut or the edge connectivity for dynamic hyper-
graphs where a few hyperedges are added to or deleted from a given hypergraph.
For dynamic hypergraphs, one straightforward approach is to apply a known
algorithm [2,13,15] to compute the minimum cut whenever there is a change in
the hypergraph (due to addition or deletion of hyperedges). However this simple
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approach has many drawbacks. For example, even for a single hyperedge inser-
tion, the application of the algorithm by Chekuri and Xu [2] requires O(p+λn2)
time to update the minimum cut and the edge connectivity. In a dynamic envi-
ronment usually the number of hyperedges being added or deleted is relatively
small compared to the overall size of the hypergraph. It is therefore desirable to
tolerate a small change (edge or node) in an efficient manner. Also the approach
helps answer queries on the minimum cut and the edge connectivity in an online
setting. The existing algorithms for computing the minimum cut in a hypergraph
suffer from the fact that they do not work efficiently under dynamic or online
setting.

In this paper, we present an incremental algorithm that updates the min-
imum cut and the edge connectivity of an existing hypergraph on addition of
a set of hyperedges. The algorithm takes O(n + pu) time if the edge connec-
tivity does not change in spite of the addition of new hyperedges. Otherwise
the algorithm recomputes the edge connectivity and the hypercactus using the
method of Chekuri and Xu [2] that requires O(p + λn2) time. Our algorithm is
deterministic and takes O(λn) amortized time per insertion of a hyperedge. The
algorithm can answer queries on edge-connectivity in O(1) time and returns a
cut of size λ in O(n) time. Note that the claimed bound is a significant improve-
ment over the trivial algorithm that computes everything from scratch. This is
because any static algorithm must take Ω(p) time, where p could be exponential
in n.
Our Contribution: In this paper, our contributions are the following:

(i) We present a method to maintain a given hypercactus efficiently under
dynamic addition of a few hyperedges. Our method takes O(n + pu) time
compared to O(p + λn2) time taken by the current best approach (Chekuri
and Xu [2]) to update the hypercactus given that the edge connectivity does
not change. Here pu, p, λ and n have usual meanings.

(ii) We present an incremental algorithm that updates the minimum cut and
the edge connectivity of an existing hypergraph on addition of a set of
hyperedges. We use the aforesaid method of maintaining a hypercactus as a
subroutine in this incremental algorithm. We show that our algorithm has
an amortized time of O(λn) per insertion of a hyperedge.

Organization: In Sect. 2, we discuss the related work. Section 3 contains some
basic preliminaries related to the problem. In Sect. 4 we discuss our algorithm.
The proof of correctness of the proposed algorithm is given in Sect. 5. We con-
clude the work in Sect. 6.

2 Related Work

There exist many algorithms for computing the minimum cut and the edge con-
nectivity in a simple graph [6,12,16,19] and in the last few decades, dynamically
updating the edge connectivity in a simple graph has been addressed by many
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researchers. In 2016, Goranci et al. [9] gave a deterministic incremental algo-
rithm that maintains the edge connectivity in ˜O(1) amortized time per edge
insertion in undirected and unweighted graph. Henzinger [10] has also given an
incremental algorithm that maintains the minimum cut and the edge connectiv-
ity of a graph G under dynamic addition of a set of edges. It takes O(λ log n)
amortized time per insertion of a simple edge. Dinitz and Westbrook proposed a
method [5] to maintain a cactus representation [4] which stores all possible min-
imum cuts in a graph and this method is used as a subroutine in the incremental
algorithm given by Henzinger [10]. The current best deterministic algorithm to
compute a cactus representation of a graph G is given by Gabow [7] which
requires O(m + λ2n log(n/λ)) time.

In case of hypergraphs there are many static algorithms to compute different
hypergraph properties like minimum cut, minimum weight hyperpath, transitive
closure, rank, independent sets, etc. A careful implementation of the method
given by Queyranne [17] to compute the minimum cut in a hypergraph takes
O(np + n2 log n) time for capacitated hypergraph and O(np) time for an unca-
pacitated hypergraph. Klimmek and Wagner [13], Mak and Wong [15] indepen-
dently gave algorithms for computing the minimum cut in a hypergraph having
same time bound. The current best algorithm to compute the edge connectivity
and the hypercactus is given by Chekuri and Xu [2] that requires O(p + λn2)
time. Ausiello et al. [1] proposed an algorithm to maintain transitive closure for
a hypergraph under dynamic addition of hyperedges. Italiano and Nanni [11]
proposed an algorithm to maintain minimum rank and minimum gap hyperpath
over a batch of hyperedge insertions. In [18], a Dijkstra-like procedure has been
proposed for maintaining a weighted shortest path in a fully-dynamic hypergraph.

3 Preliminaries

Let H = (V,E) be an uncapacitated hypergraph where V is the set of vertices
and E is the set of hyperedges where each hyperedge e ∈ E is a subset of
vertices, n = |V |, m = |E| and p = Σe∈E |e| where |e| is the number of vertices
in a hyperedge e. A cut is the partitioning of V into two non-empty sets A
and V \A. The set of hyperedges connecting the two sets (also called cut-edges)
contribute to the value of the cut. Out of all possible cuts in a hypergraph, any
cut whose value is minimum is known as a minimum cut.

We denote the set of hyperedges intersecting both A and V \A with δH(A)
and call it a cut-edge set of H. A hypergraph H ′ = (V ′, E′) is said to be a
subhypergraph of a hypergraph H = (V,E) if V ′ ⊆ V and there is a bijective
mapping φ : E → E′ where φ(e) ⊆ e for each e ∈ E. For vertices u, v ∈ V ,
a (u, v)-walk of length k in H is a sequence v0e1v1e2v2 . . . vk−1ekvk of vertices
and hyperedges (possibly repeated) such that v0, v1, . . . , vk ∈ V , e1, . . . , ek ∈ E,
v0 = u, vk = v, and for all i = 1, 2, . . . , k, the vertices vi−1 and vi are adjacent
in H via the hyperedge ei. The vertices u, v ∈ V are said to be connected in
H if there exists a (u, v)-walk in H. The hypergraph H is said to be connected
if every pair of distinct vertices is connected in H. The minimum number of
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hyperedges whose removal disconnects H is called the edge connectivity of H,
which is denoted by λ. A cut is k-cut if |δH(A)| = k. The vertices s and t are
said to be k-edge connected if there exists no k

′
-cut, k

′
< k that disconnects the

pair {s, t}.
A cactus tree [4] is an O(n) sized data structure which compactly represents

all possible minimum cuts of size k in a k-edge connected simple graph G. A
cactus tree τ(G) can be represented as (G∗, Φ) where G∗ is a simple weighted
graph and Φ : V (G) −→ V (G∗) such that Φ is a many to one mapping. The
properties of τ(G) are:

(i) Φ(u) = Φ(v) if and only if the vertex u and v are not separated by a λ-cut
in G.

(ii) If (X, X̄) is a λ-cut of G∗ for X ⊂ V (G∗) then (Y, Ȳ ) is a λ-cut of G where
Y = {Φ−1(u)|u ∈ X}.

(iii) If λ is odd, G∗ is a tree and every edge of G∗ has a weight of λ. If λ is even,
two simple cycles of G∗ have at most one common node, every edge that
belongs to a cycle has weight λ/2 and every edge that does not belong to a
cycle has weight λ.

For a given hypergraph H and edge connectivity λ, a hypercactus is an O(n)
sized data structure which compactly represents all possible minimum cuts of
size λ. The hypercactus τ(H) [3] can be represented as (H∗, Φ) where H∗ is a
hypergraph and Φ : V (H) → V (H∗) such that Φ is a many to one mapping. The
properties of τ(H) are as follows:

(i) Φ(u) = Φ(v) if and only if the vertex u and v are not separated by a λ-cut
in H.

(ii) If (X, X̄) is a λ-cut of H∗ for X ⊂ V (H∗) then (Y, Ȳ ) is a λ-cut of H where
Y = {Φ−1(u)|u ∈ X}.

The main difference between a cactus and a hypercactus is that a hypercactus
can have hyperedges (see Fig. 2 for example) in addition to simple edges and
cycles whereas a cactus can have only simple edges and cycles. The weight of each
non cycle edge and each hyperedge in τ(H) is λ whereas the weight of each cycle
edge in τ(H) is λ/2. Figure 2 represents a hypercactus τ(H) for a hypergraph
H as shown in Fig. 1 whose edge connectivity is 2. In Fig. 2, x1 = x2 = φ and
Φ(1) = Φ(2) = Φ(3) = Φ(4) = a. For every other vertex u of H, Φ(u) = u in
τ(H) as shown in the figure. The edge weights are also shown in the figures. In
addition to structural differences between a cactus and a hypercactus, there are
also operational differences between them. For example, we can apply shrinking
and squeezing operations on a cactus structure whereas we can apply tuning
operation in addition to shrinking and squeezing operations in a hypercactus.

Dinitz and Westbrook [5] defined shrinking of nodes and squeezing of cycles
as follows. In shrinking a subset of vertices W ⊆ V , the operation replaces all
vertices in W by a single vertex w, deletes all edges whose both end points lie in
W . For any edge (x, y) where x ∈ W and y �∈ W , the operation replaces (x, y)
with (w, y).
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Let C = (v1, v2, ..., vk, v1), k ≥ 2 be a cycle. Then squeezing C at vi and
vj , i < j, results in shrinking vi and vj . The squeezing results in two new
cycles: (w, vj+1, ..., vk, v1, ..., vi−1, w) and (w, vi+1, ..., vj−1, w). If the length of
a resulting cycle is 2, the cycle gets replaced by a simple edge. In this paper
we introduce a new operation named tuning of a hyperedge which is defined in
Subsect. 4.2.

4 The Proposal

In this section we first briefly discuss the work of Dinitz and Westbrook [5] for
maintaining the cactus tree τ(G) of a graph G. This is used as a subroutine
for maintaining the minimum cut and the edge connectivity in a simple graph
under dynamic addition of edges (Henzinger [10]). Next we propose our method
to maintain a hypercactus τ(H) of a hypergraph H on dynamic addition of
hyperedges. We use this hypercactus maintenance method as a subroutine for
designing the incremental algorithm for maintaining the minimum cut and the
edge connectivity in a hypergraph, which is described in Subsect. 4.3.

4.1 Cactus Maintenance

Let n be the number of vertices in G. The data structure used by Dinitz and
Westbrook takes O(n + m + q) time to perform m number of Insert-Edge(u,v)
operations and q number of Same-k-Class(u,v) queries. The Insert-Edge(u,v)
operation inserts a new edge (u, v) dynamically to a graph G. The Same-k-
Class(u,v) query returns true if vertex u and v are k-edge connected and returns
false otherwise. The algorithm takes O(m+k2n log(n/k)) preprocessing time in
order to construct the initial data structure where m is the number of edges in
G. Previously the algorithms for maintaining all possible minimum cuts of size
1, 2 and 3 in a graph G has been described in [8,14]. The algorithm by Dinitz
and Westbrook [5] is a generalization for an increasing value of k.
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The author introduced the definition of the auxiliary tree which is an exten-
sion of the cactus tree. The auxiliary tree T (G) consists of two types of nodes:
square node, one for each node in τ(G) and round node, one for each cycle in
τ(G). Two square nodes in T (G) are connected by a simple edge if corresponding
nodes in τ(G) are connected by a simple edge. The square nodes in T (G) which
are a part of a cycle C in τ(G) are made adjacent to the round node in T (G)
representing C. The square nodes connected to a round node in T (G) follow the
order in which the corresponding nodes in τ(G) are connected in a cycle. A leaf
node is created for each vertex v in G. These leaf nodes are made children of the
corresponding square nodes in T (G). The query Same-(k+1)-Class(u,v) returns
true only if vertices u and v have same parent in T (G).

On inserting a new edge, the algorithm first finds a unique path between the
corresponding square nodes in T (G). It modifies the path such that it correctly
reflects the effects of squeezing cycles and shrinking nodes in τ(G). If two square
nodes in the path are connected by a simple edge in T (G) then the square nodes
are merged in T (G) as shown in Fig. 4 and shrinking of corresponding nodes in
τ(G) are applied. If two square nodes in the path are connected to a round node
in T (G) then the modification of T (G) is done as shown in Fig. 5 and squeezing
of corresponding cycle in τ(G) is applied. There will be leaf nodes connected to
the square nodes in T (G), however we omit them for the clarity of the figures.

4.2 Hypercactus Maintenance

In this subsection we propose a method to maintain a hypercactus on dynamic
addition of a set U of hyperedges which takes O(n + pu) time. This method
inherits the ideas proposed by Dinitz and Westbrook [5] described in Subsect. 4.1.
The method is described using the following cases:

(i) λ = 0: In this case the given hypergraph H is disconnected. On adding
a new hyperedge e = {u1, u2, ..., ul}, the method updates H using a fast
disjoint set-union data structure [20] which takes O(qα(q, n)) time to per-
form any sequence of q number of union and find operations. Here α is
the functional inverse of the Ackermann’s function (practically, α is a con-
stant). The method first creates a set of each connected component of H.
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The find(v) operation returns the name of a component containing the ver-
tex v. The union operation takes two connected components as the input,
merges the two components and returns the merged component. The query
Same-(λ + 1)-Class(u,v) returns true if find(u) = find(v). The method
iterates through each vertex in e. If find(ui) = find(ui+1) for 1 ≤ i < l
then the method does not change anything. Otherwise union operation on
disjoint sets find(ui) and find(ui+1) is applied. The method follows the
same procedure for each hyperedge e ∈ U . Note that total O(pu) number of
find and union operations are called in this case and thus the time com-
plexity is O(puα(pu, n)). After a certain number of hyperedge insertions if
the hypergraph has a single component then the hypergraph is no more
disconnected. In this situation the method computes the edge connectivity
and the hypercactus using the algorithm of Chekuri and Xu [2] and applies
the technique given in the following case to maintain the hypercactus.

(ii) λ ≥ 1: In this case the hypergraph is connected. In case of a graph, a
cactus consists of simple edges and cycles. In case of a hypergraph, a hyper-
cactus can have hyperedges in addition to simple edges and cycles. The
method extends the definition of the auxiliary tree T (H) used by Dinitz
and Westbrook for the case of hypercactus. This auxiliary tree is used in
the proposed method for hypercactus maintenance. In addition to square
nodes and round nodes, another type of node called triangle node is intro-
duced in T (H), one for each hyperedge in τ(H). Square nodes and round
nodes follow the same rules as described earlier in the case of cactus mainte-
nance. Here the rules for triangle nodes are described. The square nodes in
T (H) which are the part of a hyperedge e in τ(H) are made adjacent to the
triangle node in T (H) corresponding to e. Unlike the case of round nodes,
the square nodes can be connected to a triangle node in any order. A leaf
node is created for each vertex v in H. These leaf nodes are made children of
the corresponding square nodes in T (H). Figure 3 represents the auxiliary
tree T (H) for a hypercactus τ(H) shown in Fig. 2. The query Same-(λ+1)-
Class(u,v) returns true if vertices u and v belong to same parent in T (H).
The find(v) operation for a vertex v ∈ e returns the corresponding square
node in T (H). Similarly, the union(x, y) operation merges the nodes x and
y in T (H).
On inserting a hyperedge e = {u1, u2, ..., uk}, the method iterates through
each vertex in e. Let x = find(ui) and y = find(ui+1). If x = y then the
method does not change anything. Otherwise the method finds the unique
path between the nodes x and y in T (H). There can be three types of nodes
in the path: square nodes, round nodes and triangle nodes. This path is
then modified in such a way that it correctly reflects the effects of shrinking
nodes, squeezing cycles and tuning hyperedges in τ(H). The tuning of a
hyperedge is defined as follows.
Tuning Operation: Let e = (v1, v2, ..., vk), k > 2 be a hyperedge (for
k = 2, e is a simple edge). Then tuning e at vi and vj , i < j, results in
shrinking vi and vj . This results in a new hyperedge: (v1, v2, ..., vi−1, w, vi+1,
..., vj−1, vj+1, ..., vk). Here w denotes the supervertex obtained after merging
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nodes vi and vj throughout the entire hypergraph. If the size of the resulting
hyperedge is 2, the hyperedge is replaced by a simple edge.
If two square nodes in the path are connected by a simple edge in T (H)
then the union operation is applied on the square nodes in T (H) as shown
in Fig. 4 and the shrinking operation on corresponding nodes in τ(H) is
applied. If two square nodes in the path are connected to a round node
in T (H) then the nodes are modified as shown in Fig. 5 and the squeezing
operation is applied on the corresponding cycle in τ(H). Similarly, if two
square nodes in the path are connected to a triangle node in T (H) then the
nodes are modified as described below and the tuning operation is applied
on the corresponding hyperedge in τ(H).
Triangle Node Modification: Let s1 and s2 be the square nodes con-
nected to a triangle node t i.e., (s1, t) and (t, s2) are the edges in the path
between nodes x and y in T (H). The method merges s1 and s2 into a
supernode w and connects this w with t. All the edges connected to s1 and
s2 get connected to w. Rest other edges connected to t remain the same.
After the modification, if t has 2 square nodes connected to it then t is
deleted and these two square nodes get connected with a direct edge. An
example of triangle node modification is shown in Fig. 6.

Theorem 1. Let τ(H) = (H∗, Φ) be the hypercactus representation of a hyper-
graph H whose edge connectivity is λ. Under dynamic addition of a set U of
hyperedges to H, τ(H) can be maintained in O(n + pu) time, where n is the
number of vertices in H and pu = Σe∈U |e|.
Proof. The method described in Subsect. 4.2 to maintain τ(H) under dynamic
addition of a set of hyperedges uses the method similar to Dinitz and Westbrook
[5] described in Subsect. 4.1 with additional case of handling hyperedges. From
the construction of the auxiliary tree T (H) it is clear that each hyperedge of
size k has k + 1 number of nodes and k number of edges in T (H). From Cheng
[3], we know that |V (H∗)| = O(|V (H)|) and |E(H∗)| = O(|V (H)|). Thus, the
construction of T (H) corresponding to τ(H) can be done in linear time. Under
dynamic addition of a set of hyperedges, the method applies find and union
operations for each hyperedge iteratively. The merging of two square nodes in the
path between two nodes in the auxiliary tree takes O(1) time. Correspondingly,
shrinking an edge and squeezing a cycle in τ(H) takes O(1) time. The method
introduces a new technique called tuning which modifies a hyperedge in τ(H).
In tuning, the method shrinks the two nodes and as a result a new hyperedge
forms. The operation can be done in O(1) time using the method of disjoint set
union-find operation as used for shrinking and squeezing technique. On inserting
a hyperedge e, the method uses O(|e|) number of find and union operations to
update T (H) and τ(H). Thus, total O(pu) number of find and union operations
are used under the insertion of a set U of hyperedges. The total time taken by
find and union operation is O(puα(pu, n)). The total running time to maintain
τ(H) is O(n + puα(pu, n)) time. In practical scenario, α ≤ 6. Thus, the total
cost to maintain a hypercactus under dynamic addition of a set U of hyperedges
is O(n + pu). 	
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Algorithm 1. The Incremental Algorithm
1: Compute λ, τ(H) using Chekuri and Xu [2]
2: N ← φ
3: while there is ≥ 1 mincut of size λ do
4: if next operation is query-size()
5: print λ
6: if next operation is query-mincut()
7: print the mincut //Refer to point 2 in Subsection 4.3
8: if next operation is Same-(λ+1)-Class(u, v)
9: print “true” or “false”
10: if next operation is InsertHyperedges(U)
11: update τ(H) //Refer to Subsection 4.2
12: N ← N ∪ U
13: Recompute λ and τ(H) with H = (V, E

′
) where E

′
= E ∪ N

14: Goto step 2

4.3 The Incremental Algorithm

In this subsection we describe an incremental approach to maintain the minimum
cut and the edge connectivity of an uncapacitated hypergraph H under dynamic
addition of a set of hyperedges. The psuedocode of the proposed algorithm is
given in Algorithm 1. In line 1, the algorithm first computes λ and τ(H) using
the algorithm of Chekuri and Xu [2]. The algorithm checks in O(1) time if there
exist at least one minimum cut of size λ in τ(H) by asserting that τ(H) has
more than one node. In the algorithm we discuss four queries considering that
the hypercactus is modified and then these queries come:

(i) query-size(): It returns the current value of λ. Since λ is always known,
we can return the result in O(1) time.

(ii) query-mincut(): It returns a minimum cut of the form (A, Ā) such that
A ⊂ V . The auxiliary tree T (H) is first split by any edge (u, v). The
DFS (Depth First Search) method is then applied on nodes u and v to
get two connected components (X, X̄) such that u ∈ X and v ∈ X̄. Then
(Φ−1(X), Φ−1(X̄)) is the resulting minimum cut. The number of vertices
and edges in T (H) are of size O(n) (due to Cheng [3]), therefore the query
takes O(n) time.

(iii) Same-(λ + 1)-Class(u, v): It returns true if vertices u and v have edge
connectivity greater than λ.; here both u and v have same parent node in
T (H). If find(u) = find(v) the algorithm returns true otherwise it returns
false. The time complexity for this query is O(1).

(iv) InsertHyperedges(U): This query inserts a set U of hyperedges into H.
Due to the addition of new hyperedges some cuts of size λ in H may no more
remain a minimum cut. In order to update all the minimum cuts of size λ
the algorithm applies the method described in Subsect. 4.2 that maintains
hypercactus τ(H) on insertion of a set U of hyperedges in O(n + pu) time.
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Let N denote the set of all hyperedges added so far such that no minimum cut
of size λ exists in τ(H). If the algorithm keeps receiving single edge insertions
at any point of time i.e, U = {e} then the algorithm sets λ = λ + 1 at line 13 of
Algorithm 1 instead of actually recomputing λ. Otherwise it recomputes λ. The
algorithm recomputes the hypercactus τ(H) for updated λ using the method of
Chekuri and Xu [2] that takes O(p + λn2) time. The algorithm goes to line 2 to
continue the incremental process.

Theorem 2. The amortized time to maintain the minimum cut and the edge
connectivity for a dynamic hypergraph H is O(λn) per hyperedge insertions.

Proof. Let λ0 be the initial edge connectivity in line 1 of Algorithm1. It takes
O(p0 + λ0n

2) time to compute λ0 and τ(H) in line 1 of Algorithm 1. During
the execution of Algorithm 1, let λ assume the values λ0, . . . , λf in an increasing
order. Phase i consists of all steps executed while λ = λi. Let Ui denote the set of
hyperedges inserted in Phase i. In Phase i, we compute the new edge connectivity
λi and τ(H) in line 13 and maintain τ(H) in line 11. The time to compute λi and
the corresponding hyercactus τ(H) in line 13 is O(p+λin

2) where p is calculated
in the modified hypergraph. From Theorem1, the time taken to maintain τ(H)
is O(n + pi) where pi = Σe∈Ui

|e|. The total time spent in executing Phase i is
O(n + pi + p + λin

2). The maximum number of phases can be λ. Thus the total
time to execute all phases is asymptotically O(λp+λ2n2) where p = Σe∈E∪U |e|.
The amortized cost of a hyperedge insertion is O(λ+λ2n2/p). For a hypergraph
H with edge connectivity λ, p = Ω(λn) Thus the amortized insertion time is
O(λ + λn) = O(λn). 	


4.4 Analysis

Let H be the given uncapacitated hypergraph whose edge connectivity is λ. Let
τ(H) be the corresponding hypercactus. Let U be the set of hyperedges that is
dynamically inserted to H. In order to compute λ and τ(H), we can apply the
static algorithm (Chekuri and Xu) which takes O(p0 + p1 + λ

′
n2) time where

p0 = Σe∈E |e|, p1 = Σe∈U |e| and λ
′

is the new egde connectivity. With our
proposed incremental algorithm, if the value of λ does not change then updating
τ(H) takes O(n + pu) time. Otherwise, computing the new edge connectivity λ

′

and the corresponding hypercactus takes O(λ
′
n) amortized time (Theorem 2).

Hence the cost of the proposed algorithm is better than the static algorithm.
Now we show the probabilistic approach to compute the cost of updating λ

and τ(H) using the proposed incremental algorithm. Let f denote the probability
that the value of λ gets changed under dynamic addition of a set U of hyperedges
to H. Then the total cost to update λ and τ(H) is asymptotically O(f(p0 +p1 +
λn2) + (1 − f)(n + p1)). Thus, if the value of f is very small, then the proposed
incremental algorithm requires less computation time than the static method.

5 Proof of Correctness

Lemma 1. A hypercactus has the following properties: (a) No two hyperedges
can have more than one node in common. (b) A hyperedge and a cycle can have



Incremental Algorithm for Minimum Cut and Edge Connectivity 247

at most one node in common. (c) No two cycles can have more than one node
in common.

Proof. Let there be two hyperedges that have more than one node in common in
a hypercactus. Each hyperedge in the hypercactus has a weight of λ. From the
hypercactus construction, we have one minimum cut of the form (A, Ā) such that
at least one common node belongs to A and the other common nodes belong to
Ā. But to get such a minimum cut, we need to remove two hyperedges since the
common nodes belong to both the hyperedges. Thus, the size of the cut becomes
2λ which is not minimum. This is a contradiction. Hence two hyperedges in τ(H)
can not have more than one node in common. Using similar arguments we can
proof properties (b) and (c). 	

Lemma 2. On introducing a triangle node into the auxiliary tree T (H), it
remains a tree.

Proof. We first claim that T (H) constructed after introducing a triangle node
is connected i.e., there is a path between any two nodes in T (H). Let us assume
that there exists two nodes in T (H) between which no path exists. This can be
possible only if T (H) is disconnected. It means each square node connected to
the triangle node has no edge with other square nodes or round nodes in T (H).
But T (H) is constructed from a hypercactus, it implies that the hypercactus is
disconnected. This is a contradiction. Thus the auxiliary tree T (H) is always
connected.

Now we claim that T (H) has no cycles. Let us assume that T (H) have a cycle
after introducing a triangle node. It means that the square nodes connected to a
triangle node forms a cycle with other square nodes or round nodes in T (H). But
if this is the case then in the hypercactus the corresponding hyperedge forms
a cycle with the cycle edges or simple edges which is a contradiction as per
Lemma 1. Thus, the auxiliary tree can not have any cycle after introduction of a
triangle node. Hence the auxiliary tree remains a tree on introducing a triangle
node into it. 	

Lemma 3. On applying a tuning operation, the hypercactus preserves it’s prop-
erties, i.e., it preserves all the minimum cuts of size λ.

Proof. Dinitz and Westbrook [5] gave the definition of shrinking and squeezing
operations. On applying a shrinking or squeezing operation to the hypercactus,
the updated hypercactus preserves it’s properties. In this paper, the tuning oper-
ation is introduced. Let τ(H) be the hypercactus corresponding to the hyper-
graph H. Let Z = {a1, a2, ..., ak} be a hyperedge in τ(H). Let τ(H

′
) be the

updated hypercactus after applying a tuning operation on nodes ai and aj in Z,
i �= j. We prove that the τ(H

′
) preserves it’s properties using three cases:

– Case |Z| = 2: As per the definition of tuning operation, the hyperedge of size
2 is treated as a simple edge. This simple edge gets the same weight as of
hyperedge Z i.e., λ. The shrinking operation between the nodes ai and aj is
applied in this case and thus preserves the properties of τ(H

′
). This follows

from the work of Dinitz and Westbrook.
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– Case |Z| = 3: In this case, the shrinking operation on nodes ai and aj is first
applied. The size of updated hyperedge Z

′
becomes 2. This Z

′
is replaced

with a simple edge with same weight λ. In a hypercactus the weights of each
hyperedge and each simple edge is always λ. Thus from the construction, all
the mincuts of size λ are preserved in the updated hypercactus.

– Case |Z| ≥ 4: In this case, the shrinking operation on nodes ai and aj is first
applied. The size of hyperedge Z gets reduced by 1. The updated hyperedge
Z

′
is still a hyperedge with same weight λ. Thus, all the mincuts of size λ are

preserved in the updated hypercactus. 	

Lemma 4. An update on T (H) eventually leads to a corresponding update on
τ(H).

Proof. On insertion of a new hyperedge e = {v1, v2, .., vk} to the given hyper-
graph H, the method first finds a unique path P in T (H) between the two square
nodes s1 and s2 which corresponds to the nodes vi and vi+1 in e respectively. In
the path P the two consecutive square nodes can either be directly connected,
connected by a round node or connected by a triangle node. If in the path P , no
triangle node is involved i.e, every consecutive square nodes are either directly
connected or connected to a round node then the modification technique to
update T (H) and τ(H) is exactly the same as Dinitz and Westbrook [5]. Hence
for this case the updated T (H) corresponds to the updated τ(H).

If two consecutive square nodes in the path P are connected by a triangle
node then we update T (H) as described above in Triangle Node Modification
and apply tuning operation between the two corresponding vertices in τ(H). We
show that the updated T (H) corresponds to the updated τ(H). Let (s1, t) and
(t, s2) be the consecutive edges in the path P . Here, s1 and s2 denote the two
consecutive square nodes connected to the triangle node t. After modifying the
path P in T (H), let s denotes the square node in T (H) after merging s1 and s2.
Similarly, let w1 and w2 denote the vertices in τ(H) corresponding to the square
nodes s1 and s2 in T (H) respectively. After applying the tuning operation on
w1 and w2, let w denotes the merged node in τ(H). This w in τ(H) should
correspond to s in T (H). For the sake of contradiction, let us assume that w and
s do not correspond to each other. It means that w either maps to some other
square node s

′ �= s in T (H) or it maps to empty. From the construction of T (H)
we create one square node for each vertex in τ(H). Therefore w can not map to
empty. Let us consider the case where w maps to s

′
. In the modification of path

P , s
′

is not touched. Thus there must exist a vertex w
′

in τ(H) that maps to
s

′
. From our assumption w maps to s

′
which means w = w

′
. But w is formed

after merging w1 and w2. This leads to a contradiction that w = w
′
. Thus w

in τ(H) maps to s in T (H). This proves that the updated T (H) corresponds to
the updated τ(H). 	


6 Conclusion

Under dynamic addition of hyperedges, when the edge connectivity changes the
proposed incremental algorithm relies on Chekuri and Xu’s approach to recom-
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pute hypercactus. It may be worth investigating a method to recompute the
hypercactus efficiently using the structures behind the Chekuri and Xu’s static
algorithm, instead of recomputing everything from scratch. Similarly it would
be interesting to recompute or update the hypercactus efficiently in the deletion
case. It may help in designing an efficient decremental algorithm to maintain the
edge connectivity and the minimum cut under dynamic deletion of hyperedges.
All the contributions made in this paper are for uncapacitated hypergraph. It
will be worth investigating a method for the capacitated case.
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