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Abstract. A set S of vertices of a graph G is P ∗
3 -convex if there is no

vertex outside S having two non-adjacent neighbors in S. The P ∗
3 -convex

hull of S is the minimum P ∗
3 -convex set containing S. If the P ∗

3 -convex
hull of S is V (G), then S is a P ∗

3 -hull set. The minimum size of a P ∗
3 -hull

set is the P ∗
3 -hull number of G. In this paper, we show that the problem

of deciding whether the P ∗
3 -hull number of a chordal graph is at most

k is NP-complete and present a linear-time algorithm to determine this
parameter and provide a minimum P ∗

3 -hull set for unit interval graphs.

Keywords: Graph convexity · Hull number · Unit interval graph. ·
2-distance shortest path

1 Introduction

We consider finite, undirected, and simple graphs. The path with k vertices is
denoted by Pk and an induced path is a path having no chords. Given a set S
of vertices of a graph G, the interval of Sin the convexity of induced paths of
order 3, also known as the P ∗

3 convexity, is the set [S]∗3 = S ∪{u : u belongs to an
induced P3 between two vertices of S}. The set S is P ∗

3 -convex if S = [S]∗3 and is
P ∗
3 -concave if V (G) \ S is P ∗

3 -convex. The P ∗
3 -convex hull of S is the minimum

P ∗
3 -convex set containing S and it is denoted by 〈S〉∗

3. If 〈S〉∗
3 = V (G), then

S is a P ∗
3 -hull set. The minimum size of a P ∗

3 -hull set is the P ∗
3 -hull number

h∗
3(G)of G.

Recently, the P ∗
3 convexity has attracted attention as an alternative to other

quite known convexities with different behavior despite a similar definition. It is
particularly interesting in spreading dynamics which forbid the same influence
by two neighbors to get spread to a common neighbor. For instance, in [4], it
is shown that the problem of deciding whether the P ∗

3 -hull number of a bipar-
tite graph is at most k is NP-complete, while polynomial-time algorithms for
determining this parameter for P4-sparse graphs and cographs are presented.
Apart from these results very little is known, as results of quite similarly defined
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well-known convexities do not help, since the proofs depend on the existence of
longer shortest paths or a non-induced P3.

In the well-known geodetic convexity, the geodetic interval of S is [S]g =
S ∪ {u : u belongs to some shortest path between two vertices of S}. The terms
geodesically convex, geodesically concave, geodetic convex hull 〈S〉g, geodetic hull
set, and geodetic hull number hg(G) are defined in a similar way to the P ∗

3

convexity. The literature concerning the geodetic hull number is large. It is known
that this problem is NP-complete for chordal graphs [5], P9-free graphs [10], and
partial cubes [1]; and that one can find a minimum geodetic hull set in polynomial
time if the input graph is unit interval [9], (q, q − 4)-graph [2], cobipartite [2],
cactus [2], (paw, P5)-free [10], (C3, . . . , Ck−2, Pk)-free [10], P5-free bipartite [3], or
planar partial cube quadrangulation [1]. However, as already remarked, though
an induced path of order 3 is a shortest path of length 2 between a pair of nodes,
those results do not directly apply to the P ∗

3 convexity due to the use of longer
shortest paths in proofs.

Unlike the P ∗
3 convexity, the P3convexity considers all paths of order 3. In

this convexity, also known as irreversible 2-conversion, the problem of computing
the hull number is APX-hard for bipartite graphs with maximum degree at most
4 and NP-complete for planar graphs with maximum degree at most 4 [7,15],
and can be found in polynomial time for chordal graphs [6] as well as for cubic or
subcubic graphs [15]. Finally, in the convexity that considers all induced paths,
the monophonic convexity, the hull number can be computed in polynomial time
for any graph [11].

The main result of this paper is a linear-time algorithm to determine both the
P ∗
3 -hull number and a minimum P ∗

3 -hull set of a unit interval graph (Sect. 2). We
point out that Theorem1 is not only an explicit formula for the P ∗

3 -hull number
h∗
3(G) but also an almost explicit one for the minimum P ∗

3 -hull set, since one
needs to compute the necessary labels before. We also show that the problem of
deciding whether this parameter is at most k for a chordal graph is NP-complete
(Sect. 3). Remember that unit interval graphs have a variety of applications in
operations research, including resource allocation problems in scheduling [13]
and in genetic modeling such as DNA mapping in bioinformatics [14], where an
overall agreement (on a value, a signal, a failure, a disease, a characteristic, etc.)
might get forced by a minimum key set under some convexity such as the P ∗

3 .
We conclude this section giving some definitions. The distance between ver-

tices u and v is denoted by d(u, v) and the neighborhood of a vertex v is denoted
by N(v). The set {1, . . . , k} for an integer k ≥ 1 is denoted by [k]. A subgraph
of G induced by vertex set S is denoted by G[S]. A vertex u is simplicial if
its neighborhood induces a complete graph. Note that every P ∗

3 -hull set con-
tains all simplicial vertices and at least one vertex of each P ∗

3 -concave set of
the graph. Given an ordering α = (v1, . . . , vn) of V (G) and a set I ⊆ [n],
the subordering α′ = (vi1 , . . . , vi|I|)of αinduced by I is the ordering of the set
{vij

: ij ∈ I} ⊆ V (G) such that vij
appears before vik

if and only if ij < ik. If
I = [j] \ [i − 1] for 0 ≤ i < j ≤ n, then the subordering of α induced by I is
denoted by αi,j .
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2 Unit Interval Graphs

A unit interval graph G is the intersection graph of a collection of intervals of the
same size on the real line. Since one can assume that all left endpoints of the inter-
vals of such a collection are distinct, a canonical ordering Γ = (v1, v2, . . . , vn)of
V (G) is defined as the one such that i < j if and only if the left endpoint of the
interval of vi is smaller than the left endpoint of the one of vj . This ordering has
the property that if vivj ∈ E(G) for i < j, then {vi, . . . , vj} is a clique [8,16].
It is easy to see that if vi ∈ [vj , vk]∗3 for j < k, then j ≤ i ≤ k. In the next, we
consider a canonical ordering Γ = (v1, v2, . . . , vn) of a given unit interval graph
G.

Lemma 1. If vj is simplicial, then h∗
3(G) = h∗

3(G[{v1, . . . , vj}]) +
h∗
3(G[{vj , . . . , vn}]) − 1.

Proof. Let S, S1, and S2 be minimum hull sets of G,G1 = G[{v1 . . . vj}],
and G2 = G[{vj . . . vn}], respectively. Since Γ = (v1, v2, . . . , vn) is a canon-
ical ordering and vj is a simplicial vertex of G,G1, and G2, it holds S ⊇
{vj} = S1 ∩ S2. It is clear that S1 ∪ S2 is a hull set of G, and hence
h∗
3(G) ≤ h∗

3(G[{v1, . . . , vj}])+h∗
3(G[{vj , . . . , vn}])−1. Now, consider an induced

path vivkv� with vi ∈ V (G1) \ {vj} and v� ∈ V (G2) \ {vj}. If vk ∈ V (G2), then
i < j < k < � and {vi, . . . , vk} is a clique containing vj . Since vj is simplicial,
if vjv� ∈ E(G), then viv� ∈ E(G), which would contradict the assumption that
vivkv� is an induced path. Therefore vjv� �∈ E(G) and vk ∈ [vj , v�]∗3. The case
for vk ∈ V (G1) is analogue. Hence, S ∩ V (Gi) is a minimum hull set of Gi for
i ∈ [2], which means that h∗

3(G) ≥ h∗
3(G[v1, . . . , vj ]) + h∗

3(G[vj , . . . , vn]) − 1. �

Due to Lemma 1, we can assume that G has only two simplicial vertices,
namely, v1 and vn. In the sequel, we use the geodetic interval to obtain a useful
partition of the vertices of G. We say that vi is a black vertex if vi lies in a
shortest (v1, vn)-path and that it is a red vertex otherwise. The black vertices v
such that d(v1, v) = i form the black region Bi. Note that all vertices of Bi are
consecutive in Γ . The set of vertices between the black regions Bi−1 and Bi in
Γ form the red region Ri. These definitions induce a partition of Γ into black
and red regions B0, R1, B1, . . . , Rq, Bq. Note that a red region can be empty,
B0 = {v1}, Bq = {vn}, and d(v1, vn) = q = d(G), where d(G) stands for the
diameter of G. Besides, the black (and red) regions are precisely defined by the
following two (not necessarily distinct) shortest (v1, vn)-paths, namely, the one
whose internal vertices have all the highest possible indexes in Γ and the one
whose internal vertices have all the lowest possible indexes in Γ . Each black
region Bi contains precisely the vertices of those two paths having distance i to
v1 as well as all vertices between them in the canonical ordering Γ . (See Fig. 1.)

For i ∈ [q], denote by r�
i and rr

i the leftmost and rightmost vertices of Ri in
Γ , respectively. For i ∈ [q]∪{0}, denote by b�

i and br
i the leftmost and rightmost

vertices of Bi in Γ , respectively. If, for i ∈ [q], b�
i−1b

r
i ∈ E(G), then we say that

b�
i−1b

r
i is a long edge. For i ∈ [q], denote by Rr

i the vertices of Ri having edges
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to Ri+1 and by R�
i the vertices of Ri having edges to Ri−1. We say that a red

vertex v ∈ Ri is a right vertex if v �∈ R�
i and that it is a left vertex if v �∈ Rr

i .
Let Θ = (uk1 , uk2 , . . . , uk|R|) be the subordering of Γ induced by the set of

all red vertices R = R1 ∪ . . . ∪ Rq. A subordering Θi,j = (uki
, . . . , ukj

) for i ≤ j
is a component of G if uki

is a right vertex, ukj
is a left vertex, there is no

i′ ∈ [j − 1] \ [i− 1] such that uki′ is a left vertex and uki′+1
is a right vertex, and

it is maximal (that is, it must hold that either uki−1 is a left vertex or i = 1, and
additionally, that either ukj+1 is a right vertex or j = |R|). If, in addition, for
every vk′ ∈ Θi,j there exists a long edge vk′′vk′′′ ∈ E(G) such that k′′ < k′ < k′′′,
then Θi,j is said to be a covered component. Note that a component can be a
singleton. However, since we are assuming that G has only two simplicial vertices
v1 and vn, a covered component can neither be a singleton nor intersect only one
red region as its elements would be simplicial vertices different from v1 and vn.
Thus, every covered component must contain vertices of at least two red regions.
(See Fig. 1.) Finally, the components of a unit interval graph can be determined
in linear time [9].

Now we present some structural results. In the next, we characterize some
P ∗
3 -concave sets.

Lemma 2. It holds that:

(a) for i ∈ [q − 1], Rr
i ∪ Bi ∪ Ri+1 ∪ Bi+1 is a P ∗

3 -concave set;
(b) for i ∈ [q − 1], Ri ∪ Bi ∪ Ri+1 ∪ Bi+1 is a P ∗

3 -concave set;
(c) for i ∈ {0} ∪ [q − 2], Bi ∪ Ri+1 ∪ Bi+1 ∪ Ri+2 is a P ∗

3 -concave set; and
(d) for i ∈ {0}∪[q−1], if R�

i+1∩Rr
i+1 = ∅, then Bi∪Ri+1∪Bi+1 is a P ∗

3 -concave
set.

Proof. First note that if Γj,k = (vj , . . . , vk) for j < k is the ordering of a set
S = {vj , . . . , vk} in Γ , then all vertices in Γ1,j−1 having a common neighbor in
S are adjacent, and the same is true for all vertices in Γk+1,n having a common
neighbor in S. Thus, S is always a P ∗

3 -concave set for j = 1. Besides, S is a
P ∗
3 -concave set for j > 1 if the distance of any vertex of Γ1,j−1 to any vertex of

Γk+1,n is at least 3.

v1

v2 v3

v4 v5

v6 v7 v8

v9 v10

v11 v12

v13 v14

v15

v16

Fig. 1. Here there are two components: {v2, v3, v6, v7} (covered) and {v8, v11, v12, v15}
(not covered), as both red vertices v11 and v12 are not covered by a long edge such as
v1v5, v4v10 and v13v16. Note that only edges between black vertices and between red
vertices of distinct red regions are being depicted, and that the two shortest paths v1
v4 v9 v13 v16 and v1 v5 v10 v14 v16 define precisely the black (and red) regions. (Color
figure online)
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(a) Take S = Rr
i ∪ Bi ∪ Ri+1 ∪ Bi+1. For j > 1, the fact that vj−1 has no edges

to Ri+1 implies that the distance of any vertex of Γ1,j−1 to any vertex of Γk+1,n

is at least 3.
(b) By (a) and the fact that if Γj,k is P ∗

3 -concave, then Γj′,k′ is P ∗
3 -concave for

j′ ≤ j and k′ ≥ k.
(c) By symmetry, this case is equivalent to (b).
(d) Now take S = Bi∪Ri+1∪Bi+1. For j > 1, d(vj−1, vk+1) ≥ 3 if R�

i+1∩Rr
i+1 =

∅. �

Next, we present a partition of Γ into parts called C-sets and classify them
into 4 types.

– If Θi,j(uki
, . . . , ukj

) is a covered component, then Γi′,j′ is a C-set where vi′ =
uki

and vj′ = ukj
. If Γi′,j′ contains an odd number of black regions, then

Γi′,j′ has type 1. Otherwise Γi′,j′ has type 2.
– If Γi,j is maximal having no vertex belonging to a C-set of type 1 or 2, then

Γi,j is a C-set as well. If Γi,j contains an odd number of black regions, then
Γi,j has type 3. Otherwise, Γi,j has type 4.

For example, the unit interval graph of Fig. 1 gets partitioned into exactly
three C-sets: Γ1,1 (of type 3), Γ2,7 (of type 1), and Γ8,16 (of type 3). It is clear
that the C-sets always form a partition of Γ . In fact, they also induce a partition
of the black regions of G, i.e., all vertices of any black region are contained in a
unique C-set and every C-set contains at least the vertices of one black region.
These facts allow us to denote by Ci,j the C-set whose set of black regions is
{Bi, . . . , Bj}. If Ci,j ∩ Ri �= ∅, then Ci,j ∩ Ri = Rr

i . Similarly, if Ci,j ∩ Rj+1 �= ∅,
then Ci,j ∩ Rj+1 = R�

j+1. Therefore, from now on, if not empty, both Rr
i and

R�
j+1 as well as Rk for i < k < j +1 will be called the red regions of Ci,j . Finally,

note that those red regions might be empty if Ci,j has type 3 or 4. However,
if Ci,j has type 1 or 2, then its red regions form a covered component, and
consequently, not only both Rr

i �= ∅ and R�
j+1 �= ∅, but also both Rk �= ∅ and

R�
k ∩ Rr

k �= ∅ for i < k < j + 1, as a covered component does not contain a left
vertex followed by a right vertex.

The proposed algorithm finds a {0,−1} labeling of the C-sets, which depends
on the types and the relative positions of the C-sets. A minimum P ∗

3 -hull set
is then obtained by making a standard choice S for each C-set between two
possibilities, which we call left and right choices, and depends on the pair type
and label, as shown in Table 1. As in Figs. 2, 3, 4 and 5, for any C-set C, there
is (at most) one black region B of C such that its standard choice alternates in
containing and not containing a black vertex of each consecutive black region
of C from B on. Besides those black vertices, the standard choice has one red
vertex if C contains a covered component and no red vertex otherwise.

The left choice S for a C-set Ci,j with type t ∈ [4] and k = j − i + 1 black
regions is defined as

S =

{
{rr

i } ∪ {br
i+1+2k′ : 0 ≤ k′ < k

2 �} , if t ∈ [2];
{br

i+2k′ : 0 ≤ k′ < �k
2 �} , if t ∈ {3, 4}.
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Algorithm 1. Finding a minimum P ∗
3 -hull set.

input: A unit interval graph G having exactly 2 simplicial vertices

1 Γ canonical ordering of V (G)
2 C ← the partition (C1, . . . , Ct) of Γ into C-sets, where C1 and Ct have types in {3, 4}
3 if C1 has type 3 then

4 label(C1) ← 0 (left choice for type 3)

5 else
6 label(C1) ← −1 (left choice for type 4)

7 for j from 2 to q do
8 if Cj has type 2 or 3 then

9 label(Cj) ← −1 − label(Cj−1)

10 else
11 label(Cj) ← label(Cj−1)

12 S ← {vn}
13 for Ci ∈ C do

14 S ← S ∪ S′ where S′ is a standard choice for Ci,j according to Table 1

15 return S

Table 1. Standard choices.

Type Label 0 Label −1

1 Right choice Left choice

2 Left choice Right choice

3 Left choice Right choice

4 Right choice Left choice

The right choice S for a C-set Ci,j with type t ∈ [4] and k = j − i + 1 black
regions is defined as

S =

⎧
⎪⎪⎨

⎪⎪⎩

{r} for some r ∈ R�
i+1 , if t = 1 and j = i;

{ri+1} ∪ {br
i+2k′ : 0 < k′ < � k

2 �} for some ri+1 ∈ R�
i+1 ∩ Rr

i+1 , if t ∈ [2] and j > i;

{br
i+1+2k′ : 0 ≤ k′ < � k

2 �} , if t ∈ {3, 4}.

The idea of the linear algorithm is to give the left choice for the first C-set,
and then alternate the standard choice from left to right and vice-versa if and
only if the preceding C-set had type 2 or 3. Note that label −1 means “missing”
and indicates that no vertex of the last black region Bj of Ci,j belongs to its
standard choice S. Note also that the first and the last C-sets in Γ are not a
covered component, and therefore, always have types in {3, 4}. Figures 2, 3, 4
and 5 depict the left and right choices for a C-set depending on its type.

In the next lemma we show that, for any j ∈ [q], if Bj−1 and Bj belong to
distinct C-sets, then there is no vertex of Rj having neighbors in both Rj−1 and
Rj+1.
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Ri Bi Ri+1 Bi+1 Ri+2 Bi+2 Ri+3 Bi+3 Ri+4 Bi+4 Ri+5

Ci,i+4

Ci,i+4

Ri Bi Ri+1 Bi+1 Ri+2 Bi+2 Ri+3 Bi+3 Ri+4 Bi+4 Ri+5

Fig. 2. Scheme representing the left (on top) and right (on bottom) choices of C-set
Ci,i+4 with type 1. (Color figure online)

Ri Bi Ri+1 Bi+1 Ri+2 Bi+2 Ri+3 Bi+3 Ri+4

Ci,i+3

Ci,i+3

Ri Bi Ri+1 Bi+1 Ri+2 Bi+2 Ri+3 Bi+3 Ri+4

Fig. 3. Scheme representing the left (on top) and right (on bottom) choices of C-set
Ci,i+3 with type 2. (Color figure online)

Lemma 3. If Ci,j−1 and Cj,k are C-sets, then R�
j ∩ Rr

j = ∅.

Proof. By definition, if one of these C-sets has type 3 or 4, then the other one
has type 1 or 2. This means that exactly one of these two C-sets has type 1 or 2,
and therefore the red vertices of this C-set form a covered component. However,
if R�

j ∩ Rr
j �= ∅, then there would be a contradiction, as no vertex in Rj could

be neither a left vertex nor a right vertex, i.e., neither the first nor the last red
vertex of this C-set of type 1 or 2. �

Lemma 4. Every covered component of a unit interval graph G is P ∗
3 -concave.

Proof. Let Ci,j be the C-set of type either 1 or 2 containing the covered com-
ponent, therefore, the red regions of Ci,j form the covered component. Lemma 3
implies that, for i < k < j + 1, each red vertex of Rk neighbors only red ver-
tices of Rk−1, Rk and Rk+1, each red vertex of Rr

i neighbors only red vertices
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Ri Bi Ri+1 Bi+1 Ri+2 Bi+2 Ri+3 Bi+3 Ri+4 Bi+4 Ri+5

Ci,i+4

Ci,i+4

Ri Bi Ri+1 Bi+1 Ri+2 Bi+2 Ri+3 Bi+3 Ri+4 Bi+4 Ri+5

Fig. 4. Scheme representing the left (on top) and right (on bottom) choices of C-set
Ci,i+4 with type 3. (Color figure online)

of Ri and Ri+1 and each red vertex of R�
j+1 neighbors only red vertices of Rj

and Rj+1. Finally, for i ≤ k ≤ j + 1, since Bk−1 ∪ Rk ∪ Bk form a clique and
Rk neighbors only black vertices of Bk−1 ∪ Bk, each vertex of the covered com-
ponent is such that all its neighbors not belonging to the covered component
form a clique, meaning that the covered component is P ∗

3 -concave, and there-
fore, every covered component of G must intersect with every P ∗

3 -hull set of G.
(As an alternative proof, the fact that 〈S〉∗

3 ⊆ 〈S〉g for every set S ⊆ V (G) also
implies the claim, as from [9] it is known that every covered component of G is
geodesically concave.) �

Remember that br
i−1 is the rightmost vertex of Bi−1, and that b�

i+1 is the
leftmost vertex of Bi+1, being both br

i−1 and b�
i+1 adjacent to every vertex in Bi,

but not to one another. Note also that b�
i+1 has no neighbor in Rr

i , as no vertex
in that set belongs to a shortest path between v1 and vn, and that br

i−1 has no
neighbor in R�

i+1, as no vertex in that set has distance i to v1. The following
property will be very useful.

Lemma 5. If r ∈ Rr
i ∪ R�

i+1, then Rr
i ∪ Bi ∪ R�

i+1 ⊆ 〈{br
i−1, r, b

�
i+1}〉∗

3.

Proof. Note that Bi ⊆ [br
i−1, b

�
i+1]

∗
3 and that Rr

i �= ∅ if and only if R�
i+1 �=

∅. If r ∈ Rr
i and vk is the vertex with maximum index k in Γ belonging to

N(r) ∩ R�
i+1, then R�

i+1 ∩ Γ1,k ⊆ [{r, b�
i+1}]∗3, Rr

i ⊆ [{br
i−1} ∪ (R�

i+1 ∩ Γ1,k)]∗3,
and R�

i+1 ⊆ [Rr
i ∪ {b�

i+1}]∗3 as well. Similarly, in a symmetric way, if r ∈ R�
i+1

and vk′ is the vertex with minimum index k′ in Γ belonging to N(r) ∩ Rr
i , then

Rr
i ∩Γk′,n ⊆ [{r, br

i−1}]∗3, R�
i+1 ⊆ [{b�

i+1}∪(Rr
i ∩Γk′,n)]∗3 and Rr

i ⊆ [R�
i+1∪{br

i−1}]∗3
as well. �

Now we are ready to understand why the linear algorithm presented, which
starts with a left choice for the first C-set and then flips the standard choice
from left to right and vice-versa if and only if the preceding C-set has type 2 or
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Ri Bi Ri+1 Bi+1 Ri+2 Bi+2 Ri+3 Bi+3 Ri+4

Ci,i+3

Ci,i+3

Ri Bi Ri+1 Bi+1 Ri+2 Bi+2 Ri+3 Bi+3 Ri+4

Fig. 5. Scheme representing the left (on top) and right (on bottom) choices of C-set
Ci,i+3 with type 4. (Color figure online)

3, indeed provides a minimum P ∗
3 -hull set of G when the choices of the C-sets

get united together with vn. The following lemma throws light on that.

Lemma 6. If Si,j is a standard choice for a C-set Ci,j, then the following holds:

(a) Ci,j ⊆ 〈Si,j ∪ {br
i−1, b

�
j+1}〉∗

3;
(b) Ci,j \ (Rr

i ∪ R�
i+1) ⊆ 〈Si,j ∪ Bi ∪ {b�

j+1}〉∗
3;

(c) Ci,j \ (Rr
j ∪ R�

j+1) ⊆ 〈Si,j ∪ Bj ∪ {br
i−1}〉∗

3;
(d) Ci,j \ (Rr

i ∪ R�
i+1 ∪ Rr

j ∪ R�
j+1) ⊆ 〈Si,j ∪ Bi ∪ Bj〉∗

3.

Proof. Write Sa = Si,j ∪ {br
i−1, b

�
j+1}, Sb = Si,j ∪ Bi ∪ {b�

j+1}, Sc = Si,j ∪ Bj ∪
{br

i−1}, and Sd = Si,j ∪ Bi ∪ Bj . We give only one proof for all four cases, thus
let x ∈ {a, b, c, d}.

First consider Ci,j with type in {1, 2}, that is, its red regions form a covered
component. It is clear that Bi ⊆ [Sx]∗3 for x ∈ {a, b, c, d}. Since b�

kbr
k+1 ∈ E(G)

for i − 1 ≤ k ≤ j, we have Bk ⊆ [[Sx]∗3]
∗
3 ⊆ 〈Sx〉∗

3 for x ∈ {a, b, c, d} and
i ≤ k ≤ j. Besides, for each choice Si,j , note that there is r ∈ Si,j such that
either r = rr

i (left choice) or r ∈ R�
i+1 ∩ Rr

i+1 (right choice), and thus, not only
[Sx]∗3 ∩ R�

i+1 ∩ Rr
i+1 �= ∅ for x ∈ {a, b, c, d} and i < j, but also by Lemma 5

we have that Rr
i ∪ R�

i+1 ⊆ 〈Sx〉∗
3 for either x ∈ {a, c} and i < j, or x = a and

i = j. Now, since R�
k+1 ∩ Rr

k+1 �= ∅ for i ≤ k ≤ j − 1 as the red regions of
Ci,j form a covered component, due to Lemma 5 we have for i < j by forwards
induction starting on [Sx]∗3 ∩ R�

i+1 ∩ Rr
i+1 �= ∅ that Rr

k+1 ∪ R�
k+2 ⊆ 〈Sx〉∗

3 for
either x ∈ {a, b} and i ≤ k ≤ j − 1, or x ∈ {c, d} and i ≤ k ≤ j − 2.

Now, consider that Ci,j has type 3 or 4. Note that {br
k|i ≤ k ≤ j} ⊆ [Sx]∗3 and

Bj ⊆ [[Sx]∗3]
∗
3 for x ∈ {a, b, c, d}, which implies, by backwards induction starting

on Bj , that Bk ⊆ 〈Sx〉∗
3 for x ∈ {a, b, c, d} and i ≤ k ≤ j. Therefore, if some red

region Rk for i < k ≤ j is not covered by a long edge, then Rk ⊆ [b�
k−1, b

r
k]∗3 ⊆

〈Sx〉∗
3 for x ∈ {a, b, c, d} as well. Thus, suppose that (Ri′ , . . . , Rj′) is a maximal

sequence of covered non-empty red regions for i + 1 ≤ i′ ≤ k ≤ j′ ≤ j. Since
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Ci,j does not contain a covered component, Ri′−1 ⊇ Rr
i′−1 �= ∅ with i′ > i + 1

or Rj′+1 ⊇ R�
j′+1 �= ∅ with j′ < j is not a covered red region. Without loss of

generality, assume that Ri′−1 ⊇ Rr
i′−1 �= ∅ with i′ > i + 1 is not a covered red

region, meaning that Ri′−1 ⊆ 〈Sx〉∗
3 for x ∈ {a, b, c, d}. (Otherwise, an analogous

argument using Lemma 5 works with a backwards induction instead of a forwards
one.) Note that Lemma 5 applied on br

i′−2, r
r
i′−1, b

�
i′ yields R�

i′ ⊆ 〈Sx〉∗
3. Now, as

Ci,j does not contain a covered component, R�
k∩Rr

k �= ∅ for i′ ≤ k < j′, implying
by forwards induction that Lemma5 applied on br

k−1, r, b
�
k+1 with r ∈ R�

k ∩ Rr
k

yields Rr
k ∪ R�

k+1 ⊆ 〈Sx〉∗
3 for either i′ ≤ k ≤ j′ (if Rj′+1 �= ∅) or i′ ≤ k < j′ (if

Rj′+1 = ∅), that is, Rk ⊆ 〈Sx〉∗
3 for i′ ≤ k ≤ j′, as either R�

j′ ∩ Rr
j′ �= ∅ with

j′ < j when Rj′+1 �= ∅ or Rj′ = R�
j′ when Rj′+1 = ∅. Finally, it remains to

show that Rr
i ⊆ 〈Sx〉∗

3 for x ∈ {a, c} and that R�
j+1 ⊆ 〈Sx〉∗

3 for x ∈ {a, b}, but
these facts are directly derived from Lemma 5, as in this case both Ri and Rj+1

are covered red regions. �

Let (C1, . . . , Ct) be the C-sets ordered according to Γ . The set S returned by
Algorithm 1 is a minimum P ∗

3 -hull set of G containing vn as well as the standard
choices selected by the algorithm for the C-sets, based on both the types and the
received labels. Remark that the label is applied in such a way that the algorithm
gives the left choice for C1, and then consecutively alternates the standard choice
from left to right and vice-versa if and only if the preceding C-set had type 2
or 3, maintaining it otherwise. In Lemma8 we prove that S is in fact a P ∗

3 -hull
set of G, whereas in Lemmas 9 to 11 we prove that there is no P ∗

3 -hull set of G
with less than |S| vertices. Define f(Ci) as the cardinality of the standard choice
that the algorithm associated with Ci and f ′(G) as the number of times that
the labeling changes from −1 to 0, plus 1 if C1 has type 3, and again plus 1 if
Ct received label −1. In Theorem 1 we show that |S| = f ′(G) +

∑
1≤i≤t

f(Ci).

The next lemma combined with the previous one is key to comprehend the
correctness.

Lemma 7. If Ci,j is a C-set of G and S is the set returned by Algorithm1, then
Bi ∪ . . . ∪ Bj ⊆ 〈S〉∗

3. Hence, br
i−1 ∈ 〈S〉∗

3 for 1 ≤ i ≤ q and b�
j+1 ∈ 〈S〉∗

3 for
0 ≤ j ≤ q − 1.

Proof. First, consider the case where Ci,j has type 3 or 4. Let Si,j = S ∩ Ci,j .
We begin assuming that i ≥ 1 and j ≤ q − 1. Observe that if br

i ∈ Si,j , then
there is v ∈ S ∩ ({br

i−2}∪Ri−1); otherwise there is v ∈ S ∩ ({br
i−1}∪Ri). Observe

also that if br
j ∈ B, then there is w ∈ S ∩ ({br

j+1, b
r
j+2} ∪ Rj+2); otherwise there

is w ∈ S ∩ ({br
j+1} ∪ Rj+1). In all cases, it holds that br

k ∈ [Si,j ∪ {v, w}]∗3 for
i− 1 ≤ k ≤ j +1. Since Ci,j has type 3 or 4, the C-set containing Bj+1 has type
1 or 2, which means that the edge b�

jb
r
j+1 exists. Hence b�

j ∈ 〈S〉∗
3, which implies

that Bi ∪ . . . ∪ Bj ⊂ 〈S〉∗
3. Now, if i = 0, then Bi = {v1} and br

i = v1 ∈ S; and if
j = q, then Bj = {vn} and b�

j = vn ∈ S, which means that Bi ∪ . . . ∪ Bj ⊂ 〈S〉∗
3

even if for i = 0 or j = q.
Now, consider the case where Ci,j has type 1 or 2. Note that the first C-set

C1 as well as the last C-set Ct have both types in {3, 4}. Thus, a C-set Ci,j of
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type in {1, 2} is such that not only 0 < i ≤ j < q, but also both its preceding and
subsequent C-sets have types in {3, 4}. This fact jointly with both the previous
case and (a) of Lemma 6 imply that Bi ∪ . . . ∪ Bj ⊆ 〈S〉∗

3. �

Lemma 8. Algorithm1 returns a P ∗
3 -hull set of G.

Proof. Recall that G has exactly 2 simplicial vertices. Let S be the set returned
by Algorithm 1 and Ci,j be a C-set of G having type t. Consider first i = 0.
If i = 0, Bi = {v1} ⊆ S and clearly by definition Rr

0 ∪ R�
1 = ∅. If j = q,

Bj = {vn} ⊆ S and clearly by definition Rr
q ∪ R�

q+1 = ∅. By (d) of Lemma 6,
V (G) = Ci,j = 〈S〉∗

3. Now, consider that j < q. By Lemma 7, it holds b�
j+1 ∈ 〈S〉∗

3.
Thus, by (b) of Lemma 6, Ci,j ⊆ 〈S〉∗

3. Next, consider j = q and i > 0. By
Lemma 7, br

i−1 ∈ 〈S〉∗
3. By (c) of Lemma 6, Ci,j ⊆ 〈S〉∗

3. Finally, suppose i > 0
and j < q. By Lemma 7, br

i−1, b
�
j+1 ∈ 〈S〉∗

3. By (a) of Lemma 6, Ci,j ⊆ 〈S〉∗
3. �

We now define a lower bound, proved in Lemma9, for the number of vertices
that any P ∗

3 -hull set contains from a C-set Ci,j as a function of its type t.

f(Ci,j) =

⎧⎪⎨
⎪⎩

j−i+1
2 , if t ∈ {2, 4};

j−i+2
2 , if t = 1;

j−i
2 , if t = 3.

Let Si,j be a standard choice of Ci,j . Note that f(Ci,j) = |Si,j | if t ∈ {1, 4}
or Si,j is a right choice; otherwise, f(Ci,j) = |Si,j | − 1.

Lemma 9. If S is a P ∗
3 -hull set and Ci,j is a C-set of a unit interval graph G,

then |S ∩ Ci,j | ≥ f(Ci,j).

Proof. The number of black regions contained in Ci,j is j−i+1. By Lemma 2 (a),
Rr

i ∪ Bi ∪ Ri+1 ∪ Bi+1 is a P ∗
3 -concave set and Rk ∪ Bk ∪ Rk+1 ∪ Bk+1 is a P ∗

3 -
concave set for i + 1 ≤ k ≤ j − 1. Therefore, Ci,j contains at least  j−i+1

2 �
disjoint P ∗

3 -concave sets, which implies the result if the type of Ci,j is 2 or 4 as
j − i + 1 is even or if its type is 3 as j − i is not only even but also smaller than
j − i + 1.

Now, consider that Ci,j has type 1 and let S be a P ∗
3 -hull set of G. By

definition, j − i + 1 is odd. Since Ci,j contains a covered component, Lemma 4
implies that at least one vertex of a red region of Ci,j belongs to S. Now, due
to this fact, if |S ∩ Ci,j | < � j−i+1

2 �, then there are four consecutive regions of Γ ,
w.l.o.g. say V ′ = Ri′ ∪ Bi′ ∪ Ri′+1 ∪ Bi′+1 for i ≤ i′ < j such that V ′ ∩ S = ∅.
By Lemma 2, V ′ is a P ∗

3 -concave set, which is a contradiction. Thus, the result
also holds for type 1. �

Lemma 10. Let S be a P ∗
3 -hull set and let Ci,j be a C-set of G such that

|S ∩ Ci| = f(Ci).
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(a) If Ci,j has type 2, then S ∩ (Rr
i ∪ Bi ∪ Bj ∪ R�

j+1) = ∅;
(b) If Ci,j has type 1 or 4, then S ∩ (Rr

i ∪ Bi) = ∅ or S ∩ (Bj ∪ R�
j+1) = ∅;

(c) If Ci,j has type 3, then S ∩ (Rr
i ∪ Bi ∪ Ri+1 ∪ Rj ∪ Bj ∪ R�

j+1) = ∅.

Proof. We first count the number of regions of Ci,j in terms of f(Ci,j). (a)
Suppose for contradiction that v ∈ S ∩ (Rr

i ∪ Bi ∪ Bj ∪ R�
j+1). By symmetry,

assume that S ∩ (Rr
i ∪ Bi) �= ∅. The number of black regions of Ci,j is j − i + 1,

which means that Ci,j has 2(j − i + 1) + 1 = 4f(Ci,j) + 1 regions, namely,
Rr

i , Bi, Ri+1, Bi+1, . . . , Rj , Bj , R
�
j+1. (b) First, consider that Ci,j has type 1.

Suppose for contradiction that S ∩ (Rr
i ∪ Bi) �= ∅ and S ∩ (Bj ∪ R�

j+1) �= ∅.
Then, Ci,j has 2(j − i+1)+1 = 2(j − i+2)−1 = 4f(Ci,j)−1 regions. Now, con-
sider that Ci,j has type 4. Suppose for contradiction that S ∩ (Rr

i ∪Bi) �= ∅ and
S∩(Bj ∪R�

j+1) �= ∅. Then, Ci,j has 2(j−i+1)+1 = 4f(Ci,j)+1 regions. (c) Sup-
pose for contradiction that v ∈ S∩(Rr

i ∪Bi∪Ri+1∪Rj∪Bj∪B�
j+1). By symmetry,

assume v ∈ Rr
i−1∪Bi∪Ri. Then, Ci,j has 2(j−i+1)+1 = 2(j−i)+3 = 4f(Ci,j)+3

regions.
Besides, by Lemma 4, S contains a vertex of a red region of Ci,j if its type

is either 1 or 2 (that is, if it contains a covered component). Now, using the
pigeonhole principle in all (a), (b) and (c) items, we conclude that in all cases
there are four consecutive regions of Ci,j having no vertices of S. By Lemma 2,
these four regions form a P ∗

3 -concave set, which implies that S is not a P ∗
3 -hull

set of G, a contradiction. �

Lemma 11. Consider the labeling obtained by Algorithm1 and let S be a min-
imum P ∗

3 -hull set of G. The following sentences hold:

(a) If (Ci, . . . , Cj) is a maximal sequence of C-sets such that label(Cj) = 0 and
label(Ck) = −1 for i ≤ k < j, then |S ∩ (Ci ∪ . . . ∪ Cj)| ≥ f(Ci) + . . . +
f(Cj) + 1; and

(b) If Cj−1 and Cj = C�j ,d(G) are C-sets and label(Cj) = −1, then |S ∩ (Cj−1 ∪
Cj)| ≥ f(Cj−1) + f(Cj) + 1.

Proof. (a) Suppose that |S ∩ (Ci ∪ . . . ∪ Cj)| ≤ f(Ci) + . . . + f(Cj). If j = 1,
then Cj has type 3. By Lemma 10, S ∩ B0 = ∅, which is a contradiction since
B0 = {v1} and v1 is a simplicial vertex. Then consider j > 1. Remember that a
C-set has label different of its predecessor if and only if its type is 2 or 3. Hence,
Cj = Cj′,j′′ has type 2 or 3. By Lemma 10, it holds S ∩ (Rr

j′ ∪Bj′) = ∅. If i = 1,
then C1 = C0,�2−1 has type 4. Since v1 is a simplicial vertex, v1 ∈ S, then, by
Lemma 10, S ∩ (B�2−1 ∪R�

�2
) = ∅. If i ≥ 2, then Ci = C�i,�i+1−1 has type 2 or 3.

By Lemma 10, S ∩ (B�2−1 ∪ R�
�2

) = ∅. In both cases, Ck = C�k,�k+1−1 has type
1 or 4 for i + 1 ≤ k < j. This means by Lemma 10 that S ∩ (Rr

�k
∪ B�k

) = ∅

or S ∩ (B�k+1−1 ∪ R�
�k+1

) = ∅ for i + 1 ≤ k < j. Therefore, by the pigeonhole
principle, there is some p ∈ {i + 1, . . . , j} such that B�p

∪ Rr
�p+1 ⊂ C�p−1,�p−1

and R�
p+1 ∪ Bp+1 ⊂ C�p,�p+1−1 such that S ∩ (Bp ∪ Rp+1 ∪ Bp+1) = ∅. By

Lemmas 2 (d) and 3, Bp ∪ Rp+1 ∪ Bp+1 is a P ∗
3 -concave set, which contradicts

the assumption that S is a P ∗
3 -hull set.
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(b) Suppose that |S ∩ (Cj−1 ∪ Cj)| ≤ f(Cj−1) + f(Cj). We know that Cj has
type t ∈ {3, 4}, Cj−1 has type 1 or 2, Bd(G) = {vn}, and Rd(G)+1 = ∅. If t = 3,
then Lemma 10 (c) implies that S ∩ (Rr

i ∪ Bi ∪ Ri+1 ∪ Rd(G) ∪ Bd(G)) = ∅. But
this is a contradiction because vn ∈ S. Then consider t = 4. By Lemma 10 (b),
S ∩(Rr

�j
∪B�j

) = ∅ or S ∩Bd(G) = ∅. Since vn ∈ S, it holds S ∩(Rr
�j

∪B�j
) = ∅.

Note that label(Cj−1) = −1. Let (Ci, . . . , Cj) be the maximal sequence of C-sets
such that label(Ck) = −1 for i ≤ k ≤ j. Note that Ck has type 1 or 4 for i < k ≤
j. Write Ck = C�k,�k+1−1 for i ≤ k < j. Consider first i = 1. By the algorithm,
C1 = C0,�2−1 has type 4. By Lemma 10 (b), B0∩S = ∅ or (B�2−1∪R�

�2
)∩S = ∅.

Since v1 ∈ B0 is a simplicial vertex, it holds (B�2−1∪R�
�2

)∩S = ∅. Now consider
i > 1. The algorithm implies that Ci has type 2 or 3. Lemmas 10 (a) and (c)
imply that (B�i+1−1 ∪ R�

�i+1
) ∩ S = ∅. Thus, in any case, Lemma 10 (b) implies

that S ∩ (Rr
�k

∪B�k
) = ∅ or S ∩ (B�k+1−1 ∪R�

�k+1
) = ∅ for i < k < j. This means

that there is some p ∈ {i + 1, . . . , j} such that S ∩ (Bp ∪ Rp+1 ∪ Bp+1) = ∅,
which is a contradiction by Lemmas 2 and 3. �

Theorem 1. If G is a unit interval graph with exactly two simplicial vertices,
then h∗

3(G) = f ′(G)+
∑

1≤i≤t

f(Ci). Besides, the P ∗
3 -hull number of a unit interval

graph G can be found in linear time.

Proof. Consequence of Lemmas 8, 9, 10, and 11. Besides, a canonical ordering of
a unit interval graph can be found in linear time [8,16], and thus, its simplicial
vertices as well. Since the components of a unit interval graph can be determined
in linear time [9], the result follows due to Lemma1. �

3 Chordal Graphs

We conclude by pointing out the succeeding NP-completeness for the superclass
of chordal graphs.

Theorem 2. Given a chordal graph G and an integer k, it is NP-complete to
decide whether h∗

3(G) ≤ k.

The main idea behind the NP-completeness proof (omitted here due to lack
of space) is a polynomial reduction from a restricted version of Satisfiability
which is NP-complete [10,12] . Let C be an instance of Satisfiability consisting
of m clauses C1, . . . , Cm over n boolean variables x1, . . . , xn such that every
clause in C contains at most three literals and, for every variable xi, there are
exactly two clauses in C, say Cj1

i
and Cj2

i
, that contain the literal xi, and exactly

one clause in C, say Cj3
i
, that contains the literal x̄i, and these three clauses are

distinct.
Let the graph G be constructed as follows starting with the empty graph.

For every j ∈ [m], add a vertex cj . For every i ∈ [n], add 10 vertices
xi, yi, zi, x

1
i , x

2
i , w

1
i , w2

i , x̄i, ȳi, w̄i and 17 edges to obtain the subgraph indicated
in Fig. 6. Add a vertex z and the edges to make a clique of C ∪ Z ∪ {z}, where
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C = {cj |j ∈ [m]} and Z = {zi|i ∈ [n]}. Setting k = 4n + 1, we show in the full
version of the paper that C is satisfiable if and only if G contains a P ∗

3 -hull set
of order at most k.

C
cj1i cj2i cj3i

zixi xiyi
yix1

i

w1
i

x2
i

w2
i

w̄i

Fig. 6. When the construction of G ends, zi will belong to the clique C∪{z1, . . . , zn}∪
{z}.
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