

The Hull Number in the Convexity of Induced Paths of Order 3

Mitre C. Dourado¹⁽**o**)[,](http://orcid.org/0000-0001-9485-1073) Lucia D. Penso^{2(\boxtimes)}, and Dieter Rautenbach²

 1 Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil mitre@dcc.ufrj.br

² Institute of Optimization and Operations Research, Ulm University, Ulm, Germany {lucia.penso,dieter.rautenbach}@uni-ulm.de

Abstract. A set *S* of vertices of a graph *G* is *P*[∗] ³ *-convex* if there is no vertex outside *S* having two non-adjacent neighbors in *S*. The *P*[∗] ³ *-convex hull of S* is the minimum P_3^* -convex set containing *S*. If the P_3^* -convex hull of *S* is $V(G)$, then *S* is a P_3^* -*hull set*. The minimum size of a P_3^* -hull set is the *P*[∗] ³ *-hull number of G*. In this paper, we show that the problem of deciding whether the *P*[∗] ³ -hull number of a chordal graph is at most *k* is NP-complete and present a linear-time algorithm to determine this parameter and provide a minimum P_3^* -hull set for unit interval graphs.

 ${\bf Key words:}$ Graph convexity \cdot Hull number \cdot Unit interval graph. \cdot 2-distance shortest path

1 Introduction

We consider finite, undirected, and simple graphs. The path with k vertices is denoted by P_k and an *induced path* is a path having no chords. Given a set S of vertices of a graph G, the *interval of* S*in the convexity of induced paths of order* 3, also known as the P_3^* *convexity*, is the set $[S]_3^* = S \cup \{u : u$ belongs to an induced P_3 between two vertices of S}. The set S is P_3^* -convex if $S = [S]_3^*$ and is P_3^* -concave if $V(G) \setminus S$ is P_3^* -convex. The P_3^* -convex hull of S is the minimum P_3^* -convex set containing S and it is denoted by $\langle S \rangle_3^*$. If $\langle S \rangle_3^* = V(G)$, then S is a P_3^* -hull set. The minimum size of a P_3^* -hull set is the P_3^* -hull number $h_3^*(G)$ *of* G .

Recently, the P_3^* convexity has attracted attention as an alternative to other quite known convexities with different behavior despite a similar definition. It is particularly interesting in spreading dynamics which forbid the same influence by two neighbors to get spread to a common neighbor. For instance, in [\[4](#page-13-0)], it is shown that the problem of deciding whether the P_3^* -hull number of a bipartite graph is at most k is NP-complete, while polynomial-time algorithms for determining this parameter for P_4 -sparse graphs and cographs are presented. Apart from these results very little is known, as results of quite similarly defined

c Springer Nature Switzerland AG 2019

C. J. Colbourn et al. (Eds.): IWOCA 2019, LNCS 11638, pp. 214–228, 2019. [https://doi.org/10.1007/978-3-030-25005-8](https://doi.org/10.1007/978-3-030-25005-8_18)_18

well-known convexities do not help, since the proofs depend on the existence of longer shortest paths or a non-induced P_3 .

In the well-known *geodetic convexity*, the *geodetic interval of* S is $[S]_q =$ $S \cup \{u : u$ belongs to some shortest path between two vertices of S}. The terms *geodesically convex, geodesically concave, geodetic convex hull* $\langle S \rangle_q$ *, geodetic hull set*, and *geodetic hull number* $h_g(G)$ are defined in a similar way to the P_3^* convexity. The literature concerning the geodetic hull number is large. It is known that this problem is NP-complete for chordal graphs $[5]$ $[5]$, P_9 -free graphs $[10]$, and partial cubes [\[1\]](#page-13-3); and that one can find a minimum geodetic hull set in polynomial time if the input graph is unit interval [\[9\]](#page-13-4), $(q, q - 4)$ -graph [\[2\]](#page-13-5), cobipartite [2], cactus [\[2\]](#page-13-5), (paw, P_5)-free [\[10\]](#page-13-2), $(C_3, \ldots, C_{k-2}, P_k)$ -free [\[10](#page-13-2)], P_5 -free bipartite [\[3\]](#page-13-6), or planar partial cube quadrangulation [\[1\]](#page-13-3). However, as already remarked, though an induced path of order 3 is a shortest path of length 2 between a pair of nodes, those results do not directly apply to the P_3^* convexity due to the use of longer shortest paths in proofs.

Unlike the P_3^* convexity, the P_3 *convexity* considers all paths of order 3. In this convexity, also known as irreversible 2-conversion, the problem of computing the hull number is APX-hard for bipartite graphs with maximum degree at most 4 and NP-complete for planar graphs with maximum degree at most 4 [\[7](#page-13-7),[15\]](#page-14-0), and can be found in polynomial time for chordal graphs [\[6](#page-13-8)] as well as for cubic or subcubic graphs [\[15\]](#page-14-0). Finally, in the convexity that considers all induced paths, the *monophonic convexity*, the hull number can be computed in polynomial time for any graph [\[11\]](#page-13-9).

The main result of this paper is a linear-time algorithm to determine both the P_3^* -hull number and a minimum P_3^* -hull set of a unit interval graph (Sect. [2\)](#page-2-0). We point out that Theorem [1](#page-12-0) is not only an explicit formula for the P_3^* -hull number $h_3^*(G)$ but also an almost explicit one for the minimum P_3^* -hull set, since one needs to compute the necessary labels before. We also show that the problem of deciding whether this parameter is at most k for a chordal graph is NP-complete (Sect. [3\)](#page-12-1). Remember that unit interval graphs have a variety of applications in operations research, including resource allocation problems in scheduling [\[13\]](#page-14-1) and in genetic modeling such as DNA mapping in bioinformatics $[14]$ $[14]$, where an overall agreement (on a value, a signal, a failure, a disease, a characteristic, etc.) might get forced by a minimum key set under some convexity such as the P_3^* .

We conclude this section giving some definitions. The distance between vertices u and v is denoted by $d(u, v)$ and the neighborhood of a vertex v is denoted by $N(v)$. The set $\{1,\ldots,k\}$ for an integer $k \geq 1$ is denoted by [k]. A subgraph of G induced by vertex set S is denoted by $G[S]$. A vertex u is *simplicial* if its neighborhood induces a complete graph. Note that every P_3^* -hull set contains all simplicial vertices and at least one vertex of each P_3^* -concave set of the graph. Given an ordering $\alpha = (v_1, \ldots, v_n)$ of $V(G)$ and a set $I \subseteq [n]$, the subordering $\alpha' = (v_{i_1}, \ldots, v_{i_{|I|}})$ *of* α *induced by I* is the ordering of the set $\{v_{i_j} : i_j \in I\} \subseteq V(G)$ such that v_{i_j} appears before v_{i_k} if and only if $i_j < i_k$. If $I = [j] \setminus [i-1]$ for $0 \leq i < j \leq n$, then the subordering of α induced by I is denoted by $\alpha_{i,j}$.

2 Unit Interval Graphs

A *unit interval graph* G is the intersection graph of a collection of intervals of the same size on the real line. Since one can assume that all left endpoints of the intervals of such a collection are distinct, a *canonical ordering* $\Gamma = (v_1, v_2, \ldots, v_n)$ of $V(G)$ is defined as the one such that $i < j$ if and only if the left endpoint of the interval of v_i is smaller than the left endpoint of the one of v_i . This ordering has the property that if $v_i v_j \in E(G)$ for $i < j$, then $\{v_i, \ldots, v_j\}$ is a clique [\[8,](#page-13-10)[16\]](#page-14-3). It is easy to see that if $v_i \in [v_j, v_k]_3^*$ for $j < k$, then $j \leq i \leq k$. In the next, we consider a canonical ordering $\Gamma = (v_1, v_2, \dots, v_n)$ of a given unit interval graph G.

Lemma 1. *If* v_j *is simplicial, then* $h_3^*(G) = h_3^*(G[\{v_1, \ldots, v_j\}]) + h^*(G[\{v_1, \ldots, v_j\}])$ $h_3^*(G[\{v_j,\ldots,v_n\}])-1.$

Proof. Let S, S_1 , and S_2 be minimum hull sets of $G, G_1 = G[\{v_1 \dots v_j\}],$ and $G_2 = G[\{v_1 \ldots v_n\}]$, respectively. Since $\Gamma = (v_1, v_2, \ldots, v_n)$ is a canonical ordering and v_i is a simplicial vertex of G, G_1 , and G_2 , it holds $S \supseteq$ $\{v_i\} = S_1 \cap S_2$. It is clear that $S_1 \cup S_2$ is a hull set of G, and hence $h_3^*(G) \leq h_3^*(G[\{v_1, \ldots, v_j\}]) + h_3^*(G[\{v_1, \ldots, v_n\}])-1$. Now, consider an induced path $v_i v_k v_\ell$ with $v_i \in V(G_1) \setminus \{v_j\}$ and $v_\ell \in V(G_2) \setminus \{v_j\}$. If $v_k \in V(G_2)$, then $i < j < k < \ell$ and $\{v_i, \ldots, v_k\}$ is a clique containing v_j . Since v_j is simplicial, if $v_jv_\ell \in E(G)$, then $v_iv_\ell \in E(G)$, which would contradict the assumption that $v_i v_k v_\ell$ is an induced path. Therefore $v_j v_\ell \notin E(G)$ and $v_k \in [v_j, v_\ell]^*$. The case for $v_k \in V(G_1)$ is analogue. Hence, $S \cap V(G_i)$ is a minimum hull set of G_i for $i \in [2]$, which means that $h_3^*(G) \ge h_3^*(G[v_1, \ldots, v_j]) + h_3^*(G[v_j, \ldots, v_n]) - 1. \quad \Box$ \Box

Due to Lemma [1,](#page-2-1) we can assume that G has only two simplicial vertices, namely, v_1 and v_n . In the sequel, we use the geodetic interval to obtain a useful partition of the vertices of G. We say that v_i is a *black vertex* if v_i lies in a shortest (v_1, v_n) -path and that it is a *red vertex* otherwise. The black vertices v such that $d(v_1, v) = i$ form the *black region* B_i . Note that all vertices of B_i are consecutive in Γ. The set of vertices between the black regions B_{i-1} and B_i in Γ form the *red region* R_i . These definitions induce a partition of Γ into black and red regions $B_0, R_1, B_1, \ldots, R_q, B_q$. Note that a red region can be empty, $B_0 = \{v_1\}, B_q = \{v_n\}, \text{ and } d(v_1, v_n) = q = d(G), \text{ where } d(G) \text{ stands for the }$ diameter of G. Besides, the black (and red) regions are precisely defined by the following two (not necessarily distinct) shortest (v_1, v_n) -paths, namely, the one whose internal vertices have all the highest possible indexes in Γ and the one whose internal vertices have all the lowest possible indexes in Γ . Each black region B_i contains precisely the vertices of those two paths having distance i to v_1 as well as all vertices between them in the canonical ordering Γ . (See Fig. [1.](#page-3-0))

For $i \in [q]$, denote by r_i^{ℓ} and r_i^r the leftmost and rightmost vertices of R_i in *Γ*, respectively. For $i \in [q] \cup \{0\}$, denote by b_i^{ℓ} and b_i^r the leftmost and rightmost vertices of B_i in Γ , respectively. If, for $i \in [q]$, $b_{i-1}^{\ell}b_i^r \in E(G)$, then we say that $b_{i-1}^{\ell}b_i^r$ is a *long edge*. For $i \in [q]$, denote by R_i^r the vertices of R_i having edges to R_{i+1} and by R_i^{ℓ} the vertices of R_i having edges to R_{i-1} . We say that a red vertex $v \in R_i$ is a *right vertex* if $v \notin R_i^{\ell}$ and that it is a *left vertex* if $v \notin R_i^r$.

Let $\Theta = (u_{k_1}, u_{k_2}, \ldots, u_{k_{|R|}})$ be the subordering of Γ induced by the set of all red vertices $R = R_1 \cup \ldots \cup R_q$. A subordering $\Theta_{i,j} = (u_{k_i}, \ldots, u_{k_j})$ for $i \leq j$ is a *component* of G if u_{k_i} is a right vertex, u_{k_i} is a left vertex, there is no $i' \in [j-1] \setminus [i-1]$ such that $u_{k_{i'}}$ is a left vertex and $u_{k_{i'+1}}$ is a right vertex, and it is maximal (that is, it must hold that either $u_{k_{i-1}}$ is a left vertex or $i = 1$, and additionally, that either $u_{k_{i+1}}$ is a right vertex or $j = |R|$). If, in addition, for every $v_{k'} \in \Theta_{i,j}$ there exists a long edge $v_{k''}v_{k'''} \in E(G)$ such that $k'' < k' < k'''$, then $\Theta_{i,j}$ is said to be a *covered component*. Note that a component can be a singleton. However, since we are assuming that G has only two simplicial vertices v_1 and v_n , a covered component can neither be a singleton nor intersect only one red region as its elements would be simplicial vertices different from v_1 and v_n . Thus, every covered component must contain vertices of at least two red regions. (See Fig. [1.](#page-3-0)) Finally, the components of a unit interval graph can be determined in linear time [\[9](#page-13-4)].

Now we present some structural results. In the next, we characterize some P_3^* -concave sets.

Lemma 2. *It holds that:*

 (a) for $i \in [q-1]$, $R_i^r \cup B_i \cup R_{i+1} \cup B_{i+1}$ *is a* P_3^* -concave set;

- *(b)* for $i \in [q-1]$, $R_i \cup B_i \cup R_{i+1} \cup B_{i+1}$ *is a* P_3^* -concave set;
- *(c)* for $i \in \{0\} \cup [q-2]$, $B_i \cup R_{i+1} \cup B_{i+1} \cup R_{i+2}$ *is a* P_3^* -concave set; and
- (d) *for* $i \in \{0\} \cup [q-1]$ *, if* $R_{i+1}^{\ell} \cap R_{i+1}^r = \emptyset$ *, then* $B_i \cup R_{i+1} \cup B_{i+1}$ *is a* P_3^* -concave *set.*

Proof. First note that if $\Gamma_{i,k} = (v_i, \ldots, v_k)$ for $j < k$ is the ordering of a set $S = \{v_j, \ldots, v_k\}$ in Γ , then all vertices in $\Gamma_{1,j-1}$ having a common neighbor in S are adjacent, and the same is true for all vertices in $\Gamma_{k+1,n}$ having a common neighbor in S. Thus, S is always a P_3^* -concave set for $j = 1$. Besides, S is a P_3^* -concave set for $j > 1$ if the distance of any vertex of $\Gamma_{1,j-1}$ to any vertex of $\Gamma_{k+1,n}$ is at least 3.

Fig. 1. Here there are two components: $\{v_2, v_3, v_6, v_7\}$ (covered) and $\{v_8, v_{11}, v_{12}, v_{15}\}$ (not covered), as both red vertices v_{11} and v_{12} are not covered by a long edge such as v_1v_5 , v_4v_{10} and $v_{13}v_{16}$. Note that only edges between black vertices and between red vertices of distinct red regions are being depicted, and that the two shortest paths *v*¹ v_4 v_9 v_{13} v_{16} and v_1 v_5 v_{10} v_{14} v_{16} define precisely the black (and red) regions. (Color figure online)

(a) Take $S = R_i^r \cup B_i \cup R_{i+1} \cup B_{i+1}$. For $j > 1$, the fact that v_{j-1} has no edges to R_{i+1} implies that the distance of any vertex of $\Gamma_{1,j-1}$ to any vertex of $\Gamma_{k+1,n}$ is at least 3.

(b) By (a) and the fact that if $\Gamma_{j,k}$ is P_3^* -concave, then $\Gamma_{j',k'}$ is P_3^* -concave for $j' \leq j$ and $k' \geq k$.

(c) By symmetry, this case is equivalent to (b).

(d) Now take $S = B_i \cup R_{i+1} \cup B_{i+1}$. For $j > 1$, $d(v_{j-1}, v_{k+1}) \geq 3$ if $R_{i+1}^{\ell} \cap R_{i+1}^{r} =$ \varnothing .

Next, we present a partition of Γ into parts called C-sets and classify them into 4 types.

- If $\Theta_{i,j}(u_{k_i},\ldots,u_{k_j})$ is a covered component, then $\Gamma_{i',j'}$ is a C-set where $v_{i'} =$ u_{k_i} and $v_{j'} = u_{k_j}$. If $\Gamma_{i',j'}$ contains an odd number of black regions, then $\Gamma_{i',j'}$ has type 1. Otherwise $\Gamma_{i',j'}$ has type 2.
- If $\Gamma_{i,j}$ is maximal having no vertex belonging to a C-set of type 1 or 2, then $\Gamma_{i,j}$ is a C-set as well. If $\Gamma_{i,j}$ contains an odd number of black regions, then $\Gamma_{i,j}$ has type 3. Otherwise, $\Gamma_{i,j}$ has type 4.

For example, the unit interval graph of Fig. [1](#page-3-0) gets partitioned into exactly three C-sets: $\Gamma_{1,1}$ (of type 3), $\Gamma_{2,7}$ (of type 1), and $\Gamma_{8,16}$ (of type 3). It is clear that the C-sets always form a partition of Γ . In fact, they also induce a partition of the black regions of G , i.e., all vertices of any black region are contained in a unique C-set and every C-set contains at least the vertices of one black region. These facts allow us to denote by $C_{i,j}$ the C-set whose set of black regions is ${B_i, \ldots, B_j}$. If $C_{i,j} \cap R_i \neq \emptyset$, then $C_{i,j} \cap R_i = R_i^r$. Similarly, if $C_{i,j} \cap R_{j+1} \neq \emptyset$, then $C_{i,j} \cap R_{j+1} = R_{j+1}^{\ell}$. Therefore, from now on, if not empty, both R_i^r and R_{j+1}^{ℓ} as well as R_k for $i < k < j+1$ will be called the *red regions of* $C_{i,j}$. Finally, note that those red regions might be empty if $C_{i,j}$ has type 3 or 4. However, if $C_{i,j}$ has type 1 or 2, then its red regions form a covered component, and consequently, not only both $R_i^r \neq \emptyset$ and $R_{j+1}^{\ell} \neq \emptyset$, but also both $R_k \neq \emptyset$ and $R_k^{\ell} \cap R_k^r \neq \emptyset$ for $i < k < j + 1$, as a covered component does not contain a left vertex followed by a right vertex.

The proposed algorithm finds a $\{0, -1\}$ labeling of the C-sets, which depends on the types and the relative positions of the C-sets. A minimum P_3^* -hull set is then obtained by making a *standard choice* S for each C-set between two possibilities, which we call left and right choices, and depends on the pair type and label, as shown in Table [1.](#page-5-0) As in Figs. [2,](#page-6-0) [3,](#page-6-1) [4](#page-7-0) and [5,](#page-8-0) for any C-set C , there is (at most) one black region B of C such that its standard choice alternates in containing and not containing a black vertex of each consecutive black region of C from B on. Besides those black vertices, the standard choice has one red vertex if C contains a covered component and no red vertex otherwise.

The *left choice* S for a C-set $C_{i,j}$ with type $t \in [4]$ and $k = j - i + 1$ black regions is defined as

$$
S = \begin{cases} \{r_i^r\} \cup \{b_{i+1+2k'}^r : 0 \le k' < \lfloor \frac{k}{2} \rfloor\} & \text{, if } t \in [2];\\ \{b_{i+2k'}^r : 0 \le k' < \lceil \frac{k}{2} \rceil\} & \text{, if } t \in \{3, 4\}. \end{cases}
$$

Algorithm 1. Finding a minimum P_3^* -hull set. **input:** A unit interval graph G having exactly 2 simplicial vertices **1** Γ canonical ordering of $V(G)$ **2** C ← the partition (C_1, \ldots, C_t) of Γ into C-sets, where C_1 and C_t have types in {3,4} **³ if** C¹ *has type* 3 **then** \vert label(C_1) \leftarrow 0 (left choice for type 3) **⁵ else 6** \vert label(C_1) $\leftarrow -1$ (left choice for type 4) **⁷ for** j *from* 2 *to* q **do if** C_j *has type* 2 *or* 3 **then** $\left\lfloor \quad label(C_j) \leftarrow -1 - label(C_{j-1}) \right\rfloor$ **¹⁰ else** 11 $\left| \begin{array}{c} \text{label}(C_j) \leftarrow \text{label}(C_{j-1}) \end{array} \right|$ 12 $S \leftarrow \{v_n\}$ **13 for** $C_i \in \mathcal{C}$ **do**
14 f $S \leftarrow S \cup S$ **1** S ← S ∪ S' where S' is a standard choice for $C_{i,j}$ according to Table 1 **¹⁵ return** S

Table 1. Standard choices.

	Type Label 0	$Label -1$
1	Right choice Left choice	
$\mathcal{D}_{\mathcal{L}}$	Left choice	Right choice
3	Left choice	Right choice
	Right choice Left choice	

The *right choice* S for a C-set $C_{i,j}$ with type $t \in [4]$ and $k = j - i + 1$ black regions is defined as

$$
S = \begin{cases} \{r\} \text{ for some } r \in R_{i+1}^{\ell} \\ \{r_{i+1}\} \cup \{b_{i+2k'}^r : 0 < k' < \lceil \frac{k}{2} \rceil\} \text{ for some } r_{i+1} \in R_{i+1}^{\ell} \cap R_{i+1}^r \\ \{b_{i+1+2k'}^r : 0 \le k' < \lfloor \frac{k}{2} \rfloor\} \end{cases}
$$
 for some $r_{i+1} \in R_{i+1}^{\ell} \cap R_{i+1}^r$, if $t \in [2]$ and $j > i$; $t \in \{3, 4\}$.

The idea of the linear algorithm is to give the left choice for the first C-set, and then alternate the standard choice from left to right and vice-versa if and only if the preceding ^C-set had type 2 or 3. Note that label [−]1 means "missing" and indicates that no vertex of the last black region B_i of $C_{i,j}$ belongs to its standard choice S. Note also that the first and the last C-sets in Γ are not a covered component, and therefore, always have types in {3, ⁴}. Figures [2,](#page-6-0) [3,](#page-6-1) [4](#page-7-0) and [5](#page-8-0) depict the left and right choices for a C-set depending on its type.

In the next lemma we show that, for any $j \in [q]$, if B_{j-1} and B_j belong to distinct C-sets, then there is no vertex of R_i having neighbors in both R_{i-1} and R_{j+1} .

Fig. 2. Scheme representing the left (on top) and right (on bottom) choices of *C*-set $C_{i,i+4}$ with type 1. (Color figure online)

Fig. 3. Scheme representing the left (on top) and right (on bottom) choices of *C*-set $C_{i,i+3}$ with type 2. (Color figure online)

Lemma 3. *If* $C_{i,j-1}$ *and* $C_{j,k}$ *are* C *-sets, then* $R_j^{\ell} \cap R_j^r = \emptyset$ *.*

Proof. By definition, if one of these C-sets has type 3 or 4, then the other one has type 1 or 2. This means that exactly one of these two C-sets has type 1 or 2, and therefore the red vertices of this C-set form a covered component. However, if $R_j^{\ell} \cap R_j^r \neq \emptyset$, then there would be a contradiction, as no vertex in R_j could be neither a left vertex nor a right vertex, i.e., neither the first nor the last red vertex of this C-set of type 1 or 2. \Box

Lemma 4. *Every covered component of a unit interval graph* G *is* P_3^* -concave.

Proof. Let $C_{i,j}$ be the C-set of type either 1 or 2 containing the covered component, therefore, the red regions of $C_{i,j}$ form the covered component. Lemma [3](#page-6-2) implies that, for $i < k < j + 1$, each red vertex of R_k neighbors only red vertices of R_{k-1} , R_k and R_{k+1} , each red vertex of R_i^r neighbors only red vertices

Fig. 4. Scheme representing the left (on top) and right (on bottom) choices of *C*-set $C_{i,i+4}$ with type 3. (Color figure online)

of R_i and R_{i+1} and each red vertex of R_{j+1}^{ℓ} neighbors only red vertices of R_j and R_{i+1} . Finally, for $i \leq k \leq j+1$, since $B_{k-1} \cup R_k \cup B_k$ form a clique and R_k neighbors only black vertices of $B_{k-1} \cup B_k$, each vertex of the covered component is such that all its neighbors not belonging to the covered component form a clique, meaning that the covered component is P_3^* -concave, and therefore, every covered component of G must intersect with every P_3^* -hull set of G. (As an alternative proof, the fact that $\langle S \rangle^*_{3} \subseteq \langle S \rangle_g$ for every set $S \subseteq V(G)$ also implies the claim, as from $[9]$ it is known that every covered component of G is geodesically concave.) \Box

Remember that b_{i-1}^r is the rightmost vertex of B_{i-1} , and that b_{i+1}^{ℓ} is the leftmost vertex of B_{i+1} , being both b_{i-1}^r and b_{i+1}^{ℓ} adjacent to every vertex in B_i , but not to one another. Note also that b_{i+1}^{ℓ} has no neighbor in R_i^r , as no vertex in that set belongs to a shortest path between v_1 and v_n , and that b_{i-1}^r has no neighbor in R^{ℓ}_{i+1} , as no vertex in that set has distance i to v_1 . The following property will be very useful.

Lemma 5. *If* $r \in R_i^r \cup R_{i+1}^{\ell}$, *then* $R_i^r \cup B_i \cup R_{i+1}^{\ell} \subseteq \langle \{b_{i-1}^r, r, b_{i+1}^{\ell}\} \rangle_3^*$.

Proof. Note that $B_i \subseteq [b_{i-1}^r, b_{i+1}^{\ell}]_3^*$ and that $R_i^r \neq \emptyset$ if and only if $R_{i+1}^{\ell} \neq$ \emptyset . If $r \in R_i^r$ and v_k is the vertex with maximum index k in Γ belonging to $N(r) \cap R_{i+1}^{\ell}$, then $R_{i+1}^{\ell} \cap \Gamma_{1,k} \subseteq [{r, b_{i+1}^{\ell}}]_3^*, R_i^r \subseteq [{b_{i-1}^r}] \cup (R_{i+1}^{\ell} \cap \Gamma_{1,k})_3^*$ and $R_{i+1}^{\ell} \subseteq [R_i^r \cup \{b_{i+1}^{\ell}\}]_3^*$ as well. Similarly, in a symmetric way, if $r \in R_{i+1}^{\ell}$ and $v_{k'}$ is the vertex with minimum index k' in Γ belonging to $N(r) \cap R_i^r$, then $R_i^r \cap \Gamma_{k',n} \subseteq [\{r, b_{i-1}^r\}]_3^*, R_{i+1}^{\ell} \subseteq [\{b_{i+1}^{\ell}\} \cup (R_i^r \cap \Gamma_{k',n})]_3^*$ and $R_i^r \subseteq [R_{i+1}^{\ell} \cup \{b_{i-1}^r\}]_3^*$ as well.

Now we are ready to understand why the linear algorithm presented, which starts with a left choice for the first C-set and then flips the standard choice from left to right and vice-versa if and only if the preceding C-set has type 2 or

Fig. 5. Scheme representing the left (on top) and right (on bottom) choices of *C*-set $C_{i,i+3}$ with type 4. (Color figure online)

3, indeed provides a minimum P_3^* -hull set of G when the choices of the C-sets get united together with v_n . The following lemma throws light on that.

Lemma 6. *If* $S_{i,j}$ *is a standard choice for a C-set* $C_{i,j}$ *, then the following holds:*

 (a) $C_{i,j} \subseteq \langle S_{i,j} \cup \{b_{i-1}^r, b_{j+1}^{\ell}\}\rangle_3^*;$ (b) $C_{i,j} \setminus (R_i^r \cup R_{i+1}^{\ell}) \subseteq \langle S_{i,j} \cup B_i \cup \{b_{j+1}^{\ell}\}\rangle_3^*;$ (c) $C_{i,j}$ *∖* $(R_j^r \cup R_{j+1}^{\ell}) \subseteq \langle S_{i,j} \cup B_j \cup \{b_{i-1}^r\} \rangle_3^*,$ (d) $C_{i,j} \setminus (R_i^r \cup R_{i+1}^{\ell} \cup R_j^r \cup R_{j+1}^{\ell}) \subseteq \langle S_{i,j} \cup B_i \cup B_j \rangle_3^*$.

Proof. Write $S_a = S_{i,j} \cup \{b_{i-1}^r, b_{j+1}^{\ell}\}, S_b = S_{i,j} \cup B_i \cup \{b_{j+1}^{\ell}\}, S_c = S_{i,j} \cup B_j \cup S_c$ ${b_{i-1}^r}$, and $S_d = S_{i,j} \cup B_i \cup B_j$. We give only one proof for all four cases, thus let $x \in \{a, b, c, d\}.$

First consider $C_{i,j}$ with type in $\{1,2\}$, that is, its red regions form a covered component. It is clear that $B_i \subseteq [S_x]_3^*$ for $x \in \{a, b, c, d\}$. Since $b_k^{\ell} b_{k+1}^r \in E(G)$ for $i-1 \leq k \leq j$, we have $B_k \subseteq [[S_x]_3^*]_3^* \subseteq \langle S_x \rangle_3^*$ for $x \in \{a, b, c, d\}$ and $i \leq k \leq j$. Besides, for each choice $S_{i,j}$, note that there is $r \in S_{i,j}$ such that either $r = r_i^r$ (left choice) or $r \in R_{i+1}^{\ell} \cap R_{i+1}^r$ (right choice), and thus, not only $[S_x]_3^* \cap R_{i+1}^{\ell} \cap R_{i+1}^r \neq \emptyset$ for $x \in \{a, b, c, d\}$ and $i < j$, but also by Lemma [5](#page-7-1) we have that $R_i^r \cup R_{i+1}^{\ell} \subseteq \langle S_x \rangle_3^*$ for either $x \in \{a, c\}$ and $i < j$, or $x = a$ and $i = j$. Now, since $R_{k+1}^{\ell} \cap R_{k+1}^r \neq \emptyset$ for $i \leq k \leq j-1$ as the red regions of $C_{i,j}$ form a covered component, due to Lemma [5](#page-7-1) we have for $i < j$ by forwards induction starting on $[S_x]_3^* \cap R_{i+1}^{\ell} \cap R_{i+1}^r \neq \emptyset$ that $R_{k+1}^r \cup R_{k+2}^{\ell} \subseteq \langle S_x \rangle_3^*$ for either $x \in \{a, b\}$ and $i \leq k \leq j - 1$, or $x \in \{c, d\}$ and $i \leq k \leq j - 2$.

Now, consider that $C_{i,j}$ has type 3 or 4. Note that ${b_k | i \le k \le j} \subseteq [S_x]_3^*$ and $B_j \subseteq [[S_x]_3^*]_3^*$ for $x \in \{a, b, c, d\}$, which implies, by backwards induction starting on B_j , that $B_k \subseteq \langle S_x \rangle^*_3$ for $x \in \{a, b, c, d\}$ and $i \leq k \leq j$. Therefore, if some red region R_k for $i < k \leq j$ is not covered by a long edge, then $R_k \subseteq [b_{k-1}^{\ell}, b_k^{\ell}]_3^* \subseteq$ $\langle S_x \rangle_3^*$ for $x \in \{a, b, c, d\}$ as well. Thus, suppose that $(R_{i'}, \ldots, R_{j'})$ is a maximal sequence of covered non-empty red regions for $i + 1 \leq i' \leq k \leq j' \leq j$. Since

 $C_{i,j}$ does not contain a covered component, $R_{i'-1} \supseteq R_{i'-1}^r \neq \emptyset$ with $i' > i+1$ or $R_{j'+1} \supseteq R_{j'+1}^{\ell} \neq \emptyset$ with $j' < j$ is not a covered red region. Without loss of generality, assume that $R_{i'-1} \supseteq R_{i'-1}^r \neq \emptyset$ with $i' > i+1$ is not a covered red region, meaning that $R_{i'-1} \subseteq \langle S_x \rangle^*_3$ for $x \in \{a, b, c, d\}$. (Otherwise, an analogous argument using Lemma [5](#page-7-1) works with a backwards induction instead of a forwards one.) Note that Lemma [5](#page-7-1) applied on $b_{i'-2}^r$, $r_{i'-1}^r$, $b_{i'}^{\ell}$ yields $R_{i'}^{\ell} \subseteq \langle S_x \rangle_{3}^*$. Now, as $C_{i,j}$ does not contain a covered component, $R_k^{\ell} \cap R_k^r \neq \emptyset$ for $i' \leq k < j'$, implying by forwards induction that Lemma [5](#page-7-1) applied on b_{k-1}^r , r, b_{k+1}^ℓ with $r \in R_k^\ell \cap R_k^r$ yields $R_k^r \cup R_{k+1}^{\ell} \subseteq \langle S_x \rangle_3^*$ for either $i' \leq k \leq j'$ (if $R_{j'+1} \neq \emptyset$) or $i' \leq k < j'$ (if $R_{j'+1} = \varnothing$, that is, $R_k \subseteq \langle S_x \rangle_3^*$ for $i' \leq k \leq j'$, as either $R_{j'}^{\ell} \cap R_{j'}^r \neq \varnothing$ with $j' < j$ when $R_{j'+1} \neq \emptyset$ or $R_{j'} = R_{j'}^{\ell}$ when $R_{j'+1} = \emptyset$. Finally, it remains to show that $R_i^r \subseteq \langle S_x \rangle_3^*$ for $x \in \{a, c\}$ and that $R_{j+1}^{\ell} \subseteq \langle S_x \rangle_3^*$ for $x \in \{a, b\}$, but these facts are directly derived from Lemma [5,](#page-7-1) as in this case both R_i and R_{j+1} are covered red regions.

Let (C_1, \ldots, C_t) be the C-sets ordered according to Γ . The set S returned by Algorithm [1](#page-5-1) is a minimum P_3^* -hull set of G containing v_n as well as the standard choices selected by the algorithm for the C-sets, based on both the types and the received labels. Remark that the label is applied in such a way that the algorithm gives the left choice for C_1 , and then consecutively alternates the standard choice from left to right and vice-versa if and only if the preceding C-set had type 2 or 3, maintaining it otherwise. In Lemma [8](#page-10-0) we prove that S is in fact a P_3^* -hull set of G, whereas in Lemmas [9](#page-10-1) to [11](#page-11-0) we prove that there is no P_3^* -hull set of G with less than |S| vertices. Define $f(C_i)$ as the cardinality of the standard choice that the algorithm associated with C_i and $f'(G)$ as the number of times that the labeling changes from -1 to 0, plus 1 if C_1 has type 3, and again plus 1 if C_t received label -[1](#page-12-0). In Theorem 1 we show that $|S| = f'(G) + \sum_{1 \le i \le n}$ $f(C_i)$.

 $1 \leq i \leq t$ The next lemma combined with the previous one is key to comprehend the correctness.

Lemma 7. If $C_{i,j}$ is a C -set of G and S is the set returned by Algorithm [1,](#page-5-1) then $B_i \cup \ldots \cup B_j \subseteq \langle S \rangle_3^*$. Hence, $b_{i-1}^r \in \langle S \rangle_3^*$ for $1 \leq i \leq q$ and $b_{j+1}^{\ell} \in \langle S \rangle_3^*$ for $0 \leq j \leq q-1$.

Proof. First, consider the case where $C_{i,j}$ has type 3 or 4. Let $S_{i,j} = S \cap C_{i,j}$. We begin assuming that $i \geq 1$ and $j \leq q-1$. Observe that if $b_i^r \in S_{i,j}$, then there is $v \in S \cap (\{b_{i-2}^r\} \cup R_{i-1})$; otherwise there is $v \in S \cap (\{b_{i-1}^r\} \cup R_i)$. Observe also that if $b_j^r \in B$, then there is $w \in S \cap (\{b_{j+1}^r, b_{j+2}^r\} \cup R_{j+2})$; otherwise there is $w \in S \cap (\{b_{j+1}\}\cup R_{j+1})$. In all cases, it holds that $b_k^r \in [S_{i,j} \cup \{v,w\}]_3^*$ for $i-1 \leq k \leq j+1$. Since $C_{i,j}$ has type 3 or 4, the C-set containing B_{j+1} has type 1 or 2, which means that the edge $b_j^{\ell} b_{j+1}^r$ exists. Hence $b_j^{\ell} \in \langle S \rangle_{3}^*$, which implies that $B_i \cup \ldots \cup B_j \subset \langle S \rangle_3^*$. Now, if $i = 0$, then $B_i = \{v_1\}$ and $b_i^r = v_1 \in S$; and if $j = q$, then $B_j = \{v_n\}$ and $b_j^{\ell} = v_n \in S$, which means that $B_i \cup \ldots \cup B_j \subset \langle S \rangle_3^*$ even if for $i = 0$ or $j = q$.

Now, consider the case where $C_{i,j}$ has type 1 or 2. Note that the first C-set C_1 as well as the last C-set C_t have both types in $\{3, 4\}$. Thus, a C-set $C_{i,j}$ of type in $\{1,2\}$ is such that not only $0 < i \leq j < q$, but also both its preceding and subsequent C-sets have types in $\{3, 4\}$. This fact jointly with both the previous case and (a) of Lemma 6 imply that $B_i \cup \ldots \cup B_i \subset \langle S \rangle^*$. case and (a) of Lemma [6](#page-8-1) imply that $B_i \cup \ldots \cup B_j \subseteq \langle S \rangle_3^*$. $\overline{3}$.

Lemma 8. *Algorithm [1](#page-5-1) returns* a P_3^* -hull set of G.

Proof. Recall that G has exactly 2 simplicial vertices. Let S be the set returned by Algorithm [1](#page-5-1) and $C_{i,j}$ be a C-set of G having type t. Consider first $i = 0$. If $i = 0, B_i = \{v_1\} \subseteq S$ and clearly by definition $R_0^r \cup R_1^\ell = \emptyset$. If $j = q$, $B_j = \{v_n\} \subseteq S$ and clearly by definition $R_q^r \cup R_{q+1}^{\ell} = \emptyset$. By (d) of Lemma [6,](#page-8-1) $V(G) = C_{i,j} = \langle S \rangle^*_3$. Now, consider that $j < q$. By Lemma [7,](#page-9-0) it holds $b_{j+1}^{\ell} \in \langle S \rangle^*_3$. Thus, by (b) of Lemma [6,](#page-8-1) $C_{i,j} \subseteq \langle S \rangle_{3}^{*}$. Next, consider $j = q$ and $i > 0$. By Lemma [7,](#page-9-0) $b_{i-1}^r \in \langle S \rangle^*$, By (c) of Lemma [6,](#page-8-1) $C_{i,j} \subseteq \langle S \rangle^*$. Finally, suppose $i > 0$ and $j < q$. By Lemma [7,](#page-9-0) $b_{i-1}^r, b_{j+1}^{\ell} \in \langle S \rangle_{3}^*$. By (a) of Lemma [6,](#page-8-1) $C_{i,j} \subseteq \langle S \rangle_{3}^*$ $\overline{}$

We now define a lower bound, proved in Lemma [9,](#page-10-1) for the number of vertices that any P_3^* -hull set contains from a C-set $C_{i,j}$ as a function of its type t.

$$
f(C_{i,j}) = \begin{cases} \frac{j-i+1}{2} & , \text{ if } t \in \{2, 4\}; \\ \frac{j-i+2}{2} & , \text{ if } t = 1; \\ \frac{j-i}{2} & , \text{ if } t = 3. \end{cases}
$$

Let $S_{i,j}$ be a standard choice of $C_{i,j}$. Note that $f(C_{i,j}) = |S_{i,j}|$ if $t \in \{1,4\}$ or $S_{i,j}$ is a right choice; otherwise, $f(C_{i,j}) = |S_{i,j}| - 1$.

Lemma 9. *If* S *is a* P_3^* -hull set and $C_{i,j}$ *is a* C-set of a unit interval graph G, then $|S \cap C_i|$ > $f(C_i)$ *then* $|S \cap C_{i,j}| \geq f(C_{i,j}).$

Proof. The number of black regions contained in $C_{i,j}$ is $j-i+1$. By Lemma [2](#page-3-1) (a), $R_i^r \cup B_i \cup R_{i+1} \cup B_{i+1}$ is a P_3^* -concave set and $R_k \cup B_k \cup R_{k+1} \cup B_{k+1}$ is a P_3^* concave set for $i + 1 \leq k \leq j - 1$. Therefore, $C_{i,j}$ contains at least $\lfloor \frac{j-i+1}{2} \rfloor$ disjoint P_3^* -concave sets, which implies the result if the type of $C_{i,j}$ is 2 or 4 as $j - i + 1$ is even or if its type is 3 as $j - i$ is not only even but also smaller than $j - i + 1.$

Now, consider that $C_{i,j}$ has type 1 and let S be a P_3^* -hull set of G. By definition, $j - i + 1$ is odd. Since $C_{i,j}$ contains a covered component, Lemma [4](#page-6-3) implies that at least one vertex of a red region of $C_{i,j}$ belongs to S. Now, due to this fact, if $|S \cap C_{i,j}| < \lceil \frac{j-i+1}{2} \rceil$, then there are four consecutive regions of Γ , w.l.o.g. say $V' = R_{i'} \cup B_{i'} \cup \tilde{R}_{i'+1} \cup B_{i'+1}$ for $i \leq i' < j$ such that $V' \cap S = \emptyset$. By Lemma [2,](#page-3-1) V' is a P_3^* -concave set, which is a contradiction. Thus, the result also holds for type 1. \Box

Lemma 10. *Let* S *be a* P_3^* -*hull set and let* $C_{i,j}$ *be a* C-set of G *such that* $|S \cap C_1| = f(C_1)$ $|S \cap C_i| = f(C_i).$

(a) If $C_{i,j}$ has type 2, then $S \cap (R_i^r \cup B_i \cup B_j \cup R_{j+1}^{\ell}) = \emptyset$;

- *(b)* If $C_{i,j}$ has type 1 or 4, then $S \cap (R_i^r \cup B_i) = \emptyset$ or $S \cap (B_j \cup R_{j+1}^{\ell}) = \emptyset$;
- *(c)* If $C_{i,j}$ has type 3, then $S \cap (R_i^r \cup B_i \cup R_{i+1} \cup R_j \cup B_j \cup R_{j+1}^{\ell}) = ∅$.

Proof. We first count the number of regions of $C_{i,j}$ in terms of $f(C_{i,j})$. (a) Suppose for contradiction that $v \in S \cap (R_i^r \cup B_i \cup B_j \cup R_{j+1}^{\ell})$. By symmetry, assume that $S \cap (R_i^r \cup B_i) \neq \emptyset$. The number of black regions of $C_{i,j}$ is $j - i + 1$, which means that $C_{i,j}$ has $2(j - i + 1) + 1 = 4f(C_{i,j}) + 1$ regions, namely, $R_i^r, B_i, R_{i+1}, B_{i+1}, \ldots, R_j, B_j, R_{j+1}^{\ell}$. (b) First, consider that $C_{i,j}$ has type 1. Suppose for contradiction that $S \cap (R_i^r \cup B_i) \neq \emptyset$ and $S \cap (B_j \cup R_{j+1}^{\ell}) \neq \emptyset$. Then, $C_{i,j}$ has $2(j-i+1)+1=2(j-i+2)-1=4f(C_{i,j})-1$ regions. Now, consider that $C_{i,j}$ has type 4. Suppose for contradiction that $S \cap (R_i^r \cup B_i) \neq \emptyset$ and $S \cap (B_j \cup R_{j+1}^{\ell}) \neq \emptyset$. Then, $C_{i,j}$ has $2(j-i+1)+1 = 4f(C_{i,j})+1$ regions. (c) Suppose for contradiction that $v \in S \cap (R_i^r \cup B_i \cup R_{i+1} \cup R_j \cup B_j \cup B_{j+1}^{\ell})$. By symmetry, assume $v \in R_{i-1}^r \cup B_i \cup R_i$. Then, $C_{i,j}$ has $2(j-i+1)+1 = 2(j-i)+3 = 4f(C_{i,j})+3$ regions.

Besides, by Lemma [4,](#page-6-3) S contains a vertex of a red region of $C_{i,j}$ if its type is either 1 or 2 (that is, if it contains a covered component). Now, using the pigeonhole principle in all (a), (b) and (c) items, we conclude that in all cases there are four consecutive regions of $C_{i,j}$ having no vertices of S. By Lemma [2,](#page-3-1) these four regions form a P_3^* -concave set, which implies that S is not a P_3^* -hull set of G , a contradiction. \Box

Lemma 11. *Consider the labeling obtained by Algorithm [1](#page-5-1) and let* ^S *be a minimum* P[∗] ³ *-hull set of* G*. The following sentences hold:*

- *(a)* If (C_i, \ldots, C_j) *is a maximal sequence of* C-sets such that $label(C_j) = 0$ and $label(C_k) = -1$ *for* $i \leq k < j$ *, then* $|S \cap (C_i \cup ... \cup C_j)| \geq f(C_i) + ...$ $f(C_i) + 1$ *;* and
- *(b)* If C_{j-1} and $C_j = C_{\ell_j, d(G)}$ are C-sets and label(C_j) = −1, then $|S \cap (C_{j-1} \cup$ $|C_i| \geq f(C_{i-1}) + f(C_i) + 1.$

Proof. (a) Suppose that $|S \cap (C_i \cup ... \cup C_j)| \leq f(C_i) + ... + f(C_j)$. If $j = 1$, then C_j has type 3. By Lemma [10,](#page-10-2) $S \cap B_0 = \emptyset$, which is a contradiction since $B_0 = \{v_1\}$ and v_1 is a simplicial vertex. Then consider $j > 1$. Remember that a C-set has label different of its predecessor if and only if its type is 2 or 3. Hence, $C_j = C_{j',j''}$ has type 2 or 3. By Lemma [10,](#page-10-2) it holds $S \cap (R_{j'}^r \cup B_{j'}) = \emptyset$. If $i = 1$, then $C_1 = C_{0,\ell_2-1}$ has type 4. Since v_1 is a simplicial vertex, $v_1 \in S$, then, by Lemma [10,](#page-10-2) $S \cap (B_{\ell_2-1} \cup R_{\ell_2}^{\ell}) = \emptyset$. If $i \geq 2$, then $C_i = C_{\ell_i, \ell_{i+1}-1}$ has type 2 or 3. By Lemma [10,](#page-10-2) $S \cap (B_{\ell_2-1} \cup R_{\ell_2}^{\ell}) = \emptyset$. In both cases, $C_k = C_{\ell_k, \ell_{k+1}-1}$ has type 1 or 4 for $i + 1 \leq k < j$. This means by Lemma [10](#page-10-2) that $S \cap (R_{\ell_k}^{r} \cup B_{\ell_k}) = \emptyset$ or $S \cap (B_{\ell_{k+1}-1} \cup R_{\ell_{k+1}}^{\ell}) = \emptyset$ for $i+1 \leq k < j$. Therefore, by the pigeonhole principle, there is some $p \in \{i+1,\ldots,j\}$ such that $B_{\ell_p} \cup R_{\ell_p+1}^r \subset C_{\ell_{p-1},\ell_p-1}$ and $R_{p+1}^{\ell} \cup B_{p+1} \subset C_{\ell_p,\ell_{p+1}-1}$ such that $S \cap (B_p \cup R_{p+1} \cup B_{p+1}) = \emptyset$. By Lemmas [2](#page-3-1) (d) and [3,](#page-6-2) $B_p \cup R_{p+1} \cup B_{p+1}$ is a P_3^* -concave set, which contradicts the assumption that S is a P_3^* -hull set.

(b) Suppose that $|S \cap (C_{j-1} \cup C_j)| \leq f(C_{j-1}) + f(C_j)$. We know that C_j has type $t \in \{3, 4\}$, C_{j-1} has type 1 or 2, $B_{d(G)} = \{v_n\}$, and $R_{d(G)+1} = \emptyset$. If $t = 3$, then Lemma [10](#page-10-2) (c) implies that $S \cap (R_i^r \cup B_i \cup R_{i+1} \cup R_{d(G)} \cup B_{d(G)}) = \emptyset$. But this is a contradiction because $v_n \in S$. Then consider $t = 4$. By Lemma [10](#page-10-2) (b), $S \cap (R_{\ell_j}^r \cup B_{\ell_j}) = \varnothing$ or $S \cap B_{d(G)} = \varnothing$. Since $v_n \in S$, it holds $S \cap (R_{\ell_j}^r \cup B_{\ell_j}) = \varnothing$. Note that $label(C_{i-1}) = -1$. Let (C_i, \ldots, C_i) be the maximal sequence of C-sets such that $label(C_k) = -1$ for $i \leq k \leq j$. Note that C_k has type 1 or 4 for $i < k \leq j$ j. Write $C_k = C_{\ell_k, \ell_{k+1}-1}$ for $i \leq k < j$. Consider first $i = 1$. By the algorithm, $C_1 = C_{0,\ell_2-1}$ has type 4. By Lemma [10](#page-10-2) (b), $B_0 \cap S = \emptyset$ or $(B_{\ell_2-1} \cup R_{\ell_2}^{\ell}) \cap S = \emptyset$. Since $v_1 \in B_0$ is a simplicial vertex, it holds $(B_{\ell_2-1} \cup R_{\ell_2}^{\ell}) \cap S = \emptyset$. Now consider $i > 1$. The algorithm implies that C_i has type 2 or 3. Lemmas [10](#page-10-2) (a) and (c) imply that $(B_{\ell_{i+1}-1} \cup R_{\ell_{i+1}}^{\ell}) \cap S = \emptyset$. Thus, in any case, Lemma [10](#page-10-2) (b) implies that $S \cap (R_{\ell_k}^r \cup B_{\ell_k}) = \emptyset$ or $S \cap (B_{\ell_{k+1}-1} \cup R_{\ell_{k+1}}^{\ell}) = \emptyset$ for $i < k < j$. This means that there is some $p \in \{i+1,\ldots,j\}$ such that $S \cap (B_p \cup R_{p+1} \cup B_{p+1}) = \emptyset$, which is a contradiction by Lemmas 2 and 3 .

Theorem 1. *If* ^G *is a unit interval graph with exactly two simplicial vertices, then* $h_3^*(G) = f'(G) + \sum$ $1\leq i \leq t$ $f(C_i)$ *. Besides, the* P_3^* -hull number of a unit interval *graph* G *can be found in linear time.*

Proof. Consequence of Lemmas [8,](#page-10-0) [9,](#page-10-1) [10,](#page-10-2) and [11.](#page-11-0) Besides, a canonical ordering of a unit interval graph can be found in linear time [\[8](#page-13-10)[,16](#page-14-3)], and thus, its simplicial vertices as well. Since the components of a unit interval graph can be determined in linear time [\[9](#page-13-4)], the result follows due to Lemma [1.](#page-2-1) \Box

3 Chordal Graphs

We conclude by pointing out the succeeding NP-completeness for the superclass of chordal graphs.

Theorem 2. *Given a chordal graph* ^G *and an integer* ^k*, it is NP-complete to decide whether* $h_3^*(G) \leq k$ *.*

The main idea behind the NP-completeness proof (omitted here due to lack of space) is a polynomial reduction from a restricted version of Satisfiability which is NP-complete $[10,12]$ $[10,12]$ $[10,12]$. Let C be an instance of SATISFIABILITY consisting of m clauses C_1, \ldots, C_m over n boolean variables x_1, \ldots, x_n such that every clause in $\mathcal C$ contains at most three literals and, for every variable x_i , there are exactly two clauses in \mathcal{C} , say $C_{j_i^1}$ and $C_{j_i^2}$, that contain the literal x_i , and exactly one clause in C, say $C_{j_i^3}$, that contains the literal \bar{x}_i , and these three clauses are distinct.

Let the graph G be constructed as follows starting with the empty graph. For every $j \in [m]$, add a vertex c_j . For every $i \in [n]$, add 10 vertices $x_i, y_i, z_i, x_i^1, x_i^2, w_i^1, w_i^2, \bar{x}_i, \bar{y}_i, \bar{w}_i$ and 17 edges to obtain the subgraph indicated in Fig. [6.](#page-13-12) Add a vertex z and the edges to make a clique of $C \cup Z \cup \{z\}$, where $C = \{c_i | j \in [m]\}\$ and $Z = \{z_i | i \in [n]\}\$. Setting $k = 4n + 1$, we show in the full version of the paper that C is satisfiable if and only if G contains a P_3^* -hull set of order at most k.

Fig. 6. When the construction of *G* ends, z_i will belong to the clique $C \cup \{z_1, \ldots, z_n\} \cup$ {*z*}.

References

- 1. Albenque, M., Knauer, K.: Convexity in partial cubes: the hull number. Discret. Math. **339**(2), 866–876 (2016)
- 2. Araujo, J., Campos, V., Giroire, F., Nisse, N., Sampaio, L., Soares, R.: On the hull number of some graph classes. Theoret. Comput. Sci. **475**, 1–12 (2013)
- 3. Araujo, J., Morel, G., Sampaio, L., Soares, R., Weber, V.: Hull number: P_5 -free graphs and reduction rules. Discret. Appl. Math. **210**, 171–175 (2016)
- 4. Araújo, R.T., Sampaio, R.M., dos Santos, V.F., Szwarcfiter, J.L.: The convexity of induced paths of order three and applications: Complexity aspects. Discret. Appl. Math. **237**, 33–42 (2018)
- 5. Bessy, S., Dourado, M.C., Penso, L.D., Rautenbach, D.: The geodetic hull number is hard for chordal graphs. SIAM J. Discret. Math. **32**(1), 543–547 (2018) and LAGOS'17 - ENDM 62 (2017) 291–296
- 6. Centeno, C.C., Dourado, M.C., Penso, L.D., Rautenbach, D., Szwarcfiter, J.L.: Irreversible conversion of graphs. Theoret. Comput. Sci. **412**, 3693–3700 (2011)
- 7. Coelho, E.M.M., Dourado, M.C., Sampaio, R.M.: Inapproximability results for graph convexity parameters. Theoret. Comput. Sci. **600**, 49–58 (2015)
- 8. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput. **25**(2), 390–403 (1996)
- 9. Dourado, M.C., Gimbel, J.G., Kratochv´ıl, J., Protti, F., Szwarcfiter, J.L.: On the computation of the hull number of a graph. Discret. Math. **309**, 5668–5674 (2009)
- 10. Dourado, M.C., Penso, L.D., Rautenbach, D.: On the geodetic hull number of *Pk*-free graphs. Theoret. Comput. Sci. **640**, 52–60 (2016)
- 11. Dourado, M.C., Protti, F., Szwarcfiter, J.L.: Complexity results related to monophonic convexity. Discret. Appl. Math. **158**, 1268–1274 (2010)
- 12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman & Co., New York (1979)
- 13. Gavruskin, A., Khoussainov, B., Kokho, M., Liu, J.: Dynamising interval scheduling: the monotonic case. Theoret. Comput. Sci. **562**, 227–242 (2015)
- 14. McConnell, R.M., Nussbaum, Y.: Linear-time recognition of probe interval graphs. SIAM J. Discret. Math. **29**(4), 2006–2046 (2015)
- 15. Penso, L.D., Protti, F., Rautenbach, D., dos Santos Souza, U.: Complexity analysis of *P*3-convexity problems on bounded-degree and planar graphs. Theoret. Comput. Sci. **607**, 83–95 (2015) and its Corrigendum in Theor. Comput. Sci. 704 (2017) 92– 93
- 16. Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory. Academic Press, Cambridge (1969)