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Abstract. As the modern integrated circuit continues to grow in com-
plexity, the design of very large-scale integrated (VLSI) circuits involves
massive teams employing state-of-the-art computer-aided design (CAD)
tools. An old, yet significant CAD problem for VLSI circuits is physical
design automation. In this problem, one needs to compute the best phys-
ical layout of millions to billions of circuit components on a tiny silicon
surface. The process of mapping an electronic design to a chip involves
several physical design stages, one of which is clustering. Even for combi-
natorial circuits, there exists several models for the clustering problem. In
particular, our primary consideration is the problem of disjoint clustering
in combinatorial circuits for delay minimization (CN). The problem of
clustering with replication for delay minimization has been well-studied
and known to be solvable in polynomial time. However, replication can
become expensive when it is unbounded. Consequently, CN is a problem
worth investigating. We establish the computational complexities of sev-
eral variants of CN. We also present a 2-approximation algorithm for an
NP-hard variant of CN.

1 Introduction

In this paper, we focus on the problem of disjoint clustering in combinatorial
circuits for delay minimization (CN). Generally, it is not possible to place every
circuit element in one chip because of various requirements and constraints. As
a result, the circuit is partitioned into clusters, where each cluster represents
a chip in the overall circuit design. While satisfying specific design constraints
(e.g., cluster capacity), the circuit elements are assigned to clusters [11].

Gates and their interconnections usually have delays. The delays of the inter-
connections are determined by the way the circuit is clustered. Intra-cluster
delays, d, are associated with the interconnections between gates in the same
cluster. Inter-cluster delays, D, are associated with the interconnections between
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gates in different clusters. The delay along a path from an input to an output is
the sum of the delays of the gates and interconnections on the path. The delay of
the overall circuit, induced by a clustering, is the longest delay among all paths
connecting an input to an output.

The problem of clustering combinatorial circuits for delay minimization when
logic replication is allowed (CA) is well-studied [6,11] and frequently arises in
VLSI design. In CA, the goal is to find a clustering of a circuit that minimizes
the delay of the overall circuit. CA is known to be solvable in polynomial time
[6,11]. With replication, circuit elements may be assigned to more than one
cluster. Therefore, unbounded replication can be quite expensive. As systems
grow in complexity, disjoint clustering (i.e., clustering without logic replication)
becomes more necessary. It follows that there is a pressing need to study CN in
VLSI design. In this paper, we consider several variants of CN and discuss their
computational complexities. A more detailed discussion of related work can be
found in the extended version of this paper.

The rest of this paper is organized as follows: The problems that we study are
formally described in Sect. 2. In Sect. 3, we give some computational complexity
results. In Sect. 4, we propose an approximation algorithm for an NP-hard
variant of CN. We conclude the paper with Sect. 5, by summarizing our main
results and identifying avenues for future work.

2 Statement of Problems

In this section, we define the main graph-theoretic concepts that are used in this
paper.

Graphs considered in this paper do not contain loops or parallel edges. The
degree of a vertex v of an undirected graph G is the number of edges of G that
are incident with v. The maximum degree of G is denoted by Δ(G) or simply Δ
when G is known from the context.

A directed path (or, just a path) of a directed graph G is a sequence Q =
v0e1v1 . . . elvl, where v0, v1, . . . , vl are vertices of G, e1, . . . , el are edges (also
called arcs) of G, and ej = (vj−1, vj), 1 ≤ j ≤ l. We call l the length of the path
Q, and sometimes we say that Q is an l-path of G. If v0 = vl, then Q is called
a directed cycle (or, just cycle). G is said to be a directed acyclic graph (DAG),
if it contains no directed cycles. For further terminology on graphs and directed
graphs, one may consult [1,13].

A cluster is an arbitrary subset of the vertices of a DAG, and it does not
have to be strongly connected. If C is a cluster in a DAG G, then an edge is
said to be a cut-edge if it connects a vertex of C to a vertex from V (G)\C. The
degree of C is the number of cut-edges incident with a vertex in C.
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The indegree and outdegree of a vertex are the number of arcs that enter and
leave the vertex, respectively. A source (sink, resp.) is a vertex with indegree
zero (outdegree zero, resp.). It is well-known that every DAG has a source and
a sink [1].

2.1 Formulation of CN Using Combinatorial Circuits

A combinatorial circuit can be represented as a DAG G = (V,E). In G, each
vertex v ∈ V represents a gate, and each edge (u, v) ∈ E represents an inter-
connection between gates u and v. In general, each gate in a circuit has an
associated delay [9]. In the model that we consider in this paper, each intercon-
nection has one of the following types of delays: (1) an intra-cluster delay, d,
when there is an interconnection between two gates in the same cluster, or (2)
an inter-cluster delay, D, when there is an interconnection between two gates in
different clusters.

The delay along a path from an input to an output is the sum of the delays
of the gates and interconnections that lie on the path. The delay of the overall
circuit is the maximum delay among all source to sink paths in the circuit.

A clustering partitions the circuit into disjoint subsets. A clustering algo-
rithm tries to achieve one or both of the following goals, subject to one or more
constraints:

(1) The delay minimization through the circuit [3,6,9,11].
(2) The minimization of the total number of cut-edges [2,4,7,8,12].

In this paper, we study CN under the delay model described as follows:

1. Associated with every gate v of the circuit, there is a delay δ(v) and a size
w(v).

2. The delay of an interconnection between two gates within a single cluster is
d.

3. The delay of an interconnection between two gates in different clusters is D,
where D � d.

The size of a cluster is the sum of the sizes of the gates in the cluster. The
precise formulation of CN is as follows:

Given a combinatorial circuit, with each gate having a size and a delay, max-
imum degree Δ, intra- and inter-cluster delays d and D, respectively, and a
positive integer M called cluster capacity, the goal is to partition the circuit into
clusters such that

1. The size of each cluster is bounded by M ,
2. The delay of the circuit is minimized.

2.2 Graph-Theoretic Formulation of CN

In the rest of the paper, we focus on a graph-theoretic formulation of CN.
Given a clustering of a combinatorial circuit represented as a DAG G = (V,E),
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the delays on the interconnections between gates induce an edge-delay function
δ : E → {d,D} of G. The weight of a cluster is the sum of the weights of the
vertices in the cluster. The delay-length of a directed path P = v0e1v1 . . . elvl of
G is

∑l
i=0 δ(vi) +

∑l
i=1 δ(ei), where δ(ei) is equal to d if vi−1 and vi are inside

the same cluster, or D, otherwise.
CN〈X,M,Δ〉 is formulated (graph-theoretically) as follows: Given a DAG

G = (V,E), with vertex-weight function w : V → N, delay function δ : V → N,
maximum degree Δ, constants d and D, and a cluster capacity M , the goal is to
partition V into clusters such that

1. The weight of each cluster is bounded by M ,
2. The maximum delay-length of any path from a source to a sink of G is mini-

mized.

The symbol X in our 3-tuple notation may represent some weighted set W
of vertices or some unweighted set N of vertices. For some sets, W = [n], where
[n] = {1, 2, 3, . . . , n} with n ∈ N. The symbol M is the cluster capacity.

A clustering of G, such that the weight of each cluster is bounded by M , is
called feasible. Given a feasible clustering of G, one can consider the correspond-
ing edge-length function δ : E → {d,D} of G. A clustering of G is optimal if
the maximum delay-length of any path from a source to a sink is the minimum
among all clusterings.

The main contributions of this paper are as follows:

1. Establishing the computational complexities of several variants of
CN〈X,M,Δ〉 (Sect. 3).

2. Design and analysis of a 2-approximation algorithm for an NP-hard variant
of CN〈X,M,Δ〉 (Sect. 4).

3 Computational Complexities of Clustering Variants

In this section, we establish the computational complexities of several variants
of CN.

In [5], CN is considered under area constraints and pin constraints, separately.
The decision version of the area-constrained problem is formulated by them as
follows: Given a directed acyclic graph G = (V,E) representing a combinatorial
circuit, a delay δ(v) and area α(v) for each v ∈ V , an inter-cluster delay constant
D ≥ 0, a cluster area bound M , and a maximum delay bound B, determine
whether there exists a clustering with no replication so that in each cluster
C,

∑
v∈C α(v) ≤ M , and for any path P = (p1, p2, . . . , pn) from a primary

input to a primary output,
∑n

i=1 δ(pi) + k · D ≤ B, where k = |{(pi, pi+1) :
(pi, pi+1 ∈ P )∧(pi, pi+1 appear in different clusters)}|. Note that primary inputs
and primary outputs represent sources and sinks of the DAG, respectively. The
decision version of the pin-constrained problem has an analogous formulation.
However, the area of each cluster C is not restricted, while the total number of
I/O pins of each cluster must not exceed a given constant Q.
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Fig. 1. Gadgets used to represent variables and
clauses.

We observe that the deci-
sion version of CN〈W,M,Δ〉
belongs to NP. This follows
from the observation that if we
have an edge-weighted DAG,
then we can compute a path
of maximum edge-weight in
polynomial time. Below, we
will consider several restrictions
of CN〈W,M,Δ〉, which also
belong to NP.

Our first result establishes NP-hardness and inapproximability of
CN〈[4], 5,Δ〉.
Theorem 1. CN〈[4], 5,Δ〉 is NP-hard.

Proof. We recall CN〈[4], 5,Δ〉 as follows: Given a DAG G = (V,E), with vertex-
weight function w : V → {1, 2, 3, 4}, δ(v) = 0 ∀v ∈ V , maximum degree Δ,
constants d and D, and cluster capacity M = 5, the goal is to partition V into
clusters such that the weight of each cluster is bounded by M , and the maximum
delay-length of any path from a source to a sink of G is minimized.

To show that CN〈[4], 5,Δ〉 is NP-hard, we reduce from 3SAT (cf. Theorem
2.1 in [5]). For that purpose, we recall 3SAT as follows: Given a 3-CNF formula
φ with n variables x1, . . . , xn and m clauses C1, . . . , Cm, the goal is to check
whether φ has a satisfying assignment.

Let each variable xi (1 ≤ i ≤ n) be represented by a variable gadget as
shown in Fig. 1(a). Let each clause Cj (1 ≤ j ≤ m) be represented by a clause
gadget as shown in Fig. 1(b). If a variable xi or its complement x̄i is the pth
literal of a clause Cj , where p ∈ {1, 2, 3}, then we add edges (xi, zjp) or (x̄i, zjp),
respectively. The resulting DAG G represents a combinatorial circuit. Let U
denote the set of all vertices labeled xi or x̄i (1 ≤ i ≤ n). There are n sources
labeled Ti (1 ≤ i ≤ n) and m sinks labeled Cj (1 ≤ j ≤ m). They are connected
through some vertices in U and 3 ·m vertices labeled zjp (1 ≤ j ≤ m, 1 ≤ p ≤ 3).
Each zjp is connected to exactly one variable gadget. For every j, no two vertices
in the set {zj1, zj2, zj3} are adjacent to both xi and x̄i of the same variable
gadget. In other words, xi and x̄i cannot both be connected to the same clause
gadget. Every Ti and Cj has a weight of 1, every xi, x̄i ∈ U has a weight of 4,
and every zjp has a weight of 2. Let d = 0 and let D be any positive integer.
All vertices are given a delay of 0. The cluster capacity M is set to 5, and set
k = 2 ·D. It is shown that an instance I of 3SAT is a “yes” instance if and only
if an instance I ′ of CN〈[4], 5,Δ〉 is a “yes” instance.

Theorem 2. CN〈N, 2, 3〉 is NP-hard.

Proof. We recall CN〈N, 2, 3〉 as follows: Given a DAG G = (V,E), with w(v) =
1 ∀v ∈ V , δ(v) = 0 ∀v ∈ V , maximum degree Δ = 3, constants d and D,
cluster capacity M = 2, and a positive integer k, the goal is to partition V into



206 Z. Donovan et al.

Fig. 2. Gadgets used to represent variables and clauses.

clusters such that the weight of each cluster is bounded by M , and the maximum
delay-length of any path from a source to a sink of G is minimized.

In order to establish NP-hardness of CN〈N, 2, 3〉, we present a reduction
from 3SAT≤3,≤2. For that purpose, we recall 3SAT≤3,≤2 as follows: Given a 3-
CNF formula φ with n variables u1, . . . , un and m clauses C1, . . . , Cm, such that
each variable occurs at most three times and each literal occurs at most twice, the
goal is to check whether φ has a satisfying assignment. Note that the requirement
that each clause has exactly three literals is relaxed in this restriction of 3SAT.
Any variable, say ui, with q occurrences (for some q > 3) can be replaced with q
new variables w1, . . . , wq. The clauses (w̄1 ∨w2)∧ (w̄2 ∨w3)∧ (w̄q ∨w1) can then
be added to φ to ensure that the q new variables retain the truth assignment of
the original variable ui [10].

Given an instance I of 3SAT≤3,≤2, we construct an instance I ′ of CN〈N, 2, 3〉.
Let each variable ui (1 ≤ i ≤ n) be represented by a variable gadget as shown in
Fig. 2(a), where the dashed arrows indicate possible successors. Note that since
each variable ui occurs at most three times, then the size of the neighborhood
of {ui, ūi} is at most three. Let each clause Cj (1 ≤ j ≤ m) be represented by a
clause gadget as shown in Fig. 2(b). A set of edges also connects clause gadgets
to variable gadgets. For example, if the p-th literal of clause Cj is the α-th
occurrence of some literal ua, where p ∈ {1, 2, 3}, α ∈ {1, 2} and a ∈ {1, . . . , n},
then we add edge (xjp, u

′
aα). Every vertex has a weight of 1. We set d = 0 and

let D be any positive integer. All vertices are given a delay of 0. The cluster
capacity M is set to 2, and we set k = 3 · D. The description of I ′ is complete.

Observe that I ′ can be constructed from I in polynomial time. To complete
the proof of the theorem, we show that I is a “yes” instance of 3SAT≤3,≤2 if
and only if I ′ is a “yes” instance of CN〈N, 2, 3〉.

Suppose that I is a “yes” instance of 3SAT≤3,≤2. This means that there
exists an assignment of φ such that every clause has at least one true literal. If
literal ui (or ūi) is set to true, then we cluster the vertices as follows:
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1. ti is clustered with vi and fi is clustered with v̄i (or ti is clustered with v̄i

and fi is clustered with vi).
2. For each r ∈ {1, 2}, ūir is clustered with ū′

ir (or uir is clustered with u′
ir).

3. If the r-th occurrence of literal ui (or ūi) is the p-th literal of clause Cj , then
u′

ir (or ū′
ir) is clustered with clause gadget vertex xjp, where p ∈ {1, 2, 3}.

4. For any p-th literal of clause Cj that is set to true, then xjp is clustered with
its successor.

5. The successors of the variable gadget vertex fi, say Vfi
, are clustered in such

a way that the edges of the underlying undirected graph of G[Vfi
] form a

perfect matching.
6. The clause gadget vertex cj5 and its predecessors, say Vcj5 , are clustered in

such a way that the edges of the underlying undirected graph of G[Vcj5 ∪ cj5]
form a perfect matching.

7. All other vertices are clustered alone.

Observe that the cluster capacity constraint is satisfied, and the maximum
delay-length of any path from a source to a sink is 3 · D. This means that I ′ is
a “yes” instance of CN〈N, 2, 3〉.

Conversely, suppose that I ′ is a “yes” instance of CN〈N, 2, 3〉. This means
that there is a way of partitioning the vertices of G into clusters of capacity
M = 2, such that the delay-length of any path from a source to a sink is at
most 3 · D. Observe that under any partitioning, the delay-length of any path
from a source to a sink is at least 3 · D. In any partitioning with delay-length
equal to 3 · D, we have that either ti is clustered with vi or ti is clustered with
v̄i, for every i ∈ {1, . . . , n}. Furthermore, in any partitioning with delay-length
equal to 3 ·D, there is at least one xjp that must be clustered with its successor.
If ti is clustered with vi, then for each r ∈ {1, 2}, ūir must be clustered with
ū′

ir. Set literal ui to true and consider each u′
ir free. Otherwise, if ti is clustered

with v̄i, then for each r ∈ {1, 2}, uir must be clustered with u′
ir. Set literal v̄i to

true and consider each ū′
ir free. At least one xjp is clustered with its successor,

namely some free vertex. This means that at least one true literal appears in
every clause. Thus, a satisfying clustering for G yields a satisfying assignment
for φ. Hence, I is a “yes” instance of 3SAT≤3,≤2.

In order to present our next results, we will need some definitions. We say
that two edges of G are independent if they are not incident with the same
vertex. A matching of G is a set of pairwise independent edges of G. A matching
is maximal if it is not a subset of a larger matching.

Proposition 1. For any instance of CN〈N, 2,Δ〉 there exists an optimal clus-
tering, such that the edges of G with delay d form a maximal matching of G.

Proof. Consider an optimal clustering of G. Since M = 2, we have that any two
edge with delay d are independent. Thus, they form a matching I. Now, if I
is not maximal, then there is an edge e, such that I ∪ {e} is a matching. Put
the end-vertices of e to the same cluster. Observe that the resulting clustering is
feasible, moreover, its delay does not exceed the delay of the original clustering.
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Thus, the resulting clustering is again optimal. By continuing this process, we
will end-up with a clustering such that the edges of delay d form a maximal
matching. The proof is complete.

Our next proposition states that the clustering problem remains difficult even
if we assume that the input DAG G contains a path which contains sufficiently
many edges.

Proposition 2. For each fixed integer t, CN〈N, 2, 3〉 remains NP-hard even
if we assume that G contains a path with at least t edges.

Proof. We present a reduction from CN〈N, 2, 3〉 to its restriction stated in the
statement. Assume that the input DAG G of maximum degree 3 is given. Con-
sider a component which is a directed 4-cycle, whose edges are directed from the
left to right. Let c1 be the source in it. Assume that c1 is adjacent to c2 and c3,
which are neither source nor a sink. Finally, let them be adjacent to the sink c4
(Fig. 3).

G
G′

s w s c1

c2

c3

c4 w

Fig. 3. The reduction with the directed 4-cycle.

Now, let the input DAG G be given which is of maximum degree three.
Consider all edges of G which are incident to a source, and replace them with
a 4-cycle (one 4-cycle per every edge), that is, if sw is an edge of G, then we
replace it with a new 4-cycle, and connect s to c1 and c4 to w (Fig. 3). Let G′

be the resulting DAG. Observe that this procedure increases the length of any
longest path by three. Thus, applying it sufficiently many times, we can get a
DAG with desired lower bound for the length of the longest path. Moreover,
observe that this process does not increase the maximum degree of the vertex,
that is, the resulting graph is still of maximum degree three.

Let OPT (H) denote the optimal delay in a DAG H. We claim that

OPT (G′) = OPT (G) + (d + 2 · D).

Consider an optimal clustering in G. Let e = sw be an edge of G. If it is a d-edge
in G, then declare the edges sc1 and c4w of G′ as a d-edge. The rest of the edges
of G′ in the part corresponding to e are declared as D-edges. On the other hand,
if e is a D-edge, then declare the edges c1c2 and c3c4 as d-edges, and the rest of
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edges corresponding to e as D-edges. Now consider a critical path P . If it starts
with a d-edge on P , then its delay d is replaced with 2 · (d + D) in G′. Thus the
increase of the delay is d + 2 · D. If it started with a D-edge, then its delay D
becomes d+3 ·D in G′. Thus, the increase in the delay is again d+2 ·D. Hence,
we have the same increase in the delay. Clearly, this implies that

OPT (G′) ≤ OPT (G) + (d + 2 · D).

To prove the converse inequality, let us show that we can always find an
optimal clustering such that sc1 and c4w are d-edges or D-edges at the same
time. If sc1 and c4w are d-edges then we are done. Thus, we can assume that
one of them is a D-edge. Then we show that we can assume that the other
one is also a D-edge. First, assume that sc1 is a d-edge and c4w is a D-edge.
Since we can always assume that the optimal clustering is a maximal matching
(Proposition 1), we have that one of the edges of the 4-cycle incident to c4 is a
d-edge f . Now, if we consider a new clustering of G′ by replacing the edge sc1
with the edge opposite to f (the unique edge of the 4-cycle that is not adjacent
to f) in the 4-cycle as a d-edge. Clearly, the resulting clustering has the same
delay as the original one. However, sc1 now is a D-edge. Similarly, assume that
c4w is a d-edge and sc1 is D-edge. Since we can always assume that the optimal
clustering is a maximal matching (Proposition 1), we have that one of the edges
of the 4-cycle incident to c1 is a d-edge f . Now, if we consider a new clustering
of G′ by replacing the edge c4w with the edge opposite to f in the 4-cycle as a
d-edge. Clearly, the resulting clustering has the same delay as the original one.
However, c4w now is a D-edge. Thus, we can always find an optimal clustering
such that sc1 and c4w are d-edges or D-edges at the same time.

The proved property allows us to get a clustering in G simply by looking
at sc1 and c4w. If they are d-edges at the same time, we declare sw as a d-
edge in G. On the other hand, if they are D-edges, then we declare sw as a
D-edge in G. Observe that the resulting clustering of G will have delay at most
OPT (G′) − (d + 2 · D). Thus,

OPT (G) ≤ OPT (G′) − (d + 2 · D)

or
OPT (G′) ≥ OPT (G) + (d + 2 · D).

This completes the proof of the equality. The proved equality implies that opti-
mizing the delay in G′ is the same that optimizing in G. Thus the above process
is a reduction.

Let us say that a graph is cubic if any vertex is of degree 3. We are ready to
obtain the final result of this section.

Theorem 3. For each fixed integer t, CN〈N, 2, 3〉 remains NP-hard even if we
assume that G is a cubic graph that contains a path with at least t edges.
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Proof. We get a reduction from the restriction of CN〈N, 2, 3〉 where we assume
that G contains a path with at least 6 edges. Since M = 2, we have that
OPT (G) ≥ 3 · D. As Δ = 3, we have that the vertices of G are of degree 0,
1, 2 or 3. Now, we will show how to get rid of the vertices which have degree
less than three. First, if we have a vertex of degree 0, we can remove it from
G. In order to overcome the vertices of degree 1 and 2, we will make use of the
following orientation of the complete graph K4 on 4 vertices by removing an
edge e = uv. Let the other two vertices of K4 be u′ and v′. Direct the edges
starting from u′ towards u and v. Direct the edges starting from v′ towards u
and v. Finally, direct the edge u′v′ from v′ to u′ (Fig. 4).

v v′

u u′

Fig. 4. The orientation of the edges of K4 − e.

Now, assume that our input DAG G contains a vertex w of degree one.
Assume that w is a source. Take a copy of the above orientation of K4 minus an
edge, and join w to u and v with directed edges, so that w is a source, and u and
v are sinks in resulting DAG G′. Observe that in the added part the maximum
delay will be at most 2 · D, which is less than OPT (G). Since w is a source, the
added part will play no role. Similarly, one can overcome the case when w is a
sink. One just needs to reverse the orientations of edges in the copy of K4 minus
an edge.

Next let us assume that we have a vertex w of degree two. First, let us assume
that w is a source. We add a new vertex w′ and join w to w′ with a directed
edge. Observe that w is of degree 3 and w′ is of degree one. Thus we can apply
the trick from the previous paragraph. Similarly, if w is a sink, we will join w′ to
the vertex w with a directed edge and again apply the trick from the previous
paragraph.

Thus, we are left with the case when w-the degree two vertex, is neither a
source nor a sink. Let x and z be the neighbors of w such that xw and wz are
directed edges. We consider two cases. If z is a sink in G, then we add a new
vertex w′ of degree 1 and join it to w with a directed edge w′w. Observe that
in the optimal clustering w′ will not be on a path of optimal delay as it reaches
only z and the delay of this path is at most 2 · D. On the other hand, if we
assume that G contains a path of length at least six, the optimal delay will be at
least 3 · D. Finally, if we assume that z is not a sink, then we add a new vertex
w′ and join w to w′ with a directed edge ww′. Since z is not a sink and M = 2,
in any clustering z will be incident to at least one D-edge. Hence, there will be
a path of optimal delay in G′ that will not terminate at w′. Thus, the addition
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of w′ will not play a role. Since w′ is a degree one vertex, we can overcome it
via the trick mentioned above. Thus, without loss of generality, we can assume
that the input graph in CN〈N, 2, 3〉 is a cubic graph.

4 A 2-approximation Algorithm

We now provide an integer program (IP) for CN〈W,M,Δ〉.

4.1 An IP for CN〈W, M, Δ〉
Let wj be the weight of vertex j. Define xij to be an integer variable that is set
to 1 if vertices i and j are in the same cluster, and 0 otherwise. We present the
following IP:

Packing constraints
xii = 1, ∀i ∈ V (1)

n∑

j=1

wj · xij ≤ M, ∀i ∈ V (2)

Consistency constraints
xij = xji, ∀i, j ∈ V (3)

xik ≥ xij + xjk − 1, ∀i, j, k ∈ V (4)

Condition (1) ensures that every vertex is clustered. Condition (2) ensures
that every cluster has weight at most M . Condition (3) ensures that either i and
j are in the same cluster or they are in different clusters. Likewise, condition (4)
ensures that if i and j are in one cluster, and j and k are in one cluster, then i
and k must be in the same cluster and all clusters are disjoint.

We now come to the objective function. For any vertex j, let δj be the delay
at j in a clustering. This delay is completely dependent upon its predecessors.
We can write

δj = max
i:(i,j)∈E

{δi + d · xij + D · (1 − xij)}. (5)

Hence the function to be minimized is δt, where t is the sink of the circuit.
Note that condition (5) can be easily linearized.

The correctness of reduction will be shown in the journal version of this
paper.

4.2 An LP-rounding Algorithm for CN〈N, 2, Δ〉
In this section, we present an LP-rounding algorithm for CN〈N, 2,Δ〉.

Let LPCN〈N,2,Δ〉 be the linear programming relaxation obtained from
IPCN〈W,M,Δ〉 when vertices are unweighted and M = 2 (i.e., the problem
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restricted to CN〈N, 2,Δ〉), by replacing its 0-1 integrality constraints for xij

with xij ∈ [0, 1].

Algorithm 1. An LP rounding algorithm for CN〈N, 2,Δ〉
input : A DAG G = (V,E), where |V | = n and |E| = m.
output: A clustering Γ of G.

1 Solve LPCN〈N,2,Δ〉. Let each x̂ij denote the delay on the edge connecting
vertices i and j and let δ̂j denote the delay at vertex j.

2 Let G′ = G.
3 while G′ = ∅ do
4 Consider a source s of G′ such that the delay-length of the path from

s to the sink t is maximum.
5 Let vertex v ∈ N+(s) be such that δ̂v = minj∈N+(s){δ̂j}.
6 We round some x̂ij to 0-1 values x̄ij as follows: set x̄sv = 1, set

x̄sj = 0 ∀j ∈ N+(s) \ v, and set x̄vj = 0 ∀j ∈ (N−(v) ∪ N+(v)) \ s.
7 Let G′ = G′[V \ {s, v}]
8 Cluster together all vertices i and j such that x̄ij = 1, where i = j. Put

the remaining vertices into singleton clusters.
9 return Γ .

Theorem 4. Algorithm1 is a 2-approximation algorithm.

Proof. Let Q be a path of G from a source to the sink t with maximum delay-
length. Let OPT be the delay of an optimal clustering of G. This means that
OPT is the sum of the fractional intra- and inter-cluster delays of the edges
along Q. Let ALG be the delay of the clustering of G returned by Algorithm1.
Since the algorithm returns a solution with an integral delay, notice that for each
intra-cluster edge (i, j) ∈ Q, the delay is increased by d · (1 − x̂ij). Moreover, for
each inter-cluster edge (i, j) ∈ Q, the delay is decreased by D · (1 − x̂ij). Hence,

ALG

OPT
≤

∑
(i,j)∈Q d · x̂ij + D · (1 − x̂ij) +

∑
(i,j)∈Q d · (1 − x̂ij) − D · (1 − x̂ij)

∑
(i,j)∈Q d · x̂ij + D · (1 − x̂ij)

= 1 +

∑
(i,j)∈Q d · (1 − x̂ij) − D · (1 − x̂ij)
∑

(i,j)∈Q d · x̂ij + D · (1 − x̂ij)

≤ 1 +

∑
(i,j)∈Q d · (1 − x̂ij)

∑
(i,j)∈Q d · x̂ij + D · (1 − x̂ij)

≤ 1 +

∑
(i,j)∈Q D · (1 − x̂ij)

∑
(i,j)∈Q d · x̂ij + D · (1 − x̂ij)

= 2 −
∑

(i,j)∈Q d · x̂ij
∑

(i,j)∈Q d · x̂ij + D · (1 − x̂ij)
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5 Conclusion

In this paper, we studied the problem of disjoint clustering in combinatorial cir-
cuits for delay minimization (CN). We obtained the computational complexities
of several variants of CN. We also proposed an approximation algorithm for a
variant of CN and analyzed it.

We are interested in the following open problems:

1. Finding inapproximability bounds for variants of CN〈X,M,Δ〉 using other
assumptions.

2. Finding approximation, parameterized and exact exponential algorithms for
other variants of CN〈X,M,Δ〉.
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