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Abstract. Cops and robber game on a directed graph
−→
D initiates by

Player 1 placing k cops and then Player 2 placing one robber on the

vertices of
−→
D . After that, starting with Player 1, alternately the players

may move each of their tokens to the adjacent vertices. Player 1 wins if,
after a finite number of moves, a cop and the robber end up on the same
vertex and Player 2 wins otherwise. However, depending on the type of
moves the players make, there are three different models, namely, the
normal cop model : both cops and robber move along the direction of the
arcs; the strong cop model : cops can move along or against the direction
of the arcs while the robber moves along them; and the weak cop model :
the robber can move along or against the direction of the arcs while
the cops move along them. A graph is cop-win if Player 1 playing with
a single cop has a winning strategy. In this article, we study the three
models on some families of oriented graphs and characterize the cop-win
directed graphs for the third model.

1 Introduction

Cops and Robber is a popular two-player game introduced by Nowakowski and
Winkler [22] in 1983 having applications in artificial intelligence, graph search,
game development etc. [3,15,16] as well as significant implications in theory [23].
The game is extensively studied since its introduction giving rise to deep theory
(see [4] for details) and its numerous variations contributed to its extent.

Recently, Nicolas Nisse1 [8] introduced one of the variants (the strong cop
model) in directed graphs (digraphs) and asked to characterize the “cop-win”
graphs in two variants (the normal cop model and the strong cop model). In a
seminar (summer 2018) at Simon Fraser University, another natural variant was
discussed where the first author was present. In this article, we study all three
variants, starting by presenting their precise definitions.
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Setup and initiation: We start with an oriented2 graph
−→
G and Player 1 places

k cops on its vertices (multiple cops can be on the same vertex). After that
Player 2 places the robber on one vertex of the graph.

Play: After the setup, Player 1 and 2 take turns to move their cops and robber,
respectively, with Player 1 taking the first turn.

Winning: Player 1 wins if after finitely many turns the robber and a cop are on
the same vertex. In this case, we say that the cop captures the robber. Player 2
wins if Player 1 does not win in finite number of moves.

Normal Move: Suppose uv is an arc. In a normal move, the cop/robber can move
only from u to v.

Strong Move: Suppose uv is an arc. In a strong move, the cop/robber can move
from u to v as well as from v to u.

Normal Cop Model: In their respective turns, Player 1 and Player 2 can perform
at most one normal move on each of its cops, and the robber respectively.

Strong Cop Model: In their respective turns, Player 1 can perform at most one
strong move on each of its cops, whereas Player 2 can perform at most one
normal move on the robber.

Weak Cop Model: In their respective turns, Player 1 can perform at most one
normal move on each of its cops, whereas Player 2 can perform at most one
strong move on the robber.

Now that we have described the three models, we define a few necessary
parameters. The normal (resp., strong, weak) cop number cn(

−→
G) (resp., cs(

−→
G),

cw(
−→
G)) of an oriented graph

−→
G is the minimum number of cops needed by

Player 1 to have a winning strategy in the normal (resp., strong, weak) cop
model. Furthermore, for a family F of oriented graphs

cx(F) = max{cx(
−→
G)|−→G ∈ F}

where x ∈ {n, s, w}. Given a fixed model, an oriented graph is cop-win if Player 1
has a winning strategy playing with a single cop.

Below we give a brief survey of the literature concerning the normal cop
model, followed by a summary of our results.

Survey: Hamidoune [12] considered the game on Cayley digraphs. Frieze et al. [9],
studied the game on digraphs and gave an upper bound of O

(
n(log log n)2

log n

)
for cop

number in digraphs. Along these lines, Loh and Oh [21] constructively proved the
existence of a strongly connected planar digraph with cop number greater than
three. They also prove that every n-vertex strongly connected planar digraph
has cop number at most O(

√
n).

2 An oriented graph is a directed graph without 2-cycles i.e. each edge has a direction.
For the purposes of this article, they are the same.
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Goldstein and Reingold [10] proved that deciding if k cops can capture a
robber is EXPTIME-complete if k is not fixed and either the initial positions
are given or the graph is directed. Later Kinnersley [19] proved that determining
the cop number of a graph or digraph is EXPTIME-complete. Kinnersley [20]
also showed that n-vertex strongly connected cop-win digraphs can have capture
time Ω(n2).

Hahn and MacGillivray [11] gave an algorithmic characterization of the cop-
win finite reflexive digraphs. They also showed that any k-cop game can be
reduced to 1-cop game (resulting in an algorithmic characterization for k-cop-
win finite reflexive digraphs). However, these results do not give a structural
characterization of such graphs. Later Darlington et al. [6] tried to structurally
characterize cop-win oriented graphs and gave a conjecture which was later dis-
proved by Khatri et al. [17], who also study the game in oriented outerplanar
graphs and line digraphs.

Recently, Hosseini and Mohar [13] (also see [14]) studied whether cop number
of planar Eulerian digraphs is bounded or not, and point to evidence of the
former.

Organization and Results: In Sect. 2, we compare the parameters cn(·), cs(·),
cw(·). The normal, strong and weak cop models are studied in Sects. 3, 4 and 5,
respectively. We give an outline of our results.

1. Normal Cop Model
– Prove a Mycielski-type result by constructing oriented graphs with high

normal cop number and girth.
– Characterize oriented triangle-free and outerplanar normal cop-win

graphs.
2. Strong Cop Model

– Find strong cop number of oriented planar graphs, oriented outerplanar
graphs and oriented series-parallel graphs.

– Prove that a specific class of oriented outerplanar graphs (whose weak
dual is a collection of paths) and oriented grids are strong cop-win.

3. Weak Cop Model
– Characterize weak cop-win oriented graphs.

Now we look into some relations between the parameters cn(·), cs(·), cw(·)
and some definitions.

2 Basic Results and Preliminaries

The first result follows directly from the definitions.

Proposition 1. For any oriented graph
−→
G we have cs(

−→
G) ≤ cn(

−→
G) ≤ cw(

−→
G).

Observe that there are plenty of oriented graphs, the transitive tournament
for instance, where equality hold in each of the cases. However, it is interesting
to study the gap between these parameters. But first we will introduce some
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notations and terminologies. Let uv be an arc of an oriented graph
−→
G . We

say that u is an in-neighbor of v and v is an out-neighbor of u. Let N−(u)
and N+(u) denote the set of in-neighbors and out-neighbors of u respectively. A
vertex without any in-neighbor is a source and a vertex without any out-neighbor
is a sink.

Proposition 2. Given any m,n ∈ N, there exists an oriented graph
−→
G such

that cn(
−→
G) − cs(

−→
G) = n and cw(

−→
G) − cn(

−→
G) ≥ m.

Proof. The oriented graph
−→
G =

−→
Gm,n is composed of two oriented graphs

−→
An

and
−→
B m. The oriented graph

−→
An is an orientation of the star graph such that

its central vertex v is a sink having degree n + 1.
We know that there exist graphs with arbitrarily high cop number in undi-

rected case [1]. Let Bm be a connected undirected graph with cop number at
least m. Let

−→
B n be such an orientation of Bm that it is a directed acyclic graph

having a single source u. The graph
−→
Gm,n is obtained by merging vertices u and

v (call this vertex vmerge). Note that cs(
−→
Gm,n) = 1 as Player 1 can place one

cop on vmerge and capture the robber in one move if it is in
−→
An or capture the

robber in a finite number of moves if it is in
−→
B m.

On the other hand, cn(
−→
Gm,n) = n + 1, as Player 1 must keep a cop on each

source to win, and since
−→
B m is a directed acyclic graph, one of the cops reaches

vmerge and then captures the robber in
−→
B m. Also, cw(

−→
Gm,n) ≥ m + n + 1 as

Player 1 needs to place n+1 cops at sources in
−→
An and it needs at least as many

cops as the cop number of Bm. ��
We end this section with some general notations and terminologies. The

out-degree of v is d+(v) = |N+(v)| and its in-degree is d−(v) = |N−(v)|. Let
N+[v] = N+(v) ∪ {v} denote the closed out-neighbourhood of v.

In the rest of this article, we refer to the robber as R; and to the cop, only
in case of cop-win graphs, as C.

If a cop moves to an in-neighbour of the robber R, then we say that the cop
attacks the robber. The robber is on a safe vertex from a cop if it cannot be
captured by the cop in the next turn of Player 1. The robber evades capture if
every time the cop attacks it, R can move to a safe vertex.

3 Normal Cop Model

In the context of cops and robbers on oriented graphs, the weakly connected case
reduces to solving the strongly connected case [9]. Hence it suffices to consider
strongly connected oriented graphs. We begin by constructing strongly connected
oriented graphs with arbitrarily high normal cop number and girth (length of a
smallest cycle in the graph).

Theorem 1. Given any g ≥ 5 and c ≥ 3, there exists a strongly connected
oriented graph

−→
Gg,c with girth at least g having cn(

−→
Gg,c) ≥ c + 1.
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Proof. We borrow a construction to form regular expander graphs with high
girth [18]. For sake of completeness, we present their complete construction.
(Also see [2].) Let G be a simple graph and let L be a set. Define the graph
GL to be a L-lift of G if V (GL) = V (G) × L, and for every edge uv ∈ E(G),
the sets Fu = {(u, li)}li∈L and Fv = {(v, li)}li∈L induce a perfect matching in
GL. Here G is the base graph and GL depends on the matching between Fu

and Fv assigned to each edge uv. Observe that the lifts of k−regular graphs
are also k−regular. From Amit and Nilial [2], it follows that there are lifts of G
which are δ−connected for δ ≥ 3, where δ is the minimum degree of G. For path
u − v − · · · −w in G, GL will have a unique path (u, li1) − (v, li2) − · · · − (w, lik),
for some li1 , li2 , . . . , lik ∈ L. The path u − v − · · · − w is called as the projection
of (u, li1) − (v, li2) − · · · − (w, lik).

Now consider a graph G with a fixed ordering π of m = |E(G)| edges, and
let L = {0, 1}m, that is, the set of all possible m-tuples of 0’s and 1’s. For
u, v ∈ V (G) and li, lj ∈ L, we connect (u, li) with (v, lj) in GL if uv ∈ E(G)
and li and lj differ only at the index of edge uv in the ordering π. So (u, li) is
adjacent to (v, lj) and (u, lj) is adjacent to (v, li). Hence for edge uv ∈ E(G),
the sets Fu(= {(u, li)}li∈L) and Fv(= {(v, li)}li∈L) induce a perfect matching in
GL. Thus GL is a L−lift of G.

Now we pick a shortest cycle C0 in GL. Its projection in G is also a cycle C.
We claim that for every edge uv ∈ C there are at least two edges in C0 between
Fu and Fv. Start at point (u, li) of C0. Let the next vertex in C0 be (v, lj); so li
and lj differ only at the index of uv in π. Now to reach (u, li) we need to flip the
value at the index of uv in π. This happens only if we traverse uv once again.
So |C0| ≥ 2|C|. Hence girth of GL is at least twice the girth of G.

To construct the oriented graph with arbitrarily high cop number and girth,
do the following. Take a K2c+1 and go on applying the above-mentioned lift
construction repeatedly until the girth is at least g. The resulting graph Gg,c is
Eulerian as degree of v in G is even and is the same as the degree of (v, li) in
Gg,c. Make the Eulerian circuit a directed circuit by assigning orientations to
the edges. This results in a strongly connected oriented graph with girth at least
g. Observe that the out-degree of each vertex is c. Thus its normal cop number
is at least c + 1 as we know that a strongly connected oriented graph with girth
at least 5 have normal cop number cn(

−→
G) ≥ δ+(

−→
G) + 1, where δ+(

−→
G) is the

minimum out-degree of
−→
G [21]. ��

Darlington et al. [6] characterized cop-win oriented paths and trees in the
normal cop model. We are also going to do so for some other families of oriented
graphs.

A transitive-triangle-free oriented graph is an oriented graph with no tran-
sitive triangles. The following theorem characterizes cop-win transitive-triangle-
free oriented graphs, a superclass of triangle-free oriented graphs.

Proposition 3. A transitive-triangle-free oriented graph
−→
G is cop-win if and

only if it is a directed acyclic graph with one source.
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Proof. Observe that any directed acyclic graph with one source is cop-win and
that every cop-win oriented graph has exactly one source. So it suffices to prove
that if a transitive triangle-free oriented graph

−→
G is cop-win, then it is a directed

acyclic graph.
Suppose

−→
G has a directed cycle3

−→
C on at least 3 vertices. We will now give

a strategy for the robber R to escape. Note that the cop C must be placed at the
source initially, as otherwise Player 2 places R on the source and wins. R initially
places himself at some safe vertex of

−→
C . Such a vertex exists, as any vertex in−→

G cannot dominate two consecutive vertices in
−→
C , else a transitive triangle is

created. R moves to the next vertex in
−→
C whenever R lies in the out-neighbour of

C. Whenever C attacks R, the robber moves to the next vertex in
−→
C and evades

the attack. Since
−→
C is a directed cycle, C cannot capture R. This contradicts

that
−→
G is a cop-win graph; hence the result. ��

As bipartite graphs are triangle-free, we have the following corollary.

Corollary 1. An oriented bipartite graph is cop-win if and only if it is a directed
acyclic graph with one source.

Next, we characterize cop-win oriented outerplanar graphs.

Proposition 4. An oriented outerplanar graph
−→
G is cop-win if and only if it is

a directed acyclic graph with one source.

Proof. The ‘if’ part is obvious.
For proving the ‘only if’ part, first note that a graph cannot be cop-win if it

has no source or at least two sources. Thus suppose that there exists an oriented
outerplanar cop-win graph

−→
G containing a directed cycle

−→
C with exactly one

source v. The cop C must be initially placed on the source v.
Note that at most two vertices of

−→
C can have a path made up of vertices

from outside
−→
C connecting v in order to avoid a K4-minor. So there is at least

one safe vertex u in
−→
C such that any directed path connecting v to u must go

through some vertex of
−→
C other than u. Thus if the robber R places itself on u

and does not move until C comes on a vertex of
−→
C , it cannot be captured.

If C is on a vertex of
−→
C and starts moving towards R following the direction

of the arcs of
−→
C , then R also moves forward and evades C.

Thus C must go out of
−→
C in order to try and capture R. The moment C goes

out to some vertex w outside
−→
C , R either is on a safe vertex or it can move to a

safe vertex on
−→
C in its next move as w can be adjacent to at most two vertices

of
−→
C in order to avoid a K4-minor.
This brings us to a situation similar to the initial situation. Thus, the robber

will always evade the cop, a contradiction. ��

3 We use the term directed cycle instead of oriented cycle as it is commonly used.
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4 Strong Cop Model

The strong cop number of an oriented graph is upper bounded by cop number in
classical version of the game on the underlying undirected graph. We begin this
section by finding strong cop number of planar graphs, outerplanar graphs, and
series-parallel graphs. But first, we find a lower bound of the strong cop number
of a specific oriented graph.

Construction: Given an undirected graph G on vertex set {v1, . . . , vn}, we form
an oriented graph

−→
H from G by replacing each edge vivj in G by a directed

4-cycle viuijvjujivi. We have the following lemma relating strong cop number
of

−→
H with cop number of G. Here c(G) is the cop number of the undirected

graph G.

Lemma 1. cs(
−→
H ) ≥ c(G).

Proof. Each vertex vi ∈ V (G) corresponds to the set N+[vi] in V (
−→
H ). Note the

sets N+[vi] partition V (
−→
H ). For each v ∈ N+[vi] in

−→
H , define its image in G as

I(v) = vi. We know that cs(
−→
H ) cops have a strategy to capture the robber R in−→

H . We will show that cs(
−→
H ) cops have a winning strategy in G.

We use the winning strategy of cs(
−→
H ) cops in

−→
H to obtain a winning strategy

in G. As the game is played in G, we also (sort of) play it in
−→
H by following

R’s move in G. The move of the cops in
−→
H following the winning strategy is

translated to G using the images. This procedure is done as follows.
Initially in G, place the cops and then R is placed. In

−→
H , place the cops and

R at the vertices with same labels as in the occupied vertices in G. The cops in
G pass their first move and then R moves or passes its move. For each move of
R in G (say from vi to vj), we play two turns in

−→
H : in the first turn R moves

from vi to uij and then to vj in the second turn. In each of these two turns in−→
H , the cops move following their winning strategy. After two turns in

−→
H , the

cops in G move to the images of cops in
−→
H (this is always possible). Following

the winning strategy, when R is captured in
−→
H , R is also captured in G. ��

As a result of Lemma 1, we find the strong cop number of oriented planar
graphs and then form oriented graphs with arbitrarily high strong cop number.

Corollary 2. The strong cop number of the family of oriented planar graphs is
three.

Proof. Recall that the strong cop number of an oriented graph is upper bounded
by cop number in classical version of the game on the underlying undirected
graph. The cop number of planar graphs is three [1]. Apply the construction
used in Lemma 1 to a planar graph with cop number 3 to get an oriented planar
graph with cs ≥ 3 (the construction used in Lemma 1 maintains planarity). ��
Corollary 3. For every k ∈ N, there exists an oriented graph

−→
H such that

cs(
−→
H ) ≥ k.
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Proof. Apply the construction used in Lemma1 to a graph with cop number at
least k (whose existence is given in [1]). ��

Next, we find strong cop numbers of the family of oriented outerplanar and
series-parallel graphs.

Theorem 2. The strong cop number of the family of oriented outerplanar
graphs is two.

Proof. The cop number of outerplanar graphs in the classical game on undirected
graphs is two [5]. Hence it suffices to construct an oriented graph which is not
strong cop-win.

Consider an outerplanar graph on 47 vertices formed by joining 2 copies of
the following biconnected outerplanar graph at a vertex, say v0. Take a cycle
C1 (see Fig. 1) on v0, v1, . . . , v23 arranged in counterclockwise manner with arcs
vivi−1 and v2iv2i+2 (under modulo 24). Let the other copy C2 of the cycle be
on vertices v0 = u0, u1, . . . , u23 with arcs uiui−1 and u2iu2i+2 (under modulo
24). The arcs of the form vivi−1 are called cycle arcs and the arcs of the form
v2iv2i+2 are called chord arcs. The vertices vi and uj with even indices are called
even vertices and with odd indices are called odd vertices.

Fig. 1. The biconnected outerplanar graph C1.

If the cop C is placed at v0, then robber R enters at v4; else R starts at v4
or u4 depending on whether C starts at C2 or C1 respectively. In the latter case
(that is C is not placed at v0), R passes his moves until C is at v0 (in order to
catch R, C has to go through v0). Once C reaches v0, R passes his move once
more; reducing this case to the former case. Hence, without loss of generality,
assume that C and R start at v0 and v4 respectively.
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In the rest of this proof, we show that if C (at v0) tries to capture R (at v4),
then R reaches the initial configuration (C at v0 and R at v4) or its equivalent
configuration (C at v0 and R at u4) without being captured. Precisely, we show
that if C pursues R, then R reaches v0 two turns before C. So after two more turns
R can be at u4 or v4 depending on whether C is in C1 or C2 respectively; and
then passes its moves until C is at v0. So R evades capture indefinitely; thereby
proving that the graph constructed above is not strong cop-win.

To simplify our presentation, we use the following notations. Let variable
X = {C, R}; variables U, V denote two adjacent vertices; and symbol ∗ denote �
for clockwise or � for counter-clockwise. Read X(U ∗ V ) as “X moves from U
to V in ∗ sense”. Read X(∗) as “X moves in ∗ sense to an adjacent vertex”. Let
dc denote the distance between C and R at the given instant in the underlying
undirected graph. Note that R(∗) results in a fixed final position, where as C(∗)
results in two possible final positions.

R moves according to the following rules. All operations are performed under
modulo 24.

R0 : At any turn, if C passes its move then R passes its move.
R1 : For i = 1 to 7, R(v2i � v2i+2) only if C(v2i−4 � v2i−2) or C(v2i−3 � v2i−2);

else it passes its move.
R2 : For i = 8 to 11, R(v2i � v2i+2) irrespective of C’s move.
R3 : If R is at an even vertex v2i, for i ≤ 7, and C(�), then

• R(�), if dc increases to at least 4.
• R passes its move, if dc increases but remains less than 4.
• R(�), if dc decreases.

R4 : If R is at an odd vertex v2i+1, for i < 7, then R(�) irrespective of C’s move.

We claim that R reaches v0 at least two turns before C. Once R is at v14
and C(v10 � v12), then R keeps on moving counter-clockwise and reaches v0 at
least two turns before C. However if C(�) and if dc increases to at least 4, then
R(�), else if dc < 4 then R passes its move. The restriction dc ≥ 4 ensures that
if C moves counter-clockwise then R can safely move clockwise to the next even
vertex. For subsequent steps, if C(�) and R is on an even vertex v2i, for i = 1
to 7, then R(�), provided the restrictions in R3 are met. In any intermediate
step if C(�), then R(�) if it is at an odd vertex; else R(�) or R passes its move
depending on whether C attacks it or not. In such a case R always stays at least
two moves away from C and hence evades capture.

The only way left for C to capture R is if C continues moving counter-clockwise
along the chord arcs and then tries to capture R which now moves counter-
clockwise along the cycle arcs. However in such a case also it is easy to see
that R reaches v0 at least two moves before C. Hence, either R evades capture
indefinitely or reaches the initial or its equivalent configuration; which implies
that R is never captured. Hence the constructed graph is not strong cop-win. �

It is known that the cop number of series-parallel graphs in the classical game
on undirected graphs is two [24]. Since outerplanar graphs are also series-parallel
graphs, we have the following corollary.



Cops and Robber on Some Families of Oriented Graphs 197

Corollary 4. The strong cop number of oriented series-parallel graphs is two.

As mentioned earlier all the oriented graphs whose underlying graphs are
cop-win graphs in the classical (undirected graph) version are strong cop-win.
Next, we find some families of oriented graphs which are strong cop-win but
whose underlying undirected graphs are not cop-win in the classical version. We
begin with a specific class of outerplanar graphs.

We need the following definitions. For a plane graph G (i.e. the planar embed-
ding of G), its dual graph has vertices that represent faces of G and edges repre-
sent the adjacency of faces in G separated by an edge. The weak dual of G is the
induced subgraph of the dual graph whose vertices correspond to the bounded
faces of G.

Theorem 3. Oriented outerplanar graphs whose weak dual is a collection of
paths are strong cop-win.

Proof. Let G be an outerplanar graph on n vertices, whose weak dual is a col-
lection of paths and

−→
G denote the oriented outerplanar graph on G. We call the

edges in the outer face of G as cycle edges. For a cycle C in
−→
G , image IC(R) of

the robber R, is the set of vertices in C that are closest to R.
First we claim that |IC(R)| ≤ 2. Suppose |IC(R)| > 2; then let u1, u2, u3 ∈

IC(R) be three vertices arranged in a cyclic order in C. Since distance from R
to u1, u2, u3 are same, the paths from the robber to ui does not contain uj , for
i �= j and i, j ≤ 3. So u2 does not lie in the outer face; a contradiction.

Furthermore, if |IC(R)| = {u1, u2}, then u1 and u2 are adjacent, else the
internal vertices on a u1u2 path does not lie in the outer face. If R is in the cycle
then IC(R) contains the vertex occupied by R. So if |IC(R)| = 2, then R does
not lie in the cycle C.

Now we prove the theorem by induction on the order of G. The base case is
easy to verify. Now assume every outerplanar graph of order less than n, whose
weak dual is a collection of paths is strong cop-win.

Now consider an outerplanar graph
−→
G of order n, whose weak dual is a

collection of paths. Select a cycle C in
−→
G and place the cop C in some vertex of

C. After R is placed in
−→
G , we find IC(R) and capture it in subsequent moves.

If |IC(R)| = 2, then we capture any one of them. This can always be done in a
cycle that is not directed. If C is directed, C moves against the orientations. So a
vertex in IC(R) can be captured by C. If R is in the cycle then it is captured. If
|IC(R)| = 2, then R is not in the cycle when some vertex of IC(R) is captured
by C. Once C captures a vertex in IC(R), the robber cannot enter C. So R is now
trapped in one component of

−→
G obtained after deleting the cycle edges of C. By

our inductive hypothesis, R can be captured in this component. Hence oriented
outerplanar graphs whose weak dual is a collection of paths are cop-win in the
strong cop model. ��

Our next class of strong cop-win graphs are oriented grids.

Theorem 4. Oriented grids are strong cop-win.
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Outline of the Proof. Fix a m × n grid with points {(i, j)|0 ≤ i ≤ m − 1, 0 ≤
j ≤ n − 1}. The cop C starts at (0, 0). If the robber R is at (xr, yr), then define
the vertices (xr ± 1, yr ± 1) (when they exist) as guard positions. The reader can
check that C can guard R at (xr − 1, yr − 1) (see [7, Step 1 in Thm. 1]). So R can
only move either up or to the right if the orientations allow (else R is caught).
Note that once it reaches (m − 1, n − 1), it gets captured. If R stays stagnant at
a vertex, then C can force it to move. Although the guard position is lost, after a
few steps C can regain the guard position (or capture R). So the Y-coordinate of
R gradually increases. Eventually R ends up at (m−1, n−1) or gets captured.��

5 Weak Cop Model

A vertex u in a directed graph is said to be a corner vertex, if there exists a
vertex v such that N+[u]∪N−(u) ⊆ N+[v] where Nα[v] = Nα(v)∪{v} for each
α ∈ {+,−}. We also say that v dominates u.

Now we characterize all cop-win directed graphs in this model, which is
adapted from the cop-win characterization of undirected graphs (whose proof
follows from a couple of lemmas).

Theorem 5. A directed graph is cop-win in the weak cop model if and only if
by successively removing corner vertices, it can be reduced to a single vertex.

Lemma 2. If a directed graph has no corner vertex, then it is not weak cop-win.

Proof. Let
−→
G have no corner vertex. The robber R starts from a vertex that is

not an out-neighbour of the cop C. The robber does not move unless C attacks it.
Whenever R is under attack, it can move to a vertex that in not an out-neighbour
of C (as there are no corner vertices in

−→
G). Hence R never gets caught. �

Lemma 3. A directed graph
−→
G with a corner u is weak cop-win if and only if−→

H =
−→
G \ {u} is weak cop-win.

Proof. Let vertex v dominate u in G. Suppose
−→
H is cop-win. Define the image

IR of the robber R as follows: IR(u) = v and IR(x) = x for all x ∈ V (
−→
H ). So

IR is restricted to
−→
H and it can be captured by the cop C. If R is not on u, then

it is captured. If R is on u, then C is on v and will capture R in its next move.
Suppose, on the other hand,

−→
H is not weak cop-win. Define the image IC

of the cop C as follows: IC(u) = v and IC(x) = x for all x ∈ V (
−→
H ). So IC is

restricted to
−→
H and R has a winning strategy against IC . If C is not on u, then

R follows its winning strategy and does not get captured in C’s next move. If C
is on u, then R follows its winning strategy assuming C is on IC(u) = v. Since R
has a winning strategy against C if C were at v instead, R does not get captured
in C’s next move (as v dominates u). So R evades capture; hence

−→
G is not weak

cop-win. �
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Finally, we are ready to prove Theorem5.

Proof of Theorem 5. Lemma 3 implies that upon removing the corner vertices, the
weak cop-win property of the graph remains the same. Now remove all possible
corner vertices successively in the directed graph. If we end up with a single
vertex, then it is weak cop-win. Otherwise we end up with some other graph
that has no corner vertices, Lemma 2 implies that it is not weak cop-win. ��
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