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Abstract. Inspired by the feedback scenario, which characterizes online
social networks, we introduce a novel domination problem, which we call
Dual Domination (DD). We assume that the nodes in the input network
are partitioned into two categories: Positive nodes (V +) and negative
nodes (V −). We are looking for a set D ⊆ V + that dominates the largest
number of positive nodes while avoiding as many negative nodes as pos-
sible. In particular, we study the Maximum Bounded Dual Domination
(MBDD) problem, where given a bound k, the problem is to find a set
D ⊆ V +, which maximizes the number of nodes dominated in V +, dom-
inating at most k nodes in V −. We show that the MBDD problem is
hard to approximate to a factor better than (1 − 1/e). We give a poly-
nomial time approximation algorithm with approximation guaranteed
(1 − e−1/Δ), where Δ represents the maximum number of neighbors in
V + of any node in V −. Furthermore, we give an O(|V |k2) time algorithm
to solve the problem on trees.

1 Introduction

Let G = (V,E) be an undirected graph modeling a network. We denote by NG(v)
and by dG(v) = |NG(v)|, respectively, the neighborhood and the degree of the
node v in G. In general, for each S ⊆ V we denote by NG(S) =

⋃
v∈S NG(v)

the neighborhood of the nodes in S. In the rest of the paper we will omit the
subscript G whenever the graph G is clear from the context.

A dominating set for G = (V,E) is a subset of the nodes D ⊆ V such that
each v ∈ V − D has at least one neighbor in D. The concept of domination in
graphs and its many related problems have been widely studied (see [17] and ref-
erences therein quoted). Inspired by some scenarios in social networking, which
we shall briefly describe in Sect. 1.2, we introduce a new domination problem,
which we call Dual Domination (DD). We assume that the nodes in the input
network are partitioned into two categories: Positive nodes (V +) and negative
nodes (V −); i.e., V = V + ∪ V −. For any D ⊆ V +, we denote by Γ (D) (resp.
Γ+(D) and Γ−(D)) the set of nodes (resp. positive and negative nodes) domi-
nated by D. That is,

Γ (D) = D ∪ N(D), Γ+(D) = Γ (D) ∩ V + and Γ−(D) = Γ (D) ∩ V −.
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For sake of simplicity we pose Γ+(v) = Γ+({v}) and Γ−(v) = Γ−({v}).
Formally the problem we study in this paper is the following.

Problem 1. (Maximum Bounded Dual Domination (MBDD)) Given a net-
work G = (V = (V + ∪ V −), E) and an integer k ≥ 0, find a set D ⊆ V + such
that |Γ−(D)| ≤ k, which maximizes |Γ+(D)|.

1.1 Our Results

We first show hardness results on the approximability of the MBDD problem,
then we give a polynomial time approximation algorithm with approximation
guaranteed (1 − e−1/Δ), where Δ represents the maximum number of neighbors
in V + of any node in V −. The algorithm uses the fact that |Γ+(D)| is a submod-
ular, nondecreasing set function and is inspired by [27] where an approximation
algorithm for maximizing a submodular set function subject to a knapsack con-
straint has been presented. However, we stress that the constraint, to which a
solution of our MBDD problem is subject, is not a knapsack constraint since
in our problem two or more positive nodes might share a negative neighbor. In
Sect. 4, we depict an O(|V |k2) time algorithm for the MBDD problem on trees,
state some related Dual Domination problems, and give some open problems.

Due to space constraint, most of the proofs are omitted or only sketched.

1.2 The Online Social Networks Context

Online social networks have become an important media for the dissemina-
tion of opinions, beliefs, new ideas etc. The increasing popularity of such plat-
forms, together with the availability of large amounts of contents and user pro-
file/behaviour information, has contributed to the rise of viral marketing as an
effective advertising strategy. The idea is to exploit the word-of-mouth effect in
such a way that an initial set of influential users could influence their friends,
friends of friends, and so on, generating a large influence cascade. The key prob-
lem is how to select an initial set of users (given a limited budget) so to maximize
the influence within the network. This influence maximization (IM) problem has
been extensively studied in recent years [5–10,16] and a number of approximation
algorithms and scalable heuristics have been devised. However, the studies above
only look at networks with positive relationships/activities (e.g., positive feed-
back or influence), where in real scenarios, social actor relationships/activities
also include negative ones (e.g., adverse opinion, negative feedback or distrust
relationships). For instance in Ebay, buyers and sellers develop trust and distrust
relationship; in online review and news forums, such as Slashdot, users comment
(positively or negatively) reviews and articles of each other [21].

Research has provided evidence that the benefits of a marketing campaign
are not purely increasing in the number of people reached and the exposure to
different groups can help or hurt adoption [2,18,19]. As an other example, in a
social network composed by individuals with some social problem, people can
have both positive and negative impact on each other. In order to implement an
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intervention programme, it becomes important to target a group of users which
allow to reinforce a positive behavior through the network while minimizing the
negative reactions (also to maximize the impact of future campaigns) [28]. A
somehow similar finding applies to political campaigns where candidates want
to reinforce positive messages without promoting resistance to persuasion [25].
Such empirical research suggests that marketing campaigns can suffer negative
payoff due to the existence of subsets of the population that will react negatively
to the message/product. Hence, the marketing campaign can suffer negative pay-
off. These can come in the form of harm to the firm’s reputation in several ways,
as for example through negative reviews on rating sites [3,11,12]. Recently, a
variation of the influence maximization problem named opinion maximization
(OM) has been proposed [4,22]. The goal of opinion maximization is to maxi-
mize the number of positive opinions while minimizing the number of negative
opinions generated by the activated users during the cascading behavior. A first
algorithmic study of an OM problem was done in [1], where the authors propose
a theoretical model for the problem of seeding a cascade when there are benefits
from reaching positively inclined customers and costs from reaching negatively
inclined customers. Namely, the problem studied in [1] is: Given a graph G with
node set V = V + ∪ V − partitioned into positive and negative nodes, determine
a subset of the nodes S that can trigger a cascade which maximize the difference
between positive and negative payoff.

1.3 Related Domination Problems

Domination in graphs, and its several variants, is a widely studied problem in
graph theory [17]. The variation of the domination problem which we study in
this paper is related, but not equivalent, to the concepts of signed and minus
domination introduced in [14,15]. For instance, in signed domination the sign of
the nodes is not part of the input; namely, given an input graph G = (V,E) one
looks for a function of the form f : V → {−1, 1} such that,

∑
u∈N(v)∪{v} f(u) ≥ 1

for all v ∈ V .
Another recently studied related problem is domination with required and

forbidden nodes [13]: Given a graph G and two disjoint sets R,F ⊂ V , construct
dominating set D of G such that no forbidden node is in D and every required
node of R is in D, that is F ∩ D = ∅ and R ⊆ D.

2 Hardness Results

Theorem 1. The MBDD problem is such that:
(i) There is no polynomial time approximation algorithm with any constant fac-
tor better than (1 − 1/e) unless P=NP.
(ii) There is no polynomial time approximation algorithm providing an

n−1/polyloglog n-approximation unless the exponential time hypothesis is false.

Proof. (Sketch.) We are going to show that both the k-MaxVD problem [24]
and the Densest k-subgraph (DkS) problem [23] are reducible (preserving the
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approximation factor) in polynomial time, to the MBDD problem. The results
(i) and (ii) will then follow from [24] and [23] respectively. For space reasons, the
reduction from the DkS problem is omitted.

The k-MaxVD problem is one of the optimization versions of the well known
Dominating Set problem [17] and it is defined as follows.

Problem 2. k−Maximum Vertex Domination (k-MaxVD): Given a network
G = (V,E) and an integer k ≥ 0, find a set D ⊆ V with |D| ≤ k, which
maximizes the cardinality of the dominated nodes |Γ (D)|.
Consider an instance of the k-MaxVD problem, consisting of a graph G = (V,E)
having n = |V | nodes and a bound k. Let V = {v1, v2, . . . , vn}, we build a graph
G′ = (V ′ = (V + ∪ V −), E′) as follows:

Replace each vi by a gadget G′
i having two nodes v+

i and v−
i . The node v+

i

plays the role of vi in G and is also connected to v−
i . Formally,

V ′ = V + ∪ V − where V + = {v+
i |1 ≤ i ≤ n} and V − = {v−

i |1 ≤ i ≤ n}

E′ = {(v+
i , v+

j )|(vi, vj) ∈ E} ∪ {(v+
i , v−

i )|1 ≤ i ≤ n}.

Notice that G corresponds to the subgraph of G′ induced by V +. We prove that:
Given an integer t, there exists a set D of nodes in G of size at most k such

that |Γ (D)| ≥ t iff there exists a set D′ ⊆ V + such that |Γ−(D′)| ≤ k and
|Γ+(D′)| ≥ t in G′.

Assume that there exists a dominating set D ⊆ V in G such that |D| ≤ k and
|Γ (D)| ≥ t. Then let D′ = {v+

i ∈ V +|vi ∈ D}, since G is isomorphic to the sub-
graph of G′ induced by V +, we have that D′ dominates the corresponding of all
the nodes in Γ (D). Hence, |Γ+(D′)| = |Γ (D)| ≥ t. Moreover, by construction,
in G′ each positive node has exactly one connection with a negative one. Hence,
|Γ−(D′)| = |D′| = |D| ≤ k.

On the other hand, assume that there exists a set D′ ⊆ V + in G′ such that
|Γ−(D′)| ≤ k and |Γ+(D′)| ≥ t. Then, by using exactly the same argument
above, the reader can easily see that the set D = {vi ∈ V |v+

i ∈ D′} satisfies
|D| ≤ k and |Γ (D)| ≥ t and this completes the proof. ��

3 An Approximation Algorithm for MBDD

Theorem 2. Let G = (V,E) be any graph with V = V + ∪ V −. There exists
a polynomial time approximation algorithm for the MBDD problem on G with
approximation factor 1 − e−1/Δ, where Δ = maxv∈V − |Γ+(v)| is the maximum
degree1 of any negative node in V −.

1 We can assume that no edge exists between two nodes in V −, since such edges are
irrelevant for our problem.
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In order to prove Theorem 2, we distinguish two cases on the value of Δ.
If Δ = 1 then two nodes in V + cannot share a neighbor in V −. As a conse-

quence, if we define the weight of a node in V + as the number of its neighbors
in V −, then the problem reduces to select a set of nodes in V + so that the
union of their neighborhood sets in V + has maximum size and the sum of their
weights is at most k. This is the Budgeted maximum coverage problem and its
approximation factor is (1 − 1/e) [20].

Algorithm 1. The Dual Domination algorithm: DUAL(G, k)
Input: A graph G = (V + ∪ V −, E) (with Δ ≥ 2) and a positive integer k.

1 P = ∅
2 forall the u ∈ V + do
3 if |Γ −(u)| ≤ k then P = the largest set between P and

{v ∈ V + | Γ −(v) ⊆ Γ −(u)}
4 forall the v ∈ V + − {u} do
5 if |Γ −({u, v})| ≤ k then P = the largest set between P and

DD(G, {u, v}, k);

6 return P

Algorithm 2. DD(G,U, k)
Input: A graph G = (V + ∪ V −, E), a set U ⊆ V + with |U | = 2, a positive

integer k.

1 Set I = V +, S = U and P = {w ∈ V + | Γ −(w) ⊆ Γ −(S)}
2 while (I − P �= ∅) do

3 forall the u ∈ I − P do Pu = {w ∈ I − P | Γ −(w) ⊆ Γ −(S ∪ {u})}
4 v = arg maxu∈I−P

|Γ+(P∪Pu)−Γ+(P )|
|Γ−(S∪{u})−Γ−(S)|

5 if |Γ −(S ∪ {v})| ≤ k then {S = S ∪ {v}; P = P ∪ Pv } else I = I − {v}
6 return P

The rest of this section is devoted to prove Theorem 2 in the case Δ ≥ 2.
The proposed Algorithm DUAL(G, k) first computes all the feasible solutions

of cardinality one, by simply enumerating all nodes in V +. In order to consider
feasible solutions with cardinality two or more, it exploits Algorithm DD(G,U, k)
to greedily enlarge each feasible solution of cardinality two. It is worth noticing
that the algorithm DD(G,U, k) is executed for each couple of nodes in G. This
fact will be exploited to obtain the desired approximation factor.

Algorithm DD(G,U, k), starting from a partial solution S = U of cardinality
2, greedily adds nodes to such a solution, until no feasible node is available: For
each node u not in the current solution, the algorithm measures
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– the cost of u (how many new nodes of V − are dominated by adding u) and
– the profit of u (how many more nodes of V + we can dominate by adding u,

as well as all the other nodes which become “cost-free” because of u, that
is, all their neighbors in V − are already neighbors of the current solution
augmented by u).

The algorithm then selects the node, say v, that provides the best profit/cost
ratio; if the current solution augmented by v is feasible (i.e., |Γ−(S ∪ {v})| ≤ k)
then v is added to it, otherwise v is definitively discarded (because v will make
any solution, that includes the current solution, infeasible).

Define the padding set of X ⊆ V + as

PX = {v ∈ V + | Γ−(v) ⊆ Γ−(X)} (1)

Notice Γ−(X) = Γ−(PX). Also, define the padding set of u with respect to a
ground set I and a set X as

Pu(I,X) = {v ∈ I − PX | Γ−(v) ⊆ Γ−({u} ∪ X)}. (2)

Starting from any set U ⊂ V + consisting of two nodes such that |Γ−(U)| < k,
Algorithm 2 greedily augments U while preserving the constraint. For a given
U = {w1, w2}, the algorithm starts with S = U and a padding set P = PS ,
fixes the initial ground set I to V +, and iteratively adds feasible nodes to the
solution.

At each iteration, Algorithm2 maintains the relation P = PS between the
sets S and P . For each node u ∈ I−P , the algorithm identifies the set Pu ⊆ I−P
whose neighbors in V − are dominated when we add u to the current set S,
namely the algorithm sets

Pu = Pu(I, S).

The node to be added to the solution is chosen as to maximize the ratio of the
number of positive nodes that will be dominated thanks to the contribution of u
to the cost of u (i.e., the increment on the number of negative nodes dominated
by {u} ∪ S.) Once a node v has been selected:

– If S ∪{v} is not feasible (i.e., |Γ−(S ∪{v})| > k), then v is removed from the
ground set I.

– If |Γ−(S ∪ {v})| ≤ k, then the algorithm augments S by v and consequently
P by Pv thus maintaining the equality P = PS .

The algorithm ends when I = P = PS .
In the following, we analyze Algorithm2 and derive the desired approxima-

tion factor. Let OPT be an optimal solution to the MBDD problem on G. Let
u1, u2 be respectively, the two nodes in OPT that dominate the maximum number
of positive neighbors, namely

u1 = arg max
u∈OPT

|Γ+(P{u})| and u2 = arg max
u∈OPT−P{u1}

∣
∣Γ+(Pu(V +, {u1})

∣
∣ . (3)
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Recalling that Algorithm 2 is executed for each pair of nodes in G, from now
on we focus on the execution of Algorithm2 on input U = {u1, u2}. Hence,
Algorithm 2 initially (at at line 1) sets S = {u1, u2} and P = P{u1,u2}.

We denote by Si the partial set S after exactly i nodes are added to it.
Namely,

S0 = {u1, u2}
and for i ≥ 1, we define Si as the solution consisting of the initial set {u1, u2}
and the i nodes v1, v2, . . . , vi (added at line 5 of the algorithm), i.e.,

Si = {u1, u2} ∪ {v1, v2, . . . , vi}.

We also set

P 0 = PS0 = P{u1,u2} and P i = PSi = P{u1,u2}∪{v1,v2,...,vi} for each i ≥ 1

and denote by Ii the ground set I at the end of the iteration in which vi (cfr.
line 5) is added to have Si. Moreover, for each i ≥ 0, and u ∈ Ii − P i, we set

ci,u = |Γ−(Si ∪ {u}) − Γ−(Si)|
the increment in number of dominated nodes in V − with respect to Γ−(Si).
Furthermore, recalling that the set Pu at line 3 is Pu(Ii, Si), we denote by

θi+1 = max
u∈Ii−P i

|Γ+(P i ∪ Pu(Ii, Si))| − |Γ+(P i)|
ci,u

.

Hence, the node v selected at line 4 of Algorithm 2 satisfies the equality

|Γ+(P i ∪ Pv(Ii, Si))| − |Γ+(P i)| = ci,vθi+1 (4)

while for any other node u ∈ (Ii − Si) − {v} it holds

|Γ+(P i ∪ Pu(Ii, Si))| − |Γ+(P i)| ≤ ci,uθi+1. (5)

In the following we use cu instead of ci,u whenever the index i is clear from the
context. Furthermore, we use Pu instead of Pu(I, S) whenever the ground set I
and the set S are clear from the context.

We assume that the solution provided by the Algorithm2 is not the optimal
solution OPT. Let St = {u1, u2} ∪ {v1, . . . , vt}, for some t ≥ 0, be the partial set
constructed by Algorithm 2 when, for the first time, the node v selected at line
4 satisfies both the following conditions

1. v ∈ OPT;
2. v is discarded, i.e. v is removed from the ground set because |Γ−(St∪{v})|>k.

We notice that,

– it is possible that other nodes have been previously discarded by the algorithm
but these nodes do not belong to OPT.
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– t is well defined. Indeed, since the solution provided by the Algorithm2 differs
from OPT, there exists at least one node v ∈ OPT, which is discarded by the
Algorithm 2.

Let I ′ ⊆ It denote the ground set when v is selected and let

θ = (|Γ+(P t ∪ Pv(I ′, St))| − |Γ+(P t)|)/cv (6)

Then for any other node u ∈ (I ′ − St) − {v} it holds

|Γ+(P t ∪ Pu(I ′, St))| − |Γ+(P t)| ≤ cuθ. (7)

We prove now some claims, relating St, the discarded node v, and the optimal
solution OPT, that will be useful to prove the desired approximation ratio.

Claim 1

|Γ−(P 0)| +
t∑

i=1

cvi
+ cv > k. (8)

Proof. It suffices to notice that St ∪ {v} dominates more than k nodes in V −.

��
Claim 2. For any i = 0, . . . , t, it holds

∑

u∈OPT−P i

cu ≤ (k − |Γ−(P 0)|)Δ (9)

Proof. Since Δ is the maximum degree of any node in V −, a node x ∈ Γ−(OPT)−
Γ−(P i) can have at most Δ neighbors in OPT − P i, hence we have2

∑

u∈OPT−P i

cu =
∑

u∈OPT−P i

|Γ−(Si ∪ {u}) − Γ−(Si)|

≤ |Γ−(OPT) − Γ−(P i)|Δ
≤ |Γ−(OPT) − Γ−(P 0)|Δ since P 0 ⊆ P i

= (|Γ−(OPT)| − |Γ−(P 0)|)Δ since P 0 ⊆ OPT

≤ (k − |Γ−(P 0)|)Δ since |Γ−(OPT)| ≤ k.

��
Given a set A ⊆ V + such that P 0 ⊆ A, we define the function

g(A) = |Γ+(A)| − |Γ+(P 0)|.
In order to obtain the desired bound on the approximation factor of Algorithm2,
we first prove some preliminary results regarding the function g(·) which will be
exploited to derive a lower bound on the ratio g(P t ∪ Pv)/g(OPT).
2 (Notice that S0 ⊆ OPT and since OPT is an optimal solution we have POPT ⊆ OPT and

then P 0 ⊆ OPT.)
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Claim 3. For i = 0, . . . , t, it holds g(P i) =
∑i

�=1 cv�
θ�.

Proof. Recalling that for i = 0, . . . , t, we have P i = P 0 ∪ Pv1 ∪ · · · ∪ Pvi
, we get

g(P i) = |Γ+(P i)| − |Γ+(P 0)| = |Γ+(P 0 ∪ Pv1 ∪ · · · ∪ Pvi
)| − |Γ+(P 0)|

=
i∑

�=1

(|Γ+(P 0 ∪ Pv1 ∪ · · · ∪ Pv�
)| − |Γ+(P 0 ∪ Pv1 ∪ · · · ∪ Pv�−1)|)

=
i∑

�=1

|Γ+(P �−1 ∪ Pv�
)| − |Γ+(P �−1)| =

i∑

�=1

cv�
θ� by (4).

��
Claim 4. Let Pv = Pv(I ′, St), then g(P t ∪ Pv) =

∑t
�=1 cv�

θ� + cvθ.

Proof. We have that P t = P 0 ∪Pv1 ∪ · · · ∪Pvt
and v was selected when the value

of S in Algorithm 2 was St. We can then apply Claim 3 and (6) to get the claim.

��
Claim 5

g(OPT) ≤ min
0≤i≤t

gi where gi =

{∑i
�=1 cv�

θ� + θi+1(k−|Γ−(P 0)|)Δ if 0≤i≤t−1,
∑t

�=1 cv�
θ� + θ(k − |Γ−(P 0)|)Δ if i = t.

(10)

Proof. Fix any i = 0, · · · , t. We notice that the set function g is non-decreasing,
indeed g(A) ≤ g(A′) for all A ⊆ A′. Moreover, recalling that a set function
f : 2X → R

+ on the ground set X is submodular iff f(A) + f(A′) ≥ f(A ∪ A′) +
f(A ∩ A′), for all A,A′ ⊆ X, it is easy to see that g(A) is also a submodular
function on the ground set of the subsets of V + that contain P 0. Considering
that P 0 ⊆ OPT, we can apply to g a result in [26] and we have that

g(OPT) ≤ g(P i) +
∑

u∈OPT−P i

(g(P i ∪ {u}) − g(P i)) (11)

Hence, for any i = 0, · · · , t − 1 we get

g(OPT) ≤ g(P i) +
∑

u∈OPT−P i

(g(P i ∪ {u}) − g(P i)) by (11)

= g(P i) +
∑

u∈OPT−P i

(|Γ+(P i ∪ {u})| − |Γ+(P i)|) by the definition of g(·)

≤ g(P i) +
∑

u∈OPT−P i

(|Γ+(P i ∪ Pu)| − |Γ+(P i)|) since {u} ⊆ Pu

≤ g(P i) +
∑

u∈OPT−P i

cuθi+1 by (5), since u ∈ OPT − P i ⊆ Ii − P i

≤ g(P i) + θi+1(k − |Γ −(P 0)|)Δ by (9)

=

i∑

�=1

cv�θ� + θi+1(k − |Γ −(P 0)|)Δ by Claim 3.
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and, following the above reasoning for i = t we get

g(OPT) ≤ g(P t) +
∑

u∈OPT−P t

(|Γ+(P t ∪ Pu)| − |Γ+(P t)|)

≤ g(P t) +
∑

u∈OPT−P t

cuθ by (7), since u ∈ OPT − P t ⊆ I ′ − P t

=
t∑

�=1

cv�
θ� + θ(k − |Γ−(P 0)|)Δ by Claim 3 and (9) .

��
Lemma 1.

g(P t ∪ Pv)
g(OPT)

> 1 − e−1/Δ (12)

Proof. We need some definitions. Define

B0 = 0, Bi =
i∑

�=1

cv�
for i = 1, · · · , t, Bt+1 =

t∑

�=1

cv�
+ cv.

By (8) we have
β = k − |Γ−(P 0)| < Bt+1 (13)

Furthermore, for i = 0, · · · , t define

ρj =

{
θi if j = Bi−1 + 1, · · · , Bi

θ if j = Bt + 1, · · · , Bt+1

(14)

Hence, for i = 1, · · · , t, we have

Bi∑

j=1

ρj =
i∑

�=1

cv�
θ� and

Bt+1∑

j=1

ρj =
t∑

�=1

cv�
θ� + cvθ. (15)

We use now the above definitions to bound g(OPT) and g(P t ∪ Pv). By (10)

g(OPT) ≤ min

{

min
0≤i≤t−1

{
i∑

�=1

cv�
θ� + θi+1βΔ

}

,

t∑

�=1

cv�
θ� + θβΔ

}

by the definition ofβ in (13)

= min
0≤i≤t

⎧
⎨

⎩

Bi∑

j=1

ρj + ρBi+1βΔ

⎫
⎬

⎭
by (15) and (14)

= min
1≤s≤Bt+1

⎧
⎨

⎩

s−1∑

j=1

ρj + ρsβΔ

⎫
⎬

⎭
by the definition of Bt+1.
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By Claim 4 and (15) we have g(P t ∪Pv) =
∑t

�=1 cv�
θ� + cvθ =

∑Bt+1
j=1 ρj . Hence,

g(P t ∪ Pv)
g(OPT)

≥
∑Bt+1

j=1 ρj

mins=1,··· ,Bt+1

{∑s−1
j=1 ρj + ρsβΔ

} (16)

In order to bound the right end side of (16), we use the following fact.

Fact 1 ([26]). If a and b are arbitrary positive integers, ρj for j = 1, · · · , a are
arbitrary non negative reals and ρ0 > 0

∑a
j=1 ρj

mins=1,··· ,a

{∑s−1
j=1 ρj + bρs

} > 1 − e−a/b

Hence, we get g(P t∪Pw)
g(OPT) ≥ 1− e−Bt+1/(βΔ) > 1− e−1/Δ where the last inequality

holds since Bt+1 > β by (13). ��
We show now that the bound 1 − e−1/Δ also holds for |Γ+(P t)|/|Γ+(OPT)|.

Recalling that we are considering Algorithm2 with input U = {u1, u2}, where
u1 and u2 are the nodes defined in (3), we are able to prove the following claim.

Claim 6. |Γ+(P t ∪ Pv)| − |Γ+(P t)| ≤ |Γ+(P 0)|/2.

Proof. Recalling that the set P t = P 0 ∪ Pv1 ∪ · · · ∪ Pvt
is the union of disjoint

sets, and that |Γ+(·)| is a submodular set function, we can write

|Γ+(P t∪Pv)| − |Γ+(P t)| = |Γ+(P 0∪Pv1∪ · · · ∪Pvt∪Pv)| − |Γ+(P 0∪Pv1∪ · · · ∪Pvt)|
≤ |Γ+(Pv)| − |Γ+(∅)| = |Γ+(Pv)|

Furthermore, recalling that Pv = Pv(I ′, St) = {u ∈ I ′ −PSt | Γ−(u) ⊆ Γ−({v}∪
St)} and that P{v} = {u ∈ V + | Γ−(u) ⊆ Γ−(v)} we have Pv ⊆ P{v}. Since
|Γ+(·)| is not decreasing then |Γ+(Pv)| ≤ |Γ+(P{v})|. From this and using the
definition of u1 in (3) we have

|Γ+(P t ∪ Pv)| − |Γ+(P t)| ≤ |Γ+(P{v})| ≤ |Γ+(P{u1})|. (17)

We now derive a further bound on |Γ+(P t ∪ Pv)| − |Γ+(P t)|. To this aim,
we notice that P 0 = P{u1} ∪Pu2(V

+, {u1}) is the union of disjoint sets and that
Pv ⊆ Pv(V +, {u1})); using this and the definition of u2 in (3), we have

|Γ+(P t ∪ Pv)| − |Γ+(P t)| =

≤ |Γ+(P{u1} ∪ Pv)| − |Γ+(P{u1})| ≤ |Γ+(P{u1} ∪ Pv(V +, {u1}))| − |Γ+(P{u1})|
≤ |Γ+(P{u1} ∪ Pu2(V

+, {u1}))| − |Γ+(P{u1})| = |Γ+(P 0)| − |Γ+(P{u1})| (18)

The claim follows by summing up (17) and (18). ��



Dual Domination 171

We are now ready to conclude the proof of Theorem2. We have

|Γ+(P t)| = |Γ+(P 0)| + g(P t)

= |Γ+(P 0)| + g(P t ∪ Pv) − (g(P t ∪ Pv) + g(P t))

= |Γ+(P 0)| + g(P t ∪ Pv) − (|Γ+(P t ∪ Pv)| − |Γ+(P t)|)
≥ |Γ+(P 0)| + (1−e−1/Δ)g(OPT) − (|Γ+(P t ∪ Pv)|−|Γ+(P t)|) by Lemma 1

≥ |Γ+(P 0)| + (1−e−1/Δ)g(OPT) − |Γ+(P 0)|/2 by Claim 6

= |Γ+(P 0)|/2 + (1−e−1/Δ)|Γ+(OPT)| − (1−e−1/Δ)|Γ+(P 0)| by def. of g(·)
= |Γ+(P 0)|(1/2 − (1−e−1/Δ)) + (1−e−1/Δ)|Γ+(OPT)|
≥ (1 − e−1/Δ)|Γ+(OPT)| since Δ ≥ 2.

Hence, after the first iteration in which the algorithm eliminates (at line 5)
an element of the optimal solution OPT, it holds that |Γ+(P t)|

|Γ+(OPT)| ≥ 1 − e−1/Δ.

Noticing that subsequent iterations of Algorithm 2 can only improve the ratio,
we can conclude that Theorem 2 holds.

4 Concluding Remarks: Extensions and Open Problems

In this section we summarize some additional results and problems related to
the MBDD problem. Namely, we consider the following Problems 3 and 4.

Problem 3. (Maximum Dual Domination (MDD)) Given a network G =
(V = (V + ∪ V −), E), find D ⊆ V + which maximizes |Γ+(D)| − |Γ−(D)|.
Problem 4. (Minimum Negative Dual Domination (mNDD)) Given G =
(V = (V +∪V −), E), find D ⊆ V + which dominates all positive nodes (Γ+(D) =
V +) and minimizes the number of dominated negative nodes |Γ−(D)|.
First of all, we mention that the MBDD problem is at least as hard as solving
any of the Problems 3 and 4. Indeed any optimal strategy OPT that solves the
MBDD problem can be used to solve with an extra polynomial time both the
Problems 3 and 4. Indeed for the Problem3 it is sufficient to run the OPT strategy
for any budget i = 1, . . . , |V −| and than choose the value that maximizes the
difference |Γ+(Si)| − |Γ−(Si)|, where Si denotes the output of the OPT strategy
with budget i. Similarly for the Problem4 it is sufficient to run the OPT strategy
increasing the value of the budget until Γ+(Si) = V +.

4.1 Trees

The MBDD problem, defined in Sect. 1, can be solved in polynomial time when
the graph G is a tree. Let T = (V = (V + ∪ V −), E) be a tree network and k be
an integer that represents our budget. Without loss of generality, we can root
the tree at a node r ∈ V +. The idea is then that, considering a node v and
one of its children u, there are three possibilities: v dominates u (i.e., v ∈ S),
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v is dominated by u (i.e., v /∈ S, u ∈ S); they do not dominate each other (i.e.,
u, v /∈ S). Taking this into account, one can design a dynamic programming
algorithm that traverses the input tree T bottom–up, in such a way that each
node is considered after all of its children have been processed.

Such an algorithm can be easily adapted to deal with Problems 3 and 4.
Summarizing, we have the following results, whose proof is omitted.

Theorem 3. The MBDD, mNDD, and MDD problems are solvable in linear
time on trees.

4.2 Hardness

By the same construction of the graph G′ as in the proof of Theorem1, it is
possible to show that:

– There exists a dominating set D in G of size at most k iff there exists a set
D′ ⊆ V + such that |Γ+(D′)| − |Γ−(D′)| ≥ n − k in G′.

– There exists a dominating set D in G of size at most k iff there exists a set
D′ ⊆ V + such that Γ+(D′) = V + and |Γ−(D′)| ≤ k.

Hence, DS is reducible in polynomial time to both Problems 3 and 4 and the
following result holds.

Theorem 4. The MDD problem is NP-hard.

For the mNDD problem, noticing that the above reduction is gap preserving, we
have the following result.

Theorem 5. There is no polynomial time approximation algorithm with any
constant factor better than log |V | for the mNDD problem unless P=NP.

4.3 Open Problem

From the above, we have that it is a natural question to ask if a logarithmic
approximation algorithm can be devised for the mNDD problem.
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