
Power Edge Set and Zero Forcing Set
Remain Difficult in Cubic Graphs

Pierre Cazals1(B), Benoit Darties2, Annie Chateau2, Rodolphe Giroudeau2,
and Mathias Weller3
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Abstract. This paper presents new complexity and non-approximation
results concerning two color propagation problems, namely Power Edge
Set and Zero Forcing Set. We focus on cubic graphs, exploiting their
structural properties to improve and refine previous results. We also give
hardness results for parameterized precolored versions of these problems,
and a polynomial-time algorithm for Zero Forcing Set in proper inter-
val graphs.
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Complexity

1 Introduction

Motivation. In power networks, synchrophasors are time-synchronized numbers
that represent both the magnitude and phase angle of the sine waves on network
links. A Phasor Measurement Unit (PMU) is an expensive measuring device used
to continuously collect the voltage and phase angle of a single station and the
electrical lines connected to it. The problem of minimizing the number of PMUs
to place on a network for complete network monitoring is an important challenge
for operators and has gained a considerable attention over the past decade [4,
7,8,12,13,15,17,19,21,22,25]. The problem is known as Power Dominating
Set [25] and we state it below. We model the network as a graph G = (V,E)
with |V |=: n and |E|=: m. We denote the set of vertices and edges of G by V (G)
and E(G), respectively. We let NG(v) denote the set of neighbors of v ∈ V in G
and dG(v) = |NG(v)| its degree in G. Further, we let NG[v] = NG(v)∪{v} denote
the closed neighborhood of v in G, and we let G[W ] denote the subgraph of G
induced by vertices W ⊆ V (G). The problem is described through monitoring
of nodes of the network, corresponding to monitoring vertices V (G) by PMUs,
propagated using the following rules.
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Rule R1
∗: A vertex v of G on which a PMU is placed will be called a monitored

vertex, and all its neighbors vertices NG(v) automatically become monitored.
Rule R2: if all but one neighbor of a monitored vertex are monitored, then this

unmonitored vertex will become monitored as well.

Letting ΓP (G) denote the minimum number of PMUs to place on vertices to
obtain a full monitoring of the network (using Rule R2), the decision version of
the problem is described as follows:

Power Dominating Set (PDS)
Input: a graph G = (V,E) and some k ∈ IN
Question: Is ΓP (G) ≤ k?

Power Dominating Set is NP-complete in general graphs [15]. A large
amount of literature is devoted to this problem, describing a wide range of
approaches, either exact such as integer linear programming [12] or branch-
and-cut [21], or heuristic, such as greedy algorithms [17], approximations [4] or
genetic algorithms [19]. The problem has also been shown to be polynomial-time
solvable on grids [7], but NP-complete in unit-disk graphs [22].

In this paper, we consider two variants of the problem, called Power Edge
Set (PES) [23,24] and Zero Forcing Set (ZFS) [3], which respectively consist
in placing PMUs on the links, and reducing the monitoring range of a PMU
placed on a node. This leads us to replace Rule R1

∗ in each of these problems
as follows (Rule R2 remains unchanged):

Rule R1 (PES): two endpoints of an edge bearing a PMU are monitored.
Rule R1 (ZFS): only the node bearing a PMU is monitored.

We let pes(G) and zfs(G) denote the minimum number of PMUs to place
on the edges, resp. nodes, of G to entirely monitor G. Both PES and ZFS can
be seen as a problem of color propagation with colors 0 (white) and 1 (black),
respectively designating the states not monitored and monitored of a vertex of G.
As input to PES or ZFS, we will consider a connected graph G = (V,E). For each
vertex v ∈ V , let c(v) be the color assigned to v (we abbreviate

⋃
v∈X c(v) =:

c(X)). Before placing the PMUs, we have c(V ) = {0} and the aim is to obtain
c(V ) = {1} using Rule R1 and Rule R2 while minimizing the number of PMUs.
See Figs. 1 and 2 for detailed examples illustrating the differences between PES
and ZFS.

Power Edge Set(PES)
Input: a graph G, some k ∈ N
Question: Is pes(G) ≤ k?

Zero Forcing Set(ZFS)
Input: a graph G, some k ∈ N
Question: Is zfs(G) ≤ k?

Previous work. Assigning a minimum number of PMUs to monitor the whole
network is known to be NP-hard in general for both PES and ZFS. For the
former, some complexity results and a lower bound on approximation of 1.12− ε
with ε > 0 have been shown by Toubaline et al. [23], who also present a linear-
time algorithm on trees by reduction to Path Cover. Poirion et al. [20] propose
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Fig. 1. PMU propagation on PES problem: before any PMU placement, all vertices
are white (a). A PMU on {b, c} induces c(b) = c(c) = 1 (black) by Rule R1 (b). By
applying Rule R2 on b, we obtain c(a) = 1 (c). Then Rule R2 on a induces c(d) = 1
(d), and Rule R2 on c or d induces c(e) = 1 (e). A second PMU is required to obtain a
complete coloring. Placing a PMU on {e, f} gives us c(f) = 1 by Rule R1 (f). Finally,
Rule R2 on e induces c(g) = 1 (g). The set of edges where PMUs have been placed is
S = {bc, ef}, giving (b, c, a, d, e, f, g) as a valid order for G.

Fig. 2. PMU propagation on ZFS problem: before any PMU placement, all vertices are
white (a). Placing one PMU on {b} allows to monitor it. (b). Placing a second PMU on
{c} allows to monitor it (c), and now we can apply Rule R2 on b, to obtain c(a) = 1
(d). Then Rule R2 on a induces c(d) = 1 (e), and Rule R2 on c or d induces c(e) = 1
(f). A third PMU is required to obtain a complete coloring. For example, placing a
PMU on f (g) allows to apply Rule R2 on e to obtain c(g) = 1 (h).
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a linear program with binary variables indexed by the necessary iterations using
propagation rules. Recently, inapproximability results have been proposed on
planar or bipartite graphs [5]. In this work, we develop hardness results on
complexity and approximation for special cases of Power Edge Set and Zero
Forcing Set.

Preliminaries. In the following, we will consider a total order σ of vertices of a
graph G as a sequence (v1, v2, . . .) such that vi occurs before vj in the sequence
if and only if vi <σ vj .

Definition 1 (valid order). Let G = (V,E) be a graph, let S ⊆ E (resp.
S ⊆ V ), and let σ be a total order of V , such that for each v ∈ V (G), there is
an edge incident to v in S (resp. v ∈ S) or there is a vertex u ∈ NG(v) which
verifies NG[u] ≤σ v. Then, <σ is called valid for S.

Given a graph G = (V,E), any set S ⊆ V (or S ⊆ E) such that repeated
application of Rule R1 (ZFS) (or Rule R1 (PES)) and Rule R2 leads to G
being completely monitored is called a zero forcing set (or power edge set). Using
Definition 1, we can formally define the propagation process in G. For instance,
in Fig. 1, a valid order for S = {bc, ef} is (b, c, a, d, e, f, g).

Observation 1. Let G = (V,E) be a graph and let S ⊆ E (resp. S ⊆ V ). Then,
S is a power edge set (res. a zero forcing set) if and only if there is a valid order
σ on G, with respect to S.

Note that, for a graph G = (V,E), any set S ⊆ E is a power edge set if and only
if

⋃
e∈S e is a zero forcing set for G. It is therefore a natural and unambiguous

to also call such an edge set zero forcing set.
Finally, we call a vertex v propagating to x ∈ NG(v) if c(x) = 0 and for all

y ∈ NG[v] \ {x}, we have c(y) = 1. Note that each maximal clique of G can
contain at most one propagating vertex.

Lemma 1. Let G = (V,E) be a graph, let S be a zero forcing set of G, and let
C := {C1, . . . , Cc} be a set of maximal cliques in G covering E. Then |V \S|≤ c.

Proof. Let σ be a valid order for S. We show that each Ci contains at most
one edge uv such that v /∈ S and NG[u] ≤σ v. Since C covers E, this implies
|V \ S|≤ |C|= c. Let C ∈ C and let C contain an edge uv such that NG[u] ≤σ v
and v /∈ S. Then, C ⊆ NG[u], implying C ≤σ v. Thus, v is the last vertex of C
with respect to σ and this vertex is unique. ��

Contribution. The next section is devoted to the NP-completeness for cubic
graph for Power Edge Set. We show that Power Edge Set and Zero
Forcing Set are W[2]-hard parameterized by the size of the solution in Sect. 3.
Section 4 is mainly dedicated to inapproximability and we show that there is an
n
2 -approximation for Power Edge Set. In the last section, we propose a linear
polynomial-time algorithm on proper interval graph for Zero Forcing Set.
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2 Computational Results

Most results presented in this section rely on reductions from graph problems
using gadgets for vertices or edges of the original instance. We model the prop-
agation process using the notion of valid order with respect to the solution set,
whatever the nature of it: set of edges for PES, of vertices for ZFS.

We present new lower bounds for Power Edge Set that hold even in the
very restricted case that G is cubic (i.e. all vertices in G have degree three).
Previous results show that the problem is NP-complete even if G is a subgraph
of the grid with bounded degree at most three [5]. In this paper, we show the
problem remains NP-complete if G is cubic and planar. The proof is done by
reduction from Vertex Cover (see below) on 3-regular, planar graphs, which
is NP-complete [11] but admits a PTAS [1], and a 3/2-approximation [2].

3-regular planar Vertex Cover (3RPVC).
Input: a 3-regular planar graph G = (V,E), some k ∈ N .
Question: Is there a size-k set S ⊆ V covering E, i.e. ∀e∈E e ∩ S 
= ∅?

Construction 1. For a given cubic planar graph G = (V,E) with n vertices,
we construct a graph G′ as follows:

– For each v ∈ V , construct Hv (see Fig. 3).
– If x is adjacent to y in G, we add exactly one of the edge between x0, x1 or

x2 and y0, y1 or y2 to connect Hx and Hy

Fig. 3. The gadget Hv for a vertex v.

The graph G′ is clearly cubic and planar and Construction 1 is applied in poly-
nomial time. The construction is linear in n and k.

Lemma 2. The gadget Hv needs at least one PMU to be fully colored: if x1, y2
and z0 are propagating respectively to v1, v2 and v0, then one PMU is sufficient;
otherwise two PMUs are needed to fully color Hv.



Power Edge Set and Zero Forcing Set Remain Difficult in Cubic Graphs 127

Proof. First, if x1, y2 and z0 are propagating respectively to v1, v2 and v0,
then, after application of Rule R2, c(v0) = c(v1) = c(v2) = 1. Thus this
is the beginning of a valid order: (v0, v1, v2, v3, v5, v4, v6, v7, v12, v9, v10). There
is no more possible propagation, it is necessary to assign a new PMU. If
we place it on the edge v14v16, the remainder of a valid order for Hv is:
(v14, v16, v11, v8, v13, v15, v16).

Second, we show that Hv may be colored by two PMUs in every case. If
PMUs are assigned to the edges v11v13 and v15v16, we the following order is
valid: (v11, v13, v15, v16, v7, v8, v9, v14, v4, v6, v10, v3, v12, v3, v12, v1, v2, v5, v0).

Third, we show that even if x1 and z0 are propagating to respectively v1
and v0, and y2 is not, we need two PMUs to color Hv. The beginning of the
propagation is given by the following order: (v0, v1, v3, v5). There is no more
possible propagation, therefore we have to put one more PMU. As more than
two uncolored vertices remain, so we have to initiate propagation with this PMU.
So the potential edges are v6v12, v4v2, v6v9 or v10v12 (other edges won’t start a
propagation, and we need to color more than two vertices). By exhaustive search,
we find that it is impossible to color Hv with only one PMU on any one of these
edges. We use the same kind of argument if x1 and y2 or y2 and z0 propagate. ��
Theorem 1. Power Edge Set remains NP-complete on planar cubic graphs.

Proof. Let G′ be the graph obtained by using Construction 1 on G = (V,E), a
cubic planar graph. We show that G has a size-k vertex cover iff Power Edge
Set has a solution of size n + k on G′. Clearly, Power Edge Set is in NP.

“⇒”: With a size-k vertex cover S for G, we build a power edge set S′ for
G′:

S′ :=
⋃

v∈S

{v11v16, v13v15} ∪
⋃

v∈V \S

{v14v16}

Then, |S′|= n + k and, by Lemma 2, all vertices of G′ are colored by S′.
“⇐”: Suppose that G′ is colored with n + k PMUs. By Lemma 2, there is

at least one PMU on each gadget. Further, if a gadget Hv is colored with a
single PMU, then every Hx with x ∈ NG(v) is colored with two PMUs inside
(by Lemma 2). Then, {v |Hv admits two PMUs} is a vertex cover for G. ��

3 Parameterized Hardness

In what follows, we introduce parameterized versions of our problems and recall
the notion of parameterized reduction. Using known results for Dominating
Set, we deduce hardness results for Power Edge Set and Zero Forcing
Set. First, we recall the parameterized Dominating Set problem. We obtain
hardness results for a restricted version of our problems, when a precoloring
exists on a particular set of vertices.
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Dominating Set (DS)
Input: a graph G = (V,E), some k ∈ IN∗

Question: Does G have a size-k dominating set?
Parameter: k

Precolored Zero Forcing Set/Precolored Power Edge Set
Input: a graph G = (V,E), a set B ⊆ V , some c : V → {0, 1} with c−1(1) =
B, and an integer k
Question: Is there a set S′ ⊆ V (resp. S′ ⊆ E) of size k such that B ∪ S′

(resp. B ∪ ⋃
e∈S′ e) is a zero forcing set for G?

Parameter: k

We prove the hardness using a parameterized reduction from Dominating Set.
First, we introduce a gadget which allows to propagate a coloration, but only in
one direction. It is called “check-valve”.

Definition 2 (Check-valve). A check-valve Cx,y from x to y is a graph G =
(V,E), with V = {x, y, x1, x2, x3, x4} and E = {xx1, xx2, x1x3, x1x4, x2x4,
x3y, x4y}, with a coloring function c : V → IN, such that c(x) = c(x1) = 1 and
all other vertices are colored by 0. A check-valve Cx,y is illustrated on Fig. 4.

Fig. 4. The check-valve Cx,y

Observation 2. Let Cx,y be a check-valve inserted between two vertices a and
b, depicted by Fig. 4. Then:

1. If c(a) = 1 then c(b) = 1 after exhaustive application of Rule R2.
2. If c(b) = 1, and c(a) = 0, then c(a) is still 0 after exhaustive application of

Rule R2, and it is necessary to add a PMU in order to have c(a) = 1.

Construction 2. Let xy be a edge such that c(x) = 1 and c(y) = 0, we construct
the gadget Cxy: we add vertices x1, x2, x3 and x4 and we add edges xx1, x1x2,
x3y, yx4, x4x2 et x2x. Notice that xy is deleted.

Construction 3. For given G = (V,E), construct G′ = (V ′, E′) as follows:

1. For all x ∈ V , build Jx depicted in Fig. 5, containing a core graph ({Ex,
Rx, Vx, x1, x2, x3, x4}, {Exx3, Exx4, ExVx, x1x3, x2x4, Rxx1, Rxx2, RxVx})
with precolored vertices Vx, x3 and x4, and outgoing check-valves: dG(x) many
Cx1

vi
,x2

vi
connected to Ex, and n many Cx1

si
,x2

si
connected to Rx.
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Fig. 5. The gadget Jx for a vertex x. Note that for sake of clarity, some external vertices
have been duplicated. Indeed, {Rv1 , . . . Rvt}, where v1, . . . , vt are neighbors of x, is
included in {Rs1 , . . . , Rsn}.

2. For all vi ∈ N(x), add edges x2
vi

Rvi
with x2

vi
∈ Jx and Rvi

∈ Jvi
.

3. For all si ∈ V , add edges x2
si

Vs1 with x2
si

∈ Jx and Vs1 ∈ Jsi
.

Lemma 3. For all x ∈ V , if c(Ex) = 1 then, after exhaustive application of
Rule R2, c(Jx) = 1 and c(Rv) = 1 for all v ∈ N(x).

Proof. If V = {s1, . . . , sn} and N(x) = {v1, . . . , vt}, then the following sequence
is a valid order: (Ex, x1, x2, Rx, x2

s1
, . . . , x2

sn
, x2

v1
, . . . , x2

vt
, Rv1 , . . . Rvt

). ��
Lemma 4. Let c(Rx) = 1 for all x ∈ V . Then, after exhaustive application of
Rule R2, G′ becomes fully colored.

Proof. Clearly, all vertices in N(Vx)\{Ex} are colored by Rx for all x ∈ V . Then,
Ex is colored by Vx. By Lemma 3, c(Ex) = 1 leads to Jx being fully colored. As
V ′ =

⋃
z∈V V (Jz), G′ becomes fully colored. ��

Theorem 2. Precolored Zero Forcing Set and Precolored Power
Edge Set are W [2]-hard wrt. the solution size k.

Proof. Let G = (V,E) be a graph and let G′ the product of Construction 3 on
G. We show that G has a size-k dominating set if and only if G′ has a size-k
zero forcing set (power edge set).

“⇒”: Let S be a size-k dominating set for G. A size-k zero forcing set S′ for
G′ is obtained as follows: for all x ∈ S, we place a PMU on Ex, (resp. Exx4).
By Lemmas 3 and 4, G′ is fully colored after applying Rule R2 exhaustively.

“⇐”: Let S′ be a zero forcing set of size k for G′. Let S be the set of vertices
x ∈ V (G) such that Jx has at least one vertex, resp. one edge, in S′ (for each
x, y ∈ V , if there is a PMU on the edge ExRy or RxVy it counts as an edge of
Jx). Suppose that S is not a dominating set for G. So, there is some y ∈ V such
that no u ∈ V (Jy) is in S′ and no v ∈ V (Jx) is in S′ for any x ∈ N(y). (for PES,
there is some y ∈ V such that no u1u2 ∈ E(Jy) is in S′ and no v1v2 ∈ E(Jx) is
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in S′ for any x ∈ N(y)). Since Jy is fully colored, this coloration comes from a
vertex (resp. an edge) outside of Jy. Four cases have to be considered:

Case 1: There is some vi ∈ N(y) such that c(y2
vi

) = 1 for y2
vi

∈ Jy and this
coloration comes from Rvi

∈ Jvi
. By Observation 2, we have c(Ey) = 1 only if

at least one PMU is assigned on the check-valve.
Case 2: There is some si ∈ V such that c(y2

si
) = 1,∈ Jy, and this coloration

comes from Vsi
∈ Jsi

. By Observation 2, for Ry to be colored, at least one PMU
has to be assigned to the check-valve.

Case 3: Vy be a propagator. But then, S′ is not zero forcing since c(Ey) = 0
and c(Ry) = 0 and they are in N(y).

Case 4: There is some vi ∈ N(y) such that a coloration happens on Ry ∈ Jy

from Evi
∈ Jvi

. Then, either there is some t ∈ Jvi
∩ S and so S is a dominating

set, or no PMU is assigned on Jvi
, but we already know that Evi

cannot be
colored (see Case 1). Consequently, if c(Evi

) = 1 then c(w) = 1 for some w ∈ Jvi

contradicting S not being a dominating set.
Thus S is a dominating set of G. Further, Construction 3 can be carried out

in polynomial time and |S|= |S′|, yielding the desired result. ��

4 Non-approximation

In this section, we will show that the reductions presented in the proofs of
Theorems 1 and 2 are L-reductions.

But above all, it is clear it exists a n
2 -approximation; it is sufficient to put

one PMU incident to each vertex (at most n), and the lower bound for optimal
solution is at least two PMUs (in cubic graph) so we obtain a n

2 -approximation.

Theorem 3. Power Edge Set is n
2 -approximable

For the first, by construction, we have OPT (I ′) = OPT (I) + n. Let S be
a solution to I, suppose that n > 3|S|. By the pigeon hole principle, there is a
vertex which cover at least four edges, which is impossible because the degree of
each vertex is three, so n ≤ 3|S|. Thus OPT (I ′) ≤ 4OPT (I).

Moreover, by construction, we have

val(g(S′) ≤ val(S′) − n ≤ val(S′) − OPT (I ′) + OPT (I)

Thus, we construct an L-reduction with α1 = 4 and α2 = 1.
Assuming P 
= NP, Vertex Cover is hard to approximate to a factor 1.36

[6] and [9], thus yielding the desired result:

|S′| ≥ |g(S′)|+OPT (I ′) − OPT (I)
≥ 1.36OPT (I) + OPT (I ′) − OPT (I)
≥ 1.09OPT (I ′) ��

Corollary 1. Under P 
= NP, Power Edge Set on cubic graph cannot be
approximated to within a factor better than 1.09.
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Assuming, Vertex Cover is hard to approximate to a factor 2− ε [16] and
[9], thus yielding the desired result:

|S′| ≥ |g(S′)|+OPT (I ′) − OPT (I)
≥ 2 − ε OPT (I) + OPT (I ′) − OPT (I)
≥ 5/4 − ε OPT (I ′) ��

Corollary 2. Under UGC, Power Edge Set on cubic graph cannot be approx-
imated to within a factor better than 5/4.

Previous results mainly show that Power Edge Set do not admit a PTAS
algorithm, even on cubic graphs.

For the second, we got OPT (I) = OPT (I ′), so clearly it is a S-reduction.
Dominating Set do not admit a polynomial time approximation algorithm with
ratio O(log n) ([18]), so Precolored Power Edge Set and Precolored
Zero Forcing Set do not too.

Corollary 3. Under NP 
= DTIME(npolylogn), Precolored Power Edge
Set and Precolored Zero Forcing Set do not admit a polynomial time
approximation algorithm with ratio O(log n).

Fig. 6. An interval graph (a), with its interval representation (b), a perfect path decom-
position of this graph (c) and its bag partition according to Definition 4 (d).

5 ZFS on Proper Interval Graphs

Preliminaries. A graph G is an interval graph if it is the intersection graph of
a family of intervals on the real line. Each interval is represented by a vertex of
G and an intersection between two intervals is represented by an edge between
the corresponding vertices (see Fig. 6). G is called proper interval if it has an
interval representation in which no interval is properly contained in another.

In the following, we use perfect path decompositions to solve Power Edge
Set on proper interval graphs.
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Definition 3. A path decomposition D of a graph G = (V,E) is a sequence
(Xi)i=1...� of subsets of V (called bags), verifying the following properties:

(a) for each xy ∈ E, there is some Xi with x, y ∈ Xi (each edge is in a bag),
(b) for i ≤ j ≤ k, Xi ∩ Xk ⊆ Xj (bags containing any v ∈ V are consecutive).

D is called perfect if the number of bags and their sizes are minimal under (a)
and (b). The pathwidth of D is the size of the largest Xi minus one.

Lemma 5. If G is connected, then Xi ∩ Xi−1 
= ∅ for all i > 1.

Proof. Towards a contradiction, assume that Xi ∩ Xi−1 = ∅. Then, by Defi-
nition 3(b), A :=

⋃
1≤k≤i−1 Xk and B :=

⋃
i≤l Xl are disjoint. Since G is con-

nected, there is an edge xy between A and B, but no bag contains both x and
y, contradicting Definition 3(a). ��
Lemma 6. Let G be an interval graph. A perfect path decomposition D of G
can be computed in linear time and

each bag of D is a maximal clique in G.

Proof. Being an interval graph, G admits a linear order of its maximal cliques
such that, for each vertex v, all maximal cliques containing v are consecutive [10]
and this order can be computed in O(n + m) time [14]. Such a “clique path”
naturally corresponds to a perfect path decomposition and we know that vertices
of each bags induce maximal cliques. In a clique path, the size and the number
of bags are minimal. ��

Now we can present our algorithm, using previous results:

The Algorithm. In the following, G is a connected proper interval graph and
D = (X1, ...,X�) is a perfect path decomposition of G. We show that it is possible
to apply Rule R2 once per maximal clique Xi in interval graphs. The central
concept is a partition of the bags of D into four sets.

Definition 4 (Bag partition, see Fig. 6). Let Xi be a bag
in a perfect path decomposition of an interval graph.

– IO (Inside Only) is the set Xi \ (Xi−1 ∪ Xi+1).
– LO (Left Only) is the set Xi ∩ Xi−1 \ Xi+1.
– RO (Right Only) is the set Xi ∩ Xi+1 \ Xi−1.
– LR (Left Right), contains all remaining vertices of Xi.

ROLO

LR

IO

Note that RO(Xi) and RO(Xj) are disjoint for i 
= j. Further, since G is proper
interval, RO(Xi) 
= ∅ for all i < �. Our algorithm will simply choose any vertex
of RO(Xi) ∪ IO(Xi) for all i. This can clearly be done in linear time and we
show that it is correct and optimal.

Lemma 7. Let G be a connected interval graph and let D = (X1, . . . , X�) be a
perfect path decomposition of G. Let S be a set intersecting each RO(Xi) for all
1 ≤ i < � in exactly one vertex and intersecting IO(X�) in exactly one vertex.
Then, S := V \ S is an optimal zero forcing set for G.



Power Edge Set and Zero Forcing Set Remain Difficult in Cubic Graphs 133

Proof. For each i, let xi be the ith vertex of S, that is, S ∩ (RO(Xi)∪IO(Xi)) =
{xi} for each Xi ∈ D. We show that the order σ consisting of S in any order
followed by (x1, . . . , x�) is valid for S. To this end, let 1 ≤ j < �. Note that
IO(Xj) ∪ LO(Xj) = ((Xj \ Xj+1) ∩ Xj−1) ∪ ((Xj \ Xj+1) \ Xj+1) = Xj \ Xj+1.
Thus, there is some u ∈ IO(Xj)∪LO(Xj) as otherwise, Xj ⊆ Xj+1 contradicting
D being perfect. Towards a contradiction, assume NG[u] 
≤σ xj , that is, there
is some v ∈ NG[u] with xj <σ v. By construction of σ, there is a k > j such
that v = xk. By construction of S, we have xk ∈ IO(Xk) ∪ RO(Xk), implying
xk /∈ Xk−1 by definition of RO and IO. Further, since uxk is an edge of G, there
is a bag Xi containing both u and xk and, since u ∈ IO(Xj)∪LO(Xj) we know
i ≤ j. But then, xk occurs in Xi, not in Xk−1 but again in Xk, contradicting
D being perfect. It remains to treat x�, but since x� is the last vertex of σ,
NG[u] ≤σ x� for all u ∈ NG(x�).

Finally, optimality of S is implied by Lemma 1 as |S|= |D|. ��
Theorem 4. Zero Forcing Set is solvable in O(n+m) time on proper inter-
val graphs.

Proof. We know that our algorithm is exact, compute the path decomposition
PD can done in linear time (Lemma 6) and partitioning its vertices is easy. So
there is a polynomial time algorithm for Zero Forcing Set in proper interval
graph. ��

6 Conclusion and Perspectives

In this article, we investigated Power Edge Set and Zero Forcing Set from
the point of view of computational complexity. We obtained a series of negative
results, refining the previous hardness results and excluding certain exact algo-
rithms. On the positive side, we give a linear-time algorithm in case the input is
a proper interval graph and a naive approximation algorithm. There is a big gap
between positive and negative result in approximation so further research will
be focused on developing efficient polynomial-time approximation algorithms, as
well as considering more special cases and structural parameterizations.

References

1. Baker, B.: Approximation algorithms for NP-complete problems on planar graphs.
J. ACM 41(1), 153–180 (1994)

2. Bar-Yehuda, R., Even, S.: On approximating a vertex cover for planar graphs. In:
Proceedings of the 14th Annual ACM Symposium on Theory of Computing, 5–7
May 1982, San Francisco, California, USA, pp. 303–309 (1982)

3. Barioli, F., et al.: Zero forcing sets and the minimum rank of graphs. Linear Algebra
Appl. 428, 1628–1648 (2008)

4. Cheng, X., Huang, X., Li, D., Wu, W., Du, D.: A polynomial-time approximation
scheme for the minimum-connected dominating set in ad hoc wireless networks.
Networks 42(4), 202–208 (2003)



134 P. Cazals et al.

5. Darties, B., Champseix, N., Chateau, A., Giroudeau, R., Weller, M.: Complexity
and lowers bounds for power edge set problem. J. Discrete Algorithms 52–53,
70–91 (2018)

6. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann.
Math. 162, 439–485 (2005)

7. Dorfling, M., Henning, M.A.: A note on power domination in grid graphs. Discrete
Appl. Math. 154(6), 1023–1027 (2006)

8. Fan, N., Watson, J.-P.: Solving the connected dominating set problem and power
dominating set problem by integer programming. In: Lin, G. (ed.) COCOA 2012.
LNCS, vol. 7402, pp. 371–383. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31770-5 33

9. Feige, U.: Vertex cover is hardest to approximate on regular graphs. Technical
Report MCS03-15 (2003)

10. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math.
15(3), 835–855 (1965). https://projecteuclid.org:443/euclid.pjm/1102995572

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

12. Gou, B.: Generalized integer linear programming formulation for optimal PMU
placement. IEEE Trans. Power Syst. 23(3), 1099–1104 (2008)

13. Guo, J., Niedermeier, R., Raible, D.: Improved algorithms and complexity results
for power domination in graphs. Algorithmica 52(2), 177–202 (2008)

14. Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-BFS and partition refine-
ment, with applications to transitive orientation, interval graph recognition and
consecutive ones testing. Theor. Comput. Sci. 234(1–2), 59–84 (2000)

15. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in
graphs applied to electric power networks. SIAM J. Discrete Math. 15(4), 519–529
(2002)

16. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2- ε. J.
Comput. Syst. Sci. 74(3), 335–349 (2008)

17. Li, Y., Thai, M.T., Wang, F., Yi, C., Wan, P., Du, D.: On greedy construction of
connected dominating sets in wireless networks. Wirel. Commun. Mobile Comput.
5(8), 927–932 (2005)

18. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. J. ACM (JACM) 41(5), 960–981 (1994)

19. Milosevic, B., Begovic, M.: Nondominated sorting genetic algorithm for optimal
phasor maesurement placement. IEEE Power Eng. Rev. 22(12), 61–61 (2002)

20. Poirion, P., Toubaline, S., D’Ambrosio, C., Liberti, L.: The power edge set problem.
Networks 68(2), 104–120 (2016)

21. Simonetti, L., Salles da Cunha, A., Lucena, A.: The minimum connected dominat-
ing set problem: formulation, valid inequalities and a branch-and-cut algorithm.
In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp. 162–169.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21527-8 21

22. Thai, M.T., Du, D.Z.: Connected dominating sets in disk graphs with bidirectional
links. IEEE Commun. Lett. 10(3), 138–140 (2006)

23. Toubaline, S., D’Ambrosio, C., Liberti, L., Poirion, P., Schieber, B., Shachnai, H.:
Complexity and inapproximability results for the power edge set problem. J. Comb.
Optim. 35(3), 895–905 (2018)

https://doi.org/10.1007/978-3-642-31770-5_33
https://doi.org/10.1007/978-3-642-31770-5_33
https://projecteuclid.org:443/euclid.pjm/1102995572
https://doi.org/10.1007/978-3-642-21527-8_21


Power Edge Set and Zero Forcing Set Remain Difficult in Cubic Graphs 135

24. Toubaline, S., Poirion, P.-L., D’Ambrosio, C., Liberti, L.: Observing the state of a
smart grid using bilevel programming. In: Lu, Z., Kim, D., Wu, W., Li, W., Du,
D.-Z. (eds.) COCOA 2015. LNCS, vol. 9486, pp. 364–376. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26626-8 27

25. Yuill, W., Edwards, A., Chowdhury, S., Chowdhury, S.P.: Optimal PMU place-
ment: a comprehensive literature review. In: 2011 IEEE Power and Energy Society
General Meeting, July, pp. 1–8 (2011)

https://doi.org/10.1007/978-3-319-26626-8_27

	Power Edge Set and Zero Forcing Set Remain Difficult in Cubic Graphs
	1 Introduction
	2 Computational Results
	3 Parameterized Hardness
	4 Non-approximation
	5 ZFS on Proper Interval Graphs
	6 Conclusion and Perspectives
	References




