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Abstract. A well-studied problem in the online setting, where requests
have to be answered immediately without knowledge of future requests, is
the call admission problem. In this problem, we are given nodes in a com-
munication network that request connections to other nodes in the net-
work. A central authority may accept or reject such a request right away,
and once a connection is established its duration is unbounded and its
edges are blocked for other connections. This paper examines the admis-
sion problem in tree networks. The focus is on the quality of solutions
achievable in an advice setting, that is, when the central authority has
some information about the incoming requests. We show that O(m log d)
bits of additional information are sufficient for an online algorithm run
by the central authority to perform as well as an optimal offline algo-
rithm, where m is the number of edges and d is the largest degree in the
tree. In the case of a star tree network, we show that Ω(m log d) bits are
also necessary (note that d = m). Additionally, we present a lower bound
on the advice complexity for small constant competitive ratios and an
algorithm whose competitive ratio gradually improves with added advice
bits to 2�log2 n�, where n is the number of nodes.

1 Introduction

A well-studied problem in the context of regulating the traffic in communica-
tion networks is the so-called call admission problem, where a central authority
decides about which subset of communication requests can be routed. This is a
typical example of an online problem: every request has to be routed or rejected
immediately without the knowledge about whether some forthcoming, possibly
more profitable, requests will be blocked by this decision.

We consider the call admission problem on trees (short CAT), which is an
online maximization problem. An instance I = (r1, . . . , rk) consists of requests
r = (vi, vj) with i, j ∈ {0, . . . , n − 1} and vi < vj , representing the unique path
in a tree network that connects vertices vi and vj . We require that all requests in
I are pairwise distinct. The first request contains the network tree T = (V,E),
given to the algorithm in form of an adjacency list or matrix. In particular, we
study the problem framework in which an accepted connection has an unbounded
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duration and each edge in the network may be used by at most one request, i.e.,
it has a capacity of 1. Thus, a valid solution O = (y1, . . . , yk) ∈ {0, 1}k for I
describes a set P(I,O) := {ri | i ∈ {1, . . . , k} and yi = 1} of edge-disjoint paths
in T , where gain(I,O) := |P(I,O)|. Whenever I is clear from the context, we
write gain(O) instead of gain(I,O).

An online algorithm Alg for CAT computes the output sequence (solution)
Alg(I) = (y1, . . . , yk), where yi is computed from x1, . . . , xi. The gain of Alg’s
solution is given by gain(Alg(I)). Alg is c-competitive, for some c ≥ 1, if
there exists a constant γ such that, for every input sequence I, gain(Opt(I)) ≤
c · gain(Alg(I))+ γ, where Opt is an optimal offline algorithm for the problem.
This constitutes a measure of performance used to compare online algorithms
based on the quality of their solutions, which was introduced by Sleator and
Tarjan [18].

The downside of competitive analysis as a measurement of performance is
that it seems rather unrealistic to compare the performance of an all-seeing
offline algorithm to that of an online algorithm with no knowledge at all about
future requests. This results in this method not really apprehending the hardness
of online computation. Moreover, it cannot model information about the input
that we may have outside the strictly defined setting of the problem. The advice
model was introduced as an approach to investigate the amount of information
about the future an online algorithm lacks [6,7,12,13,15]. It investigates how
many bits of information are necessary and sufficient to achieve a certain output
quality, which has interesting implications for, e.g., randomized online compu-
tation [5,9,16]. For lower bounds on this number in particular, we do not make
any assumptions on the kind of information the advice consists of.

Let Π be an online maximization problem, and consider an input sequence
I = (x1, . . . , xk) of Π. An online algorithm Alg with advice computes the output
sequence Alg(I)φ = (y1, . . . , yk) such that yi is computed from φ, x1, . . . , xi,
where φ is the content of the advice tape, i.e., an infinite binary sequence. Alg
is c-competitive with advice complexity b(k) if there exists a constant γ such that,
for every k and for each input sequence I of length at most k, there exists some
φ such that gain(Opt(I)) ≤ c ·gain(Algφ(I))+γ and at most the first b(k) bits
of φ have been read during the computation of Algφ(I).

For a better understanding, consider the following example. A straightfor-
ward approach to an optimal online algorithm with advice for CAT is to have one
bit of advice for each request in the given instance. This bit indicates whether the
request should be accepted or not. Thus, Alg reads |I| advice bits and accepts
only requests in Opt(I), i.e., Alg is optimal.

This approach gives us a bound on the advice complexity that is linear in
the size of the instance. Opposed to most other online problems however, call
admission problems, like CAT, are usually analyzed with respect to the size of
the communication network instead of the size of an instance as stated in the
general definition. Thus, the advice complexity of this naive optimal algorithm
on a tree with n vertices is of order n2.
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Related Work. The call admission problem is a well-studied online problem;
for an overview of results regarding classical competitive analysis for this problem
on various graph topologies, see Chapter 13 in the textbook by Borodin and El-
Yaniv [3]. For the call admission problem on path networks (also called the
disjoint path allocation problem, short DPA), Barhum et al. [2] showed that
l − 1 advice bits are both sufficient and necessary for an online algorithm to
be optimal, where l is the length of the path. They also generalized the log2 l-
competitive randomized algorithm for DPA presented by Awerbuch et al. [1].
Gebauer et al. [14] proved that, with l1−ε bits of advice, no online algorithm for
DPA is better than (δ log2 l)/2-competitive, where 0 < δ < ε < 1. The advice
complexity of call admission problems on grids was investigated by Böckenhauer
et al. [8].

When considering trees as network structure, we still have the property that
the path between two nodes is unique in the network, thus all lower bounds
on the advice complexity easily carry over by substituting the length l of the
path network by the diameter D of the tree network. These lower bounds can be
further improved as shown in Sect. 2. Concerning upper bounds, Borodin and El-
Yaniv [3] presented two randomized online algorithms, a 2�log2 n�-competitive
algorithm, first introduced by Awerbuch et al. [1], and an O(log D)-competitive
algorithm. We will modify the former in Subsect. 3.2 to an online algorithm that
reads �log2 log2 n− log2 p� advice bits and is ((2p+1 −2)�log2 n/p�)-competitive,
for any integer 1 ≤ p ≤ log2 n.

Another problem closely related to DPA is the length-weighted disjoint path
allocation problem on path networks, where instead of optimizing the number
of accepted requests, one is interested in maximizing the combined length of all
accepted requests. Burjons et al. [10] extensively study the advice complexity
behavior of this problem.

Overview. In Sect. 2, we present the already mentioned lower bound for opti-
mality, which even holds for star trees. We complement this with lower bounds
for the trade-off between the competitive ratio and advice, based on reductions
from the well-known string guessing problem [4]. Section 3 is devoted to the cor-
responding upper bounds. In Subsect. 3.1, we present algorithms for computing
an optimal solution, both for general trees and for star trees and k-ary trees. As
mentioned above, in Subsect. 3.2, we analyze the trade-off between the competi-
tive ratio and advice and estimate how much the competitive ratio degrades by
using less and less advice bits. Due to space restrictions, some of the proofs are
omitted in this extended abstract.

Notation. Following common conventions, m is the number of edges in a graph
and n the number of vertices. The degree of a vertex v is denoted by d(v). Let
v0, . . . , vn−1 be the vertices of a tree T with some order v0 < · · · < vn−1. This
order can be arbitrarily chosen, but is fixed and used as order in the adjacency
matrix or adjacency list of the tree. Hence, an algorithm knows the ordering on
the vertices when given the network.

For the sake of simplicity, we sometimes do not enforce that v < v′, but regard
(v, v′) and (v′, v) as the same request. For a request r = (v, v′), the function
edges : V × V → P(E) returns, for request r, the set of edges corresponding to



Call Admission Problems on Trees with Advice 111

the unique path in T that connects v and v′. Let edges(r) := {e1, . . . , el}; we
call l the length of request r. Note that all logarithms in this paper are of base
2, unless stated otherwise.

2 Lower Bounds

First we present lower bounds on the number of advice bits for the call admission
problem on trees. We first look at optimal algorithms, then we focus on the
connection between the competitive ratio and the advice complexity.

2.1 A Lower Bound for Optimality

Barhum et al. [2] proved that solving DPA optimally requires at least l−1 advice
bits. As DPA is a subproblem of the call admission problem on trees, this bound
also holds for CAT. We can improve on this by considering instances on trees of
higher degree. We focus on the simplest tree of high degree, the star tree.

Theorem 1. There is no optimal online algorithm with advice for CAT that
uses less than �(m/2) log(m/e)� advice bits on trees of m edges.

Proof Sketch. This proof is based on the partition-tree method as introduced
by Barhum et al. [2]. A partition tree of a set of instances I is defined as a
labeled rooted tree such that (i) every of its vertices v is labeled by a set of
input sequences Iv and a number �v such that all input sequences in Iv have a
common prefix of length at least �v, (ii) for every inner vertex v of the tree, the
sets at its children form a partition of Iv, and (iii) the root r satisfies Ir = I.
If we consider two vertices v1 and v2 in a partition tree that are neither an
ancestor of each other, with their lowest common ancestor v and any input
instances I1 ∈ Iv1 and I2 ∈ Iv2 such that, for all optimal solutions for I1 and I2,
their prefixes of length �v differ, then any optimal online algorithm with advice
needs a different advice string for each of the two input sequences I1 and I2.
This particularly implies that any optimal online algorithm with advice requires
at least log(w) advice bits, where w is the number of leaves of the partition tree.
We sketch the construction of the instances that can be used for building such
a partition tree.

Consider the star trees S2k for k ≥ 1 with 2k edges. Let v0, v1, . . . , v2k be
the vertices in S2k, where v0 denotes the center vertex. We construct a set I of
input sequences for S2k so that any two input sequences share a common prefix
of requests and each input I ∈ I has a unique optimal solution Opt(I), which
is only optimal for this particular instance.

Each input instance will be partitioned into k phases. At the end of each
of these phases, one vertex will be blocked for all subsequent phases. We can
uniquely describe each of our instances I(j1,...,jk) by the sequence of these blocked
vertices (vj1 , . . . , vjk). Note that we will not use every possible vertex sequence
for our construction. In phase i with i ∈ {1, . . . , k}, we request in ascending order
all paths from the non-blocked vertex v∗

i with the smallest index to all other non-
blocked vertices, then we block v∗

i and vji for all future phases. We note that,
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Fig. 1. Input sequence I(3,5,6) = (r1, . . . , r9) on star graph S6 partitioned into 3 phases.
Red vertices are blocked, a red edge indicates the request is in the optimal solution
Opt(I(3,5,6)). For the sake of simplicity, the center vertex v0 is omitted from the draw-
ings; thus all lines represent paths of length 2 (Color figure online).

at the start of phase 1, all vertices are non-blocked. Let I(j1,...,ji) denote the set
of all input sequences whose tuples have prefix (j1, . . . , ji) with i ≤ k. Observe
that, by definition, all input sequences in I(j1,...,ji) have the same requests until
phase i ends and that tuple (j1, . . . , jk) describes exactly one input sequence in
I, i.e., |I(j1,...,jk)| = 1. Figure 1 shows an illustration of such an input sequence
for the star S6, i.e., for k = 3.

We can prove that, for each input sequence I(j1,...,jk), the unique optimal
solution is Opt(I(j1,...,jk)) := {r1, . . . , rk}, where ri := (v∗

i , vji) is the request
accepted by Opt in each phase i. The next step is to show that, for any two
input sequences in I, their unique optimal solution Opt differs. Consider two
input sequences I, I ′ ∈ I with I �= I ′ and let (j1, . . . , jk) and (j′

1, . . . , j
′
k) be their

identifying tuples, respectively. As the two input sequences are non-identical,
there must exist some smallest index i so that ji �= j′

i. In particular, since i
marks the first phase at whose end different vertices are blocked in I and I ′,
the requests in phase i must be identical in both input sequences. Let v∗

i be the
non-blocked vertex with the smallest index in phase i in both input sequences.
By definition of Opt, request (v∗

i , vji) ∈ Opt(I) and request (v∗
i , vj′

i
) ∈ Opt(I ′)

with ji �= j′
i. It thus follows that Opt(I) �= Opt(I ′) as both requests share an

edge.
Since the optimal solution for the common prefix differs between two

instances, no online algorithm without advice can be optimal on this set, because,
with no additional information on the given instance (i.e., based on the prefix
alone) the two instances cannot be distinguished. It follows that the algorithm
needs a unique advice string for each instance in the set. Thus, it only remains to
bound the number of instances in I. Each instance has a unique label I(j1,...,jk),
so that the total number equals the number of tuples (j1, . . . , jk) of pairwise
distinct vertex indices, that is,

(2k − 1) · (2k − 3) · (2k − 5) · · · · · 1 = (2k − 1)!! =
(2k)!
2k · k!

,
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which we can bound from below using Stirling’s inequalities, yielding

(2k)!
2k · k!

≥ (2k)!
2k · e

√
k · (k

e )k
≥

√
2π2k · (2k

e )2k

e
√

k · ( 2k
e )k

≥
√

4π

e
·
(

2k

e

)k

≥
(

2k

e

)k

.

Using that m = 2k, we conclude that at least �(m/2) log(m/e)� advice bits
are necessary for any online algorithm to be optimal on the tree Sm. 
�

This lower bound is asymptotically larger by a logarithmic factor than
the DPA lower bound [2], which suggests that the advice complexity of CAT
increases with the degree of the tree network and not only with its size.

2.2 A Lower Bound for Competitiveness

In this section, we present a reduction from an online problem called the string
guessing problem to CAT. In the string guessing problem with unknown history
(q-SGUH), an algorithm has to guess a string of specified length z over a given
alphabet of size q ≥ 2 character by character. After guessing all characters, the
algorithm is informed of the correct answer. The cost of a solution Alg(I) is the
Hamming distance between the revealed string and Alg(I). Böckenhauer et al.
[4] presented a lower bound on the number of necessary advice bits depending
on the achieved fraction of correct character guesses.

We will use this lower bound for our results, reducing the q-SGUH problem
to CAT by assigning each element of the alphabet to an optimal solution for a
family of instances on the star tree Sd where d = q. The idea is to have a common
prefix on all instances and the last requests specifying a unique optimal solution
for the instance corresponding to the character in the string. For each character
we have to guess, we insert such a star tree S(i) := Sd into our graph such that
the graph is connected but the trees do not share edges. We can then look at
each subtree independently and join the instances to an instance corresponding
to the whole string. Let therefore, for some z, d ∈ N, Tz,d be the set of trees
that can be constructed from subtrees S(i) with i ∈ {1, . . . , z}, such that any
two subtrees share at most one vertex and the tree is fully connected. For each
request of a d-SGUH instance of length z, where the optimal answer would be
the string s1 . . . sz we now construct a sequence of requests for S(i) such that
choosing the optimal set of requests for S(i) corresponds to correctly guessing
si. Then, any algorithm that solves a fraction α of all subtrees optimally can be
used to achieve a fraction α of correct guesses on the d-SGUH instance.

Theorem 2. Every online algorithm with advice for CAT which achieves a com-
petitive ratio of c ≤ d/(d − 1) on any tree T ∈ Tz,d, for d ≥ 3 and z, d ∈ N, has
to read at least (

1 − Hd

(
d − d − 1

c
− 1

))
m

d
log d

advice bits, where Hd is the d-ary entropy function. 
�
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Fig. 2. Lower bound on the number of advice bits stated in Theorem 2 (light green)
and Theorem 3 (dark blue) divided by the number m of edges in T ∈ Tz,d. (Color figure
online)

We can use the same tree structure to prove a better lower bound for small
values of c by changing the reduction instance of CAT. This change increases
the alphabet size of q-SGUH that we can reduce to instances on trees in Tz,d for
q = 2d−1, and allows to prove the following theorem.

Theorem 3. Every online algorithm with advice for CAT which achieves a com-
petitive ratio of c ≤ d/(d − 1 + 1/2d−1) on any tree T ∈ Tz,d, for d ≥ 2 and
z, d ∈ N, has to read at least

(
1 − H2d−1

(
d − d

c

))
m · d − 1

d

advice bits, where Hd is the d-ary entropy function. 
�

Figure 2 depicts the lower bounds of Theorems 2 and 3, respectively.

3 Upper Bounds

In the following, we present online algorithms with advice for the call admission
problem on trees. In the first part, the focus will be on optimal algorithms with
different advice complexities. In the second part, we discuss an algorithm whose
competitiveness gradually improves with added advice bits.

3.1 Optimal Online Algorithms with Advice

The fundamental idea of the following algorithms is to encode the optimal solu-
tion using edge labels as advice. A straightforward approach is to give all requests
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in Opt(I) an identifying number and label the edges of each request with this
identifier. After communicating the labels of all edges, the algorithm will be able
to distinguish which request is in Opt(I) and which is not, by checking whether
all the edges of the request have the same label and no other edges have this
label. As a result, the algorithm can recognize and only accept requests that an
optimal solution accepts.

As for the advice complexity, we need m labels each consisting of a number
in {0, 1, . . . , |Opt(I)|}. Since, for any input sequence I, we have |Opt(I)| ≤ m,
in total m�log(m+1)� advice bits suffice. If |Opt(I)| is much smaller than m, we
can communicate the size of a label using a self-delimiting encoding [17], using
m �log(|Opt(I)| + 1)� + 2 �log�log(|Opt(I)| + 1)�� advice bits in total.

We will continue to use this idea of an identifier for the following algorithms
in a more local manner. Instead of giving each request in Opt(I) a global identi-
fying number and labeling corresponding edges accordingly, we associate identi-
fiers with an optimal request depending on the vertices incident to the request’s
edges.

We can picture this labeling scheme with a request as a row of dominoes,
where each edge of the request represents one domino and consecutive edges have
the same identifying number at their common vertex. Knowing for all edges the
incident edges that are part of the same request, we can reconstruct the paths
belonging to all requests in Opt(I) and since we only need local identifiers, this
reduces the size of each label.

Theorem 4. There is an optimal online algorithm with advice for CAT that
uses at most 2m �log(d + 1)� advice bits, where d is the maximum degree of a
vertex in T .

Proof Sketch. First, let us define such a local labeling formally. For some input
sequence I = (r1, . . . , rl), let Opt(I) ⊆ {r1, . . . , rl} be an arbitrary, but fixed
optimal solution for I. Furthermore, for every vertex v, let Optv(I) be the
subset of requests in Opt(I) which occupy an edge incident with v. Observe
that |Optv(I)| ≤ d(v) as there are d(v) edges incident with v. For all v ∈ V , let
gv : Optv(I) → {1, . . . , d(v)} be an injective function that assigns a number to
each request in Optv(I). These numbers serve as local identifiers of each request
in Optv(I). We define the label function lb as follows; for e = {v, v′} ∈ E, where
v < v′, let

lb(e) :=

{
(lbv(e), lbv′(e)) = (gv(r), gv′(r)) if ∃ r ∈ Opt(I) s.t. e ∈ edges(r),
(0, 0) otherwise.

Thus, if an edge e is used by r ∈ Opt(I), the local identifiers of r for the
two vertices of e constitute the edge label; if unused, e is labeled (0, 0). Observe
that, if e = {v, v′} ∈ edges(r) and r ∈ Opt(I), it follows that r ∈ Optv(I) and
r ∈ Optv′(I), so lb is well-defined. Figure 3 shows an example of a local and a
global labeling side by side. Observe that, for vertex v, we have the label 4 for two
edges, but no label 2. As gv may arbitrarily assign an identifier in {1, . . . , dv},
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Fig. 3. Examples of a global labeling (left) and a local labeling (right) for the same
optimal solution.

the assigned number to a request does not have to be minimal. In the lb-labeled
tree T , we call p = (v′

1, . . . , v
′
l) a labeled path of length l if p is a path in T with

v′
1 < v′

l and lbv′
j
({v′

j−1, v
′
j}) = lbv′

j
({v′

j , v
′
j+1}) �= 0 for all j ∈ {2, . . . , l − 1}.

We refer to p as a complete labeled path if further no other edges incident to
v′
1 or v′

l have label lbv′
1
({v′

1, v
′
2}) or lbv′

l
({v′

k−1, v
′
l}), respectively.

Consider an algorithm Alg′ that reads the labels of all edges from the advice
before starting to receive any request and then computes the set P of all complete
labeled paths in T . Alg′ then accepts a request r = (v, v′) if and only if it
coincides with a complete labeled path in P .

We can prove that Alg′ accepts all requests in Opt(I), and thus is optimal,
by showing that every request in Opt(I) has a coinciding path in P and that
all paths in P are pairwise edge-disjoint. It remains to bound the number of
advice bits used. For an edge {v, v′}, we need �log(d(v) + 1)� + �log(d(v′) + 1)�
advice bits to communicate the label lb({v, v′}). Hence, per vertex w, we use
d(w)·�log (d(w) + 1)� advice bits. Summing up over all vertices yields the claimed
bound. 
�

We can further improve this bound by showing that pinpointing an endvertex
of a request r ∈ Opt(I) does not require a unique identifier.

Theorem 5. There is an optimal online algorithm with advice for CAT that
uses at most (m−1) �log(�d/2�+1)� advice bits, where d is the maximum degree
of a vertex in T .

Proof Sketch. Consider a function gv : Optv(I) → {0, 1, . . . , �d(v)/2�} that
assigns a non-zero identifier only to requests in Optv that occupy two incident
edges to v, otherwise it assigns identifier 0. Observe that we halve the number
of identifiers needed this way.

Let us now refer to a labeled path p = (v′
1, . . . , v

′
l) as complete if and only if

lbv′
1
({v′

1, v
′
2}) = lbv′

l
({v′

l−1, v
′
l}) = 0. (1)

Again, we consider Alg′ that reads the advice lb(e1), . . . , lb(em) for a tree T and
computes the set P of all complete labeled paths in T according to Theorem 4.
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Fig. 4. Example of a labeling as used in Theorem 4 (left) and the inferred full labeling
(right) for the same optimal solution.

Alg′ then accepts a request r = (v, v′) if and only if it coincides with a complete
labeled path in P .

We can show, analogously to the proof of Theorem 4, that all paths in P
are pairwise edge-disjoint and that each request in Opt(I) has a coinciding
path in P (Fig. 4). Thus, as before, Alg′ accepts all requests in Opt(I) and is
therefore optimal. Finally, we note that not all labels have to be communicated.
Consider a vertex v and its incident edges e′

1, . . . , e
′
d(v). Assuming that we have

all labels lbv(e′
1), . . . , lbv(e′

d(v)−1), we can infer the last label lbv(e′
d(v)) as follows.

If there exists only one edge e ∈ {e′
1, . . . , e

′
d(v)} with non-zero label lbv(e), then

lbv(e′
d(v)) = lbv(e), since by definition of gv(r) and lb there are exactly two edges

with the same non-zero label. If there is no such edge, lbv(e′
d(v)) = 0 for the

same reason. Therefore, for each vertex we only need to communicate the advice
for the first d(v) − 1 edges and per edge only �log(�d(v)/2� + 1)� advice bits. In
total, Alg′ needs at most �log(�d/2� + 1)� · (m − 1) advice bits, where d is the
maximum degree of a vertex in T . 
�

Note that the central idea behind the algorithms of Theorems 4 and 5 is to
identify, for all inner vertices, which incident edges belong to the same request
in some fixed optimal solution. We used edge labels as advice to convey this
information. In what follows, we will discuss another technique to encode this
information for some types of trees. First, let us examine the star tree Sd of degree
d; let Id = (r1, . . . , r(d(d−1))/2) denote the instance with all possible requests in
Sd of length 2.

Lemma 1. For the instance Id of CAT on Sd, the size of the set of solutions
O(Id) is at most

�d/2�∑
j=0

d !
2j · j ! · (d − 2j) !

. (2)

Proof. We construct a graph G(Id), where the vertex set corresponds to the
leaf vertices of Sd. For a request r of Id, we insert an edge in G(Id) between
the respective vertices. Note that, since Id consists of all requests between leaf
vertices in Sd, we have that G(Id) is the complete graph Kd on d vertices.
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Any solution O ∈ O(Id) describes a set of edge-disjoint requests, and thus can
be uniquely associated with a matching in G(Id): In the tree Sd, with requests of
length 2, this is equivalent to requests having pairwise different endpoints, i.e.,
their corresponding edges must form a matching in G(Id). Thus, the size of the
set O(Id) is the number of matchings in G(Id), which is given by the Hosoya
index1 of Kd, that is, by (2). 
�

Now consider an arbitrary instance I∗ of CAT on Sd and an optimal solution
Opt ∈ O(I∗). Any algorithm that knows the partial solution of Opt for requests
of length 2 is optimal on I∗, as it can allocate requests of length 2, such that
the edges of length-1 requests in Opt are not blocked. Furthermore, note that
this partial solution can be described by a solution in the set O(Id) of instance
Id. Thus, enumerating the elements in the set O(Id) and using the index of the
partial solution as advice yields an algorithm that is optimal on I∗.

Corollary 1. There exists an optimal online algorithm with advice for CAT on
Sd that uses at most⎡

⎢⎢⎢log

⎛
⎝�d/2�∑

j=0

d !
2j · j ! · (d − 2j) !

⎞
⎠

⎤
⎥⎥⎥ ≈

⌈
d

2
log

(
d

e

)
+ log

(
e

√
d

(4e)1/4

)⌉

advice bits. 
�

The asymptotical approximation is given by using Stirling’s inequality on the
bound of Lemma 1 as shown by Chowla et al. [11]. Thus, the upper bound of
Corollary 1 is asymptotically of the same order as the lower bound of Theorem
1 in the previous chapter, which is constructed on a star tree Sd.

We can use the set of solutions O(Id) to construct a similar algorithm as in
Corollary 1 for k-ary trees of arbitrary height. The idea is to regard each inner
vertex of a k-ary tree and its neighbors as a star tree with at most k + 1 leaves.
Since any k-ary tree has at most l := (kh − 1)/(k − 1) inner vertices, we get
subtrees S1, . . . , Sl for which we can give advice as described before. Since the
advice complexity of Theorem 5 is about twice that of Corollary 1 for a star
tree Sk+1, this algorithm reduces the amount of advice used for each inner node,
improving the upper bound for k-ary trees by a factor of about 2 when compared
to Theroem 5.

Theorem 6. There exists an optimal online algorithm with advice for CAT on
k-ary trees of height h that uses at most⎡

⎢⎢⎢
kh − 1
k − 1

· log

⎛
⎝�(k+1)/2�∑

j=0

(k + 1) !
2j · j ! · (k + 1 − 2j) !

⎞
⎠

⎤
⎥⎥⎥

advice bits. 
�
1 The Hosoya index, or Z-index, describes the total number of matchings in a graph.

Note that it counts the empty set as a matching. The above expression for the Hosoya
index of Kd is given by Tichy and Wagner [19].
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3.2 Competitiveness and Advice

A popular approach to create competitive algorithms for online problems is to
divide the requests into classes, and then randomly select a class. Within this
class, requests are accepted greedily and requests of other classes are dismissed.

Awerbuch et al. [1] describe a version of the “classify and randomly select”
algorithm for the CAT problem based on vertex separators as follows. Consider
a tree with n vertices. There has to exist a vertex v′

1 whose removal results in
disconnected subtrees with at most n/2 vertices. Iteratively choose, in each new
subtree created after the (i − 1)-th round, a new vertex to remove and add it to
the set Vi; vertices in this set are called level-i vertex separators. This creates
disjoint vertex classes V1, V2, . . . , V�log n	. We can now separate incoming requests
into levels. A request r is a level-iV request if iV = minj(Vj ∩ V (r) �= ∅) where
V (r) is the set of vertices in the path of the request. The algorithm then chooses
a level i∗V uniformly at random and accepts any level-i∗V request greedily, i.e.,
an incoming level-i∗V request is accepted if it does not conflict with previously
accepted requests.

This randomized algorithm is 2�log2 n�-competitive in expectation and can
be easily adapted to the advice model by choosing the accepted class using
advice. When we reduce the number of classes by a factor of 1/p for some p ∈
{1, . . . , �log n�}, the number of advice bits necessary to communicate the level
index will decrease, but we can expect the greedy scheduling to perform worse.

Theorem 7. For any p ∈ {1, . . . , �log n�} there is an online algorithm with
advice for CAT that uses �log log n − log p� advice bits and is

(
(2p+1 − 2) ·

⌈
log n

p

⌉)
-competitive.

Proof Sketch. We define the set Join(iV , p) to include all requests in I of levels
iV , . . . ,min{iV + (p − 1), log n}. We say that request r is in a subtree S if all its
edges are in S, and use “block” in the sense of two requests having at least one
edge in common. Observe that requests of level iV or higher have all edges in
a subtree created by removing vertices in V1, . . . , ViV −1. We call such a subtree
a level-iV subtree. Let Opt(I) be an optimal solution to I; it can be proven
by induction on p that for all iV ∈ {1, . . . , �log n�}, any request r in a subtree
of level iV can block at most 2p+1 − 2 other requests in Opt(I) ∩ Join(iV , p).
We can conclude that, for a fixed p ∈ {1, . . . , �log n�}, any greedy scheduler
is (2p+1 − 2)-competitive when requests are restricted to a level iV ′ , for some
iV ′ ∈ {1, . . . , �(log n)/p�}. This follows directly from the induction hypothesis.
The competitive ratio and advice complexity are easily deduced from there on.


�

Corollary 2. There exists a 2�log n�-competitive algorithm for CAT that uses
�log log n� advice bits. 
�
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