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Preface

This volume contains the contributed papers presented at IWOCA 2019, the 30th
International Workshop on Combinatorial Algorithms, held at the Dipartimento di
Informatica, Università di Pisa, Italy, during July 23–25, 2019. The conference brings
together researchers on diverse topics related to combinatorial algorithms, such as
algorithms and data structures; complexity theory; graph theory and combinatorics;
combinatorial optimization; cryptography and information security; algorithms on
strings and graphs; graph drawing and labeling; computational algebra and geometry;
computational biology; algorithms for big data and network analytics; probabilistic and
randomized algorithms; algorithm engineering; and new paradigms of computation.

IWOCA is an annual conference series that began 29 years ago as a regional
conference (AWOCA) in Australasia. In 2007, it became an international conference,
so far held in Australia, Canada, Czech Republic, Finland, France, India, Indonesia,
Italy, Japan, Singapore, South Korea, UK, and USA.

Highlights of the scientific program for IWOCA 2019 included invited talks by three
eminent researchers, Professor Marinella Sciortino (University of Palermo), Professor
Stéphane Vialette (CNRS and University Paris-Est), and Professor Ugo Vaccaro
(University of Salerno). We appreciate the excellent talks given by our invited speakers.

The IWOCA 2019 Program Committee engaged the talents of 40 computer scien-
tists and mathematicians. Reflecting the international character of IWOCA, members
of the Program Committee are eminent researchers from Australia, Austria, Canada,
Chile, Czech Republic, Denmark, Finland, France, Germany, Greece, Hong Kong,
Israel, Italy, Japan, The Netherlands, Poland, Romania, South Korea, UK, and USA.
Needless to say, the success of IWOCA relies on the careful and thorough work by the
Program Committee members. We are very grateful for their dedication, expertise, and
timely evaluations facilitated by the use of the EasyChair conference management
system. We also express sincere thanks to the authors who submitted papers for
consideration. The 73 submitted papers underwent rigorous review by the Program
Committee followed by in-depth discussion, resulting in the selection of the 36
high-quality papers that you find in this volume. We appreciate the commitment of
Springer to IWOCA, again publishing the proceedings of IWOCA 2019 in the LNCS
series. We also appreciate Springer’s support for a Best Paper Award.

The IWOCA Steering Committee (Maria Chudnovsky, Charles Colbourn, Costas
Iliopoulos, and Bill Smyth) provided guidance and support that we acknowledge with
thanks. Last, but certainly not least, we express our sincere thanks to the members
of the local Organizing Committee (Anna Bernasconi, Alessio Conte, Roberto Grossi,
Veronica Guerrini, Andrea Marino, Nadia Pisanti, Nicola Prezza, and Giovanna
Rosone) for making the conference a great success.

July 2019 Charles J. Colbourn
Roberto Grossi
Nadia Pisanti
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BWT Variants: A Combinatorial Investigation

Marinella Sciortino

University of Palermo, Italy
marinella.sciortino@community.unipa.it

Abstract. The Burrows–Wheeler transform (BWT) is a reversible transforma-
tion that was introduced in 1994 in the field of data compression and it has also
become a fundamental tool for self-indexing data structures. It is a
context-dependent transformation that produces a permutation of the input text
that is likely to have runs of equal letters (clusters) longer than the ones in the
original text. Such a combinatorial property of BWT make it a versatile tool also
in several other applications, especially in bioinformatics [4, 6]. In [5], a
complexity measure that counts the number of equal-letter runs produced by the
BWT is introduced, by exploring how the number of clusters of the BWT output
varies depending on the number of clusters of the input.

Over the years other variants of the BWT have been proposed, without,
however, obtaining transformations entirely capable of playing the same var-
iegated role as the BWT. Very recently, a whole new class of transformations,
called local ordering trasformation, has been introduced [3]. They have all the
same prerogatives as BWT, i.e., they can be computed and inverted in linear
time, they produce provably highly compressible output, and they support linear
time pattern search directly on the transformed text. Such a class is a special case
of a more general family of transformations based on context-adaptive alphabet
orderings. This more general class includes also the alternating BWT (ABWT),
another invertible transformation recently introduced in connection with a
generalization of Lyndon words. Algorithmic and combinatorial issues on
ABWT have been investigated in [1, 2].

In this talk an overview of the aforementioned transformations is presented,
by focusing on some distinctive algorithmic and combinatorial features that
could represent effective tools for investigating and handling the structure of the
input text.

References

1. Giancarlo, R., Manzini, G., Restivo, A., Rosone, G., Sciortino, M.: The Alternating BWT: An
Algorithmic Perspective (Submitted)

2. Giancarlo, R., Manzini, G., Restivo, A., Rosone, G., Sciortino, M.: Block sorting-based
transformations on words: beyond the magic BWT. In: Hoshi, M., Seki, S. (eds.) DLT 2018.
LNCS, vol. 11088, pp. 1–17. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98654-8_1
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3. Giancarlo, R., Manzini, G., Rosone, G., Sciortino, M.: A new class of searchable and
provably highly compressible string transformations. In: CPM 2019, Leibniz International
Proceedings in Informatics (LIPIcs), vol. 12, pp. 1–12 (2019)

4. Louza, F.A., Telles, G.P., Gog, S., Zhao, L.: Computing burrows-wheeler similarity distri-
butions for string collections. In: Gagie, T., Moffat, A., Navarro, G., Cuadros-Vargas, E. (eds.)
SPIRE 2018. LNCS, vol. 11147, pp. 285–296. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00479-8_23

5. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M., Versari, L.: Measuring the clustering
effect of BWT via RLE. Theor. Comput. Sci. 698, 79–87 (2017)

6. Prezza, N., Pisanti, N., Sciortino, M., Rosone, G.: SNPs detection by eBWT positional
clustering. Algorithms Mol. Biol. 14(1), 3:1–3:13 (2019)
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On Square Permutations

Stéphane Vialette

CNRS and University of Paris-Est, France

Abstract. Given permutations p and r1 and r2, the permutation p is said to be a
shuffle of r1 and r2, in symbols p 2 r1 � r2, if p (viewed as a string) can be
formed by interleaving the letters of two strings p1 and p2 that are
order-isomorphic to r1 and r2, respectively. In case r1 ¼ r2, the permutation p
is said to be a square and r1 ¼ r2 is a square root of p. For example, p ¼
24317856 is a square as it is a shuffle of the patterns 2175 and 4386 that are both

order-isomorphic to r ¼ 2143 as shown in π = 24317856. However, r is not

the unique square root of p since p is also a shuffle of patterns 2156 and 4378

that are both order-isomorphic to 2134 as shown in π = 24317856.
We shall begin by presenting recent results devoted to recognizing square

permutations and related concepts with a strong emphasis on constrained ori-
ented matchings in graphs. Then we shall discuss research directions to address
square permutation challenges in both combinatorics and algorithmic fields.



Superimposed Codes and Their Applications:
Old Results in New Light

Ugo Vaccaro

University of Salerno, Italy

Abstract. Superimposed codes, also known as cover-free families, disjunct
matrices, strongly selective families (and, possibly, with different appellatives),
were introduced in 1948 by Mooers as a tool for fast and efficient information
retrieval in punched card systems. Since then, superimposed codes have found
applications in a surprising variety of areas: compressed sensing, cryptography
and data security, group testing, computational biology, multi-access commu-
nication, database theory, pattern matching, distributed computation, and circuit
complexity, among the others.

Owing to the importance of the different scenarios where superimposed
codes find applications, and starting from the seminal work of Kautz and Sin-
gleton [1964], many researchers have tried to find efficient algorithms to con-
struct good superimposed codes (and still try). In this talk, I will start from
classic results in the area, revisit them in a new light, present a few recent
results, and discuss novel variations of superimposed codes dictated by modern
application scenarios.
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A Note on Handicap Incomplete
Tournaments

Appattu Vallapil Prajeesh1, Krishnan Paramasivam1(B),
and Nainarraj Kamatchi2

1 Department of Mathematics, National Institute of Technology Calicut,
Kozhikode 673601, India

prajeesh p150078ma@nitc.ac.in, sivam@nitc.ac.in
2 Department of Mathematics, Kamaraj College of Engineering and Technology,

Virudhunagar 625701, India
kamakrishna77@gmail.com

Abstract. An equalized incomplete tournament EIT (p, r) on p teams
which are ranked from 1 to p, is a tournament in which every team plays
against r teams and the total strength of the opponents that every team
plays with is a constant. A handicap incomplete tournament HIT (p, r)
on p teams is a tournament in which every team plays against r oppo-
nents in such a way that

(i) the total strength of the opponents that the stronger teams play
with are higher, and

(ii) the total strength of the opponents that the weaker teams play with
are lower.

Thus, every team has an equal chance of winning in a HIT (p, r). A
d-handicap labeling of a graph G = (V,E) on p vertices is a bijection
l : V → {1, 2, · · ·, p} with the property that l(vi) = i and the sequence of
weights w(v1), w(v2), ···, w(vp) forms an increasing arithmetic progression
with difference d, where w(vi) =

∑
v∈N(vi)

l(v). A graph G is d-handicap
graph if it admits a d-handicap labeling. Thus, existence of an r-regular
d-handicap graph guarantees the existence of a HIT (p, r). In this paper,
we give a method to construct new (d + k)-handicap graphs from d-
handicap graphs for all k ≥ 1 and as an application, we characterize
the d-handicap labeling of Hamming graphs. Further, we give another
method to construct EIT (p, r) from an infinite class of HIT (p, r) by
increasing the number of rounds in HIT (p, r).

Keywords: Tournaments · Distance magic labeling ·
Cartesian product · Hamming graph · d-handicap labeling

2010 AMS Subject Classification: 05C90 · 05C78 · 05C76

1 Motivation

All graphs considered in this paper are simple and finite. We use V (G) for the
vertex set and E(G) for the edge set of a graph G. For more graph-theoretic
c© Springer Nature Switzerland AG 2019
C. J. Colbourn et al. (Eds.): IWOCA 2019, LNCS 11638, pp. 1–9, 2019.
https://doi.org/10.1007/978-3-030-25005-8_1
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2 A. V. Prajeesh et al.

notations and terminologies, we refer to Bondy and Murty [1] and Hammack
et al. [2].

In Sedláček [3] introduced the concept of magic labeling of graphs. The moti-
vation for magic labeling comes from the concept of magic squares. A magic
square is an n × n array filled with numbers 1 to n2, each appearing once, such
that the sum of each row, column, and the main and main backward diagonal is
equal to n(n2 + 1)/2. For more details, one can refer to [4]. Magic labeling has
its applications in efficient addressing systems in communication networks, ruler
models and radar pulse codes [5,6].

A complete round-robin tournament of p teams is a tournament in which each
team plays against p−1 teams. If the teams are ranked 1 to p according to their
strength, depending upon the rankings of the teams, where the strength of a team
with rank i is defined as s(i) = p+ 1 − i. Further, the total strength of all oppo-
nents of a team with rank i is defined as S(i) = 1

2p(p+1)−s(i) = 1
2 (p+1)(p−2)+i.

Thus, the sequence S(1), S(2), · · ·, S(p) or shortly {S(i)}pi=1, is an increasing
arithmetic progression with difference one. As the complete round-robin tourna-
ments are generally considered to be fair, a tournament, which consists of p teams
in which each team plays against r, (r < p−1) opponents and {S(i)}pi=1 is again
an increasing arithmetic progression with difference one is a fair incomplete tour-
nament, FIT (p, r). For more details, one can refer [7,8]. A disadvantage of such
a tournament is that the stronger teams play against, the weaker opponents,
while the weaker teams play against, the stronger opponents. This disadvan-
tage is eliminated in equalized incomplete round-robin tournaments, EIT (p, r)
in which every team plays with exactly r other teams and the total strength of
the opponents that team i plays is a constant for every i. It is observed that a
FIT (p, r) exists if and only if an EIT (p, p − r − 1) exists.

Moreover, if one likes to give each team approximately the same chance of
winning, then the weaker teams should play with weaker opponents, whereas the
stronger teams should play with stronger opponents. In such case, {S(i)}pi=1 is
a decreasing arithmetic progression. A tournament in which the above condition
is satisfied and every team plays exactly r games is called a handicap incomplete
tournament HIT (p, r).

2 Definitions

The concept of distance magic labeling was motivated by the notion of magic
squares and equalized incomplete tournaments. The theory was developed by
different authors independently. Refer [9,10] for further details.

Definition 1. [9,10] A distance magic labeling of a graph G on p vertices is a
bijection l : V (G) → {1, 2, · · ·, p} such that for any vertex u of G, the weight
of u, w(u) =

∑

v∈N(u)

l(v) is a constant µ. A graph that admits such a labeling is

called a distance magic graph.

Note that the existence of an r-regular distance magic graph on p vertices,
guarantees to schedule an EIT (p, r). For further results, refer [11]. Motivated
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by the real world problem of handicap incomplete tournaments and as a gener-
alization of Definition 1, Froncek introduced the concept of handicap distance
d-antimagic labeling of a graph.

Definition 2. [12] A handicap distance d-antimagic labeling of a graph G with
p vertices is a bijection l : V (G) → {1, 2, · · ·, p} with the property that l(vi) = i
and the sequence of the weights w(v1), w(v2), · · ·, w(vp) or shortly {w(vi)}pi=1,
forms an increasing arithmetic progression with difference d, where w(vi) =∑

vj∈N(vi)
l(vj). A graph G is a handicap distance d-antimagic graph if it allows

a handicap distance d-antimagic labeling and handicap distance antimagic graph
when d = 1.

In [13], Freyberg refers the same as d-handicap labeling of graphs. It is clear
that the existence of a d-handicap, r-regular graph on p vertices guarantees a
HIT (p, r).

Recall that the Cartesian product of graphs G1, G2, · · ·, Gk is defined as the
graph G1�G2� · · ·�Gk

∼= �k
i=1Gi with vertex set {(x1, x2, · · ·, xk) : xi ∈ V (Gi)},

and any two vertices (x1, x2, · · ·, xk) and (x′
1, x

′
2, · · ·, x′

k) are adjacent whenever
xix

′
i ∈ E(Gi) for exactly one i and xj = x′

j for all j �= i. With respect to the
Cartesian product, the kth power of a graph G is denoted by G�,k = �k

i=1G.
A Hamming graph Hn,q is isomorphic to K�,n

q and has the vertices as n-
tuples (b1, b2, · · ·, bn), where each bi ∈ {0, 1, · · ·, q − 1}. Note that Hn,q is an
n(q−1)-regular graph on qn vertices. Also, Hn,2 is isomorphic to the hypercube,
Qn on 2n vertices.

3 Known Results

Let H(p, r, d) denote an r-regular, d-handicap graph on p vertices. The following
results give an up to date survey of results related to d-handicap graphs.

Theorem 1. [13] If an H(p, r, d) exists, then all of the following are true.

(i) w(xi) = di + (r−d)(p+1)
2 , for all i ∈ {1, 2, · · ·, p}.

(ii) If p is even, then r ≡ d mod 2.
(iii) If p is odd, then r ≡ 0 mod 2.
(iv) p ≥ 4d + 4.
(v) d + 2 ≤ r ≤ p − d − 4.

The following result completely characterizes the existence of a 1-handicap
graph on even number of vertices for all possible r’s.

Theorem 2. [14] An H(p, r, 1) exists when p ≥ 8 and

(i) p ≡ 0 mod 4 if and only if 3 ≤ r ≤ p − 5 and r is odd
(ii) p ≡ 2 mod 4 if and only if 3 ≤ r ≤ p − 7 and r ≡ 3 mod 4,

except when r = 3 and p ∈ {10, 12, 14, 18, 22, 26}.
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The next theorem gives the existence of 1-handicap graphs on odd number
of vertices for some values of r.

Theorem 3. [15] Let p be an odd positive integer. Then an H(p, r, 1) exists for
at least one value of r if and only if p = 9 or p ≥ 13.

The problem remains still open for the remaining values of r. In 2013, Froncek
posted the following problem.

Problem 1. [16] For which triples (p, r, d) there exists an r-regular d-handicap
graph on p vertices.

Recently, Froncek proved the following results on 2-handicap graphs.

Theorem 4. [17] If p ≡ 0 mod 16, then an H(p, r, 2) exists if and only if r is
even and 4 ≤ r ≤ p − 6.

Theorem 5. [18] If p ≡ 8 mod 16 and p ≥ 56, then an H(p, r, 2) exists if r is
even and 6 ≤ r ≤ p − 50.

4 New Results

In this section, we provide a partial solution to Problem 1 by exhibiting infinite
number of d-handicap graphs of high regularity r. First, we give a method to
build (d+k)-handicap graphs from the existing d-handicap graphs, where k ≥ 1.
For simplicity, we denote each vertex by its label. Note that for any x of H, wH(x)
represents the weight of a vertex x in the graph H.

Theorem 6. Let q ≥ 2. If an H(p, d+q, d) exists, then a H(qp, d+2q−1, d+q−1)
exists.

Proof. Let H = H(p, d+ q, d) be a graph with d-handicap labeling l. Clearly the
weight of i, wH(i) = di+ q(p+1)

2 , where i ∈ {1, 2, · · ·, p}. Now, construct q vertex
disjoint copies of H, say H1,H2, · · ·,Hq and let G = H1 ∪ H2 ∪ · · · ∪ Hq. For
k ∈ {1, 2, · · ·, q}, apply l + (k − 1)p to the kth copy of H, that is Hk. For each
i ∈ {1, 2, ···, p}, define (q−1)-factors Fi with q vertices i, i+p, i+2p, ···, i+(q−1)p.
Let F = F1 ∪ F2 ∪ · · · ∪ Fp. Clearly, G ∪ F is (d+ 2q − 1)-regular on qp vertices
(Fig. 1).

Now, it suffices to show that, {w(i)}qpi=1 is an increasing sequence with dif-
ference d + q − 1.

Further, for i ∈ {1, 2, · · ·, p} and k ∈ {1, 2, · · ·, q}, the weight,

wG(i + (k − 1)p) = di +
q(p + 1)

2
+ (d + q)(k − 1)p,

and

wF (i + (k − 1)p) =
q∑

j=1,
j �=k

(
i + (j − 1)p

)
.



A Note on Handicap Incomplete Tournaments 5

F1 F2 Fk Fp

H1

H2

Hk

Hq

1 2 i p

1 + p 2 + p i + p 2p

1 + (k − 1)p 2 + (k − 1)p i + (k − 1)p kp

1 + (q − 1)p 2 + (q − 1)p i + (q − 1)p qp

Fig. 1. Graph G ∪ F.

Therefore, for every i ∈ {1, 2, · · ·, p} and k ∈ {1, 2, · · ·, q},

w(i + (k − 1)p) = wG(i + (k − 1)p) + wF (i + (k − 1)p)

= (d + q − 1)(i + (k − 1)p) +
q2p + q

2
.

Hence, {w(i)}qpi=1 is an increasing sequence with difference d + q − 1. 
�
Now, for even p, repeatedly applying Theorems 2 and 6, we obtain different

classes of (2k)-handicap graphs, for k ≥ 1 as given in the next theorem. Note
that, k ∈ {1, 2, · · ·, p−6

2 }.

Theorem 7. Let k ≥ 1. H(p, 4k, 2k) exists,

(i) if p ≡ 0 mod 16k and p ≥ 16k or
(ii) if p ≡ 4k mod 16k and p ≥ 68k or
(iii) if p ≡ 8k mod 16k and p ≥ 40k or
(iv) if p ≡ 12k mod 16k and p ≥ 60k.


�
Now, consider the Hamming graph Hn,q and represent the vertex (b1, b2, · ·

·, bn) of Hn,q by the integer i, where i is equal to b1 × qn−1 + b2 × qn−2 + · · · +
bn × q0 + 1.

For instance, the vertex (1, 2, 2, 1) of H4,3 is uniquely represented by the
integer i = 1 × 33 + 2 × 32 + 2 × 31 + 1 × 30 + 1 = 53. On the other hand, the
integer i = 79 uniquely represents the vertex (2, 2, 2, 0) of H4,3, where (2, 2, 2, 0)
is obtained by finding the base three representation of the integer i − 1 = 78
(Fig. 2).

Now, for a fixed q, if we consider the graph H2,q, for i ∈ {1, 2, · · ·, q}, and
assign lH2,q (i) = i, then the respective weights are,

wH2,q (i) =
q(q + 1)

2
− i + (i + q) + (i + 2q) + · · · + (i + (q − 1)q).
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(0, 0)

1

(0, 1)

2
(0, 2)

3
(0, 3)

4

(1, 0)

5

(1, 1)

6
(1, 2)

7
(1, 3)

8

(2, 0)

9

(2, 1)

10
(2, 2)

11
(2, 3)

12

(3, 0)

13

(3, 1)

14
(3, 2)

15
(3, 3)

16

Fig. 2. 2-handicap labeling of H2,4.

Further, by varying k from 2 to q, the weights of the remaining vertices of H2,q

can be obtained as,

wH2,q (i + (k − 1)q) = w2,q(i) + (q − 1)(k − 1)q − (i + (k − 1)q) + i,

where i ∈ {1, 2, · · ·, q}. Thus,

wH2,q (i + (k − 1)q) =
1
2
q(q + 1) − i +

q−1∑

j=1

(i + qj) + (q − 1)(k − 1)q

−(i + (k − 1)q) + i

= (q − 2)(i + (k − 1)q) +
1
2
q(q2 + 1),

where k ∈ {1, 2, · · ·, q}.
Hence, for every vertex i of H2,q, the weight is,

wH2,q (i) = (q − 2)i +
1
2
q(q2 + 1), where i ∈ {1, 2, · · ·, q2}.

Now, if we assume that Hr,q is d-handicap with d = rq − q − r. That is,

wr,q(i) = (rq − q − r)i +
1
2
q(qr + 1), where i ∈ {1, 2, · · ·, qr}.

Then, one can see that Hr,q is a H(qr, r(q− 1), rq− q− r). Hence, we obtain
a H(qr+1, (r + 1)(q − 1), (r + 1)(q − 1) − q), which is isomorphic to Hr+1,q (by
the construction in Theorem 6).

Note that, lHr+1,q (i + (k − 1)qr) = lHr,q
(i) + (k − 1)qr where i ∈ {1, 2, · ·

·, qr}, k ∈ {1, 2, · · ·, q}. Now we get,

wr+1,q(i) = ((r + 1)q − q − (r + 1))i +
1
2
q(qr+1 + 1),

where i ∈ {1, 2, · · ·, qr+1}.
Hence by the principle of mathematical induction, we obtain,
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Theorem 8. The Hamming graph Hn,q is d-handicap with d = nq−q−n, where
n, q ∈ N − {1}. 
�
Corollary 1. The hypercube Qn is d-handicap with d = n − 2. 
�

Now, for every p2, p is odd and p > 1, we construct distance magic graphs
on p2 vertices from d-handicap graphs obtained from Theorem 8.

The following technique helps to find a sequence of H(q2, k(q − 1), q − k) for
all k ∈ {2, 3, · · ·, q}. When k = q, we obtain a (q2 − q)-regular distance magic
graph on q2 vertices.

Theorem 9. Let q > 1 be odd. For every k from 2 to q, there exists a H(q2, k(q−
1), q − k).

Proof. From Theorem 8, we obtain a H ∼= H(q2, 2q − 2, q − 2) for all q > 1
and q-odd. Now, construct certain (q × q)-matrices, Mq−3,Mq−4, · · ·,M0 in the
following manner, which precise to define the new set of (q − 1)-factors, which
can be attached to the existing H(q2, k(q− 1), q−k) to obtain H(q2, (k+1)(q−
1), q − (k + 1)). For any s ∈ {1, 2, · · ·, q − 2} and for all i, we define the elements
of Mq−(s+2) as,

m
q−(s+2)
i,j = (j − 1)q + (i + (j − 1)s mod q), for j ∈ {1, 2, · · ·, q}.

While determining the elements m
q−(s+2)
i,j , if (i+ (j − 1)s mod q) is 0, then

replace (i+ (j − 1)s mod q) by q. Now one can see that each Mq−k contains all
the elements from 1 to q2. Further, the weight of each element mq−(s+2)

i,j is given
as,

w(mq−(s+2)
i,t ) =

∑

j,j �=t

m
q−(s+2)
i,j , where j ∈ {1, 2, · · ·, q}.

Now, one can see that the weight of each m
q−(s+2)
i,j is,

w(mq−(s+2)
i,j ) =

(q − 1)q
2

q +
q(q + 1)

2
− m

q−(s+2)
i,j =

q3 + q

2
− m

q−(s+2)
i,j .

Hence, if we consider the weight of all the elements 1, 2, ···, q2, then they form
an decreasing arithmetic progression q3+q

2 −1, q3+q
2 −2, ···, q3+q

2 −q2 respectively,
with difference one.

Consider the matrix Mq−3 and define (q − 1)-factors Fr’s, whose vertices
are the elements mq−3

r,1 ,mq−3
r,2 , · · ·,mq−3

r,q , r ∈ {1, 2, · · ·, q}. Let F be the union
of all such F1, F2, · · ·, Fq. Construct a new graph G = H ∪ F , with the vertices
1, 2, · · ·, q2 and regularity 3(q − 1). Now, it suffices to show that weights of the
vertices form an increasing arithmetic progression with new d = q − 3. Further,

wH(i) = (q − 2)i +
1
2
q(q2 + 1), where i ∈ {1, 2, · · ·, q2}, and
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wF (i) =
q3 + q

2
− i, where i ∈ {1, 2, · · ·, q2}.

Hence, the weight of each vertex i in G is obtained as,

wG(i) = wH(i) + wF (i) = (q − 3)i +
q3 + q

2
.

Thus, we obtain an H(q2, 3(q − 1), q − 3). Now to construct H(q2, 4(q −
1), q − 4), we follow the same technique given above by replacing Mq−3 with
the matrix Mq−4. By repeating these steps, in total (q − 2)-times we obtain an
H(q2, q(q − 1), 0). 
�

Corollary 2. There exists a q(q−1)-regular distance magic graph on q2 vertices
where q > 1 is odd. 
�
Example 1. Consider the 3-handicap graph, H(25, 8, 3) obtained from Theo-
rem 8. The following matrices M2,M1 and M0, respectively are involved in
the construction of H(25, 12, 2), H(25, 16, 1) and H(25, 20, 0) from H(25, 8, 3).

M2 =

⎛

⎜
⎜
⎜
⎜
⎝

1 7 13 19 25
2 8 14 20 21
3 9 15 16 22
4 10 11 17 23
5 6 12 18 24

⎞

⎟
⎟
⎟
⎟
⎠

M1 =

⎛

⎜
⎜
⎜
⎜
⎝

1 8 15 17 24
2 9 11 18 25
3 10 12 19 21
4 6 13 20 22
5 7 14 16 23

⎞

⎟
⎟
⎟
⎟
⎠

M0 =

⎛

⎜
⎜
⎜
⎜
⎝

1 9 12 20 23
2 10 13 16 24
3 6 14 17 25
4 7 15 18 21
5 8 11 19 22

⎞

⎟
⎟
⎟
⎟
⎠

For instance, G ∼= H(25, 12, 2) is obtained as G ∼= H ∪F , where H ∼= H(25, 8, 3)
and F = F1 ∪F2 ∪ · · · ∪F5, where Fi is the 4-factor defined on vertices obtained
from the ith row of M2 (Fig. 3).

F1 F2 F3

F4 F5

1

7

1319

25

2

8

1420

21

3

9

1516

22

4

10

1117

23

5

6

1218

14

Fig. 3. 4-factors involved in the process of constructing H(25, 12, 2) from H(25, 8, 3).
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5 Conclusion and Scope

In this paper, we give a technique to construct new handicap distance (d + k)-
antimagic graphs from d-handicap graphs for all k ≥ 1, and hence prove the
existence of d-handicap labeling for Hamming graphs. Further, we construct
new even-regular distance magic graphs on an odd number of vertices from H2,q

for all q > 1, odd.
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2. Hammack, R., Imrich, W., Klavžar, S.: Handbook of Product Graphs. CRC Press,

Boca Raton (2011)
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Abstract. Two points p and q in a simple polygon P are k-crossing vis-
ible when the line segment pq crosses the boundary of P at most k times.
Given a query point q, an integer k, and a polygon P , we propose an algo-
rithm that computes the region of P that is k-crossing visible from q in
O(nk) time, where n denotes the number of vertices of P . This is the first
such algorithm parameterized in terms of k, resulting in asymptotically
faster worst-case running time relative to previous algorithms when k is
o(log n), and bridging the gap between the O(n)-time algorithm for com-
puting the 0-visibility region of q in P and the O(n log n)-time algorithm
for computing the k-crossing visibility region of q in P .

Keywords: Computational geometry · Visibility ·
Radial decomposition

1 Introduction

Given a simple n-vertex polygon P , two points p and q inside P are said to be
mutually visible when the line segment pq does not intersect the exterior of P .
Problems related to visibility are motivated by many applications that require
covering a given region using a minimum number of resources, some of which
refer to visual coverage (e.g., guarding with cameras [16,21]) or to providing
wireless connectivity coverage [19,23]. Unlike the visible-light model, in which
a viewer’s line of sight typically terminates upon encountering a wall, radio
transmissions can pass through some walls, suggesting a more general notion of
visibility. Mouad and Shermer [20] introduced a generalized model of visibility in
polygons; this model was subsequently extended by Dean et al. [11] and Bajuelos
et al. [4] to define k-crossing visibility. When p and q are in general position
relative to the vertices of P (i.e., no vertex of P is collinear with p and q), p
and q are mutually k-crossing visible when the line segment pq intersects the
boundary of P in at most k points. Various applications require computing the
c© Springer Nature Switzerland AG 2019
C. J. Colbourn et al. (Eds.): IWOCA 2019, LNCS 11638, pp. 10–21, 2019.
https://doi.org/10.1007/978-3-030-25005-8_2
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region of P that is visible or k-crossing visible from a given query point q in P
[1]. This region is called the k-crossing visibility polygon of q in P . See Fig. 1.

P

q

Fig. 1. A polygon P , a point q, and the k-crossing visibility polygon of q in P when
k = 2

Our goal is to design an algorithm that reduces the time required for com-
puting the k-crossing visibility polygon for a given point q in a given simple
polygon P . O(n)-time algorithms exist for finding the visibility polygon of q in
P (i.e., when k = 0) [13,17,18], whereas the best known algorithms for finding
the k-crossing visibility polygon of q in P require Θ(n log n) time in the worst
case for any given k [3]. A natural question that remained open is whether the
k-crossing visibility polygon of q in P can be found in o(n log n) time. In partic-
ular, can the problem be solved faster for small values of k? This paper presents
the first algorithm parameterized in terms of k to compute the k-crossing vis-
ibility polygon of q in P . The proposed algorithm takes O(nk) time, where n
denotes the number of vertices of P , resulting in asymptotically faster worst-case
running time relative to previous algorithms when k is o(log n), and bridging the
gap between the O(n)-time algorithm for computing the 0-visibility polygon of
q in P and the O(n log n)-time algorithm for computing the k-crossing visibility
polygon of q in P .

The paper begins with an overview of related work, followed by definitions,
the presentation of the algorithm, and an analysis of its running time.

2 Related Work

Given a polygon P with n vertices and a query point q inside P , a fundamental
problem in visibility is to compute the visibility polygon for q: the portion of P
visible from q. This problem was first introduced by Davis and Benedikt [10], who
gave an O(n2)-time algorithm. The number of vertices of the visibility polygon
of q in P is proportional to the number of vertices of P in the worst case, i.e.,
Θ(n) [13,18]. Algorithms for computing the visibility polygon for any given q
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and P in O(n) time were given by Gindy and Avis [13], Lee [18], and Joe and
Simpson [17].

This paper focuses on finding the k-crossing visibility polygon of q in P with-
out preprocessing P . A related problem is that of preprocessing a given polygon
P to construct a query data structure that answers one or more subsequent visi-
bility queries for points given at query time. Using an O(n3)-space data structure
precomputed in O(n3 log n) time, the visibility polygon of any point q given at
query time can be reported in O(log n + m) time, where m denotes the num-
ber of vertices in the output polygon [6]. Finally, an O(n2)-space data structure
precomputed in O(n2 log n) time can report the visibility polygon of any point
q given at query time in O(log2 n + m) time [2].

Motivated by applications in wireless networks, in which a radio transmission
can pass through some walls before the signal fades, the problem of k-crossing
visibility has attracted recent interest. Mouad and Shermer [20] first introduced
the concept of k-crossing visibility, in what they originally called the Superman
problem: given a simple polygon P , a sub-polygon Q ⊆ P , and a point q outside
P , determine the minimum number of edges of P that must be made opaque
such that no point of Q is visible to q. Dean et al. [11] studied pseudo-star-
shaped polygons, in which the line of visibility can cross one edge, corresponding
to k-crossing visibility where k = 1. Bajuelos et al. [4] subsequently explored
the concept of k-crossing visibility for an arbitrary given k, and presented an
O(n2)-time algorithm to construct the k-crossing visible region of q in P for an
arbitrary given point q. Recently, Bahoo et al. [3] examined the problem under
the limited-workspace mode, and gave an algorithm that uses O(s) words of
memory and reports the k-visibility polygon of q in P in O(n2/s+n log s) time.
When memory is not constrained (i.e., Ω(n) words of memory are available)
their algorithm computes the k-visibility polygon in O(n log n) time.

Additional results related to k-crossing visibility include generalizations of
the well-known Art Gallery problem to the setting of k-crossing visibility. A
set of points W in a polygon P is said to guard P if every point in P is k-
crossing visible from some point in W . Each point (guard) in W is called a
k-modem. The Art Gallery problem seeks to identify a set of point of mini-
mum cardinality that guards a given polygon P . Aichholzer et al. [1] showed
that �n/2k� k-modems are sometimes necessary and �n/(2k + 2)� are always
sufficient for guarding monotone polygons. They also proved that a monotone
orthogonal polygon can be guarded by �n/(2k + 4)� k-modems. Duque et al. [12]
showed that at most O(n/k) k-modems are needed to guard a simple polygon
P ; however, given a polygon P , determining the minimum number of modems
to guard P is NP -hard [7]. k-crossing visibility can be considered in the plane
with obstacles, where the goal is to guard the plane or the boundary of a given
region. Ballinger et al. [5] developed upper and lower bounds for the number of
k-modems needed to guard a set of orthogonal line segments and other restricted
families of geometric objects. Finally, given a set of line segments and a point
q, Fabila et al. [14] examined the problem of determining the minimum k such
that the entire plane is k-crossing visible from q.
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3 Preliminaries and Definitions

3.1 Crossings and k-Crossing Visibility

Two paths P and Q are disjoint if P ∩ Q = ∅. To provide a general definition
of visibility requires a comprehensive definition for a crossing between a line
segment and a polygon boundary, in particular, for the case when points are not
in general position.

Definition 1 (Weakly disjoint paths [8]). Two paths P and Q are weakly
disjoint if, for all sufficiently small ε > 0, there are disjoint paths P̃ and Q̃ such
that dF (P, P̃ ) < ε and dF (Q, Q̃) < ε.

dF (A,B) denotes the Fréchet distance between A and B.

Definition 2 (Crossing paths [8]). Two paths cross if they are not weakly
disjoint.

Definitions 1 and 2 apply when P and Q are Jordan arcs. We use Definition 2
to help define k-crossing visibility.

Definition 3 (k-crossing visibility). Two Jordan arcs (or polygonal chains)
P and Q cross k times, if there exist partitions P1, . . . , Pk of P and Q1, . . . , Qk

of Q such that Pi and Qi cross, for all i ∈ {1, . . . , k}. Points p and q in a simple
polygon P are k -crossing visible if the line segment pq and the boundary of P do
not cross k times.

Given a simple polygon P , we refer to the set of points that are k-crossing
visible from a point q as the k-crossing visibility region of q with respect to P ,
denoted Vk(P, q). When the polygon P is clear from the context, we simply refer
to set as the k-crossing visibility region of q and denote it as Vk(q). Our goal is
to design an efficient algorithm to compute the k-crossing visibility region of a
point q with respect to a simple polygon P .

To simplify the description of our algorithms, we assume that the query point
q and the vertices of the input polygon P are in general position, i.e., q, pi and pj
are not collinear for any vertices pi and pj in P . Under the assumption of general
position, two points p and q are k-crossing visible if and only if the line segment
pq intersects the boundary of P in fewer than k points. That is, Definition 3 is
not necessary under general position. All results presented in this paper can be
extended to input that is not in general position.

3.2 Trapezoidal and Radial Decompositions

A polygonal decomposition of a simple polygon P is a partition of P into a set of
simpler regions, such as triangles, trapezoids, or quadrilaterals. Our algorithm
uses trapezoidal decomposition and radial decomposition. A trapezoidal decom-
position (synonymously, trapezoidation) of P partitions P into trapezoids and
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triangles by extending, wherever possible, a vertical line segment from each ver-
tex p of P above and/or below p into the interior of P , until its first intersection
with the boundary of P . A radial decomposition of P is defined relative to a
point q in P . For each vertex p of P , a line segment is extended, wherever pos-
sible, toward/away from p into the interior of P on the line determined by p
and q, until its first intersection with the boundary of P . A radial decomposition
partitions P into quadrilateral and triangular regions. The number of vertices
and edges in both decompositions is proportional to the number of vertices in
P (i.e., Θ(n)). Note that a trapezoidal decomposition corresponds to a radial
decomposition when the point q has its y-coordinate at +∞ or −∞ (outside P ).
Chazelle [9] gives an efficient algorithm for computing a trapezoidal decomposi-
tion of a simple n-vertex polygon in O(n) time.

4 k-Crossing Visibility Algorithm

4.1 Overview

Given as input an integer k, an array storing the coordinates of vertices whose
sequence defines a clockwise ordering of the boundary of a simple polygon P ,
and a point q in the interior of P , our algorithm for constructing the k-crossing
visibility polygon of q in P executes the following steps, each of which is described
in detail in this section:

1. Partition P into two sets of disjoint polylines, corresponding to the boundary
of P above the horizontal line � through q, and the boundary of P below �.

2. Nesting properties of Jordan sequences are used to close each set by con-
necting disjoint components to form two simple polygons, Pa above � and Pb

below �.
3. The two-dimensional coordinates of the vertices of Pa and Pb are mapped to

homogeneous coordinates, to which a projective transformation, fq, is applied,
with q as the center of projection.

4. Compute the trapezoidal decompositions of fq(Pa) and fq(Pb) using
Chazelle’s algorithm [9].

5. Apply the inverse tranformation f−1
q on the trapezoidal decompositions to

obtain radial decompositions of Pa and Pb.
6. Merge the radial decompositions of Pa and Pb to obtain a radial decomposi-

tion of P with respect to q.
7. Traverse the radial decomposition of P to identify the visibility of cells in

increasing order from visibility 0 through visibility k, moving away from q
and extending edges on rays from q to refine cells of the decomposition as
necessary.

8. Traverse the refined radial decomposition to reconstruct and output the
boundary of the k-crossing visibility region of q in P .

Steps 1–6 can be completed in O(n) time and Steps 7–8 can be completed in
O(nk) time.
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4.2 Partitioning P into Upper and Lower Polygons

We begin by describing how to partition the polygon P in two across the line �,
where � denotes the horizontal line through q. By our general position assump-
tion, no vertices of P lie on �. Let ε denote the minimum distance between any
vertex of P and �. Let the upper polygon, denoted as Pa (respectively, the lower
polygon, denoted Pb) refer to the closure of the region of the boundary of P
that lies above (respectively, below) �; see Fig. 2. Let {x1, . . . , xm} denote the
sequence of intersection points of � with the boundary of P , labelled in clock-
wise order along the boundary of P , such that x1 is the leftmost point in P ∩ �.
This sequence is a Jordan sequence [15]. We now describe how to construct
Pa and Pb.

Between consecutive pairs (x2i−1, x2i) of the Jordan sequence, for i ∈
{1, . . . , m/2}, the polygon boundary of P lies above �. Similarly, between pairs
(x2j , x2j+1), for j ∈ {1, . . . , m/2 − 1}, and between (xm, x0), the boundary of
P lies below �. We call the former upper pairs of the Jordan sequence, and the
latter lower pairs. These pairs possess the nested parenthesis property [22]: every
two pairs (x2i−1, x2i) and (x2j−1, x2j) must either nest or be disjoint. That is,
x2j−1 lies between x2i−1 and x2i in the sequence if and only if x2j lies between
x2i−1 and x2i.

As shown by Hoffmann et al. [15], the nested parenthesis property for the
upper pairs determines a rooted tree, called the upper tree, whose nodes cor-
respond to pairs of the sequence. The nodes in the subtree rooted at the pair
(x2i−1, x2i) consist of all nodes corresponding to pairs that are nested between
x2i−1 and x2i in the Jordan sequence order. The leaves of the tree correspond to
pairs that are consecutive in the sorted order. If a node (x2j−1, x2j) is a descen-
dant of a node (x2i−1, x2i) in the tree, then the points x2j−1 and x2j are nested
between x2i−1 and x2i. The lower tree is defined analogously.

If the boundary of P intersects � in more than two points, the resulting
disconnected components must be joined appropriately to form the simple poly-
gons Pa and Pb. To build the lower polygon Pb, we replace each portion of
the boundary of P above � from x2i−1 to x2i with the following 3-edge path:
x2i−1, u, v, x2i. The first edge (x2i−1, u) is a vertical line segment of length ε/2di,
where di denotes the depth of the node (x2i−1, x2i) in the tree. The next edge
(u, v) is a horizontal line segment whose length is ||x2i−1 − x2i||. The third edge
(v, x2i) is a vertical line segment of length ε/2di. See Fig. 2.

The nesting property of the Jordan sequence ensures that all of the 3-edge
paths cross are similarly nested and that none of them intersect. Consider two
pairs (x2i−1, x2i) and (x2j−1, x2j). Either they are disjoint or nested. If they are
disjoint, then without loss of generality, assume that x2i−1 < x2i < x2j−1 < x2j .
Their corresponding 3-edge paths cannot cross since the intervals they cover
are disjoint. If they are nested, then without loss of generality, assume that
x2i−1 < x2j−1 < x2j < x2i. The only way that the two paths can cross is if the
horizontal edge for the pair (x2j−1, x2j) is higher than for the pair (x2i−1, x2i).
However, since (x2j−1, x2j) is deeper in the tree than (x2i−1, x2i), the two paths
do not cross. Thus, we form the simple polygon Pb by replacing the portions of
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the boundary above � with these three edge paths. Sorting the Jordan sequence,
building the upper tree, computing the depths of all the pairs and adding the
3-edge paths can all be achieved in O(n) time using the Jordan sorting algo-
rithm outlined by Hoffmann et al. [15]. The upper polygon Pa is constructed
analogously. We conclude with the following lemma.

Lemma 1. Given a simple n-vertex polygon P and a horizontal line � that inter-
sects the interior of P such that no vertices of P lie on �, the upper and lower
polygons of P with respect to � can be computed in O(n) time.

4.3 Computing the Radial Decomposition

The two-dimensional coordinates of the vertices of each polygon Pa and Pb are
mapped to homogeneous coordinates, to which a projective transformation, fq,
is applied with q as the center of projection. These transformations take constant
time per vertex, or Θ(n) total time. Chazelle’s algorithm [9] constructs trape-
zoidal decompositions of fq(Pa) and fq(Pb) in Θ(n) time, on which the inverse
transformation, f−1

q is applied to obtain radial decompositions of Pa and Pb.
Merging the radial decompositions of Pa and Pb gives a radial decomposition
of the original polygon P without requiring any additional edges. All vertices
x1, . . . , xm of the Jordan sequence, all vertices of the three-edge paths, and their
adjacent edges are removed. The remaining edges are either on the boundary
of P , between two points on the boundary on a ray through q, or between the
boundary and q. The entire process for constructing the radial trapezoidation
takes Θ(n) time. This gives the following lemma.

Lemma 2. The radial decomposition of a simple n-vertex polygon P around a
query point q can be computed in Θ(n) time.

(c)

Pa

(b)

P Pb

(a)

qq

q

Fig. 2. (a) a polygon P , a point q, and the horizontal line � through q; (b)–(c) the upper
polygon Pa and lower polygon Pb of P with the additional 3-edge paths highlighted.



Computing the k-Crossing Visibility Region of a Point in a Polygon 17

4.4 Reporting the k-Crossing Visible Region

The 0-visibility region of q in P , denoted V0(q), is a star-shaped polygon with
q in its kernel. A vertex of V0(q) is either a vertex v of P or a point x on the
boundary of P that is the intersection of an edge of P with a ray emanating from
q through a reflex vertex r of P . In the latter case, (r, x) is an edge of V0(q) that
is collinear with q, called a window or lid, because it separates a region in the
interior of P that is 0-visible from q and an interior region that is not 0-visible.
The reflex vertex r is the base of the lid and x is its tip. There are two types of
base reflex vertices. The reflex vertex r is called a left base (respectively, right
base) if the polygon edges incident on r are to the left (respectively, right) of the
ray emanating from q through r.

We now describe the algorithm to compute the k-crossing visible region of q in
P , denoted Vk(q). The algorithm proceeds incrementally by computing Vi+1(q)
after computing Vi(q). We begin by computing V0(q) in O(n) time using one of
the existing linear-time algorithms, e.g. [13,17,18]. Label the vertices of V0(q) in
clockwise order around the boundary as x0, x1, . . . , xm. Triangulate the visibility
polygon by adding the edge (q, xi) for i ∈ {0, . . . , m}; this corresponds to a radial
decomposition of V0(q) around q.

If xi is a left base vertex, then notice that the triangle �(qxixi+1)1 degen-
erates to a segment. Similarly, if xi is a right base vertex, then �(qxixi−1) is
degenerate. If we ignore all degenerate triangles, then every triangle has the form
�(qxixi+1), where (xi, xi+1) is on the boundary of P . The union of these trian-
gles is V0(q). To compute V1(q), we show how to compute a superset of triangles
whose union is V1(q).

We start with an arbitrary triangle �(qxixi+1) of V0(q), where (xi, xi+1) is
on the boundary of P . Note that (xi, xi+1) is either an edge of P or a segment
within the interior of an edge of P . It is this segment (xi, xi+1) of the boundary
that blocks visibility. We show how to compute the intersection of V1(q) with the
cone that has apex q and bounding rays qxi and qxi+1, denoted C(q, xi, xi+1).
We call this process extending the visibility of a triangle. We have two cases to
consider. Either at least one of xi or xi+1 is a base vertex or neither is a base
vertex. We start with the latter case where neither is a base vertex.

Let Y be the set of vertices of the radial decomposition that lie on the edge
(xi, xi+1). If Y is empty, then (xi, xi+1) lies on one face of the decomposition
in addition to �(qxixi+1) since neither xi nor xi+1 is a base vertex. We show
how to proceed in the case when Y is empty, then we show what to do when Y
is not empty. Let f be the face of the decomposition on the boundary of which
(xi, xi+1) lies. By construction, this face is either a quadrilateral or a triangle. In
constant time, we find the intersection of the boundary of f excluding the edge
containing (xi, xi+1) with qxi and qxi+1. Label these two intersection points as
x′
i and x′

i+1. Extending the visibility of �(qxixi+1) results in �(qx′
ix

′
i+1). Note

that �(qx′
ix

′
i+1) is the 1-visible region of q in C(q, xi, xi+1) and (x′

i, x
′
i+1) is on

the boundary of P .
1 All indices are computed modulo the size of the corresponding vertex set: m + 1 in

this case.
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Fig. 3. Edges of the radial decomposition are extended where critical vertices cast a
shadow. Portions of the polygon in the blue region that were processed in previous
iterations are omitted from the figure. (Color figure online)

We now show how to extend the visibility of �(qxixi+1) when Y is not
empty. Label the points of Y as yj for j ≥ 1 in the order that they appear on
the edge (xi, xi+1) from xi to xi+1; see Fig. 3. Each yj is an endpoint of an edge
of the radial decomposition. Since yj is a point on the boundary of P , there are
2 faces of the radial decomposition with yj on the boundary. Let y′

j be the other
endpoint of the face on the left of yj and y′′

j be the endpoint for the face on the
right. Either y′

j = y′′
j or y′

j 
= y′′
j . In the former case, we simply ignore y′′

j . In the
latter case, we note that either y′

j is a left base of V0(yj) or y′′
j is a right base.

See Fig. 3 where y′
2 is a left base and y′′

5 is a right base.
Thus, the edges of the radial composition that intersect segment (xi, xi+1)

are of the form (yj , y′
j) or (yj , y′′

j ). Note that y1 is either xi or the point closest
to xi on the edge. For notational convenience, if y1 
= xi, relabel xi as y0. Let f
be the face of the radial decomposition on the boundary of which (y0, y1) lies.
Let y′

0 be the intersection of qy0 with the boundary of f excluding the edge of f
containing (y0, y1). We call this operation extending xi. Similarly, if yj 
= xi+1,
relabel xi+1 as yj+1 and compute the edge (yj+1, y

′
j+1), i.e. extend xi+1.

We are now in a position to describe the extension of the visibility of triangle
�(qxixi+1) when neither xi nor xi+1 is a base vertex. The set of triangles are
�(qy′

ky
′
k+1) and �(qy′′

ky′
k+1) (when y′′

k exists). The union of these triangles is
the 1-visible region of q in C(q, xi, xi+1). Furthermore, notice that each triangle
�(qy′

ky
′
k+1) (respectively, �(qy′′

ky′
k+1)) has the property that (y′

k, y
′
k+1) (respec-

tively, (y′′
k , y′

k+1)) is on the boundary of P . This is what allows us to continue
incrementally since at each stage we extend the visibility of a triangle �(qab)
where (a, b) is on the boundary of P .

Now, if xi is a base vertex, then it must be a right base. Of the two edges
of P incident on xi, let e be the one further from q. The procedure to extend
�(qxixi+1) is identical except that we only extend xi when xi+1 ∈ e. Similarly,
if xi+1 is a base vertex, then it must be a left base. Of the two edges of P
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(a) (b)

(f)

(c)

(d) (e)

Fig. 4. (a) a simple polygon P and a query point q; (b) the radial decomposition
of P ; (c) the 0-visibility polygon, V0(q), of q in P computed in the first iteration;
(d) the 1-visibility polygon, V1(q), of q in P computed in the second iteration, with
extended edges highlighted in light blue; (e) the refined radial decomposition, with
extended edges highlighted in light blue; (f) the 4-visibility polygon, V4(q), of q in P
computed in the fourth iteration, with the algorithm’s output highlighted in black (two
components of the boundary of V4(q) ∩ P ), and cells of the decomposition with depth
≤ 4 coloured by depth, as computed by the algorithm. (Color figure online)

incident on xi+1, let e be the one further from q. Again, the procedure to extend
�(qxixi+1) is identical except that we only extend xi+1 when xi ∈ e.

The general algorithm proceeds as follows. At iteration i, the visibility region
Vi(q) is represented as a collection of triangles around q with the property that
the edge of the triangle opposite q is on the boundary of P and it is the edge
blocking visibility. We wish to extend past this edge to compute Vi+1(q) from
Vi(q). To do this, we extend each triangle in Vi(q). There are at most O(n)
triangles at each level. Therefore, the total time to extend all the triangles in
Vi(q) is linear. Thus, we can compute Vi+1(q) from Vi(q) in O(n) time and
computing Vk(q) takes O(nk) time since we repeat this process k times.

The algorithm can report either only the subregion of P that is k-crossing
visible from q, i.e., Vk(q) ∩ P , or the entire region of the plane that is k-crossing
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visible from q, including parts outside P . To obtain the region inside P , it suf-
fices to traverse the boundary of P once to reconstruct and report portions of
boundary edges that are k-crossing visible. The endpoints of these sequences
of edges on the boundary of P meet an edge of the refined radial decomposi-
tion through the interior of P that bridges to the start of the next sequence
on the boundary of P . The entire boundary of P must be traversed since the
k-crossing visible region in P can have multiple connected components (unlike
the k-crossing visible region in the plane that is a single connected region). See
Fig. 4 for an example. We conclude with the following theorem.

Theorem 4. Given a simple polygon P with n vertices and a query point q in
P , the region of P that is k-crossing visible from q can be computed in O(kn)
time without preprocessing.

5 Discussion

This paper presents the first algorithm parameterized in terms of k for computing
the k-crossing visible region for a given point q in a given polygon P , resulting
in asymptotically faster worst-case running time relative to previous algorithms
when k is o(log n), and bridging the gap between the O(n)-time algorithm for
computing the 0-visibility region of q in P [13,17,18], and the O(n log n)-time
algorithm for computing the k-crossing visibility region of q in P [3]. It remains
open whether the problem can be solved faster. In particular, an O(n log k)-time
algorithm would provide a natural parameterization for all k. Alternatively, can
a lower bound of Ω(n log n) be shown on the worst-case time when k is ω(log n)?
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Abstract. In this paper, we look into the adaptive bitprobe model that
stores subsets of size at most four from a universe of size m, and answers
membership queries using two bitprobes. We propose a scheme that
stores arbitrary subsets of size four using O(m5/6) amount of space.
This improves upon the non-explicit scheme proposed by Garg and Rad-
hakrishnan [5] which uses O(m16/17) amount of space, and the explicit
scheme proposed by Garg [4] which uses O(m14/15) amount of space. The
proposed scheme also answers an open problem posed by Nicholson [8] in
the affirmative. Furthermore, we look into a counterexample that shows
that our proposed scheme cannot be used to store five or more elements.

Keywords: Data structure · Set membership problem ·
Bitprobe model · Adaptive scheme

1 Introduction

Consider the following static membership problem – given a universe U contain-
ing m elements, we want to store an arbitrary subset S of U whose size is at
most n, such that we can answer membership queries of the form “Is x in S?”
Solutions to problems of this nature are called schemes in the literature. The
resources that are considered to evaluate the schemes are the size of the data
structure devised to store the subset S, and the number of bits read of the data
structure to answer the membership queries, called bitprobes. The notations for
the space used and the number of bitprobes required are s and t, respectively.
This model of the static membership problem is called the bitprobe model.

Schemes in the bitprobe model are classified as adaptive and non-adaptive.
If the location where the current bitprobe is going to be depends on the answers
obtained from the previous bitprobes, then such schemes are called adaptive
schemes. On the other hand, if the location of the current bitprobe is indepen-
dent of the answers obtained in the previous bitprobes, then such schemes are
called non-adaptive schemes. Radhakrishnan et al. [9] introduced the notation
(n,m, s, t)A and (n,m, s, t)N to denote the adaptive and non-adaptive schemes,
respectively. Sometimes the space requirement of the two classes of schemes will
also be denoted as sA(n,m, t) and sN (n,m, t), respectively.
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A

B C

No Yes No Yes

0 1

0 1 0 1

Fig. 1. The decision tree of an element.

1.1 The Bitprobe Model

The scheme presented in this paper is an adaptive scheme that uses two bitprobes
to answer membership queries. We now discuss in detail the bitprobe model in
the context of two adaptive bitprobes.

The data structure in this model consists of three tables – A,B, and C –
arranged as shown in Fig. 1. Any element e in the universe U has a location in
each of these three tables, which are denoted by A(e),B(e), and C(e). By a little
abuse of notation, we will use the same symbols to denote the bits stored in
those locations.

Any bitprobe scheme has two components – the storage scheme, and the
query scheme. Given a subset S, the storage scheme sets the bits in the three
tables such that the membership queries can be answered correctly. The flow of
the query scheme is traditionally captured in a tree structure, called the decision
tree of the scheme (Fig. 1). It works as follows. Given a query “Is x in S?”, the
first bitprobe is made in table A at location A(x). If the bit stored is 0, the
second query is made in table B, else it is made in table C. If the answer received
in the second query is 1, then we declare that the element x is a member of S,
otherwise we declare that it is not.

1.2 The Problem Statement

As alluded to earlier, we look into adaptive schemes with two bitprobes (t = 2).
When the subset size is one (n = 1), the problem is well understood – the space
required by the data structure is Ω(m1/2), and we have a scheme that matches
this bound [1,7].

For subsets of size two (n = 2), Radhakrishnan et al. [9] proposed a scheme
that takes O(m2/3) amount of space, and further conjectured that it is the
minimum amount of space required for any scheme. Though progress has been
made to prove the conjecture [9,10], it as yet remains unproven.

For subsets of size three (n = 3), Baig and Kesh [2] have recently proposed
a scheme that takes O(m2/3) amount of space. It has been subsequently proven
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by Kesh [6] that Ω(m2/3) is the lower bound for this problem. So, the space
complexity question for n = 3 stands settled.

In this paper, we look into problem where the subset size is four (n = 4),
i.e. an adaptive bitprobe scheme that can store subsets of size atmost four, and
answers membership queries using two bitprobes. Garg and Radhakrishnan [5]
have proposed a generalised scheme that can store arbitrary subsets of size n(<
log m), and uses O(m1− 1

4n+1 ) amount of space. For the particular case of n = 4,
the space requirement turns out to be O(m16/17). Garg [4] further improved the
bounds to O(m1− 1

4n−1 )(for n < (1/4)(log m)1/3)., which improved the scheme
for n = 4 to O(m14/15).

We propose a scheme for the problem whose space requirement is O(m5/6)
(Theorem 2), thus improving upon the existing schemes in the literature. Our
claim is the following:

sA(4,m, 2) = O(m5/6).(Theorem 2)

The existence of such a scheme also answers in the affirmative an open prob-
lem posed by Nicholson [8] which asked if a scheme using the idea of blocks due
to Radhakrishnan et al. [9] exists that stores four elements and answers mem-
bership queries using two bitprobes. As the description of our data structure in
the following section would show that our scheme extends the ideas of blocks
and superblocks using a geometric approach to solve the problem.

Finally, in Sect. 5 we provide an instance of a five-element subset of the
universe U which cannot be stored correctly in our data structure, illustrating
that a different construction is required to accommodate subsets of larger size.

2 Our Data Structure

In this section, we provide a detailed description of our data structure. To achieve
a space bound of o(m), more than one element must necessarily share the same
location in each of the three tables. We discuss how we arrange the elements of
the universe U , and which of the elements of the universe share the same location
in any given table.

Along with the arrangement of elements, we will also talk about the size of
our data structure. The next few sections prove the following theorem.

Theorem 1. The size of our data structure is O(m5/6).

2.1 Table A
Suppose we are given the following universe of elements –

U = { 1, 2, 3, . . . ,m } .

We partition the m elements of the universe into sets of size m1/6. Borrowing the
terminology from Radhakrishnan et al. [9], we will refer to these sets as blocks.
It follows that the total number of blocks in our universe is m5/6.
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The elements within a block are numbered as 1, 2, 3, . . . ,m1/6. We refer to
these numbers as the index of an element within a block. So, an element of U
can be addressed by the number of the block to which it belongs, and its index
within that block.

In table A of our data structure, we will have one bit for every block in our
universe. As there are m5/6 blocks, the size of table A is m5/6.

2.2 Superblocks

The blocks in our universe are partitioned into sets of size m4/6. Radhakrishnan
et al. [9] used the term superblocks to refer to these sets of blocks, and we will do
the same in our discussion. As there are m5/6 blocks, the number of superblocks
thus formed is m1/6. These superblocks are numbered as 1, 2, 3, . . . ,m1/6.

For a given superblock, we arrange the m4/6 blocks that it contains into
a square grid, whose sides are of size m2/6. The blocks of the superblock are
placed on the integral points of the grid. The grid is placed at the origin of a
two-dimensional coordinate space with its sides parallel to the coordinate axes.
This gives a unique coordinate to each of the integral points of the grid, and thus
to the blocks placed on those points. It follows that if (x, y) is the coordinate of
a point on the grid, then 0 ≤ x, y < m2/6.

We can now have a natural way of addressing the blocks of a given superblock
– we will use the x-coordinate and the y-coordinate of the point on which the
block lies. So, a given block can be uniquely identified by the number of the
superblock to which it belongs, and the x and y coordinates of the point on
which it lies. Henceforth, we will address any block by a three-tuple of the form
(s, x, y), where the s is its superblock number, and (x, y) are the coordinates of
the point on which it lies.

To address a particular element of the universe, apart from specifying the
block to which it belongs, we need to further state its index within that block.
So, an element will be addressed by a four-tuple such as (s, x, y, i), where the
first three components specify the block to which it belongs, and the fourth
component specifies its index.

2.3 Table C
Table C of our data structure has the space to store one block for every possible
point of the grid (described in the previous section). So, for the coordinate
(x, y) of the grid, table C has space to store one block; similarly for all other
coordinates. As every superblock has one block with coordinate (x, y), all of
these blocks share the same location in table C. So, we can imagine table C as a
square grid containing m4/6 points, where each point can store one block.

There are a total of m4/6 points in the grid, and the size of a block is m1/6,
so the space required by table C is m5/6.
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2.4 Lines for Superblocks

Given a superblock whose number is i, we associate a certain number of lines
with this superblock each of whose slopes are 1/i. In the grid arrangement of the
superblock (Sect. 2.2), we draw enough of these lines of slope 1/i so that every
grid point falls on one of these lines. Figure 2 shows the grid and the lines.

(a, b)

(a+ 2, b+ 1)

Fig. 2. The figure shows the grid for superblock 2, and some of the lines with slope
1/2. Note that the line passing through (a, b) intersects the y-axis at a non-integral
point.

So, all lines of a given superblock has the same slope, and lines from different
superblocks have different slopes. As there are m1/6 superblocks, and they are
numbered 1, 2, . . . ,m1/6, so, we have the slopes of the lines vary as

0 < i ≤ m1/6. (1)

There are two issues to consider – the number of lines needed to cover every
point of the grid, and the purpose of these lines. We address the issue of the
count of the lines in this section, and that of the purpose of the lines in the next.

We introduce the notation li(a, b) to denote the line that has slope 1/i, and
passes through the point (a, b). We now define the collection of all lines of slope
1/i that we are going to draw for the superblock i.

Li =
{

li(a, 0) | a ∈ Z, −i(m2/6 − 1) ≤ a < m2/6
}

. (2)

In the following three lemmas, we show the properties of this set of lines –
they follow from elementary coordinate geometry.

Lemma 1. Every line of Li contains at least one point of the grid.

Lemma 2. Every point of the grid belongs to some line of Li.

Lemma 3. | Li | = (i + 1)(m2/6 − 1) + 1.

Proof. The equality is a direct consequence of the definition of Li (Eq. 2).
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2.5 Table B
In table B, we have space to store one block for every line of every superblock.
That means that for a superblock, say i, all of its blocks that fall on the line
li(a, b) share the same block in table B; and the same is true for all lines of every
superblock.

The ith superblock contains | Li |= (i + 1)(m2/6 − 1) + 1 lines (Lemma 3),
so the total number of lines from all of the superblocks is

| L1 | + | L2 | + · · · + | Lm1/6 |
=

m1/6∑
i=1

(
(i + 1)(m2/6 − 1) + 1

)

=
(

(m1/6)(m1/6+1)
2 + m1/6

)
(m2/6 − 1) + m1/6

= O(m4/6).

As mentioned earlier, we reserve space for one block for each of these lines.
Combined with the fact that the size of a block is m1/6, we have

|C| = O(m5/6).

2.6 Notations

As described in Sect. 2.2, any element of the universe U can be addressed by
a four-tuple, such as (s, x, y, i), where s is the superblock to which it belongs,
(x, y) are the coordinates of its block within that superblock, and i is its index
within the block.

Table A has one bit for each block, so all elements of a block will query the
same location. As the block number of the element (s, x, y, i) is (s, x, y), so the
bit corresponding to the element is A(s, x, y); or in other words, the element
(s, x, y, i) will query the location A(s, x, y) in table A.

In table C, there is space for one block for every possible coordinates of the
grid. The coordinates of the element (s, x, y, i) is (x, y), and C has space to store
an entire block for this coordinate. So, there is one bit for every element of a
block, or, in other words, every index of a block. So, the bit corresponding to
the element (s, x, y, i) is C(x, y, i).

Table B has a block reserved for every line of every superblock. The element
(s, x, y, i) belongs to the line ls(x, y), and thus table B has space to store one
block corresponding to this line. As the index of the element is i, so the bit
corresponding to the element in table B is B(ls(x, y), i).

3 Query Scheme

The query scheme is easy enough to describe once the data structure has been
finalised; it follows the decision tree as discussed earlier (Fig. 1). Suppose we want
to answer the following membership query – “Is (s, x, y, i) in S?” We would make
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the first query in table A at location A(s, x, y). If the bit stored at that location
is 0, we query in table B at B(ls(x, y), i), otherwise we query table C at C(x, y, i).
If the answer from the second query is 1, then we declare the element to be a
member of S, else we declare that it is not a member of S.

4 The Storage Scheme

The essence of any bitprobe scheme is the storage scheme, i.e. given a subset S
of the universe U , how the bits of the data structure are set such that the query
scheme answers membership questions correctly. We start the description of the
storage scheme by giving an intuition for its construction.

4.1 Intuition

The basic unit of storage in the tables B and C of our data structure, in some
sense, is a block – table B can store one block of any line of any superblock, and
table C can store one block of a given coordinate from any superblock. We show
next that our storage scheme must ensure that an empty and a non-empty block
cannot be stored together in a table.

Suppose, the block (s, x, y) of table A is non-empty, and it contains the
member (s, x, y, i) of subset S. If we decide to store this member in table B,
then we have to store the block (s, x, y) in table B. So, we have to set in table A
the following – A(s, x, y) = 0. Thus, (s, x, y, i) upon first query will get a 0 and
go to table B. In table B, we store the block (s, x, y) at the storage reserved for
the line ls(x, y). Particularly, we have to set B(ls(x, y), i) = 1.

If (s, x′, y′) is a block that is empty, i.e. it does not contain any member of S,
and it falls on the aforementioned line, i.e. ls(x′, y′) = ls(x, y), then we cannot
store this block in table B, and hence A(s, x′, y′) must be set to 1. If this is not
the case, and A(s, x′, y′) = 0, then the first query for the element (s, x′, y′, i)
will get a 0, go to table B and query the location B(ls(x′, y′), i) which is same
as B(ls(x, y), i). We have set this bit to 1, and we would incorrectly deduce that
(s, x′, y′, i) is a member of S.

The same discussion holds true for table C. If we decide to store the block
(s, x, y) in table C, we have to set A(s, x, y) to 1. In table C, we have space
reserved for every possible coordinate for a block, and we would store the block
at the coordinate (x, y); particularly, we would set C(x, y, i) to 1. This implies
that all empty blocks from other superblocks having the same coordinate cannot
be stored in table C, and hence must necessarily be stored in table B. To take
an example, if (s′, x, y) is empty, then it must stored it table B, and hence
A(s′, x, y) = 0.

To summarise, for any configuration of the members of subset S, as long as
we are able to keep the empty and the non-empty blocks separate, our scheme
will work correctly. For the reasons discussed above, we note the following.

1. We have to keep the non-empty blocks and empty blocks separate.
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2. We have to keep the non-empty blocks separate from each other; and
3. The empty blocks can be stored together.

Our entire description of the storage scheme would emphasize on how to achieve
the aforementioned objective.

4.2 Description

Let the four members of subset S be

S =
{

(s1, x1, y1, i1), (s2, x2, y2, i2), (s3, x3, y3, i3), (s4, x4, y4, i4)
}

.

So, the relevant blocks are
{

(s1, x1, y1), (s2, x2, y2), (s3, x3, y3), (s4, x4, y4)
}

,

and the relevant lines are
{

ls1(x1, y1), ls2(x2, y2), ls3(x3, y3), ls4(x4, y4)
}

.

In the discussion below, we assume that no two members of S belong to
the same block. This implies that there are exactly four non-empty blocks. The
scenario where a block contains multiple members of S is handled in Sect. 4.3.

The lines for the members of S need not be distinct, say when two elements
belong to the same superblock and fall on the same line. We divide the descrip-
tion of our storage scheme into several cases based on the number of distinct
lines we have due to the members of S, and for each of those cases, we provide
the proof of correctness alongside it.

We provide the detailed description of the cases when there are four distinct
lines or when there is one line. The extended version of this paper (Baig et.
al [3]) contains the cases of three lines and two lines. The cases described here
would illustrate how to arrange the elements and how to argue its correctness.

Case I. Suppose we have four distinct lines for the four
members of S. The slopes of some of these lines could be
same, or they could all be different. We know that all lines
of a given superblock have the same slope, and lines from
different superblocks have different slopes (Sect. 2.4). We
also know that if two of these lines, say ls1(x1, y1) and
ls2(x2, y2), have the same slope, then the corresponding
members of S belong to the same superblock, i.e. s1 = s2.
On the other hand, if their slopes are distinct, then they
belong to different superblocks, and consequently, s1 �= s2.

Table B has space to store one block for every line in every superblock. As
the lines for the four members of S are distinct, the space reserved for the lines
are also distinct. So we can store the four non-empty blocks in table B, and all
of the empty blocks in table C.
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To achieve the objective, we set A(sj , xj , yj) = 0 for 1 ≤ j ≤ 4, and set
the bits in table A for every other block to 1. In table B, we set the bits
B(lsj (xj , yj), ij) = 1, for 1 ≤ j ≤ 4, and all the rest of the bits to 0. In table C,
all the bits are set to 0.

So, if e is an element that belongs to an empty block, it would, according to
the assignment above, get a 1 upon its first query in table A. Its second query
will be in table C, and as all the bits of table C are set to 0, we would conclude
that the element e is not a member of S.

Suppose, (s, x, y, i) be an element that belongs to one of the non-empty
blocks. Then, its coordinates must correspond to one of the four members of
S. Without loss of generality let us assume that s = s1, x = x1, and y = y1.

It follows that A(s, x, y), which is same as A(s1, x1, y1), is 0, and hence the
second query for this element will be in table B. The line corresponding to the
element is ls(x, y), which is same as ls1(x1, y1), and hence the second query will
be at the location B(ls(x, y), i) = B(ls1(x1, y1), i). As the four lines for the four
members of S are distinct, so B(ls1(x1, y1), i) will be 1 if and only if i = i1. So,
we will get a Yes answer for your query if and only if the element (s, x, y, i) is
actually the element (s1, x1, y1, i1), a member of S.

Case II. Let us consider the case when there is just
one line for the four members of S. As all of their lines
are identical, and consequently, the slopes of the lines
are the same, all the elements must belong to the same
superblock. So, we have s1 = s2 = s3 = s4.

As all the non-empty blocks belong to the same
superblock, all of their coordinates must be distinct. Table
C can store one block for each distinct coordinate of the
grid, and hence we can store the four non-empty blocks
there. All the empty blocks will be stored in table B.

To this end, we set A(sj , xj , yj) = 1 for 1 ≤ j ≤ 4,
and the rest of the bits of table A, which correspond to the empty blocks, to 0.
In table B, all bits are set to 0. In table C, the bits corresponding to the four
elements are set to 1, i.e. C(xj , yj , ij) = 1 for 1 ≤ j ≤ 4. The rest of the bits of
table C are set to 0.

The proof of correctness follows directly from the assignment, and the rea-
soning follows along the lines of the previous case. If the element e belongs to
an empty block, it will get a 0 from table A upon its first query, consequently
go to table B for its second query, and get a 0, implying e is not a member of S.

If the element (s, x, y, i) belongs to a non-empty block, then its coordinates
must correspond to one of the members of S. Without loss of generality, let
s = s1, x = x1, and y = y1.

The first query of the element will be at the location A(s, x, y) =
A(s1, x1, y1), and hence it will get a 1 from table A, and go to table C for its
second query. In this table, it will query the location C(x, y, i), which is same as
C(x1, y1, i). As the coordinates of the four members of S are distinct, C(x1, y1, i)
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will be 1 if and only if i = i1. So, we get a 1 in the second query if and only if
we have (s, x, y, i) = (s1, x1, y1, i1), a member of S.

4.3 Blocks with Multiple Members

In the discussion above, we had assumed that each block can contain at most
one member of the subset S, and we have shown for every configuration of
the members of S, the bits of the data structure can be so arranged that the
membership queries are answered correctly.

In general, a single block can contain upto four members of S, and we need
to propose a assignment for such a scenario. As has been noted in the previous
section, our basic unit of storage is a block and we differentiate between empty
and non-empty blocks. At a given location in table B or C, a block is stored in
its entirety, or it isn’t stored at all. This implies that the number of members of
S a non-empty block contains is of no consequence, as we always store an entire
block. The scheme from the previous section would thus hold true for blocks
containing multiple members.

We now summarise the result in the theorem below.

Theorem 2. There is an explicit adaptive scheme that stores subsets of size at
most four and answers membership queries using two bitprobes such that

sA(4,m, 2) = O(m5/6).

5 Counterexample

We now provide an instance of a five-member subset of the universe U which
cannot be stored correctly using our scheme; that is to say, if the storage scheme
does indeed store the five elements in our data structure, queries for certain
elements will be answered incorrectly.

5.1 The Arrangment

Consider four lines from four different superblocks which are arranged as shown
in Fig. 3. Let us suppose that the four superblocks are s1, s2, s3, and s4, and
the labels of the lines are L1, L2, L3, and L4, respectively. We will put in S one
element each from the first three superblocks, and two elements from the fourth
superblock.

Our subset S will contain the elements e1 and e2 from the superblocks s1 and
s2, respectively. These elements have the property that the blocks they belong
to share the same coordinates, and hence lie on the intersection of the lines L1

and L2. The fact that they have the same coordinates also implies thay they
share the same location in table C. Let the elements be e1 = (s1, x, y, i1) and
e2 = (s2, x, y, i2). We would also have i1 �= i2. This would imply that the two
non-empty blocks (s1, x, y) and (s2, x, y) cannot both be stored in table C.
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L1

L2

L3

L4

e1

e2

e3

e4,1

e4,2

Fig. 3. Counterexample

Consider that block of superblock s3 that lies on the intersection of the lines
L3 and L4. We will put one element from that block in our subset S. Let that
element be e3 = (s3, x3, y3, i3).

Finally we will put two elements of the superblock s4 in S – one element from
that block of s4 which lies on the intersection of the lines L4 and L1, namely e4,1,
and another from the block of s4 which lies on the intersection of the lines L4 and
L2, namely e4,2. These two elements are described as e4,1 = (s4, x4,1, y4,1, i4,1)
and e4,2 = (s4, x4,2, y4,2, i4,2).

5.2 The Contradiction

We can store the element e1 of superblock s1 in one of two tables B and C. Let
us assume that we store e1 in table B. As the block containing e1 lies on the line
L1, we cannot store any of the other empty blocks on the line L1 in table B, and
hence they must be stored in table C.

The non-empty block of s4 containing element e4,1 which falls on the line L1,
then, cannot be stored in table C, and hence must be stored in table B. So, the
other blocks of L4 must be stored in table C, including the block containing the
element e4,2.

The non-empty block of s3 containing the element e3 falls on the line L4,
and hence must be stored in table B. So, all blocks on the line L3 must now be
store in table C.

The element e2 of the superblock s2 falls on the line L3 and hence must be
stored in table B. So, all blocks of line L2 must be stored in table C.
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The block of s4 containing the element e4,2 must be stored in table B by the
same argument as above. But we have already argued that e4,2 has to be stored
in table C, and hence we arrive at a contradiction.

The preceding argument tells us that we cannot store the element e1 in table
B. So, we must store it in table C. If such is the case, and arguing as above,
we can show that this results e2 being stored in table B, which results in e4,2
being stored in table B. This, in turn, results in e3 being stored in table B, which
would force e1 to be stored in table B.

But we have started with the premise that e1 is being stored in table C,
and again we reach a contradiction. So, we conclude that this arrangement of
elements cannot be stored correctly in our data structure, and hence our data
structure is not suitable for storing sets of size five or higher.

6 Conclusion

In this paper, we have proposed an adaptive scheme for storing subsets of size
four and answering membership queries with two bitprobes that improves upon
the existing schemes in the literature. This scheme also resolves an open problem
due to Patrick K. Nicholson [8] about the existence of such a scheme that uses the
ideas of blocks and superblocks due to Radhakrishnan et al. [9]. The technique
used is that of arranging the blocks of a superblock in a two-dimensional grid,
and grouping them along lines. We hope that this technique can be extended to
store larger subsets by extending the idea of an arrangement in a two-dimensional
grid to arrangements in three and higher dimensional grids.
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Abstract. We study Erdős–Szekeres-type problems for k-convex point
sets, a recently introduced notion that naturally extends the concept of
convex position. A finite set S of n points is k-convex if there exists
a spanning simple polygonization of S such that the intersection of any
straight line with its interior consists of at most k connected components.
We address several open problems about k-convex point sets. In particu-
lar, we extend the well-known Erdős–Szekeres Theorem by showing that,
for every fixed k ∈ N, every set of n points in the plane in general posi-
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at least Ω(logk n). We also show that there are arbitrarily large 3-convex
sets of n points in the plane in general position whose largest 1-convex
subset has size O(log n). This gives a solution to a problem posed by
Aichholzer et al. [2].

We prove that there is a constant c > 0 such that, for every n ∈ N,
there is a set S of n points in the plane in general position such that
every 2-convex polygon spanned by at least c · logn points from S con-
tains a point of S in its interior. This matches an earlier upper bound by
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1 Introduction

A set of points in the plane is in convex position if its points are vertices of a
convex polygon. We say that a planar point set is in general position if it does not
contain a collinear triple of points. A classical result by Erdős and Szekeres [6],
called the Erdős–Szekeres Theorem, states that every set of n points in the
plane in general position contains a set of Ω(log n) points in convex position.
Moreover, this result is asymptotically tight, with the strongest bounds given in
the papers [7,10,15]. The Erdős–Szekeres Theorem, published in 1935, was one
of the starting points of both discrete geometry and Ramsey theory. Since then,
numerous variants of this result have been studied.

For example, in 1978, Erdős [5] asked about the growth rate of the smallest
integers h(m), m ≥ 3, such that every set P of at least h(m) points in the
plane in general position contains an m-hole in P , that is, m points in convex
position with no point of P in the interior of their convex hull. It is easy to show
that h(3) = 3 and h(4) = 5 and Harborth [9] proved h(5) = 10. After this, the
question about the existence of the numbers h(m) was settled in two phases.
First, in 1983, Horton [11] showed that there are arbitrarily large sets of points
with no 7-holes, proving that h(m) does not exist for m ≥ 7. Around 25 years
later, Gerken [8] and Nicolás [13] independently proved that every sufficiently
large set of points in the plane in general position contains a 6-hole. In particular,
h(m) exists if and only if m ≤ 6.

In this paper, we study variants of these classical problems for so-called k-
convex point sets, a notion that was recently introduced by Aichholzer et al. [2]
and that naturally extends the concept of convex position. We also address
further open problems about k-convex point sets posed in [2].

Throughout the paper, we consider only finite sets of points in the plane in
general position. We use ∂S to denote the boundary of a simple polygon S. For
a line segment s, we use s to denote the supporting line of s. A line � crosses ∂S
at a point v if � passes through v from the interior of S to the outside of S. All
logarithms in the paper are base two.

2 Preliminaries

In 2012, Aichholzer et al. [1] introduced the following natural extension of convex
polygons. For a positive integer k, a simple polygon S with vertices in general
position is k-convex if no straight line intersects S in more than k connected
components. This notion has been later transcribed to finite point sets [2]. A
finite set P of points in the plane in general position is k-convex if P is a vertex
set of a k-convex polygon. In other words, P is k-convex if there exists a spanning
simple polygonization of P such that the intersection of any straight line with
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its interior consists of at most k connected components. It can be shown that
a simple polygon S with vertices in general position is k-convex if and only if
every line not containing a vertex of S intersects the boundary of S in at most
2k points (see Lemma 2).

The notion of k-convexity for point sets satisfies several natural properties.
A point set is in convex position if and only if it is 1-convex. Clearly, for each
k ∈ N, every k-convex point set is (k +1)-convex. Aichholzer et al. [2, Lemma 2]
showed that every subset of a k-convex point set is also k-convex. It is known
that every set of n points is k-convex for some k = O(

√
n) and this bound is

tight up to a multiplicative constant in the worst case [2, Theorem 2]. Some
further results about k-convex polygons and k-convex point sets can be found
in [1–3].

Erdős–Szekeres-type questions were among the first problems about k-convex
point sets considered in the literature. Aichholzer et al. [2] showed that every
set of n points in general position contains a 2-convex subset of size at least
Ω(log2 n) [2, Theorem 5] and that this bound is tight up to a multiplicative
constant. This result led the authors to pose the following problem.

Problem 1 ([2, Open problem 4]). Let k and n be positive integers. Find the
maximum integer g(k, n) such that every set of n points contains a k-convex set
of size g(k, n).

Using this notation, their result gives g(2, n) = Θ(log2 n) and the Erdős–
Szekeres Theorem gives g(1, n) = Θ(log n). No nontrivial bounds were known
for g(k, n) with k ≥ 3.

In a slightly different direction, it was shown that every 2-convex polygon
with n vertices contains a 1-convex subset of at least �√n/2� vertices and that
this bound is tight [1, Theorem 14]. In [2], the authors considered related variants
of this result and posed the following problem.

Problem 2 ([2, Open problem 3]). Let j, k and n be positive integers. Find the
maximum integer f(k, n) such that every k-convex set of n points contains a 1-
convex subset of size f(k, n). More generally, find the maximum integer f(k, j, n)
such that every k-convex set of size n contains a j-convex subset of size f(k, j, n).

By definition, f(k, n) = f(k, 1, n) for all k and n. With this notation, the
result by Aichholzer et al. [1, Theorem 14] gives f(2, n) = f(2, 1, n) = Θ(

√
n).

We trivially have f(1, n) = f(1, 1, n) = n for every n. Since every set of n points
is (c

√
n)-convex for some constant c > 0 [2, Theorem 2], the Erdős–Szekeres

Theorem gives g(1, n) = f(k, n) = f(k, 1, n) = Θ(log n) for each k ≥ c
√

n.
By the previous results, we also know that, for k ≥ c

√
n, we have g(2, n) =

f(k, 2, n) = Θ(log2 n) and g(j, n) = f(k, j, n) for each j ∈ N.
For a point set P , a 2-convex polygon with vertices from P is empty in P if

it contains no point of P in the interior. Concerning the question of Erdős about
m-holes in point sets, Aichholzer et al. [2, Theorem 3] showed that every set P of
n points in general position contains a 2-convex polygon that is empty in P and
has size at least Ω(log n). Using the tightness of the Erdős–Szekeres Theorem,
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they also proved that there are arbitrarily large point sets P of n points with no
empty 2-convex polygon in P of size at least c · log2 n for some constant c. There
is a gap between these two bounds and thus the authors posed the following
problem.

Problem 3 ([2]). Close the gap between the Ω(log n) and O(log2 n) bounds for
the size of empty 2-convex polygons in point sets of size n.

Let us also remark that it was shown by Aichholzer et al. [3] that every 2-
convex point set of size n contains an m-hole for m = Ω(log n) and that this
bound is tight up to a multiplicative constant in the worst case.

The list of problems about k-convex point sets posed by Aichholzer et al. [2]
contains several other interesting open questions.

3 Our Results

First, we prove the following extension of the Erdős–Szekeres Theorem for k-
convex point sets.

Theorem 1. Let k be a fixed positive integer. Then

g(k, n) = Ω(logk n).

That is, for every n ∈ N, every set of n points in the plane in general position
contains a k-convex subset of size at least Ω(logk n).

Note that Theorem 1 extends the result of Aichholzer et al. [2, Theorem 5]
about the existence of large 2-convex point sets in general sets of n points.
Unfortunately, we do not have matching upper bounds on the function g(k, n).
It follows from the proof of Theorem 13 in [3] that g(k, n) = O(k

√
n) for every

k ≥ 3.
We also address Problem 2. Using a variant of the sets defined by Erdős and

Szekeres, we provide asymptotically tight estimates on the function f(k, n) in
the case k ≥ 3.

Theorem 2. There is a constant c such that, for every positive integer n, there
are 3-convex sets of n points in the plane in general position with no 1-convex
subset of size larger than c · log n.

More precisely, for every t ≥ 3, there is a 3-convex set of 2t−2 points in the
plane in general position with no 1-convex subset of size t.

Thus f(k, n) = O(log n) for every integer k with k ≥ 3. It follows from
the Erdős–Szekeres Theorem that this bound is asymptotically tight. That is,
f(k, n) = Θ(log n) for k ≥ 3. Therefore Theorem 2 asymptotically settles the
first part of Problem 2. The statement in the second sentence of Theorem 2
implies the more precise bound f(3, n) ≤ �log (n) + 1�. It also shows that the
corresponding best known bound in the Erdős–Szekeres Theorem can be achieved
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by 3-convex sets. A famous conjecture of Erdős and Szekeres [7] states that this
bound is tight for general sets. If true, the conjecture of Erdős and Szekeres
together with our result would give the precise values f(k, n) = �log (n) + 1� for
any n, k ≥ 3.

In the proof of Theorem 2 we define planar point sets which might be of
independent interest. We call them (combinatorial) Devil’s staircases.

Aichholzer et al. [1, Theorem 14] showed that every 2-convex point set of size
n contains a 1-convex subset of size at least Ω(

√
n). Their result together with

Theorem 2 gives the following estimate on the function f(k, 2, n) for k ≥ 3.

Corollary 1. There is a constant c such that, for every positive integer n, there
are 3-convex sets of n points in the plane in general position with no 2-convex
subset of size larger than c · log2 n.

In particular, f(k, 2, n) = O(log2 n) for every integer k with k ≥ 3. Aichholzer
et al. [2, Theorem 5] also showed that every set of n points contains a 2-convex
subset of size at least Ω(log2 n). Thus the bound from Corollary 1 is tight up to a
multiplicative constant, settling the second part of Problem 2 in the case j = 2.
The second part of Problem 2 remains open for j ≥ 3.

Concerning empty 2-convex polygons in general sets of n points, we show
that so-called Horton sets do not contain large empty 2-convex polygons. More
specifically, we derive the following bound.

Theorem 3. There is a constant c > 0 such that, for every positive integer n,
there are sets of n points in the plane in general position that contain no empty
2-convex polygon on at least c · log n vertices.

The upper bound from Theorem 3 matches the earlier lower bound [2, The-
orem 3] up to a multiplicative constant. In other words, Theorem 3 yields a
solution to Problem 3.

Aichholzer et al. [2] proved that, for all positive integers k and l, the union
of a k-convex point set T and an l-convex point set S is (k + l + 1)-convex.
Moreover, they showed that if a k-convex polygonization of T and an l-convex
polygonization of S intersect, then T ∪ S is (k + l)-convex. Aichholzer et al. [2]
found a set of 10 points that is not 2-convex and is a union of two 1-convex sets,
showing that the first bound is tight for k = l = 1. Besides the case k = l = 1,
no matching bound is known and Aichholzer et al. asked [2, Open problem 2]
whether there are examples for general integers k and l such that the union of a
k-convex point set and an l-convex point set is not (k + l)-convex. We prove the
following almost matching bound.

Proposition 1. For all positive integers k and l, there are point sets Tk and Sl

such that Tk is k-convex, Sl is l-convex, and Tk ∪ Sl is not (k + l − 1)-convex.

It follows from the proof of Proposition 1 that the bound k + l by Aichholzer
et al. [2] on the convexity of a union of a k-convex point set with an l-convex
point set with intersecting polygonizations is tight in the worst case. The proof
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also gives an explicit construction, for every k ∈ N, of a k-convex set that is not
(k − 1)-convex. Such an example seemed to be missing in the literature.

The proofs of the second part of Theorems 2, 3, and Proposition 1 are in the
full version of the paper.

4 Proof of Theorem 1

For a fixed positive integer k, we show that every set of n points in the plane in
general position contains a k-convex subset of size at least Ω(logk n). We first
state two auxiliary statements. The first one, the Erdős–Szekeres Lemma, is a
classical result proved by Erdős and Szekeres [6].

Lemma 1 ([6]). For every n ∈ N, every sequence of (n − 1)2 + 1 real numbers
contains a non-increasing or a non-decreasing subsequence of length at least n.

The main idea of the proof of Theorem 1 is inspired by the approach of
Aichholzer et al., who proved the lower bound Ω(log2 n) for the case k = 2 [2,
Theorem 5]. The key ingredient of the proof is the so-called Positive Fraction
Erdős–Szekeres Theorem proved by Bárány and Valtr [4]. We use a version of
the theorem that was used by Suk [15] and that is based on a bound proved by
Pór and Valtr [14] (Theorem 4 below). Before stating it, we first introduce some
notation.

A set of points in the plane with distinct x-coordinates is a cup if the points
lie on the graph of a strictly convex function. Similarly, it is a cap if the points lie
on the graph of a strictly concave function. Given a cap or a cup C = {c1, . . . , cl}
with points of C ordered according to the increasing x-coordinates, the support
of C is the collection of open regions T1, . . . , Tl, where each Ti is the region
outside of the convex hull of C bounded by the line segment cici+1 and by the
lines ci−1ci and ci+1ci+2, where c0 = cl, cl+1 = c1, and cl+2 = c2; see part (a) of
Fig. 1. The base of each region Ti is the line segment cici+1 and we call the line
cici+1 the base line of Ti.

Theorem 4 ([4,14,15]). Let l ≥ 3 be an integer and P be a finite set of points
in the plane in general position such that |P | ≥ 232l. Then there is a set C of l
points of P such that C is a cap or a cup and the regions T1, . . . , Tl−1 from the
support of C satisfy |Ti ∩ P | ≥ |P |

232l
for every i ∈ {1, . . . , l − 1}.

Let k be a fixed positive integer and let P be a set of n points in the plane in
general position with n sufficiently large with respect to k. A curve C in the plane
is x-monotone or y-monotone if every vertical or horizontal line, respectively,
intersects C in at most one point. We proceed by induction on k and show
that there is a k-convex subset Q of P of size at least Ω(logk n) such that the
polygonization of Q has the boundary formed by a union of an x-monotone curve
and one edge. We make no serious effort to optimize the constants.

First, Theorem 1 for k = 1 follows from the Erdős–Szekeres Theorem [6], as
stated at the beginning of the introduction, because each set of points in convex
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Fig. 1. (a) An illustration of the statement of the Positive Fraction Erdős–Szekeres
Theorem (Theorem 4). (b) A construction of the polygon S for k = 2. In this example,
we have l = 7. The described procedure gives m = 2, i1 = 3, and i2 = 5, because σ3, σ5

are non-decreasing.

position is a union of a cap and a cup that intersect only in two points. This
finishes the base case.

Now, for the induction step, assume k ≥ 2. Without loss of generality we
assume that no two points of P have the same x-coordinate. By Theorem 4
applied with l = 
log n/64�, there is a set C = {c1, . . . , cl} of l points from P
such that C is a cap or a cup and the regions T1, . . . , Tl−1 from the support
of C satisfy |Ti ∩ P | ≥ |P |

232l
≥ √

n. Let ≺ be the ordering of the points from P
according to their increasing x-coordinates. Note that c1 ≺ c2 ≺ c3 ≺ · · · ≺ cl.
By symmetry, we assume that C is a cap.

For every odd i with 3 ≤ i < l − 1, we apply Lemma 1 to the sequence
of distances of points from Ti ∩ P to the base line of Ti, ordered by ≺. For
each such sequence, we obtain a non-increasing or a non-decreasing subsequence
σi of length at least

√|T ∩ Pi| ≥ n1/4. By the pigeonhole principle, there are
m ≥ (l − 3)/4 subsequences σi1 , . . . , σim with odd indices 1 < i1 < · · · < im <
l − 1 such that all these sequences are non-increasing or all non-decreasing. By
symmetry, we may assume that σi1 , . . . , σim are all non-decreasing. In the other
case we would proceed analogously, considering the ordering of ≺−1. For every
j ∈ {1, . . . , m}, let Pj be the set of points from Tij ∩ P that determine the
distances in σij . In particular, the distances of the points of Pj to the base line
of Tij are non-decreasing in ≺ and |Pj | ≥ n1/4.
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By the induction hypothesis applied to each set Pj , there is a (k − 1)-convex
subset Qj of Pj of size at least c logk−1(n1/4) = c

4 logk−1 n for some constant
c = c(k−1) > 0 such that some (k−1)-convex polygonization of Qj is formed by
a union of an x-monotone curve Oj and one edge. Observe that cij ≺ q ≺ cij+1

for every q ∈ Qj , as 1 < ij < l − 1.
We construct a polygonization of the set Q = C ∪ ⋃m

j=1 Qj by connecting
the first and the last vertex of Oj in ≺ to cij and cij+1, respectively, with a line
segment for each j ∈ {1, . . . , m}. We then add the line segments cici+1 for each
i ∈ {1, . . . , l − 1} \ {i1, . . . , im} and the line segment c1cl; see part (b) of Fig. 1.
Since c1 ≺ · · · ≺ cl and cij ≺ q ≺ cij+1 for all j ∈ {1, . . . , m} and q ∈ Qj , the
resulting closed piecewise linear curve is a boundary of a simple polygon S with
the vertex set Q ⊆ P . Moreover, the boundary of S is formed by a union of an
x-monotone curve and the edge c1cl. Note that

|Q| >

m∑

j=1

|Qj | ≥ m
c

4
logk−1 n ≥ 
log n/64� − 3

4
c

4
logk−1 n = Ω(logk n)

for n sufficiently large with respect to k.
It remains to prove that the polygon S is k-convex. We start with the fol-

lowing simple observation that restricts the set of lines we have to check.

Lemma 2. For every k ∈ N, a simple polygon S with vertices in general position
is k-convex if and only if every line not containing a vertex of S intersects ∂S
in at most 2k points.

Proof. First, if S is k-convex, then each line � intersects S in at most k connected
components. If l contains no vertex of S then each such a component is a line
segment with endpoints in ∂S and with interior contained in the interior of S.
Thus � intersects ∂S in at most 2k points.

On the other hand, if S is not k-convex, then there is a line � that intersects
S in more than k connected components. We say that a component of S ∩ � is
regular if it contains no vertex of S. Suppose for simplicity that � is horizontal.
Since the vertices of S are in general position, at most two components are not
regular. Every regular component intersects ∂S in exactly two points. It follows
that if all components are regular then � intersects ∂S in at least 2k + 2 points.

Suppose now that there is a unique component A containing one or two
vertices of S. Then either moving � a little bit up or moving it a little bit
down turns the component A into one or more regular components and the
other components remain regular. Consequently, the perturbed line � contains
no vertex of S and intersects ∂S in at least 2k + 2 points.

Finally, suppose that there are two non-regular components A and B, each
containing exactly one vertex of S. Then A can be turned into a regular com-
ponent either by slightly perturbing � arbitrarily in such a way that it passes
above the point A ∩ vert(S), where vert(S) denotes the vertex set of S, or by
slightly perturbing it arbitrarily in such a way that it passes below the point
A ∩ vert(S). A similar statement holds for the component B. We claim that a
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suitable slight perturbation of � turns each of the components A and B into a
regular component. Indeed, it is sufficient to move � a little bit up or down or
to rotate it slightly clockwise or counterclockwise around the middle point of
the segment connecting the points A ∩ vert(S) and B ∩ vert(S). Thus there is a
perturbation of � such that the resulting line does not contain a vertex of S and
intersects ∂S in at least 2k + 2 points. This finishes the proof of Lemma 2.

By Lemma 2, it suffices to show that every line � not containing a vertex of
S intersects ∂S in at most 2k points. Since such a line � intersects ∂S in an even
number of points, it actually suffices to show that it intersects ∂S in at most
2k + 1 points. Every edge of ∂S is contained in the closure cl(Ti) of some Ti.
Since � intersects at most two regions cl(Ti), it suffices to prove the following
claim.

Lemma 3. The following two conditions are satisfied.

(i) For every i, |� ∩ ∂S ∩ cl(Ti)| ≤ 2k.
(ii) If � intersects two different regions Tα and Tβ then |� ∩ ∂S ∩ cl(Tα)| ≤ 1 or

|� ∩ ∂S ∩ cl(Tβ)| ≤ 1.

Proof. We first prove part (i) of Lemma 3. If i �∈ {i1, . . . , im} then cl(Ti) contains
at most one edge of ∂S. Thus, we have |� ∩ ∂S ∩ cl(Ti)| ≤ 1 < 2k in this case.
Otherwise i = ij for some j ∈ {1, . . . , m}, and then |�∩∂S ∩ cl(Ti)| ≤ 2k, since �
intersects Oj in at most 2k−2 points and it intersects each of the two remaining
edges of ∂S contained in cl(Ti) at most once. Part (i) of Lemma 3 follows.

To show part (ii) of Lemma 3, assume that, say, 1 ≤ α < β ≤ l. If β = α + 1
then α or β is even and thus |� ∩ ∂S ∩ cl(Tα)| ≤ 1 or |� ∩ ∂S ∩ cl(Tβ)| ≤ 1, as
required. Similarly, we have |� ∩ ∂S ∩ cl(Tβ)| ≤ 1 if β = l and thus we assume
β < l.

Assume now that β ≥ α+2. Then � intersects the bases of Tα and of Tβ . We
claim that |� ∩ ∂S ∩ cl(Tα)| ≤ 1. This is obvious if α �∈ {i1, . . . , im}.

Assume now that α = ij for some j ∈ {1, . . . , m}. Let cij = q1 ≺ q2 ≺
· · · ≺ qs−1 ≺ qs = cij+1 be the points from Qj ∪ {cij , cij+1}. We use x to denote
the intersection point of � and the base of Tij . Let �+ be the open half-plane
determined by � containing qs; see Fig. 2.

Let qt be a point from Qj ∩ �+. The distance of the point qt to the base line
of Tij is at most as large as such a distance for qt+1 by the choice of Qj . Thus
the point qt+1 does not lie in the strip between the base line of Tij and the line
�′ parallel to this line containing qt. Since qt ∈ �+, the line � intersects �′ to the
left of qt. It then follows from ij = α < β < l that the intersection of � with �′

is to the left of x and thus � intersects the vertical line containing qt below qt.
Since qt ≺ qt+1, the point qt+1 is thus separated from � by �′ and the vertical
line that contains qt; see Fig. 2. In particular, qt+1 ∈ �+ and � does not intersect
the edge qtqt+1.

Since the vertices along Oj are ordered according to ≺, it follows that at
most one edge of S in cl(Tij ) intersects � and we have |� ∩ ∂S ∩ cl(Tij )| ≤ 1,
which completes the proof of part (ii) of Lemma 3 and thus also the proof of
Theorem 1.
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�
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q1

qt+1
qtTij

�+

Fig. 2. An illustration of the proof of the fact |� ∩ ∂S ∩ cl(Tij )| ≤ 1.

5 Proof of the First Part of Theorem 2

In this section, we construct a 3-convex set of n points with the largest 1-convex
subset of size at most O(log n). Together with the Erdős–Szekeres Theorem,
this gives f(k, n) = f(k, 1, n) = Θ(log n) for all positive integers k ≥ 3 and n
and asymptotically settles the first part of Problem 2. Our example, the so-called
Devil’s staircase, has a very simple structure and may be of independent interest
for reasons discussed in the introduction. In full version of the paper, we also give
another example, in which we get a more precise bound described in the second
part of Theorem 2. Our examples are modifications of the construction used by
Erdős and Szekeres [6] to show the asymptotic tightness of the Erdős–Szekeres
Theorem.

A point set D is deep below a point set U if the following two conditions are
satisfied.

(i) Every point of D lies strictly below each line determined by two points of
U , and

(ii) every point of U lies strictly above each line determined by two points of D.

We say that a set S of 2t points in the plane in general position is a (combina-
torial) Devil’s staircase1 if S satisfies one of the following two conditions.

(ES1) Either t = 1 and the set S consists of two points (x1, y1) and (x2, y2) with
x1 < x2 and y1 < y2, or

(ES2) t ≥ 2 and the set S admits a partition S = X ∪ Y , where X and Y are
both Devil’s staircases with 2t−1 points. Moreover, X is deep below Y
and every point of Y has larger x-coordinate than any point of X.

Let {p1, . . . , pn} be the points of a Devil’s staircase Xt of size n = 2t for some
t ∈ N, sorted by increasing x-coordinates. We let p1 = (x1, y1) and pn = (xn, yn)
and we define the set Zt = Xt ∪ {q} with q = (xn, y1).

1 We chose this name, since the set resembles Cantor function, which is also known
under the name Devil’s staircase [16].
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Fig. 3. The polygonizations P1, P2, and P3, and the curve C3.

Now, we show that the set Zt is 3-convex. To do so, we consider the following
polygonization Pt of Zt. Let Ct be an x-monotone piecewise-linear curve formed
by the line segments pipi+1 for each i ∈ {1, . . . , n − 1}. Note that, by Proper-
ties ES1 and ES2, the chain Ct is also y-monotone. The polygonization Pt of Zt

is then the polygon whose boundary consists of Ct and the two line segments
p1q and pnq; see Fig. 3. The polygon Pt is simple, since Ct has both coordinates
increasing if we traverse it from p1 to pn. We now prove that Pt is a 3-convex
polygon.

Lemma 4. Any line � intersects Ct at most five times. Furthermore, if � is non-
vertical and passes above the rightmost point of Ct, then it intersects Ct at most
four times.

Proof. We proceed by induction on t. The case t ≤ 2 is trivial, thus we assume
t ≥ 3. Since Xt is a Devil’s staircase, there is a partition Xt = Xt−1 ∪X ′

t−1 such
that Xt−1 and X ′

t−1 are Devil’s staircases of size 2t−1, Xt−1 lies deep below X ′
t−1,

and Xt−1 is to the left of X ′
t−1. Let Ct−1 and C ′

t−1 be the x- and y-monotone
piecewise-linear curves formed by Xt−1 and X ′

t−1, respectively.
Let � be a line. Since the points of Xt are in general position, we can, due to

Lemma 2, assume that � does not contain a vertex of Xt in the rest of the proof.
First, observe that Property ES2 implies that every line that intersects at least
two edges of Ct−1 lies below X ′

t−1. Similarly, Property ES2 implies that every
line intersecting at least two edges of X ′

t−1 is above Xt−1. Thus we can assume
that � does not intersect both Ct−1 and C ′

t−1. Otherwise � intersects both curves
at most once and, since Ct contains only a single edge et besides Ct−1 and C ′

t−1,
the line � intersects Ct at most three times.

Since we assume that � does not intersect Ct−1 or C ′
t−1, we may also assume

that it intersects the other of these two sets at least twice. This will imply
restrictions on �.

We assume first that � intersects Ct−1 at least twice and show that the
statement of the lemma is then satisfied. In this case � passes below the rightmost
point of Ct, and we only have to show that it intersects Ct at most five times.
This is indeed the case because if � passes below the rightmost point of Ct−1 then
it does not intersect et and the statement follows from the inductive hypothesis.
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If � passes above the rightmost point of Ct−1 then it intersects Ct−1 at most
four times by the inductive hypothesis and consequently it intersects the curve
Ct = Ct−1 ∪ C ′

t−1 ∪ et at most five times.
Suppose now that � intersects C ′

t−1 at least twice. If � passes above the right-
most point of C ′

t−1 then it intersects C ′
t−1 at most four times by the inductive

hypothesis. Since � passes above all points of Ct−1, it intersects C ′
t−1∪et an even

number of times, thus at most four times. If � passes below the rightmost point
of C ′

t−1 then it intersects C ′
t−1 at most five times by the inductive hypothesis.

Since � passes above all points of Ct−1, it intersects C ′
t−1 ∪ et an odd number of

times, thus at most five times. This finishes the proof.

Consider a line � containing no point of Zt. Since � intersects ∂Pt an even
number of times, the first part of Lemma 4 implies that � intersect ∂Pt at most
six times. Lemma 2 then implies that Zt is a 3-convex point set.

We now show that the largest 1-convex subset of Zt contains at most O(t) =
O(log n) points. We use an argument analogous to the one used by Erdős and
Szekeres [6] (see also Matoušek [12, Sect. 3.1]). Every 1-convex set C of points
with distinct x-coordinates is a union of a cup and a cap meeting exactly in the
leftmost and the rightmost points of C. To prove the desired bound it is sufficient
to show that a Devil’s staircase Xt of size n = 2t contains no cup or cap having
more than t + 1 = log (n) + 1 points. A cup in X1 contains at most two points.
Due to the construction of Devil’s staircase, every cup in Xt = Xt−1 ∪ X ′

t−1 is
either fully contained in one of the smaller Devil’s staircases Xt−1 or X ′

t−1 or it
contains at most one point of X ′

t−1. It follows by induction on t that a cup in
Xt contains at most t + 1 points. Analogously, every cap in Xt contains at most
t + 1 points. Thus, every 1-convex subset of Xt contains at most 2t = O(log n)
points.

Since any subset of a 3-convex point set is 3-convex [2, Lemma 2] and remov-
ing points from Zt does not increase the size of the largest 1-convex subset, we
obtain the first part of Theorem 2.

Acknowledgements. The authors would like to thank Paz Carmi for interesting
discussions during the early stages of the research.
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12. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics,
vol. 212. Springer, New York (2002). https://doi.org/10.1007/978-1-4613-0039-7

13. Nicolás, C.M.: The empty hexagon theorem. Discrete Comput. Geom. 38(2), 389–
397 (2007)
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15. Suk, A.: On the Erdős-Szekeres convex polygon problem. J. Am. Math. Soc. 30(4),
1047–1053 (2017)

16. Thomson, B.S., Bruckner, J.B., Bruckner, A.M.: Elementary Real Analysis.
Prentice-Hall, Upper Saddle River (2001)

http://arxiv.org/abs/1710.11415
https://doi.org/10.1007/978-1-4613-0039-7


Algorithm and Hardness Results on Liar’s
Dominating Set and k-tuple

Dominating Set

Sandip Banerjee1 and Sujoy Bhore2(B)

1 Department of Computer Science, Hebrew University of Jerusalem,
Jerusalem, Israel

sandip.ndp@gmail.com
2 Algorithms and Complexity Group, TU Wien, Vienna, Austria

sujoy@ac.tuwien.ac.at

Abstract. Given a graph G = (V, E), the dominating set problem asks
for a minimum subset of vertices D ⊆ V such that every vertex u ∈
V \ D is adjacent to at least one vertex v ∈ D. That is, the set D
satisfies the condition that |N [v] ∩ D| ≥ 1 for each v ∈ V , where N [v]
is the closed neighborhood of v. In this paper, we study two variants
of the classical dominating set problem: k-tuple dominating set (k-DS)
problem and Liar’s dominating set (LDS) problem, and obtain several
algorithmic and hardness results. On the algorithmic side, we present a
constant factor ( 11

2
)-approximation algorithm for the Liar’s dominating

set problem on unit disk graphs. Then, we design a polynomial time
approximation scheme (PTAS) for the k-tuple dominating set problem on
unit disk graphs. On the hardness side, we show a Ω(n2) bits lower bound
for the space complexity of any (randomized) streaming algorithm for
Liar’s dominating set problem as well as for the k-tuple dominating set
problem. Furthermore, we prove that the Liar’s dominating set problem
on bipartite graphs is W[2]-hard.

1 Introduction

The dominating set problem is regarded as one of the fundamental problems
in theoretical computer science which finds its applications in various fields of
science and engineering [3,8]. A dominating set of a graph G = (V,E) is a
subset D of V such that every vertex in V \ D is adjacent to at least one vertex
in D. The domination number, denoted as γ(G), is the minimum cardinality of
a dominating set of G. Garey and Johnson [6] showed that deciding whether
a given graph has domination number at most some given integer k is NP-
complete. For a vertex v ∈ V , the open neighborhood of the vertex v denoted as
NG(v) is defined as NG(v) = {u|(u, v) ∈ E} and the closed neighborhood of the
vertex v denoted as NG[v] is defined as NG[v] = NG(v) ∪ {v}.
S. Bhore—Supported by the Austrian Science Fund (FWF) under project number
P31119.
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k-tupleDominating Set (k-DS): Fink and Jacobson [5] generalized the con-
cept of dominating sets as follows.

k-tuple Dominating Set (k-DS) Problem
Input: A graph G = (V,E) and a non-negative integer k.
Goal: Choose a minimum cardinality subset of vertices D ⊆ V such that,
for every vertex v ∈ V , |NG[v] ∩ D| ≥ k.

The k-tuple domination number γk(G) is the minimum cardinality of a k-DS
of G. A good survey on k-DS can be found in [4,12]. Note that, 1-tuple dominat-
ing set is the usual dominating set, and 2-tuple and 3-tuple dominating set are
known as double dominating set [7] and triple dominating set [15], respectively.
Further note that, for a graph G = (V,E), γk(G) = ∞, if there exists no k-DS
of G. Klasing et al. [10] studied the k-DS problem from hardness and approx-
imation point of view. They gave a (log |V | + 1)-approximation algorithm for
the k-tuple domination problem in general graphs, and showed that it cannot
be approximated within a ratio of (1 − ε) log |V |, for any ε > 0.

Liar’s Dominating Set (LDS): Slater [17] introduced a variant of the dom-
inating set problem called Liar’s dominating set problem. Given a graph G =
(V,E), in this problem the objective is to choose minimum number of vertices
D ⊆ V such that each vertex v ∈ V is double dominated and for every two
vertices u, v ∈ V there are at least three vertices in D from the union of their
neighborhood set. The LDS problem is an important theoretical model for the
following real-world problem. Consider a large computer network where a virus
(generated elsewhere in the Internet) can attack any of the processors in the net-
work. The network can be viewed as an unweighted graph. For each node v ∈ V ,
an anti-virus can: (1) detect the virus at v as well as in its closed neighborhood
N [v], and (2) find and report the vertex u ∈ N [v] at which the virus is located.
Notice that, one can make network G virus free by deploying the anti-virus at
the vertices v ∈ D, where D is the minimum size dominating set. However, in
certain situations the anti-viruses may fail. Hence, to make the system virus
free it is likely to double-guard the nodes of the network, which is indeed the
2-tuple DS. However, despite of the double-guarding, the anti-viruses may fail to
cure the system properly due to some software error or corrupted circumstances.
Therefore, for every pair of nodes, it is be important to introduce a guard that
sees both of them. This leads us to the Liar’s dominating set problem. We define
the problem formally below.

Liar’s Dominating Set (LDS) Problem
Input: A graph G = (V,E) and a non-negative integer k.
Goal: Choose a subset of vertices L ⊆ V of minimum cardinality such
that for every vertex v ∈ V , |NG[v]∩L| ≥ 2, and for every pair of vertices
u, v ∈ V of distinct vertices |(NG[u] ∪ NG[v]) ∩ L| ≥ 3.
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1.1 Our Results

In this paper, we obtain seveal algorithmic and hardness results for LDS and
k-DS problems on various graph families. On the algorithmic side in Sect. 2, we
present a constant factor (112 )-approximation algorithm for the Liar’s dominat-
ing set (LDS) problem on unit disk graphs. Then, we design a polynomial time
approximation scheme (PTAS) for the k-tuple dominating set (k-DS) problem
on unit disk graphs. On the hardness side in Sect. 3, we show a Ω(n2) bits lower
bound for the space complexity of any (randomized) streaming algorithm for
Liar’s dominating set problem as well as for the k-tuple dominating set prob-
lem. Furthermore, we prove that the Liar’s dominating set problem on bipartite
graphs is W[2]-hard.

2 Algorithmic Results

2.1 Approximation Algorithm for LDS on Unit Disk Graphs

Unit disk graphs are widely used to model of wireless sensor networks. A unit
disk graph (UDG) is an intersection graph of a family of unit radius disks in
the plane. Formally, given a collection C = {C1, C2, . . . , Cn} of n unit disks in
the plane, a UDG is defined as a graph G = (V,E), where each vertex u ∈ V
corresponds to a disk Ci ∈ C and there is an edge (u, v) ∈ E between two
vertices u and v if and only if their corresponding disks Cu and Cv contain v
and u, respectively. Here, we study the LDS problem on UDG.

Liar’s Dominating Set on UDG (LDS-UDG) Problem
Input: A unit disk graph G = (P, E), where P is a set of n disk centers.
Output: A minimum size subset D ⊆ P such that for each point pi ∈ P,
|N [pi] ∩ D| ≥ 2, and for each pair of points pi, pj ∈ P, |(N [pi] ∪ N [pj ]) ∩
D| ≥ 3.

Jallu et al. [9] studied the LDS problem on unit disk graphs, and proved that
this problem is NP-complete. Furthermore, given an unit disk graph G = (V,E)
and an ε > 0, they have designed a (1+ε)-factor approximation algorithm to find
an LDS in G with running time nO(c2), where c = O(1ε log

1
ε ). In this section, we

design a 11
2 -factor approximation algorithm that runs in sub-quadratic time.

For a point p ∈ P, let C(p) denote the disk centered at the point p. For any
two points p, q ∈ P, if q ∈ C(p), then we say that q is a neighbor of p (sometimes
we say q is covered by p) and vice versa. Since for any Liar’s dominating set
D, |(N [pi] ∪ N [pj ]) ∩ D| ≥ 3 (∀pi, pj ∈ P) holds, we assume that |P| ≥ 3
and for all the points p ∈ P, |N [p]| ≥ 2. For a point pi ∈ P, let pi(x) and pi(y)
denote the x and y coordinates of pi, respectively. Let Cov 1

2
(C(pi)), Cov1(C(pi)),

Cov 3
2
(C(pi)) denote the set of points of P that are inside the circle centered at

pi and of radius 1
2 , 1 and 3

2 unit, respectively.
The basic idea of our algorithm is as follows. Initially, we sort the points

of P based on their x-coordinates. Now, consider the leftmost point (say pi).
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We compute the sets Cov 1
2
(C(pi)), Cov1(C(pi)) and Cov 3

2
(C(pi)). Next, we

compute the set Q = Cov 3
2
(C(pi))\Cov1(C(pi)). Further, for each point qi ∈ Q,

we compute the set S(qi) = Cov1(C(qi)) ∩ Cov 1
2
(C(pi)). Finally, we compute

the set S =
⋃

S(qi). Moreover, our algorithm is divided into two cases.

1
21

3
2

qi

1
21

3
2

qi

(b)(a)

S(qi)S(qi)

pi pi

Fig. 1. An illustration of Case 1; (a) |S(qi)| ≥ 3, (b) |S(qi)| ≤ 2.

Case 1 (S 	= ∅): For each point qi ∈ Q such that S(qi) 	= ∅, we further distinguish
between the following cases.

1. If |S(qi)| ≥ 3: we pick two arbitrary points from the set S(qi), and include
them in the output set D (see Fig. 1(a)).

2. If |S(qi)| ≤ 2: in this case, we select one point pa and a possible second point
pb in the output set D (see Fig. 1(b)).

Once these points are selected, we remove the remaining points from
Cov1(C(qi)) at this step from the set Q. Notice that the points that lie in
Cov1(C(qi)) are already 1-dominated. Later, we can pick those points if required.
However, observe that we may choose a point pi from Cov 1

2
(C(pi)) while in

Case 1.2. That would not constitute a LDS. So we maintain a counter t in
Case 1. This counter keeps track of how many points we are picking from the
set S(qi) in total, for each point qi ∈ Q. If t is at least 2, we simply add pi to
the output set and do not enter into Case 2. Otherwise, we proceed to Case 2.

Case 2 (S = ∅ or t < 2): here, we further distinguish between the following
cases.

1. If |Cov 1
2
(C(pi))| ≥ 3: then we choose 2 points arbitrarily in the output set D

(see Fig. 2(a)).
2. If |Cov 1

2
(C(pi))| = 2: let pi, px ∈ Cov 1

2
(C(pi)) be these points. We include

both of them in the output set D. This settles the first condition of LDS for
them. However, in order to fulfill the second condition of LDS for pi and px,
we must include at least one extra point here. First, we check the cardinality
of X = (Cov1(C(pi)) ∩ Cov1(C(px))) \ {pi, px}. If |X| 	= ∅, then we pick an
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pi pi pi

px

pl

pr

pm

pn

(a) (b) (c)

Fig. 2. An illustration of Case 2; (a) |Cov 1
2
(C(pi))| ≥ 3, (b) |Cov 1

2
(C(pi))| = 2, (c)

|Cov 1
2
(C(pi))| = 1.

arbitrary point pm from X, and include pm in D. Otherwise, we include two
points pl ∈ Cov1(C(pi)) and pr ∈ Cov1(C(px)), and include them in D (see
Fig. 2(b)). Note that, in this case, we know that pl and pr exist due to the
input constraint of an LDS problem.

3. If |Cov 1
2
(C(pi))| = 1: then we check Cov1(C(pi)) and include two points pm

and pn arbitrarily from Cov1(C(pi)) \ Cov 1
2
(C(pi)) (see Fig. 2(c)).

This fulfills the criteria of LDS of points in Cov 1
2
(C(pi)). Then we delete the

remaining points of Cov 1
2
(C(pi)) from P. Next we select the left-most point from

the remaining and repeat the same procedure until P is empty. The pseudo-code
of the algorithm is given in the full version of the paper (see [1]).

Lemma 1. [�]1 The set D obtained from our algorithm, is a LDS of the unit
disk graph defined on the points of P.

Lemma 2. [�] Our algorithm outputs a LDS D ⊆ P of the unit disk graph
defined on the points of P with approximation ratio 11

2 .

The algorithm runs in polynomial time (to be precise in sub-quadratic time).
Thus, from Lemmas 1 and 2 we conclude the following theorem.

Theorem 1. The algorithm computes a LDS of the unit disk graph defined on
the points of P in sub-quadratic time with approximation factor 11

2 .

2.2 PTAS for k-DS on Unit Disk Graphs

In this section we give a PTAS for the k-tuple dominating set on unit disk
graphs with a similar approach used by Nieberg and Hurink [13]. It might be
possible to design a PTAS by using local search or shifting strategy for the k-
tuple dominating set problem on unit disk graphs. However, the time complexity
of these algorithms would be high. Thus we use the approach of Nieberg and
Hurink [13], that gurantees a better running time.
1 Proof of results labeled with [�] have been deferred to the full version [1] due to
space constraint.
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Let G = (V,E) be an unit disk graph in the plane. For a vertex v ∈ V ,
let Nr(v) and Nr[v] = Nr(v) ∪ {v} be the r-th neighborhood and r-th closed
neighborhood of v, respectively. For any two vertices u, v ∈ V , let δ(u, v) be the
distance between u and v in G, that is the number of edges of a shortest path
between u and v in G. Let Dk(V ) be the minimum k-tuple dominating set of G.
For a subset W ⊆ V , let Dk(W ) be the minimum k-tuple dominating set of the
induced subgraph on W . We prove the following theorem.

Theorem 2. There exists a PTAS for the k-tuple dominating set problem on
unit disk graphs.

Proof. The 2-separated collection of subsets is defined as follows: Given a graph
G = (V,E), let S = {S1, . . . , Sm} be a collection of subsets of vertices Si ⊂ V ,
for i = 1, . . . ,m, such that for any two vertices u ∈ Si and v ∈ Sj with i 	= j,
δ(u, v) > 2. In the following lemma we prove that the sum of the cardinalities
of the minimum k-tuple dominating sets Dk(Si) for the subsets Si ∈ S of a
2-separated collection is a lower bound on the cardinality of Dk(V ).

Lemma 3. [�] Given a graph G = (V,E), let S = {S1, . . . , Sm} be a 2-separated
collection of subsets of V then, |Dk(V )| ≥ ∑m

i=1 |Dk(Si)|.
From Lemma 3, we get the lower bound of the minimum k-tuple dominating

set of G. If we can enlarge each of the subset Si to a subset Ti such that the
k-tuple dominating set of Si (that is Dk(Si)) is locally bounded to the k-tuple
dominating set of Ti (that is Dk(Ti)), then by taking the union of them we get an
approximation of the k-tuple dominating set of G. For each subset Si, let there
is a subset Ti (where Si ⊂ Ti), and let there exists a bound (1 + ε) (0 < ε < 1)
such that |Dk(Ti)| ≤ (1 + ε) · |Dk(Si)|. Then, if we take the union of the k-
tuple dominating sets of all Ti, this is a (1 + ε)-approximation of the k-tuple
dominating sets of the union of subsets Si (for i = 1, . . . ,m). Now, we describe
the algorithm. Let V0 = V . Consider an arbitrary vertex v ∈ V0, and begin
computing the k-DS of Nr[v], until Dk(Nr+2[v]) > ρ ·Dk(Nr[v]) (for a constant
ρ). We iteratively process the remaining graph induced by Vi+1 = Vi \ N r̂i+2[vi]
(where r̂i is the first point at ith iteration when the condition is violated).

Lemma 4. Let {N1, . . . , N�} be the set of neighborhoods created by the above
algorithm (for � < n). The union

⋃�
i=1(Dk(Ni)) forms a k-tuple dominating set

of G.

Proof. Consider the set Vi+1 = Vi \ Ni, and we know Ni ⊂ Vi. Thus, Vi+1 =
Vi ∪ Ni. The algorithm stops while V�+1 = ∅, which means V� = N�. Besides,⋃�

i=1(Ni) = V . Thus, if we compute the k-tuple dominating set Dk(Ni) of each
Ni, their union clearly is the k-tuple dominating set of the entire graph. �

These subsets N r̂i [vi], for i = 1, . . . , �, created by the algorithm form a 2-
separated collection {N r̂1 [v1], . . . , N r̂� [v�]} in G. Consider any two neighbor-
hoods Ni, Ni+1. We have computed Ni+1 on graph induced by V \ Vi. So, for
any two vertices u ∈ Ni and v ∈ Ni+1, the distance is greater than 2. Thus we
have the following corollary.
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Corollary 1. The algorithm returns a k-tuple dominating set
⋃�

i=1(Dk(Ni)) of
cardinality no more than ρ the size of a dominating set Dk(V ), where ρ = (1+ε).

It needs to be shown that this algorithm has a polynomial running time. The
number of iterations � is clearly bounded by |V | = n. It is important to show
that for each iteration we can compute the minimum k-tuple dominating set
Dk(Nr[v]) in polynomial time for r being constant or polynomially bounded.
Consider the r-th neighborhood of a vertex v, Nr[v]. Let Ir be the maximal
independent set of the graph induced by Nr[v]. From [13], we have Ir ≤ (2r +
1)2 = O(r2). The cardinality of a minimum dominating set in Nr[v] is bounded
from above by the cardinality of a maximal independent set in Nr[v]. Hence,
|D(Nr[v]| ≤ (2r + 1)2 = O(r2). Now, we prove the following lemma.

Lemma 5. |Dk(Nr[v])| ≤ O(k2 · r2).

Proof. Let Ir
1 be the first maximal independent set of Nr[v]. We know

|D(Nr[v])| ≤ |Ir
1 | ≤ (2r + 1)2. Now, we take the next maximal independent

set Ir
2 from Nr[v] \ Ir

1 , and take the union of them (Ir
1 ∪ Ir

2 ). Notice that every
vertex v ∈ (Nr[v] \ (Ir

1 ∪ Ir
2 )) has 2 neighbors in (Ir

1 ∪ Ir
2 ), so they can be 2-tuple

dominated by choosing vertices from (Ir
1 ∪ Ir

2 ). Also, every vertex v ∈ Ir
2 can be

2-tuple dominated by choosing vertices from (Ir
1 ∪ Ir

2 ), since v itself can be one
and the other one can be picked from Ir

1 . Additionally, for each vertex u ∈ Ir
1 , we

take a vertex z from the neighborhood of u in (Nr[v]\(Ir
1∪Ir

2 )). Let W (Ir
1 ) be the

union of these vertices. Now, every vertex v ∈ Nr[v] can be 2-tuple dominated
by choosing vertices from (Ir

1 ∪Ir
2 ∪W (Ir

1 )). So, |D2(Nr[v])| ≤ |(Ir
1 ∪Ir

2 ∪W (Ir
1 ))|.

|(Ir
1 ∪Ir

2 ∪W (Ir
1 ))| ≤ 3 · (2r+1)2. Hence, |D2(Nr[v])| ≤ 3 · (2r+1)2. We continue

this process k times.
After k steps, we get the union of the maximal independent sets A = {Ir

1 ∪
. . . ∪ Ir

k}. Additionally, we get the unions of B = {W (Ir
1 ) ∪ W (Ir

1 ∪ Ir
2 ) ∪ . . . ∪

W (Ir
1 ∪. . .∪Ir

k−1)}. Notice that every vertex v ∈ Nr[v] can be k-tuple dominated
by choosing vertices from (A ∪ B). The cardinality of (A ∪ B) is at most (2r +
1)2 · (1 + 3+ . . .+ (2k − 1)), which is (2r +1)2 · k2. We also know |Dk(Nr[v])| is
upper bounded by (A ∪ B). Thus, |Dk(Nr[v])| ≤ (2r + 1)2 · k2 ≤ O(k2 · r2).

Nieberg and Hurink [13] showed that for a unit disk graph, there exists
a bound on r̂1 (the first value of r that violates the property D(Nr+2[v]) >
ρ ·D(Nr[v])). This bound depends on the approximation ρ not on the size of the
of the unit disk graph G = (V,E) given as input. Precisely, they have proved
that there exists a constant c = c(ρ) such that r̂1 ≤ c, that is, the largest
neighborhood to be considered during the iteration of the algorithm is bounded
by a constant. Thereby, putting everything together, we conclude the proof. �

3 Hardness Results

3.1 Streaming Lower Bound for LDS

In this section, we consider the streaming model: the edges arrive one-by-one in
some order, and at each time-stamp we need to decide if we either store the edge
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or forget about it. We now show that any streaming algorithm that solves the
LDS problem must essentially store all the edges.

Theorem 3. Any randomized2 streaming algorithm for LDS problem on n-
vertex graphs requires Ω(n2) space.

Proof. We will reduce from the Index problem in communication complexity:

Index Problem
Input: Alice has a string X ∈ {0, 1}N given by x1x2 . . . xN . Bob has an
index ι ∈ [N ].
Question: Bob wants to find xι, i.e., the ιth bit of X.

It is well-known that there is a lower bound of Ω(N) bits in the one-way
randomized communication model for Bob to compute xi [11]. We assume an
instance of the Index problem where N is a perfect square, and let r =

√
N . Fix

any bijection from [N ] → [r] × [r]. Consequently we can interpret the bit string
as an adjacency matrix for a bipartite graph with r vertices on each side. Let the
two sides of the bipartition be V = {v1, v2, . . . , vr} and W = {w1, w2, . . . , wr}.

From the instance of Index, we construct an instance GX of the LDS.
Assume that Alice has an algorithm that solves the k-tuple dominating set
problem using f(r) bits. First, we insert the edges corresponding to the edge
interpretation of X between nodes vi and wj : for each i, j ∈ [k], Alice adds the
edge (vi, wj) if the corresponding entry in X is 1. Alice then sends the memory
contents of her algorithm to Bob, using f(r) bits.

Bob has the index ι ∈ [N ], which he interprets as (I, J) under the same
bijection φ : [N ] → [r] × [r]. He receives the memory contents of the algorithm,
and proceeds to do the following:

– Add two vertices a and b, and an edge a − b
– Add an edge from each vertex of V \ vI to a
– Add an edge from each vertex of W \ wJ to a
– Add five vertices {u, y, u′, y′, z} and edges u − u′, y − y′, u − z and y − z.
– Add an edge from each vertex of V ∪ W ∪ {a, b} to each vertex from {u, y}

Let D be a minimum LDS of GX . Note that D has to be a double dominating
set of GX . Since u′ has only 2 neighbors in GX , it follows that {u, u′} ⊆ D.
Similarly {y, y′} ⊆ D. Note that z also has only two neighbors in GX . Hence, we
have that N [z]∪N [b] = {u, y, a, b}. Since we must have |(N [z]∪N [b])∩D| ≥ 3, it
follows that at least one of a or b must belong in D. Since N [b] ⊆ N [a], without
loss of generality we can assume that a ∈ D. Therefore, so far we have concluded
that {u, u′, y, y′, a} ⊆ D.

The next two lemmas show that finding the minimum value of a LDS of GX

allows us to solve the corresponding instance X of Index.

2 By randomized algorithm we mean that the algorithm should succeed with proba-
bility ≥ 2

3
.
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Lemma 6. xι = 1 implies that the minimum size of a LDS of GX is 6.

Proof. Suppose that xι = 1, i.e., vI − wJ is an edge in GX . We now claim that
D := {u, u′, y, y′, a} ∪ vI is a LDS of GX .

First we check that D is indeed a double dominating set of GX

– For each vertex in λ ∈ GX \ {u, u′, y, y′, z} we have (N [λ] ∩ D) ⊇ {u, y}
– (N [u] ∩ D) ⊇ {u, u′}
– (N [y] ∩ D) ⊇ {y, y′}
– (N [z] ∩ D) = {u, y}
– (N [u′] ∩ D) = {u, u′}
– (N [y′] ∩ D) = {y, y′}
We now check the second condition. Let T = GX \ {u, u′, y, y′, z}, and T ′ =
GX \ T

– For each λ ∈ T \{vI , wJ} and each δ ∈ T ′ we have (N [λ]∪N [δ])∩D ⊇ {a, u, y}
– For each δ ∈ T ′ we have (N [vI ] ∪ N [δ]) ∩ D ⊇ {vI , u, y}
– For each δ ∈ T ′ we have (N [wJ ] ∪ N [δ]) ∩ D ⊇ {vI , u, y}
– Now we consider pairs where both vertices are from T ′. By symmetry, we
only have to consider following choices

• (N [u′] ∪ N [u]) ∩ D = {u, u′, y}
• (N [u′] ∪ N [z]) ∩ D = {u, u′, y}
• (N [u′] ∪ N [y]) ∩ D = {u, u′, y, y′}
• (N [u′] ∪ N [y′]) ∩ D = {u, u′, y, y′}

– Now we consider pairs where both vertices are from T . By symmetry, we only
have to consider following choices

• For each λ ∈ V \ vI ∪ W \ wJ we have (N [λ] ∪ N [b]) ∩ D ⊇ {u, y, a} and
(N [λ] ∪ N [a]) ∩ D ⊇ {u, y, a}

• (N [vI ] ∪ N [b]) ∩ D ⊇ {u, y, a}
• (N [vI ] ∪ N [a]) ∩ D ⊇ {u, y, a}
• (N [wJ ] ∪ N [b]) ∩ D ⊇ {u, y, a}
• (N [wJ ] ∪ N [a]) ∩ D ⊇ {u, y, a}
• (N [wJ ] ∪ N [vI ]) ∩ D ⊇ {vI , y, a}
• For each γ ∈ V \ vI we have (N [wJ ] ∪ N [γ]) ∩ D ⊇ {vI , y, a, u}
• For each γ ∈ W \ wJ we have (N [vI ] ∪ N [γ]) ∩ D ⊇ {vI , y, a, u}
• For each γ ∈ V \vI and γ′ ∈ W \wJ we have (N [γ]∪N [γ′])∩D ⊇ {y, a, u}

Hence, it follows that D is indeed a LDS of GX of size 6.

Lemma 7. xι = 0 implies that the minimum size of a LDS of GX is ≥ 7.

Proof. Now suppose that xι = 0, i.e., vI and wJ do not have an edge between
them in GX . Let D′ be a minimum LDS of GX . We have already seen above
that {u, u′, y, y′, a} ⊆ D.

Consider the pair (vI , z). Currently, we have that (N [vI ] ∪ N [z]) ∩
{u, u′, y, y′, a} = {u, y}. Hence, D′ must contain a vertex, say μ ∈ N [vI ] \
{u, y}. Consider the pair (wJ , z). Currently, we have that (N [wJ ] ∪ N [z]) ∩
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{u, u′, y, y′, a} = {u, y}. Hence, D′ must contain a vertex, say μ′ ∈ N [wJ ]\{u, y}.
Since vI andwJ do not form an edge, we have that μ 	= μ′. Hence, |D′| ≥ 5+2 = 7.

Thus, by checking whether the value of a minimum LDS on the instance GX

is 6 or 7, Bob can determine the index xι. The total communication between
Alice and Bob was O(f(r)) bits, and hence we can solve the Index problem in
f(r) bits. Recall that the lower bound for the Index problem is Ω(N) = Ω(r2).
Note that |GX | = n = 2r + 5 = O(r), and hence Ω(r2) = Ω(n2). �
Corollary 2. Let ε > 0 be a constant. Any (randomized) streaming algorithm
that achieves a (76 − ε)-approximation for a LDS requires Ω(n2) space.

Proof. Theorem 3 shows that distinguishing between whether the minimum
value of the LDS is 6 or 7 requires Ω(n2) bits. The claim follows since 6·( 76 −ε) <
7. �

3.2 Streaming Lower Bounds for k-DS

Theorem 4. For any k = O(1), any randomized (See footnote 2) streaming
algorithm for the k-tuple dominating set problem on n-vertex graphs requires
Ω(n2) space.

Proof. We reduce from the Index problem in communication complexity. We
assume an instance of the Index problem where N is a perfect square, and let
r =

√
N . Fix any bijection from [N ] → [r] × [r]. Consequently we can interpret

the bit string as an adjacency matrix for a bipartite graph with r vertices on
each side. Let the two sides of the bipartition be V = {v1, v2, . . . , vr} and W =
{w1, w2, . . . , wr}. From the instance of Index, we construct an instance GX

of the k-tuple dominating set. Assume that Alice has an algorithm that solves
the k-tuple dominating set problem using f(r) bits. First, we insert the edges
corresponding to the edge interpretation of X between nodes vi and wj : for each
i, j ∈ [k], Alice adds the edge (vi, wj) if the corresponding entry in X is 1. Alice
then sends the memory contents of her algorithm to Bob, using f(r) bits.

Bob has the index ι ∈ [N ], which he interprets as (I, J) under the same
bijection φ : [N ] → [r] × [r]. He receives the memory contents of the algorithm,
and proceeds to do the following:

– Add (k+1) vertices A = {a1, a2, . . . , ak} and b.
– Add edges {ai − b : 1 ≤ i ≤ k}.
– Add an edge from each vertex of V \ (vI) to each vertex of A.
– Add an edge from each vertex of W \ (wJ ) to each vertex of A.
– Add an edge vI to each vertex of A \ ak.
– Add an edge from wJ to each vertex of A \ ak.

The next lemma shows that finding the minimum value of a k-tuple domi-
nating set of GX allows us to solve the corresponding instance X of Index.

Lemma 8. [�] The minimum size of a k-tuple dominating set of GX is k +1 if
and only if xι = 1.
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Thus, by checking whether the value of minimum k-tuple dominating set
on the instance GX is k + 1 or k + 2, Bob can determine the index xι. The
total communication between Alice and Bob was O(f(r)) bits, and hence we
can solve the Index problem in f(r) bits. Recall that the lower bound for the
Index problem is Ω(N) = Ω(r2). Note that |GX | = n = 2r+k+1 = O(r) since
k = O(1), and hence Ω(r2) = Ω(n2).

Corollary 3. Let 1 > ε > 0 be any constant. Any (randomized) streaming algo-
rithm that approximates a k-tuple dominating set within a relative error of ε
requires Ω(n2) space.

Proof. Choose ε = 1
k . Theorem 8 shows that the relative error is at most 1

k+2 ,
which is less than ε. Hence finding an approximation within ε relative error
amounts to finding the exact value of the k-tuple dominating set. Hence, the
claim follows from the lower bound of Ω(n2) of Theorem 8.

3.3 W-Hardness Results for LDS

The LDS problem was is NP-complete on general graphs [17], and NP-complete
on bipartite graphs, split graphs (see, e.g., [14,16]). Bishnu et al. [2] showed that
LDS problem on planar graphs admits a linear kernel and W[2]-hard on general
graphs. We prove that LDS problem is W[2]-hard on bipartite graphs.

Theorem 5. Liar’s dominating set on bipartite graphs is W[2]-hard.

Proof. We prove this by giving a parameterized reduction from the dominating
set problem in general undirected graphs. Let (G = (V,E), k) be an instance of
the dominating set, where k denotes the size of the dominating set. We construct
a bipartite graph G′ = (V ′, E′) from G = (V,E). First, we create two copies of
V , namely V1 = {u1|u ∈ V } and V2 = {u2|u ∈ V }. Next, we introduce two extra
vertices z1, z2 in V1, and two extra vertices z′

1, z
′
2 in V2. Furthermore, we introduce

two special vertices sz′
1
, sz′

2
in V1 and two special vertices sz1 , sz2 in V2. The entire

vertex set V ′ is V1 ∪ V2, where V1 = {u1|u ∈ V } ∪ {z1, z2, sz′
1
, sz′

2
} and V2 =

{u2|u ∈ V } ∪ {z′
1, z

′
2, sz1 , sz2}. Now, if there is an edge (u, v) ∈ E, then we draw

the edges (u1, v2) and (v1, u2). We draw the edges of the form (u1, u2) in G′ for
every vertex u ∈ V . Then, we add edges from every vertex in V1\{z1, z2, sz′

1
, sz′

2
}

to z′
1, z

′
2, and the edges from every vertex in V1\{z′

1, z
′
2, sz1 , sz2} to z1, z2. Finally

we add the edges (z1, z′
1), (z2, z

′
2) and (z1, sz1), (z2, sz2), (z

′
1, sz1), (z

′
2, sz′

2
). This

completes the construction (see Fig. 3).
We show that G has a dominating set of size k if and only if G′ has a LDS of

size k+8. Let D denote the dominating set of the given graph G. We claim that
D′ = {u1|u ∈ D} ∪ {z1, z2, sz′

1
, sz′

2
} ∪ {z′

1, z
′
2, sz1 , sz2} is a LDS of G′. Note that

for any vertex v ∈ V ′, |NG′ [v]∩D′| ≥ 2, since {z1, z2, z
′
1, z

′
2} is in D′. This fulfills

the first condition of the LDS. Now, for every pair of vertices, u, v ∈ V ′, we show
that |(NG′ [u]∪NG′ [v])∩D′| ≥ 3. If u, v ∈ V1, we know |(NG′ [u]∪NG′ [v])∩D′| ≥ 2
due to z′

1, z
′
2. Now, in the dominating set at least one additional vertex dominates
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u1

v1 v2

z1 z′
1

z′
2

u2

u

v

G
V1 V2

G′

sz1
sz2

sz′
1

z2

sz′
2

Fig. 3. Construction of G′ from G (Illustration of Theorem 5).

them. Thus, |(NG′ [u] ∪ NG′ [v]) ∩ D′| ≥ 3. Similarly, when u, v ∈ V2 or u ∈ V1

and v ∈ V2. This fulfills the second condition of the LDS.
Conversely, let D′ be a LDS in G′. Note that, {z1, z2, z

′
1, z

′
2} are always

part of D′, since z1, z2 are the only neighbors of sz1 , sz2 and z′
1, z

′
2 are the only

neighbors of sz′
1
, sz′

2
. These special vertices are taken in the construction to

enforce {z1, z2, z
′
1, z

′
2} to be in D′. Now we know, for any pair of vertices p, q,

|(NG′ [p]∪NG′ [q])∩D′| ≥ 3. This implies p, q is dominated by at least one vertex or
one of them is picked, except {z1, z2, z

′
1, z

′
2}. Otherwise, |(NG′ [p]∪NG′ [q])∩D′| <

3. This violates the second condition of LDS. Now, when p, q are both part of
the same edge in G (say u2, v2 ∈ V2 ; see Fig. 3), we need at least one vertex from
{u1, v1, u2, v2} in D′. This means that for every vertex v ∈ V , |NG[v] ∩ D| ≥ 1.
Thus, D is a dominating set of G where the cardinality of D is at most k. �
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Abstract. We consider the list-coloring problem from the perspective of
parameterized complexity. The classical graph coloring problem is given
an undirected graph and the goal is to color the vertices of the graph
with minimum number of colors so that end points of each edge gets dif-
ferent colors. In list-coloring, each vertex is given a list of allowed colors
with which it can be colored.

In parameterized complexity, the goal is to identify natural param-
eters in the input that are likely to be small and design an algorithm
with time f(k)nc time where c is a constant independent of k, and k is
the parameter. Such an algorithm is called a fixed-parameter tractable
(fpt) algorithm. It is clear that the solution size as a parameter is not
interesting for graph coloring, as the problem is NP-hard even for k = 3.
An interesting parameterization for graph coloring that has been studied
is whether the graph can be colored with n − k colors, where k is the
parameter and n is the number of vertices. This is known to be fpt using
the notion of crown reduction. Our main result is that this can be gen-
eralized for list-coloring as well. More specifically, we show that, given a
graph with each vertex having a list of size n− k, it can be determined
in f(k)nO(1) time, for some function f of k, whether there is a coloring
that respects the lists.

1 Introduction

The graph coloring problem is one of the fundamental combinatorial optimization
problems with applications in scheduling, register allocation, pattern matching
and many other active research areas. Given a graph G = (V,E), the k-coloring
problem is asking whether there is a way to assign at most k colors/labels to
vertices of a graph such that no two adjacent vertices share the same color.
Such a coloring is also known as a proper k-coloring. The smallest number
of colors needed to color a graph G is called its chromatic number, and is
denoted by χ(G). Determining whether a graph is 3-colorable is NP-hard [9]
while the 2-coloring problem has a linear time algorithm. It is even hard to
c© Springer Nature Switzerland AG 2019
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approximate the chromatic number in polynomial time. The 3-coloring prob-
lem remains NP-complete even on 4-regular planar graphs [6]. There are some
generalizations and variations of ordinary graph colorings which are motivated
by practical applications such as Precoloring Extension, List coloring
etc. In this paper, we focus on the List coloring problem defined as follows.
List coloring problem
Input: A graph G = (V,E) and a list L of |V | many set of colors with L(v)
being the entry for v ∈ V
Question: Is there an assignment of colors c : V → ∪v∈V L(v) such that it
respects the lists L, i.e. for any vertex v, c(v) ∈ L(v) and for any two adjacent
vertices u and v, c(v) �= c(u)?

A list L is �-regular if each set contains exactly l colors. �-regular List
coloring problem is to decide whether G = (V,E) has a coloring that respects
L, where L is �-regular.

Note that when all the lists L(v) = [k], the problem becomes the k-Coloring
problem.

We begin with the notions of parameterized complexity before we explain
our results.

Parameterized Complexity. The goal of parameterized complexity is to find
ways of solving NP-hard problems more efficiently than brute force: here the
aim is to restrict the combinatorial explosion to a parameter that is hopefully
much smaller than the input size. A parameterization of a problem is assigning
a positive integer parameter k to each input instance. Formally we say that a
parameterized problem is fixed-parameter tractable (FPT) if there is an algorithm
A (called a fixed-parameter tractable algorithm), a computable function f , and a
constant c such that, given problem instance (x,k), A correctly solves the prob-
lem in time bounded by f(k) · |(x, k)|c, where x is the input and k is the param-
eter [5]. There is also an accompanying theory of parameterized intractability
using which one can identify parameterized problems that are unlikely to admit
FPT algorithms. These are essentially proved by showing that the problem is
W [1]-hard [5].

A parameterized problem is called slice-wise polynomial (XP) if there exists
an algorithm A, two computable functions f, g such that, given problem instance
(x,k), the algorithm A correctly solves the problem in time bounded by f(k) ·
|(x, k)|g(k), where x is the input and k is the parameter [5]. The complexity
class containing all slice-wise polynomial problems is called XP. We say that
a parameterized problem is para-NP-hard if the problem is NP-hard for some
fixed constant value of the parameter. para-NP-hard problems are not in XP
unless P = NP.

Literature and Previous Work. As 3-coloring is NP-hard, the k-coloring
problem is para-NP-hard when parameterized by the number of colors. Hence
various other parameterizations have been studied for the Coloring problem.
Some include structural parameterizations like the size of the vertex cover [11],
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treewidth [5], deletion distance to a graph class G where Coloring is solvable
in polynomial time such as bipartite graphs, chordal graphs, complete graphs
[3,12].

It is interesting to see if the Coloring problem is FPT for some parameteri-
zation, whether List coloring problem which is a generalization of Coloring
also has an FPT algorithm. For example, q-Coloring problem parameterized by
the vertex cover size k has a O(qk) algorithm. The same result can be extended to
q-regular List coloring [11]. But there are also parameterizations where an
FPT result in Coloring problem does not extend to List coloring. For exam-
ple, while Coloring is FPT when parameterized by the treewidth of the graph
[5], List coloring problem is W -hard for the same parameter [8]. See [12] for
a summary of results on parameterizations of Coloring and List coloring.

Using crown reduction (see Definition 1), it can be shown that it is fixed-
parameter tractable to determine whether a graph can be colored with at most
n−k colors (here k is the parameter) [4]. We ask whether this result can be gen-
eralized to List coloring by asking whether (n−k)-regular List coloring
is FPT parameterized by k.

A previous result by Arora and a subset of authors [1] showed that (n − k)-
regular List coloring is in XP. In this paper, we improve this result by
showing that the problem is in FPT.

2 Preliminaries

Terminology and Notation. We use notations from the book of Diestel [7] for
graph-related topics. Here we only define a few frequently used notations. Given
a graph G, V (G) and E(G) denote its vertex-set and edge-set, respectively. The
complement G of a graph G is the graph on V (G) with edge set [V ]2 \ E(G).
Two vertices u and v of a graph G is neighbor (non-neighbor) if and only if
(u, v) ∈ E(G) ((u, v) /∈ E(G)). For any vertex v ∈ V (G), we denote the set of
neighbors (non-neighbors) of v by NG(v) (NG(v)) or briefly by N(v) (N(v))1. For
any W ⊆ V (G) we define NG(W ) = {∪v∈WNG(v)} (NG(W ) = {∪v∈WNG(v)}).
For any subset W ⊆ V (G), let G[W ] be the graph induced by the set of vertices
W . Let G be any class of graphs. For any integer k, let G + k be the set of
graphs G such that there exist a set of vertices W ⊆ V (G) where |W | = k and
G[V \ W ] ∈ G.

Definition 1 (Crown Decomposition). A crown decomposition of a graph G is
a partitioning of V(G) into sets C,H and R such that

• C is non-empty.
• C induces an independent set in G.
• There are no edges from C to R.
• G contains a matching of size |H| between C and H.

1 In the rest of the paper, we drop the index referring to the underlying graph if the
reference is clear.
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Here C is said to be the crown and H is the head.

Theorem 2.1 (Hall’s theorem, [7]). Let G be an undirected bipartite graph with
bipartition V1 and V2. The graph G has a matching saturating V1 if and only if
for all X ⊆ V1, we have |N(X)| ≥ |X|.
Theorem 2.2 [10]. Let G = (V,E) be an undirected bipartite graph with bipar-
titions V1 and V2. Then in O(|E|√|V |) time we can either find a matching
saturating V1 or an inclusion wise minimal set X ⊆ V1 such that |N(X)| < |X|.
Theorem 2.3 [2]. List coloring can be solved in O(2n) time.

3 (n − k)-regular List coloring Is in FPT

We restate the following reduction rules and results from [1] without proofs.

Reduction Rule 1 [1]. Delete any vertex with degree less than (n − k).

Lemma 3.1 [1]. If there exists a set of k colors using which it is possible to
color at least 2k vertices of G respecting the lists in L, then there is a feasible
coloring for G respecting L.

Lemma 3.2 [1]. List coloring problem is polynomial time solvable on a
clique.

Theorem 3.3 [1]. (n − k)-regular List coloring can be solved in nO(k)

time.

We keep applying Reduction Rule 1 till it is no longer applicable and hence
from now onwards we assume that every vertex has degree at least (n − k).
We can also assume that n ≥ 3k for otherwise, we can apply the algorithm of
Theorems 3.3 or 2.3 to obtain a fixed-parameter tractable algorithm.

Let C = ∪v∈V L(v). We create a bipartite graph GB(V,C,E) with bipartiza-
tion (V,C). There is an edge between v and a color c if c ∈ L(v).

We start with the following new reduction rule.

Reduction Rule 2. Let C ′ be an inclusion wise minimal subset of C such that
|N(C ′)| < |C ′| in the graph GB. Delete all the vertices in N(C ′) from G.

Lemma 3.4. Reduction Rule 2 is safe and can be implemented in polynomial
time.

Proof. We use Theorem 2.2 to obtain the set C ′ if present in the graph GB in
polynomial time. Let D = C ′ \ {c} for any arbitrary vertex c ∈ C ′. Since C ′ is
an inclusion wise minimal set satisfying the condition of the rule, for any subset
D′ ⊆ D, |N(D′)| ≥ |D′|. Hence by Hall’s Theorem 2.1, there is a matching
saturating D.
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Let M be a matching saturating D into N(D). We have a crown decom-
position in the graph GB with D as the crown and N(D) as the head. Since
|N(C ′)| < |C ′|, we have |N(D)| = |D| and N(D) = N(C ′). Hence there are no
unmatched vertices in N(C ′) with respect to M .

Let us denote for each vertex v ∈ N(C ′), mv as the matching partner in D
with respect to M . We show that there exists a list coloring respecting L in G if
and only if there exists a list coloring respecting L in G\N(C ′). Since G\N(C ′)
is a subgraph of G, the forward direction is true. In the converse, suppose there
exists a coloring C that respecting L in the graph G \ N(C ′). We extend this
coloring C to a coloring C′ in G by assigning color mv to each vertex v ∈ N(C ′).
We claim that C′ is a proper coloring respecting L. Suppose not. Then there exists
a monochromatic edge (u, v) ∈ E. Since C is a valid coloring, either u ∈ N(C ′)
or v ∈ N(C ′). Since all the vertices in N(C ′) have different colors, both u and v
cannot be in N(C ′). Hence without loss of generality, assume v /∈ N(C ′). Since
all the vertices of N(C ′) are colored by using colors in C ′ and v /∈ N(C ′), color
of v cannot be mu ∈ C ′ giving a contradiction. �	

Note that when |V | < |C|, there is no matching in the bipartite graph GB

saturating C. Hence by Theorem 2.2, there exists a non-empty set C ′ which is
inclusion wise minimal subset of C such that |N(C ′)| < |C ′|. Hence Reduction
Rule 2 can be applied reducing |V | and |C|. When the rule can no longer be
applied |V | ≥ |C|. But note that if |V | = |C| and the reduction rule can no
longer be applied, there exists a matching M saturating C. We construct a
feasible list coloring function C respecting L with C(v) = mv where v ∈ V and
mv the matching partner of v in M .

Hence we can assume that in the graph G, |V | = n > |C|.
For an edge e = (u, v) ∈ G we define a list L(e) = L(u) ∩ L(v). We call a

matching M in G a multicolor matching if it is possible to choose a distinct
color from each L(e) for every edge e ∈ M . Now, we have the following corollary
of Lemma 3.1 as the 2k end points of the k matching edges can be colored with
k colors.

Corollary 3.4.1. If there exists a multicolor matching of size k in G, then there
is a feasible coloring for G with respecting L.

Next we show that we can color each vertex of G(V,E) with a different color,
or there exists a multicolor matching of size k or there exists a large clique
in G.

Lemma 3.5. For any u, v ∈ V , |NGB
(u) ∩ NGB

(v)| > n − 2k in GB.

Proof. Let u, v ∈ V . We have

n = |V | > |C|
≥ |NGB

(u) ∪ NGB
(v)|

= |NGB
(u)| + |NGB

(v)| − |NGB
(u) ∩ NGB

(v)|
≥ 2n − 2k − |NGB

(u) ∩ NGB
(v)|
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from which it follows that n > 2n − 2k − |NGB
(u) ∩ NGB

(v)| from which the
claim follows. �	

Next we prove the following.

Lemma 3.6. Either there is a multicolor matching of size k in G or there is a
clique of size n − 2k in G.

Proof. Find any maximal matching M in G. Suppose |M | < k. Let VM be the
set of end points of edges in M . The set of vertices V \ VM is an independent
set in G, therefore they form a clique in G. Since |V \ VM | > n − 2k, one part of
the lemma follows.

If |M | ≥ k, choose exactly k edges of the matching and let’s call this set of
edges as M . From Lemma 3.5 we know that between any pair of vertices in V ,
there are at least n−2k shared colors. As we have assumed that n ≥ 3k, we have
n− 2k ≥ k. Hence we can greedily assign an unassigned color to each edge of M
starting from an arbitrary color for the first edge in M , resulting in a multicolor
matching of size k in G. �	

If there is a multicolor matching of size k in G, then by Corollary 3.4.1, G
can be list colored. Now, in what follows, we show that the list coloring can be
determined in FPT time when G has a clique of size at least n − 2k. Towards
this, we define the graph class clique+f(k) whose members G has the property
that there exists a subset of f(k) vertices in G whose deletion results in a clique.
Notice that f(k) = 2k in the case that we ended up (Fig. 1).

Clique

F

Fig. 1. List coloring in clique+ f(k)

Theorem 3.7. (n − k)-regular List coloring is FPT for the graph class
clique +f(k).

Proof. Let G(V,E) be a graph in clique + f(k) such that V = D ∪F where D
induces a clique, and |F | ≤ f(k). Any feasible coloring for G partitions V into
different color classes where each color class induces an independent set. Now
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we show that given any partition V = {V1, V2 · · · Vl} of V , in polynomial time,
we can determine whether there is a list coloring of the vertices such that all
vertices in Vi ∈ V are colored with a single color.

First observe that the following properties must be satisfied for V to be a
partition of V into independent sets. We call a partition of V satisfying the
following properties a good partition of V .

• Each subset Vi must be an independent set in G.
• For each subset Vi ∈ V, ∩v∈Vi

L(v) �= ∅
• For each subset Vi ∈ V, |D ∩ Vi| ≤ 1

For a good partition V, we create the following bipartite graph GB with bipar-
tization (V, C), where one partition V contains a vertex corresponding to each
Vi. Recall that C = ∪v∈V L(v) is the set of colors. There is an edge between
the vertex corresponding to Vi and cj if and only if cj ∈ ∩v∈Vi

L(v). Then the
following claim is easy to see.

Claim 1. There is a feasible coloring of G with exactly the color classes in a
good partition V if and only there is a matching saturating V in GB.

Proof. Let C be the feasible coloring of G. For each color class Vi ∈ V, we have
different colors C(Vi). Hence by the definition of the edges of GB , we have a
matching saturating V, the matching edges being (Vi, C(Vi)).

In the converse, let M be a matching saturating V. Let cVi
be the matching

partner of Vi in M . We construct a coloring function C : V → C such that
C(v) = cVi

if v ∈ Vi. Since V is a good partition, each Vi ∈ V is an independent
set. Hence we have a feasible coloring of G. �	

Let X = F ∪ NG\F (F ) where NG\F (F ) = ∪v∈FNG\F (v), i.e. the union of
non neighbors in V \ F for each vertex v ∈ F . Define Y = V \ X. Then every
vertex of Y is adjacent to all other vertices of V . Hence each vertex of Y should
get a separate color that is separate from the colors of all other vertices of X
in any proper coloring. Hence in a good partition V, there will be a color class
with the singleton element {y} for every y ∈ Y . Let Y denote the partition of Y
of such singleton sets.

Hence to check if there exists a list coloring of G, it suffices to test for every
partition X of X, whether the partition V formed by the union of X and Y forms
a feasible coloring. This can be tested using Claim 1 by going over all partitions
of X.

The running time is bounded by B|X|nO(1) where B|X| is the number of
partitions of X which is dO(d) where |X| = d. For any vertex v of F , |NG(v)| ≤ k
due to reduction Rule 1. Thus |X| ≤ f(k) + k · f(k). Hence the overall runtime
is (f(k) + k · f(k))O(f(k)+k·f(k))nO(1). �	

From Lemma 3.6, we know that either there is a multicolor matching of size
k in G when we have a list coloring respecting the lists or that there is a clique
of size at least n − 2k in G when we can check if there is a list coloring in
(2k2)O(2k2) time. The running time can be slightly improved (to (2k2)O(k)) by
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observing that the (non-neighbor) vertices in N(F ) are part of a clique, and
hence in any coloring they need separate colors. So it suffices to consider all
partitions of vertices in F and all ways of including vertices of V \ F in those
partitions such that each color class has at most one vertex from V \ F . Thus
we have the main result of the paper.

Theorem 3.8. (n − k)-regular List coloring is FPT parameterized by k
with running time (2k2)O(k)nO(1).

4 Conclusion

We have shown that (n − k)-regular List coloring is FPT parameterized
by k. Another well-studied notion in parameterized complexity is the notion of
kernelization, where given an input instance (I, k) of the parameterized problem
Q, we use a polynomial time algorithm to convert it to an equivalent instance
(I ′, k′) ∈ Q where |I ′| ≤ g(k) for some computable function g. The problem of
determining whether there is a coloring using at most n − k colors parameter-
ized by k has a O(k) sized kernel using crown decomposition. While we could
use the crown decomposition in a reduction rule to reduce the number of col-
ors and thereby obtain an FPT algorithm, we do not know how to obtain an
equivalent instance with polynomial (in k) number of vertices. We leave it as
an open problem to see if there exists a polynomial kernel for (n − k)-regular
List coloring. Also the parameterized complexity of (n − k)-regular List
coloring parameterized by k where we want to minimize the total number of
colors used is left open.
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Abstract. In Cartesian tree matching, two strings match if the Carte-
sian trees of the strings are the same. In this paper we define full, initial,
and general periods in Cartesian tree matching, and present an O(n)
time algorithm for finding all full periods, an O(n log log n) time algo-
rithm for finding all initial periods, and an O(n log n) time algorithm for
finding all general periods of a string of length n.

Keywords: Cartesian tree matching · Parent-distance representation ·
Period

1 Introduction

Pattern matching is a fundamental problem in many applications, where match-
ing is defined in various ways (i.e., various metrics for matching). Standard
string matching is the basic metric of matching, but there are many generaliza-
tions of matching (called generalized matching) such as parameterized matching
[4,7], jumbled matching [9], order-preserving matching [20,21,24], matching with
don’t care [15,19], swapped matching [3,18], etc.

The Cartesian tree has been used in many topics such as two-dimensional
searching, rank-select data structures, and range minimum queries [16,29].
Recently, Cartesian tree matching was introduced as a new metric of matching,
where two strings match if they have the same Cartesian trees [26]. Cartesian
tree matching has a weaker matching condition than order-preserving matching
[21].

In many metrics of generalized matching, some common problems have been
studied. Exact matching is the basic problem in any metric of generalized match-
ing [22]. Another problem is approximate matching, which allows some errors for
matching. This problem was studied on jumbled matching [10], order-preserving
matching [11], parameterized matching [6], swapped matching [5] and matching
with don’t care [1]. Yet another problem is to define and build an index data
c© Springer Nature Switzerland AG 2019
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structure for a metric of generalized matching. This problem was studied on
jumbled matching [2], order-preserving matching [13], matching with don’t care
[12], and Cartesian tree matching [26].

An interesting problem to study for a metric of generalized matching is to
find a period from a given string. Even though the period of a string can be
computed directly from the border array [22] for standard string matching, it is
usually not the case for generalized matching. Furthermore, in contrast to the
case of standard string matching, there can be several different definitions of the
period for generalized matching. There are several studies on finding the periods
in generalized matching. For example, there are many studies about Abelian
periods, which is a period in the metric of jumbled matching [14,23]. Another is
to find periods in the metric of order-preserving matching [17].

In this paper we define four different types of periods, called full period,
initial period, general period, and sliding period in Cartesian tree matching, fol-
lowing the definitions in [17]. We also present efficient algorithms to compute
the periods in Cartesian tree matching, using the parent-distance representation
of a Cartesian tree and the Cartesian suffix tree which were introduced in [26].

In Sect. 2 we give basic notations and definitions for Cartesian tree match-
ing, and formalize the problems of finding periods. In Sect. 3 we present an O(n)
algorithm for computing all full periods and an O(n log log n) algorithm for com-
puting all initial periods, where n is the length of the given string. In Sect. 4 we
present an O(n log n) algorithm for computing all general periods. Sliding peri-
ods are described in Sect. 5.

2 Preliminaries

2.1 Basic Notations

A string is defined as a sequence of characters in an alphabet which is a set
of integers. We assume that we can compare any two characters in O(1) time.
Given a string S, the i-th character of S is denoted by S[i]. A substring (i.e.,
factor) of S which starts from i and ends at j is denoted by S[i..j]. Hence,
S[1..i] is the prefix of S ending at i, and S[i..n] is the suffix of S starting from
i, assuming that n is the length of S. For two integers a ≤ b, [[a, b]] denotes the
set {a, a + 1, . . . , b}.

2.2 Cartesian Tree Matching

Given a string S of length n, we define the corresponding Cartesian tree CT (S)
[29] as follows:

– If S is empty, CT (S) is an empty tree.
– If S is not empty and S[i] is the minimum value among S, CT (S) is the tree

with root S[i], left subtree CT (S[1..i− 1]), and right subtree CT (S[i+1..n]).
If there are multiple minimum values, the leftmost one becomes the root.
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Cartesian tree matching [26] means that two strings S1 and S2 match (which is
denoted by S1 ≈ S2) if their Cartesian trees are the same.

Every order-preserving matching [21] is also a Cartesian tree matching, but
the converse is not true as follows. If two strings are matched in the metric of
order-preserving matching, the indices of minimum values of the two strings are
located in the same positions. Furthermore, this property holds recursively in
the substrings to the left and to the right of the minimum values. Hence, both
strings have the same Cartesian trees. For the other direction, let’s consider the
text T = (5, 2, 8, 6, 8, 3, 9, 7, 2, 1) and the pattern P = (2, 1, 4, 3). In the metric of
order-preserving matching, only T [1..4] matches P . In Cartesian tree matching,
both T [1..4] and T [5..8] match P . That is, T [5..8] shows that a Cartesian tree
matching may not be an order-preserving matching. Therefore, Cartesian tree
matching has a weaker matching condition than order-preserving matching. Both
order-preserving matching and Cartesian tree matching satisfy the properties of
a substring consistent equivalence relation (SCER) [25].

We can represent the Cartesian tree using the parent-distance representation
[26]. Given a string S[1..n], the corresponding parent-distance representation
PD(S) is defined as follows:

PD(S)[i] =

{
i − max1≤k<i{k : S[k] ≤ S[i]} if such k exists
0 otherwise

For example, S = (5, 2, 8, 6, 8, 3, 9, 7, 2, 1) has the parent-distance represen-
tation PD(S) = (0, 0, 1, 2, 1, 4, 1, 2, 7, 0). Two strings S1 and S2 have the same
Cartesian trees if and only if they have the same parent-distance representa-
tions, i.e., CT (S1) = CT (S2) ⇔ PD(S1) = PD(S2) [26]. Hence we can check
whether two strings match by comparing their parent-distance representations.
The parent-distance representation of S[1..n] can be built in O(n) time [26].
Furthermore, when PD(S) is given, we can compute the parent-distance repre-
sentation of any substring of S efficiently by Lemma 1.

Lemma 1 ([26]). Given valid indices i, j, k, we can compute PD(S[i..j])[k] in
O(1) time using the following equation:

PD(S[i..j])[k] =

{
0 if PD(S)[i + k − 1] ≥ k

PD(S)[i + k − 1] otherwise.

An index data structure called Cartesian suffix tree of S is a compact trie
built with the parent-distance representations of the suffixes of S. The Cartesian
suffix tree of S[1..n] can be built in randomized O(n) time or deterministic
O(n log n) time [26].

2.3 Problem Definition

There are various definitions of periods [14,17,23,25]. In the metric of Cartesian
tree matching, we define full, initial, and general periods as follows.
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Definition 1 (Full period). If a string S can be decomposed into k factors of
length p and all of them have the same Cartesian trees, i.e., S = V1 · V2 · · ·Vk

and V1 ≈ V2 ≈ · · · ≈ Vk, we say that p is a full period of S.

Definition 2 (Initial period). If a string S can be decomposed into k factors
(i.e., S = V1 · V2 · · ·Vk) such that |V1| = |V2| = · · · = |Vk−1| = p, V1 ≈ V2 ≈
· · · ≈ Vk−1, and the last factor Vk of length ≤ p matches a prefix of V1, we say
that p is an initial period of S.

Definition 3 (General period). If a non-empty string X exists such that |X| ≤ p
and p is an initial period of X · S, we say that p is a general period of S and
p − |X| is a valid shift of the period p.

Note that a valid shift of a general period p represents the length of the first
factor of S if we decompose S into factors such that all factors except the first
and the last have the same length p. If we decompose S into such factors, there
should exist a string P that matches all the factors except the first and the last,
the first factor should match a suffix of P , and the last factor should match a
prefix of P .

A general period p can have multiple valid shifts. The set of valid shifts of a
general period p is denoted by Shiftp ⊆ {0, 1, . . . , p − 1}. Shiftp is not empty if
and only if p is a general period of S. It is easy to see that an initial period is a
special case of a general period when 0 ∈ Shiftp.

The problems to solve in this paper are defined as follows: Given a string
S of length n, find all full periods and all initial periods; in the case of general
periods, find Shiftp for every general period p.

Table 1. Full, initial, and general periods of S = (5, 2, 8, 6, 8, 3, 9, 7, 2, 1)

i 1 2 3 4 5 6 7 8 9 10
S[i] 5 2 8 6 8 3 9 7 2 1
p = 2 0 0 0 0 0 0 0 0 0 0
p = 4 0 0 1 2 0 0 1 2 0 0

p = 6, s = 2 0 0 0 0 1 0 1 2 0 0
p = 8, s = 3 0 0 1 0 1 0 1 2 0 0

Example 1. Table 1 shows the three types of periods for S = (5, 2, 8, 6,
8, 3, 9, 7, 2, 1). Each segment separated by vertical lines shows the parent-distance
representation of the corresponding factor.
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– The third line shows the only non-trivial full period p = 2. Since
PD(S[1..2]) = PD(S[3..4]) = PD(S[5..6]) = PD(S[7..8]) = PD(S[9..10]) =
(0, 0), S has a full period p = 2. Note that 1 and 10 are trivial full periods of
S.

– The fourth line shows an initial period p = 4. Since PD(S[1..4]) =
PD(S[5..8]) and PD(S[1..2]) = PD(S[9..10]), S has an initial period p = 4.
Note that 1, 2, 8, 9 and 10 are also initial periods of S. The period p = 4 is
not an initial period in the metric of order-preserving matching [17], because
S[1..4] and S[5..8] do not match in order-preserving matching.

– The fifth line shows a general period p = 6 with shift s = 2, because
PD(S[3..4]) = PD(S[9..10]) and PD(S[1..2]) = PD(S[7..8]). Note that the
first factor has the length of s = 2.

– The sixth line shows a general period p = 8 with shift s = 3. Note that there
is no factor with length p = 8. By the definition of general periods, however,
if we take X = (7, 8, 6, 10, 9) for example, we can check that X · S has an
initial period 8. Therefore, we can conclude that S has a general period p = 8
with shift s = 3. All the general periods of S can be seen in Table 5.

Remark 1. There is one more definition of the period in [17], called sliding period.
We will discuss it in Sect. 5.

3 Full Periods and Initial Periods

In this section we describe algorithms to compute all the full periods and initial
periods of a string S of length n in O(n) and O(n log log n) time, respectively.

3.1 Prefix Table and Prefix-Shift Table

Definition 4. For a string S of length n, Pref[i], the i-th element of the prefix
table, is the length of the longest prefix of S[i..n] that matches a prefix of S in
Cartesian tree matching.

This table is a direct analogue of the prefix table in standard string matching.
Algorithm 1 shows a linear time algorithm to construct the Pref table (which is
derived from the algorithm in [8]), where PARENT-DIST-REP is the procedure
to compute the parent-distance representation of S [26].



Finding Periods in Cartesian Tree Matching 75

Algorithm 1. Computing prefix table of S
1: procedure PREFIX-TABLE(S[1..n])
2: PD(S) ← PARENT-DIST-REP(S[1..n])
3: Pref[1] ← n
4: Pref[2] ← 1
5: while Pref[2] < n − 1 and PD(S)[Pref[2] + 1] = PD(S[2..n])[Pref[2] + 1] do
6: Pref[2] ← Pref[2] + 1 � by Lemma 1

7: l ← 2
8: for i ← 3 to n do
9: w ← l + Pref[l] − i

10: if Pref[i − l + 1] < w then
11: Pref[i] ← Pref[i − l + 1]
12: else
13: l ← i
14: while w ≤ n − i and PD(S)[w + 1] = PD(S[i..n])[w + 1] do
15: w ← w + 1 � by Lemma 1

16: Pref[i] ← w

17: return Pref[1..n]

Algorithm 2. Computing all initial periods of S
1: procedure INITIAL-PERIOD(S[1..n])
2: IP ← an empty list
3: Pref[1..n] ← PREFIX-TABLE(S[1..n]) � by Algorithm 1
4: Compute Pref-sh[1..n] from Pref[1..n] � by Definition 5
5: P [1..n] ← Pref-sh[1..n]
6: PRIME-LIST(n) ← Compute primes from 2 to n in increasing order
7: for i ← n down to 1 do
8: for j ∈ PRIME-LIST(n) do
9: if i · j > n then

10: break
11: P [i] ← min(P [i], P [i · j])

12: for p ← 1 to n do
13: if P [p] ≥ p then
14: IP.insert(p)

15: return IP

Definition 5. A prefix-shift table, Pref-sh[1..n], is defined as follows:

Pref-sh[i] =

{
n i = n or Pref[i + 1] = n − i

Pref[i + 1] otherwise.

The prefix-shift table can also be computed in O(n) time from the prefix
table according to the above definition.
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3.2 Computing Initial Periods in O(n log logn) Time

Given a string S of length n, we can compute the prefix table and the prefix-shift
table in linear time by Algorithm1 and Definition 5, respectively. If p is an initial
period of S, Pref[qp + 1] ≥ p or Pref[qp + 1] = n − qp should be satisfied for all
1 ≤ q < n/p. This condition is the same as Pref-sh[qp] ≥ p for all 1 ≤ q ≤ n/p.
We can check it for all 1 ≤ p ≤ n in O(n(1 + 1

2 + · · · + 1
n )) = O(n log n) time

by checking every possible value of q. We can improve the time complexity to
O(n log log n) by employing Eratosthenes’s sieve as in [17].

Algorithm 2 describes the algorithm to compute all the initial periods of a
string. Algorithm 2 is different from the algorithm in [17] that computes initial
periods in order-preserving matching, though both algorithms use Eratosthenes’s
sieve, and it is easier to prove the correctness. First, we compute the primes
from 2 to n by Eratosthenes’s sieve in O(n log log n) time [27]. We define Pm[p]
as follows:

Pm[p] = min
1≤q≤n/p

{Pref-sh[qp]}.

At the end of the iteration (with i) of the loop in lines 7–11, we maintain the
loop invariant that P [i] stores Pm[i]. When i = n initially, the invariant holds
trivially. At the beginning of the iteration with an arbitrary i, therefore, P [p] for
any p > i stores Pm[p]. During the loop in lines 8–11, we compute the minimum
of Pref-sh[i], Pm[2i], Pm[3i], Pm[5i], etc. (which is Pm[i]), and so P [i] becomes
Pm[i] at the end of the loop. The loop in lines 7–11 has the same time complexity
as Eratosthenes’s sieve. Finally, we check whether p is an initial period of S by
checking the condition P [p] ≥ p. Therefore, the time complexity of Algorithm 2
is O(n log log n).

Table 2. Process of Algorithm 2 for input S = (5, 3, 6, 6, 2, 4, 8, 6, 6, 4, 2, 3, 5, 1)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S[i] 5 3 6 6 2 4 8 6 6 4 2 3 5 1

PD(S)[i] 0 0 1 1 0 1 1 2 1 4 6 1 1 0

Pref[i] 14 1 1 4 1 1 3 1 2 5 1 1 2 1

Pref-sh[i] 1 1 4 1 1 3 1 2 14 1 1 14 14 14

Pm[i] 1 1 3 1 1 3 1 2 14 1 1 14 14 14

For example, Table 2 shows the process of Algorithm 2 when the input
is string S = (5, 3, 6, 6, 2, 4, 8, 6, 6, 4, 2, 3, 5, 1). Since P [p] ≥ p for p =
{1, 3, 9, 12, 13, 14}, we can conclude that they are the initial periods of S.

Remark 2. If we need only the smallest initial period which is greater than one,
we can compute it in O(n) time using an algorithm similar to the one in [17].
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Algorithm 3. Computing all full periods of S
1: procedure FULL-PERIOD(S[1..n])
2: FP ← an empty list
3: Pref[1..n] ←PREFIX-TABLE(S[1..n])
4: Compute Pref-sh[1..n] from Pref[1..n]
5: Pgcd[1..n] ← ∞
6: for i ← 1 to n do
7: p ← gcd(n, i)
8: Pgcd[p] ← min(Pgcd[p], Pref-sh[i])

9: P [1..n] ← ∞
10: for p ∈ DIVISORS(n) do
11: for j ∈ DIVISORS(n) do
12: if p | j then
13: P [p] ←min(P [p], Pgcd[j])

14: for p ∈ DIVISORS(n) do
15: if P [p] ≥ p then
16: FP.insert(p)

17: return FP

3.3 Computing Full Periods in O(n) Time

Given a string S of length n, we first compute the prefix table and the prefix-
shift table in linear time. If p is a full period of S, both p|n and Pref[qp+ 1] ≥ p
for all 1 ≤ q < n/p should be satisfied. This condition is the same as p|n and
Pref-sh[qp] ≥ p for all 1 ≤ q ≤ n/p. We can check it for all p|n in O(n log n) time
by checking every value of q. However, we can improve the time complexity to
linear time as follows.

Algorithm 3 describes the algorithm to compute all the full periods of a string.
Algorithm 3 is based on the one in [17], but it is easier to prove the correctness.
We use the same definition of Pm[i] as in the initial period case, but we also use
the fact that we need only compute Pm[p] for p|n. Note that the condition of both
p|n and p|i is equivalent to p| gcd(n, i). Therefore, Pm[p] for p|n is the minimum
value of Pref-sh[i] for every i such that p| gcd(n, i). We do this computation in
two stages. First, we define a new array Pgcd:

Pgcd[p] = min
1≤i≤n

{Pref-sh[i] : p = gcd(n, i)}.

Then we compute Pm[p] using the fact that Pm[p] = min{Pgcd[j] : p | j}.
Since we can compute gcd(n, i) for all 1 ≤ i ≤ n in O(n) time (also the

divisors of n) [23], the computation of Pgcd[p] in lines 5–8 can be done in linear
time. The computation of Pm[p] = min{Pgcd[j] : p | j} in lines 9–13 can be done
in O(n) time because there are O(

√
n) divisors of n. Therefore, we can compute

the full periods of S in linear time.
For example, Table 3 shows the process of Algorithm 3 when the input is

S = (3, 1, 6, 4, 8, 6, 7, 5, 8, 6, 9, 7). Note that we need the values of Pm[p] and
Pgcd[p] when p | n, and so the values of Pm[p] and Pgcd[p] such that p � n are
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omitted in the table. We can conclude that p = {1, 2, 6, 12} are the full periods
of S since Pm[p] ≥ p.

Table 3. Process of Algorithm 3 for input S = (3, 1, 6, 4, 8, 6, 7, 5, 8, 6, 9, 7)

i 1 2 3 4 5 6 7 8 9 10 11 12

S[i] 3 1 6 4 8 6 7 5 8 6 9 7

PD(S)[i] 0 0 1 2 1 2 1 4 1 2 1 2

Pref[i] 12 1 5 1 3 1 6 1 4 1 2 1

Pref-sh[i] 1 5 1 3 1 12 1 12 1 12 12 12

Pgcd[i] 1 5 1 3 12 12

Pm[i] 1 3 1 3 12 12

4 General Periods

In this section we describe an algorithm to compute all the general periods of a
string S of length n in O(n log n) time.

4.1 Properties of General Periods

Computing the general periods of a string relies on the following properties of a
valid shift, as in the metric of order-preserving matching [17].

Lemma 2 ([17] Observation 23). Given a string S of length n and a period
p (1 ≤ p ≤ n), s is a valid shift (i.e., s ∈ Shiftp) if and only if the following three
conditions hold:

(1) p is a full period of S[s + 1..t],
(2) S[1..min(n − p, s)] ≈ S[p + 1..min(n, p + s)], and
(3) S[1 + max(0, t − p)..n − p] ≈ S[1 + max(p, t)..n],

where t = n − ((n − s) mod p).

Definition 6. An interval representation I = [[i1, j1]] ∪ [[i2, j2]] ∪ · · · ∪ [[ik, jk]] is
the union of disjoint and ordered intervals (in increasing order); |I| = k is called
the size of the interval representation.

Definition 7. We define the following shifts from Lemma2:

– middle shifts: Middlep is a set of shifts that satisfy Condition (1) and is
represented by a union of intervals.

– left shifts: Leftp is a set of shifts that satisfy Condition (2) and is represented
by an interval.
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– right shifts: Rightp is a set of shifts that satisfy Condition (3) and is repre-
sented by an interval or a union of two intervals.

We will compute Middlep, Leftp, and Rightp separately, and take the intersection
of them to compute the valid shifts of a general period p.

Lemma 3 ([17] Lemma 21). Let I be an interval representation.

(a) Let interval representation G be [[i, j]] ∩ I. Then |G| ≤ |I|, and G can be
computed in O(|I|) time.

(b) Let I mod p denote {x mod p : x ∈ I} for a positive integer p. If we have k
interval representations I1, I2, . . . , Ik and k positive integers p1, p2, . . . , pk ≤
n, we can compute I1 mod p1, I2 mod p2, . . . , Ik mod pk in O(|I1|+ |I2|+ · · ·+
|Ik| + n) time.

4.2 Computing Left and Right Shifts

Consider a fixed value of p, which is a candidate for a general period. If S[1..
n−p] ≈ S[p+1..n] or p = n, then any shift value 0 ≤ s ≤ p−1 satisfies Condition
(2) of Lemma 2, and so we have Leftp = [[0, p − 1]]. Note that S[1..n − p] ≈
S[p+1..n] is equivalent to Pref[p+1] = n−p. Otherwise, the left shifts of period
p can be directly computed from the following equation in O(1) time:

Leftp = {s ∈ {0, 1, . . . , p − 1} : Pref[p + 1] ≥ s}. (1)

The right shifts of p can be computed similarly. But, we need a new definition
called the reverse prefix table.

Definition 8. For a string S of length n, PrefR[i], the i-th element of the reverse
prefix table, is the length of the longest suffix of S[1..i] that matches a suffix of
S in Cartesian tree matching.

The reverse prefix table can be constructed in O(n) time using Algorithm 1.
To compute the table, the input to Algorithm1 is the reverse of S and the
output of the algorithm should be reversed. We also need a minor change in
computing the parent-distance representation when S contains equal numbers:
the condition value ≤ S[i] in line 6 of procedure PARENT-DIST-REP in [26]
should be changed to value < S[i]. For example, Table 4 shows the prefix table
and the reverse prefix table of S = (5, 2, 8, 6, 8, 3, 9, 7, 2, 1).

Table 4. Prefix table and reverse prefix table for S = (5, 2, 8, 6, 8, 3, 9, 7, 2, 1)

i 1 2 3 4 5 6 7 8 9 10

S[i] 5 2 8 6 8 3 9 7 2 1

Pref[i] 10 1 3 1 4 1 2 2 2 1

PrefR[i] 1 2 1 2 1 2 1 2 3 10
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Similarly to the left shifts, if S[1..n−p] ≈ S[p+1..n] (i.e., PrefR[n−p] = n−p)
or p = n, then Rightp = [[0, p− 1]]. Otherwise, the right shifts of period p can be
computed in constant time by the following equation:

Rightp = {s ∈ {0, 1, . . . , p − 1} : PrefR[n − p] ≥ (n − s) mod p}
Interval representations of the left and right shifts are simple because the left
shifts constitute one interval and the right shifts constitute one interval or the
union of two intervals.

4.3 Computing Middle Shifts

Since computing the middle shifts is more complicated than the left and right
shifts, the following extra definitions are used in the computation.

Definition 9. For a string S of length n and a period p, a substring S[i..i+2p−1]
is called a square if S[i..i+p−1] ≈ S[i+p..i+2p−1]. A set of squares is defined
as follows:

Squarep = {i ∈ [[1, n − 2p + 1]] : S[i..i + 2p − 1] is a square}.
Definition 10. A complement of Squarep (i.e., a set of non-squares) is defined
as follows:

NSquarep = [[1, n − 2p + 1]]\Squarep.

Definition 11. A set of non-middle shifts is defined as follows:

NMiddlep = {(x − 1) mod p : x ∈ NSquarep}.
Once we have the non-middle shifts, the middle shifts are computed by the
following equation:

Middlep = [[0, p − 1]]\NMiddlep.

Note that all the above sets are represented by interval representations.

Theorem 1. Given a string S of length n, Squarep for all 1 ≤ p ≤ n can be
computed in O(n log n) time and the total size of the interval representations is
O(n log n).

Proof. We compute the Cartesian suffix tree of S in O(n log n) time [26] and use
the same approach as the algorithms in [13,17,28], since the algorithms are based
on the suffix tree. It is proved in [17] that the total size of the interval represen-
tations from the algorithms is O(n log n) (i.e.,

∑n
p=1 |Squarep| = O(n log n)).

Theorem 2. Given a string S of length n, the non-squares, non-middle shifts
and middle shifts can be computed in O(n log n) time and the total size of the
interval representations of the sets are bounded by O(n log n).
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Proof. It is easy to see that |NSquarep| ≤ |Squarep| + 1 and we can compute
it in O(|Squarep|) time. Thus

∑n
p=1 |NSquarep| ≤ ∑n

p=1 |Squarep| + n. Since∑n
p=1 |Squarep| = O(n log n) by Theorem 1,

∑n
p=1 |NSquarep| = O(n log n). Fur-

thermore, we can compute them in
∑n

p=1 O(|Squarep|) = O(n log n) time.
We can see that |NMiddlep| ≤ 2|NSquarep|, because each interval is

converted into at most two intervals by the modulo operation. Therefore,∑n
p=1 |NMiddlep| ≤ 2 · ∑n

p=1 |NSquarep| = O(n log n). By using Lemma 3(b),
we can compute them simultaneously in O(n log n) time.

As in NSquarep, we have |Middlep| ≤ |NMiddlep| + 1, which leads to
∑n

p=1

|Middlep| = O(n log n), and we can compute them in O(n log n) time. ��

4.4 Computing General Periods in O(n logn) Time

Given a string S of length n, we can compute the prefix table and the reverse
prefix table in linear time by Algorithm1 and Definition 8, respectively. We com-
pute Leftp and Rightp for all 1 ≤ p ≤ n in O(n) time from the prefix table and
the reverse prefix table, as described in Sect. 4.2. Then we compute Squarep,
NSquarep, NMiddlep, and Middlep successively for all 1 ≤ p ≤ n in O(n log n)
time by Theorems 1 and 2. Finally, we compute all the valid shifts of p as the
intersection of Leftp, Rightp, and Middlep for all 1 ≤ p ≤ n in O(n log n) time
by Lemma 3(a) because |Leftp| = 1 and |Rightp| ≤ 2. The valid shifts for all p
are represented by interval representations.

For example, Table 5 shows the computation of the general periods for input
S = (5, 2, 8, 6, 8, 3, 9, 7, 2, 1). Let’s consider the case of p = 4. From Pref[5] = 4
in Table 4, we can compute Left4 = [[0, 3]] according to Eq. (1). Similarly, we
can compute Right4 = [[0, 2]] from PrefR[6] = 2. For computing the squares,
we can see that Square4 = [[1, 1]] because only S[1..4] ≈ S[5..8] holds. From
Square4, we can compute NSquare4 = [[2, 3]] using Definition 10, NMiddle4 =
[[1, 2]] using Lemma 3(b), and Middle4 = [[0, 0]]∪ [[3, 3]] from NMiddle4. By taking

Table 5. Computing the general periods for input S = (5, 2, 8, 6, 8, 3, 9, 7, 2, 1)

p Leftp Rightp Squarep NSquarep NMiddlep Middlep Shiftp

1 [[0, 0]] [[0, 0]] [[1, 9]] ∅ ∅ [[0, 0]] [[0, 0]]

2 [[0, 1]] [[0, 1]] [[1, 5]] ∪ [[7, 7]] [[6, 6]] [[1, 1]] [[0, 0]] [[0, 0]]

3 [[0, 1]] [[0, 1]] ∅ [[1, 5]] [[0, 2]] ∅ ∅
4 [[0, 3]] [[0, 2]] [[1, 1]] [[2, 3]] [[1, 2]] [[0, 0]] ∪ [[3, 3]] [[0, 0]]

5 [[0, 1]] [[0, 0]] ∪ [[4, 4]] ∅ [[1, 1]] [[0, 0]] [[1, 4]] ∅
6 [[0, 2]] [[2, 4]] ∅ ∅ ∅ [[0, 5]] [[2, 2]]

7 [[0, 2]] [[2, 3]] ∅ ∅ ∅ [[0, 6]] [[2, 2]]

8 [[0, 7]] [[0, 7]] ∅ ∅ ∅ [[0, 7]] [[0, 7]]

9 [[0, 8]] [[0, 8]] ∅ ∅ ∅ [[0, 8]] [[0, 8]]

10 [[0, 9]] [[0, 9]] ∅ ∅ ∅ [[0, 9]] [[0, 9]]
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the intersection of Left4, Right4, and Middle4, we get Shift4 = [[0, 0]]. Therefore,
p = 4 is a general period of S with shift 0.

5 Concluding Remarks

We have defined full, initial, and general periods in Cartesian tree matching, and
presented an O(n) algorithm for computing all full periods, O(n log log n) algo-
rithm for computing all initial periods and O(n log n) algorithm for computing
all general periods of a string of length n.

There is another period of a string, called sliding period, introduced in [17].
This period is a special case of general period p in which Shiftp = [[0, p − 1]].
An O(n log log n) expected time or O(n log2 log n/ log log log n) worst-case time
algorithm based on a suffix tree construction is presented for sliding periods in
order-preserving matching [17].

In Cartesian tree matching, the sliding periods can be computed in O(n log n)
time directly from the general periods. If we use the randomized O(n) time algo-
rithm for constructing a Cartesian suffix tree [26], we can compute the sliding
periods in randomized O(n) time because all the computations except construct-
ing the suffix tree can be done in linear time using an algorithm similar to the
one in [17].
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Abstract. We investigate multivariate algorithms for the NP-hard Min-
Power Asymmetric Connectivity (MinPAC) problem that has
applications in wireless sensor networks. Given a directed arc-weighted
n-vertex graph, MinPAC asks for a strongly connected spanning sub-
graph minimizing the summed vertex costs. Here, the cost of each vertex
is the weight of its heaviest outgoing arc. We present linear-time algo-
rithms for the cases where the number of strongly connected components
in a so-called obligatory subgraph or the feedback edge number in the
underlying undirected graph is constant. Complementing these results,
we prove that the problem is W[2]-hard with respect to the solution cost,
even on restricted graphs with one feedback arc and binary arc weights.

1 Introduction

In wireless ad-hoc networks, nodes equipped with limited power supply transmit
data using a multi-hop path. We study the problem of minimizing the overall
power consumption while maintaining full network connectivity, that is, each
node can send messages to each other node using some (multi-hop) route through
the network. Formally, we study the following optimization problem.

Related Work. This problem was initially formalized and shown to be NP-
complete by Chen and Huang [8]. Since then, there have been numerous publica-
tions on polynomial-time approximation algorithms (an asymptotically optimal
O(log n) approximation [5], a constant approximation factor with symmetric arc
weights [3,8], and approximation algorithms for special cases [4,6,7]), and hard-
ness results about special cases [6,9]. To the best of our knowledge, however,
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Table 1. Overview of our results, using the following notation: n—number of vertices,
m—number of arcs, c—number of strongly connected components in the obligatory
subgraph (see Sect. 2), g—size of a minimum feedback edge set of the underlying undi-
rected graph (see Sect. 3), q—number of different arc weights, x—size of a minimum
vertex cover (see Sect. 4), h—size of a minimum feedback arc set (see Sect. 5), PAC is
the decision version of MinPAC asking for a solution of cost at most k.

Result Reference

Section 2 Dynamic programming solving MinPAC in
O(2c · c · n + m + 4c · c2c−3/2) time

Theorem 10

Section 3 Linear-time data reduction resulting in an equivalent
MinPAC instance with at most 20g − 20 vertices and
42g − 42 arcs

Theorem 11

Section 4 An O(xn + m)-time data reduction resulting in an
equivalent MinPAC instance with at most (q + 1)2x + x
vertices

Theorem 14

Section 5 PAC is NP-hard for any h ≥ 1 Theorem 15

PAC is W[2]-hard parameterized by k, even if the arcs
have only cost zero or one and h = 1

PAC is not solvable in 2o(n) time (assuming ETH)

there has been no work to study MinPAC from a parameterized complexity
viewpoint.

In previous work, we investigated the parameterized complexity of the sym-
metric version of our problem [2], that is, an undirected edge can only be used if
both endpoints pay at least the weight of the edge. The asymmetric case turns
out to be more involved on a technical level. However, comparable results (as in
the symmetric case) are achievable.

Our Contributions. We show algorithmic results for grid-like and tree-like input
graphs as well as parameterized hardness for very restricted cases. Table 1 sum-
marizes our results. We discuss the different parameters subsequently.

It is known that the alignment of nodes in some regular grid-like patterns is
optimal to fully cover a plane. In such cases, we can assume that the obligatory
arcs, arcs that are in any optimal solution, induce a small number c of strongly
connected components as there are many arcs of minimum weight. In Sect. 2, we
present an algorithm that solves MinPAC in linear time when c is a constant.

In Sect. 3, we describe a linear-time algorithm which reduces any input
instance to an equivalent instance with at most 20g − 20 vertices and 42g − 42
arcs, where g is the feedback edge number of the underlying undirected graph.
It follows that the problem can be solved in polynomial time for g ∈ O(log n),
that is, for very tree-like input graphs. In terms of parameterized complexity,
this gives us a partial (weights left unbounded) kernelization of MinPAC with
respect to the feedback edge number.
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In Sect. 4, we study MinPAC parameterized by the number of different arc
weights and vertex cover number. For this combined parameter, we present an
exponential-size kernel.

Finally, in Sect. 5 we derive hardness results for PAC, the decision version
of MinPAC. We show that even if the input graph has only binary weights
and is almost a DAG (a directed acyclic graph with one additional arc), PAC
parameterized by the solution cost is W[2]-hard. This is in sharp contrast to the
FPT result for the parameter feedback edge number.

Due to the lack of space several details are deferred to a full version.

Preliminaries. For a ∈ N, we abbreviate {1, . . . , a} by [a]. Throughout the paper,
we assume that a graph is directed unless stated otherwise. For a graph G =
(V,A), we write V (G) to denote V and A(G) to denote A. We denote by G[V ′] the
subgraph induced by V ′ ⊆ V (G). We use G+vu to denote (V (G)∪{v, u}, A(G)∪
{vu}) and G − vu to denote (V (G), A(G) \ {vu}). For a vertex v ∈ V (G), we
write N+

G (v) = {u | vu ∈ A} and N−
G (v) = {u | uv ∈ A} to denote the out- and

in-neighborhood of v. We define the degree of v as degG(v) = |N+
G (v) ∪ N−

G (v)|.
We say that S ⊆ V (G) is strongly connected if there exists a path from each
node u ∈ S to every other node v ∈ S in G[S]. We write SG to denote the set of
strongly connected components. We use UG to denote the underlying undirected
graph of G. We denote the optimal cost of a MinPAC instance I by OPT(I).
The cost of a vertex subset V ′ ⊆ V (G) in a solution with arcs A′ ⊆ A(G) is
denoted by Cost(V ′, A′, w) =

∑
v∈V ′ maxvu∈A′ w(vu).

A parameterized problem Π is a set of pairs (I, k), where I denotes the
problem instance and k is the parameter. The problem Π is fixed parameter
tractable (FPT) if there exists an algorithm solving any instance of Π in f(k)·|I|c
time, where f is some computable function and c is some constant. A reduction
to a problem kernel is a polynomial-time algorithm that, given an instance (I, k)
of Π, returns an equivalent instance (I ′, k′), such that |I ′| + k′ ≤ g(k) for some
computable function g. Problem kernels are usually achieved by applying data
reduction rules. Given an instance (I, k) for MinPAC, our data reduction rules
compute in polynomial time a new instance (I ′, k′) of MinPAC and a number d.
We call a data reduction rule correct, if OPT(I) = OPT(I ′) + d.

2 Parameterization by the Number of Strongly
Connected Components Induced by the Obligatory
Arcs

In this section we present a fixed-parameter algorithm with respect to the num-
ber c of strongly connected components (SCCs) induced by obligatory arcs—arcs
that can be included into any optimal solution with no additional cost. We find
the obligatory arcs by means of lower bounds on costs paid by each vertex.
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Definition 1. A vertex lower bound is a function � : V (G) → N such that for
any optimal solution H and any vertex v ∈ V (G), it holds that

�(v) ≤ max
vu∈A(H)

w(vu).

Observe that each vertex v ∈ V (G) has at least one outgoing arc in any
optimal solution. Hence, the cost paid by v in the optimal solution is at least
minvu∈A(G) w(vu). Thus, �(v) ≥ minvu∈A(G) w(vu). Moreover, if a vertex v has
only one incoming arc uv, then the cost for the vertex u is at least w(uv), and
thus �(u) ≥ w(uv). Clearly, finding more effective but still efficiently computable
vertex lower bounds is challenging on its own.

Definition 2. The obligatory subgraph G� induced by a vertex lower bound �
for G is a subgraph (V (G), A�), where A� = {vu | w(vu) ≤ �(v)}.

It has been shown that sensor placements are optimal for fully covering an
area when sensors are deployed in the triangular lattice pattern [18] or a strip
based-pattern [1,15]. In such cases, there are many arcs of minimum weight.
Taking these arcs usually suffice to (almost) achieve connectivity. So even the
obligatory subgraph induced by the trivial vertex lower bound described above
yields a small number of SCCs.

Let � be a vertex lower bound for a graph G. We denote the number of SCCs
of the obligatory subgraph G� by c = |SG�

|. The number c of (strongly) connected
components in the obligatory subgraph has recently been used as parameter to
obtain FPT results [2,17]. In this section, we also provide an FPT result with
respect to this parameter. More specifically, we will present an algorithm for
MinPAC that runs in O(2c · c2 · n + m + 4c · c2c−3/2) time. Our algorithm runs
in three phases. In the first phase, it shrinks the graph to a relevant subgraph
in which each vertex v has at most one arc towards each SCC that does not
contain v (Algorithm 1). In the second phase, it uses a dynamic programming
procedure to compute the cost to connect each SCC to each subset of other
SCCs (Algorithm 2). In the last phase, it exhaustively tries all combinations of
connecting SCCs to find an optimal solution (Algorithm3).

Phase 1. The following lemma specifies the conditions under which we can
remove arcs. It plays a central role in this phase. The basic idea herein is to
remove, for each vertex v ∈ V (G) and each SCC S, all but the cheapest arc
from v to vertices in S.

Lemma 3. Let (G,w) be an instance of MinPAC and let � be a vertex lower
bound. Let Sv, Su ∈ SG�

be two distinct SCCs and let v ∈ Sv and u, u′ ∈ Su

be vertices of G with w(vu) ≤ w(vu′). Then, it holds that OPT((G,w)) =
OPT((G − vu′, w)).

Algorithm 1 exhaustively removes all arcs vu′ which satisfy the preconditions
of Lemma 3: The algorithm iterates over each arc in G twice. It finds a minimum-
weight arc from each vertex to each SCC in the first iteration. In the second



Parameterized Complexity of Min-Power Asymmetric Connectivity 89

Algorithm 1. A reduction procedure for the first phase
1 Function Reduction(G, w, �)
2 foreach v ∈ V (G), S ∈ SG� do M(v, S) ← null
3 foreach vu ∈ A(G) do
4 if M(v, Su) = null or w(vu) < w(M(v, Su)) then M(v, Su) ← vu

// Su ∈ SG� denotes the SCC to which u belongs

5 foreach vu ∈ A(G) do
6 if Sv = Su then continue
7 if vu �= M(v, Su) then Remove vu from G

8 return (G, w)

iteration, it removes all but one minimum-weight arc that share the initial vertex
and the SCC the terminal vertex belongs to.

We show subsequently that the resulting MinPAC instance satisfy the prop-
erties listed in the next definition.

Definition 4. Let (G,w) be an instance of MinPAC and let � be a lower bound.
We say that a graph Grel

� and a weight function wrel
� with V (G) = V (Grel

� ),
A(Grel

� ) ⊆ A(G), and wrel
� : A(Grel

� ) → N are relevant subgraphs and relevant
weight functions induced by �, respectively, if they satisfy the following properties:

(i) OPT((G,w)) = OPT((Grel
� , wrel

� )).
(ii) For any SCC S ∈ SG�

, it holds that G[S] = Grel
� [S].

(iii) For any two distinct SCCs S, S′ ∈ SG�
and any vertex v ∈ S, it holds that

|{vu ∈ A(Grel
� ) | u ∈ S′}| ≤ 1.

Since it follows from the property (ii) that SG�
= SGrel

�
, we will use them

interchangeably.

Lemma 5. Let (G,w) be an instance of MinPAC and let � be a vertex lower
bound. Algorithm 1 computes in O(cn + m) time a relevant subgraph Grel

� and a
relevant weight function wrel

� induced by �.

Phase 2. In this phase, we aim to compute an optimal set of arcs to connect
each SCC to all other SCCs. We start with some notation.

Definition 6. Let Grel
� be a relevant subgraph. For any S ∈ SG�

, we define the
set of SCCs reachable from S via an arc as

Sreach
G,� (S) = {S′ ∈ SG�

\ {S} | ∃vu ∈ A(Grel
� ), v ∈ S ∧ u ∈ S′}.

We say that an arc set B is a connector if B connects some SCC S to some
set T ⊆ Sreach

G,� (S) of SCCs reachable from S. Then, our goal is to find a connector
of minimum cost for each S ∈ SG�

and each subset T ⊆ Sreach
G,� (S). This allows us

to compute an optimal solution with exhaustive search on connections between
SCCs in the last phase.



90 M. Bentert et al.

Algorithm 2. A dynamic programming procedure for the second phase
1 Function DP(Grel

� , wrel
� )

// Sv ∈ SG� denotes the SCC to which v ∈ V (G�) belongs

// TB ⊆ SG� denotes {Su | ∃vu ∈ B} for any B ⊆ A(G)
2 foreach S = {v1, . . . , vnS } ∈ SG� do

// Initialization phase

3 B0 ← ∅, D0(∅) ← ∅
4 foreach i ∈ [nS ] do

5 Bi ← Bi−1 ∪ {viu ∈ A(Grel
� ) | u �∈ S, Su �∈ TBi−1}

6 foreach T ⊆ TBi do Di(T ) ← {vu′ ∈ Bi | Su′ ∈ T }
// Update phase

7 foreach i ∈ [nS ] do

8 foreach u ∈ {u′ �∈ S | viu
′ ∈ A(Grel

� )} do

9 Bi,u ← {viu
′ ∈ A(Grel

� ) | u′ �∈ S, wrel
� (viu

′) ≤ wrel
� (viu)}

10 foreach T ⊆ Sreach
G,� (S) do

11 if T �⊆ TBi−1 ∪ TBi,u then continue
12 if T ⊆ TBi−1 then Di(T ) ← Di−1(T )

13 if Cost(S, Di−1(T \ TBi,u), wrel
� ) + wrel

� (viu) <

Cost(S, Di(T ), wrel
� ) then

14 Di(T ) ← Di−1(T \ TBi,u) ∪ {viu
′ ∈ Bi,u | Su′ ∈ T }

15 MCC(S, · ) ← DnS

16 return MCC

Definition 7. Let (G,w) be an instance of MinPAC and let � be a vertex lower
bound. A minimum-cost connector is a function MCC: SG�

× 2SG� → 2A(Grel
� )

such that for any S ∈ SG�
and any T ⊆ Sreach

G,� (S) the following properties are
satisfied:

(i) For any S′ ∈ T , there exist vertices v ∈ S and u ∈ S′ with vu ∈
MCC(S, T ).

(ii) There is no subset B ⊆ A(Grel
� ) that satisfies the above property and that

satisfies Cost(S,B,wrel
� ) < Cost(S,MCC(S, T ), wrel

� ).

Algorithm 2 computes a minimum-cost connector. For each SCC S ∈ SG�
, we

employ dynamic programming over vertices in S and subsets of SG�
. This gives

us a significant speed-up compared to the naive approach of branching into at
worst c different neighbors on each vertex: From nθ(c) time to O(2c · c2 ·n) time.

Lemma 8. Given a relevant subgraph Grel
� and a relevant weight function wrel

� ,
Algorithm2 computes a minimum-cost connector MCC in O(2c · c2 · n) time.

Phase 3. We finally present the search tree algorithm for MinPAC in Algo-
rithm3. The algorithm “guesses” the connections between SCCs of G� to obtain
the optimal solution. To this end, we first try all possible numbers of outgoing
arcs from each SCC.
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Algorithm 3. An exhaustive search algorithm for MinPAC

1 Function Search(Grel
� , wrel

� , MCC)

2 OptCost ← ∞, C ← (SG�(S1), . . . , SG�(Sc))
3 for k ← c to 2c − 2 do
4 foreach k1, . . . , kc ∈ N such that k1, . . . , kc ≥ 1 and

∑c
i=1 ki = k do

5 foreach TS1 , . . . , TSc such that TSi ⊆ Sreach
G,� (Si) and |TSi | = ki for

any i ∈ [c] do
6 Haux ← ({v1, . . . , vc}, {vivj | Sj ∈ TSi})
7 if |SHaux | > 1 then continue
8 Cost ← 0

9 foreach S ∈ SG� do Cost ← Cost + Cost(S, MCC(S, TS), wrel
� )

// We assume that Cost(S, MCC(S, TS), wrel
� ) is computed

for any S ∈ SG� , T ⊆ Sreach
G,� (S) in Algorithm 2

10 if Cost < OptCost then OptCost ← Cost, C ← (TS1 , . . . , TSc)

11 return (V (G), A(G�) ∪
⋃c

i=1 MCC(Si, C[i]))

Lemma 9. Given a relevant subgraph Grel
� , a relevant weight function wrel

� , and
a minimum-cost connector MCC: SG�

× 2SG� → 2A(Grel
� ), Algorithm3 computes

an optimal solution of (Grel
� , wrel

� ) in O(n + m + 4c · c2c−3/2) time.

Combining Algorithms 1 to 3 we arrive at our main theorem of this section.

Theorem 10. MinPAC can be solved in O(c2 · 2c · n + m + 4c · c2c−3/2) time.

3 Parameterization by Feedback Edge Number

In this section we describe a kernelization for MinPAC parameterized by the
feedback edge number. The feedback edge number for an undirected graph is the
minimum number of edges that have to be removed in order to make it a tree.
We define the feedback edge number for a directed graph G as the feedback edge
number of its underlying undirected graph UG. Note that a minimum feedback
edge set can be computed in linear time. In Sect. 5, we will show that the param-
eter feedback arc number, which is the digraph counterpart of the feedback edge
number, does not allow the design of an FPT algorithm for MinPAC unless P
= NP.

The feedback edge number measures how tree-like the input is. From a the-
oretical perspective this is interesting to analyze because any instance (G,w) of
MinPAC is easy to solve if UG is a tree. In this case all edges of UG must cor-
respond to arcs in both directions in G and the optimal solution is G itself. The
parameter is also motivated by real world applications in which the feedback
edge number is small; for instance, sensor networks along waterways (including
canals) are expected to have a small number of feedback edges. In this section we
prove the following theorem which states that MinPAC admits a partial kernel
with respect to feedback edge number.
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Theorem 11. In linear time, one can transform any instance I = (G,w) of
MinPAC with feedback edge number g into an instance I ′ = (G′, w′) and compute
a value d ∈ N such that G′ has at most 20g − 20 vertices, and 42g − 42 arcs,
and OPT(I) = OPT(I ′) + d.

Corollary 12. MinPAC can be solved in O(2O(g) + n + m) time.

We will present a set of data reduction rules which shrink any instance of
MinPAC to an essentially equivalent instance whose size is bounded as specified
in Theorem 11. We simultaneously compute the value d, which we initialize with
0. In this section we assume that w(vu) = ∞ if vu �∈ A.

Our first reduction rule reduces the weights of arcs outgoing from a vertex
by the weight of its cheapest outgoing arc. This ensures that each vertex has at
least one outgoing arc of weight zero.

Reduction Rule 1. Let v be a vertex with δv = minvu∈A(G) w(vu) > 0.
Update the weights and d as follows:

(i) w(vu) = w(vu) − δv for each vu ∈ A(G).
(ii) d := d + δv.

Our next reduction rule discards all degree-one vertices.

Reduction Rule 2. Let v be a vertex with degG(v) = 1 and let u be its neigh-
bor. Update (G,w) and d as follows:

(i) G := G[V (G) \ {v}].
(ii) w(uv′) := max{0, w(uv′) − w(uv)} for each uv′ ∈ A(G) \ {uv}.
(iii) d := d + w(vu) + w(uv).

Lemma 13. Reduction Rules 1 and 2 can be exhaustively applied in linear time.

Proof. For each vertex v ∈ V (G), set �(v) := minvu∈A(G) w(vu). Let L be a list
of degree-1 vertices. We apply the following procedure as long as L is nonempty.
Let v be the vertex taken from L and let u be its neighbor. Remove v and
its incident arcs from G and set �(u) := max{�(u), w(uv)} and update d :=
d+max{w(vu), �(v)}. If the degree of u becomes 1 after deleting v, then we add
u to L. Once L is empty, we update the weight of each remaining arc w(vu) :=
max{0, w(vu)−�(v)}. Finally, we update d := d+�(v) for each remaining vertex v.
It is easy to see that the algorithm runs in linear time. �

Henceforth, we can assume that Reduction Rules 1 and 2 are exhaustively
applied. Thus, the underlying undirected graph UG will have no degree-one ver-
tices. It remains to bound the number of vertices that have degree two in UG.
Once this is achieved, we can use standard arguments to upper-bound the size
of the instance [2].

In order to upper-bound the number of degree-two vertices in UG, we consider
long paths in UG. A path P = (v0, . . . , vh+1) in UG is a maximal induced path
of G if degG(v0) > 2, degG(vh+1) > 2, and degG(vi) = 2 for all i ∈ [h]. We
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...

Before: After:
v0 v1 v2

vh−1 vh vh+1

v0 v1 a1

b1

b2

a2 vh vh+1

Fig. 1. Illustration of the reduction rule replacing long maximal induced paths. Bold
arcs denote arcs of weight 0. For the weights of other arcs in the gadget on the right.

v1
...

vh

(R)

v1
...

vh

(L)
v1

...
vh

(B)

... ...
v1 vk vk+1 vh

(N)

Fig. 2. Sketch of the cases for connectivity inside maximal induced paths.

call the vertices {vi | i ∈ [h]} the inner vertices of P . We will replace the inner
vertices of each maximal induced path on at least seven vertices with a fixed
gadget (see Fig. 1). The arc-weights in the gadget are chosen such that the four
possible ways in which the outermost inner vertices are connected inside the
path (see Fig. 2 for a visualization of the four cases) are preserved. We refer to a
full version for the details on the reduction rule and the proof of Theorem11.

4 Parameterization by the Number of Power Levels

It is fair to assume that the nodes cannot transmit signals with arbitrary power
levels due to practical limitations [6]. In fact, many researchers have studied
approximation algorithms for the MinPAC problem when only two power lev-
els are available [3,4,6,16]. In this section, we consider the case w : A(G) → Q,
where the set of integers Q = {p1, . . . , pq} represents available power levels.
The parameter q—“the number of numbers”—has been advocated by Fellows
et al. [12]. The problem remains NP-hard even when q = 2 [8], as also can be
seen in our hardness result (Theorem 15). Thus, fixed-parameter tractability is
unlikely with this parameter alone. However, using an additional parameter may
alleviate this problem. We consider the vertex cover number, as many problems
are known to become tractable when this parameter is bounded. Here we define
the vertex cover number for a directed graph as the vertex cover number of
the underlying undirected graph. Recall that the vertex cover number for an
undirected graph is the minimum number of vertices that have to be removed
to make it edgeless. Computing a minimum-cardinality vertex cover is NP-hard
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but any maximal matching (which can be found in linear time) gives a factor-
2 approximation. We present a partial kernelization (unbounded weights) with
respect to q + x, where x is the size of a given vertex cover.

Theorem 14. Let I = (G,w) be a MinPAC-instance where w : A(G) → Q and
Q ∈ Nq. Given I and a vertex cover X for G of size x, one can compute an
instance I ′ of MinPAC with at most (q + 1)2x + x vertices and a value d ∈ N

such that OPT(I) = OPT(I ′) + d in O(xn + m) time.

5 Parameterized Hardness

In this section we present several hardness results for MinPAC. To this end, we
consider the decision variant of MinPAC.

We prove that PAC remains NP-hard even if the feedback arc number is 1.
This complements the result in Sect. 3, where we showed that MinPAC param-
eterized by the feedback edge number admits an FPT algorithm via a kerneliza-
tion. Recall that the feedback arc number for a directed graph is the minimum
number of arcs that have to be removed to make it a directed acyclic graph. Fur-
thermore, we show that PAC is W[2]-hard with respect to the solution cost k.
We also show that PAC cannot be solved in subexponential time in the number
of vertices assuming the Exponential Time Hypothesis (ETH) [13], which states
that 3-Sat cannot be solved in 2o(n+m) time, where n and m are the number of
variables and clauses in the input formula. Summarized we show:

Theorem 15. Even if each arc weight is either one or zero and the feedback arc
number is 1,

(i) PAC is NP-hard.
(ii) PAC is W[2]-hard when parameterized by the solution cost k.
(iii) Unless the ETH fails, PAC is not solvable in 2o(n) time.

It follows from Theorem 15 (ii) that there (presumably) is no algorithm solv-
ing PAC running in f(k)·nO(1) time. Nonetheless, a simple brute-force algorithm
solves PAC in nθ(k) time, certifying that PAC is in the class XP with respect
to the parameter solution cost. In order to prove the claims of Theorem 15, we
use a reduction from the well-studied Set Cover problem.
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VF VU

s t

Fig. 3. Illustration of Reduction 1 on a Set Cover instance with universe U = {1, 2, 3}
and set family F = {{2, 3}, {1, 2}}. Bold arcs denote arcs of weight 0 and other arcs
have weight 1.

Set Cover is NP-hard and W[2]-hard with respect to the solution size � [10]
and is not solvable in 2o(|U|+|F|) time unless ETH fails [14].

For the reduction, we use one vertex for each element and each subset and
one arc to represent the membership of an element in a subset. The construction
resembles the one used in Min-Power Symmetric Connectivity [2].

Reduction 1. Given an instance I = (U,F , �) of Set Cover, we construct an
instance I ′ = (G,w, k = �) of PAC as follows. We introduce a vertex vu for every
u ∈ U , a vertex vS for every S ∈ F , and two additional vertices s and t. We
construct a graph such that V (G) = {s, t} ∪ VU ∪ VF where VU = {vu | u ∈ U}
and VF = {vS | S ∈ F}. For the arcs we first add an arc ts of weight 0. We then
add arcs svS and vSt of weight 0 for every S ∈ F and an arc vut of weight 0 for
every u ∈ U . For every S ∈ F and every u ∈ S we finally add an arc vSvu of
weight 1.

Figure 3 illustrates the reduction to PAC. We can assume that arcs of weight
zero (bold arcs in the figure) are part of the solution. The idea is that in order
to obtain a strongly connected subgraph, one has to select at least one incoming
arc for each vertex in VU such that only k vertices in VF are affected.

6 Conclusion

We performed a first analysis of the parameterized complexity of MinPAC,
leading to first tractability and intractability results, but also to several open
questions: Can the running time of the parameterized algorithm with respect
to the number c of SCCs in the obligatory subgraph be improved to single-
exponential? In both our kernelization results, the weights are left unbounded.
To also upper-bound the weights, we are working on adapting the approach of
Etscheid et al. [11] to our problem. Resolving the parameterized complexity of
MinPAC with respect to the single parameter vertex cover number is another
task for future work.

Finally, we remark that our algorithms run in linear time when the respective
parameters are bounded. Thus we believe that our results are worthwhile for
empirical experiments.
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Abstract. The Group Interval Scheduling problem models the sce-
nario where there is set [γ] = {1, . . . , γ} of jobs to be processed on a single
machine, and each job i can only be scheduled for processing in exactly
one time interval from a group Gi of allowed intervals. The objective is
to determine if there is a set of S ⊆ [γ] of k (k ∈ N) jobs which can be
scheduled in non-overlapping time intervals.

This work describes a deterministic algorithm for the problem that
runs in time O((5.18)knd), where n = | ⋃i∈[γ] Gi| and d ∈ N is a constant.
For k ≥ d log n, this is significantly faster than the best previously-known
deterministic algorithm, which runs in time O((12.8)kγn). We obtain our
speedup using efficient constructions of representative families, which can
be used to solve the problem by a dynamic programming approach.

Keywords: Group · Job · Interval · Scheduling · Graph ·
Independent · Colourful · Representative · Hash · Fixed · Parameter ·
FPT · Multivariate

1 Introduction

A ubiquitous problem arising in industrial processes is when there are multiple
jobs to be processed on a single machine, and some of the jobs have conflicting
time constraints. In this scenario, the next best thing is for the machine to
process as many jobs as possible without violating any time constraints. This
can be modelled as follows.

Group Interval Scheduling

Instance: A pair (J, k), where J = {G1, . . . , Gγ} such that Gi (i ∈ [γ]) is
a set of disjoint intervals of R, and k ∈ N.
Question: Is there a set of at least k disjoint intervals S ⊆ ⋃

J such that
|S ∩ Gi| ≤ 1 (i ∈ [γ])?

The sets Gi represent time constraints: job i (i ∈ [γ]) can only be processed
during a time interval from the set Gi. In this scheme, picking a set S of disjoint
c© Springer Nature Switzerland AG 2019
C. J. Colbourn et al. (Eds.): IWOCA 2019, LNCS 11638, pp. 97–107, 2019.
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intervals such that |S ∩ Gi| ≤ 1 (i ∈ [γ]) is equivalent to scheduling the set
{i ∈ [γ] | Gi ∈ S} of jobs on the machine such that they occupy distinct time
intervals.

Group Interval Scheduling is known to be NP-hard [6] while being
polynomial-time solvable (via a reduction to 2-SAT; see [3]) when there are
at most 2 intervals per job.

Consider a finite set X and a function f : X → [t]. A subset S ⊆ X is
colourful with respect to f if for any x, y ∈ S, x �= y =⇒ f(x) �= f(y). The
following problem is an equivalent formulation of Job Interval Scheduling
that models constraints among the jobs using a graph and a colouring function
on its vertex set.

Colourful Independent Set

Instance: A triple (G,φ, k), where G is a graph, φ : V → [γ] is a colouring
and k ∈ N.
Question: Is there is an independent set S ⊆ V in G of size k which is
colourful with respect to φ?

Let (J, k) be an instance of Group Interval Scheduling. Define V =⋃
i∈[γ] Gi. Taking V as the vertex set, define G = (V,E), where E =

{uv | u ∩ v �= ∅} and define φ : V → [γ] by φ(v) = i, where i ∈
[γ] such that v ∈ Gi. This gives an equivalent instance (G,φ, k) of
Colourful Independent Set on interval graphs: k jobs from J can be sched-
uled on the machine if and only if G has an independent set of size k that is
colourful with respect to φ.

This alternative formulation of Group Interval Scheduling is used
throughout the remainder of this paper.

Fixed-Parameter Tractability. The results are presented here in the frame-
work of Parameterized Complexity. Consider a computational problem P and
let x be a instance of P . Suppose that there is a number kx ∈ N that describes
a property of x, e.g. the optimal solution value for x. Such a scheme is called a
parameterization of P , and kx is called the parameter of x. Attaching the param-
eter to the problem instance gives us a parameterized problem: {〈x, kx〉 | x ∈ P}.

Given any parameterized problem Q with parameterization k, if there is an
algorithm that solves it in time O(f(k)nc), where f : N → N is a computable
function and c ∈ N is a constant, then Q is said to be fixed-parameter tractable.

Our Results and Previous Work. We consider two parameterizations of
Colourful Independent Set: k, the size of the solution sought, and γ, the
number of colours used by the colouring φ. The question of fixed-parameter
tractability was studied by Halldórsson and Karlsson [2] and later by van Bevern
et al. [8], which led to the following results.
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Proposition 1 (Halldórsson and Karlsson [2], Theorem 4). Instances
(G,φ, k) of Colourful Independent Set on interval graphs can be solved
deterministically in time O(2γn), where γ is the number of colours.

Proposition 2 (van Bevern et al. [8], Theorem 4). Instances (G,φ, k)
of Colourful Independent Set on interval graphs can be solved with error
probability ε in time O

(
|log ε|(5.5)k

n
)
. The algorithm can be derandomized to

solve the problem deterministically in time O
(
(12.8)k

γn
)
, where γ is the number

of colours.

Proposition 1 establishes fixed-parameter tractability with respect to γ while
Proposition 2 shows that there is a (randomized) fixed-parameter algorithm with
respect to k. This work makes the following improvements.

– We show that the running time of the deterministic algorithm of Proposition 2
can actually be improved to

(
ek+O((log k)2) log γ

)
2kn = O

(
(5.44)k(log γ)n

)

using smaller families of perfect hash functions (Theorem 1).
– Using efficiently-constructible representative families, we obtain an algo-

rithm (Theorem 2) for Colourful Independent Set that runs in time
O

(
(5.18)k

nd
)

(d ∈ N, a constant).

2 Preliminaries

In this section, we introduce notation used in the rest of the paper and review
some basic concepts concerning matroids, representative families and perfect
hash families.

2.1 Basics

– N denotes the set of natural numbers and R denotes the set of real numbers.
– For t ∈ {1, 2, . . .}, [t] denotes the set {1, . . . , t} and for a, b ∈ R with a ≤ b,

[a, b] denotes the set {x | x ∈ R, a ≤ x ≤ b}.
– Let X be a set and F be a family of subsets of X. For x ∈ X, define x+F =

{{x} ∪ S | S ∈ F}.
– Let G = (V,E) be a graph and φ : V → [γ] be a colouring of its vertices.

• V(G) denotes the vertex set V and E(G) denotes the edge set E.
• For each i ∈ [γ], define Vi = {v ∈ V | φ(v) = i}. A set of vertices V ′ ⊆ V

is called colourful if |Vi ∩ V ′| ≤ 1 for all i ∈ [γ].
– For a function g : A → B, dom g denotes the set A and rng g denotes the

set B′ = {y ∈ B | ∃x ∈ B : g(x) = y}.

A matroid is a pair (E, I) consisting of ground set E and a family I of subsets
called independent sets that has the following properties.

1. ∅ ∈ I.
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2. If X ∈ I and Y ⊆ X, then Y ∈ I.
3. For any two sets X,Y ∈ I with |X| < |Y |, there is an element e ∈ Y \X such

that X ∪ {e} ∈ I.

Because of Property 3 (also known as the exchange property) above, all max-
imal independent sets in a matroid have the same size. This number is called
the rank of the matroid.

Given a matroid M = (E, I) and an integer k ∈ N, it is easy to see that the
pair M′ = (E, I ′) with I ′ = {S ∈ I | |S| ≤ k} is also a matroid. It is called the
k-truncation of M. Since the independent sets S ∈ I ′ all satisfy |S| ≤ k, the
rank of M′ is at most k.

Let AM be a matrix over some field F whose columns are A1, . . . At. Suppose
that there is a injective function ρ : E → {A1, . . . , At} such that for any S ⊆ E, S
is independent in M if and only if the set of columns ρ(S) is linearly independent.
In this case, the matrix AM is called a representation for M, and M is said to
be representable over the field F .

Definition 1 (Linear Matroid). A matroid M is called a linear matroid if it
has a representation AM over some field F .

2.2 Matroids of Colourful Sets

Let G = (V,E) be a graph, φ : V → [γ] be a colouring of its vertices and
k ∈ N. Define I = {S ⊆ V | S is colourful and |S| ≤ k} and let K = (V, I). In
the following, we show that K is a linear matroid with a representation that can
be computed efficiently.

Consider the partition V = V1 ∪ · · · ∪ Vγ , where Vi (i ∈ [γ]) comprises
vertices of colour i. Define P = (V, I ′) where I ′ comprises all sets S ⊆ V such
that |S ∩ Vi| ≤ 1 (i ∈ [γ]).

Lemma 1. P is a linear matroid. A representation AP (over F2) for P of size
γ × n can be computed in time O(γn).

Proof (Sketch). It is easy to verify that P is a partition matroid. Consider the
γ × n matrix AK defined by

AP =
(
e1

|V1|, . . . , eγ
|Vγ |

)
,

where ei (i ∈ [t]) denotes the column vector with a 1 at the ith coordinate and
0’s everywhere else. AP represents P and because the column vectors can be
computed in time O(γ), the entire matrix can be constructed in time O(γn). ��
Lemma 2. K is the k-truncation of P.

Proof. Let S ∈ I. Because S is colourful, we have |S ∩ Vi| ≤ 1 (i ∈ [γ]), i.e.
S ∈ I ′. Conversely, any S ∈ I ′ with |S| ≤ k is a colourful set, so S ∈ I. Thus,
K is the k-truncation of P. ��
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The next proposition provides a method for computing a truncation of a
matroid from its representation. It will be used later to construct a representation
for K.

Proposition 3 (Lokshtanov et al. [5], Theorem 1.1). Let A be an m × n
matrix of rank m over a field F that represents the matroid M. For any natural
number k ≤ m, the k-truncation of M admits a representation Ak over F (X),
the field of fractions of the polynomial ring F [X]. This representation can be
computed in O(mnk) operations over F , and given any set of columns of Ak, it
can be determined whether they are linearly independent in O

(
m2k3

)
operations

over F .

Lemma 3. K is a linear matroid of rank k that admits a representation AK
over F2(X) which can be computed in time O(kγn).

Proof. We show that K is a linear matroid by computing a representation for it.
Note that the ground set of P has n = |V | elements.

Using the procedure of Lemma 1, obtain representation AP for P. This takes
time O(γn) and the representation is a 0-1 matrix of size γ × n. Now use the
procedure of Proposition 3 to obtain the k-truncation AK of P. This can be done
in O(kγn) operations over F2, each of which takes time O(1). Thus, the overall
running time of the algorithm is O(kγn). ��

2.3 Representative Families

Definition 2 (q-Representative Family). Let p, q ∈ N,M = (E, I) be a
matroid, and F ⊆ I be a family of independent sets of size p. A subfamily F ′ ⊆ F
is q-representative of F if the following statement holds. For any X ⊆ E with
|X| ≤ q, if there is a set Y ∈ F such that X ∩ Y = ∅ and X ∪ Y ∈ I, then there
is a set Y ′ ∈ F ′ such that X ∩ Y ′ = ∅ and X ∪ Y ′ ∈ I.
Proposition 4 (Fomin et al. [1], Theorem 1.1). Let M = (E, I) be a linear
matroid of rank p+q = k, and AM be a matrix over some field F that represents
it. For any family R = {S1, . . . , St} of independent sets of size p in M, there is
a family R̂ ⊆ R with at most

(
k
p

)
sets which is q-representative of R. The family

R̂ can be found in O
(
t
(
pω

(
k
p

)
+

(
k
p

)ω−1
))

operations over F , where ω < 2.373
is the matrix multiplication exponent.

2.4 Perfect Hash Families

Definition 3 (Perfect Hash Family). Let n, k ∈ N with n ≥ k. A family
of functions Hn,k ⊆ [k][n] is called an (n, k)-perfect hash family if for any set
S ⊆ [n] with |S| ≤ k, there is a function f ∈ H such that f is injective on S.

Proposition 5 (Naor et al. [7], Theorem 3). For any n, k ∈ N with n ≥ k,
there is an (n, k)-perfect hash family Hn,k of cardinality ek+O((log k)2) log n that
can be computed in time ek+O((log k)2)n log n.
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3 COLOURFUL INDEPENDENT SET on Interval Graphs

Here, we give two algorithms for Colourful Independent Set on interval
graphs. The first uses small families of perfect hash functions to make an
improvement over the algorithm of Proposition 2. The second algorithm employs
a dynamic programming approach using representative families.

Definition 4 (Compact Representation). Let G be an interval graph and
R = {Lv | v ∈ V(G)} be an interval representation for G. R is called c-compact
(c ∈ N) if the endpoints of every interval in R are in {0, . . . , c}. If G has such a
representation, it is called c-compact.

Proposition 6 (van Bevern et al. [8], Observation 2). Interval graphs of
order n are n-compact.

Proposition 7 (van Bevern et al. [8], Observation 4). Given an adja-
cency list representation for an interval graph G with n vertices and m edges,
a c-compact representation R for G that minimizes c can be computed in time
O(n + m).

We begin by observing that the deterministic algorithm of Proposition 2 can
be improved on by using slightly more efficient constructions of hash families.

3.1 Using Hash Families

By using the hash families of Theorem 5 with the algorithm of van Bevern et
al. [2], we make the following improvement on the derandomization claim of
Proposition 2.

Theorem 1. Instances (G,φ, k) of Colourful Independent Set on interval
graphs can be solved in time

(
ek+O((log k)2) log γ

)
2kn = O

(
(5.44)k(log γ)n

)
.

Lemma 4. Let (G,φ, k) be an instance of Colourful Independent Set on
interval graphs with γ = |rng φ| colours. There is a family of colouring functions
Cφ,k ⊆ [n] → [k] of size ek+O((log k)2) log γ such that (G,φ, k) is a YES instance
if and only if there is a function φ′ ∈ Cφ,k such that (G,φ′, k) is a YES instance.
The family Cφ,k can be constructed in time ek+O((log k)2)γ log γ.

Proof. Let Hγ,k be the perfect hash family obtained from Proposition 5 by
substituting n = γ. This family is of size ek+O((log k)2) log γ and can be com-
puted in time ek+O((log k)2)γ log γ. Define Cφ,k = {ρ ◦ φ | ρ ∈ Hγ,k}. Clearly,
Cφ,k ⊆ [n] → [k]. Note that Cφ,k can be obtained by chaining φ to each function
in Hγ,k, and this takes time O(1) per function. Thus, Cφ,k can be computed in
time ek+O((log k)2)γ log γ.

Suppose that (G,φ, k) is a YES instance and let S be a colourful independent
set in G, i.e. φ is injective on S. Consider R = φ(S). Since Hγ,k is (γ, k)-perfect,
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there is a function ρ ∈ Hγ,k such that ρ is injective on R. Because of this,
ρ ◦ φ ∈ Cγ,k is injective on S, i.e. S is a colourful independent set with respect
to φ′ = ρ ◦ φ. Thus, (G,φ′, k) is a YES instance.

Conversely, if there is a function φ′ ∈ Cγ,k such that there is a colourful
independent S with respect to φ′ and |S| ≥ k, then S is also colourful with
respect to φ. ��

The proof of Theorem 1 is now quite straightforward.

Proof (Theorem 1). Let (G,φ, k) be an instance of Colourful Indepen-
dent Set on interval graphs. Using the construction of Lemma 4, we obtain
a family of colourings Cn,k of size ek+O((log k)2) log γ. Consider the following
algorithm.

For each colouring φ′ ∈ Cn,k, run the procedure of Proposition 1 on the
instance (G,φ′, k). If the procedure returns YES on any of the instances, then
return YES. Otherwise, return NO. The correctness of the algorithm follows from
Lemma 4.

Note that for each φ′ ∈ Cn,k, |rng φ′| = k, so the instance (G,φ′, k)
has k colours. Thus, each invocation of the algorithm of Proposition 1
takes time O

(
2kn

)
. The overall running time of the algorithm is therefore

(ek+O((log k)2) log γ)2kn + ek+O((log k)2)γ log γ =
(
ek+O((log k)2) log γ

)
2kn =

O
(
(5.44)k(log γ)n

)
. ��

3.2 Using Representative Families

In this subsection, we employ a dynamic programming approach using represen-
tative families to obtain the following result.

Theorem 2. Instances (G,φ, k) of Colourful Independent Set on interval
graphs can be solved deterministically in time O

(
(5.18)k

nd
)
, where ω is the

matrix multiplication exponent and d ∈ N is a constant.

Consider an instance (G,φ, k) of Colourful Independent Set. By Propo-
sition 6, G has a c-compact representation with c ≤ n. Let D be such a represen-
tation. Define Lv (v ∈ V ) to be the interval corresponding to v in D and let l(v)
denote the length of Lv. We say that v lies in the interval [i, j] (0 ≤ i < j ≤ n)
if Lv ⊆ [i, j]. A set S ⊂ V lies in [i, j] if all its elements lie in [i, j].

Families of Colourful Independent Sets. For i ∈ [c] and j ∈ [k], define
Ri

j to be the family of all colourful independent sets in G of size exactly j in
the interval [0, i]. Consider the matroid K = (V, I) of sets of colourful vertices
defined in Subsect. 2.2. Since the sets in Ri

j are colourful, they are independent
in K. In what follows, we show how to efficiently compute a (k−j)-representative
family for Ri

j with respect to K.
For each (i, j) ∈ ({0} × [k]) ∪ ([c] × {0}), the family Ri

j is empty, and is
trivially represented by R̂i

j = ∅.
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Lemma 5. Let i ∈ [c] and j ∈ [k]. For each r < i and s ≤ j, let R̂r
s be a

(k − s)-representative family for Rr
s with respect to K. Define

R̄i
j =R̂i−1

j ∪
(

⋃

Lvends at i

[
v + R̂i−(l(v)+1)

j−1

]
)

, where (1)

[R] = {S ∈ R | S is a colourful independent set in G} .

The family R̄i
j (k − j)-represents Ri

j.

Proof. Let X ⊆ V with |X| ≤ k − j such that there is a set S ∈ Ri
j with

S ∩ X = ∅ and S ∪ X ∈ I, i.e. S is a colourful independent set in G. We have
the following cases. ��
Case 1. S contains a vertex v such that Lv ends at i.

In this case, S′ = S \ {v} is a colourful independent set (in G) appearing in
S

i−(l(v)+1)
j such that S′∩(X ∪ {v}) = ∅ and S′∪(X ∪ {v}) ∈ I. Let X ′ = X∪{v}.

Because R̂i−(l(v)+1)
j−1 is a (k − j + 1)-representative family for Ri−(l(v)+1)

j−1 and

|X ′| ≤ k − j + 1, there is a colourful independent set S̃ ∈ Ri−(l(v)+1)
j−1 such that

S̃ ∩ X ′ = ∅ and S̃ ∪ X ′ ∈ I.
Note that S̃ ∪ {v} ⊆ S̃ ∪ X ′ ∈ I is colourful. Since S̃ ∈ Ri−(l(v)+1)

j−1 only
contains vertices that lie in the interval [0, i − (l(v) + 1)], v has no neighbours
in S̃. Because S∗ = S̃ ∪ {v} is a colourful independent set in G, the [·] operator
in Eq. 1 preserves it. Thus, there is a set S∗ in R̄i

j such that S∗ ∩ X = ∅ and
S∗ ∪ X ∈ I.

Case 2. S contains no vertex v such that Lv ends at i.

Observe that S lies entirely in the interval [0, i− 1], so it appears in Ri−1
j . Since

R̂i−1
j is a (k − j)-representative family for Ri−1

j , there is a set S̃ ∈ R̂i−1
j such

that S̃ ∩ X = ∅ and S̃ ∪ X ∈ I.
The procedure ComputeTable constructs a table S[0 . . c][0 . . k] using the pre-

defined procedure ComputeRepresentativesFLPS that computes representative
families according to Proposition 4.

Lemma 6. The procedure ComputeTable computes S[0 . . c][0 . . k] such that each
entry S[i][j] is (k − j)-representative of Ri

j. The table is computed in time
O

(
cχkω2ωkn

)
, where χ is the time required to perform field operations over

F2(X).

Proof. In Line 1, the initialization step ensures that for each (i, j) ∈ ({0} × [k])∪
([c] × {0}), Ri

j is (k− j)-represented by S[i][j]. The family constructed in Line 8
is R̄i

j , which has t = |S[i − 1][j]| +
∑

Lv ends at i|S[i − (l(v) + 1)][j − 1]| sets.
Each entry S[i′][j′] referenced in this step was computed in a previous iter-

ation, and (by Proposition 4) Line 9 ensures that |S[i′][j′]| ≤ (
k
j′
)
. Thus, we



Solving Group Interval Scheduling Efficiently 105

Procedure ComputeTable: compute a table of representative families
Input: G, D, AK, c, k, where G is a graph, D is a c-compact representation and

k ∈ N

Output: S[0 . . c][0 . . k], where each entry S[i][j] (k − j)-represents Ri
j

1 initialize S[0 . . c][0 . . k] with ∅;
2 for i ∈ [1 . . c] do
3 for j ∈ [1 . . k] do
4 S[i][j] ← S[i − 1][j];
5 for v ∈ V(G) such that Lv ends at i do
6 Tv ← v + S[i − (l(v) + 1)][j − 1];
7 Tv ← {A ∈ Tv | A is a colourful independent set};
8 S[i][j] ← S[i][j] ∪ Tv;

9 S[i][j] ← ComputeRepresentativesFLPS(AK, S[i][j], k − j);

10 return S[0 . . c][0 . . k];

have t ≤ (
k
j

)
+ n

(
k

j−1

)
. Note that (again because of Proposition 4) S[i][j] is

(k − j)-representative of R̄i
j , so it also (k − j)-represents Ri

j .

The computation can be carried out using O
(
t
(
jω

(
k
j

)
+

(
k
j

)ω−1
))

opera-

tions over F2(X). This takes time O
(
t
(
jω

(
k
j

)
+

(
k
j

)ω−1
)
χ
)
, where χ is the time

required to perform field operations over F2(X). The expression further simplifies
to O

((
k
j

)ω
(jω + 1)χn

)
= O

((
k
j

)ω
jωχn

)
.

The construction of S[i][j] in Lines 4–8 takes time O(nt) = O
((

k
j

)ω
jωn

)
,

since it only involves copying and adding (single) elements to O(t) sets. Thus,
the running time of the double loops is

O

⎛

⎝χn

c∑

i=1

k∑

j=1

(
k

j

)ω

jω

⎞

⎠ = O

⎛

⎝χkωn

c∑

i=1

k∑

j=1

(
k

j

)ω
⎞

⎠.

By straightforward arguments, it can be shown that this expression is
O

(
cχkω2ωkn

)
. The other steps of the procedure take time O(n), so the over-

all running time is O
(
cχkω2ωkn

)
. ��

We are now ready to prove Theorem 2.

Proof (Theorem 2). Using SolveIntervalCIS, we solve (G,φ, k). Its correctness
follows directly from Lemmas 5 and 6. A c-compact representation D for G
can be computed using the procedure of Proposition 7 in time O

(
n2

)
. Then

using the procedure of Lemma 3, a representation AK for K can be computed
in time O(kγn) (Lemma 3). Finally, ComputeTable(G,D, AK, c, k) takes time
O

(
cχkω2ωkn

)
(Lemma 5). All other operations take time O

(
n2

)
.

Since the entries of AK are computed in O(kγn) field operations over F2, they
at most na bits in size for some constant a ∈ N. A fact we use without proof is
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that these entries can be interpreted as elements of a field Fq for some q ∼ 2na

while still maintaining the condition that AK represents K. Field operations over
Fq take time O

(
nb

)
for some constant b ∈ N, i.e. χ = O

(
nb

)
.

Thus, ComputeTable(G,R, AK, c, k) takes time O
(
cχkω2ωkn

)
= O(ckω

2ωknb+1). The matrix multiplication algorithm of Gall [4] has ω ≤ 2.3728639,
and because of Proposition 6, c ≤ n. Therefore, the overall running time of
SolveIntervalCIS is O

(
(5.18)k

nd
)

for some constant d ∈ N. ��

Algorithm SolveIntervalCIS. determine if G has a colourful indepen-
dent set of size k under φ

Input: G,φ, k, where G is a graph, φ : V(G) → [γ] is a colouring and
k ∈ N

Output: YES if G has a colourful independent set of size k under φ and
NO otherwise

1 D ← ComputeCompactRepresentation(G);
2 let c ∈ N such that D is c-compact;
3 compute a representation AK for the matroid of colourful sets of size at

most k;
4 S ← ComputeTable(G,D, AK, c, k);
5 if S[c][k] is non-empty then
6 return YES ;

7 else
8 return NO ;

4 Conclusion

We have designed improved algorithms for Colourful Independent Set via
two distinct approaches:

– using improved constructions of hash families, and
– using representative families.

The algorithm of Theorem 1 is an improvement over earlier algorithms with
regard to the parameter k, i.e. the number of jobs to be scheduled, as well as
n, the total number of jobs. On the other hand, SolveIntervalCIS (Theorem 2),
which runs in time O

(
(5.18)k

nd
)

and outperforms previous algorithms in the
case k ≥ d log n.

Using a variant of Proposition 3 (see [5], Theorem 3.15), we were able to
obtain the bound d ≤ 4. An interesting question is to see if the dependence on n
in the running time of SolveIntervalCIS could be made quadratic or even linear.
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Abstract. A well-studied problem in the online setting, where requests
have to be answered immediately without knowledge of future requests, is
the call admission problem. In this problem, we are given nodes in a com-
munication network that request connections to other nodes in the net-
work. A central authority may accept or reject such a request right away,
and once a connection is established its duration is unbounded and its
edges are blocked for other connections. This paper examines the admis-
sion problem in tree networks. The focus is on the quality of solutions
achievable in an advice setting, that is, when the central authority has
some information about the incoming requests. We show that O(m log d)
bits of additional information are sufficient for an online algorithm run
by the central authority to perform as well as an optimal offline algo-
rithm, where m is the number of edges and d is the largest degree in the
tree. In the case of a star tree network, we show that Ω(m log d) bits are
also necessary (note that d = m). Additionally, we present a lower bound
on the advice complexity for small constant competitive ratios and an
algorithm whose competitive ratio gradually improves with added advice
bits to 2�log2 n�, where n is the number of nodes.

1 Introduction

A well-studied problem in the context of regulating the traffic in communica-
tion networks is the so-called call admission problem, where a central authority
decides about which subset of communication requests can be routed. This is a
typical example of an online problem: every request has to be routed or rejected
immediately without the knowledge about whether some forthcoming, possibly
more profitable, requests will be blocked by this decision.

We consider the call admission problem on trees (short CAT), which is an
online maximization problem. An instance I = (r1, . . . , rk) consists of requests
r = (vi, vj) with i, j ∈ {0, . . . , n − 1} and vi < vj , representing the unique path
in a tree network that connects vertices vi and vj . We require that all requests in
I are pairwise distinct. The first request contains the network tree T = (V,E),
given to the algorithm in form of an adjacency list or matrix. In particular, we
study the problem framework in which an accepted connection has an unbounded

c© Springer Nature Switzerland AG 2019
C. J. Colbourn et al. (Eds.): IWOCA 2019, LNCS 11638, pp. 108–121, 2019.
https://doi.org/10.1007/978-3-030-25005-8_10
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duration and each edge in the network may be used by at most one request, i.e.,
it has a capacity of 1. Thus, a valid solution O = (y1, . . . , yk) ∈ {0, 1}k for I
describes a set P(I,O) := {ri | i ∈ {1, . . . , k} and yi = 1} of edge-disjoint paths
in T , where gain(I,O) := |P(I,O)|. Whenever I is clear from the context, we
write gain(O) instead of gain(I,O).

An online algorithm Alg for CAT computes the output sequence (solution)
Alg(I) = (y1, . . . , yk), where yi is computed from x1, . . . , xi. The gain of Alg’s
solution is given by gain(Alg(I)). Alg is c-competitive, for some c ≥ 1, if
there exists a constant γ such that, for every input sequence I, gain(Opt(I)) ≤
c · gain(Alg(I))+ γ, where Opt is an optimal offline algorithm for the problem.
This constitutes a measure of performance used to compare online algorithms
based on the quality of their solutions, which was introduced by Sleator and
Tarjan [18].

The downside of competitive analysis as a measurement of performance is
that it seems rather unrealistic to compare the performance of an all-seeing
offline algorithm to that of an online algorithm with no knowledge at all about
future requests. This results in this method not really apprehending the hardness
of online computation. Moreover, it cannot model information about the input
that we may have outside the strictly defined setting of the problem. The advice
model was introduced as an approach to investigate the amount of information
about the future an online algorithm lacks [6,7,12,13,15]. It investigates how
many bits of information are necessary and sufficient to achieve a certain output
quality, which has interesting implications for, e.g., randomized online compu-
tation [5,9,16]. For lower bounds on this number in particular, we do not make
any assumptions on the kind of information the advice consists of.

Let Π be an online maximization problem, and consider an input sequence
I = (x1, . . . , xk) of Π. An online algorithm Alg with advice computes the output
sequence Alg(I)φ = (y1, . . . , yk) such that yi is computed from φ, x1, . . . , xi,
where φ is the content of the advice tape, i.e., an infinite binary sequence. Alg
is c-competitive with advice complexity b(k) if there exists a constant γ such that,
for every k and for each input sequence I of length at most k, there exists some
φ such that gain(Opt(I)) ≤ c ·gain(Algφ(I))+γ and at most the first b(k) bits
of φ have been read during the computation of Algφ(I).

For a better understanding, consider the following example. A straightfor-
ward approach to an optimal online algorithm with advice for CAT is to have one
bit of advice for each request in the given instance. This bit indicates whether the
request should be accepted or not. Thus, Alg reads |I| advice bits and accepts
only requests in Opt(I), i.e., Alg is optimal.

This approach gives us a bound on the advice complexity that is linear in
the size of the instance. Opposed to most other online problems however, call
admission problems, like CAT, are usually analyzed with respect to the size of
the communication network instead of the size of an instance as stated in the
general definition. Thus, the advice complexity of this naive optimal algorithm
on a tree with n vertices is of order n2.
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Related Work. The call admission problem is a well-studied online problem;
for an overview of results regarding classical competitive analysis for this problem
on various graph topologies, see Chapter 13 in the textbook by Borodin and El-
Yaniv [3]. For the call admission problem on path networks (also called the
disjoint path allocation problem, short DPA), Barhum et al. [2] showed that
l − 1 advice bits are both sufficient and necessary for an online algorithm to
be optimal, where l is the length of the path. They also generalized the log2 l-
competitive randomized algorithm for DPA presented by Awerbuch et al. [1].
Gebauer et al. [14] proved that, with l1−ε bits of advice, no online algorithm for
DPA is better than (δ log2 l)/2-competitive, where 0 < δ < ε < 1. The advice
complexity of call admission problems on grids was investigated by Böckenhauer
et al. [8].

When considering trees as network structure, we still have the property that
the path between two nodes is unique in the network, thus all lower bounds
on the advice complexity easily carry over by substituting the length l of the
path network by the diameter D of the tree network. These lower bounds can be
further improved as shown in Sect. 2. Concerning upper bounds, Borodin and El-
Yaniv [3] presented two randomized online algorithms, a 2�log2 n�-competitive
algorithm, first introduced by Awerbuch et al. [1], and an O(log D)-competitive
algorithm. We will modify the former in Subsect. 3.2 to an online algorithm that
reads �log2 log2 n− log2 p� advice bits and is ((2p+1 −2)�log2 n/p�)-competitive,
for any integer 1 ≤ p ≤ log2 n.

Another problem closely related to DPA is the length-weighted disjoint path
allocation problem on path networks, where instead of optimizing the number
of accepted requests, one is interested in maximizing the combined length of all
accepted requests. Burjons et al. [10] extensively study the advice complexity
behavior of this problem.

Overview. In Sect. 2, we present the already mentioned lower bound for opti-
mality, which even holds for star trees. We complement this with lower bounds
for the trade-off between the competitive ratio and advice, based on reductions
from the well-known string guessing problem [4]. Section 3 is devoted to the cor-
responding upper bounds. In Subsect. 3.1, we present algorithms for computing
an optimal solution, both for general trees and for star trees and k-ary trees. As
mentioned above, in Subsect. 3.2, we analyze the trade-off between the competi-
tive ratio and advice and estimate how much the competitive ratio degrades by
using less and less advice bits. Due to space restrictions, some of the proofs are
omitted in this extended abstract.

Notation. Following common conventions, m is the number of edges in a graph
and n the number of vertices. The degree of a vertex v is denoted by d(v). Let
v0, . . . , vn−1 be the vertices of a tree T with some order v0 < · · · < vn−1. This
order can be arbitrarily chosen, but is fixed and used as order in the adjacency
matrix or adjacency list of the tree. Hence, an algorithm knows the ordering on
the vertices when given the network.

For the sake of simplicity, we sometimes do not enforce that v < v′, but regard
(v, v′) and (v′, v) as the same request. For a request r = (v, v′), the function
edges : V × V → P(E) returns, for request r, the set of edges corresponding to



Call Admission Problems on Trees with Advice 111

the unique path in T that connects v and v′. Let edges(r) := {e1, . . . , el}; we
call l the length of request r. Note that all logarithms in this paper are of base
2, unless stated otherwise.

2 Lower Bounds

First we present lower bounds on the number of advice bits for the call admission
problem on trees. We first look at optimal algorithms, then we focus on the
connection between the competitive ratio and the advice complexity.

2.1 A Lower Bound for Optimality

Barhum et al. [2] proved that solving DPA optimally requires at least l−1 advice
bits. As DPA is a subproblem of the call admission problem on trees, this bound
also holds for CAT. We can improve on this by considering instances on trees of
higher degree. We focus on the simplest tree of high degree, the star tree.

Theorem 1. There is no optimal online algorithm with advice for CAT that
uses less than �(m/2) log(m/e)� advice bits on trees of m edges.

Proof Sketch. This proof is based on the partition-tree method as introduced
by Barhum et al. [2]. A partition tree of a set of instances I is defined as a
labeled rooted tree such that (i) every of its vertices v is labeled by a set of
input sequences Iv and a number �v such that all input sequences in Iv have a
common prefix of length at least �v, (ii) for every inner vertex v of the tree, the
sets at its children form a partition of Iv, and (iii) the root r satisfies Ir = I.
If we consider two vertices v1 and v2 in a partition tree that are neither an
ancestor of each other, with their lowest common ancestor v and any input
instances I1 ∈ Iv1 and I2 ∈ Iv2 such that, for all optimal solutions for I1 and I2,
their prefixes of length �v differ, then any optimal online algorithm with advice
needs a different advice string for each of the two input sequences I1 and I2.
This particularly implies that any optimal online algorithm with advice requires
at least log(w) advice bits, where w is the number of leaves of the partition tree.
We sketch the construction of the instances that can be used for building such
a partition tree.

Consider the star trees S2k for k ≥ 1 with 2k edges. Let v0, v1, . . . , v2k be
the vertices in S2k, where v0 denotes the center vertex. We construct a set I of
input sequences for S2k so that any two input sequences share a common prefix
of requests and each input I ∈ I has a unique optimal solution Opt(I), which
is only optimal for this particular instance.

Each input instance will be partitioned into k phases. At the end of each
of these phases, one vertex will be blocked for all subsequent phases. We can
uniquely describe each of our instances I(j1,...,jk) by the sequence of these blocked
vertices (vj1 , . . . , vjk). Note that we will not use every possible vertex sequence
for our construction. In phase i with i ∈ {1, . . . , k}, we request in ascending order
all paths from the non-blocked vertex v∗

i with the smallest index to all other non-
blocked vertices, then we block v∗

i and vji for all future phases. We note that,
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Fig. 1. Input sequence I(3,5,6) = (r1, . . . , r9) on star graph S6 partitioned into 3 phases.
Red vertices are blocked, a red edge indicates the request is in the optimal solution
Opt(I(3,5,6)). For the sake of simplicity, the center vertex v0 is omitted from the draw-
ings; thus all lines represent paths of length 2 (Color figure online).

at the start of phase 1, all vertices are non-blocked. Let I(j1,...,ji) denote the set
of all input sequences whose tuples have prefix (j1, . . . , ji) with i ≤ k. Observe
that, by definition, all input sequences in I(j1,...,ji) have the same requests until
phase i ends and that tuple (j1, . . . , jk) describes exactly one input sequence in
I, i.e., |I(j1,...,jk)| = 1. Figure 1 shows an illustration of such an input sequence
for the star S6, i.e., for k = 3.

We can prove that, for each input sequence I(j1,...,jk), the unique optimal
solution is Opt(I(j1,...,jk)) := {r1, . . . , rk}, where ri := (v∗

i , vji) is the request
accepted by Opt in each phase i. The next step is to show that, for any two
input sequences in I, their unique optimal solution Opt differs. Consider two
input sequences I, I ′ ∈ I with I �= I ′ and let (j1, . . . , jk) and (j′

1, . . . , j
′
k) be their

identifying tuples, respectively. As the two input sequences are non-identical,
there must exist some smallest index i so that ji �= j′

i. In particular, since i
marks the first phase at whose end different vertices are blocked in I and I ′,
the requests in phase i must be identical in both input sequences. Let v∗

i be the
non-blocked vertex with the smallest index in phase i in both input sequences.
By definition of Opt, request (v∗

i , vji) ∈ Opt(I) and request (v∗
i , vj′

i
) ∈ Opt(I ′)

with ji �= j′
i. It thus follows that Opt(I) �= Opt(I ′) as both requests share an

edge.
Since the optimal solution for the common prefix differs between two

instances, no online algorithm without advice can be optimal on this set, because,
with no additional information on the given instance (i.e., based on the prefix
alone) the two instances cannot be distinguished. It follows that the algorithm
needs a unique advice string for each instance in the set. Thus, it only remains to
bound the number of instances in I. Each instance has a unique label I(j1,...,jk),
so that the total number equals the number of tuples (j1, . . . , jk) of pairwise
distinct vertex indices, that is,

(2k − 1) · (2k − 3) · (2k − 5) · · · · · 1 = (2k − 1)!! =
(2k)!
2k · k!

,
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which we can bound from below using Stirling’s inequalities, yielding

(2k)!
2k · k!

≥ (2k)!
2k · e

√
k · (k

e )k
≥

√
2π2k · (2k

e )2k

e
√

k · ( 2k
e )k

≥
√

4π

e
·
(

2k

e

)k

≥
(

2k

e

)k

.

Using that m = 2k, we conclude that at least �(m/2) log(m/e)� advice bits
are necessary for any online algorithm to be optimal on the tree Sm. 
�

This lower bound is asymptotically larger by a logarithmic factor than
the DPA lower bound [2], which suggests that the advice complexity of CAT
increases with the degree of the tree network and not only with its size.

2.2 A Lower Bound for Competitiveness

In this section, we present a reduction from an online problem called the string
guessing problem to CAT. In the string guessing problem with unknown history
(q-SGUH), an algorithm has to guess a string of specified length z over a given
alphabet of size q ≥ 2 character by character. After guessing all characters, the
algorithm is informed of the correct answer. The cost of a solution Alg(I) is the
Hamming distance between the revealed string and Alg(I). Böckenhauer et al.
[4] presented a lower bound on the number of necessary advice bits depending
on the achieved fraction of correct character guesses.

We will use this lower bound for our results, reducing the q-SGUH problem
to CAT by assigning each element of the alphabet to an optimal solution for a
family of instances on the star tree Sd where d = q. The idea is to have a common
prefix on all instances and the last requests specifying a unique optimal solution
for the instance corresponding to the character in the string. For each character
we have to guess, we insert such a star tree S(i) := Sd into our graph such that
the graph is connected but the trees do not share edges. We can then look at
each subtree independently and join the instances to an instance corresponding
to the whole string. Let therefore, for some z, d ∈ N, Tz,d be the set of trees
that can be constructed from subtrees S(i) with i ∈ {1, . . . , z}, such that any
two subtrees share at most one vertex and the tree is fully connected. For each
request of a d-SGUH instance of length z, where the optimal answer would be
the string s1 . . . sz we now construct a sequence of requests for S(i) such that
choosing the optimal set of requests for S(i) corresponds to correctly guessing
si. Then, any algorithm that solves a fraction α of all subtrees optimally can be
used to achieve a fraction α of correct guesses on the d-SGUH instance.

Theorem 2. Every online algorithm with advice for CAT which achieves a com-
petitive ratio of c ≤ d/(d − 1) on any tree T ∈ Tz,d, for d ≥ 3 and z, d ∈ N, has
to read at least (

1 − Hd

(
d − d − 1

c
− 1

))
m

d
log d

advice bits, where Hd is the d-ary entropy function. 
�
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Fig. 2. Lower bound on the number of advice bits stated in Theorem 2 (light green)
and Theorem 3 (dark blue) divided by the number m of edges in T ∈ Tz,d. (Color figure
online)

We can use the same tree structure to prove a better lower bound for small
values of c by changing the reduction instance of CAT. This change increases
the alphabet size of q-SGUH that we can reduce to instances on trees in Tz,d for
q = 2d−1, and allows to prove the following theorem.

Theorem 3. Every online algorithm with advice for CAT which achieves a com-
petitive ratio of c ≤ d/(d − 1 + 1/2d−1) on any tree T ∈ Tz,d, for d ≥ 2 and
z, d ∈ N, has to read at least

(
1 − H2d−1

(
d − d

c

))
m · d − 1

d

advice bits, where Hd is the d-ary entropy function. 
�

Figure 2 depicts the lower bounds of Theorems 2 and 3, respectively.

3 Upper Bounds

In the following, we present online algorithms with advice for the call admission
problem on trees. In the first part, the focus will be on optimal algorithms with
different advice complexities. In the second part, we discuss an algorithm whose
competitiveness gradually improves with added advice bits.

3.1 Optimal Online Algorithms with Advice

The fundamental idea of the following algorithms is to encode the optimal solu-
tion using edge labels as advice. A straightforward approach is to give all requests
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in Opt(I) an identifying number and label the edges of each request with this
identifier. After communicating the labels of all edges, the algorithm will be able
to distinguish which request is in Opt(I) and which is not, by checking whether
all the edges of the request have the same label and no other edges have this
label. As a result, the algorithm can recognize and only accept requests that an
optimal solution accepts.

As for the advice complexity, we need m labels each consisting of a number
in {0, 1, . . . , |Opt(I)|}. Since, for any input sequence I, we have |Opt(I)| ≤ m,
in total m�log(m+1)� advice bits suffice. If |Opt(I)| is much smaller than m, we
can communicate the size of a label using a self-delimiting encoding [17], using
m �log(|Opt(I)| + 1)� + 2 �log�log(|Opt(I)| + 1)�� advice bits in total.

We will continue to use this idea of an identifier for the following algorithms
in a more local manner. Instead of giving each request in Opt(I) a global identi-
fying number and labeling corresponding edges accordingly, we associate identi-
fiers with an optimal request depending on the vertices incident to the request’s
edges.

We can picture this labeling scheme with a request as a row of dominoes,
where each edge of the request represents one domino and consecutive edges have
the same identifying number at their common vertex. Knowing for all edges the
incident edges that are part of the same request, we can reconstruct the paths
belonging to all requests in Opt(I) and since we only need local identifiers, this
reduces the size of each label.

Theorem 4. There is an optimal online algorithm with advice for CAT that
uses at most 2m �log(d + 1)� advice bits, where d is the maximum degree of a
vertex in T .

Proof Sketch. First, let us define such a local labeling formally. For some input
sequence I = (r1, . . . , rl), let Opt(I) ⊆ {r1, . . . , rl} be an arbitrary, but fixed
optimal solution for I. Furthermore, for every vertex v, let Optv(I) be the
subset of requests in Opt(I) which occupy an edge incident with v. Observe
that |Optv(I)| ≤ d(v) as there are d(v) edges incident with v. For all v ∈ V , let
gv : Optv(I) → {1, . . . , d(v)} be an injective function that assigns a number to
each request in Optv(I). These numbers serve as local identifiers of each request
in Optv(I). We define the label function lb as follows; for e = {v, v′} ∈ E, where
v < v′, let

lb(e) :=

{
(lbv(e), lbv′(e)) = (gv(r), gv′(r)) if ∃ r ∈ Opt(I) s.t. e ∈ edges(r),
(0, 0) otherwise.

Thus, if an edge e is used by r ∈ Opt(I), the local identifiers of r for the
two vertices of e constitute the edge label; if unused, e is labeled (0, 0). Observe
that, if e = {v, v′} ∈ edges(r) and r ∈ Opt(I), it follows that r ∈ Optv(I) and
r ∈ Optv′(I), so lb is well-defined. Figure 3 shows an example of a local and a
global labeling side by side. Observe that, for vertex v, we have the label 4 for two
edges, but no label 2. As gv may arbitrarily assign an identifier in {1, . . . , dv},
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Fig. 3. Examples of a global labeling (left) and a local labeling (right) for the same
optimal solution.

the assigned number to a request does not have to be minimal. In the lb-labeled
tree T , we call p = (v′

1, . . . , v
′
l) a labeled path of length l if p is a path in T with

v′
1 < v′

l and lbv′
j
({v′

j−1, v
′
j}) = lbv′

j
({v′

j , v
′
j+1}) �= 0 for all j ∈ {2, . . . , l − 1}.

We refer to p as a complete labeled path if further no other edges incident to
v′
1 or v′

l have label lbv′
1
({v′

1, v
′
2}) or lbv′

l
({v′

k−1, v
′
l}), respectively.

Consider an algorithm Alg′ that reads the labels of all edges from the advice
before starting to receive any request and then computes the set P of all complete
labeled paths in T . Alg′ then accepts a request r = (v, v′) if and only if it
coincides with a complete labeled path in P .

We can prove that Alg′ accepts all requests in Opt(I), and thus is optimal,
by showing that every request in Opt(I) has a coinciding path in P and that
all paths in P are pairwise edge-disjoint. It remains to bound the number of
advice bits used. For an edge {v, v′}, we need �log(d(v) + 1)� + �log(d(v′) + 1)�
advice bits to communicate the label lb({v, v′}). Hence, per vertex w, we use
d(w)·�log (d(w) + 1)� advice bits. Summing up over all vertices yields the claimed
bound. 
�

We can further improve this bound by showing that pinpointing an endvertex
of a request r ∈ Opt(I) does not require a unique identifier.

Theorem 5. There is an optimal online algorithm with advice for CAT that
uses at most (m−1) �log(�d/2�+1)� advice bits, where d is the maximum degree
of a vertex in T .

Proof Sketch. Consider a function gv : Optv(I) → {0, 1, . . . , �d(v)/2�} that
assigns a non-zero identifier only to requests in Optv that occupy two incident
edges to v, otherwise it assigns identifier 0. Observe that we halve the number
of identifiers needed this way.

Let us now refer to a labeled path p = (v′
1, . . . , v

′
l) as complete if and only if

lbv′
1
({v′

1, v
′
2}) = lbv′

l
({v′

l−1, v
′
l}) = 0. (1)

Again, we consider Alg′ that reads the advice lb(e1), . . . , lb(em) for a tree T and
computes the set P of all complete labeled paths in T according to Theorem 4.
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Fig. 4. Example of a labeling as used in Theorem 4 (left) and the inferred full labeling
(right) for the same optimal solution.

Alg′ then accepts a request r = (v, v′) if and only if it coincides with a complete
labeled path in P .

We can show, analogously to the proof of Theorem 4, that all paths in P
are pairwise edge-disjoint and that each request in Opt(I) has a coinciding
path in P (Fig. 4). Thus, as before, Alg′ accepts all requests in Opt(I) and is
therefore optimal. Finally, we note that not all labels have to be communicated.
Consider a vertex v and its incident edges e′

1, . . . , e
′
d(v). Assuming that we have

all labels lbv(e′
1), . . . , lbv(e′

d(v)−1), we can infer the last label lbv(e′
d(v)) as follows.

If there exists only one edge e ∈ {e′
1, . . . , e

′
d(v)} with non-zero label lbv(e), then

lbv(e′
d(v)) = lbv(e), since by definition of gv(r) and lb there are exactly two edges

with the same non-zero label. If there is no such edge, lbv(e′
d(v)) = 0 for the

same reason. Therefore, for each vertex we only need to communicate the advice
for the first d(v) − 1 edges and per edge only �log(�d(v)/2� + 1)� advice bits. In
total, Alg′ needs at most �log(�d/2� + 1)� · (m − 1) advice bits, where d is the
maximum degree of a vertex in T . 
�

Note that the central idea behind the algorithms of Theorems 4 and 5 is to
identify, for all inner vertices, which incident edges belong to the same request
in some fixed optimal solution. We used edge labels as advice to convey this
information. In what follows, we will discuss another technique to encode this
information for some types of trees. First, let us examine the star tree Sd of degree
d; let Id = (r1, . . . , r(d(d−1))/2) denote the instance with all possible requests in
Sd of length 2.

Lemma 1. For the instance Id of CAT on Sd, the size of the set of solutions
O(Id) is at most

�d/2�∑
j=0

d !
2j · j ! · (d − 2j) !

. (2)

Proof. We construct a graph G(Id), where the vertex set corresponds to the
leaf vertices of Sd. For a request r of Id, we insert an edge in G(Id) between
the respective vertices. Note that, since Id consists of all requests between leaf
vertices in Sd, we have that G(Id) is the complete graph Kd on d vertices.
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Any solution O ∈ O(Id) describes a set of edge-disjoint requests, and thus can
be uniquely associated with a matching in G(Id): In the tree Sd, with requests of
length 2, this is equivalent to requests having pairwise different endpoints, i.e.,
their corresponding edges must form a matching in G(Id). Thus, the size of the
set O(Id) is the number of matchings in G(Id), which is given by the Hosoya
index1 of Kd, that is, by (2). 
�

Now consider an arbitrary instance I∗ of CAT on Sd and an optimal solution
Opt ∈ O(I∗). Any algorithm that knows the partial solution of Opt for requests
of length 2 is optimal on I∗, as it can allocate requests of length 2, such that
the edges of length-1 requests in Opt are not blocked. Furthermore, note that
this partial solution can be described by a solution in the set O(Id) of instance
Id. Thus, enumerating the elements in the set O(Id) and using the index of the
partial solution as advice yields an algorithm that is optimal on I∗.

Corollary 1. There exists an optimal online algorithm with advice for CAT on
Sd that uses at most⎡

⎢⎢⎢log

⎛
⎝�d/2�∑

j=0

d !
2j · j ! · (d − 2j) !

⎞
⎠

⎤
⎥⎥⎥ ≈

⌈
d

2
log

(
d

e

)
+ log

(
e
√

d

(4e)1/4

)⌉

advice bits. 
�

The asymptotical approximation is given by using Stirling’s inequality on the
bound of Lemma 1 as shown by Chowla et al. [11]. Thus, the upper bound of
Corollary 1 is asymptotically of the same order as the lower bound of Theorem
1 in the previous chapter, which is constructed on a star tree Sd.

We can use the set of solutions O(Id) to construct a similar algorithm as in
Corollary 1 for k-ary trees of arbitrary height. The idea is to regard each inner
vertex of a k-ary tree and its neighbors as a star tree with at most k + 1 leaves.
Since any k-ary tree has at most l := (kh − 1)/(k − 1) inner vertices, we get
subtrees S1, . . . , Sl for which we can give advice as described before. Since the
advice complexity of Theorem 5 is about twice that of Corollary 1 for a star
tree Sk+1, this algorithm reduces the amount of advice used for each inner node,
improving the upper bound for k-ary trees by a factor of about 2 when compared
to Theroem 5.

Theorem 6. There exists an optimal online algorithm with advice for CAT on
k-ary trees of height h that uses at most⎡

⎢⎢⎢
kh − 1
k − 1

· log

⎛
⎝�(k+1)/2�∑

j=0

(k + 1) !
2j · j ! · (k + 1 − 2j) !

⎞
⎠

⎤
⎥⎥⎥

advice bits. 
�
1 The Hosoya index, or Z-index, describes the total number of matchings in a graph.

Note that it counts the empty set as a matching. The above expression for the Hosoya
index of Kd is given by Tichy and Wagner [19].
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3.2 Competitiveness and Advice

A popular approach to create competitive algorithms for online problems is to
divide the requests into classes, and then randomly select a class. Within this
class, requests are accepted greedily and requests of other classes are dismissed.

Awerbuch et al. [1] describe a version of the “classify and randomly select”
algorithm for the CAT problem based on vertex separators as follows. Consider
a tree with n vertices. There has to exist a vertex v′

1 whose removal results in
disconnected subtrees with at most n/2 vertices. Iteratively choose, in each new
subtree created after the (i − 1)-th round, a new vertex to remove and add it to
the set Vi; vertices in this set are called level-i vertex separators. This creates
disjoint vertex classes V1, V2, . . . , V�log n	. We can now separate incoming requests
into levels. A request r is a level-iV request if iV = minj(Vj ∩ V (r) �= ∅) where
V (r) is the set of vertices in the path of the request. The algorithm then chooses
a level i∗V uniformly at random and accepts any level-i∗V request greedily, i.e.,
an incoming level-i∗V request is accepted if it does not conflict with previously
accepted requests.

This randomized algorithm is 2�log2 n�-competitive in expectation and can
be easily adapted to the advice model by choosing the accepted class using
advice. When we reduce the number of classes by a factor of 1/p for some p ∈
{1, . . . , �log n�}, the number of advice bits necessary to communicate the level
index will decrease, but we can expect the greedy scheduling to perform worse.

Theorem 7. For any p ∈ {1, . . . , �log n�} there is an online algorithm with
advice for CAT that uses �log log n − log p� advice bits and is

(
(2p+1 − 2) ·

⌈
log n

p

⌉)
-competitive.

Proof Sketch. We define the set Join(iV , p) to include all requests in I of levels
iV , . . . ,min{iV + (p − 1), log n}. We say that request r is in a subtree S if all its
edges are in S, and use “block” in the sense of two requests having at least one
edge in common. Observe that requests of level iV or higher have all edges in
a subtree created by removing vertices in V1, . . . , ViV −1. We call such a subtree
a level-iV subtree. Let Opt(I) be an optimal solution to I; it can be proven
by induction on p that for all iV ∈ {1, . . . , �log n�}, any request r in a subtree
of level iV can block at most 2p+1 − 2 other requests in Opt(I) ∩ Join(iV , p).
We can conclude that, for a fixed p ∈ {1, . . . , �log n�}, any greedy scheduler
is (2p+1 − 2)-competitive when requests are restricted to a level iV ′ , for some
iV ′ ∈ {1, . . . , �(log n)/p�}. This follows directly from the induction hypothesis.
The competitive ratio and advice complexity are easily deduced from there on.


�

Corollary 2. There exists a 2�log n�-competitive algorithm for CAT that uses
�log log n� advice bits. 
�



120 H.-J. Böckenhauer et al.

References

1. Awerbuch, B., Bartal, Y., Fiat, A., Rosén, A.: Competitive non-preemptive call
control. In: Proceedings of SODA 1994, pp. 312–320. SIAM (1994)

2. Barhum, K., et al.: On the power of advice and randomization for the disjoint
path allocation problem. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa,
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4. Böckenhauer, H.-J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.:
The string guessing problem as a method to prove lower bounds on the advice
complexity. Theoret. Comput. Sci. 554, 95–108 (2014)
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Abstract. This paper presents new complexity and non-approximation
results concerning two color propagation problems, namely Power Edge
Set and Zero Forcing Set. We focus on cubic graphs, exploiting their
structural properties to improve and refine previous results. We also give
hardness results for parameterized precolored versions of these problems,
and a polynomial-time algorithm for Zero Forcing Set in proper inter-
val graphs.

Keywords: Synchrophasor · Power Edge Set · Zero Forcing Set ·
Complexity

1 Introduction

Motivation. In power networks, synchrophasors are time-synchronized numbers
that represent both the magnitude and phase angle of the sine waves on network
links. A Phasor Measurement Unit (PMU) is an expensive measuring device used
to continuously collect the voltage and phase angle of a single station and the
electrical lines connected to it. The problem of minimizing the number of PMUs
to place on a network for complete network monitoring is an important challenge
for operators and has gained a considerable attention over the past decade [4,
7,8,12,13,15,17,19,21,22,25]. The problem is known as Power Dominating
Set [25] and we state it below. We model the network as a graph G = (V,E)
with |V |=: n and |E|=: m. We denote the set of vertices and edges of G by V (G)
and E(G), respectively. We let NG(v) denote the set of neighbors of v ∈ V in G
and dG(v) = |NG(v)| its degree in G. Further, we let NG[v] = NG(v)∪{v} denote
the closed neighborhood of v in G, and we let G[W ] denote the subgraph of G
induced by vertices W ⊆ V (G). The problem is described through monitoring
of nodes of the network, corresponding to monitoring vertices V (G) by PMUs,
propagated using the following rules.
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Rule R1
∗: A vertex v of G on which a PMU is placed will be called a monitored

vertex, and all its neighbors vertices NG(v) automatically become monitored.
Rule R2: if all but one neighbor of a monitored vertex are monitored, then this

unmonitored vertex will become monitored as well.

Letting ΓP (G) denote the minimum number of PMUs to place on vertices to
obtain a full monitoring of the network (using Rule R2), the decision version of
the problem is described as follows:

Power Dominating Set (PDS)
Input: a graph G = (V,E) and some k ∈ IN
Question: Is ΓP (G) ≤ k?

Power Dominating Set is NP-complete in general graphs [15]. A large
amount of literature is devoted to this problem, describing a wide range of
approaches, either exact such as integer linear programming [12] or branch-
and-cut [21], or heuristic, such as greedy algorithms [17], approximations [4] or
genetic algorithms [19]. The problem has also been shown to be polynomial-time
solvable on grids [7], but NP-complete in unit-disk graphs [22].

In this paper, we consider two variants of the problem, called Power Edge
Set (PES) [23,24] and Zero Forcing Set (ZFS) [3], which respectively consist
in placing PMUs on the links, and reducing the monitoring range of a PMU
placed on a node. This leads us to replace Rule R1

∗ in each of these problems
as follows (Rule R2 remains unchanged):

Rule R1 (PES): two endpoints of an edge bearing a PMU are monitored.
Rule R1 (ZFS): only the node bearing a PMU is monitored.

We let pes(G) and zfs(G) denote the minimum number of PMUs to place
on the edges, resp. nodes, of G to entirely monitor G. Both PES and ZFS can
be seen as a problem of color propagation with colors 0 (white) and 1 (black),
respectively designating the states not monitored and monitored of a vertex of G.
As input to PES or ZFS, we will consider a connected graph G = (V,E). For each
vertex v ∈ V , let c(v) be the color assigned to v (we abbreviate

⋃
v∈X c(v) =:

c(X)). Before placing the PMUs, we have c(V ) = {0} and the aim is to obtain
c(V ) = {1} using Rule R1 and Rule R2 while minimizing the number of PMUs.
See Figs. 1 and 2 for detailed examples illustrating the differences between PES
and ZFS.

Power Edge Set(PES)
Input: a graph G, some k ∈ N
Question: Is pes(G) ≤ k?

Zero Forcing Set(ZFS)
Input: a graph G, some k ∈ N
Question: Is zfs(G) ≤ k?

Previous work. Assigning a minimum number of PMUs to monitor the whole
network is known to be NP-hard in general for both PES and ZFS. For the
former, some complexity results and a lower bound on approximation of 1.12− ε
with ε > 0 have been shown by Toubaline et al. [23], who also present a linear-
time algorithm on trees by reduction to Path Cover. Poirion et al. [20] propose
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Fig. 1. PMU propagation on PES problem: before any PMU placement, all vertices
are white (a). A PMU on {b, c} induces c(b) = c(c) = 1 (black) by Rule R1 (b). By
applying Rule R2 on b, we obtain c(a) = 1 (c). Then Rule R2 on a induces c(d) = 1
(d), and Rule R2 on c or d induces c(e) = 1 (e). A second PMU is required to obtain a
complete coloring. Placing a PMU on {e, f} gives us c(f) = 1 by Rule R1 (f). Finally,
Rule R2 on e induces c(g) = 1 (g). The set of edges where PMUs have been placed is
S = {bc, ef}, giving (b, c, a, d, e, f, g) as a valid order for G.

Fig. 2. PMU propagation on ZFS problem: before any PMU placement, all vertices are
white (a). Placing one PMU on {b} allows to monitor it. (b). Placing a second PMU on
{c} allows to monitor it (c), and now we can apply Rule R2 on b, to obtain c(a) = 1
(d). Then Rule R2 on a induces c(d) = 1 (e), and Rule R2 on c or d induces c(e) = 1
(f). A third PMU is required to obtain a complete coloring. For example, placing a
PMU on f (g) allows to apply Rule R2 on e to obtain c(g) = 1 (h).
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a linear program with binary variables indexed by the necessary iterations using
propagation rules. Recently, inapproximability results have been proposed on
planar or bipartite graphs [5]. In this work, we develop hardness results on
complexity and approximation for special cases of Power Edge Set and Zero
Forcing Set.

Preliminaries. In the following, we will consider a total order σ of vertices of a
graph G as a sequence (v1, v2, . . .) such that vi occurs before vj in the sequence
if and only if vi <σ vj .

Definition 1 (valid order). Let G = (V,E) be a graph, let S ⊆ E (resp.
S ⊆ V ), and let σ be a total order of V , such that for each v ∈ V (G), there is
an edge incident to v in S (resp. v ∈ S) or there is a vertex u ∈ NG(v) which
verifies NG[u] ≤σ v. Then, <σ is called valid for S.

Given a graph G = (V,E), any set S ⊆ V (or S ⊆ E) such that repeated
application of Rule R1 (ZFS) (or Rule R1 (PES)) and Rule R2 leads to G
being completely monitored is called a zero forcing set (or power edge set). Using
Definition 1, we can formally define the propagation process in G. For instance,
in Fig. 1, a valid order for S = {bc, ef} is (b, c, a, d, e, f, g).

Observation 1. Let G = (V,E) be a graph and let S ⊆ E (resp. S ⊆ V ). Then,
S is a power edge set (res. a zero forcing set) if and only if there is a valid order
σ on G, with respect to S.

Note that, for a graph G = (V,E), any set S ⊆ E is a power edge set if and only
if

⋃
e∈S e is a zero forcing set for G. It is therefore a natural and unambiguous

to also call such an edge set zero forcing set.
Finally, we call a vertex v propagating to x ∈ NG(v) if c(x) = 0 and for all

y ∈ NG[v] \ {x}, we have c(y) = 1. Note that each maximal clique of G can
contain at most one propagating vertex.

Lemma 1. Let G = (V,E) be a graph, let S be a zero forcing set of G, and let
C := {C1, . . . , Cc} be a set of maximal cliques in G covering E. Then |V \S|≤ c.

Proof. Let σ be a valid order for S. We show that each Ci contains at most
one edge uv such that v /∈ S and NG[u] ≤σ v. Since C covers E, this implies
|V \ S|≤ |C|= c. Let C ∈ C and let C contain an edge uv such that NG[u] ≤σ v
and v /∈ S. Then, C ⊆ NG[u], implying C ≤σ v. Thus, v is the last vertex of C
with respect to σ and this vertex is unique. ��

Contribution. The next section is devoted to the NP-completeness for cubic
graph for Power Edge Set. We show that Power Edge Set and Zero
Forcing Set are W[2]-hard parameterized by the size of the solution in Sect. 3.
Section 4 is mainly dedicated to inapproximability and we show that there is an
n
2 -approximation for Power Edge Set. In the last section, we propose a linear
polynomial-time algorithm on proper interval graph for Zero Forcing Set.
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2 Computational Results

Most results presented in this section rely on reductions from graph problems
using gadgets for vertices or edges of the original instance. We model the prop-
agation process using the notion of valid order with respect to the solution set,
whatever the nature of it: set of edges for PES, of vertices for ZFS.

We present new lower bounds for Power Edge Set that hold even in the
very restricted case that G is cubic (i.e. all vertices in G have degree three).
Previous results show that the problem is NP-complete even if G is a subgraph
of the grid with bounded degree at most three [5]. In this paper, we show the
problem remains NP-complete if G is cubic and planar. The proof is done by
reduction from Vertex Cover (see below) on 3-regular, planar graphs, which
is NP-complete [11] but admits a PTAS [1], and a 3/2-approximation [2].

3-regular planar Vertex Cover (3RPVC).
Input: a 3-regular planar graph G = (V,E), some k ∈ N .
Question: Is there a size-k set S ⊆ V covering E, i.e. ∀e∈E e ∩ S 
= ∅?

Construction 1. For a given cubic planar graph G = (V,E) with n vertices,
we construct a graph G′ as follows:

– For each v ∈ V , construct Hv (see Fig. 3).
– If x is adjacent to y in G, we add exactly one of the edge between x0, x1 or

x2 and y0, y1 or y2 to connect Hx and Hy

Fig. 3. The gadget Hv for a vertex v.

The graph G′ is clearly cubic and planar and Construction 1 is applied in poly-
nomial time. The construction is linear in n and k.

Lemma 2. The gadget Hv needs at least one PMU to be fully colored: if x1, y2
and z0 are propagating respectively to v1, v2 and v0, then one PMU is sufficient;
otherwise two PMUs are needed to fully color Hv.
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Proof. First, if x1, y2 and z0 are propagating respectively to v1, v2 and v0,
then, after application of Rule R2, c(v0) = c(v1) = c(v2) = 1. Thus this
is the beginning of a valid order: (v0, v1, v2, v3, v5, v4, v6, v7, v12, v9, v10). There
is no more possible propagation, it is necessary to assign a new PMU. If
we place it on the edge v14v16, the remainder of a valid order for Hv is:
(v14, v16, v11, v8, v13, v15, v16).

Second, we show that Hv may be colored by two PMUs in every case. If
PMUs are assigned to the edges v11v13 and v15v16, we the following order is
valid: (v11, v13, v15, v16, v7, v8, v9, v14, v4, v6, v10, v3, v12, v3, v12, v1, v2, v5, v0).

Third, we show that even if x1 and z0 are propagating to respectively v1
and v0, and y2 is not, we need two PMUs to color Hv. The beginning of the
propagation is given by the following order: (v0, v1, v3, v5). There is no more
possible propagation, therefore we have to put one more PMU. As more than
two uncolored vertices remain, so we have to initiate propagation with this PMU.
So the potential edges are v6v12, v4v2, v6v9 or v10v12 (other edges won’t start a
propagation, and we need to color more than two vertices). By exhaustive search,
we find that it is impossible to color Hv with only one PMU on any one of these
edges. We use the same kind of argument if x1 and y2 or y2 and z0 propagate. ��
Theorem 1. Power Edge Set remains NP-complete on planar cubic graphs.

Proof. Let G′ be the graph obtained by using Construction 1 on G = (V,E), a
cubic planar graph. We show that G has a size-k vertex cover iff Power Edge
Set has a solution of size n + k on G′. Clearly, Power Edge Set is in NP.

“⇒”: With a size-k vertex cover S for G, we build a power edge set S′ for
G′:

S′ :=
⋃

v∈S

{v11v16, v13v15} ∪
⋃

v∈V \S

{v14v16}

Then, |S′|= n + k and, by Lemma 2, all vertices of G′ are colored by S′.
“⇐”: Suppose that G′ is colored with n + k PMUs. By Lemma 2, there is

at least one PMU on each gadget. Further, if a gadget Hv is colored with a
single PMU, then every Hx with x ∈ NG(v) is colored with two PMUs inside
(by Lemma 2). Then, {v |Hv admits two PMUs} is a vertex cover for G. ��

3 Parameterized Hardness

In what follows, we introduce parameterized versions of our problems and recall
the notion of parameterized reduction. Using known results for Dominating
Set, we deduce hardness results for Power Edge Set and Zero Forcing
Set. First, we recall the parameterized Dominating Set problem. We obtain
hardness results for a restricted version of our problems, when a precoloring
exists on a particular set of vertices.
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Dominating Set (DS)
Input: a graph G = (V,E), some k ∈ IN∗

Question: Does G have a size-k dominating set?
Parameter: k

Precolored Zero Forcing Set/Precolored Power Edge Set
Input: a graph G = (V,E), a set B ⊆ V , some c : V → {0, 1} with c−1(1) =
B, and an integer k
Question: Is there a set S′ ⊆ V (resp. S′ ⊆ E) of size k such that B ∪ S′

(resp. B ∪ ⋃
e∈S′ e) is a zero forcing set for G?

Parameter: k

We prove the hardness using a parameterized reduction from Dominating Set.
First, we introduce a gadget which allows to propagate a coloration, but only in
one direction. It is called “check-valve”.

Definition 2 (Check-valve). A check-valve Cx,y from x to y is a graph G =
(V,E), with V = {x, y, x1, x2, x3, x4} and E = {xx1, xx2, x1x3, x1x4, x2x4,
x3y, x4y}, with a coloring function c : V → IN, such that c(x) = c(x1) = 1 and
all other vertices are colored by 0. A check-valve Cx,y is illustrated on Fig. 4.

Fig. 4. The check-valve Cx,y

Observation 2. Let Cx,y be a check-valve inserted between two vertices a and
b, depicted by Fig. 4. Then:

1. If c(a) = 1 then c(b) = 1 after exhaustive application of Rule R2.
2. If c(b) = 1, and c(a) = 0, then c(a) is still 0 after exhaustive application of

Rule R2, and it is necessary to add a PMU in order to have c(a) = 1.

Construction 2. Let xy be a edge such that c(x) = 1 and c(y) = 0, we construct
the gadget Cxy: we add vertices x1, x2, x3 and x4 and we add edges xx1, x1x2,
x3y, yx4, x4x2 et x2x. Notice that xy is deleted.

Construction 3. For given G = (V,E), construct G′ = (V ′, E′) as follows:

1. For all x ∈ V , build Jx depicted in Fig. 5, containing a core graph ({Ex,
Rx, Vx, x1, x2, x3, x4}, {Exx3, Exx4, ExVx, x1x3, x2x4, Rxx1, Rxx2, RxVx})
with precolored vertices Vx, x3 and x4, and outgoing check-valves: dG(x) many
Cx1

vi
,x2

vi
connected to Ex, and n many Cx1

si
,x2

si
connected to Rx.
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Fig. 5. The gadget Jx for a vertex x. Note that for sake of clarity, some external vertices
have been duplicated. Indeed, {Rv1 , . . . Rvt}, where v1, . . . , vt are neighbors of x, is
included in {Rs1 , . . . , Rsn}.

2. For all vi ∈ N(x), add edges x2
vi

Rvi
with x2

vi
∈ Jx and Rvi

∈ Jvi
.

3. For all si ∈ V , add edges x2
si

Vs1 with x2
si

∈ Jx and Vs1 ∈ Jsi
.

Lemma 3. For all x ∈ V , if c(Ex) = 1 then, after exhaustive application of
Rule R2, c(Jx) = 1 and c(Rv) = 1 for all v ∈ N(x).

Proof. If V = {s1, . . . , sn} and N(x) = {v1, . . . , vt}, then the following sequence
is a valid order: (Ex, x1, x2, Rx, x2

s1
, . . . , x2

sn
, x2

v1
, . . . , x2

vt
, Rv1 , . . . Rvt

). ��
Lemma 4. Let c(Rx) = 1 for all x ∈ V . Then, after exhaustive application of
Rule R2, G′ becomes fully colored.

Proof. Clearly, all vertices in N(Vx)\{Ex} are colored by Rx for all x ∈ V . Then,
Ex is colored by Vx. By Lemma 3, c(Ex) = 1 leads to Jx being fully colored. As
V ′ =

⋃
z∈V V (Jz), G′ becomes fully colored. ��

Theorem 2. Precolored Zero Forcing Set and Precolored Power
Edge Set are W [2]-hard wrt. the solution size k.

Proof. Let G = (V,E) be a graph and let G′ the product of Construction 3 on
G. We show that G has a size-k dominating set if and only if G′ has a size-k
zero forcing set (power edge set).

“⇒”: Let S be a size-k dominating set for G. A size-k zero forcing set S′ for
G′ is obtained as follows: for all x ∈ S, we place a PMU on Ex, (resp. Exx4).
By Lemmas 3 and 4, G′ is fully colored after applying Rule R2 exhaustively.

“⇐”: Let S′ be a zero forcing set of size k for G′. Let S be the set of vertices
x ∈ V (G) such that Jx has at least one vertex, resp. one edge, in S′ (for each
x, y ∈ V , if there is a PMU on the edge ExRy or RxVy it counts as an edge of
Jx). Suppose that S is not a dominating set for G. So, there is some y ∈ V such
that no u ∈ V (Jy) is in S′ and no v ∈ V (Jx) is in S′ for any x ∈ N(y). (for PES,
there is some y ∈ V such that no u1u2 ∈ E(Jy) is in S′ and no v1v2 ∈ E(Jx) is
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in S′ for any x ∈ N(y)). Since Jy is fully colored, this coloration comes from a
vertex (resp. an edge) outside of Jy. Four cases have to be considered:

Case 1: There is some vi ∈ N(y) such that c(y2
vi

) = 1 for y2
vi

∈ Jy and this
coloration comes from Rvi

∈ Jvi
. By Observation 2, we have c(Ey) = 1 only if

at least one PMU is assigned on the check-valve.
Case 2: There is some si ∈ V such that c(y2

si
) = 1,∈ Jy, and this coloration

comes from Vsi
∈ Jsi

. By Observation 2, for Ry to be colored, at least one PMU
has to be assigned to the check-valve.

Case 3: Vy be a propagator. But then, S′ is not zero forcing since c(Ey) = 0
and c(Ry) = 0 and they are in N(y).

Case 4: There is some vi ∈ N(y) such that a coloration happens on Ry ∈ Jy

from Evi
∈ Jvi

. Then, either there is some t ∈ Jvi
∩ S and so S is a dominating

set, or no PMU is assigned on Jvi
, but we already know that Evi

cannot be
colored (see Case 1). Consequently, if c(Evi

) = 1 then c(w) = 1 for some w ∈ Jvi

contradicting S not being a dominating set.
Thus S is a dominating set of G. Further, Construction 3 can be carried out

in polynomial time and |S|= |S′|, yielding the desired result. ��

4 Non-approximation

In this section, we will show that the reductions presented in the proofs of
Theorems 1 and 2 are L-reductions.

But above all, it is clear it exists a n
2 -approximation; it is sufficient to put

one PMU incident to each vertex (at most n), and the lower bound for optimal
solution is at least two PMUs (in cubic graph) so we obtain a n

2 -approximation.

Theorem 3. Power Edge Set is n
2 -approximable

For the first, by construction, we have OPT (I ′) = OPT (I) + n. Let S be
a solution to I, suppose that n > 3|S|. By the pigeon hole principle, there is a
vertex which cover at least four edges, which is impossible because the degree of
each vertex is three, so n ≤ 3|S|. Thus OPT (I ′) ≤ 4OPT (I).

Moreover, by construction, we have

val(g(S′) ≤ val(S′) − n ≤ val(S′) − OPT (I ′) + OPT (I)

Thus, we construct an L-reduction with α1 = 4 and α2 = 1.
Assuming P 
= NP, Vertex Cover is hard to approximate to a factor 1.36

[6] and [9], thus yielding the desired result:

|S′| ≥ |g(S′)|+OPT (I ′) − OPT (I)
≥ 1.36OPT (I) + OPT (I ′) − OPT (I)
≥ 1.09OPT (I ′) ��

Corollary 1. Under P 
= NP, Power Edge Set on cubic graph cannot be
approximated to within a factor better than 1.09.
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Assuming, Vertex Cover is hard to approximate to a factor 2− ε [16] and
[9], thus yielding the desired result:

|S′| ≥ |g(S′)|+OPT (I ′) − OPT (I)
≥ 2 − ε OPT (I) + OPT (I ′) − OPT (I)
≥ 5/4 − ε OPT (I ′) ��

Corollary 2. Under UGC, Power Edge Set on cubic graph cannot be approx-
imated to within a factor better than 5/4.

Previous results mainly show that Power Edge Set do not admit a PTAS
algorithm, even on cubic graphs.

For the second, we got OPT (I) = OPT (I ′), so clearly it is a S-reduction.
Dominating Set do not admit a polynomial time approximation algorithm with
ratio O(log n) ([18]), so Precolored Power Edge Set and Precolored
Zero Forcing Set do not too.

Corollary 3. Under NP 
= DTIME(npolylogn), Precolored Power Edge
Set and Precolored Zero Forcing Set do not admit a polynomial time
approximation algorithm with ratio O(log n).

Fig. 6. An interval graph (a), with its interval representation (b), a perfect path decom-
position of this graph (c) and its bag partition according to Definition 4 (d).

5 ZFS on Proper Interval Graphs

Preliminaries. A graph G is an interval graph if it is the intersection graph of
a family of intervals on the real line. Each interval is represented by a vertex of
G and an intersection between two intervals is represented by an edge between
the corresponding vertices (see Fig. 6). G is called proper interval if it has an
interval representation in which no interval is properly contained in another.

In the following, we use perfect path decompositions to solve Power Edge
Set on proper interval graphs.
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Definition 3. A path decomposition D of a graph G = (V,E) is a sequence
(Xi)i=1...� of subsets of V (called bags), verifying the following properties:

(a) for each xy ∈ E, there is some Xi with x, y ∈ Xi (each edge is in a bag),
(b) for i ≤ j ≤ k, Xi ∩ Xk ⊆ Xj (bags containing any v ∈ V are consecutive).

D is called perfect if the number of bags and their sizes are minimal under (a)
and (b). The pathwidth of D is the size of the largest Xi minus one.

Lemma 5. If G is connected, then Xi ∩ Xi−1 
= ∅ for all i > 1.

Proof. Towards a contradiction, assume that Xi ∩ Xi−1 = ∅. Then, by Defi-
nition 3(b), A :=

⋃
1≤k≤i−1 Xk and B :=

⋃
i≤l Xl are disjoint. Since G is con-

nected, there is an edge xy between A and B, but no bag contains both x and
y, contradicting Definition 3(a). ��
Lemma 6. Let G be an interval graph. A perfect path decomposition D of G
can be computed in linear time and

each bag of D is a maximal clique in G.

Proof. Being an interval graph, G admits a linear order of its maximal cliques
such that, for each vertex v, all maximal cliques containing v are consecutive [10]
and this order can be computed in O(n + m) time [14]. Such a “clique path”
naturally corresponds to a perfect path decomposition and we know that vertices
of each bags induce maximal cliques. In a clique path, the size and the number
of bags are minimal. ��

Now we can present our algorithm, using previous results:

The Algorithm. In the following, G is a connected proper interval graph and
D = (X1, ...,X�) is a perfect path decomposition of G. We show that it is possible
to apply Rule R2 once per maximal clique Xi in interval graphs. The central
concept is a partition of the bags of D into four sets.

Definition 4 (Bag partition, see Fig. 6). Let Xi be a bag
in a perfect path decomposition of an interval graph.

– IO (Inside Only) is the set Xi \ (Xi−1 ∪ Xi+1).
– LO (Left Only) is the set Xi ∩ Xi−1 \ Xi+1.
– RO (Right Only) is the set Xi ∩ Xi+1 \ Xi−1.
– LR (Left Right), contains all remaining vertices of Xi.

ROLO

LR

IO

Note that RO(Xi) and RO(Xj) are disjoint for i 
= j. Further, since G is proper
interval, RO(Xi) 
= ∅ for all i < �. Our algorithm will simply choose any vertex
of RO(Xi) ∪ IO(Xi) for all i. This can clearly be done in linear time and we
show that it is correct and optimal.

Lemma 7. Let G be a connected interval graph and let D = (X1, . . . , X�) be a
perfect path decomposition of G. Let S be a set intersecting each RO(Xi) for all
1 ≤ i < � in exactly one vertex and intersecting IO(X�) in exactly one vertex.
Then, S := V \ S is an optimal zero forcing set for G.
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Proof. For each i, let xi be the ith vertex of S, that is, S ∩ (RO(Xi)∪IO(Xi)) =
{xi} for each Xi ∈ D. We show that the order σ consisting of S in any order
followed by (x1, . . . , x�) is valid for S. To this end, let 1 ≤ j < �. Note that
IO(Xj) ∪ LO(Xj) = ((Xj \ Xj+1) ∩ Xj−1) ∪ ((Xj \ Xj+1) \ Xj+1) = Xj \ Xj+1.
Thus, there is some u ∈ IO(Xj)∪LO(Xj) as otherwise, Xj ⊆ Xj+1 contradicting
D being perfect. Towards a contradiction, assume NG[u] 
≤σ xj , that is, there
is some v ∈ NG[u] with xj <σ v. By construction of σ, there is a k > j such
that v = xk. By construction of S, we have xk ∈ IO(Xk) ∪ RO(Xk), implying
xk /∈ Xk−1 by definition of RO and IO. Further, since uxk is an edge of G, there
is a bag Xi containing both u and xk and, since u ∈ IO(Xj)∪LO(Xj) we know
i ≤ j. But then, xk occurs in Xi, not in Xk−1 but again in Xk, contradicting
D being perfect. It remains to treat x�, but since x� is the last vertex of σ,
NG[u] ≤σ x� for all u ∈ NG(x�).

Finally, optimality of S is implied by Lemma 1 as |S|= |D|. ��
Theorem 4. Zero Forcing Set is solvable in O(n+m) time on proper inter-
val graphs.

Proof. We know that our algorithm is exact, compute the path decomposition
PD can done in linear time (Lemma 6) and partitioning its vertices is easy. So
there is a polynomial time algorithm for Zero Forcing Set in proper interval
graph. ��

6 Conclusion and Perspectives

In this article, we investigated Power Edge Set and Zero Forcing Set from
the point of view of computational complexity. We obtained a series of negative
results, refining the previous hardness results and excluding certain exact algo-
rithms. On the positive side, we give a linear-time algorithm in case the input is
a proper interval graph and a naive approximation algorithm. There is a big gap
between positive and negative result in approximation so further research will
be focused on developing efficient polynomial-time approximation algorithms, as
well as considering more special cases and structural parameterizations.
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Abstract. A connected component of a vertex-coloured graph is said
to be colourful if all its vertices have different colours, and a graph is
colourful if all its connected components are colourful. Given a vertex-
coloured graph, the Colourful Components problem asks whether
there exist at most p edges whose removal makes the graph colourful,
and the Colourful Partition problem asks whether there exists a
partition of the vertex set with at most p parts such that each part
induces a colourful component. We study the problems on k-caterpillars
(caterpillars with hairs of length at most k) and explore the bound-
ary between polynomial and NP-complete cases. It is known that the
problems are NP-complete on 2-caterpillars with unbounded maximum
degree. We prove that both problems remain NP-complete on binary 4-
caterpillars and on ternary 3-caterpillars. This answers an open question
regarding the complexity of the problems on trees with maximum degree
at most 5. On the positive side, we give a linear time algorithm for 1-
caterpillars with unbounded degree, even if the backbone is a cycle, which
outperforms the previous best complexity for paths and widens the class
of graphs. Finally, we answer an open question regarding the complex-
ity of Colourful Components on graphs with maximum degree at
most 5. We show that the problem is NP-complete on 5-coloured planar
graphs with maximum degree 4, and on 12-coloured planar graphs with
maximum degree 3. Since the problem can be solved in polynomial-time
on graphs with maximum degree 2, the results are the best possible with
regard to the maximum degree.

Keywords: Colorful component · Caterpillar · Binary tree ·
Planar subcubic graph

1 Introduction

A coloured graph is a graph whose vertices are (not necessarily properly)
coloured. A connected component of a coloured graph is a colourful component
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if all its vertices have different colours. A graph is said to be colourful if all its
connected components are colourful.

In this paper we focus on two closely related problems where a coloured graph
and a positive integer p are given as inputs: the Colourful Components
problem asks if there exist at most p edges whose removal makes the graph
colourful; the Colourful Partition problem is to decide if there exists a
partition of the vertex set with at most p parts such that each part induces a
colourful component in the graph.

One key problem in comparative genomics is to partition a set of genes into
orthologous genes, which are sets of genes in different species that have evolved
through speciation events only, i.e. originated by vertical descent from a single
gene in the last common ancestor. The problem has been modelled as a graph
problem where orthologous genes translate into colourful components in the
graph [1,15]. The vertices of the graph represent the genes, and a colour is
given to each vertex to symbolise the specie the corresponding gene belongs to.
An edge between two vertices is present in the graph if the two corresponding
genes are (sufficiently) similar. The quality of a partition of a set of genes into
orthologous genes can be expressed in different ways. Minimising the number
of similar genes in different subsets of the partition is a well studied variant
[4,5,8,13,15], and it corresponds to minimising the number of edges between the
colourful components (as in Colourful Components). Alternatively, one can
ask for a partition of minimum size, i.e which contains the minimum number of
orthologous genes, or equivalently the minimum number of colourful components
[1,5,6] (as in Colourful Partition). Another variant, not studied in this
paper, considers the objective function that maximises the number of edges in
the transitive closure [1,6,13].

Now, we give the formal definitions of the problems considered herein.
Colourful Components

Input: A vertex-coloured graph G = (V,E), a positive integer p.
Question: Are there at most p edges in E whose removal makes G colourful?

Colourful Partition

Input: A vertex-coloured graph G = (V,E), a positive integer p.
Question: Is there a partition of V with at most p parts s.t. each part induces

a colourful component in G?

It is interesting to notice the similarities between Colourful Components
and the Multicut [3,12] and Multi-Multiway Cut [2] problems. In the Mul-
ticut problem, a graph and a set of pairs of vertices are given and the goal is
to minimise the number of edges to remove in order to disconnect each pair of
vertices. In the Multi-Multiway Cut problem, a graph and sets of vertices are
given and the goal is to minimise the number of edges to remove in order to dis-
connect all paths between vertices from the same vertex set. Thus, Colourful
Components is a special case where the sets of vertices form a partition.

Both Colourful Components and Colourful Partition problems can
be compared to the Graph Motif problem [7]. This problem takes a coloured
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graph and a multiset of colours M (the motif) as input, and the goal is to
determine whether there exists a connected subgraph S such that the multiset
of colours used by the vertices in S corresponds exactly to M . If M is a set
(where each colour appears at most once), then M is said to be colourful.

In this paper, all graphs are simple. We assume that a coloured graph G =
(V,E) is always associated with a colouring function c from V to a set of colours,
hence for each vertex u ∈ V , c(u) is the colour of the vertex u. The colour
multiplicity of G corresponds to the maximum number of occurrence of any
colour in the graph. If G contains at most � colours we say that G is an �-
coloured graph. To simplify the notations, we may say that a vertex u belongs
to a path P in G if there exists an edge e ∈ P with u ∈ e. A path P in G between
two vertices u and v is called a bad path if c(u) = c(v) = γ and u, v are the only
two vertices of colour γ in P . Hence, a connected component is colourful if and
only if it does not contain a bad path. Lastly, given a set of edges S ⊆ E, we
denote by G−S the graph (V,E \S), and for a vertex u ∈ V , N [u] is the closed
neighbourhood of u.

A k-caterpillar, also commonly called a caterpillar with hairs of length at most
k [10], is a tree in which all the vertices are within distance k of a central path,
called the backbone. Similarly, we define a cyclic k-caterpillar as a k-caterpillar
whose backbone is a chordless cycle. Note that 2-caterpillars are also known as
lobster graphs.

Observe that, on a tree, there is a solution to Colourful Components
with p edges if and only if there is a solution to Colourful Partition with
p + 1 parts. However, this is not the case on general graphs [5]. Both prob-
lems are known to be NP-complete on subdivided stars [6], trees of diameter
at most 4 [4], and trees with maximum degree 6 [5]. Trees of diameter at most
4 are in fact a subclass of 2-caterpillars, so both problems are NP-complete on
2-caterpillars when the maximum degree is unbounded. In Sect. 2.1, we prove
that Colourful Components and Colourful Partition are NP-complete
on binary 4-caterpillars and on ternary 3-caterpillar, hence with the maximum
degree at most 3 or 4. This answers an open question, proposed in [5], regard-
ing the complexity of the problems on trees with maximum degree at most
5. Nonetheless, we propose a linear time algorithm for Colourful Compo-
nents and Colourful Partition on 1-caterpillars and cyclic 1-caterpillars
with unbounded degree in Sect. 2.2. This result improves the complexity of the
known quadratic-time algorithm for paths [6] and widens the class of graphs.
We, therefore, obtain a complete complexity dichotomy for the problems on
k-caterpillars with regard to k and the maximum degree in the graph.

We also consider the complexity of Colourful Components in planar
graphs with small degree. It is known that the problem is NP-complete on 3-
coloured graphs with maximum degree 6 [4], while Colourful Partition is
NP-complete on 3-coloured 2-connected planar graphs with maximum degree 3
[5]. However, it was an open question whether Colourful Components is NP-
complete on �-coloured graphs with maximum degree at most 5. In Sect. 3, we
answer that question and show that Colourful Components is NP-complete
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on 5-coloured planar graphs with maximum degree 4 and on 12-coloured planar
graphs with maximum degree 3. As Colourful Components is polynomial-
time solvable on graphs with maximum degree 2, our result is the best possible
with regard to the maximum degree.

2 Complexity on k-caterpillars

In this section, we focus on the complexity of Colourful Components and
Colourful Partition on k-caterpillars, depending on the value of k and the
maximum degree of the graphs.

2.1 NP-completeness

First, we show that Colourful Components and Colourful Partition
are NP-complete on binary 4-caterpillars and ternary 3-caterpillars. We recall
that a binary tree (resp. ternary) is a rooted tree in which each vertex has no
more than two children (resp. three children). We propose a reduction from 3-
SAT with at most four occurrence of each variable, known as 3, 4-SAT, which
is proved NP-complete in [14].

Construction 1. Consider an instance φ of 3, 4-SAT, that is, a set of m clauses
C1, C2, . . . , Cm on n variables x1, x2, . . . , xn, where each clause contains exactly
three literals and where each variable appears at most four times.

For each variable xi, we define a variable gadget. Firstly, we create two vertices
labelled xi and x̄i, which are the roots of two binary trees Txi

and Tx̄i
, respec-

tively. If a clause Cj contains the literal xi, then we create a vertex labelled
xi,j in Txi

. Similarly, if a clause Cj contains the literal x̄i, then there we create
a vertex labelled x̄i,j in Tx̄i

. All created vertices are connected in such a way
that Txi

and Tx̄i
are binary trees of depth at most 2. We assume that all the

vertices in the trees, except for xi and x̄i, correspond to one literal in a clause.
Finally, we connect xi and x̄i to a same new vertex rxi

. Notice that the gadget
is a binary tree of depth at most 3 (see Fig. 1).

For each clause Cj , we define a clause gadget. Let �1, �2 and �3 be the literals
in Cj . We create four vertices yj , y′

j , zj and z′
j , three vertices labelled �1,j , �2,j

and �3,j representing the literals in Cj , and one extra vertex rCj
. Then, we add

the edges {�1,j , yj}, {�2,j , y
′
j}, {�3,j , z

′
j}, {yj , zj}, {y′

j , zj}, and the edges {zj , rCj
}

and {z′
j , rCj

}. Notice that the gadget is a binary tree of depth 3 (see Fig. 1).
Now, we describe two slightly different ways to obtain a tree T containing

all the variable and clause gadgets.

– To get T as a binary 4-caterpillar, create a central path with n + m new
vertices and connect each of the n + m vertices rxi

and rCj
to a different

vertex of the central path.
– To get T as a ternary 3-caterpillar, connect the n + m vertices rxi

and rCj

together (in any order) to create a central path.
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In both cases, the central path corresponds to the backbone of T . We set the
root r of T such that it belongs to the backbone of T and has minimum degree,
hence two or three children, if T is a binary or ternary caterpillar, respectively.

Finally, we assign a colour to each vertex in T . For each gadget representing
a variable xi, let c(xi) = c(x̄i) be a new colour. Also, for each vertex x̃i,j ∈
{xi,j , x̄i,j}, let c(x̃i,j) be a new colour. Then, for each gadget representing a clause
Cj , set the colour of each leaf �k,j such that if �k,j = xi, then c(�k,j) := c(xi,j),
but if �k,j = x̄i, then c(�k,j) := c(x̄i,j). Furthermore, let c(yj) = c(y′

j) and
c(zj) = c(z′

j) be two new colours. Lastly, all the vertices in T which do not belong
to any gadget are given new colours. Notice that there are no such vertices if
T is a 3-caterpillar. Obviously, in both cases, T is a coloured caterpillar with
colour-multiplicity 2.

Note that Construction 1 can be done in polynomial time.

Fig. 1. Examples of gadgets used in Construction 1. On the left, the variable gadget
of x1, appearing as a positive literal in C2, C4 and C5, and as a negative literal in C3.
On the right, the clause gadget of C2.

Theorem 1. Colourful Components and Colourful Partition are NP-
complete on coloured ternary 3-caterpillars with colour-multiplicity 2 and on
coloured binary 4-caterpillars with colour-multiplicity 2.

Proof. Obviously, the problem is in NP. Let φ be an instance of 3, 4-SAT with
m clauses and n variables. We transform φ into a coloured tree T as described
in Construction 1 such that T has colour multiplicity 2 and is a coloured binary
4-caterpillar or a coloured ternary 3-caterpillar. We claim that there is a solution
to 3, 4-SAT on φ if an only if there is a set of exactly n + 2m edges in T whose
removal makes T colourful.

Let β be a solution to 3, 4-SAT on φ. We define the set of edges S as follows:

– For each variable xi, the set S contains the edge {rxi
, xi} if xi = True in β,

or {rxi
, x̄i} if xi = False in β.
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– For each clause Cj , the set S contains two edges: one from the path between
yj and y′

j , and one from the path between zj and z′
j . Moreover, in G−S, the

leaf �k,j which belongs to the same connected component as the vertex in rCj

must correspond to (one of) the literal(s) satisfying the clause Cj in β.

Clearly, the set S contains n + 2m edges. We denote by F the forest T − S,
and by T ′ the connected component in F containing the root r. Obviously, two
vertices of the same colour from a same variable gadget do not both belong to
a same connected component of F , and the same is true for a clause gadget.
Also, note that two vertices of different variable gadgets do not have the same
colour, and similarly for vertices of different clause gadgets. Lastly, observe that
two vertices of two different gadgets belong to the same connected component
if and only if they are connected through the backbone, which is in T ′. Thus,
if there exist two vertices of the same colour in a same connected component of
F , one must be from a variable gadget and the other one from a clause gadget,
and they both necessarily belong to T ′. Without loss of generality, consider xi,j

from the variable gadget of xi and �k,j from the clause gadget of Cj , such that
xi,j , �k,j ∈ T ′. To prove a contradiction, assume that c(xi,j) = c(�k,j). Note that
the literal represented by �k,j is xi,j , otherwise the two vertices would not have
the same colour. Since �k,j is in T ′, it is connected to the vertex rCj

of the clause
gadget, hence �k,j satisfies the clause Cj . Therefore, xi satisfies the clause Cj ,
and the variable xi = True in β. By construction, this implies that the edge
{rxi

, xi} belongs to S, and therefore that the subtree Txi
, containing xi,j , is not

part of T ′, which is a contradiction.
Let S be a solution to Colourful Components on T such that |S| =

n + 2m. Observe that one needs to remove at least one edge per variable gadget
to put the vertices xi and x̄i into different connected components, and at least
two edges per clause gadget, the first one to disconnect yj and y′

j and the second
one to disconnect zj and z′

j . Since |S| = n + 2m, S must only contain n edges
from variable gadgets and 2m edges from clause gadgets. We denote by T ′ the
connected component of T−S containing the root r. Notice that, for each variable
gadget, either xi or x̄i belongs to T ′, but not both. Also, for each clause gadget,
exactly one leaf �k,j belongs to T ′. We construct the solution β to 3, 4-SAT on
φ such that, for each variable gadget, if {rxi

, xi} ∈ S, then we set xi := True in
β, and if {rxi

, x̄i} ∈ S, then we set xi := False in β. To prove a contradiction,
assume that there is a clause Cj which is not satisfied in φ with regard to β.
Consider the leaf �k,j ∈ T ′ from the gadget clause of Cj , and assume without loss
of generality that �k,j = xi. If Cj is not satisfied, then the variable xi := False
in β. This means that S contains the edge {rxi

, x̄i}, but not the edge {rxi
, xi},

and thus xi,j ∈ T ′. However, since c(xi,j) = c(�k,j), then S is not a solution for
T , a contradiction. ��

2.2 Polynomiality

Now, we show that Colourful Components and Colourful Partition can
be solved in linear time on 1-caterpillars with unbounded maximum degree, even
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if the backbone is a chordless cycle. To simplify the notations, we use the term
general caterpillars to denote both 1-caterpillars and cyclic 1-caterpillars.

We consider the vertices in the backbone as internal vertices of stars, hence
vertices of degree 1 are the leaves of a star whose internal vertex belongs to the
backbone. We assume that the edges and the vertices in the backbone are either
linearly of cyclically ordered, if the backbone is a path or a cycle, respectively.

Remark 1. Consider a coloured general caterpillar. If two vertices of a star have
the same colour, then at least one of these vertices is a leaf and it must belong
to a different colourful component than the internal vertex of the star. Hence,
a general caterpillar can be preprocessed in such a way that, for each such leaf,
we add its adjacent edge to a set Sp. This procedure is repeated until there is
no such leaf in G − Sp. At the end of the preprocessing, each star in G − Sp is a
colourful star, that is, only contains vertices with different colours.

If a coloured general caterpillar is not colourful, then it contains either one or
at least two colours that appear more than once. We deal with these two cases
independently in the following lemmas.

Lemma 1. Colourful Components and Colourful Partition can be
solved in linear time in coloured general caterpillars where exactly one colour
appears at least twice.

Lemma 2. Let G be a coloured general caterpillar with only colourful stars such
that at least two colours appear at least twice in G. Then there exists an optimal
solution S of Colourful Components in G such that S ⊆ B, where B is the
backbone of G.

Let G be a coloured general caterpillar with backbone B and only colourful
stars. We say that a bad path P between two vertices of colour γ in G is a
colour-critical bad path if and only if there is no other bad path P ′ between two
vertices of colour γ such that P ′ ∩ B ⊆ P . Hence, two colour-critical bad paths
with endpoints of colour γ do not have any common edge in the backbone B.

Remark 2. Let G be a coloured general caterpillar with only colourful stars such
that at least two colours appear twice. We denote by B the backbone of G.
Lemma 2 guarantees that there exists an optimal solution S to Colourful
Components on G such that S ⊆ B. It is clear that if each colour-critical bad
path contains an edge in S and S ⊆ B, then S is a solution to Colourful
Components on G. Hence, there is an optimal solution to Colourful Com-
ponents that contains only edges in B that also belong to some colour-critical
bad path.

Now, the idea is to define a circular-arc graph H (an intersection graph of
a collection of arcs on the circle) based on the colour-critical bad paths of G.
A minimum clique cover Q of H, which is a partition of the vertex set into a
minimum number of cliques, can be obtained in linear time [9]. We show that Q
can be translated back into an optimal solution to Colourful Components
and Colourful Partition on G in linear time.
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Algorithm 1. From coloured general caterpillar to ordered pairs.
Input: G = (V, E), an �-coloured general caterpillar with only colourful stars

and backbone B.
Output: A, a multiset of ordered pairs of vertices.
// Initialisation

1 let U := {u ∈ e | e ∈ B} be an ordered set of vertices, w.r.t. the order on B;
2 let A be an empty multiset of ordered pairs of vertices;
3 let L be an array of length � initialised at NULL;
4 let proceed := True;
5 let u ∈ U such that, if U is linearly ordered, then u is minimum in U ;

// if U is cyclically ordered, any u ∈ U can be taken

6 let end := NULL;
// Main procedure

7 while proceed do // O(n)
8 foreach v ∈ {w ∈ N [u] | d(w) = 1 or w = u} do
9 if L[c(v)] = NULL then

10 end := u;

11 else if L[c(v)] �= v then
12 add (L[c(v)], u) to A;
13 if u = end then
14 proceed := False; // U is cyclically ordered

15 L[c(v)] := v;

16 if U is linearly ordered and u is maximum in U then
17 proceed := False;

18 u := v, such that v is the element after u in U , w.r.t. its order;

19 return A;

Lemma 3. Let G be a coloured general caterpillar with only colourful stars,
and A be the multiset of pairs returned by Algorithm1. Then there is a bijection
between the set of colour-critical bad paths in G and the multiset A.

Proof. Let B be the backbone of G = (V,E). A colour-critical bad path P from
a to b is detected in Algorithm 1 at Line 11, when b is found to have the same
colour γ as a (the last recorded vertex of colour γ). Let x be the internal vertex of
the star to which a belongs, and y for b, respectively. When b is considered in the
algorithm, the pair (L[c(b)], y) is added to A at Line 12, and since L[c(b)] = x
then (x, y) ∈ A. Thus, the arc with endpoints (x, y) ∈ A corresponds to the
colour-critical bad path P from a to b in G.

An ordered pair (x, y) in A refers to two vertices x and y in V that are
internal vertices of two stars. If such a pair exists, then there are two vertices a
and b with the same colour γ, such that a belongs to the same star as x and b
to the same star as y, and in the path P from a to b, with regard to the order
on B, there is no other vertex w with colour γ in a star whose internal vertex is
in P (since the last seen vertex of colour γ, before b, is L[c(b)] = a). Thus, the
path P is a colour-critical bad path and it corresponds to the pair (x, y) in A.��
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Lemma 4. Algorithm1 runs in linear time.

Proof. Let G be a coloured general caterpillar with only colourful stars and
backbone B, and let A be the multiset of ordered pairs obtained by Algorithm1
with input G.

In Algorithm 1, when a colour is detected for the first time at Line 9, the
internal vertex u of the star is stored in the variable end. If the backbone is a
chordless cycle, i.e. if G is a cyclic caterpillar, the second time that the vertex
end is considered in the main loop the algorithm sets the variable proceed to
false at Line 14. If the backbone is a path, i.e. if G is a caterpillar, the algorithm
considers each vertex exactly once and sets the variable proceed to false at Line
17. Thus, Algorithm 1 runs in linear time. ��
Theorem 2. Colourful Components and Colourful Partition can be
solved in linear time on coloured general caterpillars.

Proof. Let G = (V,E) be a coloured general caterpillar with backbone B. First,
we prove that a solution to Colourful Components on G can be found in lin-
ear time. We apply the preprocessing to G, as defined in Remark 1, and denote by
Sp the set of edges that have been removed. Hence, G−Sp contains only colour-
ful stars. If G − Sp is colourful, then Sp is an optimal solution to Colourful
Components. Otherwise, denote by G′ = (V ′, E′) the connected component of
G − Sp which contains the backbone B. If G′ contains exactly one colour that
appears more than once, then according to Lemma 1 Colourful Components
and Colourful Partition can be solved in linear time. Therefore, we assume
that G′ contains at least two colours that appear at least twice. Let A be the
multiset of ordered pairs obtained by Algorithm1 with input G′.

According to Lemma 4, A can be obtained in linear time. According to
Lemma 3, each ordered pair (x, y) in A corresponds to a colour-critical bad path
P from x to y in G. These paths can be seen as arcs on the circle, which represent
a circular-arc graph H = (X,F ). Let Q be a minimum clique cover of H obtained
in linear time [9], and S′ be an empty set of edges. Choose a clique Qi ∈ Q.
From our construction of H, each vertex u ∈ Qi corresponds to a colour-critical
bad path Pu in G. Let Di :=

⋂

u∈Qi
Pu, and notice that |Di ∩ B| > 0. Then,

choose an edge e ∈ Di ∩ B, and add e to S′. We claim that, once each clique
in Q has been processed, thus once |S′| = |Q|, the set S′ is an optimal solution
to Colourful Components on G. Notice that S′ can be computed in linear
time.

As stated before, each colour-critical bad path in G′ maps to an ordered pair
in A, which corresponds to a vertex of H. Hence, a clique Qi in H corresponds
to a set of colour-critical bad paths sharing a common subpath Di. The set S′

contains an edge in Di ∩B for each Qi ∈ Q, hence there is no colour-critical bad
path in G′−S′. Since S′ ⊂ B and each coloured-minimal bad paths have an edge
in S′, then following Remark 2 S′ is a solution to Colourful Components on
G′. Moreover, since Q is optimal, S′ is an optimal solution on G′. Let S := Sp∪S′,
and note that S is an optimal solution to Colourful Components on G.
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Since |E| ∈ O(|V |), we can detect each connected component of G − S in
linear time (for instance, with a breadth-first search). Thus, we can construct
the partition π of V such that each part corresponds to a connected component
of G−S in linear time. Obviously, π is a solution to Colourful Partition on
G. Since S is optimal, due to the structure of G, the partition π is optimal. ��

3 COLOURFUL COMPONENTS on Small-Degree Planar Graphs

In [4], the authors prove that Colourful Components is NP-complete even
when restricted to 3-coloured graphs with maximum degree 6. Using a similar
reduction from Planar 3-SAT, we show that the vertices of degree 6 can be
replaced with gadgets only containing vertices of degree 4, or 3, if we relax the
number of colours from 3 to 5, or 12, respectively.

An instance of Planar 3-SAT is a 3-CNF formula in which the bipartite
graph of variables and clauses is planar. Planar 3-SAT has been proved NP-
complete in [11].

Construction 2. Given an instance of Planar 3-SAT φ, that is a set of m
clauses C1, C2, . . . , Cm on n variables, we construct the graph G = (V,E) such
that:

– For each variable x in φ, let mx denotes the number of clauses in which
x appears. We construct a cycle of length 4mx in G with vertices Vx :=
{x1

j , x
2
j , x

3
j , x

4
j | x ∈ Cj} with an arbitrary fixed cyclic ordering of the clauses

containing x. The vertices are coloured alternatively with two colours co and
ce, that is, c(x1

j ) = c(x3
j ) = co and c(x2

j ) = c(x4
j ) = ce, for all j such that

x ∈ Cj .
– For each clause Cj containing three variables p, q and r, we construct a clause

gadget. We propose two types of gadgets:
• The gadget A4

j is made of a cycle of length 3, with vertices a1
j , a2

j and a3
j

such that each ai
j is given colour i, different from co and ce. We define

how the vertices from Vp are connected to A4
j . If the variable p appears

as a positive literal in Cj , connect the vertices p1j to a1
j and p2j to a2

j .
Otherwise, if p occurs as a negative literal, connect the vertices p2j to a1

j

and p3j to a2
j . Do the same for the variables q and r by connecting the

corresponding vertices in Vq to a2
j and a3

j , and the corresponding vertices
in Vr to a3

j and a1
j . Notice that the vertices in A4

j have degree 4.
• The gadget A3

j is made of a cycle of length 9 with vertices labelled
a1
j , . . . , a

9
j and an additional vertex a10

j connected to a2
j , a5

j and a8
j . We

set the colour i to each vertex ai
j , different from co and ce. We define how

the vertices from Vp are connected to A3
j . If the variable p appears as a

positive literal in Cj , connect the vertices p1j to a1
j and p2j to a3

j . Other-
wise, the variable p occurs as a negative literal, connect the vertices p2j to
a1
j and p3j to a3

j . Do the same for the variables q and r by connecting the
corresponding vertices in Vq to a4

j and a6
j , and the corresponding vertices

in Vr a7
j and a9

j . Notice that the vertices in A3
j have degree 3.
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See Fig. 2 for an example of the gadgets.

Since the bipartite graph of variables and clauses of φ is planar and each vertex
can be replaced by a clause or vertex gadget, with a correct cyclic ordering of
the clauses for each variable, the resulting graph G is planar.

Note that Construction 2 can be done in polynomial time.

Fig. 2. Two possible clause gadgets of a clause Cj := (p ∨ q̄ ∨ r). White vertices have
colour co, grey vertices have colour ce, and each ai

j is given colour i, different from co
and ce.

Theorem 3. Colourful Components is NP-complete on 5-coloured planar
graphs with maximum degree 4 and on 12-coloured planar graphs with maximum
degree 3.

4 Conclusion

This paper proposes of complete dichotomy of the computational complexity
of Colourful Components and Colourful Partition on k-caterpillars.
The NP-completeness of the problems on 2-caterpillars with unbounded degree
demonstrates the inherent complexity of the problems. We prove that both prob-
lems remain NP-complete on ternary 3-caterpillars and on binary 4-caterpillars,
where both the maximum degree and the hair length are bounded by small
constants. Nevertheless, our linear-time algorithm for both problems on general
1-caterpillars, with unbounded degree, generalises the class of paths and cycles,
and beats the complexity of the previous best known algorithm for paths. An
interesting question is to answer whether the problems remain NP-complete on
binary 3-caterpillars and on 2-caterpillars with bounded degree.

We also prove that Colourful Components is NP-complete on 5-coloured
planar graphs with maximum degree 4 and on 12-coloured planar graphs with
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maximum degree 3. A natural question is to ask whether the problem remains
NP-complete when the number of colours is decreased but the maximum degree
is 3 or 4.

Acknowledgements. The authors wish to thank Marthe Bonamy for suggesting these
problems, and Paul Ouvrard for our valuable discussions.
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Abstract. An irredundant set of a hypergraph G = (V, H) is a subset
S of its nodes such that removing any node from S decreases the num-
ber of hyperedges it intersects. The concept is deeply related to that of
dominating sets, as the minimal dominating sets of a graph correspond
exactly to the dominating sets which are also maximal irredundant sets.
In this paper we propose an FPT-delay algorithm for listing maximal
irredundant sets, whose delay is O(2dΔd+1n2), where d is the degener-
acy of the hypergraph and Δ the maximum node degree. As d ≤ Δ, we
immediately obtain an algorithm with delay O(2ΔΔΔ+1n2) that is FPT
for bounded-degree hypergraphs. This result opens a gap between known
bounds for this problem and those for listing minimal dominating sets
in these classes of hypergraphs, as the known running times used to be
the same, hinting at the idea that the latter may indeed be harder.

Keywords: Irredundant sets · Enumeration algorithms · FPT ·
Polynomial delay

1 Introduction

An enumeration algorithm is an algorithm that lists all the feasible solutions
of a given property, such as subsets of vertices satisfying a given property in
graphs. In contrast to optimisation or counting problems, where the size of the
output is polynomial in the size of the input, the size of the output of an enu-
meration problem can be exponential in the size of the input. For instance, any
algorithm listing the set of maximal independent sets in any n-vertex graph
may output a set of size 3n/3 as a graph may have such a number of maxi-
mal independent sets [18], and then should spend at least such an amount of
c© Springer Nature Switzerland AG 2019
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time. It is therefore important in analysing the time complexity of any enu-
meration algorithm to take into account the size of the output. If the time
complexity of an enumeration algorithm depends polynomially in the cumulated
sizes of the input and output, we call it an output-polynomial algorithm. The
existence of output-polynomial algorithms for several enumeration problems has
triggered the curiosity in the algorithmic community: for many problems output-
polynomial algorithms were proposed (see, e.g., [20] for a survey), while for others
the non-existence of output-polynomial algorithms was proved [14,15,17].

Among enumeration problems, the existence of an output-polynomial algo-
rithm for enumerating the (inclusion-wise) minimal transversals of a hyper-
graph,1 known as Hypergraph Transversal Enumeration, is arguably the
most important open question in this area as a solution would solve the exis-
tence of an output-polynomial algorithm for many enumeration problems in
many diverse areas ranging from data-mining to integer programming, including
biology, databases, game theory, learning theory, etc. (see the many references
from [9,20]). Surprisingly, it was proved in [13] that the existence of an output-
polynomial algorithm for listing the (inclusion-wise) minimal dominating sets
in graphs2 would solve the Hypergraph Transversal Enumeration prob-
lem. This result triggers an interest in the enumeration of (minimal) dominating
sets in graphs and for several interesting graph classes output-polynomial algo-
rithms were proposed. Another line of research that emerged also from [13] is
the following question:

for which vertex (or edge) set graph property, the enumeration of
(inclusion-wise) minimal (or maximal) is equivalent3 to the Hypergraph
Transversal Enumeration problem?

For some variants of domination like problems an equivalence was proved
in [13], while for some others the question remains. The main remarkable open
cases are probably the enumeration of minimal connected dominating sets, and
the enumeration of maximal irredundant sets, and we deal with the latter in this
paper. A subset I of the vertex set V of a graph is an irredundant set if for any
x ∈ I, either x has no neighbour in I or there is a vertex y ∈ V \I having exactly
x as neighbour in I. It is folklore to prove that a subset D of the vertex set of a
graph is a minimal dominating set if and only if D is an irredundant dominating
set. For this reason, irredundant sets in graphs receive a lot of attention in graph
theory [12], and recently in algorithmic graph theory, see for instance [3] where
the computation of a maximum irredundant set is considered, and [11] where
they are interested in an upper-bound on the number of maximal irredundant
sets (surprisingly the best known upper bound is the trivial 2n).

In this paper we are interested in an output-polynomial algorithm for listing
the maximal irredundant sets of a hypergraph. Unlike the case of dominating
1 A transversal in hypergraph H ⊆ 2V is a subset of V intersecting all elements of H.
2 A dominating set in a graph G is a subset D of its vertex set V such that every

vertex in V \ D has a neighbour in D.
3 Two enumeration problems are said equivalent when one has an output-polynomial

algorithm if and only if the other one has.
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sets, the set of irredundant sets in a (hyper)graph is an independence set system,
and one may expect an equivalence with the Hypergraph Transversal Enu-
meration problem. But, unexpectedly the enumeration of maximal irredundant
sets in hypergraphs is a hard problem, and is equivalent to the Hypergraph
Transversal Enumeration when restricted to hypergraphs with hyperedges
of size 2 (an output-polynomial algorithm is also announced when the maximum
degree of the vertices is bounded) [5]. The definition of irredundant sets given
in [5] is different from ours, but both are equivalent.

An output-polynomial algorithm has delay p if, after a pre-processing running
in polynomial time in the input size, the algorithm outputs all the solutions and
the time between two outputs is bounded by p. Our main result is the following.

Theorem 1. For every fixed positive integer d, we can enumerate, with delay
bounded by O(2d · Δd+1 · n2) and space O(nd), the set of maximal irredundant
sets in any given hypergraph of degeneracy d and maximum degree Δ.

As the degeneracy d of a hypergraph is at most its maximum node degree
(see Sect. 2.1 for the formal definition), this immediately implies an FPT-delay
algorithm for bounded-degree hypergraphs:

Corollary 1. For every fixed positive integer Δ, we can enumerate, with delay
bounded by O(2Δ · ΔΔ+1 · n2) and space O(nΔ), the set of maximal irredundant
sets in any given hypergraph of maximum degree Δ.

Our result not only improves the announced result in [5], but also considers
more general hypergraphs, namely those of bounded degeneracy. Moreover, this
result is surprising because the best output-polynomial algorithm for listing the
minimal transversals in hypergraphs of degeneracy d has delay nO(d), and it is
still open whether we can obtain an output-polynomial algorithm with delay
O(2d · Δf(d) · nc), for some function f and constant c. We observe moreover
that we were not able to turn our algorithm into one for listing the minimal
dominating sets while keeping the same delay.

3

4

2

5

1

6
3

4

2
1

Fig. 1. Left: a hypergraph with 6 nodes, 4 hyperedges, maximum degree 3 and degen-
eracy 2. Right: its subhypergraph induced by nodes {1, 2, 3, 4}.
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2 Preliminaries

In this paper we consider a hypergraph G = (VG,HG), where VG is the set of
nodes (or vertices) and HG the set of hyperedges, where each hyperedge H ∈ HG

is a set of nodes of G, i.e., HG ⊆ 2VG .
For any v ∈ VG, HG(v) is the set {H ∈ HG : v ∈ H} of hyperedges containing

v. The degree of v in G is |HG(v)|. And we refer as ΔG to the maximum degree
of a node in G. A bounded-degree hypergraph is a hypergraph G such that
ΔG = O(1) (however, hyperedges may be arbitrarily large).

Given a set of nodes S ⊆ V and a node v ∈ S, we say that a hyperedge
H ∈ HG(v) is a private edge of v for S if v is the only node of S belonging to
H, i.e., H ∩ S = {v}. More formally, we define the set of private edges of v for
S, in the hypergraph G, as privG(v, S) = {H ∈ HG : H ∩ S = {v}}.

If every node in S has a private edge for S, i.e., ∀v ∈ S, privG(v, S) �= ∅, we
call S an irredundant set (and a redundant set otherwise). Furthermore, S is a
maximal irredundant set (mirs for short) if no irredundant set S′ ⊃ S exists.

When G is clear from the context, we may remove the subscripts, and for
example refer to VG and HG simply as V and H.

We can further assume the hypergraph to be connected, as otherwise the
solution set is the Cartesian product of the solution sets of its connected com-
ponents, which we can compute at no extra cost as in [6].

2.1 Degeneracy of a Hypergraph

The degeneracy of a graph is a well known sparsity measure [1,7,10] and is
defined to be the minimum number d such that every subgraph of G has a node
of degree d or less. Equivalently, it is the maximum d such that G has a subgraph
whose minimum node degree is d (known as a d-core).

Several generalization of degeneracy have been proposed for hypergraphs,
such as that in [8] based on CNF-formulas or that in [2] based on Delaunay
graphs of hypergraphs. In this work we consider the arguably natural one pro-
posed in [16], which is obtained by simply adapting the concept of subgraph to
hypergraphs:

Definition 1 (see [16]). The degeneracy dG of a hypergraph G is the minimum
integer d such that any subhypergraph of G has a node of degree at most d.

A subhypergraph G[X] = (X,HG′) of G is a hypergraph obtained by remov-
ing nodes from G. More formally, we have X ⊆ VG and HG[X] = {H∩X|H ∈ HG

and H ∩X �= ∅}. Note that we are considering hypergraphs and not multihyper-
graphs: for any two edges H1,H2 ∈ HG, if H1 ∩ X = H2 ∩ X = H ′, then G[X]
will have a single hyperedge corresponding to H ′ rather than two equal ones.4

A visual example of subhypergraph is given in Fig. 1.

4 It can be observed that degeneracy would be meaningless otherwise, as the highest
degree node would induce by itself a subhypergraph of minimum degree ΔG.
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For a given ordering v1, . . . , vn of the nodes of G, we use Gi as a shorthand
for G[v1, . . . , vi].

By iteratively removing the node of smallest degree in G (and taking the
subhypergraph induced by the remaining nodes) we may compute a degener-
acy ordering, that is a node ordering v1, . . . , vn such that each vi has degree at
most dG in the subhypergraph G[vi, . . . , vn]. Similarly, we call reverse degener-
acy ordering the reverse of a degeneracy ordering: here each vi has degree at
most dG in Gi = G[v1, . . . , vi]. For example, we can observe that 6, 5, 4, 3, 2, 1
is a degeneracy ordering of the graph in Fig. 1 (left), and 1, 2, 3, 4, 5, 6 a reverse
degeneracy ordering.

3 Algorithm Description

3.1 General Structure

We here describe the operations performed by our incremental algorithm, while
its correctness will be proved later in Sect. 3.3.

The structure of the algorithm is simple, in line with the approaches by
Tsukiyama et al. [19] and Lawler et al. [17]: given an ordering v1, . . . , vn of the
nodes of G,5 and recalling Gi = G[v1, . . . , vi], we want to compute the solutions
of Gi from those of Gi−1. Indeed, we can observe that G1 has only one trivial
solution corresponding to {v1} and Gn is G, thus applying this incremental
operation is sufficient to generate all the solutions of G.

In the following, we refer to Si as the solutions, i.e., the set of all mirss, of
Gi. We propose an algorithm that computes each Si given Si−1, which contains
the key algorithmic ideas of our approach. Later, in Sect. 4, we show how to
refine this algorithm to run in polynomial delay and use polynomial space.

Firstly, let us observe the differences between Gi and Gi−1: recalling the
definition of subhypergraph, we have that Gi contains edges of three types:

A All edges in Gi−1 corresponding to edges that do not contain vi in G.
B All edges in Gi−1 corresponding to edges that do contain vi in G. Note that,

by removing vi, an edge of this type may become equal to a type-A edge,
and thus the two will appear as a single edge in Gi−1.

C At most one edge containing just vi, corresponding to all the edges in G
containing vi but no node in v1, . . . , vi−1.

By keeping this in mind, we can prove the following claim:

Lemma 1. Let S be a maximal irredundant set of Gi. Then, T = S \ {vi} is an
(non necessarily maximal) irredundant set of Gi−1.

Proof. Any node x ∈ S has a private edge H in Gi. We prove the claim showing
that for any x �= vi the hyperedge corresponding to H in Gi−1 is still a private
edge of x for T . Looking at the types above, note that H is not a type-C edge,
it contains x ∈ S \ {vi}. We thus prove the claim for the remaining two cases,
i.e., whether H is a type-A or type-B edge:
5 This will be a reverse degeneracy ordering, as we later explain.
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(A) As H is a private edge of x for S, no other node of T = S \ {vi} belongs
to H, thus the corresponding edge of Gi−1 will be a private of x for T in
Gi−1.

(B) If there is no type-A edge H ′ equal to H in Gi−1, then H is a private of x
for T in Gi−1 by the same logic. Otherwise, if there is an H ′ equal to H in
Gi−1, then any node of T except x in H ′ would also be in H, making H
not a private of x in Gi−1, a contradiction; thus H ′ is a private edge of x
of type-A and x has a private for T by the above case. 	


Corollary 2. Let S be a maximal irredundant set of Gi. Then, there exists a
maximal irredundant set T of Gi−1 such that S ⊆ T ∪ {vi}.

Using the incremental approach described above, and thanks to Corol-
lary 2, Algorithm 1 shows the general schema to build Si, where the operation
neighbors(S, vi) is a generating procedure explained in the next section, which
allows us to obtain solutions in Si starting from solutions S ∈ Si−1.

Algorithm 1. Listing all maximal irredundant sets incrementally.
input : A hypergraph G = (V, H)

A reverse degeneracy ordering v1, . . . , vn of V
output: All maximal irredundant sets of G

1 Let Gi be a shorthand for G[v1, . . . , vi]
2 S1 ← {{v1}} // only solution of G1

3 foreach vi ∈ v2, . . . , vn do
4 Si ← ∅ // solutions of Gi

5 foreach S ∈ Si−1 do
6 foreach S′ ∈ neighbors(S, vi) do
7 add S′ to Si

8 output Sn // Maximal irredundant sets of G

3.2 Generating New Solutions

Lemma 1, and in particular Corollary 2, tell us that it is possible to find each
solution of Si by just looking at Si−1 and vi. We will show a generating procedure
neighbors(S, vi) which takes as input an S ∈ Si−1, the node vi, and generates
a set of mirss of Gi. The correctness of the algorithm will follow from proving
that each solution of Gi is found this way at least once.

The procedure is formalized in Algorithm2, and we will here describe it in
detail:

Firstly, it is possible that S ∪ {vi} ∈ Si, in which case we only generate this
unique solution, i.e., neighbors(S, vi) = {S ∪{vi}} (Lines 2 and 3) and end the
procedure. In the rest of the section we consider the opposite case, where adding
vi to S results in a redundant set, and we need to remove some nodes in order
to obtain again irredundant sets.
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Algorithm 2. Generating new solutions
input : A node vi in an ordering v1, . . . , vn of the nodes of G.

A maximal irredundant set S of Gi−1

output: A collection of maximal irredundant sets of Gi.

1 Function neighbors(S, vi)
2 if S ∪ {vi} is a mirs of Gi then
3 yield S ∪ {vi} and return

4 R ← redundant(S, vi)
5 foreach R′ ⊂ R do // case R′ 	= R
6 foreach E ∈ Πr∈R′(HGi(r)) do
7 D ← ⋃

H∈E(H \ R′)
8 S′ ← (S ∪ {vi}) \ ((R \ R′) ∪ D)
9 if S′ is a mirs of Gi then yield S′

10 foreach Hi ∈ H(vi) do // case R′ = R
11 foreach E ∈ Πr∈R(HGi(r) \ {Hi}) do
12 D ← Hi ∪ ⋃

H∈E(H \ R)
13 S′ ← (S ∪ {vi}) \ D
14 if S′ is a mirs of Gi then yield S′

15 yield S

More in detail, there will be a set of nodes of S which do not have a private
edge S ∪ {vi}. We define this set of nodes as

redundant(S, vi) = {x ∈ S : priv(x, S) ⊆ H(vi)}

(vi may or may not have a private edge in S ∪ {vi}, but it is not included in
redundant(S, vi) in any case).

For convenience, in the following let R = redundant(S, vi). Our goal is to
exploit R to create a collection of irredundant sets of Gi contained in S ∪ {vi},
among which we aim at selecting the maximal ones.

For example, removing all of R corresponds to (S ∪ {vi}) \ R: every node in
S \ R has a private edge for S ∪ {vi} by definition of R, and vi has as private
edges ∪r∈Rpriv(r, S), so (S ∪ {vi}) \ R is an irredundant set.

We can now explain the operations of Algorithm2 in Lines 4–15 (which, we
recall, is the case where S ∪ {vi} is not an irredundant set):

– We iterate over all possible subsets R′ of R.
– For each R′, we try to build solutions which include R′ and vi.
– To do so, we forcefully give each r ∈ R′ a private edge Hr, and remove the

remaining nodes in R \ R′.
– We output the irredundant set obtained if it is a mirs of Gi, and discard it

otherwise.
– Finally, we output S as it must also be a mirs of Gi.
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Let us now explain more in detail how this is achieved.
For each r, we select one hyperedge Hr ∈ HGi

(r): we force it to become a
private edge of r by removing all nodes in Hr (except r) from S. More formally we
select a set of hyperedges E ∈ Πr∈R′∪{v}(HGi

(r)).6 We call D the set
⋃

H∈E(H)\
R′ of nodes in S covered by these edges: removing D from S ∪ {vi} gives each
node in R′ a private edge. We also remove the remaining nodes in R \ R′ which
may not have private edges at this point.

We now consider vi: in case R′ ⊂ R, i.e., R′ �= R, there exists some w ∈ R\R′

which had a private edge Hw for the solution S. Since w ∈ R, this private edge
includes vi, meaning that vi has Hw as private edge after removing R \R′. Thus
in this case (Lines 5–9) vi is guaranteed to have a private edge. After this process,
S′ ← (S ∪ {vi}) \ ((R \ R′) ∪ D) is guaranteed to be an irredundant set as each
node in it has a private edge in Gi.

We then separately consider the single case R′ = R in Lines 10–14: we per-
form the same actions as above, but also select an edge Hi ∈ HGi

(vi), and force
it to be a private edge of vi by also adding its contained nodes to D.

In this case S′ corresponds to (S ∪ {vi}) \ D and by the same logic will also
be an irredundant set. It is worth remarking that this case covers the (possible)
situation where R = ∅, but S ∪ {vi} is not a maximal irredundant set (i.e., vi is
the only node with no private edges).

At this point, we output S′ iff it is a mirs of Gi. We will prove in Sect. 3.3
that each mirs of Gi is found this way by Algorithm1.

3.3 Correctness

Since Gn = G, to prove the correctness of Algorithm 1 it is sufficient to show
that, given Si−1, the algorithm is able to correctly compute Si, which we do in
the following:

Lemma 2.
⋃

S∈Si−1
neighbors(S, vi) = Si.

Proof. Firstly, looking at Algorithm2 we can see that only mirs of Gi are output,
so

⋃
S∈Si−1

neighbors(S, vi) ⊆ Si.
We consider an arbitrary T ∈ Si and show that it is found. Let S be any

maximal solution in Si−1 such that T ⊆ S ∪ {vi}; note that S exists by Corol-
lary 2.

If T = S ∪ {vi}, it is found in Line 3.
Otherwise, let R = redundant(S, vi) be the set of nodes of S whose private

edges are hit by vi. Some nodes of R (possibly all, or none) will be in T and some
will not. As neighbors(S, vi) iterates over all possible subsets R′ ⊂ S (Line 5)
and considers the case R′ = R (Line 10), at some point it will consider exactly
R′ = R ∩ T .

6 As the generated solution must contain vi, we could avoid choosing edges which
contain it, and refine the choice of E to E ∈ Πr∈R′∪{v}(HGi(r) \ HGi(v)). However
this does not change the complexity analysis.
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Furthermore, each node in R′ has at least one private edge for T in Gi: let
E′ be a set containing one of these private edges for each node in R′ chosen
arbitrarily. Again, as the algorithm iterates over all possible assignment of edges
to the nodes in R′ (Lines 6 and 11), at some point it will consider E = E′.

When the correct R′ and E are considered (on either Line 8 or Line 13),
we will have that S′ ⊇ T : indeed, S ∪ {vi} ⊇ T , and the nodes removed from
S ∪ {vi} to obtain S′ are those in R \ R′, which are not in T , and those in D.
The nodes in D correspond to those not in R′ that are in some edge in E; since
the edges in E = E′ are all private edges of some node in R′ ⊆ T , they may not
contain any other node of T , which implies the claimed S′ ⊇ T . Finally, since
T is by assumption a maximal solution of Gi, S′ ⊇ T implies S′ = T , thus T is
found. The statement follows. 	

Corollary 3. Algorithm1 outputs all the maximal irredundant sets of G without
duplication.

Proof. Absence of duplication is trivially guaranteed by Sn, which is a set. As
S1 = {v1}, by Lemma 2 Algorithm 1 correctly computes and outputs Sn as the
set of all mirss of Gn = G. 	


3.4 Complexity

To understand the algorithm’s complexity, we need to look at the respective sizes
of the Si sets, for which we use the following lemma:

Lemma 3. |Si| ≥ |Si−1|.
Proof. For each maximal solution S ∈ Si−1 of Gi−1, either S is a mirs of Gi, or
only vi can be added to it: as any other node addition would also be possible in
Gi−1, meaning S was not a maximal solution in Si−1. In this latter case, S∪{vi}
is a maximal solution of Gi. The statement follows. 	


Looking at Algorithm 1 we can observe that the cost is bounded by
O(

∑
i∈[2,n] |Si|) times the worst case cost of the neighbors(S, vi) function.7

By Lemma 3, O(
∑

i∈[2,n] |Si|) is bounded by O(n · |Sn|), where |Sn| is the num-
ber of mirss of Gn = G, i.e., the number of solutions to be output. We thus only
need to bound the cost of neighbors(S, vi) (Algorithm 2).

Lemma 4. Function neighbors(S, vi) in Algorithm2 takes O(2dGΔdG+1
G n)

time.

Proof. As in Algorithm 2, let R = redundant(S, vi), and let P be the set of
private edges of nodes in R before the addition of vi, i.e.:

P =
⋃

x∈redundant(S,vi)

priv(x, S)

7 The cost of adding solutions to Si is dominated by that of neighbors(S, vi).
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Note that all the edges in P are not private anymore for the nodes in R
(otherwise the corresponding node would not be in redundant(S, vi)), so they
must contain vi. This implies that P ⊆ HGi

(v). By the fact that Algorithm1 uses
a reverse degeneracy ordering of the nodes of G, and by its properties remarked
in Sect. 2, we obtain |P | ≤ |HGi

(v)| ≤ dG.
Furthermore, each edge may be the private edge of at most one node (other-

wise it would not be a private edge), so there is at most one node in R for each
edge in P , meaning that |R| ≤ |P | ≤ dG.

Consider Lines 5–9. The external foreach in Line 5 thus performs O(2|R|) =
O(2dG) iterations. The internal one performs O(Πr∈R(|HGi

(r)|) = O(ΔdG) itera-
tions. For each iteration, computing D can be done in O(|S|·|E|) = O(|S|·|R|) =
O(ndG) time: as we only need to know the nodes of D which belong to S, we
can iterate over S, and for each node check its membership to the selected edges
in E. Finally, we need to check maximality of S′ in Gi: by scanning all edges
in O(

∑
H∈HG

|H|) = O(nΔG) we can find, for each x ∈ S′, its private edges,
and for each edge the node it is private for. Then, we can test whether any node
x can be added to S′ in O(|HG(x)|) by iterating over each H ∈ HG(x) and
checking whether H is the only private edge of some node y ∈ S′ (in which case
x would not be addible). Testing addition of all nodes thus takes O(nΔG) time.
The total cost of Lines 5–9 is thus O(2dG ·ΔdGn(dG +ΔG)) = O(2dG ·ΔdG+1n).

The cost of Lines 10–14 is dominated by the earlier, as the loops contain
the same operations but the external one only performs O(|HG(vi|) = O(dG)
iterations rather than O(2dG) as that in Line 5. Line 4 can be executed in
O(nΔG) by computing the private edges of each node as above, so its cost is
also dominated by O(2dGΔdG+1

G n). The statement follows. 	

We thus obtain a total cost of O(2dGΔdG+1n2|Sn|) time, i.e., O(2dGΔdG+1n2)

amortized time per solution.

4 Achieving Polynomial Space and Delay

Algorithm 1 requires storing the sets Si to avoid duplication, thus using expo-
nential space. However, we show here how to further refine the space usage of the
algorithm, and give bounds to its delay, by simple modifications of Algorithm1.

By looking at the proof of Lemma2 we can see that T ∈ Si is found by
neighbors(S, vi) for any S such that T ⊆ S ∪ {vi}.

We designate exactly one of these solutions as the parent of T , i.e., the
solution in charge of finding T : for any T ∈ Si, let S = parent(T, i) be the
solution of Gi−1, i.e., in Si−1, obtained by taking T ′ = T \ {vi} (which is an
irredundant set of Gi−1 by Lemma 1), and recursively adding to it the node vj

of smallest index in Gi−1 such that T ′ ∪ {vj} is still an irredundant set.
We replace Lines 9 and 14 of Algorithm 2 as

“ if S′ is a mirs of Gi and parent(S′, i) = S then yield S′ ”

Note that Lines 3 and 15 do not need this check as parent(S ∪ {vi}, vi) and
parent(S, vi), respectively, will both always give S.
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The parent(T, i) operation can be implemented in O(nΔG) time similarly
to the maximality check performed in the proof of Lemma4: first find the private
edges of each node in T \{vi}, then test node additions starting from the smallest
index node. This does not impact the complexity of the algorithm (as the same
cost is paid for the maximality check), but it does ensure that T is found exactly
once by Algorithm 1 when considering vi.

This defines a tree-like structure between solutions, where each solution in Si

is the child of some in Si−1 and the leafs are the solutions of Sn, i.e., those to be
output. We can thus perform a DFS-like traversal of this tree with a recursive
algorithm: i.e., immediately processing neighbors(S′, vi+1) when we find S′ ∈
Si from its parent S = parent(S′, i). The delay of the algorithm becomes the
cost of a root-to-leaf path plus a leaf-to-root path in this tree, i.e., O(n) times
the cost of the neighbors(S, vi) function. The modified Algorithm1 will thus
have O(2dGΔdG+1n2) time delay, finally proving our main result, Theorem1.

As for the space usage, a trivial implementation requires storing S, the R,
R′ and E sets, for each recursion level, taking O(n2) space. However, we can
rebuild S from its child S′ by computing parent(S′, vi) and just store R, R′

and E sets whose size is O(dG). The total space this way is just O(ndG).

5 Concluding Remarks

We prove in this paper that we can enumerate the set of mirss with delay
O(2d · Δd+1 · n2) in any hypergraph of degeneracy d and maximum degree Δ.
Therefore, we can enumerate with polynomial delay the set of mirss in many
sparse graphs, including bounded expansion graphs. We wonder whether we
can enumerate the set of mirss in nowhere dense graph classes, which would
suggest that the difficulty of enumerating mirss resides in dense graphs, as for
the enumeration of minimal dominating sets.

Despite the announced negative result from [5], we can still wonder whether
the enumeration of mirss in graphs can be easier than the enumeration of min-
imal dominating sets as suggested by our result, which would be surprising as
maximal irredundancy is commonly believed to be more difficult than domina-
tion, which is a local property. We observe however that in hypergraphs the two
problems seem to behave differently: in hypergraphs with hyperedges of size 3
mirss is coNP-complete while Hypergraph Transversal Enumeration is
output-polynomial in the more general class of hypergraphs of bounded confor-
mality [4]; and in hypergraphs of degeneracy d mirss admits an f(d,Δ)·n2-delay
enumeration algorithm (this paper), while the best known delay for Hyper-
graph Transversal Enumeration is nO(d).
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Abstract. Inspired by the feedback scenario, which characterizes online
social networks, we introduce a novel domination problem, which we call
Dual Domination (DD). We assume that the nodes in the input network
are partitioned into two categories: Positive nodes (V +) and negative
nodes (V −). We are looking for a set D ⊆ V + that dominates the largest
number of positive nodes while avoiding as many negative nodes as pos-
sible. In particular, we study the Maximum Bounded Dual Domination
(MBDD) problem, where given a bound k, the problem is to find a set
D ⊆ V +, which maximizes the number of nodes dominated in V +, dom-
inating at most k nodes in V −. We show that the MBDD problem is
hard to approximate to a factor better than (1 − 1/e). We give a poly-
nomial time approximation algorithm with approximation guaranteed
(1 − e−1/Δ), where Δ represents the maximum number of neighbors in
V + of any node in V −. Furthermore, we give an O(|V |k2) time algorithm
to solve the problem on trees.

1 Introduction

Let G = (V,E) be an undirected graph modeling a network. We denote by NG(v)
and by dG(v) = |NG(v)|, respectively, the neighborhood and the degree of the
node v in G. In general, for each S ⊆ V we denote by NG(S) =

⋃
v∈S NG(v)

the neighborhood of the nodes in S. In the rest of the paper we will omit the
subscript G whenever the graph G is clear from the context.

A dominating set for G = (V,E) is a subset of the nodes D ⊆ V such that
each v ∈ V − D has at least one neighbor in D. The concept of domination in
graphs and its many related problems have been widely studied (see [17] and ref-
erences therein quoted). Inspired by some scenarios in social networking, which
we shall briefly describe in Sect. 1.2, we introduce a new domination problem,
which we call Dual Domination (DD). We assume that the nodes in the input
network are partitioned into two categories: Positive nodes (V +) and negative
nodes (V −); i.e., V = V + ∪ V −. For any D ⊆ V +, we denote by Γ (D) (resp.
Γ+(D) and Γ−(D)) the set of nodes (resp. positive and negative nodes) domi-
nated by D. That is,

Γ (D) = D ∪ N(D), Γ+(D) = Γ (D) ∩ V + and Γ−(D) = Γ (D) ∩ V −.
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For sake of simplicity we pose Γ+(v) = Γ+({v}) and Γ−(v) = Γ−({v}).
Formally the problem we study in this paper is the following.

Problem 1. (Maximum Bounded Dual Domination (MBDD)) Given a net-
work G = (V = (V + ∪ V −), E) and an integer k ≥ 0, find a set D ⊆ V + such
that |Γ−(D)| ≤ k, which maximizes |Γ+(D)|.

1.1 Our Results

We first show hardness results on the approximability of the MBDD problem,
then we give a polynomial time approximation algorithm with approximation
guaranteed (1 − e−1/Δ), where Δ represents the maximum number of neighbors
in V + of any node in V −. The algorithm uses the fact that |Γ+(D)| is a submod-
ular, nondecreasing set function and is inspired by [27] where an approximation
algorithm for maximizing a submodular set function subject to a knapsack con-
straint has been presented. However, we stress that the constraint, to which a
solution of our MBDD problem is subject, is not a knapsack constraint since
in our problem two or more positive nodes might share a negative neighbor. In
Sect. 4, we depict an O(|V |k2) time algorithm for the MBDD problem on trees,
state some related Dual Domination problems, and give some open problems.

Due to space constraint, most of the proofs are omitted or only sketched.

1.2 The Online Social Networks Context

Online social networks have become an important media for the dissemina-
tion of opinions, beliefs, new ideas etc. The increasing popularity of such plat-
forms, together with the availability of large amounts of contents and user pro-
file/behaviour information, has contributed to the rise of viral marketing as an
effective advertising strategy. The idea is to exploit the word-of-mouth effect in
such a way that an initial set of influential users could influence their friends,
friends of friends, and so on, generating a large influence cascade. The key prob-
lem is how to select an initial set of users (given a limited budget) so to maximize
the influence within the network. This influence maximization (IM) problem has
been extensively studied in recent years [5–10,16] and a number of approximation
algorithms and scalable heuristics have been devised. However, the studies above
only look at networks with positive relationships/activities (e.g., positive feed-
back or influence), where in real scenarios, social actor relationships/activities
also include negative ones (e.g., adverse opinion, negative feedback or distrust
relationships). For instance in Ebay, buyers and sellers develop trust and distrust
relationship; in online review and news forums, such as Slashdot, users comment
(positively or negatively) reviews and articles of each other [21].

Research has provided evidence that the benefits of a marketing campaign
are not purely increasing in the number of people reached and the exposure to
different groups can help or hurt adoption [2,18,19]. As an other example, in a
social network composed by individuals with some social problem, people can
have both positive and negative impact on each other. In order to implement an
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intervention programme, it becomes important to target a group of users which
allow to reinforce a positive behavior through the network while minimizing the
negative reactions (also to maximize the impact of future campaigns) [28]. A
somehow similar finding applies to political campaigns where candidates want
to reinforce positive messages without promoting resistance to persuasion [25].
Such empirical research suggests that marketing campaigns can suffer negative
payoff due to the existence of subsets of the population that will react negatively
to the message/product. Hence, the marketing campaign can suffer negative pay-
off. These can come in the form of harm to the firm’s reputation in several ways,
as for example through negative reviews on rating sites [3,11,12]. Recently, a
variation of the influence maximization problem named opinion maximization
(OM) has been proposed [4,22]. The goal of opinion maximization is to maxi-
mize the number of positive opinions while minimizing the number of negative
opinions generated by the activated users during the cascading behavior. A first
algorithmic study of an OM problem was done in [1], where the authors propose
a theoretical model for the problem of seeding a cascade when there are benefits
from reaching positively inclined customers and costs from reaching negatively
inclined customers. Namely, the problem studied in [1] is: Given a graph G with
node set V = V + ∪ V − partitioned into positive and negative nodes, determine
a subset of the nodes S that can trigger a cascade which maximize the difference
between positive and negative payoff.

1.3 Related Domination Problems

Domination in graphs, and its several variants, is a widely studied problem in
graph theory [17]. The variation of the domination problem which we study in
this paper is related, but not equivalent, to the concepts of signed and minus
domination introduced in [14,15]. For instance, in signed domination the sign of
the nodes is not part of the input; namely, given an input graph G = (V,E) one
looks for a function of the form f : V → {−1, 1} such that,

∑
u∈N(v)∪{v} f(u) ≥ 1

for all v ∈ V .
Another recently studied related problem is domination with required and

forbidden nodes [13]: Given a graph G and two disjoint sets R,F ⊂ V , construct
dominating set D of G such that no forbidden node is in D and every required
node of R is in D, that is F ∩ D = ∅ and R ⊆ D.

2 Hardness Results

Theorem 1. The MBDD problem is such that:
(i) There is no polynomial time approximation algorithm with any constant fac-
tor better than (1 − 1/e) unless P=NP.
(ii) There is no polynomial time approximation algorithm providing an

n−1/polyloglog n-approximation unless the exponential time hypothesis is false.

Proof. (Sketch.) We are going to show that both the k-MaxVD problem [24]
and the Densest k-subgraph (DkS) problem [23] are reducible (preserving the
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approximation factor) in polynomial time, to the MBDD problem. The results
(i) and (ii) will then follow from [24] and [23] respectively. For space reasons, the
reduction from the DkS problem is omitted.

The k-MaxVD problem is one of the optimization versions of the well known
Dominating Set problem [17] and it is defined as follows.

Problem 2. k−Maximum Vertex Domination (k-MaxVD): Given a network
G = (V,E) and an integer k ≥ 0, find a set D ⊆ V with |D| ≤ k, which
maximizes the cardinality of the dominated nodes |Γ (D)|.
Consider an instance of the k-MaxVD problem, consisting of a graph G = (V,E)
having n = |V | nodes and a bound k. Let V = {v1, v2, . . . , vn}, we build a graph
G′ = (V ′ = (V + ∪ V −), E′) as follows:

Replace each vi by a gadget G′
i having two nodes v+

i and v−
i . The node v+

i

plays the role of vi in G and is also connected to v−
i . Formally,

V ′ = V + ∪ V − where V + = {v+
i |1 ≤ i ≤ n} and V − = {v−

i |1 ≤ i ≤ n}

E′ = {(v+
i , v+

j )|(vi, vj) ∈ E} ∪ {(v+
i , v−

i )|1 ≤ i ≤ n}.

Notice that G corresponds to the subgraph of G′ induced by V +. We prove that:
Given an integer t, there exists a set D of nodes in G of size at most k such

that |Γ (D)| ≥ t iff there exists a set D′ ⊆ V + such that |Γ−(D′)| ≤ k and
|Γ+(D′)| ≥ t in G′.

Assume that there exists a dominating set D ⊆ V in G such that |D| ≤ k and
|Γ (D)| ≥ t. Then let D′ = {v+

i ∈ V +|vi ∈ D}, since G is isomorphic to the sub-
graph of G′ induced by V +, we have that D′ dominates the corresponding of all
the nodes in Γ (D). Hence, |Γ+(D′)| = |Γ (D)| ≥ t. Moreover, by construction,
in G′ each positive node has exactly one connection with a negative one. Hence,
|Γ−(D′)| = |D′| = |D| ≤ k.

On the other hand, assume that there exists a set D′ ⊆ V + in G′ such that
|Γ−(D′)| ≤ k and |Γ+(D′)| ≥ t. Then, by using exactly the same argument
above, the reader can easily see that the set D = {vi ∈ V |v+

i ∈ D′} satisfies
|D| ≤ k and |Γ (D)| ≥ t and this completes the proof. ��

3 An Approximation Algorithm for MBDD

Theorem 2. Let G = (V,E) be any graph with V = V + ∪ V −. There exists
a polynomial time approximation algorithm for the MBDD problem on G with
approximation factor 1 − e−1/Δ, where Δ = maxv∈V − |Γ+(v)| is the maximum
degree1 of any negative node in V −.

1 We can assume that no edge exists between two nodes in V −, since such edges are
irrelevant for our problem.
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In order to prove Theorem 2, we distinguish two cases on the value of Δ.
If Δ = 1 then two nodes in V + cannot share a neighbor in V −. As a conse-

quence, if we define the weight of a node in V + as the number of its neighbors
in V −, then the problem reduces to select a set of nodes in V + so that the
union of their neighborhood sets in V + has maximum size and the sum of their
weights is at most k. This is the Budgeted maximum coverage problem and its
approximation factor is (1 − 1/e) [20].

Algorithm 1. The Dual Domination algorithm: DUAL(G, k)
Input: A graph G = (V + ∪ V −, E) (with Δ ≥ 2) and a positive integer k.

1 P = ∅
2 forall the u ∈ V + do
3 if |Γ −(u)| ≤ k then P = the largest set between P and

{v ∈ V + | Γ −(v) ⊆ Γ −(u)}
4 forall the v ∈ V + − {u} do
5 if |Γ −({u, v})| ≤ k then P = the largest set between P and

DD(G, {u, v}, k);

6 return P

Algorithm 2. DD(G,U, k)
Input: A graph G = (V + ∪ V −, E), a set U ⊆ V + with |U | = 2, a positive

integer k.

1 Set I = V +, S = U and P = {w ∈ V + | Γ −(w) ⊆ Γ −(S)}
2 while (I − P �= ∅) do

3 forall the u ∈ I − P do Pu = {w ∈ I − P | Γ −(w) ⊆ Γ −(S ∪ {u})}
4 v = arg maxu∈I−P

|Γ+(P∪Pu)−Γ+(P )|
|Γ−(S∪{u})−Γ−(S)|

5 if |Γ −(S ∪ {v})| ≤ k then {S = S ∪ {v}; P = P ∪ Pv } else I = I − {v}
6 return P

The rest of this section is devoted to prove Theorem 2 in the case Δ ≥ 2.
The proposed Algorithm DUAL(G, k) first computes all the feasible solutions

of cardinality one, by simply enumerating all nodes in V +. In order to consider
feasible solutions with cardinality two or more, it exploits Algorithm DD(G,U, k)
to greedily enlarge each feasible solution of cardinality two. It is worth noticing
that the algorithm DD(G,U, k) is executed for each couple of nodes in G. This
fact will be exploited to obtain the desired approximation factor.

Algorithm DD(G,U, k), starting from a partial solution S = U of cardinality
2, greedily adds nodes to such a solution, until no feasible node is available: For
each node u not in the current solution, the algorithm measures
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– the cost of u (how many new nodes of V − are dominated by adding u) and
– the profit of u (how many more nodes of V + we can dominate by adding u,

as well as all the other nodes which become “cost-free” because of u, that
is, all their neighbors in V − are already neighbors of the current solution
augmented by u).

The algorithm then selects the node, say v, that provides the best profit/cost
ratio; if the current solution augmented by v is feasible (i.e., |Γ−(S ∪ {v})| ≤ k)
then v is added to it, otherwise v is definitively discarded (because v will make
any solution, that includes the current solution, infeasible).

Define the padding set of X ⊆ V + as

PX = {v ∈ V + | Γ−(v) ⊆ Γ−(X)} (1)

Notice Γ−(X) = Γ−(PX). Also, define the padding set of u with respect to a
ground set I and a set X as

Pu(I,X) = {v ∈ I − PX | Γ−(v) ⊆ Γ−({u} ∪ X)}. (2)

Starting from any set U ⊂ V + consisting of two nodes such that |Γ−(U)| < k,
Algorithm 2 greedily augments U while preserving the constraint. For a given
U = {w1, w2}, the algorithm starts with S = U and a padding set P = PS ,
fixes the initial ground set I to V +, and iteratively adds feasible nodes to the
solution.

At each iteration, Algorithm2 maintains the relation P = PS between the
sets S and P . For each node u ∈ I−P , the algorithm identifies the set Pu ⊆ I−P
whose neighbors in V − are dominated when we add u to the current set S,
namely the algorithm sets

Pu = Pu(I, S).

The node to be added to the solution is chosen as to maximize the ratio of the
number of positive nodes that will be dominated thanks to the contribution of u
to the cost of u (i.e., the increment on the number of negative nodes dominated
by {u} ∪ S.) Once a node v has been selected:

– If S ∪{v} is not feasible (i.e., |Γ−(S ∪{v})| > k), then v is removed from the
ground set I.

– If |Γ−(S ∪ {v})| ≤ k, then the algorithm augments S by v and consequently
P by Pv thus maintaining the equality P = PS .

The algorithm ends when I = P = PS .
In the following, we analyze Algorithm2 and derive the desired approxima-

tion factor. Let OPT be an optimal solution to the MBDD problem on G. Let
u1, u2 be respectively, the two nodes in OPT that dominate the maximum number
of positive neighbors, namely

u1 = arg max
u∈OPT

|Γ+(P{u})| and u2 = arg max
u∈OPT−P{u1}

∣
∣Γ+(Pu(V +, {u1})

∣
∣ . (3)
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Recalling that Algorithm 2 is executed for each pair of nodes in G, from now
on we focus on the execution of Algorithm2 on input U = {u1, u2}. Hence,
Algorithm 2 initially (at at line 1) sets S = {u1, u2} and P = P{u1,u2}.

We denote by Si the partial set S after exactly i nodes are added to it.
Namely,

S0 = {u1, u2}
and for i ≥ 1, we define Si as the solution consisting of the initial set {u1, u2}
and the i nodes v1, v2, . . . , vi (added at line 5 of the algorithm), i.e.,

Si = {u1, u2} ∪ {v1, v2, . . . , vi}.

We also set

P 0 = PS0 = P{u1,u2} and P i = PSi = P{u1,u2}∪{v1,v2,...,vi} for each i ≥ 1

and denote by Ii the ground set I at the end of the iteration in which vi (cfr.
line 5) is added to have Si. Moreover, for each i ≥ 0, and u ∈ Ii − P i, we set

ci,u = |Γ−(Si ∪ {u}) − Γ−(Si)|
the increment in number of dominated nodes in V − with respect to Γ−(Si).
Furthermore, recalling that the set Pu at line 3 is Pu(Ii, Si), we denote by

θi+1 = max
u∈Ii−P i

|Γ+(P i ∪ Pu(Ii, Si))| − |Γ+(P i)|
ci,u

.

Hence, the node v selected at line 4 of Algorithm 2 satisfies the equality

|Γ+(P i ∪ Pv(Ii, Si))| − |Γ+(P i)| = ci,vθi+1 (4)

while for any other node u ∈ (Ii − Si) − {v} it holds

|Γ+(P i ∪ Pu(Ii, Si))| − |Γ+(P i)| ≤ ci,uθi+1. (5)

In the following we use cu instead of ci,u whenever the index i is clear from the
context. Furthermore, we use Pu instead of Pu(I, S) whenever the ground set I
and the set S are clear from the context.

We assume that the solution provided by the Algorithm2 is not the optimal
solution OPT. Let St = {u1, u2} ∪ {v1, . . . , vt}, for some t ≥ 0, be the partial set
constructed by Algorithm 2 when, for the first time, the node v selected at line
4 satisfies both the following conditions

1. v ∈ OPT;
2. v is discarded, i.e. v is removed from the ground set because |Γ−(St∪{v})|>k.

We notice that,

– it is possible that other nodes have been previously discarded by the algorithm
but these nodes do not belong to OPT.
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– t is well defined. Indeed, since the solution provided by the Algorithm2 differs
from OPT, there exists at least one node v ∈ OPT, which is discarded by the
Algorithm 2.

Let I ′ ⊆ It denote the ground set when v is selected and let

θ = (|Γ+(P t ∪ Pv(I ′, St))| − |Γ+(P t)|)/cv (6)

Then for any other node u ∈ (I ′ − St) − {v} it holds

|Γ+(P t ∪ Pu(I ′, St))| − |Γ+(P t)| ≤ cuθ. (7)

We prove now some claims, relating St, the discarded node v, and the optimal
solution OPT, that will be useful to prove the desired approximation ratio.

Claim 1

|Γ−(P 0)| +
t∑

i=1

cvi
+ cv > k. (8)

Proof. It suffices to notice that St ∪ {v} dominates more than k nodes in V −.

��
Claim 2. For any i = 0, . . . , t, it holds

∑

u∈OPT−P i

cu ≤ (k − |Γ−(P 0)|)Δ (9)

Proof. Since Δ is the maximum degree of any node in V −, a node x ∈ Γ−(OPT)−
Γ−(P i) can have at most Δ neighbors in OPT − P i, hence we have2

∑

u∈OPT−P i

cu =
∑

u∈OPT−P i

|Γ−(Si ∪ {u}) − Γ−(Si)|

≤ |Γ−(OPT) − Γ−(P i)|Δ
≤ |Γ−(OPT) − Γ−(P 0)|Δ since P 0 ⊆ P i

= (|Γ−(OPT)| − |Γ−(P 0)|)Δ since P 0 ⊆ OPT

≤ (k − |Γ−(P 0)|)Δ since |Γ−(OPT)| ≤ k.

��
Given a set A ⊆ V + such that P 0 ⊆ A, we define the function

g(A) = |Γ+(A)| − |Γ+(P 0)|.
In order to obtain the desired bound on the approximation factor of Algorithm2,
we first prove some preliminary results regarding the function g(·) which will be
exploited to derive a lower bound on the ratio g(P t ∪ Pv)/g(OPT).
2 (Notice that S0 ⊆ OPT and since OPT is an optimal solution we have POPT ⊆ OPT and

then P 0 ⊆ OPT.)
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Claim 3. For i = 0, . . . , t, it holds g(P i) =
∑i

�=1 cv�
θ�.

Proof. Recalling that for i = 0, . . . , t, we have P i = P 0 ∪ Pv1 ∪ · · · ∪ Pvi
, we get

g(P i) = |Γ+(P i)| − |Γ+(P 0)| = |Γ+(P 0 ∪ Pv1 ∪ · · · ∪ Pvi
)| − |Γ+(P 0)|

=
i∑

�=1

(|Γ+(P 0 ∪ Pv1 ∪ · · · ∪ Pv�
)| − |Γ+(P 0 ∪ Pv1 ∪ · · · ∪ Pv�−1)|)

=
i∑

�=1

|Γ+(P �−1 ∪ Pv�
)| − |Γ+(P �−1)| =

i∑

�=1

cv�
θ� by (4).

��
Claim 4. Let Pv = Pv(I ′, St), then g(P t ∪ Pv) =

∑t
�=1 cv�

θ� + cvθ.

Proof. We have that P t = P 0 ∪Pv1 ∪ · · · ∪Pvt
and v was selected when the value

of S in Algorithm 2 was St. We can then apply Claim 3 and (6) to get the claim.

��
Claim 5

g(OPT) ≤ min
0≤i≤t

gi where gi =

{∑i
�=1 cv�

θ� + θi+1(k−|Γ−(P 0)|)Δ if 0≤i≤t−1,
∑t

�=1 cv�
θ� + θ(k − |Γ−(P 0)|)Δ if i = t.

(10)

Proof. Fix any i = 0, · · · , t. We notice that the set function g is non-decreasing,
indeed g(A) ≤ g(A′) for all A ⊆ A′. Moreover, recalling that a set function
f : 2X → R

+ on the ground set X is submodular iff f(A) + f(A′) ≥ f(A ∪ A′) +
f(A ∩ A′), for all A,A′ ⊆ X, it is easy to see that g(A) is also a submodular
function on the ground set of the subsets of V + that contain P 0. Considering
that P 0 ⊆ OPT, we can apply to g a result in [26] and we have that

g(OPT) ≤ g(P i) +
∑

u∈OPT−P i

(g(P i ∪ {u}) − g(P i)) (11)

Hence, for any i = 0, · · · , t − 1 we get

g(OPT) ≤ g(P i) +
∑

u∈OPT−P i

(g(P i ∪ {u}) − g(P i)) by (11)

= g(P i) +
∑

u∈OPT−P i

(|Γ+(P i ∪ {u})| − |Γ+(P i)|) by the definition of g(·)

≤ g(P i) +
∑

u∈OPT−P i

(|Γ+(P i ∪ Pu)| − |Γ+(P i)|) since {u} ⊆ Pu

≤ g(P i) +
∑

u∈OPT−P i

cuθi+1 by (5), since u ∈ OPT − P i ⊆ Ii − P i

≤ g(P i) + θi+1(k − |Γ −(P 0)|)Δ by (9)

=

i∑

�=1

cv�θ� + θi+1(k − |Γ −(P 0)|)Δ by Claim 3.
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and, following the above reasoning for i = t we get

g(OPT) ≤ g(P t) +
∑

u∈OPT−P t

(|Γ+(P t ∪ Pu)| − |Γ+(P t)|)

≤ g(P t) +
∑

u∈OPT−P t

cuθ by (7), since u ∈ OPT − P t ⊆ I ′ − P t

=
t∑

�=1

cv�
θ� + θ(k − |Γ−(P 0)|)Δ by Claim 3 and (9) .

��
Lemma 1.

g(P t ∪ Pv)
g(OPT)

> 1 − e−1/Δ (12)

Proof. We need some definitions. Define

B0 = 0, Bi =
i∑

�=1

cv�
for i = 1, · · · , t, Bt+1 =

t∑

�=1

cv�
+ cv.

By (8) we have
β = k − |Γ−(P 0)| < Bt+1 (13)

Furthermore, for i = 0, · · · , t define

ρj =

{
θi if j = Bi−1 + 1, · · · , Bi

θ if j = Bt + 1, · · · , Bt+1

(14)

Hence, for i = 1, · · · , t, we have

Bi∑

j=1

ρj =
i∑

�=1

cv�
θ� and

Bt+1∑

j=1

ρj =
t∑

�=1

cv�
θ� + cvθ. (15)

We use now the above definitions to bound g(OPT) and g(P t ∪ Pv). By (10)

g(OPT) ≤ min

{

min
0≤i≤t−1

{
i∑

�=1

cv�
θ� + θi+1βΔ

}

,

t∑

�=1

cv�
θ� + θβΔ

}

by the definition ofβ in (13)

= min
0≤i≤t

⎧
⎨

⎩

Bi∑

j=1

ρj + ρBi+1βΔ

⎫
⎬

⎭
by (15) and (14)

= min
1≤s≤Bt+1

⎧
⎨

⎩

s−1∑

j=1

ρj + ρsβΔ

⎫
⎬

⎭
by the definition of Bt+1.
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By Claim 4 and (15) we have g(P t ∪Pv) =
∑t

�=1 cv�
θ� + cvθ =

∑Bt+1
j=1 ρj . Hence,

g(P t ∪ Pv)
g(OPT)

≥
∑Bt+1

j=1 ρj

mins=1,··· ,Bt+1

{∑s−1
j=1 ρj + ρsβΔ

} (16)

In order to bound the right end side of (16), we use the following fact.

Fact 1 ([26]). If a and b are arbitrary positive integers, ρj for j = 1, · · · , a are
arbitrary non negative reals and ρ0 > 0

∑a
j=1 ρj

mins=1,··· ,a

{∑s−1
j=1 ρj + bρs

} > 1 − e−a/b

Hence, we get g(P t∪Pw)
g(OPT) ≥ 1− e−Bt+1/(βΔ) > 1− e−1/Δ where the last inequality

holds since Bt+1 > β by (13). ��
We show now that the bound 1 − e−1/Δ also holds for |Γ+(P t)|/|Γ+(OPT)|.

Recalling that we are considering Algorithm2 with input U = {u1, u2}, where
u1 and u2 are the nodes defined in (3), we are able to prove the following claim.

Claim 6. |Γ+(P t ∪ Pv)| − |Γ+(P t)| ≤ |Γ+(P 0)|/2.

Proof. Recalling that the set P t = P 0 ∪ Pv1 ∪ · · · ∪ Pvt
is the union of disjoint

sets, and that |Γ+(·)| is a submodular set function, we can write

|Γ+(P t∪Pv)| − |Γ+(P t)| = |Γ+(P 0∪Pv1∪ · · · ∪Pvt∪Pv)| − |Γ+(P 0∪Pv1∪ · · · ∪Pvt)|
≤ |Γ+(Pv)| − |Γ+(∅)| = |Γ+(Pv)|

Furthermore, recalling that Pv = Pv(I ′, St) = {u ∈ I ′ −PSt | Γ−(u) ⊆ Γ−({v}∪
St)} and that P{v} = {u ∈ V + | Γ−(u) ⊆ Γ−(v)} we have Pv ⊆ P{v}. Since
|Γ+(·)| is not decreasing then |Γ+(Pv)| ≤ |Γ+(P{v})|. From this and using the
definition of u1 in (3) we have

|Γ+(P t ∪ Pv)| − |Γ+(P t)| ≤ |Γ+(P{v})| ≤ |Γ+(P{u1})|. (17)

We now derive a further bound on |Γ+(P t ∪ Pv)| − |Γ+(P t)|. To this aim,
we notice that P 0 = P{u1} ∪Pu2(V

+, {u1}) is the union of disjoint sets and that
Pv ⊆ Pv(V +, {u1})); using this and the definition of u2 in (3), we have

|Γ+(P t ∪ Pv)| − |Γ+(P t)| =

≤ |Γ+(P{u1} ∪ Pv)| − |Γ+(P{u1})| ≤ |Γ+(P{u1} ∪ Pv(V +, {u1}))| − |Γ+(P{u1})|
≤ |Γ+(P{u1} ∪ Pu2(V

+, {u1}))| − |Γ+(P{u1})| = |Γ+(P 0)| − |Γ+(P{u1})| (18)

The claim follows by summing up (17) and (18). ��
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We are now ready to conclude the proof of Theorem2. We have

|Γ+(P t)| = |Γ+(P 0)| + g(P t)

= |Γ+(P 0)| + g(P t ∪ Pv) − (g(P t ∪ Pv) + g(P t))

= |Γ+(P 0)| + g(P t ∪ Pv) − (|Γ+(P t ∪ Pv)| − |Γ+(P t)|)
≥ |Γ+(P 0)| + (1−e−1/Δ)g(OPT) − (|Γ+(P t ∪ Pv)|−|Γ+(P t)|) by Lemma 1

≥ |Γ+(P 0)| + (1−e−1/Δ)g(OPT) − |Γ+(P 0)|/2 by Claim 6

= |Γ+(P 0)|/2 + (1−e−1/Δ)|Γ+(OPT)| − (1−e−1/Δ)|Γ+(P 0)| by def. of g(·)
= |Γ+(P 0)|(1/2 − (1−e−1/Δ)) + (1−e−1/Δ)|Γ+(OPT)|
≥ (1 − e−1/Δ)|Γ+(OPT)| since Δ ≥ 2.

Hence, after the first iteration in which the algorithm eliminates (at line 5)
an element of the optimal solution OPT, it holds that |Γ+(P t)|

|Γ+(OPT)| ≥ 1 − e−1/Δ.

Noticing that subsequent iterations of Algorithm 2 can only improve the ratio,
we can conclude that Theorem 2 holds.

4 Concluding Remarks: Extensions and Open Problems

In this section we summarize some additional results and problems related to
the MBDD problem. Namely, we consider the following Problems 3 and 4.

Problem 3. (Maximum Dual Domination (MDD)) Given a network G =
(V = (V + ∪ V −), E), find D ⊆ V + which maximizes |Γ+(D)| − |Γ−(D)|.
Problem 4. (Minimum Negative Dual Domination (mNDD)) Given G =
(V = (V +∪V −), E), find D ⊆ V + which dominates all positive nodes (Γ+(D) =
V +) and minimizes the number of dominated negative nodes |Γ−(D)|.
First of all, we mention that the MBDD problem is at least as hard as solving
any of the Problems 3 and 4. Indeed any optimal strategy OPT that solves the
MBDD problem can be used to solve with an extra polynomial time both the
Problems 3 and 4. Indeed for the Problem3 it is sufficient to run the OPT strategy
for any budget i = 1, . . . , |V −| and than choose the value that maximizes the
difference |Γ+(Si)| − |Γ−(Si)|, where Si denotes the output of the OPT strategy
with budget i. Similarly for the Problem4 it is sufficient to run the OPT strategy
increasing the value of the budget until Γ+(Si) = V +.

4.1 Trees

The MBDD problem, defined in Sect. 1, can be solved in polynomial time when
the graph G is a tree. Let T = (V = (V + ∪ V −), E) be a tree network and k be
an integer that represents our budget. Without loss of generality, we can root
the tree at a node r ∈ V +. The idea is then that, considering a node v and
one of its children u, there are three possibilities: v dominates u (i.e., v ∈ S),
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v is dominated by u (i.e., v /∈ S, u ∈ S); they do not dominate each other (i.e.,
u, v /∈ S). Taking this into account, one can design a dynamic programming
algorithm that traverses the input tree T bottom–up, in such a way that each
node is considered after all of its children have been processed.

Such an algorithm can be easily adapted to deal with Problems 3 and 4.
Summarizing, we have the following results, whose proof is omitted.

Theorem 3. The MBDD, mNDD, and MDD problems are solvable in linear
time on trees.

4.2 Hardness

By the same construction of the graph G′ as in the proof of Theorem1, it is
possible to show that:

– There exists a dominating set D in G of size at most k iff there exists a set
D′ ⊆ V + such that |Γ+(D′)| − |Γ−(D′)| ≥ n − k in G′.

– There exists a dominating set D in G of size at most k iff there exists a set
D′ ⊆ V + such that Γ+(D′) = V + and |Γ−(D′)| ≤ k.

Hence, DS is reducible in polynomial time to both Problems 3 and 4 and the
following result holds.

Theorem 4. The MDD problem is NP-hard.

For the mNDD problem, noticing that the above reduction is gap preserving, we
have the following result.

Theorem 5. There is no polynomial time approximation algorithm with any
constant factor better than log |V | for the mNDD problem unless P=NP.

4.3 Open Problem

From the above, we have that it is a natural question to ask if a logarithmic
approximation algorithm can be devised for the mNDD problem.
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Abstract. Given a graph G and a pair 〈e′, e′′〉 of distinct edges of
G, an edge-edge addition on 〈e′, e′′〉 is an operation that turns G into
a new graph G′ by subdividing edges e′ and e′′ with a dummy ver-
tex v′ and v′′, respectively, and by adding the edge (v′, v′′). In this
paper, we show that any 2-connected simple planar graph with mini-
mum degree δ(G) ≥ 3 and maximum degree Δ(G) can be augmented
by means of edge-edge additions to a 3-connected planar graph G′ with
Δ(G′) = Δ(G), where each edge of G participates in at most one edge-
edge addition. This result is based on decomposing the input graph into
its 3-connected components via SPQR-trees and on showing the exis-
tence of a planar embedding in which edge pairs from a special set share
a common face. Our proof is constructive and yields a linear-time algo-
rithm to compute the augmented graph.

As a relevant application, we show how to exploit this aug-
mentation technique to extend some classical NP-hardness results
for bounded-degree 2-connected planar graphs to bounded-degree
3-connected planar graphs.

1 Introduction

Many computational problems on planar graphs drastically change their com-
plexity when the degree of connectivity increases. This turns out to be partic-
ularly relevant for graph embedding problems, where connectivity plays a key
role. In fact, while simply-connected and 2-connected planar graphs may admit
exponentially-many different combinatorial embeddings, a celebrated result by
Whitney [15] states that a 3-connected planar graph admits a unique embedding
(up to a flip). As an example, while testing whether a planar digraph admits an
upward-planar drawing, i.e., a planar drawing in which edges are drawn as y-
monotone curves, or a planar graph admits a rectilinear-planar drawing, i.e.,
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a planar drawing in which edges are drawn has either horizontal or vertical
segments, are NP-complete problems for 2-connected planar graphs [11], these
problems become polynomial-time solvable for 3-connected planar graphs [4,14].

When proving NP-hardness results for graph embedding problems on planar
graphs, it is often convenient to restrict the embedding choices of parts of a
construction by building a rigid structure or a structure with a fixed embedding.
To this aim, the most frequent approach is to reduce from problems that are
NP-complete for subclasses of 3-connected planar graphs, due to the uniqueness
of their combinatorial embedding.

Bounds on the maximum degree have also been frequently considered when
studying the complexity of graphs visualization problems. For instance, while
testing for the existence of an orthogonal drawing, i.e., a planar drawing where
vertices are mapped to grid points and edges are mapped to paths on the
grid, with the minimum number of bends is NP-complete for maximum degree-
4 graphs [11], it is instead polynomial-time solvable for maximum degree-3
graphs [9]. Clearly, when devising reductions to prove NP-hardness results for
problems in bounded-degree planar graphs, it is very helpful to reduce from
graph problems that are hard even when the maximum degree is bounded.

Contributions. In this paper, we introduce a novel augmentation technique for
2-connected planar graphs based on the existence of a special set of pairwise-
disjoint edge pairs (Theorem 1). We illustrate how to exploit this technique to
obtain strong NP-hardness results for planar graphs that are both 3-connected
and have bounded maximum degree, by giving simple proofs for some classical
NP-hard problems for these classes of graphs. Namely, we show that Maxi-
mum Independent Set (Theorem 2) and Steiner tree (Theorem 5) are NP-
complete even for 3-connected cubic planar graphs, and that 3-Coloring is
NP-complete even for 3-connected planar graphs of maximum degree 8 (Theo-
rem 4).

For space limits, proofs marked with (�) can be found in the full version [6].

2 Preliminaries

The graphs considered in this paper are finite, simple, and undirected. We assume
familiarity with basic concepts about vertex connectivity, graph embeddings, and
planarity. We also provide all the required definitions in the full version [6].

Graph Operations. Let G = (V,E) be a planar graph with two distinct desig-
nated edges e′, e′′ ∈ E. An expansion on the pair 〈e′ = (u, v), e′′ = (x, y)〉 turns
G into a new graph G′ by replacing edges e′ and e′′ with a given connected
graph A, called gadget, containing four vertices each of which is identified with
one of {u, v, x, y}. The expansion is planar if G′ is planar; see Fig. 1 for some
examples. Clearly, for an expansion to be planar A must also be planar and
G must admit an embedding in which e′ and e′′ are incident to the same face.
Gadget A is k-stable if G′ is k-connected and G′ has no k-cut X ⊂ V (A) such
that G′ −X contains vertices of A. We also say that the planar expansion based
on A is k-stable.
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Fig. 1. Planar expansions: Gadget A0 (a), A1 (b), and L� (c), resp., for the NP-hardness
of MIS (Theorem2), 3-Coloring (Theorem4), and ST (Theorem5).

Barnette and Grünbaum gave a complete set of operations to construct any 3-
connected graph from K4 [3,13]. We are going to exploit one of these operations,
which is also a simple planar expansion, that is defined as follows: An edge-edge
addition on the pair 〈e′, e′′〉 is a planar expansion that turns G into a new planar
graph G′ by subdividing edges e′ and e′′ with a dummy vertex v′ and v′′, respec-
tively, and by adding the edge (v′, v′′). Clearly, an edge-edge addition is 2-stable.

SPQR-Trees. We consider uv-graphs with two special pole vertices u and v,
which can be constructed in a fashion very similar to series-parallel graphs.
Namely, an edge (u, v) is a uv-graph with poles u and v. Now, let Gi be a
uv-graph with poles ui, vi, for i = 1, . . . , k, and let H be a planar graph with
two designated vertices u and v and k + 1 edges uv, e1, . . . , ek. We call H the
skeleton of the composition and its edges are called virtual edges; the edge uv is
the parent edge and u and v are the poles of the skeleton H. To compose the
Gi’s into a uv-graph with poles u and v, we remove the edge uv and replace
each ei by Gi, for i = 1, . . . , k, by removing ei and identifying the poles of Gi

with the endpoints of ei. In fact, we only allow three types of compositions: in
a series composition the skeleton H is a cycle of length k + 1, in a parallel com-
position H consists of two vertices connected by k + 1 parallel edges, and in a
rigid composition H is 3-connected.

It is known that for every 2-connected graph G with an edge uv, the graph
G−uv is a uv-graph with poles u and v. Much in the same way as series-parallel
graphs, the uv-graph G − uv gives rise to a (de-)composition tree T describing
how it can be obtained from single edges. The nodes of T corresponding to edges,
series, parallel, and rigid compositions of the graph are Q-, S-, P-, and R-nodes,
respectively. To obtain a composition tree for G, we add an additional root Q-
node representing the edge uv. To fully describe the composition, we associate
with each node μ its skeleton denoted by skel(μ). For a node μ of T , the pertinent
graph pert(μ) is the subgraph represented by the subtree with root μ.

Let μ be a node of T , we denote the poles of μ by uμ and vμ. In this paper, we
will assume the edge (uμ, vμ) to be part of both skel(μ) and pert(μ). Let Eμ be
an embedding of pert(μ). The left (resp., right) outer face of Eμ is the face that
is to the right (resp., to the left) of the edge (uμ, vμ) when traversing this edge
from uμ to vμ. The outer face of Eμ is the one obtained from Eμ after removing
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Fig. 2. (left) A 2-connected planar graph G and (right) the SPQR-tree T of G rooted
at the edge e = uv. Skeletons of non-leaf nodes of T are depicted; virtual edges cor-
responding to edges of G are thin, whereas virtual edges corresponding to S-, P-, and
R-nodes are thick blue curves. Dashed arrowed curves connect the (dotted) parent edge
in the skeleton of a child node with the virtual edge representing the child node in the
skeleton of its parent. (Color figure online)

the edge (uμ, vμ), i.e., the open region obtained as the union of the left outer
face of Eμ, of the right outer face of Eμ, and of the edge (uμ, vμ).

The SPQR-tree of G with respect to the edge uv, originally introduced by
Di Battista and Tamassia [8], is the (unique) smallest decomposition tree T for
G; refer to Fig. 2 for an example. Using a different edge u′v′ of G and a com-
position of G − u′v′ corresponds to re-rooting T at the node representing u′v′.
It thus makes sense to say that T is the SPQR-tree of G. The SPQR-tree of
G has size linear in the size of G and can be computed in linear time [12]. Pla-
nar embeddings of G correspond bijectively to planar embeddings of all skele-
tons of T ; the choices are the orderings of the parallel edges in P-nodes and
the embeddings of the R-node skeletons, which are unique up to a flip [15].
When considering rooted SPQR-trees, we assume that the embedding of G
is such that the root edge is incident to the outer face, which is equivalent
to the parent edge being incident to the outer face in each skeleton. Hence,
we only consider embeddings of the skeletons and of the pertinent graphs of
each node with their poles lying on the outer face.

Canonical Ordering. Let G = (V,E) be a 3-connected plane graph with
vertices v2, v1, and vn in this clockwise order along the outer face of G. Let
π = (P1, . . . , Pk) be an ordered partition of V into paths, where P1 = (v1, v2)
and Pk = (vn). Define Gi to be the subgraph of G induced by P1 ∪ . . . ∪ Pi, and
denote by Ci the boundary of the outer face of Gi. We say that π is a canonical
ordering [10] for G if:

– each Ci with i > 1 is a cycle containing the edge (v1, v2);
– each Gi is 2-connected and internally 3-connected, that is, removing two inte-

rior vertices of Gi does not disconnect it; and
– for each i ∈ {2, . . . , k − 1}, one of the two following conditions holds:
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Fig. 3. (left) Pertinent graph pert(μ) of an e-externally 3-connectible S-node μ and
(right) the subdivision of a 3-connected planar graph obtained by performing an edge-
edge addition on 〈e, (uμ, vμ)〉 in pert(μ).

(a) Pi is a singleton {z}, where z belongs to Ci and has at least one neighbor
in G \ Gi.

(b) Pi is a chain {z1, . . . , zl}, where each zj has at least one neighbor in
G \ Gi, and where z1 and zl each have one neighbor on Ci−1, and these
are the only two neighbors of Pi in Gi−1.

Observe that, if Pi is a chain, then the two neighbors of z1 and zl on Ci−1

are adjacent in Ci−1.

NP-Hard Problems. An independent set in a graph G = (V,E) is a subset
V ′ ⊆ V of pairwise non-adjacent vertices. The Maximum Independent Set
(MIS) problem asks for a maximum-size independent set of a graph.

A 3-coloring of a graph G = (V,E) is an assignment c : V → {1, 2, 3} such
that c(u) 	= c(v), for every edge (u, v) ∈ E. The 3-Coloring problem asks
whether a given graph admits a 3-coloring.

Let (G,T, k) be a triple where G = (V,E) is a graph, T ⊆ V is a subset
of the vertices of G, called terminals, and k is a positive integer. The Steiner
tree (ST) problem asks whether (G,T ) admits a Steiner tree, i.e., a subtree
of G containing all the terminals in T , consisting of at most k edges.

3 Augmentation Technique

In this section, we present an algorithm to augment in linear time any 2-
connected planar graph G with minimum degree δ(G) ≥ 3 and maximum degree
Δ(G) to a 3-connected planar graph G′ with Δ(G′) = Δ(G), by means of edge-
edge additions on edge pairs of G, where each edge participates in at most one
edge-edge addition. More formally, we prove the following.

Theorem 1. Let G = (V,E) be a 2-connected planar graph with minimum
degree δ(G) ≥ 3 and maximum degree Δ(G). There exist pairs 〈e′

1, e
′′
1〉,

〈e′
2, e

′′
2〉, . . . , 〈e′

k, e′′
k〉 of distinct edges in E such that:

(i) any two pairs 〈e′
i, e

′′
i 〉 and 〈e′

j , e
′′
j 〉, with 1 ≤ i < j ≤ k, are pairwise disjoint,

i.e., it holds {e′
i, e

′′
i } ∩ {e′

j , e
′′
j } = ∅, and
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(ii) performing edge-edge additions on 〈e′
i, e

′′
i 〉, for i = 1, . . . , k, yields a

3-connected planar graph G′ with Δ(G′) = Δ(G).

Further, such pairs can be computed in linear time.

Let T be the SPQR-tree of G, let μ be a node of T , and let e be an edge of
pert(μ) incident to the outer face of some embedding Eμ of pert(μ). Observe that,
by the definition of the outer face of a pertinent graph, it holds that e 	= (uμ, vμ).
Then, Eμ is e-externally 3-connectible if either 1. μ is a Q-node, i.e., pert(μ) = e,
or 2. the graph obtained from pert(μ) by performing an edge-edge addition on
〈e, (uμ, vμ)〉 is a subdivision of a 3-connected planar graph whose only degree-2
vertices, if any, are the poles uμ and vμ of μ; refer to Fig. 3. Also, we say that μ is
e-externally 3-connectible (or, simply, externally 3-connectible) if pert(μ) admits
an e-externally 3-connectible embedding for some edge e of pert(μ).

Let μ be a non-Q node of T , let e be an edge of pert(μ), and let pert∗(μ)
be a planar graph obtained by means of edge-edge additions on pairwise-disjoint
edge pairs of pert(μ). If e has not been used in any edge-edge addition, i.e.,
e ∈ E(pert(μ)) \ E(pert∗(μ)), we say that e is a free edge.

Definition 1. Let Lμ = [e1, e2] and Rμ = [e3] be two lists of free edges of
pert∗(μ) and let E∗

μ be an embedding of pert∗(μ). We say that the 4-tuple
〈pert∗(μ), E∗

μ, Lμ, Rμ〉 is extensible if (i) Lμ ∩ Rμ = ∅, (ii) the free edges in
Lμ and in Rμ belong to distinct faces of E∗

μ that are incident to the parent
edge (uμ, vμ) of μ, i.e., the left and the right outer face of E∗

μ, and (iii) E∗
μ is

e-externally 3-connectible for any e ∈ Lμ.

Without loss of generality, by possibly flipping the embedding, we may further
assume that the free edges in Lμ and in Rμ are incident to the left and to the
right outer face of E∗

μ, respectively. Observe that, once pert∗(μ), Lμ, and Rμ have
been fixed, there exists a unique (up to a flip) embedding E∗

μ of pert∗(μ) such
that 〈pert∗(μ), E∗

μ, Lμ, Rμ〉 is extensible. Hence, to simplify the notation, in the
following we will omit to specify the embedding of pert∗(μ) in an extensible tuple.

If μ is a Q-node representing edge e = (uμ, vμ), then we also say that the
triple 〈pert∗(μ) = e, Lμ = [e], Rμ = [e]〉 is extensible, thus allowing |Lμ| = 1 and
Lμ ∩ Rμ 	= ∅ in this case.

Let μ be an internal node of T and let f be a face of an embedding of skel(μ).
Consider the counter-clockwise sequence (eμ1 , eμ2 , . . . , eμ|f|) of virtual edges of
skel(μ) incident to f . This sequence induces a natural circular order Of for
the free edges in

⋃|f |
i=1 Lμi

. Further, order Of induces a unique linear order for
each list Lμi

such that the free edges in the list are consecutive in Of . In the
following, we assume the lists Lμi

’s be ordered according to such a linear order;
see, e.g., Fig. 4a.

Our strategy to prove Theorem 1 is as follows. We root the SPQR-tree T
of G at an arbitrary Q-node ρ whose unique child ξ is an R-node. Observe that
such a Q-node exists, since δ(G) ≥ 3 and G is simple, and that the poles of ξ
have degree at least 2 in pert(ξ). We process the nodes of T bottom-up and show
how to compute, for each non-root node μ with children μ1, . . . , μk, an extensible
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Fig. 4. Illustration for the proof of Theorem1 when μ is an S-node with three non-
Q-node children ν1, ν2, and ν3 ((a),(b)), and a P-node with a Q-node child ((c),(d));
free edges are thick red. ((a),(c)) Graphs pert+(μ). ((b),(d)) Obtaining pert∗(μ) from
pert+(μ) via edge-edge additions.

triple 〈pert∗(μ), Lμ, Rμ〉, starting from the extensible triples 〈pert∗(μi), Lμi
, Rμi

〉
of its children. When we reach the root ρ, since the triple 〈pert∗(ξ), Lξ, Rξ〉 is
extensible and since the poles of ξ have degree at least 2 in pert∗(ξ), performing
the edge-edge addition on 〈(uρ, vρ), e ∈ Lξ〉 in the graph pert∗(ξ) clearly yields
a 3-connected planar graph G′ obtained via edge-edge additions on pairwise-
disjoint edge pairs of G.

If μ is a leaf Q-node representing edge e = (uμ, vμ), then there is nothing
to be done, as the triple 〈pert∗(μ) = e, Lμ = [e], Rμ = [e]〉 is extensible by
definition.

We now show how to compute extensible triples for each internal node μ ∈ T .

S-nodes. Suppose that μ is an S-node with children μ1, . . . , μk. Recall that, since
μ is an internal node of T , it has at least two children; also, since δ(G) ≥ 3, no
two virtual edges corresponding to Q-node children of μ are adjacent in skel(μ).
Hence, μ has at least a non-Q-node child ν. We distinguish two cases based on
whether μ has exactly one (Case S1) or more than one (Case S2) non-Q-node
children.

Case S1. Let ν be the unique non-Q-node child of μ and let eν be the virtual
edge representing ν in skel(μ). We set pert∗(μ) to be the graph obtained from
skel(μ) by replacing eν with pert∗(ν), and by setting Lμ = Lν and Rμ = Rν .

Case S2. Let ν1, . . . , νs be the non-Q-node children of μ ordered as the corre-
sponding virtual edges appear in skel(μ) from uμ to vμ. First, we construct
an auxiliary embedded graph pert+(μ) starting from skel(μ), by replacing
each virtual edge eνi

in skel(μ) with pert∗(νi), for i = 1, . . . , s; where the
replacement is performed in such a way that the free edges in lists L[νi]’s
(resp. R[νi]’s) are incident to the left outer face (resp. the right outer face)
of the embedding (see Fig. 4a). Then, we obtain pert∗(μ) from pert+(μ) by
performing edge-edge additions on 〈Lνi

[2], Lνi+1 [1]〉, for i = 1, . . . , s − 1 (see
Fig. 4b). Finally, we set Lμ = [Lν1 [1], Lνs

[2]] and Rμ = Rν1 .
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Lemma 1. The tuple constructed for Case S1 is extensible.

Proof. First, Lμ and Rμ satisfy Conditions i and ii of Definition 1, since Lν

and Rν satisfy Condition i and since these sets are incident to the left and to
the right outer face of the embedding of pert∗(ν), respectively, by hypothesis.
Second, Condition iii holds due to the fact that (a) pert∗(ν) is externally 3-
connectible, by hypothesis, and that (b) the poles of the (at most two) virtual
edges of skel(μ) representing Q-node children of μ cannot be part of any 2-cut
of pert∗(μ) \ (uμ, vμ), since these virtual edges are not adjacent in skel(μ). ��

Lemma 2. The tuple constructed for Case S2 is extensible.

Proof. Condition i of Definition 1 holds since Lν1 ∩ Rν1 = ∅, by hypothesis,
and since (Lν1 ∪ Rν1) ∩ Lνs

= ∅, due to the fact that the children of μ are
edge-disjoint. Condition ii holds since edges in Lν1 and Lνs

are incident to the
same face, by construction. To see that Condition iii holds, observe that each
edge-edge addition on 〈Lνi

[2], Lνi+1 [1]〉 has the effect of turning two non-Q-node
children νi and νi+1 of μ, together with the unique Q-node child of μ possibly
separating them in skel(μ), into an externally 3-connectible node; see, e.g., nodes
ν2 and ν3 = νs in Fig. 4b. Hence, at the end of the augmentation, there might
exist at most two non-adjacent virtual edges representing Q-node children of μ
incident to the poles of μ, whose poles however do not contribute to any 2-cut
of pert∗(μ) \ (uμ, vμ). ��

P-nodes. Suppose that μ is a P-node. Note that, since G is simple, μ has at
most one Q-node child. First, we select an arbitrary embedding H of skel(μ)
such that the unique Q-node child of μ, if any, is incident to the right outer face
of H. Let ν1, . . . , νs be the left-to-right ordering of the non-Q-node children of
μ in H, where ν1 is the child of μ whose corresponding virtual edge is incident
to the left outer face of H. Second, we construct an auxiliary embedded graph
pert+(μ) starting from H, by replacing each virtual edge eνi

in skel(μ) with
pert∗(eνi

), for i = 1, . . . , s; where the replacement is performed in such a way
that the free edges in L[ν1] are incident to the left outer face of the constructed
embedding and that, for any two consecutive children νi and νi+1, it holds that
R[νi] and L[νi+1] are incident to a common face (see Fig. 4c). Third, we obtain
pert∗(μ) from pert+(μ) by performing edge-edge additions on 〈Rνi

[1], Lνi+1 [2]〉,
for i = 1, . . . , s−1 (see Fig. 4d). Finally, we set Lμ = Lν1 and Rμ = Rνs

, if there
exists no Q-node child of μ, or Rμ = [(uμ, vμ)], otherwise.

Lemma 3. The tuple constructed in the case in which μ is a P-node is extensible.

Proof. If μ has no Q-node child, then Condition i of Definition 1 holds since
Lν1 ∩Rνs

= ∅ (due to the fact that the children of μ are edge-disjoint); otherwise,
it holds since (uμ, vμ) /∈ pert∗(ν1). Condition ii holds since, in the constructed
embedding, we have that (a) the free edges in Lν1 are incident to the left outer
face, and that (b) the edges in Rνs

are incident to the right outer face, if μ has
no Q-node child, or edge (uμ, vμ) is incident to the right outer face, otherwise.
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To see that also Condition iii holds, it suffices to observe that the performed
edge-edge additions merge each two consecutive externally 3-connectible chil-
dren into a new externally 3-connectible node. Thus, the constructed triple is
extensible. ��

R-nodes. Suppose that μ is an R-node. Assume that μ has at least a non-
Q-node child, as otherwise pert(μ) is a 3-connected planar graph and it is
trivial to define an extensible triple. To simplify the description of this case,
we remove the parent edge from skel(μ), which is hence only internally 3-
connected. Let H be the unique (up to a flip) embedding of skel(μ) and let
π = (P1 = (uμ, v2), P2, . . . , Pk = vμ) be a canonical ordering of skel(μ), where
v2 is the neighbor of uμ different from vμ that is incident to the outer face of
H. Also, let skeli(μ), with i = 2, . . . , k, be the embedded subgraph of skel(μ)
induced by vertices

⋃i
j=1 Pj and Ci be the cycle bounding the outer face of

skeli(μ). For i = 2, . . . , k, we denote by P ′
i the path (vi,1, Pi, vi,s), where vi,1

and vi,s are the neighbors of the first and of the last vertex of Pi in skeli−1(μ),
respectively. Recall that, since π is a canonical ordering, skeli(μ) is internally
3-connected. Further, let pert+i (μ), with i = 2, . . . , k, be the embedded graph
inductively defined as follows. Graph pert+2 (μ) is the embedded planar graph
obtained from cycle skel2(μ), by replacing each virtual edge eh corresponding to
a non-Q-node child νh of μ with pert∗(μh); where the replacement is performed
in such a way that the free edges in Rνh

are incident to the outer face of the
resulting embedding (see Figs. 5a and b). For i = 3, . . . , k, graph pert+i (μ) is the
embedded planar graph obtained from pert+i−1(μ)∪P ′

i , by replacing each virtual
edge eh ∈ P ′

i corresponding to a non-Q-node child νh of μ with pert∗(μh).
Our proof strategy is as follows. We show how to augment pert+i (μ) to an

embedded planar graph pert∗
i (μ) via edge-edge additions so that the following

two properties hold: (a) the outer face of pert∗
i (μ) contains a set Fi of |Ci| free

edges, each of which is separated by two consecutive vertices of skeli(μ), and
(b) pert∗

i (μ) is internally 3-connected and its 2-cuts, if any, are 2-cuts of skeli(μ)
as well. This allows us to construct an extensible tuple for μ as follows. We set
pert∗(μ) = pert∗

k(μ), and initialize Lμ and Rμ by selecting edges in Fk incident
to the left and to the right outer face of pert∗

k(μ), respectively. Since the paths
incident to the left and to the right outer face of skelk(μ) are edge-disjoint and
have length at least 2 (due to the fact that μ is an R-node), then Property (a)
allows us to initialize Lμ and Rμ so to satisfy Conditions i and ii of Definition 1.
Also, Conditions iii of Definition 1 is immediately satisfied, as adding the edge
(uμ, vμ) to pert∗(μ) yields a 3-connected planar graph, due to Property (b).

The augmentation is done by induction on i. We first assume that the child
of μ corresponding to the virtual edge (uμ, v2) is a Q-node. Then, we show how
to drop this assumption by, possibly, performing an extra edge-edge addition.

The base case is i = 2; refer to Fig. 5. To obtain pert∗
2(μ) we proceed as

follows. We initialize pert∗
2(μ) = pert+(μ). Then, we perform edge-edge additions

on 〈Lνi
[2], Lνi+1 [1]〉, for i = 1, . . . , s − 1, where we assume that the virtual

edge corresponding to νi precedes the virtual edge corresponding to νi+1 when
traversing P ′

2 from v2,1 to v2,s (see Fig. 5c). Clearly, pert∗
2(μ) satisfies Properties

(a) and (b).
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v2,1 = uμ v2,6 = v2

v2,2

skel2(μ)

v2,3 v2,4

v2,5

(a)

v2,1 = uμ v2,6 = v2

v2,2

v2,3 v2,4

v2,5pertν2

pertν1

pertν3

pert+2 (μ)

(b)

v2,1 = uμ v2,6 = v2

v2,2

pert2(μ)

v2,3 v2,4

v2,5

(c)

Fig. 5. Graphs for the base case of the proof of Theorem1 when μ is an R-node.

In the inductive case 2 < i ≤ k, and we assume to have already computed
graph pert∗

i−1(μ). Recall that, pert∗
i−1(μ) is obtained from pert+i−1(μ) via edge-

edge additions so that Properties (a) and (b) are satisfied, by the inductive
hypothesis. Let Pi be the i-th path in π and suppose |Pi| > 1, i.e., Pi is not a
single vertex; the case |Pi| = 1 can be treated similarly. Let P ′

i = (vi,1, . . . , vi,s)
be the path in skeli(μ) associated with Pi. Note that, since π is a canonical
ordering, there exists a virtual edge e� = (vi,1, vi,s) that is incident to the outer
face of skeli−1(μ). Let ν� be the child of μ corresponding to the virtual edge e�

in skel(μ). Let e be a free edge along the outer face of pert∗
i−1(μ) belonging to

pert∗(ν�) (which exists by Property (a)). We construct pert∗
i (μ) as follows. First,

initialize pert∗
i (μ) = pert∗

i−1(μ). Second, we add to pert∗
i (μ) all the vertices and

edges of P ′
i and embed them planarly in the outer face of pert∗

i (μ) (see Fig. 6a).
Third, we replace each virtual edge in P ′

i corresponding to a non-Q-node child
νh of μ with pert∗(νh) (see Fig. 6b). Finally, we perform an edge-edge addition
on 〈Lν1 [1], e〉 and edge-edge additions on 〈Lνi

[2], Lνi+1 [1]〉, for i = 1, . . . , s − 1
(see Fig. 6c). Thus, pert∗

i (μ) is obtained from pert+i (μ) via edge-edge additions,
and satisfies Properties (a) and (b).

Fig. 6. Graphs for the inductive case of Theorem1 when μ is an R-node.

To complete the proof of Theorem 1, we need to show that the child σ of μ
corresponding to the virtual edge (uμ, v2) need not be a Q-node. Observe that in
the construction, we did not make use of the free edges of pert∗(σ) in any edge-edge
addition. Thus, performing an edge-edge addition on 〈Lσ[2], Rτ [1]〉, where τ is the
child of μ whose corresponding virtual edge is incident to uμ and to the right outer
face of skel(μ) yields a graph pert∗(μ) satisfying Properties (a) and (b).
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Lemma 4 (�). For 2 < i ≤ k, graph pert∗
i (μ) constructed in the case in which

μ is an R-node satisfies Properties (a) and (b).

By Lemmas 1 to 4, we can therefore compute extensible triples for all non-root
nodes of T . We now argue about the running time of the presented algorithm.
First, the tree T has size linear in the size of G and can be computed in linear
time [12]. Second, a canonical ordering of skel(μ) can be computed in O(| skel(μ)|)
time [10]. Third, by simply storing the free edges involved in each edge-edge
addition without actually performing such a planar expansion, we can process
each node μ of T in O(| skel(μ)|) time. This concludes the proof of Theorem1.

4 NP-Hardness Results via 2-Stable Planar Expansions

We now show three examples of how to exploit Theorem1 to extend NP-hardness
results from the class of 2-connected planar graphs with minimum degree 3
and bounded maximum degree to the class of 3-connected planar graphs with
bounded maximum degree.

The general strategy is as follows. Given an NP-hard problem P that takes as
input a planar graph G and, possibly, a parameter k, we show how to construct a
new planar graph G′ by performing 2-stable planar augmentations on edge pairs
of G, computed by applying Theorem1, based on a problem-specific gadget A
of constant size. This is done so to obtain a graph G′ such that (G, k) is a
yes instance for problem P if and only if (G′, k′) is a yes instance for problem
P, where k′ = f(k) and f is a computable polynomial function. While the
correctness of the transformation will depend on the choice of gadget A, it is
easy to see that G′ will be 3-connected by Condition ii of Theorem1, assuming
that A is 2-stable. Moreover, since no two edge pairs computed by Theorem 1
share an edge, by Condition i of Theorem1, and since A has constant size,
we have that G′ has bounded maximum degree if and only if G has bounded
maximum degree.

MIS. For a graph G, we denote by α(G) the size of a largest independent set in G.

Lemma 5 (�). Let G be a 2-connected cubic planar graph and let e and e′ be
two edges in E(G) incident to the same face of a planar embedding of G. Let G′

be the 2-connected cubic planar graph obtained from G by performing the planar
expansion illustrated in Fig. 1a on 〈e, e′〉. Then, α(G′) = α(G) + 5.

By applying Lemma 5 to the distinct edge pairs of a 2-connected cubic planar
graph determined by Theorem 1, we can give a new, and arguably simpler proof,
of the following result by Biedl, Kant, and Kaufmann [5, Theorem 4.2].

Theorem 2 (�). MIS is NP-complete for 3-connected cubic planar graphs.

3-Coloring. We are going to use the following known result.

Theorem 3. ([7], Theorem 4). 3-Coloring is NP-complete for 2-connected
4-regular planar graphs.
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Given an edge pair 〈(u, v), (x, y)〉, we define the gadget A1 as the 2-connected
planar graph containing u, v, x, and y, illustrated in Fig. 1b. Clearly, gadget A1 is
2-stable. The key property of gadget A1 is that in any of its 3-colorings the vertices
in each pair {u, u′}, {v, v′}, {x, x′}, and {y, y′} need to have the same color.

We can thus exploit Theorem 3, Theorem 1, and the fact that gadget A1 is 2-
stable to obtain the following theorem, where the bound on the maximum degree
derives from the fact that (i) a planar expansion using gadget A1 increases the
degree of the end-vertices of the corresponding edge pair by 1, that (ii) each
edge is involved in at most one planar expansion, by Theorem1, and that (iii)
the original graph is assumed to be 4-regular, by Theorem3.

Theorem 4. 3-Coloring is NP-complete for 3-connected planar graphs of
maximum degree 8.

Steiner Tree. Given an edge pair 〈(u, v), (x, y)〉 and an integer � ≥ 1, we define
the ladder gadget L� of length � as the planar graph containing u, v, x, and y,
illustrated in Fig. 1c; the safe edges of L� are the dashed edges. Note that L� is
2-stable. We are going to use the following.

Lemma 6 (�). ST is NP-complete for 2-connected cubic planar graphs.

Let (G,T, k) be an instance of ST, where G is a 2-connected cubic planar
graph. We construct a graph G′ from G by performing a planar expansion on
each of the edge pairs computed by applying Theorem 1 on G, using a ladder
gadget L7k. By Theorem 1 and since ladder gadgets are 2-stable, we have that
G′ is cubic, 3-connected, and planar. Let E be a planar embedding of G′. As long
as there exists e ∈ E(G) \ E(G′), we select an edge e′ incident to a face of E the
edge e is incident to and perform a planar expansion on the pair 〈e, e′〉, using
a ladder gadget L7k. The edge e′ is selected such that either e′ ∈ E(G) \ E(G′)
or e′ is a safe edge of some L7k. Clearly, G′ is still planar, cubic, and 3-connected.
The expansions can be performed until E(G) \ E(G′) = ∅ due to the fact that
the ladder gadgets contribute with safe edges on all the faces edges e and e′ are
incident to. Since each edge of G participates in exactly one planar expansion,
since none of the ladder gadgets can be used as a shortcut, and since the shortest
path in L7k between pairs (u, v) and (x, y) has length 7, we have that instances
(G′, T ′ = T, k′ = 7k) and (G,T, k) are equivalent. Thus, Lemma 6 and the fact
that (G′, T ′, k′) can easily be constructed in polynomial time imply the following.

Theorem 5. ST is NP-complete for 3-connected cubic planar graphs.

Theorem 5 strengthens, for bounded-degree graphs, previous NP-hardness
results for ST in graphs with a unique (up to a flip) combinatorial embed-
ding [1,2].

5 Conclusions

In this paper, we introduced a new augmentation technique for 2-connected
planar graphs. As a notable application, we showed how this technique can be
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exploited to obtain strong NP-hardness results for planar graphs that are both
3-connected and have bounded maximum degree. We are confident that this
technique may turn useful in other contexts, such as in proving open conjectures
about planar graphs. For instance, consider a graph property H that is invariant
under edge subdivision and monotone, i.e., every subgraph of a graph satisfying
property H also satisfies property H. Then, our technique implies that in order
to prove that bounded-degree planar graphs satisfy property H, it suffices to
show that the property holds for 3-connected bounded-degree planar graphs.
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Abstract. Cops and robber game on a directed graph
−→
D initiates by

Player 1 placing k cops and then Player 2 placing one robber on the

vertices of
−→
D . After that, starting with Player 1, alternately the players

may move each of their tokens to the adjacent vertices. Player 1 wins if,
after a finite number of moves, a cop and the robber end up on the same
vertex and Player 2 wins otherwise. However, depending on the type of
moves the players make, there are three different models, namely, the
normal cop model : both cops and robber move along the direction of the
arcs; the strong cop model : cops can move along or against the direction
of the arcs while the robber moves along them; and the weak cop model :
the robber can move along or against the direction of the arcs while
the cops move along them. A graph is cop-win if Player 1 playing with
a single cop has a winning strategy. In this article, we study the three
models on some families of oriented graphs and characterize the cop-win
directed graphs for the third model.

1 Introduction

Cops and Robber is a popular two-player game introduced by Nowakowski and
Winkler [22] in 1983 having applications in artificial intelligence, graph search,
game development etc. [3,15,16] as well as significant implications in theory [23].
The game is extensively studied since its introduction giving rise to deep theory
(see [4] for details) and its numerous variations contributed to its extent.

Recently, Nicolas Nisse1 [8] introduced one of the variants (the strong cop
model) in directed graphs (digraphs) and asked to characterize the “cop-win”
graphs in two variants (the normal cop model and the strong cop model). In a
seminar (summer 2018) at Simon Fraser University, another natural variant was
discussed where the first author was present. In this article, we study all three
variants, starting by presenting their precise definitions.

This work is partially supported by the IFCAM project Applications of graph homo-
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1 GRASTA 2014: http://www-sop.inria.fr/coati/events/grasta2014/.

c© Springer Nature Switzerland AG 2019
C. J. Colbourn et al. (Eds.): IWOCA 2019, LNCS 11638, pp. 188–200, 2019.
https://doi.org/10.1007/978-3-030-25005-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25005-8_16&domain=pdf
http://www-sop.inria.fr/coati/events/grasta2014/
https://doi.org/10.1007/978-3-030-25005-8_16


Cops and Robber on Some Families of Oriented Graphs 189

Setup and initiation: We start with an oriented2 graph
−→
G and Player 1 places

k cops on its vertices (multiple cops can be on the same vertex). After that
Player 2 places the robber on one vertex of the graph.

Play: After the setup, Player 1 and 2 take turns to move their cops and robber,
respectively, with Player 1 taking the first turn.

Winning: Player 1 wins if after finitely many turns the robber and a cop are on
the same vertex. In this case, we say that the cop captures the robber. Player 2
wins if Player 1 does not win in finite number of moves.

Normal Move: Suppose uv is an arc. In a normal move, the cop/robber can move
only from u to v.

Strong Move: Suppose uv is an arc. In a strong move, the cop/robber can move
from u to v as well as from v to u.

Normal Cop Model: In their respective turns, Player 1 and Player 2 can perform
at most one normal move on each of its cops, and the robber respectively.

Strong Cop Model: In their respective turns, Player 1 can perform at most one
strong move on each of its cops, whereas Player 2 can perform at most one
normal move on the robber.

Weak Cop Model: In their respective turns, Player 1 can perform at most one
normal move on each of its cops, whereas Player 2 can perform at most one
strong move on the robber.

Now that we have described the three models, we define a few necessary
parameters. The normal (resp., strong, weak) cop number cn(

−→
G) (resp., cs(

−→
G),

cw(
−→
G)) of an oriented graph

−→
G is the minimum number of cops needed by

Player 1 to have a winning strategy in the normal (resp., strong, weak) cop
model. Furthermore, for a family F of oriented graphs

cx(F) = max{cx(
−→
G)|−→G ∈ F}

where x ∈ {n, s, w}. Given a fixed model, an oriented graph is cop-win if Player 1
has a winning strategy playing with a single cop.

Below we give a brief survey of the literature concerning the normal cop
model, followed by a summary of our results.

Survey: Hamidoune [12] considered the game on Cayley digraphs. Frieze et al. [9],
studied the game on digraphs and gave an upper bound of O

(
n(log log n)2

log n

)
for cop

number in digraphs. Along these lines, Loh and Oh [21] constructively proved the
existence of a strongly connected planar digraph with cop number greater than
three. They also prove that every n-vertex strongly connected planar digraph
has cop number at most O(

√
n).

2 An oriented graph is a directed graph without 2-cycles i.e. each edge has a direction.
For the purposes of this article, they are the same.
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Goldstein and Reingold [10] proved that deciding if k cops can capture a
robber is EXPTIME-complete if k is not fixed and either the initial positions
are given or the graph is directed. Later Kinnersley [19] proved that determining
the cop number of a graph or digraph is EXPTIME-complete. Kinnersley [20]
also showed that n-vertex strongly connected cop-win digraphs can have capture
time Ω(n2).

Hahn and MacGillivray [11] gave an algorithmic characterization of the cop-
win finite reflexive digraphs. They also showed that any k-cop game can be
reduced to 1-cop game (resulting in an algorithmic characterization for k-cop-
win finite reflexive digraphs). However, these results do not give a structural
characterization of such graphs. Later Darlington et al. [6] tried to structurally
characterize cop-win oriented graphs and gave a conjecture which was later dis-
proved by Khatri et al. [17], who also study the game in oriented outerplanar
graphs and line digraphs.

Recently, Hosseini and Mohar [13] (also see [14]) studied whether cop number
of planar Eulerian digraphs is bounded or not, and point to evidence of the
former.

Organization and Results: In Sect. 2, we compare the parameters cn(·), cs(·),
cw(·). The normal, strong and weak cop models are studied in Sects. 3, 4 and 5,
respectively. We give an outline of our results.

1. Normal Cop Model
– Prove a Mycielski-type result by constructing oriented graphs with high

normal cop number and girth.
– Characterize oriented triangle-free and outerplanar normal cop-win

graphs.
2. Strong Cop Model

– Find strong cop number of oriented planar graphs, oriented outerplanar
graphs and oriented series-parallel graphs.

– Prove that a specific class of oriented outerplanar graphs (whose weak
dual is a collection of paths) and oriented grids are strong cop-win.

3. Weak Cop Model
– Characterize weak cop-win oriented graphs.

Now we look into some relations between the parameters cn(·), cs(·), cw(·)
and some definitions.

2 Basic Results and Preliminaries

The first result follows directly from the definitions.

Proposition 1. For any oriented graph
−→
G we have cs(

−→
G) ≤ cn(

−→
G) ≤ cw(

−→
G).

Observe that there are plenty of oriented graphs, the transitive tournament
for instance, where equality hold in each of the cases. However, it is interesting
to study the gap between these parameters. But first we will introduce some
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notations and terminologies. Let uv be an arc of an oriented graph
−→
G . We

say that u is an in-neighbor of v and v is an out-neighbor of u. Let N−(u)
and N+(u) denote the set of in-neighbors and out-neighbors of u respectively. A
vertex without any in-neighbor is a source and a vertex without any out-neighbor
is a sink.

Proposition 2. Given any m,n ∈ N, there exists an oriented graph
−→
G such

that cn(
−→
G) − cs(

−→
G) = n and cw(

−→
G) − cn(

−→
G) ≥ m.

Proof. The oriented graph
−→
G =

−→
Gm,n is composed of two oriented graphs

−→
An

and
−→
B m. The oriented graph

−→
An is an orientation of the star graph such that

its central vertex v is a sink having degree n + 1.
We know that there exist graphs with arbitrarily high cop number in undi-

rected case [1]. Let Bm be a connected undirected graph with cop number at
least m. Let

−→
B n be such an orientation of Bm that it is a directed acyclic graph

having a single source u. The graph
−→
Gm,n is obtained by merging vertices u and

v (call this vertex vmerge). Note that cs(
−→
Gm,n) = 1 as Player 1 can place one

cop on vmerge and capture the robber in one move if it is in
−→
An or capture the

robber in a finite number of moves if it is in
−→
B m.

On the other hand, cn(
−→
Gm,n) = n + 1, as Player 1 must keep a cop on each

source to win, and since
−→
B m is a directed acyclic graph, one of the cops reaches

vmerge and then captures the robber in
−→
B m. Also, cw(

−→
Gm,n) ≥ m + n + 1 as

Player 1 needs to place n+1 cops at sources in
−→
An and it needs at least as many

cops as the cop number of Bm. ��
We end this section with some general notations and terminologies. The

out-degree of v is d+(v) = |N+(v)| and its in-degree is d−(v) = |N−(v)|. Let
N+[v] = N+(v) ∪ {v} denote the closed out-neighbourhood of v.

In the rest of this article, we refer to the robber as R; and to the cop, only
in case of cop-win graphs, as C.

If a cop moves to an in-neighbour of the robber R, then we say that the cop
attacks the robber. The robber is on a safe vertex from a cop if it cannot be
captured by the cop in the next turn of Player 1. The robber evades capture if
every time the cop attacks it, R can move to a safe vertex.

3 Normal Cop Model

In the context of cops and robbers on oriented graphs, the weakly connected case
reduces to solving the strongly connected case [9]. Hence it suffices to consider
strongly connected oriented graphs. We begin by constructing strongly connected
oriented graphs with arbitrarily high normal cop number and girth (length of a
smallest cycle in the graph).

Theorem 1. Given any g ≥ 5 and c ≥ 3, there exists a strongly connected
oriented graph

−→
Gg,c with girth at least g having cn(

−→
Gg,c) ≥ c + 1.
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Proof. We borrow a construction to form regular expander graphs with high
girth [18]. For sake of completeness, we present their complete construction.
(Also see [2].) Let G be a simple graph and let L be a set. Define the graph
GL to be a L-lift of G if V (GL) = V (G) × L, and for every edge uv ∈ E(G),
the sets Fu = {(u, li)}li∈L and Fv = {(v, li)}li∈L induce a perfect matching in
GL. Here G is the base graph and GL depends on the matching between Fu

and Fv assigned to each edge uv. Observe that the lifts of k−regular graphs
are also k−regular. From Amit and Nilial [2], it follows that there are lifts of G
which are δ−connected for δ ≥ 3, where δ is the minimum degree of G. For path
u − v − · · · −w in G, GL will have a unique path (u, li1) − (v, li2) − · · · − (w, lik),
for some li1 , li2 , . . . , lik ∈ L. The path u − v − · · · − w is called as the projection
of (u, li1) − (v, li2) − · · · − (w, lik).

Now consider a graph G with a fixed ordering π of m = |E(G)| edges, and
let L = {0, 1}m, that is, the set of all possible m-tuples of 0’s and 1’s. For
u, v ∈ V (G) and li, lj ∈ L, we connect (u, li) with (v, lj) in GL if uv ∈ E(G)
and li and lj differ only at the index of edge uv in the ordering π. So (u, li) is
adjacent to (v, lj) and (u, lj) is adjacent to (v, li). Hence for edge uv ∈ E(G),
the sets Fu(= {(u, li)}li∈L) and Fv(= {(v, li)}li∈L) induce a perfect matching in
GL. Thus GL is a L−lift of G.

Now we pick a shortest cycle C0 in GL. Its projection in G is also a cycle C.
We claim that for every edge uv ∈ C there are at least two edges in C0 between
Fu and Fv. Start at point (u, li) of C0. Let the next vertex in C0 be (v, lj); so li
and lj differ only at the index of uv in π. Now to reach (u, li) we need to flip the
value at the index of uv in π. This happens only if we traverse uv once again.
So |C0| ≥ 2|C|. Hence girth of GL is at least twice the girth of G.

To construct the oriented graph with arbitrarily high cop number and girth,
do the following. Take a K2c+1 and go on applying the above-mentioned lift
construction repeatedly until the girth is at least g. The resulting graph Gg,c is
Eulerian as degree of v in G is even and is the same as the degree of (v, li) in
Gg,c. Make the Eulerian circuit a directed circuit by assigning orientations to
the edges. This results in a strongly connected oriented graph with girth at least
g. Observe that the out-degree of each vertex is c. Thus its normal cop number
is at least c + 1 as we know that a strongly connected oriented graph with girth
at least 5 have normal cop number cn(

−→
G) ≥ δ+(

−→
G) + 1, where δ+(

−→
G) is the

minimum out-degree of
−→
G [21]. ��

Darlington et al. [6] characterized cop-win oriented paths and trees in the
normal cop model. We are also going to do so for some other families of oriented
graphs.

A transitive-triangle-free oriented graph is an oriented graph with no tran-
sitive triangles. The following theorem characterizes cop-win transitive-triangle-
free oriented graphs, a superclass of triangle-free oriented graphs.

Proposition 3. A transitive-triangle-free oriented graph
−→
G is cop-win if and

only if it is a directed acyclic graph with one source.
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Proof. Observe that any directed acyclic graph with one source is cop-win and
that every cop-win oriented graph has exactly one source. So it suffices to prove
that if a transitive triangle-free oriented graph

−→
G is cop-win, then it is a directed

acyclic graph.
Suppose

−→
G has a directed cycle3

−→
C on at least 3 vertices. We will now give

a strategy for the robber R to escape. Note that the cop C must be placed at the
source initially, as otherwise Player 2 places R on the source and wins. R initially
places himself at some safe vertex of

−→
C . Such a vertex exists, as any vertex in−→

G cannot dominate two consecutive vertices in
−→
C , else a transitive triangle is

created. R moves to the next vertex in
−→
C whenever R lies in the out-neighbour of

C. Whenever C attacks R, the robber moves to the next vertex in
−→
C and evades

the attack. Since
−→
C is a directed cycle, C cannot capture R. This contradicts

that
−→
G is a cop-win graph; hence the result. ��

As bipartite graphs are triangle-free, we have the following corollary.

Corollary 1. An oriented bipartite graph is cop-win if and only if it is a directed
acyclic graph with one source.

Next, we characterize cop-win oriented outerplanar graphs.

Proposition 4. An oriented outerplanar graph
−→
G is cop-win if and only if it is

a directed acyclic graph with one source.

Proof. The ‘if’ part is obvious.
For proving the ‘only if’ part, first note that a graph cannot be cop-win if it

has no source or at least two sources. Thus suppose that there exists an oriented
outerplanar cop-win graph

−→
G containing a directed cycle

−→
C with exactly one

source v. The cop C must be initially placed on the source v.
Note that at most two vertices of

−→
C can have a path made up of vertices

from outside
−→
C connecting v in order to avoid a K4-minor. So there is at least

one safe vertex u in
−→
C such that any directed path connecting v to u must go

through some vertex of
−→
C other than u. Thus if the robber R places itself on u

and does not move until C comes on a vertex of
−→
C , it cannot be captured.

If C is on a vertex of
−→
C and starts moving towards R following the direction

of the arcs of
−→
C , then R also moves forward and evades C.

Thus C must go out of
−→
C in order to try and capture R. The moment C goes

out to some vertex w outside
−→
C , R either is on a safe vertex or it can move to a

safe vertex on
−→
C in its next move as w can be adjacent to at most two vertices

of
−→
C in order to avoid a K4-minor.
This brings us to a situation similar to the initial situation. Thus, the robber

will always evade the cop, a contradiction. ��

3 We use the term directed cycle instead of oriented cycle as it is commonly used.
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4 Strong Cop Model

The strong cop number of an oriented graph is upper bounded by cop number in
classical version of the game on the underlying undirected graph. We begin this
section by finding strong cop number of planar graphs, outerplanar graphs, and
series-parallel graphs. But first, we find a lower bound of the strong cop number
of a specific oriented graph.

Construction: Given an undirected graph G on vertex set {v1, . . . , vn}, we form
an oriented graph

−→
H from G by replacing each edge vivj in G by a directed

4-cycle viuijvjujivi. We have the following lemma relating strong cop number
of

−→
H with cop number of G. Here c(G) is the cop number of the undirected

graph G.

Lemma 1. cs(
−→
H ) ≥ c(G).

Proof. Each vertex vi ∈ V (G) corresponds to the set N+[vi] in V (
−→
H ). Note the

sets N+[vi] partition V (
−→
H ). For each v ∈ N+[vi] in

−→
H , define its image in G as

I(v) = vi. We know that cs(
−→
H ) cops have a strategy to capture the robber R in−→

H . We will show that cs(
−→
H ) cops have a winning strategy in G.

We use the winning strategy of cs(
−→
H ) cops in

−→
H to obtain a winning strategy

in G. As the game is played in G, we also (sort of) play it in
−→
H by following

R’s move in G. The move of the cops in
−→
H following the winning strategy is

translated to G using the images. This procedure is done as follows.
Initially in G, place the cops and then R is placed. In

−→
H , place the cops and

R at the vertices with same labels as in the occupied vertices in G. The cops in
G pass their first move and then R moves or passes its move. For each move of
R in G (say from vi to vj), we play two turns in

−→
H : in the first turn R moves

from vi to uij and then to vj in the second turn. In each of these two turns in−→
H , the cops move following their winning strategy. After two turns in

−→
H , the

cops in G move to the images of cops in
−→
H (this is always possible). Following

the winning strategy, when R is captured in
−→
H , R is also captured in G. ��

As a result of Lemma 1, we find the strong cop number of oriented planar
graphs and then form oriented graphs with arbitrarily high strong cop number.

Corollary 2. The strong cop number of the family of oriented planar graphs is
three.

Proof. Recall that the strong cop number of an oriented graph is upper bounded
by cop number in classical version of the game on the underlying undirected
graph. The cop number of planar graphs is three [1]. Apply the construction
used in Lemma 1 to a planar graph with cop number 3 to get an oriented planar
graph with cs ≥ 3 (the construction used in Lemma 1 maintains planarity). ��
Corollary 3. For every k ∈ N, there exists an oriented graph

−→
H such that

cs(
−→
H ) ≥ k.
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Proof. Apply the construction used in Lemma1 to a graph with cop number at
least k (whose existence is given in [1]). ��

Next, we find strong cop numbers of the family of oriented outerplanar and
series-parallel graphs.

Theorem 2. The strong cop number of the family of oriented outerplanar
graphs is two.

Proof. The cop number of outerplanar graphs in the classical game on undirected
graphs is two [5]. Hence it suffices to construct an oriented graph which is not
strong cop-win.

Consider an outerplanar graph on 47 vertices formed by joining 2 copies of
the following biconnected outerplanar graph at a vertex, say v0. Take a cycle
C1 (see Fig. 1) on v0, v1, . . . , v23 arranged in counterclockwise manner with arcs
vivi−1 and v2iv2i+2 (under modulo 24). Let the other copy C2 of the cycle be
on vertices v0 = u0, u1, . . . , u23 with arcs uiui−1 and u2iu2i+2 (under modulo
24). The arcs of the form vivi−1 are called cycle arcs and the arcs of the form
v2iv2i+2 are called chord arcs. The vertices vi and uj with even indices are called
even vertices and with odd indices are called odd vertices.

Fig. 1. The biconnected outerplanar graph C1.

If the cop C is placed at v0, then robber R enters at v4; else R starts at v4
or u4 depending on whether C starts at C2 or C1 respectively. In the latter case
(that is C is not placed at v0), R passes his moves until C is at v0 (in order to
catch R, C has to go through v0). Once C reaches v0, R passes his move once
more; reducing this case to the former case. Hence, without loss of generality,
assume that C and R start at v0 and v4 respectively.
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In the rest of this proof, we show that if C (at v0) tries to capture R (at v4),
then R reaches the initial configuration (C at v0 and R at v4) or its equivalent
configuration (C at v0 and R at u4) without being captured. Precisely, we show
that if C pursues R, then R reaches v0 two turns before C. So after two more turns
R can be at u4 or v4 depending on whether C is in C1 or C2 respectively; and
then passes its moves until C is at v0. So R evades capture indefinitely; thereby
proving that the graph constructed above is not strong cop-win.

To simplify our presentation, we use the following notations. Let variable
X = {C, R}; variables U, V denote two adjacent vertices; and symbol ∗ denote �
for clockwise or � for counter-clockwise. Read X(U ∗ V ) as “X moves from U
to V in ∗ sense”. Read X(∗) as “X moves in ∗ sense to an adjacent vertex”. Let
dc denote the distance between C and R at the given instant in the underlying
undirected graph. Note that R(∗) results in a fixed final position, where as C(∗)
results in two possible final positions.

R moves according to the following rules. All operations are performed under
modulo 24.

R0 : At any turn, if C passes its move then R passes its move.
R1 : For i = 1 to 7, R(v2i � v2i+2) only if C(v2i−4 � v2i−2) or C(v2i−3 � v2i−2);

else it passes its move.
R2 : For i = 8 to 11, R(v2i � v2i+2) irrespective of C’s move.
R3 : If R is at an even vertex v2i, for i ≤ 7, and C(�), then

• R(�), if dc increases to at least 4.
• R passes its move, if dc increases but remains less than 4.
• R(�), if dc decreases.

R4 : If R is at an odd vertex v2i+1, for i < 7, then R(�) irrespective of C’s move.

We claim that R reaches v0 at least two turns before C. Once R is at v14
and C(v10 � v12), then R keeps on moving counter-clockwise and reaches v0 at
least two turns before C. However if C(�) and if dc increases to at least 4, then
R(�), else if dc < 4 then R passes its move. The restriction dc ≥ 4 ensures that
if C moves counter-clockwise then R can safely move clockwise to the next even
vertex. For subsequent steps, if C(�) and R is on an even vertex v2i, for i = 1
to 7, then R(�), provided the restrictions in R3 are met. In any intermediate
step if C(�), then R(�) if it is at an odd vertex; else R(�) or R passes its move
depending on whether C attacks it or not. In such a case R always stays at least
two moves away from C and hence evades capture.

The only way left for C to capture R is if C continues moving counter-clockwise
along the chord arcs and then tries to capture R which now moves counter-
clockwise along the cycle arcs. However in such a case also it is easy to see
that R reaches v0 at least two moves before C. Hence, either R evades capture
indefinitely or reaches the initial or its equivalent configuration; which implies
that R is never captured. Hence the constructed graph is not strong cop-win. �

It is known that the cop number of series-parallel graphs in the classical game
on undirected graphs is two [24]. Since outerplanar graphs are also series-parallel
graphs, we have the following corollary.
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Corollary 4. The strong cop number of oriented series-parallel graphs is two.

As mentioned earlier all the oriented graphs whose underlying graphs are
cop-win graphs in the classical (undirected graph) version are strong cop-win.
Next, we find some families of oriented graphs which are strong cop-win but
whose underlying undirected graphs are not cop-win in the classical version. We
begin with a specific class of outerplanar graphs.

We need the following definitions. For a plane graph G (i.e. the planar embed-
ding of G), its dual graph has vertices that represent faces of G and edges repre-
sent the adjacency of faces in G separated by an edge. The weak dual of G is the
induced subgraph of the dual graph whose vertices correspond to the bounded
faces of G.

Theorem 3. Oriented outerplanar graphs whose weak dual is a collection of
paths are strong cop-win.

Proof. Let G be an outerplanar graph on n vertices, whose weak dual is a col-
lection of paths and

−→
G denote the oriented outerplanar graph on G. We call the

edges in the outer face of G as cycle edges. For a cycle C in
−→
G , image IC(R) of

the robber R, is the set of vertices in C that are closest to R.
First we claim that |IC(R)| ≤ 2. Suppose |IC(R)| > 2; then let u1, u2, u3 ∈

IC(R) be three vertices arranged in a cyclic order in C. Since distance from R
to u1, u2, u3 are same, the paths from the robber to ui does not contain uj , for
i �= j and i, j ≤ 3. So u2 does not lie in the outer face; a contradiction.

Furthermore, if |IC(R)| = {u1, u2}, then u1 and u2 are adjacent, else the
internal vertices on a u1u2 path does not lie in the outer face. If R is in the cycle
then IC(R) contains the vertex occupied by R. So if |IC(R)| = 2, then R does
not lie in the cycle C.

Now we prove the theorem by induction on the order of G. The base case is
easy to verify. Now assume every outerplanar graph of order less than n, whose
weak dual is a collection of paths is strong cop-win.

Now consider an outerplanar graph
−→
G of order n, whose weak dual is a

collection of paths. Select a cycle C in
−→
G and place the cop C in some vertex of

C. After R is placed in
−→
G , we find IC(R) and capture it in subsequent moves.

If |IC(R)| = 2, then we capture any one of them. This can always be done in a
cycle that is not directed. If C is directed, C moves against the orientations. So a
vertex in IC(R) can be captured by C. If R is in the cycle then it is captured. If
|IC(R)| = 2, then R is not in the cycle when some vertex of IC(R) is captured
by C. Once C captures a vertex in IC(R), the robber cannot enter C. So R is now
trapped in one component of

−→
G obtained after deleting the cycle edges of C. By

our inductive hypothesis, R can be captured in this component. Hence oriented
outerplanar graphs whose weak dual is a collection of paths are cop-win in the
strong cop model. ��

Our next class of strong cop-win graphs are oriented grids.

Theorem 4. Oriented grids are strong cop-win.
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Outline of the Proof. Fix a m × n grid with points {(i, j)|0 ≤ i ≤ m − 1, 0 ≤
j ≤ n − 1}. The cop C starts at (0, 0). If the robber R is at (xr, yr), then define
the vertices (xr ± 1, yr ± 1) (when they exist) as guard positions. The reader can
check that C can guard R at (xr − 1, yr − 1) (see [7, Step 1 in Thm. 1]). So R can
only move either up or to the right if the orientations allow (else R is caught).
Note that once it reaches (m − 1, n − 1), it gets captured. If R stays stagnant at
a vertex, then C can force it to move. Although the guard position is lost, after a
few steps C can regain the guard position (or capture R). So the Y-coordinate of
R gradually increases. Eventually R ends up at (m−1, n−1) or gets captured.��

5 Weak Cop Model

A vertex u in a directed graph is said to be a corner vertex, if there exists a
vertex v such that N+[u]∪N−(u) ⊆ N+[v] where Nα[v] = Nα(v)∪{v} for each
α ∈ {+,−}. We also say that v dominates u.

Now we characterize all cop-win directed graphs in this model, which is
adapted from the cop-win characterization of undirected graphs (whose proof
follows from a couple of lemmas).

Theorem 5. A directed graph is cop-win in the weak cop model if and only if
by successively removing corner vertices, it can be reduced to a single vertex.

Lemma 2. If a directed graph has no corner vertex, then it is not weak cop-win.

Proof. Let
−→
G have no corner vertex. The robber R starts from a vertex that is

not an out-neighbour of the cop C. The robber does not move unless C attacks it.
Whenever R is under attack, it can move to a vertex that in not an out-neighbour
of C (as there are no corner vertices in

−→
G). Hence R never gets caught. �

Lemma 3. A directed graph
−→
G with a corner u is weak cop-win if and only if−→

H =
−→
G \ {u} is weak cop-win.

Proof. Let vertex v dominate u in G. Suppose
−→
H is cop-win. Define the image

IR of the robber R as follows: IR(u) = v and IR(x) = x for all x ∈ V (
−→
H ). So

IR is restricted to
−→
H and it can be captured by the cop C. If R is not on u, then

it is captured. If R is on u, then C is on v and will capture R in its next move.
Suppose, on the other hand,

−→
H is not weak cop-win. Define the image IC

of the cop C as follows: IC(u) = v and IC(x) = x for all x ∈ V (
−→
H ). So IC is

restricted to
−→
H and R has a winning strategy against IC . If C is not on u, then

R follows its winning strategy and does not get captured in C’s next move. If C
is on u, then R follows its winning strategy assuming C is on IC(u) = v. Since R
has a winning strategy against C if C were at v instead, R does not get captured
in C’s next move (as v dominates u). So R evades capture; hence

−→
G is not weak

cop-win. �
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Finally, we are ready to prove Theorem5.

Proof of Theorem 5. Lemma 3 implies that upon removing the corner vertices, the
weak cop-win property of the graph remains the same. Now remove all possible
corner vertices successively in the directed graph. If we end up with a single
vertex, then it is weak cop-win. Otherwise we end up with some other graph
that has no corner vertices, Lemma 2 implies that it is not weak cop-win. ��
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Abstract. As the modern integrated circuit continues to grow in com-
plexity, the design of very large-scale integrated (VLSI) circuits involves
massive teams employing state-of-the-art computer-aided design (CAD)
tools. An old, yet significant CAD problem for VLSI circuits is physical
design automation. In this problem, one needs to compute the best phys-
ical layout of millions to billions of circuit components on a tiny silicon
surface. The process of mapping an electronic design to a chip involves
several physical design stages, one of which is clustering. Even for combi-
natorial circuits, there exists several models for the clustering problem. In
particular, our primary consideration is the problem of disjoint clustering
in combinatorial circuits for delay minimization (CN). The problem of
clustering with replication for delay minimization has been well-studied
and known to be solvable in polynomial time. However, replication can
become expensive when it is unbounded. Consequently, CN is a problem
worth investigating. We establish the computational complexities of sev-
eral variants of CN. We also present a 2-approximation algorithm for an
NP-hard variant of CN.

1 Introduction

In this paper, we focus on the problem of disjoint clustering in combinatorial
circuits for delay minimization (CN). Generally, it is not possible to place every
circuit element in one chip because of various requirements and constraints. As
a result, the circuit is partitioned into clusters, where each cluster represents
a chip in the overall circuit design. While satisfying specific design constraints
(e.g., cluster capacity), the circuit elements are assigned to clusters [11].

Gates and their interconnections usually have delays. The delays of the inter-
connections are determined by the way the circuit is clustered. Intra-cluster
delays, d, are associated with the interconnections between gates in the same
cluster. Inter-cluster delays, D, are associated with the interconnections between
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gates in different clusters. The delay along a path from an input to an output is
the sum of the delays of the gates and interconnections on the path. The delay of
the overall circuit, induced by a clustering, is the longest delay among all paths
connecting an input to an output.

The problem of clustering combinatorial circuits for delay minimization when
logic replication is allowed (CA) is well-studied [6,11] and frequently arises in
VLSI design. In CA, the goal is to find a clustering of a circuit that minimizes
the delay of the overall circuit. CA is known to be solvable in polynomial time
[6,11]. With replication, circuit elements may be assigned to more than one
cluster. Therefore, unbounded replication can be quite expensive. As systems
grow in complexity, disjoint clustering (i.e., clustering without logic replication)
becomes more necessary. It follows that there is a pressing need to study CN in
VLSI design. In this paper, we consider several variants of CN and discuss their
computational complexities. A more detailed discussion of related work can be
found in the extended version of this paper.

The rest of this paper is organized as follows: The problems that we study are
formally described in Sect. 2. In Sect. 3, we give some computational complexity
results. In Sect. 4, we propose an approximation algorithm for an NP-hard
variant of CN. We conclude the paper with Sect. 5, by summarizing our main
results and identifying avenues for future work.

2 Statement of Problems

In this section, we define the main graph-theoretic concepts that are used in this
paper.

Graphs considered in this paper do not contain loops or parallel edges. The
degree of a vertex v of an undirected graph G is the number of edges of G that
are incident with v. The maximum degree of G is denoted by Δ(G) or simply Δ
when G is known from the context.

A directed path (or, just a path) of a directed graph G is a sequence Q =
v0e1v1 . . . elvl, where v0, v1, . . . , vl are vertices of G, e1, . . . , el are edges (also
called arcs) of G, and ej = (vj−1, vj), 1 ≤ j ≤ l. We call l the length of the path
Q, and sometimes we say that Q is an l-path of G. If v0 = vl, then Q is called
a directed cycle (or, just cycle). G is said to be a directed acyclic graph (DAG),
if it contains no directed cycles. For further terminology on graphs and directed
graphs, one may consult [1,13].

A cluster is an arbitrary subset of the vertices of a DAG, and it does not
have to be strongly connected. If C is a cluster in a DAG G, then an edge is
said to be a cut-edge if it connects a vertex of C to a vertex from V (G)\C. The
degree of C is the number of cut-edges incident with a vertex in C.
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The indegree and outdegree of a vertex are the number of arcs that enter and
leave the vertex, respectively. A source (sink, resp.) is a vertex with indegree
zero (outdegree zero, resp.). It is well-known that every DAG has a source and
a sink [1].

2.1 Formulation of CN Using Combinatorial Circuits

A combinatorial circuit can be represented as a DAG G = (V,E). In G, each
vertex v ∈ V represents a gate, and each edge (u, v) ∈ E represents an inter-
connection between gates u and v. In general, each gate in a circuit has an
associated delay [9]. In the model that we consider in this paper, each intercon-
nection has one of the following types of delays: (1) an intra-cluster delay, d,
when there is an interconnection between two gates in the same cluster, or (2)
an inter-cluster delay, D, when there is an interconnection between two gates in
different clusters.

The delay along a path from an input to an output is the sum of the delays
of the gates and interconnections that lie on the path. The delay of the overall
circuit is the maximum delay among all source to sink paths in the circuit.

A clustering partitions the circuit into disjoint subsets. A clustering algo-
rithm tries to achieve one or both of the following goals, subject to one or more
constraints:

(1) The delay minimization through the circuit [3,6,9,11].
(2) The minimization of the total number of cut-edges [2,4,7,8,12].

In this paper, we study CN under the delay model described as follows:

1. Associated with every gate v of the circuit, there is a delay δ(v) and a size
w(v).

2. The delay of an interconnection between two gates within a single cluster is
d.

3. The delay of an interconnection between two gates in different clusters is D,
where D � d.

The size of a cluster is the sum of the sizes of the gates in the cluster. The
precise formulation of CN is as follows:

Given a combinatorial circuit, with each gate having a size and a delay, max-
imum degree Δ, intra- and inter-cluster delays d and D, respectively, and a
positive integer M called cluster capacity, the goal is to partition the circuit into
clusters such that

1. The size of each cluster is bounded by M ,
2. The delay of the circuit is minimized.

2.2 Graph-Theoretic Formulation of CN

In the rest of the paper, we focus on a graph-theoretic formulation of CN.
Given a clustering of a combinatorial circuit represented as a DAG G = (V,E),
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the delays on the interconnections between gates induce an edge-delay function
δ : E → {d,D} of G. The weight of a cluster is the sum of the weights of the
vertices in the cluster. The delay-length of a directed path P = v0e1v1 . . . elvl of
G is

∑l
i=0 δ(vi) +

∑l
i=1 δ(ei), where δ(ei) is equal to d if vi−1 and vi are inside

the same cluster, or D, otherwise.
CN〈X,M,Δ〉 is formulated (graph-theoretically) as follows: Given a DAG

G = (V,E), with vertex-weight function w : V → N, delay function δ : V → N,
maximum degree Δ, constants d and D, and a cluster capacity M , the goal is to
partition V into clusters such that

1. The weight of each cluster is bounded by M ,
2. The maximum delay-length of any path from a source to a sink of G is mini-

mized.

The symbol X in our 3-tuple notation may represent some weighted set W
of vertices or some unweighted set N of vertices. For some sets, W = [n], where
[n] = {1, 2, 3, . . . , n} with n ∈ N. The symbol M is the cluster capacity.

A clustering of G, such that the weight of each cluster is bounded by M , is
called feasible. Given a feasible clustering of G, one can consider the correspond-
ing edge-length function δ : E → {d,D} of G. A clustering of G is optimal if
the maximum delay-length of any path from a source to a sink is the minimum
among all clusterings.

The main contributions of this paper are as follows:

1. Establishing the computational complexities of several variants of
CN〈X,M,Δ〉 (Sect. 3).

2. Design and analysis of a 2-approximation algorithm for an NP-hard variant
of CN〈X,M,Δ〉 (Sect. 4).

3 Computational Complexities of Clustering Variants

In this section, we establish the computational complexities of several variants
of CN.

In [5], CN is considered under area constraints and pin constraints, separately.
The decision version of the area-constrained problem is formulated by them as
follows: Given a directed acyclic graph G = (V,E) representing a combinatorial
circuit, a delay δ(v) and area α(v) for each v ∈ V , an inter-cluster delay constant
D ≥ 0, a cluster area bound M , and a maximum delay bound B, determine
whether there exists a clustering with no replication so that in each cluster
C,

∑
v∈C α(v) ≤ M , and for any path P = (p1, p2, . . . , pn) from a primary

input to a primary output,
∑n

i=1 δ(pi) + k · D ≤ B, where k = |{(pi, pi+1) :
(pi, pi+1 ∈ P )∧(pi, pi+1 appear in different clusters)}|. Note that primary inputs
and primary outputs represent sources and sinks of the DAG, respectively. The
decision version of the pin-constrained problem has an analogous formulation.
However, the area of each cluster C is not restricted, while the total number of
I/O pins of each cluster must not exceed a given constant Q.
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Ti

xi x̄i

(a) Variable

Cj

z j1 z j2 z j3

(b) Clause

Fig. 1. Gadgets used to represent variables and
clauses.

We observe that the deci-
sion version of CN〈W,M,Δ〉
belongs to NP. This follows
from the observation that if we
have an edge-weighted DAG,
then we can compute a path
of maximum edge-weight in
polynomial time. Below, we
will consider several restrictions
of CN〈W,M,Δ〉, which also
belong to NP.

Our first result establishes NP-hardness and inapproximability of
CN〈[4], 5,Δ〉.
Theorem 1. CN〈[4], 5,Δ〉 is NP-hard.

Proof. We recall CN〈[4], 5,Δ〉 as follows: Given a DAG G = (V,E), with vertex-
weight function w : V → {1, 2, 3, 4}, δ(v) = 0 ∀v ∈ V , maximum degree Δ,
constants d and D, and cluster capacity M = 5, the goal is to partition V into
clusters such that the weight of each cluster is bounded by M , and the maximum
delay-length of any path from a source to a sink of G is minimized.

To show that CN〈[4], 5,Δ〉 is NP-hard, we reduce from 3SAT (cf. Theorem
2.1 in [5]). For that purpose, we recall 3SAT as follows: Given a 3-CNF formula
φ with n variables x1, . . . , xn and m clauses C1, . . . , Cm, the goal is to check
whether φ has a satisfying assignment.

Let each variable xi (1 ≤ i ≤ n) be represented by a variable gadget as
shown in Fig. 1(a). Let each clause Cj (1 ≤ j ≤ m) be represented by a clause
gadget as shown in Fig. 1(b). If a variable xi or its complement x̄i is the pth
literal of a clause Cj , where p ∈ {1, 2, 3}, then we add edges (xi, zjp) or (x̄i, zjp),
respectively. The resulting DAG G represents a combinatorial circuit. Let U
denote the set of all vertices labeled xi or x̄i (1 ≤ i ≤ n). There are n sources
labeled Ti (1 ≤ i ≤ n) and m sinks labeled Cj (1 ≤ j ≤ m). They are connected
through some vertices in U and 3 ·m vertices labeled zjp (1 ≤ j ≤ m, 1 ≤ p ≤ 3).
Each zjp is connected to exactly one variable gadget. For every j, no two vertices
in the set {zj1, zj2, zj3} are adjacent to both xi and x̄i of the same variable
gadget. In other words, xi and x̄i cannot both be connected to the same clause
gadget. Every Ti and Cj has a weight of 1, every xi, x̄i ∈ U has a weight of 4,
and every zjp has a weight of 2. Let d = 0 and let D be any positive integer.
All vertices are given a delay of 0. The cluster capacity M is set to 5, and set
k = 2 ·D. It is shown that an instance I of 3SAT is a “yes” instance if and only
if an instance I ′ of CN〈[4], 5,Δ〉 is a “yes” instance.

Theorem 2. CN〈N, 2, 3〉 is NP-hard.

Proof. We recall CN〈N, 2, 3〉 as follows: Given a DAG G = (V,E), with w(v) =
1 ∀v ∈ V , δ(v) = 0 ∀v ∈ V , maximum degree Δ = 3, constants d and D,
cluster capacity M = 2, and a positive integer k, the goal is to partition V into
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Fig. 2. Gadgets used to represent variables and clauses.

clusters such that the weight of each cluster is bounded by M , and the maximum
delay-length of any path from a source to a sink of G is minimized.

In order to establish NP-hardness of CN〈N, 2, 3〉, we present a reduction
from 3SAT≤3,≤2. For that purpose, we recall 3SAT≤3,≤2 as follows: Given a 3-
CNF formula φ with n variables u1, . . . , un and m clauses C1, . . . , Cm, such that
each variable occurs at most three times and each literal occurs at most twice, the
goal is to check whether φ has a satisfying assignment. Note that the requirement
that each clause has exactly three literals is relaxed in this restriction of 3SAT.
Any variable, say ui, with q occurrences (for some q > 3) can be replaced with q
new variables w1, . . . , wq. The clauses (w̄1 ∨w2)∧ (w̄2 ∨w3)∧ (w̄q ∨w1) can then
be added to φ to ensure that the q new variables retain the truth assignment of
the original variable ui [10].

Given an instance I of 3SAT≤3,≤2, we construct an instance I ′ of CN〈N, 2, 3〉.
Let each variable ui (1 ≤ i ≤ n) be represented by a variable gadget as shown in
Fig. 2(a), where the dashed arrows indicate possible successors. Note that since
each variable ui occurs at most three times, then the size of the neighborhood
of {ui, ūi} is at most three. Let each clause Cj (1 ≤ j ≤ m) be represented by a
clause gadget as shown in Fig. 2(b). A set of edges also connects clause gadgets
to variable gadgets. For example, if the p-th literal of clause Cj is the α-th
occurrence of some literal ua, where p ∈ {1, 2, 3}, α ∈ {1, 2} and a ∈ {1, . . . , n},
then we add edge (xjp, u

′
aα). Every vertex has a weight of 1. We set d = 0 and

let D be any positive integer. All vertices are given a delay of 0. The cluster
capacity M is set to 2, and we set k = 3 · D. The description of I ′ is complete.

Observe that I ′ can be constructed from I in polynomial time. To complete
the proof of the theorem, we show that I is a “yes” instance of 3SAT≤3,≤2 if
and only if I ′ is a “yes” instance of CN〈N, 2, 3〉.

Suppose that I is a “yes” instance of 3SAT≤3,≤2. This means that there
exists an assignment of φ such that every clause has at least one true literal. If
literal ui (or ūi) is set to true, then we cluster the vertices as follows:
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1. ti is clustered with vi and fi is clustered with v̄i (or ti is clustered with v̄i

and fi is clustered with vi).
2. For each r ∈ {1, 2}, ūir is clustered with ū′

ir (or uir is clustered with u′
ir).

3. If the r-th occurrence of literal ui (or ūi) is the p-th literal of clause Cj , then
u′

ir (or ū′
ir) is clustered with clause gadget vertex xjp, where p ∈ {1, 2, 3}.

4. For any p-th literal of clause Cj that is set to true, then xjp is clustered with
its successor.

5. The successors of the variable gadget vertex fi, say Vfi
, are clustered in such

a way that the edges of the underlying undirected graph of G[Vfi
] form a

perfect matching.
6. The clause gadget vertex cj5 and its predecessors, say Vcj5 , are clustered in

such a way that the edges of the underlying undirected graph of G[Vcj5 ∪ cj5]
form a perfect matching.

7. All other vertices are clustered alone.

Observe that the cluster capacity constraint is satisfied, and the maximum
delay-length of any path from a source to a sink is 3 · D. This means that I ′ is
a “yes” instance of CN〈N, 2, 3〉.

Conversely, suppose that I ′ is a “yes” instance of CN〈N, 2, 3〉. This means
that there is a way of partitioning the vertices of G into clusters of capacity
M = 2, such that the delay-length of any path from a source to a sink is at
most 3 · D. Observe that under any partitioning, the delay-length of any path
from a source to a sink is at least 3 · D. In any partitioning with delay-length
equal to 3 · D, we have that either ti is clustered with vi or ti is clustered with
v̄i, for every i ∈ {1, . . . , n}. Furthermore, in any partitioning with delay-length
equal to 3 ·D, there is at least one xjp that must be clustered with its successor.
If ti is clustered with vi, then for each r ∈ {1, 2}, ūir must be clustered with
ū′

ir. Set literal ui to true and consider each u′
ir free. Otherwise, if ti is clustered

with v̄i, then for each r ∈ {1, 2}, uir must be clustered with u′
ir. Set literal v̄i to

true and consider each ū′
ir free. At least one xjp is clustered with its successor,

namely some free vertex. This means that at least one true literal appears in
every clause. Thus, a satisfying clustering for G yields a satisfying assignment
for φ. Hence, I is a “yes” instance of 3SAT≤3,≤2.

In order to present our next results, we will need some definitions. We say
that two edges of G are independent if they are not incident with the same
vertex. A matching of G is a set of pairwise independent edges of G. A matching
is maximal if it is not a subset of a larger matching.

Proposition 1. For any instance of CN〈N, 2,Δ〉 there exists an optimal clus-
tering, such that the edges of G with delay d form a maximal matching of G.

Proof. Consider an optimal clustering of G. Since M = 2, we have that any two
edge with delay d are independent. Thus, they form a matching I. Now, if I
is not maximal, then there is an edge e, such that I ∪ {e} is a matching. Put
the end-vertices of e to the same cluster. Observe that the resulting clustering is
feasible, moreover, its delay does not exceed the delay of the original clustering.
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Thus, the resulting clustering is again optimal. By continuing this process, we
will end-up with a clustering such that the edges of delay d form a maximal
matching. The proof is complete.

Our next proposition states that the clustering problem remains difficult even
if we assume that the input DAG G contains a path which contains sufficiently
many edges.

Proposition 2. For each fixed integer t, CN〈N, 2, 3〉 remains NP-hard even
if we assume that G contains a path with at least t edges.

Proof. We present a reduction from CN〈N, 2, 3〉 to its restriction stated in the
statement. Assume that the input DAG G of maximum degree 3 is given. Con-
sider a component which is a directed 4-cycle, whose edges are directed from the
left to right. Let c1 be the source in it. Assume that c1 is adjacent to c2 and c3,
which are neither source nor a sink. Finally, let them be adjacent to the sink c4
(Fig. 3).

G
G′

s w s c1

c2

c3

c4 w

Fig. 3. The reduction with the directed 4-cycle.

Now, let the input DAG G be given which is of maximum degree three.
Consider all edges of G which are incident to a source, and replace them with
a 4-cycle (one 4-cycle per every edge), that is, if sw is an edge of G, then we
replace it with a new 4-cycle, and connect s to c1 and c4 to w (Fig. 3). Let G′

be the resulting DAG. Observe that this procedure increases the length of any
longest path by three. Thus, applying it sufficiently many times, we can get a
DAG with desired lower bound for the length of the longest path. Moreover,
observe that this process does not increase the maximum degree of the vertex,
that is, the resulting graph is still of maximum degree three.

Let OPT (H) denote the optimal delay in a DAG H. We claim that

OPT (G′) = OPT (G) + (d + 2 · D).

Consider an optimal clustering in G. Let e = sw be an edge of G. If it is a d-edge
in G, then declare the edges sc1 and c4w of G′ as a d-edge. The rest of the edges
of G′ in the part corresponding to e are declared as D-edges. On the other hand,
if e is a D-edge, then declare the edges c1c2 and c3c4 as d-edges, and the rest of
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edges corresponding to e as D-edges. Now consider a critical path P . If it starts
with a d-edge on P , then its delay d is replaced with 2 · (d + D) in G′. Thus the
increase of the delay is d + 2 · D. If it started with a D-edge, then its delay D
becomes d+3 ·D in G′. Thus, the increase in the delay is again d+2 ·D. Hence,
we have the same increase in the delay. Clearly, this implies that

OPT (G′) ≤ OPT (G) + (d + 2 · D).

To prove the converse inequality, let us show that we can always find an
optimal clustering such that sc1 and c4w are d-edges or D-edges at the same
time. If sc1 and c4w are d-edges then we are done. Thus, we can assume that
one of them is a D-edge. Then we show that we can assume that the other
one is also a D-edge. First, assume that sc1 is a d-edge and c4w is a D-edge.
Since we can always assume that the optimal clustering is a maximal matching
(Proposition 1), we have that one of the edges of the 4-cycle incident to c4 is a
d-edge f . Now, if we consider a new clustering of G′ by replacing the edge sc1
with the edge opposite to f (the unique edge of the 4-cycle that is not adjacent
to f) in the 4-cycle as a d-edge. Clearly, the resulting clustering has the same
delay as the original one. However, sc1 now is a D-edge. Similarly, assume that
c4w is a d-edge and sc1 is D-edge. Since we can always assume that the optimal
clustering is a maximal matching (Proposition 1), we have that one of the edges
of the 4-cycle incident to c1 is a d-edge f . Now, if we consider a new clustering
of G′ by replacing the edge c4w with the edge opposite to f in the 4-cycle as a
d-edge. Clearly, the resulting clustering has the same delay as the original one.
However, c4w now is a D-edge. Thus, we can always find an optimal clustering
such that sc1 and c4w are d-edges or D-edges at the same time.

The proved property allows us to get a clustering in G simply by looking
at sc1 and c4w. If they are d-edges at the same time, we declare sw as a d-
edge in G. On the other hand, if they are D-edges, then we declare sw as a
D-edge in G. Observe that the resulting clustering of G will have delay at most
OPT (G′) − (d + 2 · D). Thus,

OPT (G) ≤ OPT (G′) − (d + 2 · D)

or
OPT (G′) ≥ OPT (G) + (d + 2 · D).

This completes the proof of the equality. The proved equality implies that opti-
mizing the delay in G′ is the same that optimizing in G. Thus the above process
is a reduction.

Let us say that a graph is cubic if any vertex is of degree 3. We are ready to
obtain the final result of this section.

Theorem 3. For each fixed integer t, CN〈N, 2, 3〉 remains NP-hard even if we
assume that G is a cubic graph that contains a path with at least t edges.
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Proof. We get a reduction from the restriction of CN〈N, 2, 3〉 where we assume
that G contains a path with at least 6 edges. Since M = 2, we have that
OPT (G) ≥ 3 · D. As Δ = 3, we have that the vertices of G are of degree 0,
1, 2 or 3. Now, we will show how to get rid of the vertices which have degree
less than three. First, if we have a vertex of degree 0, we can remove it from
G. In order to overcome the vertices of degree 1 and 2, we will make use of the
following orientation of the complete graph K4 on 4 vertices by removing an
edge e = uv. Let the other two vertices of K4 be u′ and v′. Direct the edges
starting from u′ towards u and v. Direct the edges starting from v′ towards u
and v. Finally, direct the edge u′v′ from v′ to u′ (Fig. 4).

v v′

u u′

Fig. 4. The orientation of the edges of K4 − e.

Now, assume that our input DAG G contains a vertex w of degree one.
Assume that w is a source. Take a copy of the above orientation of K4 minus an
edge, and join w to u and v with directed edges, so that w is a source, and u and
v are sinks in resulting DAG G′. Observe that in the added part the maximum
delay will be at most 2 · D, which is less than OPT (G). Since w is a source, the
added part will play no role. Similarly, one can overcome the case when w is a
sink. One just needs to reverse the orientations of edges in the copy of K4 minus
an edge.

Next let us assume that we have a vertex w of degree two. First, let us assume
that w is a source. We add a new vertex w′ and join w to w′ with a directed
edge. Observe that w is of degree 3 and w′ is of degree one. Thus we can apply
the trick from the previous paragraph. Similarly, if w is a sink, we will join w′ to
the vertex w with a directed edge and again apply the trick from the previous
paragraph.

Thus, we are left with the case when w-the degree two vertex, is neither a
source nor a sink. Let x and z be the neighbors of w such that xw and wz are
directed edges. We consider two cases. If z is a sink in G, then we add a new
vertex w′ of degree 1 and join it to w with a directed edge w′w. Observe that
in the optimal clustering w′ will not be on a path of optimal delay as it reaches
only z and the delay of this path is at most 2 · D. On the other hand, if we
assume that G contains a path of length at least six, the optimal delay will be at
least 3 · D. Finally, if we assume that z is not a sink, then we add a new vertex
w′ and join w to w′ with a directed edge ww′. Since z is not a sink and M = 2,
in any clustering z will be incident to at least one D-edge. Hence, there will be
a path of optimal delay in G′ that will not terminate at w′. Thus, the addition
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of w′ will not play a role. Since w′ is a degree one vertex, we can overcome it
via the trick mentioned above. Thus, without loss of generality, we can assume
that the input graph in CN〈N, 2, 3〉 is a cubic graph.

4 A 2-approximation Algorithm

We now provide an integer program (IP) for CN〈W,M,Δ〉.

4.1 An IP for CN〈W, M, Δ〉
Let wj be the weight of vertex j. Define xij to be an integer variable that is set
to 1 if vertices i and j are in the same cluster, and 0 otherwise. We present the
following IP:

Packing constraints
xii = 1, ∀i ∈ V (1)

n∑

j=1

wj · xij ≤ M, ∀i ∈ V (2)

Consistency constraints
xij = xji, ∀i, j ∈ V (3)

xik ≥ xij + xjk − 1, ∀i, j, k ∈ V (4)

Condition (1) ensures that every vertex is clustered. Condition (2) ensures
that every cluster has weight at most M . Condition (3) ensures that either i and
j are in the same cluster or they are in different clusters. Likewise, condition (4)
ensures that if i and j are in one cluster, and j and k are in one cluster, then i
and k must be in the same cluster and all clusters are disjoint.

We now come to the objective function. For any vertex j, let δj be the delay
at j in a clustering. This delay is completely dependent upon its predecessors.
We can write

δj = max
i:(i,j)∈E

{δi + d · xij + D · (1 − xij)}. (5)

Hence the function to be minimized is δt, where t is the sink of the circuit.
Note that condition (5) can be easily linearized.

The correctness of reduction will be shown in the journal version of this
paper.

4.2 An LP-rounding Algorithm for CN〈N, 2, Δ〉
In this section, we present an LP-rounding algorithm for CN〈N, 2,Δ〉.

Let LPCN〈N,2,Δ〉 be the linear programming relaxation obtained from
IPCN〈W,M,Δ〉 when vertices are unweighted and M = 2 (i.e., the problem
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restricted to CN〈N, 2,Δ〉), by replacing its 0-1 integrality constraints for xij

with xij ∈ [0, 1].

Algorithm 1. An LP rounding algorithm for CN〈N, 2,Δ〉
input : A DAG G = (V,E), where |V | = n and |E| = m.
output: A clustering Γ of G.

1 Solve LPCN〈N,2,Δ〉. Let each x̂ij denote the delay on the edge connecting
vertices i and j and let δ̂j denote the delay at vertex j.

2 Let G′ = G.
3 while G′ = ∅ do
4 Consider a source s of G′ such that the delay-length of the path from

s to the sink t is maximum.
5 Let vertex v ∈ N+(s) be such that δ̂v = minj∈N+(s){δ̂j}.
6 We round some x̂ij to 0-1 values x̄ij as follows: set x̄sv = 1, set

x̄sj = 0 ∀j ∈ N+(s) \ v, and set x̄vj = 0 ∀j ∈ (N−(v) ∪ N+(v)) \ s.
7 Let G′ = G′[V \ {s, v}]
8 Cluster together all vertices i and j such that x̄ij = 1, where i = j. Put

the remaining vertices into singleton clusters.
9 return Γ .

Theorem 4. Algorithm1 is a 2-approximation algorithm.

Proof. Let Q be a path of G from a source to the sink t with maximum delay-
length. Let OPT be the delay of an optimal clustering of G. This means that
OPT is the sum of the fractional intra- and inter-cluster delays of the edges
along Q. Let ALG be the delay of the clustering of G returned by Algorithm1.
Since the algorithm returns a solution with an integral delay, notice that for each
intra-cluster edge (i, j) ∈ Q, the delay is increased by d · (1 − x̂ij). Moreover, for
each inter-cluster edge (i, j) ∈ Q, the delay is decreased by D · (1 − x̂ij). Hence,

ALG

OPT
≤

∑
(i,j)∈Q d · x̂ij + D · (1 − x̂ij) +

∑
(i,j)∈Q d · (1 − x̂ij) − D · (1 − x̂ij)

∑
(i,j)∈Q d · x̂ij + D · (1 − x̂ij)

= 1 +

∑
(i,j)∈Q d · (1 − x̂ij) − D · (1 − x̂ij)
∑

(i,j)∈Q d · x̂ij + D · (1 − x̂ij)

≤ 1 +

∑
(i,j)∈Q d · (1 − x̂ij)

∑
(i,j)∈Q d · x̂ij + D · (1 − x̂ij)

≤ 1 +

∑
(i,j)∈Q D · (1 − x̂ij)

∑
(i,j)∈Q d · x̂ij + D · (1 − x̂ij)

= 2 −
∑

(i,j)∈Q d · x̂ij
∑

(i,j)∈Q d · x̂ij + D · (1 − x̂ij)
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5 Conclusion

In this paper, we studied the problem of disjoint clustering in combinatorial cir-
cuits for delay minimization (CN). We obtained the computational complexities
of several variants of CN. We also proposed an approximation algorithm for a
variant of CN and analyzed it.

We are interested in the following open problems:

1. Finding inapproximability bounds for variants of CN〈X,M,Δ〉 using other
assumptions.

2. Finding approximation, parameterized and exact exponential algorithms for
other variants of CN〈X,M,Δ〉.
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Abstract. A set S of vertices of a graph G is P ∗
3 -convex if there is no

vertex outside S having two non-adjacent neighbors in S. The P ∗
3 -convex

hull of S is the minimum P ∗
3 -convex set containing S. If the P ∗

3 -convex
hull of S is V (G), then S is a P ∗

3 -hull set. The minimum size of a P ∗
3 -hull

set is the P ∗
3 -hull number of G. In this paper, we show that the problem

of deciding whether the P ∗
3 -hull number of a chordal graph is at most

k is NP-complete and present a linear-time algorithm to determine this
parameter and provide a minimum P ∗

3 -hull set for unit interval graphs.

Keywords: Graph convexity · Hull number · Unit interval graph. ·
2-distance shortest path

1 Introduction

We consider finite, undirected, and simple graphs. The path with k vertices is
denoted by Pk and an induced path is a path having no chords. Given a set S
of vertices of a graph G, the interval of Sin the convexity of induced paths of
order 3, also known as the P ∗

3 convexity, is the set [S]∗3 = S ∪{u : u belongs to an
induced P3 between two vertices of S}. The set S is P ∗

3 -convex if S = [S]∗3 and is
P ∗
3 -concave if V (G) \ S is P ∗

3 -convex. The P ∗
3 -convex hull of S is the minimum

P ∗
3 -convex set containing S and it is denoted by 〈S〉∗

3. If 〈S〉∗
3 = V (G), then

S is a P ∗
3 -hull set. The minimum size of a P ∗

3 -hull set is the P ∗
3 -hull number

h∗
3(G)of G.

Recently, the P ∗
3 convexity has attracted attention as an alternative to other

quite known convexities with different behavior despite a similar definition. It is
particularly interesting in spreading dynamics which forbid the same influence
by two neighbors to get spread to a common neighbor. For instance, in [4], it
is shown that the problem of deciding whether the P ∗

3 -hull number of a bipar-
tite graph is at most k is NP-complete, while polynomial-time algorithms for
determining this parameter for P4-sparse graphs and cographs are presented.
Apart from these results very little is known, as results of quite similarly defined

c© Springer Nature Switzerland AG 2019
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well-known convexities do not help, since the proofs depend on the existence of
longer shortest paths or a non-induced P3.

In the well-known geodetic convexity, the geodetic interval of S is [S]g =
S ∪ {u : u belongs to some shortest path between two vertices of S}. The terms
geodesically convex, geodesically concave, geodetic convex hull 〈S〉g, geodetic hull
set, and geodetic hull number hg(G) are defined in a similar way to the P ∗

3

convexity. The literature concerning the geodetic hull number is large. It is known
that this problem is NP-complete for chordal graphs [5], P9-free graphs [10], and
partial cubes [1]; and that one can find a minimum geodetic hull set in polynomial
time if the input graph is unit interval [9], (q, q − 4)-graph [2], cobipartite [2],
cactus [2], (paw, P5)-free [10], (C3, . . . , Ck−2, Pk)-free [10], P5-free bipartite [3], or
planar partial cube quadrangulation [1]. However, as already remarked, though
an induced path of order 3 is a shortest path of length 2 between a pair of nodes,
those results do not directly apply to the P ∗

3 convexity due to the use of longer
shortest paths in proofs.

Unlike the P ∗
3 convexity, the P3convexity considers all paths of order 3. In

this convexity, also known as irreversible 2-conversion, the problem of computing
the hull number is APX-hard for bipartite graphs with maximum degree at most
4 and NP-complete for planar graphs with maximum degree at most 4 [7,15],
and can be found in polynomial time for chordal graphs [6] as well as for cubic or
subcubic graphs [15]. Finally, in the convexity that considers all induced paths,
the monophonic convexity, the hull number can be computed in polynomial time
for any graph [11].

The main result of this paper is a linear-time algorithm to determine both the
P ∗
3 -hull number and a minimum P ∗

3 -hull set of a unit interval graph (Sect. 2). We
point out that Theorem1 is not only an explicit formula for the P ∗

3 -hull number
h∗
3(G) but also an almost explicit one for the minimum P ∗

3 -hull set, since one
needs to compute the necessary labels before. We also show that the problem of
deciding whether this parameter is at most k for a chordal graph is NP-complete
(Sect. 3). Remember that unit interval graphs have a variety of applications in
operations research, including resource allocation problems in scheduling [13]
and in genetic modeling such as DNA mapping in bioinformatics [14], where an
overall agreement (on a value, a signal, a failure, a disease, a characteristic, etc.)
might get forced by a minimum key set under some convexity such as the P ∗

3 .
We conclude this section giving some definitions. The distance between ver-

tices u and v is denoted by d(u, v) and the neighborhood of a vertex v is denoted
by N(v). The set {1, . . . , k} for an integer k ≥ 1 is denoted by [k]. A subgraph
of G induced by vertex set S is denoted by G[S]. A vertex u is simplicial if
its neighborhood induces a complete graph. Note that every P ∗

3 -hull set con-
tains all simplicial vertices and at least one vertex of each P ∗

3 -concave set of
the graph. Given an ordering α = (v1, . . . , vn) of V (G) and a set I ⊆ [n],
the subordering α′ = (vi1 , . . . , vi|I|)of αinduced by I is the ordering of the set
{vij

: ij ∈ I} ⊆ V (G) such that vij
appears before vik

if and only if ij < ik. If
I = [j] \ [i − 1] for 0 ≤ i < j ≤ n, then the subordering of α induced by I is
denoted by αi,j .
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2 Unit Interval Graphs

A unit interval graph G is the intersection graph of a collection of intervals of the
same size on the real line. Since one can assume that all left endpoints of the inter-
vals of such a collection are distinct, a canonical ordering Γ = (v1, v2, . . . , vn)of
V (G) is defined as the one such that i < j if and only if the left endpoint of the
interval of vi is smaller than the left endpoint of the one of vj . This ordering has
the property that if vivj ∈ E(G) for i < j, then {vi, . . . , vj} is a clique [8,16].
It is easy to see that if vi ∈ [vj , vk]∗3 for j < k, then j ≤ i ≤ k. In the next, we
consider a canonical ordering Γ = (v1, v2, . . . , vn) of a given unit interval graph
G.

Lemma 1. If vj is simplicial, then h∗
3(G) = h∗

3(G[{v1, . . . , vj}]) +
h∗
3(G[{vj , . . . , vn}]) − 1.

Proof. Let S, S1, and S2 be minimum hull sets of G,G1 = G[{v1 . . . vj}],
and G2 = G[{vj . . . vn}], respectively. Since Γ = (v1, v2, . . . , vn) is a canon-
ical ordering and vj is a simplicial vertex of G,G1, and G2, it holds S ⊇
{vj} = S1 ∩ S2. It is clear that S1 ∪ S2 is a hull set of G, and hence
h∗
3(G) ≤ h∗

3(G[{v1, . . . , vj}])+h∗
3(G[{vj , . . . , vn}])−1. Now, consider an induced

path vivkv� with vi ∈ V (G1) \ {vj} and v� ∈ V (G2) \ {vj}. If vk ∈ V (G2), then
i < j < k < � and {vi, . . . , vk} is a clique containing vj . Since vj is simplicial,
if vjv� ∈ E(G), then viv� ∈ E(G), which would contradict the assumption that
vivkv� is an induced path. Therefore vjv� �∈ E(G) and vk ∈ [vj , v�]∗3. The case
for vk ∈ V (G1) is analogue. Hence, S ∩ V (Gi) is a minimum hull set of Gi for
i ∈ [2], which means that h∗

3(G) ≥ h∗
3(G[v1, . . . , vj ]) + h∗

3(G[vj , . . . , vn]) − 1. �

Due to Lemma 1, we can assume that G has only two simplicial vertices,
namely, v1 and vn. In the sequel, we use the geodetic interval to obtain a useful
partition of the vertices of G. We say that vi is a black vertex if vi lies in a
shortest (v1, vn)-path and that it is a red vertex otherwise. The black vertices v
such that d(v1, v) = i form the black region Bi. Note that all vertices of Bi are
consecutive in Γ . The set of vertices between the black regions Bi−1 and Bi in
Γ form the red region Ri. These definitions induce a partition of Γ into black
and red regions B0, R1, B1, . . . , Rq, Bq. Note that a red region can be empty,
B0 = {v1}, Bq = {vn}, and d(v1, vn) = q = d(G), where d(G) stands for the
diameter of G. Besides, the black (and red) regions are precisely defined by the
following two (not necessarily distinct) shortest (v1, vn)-paths, namely, the one
whose internal vertices have all the highest possible indexes in Γ and the one
whose internal vertices have all the lowest possible indexes in Γ . Each black
region Bi contains precisely the vertices of those two paths having distance i to
v1 as well as all vertices between them in the canonical ordering Γ . (See Fig. 1.)

For i ∈ [q], denote by r�
i and rr

i the leftmost and rightmost vertices of Ri in
Γ , respectively. For i ∈ [q]∪{0}, denote by b�

i and br
i the leftmost and rightmost

vertices of Bi in Γ , respectively. If, for i ∈ [q], b�
i−1b

r
i ∈ E(G), then we say that

b�
i−1b

r
i is a long edge. For i ∈ [q], denote by Rr

i the vertices of Ri having edges
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to Ri+1 and by R�
i the vertices of Ri having edges to Ri−1. We say that a red

vertex v ∈ Ri is a right vertex if v �∈ R�
i and that it is a left vertex if v �∈ Rr

i .
Let Θ = (uk1 , uk2 , . . . , uk|R|) be the subordering of Γ induced by the set of

all red vertices R = R1 ∪ . . . ∪ Rq. A subordering Θi,j = (uki
, . . . , ukj

) for i ≤ j
is a component of G if uki

is a right vertex, ukj
is a left vertex, there is no

i′ ∈ [j − 1] \ [i− 1] such that uki′ is a left vertex and uki′+1
is a right vertex, and

it is maximal (that is, it must hold that either uki−1 is a left vertex or i = 1, and
additionally, that either ukj+1 is a right vertex or j = |R|). If, in addition, for
every vk′ ∈ Θi,j there exists a long edge vk′′vk′′′ ∈ E(G) such that k′′ < k′ < k′′′,
then Θi,j is said to be a covered component. Note that a component can be a
singleton. However, since we are assuming that G has only two simplicial vertices
v1 and vn, a covered component can neither be a singleton nor intersect only one
red region as its elements would be simplicial vertices different from v1 and vn.
Thus, every covered component must contain vertices of at least two red regions.
(See Fig. 1.) Finally, the components of a unit interval graph can be determined
in linear time [9].

Now we present some structural results. In the next, we characterize some
P ∗
3 -concave sets.

Lemma 2. It holds that:

(a) for i ∈ [q − 1], Rr
i ∪ Bi ∪ Ri+1 ∪ Bi+1 is a P ∗

3 -concave set;
(b) for i ∈ [q − 1], Ri ∪ Bi ∪ Ri+1 ∪ Bi+1 is a P ∗

3 -concave set;
(c) for i ∈ {0} ∪ [q − 2], Bi ∪ Ri+1 ∪ Bi+1 ∪ Ri+2 is a P ∗

3 -concave set; and
(d) for i ∈ {0}∪[q−1], if R�

i+1∩Rr
i+1 = ∅, then Bi∪Ri+1∪Bi+1 is a P ∗

3 -concave
set.

Proof. First note that if Γj,k = (vj , . . . , vk) for j < k is the ordering of a set
S = {vj , . . . , vk} in Γ , then all vertices in Γ1,j−1 having a common neighbor in
S are adjacent, and the same is true for all vertices in Γk+1,n having a common
neighbor in S. Thus, S is always a P ∗

3 -concave set for j = 1. Besides, S is a
P ∗
3 -concave set for j > 1 if the distance of any vertex of Γ1,j−1 to any vertex of

Γk+1,n is at least 3.

v1

v2 v3

v4 v5

v6 v7 v8

v9 v10

v11 v12

v13 v14

v15

v16

Fig. 1. Here there are two components: {v2, v3, v6, v7} (covered) and {v8, v11, v12, v15}
(not covered), as both red vertices v11 and v12 are not covered by a long edge such as
v1v5, v4v10 and v13v16. Note that only edges between black vertices and between red
vertices of distinct red regions are being depicted, and that the two shortest paths v1
v4 v9 v13 v16 and v1 v5 v10 v14 v16 define precisely the black (and red) regions. (Color
figure online)
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(a) Take S = Rr
i ∪ Bi ∪ Ri+1 ∪ Bi+1. For j > 1, the fact that vj−1 has no edges

to Ri+1 implies that the distance of any vertex of Γ1,j−1 to any vertex of Γk+1,n

is at least 3.
(b) By (a) and the fact that if Γj,k is P ∗

3 -concave, then Γj′,k′ is P ∗
3 -concave for

j′ ≤ j and k′ ≥ k.
(c) By symmetry, this case is equivalent to (b).
(d) Now take S = Bi∪Ri+1∪Bi+1. For j > 1, d(vj−1, vk+1) ≥ 3 if R�

i+1∩Rr
i+1 =

∅. �

Next, we present a partition of Γ into parts called C-sets and classify them
into 4 types.

– If Θi,j(uki
, . . . , ukj

) is a covered component, then Γi′,j′ is a C-set where vi′ =
uki

and vj′ = ukj
. If Γi′,j′ contains an odd number of black regions, then

Γi′,j′ has type 1. Otherwise Γi′,j′ has type 2.
– If Γi,j is maximal having no vertex belonging to a C-set of type 1 or 2, then

Γi,j is a C-set as well. If Γi,j contains an odd number of black regions, then
Γi,j has type 3. Otherwise, Γi,j has type 4.

For example, the unit interval graph of Fig. 1 gets partitioned into exactly
three C-sets: Γ1,1 (of type 3), Γ2,7 (of type 1), and Γ8,16 (of type 3). It is clear
that the C-sets always form a partition of Γ . In fact, they also induce a partition
of the black regions of G, i.e., all vertices of any black region are contained in a
unique C-set and every C-set contains at least the vertices of one black region.
These facts allow us to denote by Ci,j the C-set whose set of black regions is
{Bi, . . . , Bj}. If Ci,j ∩ Ri �= ∅, then Ci,j ∩ Ri = Rr

i . Similarly, if Ci,j ∩ Rj+1 �= ∅,
then Ci,j ∩ Rj+1 = R�

j+1. Therefore, from now on, if not empty, both Rr
i and

R�
j+1 as well as Rk for i < k < j +1 will be called the red regions of Ci,j . Finally,

note that those red regions might be empty if Ci,j has type 3 or 4. However,
if Ci,j has type 1 or 2, then its red regions form a covered component, and
consequently, not only both Rr

i �= ∅ and R�
j+1 �= ∅, but also both Rk �= ∅ and

R�
k ∩ Rr

k �= ∅ for i < k < j + 1, as a covered component does not contain a left
vertex followed by a right vertex.

The proposed algorithm finds a {0,−1} labeling of the C-sets, which depends
on the types and the relative positions of the C-sets. A minimum P ∗

3 -hull set
is then obtained by making a standard choice S for each C-set between two
possibilities, which we call left and right choices, and depends on the pair type
and label, as shown in Table 1. As in Figs. 2, 3, 4 and 5, for any C-set C, there
is (at most) one black region B of C such that its standard choice alternates in
containing and not containing a black vertex of each consecutive black region
of C from B on. Besides those black vertices, the standard choice has one red
vertex if C contains a covered component and no red vertex otherwise.

The left choice S for a C-set Ci,j with type t ∈ [4] and k = j − i + 1 black
regions is defined as

S =

{
{rr

i } ∪ {br
i+1+2k′ : 0 ≤ k′ < k

2 �} , if t ∈ [2];
{br

i+2k′ : 0 ≤ k′ < �k
2 �} , if t ∈ {3, 4}.
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Algorithm 1. Finding a minimum P ∗
3 -hull set.

input: A unit interval graph G having exactly 2 simplicial vertices

1 Γ canonical ordering of V (G)
2 C ← the partition (C1, . . . , Ct) of Γ into C-sets, where C1 and Ct have types in {3, 4}
3 if C1 has type 3 then

4 label(C1) ← 0 (left choice for type 3)

5 else
6 label(C1) ← −1 (left choice for type 4)

7 for j from 2 to q do
8 if Cj has type 2 or 3 then

9 label(Cj) ← −1 − label(Cj−1)

10 else
11 label(Cj) ← label(Cj−1)

12 S ← {vn}
13 for Ci ∈ C do

14 S ← S ∪ S′ where S′ is a standard choice for Ci,j according to Table 1

15 return S

Table 1. Standard choices.

Type Label 0 Label −1

1 Right choice Left choice

2 Left choice Right choice

3 Left choice Right choice

4 Right choice Left choice

The right choice S for a C-set Ci,j with type t ∈ [4] and k = j − i + 1 black
regions is defined as

S =

⎧
⎪⎪⎨

⎪⎪⎩

{r} for some r ∈ R�
i+1 , if t = 1 and j = i;

{ri+1} ∪ {br
i+2k′ : 0 < k′ < � k

2 �} for some ri+1 ∈ R�
i+1 ∩ Rr

i+1 , if t ∈ [2] and j > i;

{br
i+1+2k′ : 0 ≤ k′ < � k

2 �} , if t ∈ {3, 4}.

The idea of the linear algorithm is to give the left choice for the first C-set,
and then alternate the standard choice from left to right and vice-versa if and
only if the preceding C-set had type 2 or 3. Note that label −1 means “missing”
and indicates that no vertex of the last black region Bj of Ci,j belongs to its
standard choice S. Note also that the first and the last C-sets in Γ are not a
covered component, and therefore, always have types in {3, 4}. Figures 2, 3, 4
and 5 depict the left and right choices for a C-set depending on its type.

In the next lemma we show that, for any j ∈ [q], if Bj−1 and Bj belong to
distinct C-sets, then there is no vertex of Rj having neighbors in both Rj−1 and
Rj+1.
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Ri Bi Ri+1 Bi+1 Ri+2 Bi+2 Ri+3 Bi+3 Ri+4 Bi+4 Ri+5

Ci,i+4

Ci,i+4

Ri Bi Ri+1 Bi+1 Ri+2 Bi+2 Ri+3 Bi+3 Ri+4 Bi+4 Ri+5

Fig. 2. Scheme representing the left (on top) and right (on bottom) choices of C-set
Ci,i+4 with type 1. (Color figure online)

Ri Bi Ri+1 Bi+1 Ri+2 Bi+2 Ri+3 Bi+3 Ri+4

Ci,i+3

Ci,i+3

Ri Bi Ri+1 Bi+1 Ri+2 Bi+2 Ri+3 Bi+3 Ri+4

Fig. 3. Scheme representing the left (on top) and right (on bottom) choices of C-set
Ci,i+3 with type 2. (Color figure online)

Lemma 3. If Ci,j−1 and Cj,k are C-sets, then R�
j ∩ Rr

j = ∅.

Proof. By definition, if one of these C-sets has type 3 or 4, then the other one
has type 1 or 2. This means that exactly one of these two C-sets has type 1 or 2,
and therefore the red vertices of this C-set form a covered component. However,
if R�

j ∩ Rr
j �= ∅, then there would be a contradiction, as no vertex in Rj could

be neither a left vertex nor a right vertex, i.e., neither the first nor the last red
vertex of this C-set of type 1 or 2. �

Lemma 4. Every covered component of a unit interval graph G is P ∗
3 -concave.

Proof. Let Ci,j be the C-set of type either 1 or 2 containing the covered com-
ponent, therefore, the red regions of Ci,j form the covered component. Lemma 3
implies that, for i < k < j + 1, each red vertex of Rk neighbors only red ver-
tices of Rk−1, Rk and Rk+1, each red vertex of Rr

i neighbors only red vertices
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Ri Bi Ri+1 Bi+1 Ri+2 Bi+2 Ri+3 Bi+3 Ri+4 Bi+4 Ri+5

Ci,i+4

Ci,i+4

Ri Bi Ri+1 Bi+1 Ri+2 Bi+2 Ri+3 Bi+3 Ri+4 Bi+4 Ri+5

Fig. 4. Scheme representing the left (on top) and right (on bottom) choices of C-set
Ci,i+4 with type 3. (Color figure online)

of Ri and Ri+1 and each red vertex of R�
j+1 neighbors only red vertices of Rj

and Rj+1. Finally, for i ≤ k ≤ j + 1, since Bk−1 ∪ Rk ∪ Bk form a clique and
Rk neighbors only black vertices of Bk−1 ∪ Bk, each vertex of the covered com-
ponent is such that all its neighbors not belonging to the covered component
form a clique, meaning that the covered component is P ∗

3 -concave, and there-
fore, every covered component of G must intersect with every P ∗

3 -hull set of G.
(As an alternative proof, the fact that 〈S〉∗

3 ⊆ 〈S〉g for every set S ⊆ V (G) also
implies the claim, as from [9] it is known that every covered component of G is
geodesically concave.) �

Remember that br
i−1 is the rightmost vertex of Bi−1, and that b�

i+1 is the
leftmost vertex of Bi+1, being both br

i−1 and b�
i+1 adjacent to every vertex in Bi,

but not to one another. Note also that b�
i+1 has no neighbor in Rr

i , as no vertex
in that set belongs to a shortest path between v1 and vn, and that br

i−1 has no
neighbor in R�

i+1, as no vertex in that set has distance i to v1. The following
property will be very useful.

Lemma 5. If r ∈ Rr
i ∪ R�

i+1, then Rr
i ∪ Bi ∪ R�

i+1 ⊆ 〈{br
i−1, r, b

�
i+1}〉∗

3.

Proof. Note that Bi ⊆ [br
i−1, b

�
i+1]

∗
3 and that Rr

i �= ∅ if and only if R�
i+1 �=

∅. If r ∈ Rr
i and vk is the vertex with maximum index k in Γ belonging to

N(r) ∩ R�
i+1, then R�

i+1 ∩ Γ1,k ⊆ [{r, b�
i+1}]∗3, Rr

i ⊆ [{br
i−1} ∪ (R�

i+1 ∩ Γ1,k)]∗3,
and R�

i+1 ⊆ [Rr
i ∪ {b�

i+1}]∗3 as well. Similarly, in a symmetric way, if r ∈ R�
i+1

and vk′ is the vertex with minimum index k′ in Γ belonging to N(r) ∩ Rr
i , then

Rr
i ∩Γk′,n ⊆ [{r, br

i−1}]∗3, R�
i+1 ⊆ [{b�

i+1}∪(Rr
i ∩Γk′,n)]∗3 and Rr

i ⊆ [R�
i+1∪{br

i−1}]∗3
as well. �

Now we are ready to understand why the linear algorithm presented, which
starts with a left choice for the first C-set and then flips the standard choice
from left to right and vice-versa if and only if the preceding C-set has type 2 or
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Ri Bi Ri+1 Bi+1 Ri+2 Bi+2 Ri+3 Bi+3 Ri+4

Ci,i+3

Ci,i+3

Ri Bi Ri+1 Bi+1 Ri+2 Bi+2 Ri+3 Bi+3 Ri+4

Fig. 5. Scheme representing the left (on top) and right (on bottom) choices of C-set
Ci,i+3 with type 4. (Color figure online)

3, indeed provides a minimum P ∗
3 -hull set of G when the choices of the C-sets

get united together with vn. The following lemma throws light on that.

Lemma 6. If Si,j is a standard choice for a C-set Ci,j, then the following holds:

(a) Ci,j ⊆ 〈Si,j ∪ {br
i−1, b

�
j+1}〉∗

3;
(b) Ci,j \ (Rr

i ∪ R�
i+1) ⊆ 〈Si,j ∪ Bi ∪ {b�

j+1}〉∗
3;

(c) Ci,j \ (Rr
j ∪ R�

j+1) ⊆ 〈Si,j ∪ Bj ∪ {br
i−1}〉∗

3;
(d) Ci,j \ (Rr

i ∪ R�
i+1 ∪ Rr

j ∪ R�
j+1) ⊆ 〈Si,j ∪ Bi ∪ Bj〉∗

3.

Proof. Write Sa = Si,j ∪ {br
i−1, b

�
j+1}, Sb = Si,j ∪ Bi ∪ {b�

j+1}, Sc = Si,j ∪ Bj ∪
{br

i−1}, and Sd = Si,j ∪ Bi ∪ Bj . We give only one proof for all four cases, thus
let x ∈ {a, b, c, d}.

First consider Ci,j with type in {1, 2}, that is, its red regions form a covered
component. It is clear that Bi ⊆ [Sx]∗3 for x ∈ {a, b, c, d}. Since b�

kbr
k+1 ∈ E(G)

for i − 1 ≤ k ≤ j, we have Bk ⊆ [[Sx]∗3]
∗
3 ⊆ 〈Sx〉∗

3 for x ∈ {a, b, c, d} and
i ≤ k ≤ j. Besides, for each choice Si,j , note that there is r ∈ Si,j such that
either r = rr

i (left choice) or r ∈ R�
i+1 ∩ Rr

i+1 (right choice), and thus, not only
[Sx]∗3 ∩ R�

i+1 ∩ Rr
i+1 �= ∅ for x ∈ {a, b, c, d} and i < j, but also by Lemma 5

we have that Rr
i ∪ R�

i+1 ⊆ 〈Sx〉∗
3 for either x ∈ {a, c} and i < j, or x = a and

i = j. Now, since R�
k+1 ∩ Rr

k+1 �= ∅ for i ≤ k ≤ j − 1 as the red regions of
Ci,j form a covered component, due to Lemma 5 we have for i < j by forwards
induction starting on [Sx]∗3 ∩ R�

i+1 ∩ Rr
i+1 �= ∅ that Rr

k+1 ∪ R�
k+2 ⊆ 〈Sx〉∗

3 for
either x ∈ {a, b} and i ≤ k ≤ j − 1, or x ∈ {c, d} and i ≤ k ≤ j − 2.

Now, consider that Ci,j has type 3 or 4. Note that {br
k|i ≤ k ≤ j} ⊆ [Sx]∗3 and

Bj ⊆ [[Sx]∗3]
∗
3 for x ∈ {a, b, c, d}, which implies, by backwards induction starting

on Bj , that Bk ⊆ 〈Sx〉∗
3 for x ∈ {a, b, c, d} and i ≤ k ≤ j. Therefore, if some red

region Rk for i < k ≤ j is not covered by a long edge, then Rk ⊆ [b�
k−1, b

r
k]∗3 ⊆

〈Sx〉∗
3 for x ∈ {a, b, c, d} as well. Thus, suppose that (Ri′ , . . . , Rj′) is a maximal

sequence of covered non-empty red regions for i + 1 ≤ i′ ≤ k ≤ j′ ≤ j. Since
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Ci,j does not contain a covered component, Ri′−1 ⊇ Rr
i′−1 �= ∅ with i′ > i + 1

or Rj′+1 ⊇ R�
j′+1 �= ∅ with j′ < j is not a covered red region. Without loss of

generality, assume that Ri′−1 ⊇ Rr
i′−1 �= ∅ with i′ > i + 1 is not a covered red

region, meaning that Ri′−1 ⊆ 〈Sx〉∗
3 for x ∈ {a, b, c, d}. (Otherwise, an analogous

argument using Lemma 5 works with a backwards induction instead of a forwards
one.) Note that Lemma 5 applied on br

i′−2, r
r
i′−1, b

�
i′ yields R�

i′ ⊆ 〈Sx〉∗
3. Now, as

Ci,j does not contain a covered component, R�
k∩Rr

k �= ∅ for i′ ≤ k < j′, implying
by forwards induction that Lemma5 applied on br

k−1, r, b
�
k+1 with r ∈ R�

k ∩ Rr
k

yields Rr
k ∪ R�

k+1 ⊆ 〈Sx〉∗
3 for either i′ ≤ k ≤ j′ (if Rj′+1 �= ∅) or i′ ≤ k < j′ (if

Rj′+1 = ∅), that is, Rk ⊆ 〈Sx〉∗
3 for i′ ≤ k ≤ j′, as either R�

j′ ∩ Rr
j′ �= ∅ with

j′ < j when Rj′+1 �= ∅ or Rj′ = R�
j′ when Rj′+1 = ∅. Finally, it remains to

show that Rr
i ⊆ 〈Sx〉∗

3 for x ∈ {a, c} and that R�
j+1 ⊆ 〈Sx〉∗

3 for x ∈ {a, b}, but
these facts are directly derived from Lemma 5, as in this case both Ri and Rj+1

are covered red regions. �

Let (C1, . . . , Ct) be the C-sets ordered according to Γ . The set S returned by
Algorithm 1 is a minimum P ∗

3 -hull set of G containing vn as well as the standard
choices selected by the algorithm for the C-sets, based on both the types and the
received labels. Remark that the label is applied in such a way that the algorithm
gives the left choice for C1, and then consecutively alternates the standard choice
from left to right and vice-versa if and only if the preceding C-set had type 2
or 3, maintaining it otherwise. In Lemma8 we prove that S is in fact a P ∗

3 -hull
set of G, whereas in Lemmas 9 to 11 we prove that there is no P ∗

3 -hull set of G
with less than |S| vertices. Define f(Ci) as the cardinality of the standard choice
that the algorithm associated with Ci and f ′(G) as the number of times that
the labeling changes from −1 to 0, plus 1 if C1 has type 3, and again plus 1 if
Ct received label −1. In Theorem 1 we show that |S| = f ′(G) +

∑
1≤i≤t

f(Ci).

The next lemma combined with the previous one is key to comprehend the
correctness.

Lemma 7. If Ci,j is a C-set of G and S is the set returned by Algorithm1, then
Bi ∪ . . . ∪ Bj ⊆ 〈S〉∗

3. Hence, br
i−1 ∈ 〈S〉∗

3 for 1 ≤ i ≤ q and b�
j+1 ∈ 〈S〉∗

3 for
0 ≤ j ≤ q − 1.

Proof. First, consider the case where Ci,j has type 3 or 4. Let Si,j = S ∩ Ci,j .
We begin assuming that i ≥ 1 and j ≤ q − 1. Observe that if br

i ∈ Si,j , then
there is v ∈ S ∩ ({br

i−2}∪Ri−1); otherwise there is v ∈ S ∩ ({br
i−1}∪Ri). Observe

also that if br
j ∈ B, then there is w ∈ S ∩ ({br

j+1, b
r
j+2} ∪ Rj+2); otherwise there

is w ∈ S ∩ ({br
j+1} ∪ Rj+1). In all cases, it holds that br

k ∈ [Si,j ∪ {v, w}]∗3 for
i− 1 ≤ k ≤ j +1. Since Ci,j has type 3 or 4, the C-set containing Bj+1 has type
1 or 2, which means that the edge b�

jb
r
j+1 exists. Hence b�

j ∈ 〈S〉∗
3, which implies

that Bi ∪ . . . ∪ Bj ⊂ 〈S〉∗
3. Now, if i = 0, then Bi = {v1} and br

i = v1 ∈ S; and if
j = q, then Bj = {vn} and b�

j = vn ∈ S, which means that Bi ∪ . . . ∪ Bj ⊂ 〈S〉∗
3

even if for i = 0 or j = q.
Now, consider the case where Ci,j has type 1 or 2. Note that the first C-set

C1 as well as the last C-set Ct have both types in {3, 4}. Thus, a C-set Ci,j of
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type in {1, 2} is such that not only 0 < i ≤ j < q, but also both its preceding and
subsequent C-sets have types in {3, 4}. This fact jointly with both the previous
case and (a) of Lemma 6 imply that Bi ∪ . . . ∪ Bj ⊆ 〈S〉∗

3. �

Lemma 8. Algorithm1 returns a P ∗
3 -hull set of G.

Proof. Recall that G has exactly 2 simplicial vertices. Let S be the set returned
by Algorithm 1 and Ci,j be a C-set of G having type t. Consider first i = 0.
If i = 0, Bi = {v1} ⊆ S and clearly by definition Rr

0 ∪ R�
1 = ∅. If j = q,

Bj = {vn} ⊆ S and clearly by definition Rr
q ∪ R�

q+1 = ∅. By (d) of Lemma 6,
V (G) = Ci,j = 〈S〉∗

3. Now, consider that j < q. By Lemma 7, it holds b�
j+1 ∈ 〈S〉∗

3.
Thus, by (b) of Lemma 6, Ci,j ⊆ 〈S〉∗

3. Next, consider j = q and i > 0. By
Lemma 7, br

i−1 ∈ 〈S〉∗
3. By (c) of Lemma 6, Ci,j ⊆ 〈S〉∗

3. Finally, suppose i > 0
and j < q. By Lemma 7, br

i−1, b
�
j+1 ∈ 〈S〉∗

3. By (a) of Lemma 6, Ci,j ⊆ 〈S〉∗
3. �

We now define a lower bound, proved in Lemma9, for the number of vertices
that any P ∗

3 -hull set contains from a C-set Ci,j as a function of its type t.

f(Ci,j) =

⎧⎪⎨
⎪⎩

j−i+1
2 , if t ∈ {2, 4};

j−i+2
2 , if t = 1;

j−i
2 , if t = 3.

Let Si,j be a standard choice of Ci,j . Note that f(Ci,j) = |Si,j | if t ∈ {1, 4}
or Si,j is a right choice; otherwise, f(Ci,j) = |Si,j | − 1.

Lemma 9. If S is a P ∗
3 -hull set and Ci,j is a C-set of a unit interval graph G,

then |S ∩ Ci,j | ≥ f(Ci,j).

Proof. The number of black regions contained in Ci,j is j−i+1. By Lemma 2 (a),
Rr

i ∪ Bi ∪ Ri+1 ∪ Bi+1 is a P ∗
3 -concave set and Rk ∪ Bk ∪ Rk+1 ∪ Bk+1 is a P ∗

3 -
concave set for i + 1 ≤ k ≤ j − 1. Therefore, Ci,j contains at least  j−i+1

2 �
disjoint P ∗

3 -concave sets, which implies the result if the type of Ci,j is 2 or 4 as
j − i + 1 is even or if its type is 3 as j − i is not only even but also smaller than
j − i + 1.

Now, consider that Ci,j has type 1 and let S be a P ∗
3 -hull set of G. By

definition, j − i + 1 is odd. Since Ci,j contains a covered component, Lemma 4
implies that at least one vertex of a red region of Ci,j belongs to S. Now, due
to this fact, if |S ∩ Ci,j | < � j−i+1

2 �, then there are four consecutive regions of Γ ,
w.l.o.g. say V ′ = Ri′ ∪ Bi′ ∪ Ri′+1 ∪ Bi′+1 for i ≤ i′ < j such that V ′ ∩ S = ∅.
By Lemma 2, V ′ is a P ∗

3 -concave set, which is a contradiction. Thus, the result
also holds for type 1. �

Lemma 10. Let S be a P ∗
3 -hull set and let Ci,j be a C-set of G such that

|S ∩ Ci| = f(Ci).
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(a) If Ci,j has type 2, then S ∩ (Rr
i ∪ Bi ∪ Bj ∪ R�

j+1) = ∅;
(b) If Ci,j has type 1 or 4, then S ∩ (Rr

i ∪ Bi) = ∅ or S ∩ (Bj ∪ R�
j+1) = ∅;

(c) If Ci,j has type 3, then S ∩ (Rr
i ∪ Bi ∪ Ri+1 ∪ Rj ∪ Bj ∪ R�

j+1) = ∅.

Proof. We first count the number of regions of Ci,j in terms of f(Ci,j). (a)
Suppose for contradiction that v ∈ S ∩ (Rr

i ∪ Bi ∪ Bj ∪ R�
j+1). By symmetry,

assume that S ∩ (Rr
i ∪ Bi) �= ∅. The number of black regions of Ci,j is j − i + 1,

which means that Ci,j has 2(j − i + 1) + 1 = 4f(Ci,j) + 1 regions, namely,
Rr

i , Bi, Ri+1, Bi+1, . . . , Rj , Bj , R
�
j+1. (b) First, consider that Ci,j has type 1.

Suppose for contradiction that S ∩ (Rr
i ∪ Bi) �= ∅ and S ∩ (Bj ∪ R�

j+1) �= ∅.
Then, Ci,j has 2(j − i+1)+1 = 2(j − i+2)−1 = 4f(Ci,j)−1 regions. Now, con-
sider that Ci,j has type 4. Suppose for contradiction that S ∩ (Rr

i ∪Bi) �= ∅ and
S∩(Bj ∪R�

j+1) �= ∅. Then, Ci,j has 2(j−i+1)+1 = 4f(Ci,j)+1 regions. (c) Sup-
pose for contradiction that v ∈ S∩(Rr

i ∪Bi∪Ri+1∪Rj∪Bj∪B�
j+1). By symmetry,

assume v ∈ Rr
i−1∪Bi∪Ri. Then, Ci,j has 2(j−i+1)+1 = 2(j−i)+3 = 4f(Ci,j)+3

regions.
Besides, by Lemma 4, S contains a vertex of a red region of Ci,j if its type

is either 1 or 2 (that is, if it contains a covered component). Now, using the
pigeonhole principle in all (a), (b) and (c) items, we conclude that in all cases
there are four consecutive regions of Ci,j having no vertices of S. By Lemma 2,
these four regions form a P ∗

3 -concave set, which implies that S is not a P ∗
3 -hull

set of G, a contradiction. �

Lemma 11. Consider the labeling obtained by Algorithm1 and let S be a min-
imum P ∗

3 -hull set of G. The following sentences hold:

(a) If (Ci, . . . , Cj) is a maximal sequence of C-sets such that label(Cj) = 0 and
label(Ck) = −1 for i ≤ k < j, then |S ∩ (Ci ∪ . . . ∪ Cj)| ≥ f(Ci) + . . . +
f(Cj) + 1; and

(b) If Cj−1 and Cj = C�j ,d(G) are C-sets and label(Cj) = −1, then |S ∩ (Cj−1 ∪
Cj)| ≥ f(Cj−1) + f(Cj) + 1.

Proof. (a) Suppose that |S ∩ (Ci ∪ . . . ∪ Cj)| ≤ f(Ci) + . . . + f(Cj). If j = 1,
then Cj has type 3. By Lemma 10, S ∩ B0 = ∅, which is a contradiction since
B0 = {v1} and v1 is a simplicial vertex. Then consider j > 1. Remember that a
C-set has label different of its predecessor if and only if its type is 2 or 3. Hence,
Cj = Cj′,j′′ has type 2 or 3. By Lemma 10, it holds S ∩ (Rr

j′ ∪Bj′) = ∅. If i = 1,
then C1 = C0,�2−1 has type 4. Since v1 is a simplicial vertex, v1 ∈ S, then, by
Lemma 10, S ∩ (B�2−1 ∪R�

�2
) = ∅. If i ≥ 2, then Ci = C�i,�i+1−1 has type 2 or 3.

By Lemma 10, S ∩ (B�2−1 ∪ R�
�2

) = ∅. In both cases, Ck = C�k,�k+1−1 has type
1 or 4 for i + 1 ≤ k < j. This means by Lemma 10 that S ∩ (Rr

�k
∪ B�k

) = ∅

or S ∩ (B�k+1−1 ∪ R�
�k+1

) = ∅ for i + 1 ≤ k < j. Therefore, by the pigeonhole
principle, there is some p ∈ {i + 1, . . . , j} such that B�p

∪ Rr
�p+1 ⊂ C�p−1,�p−1

and R�
p+1 ∪ Bp+1 ⊂ C�p,�p+1−1 such that S ∩ (Bp ∪ Rp+1 ∪ Bp+1) = ∅. By

Lemmas 2 (d) and 3, Bp ∪ Rp+1 ∪ Bp+1 is a P ∗
3 -concave set, which contradicts

the assumption that S is a P ∗
3 -hull set.
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(b) Suppose that |S ∩ (Cj−1 ∪ Cj)| ≤ f(Cj−1) + f(Cj). We know that Cj has
type t ∈ {3, 4}, Cj−1 has type 1 or 2, Bd(G) = {vn}, and Rd(G)+1 = ∅. If t = 3,
then Lemma 10 (c) implies that S ∩ (Rr

i ∪ Bi ∪ Ri+1 ∪ Rd(G) ∪ Bd(G)) = ∅. But
this is a contradiction because vn ∈ S. Then consider t = 4. By Lemma 10 (b),
S ∩(Rr

�j
∪B�j

) = ∅ or S ∩Bd(G) = ∅. Since vn ∈ S, it holds S ∩(Rr
�j

∪B�j
) = ∅.

Note that label(Cj−1) = −1. Let (Ci, . . . , Cj) be the maximal sequence of C-sets
such that label(Ck) = −1 for i ≤ k ≤ j. Note that Ck has type 1 or 4 for i < k ≤
j. Write Ck = C�k,�k+1−1 for i ≤ k < j. Consider first i = 1. By the algorithm,
C1 = C0,�2−1 has type 4. By Lemma 10 (b), B0∩S = ∅ or (B�2−1∪R�

�2
)∩S = ∅.

Since v1 ∈ B0 is a simplicial vertex, it holds (B�2−1∪R�
�2

)∩S = ∅. Now consider
i > 1. The algorithm implies that Ci has type 2 or 3. Lemmas 10 (a) and (c)
imply that (B�i+1−1 ∪ R�

�i+1
) ∩ S = ∅. Thus, in any case, Lemma 10 (b) implies

that S ∩ (Rr
�k

∪B�k
) = ∅ or S ∩ (B�k+1−1 ∪R�

�k+1
) = ∅ for i < k < j. This means

that there is some p ∈ {i + 1, . . . , j} such that S ∩ (Bp ∪ Rp+1 ∪ Bp+1) = ∅,
which is a contradiction by Lemmas 2 and 3. �

Theorem 1. If G is a unit interval graph with exactly two simplicial vertices,
then h∗

3(G) = f ′(G)+
∑

1≤i≤t

f(Ci). Besides, the P ∗
3 -hull number of a unit interval

graph G can be found in linear time.

Proof. Consequence of Lemmas 8, 9, 10, and 11. Besides, a canonical ordering of
a unit interval graph can be found in linear time [8,16], and thus, its simplicial
vertices as well. Since the components of a unit interval graph can be determined
in linear time [9], the result follows due to Lemma1. �

3 Chordal Graphs

We conclude by pointing out the succeeding NP-completeness for the superclass
of chordal graphs.

Theorem 2. Given a chordal graph G and an integer k, it is NP-complete to
decide whether h∗

3(G) ≤ k.

The main idea behind the NP-completeness proof (omitted here due to lack
of space) is a polynomial reduction from a restricted version of Satisfiability
which is NP-complete [10,12] . Let C be an instance of Satisfiability consisting
of m clauses C1, . . . , Cm over n boolean variables x1, . . . , xn such that every
clause in C contains at most three literals and, for every variable xi, there are
exactly two clauses in C, say Cj1

i
and Cj2

i
, that contain the literal xi, and exactly

one clause in C, say Cj3
i
, that contains the literal x̄i, and these three clauses are

distinct.
Let the graph G be constructed as follows starting with the empty graph.

For every j ∈ [m], add a vertex cj . For every i ∈ [n], add 10 vertices
xi, yi, zi, x

1
i , x

2
i , w

1
i , w2

i , x̄i, ȳi, w̄i and 17 edges to obtain the subgraph indicated
in Fig. 6. Add a vertex z and the edges to make a clique of C ∪ Z ∪ {z}, where
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C = {cj |j ∈ [m]} and Z = {zi|i ∈ [n]}. Setting k = 4n + 1, we show in the full
version of the paper that C is satisfiable if and only if G contains a P ∗

3 -hull set
of order at most k.

C
cj1i cj2i cj3i

zixi xiyi
yix1

i

w1
i

x2
i

w2
i

w̄i

Fig. 6. When the construction of G ends, zi will belong to the clique C∪{z1, . . . , zn}∪
{z}.
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Supermagic Graphs with Many
Odd Degrees
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Abstract. A graph G = (V,E) is called supermagic if there exists a
bijection f : E → {1, 2, . . . , |E|} such that the weight of every vertex
x ∈ V defined as the sum of labels f(xy) of all edges xy incident with x
is equal to the same number m, called the supermagic constant .

Recently, Kovář et al. affirmatively answered a question by Madaras
about existence of supermagic graphs with arbitrarily many different
degrees. Their construction provided graphs with all degrees even. There-
fore, they asked if there exists a supermagic graph with d different odd
degrees for any positive integer d.

We answer this question in the affirmative by providing a construction
based on the use of 3-dimensional magic rectangles.

Keywords: Supermagic graphs · Magic-type labeling · Edge labeling

1 Introduction

A finite simple graph G = (V,E) is called supermagic if there exists a bijection
f : E → {1, 2, . . . , |E|} called supermagic labeling such that the weight of every
vertex x ∈ V defined as the sum of labels f(xy) of all edges xy incident with x
is equal to the same number m, called the supermagic constant. That is,

∃m ∈ N ∀x ∈ V : w(x) =
∑

xy∈E

f(xy) = m.

Most often, graphs studied in this context are vertex-regular or even vertex-
transitive.

Recently, Kovář, Kravčenko, Krbeček, and Silber, [2] affirmatively answered
a question by Madaras: Does there exist a supermagic graph with arbitrarily
many different degrees?

Because their construction provided only graphs where all degrees were even,
they asked the following more specific question: Does there exist a supermagic
graph with d different odd degrees for any positive integer d?

We construct a class of disconnected graphs based on lexicographic products
(also called compositions) of graphs with many different odd degrees and com-
plements of complete graphs. We also present a modification of this construction
that provides connected graphs with the same required properties.
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C. J. Colbourn et al. (Eds.): IWOCA 2019, LNCS 11638, pp. 229–236, 2019.
https://doi.org/10.1007/978-3-030-25005-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25005-8_19&domain=pdf
http://orcid.org/0000-0003-4528-2059
https://doi.org/10.1007/978-3-030-25005-8_19


230 D. Froncek and J. Qiu

The labeling used in the construction is based on the existence of three-
dimensional magic rectangles.

2 Tools

To construct the graphs, we will use one of the standard graph products, called
the lexicographic product or also composition.

A graph G ◦ H called the lexicographic product or composition of graphs G
and H arises from G by replacing each vertex of G by a copy of H, and every
edge of G by the complete bipartite graph Kt,t, where t is the number of vertices
of H.

More formally, let V (G) = {g1, g2, . . . , gs} and V (H) = {h1, h2, . . . , ht}.
Then V (G ◦ H) = V (G) × V (H) and (ga, hb)(gc, hd) ∈ E(G ◦ H) if and only if
gagc ∈ E(G) or ga = gc and hbhd ∈ E(H).

If the graph H is isomorphic to Kt = tK1, that is, consists of t independent
vertices, then we say that G ◦ tK1 is a blown up G, or that we have blown up G
by tK1. In this case, the graph G ◦ tK1 will be denoted simply by G[t].

An important ingredient of our construction is a 3-dimensional magic rect-
angle. We start with a more general definition introduced by Hagedorn [1].

Definition 1. An n-dimensional magic rectangle n-MR(a1, a2, . . . , an) is an
a1 × a2 × · · · × an array with entries di1,i2,...,in which are elements of the set
{1, 2, . . . , a1a2 . . . an}, each appearing once, such that all sums in the k-th direc-
tion are equal to a constant σk. That is, for every k, 1 ≤ k ≤ n, and every
selection of indices i1, i2, . . . , ik−1, ik+1, . . . , in, we have

ak∑

j=1

di1,i2,...,ik−1,j,ik+1,...,in = σk,

where σk = ak(a1a2 . . . an + 1)/2.

The following existence results were also proved by Hagedorn in [1].

Theorem 1 [1]. If there exists an n-dimensional magic rectangle n-
MR(a1, a2, . . . , an), then a1 ≡ a2 ≡ · · · ≡ an (mod 2).

For a1 ≡ a2 ≡ · · · ≡ an ≡ 0 (mod 2), Hagedorn found a complete existence
characterization.

Theorem 2 [1]. An n-dimensional magic rectangle n-MR(a1, a2, . . . , an) with
a1 ≤ a2 ≤ · · · ≤ an and all ai even exists if and only if 2 ≤ a1 and 4 ≤ a2 ≤
· · · ≤ an.

For odd dimensions, Hagedorn proved the following.

Theorem 3 [1]. A 3-dimensional magic rectangle 3-MR(a1, a2, a3) with 3 ≤
a1 ≤ a2 ≤ a3 exists whenever gcd(ai, aj) > 1 for some i, j ∈ {1, 2, 3}.
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We will use a special case of his result in our construction.

Corollary 1 [1]. A 3-dimensional magic rectangle 3-MR(3, 3, a) exists for every
odd a, a ≥ 3.

Recently, Zhou, Li, Zhang, and Su [3] proved that for 3-dimensional magic
rectangles the necessary conditions are also sufficient.

Theorem 4 [3]. A 3-dimensional magic rectangle 3-MR(a1, a2, a3) with 3 ≤
a1 ≤ a2 ≤ a3 exists whenever a1 ≡ a2 ≡ a3 ≡ 1 (mod 2).

3 Construction

We build our graphs in two steps. First we build a graph G with the required
number of different odd degrees, and label the edges with just two different labels
so that the sum of labels at every vertex is constant. Then we blow up G into
G[3] and label the edges of each K3,3 using entries of one 3 × 3 rectangle from a
3-MR(3, 3, a), or from a slightly modified 3-MR(3, 3, b) with b = 8a + 1.

We call a graph G 2-pseudomagic if there are positive integers l and h and a
mapping g̃ : E(G) → {l, h} called 2-pseudomagic labeling such that the weight
of every vertex x, defined as the sum of labels of all edges incident with x, is
equal to the same constant m̃. The edges labeled l will be called light, and those
labeled h will be called heavy.

Let 3-MR(a1, a2, a3) be a 3-dimensional magic rectangle as defined above,
with entries dj1,j2,j3 and magic constants σi, i = 1, 2, 3. For 3-MR(3, 3, a) we
have σ1 = σ2 = 3(9a + 1)/2. Recall that a must be odd.

Then the 3-dimensional a1 ×a2 ×a3 array with entries d+j1,j2,j3 = c+dj1,j2,j3
is called a 3-dimensional c-lifted magic rectangle. It should be obvious that the
magic constants here are equal to aic + σi for each i = 1, 2, 3. Such a rectangle
will be denoted 3-MR+(a1, a2, a3; c) with magic constants σ+

i , where by the
reasoning above we have σ+

i = aic + σi.
In order to use consecutive integers in the labeling of G[3], we want to find

3-MR(3, 3, a) and 3-MR+(3, 3, b; c) such that c = 9a and lσ+
i = hσi for some

positive integers l and h. Note that because 3-MR+(3, 3, b; c) is constructed from
a 3-dimensional magic rectangle 3-MR(3, 3, b), we must have b odd.

We present one such pair in the following. For simplicity, we choose l = 1.

Lemma 1. Let c = 9a, b = 8a + 1, and σ1 = σ2 and σ+
1 = σ+

2 be magic
constants of 3-MR(3, 3, a) and 3-MR+(3, 3, b; c), respectively. Then σ+

1 = 10σ1.

Proof. We have

σ1 =
9a(9a + 1)

2 · 3a
=

3(9a + 1)
2

Since the labels in 3-MR+(3, 3, b; c) start with 9a + 1, we have

σ+
1 =

(9a + 1 + 9(a + b))9b

2 · 3b
=

3(9a + 1 + 9(a + b))
2
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Substitute b = 8a + 1 to get

σ+
1 =

3(9a + 1 + 9(a + 8a + 1))
2

=
3(9a + 1)(1 + 9))

2
= 10

3(9a + 1)
2

= 10σ1

as desired.

Now we construct a 2-pseudomagic host graph G with d different odd degrees.
The labels we use are l = 1 and h = 10. We will say that a vertex x has a light
degree degl(x) if it is incident with degl(x) light edges, that is, edges labeled
1. Similarly, vertex x has a heavy degree degh(x) if it is incident with degh(x)
heavy edges, that is, edges labeled 10. The weight of a vertex x in G will be
denoted w̃(x). From the above it follows that

w̃(x) = degl(x) + 10 degh(x). (1)

Construction 1. Let p be a prime, p ≥ 2d + 1, and d > 1. Our host graph
G will consist of d + 2 components. A light component G0, mixed components
G1, G2, . . . , Gd, and heavy component Gd+1. To use the magic rectangles from
Lemma 1 for blowing up G to G[3], we will need a light and b = 8a + 1 heavy
edges. We denote by ai and bi the number of light and heavy edges in Gi,
respectively.

We start with G0
∼= K10p+1 with all light edges. Notice that the number of

edges in G0 is (10p+1)5p, which is odd, since p is a prime. We have deg(x0,j) =
degl(x0,j) = 10p and from (1) it follows that w̃(x0,j) = 10p for every x0,j ∈ G0.

Then for i = 1, 2, . . . , d − 1 we first take G′
i

∼= K10p+2 − M10p+2, where
M10p+2 is a perfect matching. This is a 10p-regular graph, so we have used an
even number of light edges in each G′

i, i > 0.
Next we build Gi, i = 1, 2, . . . , d − 1 by removing 10(2i − 1) light one-factors

and adding back (2i − 1) heavy one-factors. The number of light edges in Gi is
still even, since for every xi,j ∈ Gi we have

degl(xi,j) = 10p − 10(2i − 1) (2)

and the order of Gi is 10p+2. Because we added back (2i−1) heavy one-factors,
we have

degh(xi,j) = 2i − 1. (3)

Therefore, by adding (2) and (3), the degree of xi,j is

deg(xi,j) = degl(xi,j) + degh(xi,j) = 10p − 9(2i − 1) = 10p − 18i + 9, (4)

which is indeed odd. From (1) it follows that for every xi,j ∈ Gi we have

w̃(xi,j) = degl(xi,j) + 10 degh(xi,j) = 10p − 10(2i − 1) + 10(2i − 1) = 10p. (5)
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All components except G0 contain an even number of light edges, making a
odd as needed. It should be obvious that

b1 + b2 + · · · + bd < 8(a1 + a2 + · · · + ad). (6)

Since b = 8a + 1 and b0 = 0, we must add some heavy edges. We denote the
number of lacking heavy edges by b∗. If b∗ is a multiple of p, say b∗ = ps, we can
build a p-regular component Gd with 2s vertices, and we are done. Notice that
2s > p, because we still need to compensate for a0 = (10p + 1)5p light edges in
G0, that is, we need to add at least 8a0 = 40(10p + 1)p heavy edges.

If b∗ is not a multiple of p, we keep adding copies of G1 to G until the number
of lacking heavy edges is divisible by p.

For each copy of G1, we will add

b1 =
10p + 2

2
= 5p + 1

heavy edges and

a1 =
(10p − 10)(10p + 2)

2
= 10(p − 1)(5p + 1)

light edges. Suppose we are adding q copies, and recall that the number of lacking
heavy edges is b∗. Denote the number of light and heavy edges in G by ā and b̄,
respectively. Hence, we have

b = b̄ + qb1 + b∗,

and
a = ā + qa1.

Because b = 8a + 1, we obtain

b̄ + qb1 + b∗ = 8(ā + qa1) + 1,

or

b∗ = (8ā + 1 − b̄) + q(8a1 − b1), (7)

where

8a1 − b1 = 8(10(p − 1)(5p + 1)) − (5p + 1)
= (5p + 1)(80(p − 1) − 1)
= (5p + 1)(80p − 81) (8)

We assumed that 8ā + 1 − b̄ is not divisible by p, so suppose

8ā + 1 − b̄ ≡ k (mod p).
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If we want to have b∗ a multiple of p, it follows from (7) that we must have

q(8a1 − b1) ≡ −k (mod p). (9)

Note that the congruence has a solution for q if and only if

gcd(8a1 − b1, p) | k

and moreover, whenever there is a solution, then there is always one such that
1 ≤ q ≤ p − 1.

Recall that we assumed d > 1 and p ≥ 2d + 1. Hence, p > 3 and we clearly
have gcd(81, p) = 1. Then from Eq. (8) we will have gcd(8a1 − b1, p) = 1 because
p � 5p+1 and p � (80p− 81) when gcd(81, p) = 1. Therefore, we can always solve
congruence (9) for q.

Hence, we can always construct a 2-pseudomagic graph G with edge labels
1 and 10 and d different odd degrees, where the number of light edges is a and
the number of heavy edges is b = 8a + 1.

4 Main Result

We start with an easy observation, tying magic rectangles to supermagic label-
ings of complete bipartite graphs.

Lemma 2. Let 3-MR(a1, a1, a3) be a 3-dimensional magic rectangle and H =
a3Ka1,a1 a disjoint union of a3 copies of the complete bipartite graph Ka1,a1 .
Then there exists a supermagic labeling of H.

Proof. Denote the k-th copy of Ka1,a1 by Hk and vertices in its respective partite
sets by uk

1 , u
k
2 , . . . , u

k
a1

and vk
1 , vk

2 , . . . , vk
a1

. Let

f(uk
i v

k
j ) = di,j,k

for every i, j = 1, 2, . . . , a1 and every k = 1, 2, . . . , a3. Then

w(uk
i ) =

a1∑

j=1

f(uk
i v

k
j ) =

a1∑

j=1

di,j,k

and

w(vk
j ) =

a1∑

i=1

f(uk
i v

k
j ) =

a1∑

i=1

di,j,k.

Because we have a1 = a2, from Definition 1 it follows that
a1∑

j=1

di,j,k =
a1∑

i=1

di,j,k =
a1(a2

1a3 + 1)
2

= σ1,

which implies
w(uk

i ) = w(vk
j ) = σ1

for every i, j = 1, 2, . . . , a1 and every k = 1, 2, . . . , a3, and f is the desired
supermagic labeling.
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Now we are ready to prove our main result.

Theorem 5. For every positive integer d there exists a supermagic graph with
d different odd vertex degrees.

Proof. For d = 1 we take G ∼= K2 and label the only edge by 1. For d > 1, we
take the graph G with d different odd degrees from Construction 1 and blow
it up to G[3]. Each vertex with an odd degree degG(x) in G is now of odd
degree 3 degG(x). Then we label each K3,3 arising from a light edge by entries
of a 3-MR(3, 3, a) and each K3,3 arising from a heavy edge by entries of a 3-
MR+(3, 3, b; 9a). We will call the graphs K3,3 in G[3] arising from light and
heavy edges in G also light and heavy graphs, respectively. The triple of vertices
arising from a vertex x will be denoted by x[1], x[2], x[3].

In particular, for a1 = a2 = 3 and a3 = a in Lemma 2 we have σ1 = 3(9a +
1)/2. From Lemma 1 it follows that σ+

1 = 10σ1 = 15(9a + 1).
We observe that each light K3,3 contributes to every w(x[i]) for i = 1, 2, 3 by

σ1 and a heavy K3,3 contributes by σ+
1 = 10σ1. Therefore, the total contribution

of all light graphs at a vertex x[i] is σ1 degl(x) and the contribution of all heavy
graphs is σ+

1 degh(x) = 10σ1degh(x). It follows that

w(x[i]) = σ1 degl(x) + 10σ1degh(x) = σ1 (degl(x) + 10degh(x)) . (10)

But from (5) we have w̃(x) = degl(x) + 10 degh(x) = 10p, and thus we
immediately obtain from (10) that

w(x) = σ1w̃(x) = 10pσ1 (11)

for every vertex x[i] in G[3], which concludes our proof.

It is not difficult to modify the graphs constructed above to make them
connected.

Corollary 2. For every positive integer d there exists a connected supermagic
graph with d different odd vertex degrees.

Proof. For d = 1, we again have G ∼= K2. For d > 1, we construct a connected
graph H from G first, and find the blown-up graph H[3] exactly the same way
as for G[3] in Theorem 5.

Recall that the graph G may contain more than one copy of G1. We denoted
the number of these components by q + 1 and observed that q + 1 ≤ p. Denote
the copies of G1 by Gk

1 for k = 0, 1, . . . , q. First we observe that each component
Gk

1 , G2, . . . , Gd is large enough to contain two independent heavy edges, say
xi,1yi,1 and xi,2yi,2 in component Gi.

For i = 1, 2, . . . , d we replace edges xi,1yi,1 and xi+1,2yi+1,2 by xi,1yi+1,2 and
xi+1,2yi,1 (here x1,1y1,1 and x1,2y1,2 belong to G0

1). This connects all graphs
G0

1, G2, . . . , Gd into one component without changing any vertex degrees.
Now we connect G0 to each Gk

1 for k = 0, 1, . . . , q in a similar manner. Clearly,
G0

∼= K10p+1 contains p ≥ q + 1 independent light edges. Select q + 1 and call
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them uivi for i = 0, 1, . . . , q. Then select a light edge tizi in the i-th copy of G1

and replace the pair of edges uivi and tizi by edges uiti and vizi.
As before, this connects all copies of G1 to G0 without changing the degree

of any vertex.
We have thus constructed a connected graph H with d different odd degrees,

a light edges, b = 8a+1 heavy edges, and a constant weight w̃(x) = 10p for every
vertex x. Blowing it up the same way as in the proof of Theorem5 concludes
this proof.
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Abstract. For an uncapacitated hypergraph H = (V, E) with n = |V |,
m = |E| and p = Σe∈E |e|, and edge connectivity λ, this paper presents
an insertion-only algorithm which updates minimum cut and edge con-
nectivity incrementally on addition of a set of hyperedges to an existing
hypergraph. The algorithm is deterministic and takes O(λn) amortized
time per insertion of a hyperedge. The algorithm can answer queries on
edge-connectivity in O(1) time and returns a cut of size λ in O(n) time.
First we propose a method to maintain a hypercactus [3] under the addi-
tion of a set of hyperedges. It is observed that the time for maintaining
a hypercactus on addition of a set U of hyperdeges is O(n + pu) where
pu = Σe∈U |e|. This method is then used as a subroutine in our incre-
mental algorithm for maintaining minimum cut and edge connectivity.

Keywords: Hypergraph · Minimum cut · Edge connectivity ·
Hypercactus

1 Introduction

Computing the minimum cut (or edge connectivity) is a fundamental problem in
graph algorithms. There are many algorithms to compute the edge connectivity
in a simple graph [6,12,16,19]. There are also a few algorithms that maintain the
edge connectivity in a simple graph under the addition of a few edges and vertices
[9,10]. Computing the minimum cut or the edge connectivity for a hypergraph is
also an important problem. It has applications in various fields e.g., circuit and
chip design, network communication, planning in transportation, circuit parti-
tioning and cluster analysis. There are a few algorithms to compute the edge
connectivity for a static hypergraph [2,13,15]. The best algorithm known so far
to compute the minimum cut for a static hypergraph is given by Chekuri and Xu
[2]. However, to the best of our knowledge, no algorithm exists in the literature
that maintains the minimum cut or the edge connectivity for dynamic hyper-
graphs where a few hyperedges are added to or deleted from a given hypergraph.
For dynamic hypergraphs, one straightforward approach is to apply a known
algorithm [2,13,15] to compute the minimum cut whenever there is a change in
the hypergraph (due to addition or deletion of hyperedges). However this simple
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approach has many drawbacks. For example, even for a single hyperedge inser-
tion, the application of the algorithm by Chekuri and Xu [2] requires O(p+λn2)
time to update the minimum cut and the edge connectivity. In a dynamic envi-
ronment usually the number of hyperedges being added or deleted is relatively
small compared to the overall size of the hypergraph. It is therefore desirable to
tolerate a small change (edge or node) in an efficient manner. Also the approach
helps answer queries on the minimum cut and the edge connectivity in an online
setting. The existing algorithms for computing the minimum cut in a hypergraph
suffer from the fact that they do not work efficiently under dynamic or online
setting.

In this paper, we present an incremental algorithm that updates the min-
imum cut and the edge connectivity of an existing hypergraph on addition of
a set of hyperedges. The algorithm takes O(n + pu) time if the edge connec-
tivity does not change in spite of the addition of new hyperedges. Otherwise
the algorithm recomputes the edge connectivity and the hypercactus using the
method of Chekuri and Xu [2] that requires O(p + λn2) time. Our algorithm is
deterministic and takes O(λn) amortized time per insertion of a hyperedge. The
algorithm can answer queries on edge-connectivity in O(1) time and returns a
cut of size λ in O(n) time. Note that the claimed bound is a significant improve-
ment over the trivial algorithm that computes everything from scratch. This is
because any static algorithm must take Ω(p) time, where p could be exponential
in n.
Our Contribution: In this paper, our contributions are the following:

(i) We present a method to maintain a given hypercactus efficiently under
dynamic addition of a few hyperedges. Our method takes O(n + pu) time
compared to O(p + λn2) time taken by the current best approach (Chekuri
and Xu [2]) to update the hypercactus given that the edge connectivity does
not change. Here pu, p, λ and n have usual meanings.

(ii) We present an incremental algorithm that updates the minimum cut and
the edge connectivity of an existing hypergraph on addition of a set of
hyperedges. We use the aforesaid method of maintaining a hypercactus as a
subroutine in this incremental algorithm. We show that our algorithm has
an amortized time of O(λn) per insertion of a hyperedge.

Organization: In Sect. 2, we discuss the related work. Section 3 contains some
basic preliminaries related to the problem. In Sect. 4 we discuss our algorithm.
The proof of correctness of the proposed algorithm is given in Sect. 5. We con-
clude the work in Sect. 6.

2 Related Work

There exist many algorithms for computing the minimum cut and the edge con-
nectivity in a simple graph [6,12,16,19] and in the last few decades, dynamically
updating the edge connectivity in a simple graph has been addressed by many
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researchers. In 2016, Goranci et al. [9] gave a deterministic incremental algo-
rithm that maintains the edge connectivity in ˜O(1) amortized time per edge
insertion in undirected and unweighted graph. Henzinger [10] has also given an
incremental algorithm that maintains the minimum cut and the edge connectiv-
ity of a graph G under dynamic addition of a set of edges. It takes O(λ log n)
amortized time per insertion of a simple edge. Dinitz and Westbrook proposed a
method [5] to maintain a cactus representation [4] which stores all possible min-
imum cuts in a graph and this method is used as a subroutine in the incremental
algorithm given by Henzinger [10]. The current best deterministic algorithm to
compute a cactus representation of a graph G is given by Gabow [7] which
requires O(m + λ2n log(n/λ)) time.

In case of hypergraphs there are many static algorithms to compute different
hypergraph properties like minimum cut, minimum weight hyperpath, transitive
closure, rank, independent sets, etc. A careful implementation of the method
given by Queyranne [17] to compute the minimum cut in a hypergraph takes
O(np + n2 log n) time for capacitated hypergraph and O(np) time for an unca-
pacitated hypergraph. Klimmek and Wagner [13], Mak and Wong [15] indepen-
dently gave algorithms for computing the minimum cut in a hypergraph having
same time bound. The current best algorithm to compute the edge connectivity
and the hypercactus is given by Chekuri and Xu [2] that requires O(p + λn2)
time. Ausiello et al. [1] proposed an algorithm to maintain transitive closure for
a hypergraph under dynamic addition of hyperedges. Italiano and Nanni [11]
proposed an algorithm to maintain minimum rank and minimum gap hyperpath
over a batch of hyperedge insertions. In [18], a Dijkstra-like procedure has been
proposed for maintaining a weighted shortest path in a fully-dynamic hypergraph.

3 Preliminaries

Let H = (V,E) be an uncapacitated hypergraph where V is the set of vertices
and E is the set of hyperedges where each hyperedge e ∈ E is a subset of
vertices, n = |V |, m = |E| and p = Σe∈E |e| where |e| is the number of vertices
in a hyperedge e. A cut is the partitioning of V into two non-empty sets A
and V \A. The set of hyperedges connecting the two sets (also called cut-edges)
contribute to the value of the cut. Out of all possible cuts in a hypergraph, any
cut whose value is minimum is known as a minimum cut.

We denote the set of hyperedges intersecting both A and V \A with δH(A)
and call it a cut-edge set of H. A hypergraph H ′ = (V ′, E′) is said to be a
subhypergraph of a hypergraph H = (V,E) if V ′ ⊆ V and there is a bijective
mapping φ : E → E′ where φ(e) ⊆ e for each e ∈ E. For vertices u, v ∈ V ,
a (u, v)-walk of length k in H is a sequence v0e1v1e2v2 . . . vk−1ekvk of vertices
and hyperedges (possibly repeated) such that v0, v1, . . . , vk ∈ V , e1, . . . , ek ∈ E,
v0 = u, vk = v, and for all i = 1, 2, . . . , k, the vertices vi−1 and vi are adjacent
in H via the hyperedge ei. The vertices u, v ∈ V are said to be connected in
H if there exists a (u, v)-walk in H. The hypergraph H is said to be connected
if every pair of distinct vertices is connected in H. The minimum number of
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hyperedges whose removal disconnects H is called the edge connectivity of H,
which is denoted by λ. A cut is k-cut if |δH(A)| = k. The vertices s and t are
said to be k-edge connected if there exists no k

′
-cut, k

′
< k that disconnects the

pair {s, t}.
A cactus tree [4] is an O(n) sized data structure which compactly represents

all possible minimum cuts of size k in a k-edge connected simple graph G. A
cactus tree τ(G) can be represented as (G∗, Φ) where G∗ is a simple weighted
graph and Φ : V (G) −→ V (G∗) such that Φ is a many to one mapping. The
properties of τ(G) are:

(i) Φ(u) = Φ(v) if and only if the vertex u and v are not separated by a λ-cut
in G.

(ii) If (X, X̄) is a λ-cut of G∗ for X ⊂ V (G∗) then (Y, Ȳ ) is a λ-cut of G where
Y = {Φ−1(u)|u ∈ X}.

(iii) If λ is odd, G∗ is a tree and every edge of G∗ has a weight of λ. If λ is even,
two simple cycles of G∗ have at most one common node, every edge that
belongs to a cycle has weight λ/2 and every edge that does not belong to a
cycle has weight λ.

For a given hypergraph H and edge connectivity λ, a hypercactus is an O(n)
sized data structure which compactly represents all possible minimum cuts of
size λ. The hypercactus τ(H) [3] can be represented as (H∗, Φ) where H∗ is a
hypergraph and Φ : V (H) → V (H∗) such that Φ is a many to one mapping. The
properties of τ(H) are as follows:

(i) Φ(u) = Φ(v) if and only if the vertex u and v are not separated by a λ-cut
in H.

(ii) If (X, X̄) is a λ-cut of H∗ for X ⊂ V (H∗) then (Y, Ȳ ) is a λ-cut of H where
Y = {Φ−1(u)|u ∈ X}.

The main difference between a cactus and a hypercactus is that a hypercactus
can have hyperedges (see Fig. 2 for example) in addition to simple edges and
cycles whereas a cactus can have only simple edges and cycles. The weight of each
non cycle edge and each hyperedge in τ(H) is λ whereas the weight of each cycle
edge in τ(H) is λ/2. Figure 2 represents a hypercactus τ(H) for a hypergraph
H as shown in Fig. 1 whose edge connectivity is 2. In Fig. 2, x1 = x2 = φ and
Φ(1) = Φ(2) = Φ(3) = Φ(4) = a. For every other vertex u of H, Φ(u) = u in
τ(H) as shown in the figure. The edge weights are also shown in the figures. In
addition to structural differences between a cactus and a hypercactus, there are
also operational differences between them. For example, we can apply shrinking
and squeezing operations on a cactus structure whereas we can apply tuning
operation in addition to shrinking and squeezing operations in a hypercactus.

Dinitz and Westbrook [5] defined shrinking of nodes and squeezing of cycles
as follows. In shrinking a subset of vertices W ⊆ V , the operation replaces all
vertices in W by a single vertex w, deletes all edges whose both end points lie in
W . For any edge (x, y) where x ∈ W and y �∈ W , the operation replaces (x, y)
with (w, y).
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Let C = (v1, v2, ..., vk, v1), k ≥ 2 be a cycle. Then squeezing C at vi and
vj , i < j, results in shrinking vi and vj . The squeezing results in two new
cycles: (w, vj+1, ..., vk, v1, ..., vi−1, w) and (w, vi+1, ..., vj−1, w). If the length of
a resulting cycle is 2, the cycle gets replaced by a simple edge. In this paper
we introduce a new operation named tuning of a hyperedge which is defined in
Subsect. 4.2.

4 The Proposal

In this section we first briefly discuss the work of Dinitz and Westbrook [5] for
maintaining the cactus tree τ(G) of a graph G. This is used as a subroutine
for maintaining the minimum cut and the edge connectivity in a simple graph
under dynamic addition of edges (Henzinger [10]). Next we propose our method
to maintain a hypercactus τ(H) of a hypergraph H on dynamic addition of
hyperedges. We use this hypercactus maintenance method as a subroutine for
designing the incremental algorithm for maintaining the minimum cut and the
edge connectivity in a hypergraph, which is described in Subsect. 4.3.

4.1 Cactus Maintenance

Let n be the number of vertices in G. The data structure used by Dinitz and
Westbrook takes O(n + m + q) time to perform m number of Insert-Edge(u,v)
operations and q number of Same-k-Class(u,v) queries. The Insert-Edge(u,v)
operation inserts a new edge (u, v) dynamically to a graph G. The Same-k-
Class(u,v) query returns true if vertex u and v are k-edge connected and returns
false otherwise. The algorithm takes O(m+k2n log(n/k)) preprocessing time in
order to construct the initial data structure where m is the number of edges in
G. Previously the algorithms for maintaining all possible minimum cuts of size
1, 2 and 3 in a graph G has been described in [8,14]. The algorithm by Dinitz
and Westbrook [5] is a generalization for an increasing value of k.



242 R. R. Gupta and S. Karmakar

1 2, 4 3

1 2 3

4

Fig. 4. Square nodes

2

4

1 3

2,4

1 3

Fig. 5. Round nodes

4

1

2 3

1

4

2,3

Fig. 6. Triangle nodes

The author introduced the definition of the auxiliary tree which is an exten-
sion of the cactus tree. The auxiliary tree T (G) consists of two types of nodes:
square node, one for each node in τ(G) and round node, one for each cycle in
τ(G). Two square nodes in T (G) are connected by a simple edge if corresponding
nodes in τ(G) are connected by a simple edge. The square nodes in T (G) which
are a part of a cycle C in τ(G) are made adjacent to the round node in T (G)
representing C. The square nodes connected to a round node in T (G) follow the
order in which the corresponding nodes in τ(G) are connected in a cycle. A leaf
node is created for each vertex v in G. These leaf nodes are made children of the
corresponding square nodes in T (G). The query Same-(k+1)-Class(u,v) returns
true only if vertices u and v have same parent in T (G).

On inserting a new edge, the algorithm first finds a unique path between the
corresponding square nodes in T (G). It modifies the path such that it correctly
reflects the effects of squeezing cycles and shrinking nodes in τ(G). If two square
nodes in the path are connected by a simple edge in T (G) then the square nodes
are merged in T (G) as shown in Fig. 4 and shrinking of corresponding nodes in
τ(G) are applied. If two square nodes in the path are connected to a round node
in T (G) then the modification of T (G) is done as shown in Fig. 5 and squeezing
of corresponding cycle in τ(G) is applied. There will be leaf nodes connected to
the square nodes in T (G), however we omit them for the clarity of the figures.

4.2 Hypercactus Maintenance

In this subsection we propose a method to maintain a hypercactus on dynamic
addition of a set U of hyperedges which takes O(n + pu) time. This method
inherits the ideas proposed by Dinitz and Westbrook [5] described in Subsect. 4.1.
The method is described using the following cases:

(i) λ = 0: In this case the given hypergraph H is disconnected. On adding
a new hyperedge e = {u1, u2, ..., ul}, the method updates H using a fast
disjoint set-union data structure [20] which takes O(qα(q, n)) time to per-
form any sequence of q number of union and find operations. Here α is
the functional inverse of the Ackermann’s function (practically, α is a con-
stant). The method first creates a set of each connected component of H.
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The find(v) operation returns the name of a component containing the ver-
tex v. The union operation takes two connected components as the input,
merges the two components and returns the merged component. The query
Same-(λ + 1)-Class(u,v) returns true if find(u) = find(v). The method
iterates through each vertex in e. If find(ui) = find(ui+1) for 1 ≤ i < l
then the method does not change anything. Otherwise union operation on
disjoint sets find(ui) and find(ui+1) is applied. The method follows the
same procedure for each hyperedge e ∈ U . Note that total O(pu) number of
find and union operations are called in this case and thus the time com-
plexity is O(puα(pu, n)). After a certain number of hyperedge insertions if
the hypergraph has a single component then the hypergraph is no more
disconnected. In this situation the method computes the edge connectivity
and the hypercactus using the algorithm of Chekuri and Xu [2] and applies
the technique given in the following case to maintain the hypercactus.

(ii) λ ≥ 1: In this case the hypergraph is connected. In case of a graph, a
cactus consists of simple edges and cycles. In case of a hypergraph, a hyper-
cactus can have hyperedges in addition to simple edges and cycles. The
method extends the definition of the auxiliary tree T (H) used by Dinitz
and Westbrook for the case of hypercactus. This auxiliary tree is used in
the proposed method for hypercactus maintenance. In addition to square
nodes and round nodes, another type of node called triangle node is intro-
duced in T (H), one for each hyperedge in τ(H). Square nodes and round
nodes follow the same rules as described earlier in the case of cactus mainte-
nance. Here the rules for triangle nodes are described. The square nodes in
T (H) which are the part of a hyperedge e in τ(H) are made adjacent to the
triangle node in T (H) corresponding to e. Unlike the case of round nodes,
the square nodes can be connected to a triangle node in any order. A leaf
node is created for each vertex v in H. These leaf nodes are made children of
the corresponding square nodes in T (H). Figure 3 represents the auxiliary
tree T (H) for a hypercactus τ(H) shown in Fig. 2. The query Same-(λ+1)-
Class(u,v) returns true if vertices u and v belong to same parent in T (H).
The find(v) operation for a vertex v ∈ e returns the corresponding square
node in T (H). Similarly, the union(x, y) operation merges the nodes x and
y in T (H).
On inserting a hyperedge e = {u1, u2, ..., uk}, the method iterates through
each vertex in e. Let x = find(ui) and y = find(ui+1). If x = y then the
method does not change anything. Otherwise the method finds the unique
path between the nodes x and y in T (H). There can be three types of nodes
in the path: square nodes, round nodes and triangle nodes. This path is
then modified in such a way that it correctly reflects the effects of shrinking
nodes, squeezing cycles and tuning hyperedges in τ(H). The tuning of a
hyperedge is defined as follows.
Tuning Operation: Let e = (v1, v2, ..., vk), k > 2 be a hyperedge (for
k = 2, e is a simple edge). Then tuning e at vi and vj , i < j, results in
shrinking vi and vj . This results in a new hyperedge: (v1, v2, ..., vi−1, w, vi+1,
..., vj−1, vj+1, ..., vk). Here w denotes the supervertex obtained after merging
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nodes vi and vj throughout the entire hypergraph. If the size of the resulting
hyperedge is 2, the hyperedge is replaced by a simple edge.
If two square nodes in the path are connected by a simple edge in T (H)
then the union operation is applied on the square nodes in T (H) as shown
in Fig. 4 and the shrinking operation on corresponding nodes in τ(H) is
applied. If two square nodes in the path are connected to a round node
in T (H) then the nodes are modified as shown in Fig. 5 and the squeezing
operation is applied on the corresponding cycle in τ(H). Similarly, if two
square nodes in the path are connected to a triangle node in T (H) then the
nodes are modified as described below and the tuning operation is applied
on the corresponding hyperedge in τ(H).
Triangle Node Modification: Let s1 and s2 be the square nodes con-
nected to a triangle node t i.e., (s1, t) and (t, s2) are the edges in the path
between nodes x and y in T (H). The method merges s1 and s2 into a
supernode w and connects this w with t. All the edges connected to s1 and
s2 get connected to w. Rest other edges connected to t remain the same.
After the modification, if t has 2 square nodes connected to it then t is
deleted and these two square nodes get connected with a direct edge. An
example of triangle node modification is shown in Fig. 6.

Theorem 1. Let τ(H) = (H∗, Φ) be the hypercactus representation of a hyper-
graph H whose edge connectivity is λ. Under dynamic addition of a set U of
hyperedges to H, τ(H) can be maintained in O(n + pu) time, where n is the
number of vertices in H and pu = Σe∈U |e|.
Proof. The method described in Subsect. 4.2 to maintain τ(H) under dynamic
addition of a set of hyperedges uses the method similar to Dinitz and Westbrook
[5] described in Subsect. 4.1 with additional case of handling hyperedges. From
the construction of the auxiliary tree T (H) it is clear that each hyperedge of
size k has k + 1 number of nodes and k number of edges in T (H). From Cheng
[3], we know that |V (H∗)| = O(|V (H)|) and |E(H∗)| = O(|V (H)|). Thus, the
construction of T (H) corresponding to τ(H) can be done in linear time. Under
dynamic addition of a set of hyperedges, the method applies find and union
operations for each hyperedge iteratively. The merging of two square nodes in the
path between two nodes in the auxiliary tree takes O(1) time. Correspondingly,
shrinking an edge and squeezing a cycle in τ(H) takes O(1) time. The method
introduces a new technique called tuning which modifies a hyperedge in τ(H).
In tuning, the method shrinks the two nodes and as a result a new hyperedge
forms. The operation can be done in O(1) time using the method of disjoint set
union-find operation as used for shrinking and squeezing technique. On inserting
a hyperedge e, the method uses O(|e|) number of find and union operations to
update T (H) and τ(H). Thus, total O(pu) number of find and union operations
are used under the insertion of a set U of hyperedges. The total time taken by
find and union operation is O(puα(pu, n)). The total running time to maintain
τ(H) is O(n + puα(pu, n)) time. In practical scenario, α ≤ 6. Thus, the total
cost to maintain a hypercactus under dynamic addition of a set U of hyperedges
is O(n + pu). 	
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Algorithm 1. The Incremental Algorithm
1: Compute λ, τ(H) using Chekuri and Xu [2]
2: N ← φ
3: while there is ≥ 1 mincut of size λ do
4: if next operation is query-size()
5: print λ
6: if next operation is query-mincut()
7: print the mincut //Refer to point 2 in Subsection 4.3
8: if next operation is Same-(λ+1)-Class(u, v)
9: print “true” or “false”
10: if next operation is InsertHyperedges(U)
11: update τ(H) //Refer to Subsection 4.2
12: N ← N ∪ U
13: Recompute λ and τ(H) with H = (V, E

′
) where E

′
= E ∪ N

14: Goto step 2

4.3 The Incremental Algorithm

In this subsection we describe an incremental approach to maintain the minimum
cut and the edge connectivity of an uncapacitated hypergraph H under dynamic
addition of a set of hyperedges. The psuedocode of the proposed algorithm is
given in Algorithm 1. In line 1, the algorithm first computes λ and τ(H) using
the algorithm of Chekuri and Xu [2]. The algorithm checks in O(1) time if there
exist at least one minimum cut of size λ in τ(H) by asserting that τ(H) has
more than one node. In the algorithm we discuss four queries considering that
the hypercactus is modified and then these queries come:

(i) query-size(): It returns the current value of λ. Since λ is always known,
we can return the result in O(1) time.

(ii) query-mincut(): It returns a minimum cut of the form (A, Ā) such that
A ⊂ V . The auxiliary tree T (H) is first split by any edge (u, v). The
DFS (Depth First Search) method is then applied on nodes u and v to
get two connected components (X, X̄) such that u ∈ X and v ∈ X̄. Then
(Φ−1(X), Φ−1(X̄)) is the resulting minimum cut. The number of vertices
and edges in T (H) are of size O(n) (due to Cheng [3]), therefore the query
takes O(n) time.

(iii) Same-(λ + 1)-Class(u, v): It returns true if vertices u and v have edge
connectivity greater than λ.; here both u and v have same parent node in
T (H). If find(u) = find(v) the algorithm returns true otherwise it returns
false. The time complexity for this query is O(1).

(iv) InsertHyperedges(U): This query inserts a set U of hyperedges into H.
Due to the addition of new hyperedges some cuts of size λ in H may no more
remain a minimum cut. In order to update all the minimum cuts of size λ
the algorithm applies the method described in Subsect. 4.2 that maintains
hypercactus τ(H) on insertion of a set U of hyperedges in O(n + pu) time.
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Let N denote the set of all hyperedges added so far such that no minimum cut
of size λ exists in τ(H). If the algorithm keeps receiving single edge insertions
at any point of time i.e, U = {e} then the algorithm sets λ = λ + 1 at line 13 of
Algorithm 1 instead of actually recomputing λ. Otherwise it recomputes λ. The
algorithm recomputes the hypercactus τ(H) for updated λ using the method of
Chekuri and Xu [2] that takes O(p + λn2) time. The algorithm goes to line 2 to
continue the incremental process.

Theorem 2. The amortized time to maintain the minimum cut and the edge
connectivity for a dynamic hypergraph H is O(λn) per hyperedge insertions.

Proof. Let λ0 be the initial edge connectivity in line 1 of Algorithm1. It takes
O(p0 + λ0n

2) time to compute λ0 and τ(H) in line 1 of Algorithm 1. During
the execution of Algorithm 1, let λ assume the values λ0, . . . , λf in an increasing
order. Phase i consists of all steps executed while λ = λi. Let Ui denote the set of
hyperedges inserted in Phase i. In Phase i, we compute the new edge connectivity
λi and τ(H) in line 13 and maintain τ(H) in line 11. The time to compute λi and
the corresponding hyercactus τ(H) in line 13 is O(p+λin

2) where p is calculated
in the modified hypergraph. From Theorem1, the time taken to maintain τ(H)
is O(n + pi) where pi = Σe∈Ui

|e|. The total time spent in executing Phase i is
O(n + pi + p + λin

2). The maximum number of phases can be λ. Thus the total
time to execute all phases is asymptotically O(λp+λ2n2) where p = Σe∈E∪U |e|.
The amortized cost of a hyperedge insertion is O(λ+λ2n2/p). For a hypergraph
H with edge connectivity λ, p = Ω(λn) Thus the amortized insertion time is
O(λ + λn) = O(λn). 	


4.4 Analysis

Let H be the given uncapacitated hypergraph whose edge connectivity is λ. Let
τ(H) be the corresponding hypercactus. Let U be the set of hyperedges that is
dynamically inserted to H. In order to compute λ and τ(H), we can apply the
static algorithm (Chekuri and Xu) which takes O(p0 + p1 + λ

′
n2) time where

p0 = Σe∈E |e|, p1 = Σe∈U |e| and λ
′

is the new egde connectivity. With our
proposed incremental algorithm, if the value of λ does not change then updating
τ(H) takes O(n + pu) time. Otherwise, computing the new edge connectivity λ

′

and the corresponding hypercactus takes O(λ
′
n) amortized time (Theorem 2).

Hence the cost of the proposed algorithm is better than the static algorithm.
Now we show the probabilistic approach to compute the cost of updating λ

and τ(H) using the proposed incremental algorithm. Let f denote the probability
that the value of λ gets changed under dynamic addition of a set U of hyperedges
to H. Then the total cost to update λ and τ(H) is asymptotically O(f(p0 +p1 +
λn2) + (1 − f)(n + p1)). Thus, if the value of f is very small, then the proposed
incremental algorithm requires less computation time than the static method.

5 Proof of Correctness

Lemma 1. A hypercactus has the following properties: (a) No two hyperedges
can have more than one node in common. (b) A hyperedge and a cycle can have
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at most one node in common. (c) No two cycles can have more than one node
in common.

Proof. Let there be two hyperedges that have more than one node in common in
a hypercactus. Each hyperedge in the hypercactus has a weight of λ. From the
hypercactus construction, we have one minimum cut of the form (A, Ā) such that
at least one common node belongs to A and the other common nodes belong to
Ā. But to get such a minimum cut, we need to remove two hyperedges since the
common nodes belong to both the hyperedges. Thus, the size of the cut becomes
2λ which is not minimum. This is a contradiction. Hence two hyperedges in τ(H)
can not have more than one node in common. Using similar arguments we can
proof properties (b) and (c). 	

Lemma 2. On introducing a triangle node into the auxiliary tree T (H), it
remains a tree.

Proof. We first claim that T (H) constructed after introducing a triangle node
is connected i.e., there is a path between any two nodes in T (H). Let us assume
that there exists two nodes in T (H) between which no path exists. This can be
possible only if T (H) is disconnected. It means each square node connected to
the triangle node has no edge with other square nodes or round nodes in T (H).
But T (H) is constructed from a hypercactus, it implies that the hypercactus is
disconnected. This is a contradiction. Thus the auxiliary tree T (H) is always
connected.

Now we claim that T (H) has no cycles. Let us assume that T (H) have a cycle
after introducing a triangle node. It means that the square nodes connected to a
triangle node forms a cycle with other square nodes or round nodes in T (H). But
if this is the case then in the hypercactus the corresponding hyperedge forms
a cycle with the cycle edges or simple edges which is a contradiction as per
Lemma 1. Thus, the auxiliary tree can not have any cycle after introduction of a
triangle node. Hence the auxiliary tree remains a tree on introducing a triangle
node into it. 	

Lemma 3. On applying a tuning operation, the hypercactus preserves it’s prop-
erties, i.e., it preserves all the minimum cuts of size λ.

Proof. Dinitz and Westbrook [5] gave the definition of shrinking and squeezing
operations. On applying a shrinking or squeezing operation to the hypercactus,
the updated hypercactus preserves it’s properties. In this paper, the tuning oper-
ation is introduced. Let τ(H) be the hypercactus corresponding to the hyper-
graph H. Let Z = {a1, a2, ..., ak} be a hyperedge in τ(H). Let τ(H

′
) be the

updated hypercactus after applying a tuning operation on nodes ai and aj in Z,
i �= j. We prove that the τ(H

′
) preserves it’s properties using three cases:

– Case |Z| = 2: As per the definition of tuning operation, the hyperedge of size
2 is treated as a simple edge. This simple edge gets the same weight as of
hyperedge Z i.e., λ. The shrinking operation between the nodes ai and aj is
applied in this case and thus preserves the properties of τ(H

′
). This follows

from the work of Dinitz and Westbrook.
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– Case |Z| = 3: In this case, the shrinking operation on nodes ai and aj is first
applied. The size of updated hyperedge Z

′
becomes 2. This Z

′
is replaced

with a simple edge with same weight λ. In a hypercactus the weights of each
hyperedge and each simple edge is always λ. Thus from the construction, all
the mincuts of size λ are preserved in the updated hypercactus.

– Case |Z| ≥ 4: In this case, the shrinking operation on nodes ai and aj is first
applied. The size of hyperedge Z gets reduced by 1. The updated hyperedge
Z

′
is still a hyperedge with same weight λ. Thus, all the mincuts of size λ are

preserved in the updated hypercactus. 	

Lemma 4. An update on T (H) eventually leads to a corresponding update on
τ(H).

Proof. On insertion of a new hyperedge e = {v1, v2, .., vk} to the given hyper-
graph H, the method first finds a unique path P in T (H) between the two square
nodes s1 and s2 which corresponds to the nodes vi and vi+1 in e respectively. In
the path P the two consecutive square nodes can either be directly connected,
connected by a round node or connected by a triangle node. If in the path P , no
triangle node is involved i.e, every consecutive square nodes are either directly
connected or connected to a round node then the modification technique to
update T (H) and τ(H) is exactly the same as Dinitz and Westbrook [5]. Hence
for this case the updated T (H) corresponds to the updated τ(H).

If two consecutive square nodes in the path P are connected by a triangle
node then we update T (H) as described above in Triangle Node Modification
and apply tuning operation between the two corresponding vertices in τ(H). We
show that the updated T (H) corresponds to the updated τ(H). Let (s1, t) and
(t, s2) be the consecutive edges in the path P . Here, s1 and s2 denote the two
consecutive square nodes connected to the triangle node t. After modifying the
path P in T (H), let s denotes the square node in T (H) after merging s1 and s2.
Similarly, let w1 and w2 denote the vertices in τ(H) corresponding to the square
nodes s1 and s2 in T (H) respectively. After applying the tuning operation on
w1 and w2, let w denotes the merged node in τ(H). This w in τ(H) should
correspond to s in T (H). For the sake of contradiction, let us assume that w and
s do not correspond to each other. It means that w either maps to some other
square node s

′ �= s in T (H) or it maps to empty. From the construction of T (H)
we create one square node for each vertex in τ(H). Therefore w can not map to
empty. Let us consider the case where w maps to s

′
. In the modification of path

P , s
′

is not touched. Thus there must exist a vertex w
′

in τ(H) that maps to
s

′
. From our assumption w maps to s

′
which means w = w

′
. But w is formed

after merging w1 and w2. This leads to a contradiction that w = w
′
. Thus w

in τ(H) maps to s in T (H). This proves that the updated T (H) corresponds to
the updated τ(H). 	


6 Conclusion

Under dynamic addition of hyperedges, when the edge connectivity changes the
proposed incremental algorithm relies on Chekuri and Xu’s approach to recom-
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pute hypercactus. It may be worth investigating a method to recompute the
hypercactus efficiently using the structures behind the Chekuri and Xu’s static
algorithm, instead of recomputing everything from scratch. Similarly it would
be interesting to recompute or update the hypercactus efficiently in the deletion
case. It may help in designing an efficient decremental algorithm to maintain the
edge connectivity and the minimum cut under dynamic deletion of hyperedges.
All the contributions made in this paper are for uncapacitated hypergraph. It
will be worth investigating a method for the capacitated case.
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Abstract. We study here algorithmic aspects of modular decomposition
of hypergraphs. In the literature one can find three different definitions
of modules, namely: the standard one [19], the k-subset modules [6] and
the Courcelle’s one [11]. Using the fundamental tools defined for com-
binatorial decompositions such as partitive and orthogonal families, we
directly derive a linear time algorithm for Courcelle’s decomposition.
Then we introduce a general algorithmic tool for partitive families and
apply it for the other two definitions of modules to derive polynomial
algorithms. For standard modules it leads to an algorithm in O(n3 · l)
time (where n is the number of vertices and l is the sum of the size of the
edges). For k-subset modules we obtain O(n3 ·m · l) (where m is the num-
ber of edges). This is an improvement from the best known algorithms
for k-subset modular decomposition, which was not polynomial w.r.t. n
and m, and is in O(n3k−5) time [6] where k denotes the maximal size
of an edge. Finally we focus on applications of orthogonality to modular
decompositions of tournaments, simplifying the algorithm from [18]. The
question of designing a linear time algorithms for the standard modular
decomposition of hypergraphs remains open.

1 Introduction

In this paper we study hypergraph modular decomposition; an important gener-
alization of graph modular decomposition. Hypergraph modular decomposition
is equivalent to the modular decomposition of both set systems [19] as well
as monotone Boolean functions [20], while that of general Boolean functions
was shown to be NP-hard [5]. We study here algorithmic aspects of modular
decomposition of hypergraphs. In the literature one can find three different def-
initions of modules, namely: the standard one [19], the k-subset modules [6] and
Courcelle’s one [11]. In the following we recall the fundamental tools defined
for combinatorial decompositions such as partitive and orthogonal families. This
directly yields a linear time algorithm for Courcelle’s decomposition.
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In Sect. 3 we propose a general algorithmic tool for partitive families and
apply it for the other two definitions of modules to derive polynomial algo-
rithms. For standard modules it leads to an algorithm in O(n3 · l) time (where
n is the number of vertices and l the sum of the size of the m edges). For k-
subset modules we obtain O(n3 ·m · l) algorithm, improving the previous known
O(n3k−5) time algorithm [6]. In Sect. 5 we show that the orthogonality may also
bring some new insights to graph modular decomposition, i.e. application to fac-
torizing permutations and simplify decomposition algorithm for tournaments.

1.1 Definitions

Following Berge’s definition of hypergraphs [1], a hypergraph H over a finite
ground set V (H) is made by a family of subsets of V (H), denoted by E(H)
such that (i) ∀e ∈ E(H), e �= ∅ and (ii) ∪e∈E(H)e = V (H). In other words, a
hypergraph admits no empty edge and no isolated vertex. Furthermore we deal
only with simple hypergraphs, where E(H) ⊆ 2V (H) (no multiple edges). When
analyzing algorithms, we use the standard notations: |V (H)| = n, |E(H)| = m
and l = Σe∈E(H)|e|. For every edge e ∈ E(H), we denote by H(e) = {x ∈ V (H)
such that x ∈ e}, and for every vertex x ∈ V (H), we denote by N(x) = {e ∈
E(H) such that x ∈ H(e)}. To each hypergraph one can associate a bipartite
graph G, namely its incidence bipartite graph , such that: V (G) = V (H) ∪
E(H) and E(G) = {xe with x ∈ V (H) and e ∈ E(H) such that x ∈ H(e)}. For
a hypergraph H and a subset M ⊆ V (H), let H(M) denote the hypergraph
induced by M , where V (H(M)) = M and EH(M) = {e∩M ∈ E(H), for e∩M �=
∅}. Similarly, let HM denote the reduced hypergraph where V (HM ) = (V \
M)∪{m}) with m /∈ V , and E(HM ) = {e ∈ E(H) with e∩M = ∅}∪{(e\M)∪{m}
with e ∈ E(H) and e ∩ M �= ∅}. By convention in case of multiple occurrences
of a similar edge, only one edge is kept and so HM is a simple hypergraph.

Two non-empty sets A and B overlap if A∩B �= ∅, A\B �= ∅, and B\A �= ∅.
Sets that do not overlap are said to be orthogonal , which is denoted by A ⊥ B.
Let F be a family of subsets of a ground set V . We denote by F⊥ the family
of subsets of V which are orthogonal to every element of F . A set S ∈ F is
called strong if ∀S′ �= S ∈ F : S ⊥ S′. Let Δ denote the symmetric difference
operation.

Definition 1 [10]. A family of subsets F over a ground set V is partitive if
it satisfies the following properties:

(i) ∅, V and all singletons {x} for x ∈ V belong to F .
(ii) ∀A,B ∈ F that overlap, A ∩ B,A ∪ B,A \ B and AΔB ∈ F

Both orthogonal and partitive families play fundamental roles in combinato-
rial decompositions [10,17]. Every partitive family admits a unique decomposi-
tion tree, with only two types of nodes: complete and prime . As for graphs,
a node in a decomposition tree is said to be complete if the subgraph rooted at
that node is either a clique or an independent set, and said to prime if the sub-
graph rooted at that node cannot be decomposed any further. It is well known
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that the strong elements of F form a tree ordered by the inclusion relation [10].
In this decomposition tree, every node corresponds to a set of the elements of
the ground set V of F , and the leaves of the tree are single elements of V . For
a complete (resp. prime) node, every union of its child nodes (resp. no union
of its child nodes other than itself) belongs to the partitive family.

Here we introduce some properties on orthogonality that will be useful for
Courcelle’s module and applications on graphs.

Property 1 [16]. Given a family F of subsets over a ground set V , F⊥ is
partitive. Furthermore F is partitive iff F = (F⊥)⊥.

Moreover, if F and F ′ are two partitive families on the same ground set V , then
F ∩ F ′ is also partitive and thus we can search for the smallest partitive family
that contains a given family.

Definition 2. Let F be a family of subsets over a ground set V . Let P(F)
denote the smallest – by inclusion – completion of F that admits a unique tree
decomposition with nodes labeled prime and complete.

Property 2. For every subset family F , P(F) = (F⊥)⊥.

We denote by O(F) the overlap graph of F constructed as follows: The vertices
are the elements of F , and two vertices are adjacent if their corresponding subsets
overlap. A pair of vertices is said to be twins if the vertices appear in exactly
the same members of F . The block of twins are the equivalence classes of the
twin relation. Putting together Theorems 3.3 and 5.1 of [16] we get:

Theorem 1. Let F be a subset family on V . A subset N is a node of the decom-
position tree of F⊥ if and only if N is either:

1. V (the ground set), or {v} (a one-subset element), or a block of twins, or
2. ∪C for some connected component C of the overlap graph of O(F)

An internal node N is labeled prime if there exists a component C of O(F) with
at least two members of F such that N = ∪C. Otherwise N is labeled complete.

Non-trivial nodes are mostly given by Case 2, since in Case 1 we either get the
root of the tree, or a leaf, and all the siblings of any block-of-twins node are
leaves. In [16] the following theorem is proposed, using as a blackbox Dahlhaus’s
algorithm [12] plus some post-treatment. But it has been largely simplified by [9].

Theorem 2. Let F be a subset family on V . The decomposition tree of F⊥ can
be computed in O(n + l) time.

Corollary 1. P(F) can be computed in O(n + l) time.
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2 Hypergraph Modular Decomposition

Hypergraph Substitution: Substitution in general is the action of replacing
a vertex v in a graph G by a graph H(V ′, E′) while preserving the same neigh-
borhood properties. To apply this concept to hypergraphs, we use the following
definition presented in [19,20]:

Definition 3. Given two hypergraphs H,H1, and a vertex v ∈ V (H) the sub-
stitution of vertex v ∈ V (H) by hypergraph H1 is an hypergraph, denoted
H ′ = HH1

v , which satisfies V (H ′) = {V \ v} ∪ V (H1), and E(H ′) = {e ∈ E(H)
s.t. v /∈ e} ∪ {f \ v ∪ e1 s.t. f ∈ E(H) and v ∈ f and e1 ∈ E(H1)}.

Let us consider the example in Fig. 1 where hypergraphs are described using
their incidence matrices. In this example, we substitute vertex v3 in H by the
hypergraph H1 to create H ′. Note that even if H,H1 are undirected graphs, the
substitution operation may create edges of size 3, and therefore the resulting
hypergraph H ′ is no longer a graph.

Definition 4 (Standard Hypergraph Module) [19,20]. Given a hypergraph
H, a module M ⊆ V (H) satisfies: ∀A,B ∈ E(H) s.t. A ∩ M �= ∅, B ∩ M �= ∅
then (A \ M) ∪ (B ∩ M) ∈ E(H).

When M is a module of H then H = (HM )H(M)
m . On the previous example: let

us take A,B ∈ E (resp. 1st and 6th columns of H ′) then (A \ M) ∪ B ∩ M = 2nd

column of H ′ and therefore belongs to E . If M is a module of H then ∀e ∈ E(HM ),
the edges of H that strictly contain e and are not included in M are the same.
In other words, all edges in E(HM ) behave the same with respect to the
outside , which is an equivalence relation between edges.

Property 3 [20]. The family of modules of a simple hypergraph H is partitive.

Since every partitive family has a unique decomposition tree [10], it follows that
the family of the modules of a simple hypergraph admits a uniqueness decompo-
sition theorem and a unique hypermodular decomposition tree. For hypergraphs,
as for graphs we have 2 types of complete node, namely series and parallel. There-
fore the modular decomposition tree for hypergraphs has three types of nodes:
series, parallel and prime. If E(H) is the set of all singletons of V (H), then every
subset of V (H) is a module; this corresponds to the parallel case. On the other
hand if E(H) = 2|V (H)|, then also every subset of V (H) is a module, which
corresponds to the series case.

Modular decomposition, applied to bipartite graphs, just leads to the compu-
tation of sets of false twins in the bipartite graphs (vertices sharing the same
neighborhood) and connected components. As Fig. 1 example shows, hypergraph
modules are not always set of twins of the associated incidence bipartite.

Some authors [3,4] defined clutters hypergraphs, in which no edge is
included into another one. In this case, clutters modules are called commit-
tees [3]. Trivial clutters are closed under hypergraph substitution. The commit-
tees of a simple clutter also yields a partitive family which implies a uniqueness
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a 0 1 1
b 0 1 1
c 1 0 1

H1

v1 1 0 1 1
v2 1 0 0 0
v3 1 0 1 0
v4 1 1 0 0

H

v1 (u1) 1 1 1 0 1 1 1 1
v2 (u2) 1 1 1 0 0 0 0 0
a (u3) 0 1 1 0 0 1 1 0
b (u4) 0 1 1 0 0 1 1 0
c (u5) 1 0 1 0 1 0 1 0
v4 (u6) 1 1 1 1 0 0 0 0

H ′ = HH1
v3prime

u1 u2

series

parallel

u3 u4

u5

u6

e1 e2 e3 e4 e5 e6 e7 e8

u1 u2 u3 u4 u5 u6

Fig. 1. An exp. of substitution, its decomposition tree, and its incidence bipartite
graph. {u3, u4, u5} is a module, but only u3, u4 are false twins in the incidence bipartite.

decomposition theorem. From this one can recover a well-known Shapley’s theo-
rem on the modular decomposition of monotone Boolean functions. It should be
noted however that finding the modular decomposition of a Boolean function is
NP-hard [5]. It was shown in [7], that computing clutters in linear time would
contradict the SETH conjecture.

2.1 Variants of Modular Decomposition of Hypergraphs

Often when generalizing graph concepts to hypergraphs there are several poten-
tial generalizations. In fact we found in the literature two variations on the hyper-
graph module definition: the k-subset modules defined in [6] and the Courcelle’s
modules defined in [11]. In this section we will first recall them and study their
relationships to the standard one (Definition 4).

Definition 5 (k-subset module [6]). Given a hypergraph H, we call k-subset
module M ⊆ V (H) satisfies: ∀A,B ⊆ V (H) s.t. 2 ≤ |A|, |B| ≤ k and A ∩ M �=
∅, B ∩ M �= ∅ and A \ M = B \ M �= ∅ then A ∈ E(H) ⇔ B ∈ E(H).

If H is a 2-uniform hypergraph (i.e., an undirected graph) the 2-subset modules
are simply the usual graph modules. Families of k-subset modules also yield a
partitive family [6].

Definition 6 (Courcelle’s module [11]). Given a hypergraph H, we call
Courcelle’s module a set M ⊆ V (H) that satisfies ∀A ∈ E(H), A ⊥ M .

Courcelle’s modules using our notations of Sect. 1 just correspond to E(H)⊥.
Using Property 1 these modules yield a partitive family. This notion seems to
be far from the standard hypergraph module definition [19,20], this is why we
called them Courcelle’s modules. Indeed, applied to graphs, the orthogonal of
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the edge-set is the connected components (plus the vertex-set and the singletons)
of the graph, not the modules. A direct application of Theorem 2 on orthogonal
families gives the following corollary:

Corollary 2. Courcelle’s modular decomposition tree can be computed in O(l).

3 General Decomposition Scheme for Partitive Families

Definition 7. For a partitive family F on a ground set V , using the closure by
intersection of partitive families, we can define for every A ⊆ V , Minmodule(A)
as the smallest element of F that contains A. In particular, let us denote by Mx,y

the family of all Minmodule({x, y}) and ∀x, y ∈ V .

Although Mx,y does not contain all F , simply because |F| can be exponential
in |V | while |Mx,y| is always quadratic. In this section we propose an algo-
rithm scheme to compute the decomposition tree of a partitive family if the only
access to the family is a call of a function that computes: for every A ⊆ V ,
Minmodule(A). Thus designing an efficient algorithm is to minimize the total
number of calls. We will now show a simple way to extract the decomposition
tree, i.e., the strong elements from of Mx,y.

According to the definition, if a node has only two children, we cannot distin-
guish whether this node is prime or complete. We take the convention that the
node is prime in this case. After constructing the tree, we can easily transform
it into another convention just by labeling all nodes with only two children as
complete nodes.

Theorem 3. For every partitive family F over a ground set V , its decomposition
tree can be computed using O(|V |2) calls to Minmodule({x, y}), with x, y ∈ V .

Proof. First choose an initial vertex x0 and compute Minmodule({x0, x}),∀x �=
x0 ∈ V and add them to a set M. Then we add all singletons to M. Let μ the
unique path from x0 to the root in the decomposition tree.

Claim 1: Every prime node of μ, belongs to M.

Proof. Consider a prime strong element A ∈ μ, it corresponds to some node of
the tree which admits children A0, A1, . . . Ak, with k ≥ 1 in the decomposition
tree. If x0 ∈ A0, and take y ∈ A1, then Minmodule({x0, y} = A, since A is the
least common ancestor in the decomposition tree. �
Claim 2: For a complete node A ∈ μ, with children A0, . . . Ak, if x0 ∈ A0, then

(i) for every 1 ≤ i ≤ k the set A0 ∪ Ai belongs to M
(ii) when elements of M are sorted by their size, A0∪Ai appear consecutively.

Proof. (i) In fact for every y ∈ Ai, Minmodule({x0, y}) = A0 ∪ Ai. Note that it
may be possible that A0 = {x0}.

(ii) If there exists a prime node P such that ∃i, j such that |A0 ∪Ai| < |P | <
|A0 ∪ Aj |. Since x0 ∈ P and x0 ∈ A0 then P must overlap with A0 ∪ Ai or
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A0 ∪ Aj , which contradicts the fact that P is a prime node that overlaps no
other element in the family. �

The above arguments also show that any Minmodule({x0, y}) corresponds
to either a prime node, or the union of two children of a complete node. So
the family M is made up with prime nodes that overlap no other subsets and
some daisies, and they all contain x0, where daisies are these subsets A0 ∪ Ai,
all containing A0, the Ai’s being the petals of the daisy and A0 its center. Note
that a daisy is a simple particular case of overlap component.
Now to find the decomposition tree we can apply the following algorithm:

1. Sort elements in M by size, eliminate multiple occurrences of a subset in M.
2. Scan this list in increasing order and checking if the new considered subset

overlaps the previous, else merge it to the previous it with complete (label
both the two as complete) and continue. After the iteration, there is no unla-
beled set that overlaps with another unlabeled set, then mark every unlabeled
set with the label prime.
Then labeled sets X0,X1, . . . , Xh provide the path from x0 to the root of the
modular decomposition tree, namely: μ = [{x0} = X0,X1, . . . , Xh = V ].

3. Let us consider the partition {V0, . . . , Vh} of V defined as follows:
Vi = {x ∈ V |Minmodule(x0, x) = Xi} for 0 ≤ i ≤ h.
For every 0 ≤ i ≤ h recurse on the partitive family over the ground set Vi by
computing the path from a vertex x ∈ Vi that haven’t been computed and
attach its tree to Xi.

Claim 3: Every node constructed is a strong module.

Proof. Assume node X, x0 ∈ X overlapping with some module X ′. We take any
element x′ ∈ X ′ \ X, then XΔX ′ is a module and thus Minmodule(x0, x

′) ⊆
XΔX ′, which overlaps with X. Thus Minmodule(x0, x

′) must have been merged
into X, contradiction. �

The validity of the claim directly follows from Claims 1 to 3. For Step 1 we
can use any linear sorting by value algorithm, since the size of the subsets are
bounded by n = |V |. Clearly Step 2 can be done linear time in the size of M.
So the bottleneck of complexity is the number of calls of Minmodule({x, y}),
which is bounded by n2. �

Consequently, if computing the function Minimal of a given partitive family
can be done O(p(n))time, then the computation of the decomposition tree can be
done in O(n2 · p(n)). Applied to graphs it yields an O(n2m) algorithm, far from
being optimal. Such an approach was already used for graphs in [15]. Let us now
consider how to compute this function for the three variations of hypergraph
modules defined previously.

4 Computing Minimal-Modules for Hypergraphs

For undirected graphs, computing Minimal-modules can be done via a graph
search in linear time. We generalize this to hypergraphs for two out of the three
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Algorithm 1. Modular-closure
Data: H a simple hypergraph and W � V (H)
Result: The minimal module of H that contains W
Compute a lexicographic ordering τ of E(H) w.r.t an arbitrary ordering of V ,1

C ← W , X ← W ,2

Compute the induced hypergraph H(C),3

for 1 ≤ i ≤ |E(H(C))| do4

Compute the ordered lists Li of the restriction to V (G) \ C of the edges in5

E(H) that contain fi ∈ E(H(C))
Q(C) ← {L1, . . . , L|E(H(C))|} the ordered partition made up with these lists6

if |Q(C)| = 1 then7

C is a module, STOP8

else9

L ← First(Q(C)), {% the first class in the ordered partition%}10

while Next(L) �= NIL {% the next element of L in the ordered partition%}11

do
X ← Comparison(L, Next(L))12

if X = ∅ then13

L ← Next(L)14

else C ← C ∪ X, update Q(C) via partition refinement with X,15

L ← First(L)
{%if L has been split during the update we take its first part%}16

17

RESULT ← C {%C is a minimal module that contains W%}18

definitions of modules: the standard and the k-subset module. For efficiency
purposes, we represent our hypergraphs using for each vertex x a list to represent
N(x) i.e., the edges its belongs to, and for each edge e a list to represent H(e)
i.e., the vertices it contains. For a hypergraph this yields a representation using
O(n + m + l) memory. If the hypergraph is simple then O(n + m + l) = O(l).

4.1 Standard Modules

Definition 8. For a set C � V (H), an edge A ∈ E(H) is a edge-splitter for
C, if A \ C �= ∅ and A ∩ C �= ∅ and if there exists B ∈ E(H) s.t. B ∩ C �= ∅, and
(A \ C) ∪ (B ∩ C) /∈ E(H).

In other words, a set of vertices is a module iff it admits no edge-splitter.

Property 4. If X ⊆ V (H) is a splitter of C ⊆ V (H) respect to A,B as above.
Let B′ ∈ E(H) be the edge such that B′ ∩C = B∩C and with |(B′ \C)Δ(A\C)|
minimum.

Let X ′ = (B′ \C)Δ(A\C), then there is no module Y of H such that C � Y
but X ′ � Y .

Theorem 4. If H is a simple hypergraph, for every set W ⊆ V (H), Algorithm
Modular-closure computes Minmodule(W ) in O(n · l). And its modular decom-
position tree can be computed in O(n3 · l)).
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Algorithm 2. Procedure Comparison
Data: 2 lists L′, L′′ of the restriction to V (G) \ C of the edges in E(H) that

contain some f ∈ E(H(C)). They are supposed to be lexicographically
increasingly ordered using τ

Result: X a set of vertices forced be contained in Minmodule(C)
if L′ = L′′ then1

X ← ∅, STOP2

else3

Let e ∈ L′ and f ∈ L′′ be the first lexicographically difference,4

if (e <τ f)or(e �= ∅ and f = ∅) then5

{% e /∈ L′′ is a edge-splitter %}6

compute f ′ ∈ L′′ that minimizes |h(e)Δh(f ′)| with f ′ ∈ L′′
7

X ← h(e)Δh(f ′)
else8

{% (e >τ f)or(e = ∅ and f �= ∅), i.e. f /∈ L′ is a edge-splitter %}9

compute e′ ∈ L′ that minimizes |h(f)Δh(e′)| with e′ ∈ L′,10

X ← h(f)Δh(e′)11

12

{%Note that e = ∅, f �= ∅ (resp. e �= ∅, f = ∅) corresponds to the case13

|L| < |Next(L)| (resp. |L| > |Next(L)|)%}

Proof. (i) Correctness: First we notice that C is a module of H iff all the
lexicographically sorted lists Li are equal. At each step of the lexicographic
process a list can only be cut into parts, no lists are merged. If at some step
of the algorithm two lists Li, Lj are equal, and if afterwards they are cut into
sublists via the refinement process, equality between sublists is preserved since
the refinement act similarly on the lists. Thus the algorithm scan the lists form
left to right using a single sweep and the following invariant: at each step of the
while loop all the lists before the current list L are all equal to L.

Using the procedure Comparison either the lists are equal and then we pro-
ceed else using Property 4 we know that we can add this set of vertices. At the
end of the algorithm either all lists are equals and C �= V (H) and therefore C
is the non trivial minimal module containing W or C = V (H) and there is no
other module between W and V (H).

(ii) Complexity Analysis: To implement the first step (line 1) we can use
an ordered partition refinement technique on E(H) (see [13]) using the sets N(x)
for every x ∈ V (H) as pivot sets. This provides a total ordering τ of E(H). This
can be done in O(n + m + l).

To compute Q(C), we can use the same ordered partition refinement tech-
nique using the sets N(x) for every x ∈ C as pivot sets we can compute the
ordered partition of E(H). Starting from the partition P0 = {E(H)}, we refine
this partition successively using N(xi) for every xi ∈ C. Let us denote by Pf

the partition obtained after this round of refinements. Each part of Pf can be
ordered using τ , since partition refinement can maintain an initial ordering of its
elements within the same complexity. So if we start with the initial ordering τ in
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the unique part of P0. And the parts are lexicographically ordered with respect
to their intersection to C. This can be done in O(|C| + Σx∈C |N(x)|).

In fact after line 6 we can ignore the vertices of C, a similar remark holds
when C is updated.

Now we have to check if all edges lists Li are identical or not and stop at the
first difference. Since the lists are ordered lexicographically using an ordering
τ of the vertices, a simple scan of these ordered lists is enough to compute
(Comparison procedure) of Algorithm1.

When C and Q(C) are updated, the algorithm goes on with the first part
of the previous current list L. First means that if L has been split during the
update we take its first part. Therefore in the worst case some list can be analyzed
several times (at most n times) and therefore the overall complexity of the list
scan is bounded by O(n · l).

When a difference is found between two lists we have to search for an edge
that minimizes the symmetric distance with respect to the differentiating edge.
Even though it can be done several times for a given edge, but every time we
launch this search, at least one vertex will be added into C, thus at most search
for n times. So the overall complexity of these searches is O(n · l).

Therefore the whole process is in O(n+m+l+n·l) = O(n·l). Using Theorem
3 we obtain the decomposition tree in O(n3 · l). �

Up to our knowledge, [20] states there is a polynomial time decomposition
algorithm for clutters based on its O(n4m3) modular closure algorithm without
precising the complexity, our algorithm is an improvement because our total
decomposition time is already smaller than O(n4m3) s.

4.2 Decomposition into k-Subset Modules

Definition 9 [6]. A subset X �= ∅ is a k-subset splitter of the set C if there
exist A,B ⊆ V s.t. 2 ≤ |A|, |B| ≤ k and A ∩ C �= ∅, B ∩ C �= ∅ and A \ C =
B \ C = X, A ∈ E(H) but B /∈ E(H).

Lemma 1. Given a set C ⊆ V (H), any k-subset splitter of C is in the form of
H(e) \ C for some e ∈ E(H), |H(e)| ≤ k.

Such an edge will be called an k-edge-splitter of C. Let D(k, h) = Σi=k
i=1 (hi )

for 1 ≤ k ≤ h, where (hi ) denotes the binomial coefficient. All values of D(k, h)
strictly greater that |E(H)| will be set as Out-of-Range, a huge number.

Lemma 2. For a simple hypergraph H, given a set C ⊆ V (H) and an edge
e ∈ E(H) s.t. |H(e)| ≤ k, e ∩ C �= ∅ and X = e \ C �= ∅, let L be the list of edges
in E(H) with size ≤ k and whose intersection with V (H) \ C are identical to X
and intersection with C is not empty, i.e. L = {e′ ∈ E(H) | e′ \C = X, e′ ∩C �=
∅ and |H(e′)| ≤ k}. If |L| < D(k − |X|, |C|) then e is an edge-splitter of C.

Proof. It is equivalent to check for such an e given above and X = e\C, whether
every non empty subset B of size ≤ k − |X| in C has X ∪ B ∈ E(H). Since H is
simple and there are no identical elements in L, a counting argument captures
the condition. Moreover, the number of subsets checked this way is ≤ |E(H)|. �
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Algorithm 3. k-subset modular-closure
Algorithm: k-subset modular-closure1

Data: H a simple hypergraph, k an integer such that 1 ≤ k ≤ |V (H)| and
W � V (H)

Result: The minimal k-module of H that contains W
Compute all D(k, h) for |W | ≤ h ≤ |V (H)|,2

Compute a lexicographic ordering τ of E(H) with respect to some ordering of3

the vertices,
C ← W , X ← W ,4

while X �= ∅ do5

For every ei ∈ E(H) overlap C, |H(ei)| ≤ k, create the lists Li of edges in6

E(H) with size ≤ k whose intersection with V (H) \ C are identical to ei \ C
and of size h and intersection with C is not empty
if For some i, |Li| < D(k − h, |C|) then7

X ← X ∪ (H(ei) \ C),8

if V (G) = C ∪ X then9

% there is no non-trivial module between W and V (H) %10

RESULT ← V (H), STOP11

else12

%X is a splitter for C%,13

C ← C ∪ X14

15

else X ← ∅16

RESULT ← C %C is a non trivial module containing W%17

Theorem 5. For a simple hypergraph H and A � V (H), for any fixed integer
k ≤ |V (H)|, Algorithm3 (k-subset modular-closure) can compute the minimal
k-subset module that contains A in O(n · m · l) time, which gives a O(n3 · m · l)
decomposition algorithm.

5 Using Orthogonality for Graph Modular Decomposition

5.1 Factorizing Permutations and Fractures

Given a permutation σ of a set V , let σ(i) denote the ith element of V . An
interval [l, r] of σ is a set of elements that follow consecutively (1 ≤ l ≤ r ≤ n).

Definition 10. Let F be a family of subsets of V . A permutation σ of V is a
factorizing permutation if every strong set of F is an interval of σ. Further-
more, it is perfect if every set of F is an interval.

Factorizing permutations were defined in the context of modular decomposi-
tion [8] but can be generalized to any subset family, where a permutation can be
obtained by a traversal of its decomposition tree. We adapt a definition from [8]:
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Definition 11. Let G = (V,E) be a graph and σ a permutation of V . Let us
consider a pair {σ(i), σ(i + 1)} of two consecutive elements. The left fracture
(resp. right fracture) of i is the largest interval [s, i] (resp. [i+1, s]) where σ(s)
is a splitter of {σ(i), σ(i + 1)}. If that pair admits no splitter on its left (resp.
right) then i has no left (resp. right) fracture. The fracture family, denoted
Frac(σ), of a given permutation of the vertices of a graph is the set of all (left
and right) fractures for all 1 ≤ i < n.

Lemma 3. Given a graph G and a permutation σ of its vertices, an interval I
of σ is a module iff it does not overlap any fracture of Frac(σ).

Lemma 4. Let σ be a factorizing permutation of the modules family of G, F be
a fracture of σ, and M the smallest module containing F . M is a strong module.

Theorem 6. Given a graph G, the family M of its modules and a factorizing
permutation σ of M we have: P(M) = Frac(σ)⊥. Furthermore, if the graph is
undirected then M = Frac(σ)⊥.

5.2 Modular Decomposition of Tournaments

We can apply the theorem above to undirected graphs where we get a new algo-
rithm but no improvement of the existing algorithms, or to tournaments (orien-
tation of the complete graph), and we get an simple (much simpler than the exist-
ing algorithm in [18]) and optimal modular decomposition algorithm. Among the
families admitting a perfect factorizing permutation are the anti-symmetric-
partitive families, families where Axiom ii of Definition 1 is replaced with:
∀A,B ∈ F that overlap, A ∩ B,A ∪ B,A \ B ∈ F and AΔB /∈ F . Their decom-
position tree is often called a PQ-tree , whose nodes are labeled P (prime)
and Q (having a linear ordering of the siblings so that any union of siblings
that follow consecutively belong to the family, and no other union). Well-known
antisymmetric-partitive families are the intervals of the real line (their inter-
section model being an interval graph), the common intervals of two permuta-
tions [2], or the modules of a tournament.

Theorem 7. Let G be a tournament. The modular decomposition tree of G can
be computed in O(n2) time.

6 Conclusions

In this paper, using a general framework for decomposition of partitive families
or tools of orthogonality, we have proposed 3 polynomial algorithms to com-
pute hypergraph modular decomposition trees under 3 different definitions of
modules. Our general framework yields a O(n3 · l) algorithm for the standard
decomposition of hypergraphs, and a O(n3 · m · l) time for k-subset modules,
an improvement to the previously known non-polynomial O(n3k−5) time algo-
rithm [6], where k denotes the maximal size of an edge. Since our approach is
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brute force, there may exists linear time (in O(l)) algorithms for the standard
hypergraph decomposition, as for graphs [14]. One would have to develop new
hypergraph algorithms, for example one that computes in linear time some fac-
toring permutation which always exists for every partitive family and use some
orthogonality.

Conjecture 1. Simple hypergraphs admit a linear time O(l) modular decompo-
sition algorithm.
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Abstract. Various applications of graphs, in particular applications
related to finding shortest paths, naturally get inputs with real weights on
the edges. However, for algorithmic or visualization reasons, inputs with
integer weights would often be preferable or even required. This raises
the following question: given an undirected graph with non-negative real
weights on the edges and an error threshold ε, how efficiently can we
decide whether we can round all weights such that shortest paths are
maintained, and the change of weight of each shortest path is less than ε?
So far, only for path-shaped graphs a polynomial-time algorithm was
known. In this paper we prove, by reduction from 3-SAT, that, in gen-
eral, the problem is NP-hard. However, if the graph is a tree with n
vertices, the problem can be solved in O(n2) time.

Keywords: Algorithms · Graph · Graph drawing · Rounding ·
Shortest path

1 Introduction

In this paper we study the following problem: given an undirected graph with
non-negative real weights on the edges and an error threshold ε, decide efficiently
whether we can replace all weights by integers such that shortest (least-cost)
paths are maintained with maximum error less than ε.

Our research is motivated by applications whose inputs consist of graphs
that have real weights on the edges, but prefer or require graphs with small
integer weights. For example, consider a transportation network, modelled as an
undirected graph, with a weight function on the edges that represents the time
(or cost) it takes to travel each edge. We may also refer to the weights as lengths.
If the weights are small integers, one could draw a zone map of the network such
that the number of zone boundaries crossed by each shortest path corresponds
to the weight of the path [5]. Given a graph with real edge weights, we would
therefore like to normalize the weights such that weight 1 corresponds to the
intended zone diameter of the map, and then round the normalized weights to
integers such that shortest paths are maintained. The corresponding zone map
would then provide a fairly accurate representation of travel costs, and would
be easier to read and use than a map in which the true travel costs are written
in full detail next to each edge.
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Other applications that could take advantage of rounded weights include
algorithms to compute shortest paths: there are algorithms that are more efficient
with small integer weights than with arbitrary, real weights [10]. Funke and
Storandt [4] cite space efficiency, the speed of arithmetic operations, and stability
as advantages of low-precision edge weights.

However, as argued and demonstrated by Funke and Storandt [4,8], naively
rounding weights to the nearest integer values could lead to rounding errors
accumulating in such a way, that the structure of optimal paths in the graph
changes, which can be undesirable. When rounding weights naively, some paths
may see their lengths doubled whereas other, arbitrarily long paths may see their
lengths reduced to zero [4]. Funke and Storandt argue that randomized rounding
is also likely to cause unacceptable errors in any graph that is large enough [4].

This brings us to the following problem statement. Consider an undirected
graph, denoted by G = (V,E, ω), with vertex set V , edge set E, and a weight
function ω : E → R≥0. A simple path in G is a sequence π of distinct vertices
v1, . . . , vj , where {vi, vi+1} ∈ E for 1 ≤ i ≤ j − 1. By ω(π) we denote the weight
of the path π, that is,

∑j−1
i=1 ω({vi, vi+1}). A shortest path in G is a simple path

v1, . . . , vj that has minimum weight among all paths from v1 to vj in G.

Definition 1 (path-oblivious/weak/strong ε-rounding). Let G = (V,E, ω)
be an undirected graph with a weight function ω : E → R≥0. We call ω̃ : E → N0

a path-oblivious ε-rounding of G if the following condition holds:

1. For any shortest path π in G, we have | ω̃(π) − ω(π) | < ε, that is, between ω
and ω̃, the weight of any shortest path in G changes by strictly less than ε.

We call ω̃ a weak ε-rounding if in addition, the following condition holds:

2. Any shortest path in G = (V,E, ω) is also a shortest path in G̃ = (V,E, ω̃).

We call ω̃ a strong ε-rounding if it is a weak ε-rounding and additionally:

3. Any shortest path in G̃ is also a shortest path in G.

Note that a weak ε-rounding does not imply a strong ε-rounding. Consider,
for example, a triangle, where each edge is of weight 0.5 and shortest paths are
unique. For ε > 0.5, rounding the weight of each edge to zero satisfies Condition
1 and 2, but violates Condition 3, since shortest paths are no longer unique.

By choosing ε as large as the diameter of the graph, there always exists a
weak (but useless) ε-rounding. We would rather have an ε-rounding for a small
value of ε such as ε = 1, but in that case, an ε-rounding does not always exist.
For example, a star that consists of three edges of weight 1/2 does not admit
a 1-rounding: at least two of the three edges would have to be rounded in the
same way, but if we would round two edges down, there would be a shortest
path with rounding error −1; if we would round two edges up, there would be
a shortest path with rounding error 1. Given an undirected graph G = (V,E, ω)
and an error tolerance ε, our problem is therefore to decide whether G admits a
path-oblivious, weak, or strong ε-rounding.
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Our first goal is now to establish for what classes of graphs efficient exact
algorithms for these problems may exist. In this paper, we show that all three
versions of the problem are NP-hard for general graphs, but can be solved in
quadratic time on trees. In fact, trees always admit a 2-rounding, and given a tree
of n vertices, we can compute, in O(n2 log n) time, the smallest ε such that the
tree admits an ε′-rounding for any ε′ > ε. The algorithm is constructive: it can
easily be adapted to produce the corresponding weights ω̃. We give references to
related work and directions for further research in the last section of the paper.

2 Complexity of the Problem

We will show that it is NP-hard to decide, given an edge-weighted graph G
and an error tolerance ε, whether G admits a path-oblivious, weak, or strong
ε-rounding. To this end, we present a reduction from 3-SAT, which proves hard-
ness for all three variants of the problem. For simplicity, we use ε = 1, but the
proof is easily adapted to any ε ∈ (7/8, 1].

The 3-SAT problem is the following. We are given a 3-CNF formula, that is,
a boolean formula α in conjunctive normal form, where each of the m clauses con-
sists of exactly three literals. Each literal is either one of n variables x1, x2, . . . , xn

or its negation. Decide whether α is satisfiable. W. l. o. g. we assume that every
variable appears at most once in each clause of the 3-SAT formula.

In the following, we show how to construct a graph Gα = (V,E, ω) for a
given 3-CNF formula α such that Gα admits a strong 1-rounding if α is satis-
fiable, whereas Gα does not even admit a path-oblivious 1-rounding if α is not
satisfiable. To describe Gα, we introduce subgraphs called variable gadgets and
clause gadgets, as well as clause-variable edges and shortcut edges.

The idea of the construction is as follows. In Lemma 1, we will show that
a variable gadget admits exactly two strong 1-rounding. We identify these two
roundings with the assignments true and false of a boolean variable. Using
clause-variable edges, the state of a variable gadget can be transferred to a clause
gadget (Lemma 3). Locally, the clause gadget admits a 1-rounding if and only if
one of the variable assignments (transferred via clause-variable edges) satisfies
the clause (Lemma 2). We use shortcut edges to ensure that shortest paths in Gα

that do not contribute to modelling α, are easy to analyse and unique—before
and after rounding the weights (Lemma 4).

Due to space restrictions, the (full) proofs of the lemmata and the theorem
in this section have been omitted, but they can be found in [6].

To design a variable gadget, first consider two edges attached to a triangle,
where each edge is of weight 2.5, as illustrated in Fig. 1a. In a 1-rounding, the
choice of the rounding for e(vi,0), the edge incident on vi,0, determines the round-
ing of the remaining edges; see Fig. 1b and c. To obtain a variable gadget for
variable xi, we proceed as follows. Assume that xi appears in h literals l1, . . . , lh
of α. We construct h triangles Δi,1, . . . ,Δi,h, where each Δi,k (for k ∈ {1, . . . , h})
has a left vertex, a right vertex, and a base (bottom) vertex; we label the base
vertex vi,k. We chain up the triangles by including an edge between the right
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2.5
2.5

2.5 2.5
2.5

vi,0 vi,1 vi,2

(a) The initial weights.

3

3 3
2e(vi,0)

vi,0 vi,1 vi,2

(b) e(vi,0) rounded to 2.

2

2 2
3e(vi,0)

vi,0 vi,1 vi,2

(c) e(vi,0) rounded to 3.

Fig. 1. A minimal variable gadget. In a 1-rounding of this gadget, any shortest path of
two edges has to round one edge up and one edge down—otherwise the total rounding
error on the path would be ±1, violating Condition 1 of a 1-rounding. Thus, the top
triangle edge must be rounded in the opposite way as compared to the edges e(vi,0)
and e(vi,2), incident on vi,0 and vi,2, respectively. These arguments imply that e(vi,0)
and e(vi,2) have to be rounded in the same way and all triangle edges are rounded in
the opposite way. Note that paths containing two triangle edges have rounding error
±1, but such paths are not shortest paths, neither before nor after rounding.

vertex of Δi,k and the left vertex of Δi,k+1 for each k ∈ {1, . . . , h − 1}. To the
left vertex of Δi,1, we attach another vertex vi,0, and to the right vertex of Δi,h,
we attach another vertex vi,h+1, as shown in Fig. 2. Finally, for every 1 ≤ k ≤ h,
if lk = ¬xi, we add another vertex vi,k, called inverter, which we connect to vi,k.
All edges of the variable gadget have an initial weight of 2.5.

We call the edges of Δi,1, . . . ,Δi,h triangle edges. Moreover, with e(vi,0) we
denote the unique edge of the variable gadget attached to vi,0.

Lemma 1 (1-roundings of variable gadgets). A variable gadget admits
exactly two 1-roundings (both of which are strong 1-roundings): either all tri-
angle edges are rounded up and all other edges down, or vice versa.

Moreover, for any two vertices u and v of the gadget, the rounding error of
the unique shortest path from u to v is either zero or equal to the rounding error
on the last edge of the path (ending at v).

From Lemma 1, we obtain that in a 1-rounding, the choice of the rounding
for e(vi,0) determines the rounding of all other edges.

vi,0

Δi,1

vi,1

Δi,2

vi,2

vi,2

Δi,h

vi,h vi,h+1

. . .
e(vi,0)

Fig. 2. The variable gadget for xi, where xi appears in h literals l1, . . . , lh of α. Here,
l2 = ¬xi, so an additional vertex vi,2 is added and attached to vi,2. All edges have
weight 2.5, so the choice of the rounding for e(vi,0) determines the rounding of all
the other edges in a 1-rounding: triangle edges have to be rounded complementary to
non-triangle edges.

To create a clause gadget for clause Cj , we take a cycle of nine vertices and
edges, where each edge gets an initial weight of 3.6. Moreover, we attach, to every
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third vertex along the cycle, a new vertex, called a knob, with another edge of
weight 2.5, called a handle. We denote the knobs by cj,1, cj,2, cj,3, as shown in
Fig. 3a. We will use the notation e(cj,t) to denote the edge (handle) of the clause
gadget that connects knob cj,t to the nonagon. Finally, we add a vertex which
we connect to every vertex on the cycle with an edge of weight 6. Note that
the weights of these edges are integer—hence, they cannot be rounded. A clause
gadget has at least three strong 1-roundings; see Fig. 3b. However, there is no
path-oblivious, weak, or strong 1-rounding for the clause gadget in which e(cj,1),
e(cj,2) and e(cj,3) are all rounded up, as the following lemma states.

cj,1 cj,2

cj,3

3.6
3.6

3.6

3.6
3.6

3.6

3.6

3.6
3.6

2.5 2.5

2.5

(a) The initial weight of all edges
incident on the centre is 6.

4
3

4

4
3

4

4

3
4

2 2

2 or 3

4
3

4

3
4

3

4

3
4

3 3

2

(b) Three 1-roundings of a clause gadget. At most
two of the edges e(cj,1), e(cj,2) and e(cj,3) are
rounded up.

Fig. 3. The clause gadget for clause Cj .

Lemma 2 (1-roundings of a clause gadget). Consider a clause gadget
for Cj, and suppose we fix, for each of its handles e(cj,1), e(cj,2) and e(cj,3),
whether its weight is rounded up or down. The clause gadget now admits a path-
oblivious 1-rounding ω̃ if and only if at least one of its three handles is rounded
down. If there is a path-oblivious 1-rounding, there is a strong 1-rounding.

Next, we introduce clause-variable edges to connect the gadgets of variables
to the gadgets of clauses that contain these variables. So if variable xi appears in
clause Cj , we connect the corresponding gadgets with exactly one clause-variable
edge of weight D := 5m+20 according to the following rule: if the t-th literal in
Cj is xi, then we connect a base vertex of the variable gadget for xi to cj,t, using
an edge of weight D; if the t-th literal in Cj is ¬xi, then we connect an inverter
of the variable gadget for xi to cj,t, using an edge of weight D. We do this such
that exactly one clause-variable edge is connected to each inverter, and exactly
one clause-variable edge is connected to each base vertex that is not attached
to an inverter. By design, the variable gadgets have the right numbers of base
vertices and inverters to make this possible.

Note that clause-variable edges do not invalidate Lemmas 1 and 2, that is,
they still hold with respect to the shortest paths between any pair of vertices
of the variable or clause gadget, respectively. This can be seen as follows. There
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are m clauses and each variable appears in each clause at most once. Hence, the
diameter of a variable gadget is at most (2m + 1) · 2.5. The diameter of a clause
gadget is 15.8. Thus, the variable and clause gadgets all have diameter less than
D − 2. Therefore, before rounding, no path between two vertices of the same
gadget that uses a clause-variable edge can be a shortest path. Moreover, when
we choose a 1-rounding for each gadget separately, the rounded weight of the
shortest path between any pair of vertices within a gadget will still be less than
D − 1, while the rounded weight of any path using a clause-variable edge will
still be at least D. Therefore, also after rounding, no path between two vertices
of the same gadget that uses a clause-variable edge can be a shortest path. Thus,
adding the clause-variable edges does not invalidate Lemmas 1 and 2.

Further note that due to this construction, the choice for e(vi,0) also deter-
mines the rounding for e(cj,t) in a 1-rounding:

Lemma 3 (clause-variable edges and 1-roundings). For any 1-rounding,
if cj,t is connected to a base vertex of the variable gadget for xi, then e(cj,t) is
rounded in the same way as e(vi,0); if cj,t is connected to an inverter vertex of
the variable gadget for xi, then e(cj,t) is rounded in the opposite way as e(vi,0).

The lemma is easily proven by applying Lemma 1 and considering a path
that consists of e(cj,t), the clause-variable edge connecting the gadgets, and an
adjacent edge in the variable gadget.

Finally, to ensure that the shortest path between any pair of vertices of Gα

is unique and easy to analyse, we add shortcut edges as follows. We include an
edge {u, v} in Gα with weight 2D if one of the following conditions holds:

(i) u and v belong to different variable gadgets;
(ii) u and v belong to different clause gadgets;
(iii) u belongs to a variable gadget for variable xi and v belongs to a clause

gadget for clause Cj and neither xi nor ¬xi appears in Cj .

Lemma 4 (shortest path via shortcut edge). Let u and v be vertices of Gα

that are directly connected by a shortcut edge, and let ω̃ be a 1-rounding on Gα.
Then, the shortcut edge {u, v} is the unique shortest path in Gα with respect to
ω and ω̃.

Note that, just like clause-variable edges, the shortcut edges do not invalidate
Lemmas 1 and 2. They do not invalidate Lemma3 either, as its proof hinges on
shortest paths of length D + 5 < 2D − 2.

An example for the construction is given in Fig. 4.

Theorem 1. It is NP-hard to decide, given an edge-weighted graph G and an
error tolerance ε, whether G admits (1) a path-oblivious ε-rounding; (2) a weak
ε-rounding; (3) a strong ε-rounding.

Proof Sketch: To start with, we show how to obtain a strong 1-rounding for Gα

if α is satisfiable. Let ψ be an assignment of values to variables that satisfies α.
So we have ψ : {x1, . . . , xn} → {0, 1}, where 0 denotes the logical value false
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C1 C2 C3

x1 = 0 x2 = 1/x2 = 0

x3 = 1 x4 = 0
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2 2
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2 2

2
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33

3
3
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2
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3

3 3
3

3
2 2 3

3/2 3/2
2/3

2D

2D

2D

2D
D

D D

D

D
D

DD

D

e(v2,0)

e(c1,2)e(c1,1)

e(c1,3)

e(c3,1)

e(v1,0)

Fig. 4. A sketch of Gα for α = (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x3 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4).
Grey bounding boxes mark gadgets, clause-variable edges are dashed and have weight
D = 5 · 3 + 20 = 35, shortcut edges (mostly omitted) are dotted and have weight
2D. The weights of the edges in Gα have been rounded according to the assignment
of the variables, which are given in the boxes of the corresponding variable gadgets.
For x2, both assignments are given, which affects the rounded weight of several edges.
The rounded weight of each of these edges is given by a/b, where a corresponds to the
assignment x2 = 1 and b corresponds to x2 = 0. Note that for x1 = 0, x3 = 1, x4 = 0,
if we set x2 = 1, we can obtain a 1-rounding for the gadget of C1 and for Gα. If we
set x2 = 0, then there is no 1-rounding for the gadget of C1, as all of its handles are
rounded up.

and 1 denotes true. For each variable xi, we round e(vi,0) down if ψ(xi) = 1 and
up otherwise. This determines how to round the rest of each variable gadget and
each clause handle according to Lemmas 1 and 3. Since each clause is satisfied,
Lemma 3 now implies that at least one of the handles of each clause gadget
is rounded down, so that we can complete the rounding of the clause gadgets
following Lemma 2. For an example, see Fig. 4.

We should now prove that this rounding satisfies the conditions of a strong
1-rounding for the shortest paths between any pair of vertices u and v in Gα. If
u and v lie in the same gadget, or if Gα contains a shortcut edge {u, v}, then
the conditions are ensured by Lemmas 1, 2, or 4. Otherwise, one vertex, say u,
must lie in a gadget for a variable xi; the other vertex, v, lies in a gadget for a
clause Cj that includes xi or ¬xi; and these gadgets are connected by exactly one
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clause-variable edge {s, c}, where s lies in the variable gadget and c lies in the
clause gadget. One can now argue that the unique shortest path from u to v uses
that edge {s, c} and has length less than 2D (any path via other gadgets, using
shortcut edges or other clause-variable edges, would have length at least 3D).
Lemmas 1 and 3 imply that the rounding error on the path from u to either the
first or the second vertex of the clause handle is zero; the rounding error on the
rest of the path to v is bounded by Lemma 2. Thus, if α is satisfiable, Gα admits
a strong 1-rounding.

Next we show that if Gα admits a path-oblivious 1-rounding, then α is satis-
fiable. This we do by constructing, from a given path-oblivious 1-rounding ω̃, a
choice ψ of the variables that satisfies α. If in ω̃, the weight of e(vi,0) is rounded
down, we set ψ(xi) = 1, otherwise we set ψ(xi) = 0. Now consider the clause
gadget for any clause Cj . Following Lemma 2, we know that there is at least
one t ∈ {1, 2, 3} such that e(cj,t) is rounded down. Lemma3 implies that e(cj,t)
models a literal l such that ψ(l) = 1, and this literal satisfies Cj . The same
argument applies to each clause Cj , and thus, ψ satisfies α.

Thus, our construction correctly reduces 3-SAT to the problem of deciding
whether a graph admits a path-oblivious, weak, or strong 1-rounding. Since 3-
SAT is NP-hard, our rounding problems must be NP-hard. ��

The construction as described works for ε = 1 and some smaller values. The
weight w of a nonagon edge in the clause gadget is deciding. If the 3-CNF
formula is satisfiable, one can obtain a maximum absolute rounding error of
max(| 10 − 3w | , ∣∣ 41

2 − w
∣
∣). With w = 3.6, this is 0.9; the error is minimized to

7/8 when we choose w = 3 5
8 . If we choose ε > 1, Lemma 1 will not hold. Thus,

the construction works as long as 7/8 < ε ≤ 1.

3 A Quadratic-Time Algorithm for Trees

In this section, we will present algorithms for the case in which G is a tree. Note
that in this case, there is only one simple path between any pair of vertices, so
there is no difference between path-oblivious, weak, and strong ε-roundings.

Clearly, if the whole graph is a simple path with edges e1, . . . , en, a 1-rounding
always exists, and can be computed in linear time (assuming the floor function
can be computed in constant time). For example [7,8], let di be 1

2 +
∑i

j=1 ω(ei);
then we set ω̃(ei) = �di� − �di−1�. Now, for any subpath ea, . . . , ez, we have∑z

i=a ω̃(ei) = �dz�−�da−1� < dz−(da−1−1) = 1+
∑z

i=a ω(ei), and
∑z

i=a ω̃(ei) =
�dz� − �da−1� > (dz − 1) − da−1 = −1 +

∑z
i=a ω(ei); thus ω̃ satisfies Condition

1 for ε = 1, and ω̃ is a 1-rounding. Sadakane et al. [7] prove that a path of
n vertices admits at most n different 1-roundings, and shows how to compute
all 1-roundings in O(n2) time, and how to determine the 1-rounding with the
smallest maximum absolute rounding error in the same time.

If the graph is a tree, observe that we can obtain a 2-rounding in linear time
as follows. Choose any vertex of the tree as the root r. For any other vertex u,
let p(u) be the parent of u, and let du be the (unrounded) weight of the path
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from r to u. Now we set ω̃({p(u), u}) = �du� − �dp(u)�. By the same calculation
as above, for any vertex u, the absolute rounding error |e(u, v)| on any path from
u to an ancestor v of u is now less than one. Now, given two arbitrary vertices u
and w, let v be their lowest common ancestor. The absolute rounding error on
the path from u to w is at most |e(u, v)| + |e(v, w)| < 2.

We will now present an algorithm that decides, given a tree T and an error
threshold ε < 2, in quadratic time, whether T admits an ε-rounding. We choose
an arbitrary vertex of T as the root r. We say v is a descendant of u if u lies on
the path from r to v. For any vertex u, the subtree Tu of T is the subgraph of
T that is induced by all descendants of u; this vertex u is called the root of Tu;
see Fig. 5. By |T | we denote the number of vertices of T . By π(u, v) we denote
the path in T from u to v.

p(u) u
T2

T1

v
π(u, v)

Tu

Tu

r

Fig. 5. A rooted tree T with root vertex r. The subtree Tu with root u can be extended
to a subgraph T ′

u with root p(u) by adding the edge {u, p(u)}.

Definition 2 (root error range). Let ω̃ be an ε-rounding on a tree T with
root r. For any v ∈ T , let e(r, v) be the rounding error on π(r, v), that is,
e(r, v) := ω̃(π(r, v)) − ω(π(r, v)).

We call the smallest interval that contains the signed rounding errors of the
paths from r to all vertices of T the root error range E(T, ω̃), so

E(T, ω̃) :=
[

min
v∈T

e(r, v),max
v∈T

e(r, v)
]

.

Note that e(r, r) = 0, so if T is a leaf, then E(T, ω̃) = [0, 0].
We call a rounding ω̃ of T locally optimal if there is no other rounding ω̃′ of

T such that E(T, ω̃′) is smaller than and contained in E(T, ω̃).
Let the error range set E(T ) be the set of root error ranges that can be real-

ized by locally optimal ε-roundings of T , that is, the set E(T ) := {E(T, ω̃) |
ω̃ is a locally optimal rounding}.
Lemma 5 (error range set size). E(T ) has at most 2|T | elements.
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Proof. Observe that in any ε-rounding with ε < 2, the weight of any path π(r, v)
is rounded to �ω(π(r, v))� − 1, �ω(π(r, v))�, 	ω(π(r, v))
, or 	ω(π(r, v))
 + 1.

Any root error range E(T, ω̃) includes 0, since e(r, r) = 0. Therefore, the
lower bound of any root error range E(T, ω̃) is zero or negative, and it must be
the rounding error on some path π(r, v) whose rounded weight is �ω(π(r, v))� or
�ω(π(r, v))� − 1. Since v must be one of the n vertices of T , this implies that
there are at most 2n possible values for the lower bound of any root error range.

Because E(T ) contains only root error ranges of locally optimal ε-roundings,
no two elements of E(T ) can have the same lower bound, so the total number of
elements of E(T ) is also bounded by 2n. ��

Our algorithm will compute the error range set for every subtree of T
bottom-up. For this purpose, we need two subalgorithms. The first subalgorithm
(explained in the proof of Lemma6) adds, to a given subtree, the edge that con-
nects the root to its parent in T . The second subalgorithm (explained in the
proof of Lemma 7) combines two such parent-added subtrees who have a com-
mon parent. In the description of these algorithms, we assume that error range
sets are sorted in ascending order by the lower bounds of the root error ranges.
Since error range sets contain only root error ranges of locally optimal round-
ings, no element of an error range set can be contained in another. Therefore,
the fact that the error range sets are sorted by ascending lower bound, implies
that they are also sorted by ascending upper bound. Due to space restrictions,
the proofs have been shortened. Pseudocode and full proofs are given in [6].

Let T ′
u be the subgraph of T that consists of Tu and the edge between u and

its parent p(u) in T ; we choose p(u) as the root of T ′
u, see Fig. 5.

Lemma 6 (moving up). Given E(Tu), we can compute E(T ′
u) in O(|Tu|) time.

Proof. Let f be the fractional part of the weight of {p(u), u}, that is, f :=
ω({p(u), u}) − �ω({p(u), u})�. Any ε-rounding for T ′

u must consist of an ε-
rounding for Tu combined with setting ω̃({p(u), u}) to �ω({p(u), u)}� + k for
some k ∈ {−1, 0, 1, 2} (because ε < 2, no other values for ω̃({p(u), u}) are
allowed). For any vertex v ∈ T ′

u, other than the root p(u), we have e(p(u), v) =
e(p(u), u)+ e(u, v) = k − f + e(u, v); for the root p(u) we have e(p(u), p(u)) = 0.
Thus, a choice of an ε-rounding for Tu with root error range [a, b] ∈ E(Tu),
together with a choice of k ∈ {−1, 0, 1, 2}, results in a rounding for T ′

u whose
root error range is the smallest interval that includes [a + k − f, b + k − f ] and 0,
that is, the root error range for T ′

u is [min(a + k − f, 0),max(0, b + k − f)]. This
rounding is an ε-rounding if and only if −ε < a + k − f and b + k − f < ε.

Thus, the elements of E(T ′
u) are all from the set:

S =

⎧
⎪⎪⎨

⎪⎪⎩
[min(a + k − f, 0),max(0, b + k − f)]

∣
∣
∣
∣
∣
∣
∣
∣

[a, b] ∈ E(Tu),
k ∈ {−1, 0, 1, 2},
−ε < a + k − f,
b + k − f < ε

⎫
⎪⎪⎬

⎪⎪⎭
.

We can compute S in lexicographical order by first computing, for each k ∈
{−1, 0, 1, 2}, the set Sk := {[min(a + k − f, 0),max(0, b + k − f)] | [a, b] ∈
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E(Tu),−ε < a + k − f, b + k − f < ε} in lexicographical order from E(Tu), and
then merging the sets S−1, S0, S1 and S2 into one lexicographically ordered set S.

To obtain E(T ′
u) from S, all that remains to do is to filter out the root error

ranges that are not locally optimal. Given that S is ordered lexicographically,
this can be done in linear time; see [6] for details. ��

Given two trees T ′
1 and T ′

2 that have the same root vertex r, but are otherwise
disjoint as in Fig. 5, we denote by T ′

1 ∪T ′
2 the union of the two trees; T ′

1 ∪T ′
2 also

has root r.

Lemma 7 (merging error range sets). Given E(T ′
1) and E(T ′

2) for two trees
T ′
1 and T ′

2, whose root r is the only vertex that they have in common, we can
compute E(T ′

1 ∪ T ′
2) in O(|T ′

1| + |T ′
2|) time.

Proof. Consider a rounding ω̃ of T ′
1 ∪ T ′

2 that consists of an ε-rounding of T ′
1

with root error range [a1, b1] and an ε-rounding of T ′
2 with root error range

[a2, b2]. For i ∈ {1, 2}, let ui and vi be vertices in T ′
i that determine the lower

and upper bounds of the root error range [ai, bi], that is: ai = e(r, ui) and
bi = e(r, vi). The path composed of π(u1, r) and π(r, u2) is a path in T ′

1 ∪ T ′
2

with e(u1, u2) = a1 + a2; similarly, we have e(v1, v2) = b1 + b2. It follows that
ω̃ can be an ε-rounding only if a1 + a2 > −ε and b1 + b2 < ε. These conditions
are also sufficient, since any other path from a vertex w1 ∈ T ′

1 to a vertex
w2 ∈ T ′

2 consists of a path with error e(r, w1) ∈ [a1, b1] and a path with error
e(r, w2) ∈ [a2, b2], so the total error is within [a1 + a2, b1 + b2].

Since T ′
1, T ′

2 and T ′
1∪T ′

2 have the same root, the root error range E(T ′
1∪T ′

2, ω̃)
is the union of the root error ranges of T ′

1 and T ′
2, that is, E(T ′

1 ∪ T ′
2, ω̃) =

[min(a1, a2),max(b1, b2)]. We say ω̃ is of type 1 if a1 < a2, and of type 2 if
a2 ≤ a1. To find, in linear time, a set S1 of root error ranges for T ′

1 ∪ T ′
2 that

includes those of all locally optimal roundings of type 1, we proceed as follows.
We scan all ranges [a1, b1] ∈ E(T ′

1), while maintaining pointers to: (1) the first
range [a′

2, b
′
2] ∈ E(T ′

2) that satisfies a′
2 > a1; (2) the first range [a′′

2 , b′′
2 ] ∈ E(T ′

2)
that satisfies a′′

2 > −ε− a1; and (3) the last range [a′′′
2 , b′′′

2 ] ∈ E(T ′
2) that satisfies

b′′′
2 < ε − b1. Whenever max(b′

2, b
′′
2) ≤ b′′′

2 , we include [a1,max(b1, b′
2, b

′′
2)] in S1.

In a similar fashion, we find a set S2 that includes the root error ranges of all
locally optimal roundings of type 2. Finally we merge S1 and S2 and filter out
suboptimal error ranges in linear time. For details, see [6]. ��

To decide whether a tree T admits an ε-rounding, we compute E(Tu) for
all subtrees Tu of T bottom-up. Specifically, if u is a leaf, E(Tu) = [0, 0]. If
u is an internal vertex with a single child v, then Tu = T ′

v and we compute
E(Tu) = E(T ′

v) from E(Tv) with the algorithm of Lemma 6. If u is an internal
vertex with two children v and w, we first compute E(T ′

v) and E(T ′
w) from E(Tv)

and E(Tw), respectively, with the algorithm of Lemma6, and then we compute
E(Tu) = E(T ′

v ∪ T ′
w) with the algorithm of Lemma 7. Finally, if u is an internal

vertex with more than two children, we first compute E(T ′
v) from E(Tv) for each

child v. Then we organize all children in a balanced binary merge tree M with
the children of u at the leaves; for a vertex x in M , let C(x) be the children of u
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in the subtree of M rooted at x. With vertex x we associate the error range set
E(

⋃
v∈C(x) T ′

v). We process the merge tree M bottom-up, using the algorithm
of Lemma 7 for each internal vertex x of M to compute E(

⋃
v∈C(x) T ′

v) from the
error range sets associated with the children of x. The error range set computed
for the root of M constitutes E(Tu). Ultimately, we compute E(Tr). If and only
if this error range set is non-empty, T admits an ε-rounding.

We say the effective height of the tree T is the height it would have when
all internal vertices with more than two children were replaced by their binary
merge trees. The algorithms of Lemmas 6 and 7 take time linear in the size of the
subtrees that are being processed. Thus, if T has n vertices and effective height
h, the above algorithm to compute E(Tr) runs in O(nh) time. This proves:

Theorem 2. Given an edge-weighted tree T of n vertices and an error toler-
ance ε, one can decide in O(n2) time whether T admits an ε-rounding.

To find the minimal maximum rounding error, we first compute the lengths
of all O(n2) simple paths in the tree in O(n2) time. We do so with a bottom-up
algorithm that computes for each vertex u the lengths of all paths in Tu, and
passes on the lengths of all paths in Tu that end in u to the parent of u. Each
path produces up to four candidate values for the maximum rounding error,
namely, for k ∈ {−1, 0, 1, 2}, the absolute value of (k minus the fractional part
of the path length). We sort all candidate values in O(n2 log n) time. Finally we
find the smallest ε for which the decision algorithm says yes by binary search,
using O(log n) calls to the decision algorithm, which take O(n2) time each.

Corollary 1. Given an edge-weighted tree T of n vertices, we can compute a
rounding of T that minimizes the maximum absolute rounding error on any
simple path in the tree in O(n2 log n) time.

4 Conclusions and Directions for Further Work

We have shown that it is, in general, NP-hard to decide whether a path-oblivious,
weak, or strong ε-rounding exists for a given graph, but the problem can be
solved in polynomial time if the graph is a tree. Does this mean there is no hope
of finding efficient algorithms to round weights in practical graphs other than
trees? The conditions of our NP-hardness construction raise several questions:

– What is the complexity of the problem for other types of graphs, such as
planar graphs or cycles? (Our hardness proof uses graphs that are highly
non-planar due to the shortcut edges, even if we reduce from planar 3-SAT.)

– Is it possible to prove NP-hardness for ε > 1 or ε < 7
8?

– Can we prove similar results for other rounding models, for example based
on relative rounding errors (Funke and Storandt [4])?

– Can we establish relations to results on global roundings of hypergraphs,
where the weights are not on the edges but on the vertices [1–3,9]?
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Abstract. For a graph G = (V, E) with no isolated vertices, a set
D ⊆ V is called a semipaired dominating set of G if (i) D is a dom-
inating set of G, and (ii) D can be partitioned into two element subsets
such that the vertices in each two element set are at distance at most two.
The minimum cardinality of a semipaired dominating set of G is called
the semipaired domination number of G, and is denoted by γpr2(G).
The Minimum Semipaired Domination problem is to find a semipaired
dominating set of G of cardinality γpr2(G). In this paper, we initiate the
algorithmic study of the Minimum Semipaired Domination problem.
We show that the decision version of the Minimum Semipaired Domi-
nation problem is NP-complete for bipartite graphs and chordal graphs.
On the positive side, we present a linear-time algorithm to compute a
minimum cardinality semipaired dominating set of interval graphs. We
also propose a 1 + ln(2Δ + 2)-approximation algorithm for the Mini-
mum Semipaired Domination problem, where Δ denotes the maximum
degree of the graph and show that the Minimum Semipaired Domina-
tion problem cannot be approximated within (1− ε) ln |V | for any ε > 0
unless P=NP.

Keywords: Domination · Semipaired domination · Bipartite graphs ·
Chordal graphs · Interval graphs · Graph algorithm · NP-complete ·
Approximation algorithm

1 Introduction

A dominating set in a graph G is a set D of vertices of G such that every
vertex in V (G)\D is adjacent to at least one vertex in D. The domination number
of G, denoted by γ(G), is the minimum cardinality of a dominating set of G. The
Minimum Domination problem is to find a dominating set of cardinality γ(G).
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More thorough treatment of domination, can be found in the books [8,9]. A
dominating set D is called a paired dominating set if the subgraph of G induced
by D contains a perfect matching. The paired domination number of G, denoted
by γpr(G) is the minimum cardinality of a paired dominating set of G. The
concept of paired domination was introduced by Haynes and Slater in [13].

A relaxed form of paired domination called semipaired domination was intro-
duced by Haynes and Henning [10] and studied further in [11,12,14]. A set S
of vertices in a graph G with no isolated vertices is a semipaired dominating
set, abbreviated a semi-PD-set, of G if S is a dominating set of G and S can
be partitioned into 2-element subsets such that the vertices in each 2-element
set are at distance at most 2. In other words, the vertices in the dominating
set S can be partitioned into 2-element subsets such that if {u, v} is a 2-set,
then the distance between u and v is either 1 or 2. We say that u and v are
semipaired. The semipaired domination number of G, denoted by γpr2(G), is the
minimum cardinality of a semi-PD-set of G. Since every paired dominating set is
a semi-PD-set, and every semi-PD-set is a dominating set, we have the following
observation.

Observation 1 [10]. For every isolate-free graph G, γ(G) ≤ γpr2(G) ≤ γpr(G).

By Observation 1, the semipaired domination number is squeezed between
two fundamental domination parameters, namely the domination number and
the paired domination number.

More formally, the minimum semipaired domination problem and its decision
version are defined as follows:
Minimum Semipaired Domination problem (MSPDP)

Instance: A graph G = (V,E).
Solution: A semi-PD-set D of G.
Measure: Cardinality of the set D.

Semipaired Domination Decision problem (SPDDP)

Instance: A graph G = (V,E) and a positive integer k ≤ |V |.
Question: Does there exist a semi-PD-set D in G such that |D| ≤ k?

In this paper, we initiate the algorithmic study of the semipaired domination
problem. The main contributions of the paper are summarized below. In Sect. 2,
we discuss some definitions and notations. In Sect. 3, we show that the Semi-
paired Domination Decision problem is NP-complete for bipartite graphs. In
Sect. 4, we propose a linear-time algorithm to solve the Minimum Semipaired
Domination problem in interval graphs. In Sect. 5, we propose an approxima-
tion algorithm for the Minimum Semipaired Domination problem in general
graphs. In Sect. 6, we discuss an approximation hardness result. Finally, Sect. 7,
concludes the paper.
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2 Terminology and Notation

For notation and graph theory terminology, we in general follow [15]. Specif-
ically, let G = (V,E) be a graph with vertex set V = V (G) and edge set
E = E(G), and let v be a vertex in V . The open neighborhood of v is
the set NG(v) = {u ∈ V |uv ∈ E} and the closed neighborhood of v is
NG[v] = {v} ∪ NG(v). Thus, a set D of vertices in G is a dominating set of
G if NG(v) ∩ D �= ∅ for every vertex v ∈ V \D, while D is a total dominating
set of G if NG(v) ∩ D �= ∅ for every vertex v ∈ V . The distance between two
vertices u and v in a connected graph G, denoted by dG(u, v), is the length of
a shortest (u, v)-path in G. If the graph G is clear from the context, we omit it
in the above expressions. We write N(v), N [v] and d(u, v) rather than NG(v),
NG[v] and dG(u, v), respectively.

For a set S ⊆ V (G), the subgraph induced by S is denoted by G[S]. If G[C],
where C ⊆ V , is a complete subgraph of G, then C is a clique of G. A set S ⊆ V
is an independent set if G[S] has no edge. A graph G is chordal if every cycle in
G of length at least four has a chord, that is, an edge joining two non-consecutive
vertices of the cycle. A vertex v ∈ V (G) is a simplicial vertex of G if NG[v] is
a clique of G. An ordering α = (v1, v2, . . . , vn) is a perfect elimination ordering
(PEO) of vertices of G if vi is a simplicial vertex of Gi = G[{vi, vi+1, . . . , vn}]
for all i, 1 ≤ i ≤ n. Fulkerson and Gross [5] characterized chordal graphs, and
showed that a graph G is chordal if and only if it has a PEO. A graph G = (V,E)
is bipartite if V can be partitioned into two disjoint sets X and Y such that every
edge of G joins a vertex in X to a vertex in Y , and such a partition (X,Y ) of
V (G) is called a bipartition of G. Further, we denote such a bipartite graph G
by G = (X,Y,E). A graph G is an interval graph if there exists a one-to-one
correspondence between its vertex set and a family of closed intervals in the
real line, such that two vertices are adjacent if and only if their corresponding
intervals intersect. Such a family of intervals is called an interval model of a
graph.

In the rest of the paper, all graphs considered are simple connected graphs
with at least two vertices, unless otherwise mentioned specifically. We use the
standard notation [k] = {1, . . . , k}. For most of the approximation related ter-
minologies, we refer to [1,16].

3 NP-Completeness Results

In this section, we study the NP-completeness of the Semipaired Domina-
tion Decision problem. We show that the Semipaired Domination Decision
problem is NP-complete for bipartite graphs by making polynomial reduction
from the Minimum Vertex Cover problem, which is already known to be
NP-complete [6].

Theorem 2. The Semipaired Domination Decision problem is NP-
complete for bipartite graphs.
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Proof. Clearly, the Semipaired Domination Decision problem is in NP for
bipartite graphs. To show the hardness, we give a polynomial reduction from
the Minimum Vertex Cover problem. Given a non-trivial graph G = (V,E),
where V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}, we construct a graph
H = (VH , EH) in the following way:

Let Vk = {vk
i | i ∈ [n]} and Ek = {ekj | j ∈ [m]} for k ∈ [2]. Also assume that

A = {ai | i ∈ [n]}, B = {bi | i ∈ [n]}, C = {ci | i ∈ [n]}, and F = {fi | i ∈ [n]}.
Now define VH = V1 ∪ V2 ∪ E1 ∪ E2 ∪ A ∪ B ∪ C ∪ F , and EH =

{v1
i fi, v

2
i fi, aibi, bici, aifi | i ∈ [n]} ∪ {vk

peki , v
k
q eki | k ∈ [2], i ∈ [m], vp, vq are

endpoints of edge ei in G}. Figure 1 illustrates the construction of H from G.
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Fig. 1. An illustration of the construction of H from G in the proof of Theorem2.

Note that the set I1 = V1 ∪ V2 ∪ A ∪ C is an independent set in H. Also, the
set I2 = E1 ∪ E2 ∪ F ∪ B is an independent set in H. Since VH = I1 ∪ I2, the
graph H is a bipartite graph. Now to complete the proof, it suffices for us to
prove the following claim:

Claim. The graph G has a vertex cover of cardinality at most k if and only if
the graph H has a semi-PD-set of cardinality at most 2n + 2k.

Proof. Let Vc = {vi1 , vi2 , . . . , vik} be a vertex cover of G of cardinality k. Then
Dp = {v1

i1
, v1

i2
, . . . , v1ik} ∪ {v2

i1
, v2

i2
, . . . , v2ik} ∪ B ∪ F is a semi-PD-set of H of

cardinality 2n + 2k.
Conversely, suppose that H has a semi-PD-set D of cardinality at most 2n+

2k. Note that |D ∩ {ai, bi, ci, fi}| ≥ 2 for each i ∈ [n]. Hence, without loss
of generality, we may assume that {bi, fi | i ∈ [n]} ⊆ D, where bi and fi are
semipaired. Hence |D∩(E1∪E2∪V1∪V2)| ≤ 2k. Let S = (V1∪E1)∩D. Without
loss of generality, we may also assume that |S| ≤ k. Now, if e1i ∈ S for some
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i ∈ [m], and none of its neighbors belongs to D, then e1i must be semipaired
with some vertex e1j where j ∈ [m]\{i}, and also there must exist a vertex v1

k

which is a common neighbor of e1i and e1j . In this case, we replace the vertex e1i
in the set S with the vertex v1

k and so S ← (S\{e1i }) ∪ {v1
k} where v1

k and e1j
are semipaired. We do this for each vertex e1i ∈ S where i ∈ [m] with none of its
neighbors in the set D. For the resulting set S, |S ∩ V1| ≤ k and every vertex e1i
has a neighbor in V1 ∩ S. The set Vc = {vi | v1

i ∈ S} is a vertex cover of G of
cardinality at most k. This completes the proof of the claim. ��

Hence, the theorem is proved. ��

4 Algorithm for Interval Graphs

In this section, we present a linear-time algorithm to compute a minimum
cardinality semi-PD-set of an interval graph.

A linear time recognition algorithm exists for interval graphs, and for an
interval graph an interval family can also be constructed in linear time [2,7].
Let G = (V,E) be an interval graph and I be its interval model. For a vertex
vi ∈ V , let Ii be the corresponding interval. Let ai and bi denote the left and
right end points of the interval Ii. Without loss of generality, we may assume
that no two intervals share a common end point. Let α = (v1, v2, . . . , vn) be the
left end ordering of vertices of G, that is, ai < aj whenever i < j. Define the set
Vi = {v1, v2, . . . , vi}, for each i ∈ [n]. Now we first prove the following lemmas.

Lemma 1. Let α = (v1, v2, . . . , vn) be the left end ordering of vertices of G. If
vivj ∈ E for i < j, then vivk ∈ E for every i < k < j.

Proof. The proof directly follows from the left end ordering of vertices of G. ��
Lemma 2. If G is a connected interval graph, then G[Vi] is also connected.

Proof. The proof can easily be done using induction on i. ��
Let F (vi) be the least index vertex adjacent to vi, that is, if F (vi) = vp, then

p = min{k | vkvi ∈ E}. In particular, we define F (v1) = v1. Let L(vi) = vq,
where q = max{k | vkvi /∈ E and k < i}. In particular, if L(vi) does not exist, we
assume that L(vi) = v0 (v0 /∈ V ). Let Gi = G[Vi] and Di denote a semi-PD-set
of Gi of minimum cardinality. Recall that we only consider connected graphs
with at least two vertices.

Lemma 3. For i ≥ 2, if F (vi) = v1, then Di = {v1, vi}.
Proof. Note that every vertex in Gi is dominated by v1, and dGi

(v1, vi) = 1.
Hence, Di = {v1, vi}. ��
Lemma 4. For i > 1, if F (vi) = vj, j > 1 and F (vj) = v1, then Di = {v1, vj}.



Complexity and Algorithms for Semipaired Domination in Graphs 283

Proof. Note that every vertex in Gi is dominated by some vertex in the set
{v1, vj}, and dGi

(v1, vj) = 1. Hence, Di = {v1, vj}. ��
Lemma 5. For r < k < j < i, let F (vi) = vj, F (vj) = vk F (vk) = vr. If every
vertex vl where k < l < j, is adjacent to at least one vertex in the set {vj , vr},
then the following holds:

(a) {vj , vr} ⊆ Di.
(b) vj is semipaired with vr in Di.
(c) Di ∩ {vs+1, . . . , vr, vr+1, . . . , vi} = {vj , vr}.
Proof. The proof is omitted due to space constraints. ��
Lemma 6. For r < k < j < i, let F (vi) = vj, F (vj) = vk F (vk) = vr. If every
vertex vl where k < l < j, is adjacent to at least one vertex in the set {vj , vr},
then the following holds.

(a) Di = {vj , vr} if L(vr) = v0.
(b) Di = {v1, v2, vj , vr} if L(vr) = v1.
(c) Di = Ds ∪ {vj , vr} if L(vr) = vs with s ≥ 2.

Proof.(a) Clearly Di = {vj , vr}.
(b) From Lemma 5, we know that {vj , vr} ⊆ Di. Also, other than v1, all vertices

are dominated by the set {vj , vr}. Hence, Di = {v1, v2, vj , vr}.
(c) Clearly Ds ∪ {vj , vr} is a semi-PD-set of Gi. Hence |Di| ≤ |Ds| + 2. We

also know that there exists a semi-PD-set Di of Gi of minimum cardinality
such that Di ∩ {vs+1, vs+2, . . . , vi} = {vj , vr} (where vj and vr are semi-
paired in Di). Hence Di\{vj , vr} ⊆ V (Gs). Also, {vj , vr} dominates the
set {vs+1, vs+2, . . . , vn}, implying that the set {v1, v2, . . . , vs} is dominated
by the vertices in Di\{vj , vr}. Hence, the set Di\{vj , vr} is semi-PD-set of
Gs. Therefore, |Ds| ≤ |Di| − 2. This proves that |Di| = |Ds| + 2. Hence,
Di = Ds ∪ {vj , vr}. ��

Lemma 7. For r < k < j < i, let F (vi) = vj, F (vj) = vk F (vk) = vr, and
{vl | k < l < j} � NGi

[vr] ∪ NGi
[vj ]. Let t = max{l | k < l < j and vlvj /∈ E}

(assume that such a t exists). Let F (vt) = vb. Then, the following holds.

(a) {vj , vb} ⊆ Di.
(b) vj is semipaired with vb in Di.
(c) Di ∩ {vs+1, . . . , vb, vb+1, . . . , vi} = {vj , vb}.
Proof. The proof is omitted due to space constraints. ��
Lemma 8. For r < k < j < i, let F (vi) = vj, F (vj) = vk F (vk) = vr, and
{vl | k < l < j} � NGi

[vr] ∪ NGi
[vj ]. Let t = max{l | k < l < j and vlvj /∈ E}

(assume that such a t exists). Let F (vt) = vb. Then, the following holds.

(a) Di = {vj , vb} if L(vb) = v0.
(b) Di = {v1, v2, vj , vb} if L(vb) = v1.
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(c) Di = Ds ∪ {vj , vb} if L(vb) = vs with s ≥ 2.

Proof. The proof is similar to the proof of Lemma6, and hence is omitted. ��
Based on above lemmas, we present an algorithm to compute a minimum

semi-PD-set of an interval graph.

Algorithm 1. SEMI-PAIRED-DOM-IG(G)
Input: An interval graph G = (V,E) with a left end ordering
α = (v1, v2, . . . , vn) of vertices of G.
Output: A semi-PD-set D of G of minimum cardinality.
V ′ = V ;
while (V ′ �= φ) do

Let i = max{k | vk ∈ V ′}. if (F (vi) = v1) then
D = D ∪ {v1, vi};
V ′ = V ′ \ {v1, v2, . . . , vi};

else if (F (vi) = vj and F (vj) = v1 where j > 1) then
D = D ∪ {v1, vj}; V ′ = V ′ \ {v1, v2, . . . , vi};

else if (F (vi) = vj and F (vj) = vk where k ≥ 2) then
Let F (vk) = vr.
if {vk+1, vk+2, . . . , vj−1} ⊆ NG[vj ] ∪ NG[vr] then

if (L(vr) = v0) then
D = D ∪ {vj , vr};
V ′ = V ′ \ {v1, v2, . . . , vi};

else if (L(vr) = v1) then
D = D ∪ {v1, v2, vj , vr};
V ′ = V ′ \ {v1, v2, . . . , vi};

else
Let (L(vr) = vs) where s ≥ 2.
D = D ∪ {vj , vr};
V ′ = V ′ \ {vs+1, vs+2, . . . , vi};

else
Let t = max{l | k < l < j and vl /∈ NG(vj)} and F (vt) = vb.
if (L(vb) = v0) then

D = D ∪ {vj , vb};
V ′ = V ′ \ {v1, v2, . . . , vi};

else if (L(vb) = v1) then
D = D ∪ {v1, v2, vj , vb};
V ′ = V ′ \ {v1, v2, . . . , vi};

else
Let (L(vb) = vs) where s ≥ 2.
D = D ∪ {vj , vb};
V ′ = V ′ \ {vs+1, vs+2, . . . , vi};
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Theorem 3. Given a left end ordering of vertices of G, the algorithm SEMI-
PAIRED-DOM-IG computes a semi-PD-set of G of minimum cardinality in
linear-time.

Proof. By Lemmas 3, 4, 6 and 8, we can ensure that the algorithm SEMI-
PAIRED-DOM-IG computes a semi-PD-set of G of minimum cardinality. Also,
it can be easily seen that the algorithm can be implemented in O(m + n) time,
where n = |V (G)| and m = |E(G)|. ��

5 Approximation Algorithm

In this section, we present a greedy approximation algorithm for the Mini-
mum Semipaired Domination problem in graphs. We also provide an upper
bound on the approximation ratio of this algorithm. The greedy algorithm is
described as follows.
Algorithm 2. APPROX-SEMI-PAIRED-DOM-SET(G)
Input: A graph G = (V,E) with no isolated vertex.
Output: A semi-PD-set D of G.
begin

D = ∅;
i = 0; D0 = ∅;
while (V \ (D0 ∪ D1 ∪ . . . ∪ Di) �= ∅) do

i = i + 1;
choose two distinct vertices u, v ∈ V such that dG(u, v) ≤ 2 and
|(NG[u] ∪ NG[v]) \ (D0 ∪ D1 ∪ . . . ∪ Di−1)| is maximized;
Di = (NG[u] ∪ NG[v]) \ (D0 ∪ D1 ∪ . . . ∪ Di−1);
D = D ∪ {u, v};

return D;
end

Lemma 9. The algorithm APPROX-SEMI-PAIRED-DOM-SET produces a
semi-PD-set of G in polynomial time.

Proof. Clearly, the output set D produced by the algorithm APPROX-SEMI-
PAIRED-DOM-SET is a semi-PD-set of G. Also, each step of the algorithm can
be computed in polynomial time. Hence, the lemma follows. ��
Lemma 10. For each vertex v ∈ V , there exists exactly one set Di which con-
tains v.

Proof. We note that V = D0 ∪ D1 ∪ · · · ∪ D|D|/2. Also, if v ∈ Di, then v /∈ Dj

for i < j. Hence, the lemma follows. ��
By Lemma 10, there exists only one index i ∈ [|D|/2] such that v ∈ Di for

each v ∈ V . We now define dv = 1
|Di| . Now we are ready to prove the main

theorem of this section.
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Theorem 4. The Minimum Semipaired Domination problem for a graph G
with maximum degree Δ can be approximated with an approximation ratio of
1 + ln(2Δ + 2).

Proof. The proof is omitted due to space constraints. ��

6 Lower Bound on Approximation Ratio

To obtain the lower bound on the approximation ratio of the Minimum Semi-
paired Domination problem, we give an approximation preserving reduction
from the Minimum Domination problem. The following approximation hard-
ness result is already known for the Minimum Domination problem.

Theorem 5 [3,4]. For a graph G = (V,E), the Minimum Domination problem
cannot be approximated within (1 − ε) ln |V | for any ε > 0 unless P=NP.

Now, we are ready to prove the following theorem.

Theorem 6. For a graph G = (V,E), the Minimum Semipaired Domination
problem cannot be approximated within (1−ε) ln |V | for any ε > 0 unless P=NP.

Proof. Let G = (V,E), where V = {v1, v2, . . . , vn} be an arbitrary instance of
the Minimum Domination problem. Now, we construct a graph H = (VH , EH),
an instance of the Minimum Semipaired Domination problem in the following
way: VH = {v1

i , v
2
i , w

1
i , w

2
i , zi | i ∈ [n]} and EH = {w1

i v
1
j , w

2
i v

2
j | vj ∈ NG[vi]} ∪

{v1
i v

1
j , v

2
i v

2
j , zizj | 1 ≤ i < j ≤ n} ∪ {v1

i zj , v
2
i zj | i ∈ [n], j ∈ [n]}. Figure 2

illustrates the construction of H from G.

w1
1

w1
2

w1
3

w2
1

w2
2

w2
3

v1

v2

v3

z1

z2

z3

v11

v12

v13

v21

v22

v23

G H

Fig. 2. An illustration of the construction of H from G in the proof of Theorem6.

Let V k = {vk
i | i ∈ [n]} and W k = {wk

i | i ∈ [n]} for k = 1, 2. Also, assume
that Z = {zi | i ∈ [n]}. Note that V 1 ∪Z is a clique in H. Also V 2 ∪Z is a clique
in H.
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Let D∗ denote a minimum dominating set of G. Then the set D′ = {v1
i , v

2
i |

vi ∈ D∗} is a semi-PD-set of H. Hence, if D∗
sp denotes a semi-PD-set of H of

minimum cardinality, then |D∗
sp| ≤ 2|D∗|.

Suppose that the Minimum Semipaired Domination problem can be
approximated within a ratio of α, where α = (1 − ε) ln(|VH |) for some fixed
ε > 0, by some polynomial time approximation algorithm, say Algorithm A.
Next, we propose an algorithm, which we call APPROX-DOMINATING-
SET, to compute a dominating set of a given graph G in polynomial time.

Algorithm 3. APPROX-DOMINATING-SET(G)
Input: A graph G = (V,E).
Output: A dominating set D of G.
begin

Initialize k = 0;
Construct the graph H;
Compute a semi-PD-set Dsp of H using Algorithm A;
Define D′

sp = Dsp; if (|D′
sp ∩ (V 1 ∪ W 1)| ≤ |Dsp|/2) then

k=1;
else

k=2;
for i=1 to n do

if (NH(wk
i ) ∩ D′

sp == ∅) then
D′

sp = (D′
sp \ wk

i ) ∪ {vk
i };

D = {vi | vk
i ∈ D′

sp ∩ V k};
return D;

end

Next, we show that the set D returned by Algorithm3 is a dominating set of
G. If Dsp is any semi-PD-set of H, then clearly either |Dsp∩(V 1∪W 1)| ≤ |Dsp|/2
or |Dsp ∩ (V 2 ∪ W 2)| ≤ |Dsp|/2. Assume that |Dsp ∩ (V k ∪ W k)| ≤ |Dsp|/2 for
some k ∈ [2]. Now, to dominate a vertex wk

i ∈ W k, either wk
i ∈ Dsp or vk

j ∈ Dsp

where vk
j ∈ NH(wi). If NH(wk

i ) ∩ Dsp is an empty set, then we update Dsp by
removing wk

i and adding vk
j for some vk

j ∈ NH(wi), and call the updated set
D′

sp. We do this for each i from 1 to n. Note that even for the updated set D′
sp,

we have |D′
sp ∩ (V k ∪W k)| ≤ |Dsp|/2. Also, in the updated set D′

sp, for each wk
i ,

NH(wk
i ) ∩ (Dsp ∩ V k) is non-empty. Hence |D′

sp ∩ V k| ≤ |Dsp|/2 and D′
sp ∩ V k

dominates W k. Therefore the set D = {vi | vk
i ∈ D′

sp ∩ V k} is a dominating set
of G. Also |D| ≤ |Dsp|/2.

By above arguments, we may conclude that Algorithm 3 produces a dominat-
ing set D of the given graph G in polynomial time, and |D| ≤ |Dsp|/2. Hence,

|D| ≤ |Dsp|
2 ≤ α

|D∗
sp|
2 ≤ α|D∗|.

Also α = (1 − ε) ln(|VH |) ≈ (1 − ε) ln(|V |) where |VH | = 5|V |. Therefore
the Algorithm APPROX-DOMINATING-SET approximates the minimum
dominating set within ratio (1 − ε) ln(|V |) for some ε > 0. By Theorem 5, if
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the minimum dominating set can be approximated within ratio (1 − ε) ln(|V |)
for some ε > 0, then P=NP. Hence, if the Minimum Semipaired Domina-
tion problem can be approximated within ratio (1 − ε) ln(|VH |) for some ε > 0,
then P=NP. This proves that the Minimum Semipaired Domination problem
cannot be approximated within (1 − ε) ln(|VH |) unless P=NP. ��

Note that the constructed graph H in Theorem 6 is also a chordal graph, as
α = (w1

1, w
1
2, . . . , w

1
n, w2

1, w
2
2, . . . , w

2
n, v1

1 , v
1
2 , . . . , v

1
n, v2

1 , v
2
2 , . . . , v

2
n, z1, z2, . . . , zn)

is a PEO of vertices of H. Hence, we have the following corollary.

Corollary 1. For a chordal graph G = (V,E), the Minimum Semipaired
Domination problem cannot be approximated within (1− ε) ln |V | for any ε > 0
unless P=NP.

7 Conclusion

In this paper, we initiate the algorithmic study of the Minimum Semipaired
Domination problem. We have resolved the complexity status of the problem
for bipartite graphs, chordal graphs and interval graphs. We have proved that
the Semipaired Domination Decision problem is NP-complete for bipartite
graphs and chordal graphs. We also present a linear-time algorithm to compute
a semi-PD-set of minimum cardinality for interval graphs. A 1 + ln(2Δ + 2)
approximation algorithm for the Minimum Semipaired Domination problem
in general graphs is given, and we prove that it can not be approximated within
any sub-logarithmic factor even for chordal graphs. It will be interesting to study
better approximation algorithms for this problem for bipartite graphs and other
important graph classes.

References

1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,
Protasi, M.: Complexity and Approximation. Springer, Heidelberg (1999). https://
doi.org/10.1007/978-3-642-58412-1

2. Booth, K.S., Leuker, G.S.: Testing for consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379
(1976)
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Abstract. The rooted triplet distance measures the structural dissim-
ilarity of two phylogenetic trees or networks by counting the number
of rooted trees with exactly three leaf labels that occur as embedded
subtrees in one, but not both of them. Suppose that N1 = (V1, E1)
and N2 = (V2, E2) are rooted phylogenetic networks over a common
leaf label set of size λ, that Ni has level ki and maximum in-degree di

for i ∈ {1, 2}, and that the networks’ out-degrees are unbounded.
Denote n = max(|V1|, |V2|), m = max(|E1|, |E2|), k = max(k1, k2), and
d = max(d1, d2). Previous work has shown how to compute the rooted
triplet distance between N1 and N2 in O(λ log λ) time in the special
case k ≤ 1. For k > 1, no efficient algorithms are known; a trivial app-
roach leads to a running time of Ω(n7λ3) and the only existing non-trivial
algorithm imposes restrictions on the networks’ in- and out-degrees (in
particular, it does not work when non-binary nodes are allowed). In this
paper, we develop two new algorithms that have no such restrictions.
Their running times are O(n2m + λ3) and O(m + k3d3λ + λ3), respec-
tively. We also provide implementations of our algorithms and evaluate
their performance in practice. This is the first publicly available software
for computing the rooted triplet distance between unrestricted networks
of arbitrary levels.

1 Introduction

Background. Trees are commonly used in biology to represent evolutionary
relationships, with the leaves corresponding to species that exist today and
internal nodes to ancestor species that existed in the past. When studying the
evolution of a fixed set of species, different available data and tree construction
methods [7] can lead to trees that look structurally different. Quantifying this
difference is essential to make better evolutionary inferences, which has led to the
proposal of several tree distance measures in the literature, e.g., the Robinson-
Foulds distance [17], the rooted triplet distance [5] for rooted trees, and the
unrooted quartet distance [6] for unrooted trees.
c© Springer Nature Switzerland AG 2019
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Fig. 1. N1 is a level-2 network and N2 is a level-3 network with L(N1) = L(N2) =
{a1, a2, . . . , a6}. In this example, D(N1, N2) = 33. Some shared triplets are: a2|a4|a6,
a2a4|a6, a4a6|a2. Some triplets consistent with only one network are: a1|a3|a6, a2a6|a4.

A rooted phylogenetic network is an extension of a rooted phylogenetic tree
(i.e., a rooted, unordered, distinctly leaf-labeled tree with no degree-1 nodes)
that allows internal nodes to have more than just one parent. Such networks are
designed to capture more complex evolutionary relationships when reticulation
events such as horizontal gene transfer and hybridization are involved. Similarly
to phylogenetic trees, it becomes useful to have distance measures for comparing
phylogenetic networks. In this paper we study a natural extension, by Gambette
and Huber [10], of the rooted triplet distance from the case of rooted phylogenetic
trees to the case of rooted level-k phylogenetic networks.

Problem Definitions. A rooted phylogenetic network N = (V,E) is a rooted,
directed acyclic graph with one root (a node with in-degree 0), distinctly labeled
leaves, and no nodes with both in-degree 1 and out-degree 1. Below, when refer-
ring to a “tree” we imply a “rooted phylogenetic tree” and when referring to
a “network” we imply a “rooted phylogenetic network”. For a node u in N ,
let in(u) and out(u) be the in-degree and out-degree of u. The network N can
have three types of nodes. A node u is an internal node if out(u) ≥ 1, a leaf node
if in(u) = 1 and out(u) = 0, and a reticulation node if out(u) ≥ 1 and in(u) ≥ 2.
By definition, N cannot have a node u with in(u) > 1 and out(u) = 0. Let r(N)
be the root of N and L(N) the set of leaves in N . A directed edge from a node u to
a node v in N is denoted by u → v. A path from u to v in N is denoted by u � v.
Let the height h(u) be the length (number of edges) of the longest path from u
to a leaf in N . By definition, if v is a parent of u in N , we have h(v) > h(u).

Let U(N) be the undirected graph created by replacing every directed edge
in N with an undirected edge. An undirected graph H is called biconnected if
it has no node whose removal makes H disconnected. We call H ′ a biconnected
component of U(N) if H ′ is a maximal subgraph of U(N) that is biconnected.
The biconnected components of U(N) are edge-disjoint but not necessarily node-
disjoint. We say that N is a level-k network, equivalently N has level k, if every
biconnected component of U(N) contains at most k reticulation nodes. The level
of a network was introduced by Choy et al. [4] as a parameter to measure the
treelikeness of a network, with the special case of a level-0 network corresponding
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to a tree and a level-1 network a galled tree [11]. Figure 1 shows a level-2 and a
level-3 network.

A rooted triplet τ is a tree with three leaves. If it is binary we say that τ is
a rooted resolved triplet, and if it is non-binary we say that τ is a rooted fan triplet.
Following [13] and similarly to the case of trees in [1], for a network N we say that
the rooted fan triplet x|y|z is consistent with N , if there exists an internal node u
in N and three directed paths of non-zero length that are node-disjoint, except
for u, one going from u to x, one from u to y and one from u to z. Similarly, we
say that the rooted resolved triplet xy|z is consistent with N , if N contains two
internal nodes u and v such that u �= v, and there are four directed paths of non-
zero length that are node-disjoint, except for u and v, one going from u to v, one
from v to x, one from v to y and one from u to z. See Fig. 1 for an example. From
here on, by “disjoint paths” we imply “node-disjoint paths of non-zero length”.
Moreover, when referring to a “triplet” we imply a “rooted triplet”.

Given two networks N1 = (V1, E1) and N2 = (V2, E2) built on the same leaf
label set Λ of size λ, the rooted triplet distance D(N1, N2), or triplet distance for
short, is the number of triplets over Λ that are consistent with exactly one of the
two input networks [10] (see also [12, Sect. 3.2] for a discussion). Let S (N1, N2) be
the total number of triplets that are consistent with both N1 and N2, commonly
referred to as shared triplets. We then have:

D(N1, N2) = S (N1, N1) + S (N2, N2) − 2S (N1, N2) (1)

Note that a shared triplet contributes a +1 to S(N1, N1), S(N2, N2), and
S(N1, N2), e.g., the triplet a2|a4|a6 in Fig. 1. On the other hand, a triplet
from either network that is not shared contributes a +1 to either S(N1, N1)
or S(N2, N2), and a 0 to S(N1, N2), e.g., a1|a3|a6 from Fig. 1 contributes a +1 to
S(N1, N1) and a 0 to S(N2, N2) and S(N1, N2). Let Sr(N1, N2) and Sf (N1, N2)
be the total number of resolved and fan triplets respectively that are consistent
with both N1 and N2. We then have that S (N1, N2) = Sr(N1, N2)+Sf (N1, N2).

We define the following notation that we use from here on. A network Ni is
built on a leaf label set of size λ and is defined by the node set Vi and the edge
set Ei. Moreover, Ni has level ki and the maximum in-degree of every node in Ni

is di. Two given networks N1 and N2 are built on the same leaf label set and
n = max(|V1|, |V2|), m = max(|E1|, |E2|), k = max(k1, k2) and d = max(d1, d2).

Related Work. Table 1 lists the running times of different algorithms for com-
puting D(N1, N2). When k = 0, both N1 and N2 are trees. This case has been
extensively studied in the literature, with the fastest algorithm in theory and
practice by Brodal et al. [1] running in O(λ log λ) time. For k = 1, an O(λ2.687)-
time algorithm based on counting 3-cycles in an auxiliary graph was given in [12],
and a faster, O(λ log λ)-time algorithm that transforms the input to a constant
number of instances with k = 0 was given in [13]. All algorithms mentioned
above allow nodes of arbitrary degree in the input networks. Moreover, software
packages implementing the O(λ log λ)-time algorithms are available.

For k > 1, Byrka et al. [2] considered the special case of networks whose
roots have out-degree 2 and whose other non-leaf nodes have in-degree 2 and
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Table 1. Previous and new results for computing D(N1, N2), where N1 and N2 are
two level-k networks built on the same leaf label set of size λ.

Year Reference k Degrees Time complexity

1980 Fortune et al. [8] Arbitrary Arbitrary Ω(n7λ3)

2010 Byrka et al. [2] Arbitrary Binary O(n3 + λ3)

2010 Byrka et al. [2] Arbitrary Binary O(n + k2n + λ3)

2017 Brodal et al. [1] 0 Arbitrary O(λ log λ)

2017 Jansson et al. [13] 1 Arbitrary O(λ log λ)

2019 New Arbitrary Arbitrary O(n2m + λ3)

2019 New Arbitrary Arbitrary O(m + k3d3λ + λ3)

out-degree 1 or in-degree 1 and out-degree 2. Given such a network N = (V,E),
they defined a data structure D that can be constructed in O(|V |3) time by
dynamic programming and then used to determine in O(1) time if any resolved
triplet xy|z is consistent with N . This result was then strengthened by obtaining
a new data structure D′ that requires O(|V |+k2|V |) construction time, where k
is the level of N . If N1 and N2 have arbitrary levels and follow the degree
constraints of N , D can be used to compute D(N1, N2) in O(n3 + λ3) time
and D′ can be used to compute D(N1, N2) in O(n + k2n + λ3) time.

Contribution. The data structures D and D′ of Byrka et al. [2] can only sup-
port consistency queries for resolved triplets. However, a network with nodes of
arbitrary degree may contain fan triplets. Moreover, D′ exploits the fact that
given the degree constraints in N , all biconnected components of U(N) are node-
disjoint. However, even a small change in these constraints, e.g., if we allow nodes
with in-degree 2 to have an out-degree 2 instead of 1, could produce a network
with biconnected components that are not node-disjoint, thus making the appli-
cation of D′ impossible.

Without any degree constraints in N1 and N2 and when k1 and k2 are arbi-
trary, an algorithm for computing D(N1, N2) that iterates over all 4

(
λ
3

)
triplets

and for each triplet applies the pattern matching algorithm in [8] to determine its
consistency with N1 and N2, has a Ω(n7λ3) running time. In this paper we give
two algorithms that improve significantly upon this approach. The running time
of the first algorithm is O(n2m+λ3) and the second algorithm O(m+k3d3λ+λ3).
For networks N1 and N2 that satisfy the degree constraint in Byrka et al. [2], we
prove that our algorithms can compute D(N1, N2) using the same time complex-
ity as that of Byrka et al. [2]. To determine the efficiency of the two algorithms
in practice, we provide an implementation as well as extensive experiments on
both simulated and real datasets. We note that this is the first publicly avail-
able software that can compute the triplet distance between two unrestricted
networks of arbitrary levels.

Organization of the Article. In Sect. 2 we present the first algorithm and in
Sect. 3 the second algorithm. Section 4 presents an implementation of the two
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algorithms as well as experiments illustrating their practical performance. Due
to space constraints, the proofs and most of the experimental results have been
deferred to the journal version.

2 A First Approach

In this section we describe an algorithm that for two given networks N1 and N2

can compute D(N1, N2) in O(n2m + λ3) time.

Overview. The algorithm consists of a preprocessing step and a triplet distance
computation step. In the preprocessing step, we extend a technique introduced by
Shiloach and Perl [18] in 1978 to construct suitably defined auxiliary graphs that
compactly encode disjoint paths within N1 and N2. Two graphs, the fan graph
and resolved graph, are created that enable us to check the consistency of any
fan triplet and any resolved triplet, respectively, with N1 and N2 in O(1) time.
In the triplet distance computation step, we compute D(N1, N2) by iterating
over all possible 4

(
λ
3

)
triplets and using the fan and resolved graphs to check the

consistency of each triplet with N1 and N2 efficiently.

2.1 Preprocessing

Fan Graph. For any network Ni, let the fan graph Nf
i = (V f

i , Ef
i ) be a graph

such that V f
i = {s} ∪ {(u, v, w) | u, v, w ∈ Vi, u �= v, u �= w, v �= w} and Ef

i

includes the following edges:

1. {(u1, v1, w1) → (u2, v1, w1) | u1 → u2 ∈ Ei ∧ h(u1) ≥ max(h(v1), h(w1))}
2. {(u1, v1, w1) → (u1, v2, w1) | v1 → v2 ∈ Ei ∧ h(v1) ≥ max(h(u1), h(w1))}
3. {(u1, v1, w1) → (u1, v1, w2) | w1 → w2 ∈ Ei ∧ h(w1) ≥ max(h(u1), h(v1))}
4. {s → (u, v, w) | u → v ∈ Ei and u → w ∈ Ei}
Note that Nf

i contains O(|Vi|3) nodes, O(|Vi|2|Ei|) edges and also has the prop-
erty described in the following lemma:

Lemma 1. Consider a network Ni and its fan graph Nf
i = (V f

i , Ef
i ). For any

three different leaves x, y and z in Ni, node s can reach node (x, y, z) in Nf
i if

and only if x|y|z is a fan triplet in Ni.

Corollary 1. Let Ni be a given network and r′ a dummy leaf attached to r(Ni).
For any two different leaves x and y in Ni that are not r′, there are two paths
from r(Ni) to x and y that are disjoint, except for r(Ni), if and only if s can
reach (r′, x, y) in Nf

i .

Resolved Graph. For any network Ni, let the resolved graph Nr
i = (V r

i , Er
i )

be a graph such that V r
i = {s} ∪ {(u, v) | u, v ∈ Vi, u �= v} ∪ {(u, v, w) |

u, v, w ∈ Vi, u �= v, u �= w, v �= w} and Er
i includes the following edges:

1. {s → (u, v) | u → v ∈ Ei}
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2. {(u1, v1) → (u2, v1) | u1 → u2 ∈ Ei, h(u1) ≥ h(v1)}
3. {(u1, v1) → (u1, v2) | v1 → v2 ∈ Ei, h(v1) ≥ h(u1)}
4. {(u, v) → (u, v, w) | v → w ∈ Ei, h(v) ≥ h(u)}
5. {(u1, v1, w1) → (u2, v1, w1) | u1 → u2 ∈ Ei ∧ h(u1) ≥ max(h(v1), h(w1))}
6. {(u1, v1, w1) → (u1, v2, w1) | v1 → v2 ∈ Ei ∧ h(v1) ≥ max(h(u1), h(w1))}
7. {(u1, v1, w1) → (u1, v1, w2) | w1 → w2 ∈ Ei ∧ h(w1) ≥ max(h(u1), h(v1))}
Note that Nr

i contains O(|Vi|3) nodes, O(|Vi|2|Ei|) edges and also has the prop-
erty described in the following lemma:

Lemma 2. Consider a network Ni and its resolved graph Nr
i = (V r

i , Er
i ). For

any three different leaves x, y and z in Ni, node s can reach node (x, y, z) in Nr
i

if and only if x|yz is a resolved triplet in Ni.

Corollary 2. Let Ni be a given network and r′ a dummy leaf attached to r(Ni).
For any two different leaves x and y in Ni that are not r′, there are two paths
from some internal node z �= r(Ni) in Ni, to x and y that are disjoint, except
for z, if and only if s can reach (r′, x, y) in Nr

i .

Given Nf
i and Nr

i , we define the λ × λ × λ fan table Af
i and the λ × λ × λ

resolved table Ar
i as follows. For three different leaves x, y and z, Af

i [x][y][z] = 1
if the fan triplet x|y|z is consistent with Ni and Af

i [x][y][z] = 0 otherwise.
Similarly, Ar

i [x][y][z] = 1 if the resolved triplet x|yz is consistent with Ni

and Ar
i [x][y][z] = 0 otherwise. Due to Lemmas 1 and 2, both Af

i and Ar
i

can be computed by a depth first traversal (starting from s) of Nf
i and Nr

i .
More precisely, Af

i [x][y][z] = 1 if s can reach (x, y, z) in Nf
i and 0 otherwise.

Finally, Ar
i [x][y][z] = 1 if s can reach (x, y, z) in Nr

i and 0 otherwise.

2.2 Triplet Distance Computation

Algorithm 1 summarizes all the procedures needed to compute the triplet dis-
tance between two given networks N1 and N2. For every i ∈ {1, 2} the tables Af

i

and Ar
i are built in lines 2–7. These tables are then used in lines 11–12 and 16–19

to determine in O(1) time if a triplet is consistent with N1 or N2. Procedures Sf ()
and Sr() count the number of shared fan and resolved triplets. Both procedures
enumerate over all possible triplets and use the tables Af

i and Ar
i to determine

their consistency with either network. The correctness is ensured by Lemmas 1
and 2. Procedure S () reports the number of shared triplets, which is the sum of
the number of shared fan triplets and shared resolved triplets. The main proce-
dure is D(). It uses Eq. (1) to determine D(N1, N2).

To analyze the running time, after the preprocessing is finished, the proce-
dures Sf () and Sr() require O(λ3) time. For the total preprocessing time, by
definition, building the data structures Nr

i and Nf
i for i ∈ {1, 2} in line 3,

requires O(|V1|2|E1| + |V2|2|E2|) time. Building the auxiliary arrays Ar
i and Af

i

in lines 5–7 is performed by a depth first traversal of Nr
i and Nf

i , thus requir-
ing O(|V1|2|E1| + |V2|2|E2) time as well. Hence, the total time of the algorithm
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Algorithm 1. Computing D(N1, N2) using the data structures from Section 2.
1: procedure preprocessing(N1, N2) � Building the data structures
2: for i ∈ {1, 2} do
3: build Nf

i = (V f
i , Ef

i ) and Nr
i = (V r

i , Er
i )

4: let Af
i , Ar

i be λ × λ × λ arrays initialized with 0 entries
5: for three different leaves x, y and z do
6: Af

i [x][y][z] = 1 if s can reach (x, y, z) in Nf
i

7: Ar
i [x][y][z] = 1 if s can reach (x, y, z) in Nr

i

8: return (Ar
1, A

f
1 , Ar

2, A
f
2 )

9: procedure Sf (Af
1 , Af

2 ) � Finding the shared fan triplets
10: sharedFan = 0
11: for three different leaves x, y and z do
12: if Af

1 [x][y][z] = Af
2 [x][y][z] = 1 then sharedFan = sharedFan + 1

13: return sharedFan

14: procedure Sr(A
r
1, A

r
2) � Finding the shared resolved triplets

15: sharedResolved = 0
16: for three different leaves x, y and z do
17: if Ar

1[x][y][z] = Ar
2[x][y][z] = 1 then sharedResolved = sharedResolved + 1

18: if Ar
1[x][z][y] = Ar

2[x][z][y] = 1 then sharedResolved = sharedResolved + 1

19: if Ar
1[y][z][x] = Ar

2[y][z][x] = 1 then sharedResolved = sharedResolved + 1

20: return sharedResolved

21: procedure S(Ar
1, Af

1 , Ar
2, Af

2 ) � Finding the shared triplets
22: return Sf (Af

1 , Af
2 ) + Sr(A

r
1, A

r
2)

23: procedure D(N1 = (V1, E1), N2 = (V2, E2)) � Computing the triplet distance
24: (Ar

1, A
f
1 , Ar

2, A
f
2 ) = preprocessing(N1, N2)

25: return S(Ar
1, A

f
1 , Ar

1, A
f
1 ) + S(Ar

2, A
f
2 , Ar

2, A
f
2 ) - 2S(Ar

1, A
f
1 , Ar

2, A
f
2 )

becomes O(|V1|2|E1|+ |V2|2|E2|+λ3). By the definition of n and m from Sect. 1,
the running time becomes O(n2m+λ3). Hence, we obtain the following theorem:

Theorem 1. There exists an algorithm that computes the triplet distance
between two networks N1 and N2 in O(n2m + λ3) time.

Let N1 and N2 follow the degree constraints of Byrka et al. [2]. We then
have n = Θ(m) and the bound becomes O(n3 + λ3), thus matching the bound
achieved by the first data structure of Byrka et al. [2].

3 A Second Approach

In this section we extend the algorithm from Sect. 2 in order to exploit the infor-
mation about the level of the two input networks. More specifically, we describe
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an algorithm that for two given networks N1 and N2 can compute D(N1, N2)
in O(m + k3d3λ + λ3) time.

Overview. In the first approach, for a given network Ni we built the fan and
resolved graph presented in Lemmas 1 and 2. In this second approach, for every
biconnected component of U(Ni) we define a network of approximately the same
size as the biconnected component, which we call contracted block network. For
this contracted block network we then build the corresponding fan and resolved
graph. By carefully contracting every biconnected component of U(Ni) into one
node we obtain a tree, which we call block tree. We finally show how to com-
bine the block tree and all the fan and resolved graphs of the contracted block
networks of Ni to count triplets efficiently.

3.1 Preprocessing

Let Ni be a given network. From here on, we call a biconnected component
of U(Ni) a block. For simplicity, when we refer to a block of Ni, we imply a block
of U(Ni). We say that for a block B of Ni, node r(B) is the root of B, if r(B)
has the largest height in Ni among all nodes in B. Note that because Ni has one
root that can reach every node of Ni and B corresponds to a maximal subgraph
of U(Ni) that is biconnected, B can only contain one root. If B contains only
one edge u → v such that v ∈ L(Ni), then B is called a leaf block, otherwise B
is called a non-leaf block. Lemma 3 presents a property of all blocks of Ni.

Lemma 3. All blocks of a given network Ni are edge-disjoint.

Block Tree. From a high level perspective, we want to remove the cycles
in U(Ni) that are formed by the non-leaf blocks to obtain a directed tree on the
leaf label set L(Ni). Let Ti = (V ′, E′) be a directed tree, from now on referred to
as block tree, with the node set V ′ and edge set E′ defined by the following steps:

– For every block Bj in Ni create a node bj in Ti.
– Let B1, B2 be two blocks in Ni with r(B1) �= r(B2). If r(B2) is also a node

in B1 then create the edge b1 → b2 in Ti.
– Create a root node ρ in Ti. For every block Bj that has r(Ni) as a root, create

the edge ρ → bj in Ti.
– If Bj is a leaf block, rename bj in Ti by the label of the leaf in Bj .

The set of all blocks of Ni and the node set V ′ − r(Ti), i.e., the set of all
nodes of Ti except the root, are bijective. An edge b1 → b2 in Ti means that the
corresponding blocks B1 and B2 in Ni do not have the same root and the root
node r(B2) is a shared node between B1 and B2. Note that by the definition of a
block, an edge connecting two nodes can define a block of its own. The following
lemma presents some properties of Ti:

Lemma 4. Let Ti = (V ′, E′) be the block tree of a given network Ni. The block
tree Ti is a directed tree that has λ leaves, |V ′| = O(λ) and |E′| = O(λ).
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Since the set of all blocks of Ni and the set V ′ − r(Ti) are bijective, we obtain:

Corollary 3. A network Ni contains O(λ) blocks.

The following lemma presents an algorithm for constructing the block tree Ti:

Lemma 5. Let Ti = (V ′, E′) be the block tree of a given network Ni. There
exists an algorithm that builds Ti in O(|Ei|) time.

Contracted Block Network. For a given network Ni, a block B in Ni and
a node u in B, define Lu

B to be the set of leaves that can be reached from u
without using edges in B. Let CB = (V ′, E′) be a network, with the node set V ′

and edge set E′ defined by the following steps:

– Let CB = Ni. All operations from now on are applied on CB .
– Remove every edge and node not in B.
– For every edge u1 → u2 in B, if in(u1) = out(u1) = in(u2) = out(u2) = 1

contract the edge as follows: let u2 → u3 be the other edge in B, then create
the edge u1 → u3, remove u2 from B and set Lu1

B = Lu1
B ∪ Lu2

B .
– For every node u1 in CB such that Lu1

B �= ∅, we add a child leaf with label s1
representing all leaves in Lu1

B . We also add another child leaf s′
1 as a copy leaf

that will help later on to count triplets.
– Include an artificial leaf r′ which is attached to the root r(CB).

Every node in CB corresponds to a node in B and every edge between two
internal nodes in CB corresponds to a compressed path in B. We call CB the con-
tracted block network of Ni, corresponding to block B. The following lemma
presents a property of CB :

Lemma 6. Let Ni be a network, B a block in Ni and CB = (V ′, E′) the con-
tracted block network of Ni that corresponds to block B. We then have that
|L(CB)| = O(kidi + 1), |V ′| = O(kidi + 1) and |E′| = O(kidi + 1).

Constructing All Contracted Block Networks Efficiently. For a given
network Ni and a block B in Ni, a leaf x in Ni is said to associate with B if
there exists a node u in B such that u �= r(B) and x ∈ Lu

B . For any leaf x
associated with some block B of Ni, let qB(x) be the node in B that has a
path to x without using edges in B, i.e., x ∈ L

qB(x)
B , pB(x) the leaf in CB

representing x and p′
B(x) the copy leaf of pB(x).

Lemma 3 implies an algorithm for constructing every block network CB of Ni

in O(|Ei|) time. As shown in the lemma below, by properly relabeling the leaves
of Ni and with an additive O(λ2) time, it is possible to build every block net-
work CB so that we can afterwards compute for every leaf l ∈ L(Ni) the func-
tions qB(l) and pB(l) in O(1) time.

Lemma 7. For a network Ni, there exists an O(|Ei| + λ2)-time algorithm that
builds all the contracted block networks CB of Ni, such that for all blocks of Ni

and leaf l ∈ L(Ni) the functions qB(l) and pB(l) are computed in O(1) time.
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For the block network CB , we denote Cf
B the fan graph of CB and Cr

B the
resolved graph of CB . Moreover, we denote Af

B the fan table of CB and Ar
B the

resolved table of CB (see Sect. 2.1 for the definition of a fan graph & table and
resolved graph & table). The following lemma shows the time required to build
Cf

B , Cr
B , Af

B and Ar
B for every block B of a given network Ni:

Lemma 8. For a network Ni, building Cf
B, Cr

B, Af
B and Ar

B for every block B
of Ni requires O(λ(k3

i d3i + 1)) time.

3.2 Triplet Distance Computation

Let B be a block of a network Ni. We say that x|y|z is a fan triplet consistent
with B, if there exists a node u in B that has three disjoint paths in Ni to x, y
and z, except for u, one going from u to x, one from u to y and one from u
to z. We also say that x|y|z is rooted at u in B. Since u is also in Ni, this means
that x|y|z is rooted at u in Ni as well. Similarly, we say that xy|z is a resolved
triplet consistent with B, if there exist two nodes u and v in B such that u �= v,
and there are four disjoint paths in Ni, except for u and v, one going from u
to v, one from v to x, one from v to y and one from u to z. Moreover, we say
that xy|z is rooted at u and v in B or Ni (similarly to the fan triplet). Note that
if x|y|z is a fan triplet consistent with B, then it will also be consistent with Ni.
Similarly, if xy|z is a resolved triplet consistent with B, it will also be consistent
with Ni.

Given the data structures from the preprocessing step, Lemmas 9 and 10
together show how to determine the consistency of a fan and resolved triplet
with Ni in O(1) time. From a high level perspective to achieve this, for three
different leaves x, y and z, we consider all the possible cases for the location of the
lowest common ancestor of every pair (x, y), (x, z) and (y, z) in Ti. Since every
node in Ti except r(Ti) corresponds to a block in Ni, we can then use the available
data structures to determine efficiently if Ni has the necessary disjoint paths
that would imply the consistency of the fan triplet x|y|z or resolved triplet xy|z
with Ni. We start by showing in Lemma 9 how to determine the consistency of
a triplet with a block B of Ni. Afterwards, we show in Lemma 10 how to use
Lemma 9 to determine the consistency of a triplet with Ni.

Lemma 9. Let Ni be a given network, Ti its block tree and x, y and z three
different leaves. Let w be the lowest common ancestor of x, y and z in Ti, w �=
r(Ti) and B the block in Ni corresponding to w. If CB, Cf

B,Cr
B, Af

B and Ar
B

are given, there exists an algorithm that can determine in O(1) time if the fan
triplet x|y|z or resolved triplet xy|z is consistent with B.

Lemma 10. Let Ni be a given network and x, y and z three different leaves
in Ni. Given Ti, Cf

B, Cr
B, Af

B and Ar
B for every block B in Ni, there exists an

algorithm that can determine in O(1) time if the fan triplet x|y|z or the resolved
triplet xy|z is consistent with Ni.
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The final algorithm is similar to Algorithm 1, the main difference is in the
preprocessing step. In this step, for every i ∈ {1, 2} we start by building the block
tree Ti. Then, we build a λ × λ table for Ti in order to be able later to answer
lowest common ancestor queries between pairs of leaves in Ti in O(1) time.
Afterwards, we build all the contracted block networks of Ni. Finally, for every
block B in Ni and the corresponding contracted block network CB , we build
the fan graph Cf

B and the resolved graph Cr
B , as well as the corresponding Af

B

and Ar
B tables.

From Lemma 5, building Ti for every i ∈ {1, 2} requires O(|E1| + |E2|)
time. Building the two tables for answering lowest common ancestor queries
requires O(λ3) time. From Lemma 6, building all the contracted block networks
requires O(|E1|+ |E2|+λ2) time. From Lemma 8, the time required to build Cf

B ,
Cr

B , Af
B and Ar

B for every block B of N1 and N2 is O(λ(k3
1d

3
1+k3

2d
3
2+2)). Hence,

the total preprocessing time becomes O(|E1| + |E2| + λ(k3
1d

3
1 + k3

2d
3
2) + λ3).

Using the results from Lemma 10, after the preprocessing step we can deter-
mine the consistency of a triplet with N1 or N2 in O(1) time. Since the number
of triplets that need to be checked is exactly 4

(
λ
3

)
, the total running time of the

algorithm remains O(|E1|+|E2|+λ(k3
1d

3
1+k3

2d
3
2)+λ3). By the definition of n, m,

k and d from Sect. 1, the running time becomes O(m + k3d3λ + λ3). Hence, we
obtain the following theorem:

Theorem 2. There exists an algorithm that computes the triplet distance
between two networks N1 and N2 in O(m + k3d3λ + λ3) time.

Let Ni be a network that follows the degree constraints of Byrka et al. [2].
If for a block Bs = (Vs, Es) of Ni we define ks to be the number of reticulation
nodes in Bs, where ks ≤ ki, using the same arguments as those used in the proof
of Lemma 6, we get for CBs

= (V ′, E′) that |V ′| = |E′| = O(ks +1). The time to
build Cf

B , Cr
B , Af

B and Ar
B for every block B of Ni then becomes

∑
s O(k3

s + 1).
Note that Lemma 8 would give a O(λk3

i + 1) time instead, because it uses λ
to upper bound (from Corollary 3) the number of blocks we can have in Ni.
Since

∑
s ks = O(|Vi|), the preprocessing time required by our algorithm for Ni

would be O(|Vi|+k2|Vi|). Then, the time to compute D(N1, N2) becomes O(n+
k2n + λ3), thus matching the time bound required by using the second data
structure of Byrka et al. [2].

4 Implementation and Experiments

This section provides an implementation of the algorithms described in Sects. 2
and 3, referred to as NTDfirst and NTDsecond respectively, as well as experi-
ments illustrating their practical performance.
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The Setup. We implemented the two algorithms in C++ and the source code is
publicly available at https://github.com/kmampent/ntd. The experiments were
performed on a machine with 16 GB RAM and Intel(R) Core(TM) i5-3470 CPU
@ 3.20 GHz. The operating system was Ubuntu 16.04.2 LTS. The compiler used
was g++ 5.4 with cmake 3.11.0.

The Input. We consider both simulated and real datasets. For the simulated
datasets, we create tree-based networks [9] as follows:

1. Build a random rooted binary tree T on λ leaves in the uniform model [16]
and let N = T . For a node w in N , let d(w) be the total number of edges on
the path from r(N) to N .

2. Given a parameter e ≥ 0, add e random edges in N as follows. An edge u → v
is created in N if d(u) < d(v). If the total number of edges that can be added
happens to be y, where y < e, then we only add those y edges.

For the real datasets, we consider networks that have been published in the
literature and are not necessarily tree-based. More precisely, we consider the 6
trees and the corresponding networks in [15, Table S4]. The trees are given in the
standard Newick format, and the networks in the extended Newick format [3].

Experiments. For the simulated datasets, in Fig. 2 we illustrate the effect of
e on the CPU time in seconds of the two algorithms. Every data point in the
graph is the average of 20 different runs. The effect is larger on NTDsecond, as
larger values for e imply fewer blocks in the given networks. We note that space
is the reason behind the difference restrictions on λ, i.e., for λ = 230 the memory
usage of NTDfirst approaches the limits of the available 16 GB RAM.

For the real datasets and for every s ∈ {A,B,C,D,E, F}, we denote Ts the
tree and Ns the corresponding network, where s is a scenario in [15, Table S4],
with F corresponding to scenario “E, CHAM and MELVIO resolved”. For the
network NF , we use its non-tree based version from [14]. From Eq. (1) we have
the following: D(Ts, Ns) = S(Ts, Ts) + S(Ns, Ns) − 2S(Ts, Ns). When comput-
ing D(Ts, Ns) and to have L(Ts) = L(Ns), if a leaf x in Ns appears as several
leaves x.1, . . . , x.i in Ts, we replace x in Ns with the leaves x.1, . . . , x.i that we
attach under the parent of x. For the size of the leaf label sets, in the trees
TA, TB , TC , TD, TE we have 16, 20, 21, 21, 22 and 50 leaves, in every network Ns

where s ∈ {A,B,C,D,E} we have 8 leaves and in NF we have 16 leaves. In
Table 2 we include the experimental results. Interestingly, while the two net-
works NB and ND look structurally different, D(NB , ND) = 0. This suggests
that it may be useful to extend the definition of the triplet distance to take into
account the number of times that each triplet occurs in a network.

https://github.com/kmampent/ntd
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Fig. 2. Experiments on the simulated datasets: running time for different values of e.

Table 2. Experiments on the real datasets. NA, . . . , NE have identical leaf label sets.

s S(Ts, Ts) S(Ns, Ns) S(Ts, Ns) D(Ts, Ns)

A 560 716 443 390
B 1140 1870 840 1330
C 1330 2185 965 1585
D 1330 2205 964 1607
E 1540 1996 983 1570
F 19600 43710 16553 30204

NA NB NC ND NE

NA 0 20 19 20 10
NB 20 0 1 0 10
NC 19 1 0 1 9
ND 20 0 1 0 10
NE 10 10 9 10 0
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Abstract. The Graph Burning problem is defined as follows. At time
t = 0, no vertex of the graph is burned. At each time t ≥ 1, we choose a
vertex to burn. If a vertex is burned at time t, then at time t+ 1 each of
its unburned neighbors becomes burned. Once a vertex is burned then
it remains in that state for all subsequent steps. The process stops when
all vertices are burned. The burning number of a graph is the minimum
number of steps needed to burn all the vertices of the graph.

Computing the burning number of a graph is NP-complete even on
bipartite graphs or trees of maximum degree three. In this paper we study
this problem from the parameterized complexity perspective. We show
that the problem is fixed-parameter tractable (FPT) when parameterized
by the distance to cluster or neighborhood diversity. We further study
the complexity of the problem on restricted classes of graphs. We show
that Graph Burning can be solved in polynomial time on cographs and
split graphs.

1 Introduction

The spread of social contagion is one of the active research areas in social network
analysis. The goal is to spread a message to all users of a network as fast as
possible. Graph burning is a process used to model the spread of social contagion
in a graph, where the goal is to burn all the vertices in the graph as quickly as
possible.

The Graph Burning problem is defined as follows. At time t = 0, no vertex
of the graph is burned. At each time t ≥ 1, we choose a vertex to burn. If a vertex
is burned at time t, then at time t + 1 each of its unburned neighbors becomes
burned. Once a vertex is burned then it remains in that state for all subsequent
steps. The process stops when all nodes are burned. The burning number of a
graph G is the minimum number of steps needed to burn all the vertices of the
graph, denoted as b(G). For example, the burning number of a complete graph
on n vertices is two. Computing the burning number of a graph is known to
be NP-complete even for special classes of graphs, including trees of maximum
degree three [1], bipartite graphs, chordal graphs, planar graphs, and binary
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trees [1]. Land et al. [14] gave some upper bounds on the burning number of
graphs.

In this paper we study the Graph Burning problem from the parameterized
complexity perspective. In parameterized complexity theory the running time of
an algorithm is measured as a function of input size and an additional measure
called the parameter. The goal here is to design algorithms that solve the problem
in time f(k)nO(1), where f is some computable function, k is the value of the
parameter and n is the size of the problem instance. These kind of algorithms
are called fixed parameter tractable (FPT) algorithms. In general there may
be several interesting parameterizations for any given problem. However, there
are two popular approaches to select a parameter for optimization problems
on graphs. First, the natural parameter is the size of the solution (objective
function). Second, the parameters which do not involve the objective function,
which are selected based on structure of the graph. In this paper, we focus on
structural graph parameters.

We give parameterized algorithms for the Graph Burning problem with
respect to several distance-to-triviality [11] parameters. These parameters are
extensively used to design efficient algorithms for many hard graph problems.
They measure how far a graph is from some class of graphs for which the prob-
lem is tractable. Our notion of distance to a graph class is the vertex deletion
distance. More formally, for a class F of graphs we say that X is an F-modulator
of a graph G if there is a subset X ⊆ V (G) such that G \ X ∈ F . If the least
size modulator to F is k then we say that the distance of G to the class F is k.

Our Contributions. We design parameterized algorithms for the Graph Burn-
ing problem with respect to the distance from the following graph classes: clus-
ter graphs (disjoint union of complete graphs). This parameter is intermedi-
ate between the vertex cover number and clique-width parameters (see Fig. 1).
Studying the parameterized complexity of the problem with respect to the above
mentioned distance parameters improves our understanding of the problem and
closes the gap between tractability and intractability. For example, the prob-
lem is trivially FPT when parameterized by the vertex cover number and it is
para-NP-hard when parameterized by the clique-width [1].

In particular we obtain the following results.

• We show that Graph Burning is FPT when parameterized by the (a) dis-
tance to cluster graphs (cluster vertex deletion number) (b) neighborhood
diversity.

• We show that on cographs and split graphs Graph Burning can be solved
in polynomial time.

• We obtain upper and lower bounds for the Graph Burning problem on
interval graphs in terms of the diameter of the graph.

The problem we consider in this paper is formally defined as follows.



306 A. S. Kare and I. Vinod Reddy

Graph Burning
Input: A graph G = (V,E), and a positive integer k.

Question: Is burning number of G at most k?

Distance to
cluster∗

Vertex cover

Distance to
Threshold graphs

Rank-width,
Clique-width

Neighborhood
diversity ∗

Fig. 1. A schematic showing the relation between the various graph parameters. An
arrow from parameter a to b indicates that a is larger than b. Parameters marked with
∗ are studied in this paper.

2 Preliminaries

In this section, we introduce the basic notions of graph theory and parameterized
complexity theory. For a basic introduction to graph theory the reader is referred
to Diestel’s book on graph theory [7]. All graphs we consider in this paper are
undirected, connected, finite and simple. For a graph G = (V,E), let V (G) and
E(G) denote the vertex set and edge set of G respectively. We use n and m
to denote the number of vertices and edges in a graph respectively. An edge
in E between vertices x and y is denoted as xy for simplicity. For a subset
X ⊆ V (G), the graph G[X] denotes the subgraph of G induced by vertices of
X. Also, we abuse notation and use G\X to refer to the graph obtained from G
after removing the vertex set X. For a vertex v ∈ V (G), N(v) denotes the set of
vertices adjacent to v and N [v] = N(v)∪{v} is the closed neighborhood of v. The
distance d(u, v) between two vertices u and v in a graph G is the number of edges
in a shortest path from u to v. For a vertex v in a graph G, the eccentricity of v
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is defined as max{d(u, v) | u ∈ V (G)}. The radius of G is minimum eccentricity
over the set of all vertices in G. The diameter of G is the maximum eccentricity
over the set of all vertices in G. For a given positive integer k, the k-th closed
neighborhood of v is defined as Nk[v] = {u ∈ V (G) : d(u, v) ≤ k}. A vertex is
called a universal vertex if it is adjacent to every other vertex of the graph.

2.1 Graph Classes

We now define the graph classes which are considered in this paper. For an
integer k, we denote by Pk a path on k vertices with k − 1 edges. A graph is Pk-
free if it does not contain Pk as an induced subgraph. A graph is a split graph if
its vertices can be partitioned into a clique and an independent set. Split graphs
are (C4, C5, 2K2)-free. We denote a split graph with G = (C, I) where C and
I denotes the partition of G into a clique and an independent set. The class of
P4-free graphs are called cographs. A cluster graph is a disjoint union of complete
graphs. Cluster graphs are P3-free graphs. A graph G is called an interval graph
if there exists a set {Iv | v ∈ V (G)} of real intervals such that Iu ∩ Iv �= ∅ if and
only if uv ∈ E(G).

2.2 Parameterized Complexity

A parameterized problem denoted as (I, k) ⊆ Σ∗ ×N, where Σ is fixed alphabet
and k is called the parameter. We say that the problem (I, k) is fixed-parameter
tractable with respect to the parameter k if there exists an algorithm which
solves the problem in time f(k)|I|O(1), where f is a computable function. A
kernel for a parameterized problem Π is an algorithm which transforms an
instance (I, k) of Π to an equivalent instance (I ′, k′) in polynomial time such
that k′ ≤ g(k) and |I ′| ≤ f(k) for some computable functions f and g. It is
known that a parameterized problem is fixed-parameter tractable if and only
of it has a kernel. For more details on parameterized complexity, we refer the
reader to the texts [6,9].

Cluster graphs are P3-free. Therefore given a graph G and integer k, the
problem of deciding whether there exists a set X of vertices of size at most
k whose deletion results in a cluster graph is FPT. Hence we assume that a
modulator is given as part of the input.

2.3 Basics of Graph Burning Problem

In this subsection we review some results from the literature about the Graph
Burning problem that will be useful in our results.

Let (G, k) be an instance of Graph Burning. Let S = (x1, x2, · · · , xk) be
a sequence of vertices, where xi represents the vertex that we burn at time step
i. We say that the sequence S is a burning sequence if vertex xi is not burning
at the start of time step i and G can be burned in k steps. A sequence is an
optimal if it is the shortest among all burning sequences.
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A sequence (x1, x2, · · · , xk) is a burning sequence of a graph G if and only if
for each pair i and j with 1 ≤ i < j ≤ k, we have that d(xi, xj) ≥ j − i and

Nk−1[x1] ∪ Nk−2[x2] ∪ · · · ∪ N0[xk] = V (G)

Lemma 1 [1]. Let (G, k) be an instance of Graph Burning problem and S ⊆
V (G) be an ordered subset of size k. We can test whether S is a valid burning
sequence for the Graph Burning problem in O(n + m) time.

Theorem 1 [15]. Let G be a graph with n vertices, then b(G) = 2 if and only if
n ≥ 2 and G has maximum degree n − 1 or n − 2.

Lemma 2 [2]. If G is a graph with radius r then b(G) ≤ r + 1.

For a path Pn on n vertices we have that b(Pn) = 
√n �.

3 Parameterized Algorithms

In this section, we give parameterized algorithms for Graph Burning problem
with respect to the parameters distance to cluster and neighborhood diversity.

3.1 Parameterization by Distance to Cluster

The cluster vertex deletion number (or distance to a cluster graph) of a graph G is
the minimum number of vertices that have to be deleted from G to get a disjoint
union of complete graphs. The cluster vertex deletion number is an intermediate
parameter between the vertex cover number and the clique-width/rank-width [8].
In this subsection we show that Graph Burning is fixed-parameter tractable
when parameterized by the distance to cluster.

Lemma 3. If X ⊆ V (G) of size d such that G \ X is a cluster graph then
b(G) ≤ 3d + 3.

Proof. It is easy to see that the length of the longest induced path in G is at most
3d + 2. Therefore the radius of the graph G is at most 3d + 2. From Lemma 2,
the burning number of a graph G with radius r is at most r + 1. Therefore
b(G) ≤ 3d + 3. �
Theorem 2. Graph Burning is fixed-parameter tractable when parameterized
by the distance to cluster.

Proof. Let G be a graph and X ⊆ V (G) of size d such that G \ X is a cluster
graph. If k ≥ 3d + 3, then from Lemma 3 the given instance is a YES instance.
Therefore without loss of generality we assume that k < 3d + 3.

We partition the vertices of each clique C in G \ X based on their neighbor-
hoods in X. For every subset Y ⊆ X, TC

Y := {x ∈ C | N(x)∩X = Y }. This way
we can partition vertices of a clique C into at most 2d subsets (called types),
one for each Y ⊆ X.
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Reduction Rule 1. Let C ∈ G \ X be a clique and Y ⊆ X, If |TC
Y | > 2 then

delete |TC
Y | − 2 vertices of TC

Y .

Lemma 4. Reduction Rule 1 is safe.

Proof. Let G1 = (V1, E1) be the graph obtained by iteratively applying the
above reduction rule to TC

Y for every C ∈ G\X and Y ⊆ X. Suppose that there
exists a burning sequence S of size k for G. If S burns a vertex in some TC

Y that
has been deleted by the reduction rule then we can burn any one of the two
non-deleted vertices from the same TC

Y without increasing the burning number.
This is possible because all vertices in TC

Y have same neighbors and the burning
number of a clique is at most two. �

After applying the Reduction Rule 1 on graph G, each clique C in G1 \ X
has at most 2d+1 vertices (two in each TC

Y ). For each clique C ∈ G1 \ X define
the type vector of C as

TC = (|TC
Y1

|, |TC
Y2

|, · · · , |TC
Y2d

|)

Here Y1, Y2, · · · , Y2d are ordered subsets of X. Now we partition the cliques
in G1 \ X based on their type vector, i.e, two cliques C1 and C2 are in the same
partition if TC1 = TC2 . This way we can partition the cliques in G1 \ X into at
most 32

d

many sets.
For a subset B ⊆ {0, 1, 2}2d define

T (B) = {C | TC = B and C ∈ G1 \ X}

Reduction Rule 2. Let B ⊆ {0, 1, 2}2d . If the set T (B) contains more than
3d + 3 cliques then remove all except 3d + 3.

Lemma 5. Reduction Rule 2 is safe.

Proof. Let G2 = (V2, E2) be the graph obtained by iteratively applying the
Reduction Rule 2 to T (B) for every B ⊆ {0, 1, 2}2d . Suppose that there exists a
burning sequence S of size k for G1. If S burns a vertex in a clique in some T (B)
that has been deleted by the reduction rule then we can burn any vertex from a
non-deleted clique from the same T (B) without increasing the burning number.
This is possible because of the fact that burning number of G1 is at most 3d + 3
and all cliques in T (B) has same neighborhood in X. �

We remark that above reduction rules are trivially applicable in polynomial
time. If the Reduction Rules 1 and 2 are not applicable to the input graph, then
the size of the reduced instance is at most d + 2(32

d

(3d + 3)) = O(d32
d

). Hence,
we get a kernel of size at most O(d32

d

). �
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3.2 Parameterization by Neighborhood Diversity

The graph parameter neighborhood diversity was introduced by Lampis [13].
This parameter is also a generalization of vertex cover in different direction (see
Fig. 1). In this subsection we give a polynomial kernel for Graph Burning
parameterized by the neighborhood diversity.

Definition 1. In a graph G, two vertices u and v have the same type if and
only if N(u) \ {v} = N(v) \ {u}.
Definition 2 (Neighborhood diversity [13]). A graph G has neighborhood
diversity d if there exists a partition of V (G) into d sets T1, T2, . . . , Td such that
all the vertices in each set have the same type. Such a partition is called a type
partition. Moreover, it can be computed in linear time [13].

Note that all the vertices in Ti for every i ∈ [d] have the same neighborhood
in G. Moreover, each Ti either forms a clique or an independent set in G.

Theorem 3. If neighborhood diversity of the graph is at most d, then there is a
3d-kernel for the Graph Burning problem.

Proof. We describe the following simple reduction rules:

Reduction Rule 3. If the partition Ti is a clique in the type partitioning of the
graph, then we can remove all vertices except any two vertices of the partition Ti.

Reduction Rule 4. If the partition Ti is an independent set in the type parti-
tioning of the graph, then we can remove all vertices except any three vertices of
the partition Ti.

Lemma 6. Reduction Rules 3 and 4 are safe.

Proof. As any two vertices in a partition have same neighborhood, burning any
vertex within a partition has the same effect.

If a partition Ti is a clique, then we need to burn at most two vertices of the
partition Ti which in turn burn all the vertices in the partition Ti. Hence, we
can safely remove all the vertices except any two vertices of the partition Ti if
it is a clique.

If a partition Ti is an independent set, then we need to burn at most three
vertices of the partition Ti which in turn burn all the vertices in the partition Ti.
As the graph is connected, the partition Ti which forms an independent set has a
neighboring partition, If we burn a vertex in the partition Ti, which in turn burn
all the vertices in the neighboring partition in the next iteration. The burned
vertices in the neighboring partition in turn burn all the unburned vertices in Ti.
So we need to burn at most three vertices in Ti. Hence we can safely remove all
the vertices except any three vertices of the partition Ti if it is an independent
set. �

After applying Reduction Rules 3 and 4 each partition have at most three
vertices. As we have d partitions, we have a 3d-kernel. �
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4 Graph Classes

In this section, we study the complexity of the Graph Burning problem on
cographs, split graphs, and interval graphs.

For a fixed d, Graph Burning can be solved in time O(nd) on Pd-free
graphs [2]. As split graphs are P5-free and cographs are P4-free, using the above
fact we can see that Graph Burning can be solved in O(n5) and O(n4) respec-
tively. In the next subsections, we show that the problem can be solved in linear
time on these graph classes.

4.1 Cographs

We use the notion of modular decomposition [12] to solve the Graph Burning
problem on cographs. First, we define modular decomposition, which was intro-
duced by Gallai [10]. A set M ⊆ V (G) is called a module of G if all vertices of
M have the same set of neighbors in V (G) \ M . The trivial modules are V (G),
and {v} for all v. A prime graph is a graph in which all modules are trivial. The
modular decomposition of a graph G is a rooted tree MG that has the following
properties:

1. The leaves of MG are the vertices of G.
2. For an internal node h of MG, let M(h) be the set of vertices of G that are

leaves of the subtree of MG rooted at h. (M(h) forms a module in G).
3. For each internal node h of MG there is a graph Gh (representative graph)

with V (Gh) = {h1, h2, · · · , hr}, where h1, h2, · · · , hr are the children of h in
MG and for 1 ≤ i < j ≤ r, hi and hj are adjacent in Gh if and only if there
are vertices u ∈ M(hi) and v ∈ M(hj) that are adjacent in G.

4. Gh is either a clique, an independent set, or a prime graph and h is labeled
series if Gh is a clique, parallel if Gh is an independent set, and prime oth-
erwise.

A graph is a cograph if and only if its modular decomposition tree contains
only parallel and series nodes [4]. The modular decomposition of a graph can be
computed in linear time [5,16].

Theorem 4. Graph Burning can be solved in linear time on cographs.

Proof. Let G be a connected cograph whose modular decomposition tree is MG.
Since G is connected the root r of tree MG is a series node. Let the children of
r be x and y and the cographs induced by leaves of the subtree rooted at x and
y be Gx and Gy respectively.

If either Gx or Gy has at most two vertices then the maximum degree of the
graph G is either n − 1 or n − 2. Hence from Theorem 1, we have b(G) = 2. If
both Gx and Gy has at least three vertices and maximum degree of G is at most
n − 3 then b(G) = 3: At t = 1, 2, 3 burn any arbitrary three vertices u, v, w of
Gx. Since every vertex of Gy is adjacent to vertex x, all the vertices of Gy are
burned at t = 2. Similarly every vertex of Gx is adjacent to every vertex of Gy

all vertices of Gx are burned at t = 3. Clearly the running time of the algorithm
is O(n + m). �
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4.2 Split Graphs

Theorem 5. Graph Burning can be solved in linear time on split graphs.

Proof. If G has maximum degree n−1 or n−2 then from Theorem 1, b(G) = 2.
Otherwise, we can burn the graph G in three steps as follows. At t = 1 burn
one of the arbitrary clique vertex and at t = 2, 3 burn any arbitrary non-burned
vertices of G. Clearly we can see that the running time of the above algorithm
is O(n + m). �

4.3 Interval Graphs

In this section, we give upper and lower bounds for the Graph Burning problem
on interval graphs in terms of the diameter of the graph. Let G be an interval
graph and I be an interval representation of G, i.e., there is a mapping from
V (G) to closed intervals on the real line such that for any two vertices u and
v, uv ∈ E(G) if and only if Iu ∩ Iv �= ∅. For any interval graph, there exists
an interval representation with all endpoints distinct. Such a representation is
called a distinguishing interval representation and it can be computed starting
from an arbitrary interval representation of the graph. Interval graphs can be
recognized in linear time and an interval representation can be obtained in linear
time [3]. Let l(Iu) and r(Iu) denote the left and right end points of the interval
corresponding to the vertex u respectively. We call an interval I ∈ I as rightmost
interval (resp. leftmost interval) if r(J) ≤ r(I) (resp. l(I) ≤ l(J)) for all J ∈ I.

Lemma 7. Let G be an interval graph with diameter d and P be a path of
length d in G. Then every vertex of G is either part of P or adjacent to at least
one vertex of P .

Proof. We prove the Lemma by proof by contradiction. Suppose S ⊆ V (G) \
V (P ) be the set of vertices which do not have any neighbor in P . Let y ∈ S with
the property that r(Iy) > r(Iz) for all z ∈ S, that is Iy is the rightmost interval
in the interval representation of vertices in S. Let Iu and Iv be the leftmost
and rightmost intervals of interval representation of interval graph induced by
vertices of P respectively.

If l(Iy) < l(Iu), then as y is not adjacent to u we have r(Iy) < l(Iu). Since
Iy is the rightmost interval among the interval representation of vertices in S,
there is no path from y to u in the interval graph G. This is a contradiction to
the fact that G is connected. Similarly we can obtain a contradiction for the case
r(Iy) < r(Iv).

If r(Iu) < l(Iy) < r(Iy) < l(Iv), as y is not adjacent to any vertex of P . Then
there is no path from u to v in G, which is again contradiction to the fact that
there is a path of length d from u to v. �
Lemma 8. If G be an interval graph with diameter d then


√d + 1� ≤ b(G) ≤ 
√d + 1� + 1
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Proof. The first inequality follows from the fact that for a path Pn [15] we have
that b(G) = 
√n �. The second inequality follows from Lemma 7 as every vertex
is either a part of diameter path or adjacent to at least one vertex of diameter
path. We burn the diameter path in 
√d + 1� steps and in the next step all the
rest of unburned vertices (if any) are burned. �

5 Conclusion

In this paper, we have studied the parameterized complexity of the Graph
Burning problem. We have shown that the problem is FPT parameterized by
(a) distance to cluster (b) neighborhood diversity. We also studied the complexity
of the problem on special classes of graphs. We have shown that the problem
can be solved in polynomial time on cographs and split graphs.

The following problems remain open.

• What is the parameterized complexity of Graph Burning problem when
parameterized by the natural parameter (burning number)?

• While the Graph Burning problem solved in polynomial time on cographs
and split graphs, we do not know if the problem is FPT parameterized by
distance to cographs or distance to split graphs.

• It is not known if Graph Burning admit a polynomial kernel parameterized
by vertex cover number?

• Finally, we do not know if Graph Burning can be solved in polynomial
time on interval graphs or permutation graphs.
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Abstract. We consider extension variants of Vertex Cover and Inde-
pendent Set, following a line of research initiated in [9]. In particular,
we study the Ext-CVC and the Ext-NSIS problems: given a graph
G = (V,E) and a vertex set U ⊆ V , does there exist a minimal connected
vertex cover (respectively, a maximal non-separating independent set) S,
such that U ⊆ S (respectively, U ⊇ S). We present hardness results for
both problems, for certain graph classes such as bipartite, chordal and
weakly chordal. To this end we exploit the relation of Ext-CVC to
Ext-VC, that is, to the extension variant of Vertex Cover. We also
study the Price of Extension (PoE), a measure that reflects the distance
of a vertex set U to its maximum efficiently computable subset that is
extensible to a minimal connected vertex cover, and provide negative
and positive results for PoE in general and special graphs.
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1 Introduction

We consider the extension variant of the (Minimum) Connected Vertex
Cover (Min CVC) problem and its associated price of extension (PoE); we
call this variant Extension Connected Vertex Cover problem (Ext-CVC
for short). Intuitively, the extension variant of a minimization problem Π is the
problem of deciding whether a partial solution U for a given instance of Π can
be extended to a minimal (w.r.t. inclusion) feasible solution for that instance;
PoE refers to the maximum size subset of U that can be extended to a minimal
feasible solution. A framework for extension problems is developed in [10] where
a number of results are given for several hereditary and antihereditary graph
problems. Particular complexity results for the extension of graph problems,
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such as Vertex Cover, Hitting Set, and Dominating Set, are given in
[2,3,6,9,20–22]. A subset S ⊆ V of a connected graph G = (V,E) is a connected
vertex cover (CVC for short) if S is a vertex cover (i.e., each edge of G is incident
to at least a vertex of S) and the subgraph G[S] induced by S is connected. The
corresponding optimization problem (Minimum) Connected Vertex Cover
(Min CVC) consists in finding a CVC of minimum size [12,16,17]. Given a
(connected) vertex cover S of a graph G = (V,E), an edge e ∈ E is private to a
vertex v ∈ S if v is the only vertex of S incident to e. Hence, a vertex cover S of
G is minimal iff each vertex v ∈ S has a private edge. A CVC S of G is minimal
if for every v ∈ S, S \ {v} is either not connected or not a vertex cover.

In this paper we study Extension Connected Vertex Cover (Ext-
CVC): given a connected graph G = (V,E) together with a subset U ⊆ V of
vertices, the goal is to decide whether there exists a minimal (w.r.t. inclusion)
CVC of G containing U ; note that for several instances the answer is negative.
In this latter case we are also interested in a new maximization problem where
the goal is to find the largest subset of vertices U ′ ⊆ U which can be extended
to a minimal feasible solution. This concept is defined as the Price of Extension
(PoE) in [9]. For the two extreme cases U = ∅ and U = V , we note that for the
former the question is trivial since there always exists a minimal CVC [27], while
for the latter (U = V ) the problem is equivalent to finding a minimal CVC of
maximum size, (called Upper CVC in the paper).

1.1 Graph Definitions and Terminology

Throughout this article, we consider a simple connected undirected graph with-
out loops G = (V,E) on n = |V | vertices and m = |E| edges. Every edge e ∈ E
is denoted as e = uv for u, v ∈ V . For X ⊆ V , NG(X) = {v ∈ V : vx ∈ E, for
some x ∈ X} and NG[X] = X ∪ NG(X) denotes the closed neighborhood of X.
For singleton sets X = {x}, we simply write NG(x) or NG[x], even omitting G
if it is clear from the context; for a subset X ⊂ V , NX(v) = NG(v) ∩ X. The
number of neighbors of x, called degree of x, is denoted by dG(x) = |NG(x)| and
the maximum degree of the graph G is denoted by Δ(G) = maxv∈V dG(v). A
leaf is a vertex of degree one, and Vl denotes the set of leaves in G. For X ⊆ V ,
G[X] denotes the subgraph induced by X, that is the subgraph only containing
X as vertices and all edges of G with both endpoints in X. A connected graph
G = (V,E) is biconnected, if for each pair of vertices x, y there is a simple cycle
containing both x and y, or equivalently, the removal of any vertex maintains
connectivity. A cut-set X ⊂ V is a subset of vertices such that the deletion
of X from G strictly increases the number of connected components. A cut-set
which is a singleton is called a cut-vertex and a cut-set X is minimal if ∀x ∈ X,
X \ {x} is not a cut-set. Hence, a graph is biconnected iff it is connected and
it does not contain any cut-vertex. In this article, Vc(G) denotes the set of cut-
vertices of a graph G; we will simply write Vc if G is clear from the context.
A graph G = (L ∪ R,E) is split (resp. bipartite) where the vertex set L ∪ R is
decomposed into a clique L and an independent set R (resp. two independent
sets). A graph is chordal if all its cycles of length at least four have a chord,
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that is, an edge connecting nonconsecutive vertices of the cycle. There are many
characterizations of chordal graphs. One of them, known as Dirac’s theorem,
asserts that a graph G is chordal iff each minimal cut-set of G is a clique. Recall
that S ⊆ V is a vertex cover, if for each e = uv ∈ E, S ∩ {u, v} 	= ∅ while
S ⊆ V is an independent set if for each pair of vertices u, v of S, uv /∈ E; S is a
vertex cover iff V \ S is an independent set of G = (V,E). The minimum vertex
cover problem (Min VC for short) asks to find a vertex cover of minimum size
and the maximum independent set problem (Max IS for short), asks to find an
independent set of maximum size for a given graph.

1.2 Problem Definitions

As mentioned above, we consider the extension variants of two optimization
problems: the (Minimum) Connected Vertex Cover problem (Min CVC)
and the (Maximum) Non Separating Independent Set problem (Max
NSIS). A non separating independent set S of a connected graph G = (V,E) is
a subset of vertices of G which is independent (i.e., any two vertices in S are non
adjacent) and S is not a cut-set of G. Max NSIS asks to find a non separating
independent set of maximum size. Min CVC and Max NSIS have been studied
in [12,15,16,26,30] where it is proved that the problems are polynomially solv-
able in graphs of maximum degree 3, while in graphs of maximum degree 4 they
are NP-hard.

Ext-CVC
Input: A connected graph G = (V,E) and a presolution (also called set of
forced vertices) U ⊆ V .
Question: Does G have a minimal connnected vertex cover S with U ⊆ S?

Dealing with Ext-NSIS, the goal to decide the existence of a maximal NSIS
excluding vertices from V \ U .

Ext-NSIS
Input: A connected graph G = (V,E) and a frontier subset U ⊆ V .
Question: Does G have a maximal NSIS S with S ⊆ U?

Considering the possibility that some set U might not be extensible to any
minimal solution, one might ask how far is U from an extensible set. This con-
cept, introduced in [9], is called Price of Extension (PoE). This notion is defined
in an attempt to understand what effect the additional presolution constraint has
on the possibility of finding minimal solutions. A similar approach has already
been used in the past under the name the Price of Connectivity in [7] for the con-
text of connectivity because it is a crucial issue in networking applications. This
notion has been introduced in [7] for Min VC and is defined as the maximum
ratio between the connected vertex cover number and the vertex cover number.
In our context, the goal of PoE is to quantify how close efficiently computable
extensible subsets of the given presolution U are to U or to the largest possible
extensible subsets of U . To formalize this, we define two optimization problems
as follows:
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Max Ext-CVC
Input: A connected graph G = (V,E) and a set of vertices U ⊆ V .
Feasible Solution: Minimal connected vertex cover S of G.
Goal: Maximize |S ∩ U |.

Min Ext-NSIS
Input: A connected graph G = (V,E) and a set of vertices U ⊆ V .
Feasible Solution: Maximal non separating independent set S of G.
Goal: Minimize |S ∪ U |.

For Π ∈ {Max Ext-CVC,Min Ext-NSIS}, we denote by optΠ(G,U) the
value of an optimal solution. Since for both of them optΠ(G,U) = |U | iff (G,U)
is a yes-instance of the extension variant, we deduce that Max Ext-CVC and
Min Ext-NSIS are NP-hard since Ext-CVC and Ext-NSIS are NP-complete.
Actually, for any class of graphs G, Max Ext-CVC is NP-hard in G iff Min
Ext-NSIS is NP-hard in G since for any graph G ∈ G it can be shown that:

optMax Ext-CVC(G,U) + optMin Ext-NSIS(G,V \ U) = |V | . (1)

The price of extension PoE is defined exactly as the ratio of approximation,
i.e., the best possible lower (resp. upper) bound on apx

opt that can be achieved in
polynomial time. In particular, we say that Max Ext-CVC (resp. Min Ext-
NSIS) admits a polynomial ρ-PoE if for every instance (G,U), we can efficiently
compute a solution S of G which satisfies |S ∩ U |/optMax Ext-CVC(G,U) � ρ
(resp., |S ∪ U |/optMin Ext-NSIS(G,U) � ρ).

Considering Max Ext-CVC on G = (V,E) in the particular case U = V ,
we obtain a new problem called Upper Connected Vertex Cover (Upper
CVC) where the goal is to find the largest minimal CVC. To our best knowledge,
this problem has never been studied, although Upper VC has been extensively
studied [5,14,25].

Upper CVC
Input: A connected graph G = (V,E).
Feasible Solution: Minimal connected vertex cover S ⊆ V .
Goal: Maximize |S|.

1.3 Related Work

Garey and Johnson proved that (minimum) CVC is NP-hard in planar graphs
of maximum degree 4 [16]. Moreover, it is shown in [28,30] that the problem
is polynomially solvable for graphs of maximum degree 3, while NP-hardness
proofs for bipartite and for bi-connected planar graphs of maximum degree 4,
are presented in [12,15,26]. The approximability of Min CVC has been con-
sidered in some more recent studies. The NP-hardness of approximating Min
CVC within 10

√
5 − 21 is proven in [15] while a 2-approximation algorithm

is presented in [27]. Moreover, in [12] the problem is proven APX-complete in
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bipartite graphs of maximum degree 4. They also propose a 5
3 -approximation

algorithm for Min CVC for any class of graphs where Min VC is polynomial-
time solvable. Parameterized complexity for Min CVC and Max NSIS have
been studied in [23,24] while the enumeration of minimal connected vertex cov-
ers is investigated in [18] where it is shown that the number of minimal connected
vertex covers of a graph of n vertices is at most 1.8668n, and these sets can be
enumerated in time O(1.8668n). For chordal graphs (even for chordality at most
5), the authors are able to give a better upper bound. The question to better
understand the close relation between enumerations and extension problems is
relevant because in this article we prove that Ext-CVC and Max Ext-CVC
are polynomial-time solvable in chordal graphs. Finally, one can find problems
that are quite related to Min CVC in [8].

Maximum minimal optimization variants have been studied for many classi-
cal graph problems in recent years, for example, in [5], Boria et al. have stud-
ied the Maximum Minimal Vertex Cover Problem (Upper VC in short)
from the approximability and parameterized complexity point of views. The
Minimum Maximal Independent Set problem, also called Minimum Inde-
pendent Dominating Set (Min ISDS) asks, given a graph G = (V,E), for
a subset S ⊆ V of minimum size that is simultaneously independent and domi-
nating. From the NP-hardness and exact solvability point of views, Min IDS is
equivalent to Upper VC [25], but they seem to behave differently in terms of
approximability and parameterized complexity [1]. Although Min IDS is polyno-
mially solvable in strongly chordal graphs [13], it is hard to approximate within
n(1−ε), for any ε > 0, in certain graph classes [11,13]. Regarding parameterized
complexity, Fernau [14] presents an FPT-algorithm for Upper VC with running
time O∗(2k), where k is the size of an optimum solution, while it is proved that
Min IDS with respect to the standard parameter is W [2]-hard. Moreover, Boria
et al. [5] provide a tight approximation result for Upper VC in general graphs:
they present a n

1
2 approximation algorithm together with a proof that Upper

VC is NP-hard to approximate within n
1
2−ε, for any ε > 0. Furthermore, they

present a parameterized algorithm with running time (1.5397k) where k is the
standard parameter, by modifying the algorithm of [14]; they also show that
weighted versions of Upper VC and Min IDS are in FPT with respect to the
treewidth.

Regarding the extension variant of Dominating Set, namely Ext-DS, it is
proven in [21,22] that it is NP-complete, even in special graph classes like split
graphs, chordal graphs, and line graphs. Moreover, a linear time algorithm for
split graphs is given in [20] when X,Y is a partition of the clique part. In [9], it
is proved that Ext-VC is NP-complete in cubic graphs and in planar graphs of
maximum degree 3, while it is polynomially decidable in chordal and circular-arc
graphs.

1.4 Summary of Results and Organization

The rest of the paper is organized as follows. In Sect. 2, after showing the relation
between Ext-VC and Ext-CVC, we provide additional hardness results for
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Ext-CVC in bipartite graphs and weakly triangulated graphs, the latter leading
to hardness results for Upper VC and Upper CVC. We then focus on bounds
for PoE in Sect. 3, providing inapproximability results for Max Ext-CVC in
general and bipartite graphs. In Sect. 4 we discuss the (in)approximability of
a special case of Max Ext-CVC, namely Upper CVC. Note that all results
given in the paper for Ext-CVC are valid for Ext-NSIS as well. Due to lack of
space the proofs of statements marked with (∗) are deferred to the full version
of the paper.

2 Solvability and Hardness of Extension Problems

Let us begin by some simple observations: (G,U) with G = (V,E) and U ⊆ V is
a yes-instance of Ext-CVC iff (G,V \U) is a yes-instance of Ext-NSIS. Hence,
all complexity results given in this section for Ext-CVC are valid for Ext-NSIS
as well. A leaf (v ∈ Vl) never belongs to a minimal connected vertex cover S
(apart from the extreme case where G consists of a single edge), while any cut-
vertex v ∈ Vc necessarily belongs to S. This implies that for trees, we have a
simple characterization of yes-instances for n � 3: (T,U), where T = (V,E) is a
tree, is a yes-instance of Ext-CVC iff U is a subset of cut-set Vc, or equivalently
U ⊆ Vc = V \Vl. For an edge or a cycle Cn = (V,E), (Cn, U) is a yes-instance iff
U 	= V ; since a path Pn = (V,E) is a special tree the case of graphs of maximum
degree 2 is settled. Dealing with split graphs, a similar but more complicated
characterization can be given. In the next subsection we will deduce more general
results for Ext-CVC by showing and exploiting relations to Ext-VC.

2.1 Relation Between Ext-VC and Ext-CVC

The following two properties allow to make use of known results for Ext-VC to
obtain results for Ext-CVC.

Proposition 1. (∗) Ext-CVC is polynomially reducible to Ext-VC in chordal
graphs.

Proposition 2. Ext-CVC is NP-complete in graphs of maximum degree Δ+1
if Ext-VC is NP-complete in graphs of maximum degree Δ, and this holds even
for bipartite graphs.

Proof. Given an instance (G,U) of Ext-VC, where G = (V,E) with V =
{v1, . . . , vn} and U ⊆ V , we build an instance (G′ = (V ′, E′), U ′) of Ext-CVC
by adding a component H = (VH , EH) to the original graph G.
The construction of H is depicted to the
right where VH = {v′

i, v
′′
i : 1 � i � n}

is the vertex set. The new instance of
Ext-CVC is given by (G′, U ′) and con-
sists of connecting the component H to
G by linking viv

′
i for each 1 � i � n and

by setting U ′ = U .
v′
1 v′

2 v′
n−1 v′

n

v′′
1 v′′

2 v′′
n−1 v′′

n
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Clearly G′ is of maximum degree Δ+1 if G is of maximum degree Δ. Moreover,
it is not difficult to see that (G,U) is a yes-instance of Ext-VC iff (G′, U ′) is a
yes-instance of Ext-CVC. To maintain bipartiteness, we apply an appropriate
subdivision of H. �
Using polynomial time decidability of Ext-VC in chordal graphs, parameter-
ized complexity results (considering that the reduction increases the size of the
instances only linearly), and NP-completeness in cubic bipartite graphs [9], we
deduce:

Corollary 3. Ext-CVC is polynomial-time decidable in chordal graphs and
NP-complete in bipartite graphs of maximum degree 4. Ext-CVC parameter-
ized with |U | is W[1]-complete, and there is no 2o(n+m)-algorithm for n-vertex,
m-edge bipartite graphs of maximum degree 4, unless ETH fails.

2.2 Additional Hardness Results

We first strengthen the hardness result of Corollary 3 to bipartite graphs of
maximum degree 3. This result could appear surprising since the optimization
problem Min CVC is polynomial-time solvable in graphs of maximum degree 3.

Theorem 4. Ext-CVC is NP-complete in bipartite graphs of maximum degree
3 even if U is an independent set.

Proof. We reduce from 2-balanced 3-SAT, denoted (3, B2)-SAT, where an
instance I = (C,X) is given by a set C of CNF clauses over a set of Boolean
variables X such that each clause has exactly 3 literals and each variable appears
exactly 4 times, twice negative and twice positive. Deciding whether an instance
of (3, B2)-SAT is satisfiable is NP-complete by [4].

Consider an instance (3, B2)-SAT with clauses C = {c1, . . . , cm} and vari-
ables X = {x1, . . . , xn}. We build a bipartite graph G = (V,E) together with a
set of forced vertices U as follows:

• For each clause c = �1∨�2∨�3 where �1, �2, �3 are literals, introduce a subgraph
H(c) = (Vc, Ec) with 6 vertices and 6 edges. Vc contains three specified literal
vertices �1c , �

2
c , �

3
c . The set of forced vertices in H(c), denoted by Uc is given

by Uc = {�1c , �
2
c , �

3
c}. The gadget H(c) is illustrated in the left part of Fig. 1.

• For each variable x introduce 21 new vertices which induce the subgraph
H(x) = (Vx, Ex) illustrated in Fig. 1. The vertex set Vx contains four special
vertices tc1x , tc2x , fc3

x and fc4
x , where it is implicitly assumed (w.l.o.g.) that

variable x appears positively in clauses c1, c2 and negatively in clauses c3, c4.
The independent set Ux = {1x, 3x, 5x, 6x, 8x, 10x, 12x} is in U (i.e., forced
to be in each feasible solution). The subgraph Hx − Ux induced by Vx \ Ux

consists of an induced matching of size 5 and of 4 isolated vertices.
• We connect each gadget H(xi) to H(xi+1) by linking vertex 12xi

to vertex
6xi+1 using an intermediate vertex ri,i+1 for all 1 � i � n − 1. We also add
a pendant edge incident to each ri,i+1 with leaf r′

i,i+1 ; an illustration of this
connection is depicted on the right of Fig. 1.
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• We interconnect H(x) and H(c) where x is a variable occurring in literal �i

of clause c by adding edge �i
ct

c
x (resp., �i

cf
c
x), where tcx (resp., fc

x) is in H(x)
and �i

c is in H(c), if x appears positively (resp., negatively) in clause c. These
edges are called crossing edges.

Let U = (
⋃

c∈C Uc) ∪ (
⋃

x∈X Ux). This construction takes polynomial time
and G is a bipartite graph of maximum degree 3.

Claim. (*) I = (C,X) is satisfiable iff G admits a minimal CVC containing U .

The proof of the claim, deferred to the full version of the paper, completes
the proof of the theorem. �

H(c) for c = ( 1 ∨ 2 ∨ 3)

1
c

2
c

3
c

1c

2c

3c

H(x)

tc1x

tc2x

fc4
x

fc3
x

1x 2x 3x

4x5x

6x

7x
8x

9x

10x
11x

12x

px1

px2

px3

px4

px5

H(x2)

H(x1)

H(x3)

r1,2

r2,3

Fig. 1. Clause gadget H(c) and Variable gadget H(x) for Ext-CVC are shown on the
left and in the middle of the figure respectively. Forced vertices (in U) are marked in
Black. On the right, the way of connecting variable gadgets is depicted. Crossing edges
between H(c) and H(x) are marked with dashed lines.

Now, we will prove that the polynomial-time decidability of Ext-CVC in
chordal graphs given in Corollary 3 cannot be extended to the slightly larger class
of weakly chordal (also called weakly triangulated 1) graphs which are contained
in the class of 4-chordal graphs. For any integer k � 3, a graph is called k-
chordal if it has no induced cycle of length greater than k. Thus, chordal graphs
are precisely the 3-chordal graphs. The problem of determining whether a graph
is k-chordal is known to be co-NP-complete when k is a part of the instance [29].

Theorem 5. (∗) Ext-CVC is NP-complete in weakly triangulated graphs.

1 This class is introduced in [19], as the class of graphs G = (V,E) with no chordless
cycle of five or more vertices in G or in its complement G = (V,E).
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3 Bounds on the Price of Extension of Max Ext-CVC

Using Propositions 1 and 2, we can derive negative and positive approximation
results for Max Ext-CVC.

First, let us observe Min Ext-NSIS does not admit O(n1−ε)-PoE even in the
simplest case U = ∅ because there is a simple reduction from Min ISDS (also
known as minimum maximal independent set [11,13]) to Min Ext-NSIS when
U = ∅ by adding to the original graph G = (V,E) two new vertices �0, �1 and
edges �0�1 together with �1v for v ∈ V (so, �1 is an universal vertex); �1 never
belongs to a NSIS (or equivalently �0 is a part of all maximal NSIS) because
otherwise �0 will become isolated. For general graphs, the price of extension
associated to Max Ext-CVC is one of the hardest problems to approximate.

Theorem 6. (∗) For any constant ε > 0 and any ρ ∈ Ω
(

1
Δ1−ε

)
and ρ ∈

Ω
(

1
n1−ε

)
, Max Ext-CVC does not admit a polynomial ρ-PoE for general graphs

of n vertices and maximum degree Δ, unless P = NP.

Although Proposition 2 preserves bipartiteness, we cannot immediately con-
clude the same kind of results since in [9] it is proved that Max Ext-VC admits
a polynomial 1

2 -PoE for bipartite graphs.

Theorem 7. (∗) For any constant ε > 0 and any ρ ∈ Ω
(

1
n1/2−ε

)
, Max Ext-

CVC does not admit a polynomial ρ-PoE for bipartite graphs of n vertices, unless
P = NP.

We next present a positive result, showing that the price of extension is equal
to 1 in chordal graphs.

Proposition 8. (∗) Max Ext-CVC is polynomial-time solvable in chordal
graphs.

4 Approximability of Upper CVC

Upper CVC is a special case of Max Ext-CVC where U = V . Regarding the
approximability of Upper CVC, we first show that an adaptation of Theorem 7
allows us to derive:

Corollary 9. (∗) For any constant ε > 0, unless NP = P, Upper CVC is not
Ω( 1

n1/3−ε )-approximable in polynomial time for bipartite graphs on n vertices.

On the positive side, we show that any minimal CVC is a 2
Δ(G) approximation

for Upper CVC. To do this, we first give a structural property that holds for
any minimal connected vertex cover. For a given connected graph G = (V,E) let
S� be an optimal solution of Upper CVC and S be a minimal connected vertex
cover of G. Denote by A� = S� \ S and A = S \ S� the proper parts of S� and
S respectively, while B = S ∩ S� is the common part. Finally, R = V \ (S� ∪ S)
denotes the rest of vertices. Also, for X = A� or X = A, we set Xc = {v ∈
X : NG(v) ⊆ B} which is exactly the vertices of X not having a neighbor in
(S ∪ S�) \ X. Actually, (S ∪ S�) \ X is either S or S�.
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Lemma 10. (∗) The following properties hold:

(i) For X = A� or X = A, X ∪ R is an independent set of G, G[X ∪ B] is
connected and Xc is a subset of cut-set of G[X ∪ B].

(ii) Set B is a dominating set of G.

The following theorem describes an interesting graph theoretic property. It
relates the size of an arbitrary minimal connected vertex cover of a (connected)
graph to the size of the largest minimal connected vertex cover.

Theorem 11. Any minimal CVC of a connected graph G is a
2

Δ(G)
-

approximation for Upper CVC.

Proof. Let G = (V,E) be a connected graph. Let S and S� be a minimal CVC
and an optimal one for Upper CVC, respectively, and w.l.o.g., assume |S| <
|S�|. We prove the following inequalities:

|A�| � (Δ(G) − 1)|B| and |A�| � (Δ(G) − 1)|A| (2)

Let us prove the first part |A�| � (Δ(G) − 1)|B| of inequality (2).
Consider v1 ∈ B maximizing its number of neighbors in A�, i.e. v1 =
arg max{|NA�(v)| : v ∈ B}. Since S is a minimal CVC with |S| < |S�|, we
have Δ(G) � |NA�(v1)| + 1 from (i) of Lemma 10 (otherwise B = {v1} with
dG(v1) = Δ(G)). In addition, from (ii) of Lemma 10 we have NA�(B) = A� and
then

∑
v∈B |NA�(v)| � |NA�(B)| = |A�|. Putting together these inequalities we

get |A�| � |B|(Δ(G) − 1).
Let us prove the second part |A�| � (Δ(G) − 1)|A| of inequality (2) using

the following Claim:

Claim. (∗) There are at least |A�
c | + |A| edges between A and B in G[S].

Each vertex in A� \ A�
c has by definition at least one neighbor in A, so we

deduce:
∑

v∈A |N(v)| � |A� \ A�
c | + |A| + |A�

c | = |A| + |A�|. Now, by setting
a1 = arg max{|NG(v)| : v ∈ A}, we obviously get |A||N(a1)| �

∑
v∈A |N(v)|.

Putting together these inequalities, we obtain: |A|Δ(G) � |A||N(a1)| � |A�|+|A|
which leads to |A�| � (Δ(G) − 1)|A|. The inequality |S| � 2

Δ(G)
follows by

considering the two cases |A| � |B| and |A| < |B|. �
A tight example of Theorem 11 for any Δ(G) � 3
is illustrated to the right. The optimal solution
for Upper CVC contains Δ(G) vertices {a} ∪
{v1, . . . , vΔ(G)−1} while {a, b} is a minimal con-
nected vertex cover of size 2.

. . .

a b

v1 v2 v3 vΔ(G)−1
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Abstract. The Max-Cut problem is known to be NP-hard on general
graphs, while it can be solved in polynomial time on planar graphs. In this
paper, we present a fixed-parameter tractable algorithm for the problem
on “almost” planar graphs: Given an n-vertex graph and its drawing with
k crossings, our algorithm runs in time O(2k(n + k)3/2 log(n + k)). Pre-
viously, Dahn, Kriege and Mutzel (IWOCA 2018) obtained an algorithm
that, given an n-vertex graph and its 1-planar drawing with k cross-
ings, runs in time O(3kn3/2 logn). Our result simultaneously improves
the running time and removes the 1-planarity restriction.

Keywords: Crossing number · Fixed-parameter tractability ·
Max-Cut

1 Introduction

The Max-Cut problem is one of the most basic graph problems in theoreti-
cal computer science. In this problem, we are given an edge-weighted graph,
and asked to partition the vertex set into two parts so that the total weight
of edges having endpoints in different parts is maximized. This is one of the
21 problems shown to be NP-hard by Karp’s seminal work [12]. To overcome
this intractability, numerous researches have been done from the viewpoints of
approximation algorithms [8,11,13,23], exponential-time exact algorithms [7,24],
and fixed-parameter algorithms [3,16,17,21]. There are several graph classes for
which the Max-Cut problem admits polynomial time algorithms [1,9]. Among
others, one of the most remarkable tractable classes is the class of planar graphs.
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Orlova and Dorfman [18] and Hadlock [10] developed polynomial time algorithms
for the unweighted Max-Cut problem on planar graphs, which are subsequently
extended to the weighted case by Shih et al. [22] and Liers and Pardella [14].

Dahn et al. [4] recently presented a fixed-parameter algorithm for 1-planar
graphs. A graph is called 1-planar if it can be embedded into the plane so that
each edge crosses at most once. Their algorithm runs in time O(3kn3/2 log n),
where n is the number of vertices and k is the number of crossings of a given 1-
planar drawing. Their algorithm is a typical branching algorithm: at each branch,
it removes a crossing by yielding three sub-instances. After removing all of the
k crossings, we have at most 3k Max-Cut instances on planar graphs. Each of
these problems can be solved optimally in O(n3/2 log n) time by reducing to
the maximum weight perfect matching problem with small separators [15], thus
giving the above mentioned time complexity.

Our Contributions. To the best of the authors’ knowledge, it is not known
whether the Max-Cut problem on 1-planar graphs is solvable in polynomial time.
In this paper, we show that it is NP-hard even for unweighted graphs.

Theorem 1. The Max-Cut problem on unweighted 1-planar graphs is NP-hard
even when a 1-planar drawing is given as input.

Next, we give an improved fixed-parameter algorithm, which is the main
contribution of this paper:

Theorem 2. Given a graph G and its drawing with k crossings, the Max-Cut
problem can be solved in O(2k(n + k)3/2 log(n + k)) time.

Note that our algorithm not only improves the running time of Dahn et
al.’s algorithm [4], but also removes the 1-planarity restriction. An overview of
our algorithm is as follows: Using a polynomial-time reduction in the proof of
Theorem 1, we first reduce the Max-Cut problem on general graphs (with a
given drawing in the plane) to that on 1-planar graphs with a 1-planar drawing,
without changing the number of crossings. We then give a faster fixed-parameter
algorithm than Dahn et al. [4]’s for Max-Cut on 1-planar graphs.

The main idea for improving the running time is as follows: Similarly to Dahn
et al. [4], we use a branching algorithm, but it yields not three but only two sub-
instances. Main drawbacks of this advantage are that these two sub-instances are
not necessarily on planar graphs, and not necessarily ordinary Max-Cut instances
but with some condition, which we call the “constrained Max-Cut” problem. To
solve this problem, we modify the reduction of [14] and reduce the constrained
Max-Cut problem to the maximum weight b-factor problem, which is known to
be solvable in polynomial time in general [5]. We investigate the time complexity
of the algorithm in [5], and show that it runs in O((n+ k)3/2 log(n+ k))-time in
our case, which proves the running time claimed in Theorem 2.

Independent Work. Chimani et al. [2] independently and simultaneously
achieved the same improvement by giving an O(2k(n + k)3/2 log(n + k)) time
algorithm for the Max-Cut problem on embedded graphs with k crossings. They
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used a different branching strategy, which yields 2k instances of the Max-Cut
problem on planar graphs.

Related Work. The Max-Cut problem is one of the best studied problems in
several areas of theoretical computer science. This problem is known to be NP-
hard even for co-bipartite graphs [1], comparability graphs [20], cubic graphs
[25], and split graphs [1]. From the approximation point of view, the best known
approximation factor is 0.878 [8], which is tight under the Unique Games Con-
jecture [13]. In the parameterized complexity setting, there are several possible
parameterizations for the Max-Cut problem. Let k be a parameter and let G be
an unweighted graph with n vertices and m edges. The problems of deciding if
G has a cut of size at least k [21], at least m − k [19], at least m/2 + k [17],
m/2+(n−1)/4+k [3], or at least n−1+k [16] are all fixed-parameter tractable.
For sparse graphs, there are efficient algorithms for the Max-Cut problem. It is
well known that the Max-Cut problem can be solved in O(2ttn) time [1], where
t is the treewidth of the input graph. The Max-Cut problem can be solved in
polynomial time on planar graphs [10,14,18,22], which has been extended to
bounded genus graphs by Galluccio et al. [6].

2 Preliminaries

In this paper, an edge {u, v} is simply denoted by uv, and a cycle {v0, v1, . . . , vk}
with edges {vi, v(i+1) mod k} for 0 ≤ i ≤ k is denoted by v0v1 . . . vk.

A graph is planar if it can be drawn into the plane without any edge crossing.
A crossing in the drawing is a non-empty intersection of edges distinct from their
endpoints. If we fix a plane embedding of a planar graph G, then the edges of G
separate the plane into connected regions, which we call faces.

Consider a drawing not necessarily being planar, where no three edges inter-
sect at the same point. We say that a drawing is 1-planar if every edge is involved
in at most one crossing. A graph is 1-planar if it admits a 1-planar drawing. Note
that not all graphs are 1-planar: for example, the complete graph with seven ver-
tices does not admit any 1-planar drawing.

Let G = (V,E,w) be an edge weighted graph with w : E → R. A cut of
G is a pair of vertex sets (S, V \ S) with S ⊆ V . We denote by E(S, V \ S)
the set of edges having one endpoint in S and the other endpoint in V \ S.
We call an edge in E(S, V \ S) a cut edge. The size of a cut (S, V \ S) is the
sum of the weights of cut edges, i.e.,

∑
e∈E(S,V \S) w(e). The Max-Cut problem

asks to find a maximum size of a cut, denoted mc(G), of an input graph G. We
assume without loss of generality that G has no degree-one vertices since such
a vertex can be trivially accommodated to either side of the bipartition so that
its incident edge contributes to the solution. Therefore, we can first work with
removing all degree-one vertices, and after obtaining a solution, we can put them
back optimally.

An instance of the constrained Max-Cut problem consists of an edge weighted
graph G = (V,E,w), together with a set C of pairs of vertices of V . A feasible
solution, called a constrained cut, is a cut in which all the pairs in C are separated.
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The size of a constrained cut is defined similarly as that of a cut. The problem
asks to find a maximum size of a constrained cut of G, denoted cmc(G).

Let G = (V,E,w) be an edge weighted graph with w : E → R and let
b : V → N. A b-factor of G is a subgraph H = (V, F ) such that F ⊆ E and
every vertex v has degree exactly b(v) in H. The cost of a b-factor H = (V, F ) is
the sum of the weights of edges in F , i.e.,

∑
e∈F w(e). The maximum weighted

b-factor problem asks to compute a maximum cost of a b-factor of G, denoted
by mb(G). This problem can be seen as a generalization of the maximum weight
perfect matching problem and is known to be solvable in polynomial time [5].

3 NP-Hardness on 1-Planar Graphs

In this section, we prove Theorem 1, i.e., NP-hardness of the unweighted
Max-Cut problem on 1-planar graphs. The reduction is performed from the
unweighted Max-Cut problem on general graphs. Since we use this reduction in
the next section for weighted graphs, we exhibit the reduction for the weighted
case. When considering unweighted case, we may simply let w(e) = 1 for all e.

Proof (of Theorem 1). Fix an edge weighted graph G = (V,E,w). For an edge
e = uv of G, define a path Pe consisting of three edges uu′, u′v′, and v′v, each
of weight w(e), where u′ and v′ are newly introduced vertices (see Fig. 1).

Fig. 1. Replacing an edge e with a path Pe.

Let G′ be the graph obtained from G by replacing e by Pe. The following
lemma is crucial for our reduction.

Lemma 1. mc(G′) = mc(G) + max(0, 2w(e)).

Proof. Suppose first that w(e) ≥ 0. Consider a maximum size cut (S, V \ S) of
G. If u and v are in the same side of the partition, we extend the cut to obtain
a cut of G′ by putting u′ and v′ into the other side. Otherwise, we put u′ to v’s
side and v′ to u’s side. In both cases, the cut size increases by exactly 2w(e), so
mc(G′) ≥ mc(G) + 2w(e). Conversely, let (S′, V ′ \ S′) be a maximum size cut
of G′, where V ′ = V ∪ {u′, v′}. If u and v are in the same side, at least one of
u′ and v′ must be in the other side, as otherwise, we can increase the size of
the cut by moving u′ or v′ to the other side, contradicting the maximality of
(S′, V ′ \S′). This implies that exactly two edges of the path Pe contribute to the
cut (S′, V ′\S′). Similarly, if u and v are in the different side, we can see that every
edge of Pe contribute to (S′, V ′\S′). Thus, the cut (S′\{u′, v′}, (V ′\S′)\{u′, v′})
of G is of size mc(G′)−2w(e) and hence we have mc(G) ≥ mc(G′)−2w(e). From
the above two inequalities, we have that mc(G′) = mc(G) + 2w(e).
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Suppose otherwise that w(e) < 0. Similarly to the first case, we extend a
maximum cut (S, V \ S) of G to a cut of G′. This time, we can do so without
changing the cut size, implying that mc(G′) ≥ mc(G): If u and v are in the same
side, we put both u′ and v′ into the same side as u and v. Otherwise, we put
u′ in u’s side and v′ in v’s side. For the converse direction, let (S′, V ′ \ S′) be
a maximum size cut of G′. If u and v are in the same (resp. different) side of
the cut, the maximality of the cut implies that no (resp. exactly one) edge of Pe

contributes to the cut. Hence the cut (S′ \ {u′, v′}, (V ′ \ S′) \ {u′, v′}) of G has
size mc(G′), so that mc(G) ≥ mc(G′). Therefore mc(G′) = mc(G), completing
the proof. ��

Now, suppose we are given a Max-Cut instance G with its arbitrary drawing.
We will consider here a crossing as a pair of intersecting edges. We say that two
crossings are conflicting if they share an edge, and the shared edge is called a
conflicting edge. With this definition, a drawing is 1-planar if and only if it has
no conflicting crossings.

Suppose that the drawing has two conflicting crossings {e, e′} and {e, e′′}
with the conflicting edge e (see Fig. 2). Replace e by a path Pe defined above
and locally redraw the graph as in Fig. 2. Then, this conflict is eliminated, and by
Lemma 1, the optimal value increases by exactly 2w(e). Note that this operation
also works for eliminating two conflicting crossings caused by the same pair of
edges.

Fig. 2. Eliminating a conflicting crossing.

We repeat this elimination process as long as the drawing has conflicting
crossings, eventually obtaining a 1-planar graph. From a maximum cut of the
obtained graph, we can obtain a maximum cut of the original graph G by simply
replacing each path Pe by the original edge e. The reduction described above
is obviously done in polynomial time. Since the Max-Cut problem on general
graphs is NP-hard, this reduction implies Theorem 1 and hence the proof is
completed. ��

Note that the above reduction is in fact parameter-preserving in a strict
sense, that is, the original drawing has k crossings if and only if the reduced
1-planar drawing has k crossings.

4 An Improved Algorithm

In this section, we prove Theorem 2. As mentioned in Sect. 1, we first reduce
a general graph to a 1-planar graph using the polynomial-time reduction given
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in the previous section. Recall that this transformation does not increase the
number of crossings. Hence, to prove Theorem 2, it suffices to provide an
O(2k(n + k)3/2n) time algorithm for 1-planar graphs and its 1-planar drawing
with at most k crossings.

4.1 Algorithm

Our algorithm consists of the following three phases.

Preprocessing. We first apply the following preprocessing to a given graph
G: For each crossing {ac, bd}, we apply the replacement in Fig. 1 twice, once
to ac and once to bd (and take the cost change in Lemma 1 into account) (see
Fig. 3). As a result of this, for each crossing, all the new vertices, a′, b′, c′ and d′,
concerned with this crossing have degree two and there is no edge among these
four vertices. This preprocessing is needed for the subsequent phases.

Fig. 3. Preprocessing

Branching. As Dahn et al. [4]’s algorithm, our algorithm branches at each
crossing and yields sub-instances. Consider a crossing {ac, bd}. Obviously, any
optimal solution lies in one of the following two cases (1) |S ∩{a, b}| 
= 1 and (2)
|S ∩ {a, b}| = 1. To handle case (1), we construct a sub-instance by contracting
the pair {a, b} into a single vertex. For case (2), we add four edges ab, bc, cd,
and da of weight zero (see Fig. 4). Thanks to the preprocessing phase, adding
these four edges does not create a new crossing. Note that these edges do not
affect the size of any cut. These edges are necessary only for simplicity of the
correctness proof. We then add the constraint that a and b must be separated.
Therefore, the subproblem in this branch is the constrained Max-Cut problem.
Note also that in this branch, we do not remove the crossing. We call the inner
region surrounded by the cycle abcd a pseudo-face, and the edge ab (that must
be a cut edge) a constrained edge. Note that the better of the optimal solutions
of the two sub-instances coincides the optimal solution of the original problem.
After k branchings, we obtain 2k constrained Max-Cut instances.

Solving the Constrained Max-Cut Problem. In this last phase, we solve
2k constrained Max-Cut instances obtained above, and output the best solution
among them. To solve each problem, we reduce it to the maximum weighted
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Fig. 4. Adding four edges

b-factor problem (see Sect. 2 for the definition), which is shown in Sect. 4.3 to be
solvable in O((n + k)3/2 log(n + k)) time in our case. Hence the whole running
time of our algorithm is O(2k(n + k)3/2 log(n + k)).

Let G be a graph (with a drawing) obtained by the above branching algo-
rithm. If there is a face with more than three edges, we triangulated it by adding
zero-weight edges without affecting the cut size of a solution. By doing this
repeatedly, we can assume that every face of G (except for pseudo-faces) has
exactly three edges. Recall that, in the preprocessing phase, we subdivided each
crossing edge twice. Due to this property, no two pseudo-faces share an edge.

Let G = (V,E,w) be an instance of the constrained Max-Cut problem. We
reduce it to an instance (G∗ = (V ∗, E∗, w∗), b) of the maximum weighted b-factor
problem. The reduction is basically constructing a dual graph. For each face f of
G, we associate a vertex f∗ of G∗. Recall that f is surrounded by three edges, say
xy, yz and zx. Corresponding to these edges, f∗ has the three edges (xy)∗, (yz)∗

and (zx)∗ incident to vertices corresponding to the three neighborhood faces or
pseudo-faces (see Fig. 5). The weight of these edges are defined as w∗((xy)∗) =
w(xy), w∗((yz)∗) = w(yz), and w∗((zx)∗) = w(zx). We also add a self-loop l
with w∗(l) = 0 to f∗. Note that putting this self-loop to a b-factor contributes to
the degree of f∗ by 2. Finally, we set b(f∗) = 2. (In case some edge surrounding
f is shared with a pseudo-face, we do some exceptional handling, which will be
explained later.)

Fig. 5. Reduction for a face

For each pseudo-face f of G, we associate a vertex f∗. Corresponding to the
three edges bc, cd, and da, we add the edges (bc)∗, (cd)∗ and (da)∗ to E∗. (Note
that we do not add an edge corresponding to ab.) We also add a self-loop l to
f∗ (see Fig. 6). The weight of these edges are defined as follows:
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w∗((bc)∗) =
β − 2α

3
, w∗((cd)∗) =

α + β

3
, w∗((da)∗) =

α − 2β

3
, w∗(l) =

2α + 2β

3
,

where α = w(ac) and β = w(bd). We set b(f∗) = 3.

Fig. 6. Reduction for a pseudo-face

Now we explain an exception mentioned above. Consider a (normal) face f
consisting of three vertices x, y, and z, and let f∗ be the vertex of G∗ corre-
sponding to f . Suppose that some edge, say xy, is shared with a pseudo-face
g, whose corresponding vertex in G∗ is g∗. In this case, the edge (xy)∗ in E∗,
connecting f∗ and g∗, is defined according to the translation rule for the pseudo-
face g. Specifically, if the edge xy is identical to the edge bc in Fig. 6, then the
weight w∗((xy)∗) is not w(xy) but β−2α

3 . When xy is identical to cd or da in
Fig. 6, w∗((xy)∗) is defined in the similar manner.

In case xy is identical to the constrained edge ab in Fig. 6, the rule is a
bit complicated: First, we do not add an edge (xy)∗ to E∗ (which matches the
absence of (ab)∗ in Fig. 6). Next, we subtract one from b(f∗); hence in this case,
we have b(f∗) = 1 instead of the normal case of b(f∗) = 2. As one can see
later, the absence of (xy)∗ and subtraction of b(f∗) implicitly mean that (xy)∗

is already selected as a part of a b-factor, which corresponds to the constraint
that a and b must be separated in any constrained cut of G. Here we stress
that this subtraction is accumulated for boundary edges of f . For example, if all
the three edges xy, yz, and zx are the constrained edges of (different) pseudo-
faces, then we subtract three from b(f∗), which results in b(f∗) = −1 (of course,
this condition cannot be satisfied at all and hence the resulting instance has no
feasible b-factor).

Now we have completed the construction of (G∗ = (V ∗, E∗, w∗), b). We then
show the correctness of our algorithm in Sect. 4.2, and evaluate its running time
in Sect. 4.3.

4.2 Correctness of the Algorithm

To show the correctness, it suffices to show that the reduction in the final phase
preserves the optimal solutions. Recall that cmc(G) is the size of a maximum
constrained cut of G, and mb(G∗) is the cost of the maximum b-factor of G∗.
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Lemma 2. cmc(G) = mb(G∗).

Proof. We first show cmc(G) ≤ mb(G∗). Let S be a maximum constrained cut
of G with cut size cmc(G). We construct a b-factor H of G∗ with cost cmc(G).
Informally speaking, this construction is performed basically by choosing dual
edges of cut edges.

Formally, consider a face f surrounded by edges xy, yz and zx. First suppose
that none of these edges are constrained edges. Then by construction of G∗, the
degree of f∗ is 5 (including the effect of the self-loop) and b(f∗) = 2. It is easy
to see that zero or two edges among xy, yz and zx are cut edges of S. In the
former case, we add only the self-loop l to H. In the latter case, if the two cut
edges are e and e′, then we add corresponding two edges (e)∗ and (e′)∗ to H.
Note that in either case, the constraint b(f∗) = 2 is satisfied.

Next, suppose that one edge, say xy, is a constrained edge. In this case, the
degree of f∗ is 4 and b(f∗) = 1. Since xy is a constrained edge, we know that
xy is a cut edge of S. Hence exactly one of yz and zx is a cut edge. If yz is a
cut edge, we add (yz)∗ to H; otherwise, we add (zx)∗ to H.

If two edges, say xy and yz, are constrained edges, we have that b(f∗) = 0.
In this case, we do not select edges incident to f∗.

Finally, suppose that all the three edges are constrained edges. Clearly it is
impossible to make all of them cut edges. Thus G admits no constrained cut,
which contradicts the assumption that S is a constrained cut.

Next, we move to pseudo-faces. For each pseudo-face f with a cycle abcd
where ab is a constrained edge, we know that a and b are separated in S. There
are four possible cases, depicted in Fig. 7, where vertices in the same side are
labeled with the same color, and bold edges represent cut edges. Corresponding
to each case of Fig. 7, we select edges in G∗ as shown in Fig. 8 and add them to
H. Note that in all four cases, the constraint b(f∗) = 3 is satisfied.

Fig. 7. Feasible cuts of G in which a and b are separated

We have constructed a subgraph H of G∗ and shown that for any vertex of
G∗, the degree constraint b is satisfied in H. Hence H is in fact a b-factor.

It remains to show that the cost of H is cmc(G). The edges of G are classified
into the following two types; (1) edges on the boundary of two (normal) faces
and (2) edges constituting pseudo-faces (i.e., those corresponding to one of six
edges of K4 in Fig. 6 left). For a type (1) edge e, e is a cut edge if and only if its
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Fig. 8. Solution for G∗ constructed from each cut of Fig. 7

dual (e)∗ is selected in H, and w(e) = w∗((e∗)). For type (2) edges, we consider
six edges corresponding to one pseudo-face simultaneously. Note that there are
four feasible cut patterns given in Fig. 7, and we determine edges of H according
to Fig. 8. We examine that the total weight of cut edges and that of selected
edges coincide in every case:

Case (1): The weight of cut edges is w(da)+w(ac)+w(ab) = w(ac). The weight
of selected edges is w∗((da)∗) + w∗(l) = α−2β

3 + 2α+2β
3 = α = w(ac).

Case (2): The weight of cut edges is w(ab) + w(ac) + w(bd) + w(cd) = w(ac) +
w(bd). The weight of selected edges is w∗((cd)∗) + w∗(l) = α+β

3 + 2α+2β
3 =

α + β = w(ac) + w(bd).

Case (3): The weight of cut edges is w(ab)+w(bd)+w(bc) = w(bd). The weight
of selected edges is w∗((bc)∗) + w∗(l) = β−2α

3 + 2α+2β
3 = β = w(bd).

Case (4): The weight of cut edges is w(ab) + w(bc) + w(cd) + w(da) = 0. The
weight of selected edges is w∗((bc)∗) + w∗((cd)∗) + w∗((da)∗) = β−2α

3 + α+β
3 +

α−2β
3 = 0.

Summing the above equalities over the whole graphs G and G∗, we can conclude
that the constructed b-factor H has cost cmc(G).

To show the other direction cmc(G) ≥ mb(G∗), we must show that, from
an optimal solution H of G∗, we can construct a cut S of G with size mb(G∗).
Since the construction in the former case is reversible, we can do the opposite
argument to prove this direction; hence we will omit it here. ��

4.3 Time Complexity of the Algorithm

As mentioned previously, to achieve the claimed running time, it suffices to show
that a maximum weight b-factor of G∗ can be computed in O((n+k)3/2 log(n+k))
time. The polynomial time algorithm presented by Gabow [5] first reduces the
maximum weighted b-factor problem to the maximum weight perfect matching
problem, and then solves the latter problem using a polynomial time algorithm.
We follow this line but make a careful analysis to show the above mentioned
running time.

For any vertex v of G∗, we can assume without loss of generality that b(v) ≤
d(v), where d(v) is the degree of v, as otherwise G∗ obviously does not have a
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b-factor. Gabow’s reduction [5] replaces each vertex v with a complete bipartite
graph Kd(v),d(v)−b(v) as shown in Fig. 9, where newly introduced edges have
weight zero. Since the maximum degree of G∗ is at most five, each vertex is
replaced by a constant sized gadget. Also, since G∗ is a planar graph with O(n+
k) vertices, the created graph has O(n + k) vertices and admits a balanced
separator of size O(

√
n + k). It is easy to see that this reduction can be done

in O(n + k) time, and G∗ has a b-factor if and only if the created graph has a
perfect matching of the same weight.

Fig. 9. Gabow’s reduction

Lipton and Tarjan [15] present an algorithm for the maximum weight perfect
matching problem that runs in time O(n3/2 log n) for an n-vertex graph having
a balanced separator of size O(

√
n). Thus, by using it, we obtain the claimed

running time of O((n + k)3/2 log(n + k)).

Acknowledgements. The authors deeply thank anonymous referees for giving us
valuable comments. In particular, one of the referees pointed out a flaw in an early
version of Lemma 1, which has been fixed in the current paper.

References

1. Bodlaender, H.L., Jansen, K.: On the complexity of the maximum cut problem.
Nordic J. Comput. 7(1), 14–31 (2000)

2. Chimani, M., Dahn, C., Juhnke-Kubitzke, M., Kriegem, N.M., Mutzel, P., Nover,
A.: Maximum Cut Parameterized by Crossing Number. arXiv:1903.06061 (2019)

3. Crowston, R., Jones, M., Mnich, M.: Max-cut parameterized above the Edwards-
Erdös Bound. Algorithmica 72(3), 734–757 (2015)

4. Dahn, C., Kriege, N.M., Mutzel, P.: A fixed-parameter algorithm for the max-cut
problem on embedded 1-planar graphs. In: Iliopoulos, C., Leong, H.W., Sung, W.-
K. (eds.) IWOCA 2018. LNCS, vol. 10979, pp. 141–152. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-94667-2 12

5. Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph
and bidirected network flow problems. In: Proceedings of STOC 1983, pp. 448–456
(1983)
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Abstract. A chordal bipartite graph is a bipartite graph without
induced cycles with length six or more. As the main result of our
paper, we propose an enumeration algorithm ECB-IS which enumerates
all chordal bipartite induced subgraphs in O(ktΔ2) time per solution on
average, where k is the degeneracy of G, t is the maximum size of Kt,t

as an induced subgraph of G, and Δ is the maximum degree of G. To
achieve the above time complexity, we introduce a new characterization
of chordal bipartite graphs, called CBEO. This characterization is based
on the relation between a β-acyclic hypergraph and its incidence graph.
As a corollary, ECB-IS achieves constant amortized time enumeration for
bounded degree graphs.

1 Introduction

A graph G is chordal if there are no induced cycles with length four or more. It
is known that chordal graphs have several good properties, e.g. a perfect elimi-
nation ordering. By using this ordering, efficient algorithms have been developed
to enumerate subgraphs and supergraphs with chordality [12,13].

Chordality of a bipartite graph has also been well studied. A chordal
bipartite graph is a bipartite graph without any induced cycles with length
six or more. Chordal bipartite graphs have several equivalent characteriza-
tions, and are closely related to strongly chordal graphs and β-acyclic hyper-
graphs [3,8,9,16,18]. In particular, a chordal bipartite graph also has a vertex
elimination ordering, called weak elimination ordering (WEO) [18]. In this paper,
we introduce a new vertex elimination ordering, called a chordal bipartite elim-
ination ordering (CBEO, in short). CBEO is defined by the following operation:
Recursively remove a weak-simplicial vbertex [18]. We show that a graph G is
chordal bipartite if and only if G has CBEO. Interestingly, CBEO is a relaxed ver-
sion of a vertex ordering proposed by Uehara [18]. CBEO plays the key role in
our proposed enumeration algorithm. To show this characterization, we use the
following relation between β-acyclic hypergraphs and chordal bipartite graphs:

c© Springer Nature Switzerland AG 2019
C. J. Colbourn et al. (Eds.): IWOCA 2019, LNCS 11638, pp. 339–351, 2019.
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A hypergraph is β-acyclic if and only if its bipartite incidence graph is chordal
bipartite [1].

A subgraph enumeration problem is defined as follows: Output all subgraphs
satisfying a given constraint [10]. The efficiency of enumeration algorithms is
often measured by the size of input and the number of outputs, called output-
sensitive analysis. We say that an enumeration algorithm runs in amortized
polynomial time if the total running time is O(M ·poly(N)) time, where M is the
number of solutions, N is the input size, and poly(·) is a polynomial function. The
view point of output-sensitive analysis, many efficient enumeration algorithms
for sparse input graphs have been developed so far [5,7,11,14,19]. Especially,
the degeneracy [15] has been payed much attention for constructing efficient
enumeration algorithms. In this paper, we especially focus on the degeneracy
and the size of maximum biclique Kt,t as a sparsity measure of graphs.

Main Result: We propose an algorithm ECB-IS for chordal bipartite induced
subgraphs. So far, several efficient algorithms have been developed for enu-
merating subgraphs or supergraphs satisfying chordality [6,13,13,20]. How-
ever, no algorithm is known for chordal bipartite induced subgraphs of sparse
graphs. ECB-IS is based on the reverse search [2]. Roughly speaking, an enumer-
ation algorithm based on the reverse search outputs solutions by traversing on
a family tree spanning all solutions (See Sect. 4 for the detail). The family tree
is defined by the parent-child relation among solutions. To construct an efficient
enumeration algorithm, we have to give a good family tree, that is, the good par-
ent for each solution. CBEO plays the key role for defining such parents. Moreover,
from the perspective of the time complexity, a degeneracy ordering [17] and a
local structure of a weak-simplicial vertex are the key points. To improve a Δ
factor of ECB-IS, the above two points are important. As the main result of this
paper, we propose ECB-IS which outputs all chordal bipartite induced subgraphs
in a given graph G in amortized O(ktΔ2) time, where k is the degeneracy of G,
t is the maximum size of Kt,t as an induced subgraph, and Δ is the maximum
degree of G. Note that k is at most Δ and t is at most k. Moreover, the space
usage of ECB-IS is O(n + m).

2 Preliminaries

Let G = (V,E) be a simple graph, that is, there are no self loops and multiple
edges. The two vertices u, v ∈ V are adjacent if there is an edge {u, v} ∈ E. The
sequence of distinct vertices π = (v1, . . . , vk) is a path if vi and vi+1 are adjacent
for each 1 ≤ i ≤ k − 1. If v1 = vk and k ≥ 3 hold in a path C = (v1, . . . , vk),
then we call C a cycle. The distance dist(u, v) between u and v is the length
of a shortest path between u and v. We call a graph H = (U,F ) a subgraph of
G = (V,E) if U ⊆ V and F ⊆ E hold. A subgraph H = (U,F ) is an induced
subgraph of G if F = {{u, v} ∈ E | u, v ∈ U}, and we denote an induced subgraph
as G[U ]. A vertex u is a neighbor of v if u and v are adjacent. The neighborhood
of v is the set of vertices {u ∈ V | {u, v} ∈ E} and is denoted by NG(v). If there
is no confusion, we denote N(v) as NG(v). We denote N(v)∩X as NX(v), where
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(A) An input graph G
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(B) A chordal bipartite induced subgraph
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(C) Bipartite representation

Fig. 1. (A) shows an input graph G and (B) shows one of the solutions B = (X, Y, E),
where X = {1, 3, 7, 11} and Y = {2, 6, 8, 9, 12}. (C) shows the graph B drawn by
dividing X and Y .

X is a subset of V . The pair of vertices u and v are twin if N(v) = N(u). The
set of vertices N [v] = N(v) ∪ {v} is called the closed neighborhood . We define
the neighborhood with distance k and the neighborhood with distance at most k
as Nk(v) = {u ∈ V | dist(u, v) = k} and Nk:�(v) =

⋃
k≤i≤� N(v)i, respectively.

N (v) is the neighborhood set of the neighbors defined as {N(u) | u ∈ N(v)}. The
degree of v d(v) is the size of N(v). The degree of a graph G is the maximum
number of d(v) in V . Let U be a subset of V . For vertices u, v ∈ V , u and v
are comparable if N(v) ⊆ N(u) or N(v) ⊇ N(u) hold. Otherwise, u and v are
incomparable. We call a bipartite graph B = (X,Y,E) chordal bipartite if there
are no induced cycles with length six or more. A bipartite graph B is biclique if
any pair of vertices x ∈ X and y ∈ Y are adjacent. We denote a biclique as Ka,b

if |X| = a and |Y | = b. In this paper, we consider only the case a = b and say
that the size of a biclique Kt,t is t.

Let H = (V, E) be a hypergraph, where V is a set of vertices and E is a set
of subsets of V . We call an element of E a hyperedge. For a vertex v, let H(v)
be the set of edges {e ∈ H | v ∈ e}. A sequence of edges C = (e1, . . . , ek) is a
berge cycle if there exist k distinct vertices v1, . . . , vk such that vk ∈ e1 ∩ ek and
vi ∈ ei ∩ ei+1 for each 1 ≤ i < k. A berge cycle C = (e1, . . . , ek) is a pure cycle if
k ≥ 3 and ei ∩ ej 	= ∅ hold for any distinct i and j, where i and j satisfy one of
the following three conditions: (I) |i − j| = 1, (II) i = 1 and j = k, or (III) i = k
and j = 1. A cycle C = (e1, . . . , ek) is a β-cycle if the sequence of (e′

1, . . . , e
′
k) is

a pure cycle, where e′
i = ei \

⋂
1≤j≤k ej . We call a hypergraph H β-acyclic if H

has no β-cycles. We call a vertex v a β-leaf if e ⊆ f or e ⊇ f hold for any pair
of edges e, f ∈ H(v). A bipartite graph I(H) = (X,Y,E) is a incidence graph
of a hypergraph H = (V, E) if X = V , Y = E , and E contains an edge {v, e}
if v ∈ e, where v ∈ V and e ∈ E . Let V be a set of vertex subsets. V is totally
ordered if for any pair X,Y ∈ V of vertex subsets, either X ⊆ Y or X ⊇ Y . we
assume that H has more than one vertex.

Finally, we define our problem, chordal bipartite induced subgraph enumer-
ation problem. In Fig. 1, we show an input graph G and one of the solutions.

Problem 1 (Chordal bipartite induced subgraph enumeration problem). Output
all chordal bipartite induced subgraphs in an input graph without duplication.
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3 A Characterization of Chordal Bipartite Graphs

We propose a new characterization of chordal bipartite graphs. By using this
characterization, we construct our algorithm ECB-IS in Sect. 4. We first give
some definitions. A vertex v is weak-simplicial [18] if N(v) is an independent set
and any pair of neighbors of v are comparable. A bipartite graph B = (X,Y,E)
is bipartite chain if any pair of vertices in X or Y are comparable, that is,
N(u) ⊆ N(v) or N(u) ⊇ N(v) holds for any u, v ∈ X or u, v ∈ Y . To show our
result, we use the following two theorems.

Theorem 1 (Theorem 1 of [1]). Let H be a hypergraph. Then I(H) is chordal
bipartite if and only if H is β-acyclic.

Theorem 2 (Theorem 3.9 of [4]). A β-acyclic hypergraph H = (V, E) with
at least two vertices has two distinct β-leaves that are not neighbors in H′ =
(V, E \ {V}).

Brault [4] gives a vertex elimination ordering (v1, . . . , vn) for a hypergraph
H, called a β-elimination ordering . The definition of the ordering is as follows:
For any 1 ≤ i ≤ n, vi is a β-leaf in H[Vi:n], where Vi:j = {vk ∈ V | i ≤ k ≤ j}. He
also showed that H is β-acyclic if and only if there is a β-elimination ordering of
H [4]. Similarly, in this paper, for any graph G, we define a new vertex elimination
ordering (v1, . . . , vn) for G, called CBEO, as follows: For any 1 ≤ i ≤ n, vi is a
weak-simplicial in G[Vi:n]. In the remainder of this section, we show that a graph
is chordal bipartite if and only if G has CBEO. Lemma 1 shows that a β-leaf of a
hypergraph is weak-simplicial in its incidence graph.

Lemma 1. Let H = (V, E) be a hypergraph, v be a vertex in V, and v′ be a
corresponding vertex of v in X of I(H). Then v is a β-leaf in H if and only if
v′ is a weak-simplicial vertex in I(H).

Proof. We assume that v is a β-leaf in H. Let v′ be the vertex corresponding
to v in I(H). From the definition of a β-leaf, N (v) is also totally ordered in
I(H). Thus, v is a weak-simplicial vertex in I(H). We next assume that v′ is
weak-simplicial in X of I(H). From the definition, N (v) is totally ordered. Thus,
H(v) is totally ordered. Therefore, v is a β-leaf in H and the statement holds. ��

From Lemma 1, a β-leaf v of H corresponds to a weak-simplicial vertex of
the incidence graph I(H). We next show that a chordal bipartite graph has at
least one weak-simplicial vertex from Theorems 1, 2, and Lemma 1.

Lemma 2. Let B = (X,Y,E) be a chordal bipartite graph with at least two
vertices. If there is no vertex v in B such that N(v) = X or N(v) = Y , then B
has at least two weak-simplicial vertices which are not adjacent.

Proof. From Theorems 1, 2, and Lemma 1, if B is chordal bipartite and has no
twins, then G has at two weak-simplicial vertices which are not adjacent. We
now assume B has twins. We construct B′ as follows: Let T be a set of twins
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Algorithm 1. Enumeration algorithm for all chordal bipartite induced
subgraphs
1 Procedure ECB-IS(G) // G = (V, E): an input graph

2 RecECB-IS((∅, ∅, V, G));
3 Procedure RecECB-IS(X, WS(X), AWS(X), G)

4 Output X and Compute C (X) from AWS(X);
5 for v ∈ C (X) do
6 Y ← X ∪ {v};
7 if P (Y ) = X then RecECB-IS(Y, WS(Y ), AWS(Y ), G) ;

in B. For each twins T ∈ T , remove all vertices in T except one twin of T . Note
that B′ is still chordal bipartite since vertex deletion does not destroy chordality.
Since B′ has no twins, B′ has at least two weak-simplicial vertices u and v which
are not adjacent. Since the set inclusion relation between B and B′ is same, u
and v also weak-simplicial in B. Hence, the statement holds. ��

Theorem 3. Let B be a bipartite graph. B is chordal bipartite if and only if B
has CBEO.

Proof. From Lemma 2, the only if part holds. We consider the contrapositive
of the if part. Suppose that B is not chordal bipartite. Then B has an induced
cycle C with length six or more. Since a vertex in C is not weak-simplicial, we
cannot eliminate all vertices from B and the statement holds. ��

We next show that a vertex v is weak-simplicial in a bipartite graph B if and
only if B[N1:2[v]] is bipartite chain. The following lemma is used to improve the
time complexity of ECB-IS in Sect. 5.

Lemma 3. Let B = (X,Y,E) be a chordal bipartite graph and v be a vertex in
B. Then v is weak-simplicial if and only if an induced subgraph B[N1:2[v]] is
bipartite chain.

Proof. We assume that B[N1:2[v]] is bipartite chain. From the definition, any
pair of vertices in N(v) are comparable. Hence, v is weak-simplicial.

We next prove the other direction. We assume that v is weak-simplicial. Let x
and y be vertices in N2(v). If x and y are incomparable in B[N1:2[v]], then there
are two vertices z ∈ N(x) \ N(y) and z′ ∈ N(y) \ N(x). Note that z and z′ are
neighbors of v. This contradicts that any pair of vertices in N(v) are comparable.
Hence, x, y ∈ N2(v) are comparable and B[N1:2[v]] is bipartite chain. ��

4 Enumeration of Chordal Bipartite Induced Subgraphs

In this section, we propose an enumeration algorithm ECB-IS which is based
on reverse search [2]. ECB-IS enumerates all solutions by traversing on a tree
structure F (G) = (S(G), E(G)), called a family tree, where S(G) is a set of
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Fig. 2. It is a degeneracy ordering of G. The degeneracy of G is three. In this ordering,
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∣ is at most kΔ for any vertex v.

solutions in an input graph G and E(G) ⊆ S(G) × S(G). Note that F (G) is
directed. More precisely, E(G) is defined by the parent-child relationship among
solutions based on Theorem 3. Let X be a vertex subset that induces a solution.
We denote the set of weak-simplicial vertices in G[X] as WS(X). In what follows,
we number the vertex indices from 1 to n and compare the vertices with their
indices, where n is the number of vertices in G. The parent of X is defined as
P (X) = X \ {arg max WS(X)}. X is a child of Y if P (X) = Y . Let ch(X) be
the set of children of X. We define the parent vertex pv(X) as arg max WS(X)
which induces the parent. For any pair of solutions X and Y , (X,Y ) ∈ E(G) if
Y = P (X). From Theorem 3, any solution can reach the empty set by recursively
removing the parent vertex from the solution. Hence, the following lemma holds.

Lemma 4. The family tree forms a tree.

Next, we show that ECB-IS enumerates all solutions. For any vertex subset
X ⊆ V , we denote X1:i = X ∩ V1:i. An addible weak-simplicial vertex set is
AWS(X) = {v ∈ V \ X | v ∈ WS(X ∪ {v})}, that is, any vertex v in AWS(X)
generates a solution X∪{v}. We define a candidate set C (X) as follows: C (X) =
AWS(X)v:n ∪ (AWS(X) ∩ N1:2(v)), where v = pv(X). Note that C (X) is
a subset of AWS(X). The following lemma shows that we can enumerate all
children if we have C (X).

Lemma 5. Let X and Y be distinct solutions. If Y is a child of X, then pv(Y ) ∈
C (X).

Proof. Suppose that Y is a child of X. Let v = pv(Y ) and u = pv(X). Note that
v belongs to AWS(X). If u < v, then v ∈ AWSu:n(X) and thus v ∈ C (X).
Otherwise, u is not contained in WS(Y ) since v has the maximum index in
WS(Y ). From the definition of a weak-simplicial vertex, there are two vertices
in NY (u) which are incomparable in G[Y ]. Since N (u) is totally ordered in G[X],
v must be in N1:2

Y (u). Hence, the statement holds. ��

In what follows, we say a vertex v ∈ C (X) generates a child if X ∪ {v} is a
child of X. From Lemmas 4 and 5, ECB-IS enumerates all solution by the DFS
traversing on F (G).

Theorem 4. ECB-IS enumerates all solutions without duplication.
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5 Time Complexity Analysis

Our proposed algorithm ECB-IS has two bottlenecks. (1) Some vertices in C (X)
do not generate a child and (2) the maintenance of WS(X) and AWS(X) con-
sumes time. A trivial bound of the number of redundant vertices in C (X) is
O(Δ2) since only vertices in (AWS(X)∩N1:2(pv(X)) may not generate a child,
where Δ is the maximum degree of an input graph. To reduce the number of such
redundant vertices, we use a degeneracy ordering . A graph G is k-degenerate if
any induced subgraph of G has a vertex with degree k or less [15]. The degen-
eracy of a graph is the smallest such number k. Matula and Beck [17] show
that a k-degenerate graph G has a following vertex ordering, called a degener-
acy ordering : For each vertex v, the number of neighbors smaller than v is at
most k. See Fig. 2. They also show that a k-degenerate ordering of G can be
obtained in linear time. Note that there can be several degeneracy orderings for
a graph. In what follows, we fix the reverse ordering of a degeneracy ordering
and WS(X) and AWS(X) are sorted in this ordering. We first show that the
number of redundant vertices is at most 2kΔ.

Algorithm 2. Update algorithms for WS and AWS

1 Procedure UpdateWS(X, v, WS(X), G)

2 WS ← WS(X);
3 for u ∈ NX(v) do
4 if u ∈ WS∧ there is a vertex w ∈ NX(u) is incomparable to u. then

WS ← WS \ {u};
5 for w ∈ NX(u) ∩ WS do
6 if w and v are incomparable then WS ← WS \ {w} ;

7 return WS;

8 Procedure UpdateAWS(X, v, AWS(X), G)

9 AWS ← AWS(X);
10 for u ∈ N(v) do
11 if u ∈ AWS then
12 if There is a vertex w ∈ NX(u) which is incomparable to u. then

AWS ← AWS \ {u};

13 else if u ∈ X then
14 for w ∈ N(u) ∩ AWS do
15 if w and v are incomparable. then AWS ← AWS \ {w} ;

16 return AWS;

Lemma 6. Let X be a solution. The number of vertices in C (X) which do not
generate a child is at most 2kΔ.

Proof. Let v be a vertex in C (X) and p be a vertex pv(X). If p < v, then
v generates a child. We assume that v < p. Since v is in C (X), v ∈ N1:2(p) ∩
AWX1:p(X). We estimate the size of N1:2(p)∩AWX1:p(X). We consider a vertex
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u ∈ N1:v(v).
∑

u∈N1:v(v)
|N(u)| is at most kΔ since |N1:v(v)| is at most k. We

next consider a vertex u ∈ Nv:n(v). Since u is larger than v, a vertex in Nu:n(u)
is larger than v. Hence, we consider vertices N1:u(u). For each u, |N1:u(u)| is at
most k. Hence,

∑
u∈Nv:n(v)

|N(u)1:u| is at most kΔ and the statement holds. ��

We next show how to compute C (Y ) from C (X), where X is a solution
and Y is a child of X. From the definition of C (X), we can compute C (Y )
in O(|C (Y )| + kΔ) time if we have AWS(Y ) and pv(Y ). Moreover, if we have
WS(X ∪ {v}), then we can determine whether X ∪ {v} is a child of X or not
in constant time since WS(X ∪ {v}) is sorted. Hence, to obtain the children of
X, computing AWS(X) and WS(X) dominates the computation time of each
iteration. Here, we define two vertex sets as follows:

DelW (X, v) = {u ∈ N1:2(v) ∩ WS(X) | u /∈ WS(X ∪ {v})} and

DelA (X, v) = {u ∈ N1:2(v) ∩ AWS(X) | u /∈ WS(X ∪ {u, v})}.

These vertex sets are the sets of vertices that are removed from WS(X)
and AWS(X) after adding v to X, respectively. In the following lemmas, we
show that WS(X) and AWS(X) can be updated if we have DelW (X, v) and
DelA (X, v).

Lemma 7. Let X be a solution, Y be a child of X, and v = pv(Y ). Then
WS(Y ) = (WS(X) \ DelW (X, v)) ∪ {v}.

Proof. Let u be a vertex in WS(Y ). We prove u is contained in (WS(X) \
DelW (X, v))∪{v}. If u = v holds, then u ∈ WS(Y ) since v ∈ pv(Y ). We assume
that u 	= v. Since u is weak-simplicial in Y , u ∈ WS(X). If u ∈ DelW (X, v),
then u is not weak-simplicial in Y . This contradicts the assumption. Hence,
u 	∈ DelW (X, v). We prove the other direction. Let u be a vertex in (WS(X) \
DelW (X, v))∪{v}. We assume that u 	= v. If u 	∈ WS(Y ), then u ∈ DelW (X, v).
This is a contradiction and thus the statement holds. ��

Lemma 8. Let X be a solution, Y be a child of X, and v = pv(Y ). Then
AWS(Y ) = AWS(X) \ DelA (X, v).

Proof. Let u be a vertex in AWS(Y ). We prove u is contained in AWS(X) \
DelA (X, v). From the definition of AWS(X), u ∈ AWS(X) holds. If u ∈
DelA (X, v), then u is not weak-simplicial in Y ∪ {u}. Since u ∈ AWS(Y ),
u 	∈ DelA (X, v). We prove the other direction. Let u be a vertex in AWS(X) \
DelA (X, v). From the definition of AWS(X) and DelA (X, v), u is weak-
simplicial in X ∪ {v, u}. Hence, u ∈ AWS(Y ) and the statement holds. ��

Note that by just removing redundant vertices, WS(Y ) and AWS(X) can
be easily sorted if WS(X) and AWS(X) were already sorted. We next consider
how to compute DelW (X, v) and DelA (X, v). We first show a characterization
of a vertex in DelW (X, v) and DelA (X, v). In the following lemmas, let X be a
solution, v be a vertex in AWS(X), and Y be a solution X ∪ {v}.
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Fig. 3. Let X be a set of vertices {u, w1, w2, w3, 1, 2, 3}. In case (A), a vertex u is still
weak-simplicial. In case (B), however, u is not weak-simplicial since w1 and w3 are
incomparable.

Lemma 9. Let u be a vertex in NY (v) ∩ WS(X). Then u is contained in
DelW (X, v) if and only if NX(u) contains w which is incomparable to v.

Proof. If u has a neighbor w in X which is incomparable to v, then from the
definition, u is not weak-simplicial.

Let u be a vertex in DelW (X, v). There are vertices w1 and w2 in NY (u)
which are incomparable. If w1 or w2 is equal to v, then the statement holds.
Hence, we assume that both w1 and w2 are not equal to v. Since G[Y ] is bipartite,
w1 and w2 are not adjacent to v. Hence, NX(w1) = NY (w1) and NX(w2) =
NY (w2) hold. This contradicts that X is a solution and the statement holds. ��

Lemma 10. Let u be a vertex in N2
Y (v) ∩ WS(X). Then u is contained in

DelW (X, v) if and only if there exist vertices w1, w2 ∈ NX(u) which satisfy
NX(w1) ⊂ NX(w2), v ∈ NY (w1), and v 	∈ NY (w2).

Proof. The if part is easily shown by the assumption of the incomparability of
w1 and w2. We next prove the other direction. We assume that u ∈ DelW (X, v).
Hence, there are neighbors w1 and w2 of u such that they are incomparable in
Y . Without loss of generality, NX(w1) ⊂ NX(w2) holds since u is in WS(X).
If NX(w1) = NX(w2), then w1 and w2 are comparable in Y . Since w1 and w2

are incomparable in Y , w1 is adjacent to v and w2 is not adjacent to v (Fig. 3).
Thus, the statement holds. ��

Lemma 11. Let u be a vertex in N(v) ∩ AWS(X) and Z = X ∪ {u, v}. Then
u ∈ DelA (X, v) if and only if u has a neighbor w ∈ Z that is incomparable to v.

Proof. The if part is trivial from the definition of weak-simplicial. We prove the
only if part. We assume that u ∈ DelA (X, v) holds. Since u ∈ DelA (X, v), u
has neighbors w1 and w2 which are incomparable in Z. If w1 or w2 is equal to
v, then u has a neighbor w which is incomparable to v and the statement holds.
We next assume that w1 and w2 are distinct from v. v is not adjacent to w1, w2,
or both of them since G[Y ] is bipartite. Hence, w1 and w2 are comparable in Z
since w1 and w2 are comparable in G[X]. This contradicts that w1 and w2 are
incomparable in Z and the statement holds. ��
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Lemma 12. Let u be a vertex in N2(v) ∩ AWS(X) and Z = X ∪ {u, v}. Then
u is contained in DelA (X, v) if and only if there exists vertices w1, w2 ∈ NZ(u)
which satisfy NZ(w1) ⊂ NZ(w2), v ∈ NZ(w1), and v 	∈ NZ(w2).

Proof. From the assumption, w1 and w2 are incomparable in Z. Hence, the if
part holds. We prove the other direction. We assume that u ∈ DelA (X, v).
Hence, u has vertices w′

1 and w′
2 which are incomparable in Z. Without loss of

generality, NX∪{u}(w′
1) ⊂ NX∪{u}(w′

2) holds. Since w′
1 and w′

2 are incomparable
in G[Z], w′

1 is adjacent to v. Thus, the statement holds. ��

Next, we consider the time complexity of computing DelW (X, v) and
DelA (X, v). For analysing these computing time more precisely, we give two
upper bounds with respect to the number of edges and the size of N2(v) in
bipartite chain graphs. Note that t is the maximum size of a biclique Kt,t that
appears in B as an induced subgraph.

Lemma 13. Let B be a bipartite chain graph and v be a vertex in B. Then the
size of N2(v) is at most Δ.

Proof. Let u be a vertex in N(v) which satisfies N(w) ⊆ N(u) for any w ∈ N(v).
Since N2(v) =

⋃
w∈N(v) N(w), N2(v) = N(u). Hence, the statement holds. ��

Lemma 14. Let B = (X,Y,E) be a bipartite chain graph. Then the number of
edges in B is O(tΔ).

Proof. Let w be a vertex in X which satisfies for N(u) ⊇ N(w) for any u ∈ X.
If d(w) ≤ t, then the statement holds from Lemma 13. We assume that d(w) >
t. We consider the number of edges in B. Let (u1, . . . , ud(w)) be a sequence
of vertices in N(w) such that N(ui) ⊆ N(ui+1) for 1 ≤ i < d(w). For each
d(w) − t + 1 ≤ i ≤ d(w), the sum of |N(ui)| is at most O(tΔ). We next consider
the case for 1 ≤ i ≤ d(w) − t. Since N(ui) is a subset of N(uj) for any i < j,
|N(ui)| is at most t. If |N(ui)| is greater than t, then B has a biclique Kt+1,t+1.
Hence, the number of edges in B is O(tΔ) and the statement holds. ��

Lemma 15. Let v be a vertex in C (X). Then we can compute DelW (X, v) in
O(tΔ) time.

Proof. Let Y be a solution X∪{v}. We first compute vertices in WS(X)∩N2
X(v)

that remain in WS(Y ). From Lemma 7 and Lemma 10, w /∈ WS(Y ) if and
only if there exists vertices w1, w2 ∈ N(u) which satisfy NX(w1) ⊂ NX(w2),
v ∈ NY (w1), and v 	∈ NY (w2). By scanning vertices with distance two from v,
this can be done in linear time in the size of

∑
u∈NX(v) |NX(u)|. Since G[N1:2(v)]

is bipartite chain from Lemma 3,
∑

u∈NX(v) |NX(u)| is at most O(tΔ) from
Lemma 14. Moreover, it can be determined whether w ∈ N2(v) and v are com-
parable or not in this scan operation.

We next compute vertices in WS(X) ∩ NX(v) that remain in WS(Y ). From
Lemma 9, u is contained in DelW (X, v) if and only if u has a neighbor w which is
incomparable to v. Since G[Y ] is bipartite, NX(u) is contained in N2

Y (v). In the
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previous scan operation, we already know whether w and v are comparable or
not. Hence, we can compute whether w ∈ WS(Y ) or not in O(|N(u)|) time.
Since O(

∑
u∈NY (v) |N(u)|) = O(tΔ) holds from Lemma 14, we can find NX(v)∩

DelW (X, v) in O(tΔ) total time. Hence, the statement holds. ��

Lemma 16. Let v be a vertex in C (X). Then we can compute DelA (X, v) in
O(Δ2) time.

Proof. Since v is contained in DelA (X, v), G[X ∪ {v}] is a chordal bipartite
induced subgraph. Here, let Y be a set of vertices X ∪ {v}. In the same fashion
as Lemma 15, we can decide u ∈ AWS(X ∪ {v} ∩ N2

Y (v)) in O(Δ2) total time.
By applying the above procedure for all vertices distance two from v, we can
obtain all vertices in DelA (X, v) in O(Δ2) time since the number of edges can
be bounded in O(Δ2). ��

From Lemmas 15 and 16, we can compute DelW (X, v) and DelA (X, v) in
O(tΔ) and O(Δ2) time for each v ∈ C (X), respectively.

Hence, we can enumerate all children in O(|C (X)| tΔ + |ch(X)| Δ2) time
from Lemmas 5, 7 and 8. In the following theorem, we show the amortized time
complexity and the space usage of ECB-IS.

Theorem 5. ECB-IS enumerates all solutions in amortized O(ktΔ2) time by
using O(n + m) space, where k is the degeneracy of an input graph G, t is the
maximum size of Kt,t that appears in G as an induced subgraph, n is the number
of vertices of G, and m is the number of edges of G.

Proof. ECB-IS uses AWS(X) and WS(X) as data structures. Each data struc-
ture demands linear space and the total space usage of ECB-IS is O(n+m) space.
Hence, the total space usage of ECB-IS is linear in the size of the input. We next
consider the amortized time complexity of ECB-IS. From Lemma 4, ECB-IS
enumerates all solutions. From Lemmas 15 and 16, ECB-IS computes all chil-
dren and updates all data structures in O(|C (X)| tΔ + |ch(X)| Δ2) time. From
Lemma 6, |C (X)| is at most |ch(X)|+kΔ. Hence, we need O((|ch(X)|+kΔ)tΔ+
|ch(X)| Δ2) time to generate all children. Note that this computation time is
bounded by O((|ch(X)| + kt)Δ2). We consider the total time for enumerating
all solutions. Since each iteration X needs O((|ch(X)| + kt)Δ2) time, the total
time is O(

∑
X∈S(|ch(X)| + kt)Δ2) time, where S is the set of solutions. Since

O(
∑

X∈S |ch(X)| Δ2) is bounded by O(|S|Δ2), the total time is O(|S| ktΔ2)
time. Therefore, ECB-IS enumerates all solutions in amortized O(ktΔ2) time. ��

6 Conclusion

In this paper, we propose a new vertex ordering CBEO by relaxing a vertex order-
ing proposed by Uehara [18]. A bipartite graph B is chordal bipartite if and
only if B has CBEO, that is, this vertex ordering characterizes chordal bipartite
graphs. This ordering comes from hypergraph acyclicity and the relation between
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β-acyclic hypergraphs and chordal bipartite graphs. In addition, we also show
that a vertex v is weak-simplicial if and only if G[N1:2[v]] is bipartite chain. By
using these facts, we propose an amortized O(ktΔ2) time algorithm ECB-IS.

As future work, the following two enumeration problems are interesting:
Enumeration of bipartite induced subgraph for dense graphs and enumeration
of chordal bipartite subgraph. For dense graphs, ECB-IS does not achieve an
amortized linear time enumeration. If an input graph is biclique, then the time
complexity of ECB-IS is O(nm) time, where n and m are the number of ver-
tices and the number of edges in an input graph, respectively. Hence, it is
still open whether there is an amortized linear time enumeration algorithm for
chordal bipartite induced subgraph enumeration problem or not. In addition, in
the chordal bipartite subgraph enumeration problem, we cannot use CBEO for
the parent-child relation. Therefore, we need to consider another parent-child
relation.
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Abstract. We strengthen a result by Laskar and Lyle (Discrete Appl.
Math. (2009), 330–338) by proving that it is NP-complete to decide
whether a bipartite planar graph can be partitioned into three indepen-
dent dominating sets. In contrast, we show that this is always possible
for every maximal outerplanar graph with at least three vertices. More-
over, we extend their previous result by proving that deciding whether
a bipartite graph can be partitioned into k independent dominating sets
is NP-complete for every k ≥ 3. We also strengthen a result by Hen-
ning et al. (Discrete Math. (2009), 6451–6458) by showing that it is
NP-complete to determine if a graph has two disjoint independent dom-
inating sets, even when the problem is restricted to triangle-free planar
graphs. Finally, for every k ≥ 3, we show that there is some constant
t depending only on k such that deciding whether a k-regular graph
can be partitioned into t independent dominating sets is NP-complete.
We conclude by deriving moderately exponential-time algorithms for the
problem.

Keywords: Fall coloring · Independent domination ·
Computational complexity

1 Introduction

Domination and independence are two of the most fundamental and heavily-
studied concepts in graph theory. In particular, a partition of the vertices of
a graph into independent sets is known as graph coloring—a central problem
with several practical applications in e.g., scheduling [18], timetabling, and seat
planning [16]. In addition, independence and domination are central to vari-
ous problems in telecommunications, such as adaptive clustering in distributed
wireless networks and various channel assignment type problems such as code
assignment, frequency assignment, and time-slot assignment. For an overview,
see [20, Chap. 30].

Let G = (V,E) be a graph and let S ⊆ V be a subset of its vertices. Here, S
is an independent set if the vertices in S are pairwise non-adjacent. We say that
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S is a dominating set when every vertex of V either is in S or is adjacent to a
vertex in S. Combining these properties, Dunbar et al. [8] studied the problem
of partitioning the vertex set of a graph into sets that are both independent
and dominating. The authors viewed this problem as a kind of a graph coloring
defined as follows. Let Π = {V1, V2, . . . , Vk} be a partition of V . We say that a
vertex v ∈ Vi for i ∈ {1, 2 . . . , k} is colorful if v is adjacent to at least one vertex
in each color class Vj for i �= j. Π is a fall k-coloring if each Vi is independent
and every vertex v ∈ V is colorful. Informally, in a fall coloring, each vertex
has in its immediate neighborhood each of the colors except for its own. For an
illustration of the concept, see Fig. 1. For possible applications of fall k-coloring,
including transceiver frequency allocation and timetabling, see [19, Sect. 4.2].

The maximum k for which a graph G has a fall k-coloring is known as the fall
achromatic number, denoted by ψfall(G). Clearly, we have ψfall(G) ≤ δ(G) + 1,
where δ(G) is the minimum degree of G. Similarly, the minimum k for which
a graph G has a fall k-coloring is known as the fall chromatic number, denoted
by χfall(G). Here, it holds that χ(G) ≤ χfall(G), where χ(G) is the chromatic
number of G (see [8]). The fall set of a graph G, denoted by Fall(G), is the
set of integers k such that G admits a fall k-coloring. In general, Fall(G) is
not guaranteed to be non-empty, but it is finite for finite graphs. For example,
we have that Fall(C6) = {χfall(C6), ψfall(C6)} = {2, 3} with a fall 3-coloring
shown in Fig. 1. To obtain a fall 2-coloring for C6, it suffices to observe that any
2-coloring of a connected bipartite graph is a fall 2-coloring.

In this work, our focus is on the computational complexity of fall coloring.
In this context, it was shown by Heggernes and Telle [12] that for every k ≥ 3, it
is NP-complete to decide whether a given graph G has k ∈ Fall(G). Laskar and
Lyle [14] improved on this in the case of k = 3 by showing that it is NP-complete
to decide whether a given bipartite graph H has 3 ∈ Fall(H). On a positive side,
it was shown by Telle and Proskurowski [22] that deciding whether k ∈ Fall(G)
can be done in polynomial time when G has bounded cliquewidth (or treewidth).
This can also be derived from the fact that the property of being fall k-colorable
can be expressed in monadic second order logic (for details, see [7, Sect. 7.4]).
For chordal graphs G, it is known that the fall set is either empty or contains
exactly δ(G) + 1. To the best of our knowledge, the complexity of deciding this
case is open. For subclasses of chordal graphs, the fall sets of threshold and
split graphs can be characterized in polynomial time [19]. Despite independence
and domination being central concepts in graph theory, we are unaware of any
further hardness results for fall coloring (see also e.g., [11, Sect. 7]).

We extend and strengthen previous hardness results for fall coloring, and
provide new results as follows:

– In Sect. 3, we extend the result of Laskar and Lyle [14] by proving that for k ≥
3, it is NP-complete to decide whether a bipartite graph is fall k-colorable.
Further, for the case of k = 3, we strengthen their result considerably by
showing it is NP-complete to decide whether a bipartite planar graph is fall
3-colorable.
If we do not insist on a partition, we prove that deciding whether a triangle-
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free planar graph contains two disjoint independent dominating sets is NP-
complete, strengthening the result of Henning et al. [13] who only showed it
for general graphs.

– In Sect. 4, we turn our attention to regular graphs. While fall coloring 2-
regular graphs is easy, we prove that for every k ≥ 3, there is some t—
dependant only on k—such that it is NP-complete to decide whether a k-
regular graph G is fall t-colorable (see the section for precise statements).

– In Sect. 5, we conclude by detailing some further algorithmic consequences of
our hardness results presented in Sect. 3. In addition, we derive moderately
exponential-time algorithms for fall coloring.

2 Preliminaries

For a positive integer n, we write [n] = {1, 2, . . . , n}. All graphs we consider in
this work are undirected and finite.

Graph Theory. Let G = (V,E) be a graph. For any s ≥ 1, we denote by Gs the
sth power of G, which is G with edges added between every two vertices at a
distance no more than s. In particular, G2 is called the square of G. By G

1
s , we

mean G with each of its edges subdivided s − 1 times.
A k-coloring of a graph G is a function c : V → [k]. A coloring is a k-coloring

for some k ≤ |V |. We say that a coloring c is proper if c(u) �= c(v) for every
edge uv ∈ E. In particular, if G admits a proper k-coloring, we say that G is
k-colorable. The chromatic number of G, denoted by χ(G), is the smallest k such
that G is k-colorable.

Computational Problems. The problem of deciding whether a given graph G
has χ(G) ≤ k is NP-complete for every k ≥ 3 (see e.g., [10]). We refer to this
computational problem as k-Coloring. In a closely related problem known as
Edge k-Coloring, the task is to decide whether the edges of the input graph
can be assigned k colors such that every two adjacent edges receive a distinct
color. Similarly, for every k ≥ 3, this problem is also NP-complete even when
the input graph is k-regular as shown by Leven and Galil [15]. Our focus is on
the following problem and its computational complexity.

Fall k-Coloring
Instance: A graph G = (V,E).
Question: Can V be partitioned into k independent dominating sets, i.e.,
is k ∈ Fall(G)?

3 Hardness Results for Planar and Bipartite Graphs

In this section, we prove that deciding whether a bipartite planar graph can be
fall 3-colored is NP-complete. Moreover, we show that for every k ≥ 3, it is
NP-complete to decide whether a bipartite graph can be fall k-colored.
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We begin with the following construction that will be useful to us throughout
the section.

Lemma 1. 3-Coloring reduces in polynomial-time to Fall 3-Coloring.

Proof. Let G be an instance of 3-Coloring. In polynomial time, we will create
the following instance G′ of Fall 3-Coloring, such that G is 3-colorable if and
only if G′ is fall 3-colorable.

The graph G′ = (V ′, E′) is obtained from G by subdividing each edge, and
by identifying each vertex in V with a copy of C6. Formally, we let

V ′ = V ∪ {xuv | uv ∈ E} ∪ {wvi | v ∈ V, i ∈ [4]}, and

E′ = {uxuv, vxuv | uv ∈ E} ∪ {vwv1, vwv5, wviwvi+1 | v ∈ V, i ∈ [4]}.

This finishes the construction of G′.
Let c : V → [3] be a proper vertex-coloring of G, and let us construct a

fall 3-coloring c′ : V ′ → [3] as follows. We retain the coloring of the vertices
in V , that is, c′(v) = c(v) for every v ∈ V . Then, as the degree of each xuv is
two, it holds that in any valid fall 3-coloring of G′, the colors from [3] must be
bijectively mapped to the closed neighborhood {u, v, xuv} of vuv. Thus, we set
c′(xuv) = f , where f is the unique color in [3] neither c(u) nor c(v). Finally,
consider an arbitrary vertex v ∈ V . Without loss of generality, suppose c(v) = 1.
We will then finish the vertex-coloring c′ as follows (see Fig. 1, where C6 	 F3):

c′(wv3) = 1 , c′(wv1) = 2 , c′(wv4) = 2 , c′(wv2) = 3 , c′(wv5) = 3 .

It is straightforward to verify that c′ is indeed a fall 3-coloring of G′.
For the other direction, let c′ be a fall 3-coloring of G′. Again, because the

degree of each xuv is two, it holds that c′(u) �= c′(v). Therefore, c′ restricted to
G is a proper 3-coloring for G. This concludes the proof. 
�
Combining the previous lemma with the well-known fact that deciding whether
a planar graph of maximum degree 4 can be properly 3-colored is NP-
complete [10], we obtain the following.

Corollary 2. It is NP-complete to decide whether a bipartite planar graph G
of maximum degree 6 is fall 3-colorable.

Proof. It suffices to observe that the construction of Lemma 1 does not break
planarity (i.e., if G is planar, so is G′) and that after subdividing the edges of G
the resulting graph G′ is bipartite. Finally, a vertex v of degree Δ ≤ 4 in G has
degree Δ + 2 ≤ 6 in G′ after v is identified with a copy of C6, whereas the new
vertices (in copies of C6 or from subdividing) have degree 2. 
�

In order to show that fall k-coloring is hard for every k ≥ 3 for the class of
bipartite graphs, we make use of the following construction. As a reminder, G×H
is the categorical product of graphs G and H with V (G × H) = V (G) × V (H)
and (u1, v1)(u2, v2) ∈ E(G × H) when u1u2 ∈ E(G) and v1v2 ∈ E(H).
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Fig. 1. The graphs Fk = K2 × Kk for 3 ≤ k ≤ 5 each with a fall k-coloring shown.

Proposition 3. For every k ≥ 3, the graph Fk = K2 × Kk is bipartite and
uniquely fall k-colorable.

Proof. It is well-known that G × H is bipartite if either G or H is bipartite.
Thus, as K2 is bipartite, so is Fk.

It follows from Dunbar et al. [8, Theorem 6] that if s and k are distinct
positive integers both greater than one, then Ks × Kk has a fall k-coloring. In
our case, s = 2 and k ≥ 3, so Fk admits a fall k-coloring. The fact that Fk has
a unique fall k-coloring follows from [19, Theorem 15]. 
�
We are then ready to proceed with the reduction, following the idea of Lemma 1.

Lemma 4. For every k ≥ 4, it is NP-complete to decide whether a bipartite
graph G is fall k-colorable.

Proof. We show this by extending the method in Lemma 1. Given a graph G =
(V,E), we construct in polynomial time a bipartite graph G′ = (V ′, E′), so that
G′ is fall k-colorable if and only if G is k-colorable. Then, since it is NP-complete
to decide whether G is k-colorable, the result will follow.

As before, we begin by subdividing every edge of G once, and identifying each
vertex of V with a copy of Fk. Then, for each vertex xuv created by subdividing
some edge uv of G, we create k − 3 disjoint copies of Fk, and arbitrarily select
one vertex in each such copy to make adjacent to xuv. Note that when k = 3,
this simplifies to the construction in Lemma 1.

First, we observe that the resulting graph G′ is bipartite. It consists of one
copy of G

1
2 and multiple disjoint copies of Fk = K2 × Kk, connected to G

1
2

by either cut-vertices or cut-edges. Since G
1
2 and Fk are both bipartite, G′ is

bipartite as well.
Let c be a proper k-coloring of G. We extend it to a fall k-coloring c′ of G′ as

follows. For every edge uv ∈ E, the vertex xuv is colored arbitrarily with some
color distinct from both c(u) and c(v). Then, its remaining k − 3 neighbors are
each given a different color, so that xuv is colorful. Now every copy of Fk in the
graph has exactly one colored vertex; since Fk has a unique fall k-coloring (up to
isomorphism) by Proposition 3, we use this to complete c′.
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For the other direction, let c′ be a fall k-coloring of G′. Then, since each xuv

has k −1 neighbours and is colorful, c′(u) �= c′(v). Restricting c′ to V , we obtain
a proper k-coloring of G. 
�
Theorem 5. For every k ≥ 3, it is NP-complete to decide whether a bipartite
graph G is fall k-colorable.

Proof. The proof follows by combining Lemmas 1 and 4. 
�
We also observe the following slightly stronger corollary.

Corollary 6. For every k ≥ 3, it is NP-complete to decide whether a bipartite
graph G of maximum degree 3(k − 1) is fall k-colorable.

Proof. We use Lemmas 1 and 4 with the fact that deciding whether a graph G
has χ(G) ≤ k is NP-complete for every k ≥ 3 even when G has maximum degree
Δ = 2k − 2 (see [17, Theorem 3]). Now, Fk = K2 × Kk is (k − 1)-regular, so
a vertex of degree Δ in G has degree Δ + k − 1 = 3k − 3 in G′. At the same
time, the new vertices (from subdividing, or copies of Fk) have degree at most
k < 3k − 3. The claim follows. 
�

After Corollary 2, it is natural to wonder what are the weakest additional
constraints to place on the structure of a planar graph so that say fall 3-coloring is
solvable in polynomial time. In the following, we show that maximal outerplanar
graphs with at least three vertices admit a fall 3-coloring, and in fact no other
fall colorings. We begin with the following two propositions; for short proofs of
both we refer the reader to [19].

Proposition 7. Let G be a chordal graph. Then either Fall(G) = ∅ or Fall(G) =
{δ(G) + 1}.
Proposition 8. If G is a uniquely k-colorable graph, then G is fall k-colorable.

These results will be combined with the following theorem.

Theorem 9 (Chartrand and Geller [5]). An outerplanar graph G with at
least three vertices is uniquely 3-colorable if and only if it is maximal outerplanar.

The claimed result is now obtained as follows.

Theorem 10. Let G be a maximal outerplanar graph with at least three vertices.
Then Fall(G) = {3}.
Proof. As every maximal outerplanar graph G is chordal, it follows by Propo-
sition 7 that Fall(G) = ∅ or Fall(G) = {δ(G) + 1}. It is well-known that every
maximal outerplanar graph has at least two vertices of degree two. By combining
Theorem 9 with Proposition 8, we have that Fall(G) = {δ(G) + 1} = {3}. 
�
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x1 x2 x3 x4 x5

x1 x2 x3 x4 x5

C1

C2

C3

Fig. 2. An instance ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x4 ∨ x5) of Planar
Monotone 3-SAT, which always admits a planar drawing G(ϕ). Conceptually, the
dashed horizontal line separates the upper part containing all positive literals and
clauses from the lower part containing all negative literals and clauses.

Also, in the light of Corollary 2, it should be recalled that any proper 2-
coloring of a connected bipartite graph is a fall 2-coloring. Thus, the statement
of Corollary 2 would not hold for the case of k = 2 colors (unless P = NP).
However, what if we do not insist on a partition of the vertices but are merely
interested in the existence of two disjoint independent dominating sets? As we
will show, this problem is NP-complete for planar graphs; in fact even those that
are triangle-free. This result is a considerable strengthening of an earlier result
of Henning et al. [13], who showed it only for general graphs.

In the Planar Monotone 3-SAT problem, we are given a 3-SAT formula
ϕ with m clauses over n variables x1, x2, . . . xn, where each clause c1, c2, . . . , cm
comprises either three positive literals or three negative literals. We call such
clauses positive and negative, respectively. Moreover, the associated graph G(ϕ)
has a 2-clique (i.e., an edge) {xi, xi} for each variable xi, a vertex for each cj ,
and an edge between a literal contained in a clause and the corresponding clause.
In particular, G(ϕ) admits a planar drawing such that every 2-clique sits on a
horizontal line with the line intersecting their edges. In addition, every positive
clause is placed above the line, while every negative clause is placed below the
line (see Fig. 2). The fact that Planar Monotone 3-SAT is NP-complete
and that G(ϕ) admits the claimed planar drawing follows from de Berg and
Khosravi [1].

Theorem 11. It is NP-complete to decide whether a given triangle-free planar
graph has two disjoint independent dominating sets.

Proof. The proof is by a polynomial-time reduction from Planar Monotone
3-SAT, whose input is a monotone 3-SAT instance ϕ with a set of m clauses
C = {C1, C2, . . . , Cm} over the n variables X = {x1, x2, . . . , xn}. Since our goal
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xi ci

bi

aixi

Fig. 3. The variable gadget Xi. If I1 and I2 are two disjoint independent dominating
sets, then ai and ci must both be in either I1 or I2. Furthermore, exactly one of xi and
xi can be in I1 ∪ I2.

is to construct a graph G′ that is both triangle-free and planar, it is convenient
to start from a planar drawing of G(ϕ) as described, and proceed as follows.

For each variable xi, we extend its corresponding 2-clique in G(ϕ) by replac-
ing it with the following variable gadget Xi (see Fig. 3). Here, Xi is a 5-cycle
on the vertices xi, ai, bi, ci, and xi (in clockwise order) with a pendant vertex
attached to each of ai, bi, and ci. Otherwise, we retain the structure of G(ϕ)
finishing our construction of G′. Clearly, as G(ϕ) is planar and triangle-free, so is
G′. We will then prove that ϕ is satisfiable if and only if G′ contains two disjoint
independent dominating sets.

Let ϕ be satisfiable under the truth assignment τ = {0, 1}n. We construct
two disjoint independent dominating sets I1 and I2 as follows. For each i ∈ [n],
if τ sets xi to 1, put xi to I1. Otherwise, if τ sets xi to 0, put xi to I1. Put
every bi to I1, and every ai and ci to I2. The pendant vertices of ai and ci are
put to I1, while the pendant vertices of bi are put to I2. For each j ∈ [m], put
Cj in I2. Observe that both I1 and I2 are independent. Moreover, every vertex
of Xi is dominated by a vertex in I1, and also by a vertex in I2. Every vertex
Cj is dominated by a vertex in I2, and since τ is a satisfying assignment, Cj

must also be adjacent to a vertex in I1. We conclude that I1 and I2 are disjoint
independent dominating sets of G′.

Conversely, suppose that I1 and I2 are two disjoint independent dominating
sets of G′. Clearly, each clause Cj for j ∈ [m] must be dominated by at least
one xi (or xi in the case of a negative clause). For each i ∈ [n], observe that ai

and ci must both be in I1 or I2 (for otherwise the pendant of bi could not be
dominated by both a vertex of I1 and a vertex of I2). It follows that at most
one of xi and xi can be in I1 ∪ I2. Thus, the vertices in I1 ∪ I2 corresponding
to variable vertices encode a satisfying assignment τ for ϕ. Finally, notice that
neither xi or xi are in I1 ∪ I2, the truth value of the corresponding variable does
not affect the satisfiability of ϕ, and can thus be set arbitrarily in τ . 
�



360 J. Lauri and C. Mitillos

4 Hardness Results for Regular Graphs

In this section, we consider the complexity of fall coloring regular graphs. For
connected 2-regular graphs (i.e., cycles), it is not difficult to verify that 2 ∈
Fall(Cn) if and only if 2 | n and that 3 ∈ Fall(Cn) if and only if 3 | n with no
other integer being in Fall(Cn), for any n (see e.g., [8,19]). However, as we will
show next, the problem of fall coloring 3-regular graphs is considerably more
difficult.

We begin by recalling the following result.

Theorem 12 (Heggernes and Telle [12]). It is NP-complete to decide if the
square of a cubic graph is 4-chromatic.

In addition, we make use of the following fact.

Theorem 13 ([19]). A k-regular graph G is fall (k + 1)-colorable if and only if
G2 is (k + 1)-chromatic.

By combining the two previous theorems, we arrive at the following.

Theorem 14. It is NP-complete to decide whether a 3-regular graph G is fall
4-colorable.

The previous result suggests that there may be similar intractable fall-
colorability problems for regular graphs of higher degree. With this in mind,
we use different constructions for regular graphs, to show that fall coloring k-
regular graphs for k > 3 is NP-complete as well.

Theorem 15. For every k ≥ 3, it is NP-complete to decide whether a (2k −2)-
regular graph G is fall k-colorable.

Proof. The proof is by a polynomial-time reduction from Edge k-Coloring,
where we assume that k ≥ 3 and that the input graph G is k-regular. Let
G′ = L(G), that is, G′ is the line graph of G. Because G is k-regular, it is
straightforward to verify that G′ is (2k − 2)-regular. We then prove that G
admits a proper edge k-coloring if and only if G′ admits a fall k-coloring.

Let h be a proper edge k-coloring of G. We construct a vertex-coloring c′ of
G′ as follows. Let c′(xuv) = h(uv), where uv ∈ E(G) and xuv is the vertex of
G′ corresponding to the edge uv. By construction, xuv for every uv ∈ E(G) is
adjacent to precisely the vertices corresponding to the edges adjacent to u and
v. Since h is a proper edge-coloring, h has colored these edges differently from
h(uv) = c′(xuv). Furthermore, all the k edges incident to the same vertex will
receive k different colors. As such, the corresponding vertices in G′ will all be
colorful. We conclude that c′ is a fall k-coloring for G′.

In the other direction, let c′ be a fall k-coloring of G′. Consider any xuv of
G′. Because c′ is a fall k-coloring, each neighbor of xuv has received a distinct
color. Again, xuv is adjacent to precisely the vertices that correspond to edges
adjacent to u and v in G. Thus, we obtain immediately a proper edge k-coloring
h from c′, concluding the proof. 
�
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We can get a similar result for regular graphs with vertices of odd degree
by using the Cartesian product of graphs G and H, denoted as G�H. As a
reminder, V (G�H) = V (G)×V (H) and (u1, v1)(u2, v2) ∈ E(G�H) when either
u1u2 ∈ E(G) and v1 = v2 or u1 = u2 and v1v2 ∈ E(H).

Theorem 16. For every k ≥ 3, it is NP-complete to decide whether a (2k −1)-
regular graph G is fall k-colorable.

Proof. It suffices to modify the graph G′ from the proof of Theorem 15 to obtain
a graph with mostly the same structure; in particular, a graph which can be fall
k-colored exactly when G′ can, but whose vertices have common degree on more
than those of G′. One such construction is G′′ = G′�K2. It is easy to see that
Fall(G′′) = Fall(G′) (see [19]), so G′′ has exactly the properties we require. 
�

5 Further Algorithmic Consequences

In this section, we give further algorithmic consequences of our hardness results.
A popular measure—especially from an algorithmic viewpoint—for the “tree-

likeness” of a graph is captured by the notion of treewidth. Here, a tree decom-
position of G is a pair (T, {Xi : i ∈ I}) where Xi ⊆ V , i ∈ I, and T is a tree
with elements of I as nodes such that:

1. for each edge uv ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi, and
2. for each vertex v ∈ V , T [{ i ∈ I | v ∈ Xi }] is a tree with at least one node.

The width of a tree decomposition is maxi∈I |Xi|−1. The treewidth of G, denoted
by tw(G), is the minimum width taken over all tree decompositions of G.

The following result is easy to observe, but we include its proof for complete-
ness.

Theorem 17. Let G be a graph of bounded treewidth. The fall set Fall(G) can
be determined in polynomial time.

Proof. It is well-known that every graph of treewidth at most p has a vertex of
degree at most p. It follows that the largest integer in Fall(G) is ψfall(G) ≤ p+1.
Thus, it suffices to test whether i ∈ Fall(G) for i ∈ {1, 2, . . . , p+1}. Furthermore,
the fall i-colorability of G can be tested in polynomial time by the result of
Telle and Proskurowski [22]. (Alternatively, this can be seen by observing that
fall i-colorability can be characterized in monadic second order logic, and then
applying the result of Courcelle [6]). The claim follows. 
�
At this point, it will be useful to recall that a parameterized problem I is a
pair (x, k), where x is drawn from a fixed, finite alphabet and k is an integer
called the parameter. Then, a kernel for (x, k) is a polynomial-time algorithm
that returns an instance (x′, k′) of I such that (x, k) is a YES-instance if and
only if (x′, k′) is a YES-instance, and |x′| ≤ g(k), for some computable function
g : N → N. If g(k) is a polynomial (exponential) function of k, we say that I
admits a polynomial (exponential) kernel (for more, see Cygan et al. [7]).
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A consequence of Theorem 17 is that for every k ≥ 1, Fall k-Coloring
admits an exponential kernel. Here, we will observe that Lemma 1 actually proves
that this is the best possible, i.e., that there is no polynomial kernel under
reasonable complexity-theoretic assumptions.

First, the gadget C6 each vertex of G is identified with in Lemma 1 has
treewidth two. Second, this identification increases the treewidth of G by only
an additive constant. To make use of these facts, we recall that Bodlaender et
al. [3] proved that 3-Coloring does not admit a polynomial kernel parame-
terized by treewidth unless NP ⊆ coNP/poly. At this point, it is clear that
the proof of Lemma 1 is actually a parameter-preserving transformation (see [7,
Theorem 15.15] or [4, Sect. 3]) guaranteeing tw(G′) ≤ tw(G) + 2. We obtain the
following.

Theorem 18. Fall 3-Coloring parameterized by treewidth does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

A further consequence of Lemma 1 is that fall k-coloring is difficult algo-
rithmically, even when the number of colors is small and the graph is planar.
To make this more precise, we recall the well-known exponential time hypothesis
(ETH), which is a conjecture stating that there is a constant c > 0 such that
3-SAT cannot be solved in time O(2cn), where n is the number of variables.

Corollary 19. Fall 3-Coloring for planar graphs cannot be solved in time
2o(

√
n) unless ETH fails, where n is the number of vertices. However, the problem

admits an algorithm running in time 2O(
√
n) for planar graphs.

Proof. It suffices to observe that the graph G′ obtained in the proof of Lemma 1
has size linear in the size of the input graph G. The claimed lower bound then
follows by a known chain of reductions originating from 3-SAT (see e.g., [7,
Theorem 14.3]).

The claimed upper bound follows from combining the single-exponential
dynamic programming algorithm on a tree decomposition of van Rooij et al. [21]
with the fact that an n-vertex planar graph has treewidth O(

√
n) (for a proof,

see [9, Theorem 3.17]). 
�
Finally, observe that the naive exponential-time algorithm for deciding

whether k ∈ Fall(G) enumerates all possible k-colorings of V (G) and thus
requires knnO(1) time. A much faster exponential-time algorithm is obtained
as follows.

Theorem 20. Fall k-Coloring can be solved in 3nnO(1) time and polynomial
space. In exponential space, the time can be improved to 2nnO(1).

Proof. The claimed algorithms are obtained by reducing the problem to Set
Partition, in which we are given a universe U = [n], a set family F ⊆ 2U , and
an integer k. The goal is to decide whether U admits a partition into k members.

We enumerate all the 2n vertex subsets of the n-vertex input graph G and
add precisely those to F that form an independent dominating set, a prop-
erty decidable in polynomial time. To finish the proof, we apply the result of
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Björklund et al. [2, Thms. 2 and 5] stating that Set Partition can be solved
in 2nnO(1) time. Further, if membership in F can be decided in nO(1) time, then
Set Partition can be solved in 3nnO(1) time and nO(1) space. 
�

6 Conclusions

We further studied the problem of partitioning a graph into independent dom-
inating sets, also known as fall coloring. Despite the centrality of the concepts
involved, independence and domination, a complete understanding of the com-
plexity fall coloring is lacking. Towards this end, our work gives new results
and strengthens previously known hardness results on structured graph classes,
including various planar graphs, bipartite graphs, and regular graphs.

An interesting direction for future work is finding combinatorial algorithms
for fall coloring classes of bounded treewidth (or in fact, bounded cliquewidth).
Indeed, the algorithms following from the proof of Theorem 17 are not practical.
For concreteness, one could consider outerplanar graphs or cographs.
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Abstract. We consider a single machine scheduling problem to mini-
mize total flow time under precedence constraints, which is NP-hard.
Matsumoto et al. proposed an exact algorithm that consists of two
phases: first construct a Multi-valued Decision Diagram (MDD) to rep-
resent feasible permutations of jobs, and then find the shortest path
in the MDD which corresponds to the optimal solution. Although their
algorithm performs significantly better than standard IP solvers for prob-
lems with dense constraints, the performance rapidly diminishes when
the number of constraints decreases, which is due to the exponential
growth of MDDs. In this paper, we introduce an equivalence relation
among feasible permutations and show that it suffices to construct an
MDD that maintains only one representative for each equivalence class.
Experimental results show that our algorithm outperforms Matsumoto et
al.’s algorithm for problems with sparse constraints, while keeping good
performance for dense constraints. Moreover, we show that Matsumoto
et al.’s algorithm can be extended for solving a more general problem of
minimizing weighted total flow time.

Keywords: Combinatorial optimization · Job scheduling ·
Precedence constraints · MDD

1 Introduction

A single machine scheduling problem to minimize total flow time under prece-
dence constraints (1|prec|∑ cj) is fundamental in the scheduling literature. The
problem is, given processing times of n jobs and precedence constraints for pairs
of jobs, to find an order of n jobs (permutation) which minimizes the sum of wait
times and process times of all the jobs (called flow time) among those satisfying
the precedence constraints [2]. The problem is known to be NP-hard [12,13] and
various 2-approximate polynomial time algorithms are proposed [4,5,10,14,20].

On the other hand, non-trivial exact algorithms for solving the problems
are not known until recently, except standard methods on integer programming
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formulations. Matsumoto et al. [15] proposed an exact algorithm using a vari-
ant of the Multi-valued Decision Diagrams (MDD) [16]. It can efficiently con-
struct a MDD expressing linear extensions from given precedence constraints,
and solve the problem in linear time in terms of the size of the diagram, by
reducing the scheduling problem to the shortest path problem on the diagram.
The algorithm of Matsumoto et al. outperformed standard IP-based methods
for synthetic problems with dense precedence constraints. However, Their algo-
rithm performs worse when constraints are sparse, where the resulting MDDs
have exponentially large size.

In this paper, we propose a more efficient exact algorithm which overcomes
the weakness of Matsumoto et al.’s algorithm. Our key idea is to introduce some
equivalence relations between linear extensions and exploit the equivalence prop-
erties to obtain a more succinct MDD which represents the equivalent feasible
solutions.

In the experiments on synthetic data sets, our method performs more than
10 times faster than standard IP-based methods and improves Matsumoto et
al.’s method for sparse constraints at the same time.

Moreover, we show that Matsumoto et al.’s algorithm can be extended for
solving a more general problem of minimizing weighted total flow time under
precedence constraints (1|prec|∑ wjcj).

1.1 Comparison to Previous Work

Succinct data structures such as BDDs (Binary Decision Diagrams) [1,3], ZDDs
(Zero Suppressed BDDs) [11,17,18] and MDDs are used for counting and solving
NP-hard problems. To the best of our knowledge, there are few diagram-based
approaches to scheduling problems except Matsumoto et al. [15], and Ciré and
van Hoeve [6,7]. The work of Ciré and van Hoeve [6,7] deals with a different
scheduling problem which has release times and deadlines and not applicable to
ours.

A notable advantage of our method and other diagram-based methods over
standard IP-based ones is that once the feasible set is represented by a diagram,
we can reuse the diagram for different objectives, which save much computation
time. This is also advantageous for the online setting, e.g. [8,19].

2 Preliminaries

Let [n] = {1, 2, . . . , n} denote the set of jobs and Sn denote the set of all per-
mutations over [n], where each permutation is represented by a vector π =
(π1, π2, . . . , πn). For example, S3 = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2),
(3, 2, 1)}. For a permutation π ∈ Sn, we define the inverse permutation of π
as π−1 = (π−1

1 , . . . , π−1
n ), where π−1

j = i if and only if πi = j. A permutation
π ∈ Sn specifies a job scheduling, i.e., an order of jobs to be processed, in the
way that jobs i should be processed in the decreasing order of πi. Here, πi can
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be interpreted as the priority of job i. In other words, the order of jobs specified
by a permutation π is π−1

n → π−1
n−1 → · · · → π−1

1 .
For each job i ∈ [n], let pi ∈ R be the processing time, and define the

completion time ci =
∑

j:πj≥πi
pj which is sum of process times and wait times.

Then the flow time of a job scheduling π ∈ Sn is defined as
∑n

i=1 ci. The flow
time of π is the sum of completion times over all jobs under the order specified
by π. For example, a permutation π = (4, 2, 1, 3) specifies the order of jobs
1 → 4 → 2 → 3, and thus the sum of process times and wait times of all the
jobs is p1 + (p1 + p4) + (p1 + p4 + p2) + (p1 + p4 + p2 + p3), which amounts to
4p1 + 3p4 + 2p2 + p3 = π · p.

Precedence constraints over the jobs are represented as a directed acyclic
graph (DAG) G = ([n], E), where a directed edge (i, j) ∈ E represents the
constraint that job i has to be done before job j. We call G a constraint graph.
We denote by SG the set of permutations satisfying the precedence constraints
specified by G (i.e., linear extensions of G). More specifically,

SG = {π ∈ Sn | ∀(i, j) ∈ E, πi > πj}.

Similarly, the set S−1
G of inverse permutations in SG is defined as

S−1
G = {π−1 | π ∈ SG}.

An example is given in Fig. 1.
Now, we are ready to define a single machine scheduling problem to minimize

total flow time under precedence constraintsas follows:

Input: DAG G = ([n], E), process time vector p ∈ R
n

Output: π = argmin
π∈SG

n∑

i=1

ci = argmin
π∈SG

π · p (1)

where, ci =
∑

j:πj≥πi

pj

3 Previous Work of Matsumoto et al.

We review the previous work of Matsumoto et al. [15], where they propose an
algorithm of finding an optimal solution of single machine scheduling problem to
minimize total flow time under precedence constraints by using a data structure
called a π-MDD.

In what follows, we identify a permutation π = (π1, π2, . . . , πn) with the
string π1π2 · · · πn of length n by concatenating all components of π. Then, S−1

G

can be regarded as a set of strings. A π-MDD for a constraint graph G is defined
as the smallest DFA1 that only accepts the strings in S−1

G . Figure 2 shows an

1 More precisely, we omit non-accepting states and transitions to non-accepting states
in the automaton.
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Fig. 1. DAG G1 representing prece-
dence constraints S−1

G1
= {(2, 3, 1, 4),

(2, 3, 4, 1), (2, 4, 3, 1), (3, 2, 1, 4), (3, 2, 4, 1),
(3, 4, 2, 1), (4, 2, 3, 1), (4, 3, 2, 1)}.

Fig. 2. A π-MDD that represents lin-
ear extensions in SG1 satisfying prece-
dence constraints G1 in Fig. 1

example of π-MDDs. We note that (i) a π-MDD is a DAG with the root (initial
state) and a single leaf (unique accepting state) and every edge e is labeled with a
job l(e) ∈ [n]. (ii) each path (e1, e2, . . . , en) from the root to the leaf corresponds
to the permutation (l(e1), l(e2), . . . , l(en)) that is accepted by the π-MDD. For
a π-MDD D, we denote by L(D) the set of all strings that D accepts. Clearly,
a π-MDD D for G should satisfy L(D) = S−1

G . We define the size of D, denoted
by |D|, as the number of edges in D.

Matsumoto et al.’s method for solving problem (1) consists of the following
two steps.

Step 1. Construct a π-MDD D = (VD, ED) for a given DAG G = ([n], E). See
algorithm MakePiMDD in Algorithm 1. Note that G|V ′ is the subgraph of
G induced by V ′.

Step 2. (i) Assign weights ae = dpl(e) to each edge e ∈ ED of π-MDD D,
where d is the depth of edge e from the root of D. (ii) Find the shortest path
(e1, e2, . . . , en) from the root to the leaf in the weighted graph obtained in
(i). (iii) Output π∗ where (π∗)−1 = (l(e1), l(e2), . . . , l(en)) ∈ S−1

G .

Below we describe an outline of Algorithm MakePiMDD for step 1.
Given a constraint graph G = (V,E) with V ⊆ [n], MakePiMDD recursively

constructs a π-MDD DG for G. Every node of DG is associated with a subset of
V and thus is identified with the subset. The root and the leaf of DG correspond
to the whole set V and the empty set ∅, respectively. The root V has outgoing
edges to a node V ′ ⊂ V if and only if there exists a node v ∈ V such that (i)
v = V \V ′ and (ii) the out-degree of v is zero in G.

The following fact is shown for Step 1.

Lemma 1 (Matsumoto et al. [15]). Given a constraint graph G = ([n], E),
MakePiMDD outputs a π-MDD D such that L(D) = S−1

G .
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Algorithm 1. MakePiMDD
Require: DAG G = (V, E), where V ⊆ [n]
1: if V = ∅ then
2: return node ∅
3: end if
4: D ← (VD, ED) with VD = {V } and ED = ∅.
5: for each v ∈ V whose outdegree is 0 in G = (V, E) do
6: V ′ ← V \ {v}
7: if have never memorized the π-MDD DG for G then
8: D′ = (VD′ , ED′) ← MakePiMDD(G|V ′)
9: end if

10: VD ← VD ∪ VD′

11: ED ← ED ∪ ED′ ∪ {(V, V ′)}
12: end for
13: memorize D as DG

14: return DG

The correctness of Step 2 can be easily verified from the following observation.
Assignment of weights in Step 2 (ii) ensures that for each path (e1, e2, . . . , en)
from the root to the leaf and the corresponding permutation π−1 = (l(e1), l(e2),
. . . , l(en)), the weighted length of the path is exactly the flow time of π:

∑n
d=1 aed

=
∑n

d=1 dpl(ed) =
∑n

d=1 dpπ−1
d

=
∑n

i=1 πipi = π · p.
Now we give a characterization of π-MDDs, which is not explicitly given

in [15]. Let <G be the partial order naturally defined by a constraing graph
G = ([n], E). That is, for any u, v ∈ [n], v ≤G u if and only if there exists a
directed path from u to v in G. A set L ⊆ [n] is called a lower set of G if for
any u, v ∈ [n], u ∈ L and v <G u imply v ∈ L. The family of lower sets of G
is denoted as LG ⊆ 2[n]. The following relationship between the family of lower
sets LG and linear extensions SG of G is well-known and easily verified.

Proposition 1. The partially ordered set (LG,⊇) is a distributive lattice with
the minimum element ∅ and the maximum element [n] and for each maximal
chain L1 = [n] ⊇ L2 ⊇ · · · ⊇ Ln+1 = ∅, there exists a linear extension π =
(π1, π2, . . . , πn) ∈ SG such that Li = Li+1 ∪ {π−1

i }.
From the proposition above, we immediately get the characterization as
described in the following corollary.

Corollary 1. The π-MDD D = (VD, ED) for a constraint graph G is isomorphic
to the Hasse diagram of the partially ordered set (LG,⊇). That is, there exsits a one-
to-one correspondence between VD and the lower sets in LG (the root and the leaf
correspond to [n] and ∅, respectively) and for any L,L′ ∈ L such that L = L′ ∪{u},
there exists a directed edge e = (L,L′) with l(e) = u in D.

Using the new characterization, we give a performance bound of Matsumoto
et al.’s method in terms of the size of LG.
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Theorem 1 ([15]). For any constraint graph G = ([n], E), we can find an
optimal solution of problem (1) in O(n|LG|) time.

4 Main Result

Intuitively, when given fewer constraints in G we would have an exponentially
many lower sets in LG and thus Matsumoto et al.’s method would take exponen-
tial time as suggested in Theorem 1. In particular, the worst case occurs when
no constraints are given (i.e., no edges in the constraint graph G). In this case,
any subset in [n] is a lower set and thus we have LG = 2[n]. On the other hand, if
no constraints are given, then we can easily obtain an optimal solution: process
jobs i in the increasing order of the process time pi. In other words, we can solve
the problem in O(n log n) time by just sorting (p1, p2, . . . , pn).

Our method is based on the observation above. Suppose we are given a subset
A of jobs that can be somehow regarded as a no constraint set with respect to
the linear extensions SG, then we can find an optimal (partial) solution over
A by sorting. So when constructing π-MDD for G, we do not need to consider
all |A|! permutations over A but it suffices to fix a representative permutation
over A, which reduces the number of paths by a factor of 1/|A|!. In this way, we
construct a succinct π-MDD that accepts only representative permutations.

4.1 Equivalence Relation

Definition 1 (Input and output sets). For a DAG G = ([n], E), and each
node v ∈ [n], input set Iv and output set Ov of v are defined respectively as
follows:

Iv = {v′ ∈ [n] | (v′, v) ∈ E}, Ov = {v′ ∈ [n] | (v, v′) ∈ E}.

Definition 2 (Equivalence relations between jobs). Given a DAG G =
([n], E), job i and j are equivalent if and only if Ii = Ij and Oi = Oj and
denoted as i �G j. If it is clear from the context, we abbreviate i � j.

The equivalence relation �G implies a partition over [n]

[n] = A1 ∪ A2 ∪ · · · ∪ AN ,

where each Aj (j = 1, . . . , N) is an equivalence set defined by �G. We call each
Aj a job equivalence set. Figure 3 shows an illustration of job equivalence sets.

For a permutation π ∈ Sn, a set A ⊆ [n], and a bijection δ : A → A, let π ◦ δ
is defined as

(π ◦ δ)i =

{
πδ(i) i ∈ A,

πi otherwise.

Then we define a equivalence relation between linear extensions in SG.
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Definition 3 (Equivalence relations between linear extensions). Permu-
tations π,π′ ∈ Sn are equivalent w.t.t. a DAG G = ([n], E) if and only if for
each job equivalence set Aj, there exists a bijection δAj

: Aj → Aj such that

π′ = π ◦ δA1 ◦ δA2 ◦ · · · ◦ δAN
.

We denote π �G π′ if π and π′ are equivalent w.r.t. G. When clear from the
context, we abbreviate as π � π′.

Figure 4 shows an illustration of equivalence relation between permutations.
For clarity, we used expression of inverse permutation.

Fig. 3. Illustration of equivalence sets
defined by a DAG G2

Fig. 4. For a DAG G2, π1 and π2 are
equivalent, but π2 and π3 are not.

The following proposition holds for the permutations which are equivalence
each other.

Proposition 2. For any permutations π,π′ ∈ SG, π � π′ ⇐⇒ ∀j ∈
[n], π−1

j � π′−1
j .

The following lemma holds for the equivalence relation on SG.

Lemma 2. For any permutations π,π′ ∈ Sn, π ∈ SG and π′ � π implies
π′ ∈ SG.

It can be proved easily by the symmetry between equivalence jobs on G.
For each equivalence class [π], we define the representative π̃ as the permu-

tation satisfying (i) π̃ � π, and (ii) for any k, l ∈ Aj(k < l), π̃k > π̃l. In other
words, π̃ is the particular representative of [π] satisfying additional precedence
constraints defined with job id numbers.

4.2 Our Algorithm

We propose an exact algorithm for solving problem (1). Our algorithm consists
of the following steps.

1. Compute job equivalence sets A1, . . . , AN .
2. Construct a DAG G̃ satisfying SG̃ = {π̃ | π ∈ SG}
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3. Run the algorithm of Matsumoto et al. [15] with input G̃ and obtain a π-MDD
D̃ representing SG̃.

4. For some appropriate weights over edges in D̃, solve the shortest path problem
and construct an optimal solution of (1) from it.

For step 1, we compute a adjacency matrix of G, X ∈ R
n×n, that is, X(i, j) =

1 when there is a directed edge from job i to job j, otherwise X(i, j) = 0. Then,
we define matrix Z ∈ R

n×2n as follows

Z(i, j) =

{
X(i, j) (j ≤ n)
X�(i, j − n) (j > n).

Now, we make matrix Z ′ ∈ R
n×2n by regarding each rows of Z as individual

strings, and sorting with radix-sort. Since v � v′ ⇔ ∀i ∈ [n] Z ′(v, i) = Z ′(v′, i),
strings corresponding to job-equivalent nodes are the same. By checking the
equivalence, we can find the equivalent classes. These procedures can be done in
time O(n2).

In Step 2, for each equivalence class Aj (j ∈ [N ]), sort its elements v1 < v2 <
· · · < v|Aj | and add edges (vi, vi+1) for 1 ≤ i ≤ |Aj | − 1 to the DAG G, which
we denote as G̃ (Fig. 5) shows an illustration of G̃. Computation time for Step
2 is O(n).

Fig. 5. DAG G̃2 obtained by
adding edges to the DAG G2

in Fig. 3

Step 3 takes O(n|LG̃|) time to obtain a π-MDD
D̃ by using Matsumoto et al.’s algorithm.

In Step 4, we first sort the weight vector p for
each job equivalent set. To do so, we prepare a n-
dimensional array C and sort p in the following way.

1. For any i ∈ [n], i � C[i].
2. For any i, j ∈ [n] such that i � j, i < j implies

pC[i] ≤ pC[j].

Then, for each edge e ∈ ED̃, we assign a weight
dpC[l(e)], where d is the depth of the edge e from
the root node and l(e) is label of e, respectively. For the assigned weights, we
solve the shortest path problem over D̃ and obtain the shortest path (e1, . . . , en)
from the root node to the leaf node. Finally we output π∗ such that π∗−1 =
(C[l(e1)], . . . , C[l(en)]) ∈ S−1

G . Computation time for step 4 is O(n log n+n|LG̃|).
We now state our main result.

Theorem 2. Our algorithm solves problem (1) in time O(n2 + n|LG̃|) =
O(n|LG̃|).

Proof. First of all, we show that the set SG̃ of linear extensions of G̃ satisfies
SG̃ = {π̃ | π ∈ SG}. For any π ∈ SG̃, it is clear that π ∈ SG by the construction
of G̃. Furthermore, since π satisfies additional precedence constraints regarding
job equivalence classes Ajs, for any jobs k, l ∈ Aj , k < l implies πk > πl. This
means that π is a representative for some [π′] in SG. Therefore, SG̃ ⊆ {π̃ |
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π ∈ SG}. For any π ∈ SG, by definition, the representative π̃of [π] satisfies
additional precedence constraints for job equivalence classes. Thus π̃ ∈ SG̃,
implying SG̃ ⊇ {π̃ | π ∈ SG}.

Then, we prove the correctness of step 4.
From Lemma 2, for any permutation π ∈ SG̃, it satisfies constraints rep-

resented with G̃ even if the elements of any equivalence classes are arbitrarily
rearranged within the classes. Now, the order of elements of any equivalence
class A = {i1, i2, . . . , i|A|} ⊆ [n] with a smallest flow time is obviously the order
such that for i, j ∈ A(i �= j) if πi > πj, then pi < pj . Therefore, in the first
half of step 4, for any equivalence class A ⊆ [n], we make rules for converting
the series of job number that job i, j ∈ A(s.t. πi > πj) satisfies i < j to the
series of job number that job i, j ∈ A(s.t. πi > πj) satisfies pi ≤ pj as array C.
Accordingly, the conversion by array C can be regarded as playing the role of
following function F : SG̃ → SG

F (π̃) = argmin
π∈[π̃ ]

π · p.

Thus, in π-MDD D̃C obtained by replace each edge label l(e) of π-MDD D̃
with C[l(e)], any path corresponds to the permutation with a smallest flow time
in equivalence class which the permutation belongs. In the latter half of step
4, it can be regarded as solving the shortest path problem on π-MDD D̃C , so
the solution of the problem is also the inverse permutation of optimal solution
of the original problem. Hence, by evaluating the inverse permutation of that
permutation, we can get optimal solution. �

At last, we show that the size of π-MDD constructed by our method doesn’t
become large than that of π-MDD constructed by Matsumoto et al.’s method.

Theorem 3. Let D be the π-MDD representing linear extensions SG of G, and
let D̃ be the π-MDD representing linear extensions SG̃ of G̃, |D̃| ≤ |D|.

Proof. The DAG G̃ can be obtained by adding constraints to G, so any lower
set of G̃ is also a lower set of G. Accordingly, it holds that LG̃ ⊆ LG. By
Corollary 1, D̃ is isomorphic to the Hasse diagram of the partially ordered set
(LG̃,⊇). Clearly, the partially ordered set (LG̃,⊇) is obtained by restricting
(LG,⊇) on the domain LG̃. Therefore, D̃ is the subgraph of D induced by the
subset LG̃ of states. �

5 Extension to 1|prec|∑ wjcj

In this section, we show that Matsumoto et al.’s algorithm can be extended for
solving a more general problem of minimizing weighted total flow time.

We consider about extensive setting which each job i ∈ [n] has weight wi ∈
R+. Now, we define a single machine scheduling problem to minimize weighted
total flow time under precedence constraints(1|prec|∑ wjcj) as follows [2].
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Input: DAG G = ([n], E) process time vector p ∈ R
n

weight vector w ∈ R
n
+

Output: π = argmin
π∈SG

w · c (2)

where, ci =
∑

j:πj≥πi

pj

Think about for every i ∈ [n], wi = 1, the flow time of (2) equals the flow time
of (1). Thus, the problem (2) is clearly generalized setting of the problem (1).

For this problem, we propose simple extension of Matsumoto et al.’s
method which there is only a difference point. The Step 2 of Matsumoto
et al.’s method in Sect. 3, assigns weights ve = dpl(e) to each edge e ∈ ED

of π-MDD D = (VD, ED). For problem (2), instead, introduce cumulative
weight ŵe =

∑
i:[n]\Ve

wi and assign ae = ŵepl(e). Then, for each path
(e1, e2, . . . , en) from the root to the leaf and the corresponding permutation
π−1 = (l(e1), l(e2), . . . , l(en)), the weighted length of the path is exactly the
flow time of π. Certainly, computation time is equal to the time of Matsumoto
et al.’s method. Now, we show a theorem.

Theorem 4. Our algorithm solves problem (2) in time O(n|LG|).
The proof is omitted and shown in Appendix.

6 Experiments

In this section, we compare the efficiency of proposed method and previous
methods for the scheduling problem with precedence constraints on artificial
data sets.

6.1 Settings of Artificial Data Sets and Methods

As artificial data sets, we generate Erdös-Rényi random graph Gn,q as constraints
G = ([n], E). That is, over G = ([n], E), for each job i, j ∈ [n](i < j), there exists
(i, j) ∈ E with probability 0 ≤ q ≤ 12. Also, we chose processing time vectors p
according to the uniform distribution over [0, 1]n.

We compare the proposed method, Matsumoto et al.’s method, and integer
programming (IP) with permutation matrices and comparison matrices3, respec-
tively. Let n = 30, and for each q ∈ {0.01, 0.02, . . . , 1}, we generate 10 random
graphs and processing time vectors, and observe the average of computation
times of each method and sizes of π-MDD constructed by the proposed method
and Matsumoto et al.’s method. These methods are implemented by C++ with
Gurobi optimizer 8.1.0 [9] to solve integer programs. We run them in a machine
with Intel(R) Xeon(R) Processor X5560 2.80 GHz and 198 GB memory.

2 Note that, because of the constraint that i < j, the graph G = ([n], E) is a DAG.
3 Please refer to [15] for details.
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6.2 Results and Discussion

Figure 6 shows the computation times(in the logarithmic scale) of each method
for different choices of q ∈ {0.01, 0.02, . . . , 1}. Figure 7 shows the size of π-
MDD(logarithmic axis) generated by the proposed method and Matsumoto et
al.’s method for different choices of q ∈ {0.01, 0.02, . . . , 1}.

Fig. 6. Average computation time for
n = 24, q ∈ {0.01, 0.02, . . . , 1}

Fig. 7. Average size of π-MDD for n =
24, q ∈ {0.01, 0.02, . . . , 1}

These results show that the proposed method is fastest and most space-
efficient among others for any q. Also, the results of Matsumoto et al.’s
method show that for sparse precedence constraints, its computational com-
plexity become much worse. However, with proposed method, even for sparse
constraints its computational time is moderately small and still smallest among
others.

7 Conclusion and Future Work

We proposed an improved algorithm of Matsumoto et al. which exploits the
symmetry in permutations satisfying precedence constraints by introducing a
notion of equivalence class among jobs. Our future work includes improving our
algorithm for the cases where conventional IP solvers are still advantageous.
Also, extension of our algorithm for weighted flow time is still open. In addition,
it may be possible to construct only necessary parts of π-MDD dynamically,
which would further improve our algorithm.

Appendix

Proof of Theorem4

We show the proof of Theorem 4.
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Proof. We assign ae = ŵepl(e) to each edge e ∈ ED of π-MDD D = (VD, ED).
Then, for each path (e1, e2, . . . , en) from the root to the leaf and the correspond-
ing permutation π−1 = (l(e1), l(e2), . . . , l(en)), the weighted length of the path
can be calculated as follows.

n∑

d=1

aed
=

n∑

d=1

ŵed
pl(ed)

=
n∑

d=1

⎛

⎝
∑

i:[n]\Ved

wi

⎞

⎠ pl(ed)

=
n∑

d=1

⎛

⎝
∑

i:πi≤πl(ed)

wi

⎞

⎠ pl(ed)

=
n∑

d=1

⎛

⎜
⎝

∑

i:πi≤π
π

−1
d

wi

⎞

⎟
⎠ pπ−1

d

=
n∑

j=1

⎛

⎝
∑

i:πi≤πj

wi

⎞

⎠ pj

=
n∑

i=1

wi

⎛

⎝
∑

j:πj≥πi

pj

⎞

⎠ = w · c

Now, we get the flow time of problem (2). �
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Maximum Clique Exhaustive Search
in Circulant k-Hypergraphs
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Abstract. In this paper, we discuss two algorithms to solve the maxi-
mum clique problem in circulant k-hypergraphs, and do an experimental
comparison between them. The first is the Necklace algorithm proposed
by Tzanakis, Moura, Panario and Stevens [11] which uses an algorithm
to generate binary necklaces by Ruskey, Savage and Wang [10]. The sec-
ond algorithm is a new algorithm which we call Russian Necklace that
is based on a Russian doll search for maximum cliques by Österg̊ard [6]
with extra pruning that takes advantages of properties specific to circu-
lant k-hypergraphs. Our experiments indicate that the new algorithm is
more effective for hypergraphs with higher edge density.

1 Introduction

Many problems in combinatorics can be modelled as finding a maximum clique
in a certain graph or hypergraph [7]. Here, we consider hypergraphs with edges
of the same cardinality k ≥ 2, which we call k-hypergraphs. A clique on a k-
hypergraph is a set of vertices such that every k-subset of vertices in the set forms
an edge. A k-hypergraph is circulant if the hypergraph has an automorphism
that is a cyclic permutation of its vertices. Cliques in circulant hypergraphs are
relevant to combinatorial problems with some intrinsic cyclic structure, which
appear quite often. For example, in [11] the authors search for covering arrays
that correspond to a subset of columns of a matrix with a cyclic structure, which
translates into searching for a maximum clique on a circulant k-hypergraph.

As with other NP-hard problems, a lot of effort has been done to push the
boundary on the size of problems that can be solved via exhaustive search. Early
versions of backtracking algorithms for maxclique have been given in [1,2,13].
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A somewhat different and more recent algorithm based on the Russian Doll
search introduced in [12] is given by Österg̊ard [6]. This algorithm is the basis
for the package Cliquer, which is an effective software for clique finding [5]. The
generalization of clique algorithms from graphs to k-hypergraphs is straightfor-
ward, but since we have not found them in the literature, we present them in
Sect. 2 for completeness.

In Sect. 3, we show how the algorithms for ordinary k-hypergraphs can be
effectively modified to deal with circulant k-hypergraphs using the concept of
binary necklaces to eliminate equivalent cliques. The algorithm in Sect. 3.2 is
basically the same as the Necklace algorithm in [11], but presented in the context
of cliques in circulant k-hypergraphs. In Sect. 3.3, we present the new algorithm,
which we call the Russian Necklace algorithm.

In Sect. 4, we describe our implementation and do an experimental compar-
ison of the four algorithms for two test sets of circulant k-hypergraphs. The
experiments show that for the problems considered it is definitively much more
efficient to take advantage of the cyclic structure using necklaces. When compar-
ing the two necklace-based algorithms, our experiments with random circulant
k-hypergraphs indicate that the Russian Necklace algorithm is more effective
than the Necklace algorithm for hypergraphs with higher edge density, while the
opposite is the case for lower edge density. The details of this threshold is anal-
ysed. In our second set of experiments, we attempt to make some progress on
open problems from [11], specially to try to find a larger clique (and therefore a
better covering array) for the cases where only a partial search was achieved. We
were successful in completing one of their missing cases, but this complete search
did not yield a clique larger than the ones they found. This harder problem was
also an interesting test set to demonstrate the effectiveness of Russian Necklace
over the Necklace algorithm for dense hypergraphs.

2 Max-Clique Algorithms for k-Hypergraphs

In this section, we show how to adapt two existing maximum clique algorithms
for graphs to k-hypergraphs. These algorithms are Algorithm 1’ and 2’ given
side-by-side as modifications of Algorithm 1 and 2, respectively, while these
latter algorithms will only be fully described in Sect. 3.
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Algorithm 1 Necklace Algorithm � BT: Algorithm 1’ Backtracking Algorithm

1: procedure NecklaceRecurse(C, U) � BT: procedure BacktrackRecurse(C, U)
2: if |U | = 0 then
3: if |C| > |maxClique| then
4: maxClique ← C

return
5: while U �= ∅ do
6: i ← min(U)
7: U ← U \ {i}
8: if not(isNecklace(C ∪ {i})) then return � BT: remove this line
9: X ← HyperGraphFilter(C, i, U)

10: C ← C ∪ {i}
11: if |C| + |X| ≤ |maxClique| then return
12: NecklaceRecurse(C, X) � BT: BacktrackRecurse(C, X)
13: C ← C \ {i}

return
1: procedure NecklaceSearch(H = (V,E),k) � BT: procedure BacktrackSearch(H,k)
2: Global maxClique ← ∅
3: Global edgeSize ← k
4: n ← |V |
5: for e ∈ E do
6: C ← e
7: if not(isNecklace(C)) continue � BT: remove this line
8: U ← {max(e) + 1, ..., n − 1}
9: X ←initialFilter(e, U)

10: NecklaceRecurse(C, X) � BT: BacktrackRecurse(C, X)
return maxClique

2.1 Standard Backtracking with Bounding

Backtracking for maximum cliques starts with an empty clique and larger cliques
are recursively built by adding one possible vertex at a time. Backtracking
Search is displayed as Algorithm 1’ which differs from Algorithm 1 (described in
Sect. 3.2) by eliminating line 8 of the recursive procedure and line 7 of the main
procedure. In the main program BacktrackSearch, we initialize a clique with
each edge at a time to avoid iterating through all k-subsets of the vertex set,
some of which will not form an edge and thus cannot be together in a clique.
The procedure initialFilter(C,U) selects single vertices from U that form an
edge together with each (k − 1)-subset of C. The recursive part Backtrack-
Recurse is similar to a standard clique algorithm (see [2,6]). Here we compute
X ←HyperGraphFilter(C, i, U), which assigns to X the subset of U consist-
ing of vertices such that each of those vertices together with i forms an edge
with every (k −2)-subset of C. We do not give this procedure explicitly, but this
can be simply done by iterating through each element u of U and then through
each (k − 2)-subset L of C and checking whether {i, u} ∪ L ∈ E, immediately
discarding u whenever this condition fails, and including u in X if it passes the
test for each L. Thus, this is done in time O(|U |k−1). Note that this procedure is
much simpler in the case of graphs, since L is trivially empty, and we only need
to check whether {i, u} is an edge for each u ∈ U . In line 10, i is added to the
current clique C. In Line 11, we use the size bound for abandoning the current
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search if the union of the current clique and set X of candidates that may be
added to C cannot improve on the current best clique cardinality.

2.2 Russian Doll Backtracking for Max-Cliques

The Russian doll search applied to cliques is based on the idea of solving small
(nested) maxclique subproblems which can then be used within the global max-
clique problem to help with bounding the size of cliques on induced subgraphs.
This algorithm was proposed by Österg̊ard in [6] and here we adapt it to work
for k-hypergraphs by initializing cliques with edges in the main program and by
using algorithms HyperGraphFilter and initialFilter in the same way as
explained in Sect. 2.1. Russian Doll Algorithm is displayed as Algorithm 2’ which
differs from Algorithm 2 (Russian Necklace Algorithm discussed in Sect. 3.3) by
deleting lines 6 and 7 from the recursive procedure and changing lines 11 and
12 in the main procedure.

An ordering of the vertices is set arbitrarily, let us assume vertices are already
relabeled {0, . . . , n − 1} to reflect this ordering. Let Hi = H[{i, . . . , n − 1}] be
the subhypergraph of H induced by {i, . . . , n − 1}. The maxclique problem is
solved for each hypergraph in the following order Hn−1,Hn−2, . . . , H0, as each
run of the loop in line 8 of the main procedure RussianDollSearch; and the
size of the maxclique in Hi is stored in the dynamicV alues[i] at the end of
each such loop. Note that Hi+1 is a subgraph of Hi. So, if Ci is a maxclique
of Hi and Ci+1 is a maxclique of Hi+1 then |Ci+1| ≤ |Ci| ≤ |Ci+1| + 1 and
moreover, if |Ci| = |Ci+1| + 1 then i ∈ Ci. For this reason, during the recursion
to solve the problem for hypergraph Hi, it is only worth to consider cliques that
contain vertex i, and if the current clique reaches size dynamicV alues[i+1]+1,
then a maximum clique of Ci has been found; in this case, we can stop any
further iterations for the loop in line 8 of RussianDollSearch and any further
recursive calls in procedure RussianDollRecurse (see the stopping criteria in
line 18). Another bounding criteria is used in line 10 of RussianDollRecurse,
before we add the vertex j as the next element to the current clique C. The clique
being constructed is bound by the sum of |C| and the size of the maximum clique
in Hj , so we abandon the current search if this value does not improve on the
best clique found so far.
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Algorithm 2 Russian Necklace Algorithm � RD: Algorithm 2’ Russian Doll Algorithm
1: procedure RussianNecklaceRecurse(C, U, step)
2: � RD: procedure RussianDollRecurse(C, U, step)
3: if |U | = 0 then
4: if |C| > |maxClique| then
5: maxClique ← C

return |C|
6: if LargestGap(C, U) > step then return |C|. � RD: remove line
7: x ← max(C \ {n − 1}) � RD: remove line
8: while U �= ∅ do
9: j ← min(U)

10: if dynamicV alues[j] + |C| ≤ |maxClique| then return |C|
11: U ← U \ {j}
12: X ← HyperGraphFilter(C, j, U)
13: C ← C ∪ {j}
14: if |C| + |X| ≤ |maxClique| then return |C|
15: if (j − x) > step then return |C| � RD: remove line
16: max ← RussianNecklaceRecurse(C, X, step)
17: � RD: max ← RussianDollRecurse(C, X, step)
18: if max > dynamicV alues[step + 1] then return max

19: C ← C \ {j}
return |maxClique|

1: procedure RussianNecklaceSearch(H = (V,E),k)
2: � RD: procedure RussianDollSearch(H = (V, E),k)
3: Global maxClique ← ∅
4: Global dynamicValues ← int[|V |]
5: n ← |V |
6: for i = 0 to k − 1 do
7: dynamicV alues[n − 1 − i] ← i + 1
8: for i = (n − 1 − k) downto 0 do
9: S ← {e ∈ E : min(e) = i}

10: for e ∈ S do
11: C ← e ∪ {n − 1} � RD: C ← e

12: U ← {(max(e) + 1), . . . , n − 2}. � RD: U ← {(max(e) + 1), . . . , n − 1}
13: X ← initialFilter(e, U)
14: if RussianNecklaceRecurse(C, X, i) � RD: if RussianDollRecurse(C, X, i)
15: > dynamicV alues[i + 1] then break
16: dynamicV alues[i] ← |maxClique|

return maxClique

3 Max-Clique Algorithms for Circulant k-Hypegraphs

A few concepts related to necklaces are reviewed in Sect. 3.1, before we describe
the algorithms for circulant k-hypergraphs, namely Algorithm 1 (Necklace Algo-
rithm) in Sect. 3.2 and Algorithm 2 (Russian Necklace Algorithm) in Sect. 3.3.

3.1 Background on Circulant Graphs and Necklaces

Let α = α0α1...αn−1 be a string of length n. A string β = β0β1...βn−1 is a
rotation of α if there exists a natural number s such that βi = α(i+s) mod n for
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all 0 ≤ i ≤ n − 1. We denote by R(α, i) the string obtained from the rotation
of string α, i spaces to the right. An n-bead binary necklace is an equivalence
class of binary strings of length n under rotation. In other words strings α and
β are equivalent if there exists i such that R(α, i) = β for some integer i. The
canonical necklace of a necklace is the lexicographically smallest of the strings
among the rotations of the necklace. In this paper, necklaces are used in the
algorithms to represent equivalent classes of subsets of an n-set.

Let S be a subset of an n-set {p1, p2, ..., pn}. The characteristic string of S
is a string x ∈ {0, 1}n such that xi = 1 if and only if pi ∈ S, 1 ≤ i ≤ n. The
rotation of a subset S, i spaces to the right is the subset S′ which corresponds
to the rotation i spaces to the right of the characteristic string of S. The right
justified characteristic string of a subset S is the characteristic string of the
subset R(S, (n − max(S))), where max(S) = max{i : pi ∈ S}. The canonical
subset necklace of a subset is either the empty set, or contains p1 and its right
justified characteristic string is a canonical necklace. From now on, we use the
term necklace to refer to a canonical necklace instead of to its equivalence class.
Similarly, we use subset necklace to refer to a canonical subset necklace. These
concepts are illustrated in the following example.

Example 1. The following strings are necklaces: 010101, 001011, 001101, while
their respective rotations 101010, 011001, 010011 are not necklaces since they
are lexicographically larger. Consider subset S1 = {0, 2, 3} ⊂ {0, 1, 2, 3, 4, 5};
its characteristic string is 101100 and its right justified characteristic string is
001011; since the latter is a necklace and 0 ∈ S1 then S1 is a subset necklace.
We note that the right justified characteristic string rotates the last 1 in the
characteristic string to the right, making it possible to include element 0 in
the subset while having a correspondence to a string that is a necklace (which
would be impossible with trailing zeroes present in the characteristic string).
Now, consider subset S2 = {0, 1, 4} ⊂ {0, 1, 2, 3, 4, 5}; its characteristic string is
110010 and its right justified characteristic string is 011001; since the latter is
not a necklace, then S2 is not a subset necklace.

Here we present an alternative definition of circulant k-hypergraphs based on
subset necklaces; the proof of this equivalence is based on using subset necklaces
to represent all edges and can be found in [8]. A k-hypergraph H = (V,E) is
circulant if there exists a relabeling of the vertices V = {0, 1, . . . , |V | − 1} and
a set N of subset necklaces, each being a subset of V and having cardinality k,
such that, E = {R(N, i): N ∈ N , 0 ≤ i ≤ |V | − 1}.

We list a couple of simple results without proofs, which can be found in [8].

Proposition 1. Let H = (V,E) be a circulant k-hypergraph labeled
{0, 1, . . . , |V | − 1} and let 0 ≤ i < |V |. Then, C ⊆ V is a clique if and only
if R(C, i) is a clique.

Corollary 1. For a circulant k-hypergraph H = (V,E) and 0 ≤ i < |V |, C ⊆ V
is a maximal clique if and only if D = R(C, i) is a maximal clique.
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The consequence of this corollary is that it is sufficient to search for maximum
cliques that are subset necklaces. This fact is the essential fact exploited in the
algorithms to come.

3.2 The Necklace Algorithm for Circulant Hypergraphs

Tzanakis et al. [11] combined the necklace search algorithm by Ruskey et al. [10]
with the standard backtracking for maxcliques to produce an algorithm to search
for covering arrays. Their algorithm translated as a maxclique search in a k-
hypergraph is presented in Algorithm 1, where changes with respect to the reg-
ular Backtracking Algorithm (Algorithm 1’) are highlighted.

The direct application of Corollary 1 within procedure NecklaceRecurse
justifies skipping the processing of C∪{i} if it is not a necklace. The fact that we
not only skip this clique but also any C ∪{j} with j ≥ i in this loop comes from
necklace properties observed by Ruskey et al. [10]. As shown in [11], by using the
bijection between subset necklaces and their right-justified characteristic strings,
the order in which the cliques are built in the clique algorithms is the same order
as strings are considered in the necklace generation in [10]. Having a “return” in
line 8 of procedure NecklaceRecurse instead of simply continuing the loop
with the next C ∪ {j} is justified by the correctness of the necklace generation
by Ruskey et al. [10], this guarantees a number of search tree nodes bounded
by twice the number of necklaces. In the main procedure NecklaceSearch,
we also add a check in line 7 to ensure that each initial clique given to proce-
dure NecklaceRecurse is also a necklace. In Algorithm 1, we call procedure
isNecklace(C) that verifies if subset C of {0, . . . , n − 1} is a subset necklace.
This can be done in time O(n) by checking if the corresponding right justified
characteristic string is a necklace by using a well known modification of Duval’s
algorithm (see [8, Sect. 2.2] or [9, Sect. 7.4]).

3.3 The New Russian Necklace Algorithm for Circulant Hypegraphs

The objective of the new algorithm presented in this section (Algorithm 2) is
to combine the advantages of the Russian doll algorithm with the fact that
we only need to consider cliques that correspond to necklaces, which was also
exploited in the Necklace algorithm (Algorithm 1). We state two key results
for the optimizations used in the new algorithm. For a hypergraph H = (V =
{0, 1, 2, ..., n−1}, E), we continue to use Hi to denote H[{i, i+1, ..., n−1}], the
subgraph of H induced by {i, i + 1, ..., n − 1}.

Proposition 2. Let H = (V = {0, 1, 2, ..., n−1}, E) be a circulant k-hypergraph.
Let Cj be a maximum clique of Hj where 0 ≤ j ≤ n − 1, and let 0 ≤ i < n − 1.
If |Ci| > |Ci+1| then i ∈ Ci and n − 1 ∈ Ci.

Proof. Ci ⊆ {i, i + 1, ..., n − 1} and since |Ci| > |Ci+1|, we know Ci 	⊆ {i +
1, ..., n − 1} and it follows that i ∈ Ci. Assume that n − 1 /∈ Ci. Thus, Ci ⊆
{i, i+1, ..., n− 2} and R(Ci, 1) ⊆ {i+1, ..., n− 1}. From Proposition 1, R(Ci, 1)
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must be a clique in H, and since R(Ci, 1) ⊆ {i+1, ..., n− 1}, R(Ci, 1) must be a
clique in H[{i+1, ..., n−1}]. This leads to a contradiction as |R(Ci, 1)| > |Ci+1|,
where Ci+1 is a maximum clique in H[{i + 1, ..., n − 1}]. 
�

While for the Russian doll algorithm, we only need to consider cliques in Hi

that include vertex i, the previous proposition allows us to force the inclusion of
both i and n − 1 in the case of circulant hypergraphs. This inclusion of n − 1 in
every clique gives modifications reflected in lines 11 and 12 of Procedure Rus-
sianNecklaceSearch in Algorithm 2, with respect to RussianDollSearch.

Proposition 3. Let H = (V = {0, 1, 2, ..., n−1}, E) be a circulant k-hypergraph.
Let Cj be a maximum clique of Hj where 0 ≤ j ≤ n − 1, and let 0 ≤ i < n − 1.
If |Ci| > |Ci+1| then there does not exists a pair of vertices x, y where i < x <
y < n − 1 such that y − x ≥ i and Ci ∩ {x, x + 1, ..., y} = ∅.
Proof. We assume by contradiction that there exists a pair of elements x, y where
i < x < y < n − 1 such that y − x ≥ i and Ci ∩ {x, x + 1, ..., y} = ∅. We let
j = y − x. We take the rotation A = R(Ci,−x). From Proposition 1, the set A
must be a clique in H. Since Ci ∩ {x, x + 1, ..., y} = ∅, A ∩ {0, 1, ..., j} = ∅ and
A is a clique in Hj+1. Since j ≥ i, Hj+1 is a subgraph of Hi+1, and so A must
be a clique in Hi+1. This contradicts the fact that |Ci| = |A| > |Ci+1|. 
�

The previous proposition is a justification of what we call the gap bound: in
Hi we only need to consider cliques that do not miss any interval of vertices
{x, x + 1, . . . , y} of cardinality i + 1. A lower bound for the current largest gap
is calculated in procedure LargestGap(C,U) invoked in line 6 of procedure
RussianNecklaceRecurse, taking into account the current clique C and set
U containing the possible elements to be added to C. What this procedure
returns is the largest gap in set C ∪ U , since any clique that extends C must be
contained in C ∪ U and its gap cannot be smaller than the gap in C ∪ U . Note
that in our implementation the largest gap is more efficiently updated within
procedure HyperGraphFilter with no extra cost, since we can keep track of
the gap as we filter the elements of U in order. The gap bound is invoked both in
line 6 and in line 15 of procedure RussianNecklaceRecurse in Algorithm 2.

This concludes the description of the Russian Necklace Algorithm (Algo-
rithm 2). We remark that inside individual calls to procedure RussianNeck-
laceRecurse, some cliques considered may correspond to equivalent subset
necklaces, unlike the Necklace Search algorithm, since in procedure Russian-
NecklaceRecurse no explicit check for the subset necklace property is done.
However, we note that the gap bound for Hi is already eliminating a lot of
non-necklaces that have already been considered in either of Hi+1, . . . , Hn−1.

4 Experimental Comparison

We do an experimental evaluation of the Russian Necklace algorithm by com-
paring its performance to the other algorithms, namely Backtracking, Russian
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Doll, and Necklace. These experiments are divided into two sets: randomly gen-
erated circulant k-hypergraphs, and circulant k-hypergraphs generated using
linear feedback shift register sequences (LFSR). The first set of experiments
involves many small problems varying the main parameters (edge size, density
and number of vertices), as a way to compare the relative performance of the
various algorithms. We verified that the two necklace-based algorithms indeed
outperform the other algorithms. We are also able to verify a crossover in the
value of the density that separates when the Russian Necklace outperforms the
Necklace algorithm and vice-versa. The second set of experiments involves a dif-
ficult combinatorial problem of current interest for combinatorial design theory,
chosen with the aim to compute new results and compare the Necklace and the
Russian Necklace algorithms.

The second type of experiments was for a problem for which new results could
yield improvements on new bounds for covering arrays. As mentioned in Sect. 3.2,
Tzanakis et al. [11] designed the Necklace Algorithm to search for covering arrays
as subsets of columns of a cyclic matrix defined from polynomials over finite
fields. Several of their bounds still holds the current record in the covering array
tables by Colbourn [3]. It is worth noticing that due to the large size of these
problems, their search was only successfully completed for the smallest size of
problems for finite fields q ≤ 4. All the other values they reported for prime
powers 5 ≤ q ≤ 23 came from searches that they were not able to complete, but
reported on best found cliques. Our hope was to use the new Russian Necklace
algorithm to complete that search for a few more cases, while also using the data
set to compare all algorithms on a challenging problem of combinatorial interest.

4.1 Implementation Details

All experiments were done on an Intel Core i7-4790 CPU @ 3.60 GHz CPU
running Windows 7 OS and Java 7. In order to mitigate any differences in non-
algorithm based segments of the implementation (logging, timing, graph storage,
and edge lookups) the testing software was written in Java using abstract classes
with only the search algorithm, and in the case of the Russian Necklace algorithm
the filter, being different for each search. The hypergraphs were stored using the
matrix adjacency map detailed in [8, Sect. 3.2.2]. In short, a (k − 2)-dimensional
matrix is used to index a list of vertices which together with the indexes of the
matrix plus vertex 0 form an edge of the k-hypergraph; each of these lists is
stored as a Hash map. This permits testing whether a k-subset of vertices is an
edge in expected constant time. Memory usage was adequate for the range of k
and n in our experiments, but some space should be saved with corresponding
time tradeoff for larger sets of parameters.

4.2 Results for Random Circulant k-Hypergraphs, k = 3, 4, 5

There is no standard dataset for benchmarking the maxclique problem for circu-
lant k-hypergraphs unlike clique problems for ordinary graphs [6]. Therefore, we
use a general dataset to compare the algorithms based on randomly generated
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circulant k-hypergraphs. Three main parameters are used: number of vertices,
edge size, and edge density. For each group of experiments, we first fix edge size
k = 3, 4, 5; note that this is not too restrictive as k = 2 includes the class of all
circulant graphs. In order to model the performance of each algorithm, for each
parameter set of density and edge size, all algorithms were run with increas-
ing number of vertices until the execution time of a single search surpassed
5 min. This process started with the smallest k-hypergraphs on 60 vertices and
increased the number of vertices by 5, at each step. An increase of 5 vertices
is equivalent to a potential search space 32 times larger than the previous step.
Hypergraphs were generated at random and the same set of hypergraphs was
used for all algorithms. Our generation of random circulant hypergraphs was
implemented by selecting each of the possible subset necklaces to be an edge
with a given probability d which we call “edge density”. Because the necklace
equivalence classes do not all have the same size, the expected value for the edge
density of the k-hypergraph (|E(H)|/(

n
k

)
) does not exactly match d, as it would

be the case for k-hypergraphs that are not circulant. The word density should be
understood as a density of necklace representatives rather an exact edge density.

The graphs in the appendix show a sample of our experiments for random
k-hypergraphs with k ∈ {3, 4, 5}, where we compare the performance in terms
of running time of the four algorithms presented in this paper. Note that Back-
tracking and Russian doll algorithms do not use the fact that the graphs are
circulant, so here we refer to them as the naive algorithms; they both perform
poorly with respect to the other algorithms and both perform similarly to each
other. In most graphs the lines black and green overlap to the point they look
like the same line.

For each k = 3, 4, 5, the Russian Necklace algorithm was much faster than
the Necklace algorithm for higher density graphs. This can be seen in the first
graphs for each k where the red line is much lower than the blue line. As an
example for k = 3 and 95% density hypergraph, the Russian Necklace algorithm
took 11 s to search the 100-vertex hypergraph while the Necklace algorithm took
239 s. Both naive algorithms surpassed the 5 min threshold at 90 vertices.

For all values of k considered, the relative advantage of the Russian Necklace
algorithm with respect to the Necklace algorithm decreased consistently as the
edge density decreased, until a point in which the performances inverted. This
observation is based on more intermediate density data available in [8], from
which a sample is included in the appendix. This crossover in performance hap-
pened at different densities for different k, namely around 50% for k = 3, 80%
for k = 4 and between 85% and 90% for k = 5. This crossover point in the
graphs can be observed in the second to last graph for each k.

The decrease of the density of graphs in successive experiments also leads
to an increase in the overall size of the graphs which could be searched by all
algorithms. As an example for k = 3, when the density was set to 95% the largest
graphs searchable by the naive algorithms was 90, while the Necklace algorithm
was able to search up to size 110 and Russian Necklace achieved a hypergraph
of 130 vertices. At 50% density, the naive algorithms reached 565 vertices while
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the Necklace and Russian Necklace algorithms achieved 1160 and 1170 vertices
respectively. The overall size (number of vertices) of the hypergraphs that were
searchable within the alloted 5 min was greatly reduced when increasing the
edge size of the hypergraphs. At 90% density the largest hypergraph searched
dropped from 215 for k = 3 to 165 vertices for k = 4 and to under 120 vertices
for k = 5. This is due to the increased complexity of the filtering operation. This
decrease in hypergraph size was seen across all algorithms and densities. Finally,
due to the system limitation on memory, a limit occurred in the ability of our
implementation to test 4- and 5-hypergraphs beyond a certain size. For k = 4
this limitation started to manifest around 350 vertices and for k = 5 around 160
vertices.

The focus of this first set of experiment was not to invest a lot of time on
solving large instances of the problem, but rather to investigate the general
trend on how the various variables affect the performance of the algorithms.
Our main conclusion is that the two algorithms based on necklace are much
more efficient than the naive algorithms that ignore the circulant structure of
the hypergraphs. For higher densities the algorithm of choice is our new Russian
necklace algorithm, while for densities below a threshhold the Necklace algorithm
is faster. Based on our experiment with random k-hypergraphs for k = 3, 4, 5, it
seems this threshold gets higher as k increases.

4.3 Data Set 2: Circulant 4-Hypergraphs for Covering Arrays
from LFSR

We refer the reader to [4] for an introduction to covering arrays, to [11] for more
details about the types of covering array being constructed by this search and
to [8] for details on how this relates to maxcliques on a 4-hypergraph; giving all
the pertinent definitions is out of the scope of this extended abstract. In this
section, we generally refer to this problem as “the covering array problem”. The
size of these problems is regulated by a parameter q which is a prime power,
which yields a 4-hypergraph with n = (q4 − 1)/(q − 1) vertices with high edge
density (for instance 90% density for q = 5). Each problem also depends on
two primitive polynomials over finite fields that are used to generate two LFSR
sequences that are used to specify which 4-subsets of the n vertices form an edge.
The cyclic structure of the LFSR sequences makes the 4-hypergraphs circulant.
The number of rows of the array is fixed as 2q4 − 1 and the objective is to
maximize the number of columns while guaranteeing the “covering property”.
Roughly speaking, the “covering property” is equivalent to having a clique on
the 4-hypergraph, while maximizing the number of columns corresponds to the
clique being maximum. The problems are identified by columns q and α in
Table 1, and correspond to the same problems searched by Tzanakis et al. [11]
for the given values of q.



Maximum Clique Exhaustive Search in Circulant k-Hypergraphs 389

Table 1. Results for circulant 4-hypergraphs for the covering array problems.

q α’s |V | d (%) MC RN Nodes RN time NK Nodes NK time

2 1,7 15 69.230 6 98 0:00:00:1174 171 0:00:00:1953

3 1,7 40 75.467 9 23,232 0:00:00:4687 36,792 0:00:00:7968

3 1,11 40 80.282 10 24,543 0:00:00:5248 39,063 0:00:00:8954

3 1,13 40 80.107 9 23,764 0:00:00:5421 45,538 0:00:00:8452

4 1,3 85 87.532 17 3,567,014 0:00:07:6440 9,898,739 0:00:27:8461

4 1,7 85 85.030 17 2,611,565 0:00:05:6160 7,009,781 0:00:19:5781

4 1,9 85 87.532 12 5,061,145 0:00:11:1228 15,069,882 0:00:41:1686

4 1,13 85 87.532 12 5,432,480 0:00:11:6064 15,404,529 0:00:42:1046

4 1,21 85 87.330 12 5,255,894 0:00:11:2927 14,187,758 0:00:38:5634

4 1,29 85 87.532 17 3,452,242 0:00:07:6440 10,005,604 0:00:28:9578

4 1,37 85 85.030 17 2,578,597 0:00:05:6940 6,985,333 0:00:19:4845

5 1,7 156 91.368 16 2,683,547,098 3:54:21:1033 6,134,969,456 8:39:42:7434

5 1,11 156 91.335 16 1,982,032,139 3:27:30:3462 6,208,479,757 8:22:55:8228

5 1,17 156 91.263 13 2,369,951,412 3:38:26:2212 8,899,220,743 10:57:54:4306

5 1,23 156 91.368 16 2,013,735,362 3:17:47:5576 5,937,207,993 7:59:51:4535

5 1,29 156 91.263 13 2,357,303,914 3:42:43:3005 8,825,998,885 10:34:30:4996

5 1,31 156 91.487 14 1,944,185,789 1:44:57:6043 7,444,111,830 10:01:27:4149

5 1,41 156 90.973 14 2,103,450,639 1:35:26:3755 7,391,899,093 5:25:18:3458

5 1,43 156 91.335 15 2,023,046,470 1:34:33:2259 6,017,721,671 8:08:33:7267

5 1,47 156 86.676 12 937,795,472 1:00:07:3437 3,129,362,174 3:33:59:8125

5 1,53 156 89.470 14 1,366,079,584 1:01:51:9345 4,810,185,753 6:05:18:5671

5 1,61 156 90.973 14 2,086,462,019 1:35:39:5419 7,453,156,714 9:20:50:8353

Tzanakis et al. [11] searched for max-cliques on Hq,f,g for q a prime power
in [2, . . . , 23] and every possible pair of inequivalent primitive polynomilal f, g
with coefficients in a finite field of order q. For q = 2, 3, 4 they were able to
complete the search for every relevant pair of polynomials, and determined the
covering array with the largest number of columns for each of them. However
for q ≥ 5, each of their searches did not complete, and they reported the largest
clique found at the point where the search was terminated. These results still
yield current records of covering arrays in Colbourn’s tables of covering arrays [3],
but it was left as an open question whether these values could be improved upon.
Here, we settle the case of q = 5 by performing a complete search of the q = 5
hypergraphs, and confirming that the best clique found in their partial search
is optimal. We also reproduced their results of q = 2, 3, 4, using two completely
different implementations. The next possible case, q = 7, appears to be out of
reach for the current implementations. The remainder of this section describes
how we used this difficult dataset to confirm the effectiveness of our new Russian
Necklace algorithm for dense 4-hypergraphs and report on our results.
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In this data set, we first ran the searches on q = 2, 3, 4 problems presented
in [11] using both the Russian Necklace and Necklace algorithms. Table 1 shows
the results of these searches. This table provides the time taken [RN Time,
NK Time], and number of nodes [RN Nodes, NK Nodes] in the search tree
for each search, as well as a reference to the LFSRs used [q, α’s], density of
the hypergraph [d], and maxclique sizes [MC]. Note that the values in column
α are powers of the two primitive elements which give rise to the primitive
polynomials, in accordance to the data in [11]. For the single hypergraph for
q = 2, the search was trivial and took similar times for both algorithms. For the
set of q = 3 hypergraphs, the Necklace search required approximately twice the
number of nodes in the search tree, and took twice as long to run as the Russian
Necklace algorithm. For q = 4 hypergraphs the Russian Necklace algorithm ran
three times faster than the Necklace algorithm, and searches were completed
in less than 12 s each. The full set of q = 5 hypergraphs were searched, taking
between one and four hours for each search using the Russian Necklace search.
The Necklace algorithm performed 4 times worse on average than the Russian
Necklace algorithm. In summary, across all hypergraphs for the covering array
problem, the Russian Necklace algorithm performs significantly better than the
Necklace algorithm, which was expected from the results in the previous section,
since we are dealing with dense hypergraphs.

The q = 7 hypergraph search using the Russian Necklace algorithm was
aborted after 2 days. Based on the exponential trend in the runtime for each step
of the Russian Necklace algorithm established from previous searches, and the
established trend after the 2 days of running, the runtime for q = 7 is expected
to be extremely large under the current system used for these experiments.
One possible further direction is to use parallelization. The Necklace search can
be more easily distributed among several processors since each branch of the
search tree is somewhat independent of the others. For the Russian Necklace
algorithm, there is more dependence between runs in the sense that the runs
for later hypergraphs Hi depend on earlier runs for Hi+1, . . . , Hn−k−1; however,
paralelization within the same Hi is plausible. This is a topic of interesting
further research on these methods.
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Appendix
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Abstract. The Burrows-Wheeler transform (BWT) is a popular method
used for text compression. It was proved that BWT has optimal perfor-
mance on standard words, i.e. the building blocks of Sturmian words.
In this paper, we study the application of BWT on more general mor-
phic words: the Thue-Morse word and to generalizations of the Fibonacci
word to alphabets with more than two letters; then, we study morphisms
obtained as composition of the Thue-Morse morphism with a Sturmian
one. In all these cases, the BWT efficiently clusters the iterates of the
morphisms generating prefixes of these infinite words, for which we deter-
mine the compression clustering ratio.

Keywords: Burrows-Wheeler transform · Morphisms ·
Thue-Morse word · Generalized Fibonacci words

1 Introduction

The Burrows-Wheeler transform (BWT) is a powerful technique used at the
preprocessing stage in text compression algorithms [1,4]. Actually, it produces
a permutation of the characters of an input word and tends to group characters
in runs, so that the output word is easier to compress because it has a lower
number of runs (clusters). More precisely, the Burrows-Wheeler transform of a
word w of length n is built by lexicographically sorting all its n conjugates and
extracting the last character of each conjugate. The BWT is interesting in many
aspects, and in particular because it is linked to a remarkable bijection due to
Gessel and Reutenauer [8] on permutations, of which it is a special case [5].

In general it is difficult to determine a priori the compression ratio of the
BWT on a given word, so recent studies use combinatorics on words tools in
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order to give a measure of efficiency of the BWT applied to some classes of
words [7,10,15,19]. In order to investigate the clustering effect of the BWT from
a combinatorial viewpoint, it is interesting to consider the structural properties
of the words for which the BWT produces the maximal or the minimal compres-
sion ratio; a perfect clustering produced by the BWT corresponds to optimal
performances of the run-length encoding.

The clustering effect of BWT on balanced words is studied in [18]. In partic-
ular, standard words - building blocks of infinite Sturmian words - have a BWT
of the form bh aj [14]. On a k-letter alphabet, words having a BWT with minimal
number of clusters have been characterized in [17] in the case of balanced words,
and in [6] in the general case.

The study on Sturmian words suggests that more general morphic words are
expected to show a similar behaviour. In this paper, we support this thesis by
studying the BWT performance on the building blocks of the Thue-Morse word
and k-bonacci words, and, we determine the compression clustering ratio.

Finally, we study morphisms obtained by composition of the Thue-Morse
morphism with a Sturmian one. In all these cases the BWT proves to efficiently
cluster the building blocks of the considered infinite words.

2 Burrows-Wheeler Transform

We assume the reader familiar to the basic terminology on words defined on a
finite alphabet (ref A [11]). The Burrows-Wheeler transform is defined as a map
bwt(w) : A∗ → A∗ × N such that bwt(w) = (L, I) where

– L is the last column of a matrix M whose lines are all the conjugates of w
sorted lexicographically;

– I is the index of the line of M containing the original word w.

Example 1. The construction of BWT for w = filosofia is

F L
↓ ↓

1 a f i l o s o f i
2 f i a f i l o s o

I → 3 f i l o s o f i a
4 i a f i l o s o f
5 i l o s o f i a f
6 l o s o f i a f i
7 o f i a f i l o s
8 o s o f i a f i l
9 s o f i a f i l o

so bwt(w) = (ioaffislo, 3). In what follows we shall denote bwt1(w), the first
component, that is the column L.
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Note that the first column F of the matrix M is the sequence of lexicograph-
ically sorted letters of w (see Example 1). The Burrows-Wheeler transform is
reversible by using the properties described in the following proposition [4].

Proposition 1. Let w ∈ A∗ be a word such that bwt(w) = (L, I) and let F be
as above. The following properties hold:

1. ∀i, 1 ≤ i ≤ n, i �= I, the letter F [i] follows the letter L[i] in w;
2. ∀α ∈ A, the i-th occurrence of α in F matches the i-th occurrence of α in L;
3. the first letter of w is F[I].

According to property 2 of Proposition 1, there is a permutation τw giving the
correspondence between the positions of letters in F and L. Hence, starting from
the position I, the word w is obtained as follows:

w[i] = F [τ i−1
w (I)],

where τ0
w(x) = x and τ i

w(x) = τw(τ i−1
w (x)), with 1 ≤ i ≤ n. For the word of

Example 1, we have τw = (345168297).

Observation 1. For any two words u, v such that |u| = |v| and any letter α,
we have αu < αv if and only if uα < vα (if and only if u < v). Thus, given a
word w, for all indices i, j if i < j and F [i] = F [j], then τw(i) < τw(j).

The conjugation relation between words is denoted by u ≡ v. It is easy to see
that in the BWT the column L is stable by conjugation.

Proposition 2. u ≡ v if and only if bwt1(u) = bwt1(v).

We denote by ρ(u) the number of equal-letter runs or clusters of a word u ∈ A∗.

Definition 1. The BWT-clustering ratio of a word w is

γ(w) =
ρ(bwt1(w))

ρ(w)
.

For w = filosofia we have ρ(w) = 9, ρ(bwt1(w)) = ρ(ioaffislo) = 8, γ(w) = 8/9.
More details about bounds for the compression ratio can be found in [12,13].

Burrows-Wheeler Transform of Sturmian Words. The family of Sturmian words
has been extensively studied in several contexts, and recently in particular under
the BWT transformation. For the unfamiliar reader we simply recall that Stur-
mian words are infinite words that approximate lines of irrational slopes on a
square grid, so that they are conveniently encoded on the two-letter alphabet
A = {a, b}. In [14], Mantaci et al. established that, given a word w ∈ A∗ then
bwt1(w) = bk ah if and only if u is the power of a conjugate of a standard word.
In [20], Simpson and Puglisi provided an alternative proof of the previous state-
ment and a characterization of words on the alphabet {a, b, c} whose transforms
have the form ci bj ak.
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Definition 2. A morphism f on A is Sturmian if f(x) is a Sturmian word
whenever x is a Sturmian word.

In particular, it is a well-known fact that each Sturmian morphism is obtained
by composition from the following three morphisms

E :
a 	→ b
b 	→ a

ϕ :
a 	→ ab
b 	→ a

ϕ̃ :
a 	→ ba
b 	→ a.

3 Burrows-Wheeler Transform of Non-Sturmian Words

The study on Sturmian words suggests that the compression ratio of words
obtained by morphism iteration is likely to be high. Indeed, as these words are
defined recursively, it is expected that their BWT can be expressed recursively as
well, resulting in a lower number of clusters. In what follows we consider (right)
infinite fixed points of morphisms on finite alphabets.

An alphabet A comes equipped with an order 
 which extends to A∗ in the
usual lexicographic way. Let Φ : A∗ → A∗ be an order-preserving morphism on
A, that is Φ(α) 
 Φ(β) whenever α 
 β for all α, β ∈ A. Then we have

Lemma 1. If Φ is an order-preseving uniform morphism then

∀x, y ∈ A∗, x 
 y =⇒ Φ(x) 
 Φ(y).

3.1 Burrows-Wheeler Transform of Standard Thue-Morse Words

The Thue-Morse word m is a recurrent cube-free infinite word having many
combinatorial properties, and appearing in many contexts (see [3] for a primer).

The word m is the limit of the sequence (un)n≥0, with un = μn(a), obtained
by iterating the morphism μ, defined by μ(a) = ab, μ(b) = ba, which is order
preserving. So the first letters are the following

m = abbabaabbaababbabaab · · · .

The word un = μn(a) is the n-standard Thue-Morse word. The BWT applied
to the first n-standard Thue-Morse words shows some interesting regularities:

n = 0 bwt1(a) = a
n = 1 bwt1(ab) = ba
n = 2 bwt1(abba) = baba
n = 3 bwt1(abbabaab) = b2ababa2

n = 4 bwt1(abbabaabbaababba) = b4a2babab2a4

n = 5 bwt1(abbabaabbaababbabaababbaabbabaab) = b8a4b2ababa2b4a8

To study the performance of the BWT on standard Thue-Morse words we
need the following properties.

Proposition 3 (Thue, 1912). For n ≥ 0 the n-standard word un satisfies:
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(i) un does not contain the factors aaa and bbb for any n ≥ 0.
(ii) |un|a = |un|b = 2n−1.

Theorem 2. For n ≥ 2, it holds that:

bwt1(un) =

{

b2
n−2

a2n−3 · · · b (ab) a · · · b2
n−3

a2n−2
if n is even

b2
n−2

a2n−3 · · · a (ba) b · · · b2
n−3

a2n−2
if n is odd.

Proof. The proof is obtained by induction on n. The statement holds for u2 since
bwt1(u2) = baba and 20 = 1. Suppose the thesis holds for un−1 and that n in
even. So bwt1(un−1) = b2

n−3
a2n−4 · · · a (ba) b · · · b2

n−4
a2n−3

. The conjugates of
un−1 are words of the form

aaX1b, abX2b, abX3a, baX4a, baX5b, bbX6a (1)

and, by inductive hypothesis, the final letters of the lexicographically ordered
conjugates form the above bwt1(un−1). Applying μ to (1) we get some conjugates
of un:

ababµ(X1)ba, abbaµ(X2)ba, abbaµ(X3)ab, baabµ(X4)ab, baabµ(X5)ba, babaµ(X6)ab.

Let C be the set of these conjugates obtained by μ. Lemma 1 ensures that the
order of the conjugates in C is preserved by μ, and moreover, μ swaps the final
letter of each conjugate from a to b and vice versa. The set of conjugates of un

also includes
aababμ(X1)b ≺ aabbaμ(X2)b ≺ abaabμ(X5)b

and
babbaμ(X3)a ≺ bbaabμ(X4)a ≺ bbabaμ(X6)a.

So all conjugates ending with b form a set P and precede those in C, and all con-
jugates ending with a form a set F and follow those in C in lexicographic order. It
follows that the central part of bwt1(un) is a2n−3

b2
n−4 · · · b (ab) a · · · a2n−4

b2
n−3

.
Finally, by Proposition 3(ii) |P| = 2n−2 = | bwt1(un−1)|a, the number of occur-
rences of a in bwt1(un−1). Similarly, |F| = 2n−2 = | bwt1(un−1)|b. The thesis
follows:

bwt1(un) = b2
n−2

a2n−3
b2

n−4 · · · b (ab) a · · · a2n−4
b2

n−3
a2n−2

.

The case n odd is similar. ��
Corollary 1. For any n > 0 it holds that Iun

= 2n−1, i.e. the word un is the
last word (in the lexicographical order) of all its conjugates starting with a.

Proof. The proof is obtained by induction on n. For n = 1, u1 = ab so we have
that Iu1 = 1. Suppose Iun−1 = 2n−2. By Lemma 1, un = μ(un−1) keeps the same
position with respect to the images of the conjugates of un−1. Moreover there are
2n−2 conjugates of un that precede un. So the index of un in the lexicographic
order shifts to 2n−1. ��
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Denoting w̃ the reversal of w, and w = E(w), observe that bwt1(un) is also a
pseudo-palindrome, that is

Corollary 2. For any n > 0, we have ˜bwt(un) = bwt(un).

Example 2. The conjugates of u2 and u3 are:

1 a a b a b b a b
2 a b a a b a b b

}

P
1 a a b b 3 a b a b b a b a

Iu2 = 2 a b b a
µ−→ Iu3 = 4 a b b a b a a b

3 b a a b 5 b a a b a b b a
4 b b a a 6 b a b a a b a b

⎫

⎪

⎪

⎬

⎪

⎪

⎭

C

7 b a b b a b a a
8 b b a b a a b a

}

F

An easy consequence of Theorem 2 shows that the number of clusters satisfies
ρ(bwt1(un)) = 2n and ρ(un) = fn, where f0 = 1, f1 = 2, and:

fn =
{

2 fn−1 if n is odd
2 fn−1 − 1 if n is even.

So fn ∼ 2n, and therefore, for n large enough, the clustering ratio tends to zero:

γ(un) =
ρ(bwt1(un))

ρ(un)
� 1,

confirming the fact that the BWT is efficient on standard Thue-Morse words.

3.2 Generalizations of the Fibonacci Word

We already know that the BWT of the standard Fibonacci words (being Stur-
mian) have the minimum number of clusters. We show now that it does not hold
for generalizations to a three-letters alphabet. Actually, in view of the charac-
terization of words such that bwt(w) = ci bj ak established in [20], the BWT of
the n-standard Tribonacci word have more than three clusters, for n sufficiently
large. Consider the morphism τ : A∗ → A∗defined by

τ(a) = ab, τ(b) = ac, τ(c) = a.

The Tribonacci word is the limit of the sequence (tn)n>0, where tn = τn(a) is
the n-standard Tribonacci word. Some of its properties can be found in [2,21].
The sequence of Tribonacci numbers is defined as (Tn)n≥0 with

T0 = 1, T1 = 1, T2 = 2, Tn+3 = Tn + Tn+1 + Tn+2.

The first few terms are: 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, . . . (A000073 in [16]). The
change of the initial conditions to S0 = 1, S1 = 2 and S2 = 3 gives the integer
sequence Sn = Tn + Tn−1.
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Let us compute the BWT of the first standard Tribonacci words:

n = 1 bwt1(a) = a
n = 2 bwt1(ab) = ba
n = 3 bwt1(abac) = cba2

n = 4 bwt1(abacaba) = bcaba3

n = 5 bwt1(abacabaabacab) = bc2bab2a6

n = 6 bwt1(abacabaabacababacabaabac) = b2c4ba2b4a11

n = 7 bwt1(abacabaabacababacabaabacabacabaabacababacaba) = b4c6bcaba3b7a20

The morphism τ is not order-preserving as τ(c) ≺ τ(a) ≺ τ(b) neither uniform,
so that we cannot use Lemma 1 in order to compute the BWT for Tribonacci
words. Instead, let us consider the morphism

τ3 : a 	→ abacaba, b 	→ abacab, c 	→ abac,

which is order-reversing since τ3(c) ≺ τ3(b) ≺ τ3(a). However, we can use the
following result

Lemma 2. Let α ≺ β ∈ A. Then τ3(αs) 
 τ3(βt) for all s, t ∈ A+.

Proof. Since s and t are nonempty, τ3(s) and τ3(t) have abac for prefix. It
follows that τ3(as) = abacaba · abac · · · 
 abacab · abac · · · = τ3(bt) and so
τ3(as) 
 τ3(bt). The cases (α, β) = (a, c) and (α, β) = (b, c) are similar. ��
Theorem 3. For every standard Tribonacci word tn, with n > 0, we have

bwt1(tn+3) = bTn−1 cSn−1 bwt1(tn) bTn aSn+1 .

Proof. The proof follows a scheme similar to the one of Theorem 2 by applying
Lemma 2 and the fact that the word tn does not contain the factors bb, cc, bc,
cb and so neither aaa, aac, caa, cac. ��

The number of clusters of bwt1(tn) satisfies the recurrence

ρ(bwt1(tn+3)) = ρ(bwt1(tn)) + 4, for n > 3.

The first terms are (hn)n>0 = 1, 2, 3, 5, 6, 6, 9, 10, 10, 13, . . ., and hn ∼ n.

Lemma 3. The number of clusters in the n-standard Tribonacci word is ρ(tn) =
fn, where f1 = 1, and:

fn =
{

2Sn−2 + 1 if n = 3m + 1 for some m ∈ N

2Sn−2 otherwise.

Proof. By definition of tn and τ3 we have that ρ(tn) = |tn| − |tn|aa and every
factor aa in tn derives from an a in tn−3, except the case where a is the final
letter of tn−3, which happens if n = 3m + 1. So if n �= 3m + 1 we have that

ρ(tn) = |tn| − |tn−3|a = Tn − Tn−4 = Tn−1 + Tn−2 + Tn−3 − Tn−4 = 2Sn−2.

Otherwise, if n = 3m + 1 we have one additional cluster:

ρ(tn) = |tn| − |tn−3|a + 1 = 2Sn−2 + 1. ��
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Since fn ∼ 2n, we have that, for n large enough, the clustering ratio tends to 0:

γ(tn) =
ρ(bwt1(tn))

ρ(tn)
� 1,

confirming that the BWT is remarkably efficient on standard Tribonacci words.

Further Generalizations. The results holding for Tribonacci words can be
naturally extended to the generalization of Fibonacci words to an alphabet of
cardinality k ∈ N. So, with Ak = {a1, . . . , ak}, let ϕk be defined as

ϕk(a1) = a1a2, ϕk(a2) = a1a3, . . . ϕk(ak−1) = a1ak, ϕk(ak) = a1.

The k-bonacci word is the limit of the sequence (gk,n)n>0, where gk,n = ϕn
k (a)

is the n-standard k-bonacci word and the length of gk,n is the n-th k-bonacci
number G1

n:

G1
0 = 1, . . . , G1

k−1 =
k−2
∑

i=0

G1
i and G1

n+k =
n+k−1
∑

i=n

G1
i .

From the sequence (G1
n)n≥0 we can define k − 2 other sequences:

G2
n = G1

n + G1
n−1

G3
n = G1

n + G1
n−1 + G1

n−2
...

Gk−1
n = G1

n + . . . + G1
n−(k−2) =

n
∑

i=n−k+2

G1
i .

Theorem 4. For every n-standard k-bonacci word gk,n, it holds that

bwt1(gk,n+k) = a
G1

n−1
2 a

G2
n−1

3 . . . a
Gk−1

n−1
k bwt1(gk,n) a

G1
n

k−1 . . . a
Gk−2

n+k−3
2 a

Gk−1
n+k−2

1 .

The proof is a simple generalization of the one of Theorem 3 to an alphabet
with k letters. Finally, the number of clusters of bwt1(gk,n) is ρ(bwt1(gk,n+k)) =
ρ(bwt1(gk,n))+2 k −2 for each n > k. On the other hand the number of clusters
in the standard k-bonacci word is ρ(gk,n) = fn, where f1 = 1, and:

fn =
{

2Gk−1
n−2 + 1 if n = k m + 1 for some m ∈ N

2Gk−1
n−2 otherwise.

Since fn ∼ 2n, againt, for n large enough, the clustering ratio tends to 0:

γ(gk,n) =
ρ(bwt1(gk,n))

ρ(gk,n)
� 1,

and so, the BWT reduces the number of clusters in the general case as well.

Example 3. For k = 4, we have the Tetranacci word and the BWT of the stan-
dard Tetranacci words qn, n > 0, has the following form:

bwt1(qn+4) = bQn−1 cRn−1 dVn−1 bwt1(qn) cQn bRn+1 aVn+2

where (Qn)n≥0 is the sequence of Tetranacci numbers (sequence A000078 in [16])
and (Rn)n≥0, (Vn)n≥0 are such that Rn = Qn +Qn−1, Vn = Qn +Qn−1 +Qn−2.
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3.3 Composition of Thue-Morse with Sturmian Morphisms

A final result concerns the inspection of the BWT behaviour when applied to
words obtained by composition of the Thue-Morse and Sturmian morphisms.
We first consider the two different compositions of μ and ϕ.

The composition μ ◦ ϕ. It is defined on A = {a, b} by

μ ◦ ϕ : a 	→ abba; b 	→ ab.

Let us consider the standard words pn = (μ ◦ ϕ)n(a), whose first terms are:
a, abba, abbaabababba, . . .. In general, we have the recurrence formula:

Lemma 4. For every n > 1, it holds that

pn = pn−1 pn−2 · · · p1 p0 b pn−2 pn−3 · · · p1 p0 b pn−1.

Proof. By induction on n. If n = 2 we have p2 = abbaabababba = p1 p0 b p0 b p1.
Suppose that the statement holds for n − 1, i.e.:

pn−1 = pn−2 pn−3 · · · p1 p0 b pn−3 pn−4 · · · p1 p0 b pn−2.

Then, by applying μ ◦ ϕ, the thesis follows, because (μ ◦ ϕ)(b) = p0 b. ��
Corollary 3. For every word pn with n > 1, we have that |pn| = 3 |pn−1|.
The first terms of the sequence (Ln)n≥0 of the lengths of the words pn are:
1, 4, 12, 36, 108, 324, . . . (sequence A003946 in [16]). The BWT applied to the
first few terms of (pn)n≥0 yields:

B0 = a
B1 = baba
B2 = b2abab3a4

B3 = b6a4b3abab8a12

B4 = b18a12b8abab3a4b24a36

B5 = b54a36b24a4b3abab8a12b72a108

The Thue-Morse morphism μ being order-preserving, while the Fibonacci
morphism ϕ is order reversing we immediately have

Lemma 5. Let α ≺ β ∈ A. Then (μ ◦ ϕ)(αs) � (μ ◦ ϕ)(βt) for all s, t ∈ A+.

Theorem 5. For every word pn, and n > 0, we have

Bn+1 = b
Ln
2 ˜Bn b

Ln
2 aLn .

Proof. The proof is similar to the proof of Theorem 2, and relies on: the applica-
tion of Lemma 5, the fact that |pn|a = |pn|b = Ln/2 for n > 0, and the fact that
p1 has the same number of a′s and b′s, a property preserved by the morphism
μ ◦ ϕ. ��
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For n > 0 the number of clusters of the BWT of the n-standard word is
ρ(Bn+1) = ρ(Bn) + 2, as every reversal of Bn ends with the letter b. So the first
terms of the sequence (hn)n≥0 are 1, 4, 6, 8, 10, 12, 14, . . . and hn ∼ n.

Lemma 6. The number of clusters in pn for each n ≥ 0 is ρ(pn) = fn where
f0 = 1 and fn = Ln − Ln−1 + 1.

Proof. By definition of μ ◦ ϕ, we have that in each pn there are at most two
consecutive a or b. It follows that

ρ(pn) = |pn| − |pn|aa − |pn|bb.
Every factor aa in pn derives from an a in pn−1 except if a is the last letter, and
every factor bb derives from an a. We have seen that |pn−1|a = Ln−1/2, so

ρ(pn) = Ln −
(

Ln−1

2
− 1

)

− Ln−1

2

and the thesis follows. ��
The first terms of the sequence (fn)n≥0 are 1, 2, 9, 25, 73, 217, . . . and fn ∼ 3n.
It follows that, for n large enough, the clustering ratio tends to zero:

γ(pn) =
ρ(Bn)
ρ(pn)

� 1

which states that the BWT is very effective for the n-standard words pn defined
by the morphism μ ◦ ϕ.

Observe that if we replace ϕ with ϕ̃, and we define p′
n = (μ ◦ ϕ̃)n(a), we

obtain words that are conjugates of pn for each n ≥ 0 and so, by Proposition 2,
they have the same BWT.

The composition ϕ ◦ μ. Let us consider now the composition:

ϕ ◦ μ :
a 	→ aba
b 	→ aab

Let qn denote the n-standard words associated with ϕ ◦ μ, i.e. qn = (ϕ ◦ μ)n(a),
n ≥ 0. The first terms are: a, aba, abaaababa, . . .. In general we have

Lemma 7. For each n > 1 it holds that

qn = qn−1 qn−2 qn−2 qn−3 qn−3 · · · q1 q1 q0 q0 b qn−1.

The proof is similar to the one of Lemma 4.
As a consequence of the previous lemma, we have that |qn| = 3n and, by

definition of ϕ ◦ μ, |qn|a = 2 |qn−1| = 2 · 3n−1 and |qn|b = |qn−1| = 3n−1. By
applying the BWT to qn, we get

Bn+1 = b2·3n−1
˜Bn a4·3n−1

where 4 · 3n−1 is obtained from 3n + 3n−1.
The number of clusters of the BWT for each n > 0 is ρ(Bn+1) = ρ(Bn) + 2.

So the first terms of the sequence (hn)n≥0 are 1, 4, 6, 8, 10, 12, 14, . . . and hn ∼ n.
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Lemma 8. The number of clusters in qn for each n ≥ 0 is ρ(qn) = fn where
f0 = 1, f1 = 3 and fn = 3 fn−1 − 2.

Proof. As qn begins and ends with an a for each n ∈ N, by Lemma 7, we have
that for each n > 1

fn = 2 (fn−1 + fn−2 + . . . + f1 + f0) + 1 − 2 (n − 1)

so fn + 2 = 2 fn−1 + 2 (fn−2 + . . . + f1 + f0) − 2 (n − 1) + 3 = 3 fn−1. ��
The first terms of the sequence (fn)n≥0 are 1, 3, 7, 19, 55, 163, 487, . . . and

fn ∼ 3n. It follows that, for n large enough, the clustering ratio tends to zero:

γ(qn) =
ρ(Bn)
ρ(qn)

� 1

which states that the BWT is again efficient for this word defined by the mor-
phism ϕ ◦ μ.

3.4 Conclusions and Further Developments

The study done in this paper supports our initial idea that the BWT is par-
ticularly efficient on standard words associated with morphisms. Experimental
evidence leads us to consider that this property also holds more generally. Fur-
ther studies could investigate a formal way to express standard words defined
by a generic composition of non-Sturmian morphisms, similarly to the case of
Sturmian ones. For instance, consider the morphism μ ◦ ϕ ◦ ϕ̃:

μ ◦ ϕ ◦ ϕ̃ :
a 	→ ababba
b 	→ abba

with wn = (μ ◦ ϕ ◦ ϕ̃)n(a). The first iterates are: a, ababba, . . . and

B0 = a
B1 = bab2a2

B2 = b6a4ba2b8a9

B3 = b30a21b4ab2a8b39a45

B4 = b150a105b21a4ba2b8a39b195a225

In this case, though experimentally BWT shows a positive behaviour on these
words, a formal proof of this fact is complicated to achieve since a generic expres-
sion for the terms wn and Bn is not easy to find. The same problem shows up
when we study several other morphisms such as: ϕ ◦ μ ◦ ϕ̃ and ϕ ◦ ϕ̃ ◦ μ.
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Abstract. Given a set of n men represented by n points lying on a
line, and n women represented by n points lying on another parallel
line, with each person having a list that ranks some people of opposite
gender as his/her acceptable partners in strict order of preference. In
this problem, we want to match people of opposite genders to satisfy
people’s preferences as well as making the edges not crossing one another
geometrically. A noncrossing blocking pair w.r.t. a matching M is a pair
(m,w) of a man and a woman such that they are not matched with
each other but prefer each other to their own partners in M , and the
segment (m,w) does not cross any edge in M . A weakly stable noncrossing
matching (WSNM) is a noncrossing matching that does not admit any
noncrossing blocking pair. In this paper, we prove the existence of a
WSNM in any instance by developing an O(n2) algorithm to find one in
a given instance.

Keywords: Stable matching · Stable marriage problem ·
Noncrossing matching · Geometric matching

1 Introduction

The stable marriage problem is one of the most classic and well-studied problems
in the area of matching under preferences, with many applications in other fields
including economics [5,10]. We have a set of n men and a set of n women, with
each person having a list that ranks some people of opposite gender as his/her
acceptable partners in order of preference. A matching is a set of disjoint man-
woman pairs. A blocking pair w.r.t. a matching M is a pair of a man and a
women that are not matched with each other in M but prefer each other to
their own partners. The goal is to find a stable matching, a matching that does
not admit any blocking pair.

On the other hand, the noncrossing matching problem is a problem in the
area of geometric matching. We have a set of 2n points lying on two parallel
lines, each containing n points. We also have some edges joining vertices on the
opposite lines. The goal is to select a set of edges that do not cross one another
subject to different objectives, e.g. maximum size, maximum weight, etc.

In this paper, we study a problem in geometric matching under preferences. In
particular, we investigate the problem of having n men and n women represented
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by points lying on two parallel lines, with each line containing n people of one
gender. Each person has a list that ranks some people of opposite gender in
strict order of preference. A noncrossing blocking pair w.r.t. a matching M is a
blocking pair w.r.t. M that does not cross any edge in M . Our goal is to find a
noncrossing matching that does not admit any noncrossing blocking pair, called
a weakly stable noncrossing matching (WSNM).

Note that the real-world applications of this geometric problem are more
likely to involve immovable objects, e.g. construction of noncrossing bridges
between cities on the two sides of a river, with each city having different pref-
erences. In this paper, however, we keep the terminologies of men and women
used in the original stable marriage problem in order to understand and relate
to the original problem more easily.

1.1 Related Work

The stable marriage problem was first introduced by Gale and Shapley [3]. They
proved that a stable matching always exists in an instance with n men and n
women, with each person’s preference list containing all n people of opposite
gender and not containing ties. They also developed an O(n2) algorithm to find
a stable matching in a given instance. Gusfield and Irving [5] later showed that
the algorithm can be adapted to the setting where each person’s preference list
may not contain all people of opposite gender. The algorithm runs in O(m) time
in this setting, where m is the total length of people’s preference lists. Gale and
Sotomayor [4] proved that in this modified setting, a stable matching may have
size less than n, but every stable matching must have equal size. Irving [7] then
generalized the notion of a stable matching to the case where ties are allowed
in people’s preference lists. He introduced three types of stable matchings in
this setting: weakly stable, super-stable, and strongly stable, as well as developing
algorithms to determine whether each type of matching exists in a given instance
and find one if it does.

The Stable Roommates problem is a generalization of the stable marriage
problem to a non-bipartite setting where people can be matched regardless of
gender. Unlike in the original problem, a stable matching in this setting does not
always exist. Irving [6] developed an O(n2) algorithm to find a stable matching
or report that none exists in a given instance, where n is the number of people.

On the other hand, the noncrossing matching problem in a bipartite graph
where the points lie on two parallel lines, each containing n points, was encoun-
tered in many real-world situations such as in VLSI layout design [8]. In the
special case where each point is adjacent to exactly one point on the opposite
line, Fredman [2] presented an O(n log n) algorithm to find a maximum size
noncrossing matching by computing the length of the longest increasing subse-
quence (LIS). Widmayer and Wong [11] developed another algorithm that runs
in O(k + (n − k) log(k + 1)) time, where k is the size of the solution. This algo-
rithm has the same worst-case runtime as Fredman’s, but runs faster in most
general cases.
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In a more general case where each point may be adjacent to more than
one point, Malucelli et al. [9] developed an algorithm to find a maximum size
noncrossing matching. The algorithm runs in either O(m log log n) or O(m +
min (nk,m log k)) time depending on implementation, where m is the number of
edges and k is the size of the solution. In the case where each edge has a weight,
they also showed that the algorithm can be adapted to find a maximum weight
noncrossing matching with O(m log n) runtime.

1.2 Our Contribution

In this paper, we constructively prove that a weakly stable noncrossing matching
always exists in any instance by developing an O(n2) algorithm to find one in a
given instance.

2 Preliminaries

In this setting, we have a set of n men m1, ...,mn represented by points lying on
a vertical line in this order from top to bottom, and a set of n women w1, ..., wn

represented by points lying on another parallel line in this order from top to
bottom. Only people of opposite genders can be matched with each other, and
each person can be matched with at most one other person. A matching is a set
of disjoint man-woman pairs.

For a person a and a matching M , define M(a) to be the person matched
with a (for convenience, let M(a) = null for an unmatched person a). For
each person a, let Pa be the preference list of a containing people of opposite
gender to a as his/her acceptable partners in decreasing order of preference. Note
that a preference list does not have to contain all n people of opposite gender.
Throughout this paper, we assume that the preference lists are strict (containing
no tie involving two or more people). Also, let ra(b) be the rank of a person b in
Pa, with the first entry having rank 1, the second entry having rank 2, and so
on (for convenience, let ra(null) = ∞ and treat null as the last entry appended
to the end of Pa, as being matched is always better than being unmatched). A
person a is said to prefer a person b to a person c if ra(b) < ra(c).

A pair of edges cross each other if they intersect in the interior of both
segments. Formally, an edge (mi, wx) crosses an edge (mj , wy) if and only if
(i − j)(x − y) < 0. A matching is called noncrossing if it does not contain any
pair of crossing edges.

The following are the formal definitions of a blocking pair given in the original
stable marriage problem, and a noncrossing blocking pair introduced here.

Definition 1. A blocking pair w.r.t. a matching M is a pair (m,w) of a man
and a woman that are not matched with each other, but m prefers w to M(m)
and w prefers m to M(w).

Definition 2. A noncrossing blocking pair w.r.t. a matching M is a blocking
pair w.r.t. M that does not cross any edge in M .
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We also introduce two types of stable noncrossing matchings, distinguished
as weakly and strongly stable.

Definition 3. A matching M is called a weakly stable noncrossing matching
(WSNM) if M is noncrossing and does not admit any noncrossing blocking pair.

Definition 4. A matching M is called a strongly stable noncrossing matching
(SSNM) if M is noncrossing and does not admit any blocking pair.

Note that an SSNM is a matching that is both noncrossing and stable, while
a WSNM is “stable” in a weaker sense as it may admit a blocking pair, just not
a noncrossing one.

An SSNM may not exist in some instances. For example, in an instance of
two men and two women, with Pm1 = (w2, w1), Pm2 = (w1, w2), Pw1 = (m2,m1),
and Pw2 = (m1,m2), the only stable matching is {(m1, w2), (m2, w1)}, and its
two edges do cross each other. On the other hand, the above instance has two
WSNMs {(m1, w2)} and {(m2, w1)}. It also turns out that a WSNM always exists
in every instance. Throughout this paper, we focus on the proof of existence of
a WSNM by developing an algorithm to find one.

3 Our Algorithm

3.1 Outline

Without loss of generality, for each man m and each woman w, we assume that
w is in m’s preference list if and only if m is also in w’s preference list (otherwise
we can simply remove the entries that are not mutual from the lists). Initially,
every person is unmatched.

Our algorithm uses proposals from men to women similarly to the Gale–
Shapley algorithm in [3], but in a more constrained way. With M being the
current noncrossing matching, when a woman w receives a proposal from a man
m, if she prefers her current partner M(w) to m, she rejects m; if she is currently
unmatched or prefers m to M(w), she dumps M(w) and accepts m.

Consider a man m and a woman w not matched with each other. An entry
w in Pm has the following possible states:

1. accessible (to m), if (m,w) does not cross any edge in M ;
1.1. available (to m), if w is accessible to m, and is currently unmatched or

matched with a man she likes less than m, i.e. m is going to be accepted
if he proposes to her (for convenience, if w is currently matched with m,
we also call w accessible and available to m).

1.2. unavailable (to m), if w is accessible to m, but is currently matched
with a man she likes more than m, i.e. m is going to be rejected if he
proposes to her;

2. inaccessible (to m), if w is not accessible to m;
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For a man m, if every entry in Pm before M(m) is either inaccessible or
unavailable, then we say that m is stable; otherwise (there is at least one available
entry before M(m)) we say that m is unstable.

The main idea of our algorithm is that, at any point, if there is at least one
unstable man, we pick the topmost unstable man mi (the unstable man mi with
least index i) and perform the following operations.

1. Let mi dump his current partner M(mi) (if any), i.e. remove (mi,M(mi))
from M , and let him propose to the available woman wj that he prefers most.

2. Let wj dump her current partner M(wi) (if any), i.e. remove (M(wj), wj)
from M , and let her accept mi’s proposal.

3. Add the new pair (mi, wj) to M .

We repeatedly perform such operations until every man becomes stable. Note
that throughout the algorithm, every proposal will result in acceptance and M
will always be noncrossing since men propose only to women available to them.

3.2 Proof of Correctness

First, we will show that if our algorithm stops, then the matching M given by
the algorithm must be a WSNM.

Assume, for the sake of contradiction, that M admits a noncrossing blocking
pair (mi, wj). That means mi prefers wj to his current partner M(mi), wj prefers
mi to her current partner M(wj), and (mi, wj) does not cross an edge in M ,
thus the entry wj in Pmi

is available and is located before M(mi). However,
by the description of our algorithm, the process stops when every man becomes
stable, which means there cannot be an available entry before M(mi) in Pmi

, a
contradiction. Therefore, we can conclude that our algorithm gives a WSNM as
a result whenever it stops.

However, it is not trivial that our algorithm will eventually stop. In con-
trast to the Gale–Shapley algorithm in the original stable marriage problem,
in this problem a woman is not guaranteed to get increasingly better part-
ners throughout the process because a man can dump a woman too if he later
finds a better available woman previously inaccessible to him (due to having
an edge obstructing them). In fact, it is actually the case where the process
may not stop if at each step we pick an arbitrary unstable man instead of the
topmost one. For example, in an instance of two men and two women with
Pm1 = (w2, w1), Pm2 = (w1, w2), Pw1 = (m1,m2), Pw2 = (m2,m1), the order of
picking m1,m2,m2,m1,m1,m2,m2,m1, ... results in the process continuing for-
ever, with the matching M looping between {(m1, w2)}, {(m2, w2)}, {(m2, w1)},
and {(m1, w1)} at each step.

We will prove that our algorithm must eventually stop and evaluate its worst-
case runtime after we introduce the explicit implementation of the algorithm in
the next subsection.
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3.3 Implementation

To implement the above algorithm, we have to consider how to efficiently find
the topmost unstable man at each step in order to perform the operations on
him. Of course, a straightforward way to do this is to update the state of every
entry in every man’s preference list after each step, but that method will be very
inefficient. Instead, we introduce the following scanning method.

Throughout the algorithm, we do not know exactly the set of all unstable
men, but we instead keep a set S of men that are “possibly unstable.” Initially,
the set S contains all men, i.e. S = {m1,m2, ...,mn}, and at each step we
maintain the set S of the form {mi,mi+1, ..., ,mn} for some i ∈ [n] (that means
m1,m2, ...,mi−1 are guaranteed to be stable at that time). Note that in the actual
implementation, we can store only the index of the topmost man in S instead of
the whole set. At each step, we scan the topmost man mi in S and check whether
mi is stable. If mi is already stable, then we simply skip him by removing mi

from S and moving to scan the next man in S. If mi is unstable, then mi is
indeed the topmost unstable man we want, so we perform the operations on mi.
Note that the operations may cause some men to become unstable, so after that
we have to add all men that are possibly affected by the operations back to S.
The details of the scanning and updating processes are as follows.

During the scan of mi, let mprev be the matched man closest to mi that
lies above him, and let wfirst = M(mprev) (we let wfirst = w1 if there is no
mprev). Also, let mnext be the matched man closest to mi that lies below him,
and let wlast = M(mnext) (we let wlast = wn if there is no mnext). Observe that
matching mi with anyone lying above wfirst will cross the edge (mprev, wfirst),
and matching mi with anyone lying below wlast will cross the edge (mnext, wlast).
Therefore, the range of all women accessible to mi ranges exactly from wfirst to
wlast, hence the range of all women available to mi ranges from either wfirst or
wfirst+1 (depending on whether wfirst prefers mi to mprev) to either wlast or
wlast−1 (depending on whether wlast prefers mi to mnext). See Fig. 1.

Then in the available range, mi selects the woman wj that he prefers most.
Case 1: wj does not exist or mi is currently matched with wj .
That means mi is currently stable, so we can skip him. We remove mi from

S and proceed to scan mi+1 in the next step (called a downward jump).
Case 2: wj exists and mi is not currently matched with wj

That means mi is indeed the topmost unstable man we want, so we perform
the operations on him by letting mi propose to wj and dump his current partner
(if any).

Case 2.1: mprev exists and wj = wfirst.
That means wfirst dumps mprev to get matched with mi, which leaves

mprev unmatched and he may possibly become unstable. Furthermore, mprev+1,
mprev+2, ...,mi−1 as well as mi himself may also possibly become unstable since
they now gain access to women lying above wfirst previously inaccessible to
them (if wfirst �= w1). On the other hand, m1,m2, ...,mprev−1 clearly remain
stable, hence we add mprev,mprev+1, ...,mi−1 to S and proceed to scan mprev in
the next step (called an upward jump).
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accessible to mi
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Fig. 1. Accessible and available women to mi

Case 2.2: mprev does not exist or wj �= wfirst.
Case 2.2.1: mi is currently matched and wj lies geometrically below M(mi).
Then, mprev,mprev+1, ...,mi−1 (or m1,m2, ...mi−1 if mprev does not exist)

may possibly becomes unstable since they now gain access to women
between M(mi) and wj previously inaccessible to them. Therefore, we per-
form the upward jump to mprev (or to m1 if mprev does not exist), adding
mprev,mprev+1, ..., mi−1 (or m1,m2, ...mi−1) to S and proceed to scan mprev

(or m1) in the next step, except when mi = m1 that we perform the downward
jump to m2.

It turns out that this case is impossible, which we will prove in the next
subsection.

Case 2.2.2: mi is currently unmatched or wj lies geometrically above
M(mi).

Then all men lying above mi clearly remain stable (because the sets of avail-
able women to m1, ...,mi−1 either remain the same or become smaller). Also,
mi now becomes stable as well (because mi selects a woman he prefers most
in the available range), except in the case where wj = wlast (because the edge
(mnext, wlast) is removed and mi now has access to women lying below wlast pre-
viously inaccessible to him). Therefore, we perform the downward jump, remov-
ing mi from S and moving to scan mi+1 in the next step, except when wj = wlast

that we have to scan mi again in the next step (this exception, however, turns
out to be impossible, which we will prove in the next subsection).
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We scan the men in this way until S becomes empty (see Example 1). By the
way we add all men that may possibly become unstable after each step back to
S, at any step S is guaranteed to contain the topmost unstable man.

Example 1. Consider an instance of three men and three women with the fol-
lowing preference lists.

m1 : w3, w1, w2

m2 : w2, w3, w1

m3 : w2, w1, w3

w1 : m3,m2,m1

w2 : m3,m2,m1

w3 : m3,m2,m1

Our algorithm will scan the men in the following order and output a matching
M = {(m2, w1), (m3, w2)}, which is a WSNM.

Step Process M at the end of step S at the end of step

0 Ø {m1,m2,m3}
1 scan m1, add (m1, w3) {(m1, w3)} {m2,m3}
2 scan m2, add (m2, w3), remove (m1, w3) {(m2, w3)} {m1,m2,m3}
3 scan m1, add (m1, w1) {(m1, w1), (m2, w3)} {m2,m3}
4 scan m2, add (m2, w2), remove (m2, w3) {(m1, w1), (m2, w2)} {m3}
5 scan m3, add (m3, w2), remove (m2, w2) {(m1, w1), (m3, w2)} {m2,m3}
6 scan m2, add (m2, w1), remove (m1, w1) {(m2, w1), (m3, w2)} {m1,m2,m3}
7 scan m1 {(m2, w1), (m3, w2)} {m2,m3}
8 scan m2 {(m2, w1), (m3, w2)} {m3}
9 scan m3 {(m2, w1), (m3, w2)} Ø

3.4 Observations

First, we will prove the following lemma about the algorithm described in the
previous subsection.

Lemma 1. During the scan of a man mi, if mi is currently matched, then mi

does not propose to any woman lying geometrically below M(mi).

Proof. We call a situation when a man mi proposes to a woman lying geomet-
rically below M(mi) a downward switch. Assume, for the sake of contradiction,
that a downward switch occurs at least once during the whole algorithm. Sup-
pose that the first downward switch occurs at step s, when a man mi is matched
to wk = M(mi) and proposes to wj with j > k. We have mi prefers wj to wk.

Consider the step t < s when mi proposed to wk (if mi proposed to wk

multiple times, consider the most recent one). At step t, wj must be inaccessible
or unavailable to mi (otherwise he would choose wj instead of wk), meaning that
there must be an edge (mp, wq) with p > i and k < q < j obstructing them in
the inaccessible case, or an edge (mp, wq) with p > i, q = j, and wj preferring
mp to mi in the unavailable case.
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We define a dynamic edge e as follows. First, at step t we set e = (mp, wq).
Then, throughout the process we update e by the following method: whenever
the endpoints of e cease to be partners of each other, we update e to be the
edge joining the endpoint that dumps his/her partner with his/her new partner.
Formally, suppose that e is currently (mx, wy). If mx dumps wy to get matched
with wy′ , we update e to be (mx, wy′); if wy dumps mx to get matched with
mx′ , we update e to be (mx′ , wy).

By this updating method, the edge e will always exist after step t, but may
change over time. Observe that from step t to step s, we always have x > i
because of the existence of (mi, wk). Moreover, before step s, if mx dumps wy

to get matched with wy′ , by the assumption that a downward switch did not
occur before step s, we have y′ < y, which means the index of the women’s side
of e’s endpoints never increases. Consider the edge e = (mx, wy) at step s, we
must have x > i and y ≤ q ≤ j. If y < j, then the edge e obstructs mi and wj ,
making wj inaccessible to mi. If y = j, that means wj never got dumped since
step t, so she got only increasingly better partners, thus wj prefers mx to mi,
making wj unavailable to mi. Therefore, in both cases mi could not propose to
wj , a contradiction. Hence, a downward switch cannot occur in our algorithm.

��
Lemma 1 shows that a woman cannot get her partner stolen by any woman

that lies below her, which is equivalent to the following corollary.

Corollary 1. If a man mi dumps a woman wj to propose to a woman wk, then
k < j.

It also implies that Case 2.2.1 in the previous subsection never occurs. There-
fore, the only case where an upward jump occurs is Case 2.1 (mprev exists and
mi proposes to wfirst). We will now prove the following lemma.

Lemma 2. During the scan of a man mi, if mnext exists, then mi does not
propose to wlast.

Proof. Assume, for the sake of contradiction, that mi proposes to wlast. Since
mnext exists, this proposal obviously cannot occur in the very first step of the
algorithm. Consider a man mk we scanned in the previous step right before
scanning mi.

Case 1: mk lies below mi, i.e. k > i.
In order for the upward jump from mk to mi to occur, mi must have been

matched with a woman but got her stolen by mk in the previous step. However,
mi+1,mi+2, ...,mnext−1 are all currently unmatched (by the definition of mnext),
so the only possibility is that mk = mnext, and thus his partner that got stolen
was wlast. Therefore, we can conclude that wlast prefers mnext to mi, which
means wlast is currently unavailable to mi, a contradiction.

Case 2: mk lies above mi, i.e. k < i.
The jump before the current step was a downward jump, but since mnext

has been scanned before, an upward jump over mi must have occurred at some
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point before the current step. Consider the most recent upward jump over mi

before the current step. Suppose than it occurred at the end of step t and was
a jump from mk′ to mj , with k′ > i and j < i. In order for this jump to occur,
mj must have been matched with a woman but got her stolen by mk′ at step t.
However, mi+1,mi+2, ...,mnext−1 are all currently unmatched (by the definition
of mnext), so the only possibility is that mk′ = mnext, and thus mj ’s partner that
got stolen was wlast. We also have mj+1,mj+2, ...,mnext−1 were all unmatched
during step t (otherwise wlast would be inaccessible to mk′), and wlast prefers
mnext to mj .

Now, consider the most recent step before step t in which we scanned mi.
Suppose it occurred at step s. During step s, mj was matched with wlast and
wlast was accessible to mi. However, mi was still left unmatched after step s
(otherwise an upward jump over mi at step t could not occur), meaning that
wlast must be unavailable to him back then due to wlast preferring mj to mi.
Therefore, we can conclude that wlast prefers mnext to mi, thus wlast is currently
unavailable to mi, a contradiction. ��

Lemma 2 shows that a man cannot get his partner stolen by any man lying
above him, or equivalent to the following corollary.

Corollary 2. If a woman wj dumps a man mi to accept a man mk, then k > i.

3.5 Proof of Finiteness

Now, we will show that the position of each woman’s partner can only move
downward throughout the process, which guarantees the finiteness of the number
of steps in the entire process.

Lemma 3. After a woman wj ceases to be a partner of a man mi, she cannot
be matched with any man mi′ with i′ ≤ i afterwards.

Proof. Suppose that wj ’s next partner (if any) is ma. It is sufficient to prove
that a > i. First, consider the situation when mi and wj cease to be partners.

Case 1: wj dumps mi.
This means wj dumps mi to get matched with ma right away. By Corollary

2, we have a > i as required.
Case 2: mi dumps wj .
Suppose that mi dumps wj to get matched with wk. By Corollary 1, we have

k < j.
Case 2.1: mi never gets dumped afterwards.
That means mi will only get increasingly better partner, and the position of

his partner can only move upwards (by Corollary 1), which means wj cannot be
matched with mi again, or any man lying above mi afterwards due to having an
edge (mi,M(mi)) obstructing. Therefore, ma must lie below mi, i.e. a > i.

Case 2.2: mi gets dumped afterwards.
Suppose that mi first gets dumped by wy at step s. By Corollary 1, we have

y ≤ k < j (because mi only gets increasingly better partners before getting
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dumped). Also suppose that wy dumps mi in order to get matched with mx.
By Corollary 2, we have x > i. Similarly to the proof of Lemma 1, consider a
dynamic e first set to be (mx, wy) at step s. We have the index of the men’s side
of e’s endpoints never decreases, and that of the women’s side never increases.
Therefore, since step s, there always exists an edge (mx, wy) with x > i and
y < j, obstructing wj ’s access to mi and all men lying above him. Therefore,
ma must lie below mi, i.e. a > i. ��

3.6 Runtime Analysis

Consider any upward jump from mi to mk with i > k that occurs right after mi

stole wj from mk. We call such a jump associated to wj , and it has size i − k.
For any woman wj , let Uj be the sum of the sizes of all upward jumps

associated to wj . From Lemma 3, we know that the position of wj ’s partner can
only move upward throughout the process, so we have Uj ≤ n−1. Therefore, the
sum of the sizes of all upwards jumps is

∑n
j=1 Uj ≤ n(n− 1) = O(n2). Since the

scan starts at m1 and ends at mn, the total number of downward jumps equals
to the sum of the sizes of all upward jumps plus n − 1, hence the total number
of steps in the whole algorithm is O(n2).

For each mi, we keep an array of size n, with the jth entry storing the rank
of wj in Pmi

. Each time we scan mi, we query the minimum rank of available
women, which is a consecutive range in the array. Using an appropriate range
minimum query (RMQ) data structure such as the one introduced by Fischer
[1], we can perform the scan with O(n) preprocessing time per array and O(1)
query time. Therefore, the total runtime of our algorithm is O(n2).

In conclusion, we proved that our developed algorithm is correct and can
be implemented in O(n2) time, which also implicitly proves the existence of a
WSNM in any instance.

Theorem 1. A weakly stable noncrossing matching exists in any instance with
n men and n women with strict preference lists.

Theorem 2. There is an O(n2) algorithm to find a weakly stable noncrossing
matching in an instance with n men and n women with strict preference lists.

Remarks: Our algorithm does not require the numbers of men and women to
be equal. In the case that there are n1 men and n2 women, the algorithm works
similarly with O(n1n2) runtime. Also, in the case that people’s preference lists
are not strict, we can modify the instance by breaking ties in an arbitrary way.
Clearly, a WSNM in the modified instance will also be a WSNM in the original
one (because every noncrossing blocking pair in the original instance will also
be a noncrossing blocking pair in the modified instance).

4 Discussion

In this paper, we constructively prove that a WSNM always exists in any instance
by developing an O(n2) algorithm to find one. Note that the definition of a
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WSNM allows multiple answers with different sizes for an instance. For example,
in an instance of three men and three women, with Pm1 = (w3, w1, w2), Pm2 =
(w1, w2, w3), Pm3 = (w2, w3, w1), Pw1 = (m2,m3,m1), Pw2 = (m3,m1,m2), and
Pw3 = (m1,m2,m3), both {(m1, w3)} and {(m2, w1), (m3, w2)} are WSNMs,
but our algorithm only outputs the first one with smaller size. A possible future
work is to develop an algorithm to find a WSNM with maximum size in a given
instance, which seems to be a naturally better answer then other WSNMs as it
satisfies more people. Another possible future work is to develop an algorithm
to determine whether an SSNM exists in a given instance, and to find one if it
does.

Other interesting problems include investigate the noncrossing matching in
the geometric version of the stable roommates problem where people can be
matched regardless of gender. The most basic and natural setting of this problem
is where people are represented by points arranged on a circle. A possible future
work is to develop an algorithm to determine whether a WSNM or an SSNM
exists in a given instance, and to find one if it does.
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Abstract. MergeInsertion, also known as the Ford-Johnson algorithm,
is a sorting algorithm which, up to today, for many input sizes achieves
the best known upper bound on the number of comparisons. Indeed,
it gets extremely close to the information-theoretic lower bound. While
the worst-case behavior is well understood, only little is known about the
average case. This work takes a closer look at the average case behavior.
In particular, we establish an upper bound of n logn − 1.4005n + o(n)
comparisons. We also give an exact description of the probability dis-
tribution of the length of the chain a given element is inserted into and
use it to approximate the average number of comparisons numerically.
Moreover, we compute the exact average number of comparisons for n
up to 148. Furthermore, we experimentally explore the impact of different
decision trees for binary insertion. To conclude, we conduct experiments
showing that a slightly different insertion order leads to a better aver-
age case and we compare the algorithm to the recent combination with
(1,2)-Insertionsort by Iwama and Teruyama.

Keywords: MergeInsertion · Minimum-comparison sort ·
Average case analysis

1 Introduction

Sorting a set of elements is an important operation frequently performed by
many computer programs. Consequently there exist a variety of algorithms for
sorting, each of which comes with its own advantages and disadvantages.

Here we focus on comparison based sorting and study a specific sorting
algorithm known as MergeInsertion. It was discovered by Ford and Johnson
in 1959 [5]. Before Knuth coined the term MergeInsertion in his study of the
algorithm in his book “The Art of Computer Programming, Volume 3: Sorting
and Searching” [7], it was known only as Ford-Johnson Algorithm, named after
its creators. The one outstanding property of MergeInsertion is that the number
of comparisons it requires is close to the information-theoretic lower bound of
log(n!) ≈ n log n−1.4427n (for sorting n elements). This sets it apart from many
other sorting algorithms. MergeInsertion can be described in three steps: first
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pairs of elements are compared; in the second step the larger elements are sorted
recursively; as a last step the elements belonging to the smaller half are inserted
into the already sorted larger half using binary insertion.

In the worst case the number of comparisons of MergeInsertion is quite well
understood [7] – it is n log n+b(n) ·n+o(n) where b(n) oscillates between −1.415
and −1.3289. Moreover, for many n MergeInsertion is proved to be the optimal
algorithm in the worst case (in particular, for n ≤ 15 [9,10]). However, there are
also n where it is not optimal [2,8]. One reason for this is the oscillating linear
term in the number of comparisons, which allowed Manacher [8] to show that
for certain n it is more efficient to split the input into two parts, sort both parts
with MergeInsertion, and then merge the two parts into one array.

Regarding the average case not much is known: in [7] Knuth calculated the
number of comparisons required on average for n ∈ {1, . . . , 8}; an upper bound
of n log n−1.3999n+o(n) has been established in [3]. Most recently, Iwama and
Teruyama [6] showed that in the average case MergeInsertion can be improved
by combining it with their (1,2)-Insertion algorithm resulting in an upper bound
of n log n − 1.4106n + O(log n). This reduces the gap to the lower bound by
around 25%. It is a fundamental open problem how close one can get to the
information-theoretic lower bound of n log n − 1.4427n (see e. g. [6,11]).

The goal of this work is to study the number of comparisons required in
the average case. In particular, we analyze the insertion step of MergeInsertion
in greater detail. In general, MergeInsertion achieves its good performance by
inserting elements in a specific order that in the worst case causes each element
to be inserted into a sorted list of 2k − 1 elements (thus, using exactly k com-
parisons). When looking at the average case elements are often inserted into less
than 2k−1 elements which is slightly cheaper. By calculating those small savings
we seek to achieve our goal of a better upper bound on the average case. Our
results can be summarized as follows:

– We derive an exact formula for the probability distribution into how many
elements a given element is inserted (Theorem 2). This is the crucial first step
in order to obtain better bounds for the average case of MergeInsertion.

– We experimentally examine different decision trees for binary insertion. We
obtain the best result when assigning shorter decision paths to positions
located further to the left.

– We use Theorem 2 in order to compute quite precise numerical estimates for
the average number of comparisons for n up to roughly 15000.

– We compute the exact average number of comparisons for n up to 148 – thus,
going much further than [7].

– We improve the bound of [3] to n log n − 1.4005n + o(n) (Theorem 3). This
partially answers a conjecture from [11] which asks for an in-place algorithm
with n log n− 1.4n comparisons on average and n log n− 1.3n comparisons in
the worst case. Although MergeInsertion is not in-place, the techniques from
[3] or [11] can be used to make it so.

– We evaluate a slightly different insertion order decreasing the gap between
the lower bound and the average number of comparisons of MergeInsertion
by roughly 30% for n ≈ 2k/3.
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– We compare MergeInsertion to the recent combination by Iwama and
Teruyama [6] showing that, in fact, their combined algorithm is still bet-
ter than the analysis and with the different insertion order can be further
improved.

Due to space constraint, most proofs as well as additional explanations and
experimental results can be found in the full version [13]. The code used in this
work and the generated data is available on [12].

2 Preliminaries

Throughout, we assume that the input consists of n distinct elements. The aver-
age case complexity is the mean number of comparisons over all input permuta-
tions of n elements.

Description of MergeInsertion. The MergeInsertion algorithm consists of
three phases: pairwise comparison, recursion, and insertion. Accompanying the
explanations we give an example where n = 21. We call such a set of relations
between individual elements a configuration.

1. Pairwise comparison. The elements are grouped into
⌊
n
2

⌋
pairs. Each

pair is sorted using one comparison. After that, the elements are called
a1 to a�n

2 � and b1 to b�n
2 � with ai > bi for all 1 ≤ i ≤ ⌊

n
2

⌋
.

b1

a1

b2

a2

b3

a3

b4

a4

b5

a5

b6

a6

b7

a7

b8

a8

b9

a9

b10

a10

b11

2. Recursion. The
⌊
n
2

⌋
larger elements, i. e., a1 to a�n

2 � are sorted recursively.

Then all elements (the
⌊
n
2

⌋
larger ones as well as the corresponding smaller

ones) are renamed accordingly such that ai < ai+1 and ai > bi still holds.

b1

a1

b2

a2

b3

a3

b4

a4

b5

a5

b6

a6

b7

a7

b8

a8

b9

a9

b10

a10

b11

3. Insertion. The
⌈
n
2

⌉
small elements, i. e., the bi, are inserted into the main

chain using binary insertion. The term “main chain” describes the set of ele-
ments containing a1, . . . , atk as well as the bi that have already been inserted.
The elements are inserted in batches starting with b3, b2. In the k-th batch
the elements btk , btk−1, . . . , btk−1+1 where tk = 2k+1+(−1)k

3 are inserted in that
order. Elements bj where j >

⌈
n
2

⌉
(which do not exist) are skipped. Note that

technically b1 is the first batch; but inserting b1 does not need any compari-
son.
Because of the insertion order, every element bi which is part of
the k-th batch is inserted into at most 2k − 1 elements; thus, it
can be inserted by binary insertion using at most k comparisons.
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b2

a2

b3

a3

b4

a4

b5

a5

b6

a6

b7

a7

b8

a8

b9

a9

b10

a10

b11

x1 x2

Regarding the average number of comparisons F (n) we make the following
observations: the first step always requires

⌊
n
2

⌋
comparisons. The recursion step

does not do any comparisons by itself but depends on the other steps. The
average number of comparisons G(n) required in the insertion step is not obvi-
ous. It will be studied closer in following chapters. Following [7], we obtain the
recurrence (which is the same as for the worst-case number of comparisons)

F (n) =
⌊n

2

⌋
+ F

(⌊n

2

⌋)
+ G

(⌈n

2

⌉)
. (1)

3 Average Case Analysis of the Insertion Step

In this section we have a look at different probabilities when inserting one batch
of elements, i. e., the elements btk to btk−1+1. We assume that all elements of
previous batches, i. e., b1 to btk−1 , have already been inserted and together with
the corresponding ai they constitute the main chain and have been renamed to
x1 to x2tk−1 such that xi < xi+1. The situation is shown in Fig. 1.

We will look at the element btk+i and want to answer the following questions:
what is the probability of it being inserted between xj and xj+1? And what is
the probability of it being inserted into a specific number of elements?

x1
x2tk−1 atk−1+1 atk−1+2 atk−1+i atk−1+i+1 atk

btk−1+1 btk−1+2 btk−1+i btk−1+i+1 btk

Fig. 1. Configuration where a single batch of elements remains to be inserted

We can ignore batches that are inserted after the batch we are looking at
since those do not affect the probabilities we want to obtain.

First we define a probability space for the process of inserting one batch of
elements: let Ωk be the set of all possible outcomes (i. e., linear extensions) when
sorting the partially ordered elements shown in Fig. 1 by inserting btk to btk−1+1.
Each ω ∈ Ωk can be viewed as a function that maps an element e to its final
position, i. e., ω(e) ∈ {1, 2, . . . , 2tk}. While the algorithm mandates a specific
order for inserting the elements btk−1+1 to btk during the insertion step, using a
different order does not change the outcome, i. e., the elements are still sorted
correctly. For this reason we can assume a different insertion in order to simplify
calculating the likelihood of relations between individual elements.
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Let us look at where an element will end up after it has been inserted. Not
all positions are equally likely. For this purpose we define the random variable
Xi as follows. To simplify notation we define xtk−1+j := aj for tk−1 < j ≤ tk
(hence, the main chain consists of x1, . . . , x2k).

Xi : ω 	→
⎧
⎨

⎩

0 if ω(btk−1+i) < ω(x1)
j if ω(xj) < ω(btk−1+i) < ω(xj+1) for j ∈ {1, . . . , 2k − 2}
2k − 1 if ω(x2k−1) < ω(btk−1+i).

We are interested in the probabilities P (Xi = j). These values follow a simple
pattern (for k = 4 these are given in [13]).

Theorem 1. The probability of btk−1+i being inserted between xj and xj+1 is
given by

P (Xi = j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

22i−2
(

(tk−1+i−1)!
(tk−1)!

)2
(2tk−1)!

(2tk−1+2i−1)! if 0 ≤ j ≤ 2tk−1

24tk−1−2j+2i−2
(
(tk−1+i−1)!
(j−tk−1)!

)2
(2j−2tk−1)!

(2tk−1+2i−1)! if 2tk−1 < j < 2tk−1+i

0 otherwise

Next, our aim is to compute the probability that bi is inserted into a particular
number of elements. This is of particular interest because the difference between
average and worst case comes from the fact that sometimes we insert into less
than 2k − 1 elements. For that purpose we define the random variable Yi.

Yi : ω 	→ ∣
∣{v ∈ { x1, . . . , x2k } ∪ {btk−1+i+1, . . . , btk} | ω(v) < ω(atk−1+i)

}∣
∣

The elements in the main chain when inserting btk+i are x1 to x2tk−1+i−1 and
those elements out of btk−1+i+1, . . . , btk which have been inserted before atk−1+i

(which is x2tk−1+i). For computing the number of these, we introduce ran-
dom variables Ỹi,q counting the elements in {btk−1+i+1, . . . , btk−1+i+q} that are
inserted before atk−1+i:

Ỹi,q : ω 	→ ∣
∣{v ∈ {btk−1+i+1, . . . , btk−1+i+q} | ω(v) < ω(atk−1+i)

}∣
∣ .

By setting q = tk − tk−1 − i, we obtain Yi = Ỹi,tk−tk−1−i + 2tk−1 + i − 1. Clearly
we have P

(
Ỹi,0 = j

)
= 1 if j = 0 and P

(
Ỹi,0 = j

)
= 0 otherwise. For q > 0 there

are two possibilities:

1. Ỹi,q−1 = j −1 and Xi+q < 2tk−1+ i: out of {btk−1+i+1, . . . , btk−1+i+q−1} there
have been j − 1 elements inserted before atk−1+i and btk−1+i+q is inserted
before atk−1+i.

2. Ỹi,q−1 = j and Xi+q ≥ 2tk−1 + i: out of {btk−1+i+1, . . . , btk−1+i+q−1} there
have been j elements inserted before atk−1+i and btk−1+i+q is inserted after
atk−1+i.
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From these we obtain the following recurrence:

P (Ỹi,q = j) = P (Xi+q < 2tk−1 + i | Ỹi,q−1 = j − 1) · P (Ỹi,q−1 = j − 1)

+P (Xi+q ≥ 2tk−1 + i | Ỹi,q−1 = j) · P (Ỹi,q−1 = j)

The probability P (Xi+q < 2tk−1 + i | Ỹi,q−1 = j − 1) can be obtained by
looking at Fig. 1 and counting elements. When btk−1+i+q is inserted, the elements
on the main chain which are smaller than atk−1+i are x1 to x2tk−1 , atk−1+1 to
atk−1+i−1 and j −1 elements out of {btk−1+i+1, . . . , btk−1+i+q−1} which is a total
of 2tk−1 + 2i + j − 2 elements. Combined with the fact that the main chain
consists of 2tk−1 + 2i + 2q − 2 elements smaller than atk−1+i+q we obtain the
probability 2tk−1+2i+j−1

2tk−1+2i+2q−1 . We can calculate P (Xi+q ≥ 2tk−1 + i | Ỹi,q−1 = j)
similarly leading to

P (Ỹi,q = j) =
2tk−1 + 2i+ j − 1

2tk−1 + 2i+ 2q − 1
· P (Ỹi,q−1 = j − 1) +

2q − j − 1

2tk−1 + 2i+ 2q − 1
· P (Ỹi,q−1 = j).

By solving the recurrence, we obtain a closed form for P (Ỹi,q = j) and, thus,
for P (Yi = j). The complete proof is given in [13].

Theorem 2. For 1 ≤ i ≤ tk −tk−1 and 2tk−1+ i−1 ≤ j ≤ 2k −1 the probability
P (Yi = j), that btk−1+i is inserted into j elements is given by

P (Yi = j) = 2j−2tk−1−i+1 (2tk − i− j − 1)!

(j − 2tk−1 − i+ 1)!(2k − j − 1)!

(i+ j)!

(2tk − 1)!

(tk − 1)!

(tk−1 + i− 1)
.

Figure 2 shows the probability distribution for Y1, Y21 and Y42 where k =
7. Y42 corresponds to the insertion of btk (the first element of the batch). Y1

corresponds to the insertion of btk−1+1 (the last element of the batch). In addition
to those three probability distributions Fig. 3 shows the mean of all Yi for k = 7.

Binary Insertion and Different Decision Trees. The Binary Insertion step
is an important part of MergeInsertion. In the average case many elements are
inserted in less than 2k − 1 (which is the worst case). This leads to ambiguous
decision trees where at some positions inserting an element requires only k − 1
instead of k comparisons. Since not all positions are equally likely (positions
on the left have a slightly higher probability), this results in different average
insertion costs. We compare four different strategies all satisfying that the cor-
responding decision trees have their leaves distributed across at most two layers.
For an example with five elements see Fig. 4.

First there are the center-left and center-right strategies (the standard
options for binary insertion): they compare the element to be inserted with the
middle element, rounding down(up) in case of an odd number. The left strategy
chooses the element to compare with in a way such that the positions where only
k−1 comparisons are required are at the very left. The right strategy is similar,
here the positions where one can insert with just k − 1 comparisons are at the
right. To summarize, the element to compare with is
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Fig. 2. Probability distribution of Yi.
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Fig. 3. Mean of Yi for different i. k = 7.

⌊
n+1
2

⌋
strategy center-left

⌈
n+1
2

⌉
strategy center-right

max{n− 2k + 1, 2k−1} strategy left

min{2k, n− 2k−1 + 1} strategy right

where k = �log n�. Notice that the left strategy is also used in [6], where it is
called right-hand-binary-search. Figure 5 shows experimental results comparing
the different strategies for binary insertion regarding their effect on the average-
case of MergeInsertion. As we can see the left strategy performs the best,
closely followed by center-left and center-right. right performs the worst.
The left strategy performing best is no surprise since the probability that an
element is inserted into one of the left positions is higher that it being inserted
to the right. Therefore, in all further experiments we use the left strategy.

1 2 3 4 5

(a) center-left

1 2 3 4 5

(b) center-right

1 2 3 4 5

(c) left

1 2 3 4 5

(d) right

Fig. 4. Different strategies for binary insertion.

4 Improved Upper Bounds for MergeInsertion

Numeric Upper Bound. The goal of this section is to combine the probability
given by Theorem 2 that an element btk−1+i is inserted into j elements with an
upper bound for the number of comparisons required for binary insertion.

By [4], the number of comparisons required for binary insertion when insert-
ing into m − 1 elements is TInsAvg(m) = �log m� + 1 − 2�log m�

m . While only being
exact in case of a uniform distribution, this formula acts as an upper bound in
our case, where the probability is monotonically decreasing with the index.
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Fig. 5. Experimental results on the effect of different strategies for binary insertion on
the number of comparisons.
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Fig. 6. Comparing our upper bound with experimental data on the number of com-
parisons required by MergeInsertion.

This leads to an upper bound for the cost of inserting btk−1+i of TIns(i, k) =∑
j P (Yi = j) · TInsAvg(j + 1). From there we calculated an upper bound for

MergeInsertion. Figure 6 compares those results with experimental data on the
number of comparisons required by MergeInsertion. We observe that the differ-
ence is rather small.

Computing the Exact Number of Comparisons. In this section we explore
how to numerically calculate the exact number of comparisons required in the
average case. The most straightforward way of doing this is to compute the
external path length of the decision tree (sum of lengths of all paths from the root
to leaves) and dividing by the number of leaves (n! when sorting n elements),
which unfortunately is only feasible for very small n. Instead we use Eq. (1),
which describes the number of comparisons. The only unknown in that formula
is G(n) the number of comparisons required in the insertion step of the algorithm.
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Since the insertion step of MergeInsertion works by inserting elements in batches,
we write G(n) =

(∑
1<k≤kn

Cost(tk−1, tk)
)

+ Cost(tkn
, n) for tkn

≤ n < tkn+1.
Here Cost(s, e) is the cost of inserting one batch of elements starting from bs+1

up to be. The idea for computing Cost(s, e) is to calculate the external path
length of the decision tree corresponding to the insertion of that batch of elements
and then dividing by the number of leaves. As this is still not feasible, we apply
some optimizations which we describe in detail in [13].

For n ∈ {1, . . . , 15} the computed values are shown in Table 1, for larger n
Fig. 7 shows the values we computed. The complete data set is provided in the file
data/exact.csv in [12]. Our results match up with the values for n ∈ {1, . . . , 8}
calculated in [7]. Note that for these values the chosen insertion strategy does
not affect the average case (we use the left strategy).
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Fig. 7. Computed values of F (n).

Table 1. Computed values of F (n) · n!.

n = 1 2 3 4 5 6 7 8
F (n) ·n! = 0 2 16 112 832 6912 62784 623232

n = 9 10 11
F (n) ·n! = 6743808 79292160 1013736960

n = 12 13
F (n) ·n! = 13921182720 204489999360

n = 14 15
F (n) ·n! = 3199119114240 53153472153600

Improved Theoretical Upper Bounds. In this section we improve upon the
upper bound from [3] leading to the following result:

Theorem 3. The number of comparisons required in the average case of Merge-
Insertion is at most n log n− c(xn) ·n±O(log2 n) where xn is the fractional part
of log(3n), i. e., the unique value in [0, 1) such that n = 2k−log 3+xn for some
k ∈ Z and c : [0, 1) → R is given by the following formula:

c(x) = (3− log 3)− (2−x− 21−x)+ (1− 2−x)
(

3
2x + 1

− 1
)

+
2log 3−x

2292
≥ 1.4005

Hence we have obtained a new upper bound for the average case of MergeIn-
sertion which is n log n − 1.4005n + O(log2 n). A visual representation of c(x) is
provided in Fig. 8. The worst case is near x = 0.6 (i. e., n roughly a power of
two) where c(x) is just slightly larger than 1.4005.

The proof of Theorem 3 analyzes the insertion of one batch of elements more
carefully than in [4]. The exact probability that btk−1+i is inserted into j elements
is given by Theorem 2. We are especially interested in the case of btk−1+u where



426 F. Stober and A. Weiß

0 0.2 0.4 0.6 0.8 1

-1.405

-1.410

-1.415

-1.4005

x

−c
(x
)

Fig. 8. Plot of c(x).

214 214.5

-1.430

-1.425

-1.420

-1.415

n

n
u
m
b
e
r
o
f
c
o
m
p
a
ri
so

n
s−

n
lo
g
n

n

Fig. 9. n used in Fig. 10.

0.95 1 1.05 1.1 1.15

−1.42

−1.4

factor f

16165

17727

18851

19440

20673

21845

22672

23380

24863

26440

n
u
m
b
e
r
o
f
c
o
m
p
a
ri
so

n
s−

n
lo
g
n

n

Fig. 10. Effects of replacing tk with t̂k.

u = � tk−tk−1
2 �, because, if we know P (Yu < m), then we can use that for all

q < u we have P (Yq < m) ≥ P (Yu < m).
However, the equation from Theorem 2 is hard to work with, so we approx-

imate it with the binomial distribution p(j) =
(�u

2 �
q

)
( �u

2 �
2tk−1 )q( 2tk−1−�u

2 �
2tk−1 )�u

2 �−q

with q = 2k −1− j, that by construction fulfills
∑j0

j=0 p(j) ≤ ∑j0
j=0 P (Yu = j) =

P (Yu ≤ j0) for all j0. By using the approximation P (Yu = j) ≈ p(j) we can
calculate a lower bound for the median of Y tk−tk−1

2
which is 2k −1−�nB · pB� ∈

2k − 1 − 2k−6

3 + O(1). Thus, with a probability of one half the elements btk−1+i

for 1 ≤ i ≤ u are inserted in 2k−6

3 elements less compared to the worst case.
Combining that with the bounds from [4] we obtain Theorem 3. The complete
proof is given in [13].

5 Experiments

In this section we discuss our experiment, which consist of two parts: first, we
evaluate how increasing tk by some constant factor can reduce the number of
comparisons, then we examine how the combination with the (1,2)-Insertion
algorithm as proposed in [6] improves MergeInsertion.
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Fig. 11. Comparison of different factors f for t̂k.

We implemented MergeInsertion using a tree based data structure, similar
to the Rope data structure [1] used in text processing, resulting in a comparably
“fast” implementation. Implementation details can be found in [13]. All exper-
iments use the left strategy for binary insertion (see Sect. 3). The number of
comparisons has been averaged over 10 to 10000 runs, depending on the size of
the input.
Increasing tk by a Constant Factor. In this section we modify MergeInser-
tion by replacing tk with t̂k = �f · tk� – otherwise the algorithm is the same.
Originally the numbers tk have been chosen, such that each element bi with
tk−1 < i ≤ tk is inserted into at most 2k − 1 elements (which is optimal for the
worst case). As we have seen in previous sections many elements are inserted into
slightly less than 2k − 1 elements. The idea behind increasing tk by a constant
factor f is to allow more elements to be inserted into close to 2k − 1 elements.

Figure 10 shows how different factors f affect the number of comparisons
required by MergeInsertion. The different lines represent different input lengths.
For instance, n = 21845 is an input size for which MergeInsertion works best. An
overview of the different input lengths and how original MergeInsertion performs
for these can be seen in Fig. 9. The chosen values are assumed to be representative
for the entire algorithm. We observe that for all shown input lengths, multiplying
tk by a factor f between 1.02 and 1.05, leads to an improvement.

Figure 11 compares different factors from 1.02 to 1.05. The factor 1.0 (i. e., the
original algorithm) is included as a reference. We observe that all the other fac-
tors lead to a considerable improvement compared to 1.0. The difference between
the factors in the chosen range is rather small. However, 1.03 appears to be best
out of the tested values. At n ≈ 2k/3 the difference to the information-theoretic
lower bound is reduced to 0.007n, improving upon the original algorithm, which
has a difference of 0.01n to the optimum.

Another observation we make from Fig. 11 is that the plot periodically repeats
itself with each power of two. Thus, we conclude that replacing tk with t̂k =
�f · tk� with f ∈ [1.02, 1.05] reduces the number of comparisons required per
element by some constant.
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Fig. 12. Experimental results comparing MergeInsertion, (1,2)-Insertion and the com-
bined algorithm.

Combination with (1,2)-Insertion. (1,2)-Insertion is a sorting algorithm pre-
sented in [6]. It works by inserting either a single element or two elements at once
into an already sorted list. On its own (1,2)-Insertion is worse than MergeInser-
tion; however, it can be combined with MergeInsertion. The combined algorithm
works by sorting m = max {uk | uk ≤ n} elements with MergeInsertion. Then
the remaining elements are inserted using (1,2)-Insertion. Let uk =

⌊(
4
3

)
2k

⌋

denote a point where MergeInsertion is optimal.
In Fig. 12 we can see that at the point uk MergeInsertion and the com-

bined algorithm perform the same. However, in the values following uk the
combined algorithm surpasses MergeInsertion until at one point close to the
next optimum MergeInsertion is better once again. In their paper Iwama and
Teruyama calculated that for 0.638 ≤ n

2�log n� ≤ 2
3 MergeInsertion is better

than the combined algorithm. The fraction 2
3 corresponds to the point where

MergeInsertion is optimal. They derived the constant 0.638 from their theo-
retical analysis using the upper bound for MergeInsertion from [3]. Comparing
this to our experimental results we observe that the range where MergeInser-
tion is better than the combined algorithm starts at n ≈ 217.242. This yields
217.242

218 = 217.242−18 = 2−0.758 ≈ 0.591. Hence the range where MergeInsertion
is better than the combined algorithm is 0.591 ≤ n

2�log n� ≤ 2
3 , which is slightly

larger than the theoretical analysis suggested. Also shown in Fig. 12 is the com-
bined algorithm where we additionally apply our suggestion of replacing tk by
t̂k = �f · tk� with f = 1.03. This leads to an additional improvement and comes
even closer to the lower bound of log(n!).

Conclusion and Outlook. We improved the previous upper bound of n log n−
1.3999n+o(n) to n log n−1.4005n+o(n) for the average number of comparisons of
MergeInsertion. However, there still is a gap between the number of comparisons
required by MergeInsertion and this upper bound.

In Sect. 4 we used a binomial distribution to approximate the probability of
an element being inserted into a specific number of elements during the insertion
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step. However, the difference between our approximation and the actual proba-
bility distribution is rather large. Finding an approximation which reduces that
gap while still being simple to analyze with respect to its mean would facilitate
further improvements to the upper bound.

Our suggestion of increasing tk by a constant factor f reduced the number of
comparisons required per element by some constant. However, we do not have
a proof for this. Thus, future research could try to determine the optimal value
for the factor f as well as to study how this suggestion affects the worst-case.
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Abstract. For a string S, a palindromic substring S[i..j] is said to be a
shortest unique palindromic substring (SUPS) for an interval [s, t] in S, if
S[i..j] occurs exactly once in S, the interval [i, j] contains [s, t], and every
palindromic substring containing [s, t] which is shorter than S[i..j] occurs
at least twice in S. In this paper, we study the problem of answering
SUPS queries on run-length encoded strings. We show how to preprocess
a given run-length encoded string RLES of size m in O(m) space and
O(m log σRLES + m

√
log m/ log log m) time so that all SUPSs for any

subsequent query interval can be answered in O(
√

log m/ log log m + α)
time, where α is the number of outputs, and σRLES is the number of
distinct runs of RLES .

1 Introduction

The shortest unique substring (SUS ) problem, which is formalized below, is a
recent trend in the string processing community. Consider a string S of length
n. A substring X = S[i..j] of S is called a SUS for a position p (1 ≤ p ≤ n) iff
the interval [i..j] contains p, X occurs in S exactly once, and every substring
containing p which is shorter than S[i..j] occurs at least twice in S. The SUS
problem is to preprocess a given string S so that SUSs for query positions p can
be answered quickly. The study on the SUS problem was initiated by Pei et al.,
and is motivated by an application to bioinformatics e.g., designing polymerase
chain reaction (PCR) primer [11]. Pei et al. [11] showed an Θ(n2)-time and space
preprocessing scheme such that all k SUSs for a query position can be answered
in O(k) time. Later, two independent groups, Tsuruta et al. [13] and Ileri et
al. [7], showed algorithms that use Θ(n) time and space1 for preprocessing, and
all SUSs can be answered in O(k) time per query. To be able to handle huge text
data where n can be massively large, there have been further efforts to reduce
1 Throughout this paper, we measure the space complexity of an algorithm with the

number of words that the algorithm occupies in the word RAM model, unless oth-
erwise stated.
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the space usage. Hon et al. [5] proposed an “in-place” algorithm which works
within space of the input string S and two output arrays A and B of length n
each, namely, in n log2 σ bits plus 2n words of space. After the execution of their
algorithm that takes O(n) time, the beginning and ending positions of a SUS
for each text position i (1 ≤ i ≤ n) are consequently stored in A[i] and B[i],
respectively, and S remains unchanged. Hon et al.’s algorithm can be extended to
handle SUSs with approximate matches, with a penalty of O(n2) preprocessing
time. For a pre-determined parameter τ , Ganguly et al. [4] proposed a time-space
trade-off algorithm for the SUS problem that uses O(n/τ) additional working
space (apart from the input string S) and answers each query in O(nτ2 log n

τ )
time. They also proposed a “succinct” data structure of 4n + o(n) bits of space
that can be built in O(n log n) time and can answer a SUS for each given query
position in O(1) time. Another approach to reduce the space requirement for
the SUS problem is to work on a “compressed” representation of the string S.
Mieno et al. [10] developed a data structure of Θ(m) space (or Θ(m log n) bits of
space) that answers all k SUSs for a given position in O(

√
log m/ log log m + k)

time, where m is the size of the run length encoding (RLE ) of the input string
S. This data structure can be constructed in O(m log m) time with O(m) words
of working space if the input string S is already compressed by RLE, or in
O(n + m log m) time with O(m) working space if the input string S is given
without being compressed.

A generalized version of the SUS problem, called the interval SUS problem,
is to answer SUSs that contain a query interval [s, t] with 1 ≤ s ≤ t ≤ n. Hu et
al. [6] proposed an optimal Θ(n) time and space algorithm to preprocess a given
string S so that all k SUSs for a given query interval are reported in O(k) time.
Mieno et al.’s data structure [10] also can answer interval SUS queries with the
same preprocessing time/space and query time as above.

Recently, a new variant of the SUS problem, called the shortest unique palin-
dromic substring (SUPS ) problem is considered [8]. A substring P = S[i..j] is
called a SUPS for an interval [s, t] iff P occurs exactly once in S, [s, t] ⊆ [i, j],
and every palindromic substring of S which contains interval [s, t] and is shorter
than P occurs at least twice in S. The study on the SUPS problem is motivated
by an application in molecular biology. Inoue et al. [8] showed how to preprocess
a given string S of length n in Θ(n) time and space so that all α SUPSs (if
any) for a given interval can be answered in O(α + 1) time2. While this solu-
tion is optimal in terms of the length n of the input string, no space-economical
solutions for the SUPS problem were known.

In this paper, we present the first space-economical solution to the SUPS
problem based on RLE. The proposed algorithm computes a data structure of
Θ(m) space that answers each SUPS query in O(

√
log m/ log log m + α) time.

The most interesting part of our algorithm is how to preprocess a given RLE
string of length m in O(m(log σRLES

+
√

log m/ log log m)) time, where σRLES

is the number of distinct runs in the RLE of S. Note that σRLE ≤ m always
holds. For this sake, we propose RLE versions of Manacher’s maximal palindrome

2 It is possible that α = 0 for some intervals.
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algorithm [9] and Rubinchik and Shur’s eertree data structure [12], which may
be of independent interest. We remark that our preprocessing scheme is quite
different from Mieno et al.’s method [10] for the SUS problem on RLE strings
and Inoue et al.’s method [8] for the SUPS problem on plain strings.

2 Preliminaries

2.1 Strings

Let Σ be an ordered alphabet of size σ. An element of Σ∗ is called a string.
The length of a string S is denoted by |S|. The empty string ε is a string of
length 0. For a string S = XY Z, X, Y and Z are called a prefix, substring, and
suffix of S, respectively. The i-th character of a string S is denoted by S[i], for
1 ≤ i ≤ |S|. Let S[i..j] denote the substring of S that begins at position i and
ends at position j, for 1 ≤ i ≤ j ≤ |S|. For convenience, let S[i..j] = ε for i > j.

For any string S, let SR = S[|S|] · · · S[1] denote the reversed string of S. A
string P is called a palindrome iff P = PR. A substring P = S[i..j] of a string S is
called a palindromic substring iff P is a palindrome. For a palindromic substring
P = S[i..j], i+j

2 is called the center of P . A palindromic substring P = S[i..j] is
said to be a maximal palindrome of S, iff S[i − 1] �= S[j + 1], i = 1 or j = |S|. A
suffix of string S that is a palindrome is called a palindromic suffix of S. Clearly
any palindromic suffix of S is a maximal palindrome of S.

We will use the following lemma in the analysis of our algorithm.

Lemma 1 ([3]). Any string of length k can contain at most k + 1 distinct
palindromic substrings (including the empty string ε).

2.2 MUPSs and SUPSs

For any strings X and S, let occS(X) denote the number of occurrences of X
in S, i.e., occS(X) = |{i | S[i..i + |X| − 1] = X}|. A string X is called a unique
substring of a string S iff occS(X) = 1. A substring P = S[i..j] of string S is
called a minimal unique palindromic substring (MUPS ) of a string S iff (1) P is
a unique palindromic substring of S and (2) either |P | ≥ 3 and the palindrome
Q = S[i + 1..j − 1] satisfies occS(Q) ≥ 2, or 1 ≤ |P | ≤ 2.

Lemma 2 ([8]). MUPSs do not nest, namely, for any pair of distinct MUPSs,
one cannot contain the other.

Due to Lemma 2, both of the beginning positions and the ending positions
of MUPSs are monotonically increasing. Let MS denote the list of MUPSs in S
sorted in increasing order of their beginning positions (or equivalently the ending
positions) in S.

Let [s, t] be an integer interval over the positions in a string S, where 1 ≤ s ≤
t ≤ |S|. A substring P = S[i..j] of string S is called a shortest unique palindromic
substring (SUPS) for interval [s, t] of S, iff (1) P is a unique palindromic substring
of S, (2) [s, t] ⊆ [i, j], and (3) there is no unique palindromic substring Q =
S[i′..j′] such that [s, t] ⊆ [i′, j′] and |Q| < |P |. We give an example in Fig. 1.
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Fig. 1. This figure shows all MUPSs and some SUPSs of string RLES =
b3a2b2a1b2a3b2a3b3. There are 4 MUPSs illustrated in the box. The SUPS for interval
[6, 7] is S[5..11], and the SUPS for interval [9, 11] is S[8..16].

2.3 Run Length Encoding (RLE)

The run-length encoding RLES of string S is a compact representation of S such
that each maximal run of the same characters in S is represented by a pair of
the character and the length of the run. More formally, let N denote the set of
positive integers. For any non-empty string S, RLES = (a1, e1), . . . , (am, em),
where aj ∈ Σ and ej ∈ N for any 1 ≤ j ≤ m, and aj �= aj+1 for any 1 ≤ j < m.
E.g., if S = aacccccccbbabbbb, then RLES = (a, 2), (c, 7), (b, 2), (a, 1), (b, 4).
Each (a, e) in RLES is called a (character) run, and e is called the exponent
of this run. We also denote each run by ae when it seems more convenient and
intuitive. For example, we would write as (a, e) when it seems more convenient
to treat it as a kind of character (called an RLE-character), and would write as
ae when it seems more convenient to treat it as a string consisting of e a’s.

The size of RLES is the number m of runs in RLES . Let Rb[j] (resp. Re[j])
denote the beginning (resp. ending) position of the jth run in the string S, i.e.,
Rb[j] = 1+

∑j−1
i=0 ei with e0 = 0 and Re[j] =

∑j
i=1 ei. The center of the jth run

is Rb[j]+Re[j]
2 .

For any two ordered pairs (a, e), (a′, e′) ∈ Σ × N of a character and positive
integer, we define the equality such that (a, e) = (a′, e′) iff a = a′ and e = e′

both hold. We also define a total order of these pairs such that (a, e) < (a′, e′)
iff a < a′, or a = a′ and e < e′.

An occurrence of a palindromic substring P = S[i..i′] of a string S with
RLES of size m is said to be RLE-bounded if i = Rb[j] and i′ = Re[j′] for some
1 ≤ j ≤ j′ ≤ m, namely, if both ends of the occurrence touch the boundaries
of runs. An RLE-bounded occurrence P = S[i..i′] is said to be RLE-maximal
if (aj−1, ej−1) �= (aj′+1, ej′+1), j = 1 or j′ = m. Note that an RLE-maximal
occurrence of a palindrome may not be maximal in the string S. E.g., consider
string S = caabbcccbbaaaac with RLES = c1a2b2c3b2a4c1.

– The occurrence of palindrome c3 is RLE-bounded but is neither RLE-maximal
nor maximal.

– The occurrence of palindrome b2c3b2 is RLE-maximal but is not maximal.
– The occurrence of palindrome a2b2c3b2a2 is not RLE-maximal but is maxi-

mal.
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– The first (leftmost) occurrence of palindrome a2 is both RLE-maximal and
maximal.

2.4 Problem

In what follows, we assume that our input strings are given as RLE strings. In
this paper, we tackle the following problem.

Problem 1 (SUPS problem on run-length encoded strings).

Preprocess: RLES = (a1, e1), . . . , (am, em) of size m representing a string S
of length n.

Query: An integer interval [s, t] (1 ≤ s ≤ t ≤ n).
Return: All SUPSs for interval [s, t].

In case the string S is given as a plain string of length n, then the time
complexity of our algorithm will be increased by an additive factor of n that is
needed to compute RLES , while the space usage will stay the same since RLES

can be computed in constant space.

3 Computing MUPSs from RLE Strings

The following known lemma suggests that it is helpful to compute the set MS

of MUPSs of S as a preprocessing for the SUPS problem.

Lemma 3 ([8]). For any SUPS S[i..j] for some interval, there exists exactly
one MUPS that is contained in the interval [i, j]. Furthermore, the MUPS has
the same center as the SUPS S[i..j].

3.1 Properties of MUPSs on RLE Strings

Now we present some useful properties of MUPSs on the run-length encoded
string RLES = (a1, e1), . . . , (am, em).

Lemma 4. For any MUPS S[i..j] in S, there exists a unique integer k (1 ≤ k ≤
m) such that i+j

2 = Rb[k]+Re[k]
2 .

Proof. Suppose on the contrary that there is a MUPS S[i..j] such that i+j
2 �=

Rb[k]+Re[k]
2 for any 1 ≤ k ≤ m. Let l be the integer that satisfies Rb[l] ≤

i+j
2 ≤ Re[l]. By the assumption, the longest palindrome whose center is i+j

2

is a
min{i−Rb[l]+1,Re[l]−j+1}
l . However, this palindrome a

min{i−Rb[l]+1,Re[l]−j+1}
l

occurs at least twice in the lth run ael

l . Hence MUPS S[i..j] is not a unique
palindromic substring, a contradiction. ��

The following corollary is immediate from Lemma 4.

Corollary 1. For any string S, |MS | ≤ m.

It is easy to see that the above bound is tight: for instance, any string where
each run has a distinct character (i.e., m = σRLE ) contains exactly m MUPSs.
Our preprocessing and query algorithms which will follow are heavily dependent
on this lemma and corollary.
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3.2 RLE Version of Manacher’s Algorithm

Due to Corollary 1, we can restrict ourselves to computing palindromic sub-
strings whose center coincides with the center of each run. These palindromic
substrings are called run-centered palindromes. Run-centered palindromes will
be candidates of MUPSs of the string S.

To compute run-centered palindromes from RLES , we utilize Manacher’s
algorithm [9] that computes all maximal palindromes for a given (plain) string
of length n in O(n) time and space. Manacher’s algorithm is based only on
character equality comparisons, and hence it works with general alphabets.

Let us briefly recall how Manacher’s algorithm works. It processes a given
string S of length n from left to right. It computes an array MaxPal of length
2n + 1 such that MaxPal[c] stores the length of the maximal palindrome with
center c for c = 1, 1.5, 2, . . . , n − 1, n − 0.5, n. Namely, Manacher’s algorithm
processes a given string S in an online manner from left to right. This algorithm
is also able to compute, for each position i = 1, . . . , n, the longest palindromic
suffix of S[1..i] in an online manner.

Now we apply Manacher’s algorithm to our run-length encoded input string
RLES = (a1, e1), . . . , (am, em). Then, what we obtain after the execution of
Manacher’s algorithm over RLES is all RLE-maximal palindromes of S. Note
that by definition all RLE-maximal palindromes are run-centered. Since RLES

can be regarded as a string of length m over an alphabet Σ×N , this takes O(m)
time and space.

Remark 1. If wanted, we can compute all maximal palindromes of S in O(m)
time after the execution of Manacher’s algorithm to RLES . First, we compute
every run-centered maximal palindrome Pl that has its center in each lth run
in RLES . For each already computed run-centered RLE-maximal palindrome
Ql = S[Rb[i]..Re[j]] with 1 < i ≤ j < m, it is enough to first check whether
ai−1 = aj+1. If no, then Pl = Ql, and if yes then we can further extend both ends
of Ql with (ai−1,min{ei−1, ej+1}) and obtain Pl. As a side remark, we note that
any other maximal palindromes of S are not run-centered, which means that
any of them consists only of the same characters and lie inside of one character
run. Such maximal palindromes are trivial and need not be explicitly computed.

3.3 RLE Version of Eertree Data Structure

The eertree [12] of a string S, denoted eertree(S), is a pair of two rooted trees
Todd and Teven which represent all distinct palindromic substrings of S. The root
of Todd represents the empty string ε and each non-root node of Todd represents
a non-empty palindromic substring of S of odd length. Similarly, the root of
Teven represents the empty string ε and each non-root node of Teven represents
a non-empty palindromic substring of S of even length. From the root r of Todd,
there is a labeled directed edge (r, a, v) if v represents a single character a ∈ Σ.
For any non-root node u of Todd or Teven, there is a labeled directed edge (u, a, v)
from u to node v with character label a ∈ Σ if aua = v. For any node u, the
labels of out-going edges of u must be mutually distinct.
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By Lemma 1, any string S of length n can contain at most n + 1 distinct
palindromic substrings (including the empty string ε). Thus, the size of eertree(S)
is linear in the string length n. Rubinchik and Shur [12] showed how to construct
eertree(S) in O(n log σS) time and O(n) space, where σS is the number of distinct
characters in S. They also showed how to compute the number of occurrences of
each palindromic substring in O(n log σS) time and O(n) space, using eertree(S).

Now we introduce a new data structure named RLE-eertrees based on
eertrees. Let RLES = (a1, e1), . . . , (am, em), and let ΣRLE be the set of maxi-
mal runs of S, namely, ΣRLE = {(a, e) | (a, e) = (ai, ei) for some 1 ≤ i ≤ m}.
Let σRLE = |ΣRLE |. Note that σRLE ≤ m always holds. The RLE-eertree of
string S, denoted by e2rtre2(S), is a single eertree Todd over the RLE alphabet
σRLE ⊂ Σ × N , which represents distinct run-centered palindromes of S which
have an RLE-bounded occurrence [i, i′] such that i = Rb[j] and i′ = Re[j′] for
some 1 ≤ j ≤ j′ ≤ m (namely, the both ends of the occurrence touch the bound-
ary of runs), or an occurrence as a maximal palindrome in S. We remark that the
number of runs in each palindromes in e2rtre2(S) is odd, but their decompressed
string length may be odd or even. In e2rtre2(S), there is a directed labeled edge
(u, ae, v) from node u to node v with label ae ∈ ΣRLE if (1) aeuae = v, or
(2) u = ε and v = ae ∈ Σ × N . Note that if the in-coming edge of a node u
is labeled with ae, then any out-going edge of u cannot have a label af with
the same character a. Since e2rtre2S is an eertree over the alphabet ΣRLE of
size σRLE ≤ m, it is clear that the number of out-going edges of each node is
bounded by σRLE . We give an example of e2rtre2(S) in Fig. 2.

Fig. 2. The RLE-eertree e2rtre2(S) of RLES = b3a2b2a1b2a3b2a3b3. Each white node
represents a run-centered palindromic substring of S that has an RLE-bounded occur-
rence, while each gray node represents a run-centered palindromic substring of S that
has a maximal occurrence in S.

Lemma 5. Let S be any string of which the size of RLES is m. Then, the
number of nodes in e2rtre2(S) is at most 2m + 1.
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Proof. First, we consider RLES as a string of length m over the alphabet ΣRLE .
It now follows from Lemma 1 that the number of non-empty distinct run-centered
palindromic substrings of S that have an RLE-bounded occurrence is at most
m. Each of these palindromic substrings are represented by a node of e2rtre2(S),
and let e2rtre2(S)′ denote the tree consisting only of these nodes (in the example
of Fig. 2, e2rtre2(S)′ is the tree consisting only of the white nodes).

Now we count the number of nodes in e2rtre2(S) that do not belong to
e2rtre2(S)′ (the gray nodes in the running example of Fig. 2). Since each palin-
drome represented by this type of node has a run-centered maximal occurrence
in S, the number of such palindromes is bounded by the number m of runs in
RLES .

Hence, including the root that represent the empty string, there are at most
2m + 1 nodes in e2rtre2(S). ��
Lemma 6. Given RLES of size m, e2rtre2(S) can be built in O(m log σRLE )
time and O(m) space, where the out-going edges of each node are sorted according
to the total order of their labels. Also, in the resulting e2rtre2(S), each non-root
node u stores the number of occurrences of u in S which are RLE-bounded or
maximal.

Proof. Our construction algorithm comprises three steps. We firstly build
e2rtre2(S)′, secondly compute an auxiliary array CPal that will be used for the
next step, and thirdly we add some nodes that represent run-centered maximal
palindromes which are not in e2rtre2(S)′ so that the resulting tree forms the final
structure e2rtre2(S).

Rubinchik and Shur [12] proposed an online algorithm to construct eertree(T )
of a string of length k in O(k log σT ) time with O(k) space, where σT denotes
the number of distinct characters in T . They also showed how to store, in each
node, the number of occurrences of the corresponding palindromic substring in T .
Thus, the Rubinchik and Shur algorithm applied to RLES computes e2rtre2(S)′

in O(m log σRLE ) time with O(m) space. Also, now each node u of e2rtre2(S)′

stores the number of RLE-bounded occurrence of u in S. This is the first step.
The second step is as follows: Let CPal be an array of length m such that,

for each 1 ≤ i ≤ m, CPal [i] stores a pointer to the node in e2rtre2(S)′ that rep-
resents the RLE-bounded palindrome centered at i. A simple application of the
Rubinchik and Shur algorithm to RLES only gives us the leftmost occurrence of
each RLE-bounded palindrome in e2rtre2(S)′. Hence, we only know the values of
CPal in the positions that are the centers of the leftmost occurrences of RLE-
bounded palindromes. To compute the other values in CPal , we run Manacher’s
algorithm to RLES as in Sect. 3.2. Since Manacher’s algorithm processes RLES

in an online manner from left to right, and since we already know the leftmost
occurrences of all RLE-bounded palindromes in RLES , we can copy the pointers
from previous occurrences. In case where an RLE-bounded palindrome extends
with a newly read RLE-character (a, e) after it is copied from a previous occur-
rence during the execution of Manacher’s algorithm, then we traverse the edge
labeled (a, e) from the current node of e2rtre2(S)′. By repeating this until the
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mismatch is found in extension of the current RLE-bounded palindrome, we can
find the corresponding node for this RLE-bounded palindrome. This way we can
compute CPal [i] for all 1 ≤ i ≤ m in O(m log σRLE ) total time with O(m) total
space.

In the third step, we add new nodes that represent run-centered maximal
(but not RLE-bounded) palindromic substrings. For this sake, we again apply
Manacher’s algorithm to RLES , but in this case it is done as in Remark 1 of
Sect. 3.2. With the help of CPal array, we can associate each run (al, el) with
the RLE-bounded palindromic substring that has the center in (al, el). Let Ql =
S[Rb[i]..Re[j]] denote this palindromic substring for (al, el), where 1 ≤ i ≤ l ≤
j ≤ m, and ul the node that represents Ql in e2rtre2(S)′. We first check whether
ai−1 = aj+1. If no, then Ql does not extend from this run (al, el), and if yes then
we extend both ends of Ql with (ai−1,min{ei−1, ej+1}). Assume w.l.o.g. that
ei−1 = min{ei−1, ej+1}. If there is no out-going edge of ul with label (ai−1, ei−1),
then we create a new child of ul with an edge labeled (ai−1, ei−1). Otherwise,
then let v be the existing child of ul that represents a

ei−1
i−1 ula

ei−1
i−1 . We increase

the number of occurrences of v by 1. This way, we can add all new nodes and
we obtain e2rtre2(S). Note that each node stores the number of RLE-bounded
or maximal occurrence of the corresponding run-centered palindromic substring.
It is easy to see that the second step takes a total of O(m log σRLE ) time and
O(m) space. ��

It is clear that for any character a ∈ Σ, there can be only one MUPS of
form ae. Namely, ae is a MUPS iff e is the largest exponent for all runs of a’s
in S and occS(ae) = 1. Below, we consider other forms of MUPSs. Let P be
a non-empty palindromic substring of string S that has a run-centered RLE-
bounded occurrence. For any character a ∈ Σ, let emax and esec denote the
largest and second largest positive integers such that aemaxPaemax and aesecPaesec

are palindromes that have run-centered RLE-bounded or maximal occurrences
in S. If such integers do not exist, then let emax = nil and esec = nil.

Observation 1. There is at most one MUPS of form aePae in S. Namely,

(1) The palindrome aesec+1Paesec+1 is a MUPS of S iff emax �= nil, esec �= nil,
and occS(aemaxPaemax) = 1.

(2) The palindrome a1Pa1 is a MUPS of S iff emax �= nil, esec = nil, and
occS(aemaxPaemax) = 1.

(3) There is no MUPS of form aePae with any e ≥ 1 iff either emax = nil, or
emax �= nil and occS(aemaxPaemax) > 1.

Lemma 7. MS can be computed in O(m log σRLE ) time and O(m) space.

Proof. For each node u of e2rtre2(S), let Σu be the set of characters a such that
there is an out-going edge of u labeled by (a, e) with some positive integer e.
Due to Observation 1, for each character in Σu, it is enough to check the out-
going edges which have the largest and second largest exponents with character
a. Since the edges are sorted, we can find all children of u that represent MUPSs
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in time linear in the number of children of u. Hence, given e2rtre2(S), it takes
O(m) total time to compute all MUPSs in S. e2rtre2(S) can be computed in
O(m log σRLE ) time and O(m) space by Lemma 6.

What remains is how to sort the MUPSs in increasing order of their beginning
positions. We associate each MUPS with the run where its center lies. Since each
MUPS occurs in S exactly once and MUPSs do not nest (Lemma2), each run
cannot contain the centers of two or more MUPSs. We compute an array A of
size m such that A[j] contains the corresponding interval of the MUPS whose
center lies in the jth run in RLES , if it exists. After computing A, we scan A
from left to right. Since again MUPSs do not nest, this gives as the sorted list
MS of MUPSs. It is clear that this takes a total of O(m) time and space. ��

4 SUPS Queries on RLE Strings

In this section, we present our algorithm for SUPS queries. Our algorithm is
based on Inoue et al.’s algorithm [8] for SUPS queries on a plain string. The big
difference is that the space that we are allowed for is limited to O(m).

4.1 Data Structures

As was discussed in Sect. 3, we can compute the list MS of all MUPSs of string
S efficiently. We store MS using the three following arrays:
– Mbeg [i] : the beginning position of the ith MUPS in MS .
– Mend [i] : the ending position the ith MUPS in MS .
– Mlen [i] : the length of the ith MUPS in MS .

Since the number of MUPSs in MS is at most m (Corollary 1), the length of
each array is at most m. In our algorithm, we use range minimum queries and
predecessor/successor queries on integer arrays.

Let A be an integer array of length d. A range minimum query RmQA(i, j)
returns one of arg mini≤k≤j{A[k]} for a given interval [i, j] in A.

Lemma 8 (e.g. [2]). We can construct an O(d)-space data structure in O(d)
time for an integer array A of length d which can answer RmQA(i, j) in constant
time for any query [i, j].

Let B be an array of d positive integers in [1, N ] in increasing order. The
predecessor and successor queries on B are defined for any 1 ≤ k ≤ N as follows.

PredB(k) =

{
max{i | B[i] ≤ k} if it exists,
0 otherwise.

SuccB(k) =

{
min{i | B[i] ≥ k} if it exists,
N + 1 otherwise.

Lemma 9 ([1]). We can construct, in O(d
√

log d/ log log d) time, an O(d)-
space data structure for an array B of d positive integer in [1, N ] in increasing
order which can answer PredB(k) and SuccB(k) in O(

√
log d/ log log d) time for

any query k ∈ [1, N ].
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4.2 Query Algorithm

Our algorithm simulates the query algorithm for a plain string [8] with O(m)-
space data structures. We summarize our algorithm below.

Let [s, t] be a query interval such that 1 ≤ s ≤ t ≤ n. Firstly, we com-
pute the number of MUPSs contained in [s, t]. This operation can be done in
O(

√
log m/ log log m) by using SuccMbeg

(s) and PredMend
(t).

Let num be the number of MUPSs contained in [s, t]. If num ≥ 2, then
there is no SUPS for this interval (Corollary 1 of [8]). Suppose that num = 1.
Let S[i..j] be the MUPS contained in [s, t]. If S[i − z..j + z] is a palindromic
substring, then S[i − z..j + z] is the only SUPS for [s, t] where z = max{i −
s, t − j}. Otherwise, there is no SUPS for [s, t] (Lemma 6 of [8]). Since this
candidate has a run as the center, we can check whether S[i − z..j + z] is a
palindromic substring or not in constant time after computing all run-centered
maximal palindromes. Suppose that num = 0 (this case is based on Lemma 7
of [8]). Let p = PredMend

(t), q = SuccMbeg
(s). We can check whether each of

S[Mbeg [p] − t + Mend [p]..t] and S[s..Mend [q] + Mbeg [q] − s] is a palindrome or
not. If so, the shorter one is a candidate of SUPS s. Let � be the length of the
candidates. Other candidates are the shortest MUPS s which contain the query
interval [s, t]. If the length of these candidates is less than or equal to �, we need
to compute these candidates as SUPS s. We can compute these MUPS s by using
range minimum queries on Mlen [p + 1, q − 1]. Thus, we can compute all SUPS s
in linear time w.r.t. the number of outputs (see [8] in more detail).

We conclude with the main theorem of this paper.

Theorem 1. Given RLES of size m for a string S, we can compute a data
structure of O(m) space in O(m(log σRLE +

√
log m/ log log m)) time so that

subsequent SUPS queries can be answered in O(α +
√

log m/ log log m) time,
where σRLE denotes the number of distinct RLE-characters in RLES and α the
number of SUPSs to report.
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Abstract. The zero-visibility cops and robber game is a variant of Cops
and Robbers subject to the constraint that the cops have no information
at any time about the location of the robber. We first study a partition
problem in which for a given graph and an integer k, we want to find
a partition of the vertex set such that the size of the boundary of the
smaller subset in the partition is at most k while the size of this subset
is as large as possible under some conditions. Then we apply such parti-
tions to prove lower bounds on the zero-visibility cop numbers of graph
products. We also investigate the monotonic zero-visibility cop numbers
of graph products.

1 Introduction

Cops and Robbers is a pursuit and evasion game in graph theory, which was
introduced independently by Nowakowski and Winkler [10] and Quilliot [11].
These two papers consider the game with one cop and one robber and charac-
terize the cop-win graphs. More results can be found in [2,3].

The zero-visibility cops and robber game is a variant of Cops and Robbers,
which was proposed by Tošić [12]. This game has the same setting as Cops and
Robbers except that the cops have no information about the location of the
robber. This feature makes the robber harder to capture, and the main question
is to determine the minimum number of cops that can guarantee to capture the
robber.

When the zero-visibility cops and robber game is played on a graph G with
k cops and one robber, the robber has full information about the locations of all
cops, but the cops have no information about the location of the robber at any
time, i.e., the robber is invisible to the cops. The game is played in a sequence
of rounds. Each round consists of a pair of turns, a cops’ turn to move, followed
by a robber’s turn to move. At round 0, each of the k cops selects a vertex of
G to occupy, and then the robber selects a vertex of G. At round i, i ≥ 1, each
cop either moves from the vertex currently occupied to one of its neighbors or
stays still, then the robber does the same. The cops capture the robber if one of
c© Springer Nature Switzerland AG 2019
C. J. Colbourn et al. (Eds.): IWOCA 2019, LNCS 11638, pp. 442–454, 2019.
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them occupies the same vertex as the robber. If this happens in a finite number
of moves, then the cops win; otherwise, the robber wins. The zero-visibility cop
number of G, denoted by c0(G), is the minimum number of cops required to
capture the robber on G. A cop-win strategy for G is optimal if it uses c0(G)
cops to capture the robber. We call a vertex cleared if it is certain that this
vertex is not occupied by the robber, and contaminated otherwise.

Monotonicity (i.e., the property that each vertex or edge, once cleared,
remains cleared forever) is an important issue in graph searching problems.
Megiddo et al. [9] showed that the edge search problem is NP-hard. That this
problem belongs to the NP class follows from the monotonicity result in [8].
Bienstock and Seymour [1] proposed a method that gives a succinct proof for
the monotonicity of the mixed search problem. This method was extended to
the monotonicity of digraph search problems [13,14]. The monotonic cop-win
strategy in the zero-visibility cops and robber game is introduced in [5]. Let Ri

be the set of vertices that are contaminated just after the cops’ turn in the i-th
round. We say that a cop-win strategy is monotonic if Ri+1 ⊆ Ri for any round
i ≥ 0. The monotonic zero-visibility cop number of G, denoted by mc0(G), is the
minimum number of cops required by a monotonic cop-win strategy of G.

Although Cops and Robbers has been widely studied, there are not many
results in the study of the zero-visibility cops and robber game. Tošić [12] gave
characterizations of graphs for which one cop is sufficient, and computed the
cop number of paths, cycles, complete graphs and complete bipartite graphs.
Dereniowski et al. [5] proved that the zero-visibility cop number of a graph is
bounded above by its pathwidth and the monotonic zero-visibility cop number
can be bounded both above and below by multiples of the pathwidth. Dere-
niowski et al. [6] gave a linear-time algorithm for computing the zero-visibility
cop number of trees. They also proved that the problem of determining the
zero-visibility cop number of a graph is NP-complete.

Given two graphs G and H, the cartesian product of G and H, denoted G�H,
is the graph whose vertex set is the cartesian product V (G)×V (H), and in which
two vertices (u, v) and (u′, v′) are adjacent if and only if u = u′ and v is adjacent
to v′ in H, or v = v′ and u is adjacent to u′ in G. The strong product of G and
H, denoted G � H, has the same vertex set as G�H. Two vertices (u, v) and
(u′, v′) are adjacent in G � H if and only if u = u′ and v is adjacent to v′ in
H, or v = v′ and u is adjacent to u′ in G, or u is adjacent to u′ in G and v is
adjacent to v′ in H.

Note that the difference between the cop number in Cops and Robbers and
the zero-visibility cop number can be arbitrarily large for product graphs. For
example, in Cops and Robbers, we can use two cops to capture the robber on
Pm�Pn or Pm � Pn, where Pm is a path with m vertices and n ≥ m ≥ 2. But
in the zero-visibility cops and robber game, we will show that c0(Pm � Pn) ≥
c0(Pm�Pn) = �m+1

2 �.
Dereniowski et al. [5] showed that the zero-visibility cops and robber game

is highly non-monotonic. For any k > 1, they constructed a class of graphs G
whose pathwidth is at least k but c0(G) = 2. Because of these notorious graphs,
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it is difficult to apply the lower bound techniques for pathwidth or its related
graph searching models to find nontrivial lower bounds for the zero-visibility cop
number.

The main contribution of this paper is a new partition method that can be
used to prove lower bounds for the zero-visibility cops and robber game. It is
easy to see that at any moment of the zero-visibility cops and robber game, the
set of cleared vertices and the set of contaminated vertices form a partition of
the vertex set. This partition may change dynamically after each turn of either
player. Since any subset of cops can move to their neighbors in a turn of the
cops, we have many possible partitions to analyze after such a turn. To overcome
this difficulty, we first establish general properties of partitions of vertex sets,
independent of the game, in Sect. 2. We then apply those partition properties
to show lower bounds on the zero-visibility cop number of cartesian products
and strong products of graphs. The corresponding results are summarized in the
following table.

Theorem # G m,n Lower bound on c0(G) Upper bound on mc0(G)

Theorem 6 Pm�Pn n ≥ m ≥ 1 �m+1
2 � �m+1

2 �
Theorem 7 Cm�Pn m ≥ 3, n ≥ 2 min{�m+1

2 �, n + 1} min{�m+1
2 �, n + 1}

Theorem 8 Cm�Cn n ≥ m ≥ 3 �m+1
2 � m + 1

Theorem 9 Pm � Pn n ≥ m ≥ 2, m is even m
2 + 1 m

2 + 1

Theorem 9 Pm � Pn n ≥ m ≥ 3, m is odd m+1
2

m+1
2 + 1

Theorem 10 Cm � Pn m ≥ 3, n ≥ 2, min{�m+1
2 �, n + 1} min{�m+1

2 �, 2�n+1
2 �} + 1

Theorem 11 Cm � Cn n ≥ m ≥ 3 �m+1
2 � m + 2

Theorem 12 Qn n ≥ 2 ?
∑n−2

k=0

( k

� k
2 �

)
+ 1

2 Partitions and Boundaries of Vertex Sets

Let G = (V,E) be a graph with vertex set V and edge set E. A pair of subsets
(V1, V2) is a partition of V if V1∪V2 = V and V1∩V2 = ∅. For a partition (V1, V2)
of V , the boundary of V1, denoted ∂V1, is the largest subset of V1 such that each
vertex in the subset is adjacent to a vertex in V2 on G.

Theorem 1. Let Pm�Pn, n ≥ m ≥ 2, be a grid with m rows and n columns.
Let (V1, V2) be a partition of the vertex set of Pm�Pn. If |∂V1| < m and there
exists a row whose vertices all belong to V2, then

(i) for any � ∈ {1, . . . , m − 1}, the number of rows that contain at least m − �
vertices in V1 is at most �;

(ii) |V1| ≤ m2−m
2 .

Proof. (i) For the sake of contradiction, assume that there exists �′, 1 ≤ �′ ≤
m−1, such that the number of rows that contain at least m− �′ vertices in V1 is
at least �′ + 1. Let i1 be the index of a row in which all vertices are in V2. Let i2
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be the index of a row that contains at least m − �′ vertices in V1. Without loss
of generality, suppose that there is no row between the i1-th row and the i2-th
row which contains at least m− �′ vertices in V1. Let vi2,j be the vertex of V1 on
the i2-th row and j-th column, and let P ′ = vi2,j . . . vi1,j be a subcolumn of the
j-th column. Note that all the vertices in the i1-th row are in V2. Hence, there
must exist a vertex v′ of P ′ such that v′ ∈ ∂V1. Thus, there are at least m − �′

vertices in all the subcolumns from the i1-th row to the i2-th row, which belong
to ∂V1. Similar to the above, we can also show that there is no row containing
at least m vertices in V1; otherwise, |∂V1| is at least m and this contradicts the
condition that |∂V1| < m. So each row contains at most m − 1 vertices in V1;
and furthermore, if a row contains vertices in V1, it also contains a vertex in
∂V1. Note that on the i2-th row, the rightmost vertex which belongs to ∂V1 is
counted twice, and this is the only doubly counted vertex in the above counting.
Hence, |∂V1| ≥ (m − �′) + (�′ + 1) − 1 = m, which contradicts the condition that
|∂V1| < m. Therefore, for any � ∈ {1, . . . , m − 1}, there are at most � rows that
contain m − � or more vertices in V1 each.

(ii) From (i), each row contains at most m − 1 vertices in V1, and moreover,
the number of rows that contain at least m − � vertices in V1 is at most �, for
each � ∈ {1, . . . , m − 1}. Therefore, |V1| ≤ ∑m−1

i=1 i = m2−m
2 . ��

Theorem 2. Let Cm�Pn be a cylinder grid, where m ≥ 2n ≥ 4. Let (V1, V2) be
a partition of the vertex set of Cm�Pn. If |∂V1| < 2n and there exists a copy of
Pn whose vertices are all in V2, then

(i) for any � ∈ {1, . . . , n}, the number of copies of Cm that contain at least
2n − 2� + 1 vertices in V1 is at most �;

(ii) for any � ∈ {2, . . . , n}, the number of copies of Cm that contain at least
2n − 2� + 2 vertices in V1 is at most � − 1;

(iii) each copy of Cm contains at most 2n − 1 vertices in V1;
(iv) |V1| ≤ n2.

Theorem 3. Let Cm�Pn be a cylinder grid, where 3 ≤ m < 2n. Let (V1, V2) be
a partition of the vertex set of Cm�Pn. If |∂V1| < m and there exists a copy of
Pn whose vertices all belong to V2, then

(i) when m is even, for any � ∈ {0, . . . , m−2
2 }, the number of copies of Pn that

contain at least m
2 − � vertices in V1 is at most 2� + 1;

(ii) when m is odd, for any � ∈ {1, . . . , m−1
2 }, the number of copies of Pn that

contain at least m+1
2 − � vertices in V1 is at most 2�;

(iii) |V1| ≤ m2

4 when m is even; and |V1| ≤ m2−1
4 when m is odd.

3 Lower Bounds

Consider the zero-visibility cops and robber game on a graph G = (V,E). After
any turn, the set of cleared vertices V1 and the set of contaminated vertices V2

form a partition of V . So the boundary of V1 is the largest subset of V1 such that
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each cleared vertex in the subset is adjacent to a contaminated vertex in V2. Let
V i
B , i ≥ 1, denote the boundary of V1 after the cops’ turn in round i, and let V i

C

be the set of cleared vertices after the robber’s turn in round i. Note that V i
B

might not be a subset of V i
C . After the cops’ turn in round i, a vertex is called

non-boundary if it is not in V i
B .

Lemma 1. Let G be a graph with c0(G) = k. For any round i (≥ 1) of an
optimal cop-win strategy of G, if |V i

B | ≥ 2k, then |V i
C | ≤ |V i−1

C |.
Proof. Since there are k cops, at most k contaminated vertices can be cleared
by cops in each round. Note that at most k vertices in V i

B are occupied by cops.
Hence, after the cops’ turn in round i, there are at least |V i

B | − k ≥ k cleared
vertices that are unoccupied and are adjacent to contaminated vertices, and so,
these vertices get recontaminated after the robber’s turn in round i. Therefore
|V i

C | ≤ |V i−1
C |. ��

Lemma 2. Let Pm�Pn, n ≥ m ≥ 1, be a grid with m rows and n columns. For
a cop-win strategy of Pm�Pn, let i be a round in which |V i

B | < m. Then either
|V i

C | ≤ m2−m
2 or |V i

C | ≥ mn − m2−m
2 .

Proof. After the cops’ turn in round i, if every row contains both cleared vertices
and contaminated vertices, then |V i

B | ≥ m, which is a contradiction. So there is
at least one row that contains only cleared vertices or only contaminated vertices.
Similarly, there is at least one column that contains only cleared vertices or only
contaminated vertices. Thus, we have two cases.

Case 1. There exist a row and a column that both contain only contaminated
vertices. It follows from Theorem 1(ii) that |V i

C | ≤ m2−m
2 .

Case 2. There exist a row and a column that both contain only cleared
vertices. After the cops’ turn in round i, let (U1, U2) be a partition of V (Pm�Pn),
where U1 is the set of cleared vertices, U2 is the set of contaminated vertices,
and V i

B is the boundary of U1. It is easy to see that every row and every column
must contain a vertex in U1. Note that |V i

B | < m. Hence, there must exist a
row that contains only non-boundary vertices. Since every row contains a vertex
in U1, there must exist a row that contains only cleared non-boundary vertices.
Similarly, we can show that there must exist a column that contains only cleared
non-boundary vertices. From Theorem 1(ii), we have |U2 ∪ V i

B | ≤ m2−m
2 (where

U2 ∪ V i
B is considered as V1 and U1 \ V i

B is considered as V2 in Theorem 1).
Thus, |U1 \V i

B | ≥ mn− m2−m
2 . Notice that the vertices in U1 \V i

B are all cleared
non-boundary vertices. Hence, |V i

C | ≥ |U1 \ V i
B | ≥ mn − m2−m

2 .
��

Theorem 4. For n ≥ m ≥ 1, c0(Pm�Pn) ≥ �m+1
2 �.

Proof. The claim is trivial when m = 1. Suppose that c0(Pm�Pn) ≤ �m−1
2 �,

m ≥ 2. Consider a cop-win strategy for Pm�Pn that uses at most �m−1
2 � cops.

We will use mathematical induction to show that |V i
C | ≤ m2−m

2 for all i ≥ 0.
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When i = 0, it is easy to see that |V 0
C | ≤ �m−1

2 � ≤ m2−m
2 . Assume that |V i−1

C | ≤
m2−m

2 holds for round i − 1, where i ≥ 1. There are two cases.
Case 1: |V i

B | < m. Since |V i−1
C | ≤ m2−m

2 , there are at most m2−m
2 +�m−1

2 � ≤
m2

2 cleared vertices after the cops’ turn in round i. Since m2

2 < mn − m2−m
2 , it

follows from Lemma 2 that |V i
C | ≤ m2−m

2 .
Case 2: |V i

B | ≥ m. It follows from Lemma 1 that |V i
C | ≤ |V i−1

C |, and thus,
|V i

C | ≤ m2−m
2 .

From the above, we have |V i
C | ≤ m2−m

2 for all i ≥ 0, which is a contradiction.
Hence, c0(Pm�Pn) ≥ �m+1

2 �. ��
Lemma 3. For a cop-win strategy of Cm�Pn with m ≥ 2n ≥ 4, let i be a round
in which |V i

B | < 2n. Then either |V i
C | ≤ n2 or |V i

C | ≥ mn − n2 + 2n − 1.

Proof. After the cops’ turn in round i, if every copy of Pn contains both cleared
and contaminated vertices, then |V i

B | ≥ m ≥ 2n, which is a contradiction. So
there must exist a path P j

n, 1 ≤ j ≤ m, which contains only cleared or only
contaminated vertices. Hence, we have two cases.

Case 1. P j
n contains only contaminated vertices. After the cops’ turn in round

i, let V1 be the set of cleared vertices and V2 be the set of contaminated vertices. It
follows from Theorem 2(iv) that |V1| ≤ n2. Since |V i

C | ≤ |V1|, we have |V i
C | ≤ n2.

Case 2. P j
n contains only cleared vertices. Similar to the proof of Lemma 2,

we know that the maximum number of contaminated vertices in Case 2 is equal
to the maximum number of cleared non-boundary vertices in Case 1. So we need
to find this number in Case 1.

Consider Case 1 again, that is, P j
n contains only contaminated vertices. Let

nc be the maximum number of cleared non-boundary vertices over all possible
cop-win strategies of Cm�Pn satisfying that |V i

B | ≤ 2n − 1. Let k ≤ 2n − 1 be
the largest size of the boundary such that the number of cleared non-boundary
vertices is nc. We will prove that k = 2n − 1. Assume that k ≤ 2n − 2. If every
copy of Cm contains at least two cleared vertices, then |V i

B | ≥ 2n, which is a
contradiction. Thus, there exists a copy of Cm that contains at most one cleared
vertex. Let u be a contaminated vertex on this cycle but not on P j

n. We can
obtain a new partition on V (Cm�Pn) by letting u become cleared. Notice that
P j
n still contains only contaminated vertices after changing u from contaminated

to cleared. Further, the new partition must satisfy: (a) the size of the boundary
is k + 1 and the number of cleared non-boundary vertices is nc, or (b) the size
of the boundary is at most k and the number of cleared non-boundary vertices
is at least nc + 1. Note that case (a) contradicts that k is the largest size of the
boundary when the number of cleared non-boundary vertices is nc; and case (b)
contradicts that nc is the maximum number of cleared non-boundary vertices
when the boundary has size at most 2n − 1. Thus, we know that k cannot be
less than 2n − 1. Hence, k = 2n − 1. Since there are at most n2 cleared vertices
when the size of the boundary is 2n − 1, we have nc + (2n − 1) ≤ n2, and thus
nc ≤ n2 − 2n + 1.
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So in Case 2, the number of contaminated vertices is at most n2 − 2n + 1,
and therefore, the number of cleared vertices is at least mn − n2 + 2n − 1. ��
Lemma 4. For m ≥ 2n ≥ 4, c0(Cm�Pn) ≥ n + 1.

Proof. Assume that c0(Cm�Pn) ≤ n. Consider a cop-win strategy for Cm�Pn

that uses n cops. We will show that |V i
C | ≤ n2 for all i ≥ 0. When i = 0,

|V 0
C | ≤ n < n2. Assume that |V i−1

C | ≤ n2, i ≥ 1. There are two cases when we
consider |V i

C |.
Case 1: |V i

B | < 2n. Since |V i−1
C | ≤ n2, there are at most n2+n cleared vertices

after the cops’ turn in round i. Since n2 + n < mn − n2 + 2n − 1, it follows from
Lemma 3 that |V i

C | ≤ n2.
Case 2: |V i

B | ≥ 2n. Similar to the proof of Lemma 1, we have |V i
C | ≤ |V i−1

C | ≤
n2.

Thus, |V i
C | ≤ n2 for all i ≥ 0, which contradicts the assumption that n cops

can clear Cm�Pn. Hence, c0(Cm�Pn) ≥ n + 1. ��
Lemma 5. For a cop-win strategy of Cm�Pn with 3 ≤ m < 2n, let i be a round
in which |V i

B | < m. Then either |V i
C | ≤ m2

4 or |V i
C | ≥ mn − m2

4 + m − 1.

Proof. After the cops’ turn in round i, there is a path P j
n, 1 ≤ j ≤ m, which

contains only cleared or only contaminated vertices; otherwise, |V i
B | ≥ m ≥ 2n,

which is a contradiction. So there are two cases for P j
n.

Case 1. P j
n contains only contaminated vertices. Let nc be the maximum

number of cleared non-boundary vertices over all partitions on V (Cm�Pn) when
|V i

B | ≤ m − 1. Let k ≤ m − 1 be the largest size of the boundary such that the
number of all cleared non-boundary vertices is nc. We will prove that k = m−1.
Assume that k ≤ m − 2. Consider a partition (V1, V2) of V (Cm�Pn), where V1

is the set of cleared vertices and V2 is the set of contaminated vertices, such
that |∂V1| = k and |V1 \ ∂V1| = nc. From the proof of Theorem 3, there must
exist a copy of Pn containing both cleared and contaminated vertices. Let u be a
contaminated vertex on this copy of Pn, and let V ′

1 = V1∪{u} and V ′
2 = V2\{u}.

Since P j
n contains only contaminated vertices, on the new partition (V ′

1 , V ′
2),

either the size of the boundary is k +1 and the number of cleared non-boundary
vertices is nc, which is a contradiction, or the size of the boundary is at most k
and the number of cleared non-boundary vertices is at least nc +1, which is also
a contradiction. Hence, k = m−1. It follows from Theorem 3(iii) that |V1| ≤ m2

4

when m is even, and |V1| ≤ m2−1
4 when m is odd. Since |V i

C | ≤ |V1|, we have
|V i

C | ≤ max{m2

4 , m2−1
4 } = m2

4 .
Case 2. P j

n contains only cleared vertices. In this case, the number of con-
taminated vertices can be considered as the number of cleared non-boundary
vertices in Case 1. From Case 1, we know that nc + (m − 1) ≤ m2

4 , that is,
nc ≤ m2

4 − m + 1. So the maximum number of contaminated vertices in Case 2
is at most m2

4 − m + 1. Hence, |V i
C | ≥ mn − m2

4 + m − 1. ��
Lemma 6. For 3 ≤ m < 2n, c0(Cm�Pn) ≥ �m+1

2 �.
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Proof. Assume that c0(Cm�Pn) ≤ �m−1
2 �. Consider a cop-win strategy that

uses �m−1
2 � cops. We will show that |V i

C | ≤ m2

4 for all i ≥ 0. When i = 0,
|V 0

C | ≤ �m−1
2 � < m2

4 . Assume that |V i−1
C | ≤ m2

4 , i ≥ 1. There are two cases.
Case 1. |V i

B | ≤ m−1. Since |V i−1
C | ≤ m2

4 , there are at most �m−1
2 �+m2

4 cleared
vertices after the cops’ turn in round i. Since �m−1

2 � + m2

4 < mn − m2

4 + m − 1,
it follows from Lemma 3 that |V i

C | ≤ m2

4 .
Case 2. |V i

B | ≥ m. Note that in round i, at most �m−1
2 � vertices are cleared

after the cops’ turn, but at least m+1
2 � cleared vertices get recontaminated after

the robber’s turn. Thus, |V i
C | ≤ |V i−1

C | ≤ m2

4 .
From the above cases, |V i

C | ≤ m2

4 for all i ≥ 0, which is a contradiction. ��
Theorem 5. For m ≥ 3 and n ≥ 2, c0(Cm�Pn) ≥ min{�m+1

2 �, n + 1}.
Lemma 7. For n ≥ m ≥ 3, c0(Cm�Cn) ≥ �m+1

2 �.
Let pw(G) denote the pathwidth of a graph G. The following result appears

in [5], which gives a lower bound for mc0(G).

Lemma 8. ([5]) For any connected graph G, mc0(G) ≥ 1
2 (pw(G) + 1).

Lemma 9. For n > m ≥ 3, both mc0(Cm�Cn) and mc0(Cm � Cn) are at least
m + 1, and both mc0(Cm�Cm) and mc0(Cm � Cm) are at least m.

Proof. From Theorem 7.1 in [7], we have

pw(Cm�Cn) =
{

2m if n > m ≥ 3,
2m − 1 if n = m ≥ 3.

From Lemma 8, we have

mc0(Cm � Cn) ≥ 1
2
(pw(Cm � Cn) + 1) ≥ 1

2
(pw(Cm�Cn) + 1).

Hence, the claim holds for mc0(Cm � Cn). Similarly, the claim also holds for
mc0(Cm�Cn). ��

4 Cartesian Products

Theorem 6. For n ≥ m ≥ 1, c0(Pm�Pn) = mc0(Pm�Pn) = �m+1
2 �.

Proof. The claim is trivial when m = 1. When m is odd and m ≥ 3, we have
the following monotonic strategy for m+1

2 cops to clear Pm�Pn.

1. Place cop λi on v2i−1,1 where 1 ≤ i ≤ m+1
2 . Hence, we use m+1

2 cops in total.
Let j = 1 and k = m+1

2 .
2. For i = 1 to m+1

2 , take one of the following actions for the cop λi:
(1) if i = k, then move λi to its right neighbor.
(2) if i �= k, then move λi to its lower neighbor.
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3. If k > 1, then for i = 1, . . . , m+1
2 , move the cop λi to its upper neighbor. Set

k ← k − 1. If k ≥ 1, go to Step 2.
4. If j < n − 1, set j ← j + 1, k ← m+1

2 , and go to Step 2. If j = n − 1, then all
vertices of Pm�Pn are cleared.

When m is even and m ≥ 2, we can easily modify the above strategy so that
m
2 + 1 cops can clear Pm�Pn. Thus, from Theorem 4, the claim holds. ��
Theorem 7. For m ≥ 3 and n ≥ 2,

c0(Cm�Pn) = mc0(Cm�Pn) = min{�m + 1
2

�, n + 1}.

Proof. Applying a strategy similar to the one described in the proof of The-
orem 6, we can use �m+1

2 � cops to clear Cm�Pn. We now give a monotonic
cop-win strategy that clears Cm�Pn with n+1 cops when n is odd (the strategy
is similar if n is even).

1. For each i ∈ {1, . . . , n+1
2 }, place one cop on v2i−1,1 and v2i−1,2 respectively.

Hence, we use n + 1 cops in total.
2. For each i ∈ {1, . . . , n−1

2 }, the cop on v2i−1,1 vibrates between v2i−1,1 and
v2i,1 throughout the strategy while the cop on vn,1 stays still.

3. Using a strategy similar to the one in the proof of Theorem 6, the cops on
v2i−1,2, 1 ≤ i ≤ n+1

2 , can clear all paths from P 2
n to Pm

n .

So the claim follows from Theorem 5. ��
Theorem 8. (i) For n ≥ m ≥ 3, �m+1

2 � ≤ c0(Cm�Cn) ≤ m + 1;
(ii) for n > m ≥ 3, mc0(Cm�Cn) = m + 1; and
(iii) for m ≥ 3, m ≤ mc0(Cm�Cm) ≤ m + 1.

5 Strong Products

Lemma 10. Consider two products Pm�Pn and Pm � Pn. Let (V1, V2) be a
partition of V (Pm�Pn) and let the same partition of V (Pm � Pn) be denoted by
(V ′

1 , V ′
2). Then |∂V1| ≤ |∂V ′

1 |.
Proof. Let v ∈ V1 and let v′ ∈ V ′

1 be the corresponding vertex of v. If v has a
neighbor in V2, then v′ also has a neighbor in V ′

2 . Thus |∂V1| ≤ |∂V ′
1 |. ��

Theorem 9. For n ≥ m ≥ 2,
(i) c0(Pm � Pn) = mc0(Pm � Pn) = m

2 + 1 when m is even; and
(ii) m+1

2 ≤ c0(Pm � Pn) ≤ mc0(Pm � Pn) ≤ m+1
2 + 1 when m is odd.

Proof. Suppose that m is even. Let vi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, be the vertex on
the i-th row and j-th column of Pm�Pn. It is easy to see that mc0(P2�Pn) = 2;
when m ≥ 4, the following monotonic strategy can clear Pm � Pn with m

2 + 1
cops.
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1. For each i ∈ {1, . . . , m
2 }, place a cop on v2i−1,1. Place a cop on v1,2. Hence,

we use m
2 + 1 cops in total. Let j = 1 and k = 1.

2. Slide all cops to their lower neighbors.
3. If k < m − 1, slide the cop on vk+1,j to vk+2,j+1 and slide all other cops to

their upper neighbors; otherwise, slide all cops to their upper neighbors. Set
k ← k + 2. If k ≤ m − 1, go to Step 2.

4. If j = n − 1, then stop and all vertices of Pm � Pn are cleared. If j < n − 1,
then
(a) slide the cop on vm−1,j to vm,j+1;
(b) slide the cop on v1,j+1 to v1,j+2; and
(c) slide all other cops to their upper neighbors.

5. Slide all the cops to their upper neighbors, except the one on v1,j+2. Set
j ← j + 1, k ← 1, and go to Step 2.

When m is odd, we can clear Pm � Pn with m+1
2 + 1 cops in a similar way.

Hence, mc0(Pm � Pn) ≤ m+1
2 � + 1.

From Lemma 10, we can use a method similar to the one in the proof of
Theorem 4 to prove that c0(Pm � Pn) ≥ �m+1

2 �. This completes the proof. ��
Theorem 10. For m ≥ 3 and n ≥ 2,

min{�m+ 1

2
�, n+1} ≤ c0(Cm �Pn) ≤ mc0(Cm �Pn) ≤ min{�m+ 1

2
�, 2�n+ 1

2
�}+1.

Proof. We first show that Cm�Pn can be cleared monotonically with �m+1
2 �+1

cops.
Suppose that m is odd. Let vi,j be the vertex of Cm � Pn that is on the i-th

copy of Cm and the j-th copy of Pn. We place a cop on vertex v1,m and this
cop will vibrate between the vertices v1,m and v2,m until all vertices of C1

m and
C2

m are cleared. We use m+1
2 cops to clear vertices of C1

m and C2
m except v1,m

and v2,m with the strategy described in the proof of Theorem 9. We then use
m+1
2 + 1 cops to clear vertices of C2

m and C3
m. We continue like this until all

vertices of Cn
m are cleared. If m is even, we can easily extend this strategy to

clear Cm � Pn using m
2 + 2 cops.

We now give a monotonic strategy to clear Cm � Pn with 2n+1
2 � + 1 cops.

Suppose that n is even (the strategy will be similar if n is odd). For each i ∈
{1, . . . , n

2 }, place a cop on v2i−1,m and let these n
2 cops vibrate between v2i−1,m

and v2i,m until all vertices of the graph are cleared. We use n
2 + 1 cops to clear

P 1
n , . . . , Pm−1

n by the strategy in Theorem 9.
From Lemma 10 and the proofs of Lemmas 4 and 6, we have

c0(Cm � Pn) ≥
{

n + 1 if m ≥ 2n,⌈
m+1
2

⌉
if m ≤ 2n − 1.

Thus the claim holds. ��
Theorem 11. (i) For n ≥ m ≥ 3, �m+1

2 � ≤ c0(Cm � Cn) ≤ m + 2;
(ii) for n > m ≥ 3, m + 1 ≤ mc0(Cm � Cn) ≤ m + 2; and
(iii) for m ≥ 3, m ≤ mc0(Cm � Cm) ≤ m + 2.
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Proof. (i) We have shown in Theorem 10 that Cm � Pn can be cleared with
�m+1

2 � + 1 cops. Suppose that m is odd. To clear Cm � Cn, we extend the
strategy in Theorem 10 by adding the following actions: in the beginning, for
each i ∈ {1, . . . , m−1

2 }, place a cop on vn,2i that will only vibrate between vn,2i−1

and vn,2i, and place a cop on vn,m and this cop will stay still throughout the
strategy. Clearly, Cn

m is cleared and protected by those m−1
2 + 1 cops. We can

use m+1
2 + 1 cops to clear C1

m, . . . , Cn−1
m sequentially. Hence, we can use m + 2

cops to clear Cm � Pn monotonically. The strategy is similar if m is even.
Similar to the proofs in Sect. 3, we can prove that c0(Cm � Cn) ≥ �m+1

2 �.
(ii) and (iii) follow from Lemma 9 and the monotonic strategy in the proof

of (i). ��

6 Hypercubes

Theorem 12. For a hypercube Qn, n ≥ 2,

1
2

n−1∑

k=0

(
k

k
2 �

)

+
1
2

≤ mc0(Qn) ≤
n−2∑

k=0

(
k

k
2 �

)

+ 1.

Proof. From Lemma 8 and [4], we have

mc0(Qn) ≥ 1
2
(pw(Qn) + 1) =

1
2

n−1∑

k=0

(
k

k
2 �

)

+
1
2
.

We now consider the upper bound. Note that Qn = Qn−1�P2. For conve-
nience, let Q1

n−1 and Q2
n−1 be the two copies of Qn−1 in Qn. Let (B1, . . . ,Bm)

be an optimal path decomposition of Q1
n−1, where Bi ⊆ V (Q1

n−1), 1 ≤ i ≤ m.
We give a monotonic cop-win strategy for clearing Qn with pw(Qn−1) + 1 cops.

1. In round 1, place pw(Qn−1)+1 cops on vertices in B1, such that every vertex
in B1 contains at least one cop. Let i = 1.

2. In round 2, slide all cops to their neighbors in Q2
n−1, and in round 3, slide all

cops back to Q1
n−1.

3. If all vertices are cleared, then stop.
4. If there exists a vertex v in Bi \ Bi+1 such that v is occupied by a cop and it

is cleared in the last two rounds, then
(a) select a vertex v′ in Bi+1 that contains the smallest number of cops among

all other vertices in Bi+1 \ Bi,
(b) find a path between v and v′, and
(c) slide a cop on v along the path to v′, during which this cop does not move

to Q2
n−1, but all other cops move to their neighbors in Q2

n−1 in the even
rounds and move back to Q1

n−1 in the odd rounds.
If the cop arrives at v′ in an even round, then this cop stays on v′ until all
other cops move back to Q1

n−1 in the next round; after that all cops move to
Q2

n−1 and then move back to Q1
n−1 in the next two rounds. If the cop arrives

at v′ in an odd round, then all cops move to Q2
n−1 and then move back to

Q1
n−1 in the next two rounds.
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5. If Bi \ Bi+1 contains no cops, then set i ← i + 1 and go to Step 3; otherwise,
go to Step 4.

From [4], we have mc0(Qn) ≤ pw(Qn−1) + 1 =
∑n−2

k=0

(
k

� k
2 �

)
+ 1. ��

Since the strategy described in the proof of Theorem 12 can be easily
extended to clear G�P2, where G is connected, we have the following result.

Corollary 1. Let G be a connected graph and P2 be a path with two vertices.
Then mc0(G�P2) ≤ pw(G) + 1.

For c0(Qn), we conjecture that c0(Qn) = mc0(Qn). From the results in
Sects. 4 and 5, we may think that c0(G�H) = mc0(G�H) for any graphs G
and H. But this is not always true. The following result implies that their dif-
ference can be arbitrarily large for product graphs.

Lemma 11. For any positive integer k, there exist graphs G and H such that
c0(G�H) ≤ 4 and mc0(G�H) ≥ k.

Proof. For any positive integer �, we can construct a graph G such that c0(G) = 2
and pw(G) ≥ � (see Theorem 4.1 in [5]). It is easy to see that we can use four
cops to clear the two copies of G in G�P2 synchronously. So c0(G�P2) ≤ 4. On
the other hand, from Lemma 8, we have

mc0(G�P2) ≥ 1
2
(pw(G�P2) + 1) ≥ 1

2
(� + 1).

��

7 Conclusions

In this paper, we introduce the partition method which is used to prove lower
bounds for the zero-visibility cops and robber game. We apply this method to
show lower bounds of graph products. We believe that this idea can be used for
other classes of graphs.

We conclude this paper with the following conjectures.
(1) c0(Cm�Cn) = mc0(Cm�Cn) = m + 1, for n ≥ m ≥ 3.
(2) c0(Pm�Pn) = mc0(Pm�Pn) = m+1

2 +1, where m is odd and n ≥ m ≥ 3.
(3) c0(Cm �Pn) = mc0(Cm �Pn) = min{�m+1

2 �, 2n+1
2 �}+1, for m ≥ 3 and

n ≥ 2.
(4) c0(Cm � Cn) = mc0(Cm � Cn) = m + 2, for n ≥ m ≥ 3.
(5) For n ≥ 2,

c0(Qn) = mc0(Qn) =
n−2∑

k=0

(
k

k
2 �

)

+ 1.
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