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Abstract. Anonymous shared memory systems, recently introduced in
[36], are composed of objects for which there is no a priori agreement
between processes on their names. We resolve the following foundational
open problems in theoretical distributed computing, for a model which
includes both non-anonymous and anonymous shared objects: (1) Are
non-trivial oblivious deterministic objects with the same set agreement
power have the same computational power? (2) Is there a non-trivial
oblivious deterministic object which is strictly weaker than an atomic
read/write register? We prove that the answer to the first problem is
negative, while the answer to the second problem is positive. The positive
answer to the second problem implies that the common belief that every
non-trivial deterministic object of consensus number one is at least as
strong as atomic read/write registers is false. A noteworthy property of
the proofs of our results lies in their simplicity.
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1 Introduction

1.1 Set Agreement, Oblivious Objects, Anonymous Objects

Among the most fundamental problems in distributed computing are agreement
and its generalization, k-set agreement. The k-set agreement problem is to design
an algorithm for n processes, where each process starts with an input value from
some domain and must choose some participating process input as its output.
All n processes together may choose no more than k distinct output values [10].
The 1-set agreement problem is the familiar consensus problem [27]. The k-set
agreement number of an object is the largest integer m such that using any
number of instances of that object and registers k-set agreement can be solved
in a wait-free manner among m processes, or the number is ∞ if k-set agreement
can be solved among any number of processes. The 1-set agreement number is
also called the consensus number [18]. The set agreement power of an object is
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the infinite sequence (n1, n2, ..., nk, ...) where nk is the k-set agreement number
of that object for all k ≥ 1.

A shared object type is defined using a sequential specification, which
describes the operations that may be performed on the object and the responses,
if the operations are performed sequentially. We consider objects that are lin-
earizable (with respect to their sequential specification): they behave as if all
operations, including concurrent ones, are applied sequentially, so that each oper-
ation appears to take effect instantaneously at some distinct point between its
invocation and response [21].

Each operation causes a state transition and may return a response. If the
state transition and response are uniquely determined by the current state of the
object and the operation applied, then the object is deterministic. If the state
transition and the response for any operation do not depend on the process
that invokes the operation and every process can invoke every operation, then
the object is oblivious. All common deterministic object types which are sup-
ported by modern multiprocessor architectures (such as, bits, registers, test&set,
fetch&add, swap, compare&swap, queues, and stacks) are oblivious objects.

Anonymous objects, recently introduced in [36], are objects for which there
is no a priori agreement between processes on their names. That is, anonymous
objects do not have global names. The lack of global names makes it convenient
to think of each process as being assigned an initial object and an ordering of the
objects which determines how the process scans the objects. Thus, algorithms
which use only anonymous objects should be correct assuming a very powerful
adversary, which can determine the order in which processes access the objects.

In addition to its usefulness in modeling biologically inspired distributed
computing methods, especially those that are based on ideas from molecular
biology [30], the anonymous shared memory model enables to understand better
the intrinsic limits for coordinating the actions of asynchronous processes.

1.2 Is the Set Agreement Power a Precise Characterization?

A characterization of objects is precise if it can always indicate when two objects
are able to implement each other. In the last thirty years, researchers have tried
to find a precise characterization of an object’s ability to implement other objects
in a wait-free manner, in the shared memory model. The first suggestion for such
a characterization was the object’s consensus number [18]. However, it was shown
that this characterization is not precise. That is, some objects have the same con-
sensus number but do not have the same computational power (i.e., cannot imple-
ment each other). This was first shown for oblivious non-deterministic objects [29]
and later for oblivious deterministic objects as well [1].

Since the consensus number of an object does not fully characterize its ability
to implement other objects, the next natural question to ask is whether the set
agreement power of an object a precise characterization of its ability to imple-
ment other objects [6,12]? In [6], it was shown that the set agreement charac-
terization is not a precise characterization for non-deterministic objects, leaving
open the question of what happens when the universe of objects is restricted to
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deterministic objects. That is, are any two deterministic objects with the same
set agreement power equivalent (i.e., can they implement each other)?

In [8], it is shown that the answer is negative, for non-oblivious deterministic
objects with consensus numbers greater than 1. Non-oblivious objects, as defined
in [8], have ports, each operation is invoked on a specific port, and the response
received may depend on the port number chosen. Processes can choose to invoke
an operation on any port of any object, but no two operations may be applied
on the same port of an object concurrently. The number of ports of an object
effectively limits the number of processes that may access it concurrently.

It is not possible to simulate non-oblivious objects using oblivious objects by
simply including the port number as part of the process’ input when invoking an
operation. Since the total number of processes may be larger than the number
of ports, in such a naive simulation two or more processes may end up using the
same port number concurrently. So, this leaves open the following question.

Is the set agreement power of a non-trivial oblivious deterministic object
a precise characterization of its ability to implement other oblivious deter-
ministic objects? That is, are any two non-trivial oblivious deterministic
objects with the same set agreement power have the same computational
power?

Non-trivial objects are objects that can be used to solve problems whose solutions
require communication. We prove that for a universe of objects which includes
both non-anonymous and anonymous objects, the answer to the above problem is
negative. That is, there are two non-trivial oblivious deterministic objects (both
with consensus number 1), one of which is an anonymous object, that have the
same set agreement power, yet one of the two is strictly weaker than the other.

1.3 Is an Atomic Read/Write Register the Weakest Object?

A related question that attracted the attention of researchers investigating the
relative computational power of shared objects, is the following open problem
[24],

Is an atomic read/write register computationally the weakest possible non-
trivial object? Put another way, is there a non-trivial deterministic object
strictly weaker than an atomic read/write register?

We prove that for a universe of objects which includes both non-anonymous
and anonymous objects, atomic register is not the weakest non-trivial object.
That is, we show that there is a non-trivial oblivious deterministic anonymous
object which is strictly weaker than an atomic register. The answer to the above
open problem implies that the common belief that every non-trivial determinis-
tic object of consensus number one is computationally equivalent to or stronger
than atomic read/write registers is false.

We managed to resolve the above open problems, by showing that,
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1. Anonymous read/write bits are strictly weaker than both anonymous and
non-anonymous read/write registers (Sects. 3 and 4); and

2. Anonymous read/write bits are non-trivial objects, even when assuming that
processes may fail (Sect. 5).

2 Preliminaries

We consider an asynchronous shared memory system that consists of a collec-
tion of n deterministic processes with unique identifiers which communicate via
anonymous atomic objects that do not have global names and via standard
non-anonymous objects. For m anonymous objects, o1, ..., om, the adversary can
fix, for each process p, a permutation πp : {o1, ..., om} → {o1, ..., om} of the
objects such that, for process p, the j’th anonymous object is πp(oj). In par-
ticular, when process p accesses its j’th anonymous object, it accesses πp(oj).
Algorithms designed for such a system must be correct regardless of the permu-
tations chosen by the adversary.

With an atomic object, it is assumed that operations on the object occur in
some definite order. That is, each operation is an indivisible action. All objects
are assumed to be deterministic, that is, invoking an operation on an object may
have only one possible result. Asynchrony means that there is no assumption on
the relative speeds of the processes. Processes may fail by crashing, that is, they
fail only by never entering the algorithm or by leaving the algorithm at some
point and after that permanently refraining from accessing the shared objects.
A process that crashes is said to be faulty ; otherwise, it is correct.

A read/write register (register for short) is a shared object that supports
(atomic) read and write operations. The fact that anonymous registers do not
have global names implies that only multi-writer multi-reader anonymous regis-
ters are possible. Such registers can both be written and read by all the processes.
A read-modify-write register (RMW register for short) is a shared object that
supports read-modify-write operation in which a process can atomically read a
value of a shared register and based on the value read, compute some new value
and assign it back to the register.

An atomic bit is an object that supports atomic read and write operations,
and can store only two values (0 or 1). Through the paper, by a register we will
mean a multi-valued register, that is, a register which can store many different
values (but only one value at any given time).

Several progress conditions have been proposed for algorithms in which pro-
cesses may fail. The strongest, and most extensively studied condition, is wait-
freedom. Wait-freedom guarantees that every active process will always be able
to complete its pending operations in a finite number of steps [18]. Obstruction-
freedom guarantees that an active process will be able to complete its pending
operations in a finite number of steps, if all the other processes “hold still” long
enough [19]. In a model where participation is required, every correct process
must eventually become active and execute its code. A more common and prac-
tical situation is one in which participation is not required. Unless explicitly
stated otherwise, we assume that participation is not required.
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The sequential specification of an object describes its behavior when opera-
tions are applied sequentially. We consider objects that are linearizable (w. r. t.
their sequential specification): they behave as if all operations, including concur-
rent ones, are applied sequentially, so that each operation appears to take effect
instantaneously at some distinct point between its invocation and response [21].

Two objects with the same consensus number are equivalent if and only if,

1. Their consensus number is 1, and each object can be implemented by instances
of the other object in a wait-free manner; or

2. Their consensus number is more than 1, and each object can be implemented
by instances of the other object and registers in a wait-free manner.

In the above definition, for objects with consensus number 1, the use of registers
is forbidden. Otherwise, we would get that, by definition, no object is weaker
than a register.

3 An Impossibility Result for Anonymous RMW Bits

An object of type A is strictly weaker than an object of type B if using objects
of type B it is possible to implement, in a wait-free manner, an object of type
A, but not vice versa. We show that there is a non-trivial deterministic object,
namely anonymous read/write bit, which is strictly weaker than an (anonymous
or non-anonymous) read/write register, and that there are non-trivial determin-
istic objects with the same set agreement power which have different compu-
tational power. This implies that not every deterministic object of consensus
number one is computationally equivalent to or stronger than a non-anonymous
read/write register.

3.1 Basic Notions and Notations

An event corresponds to an atomic step performed by a process. A (global) state
of an algorithm is completely described by the values of the (local and shared)
objects and the values of the location counters of all the processes. A run is
defined as a sequence of alternating states and events (also referred to as steps).
It is convenient to define a run as a sequence of events omitting all the states
except the initial state. Since the events and the initial state uniquely determine
the states in a run, no information is lost by omitting the states.

We use x, y and z to denote runs. When x is a prefix of y (and y is an
extension of x), we denote by (y−x) the suffix of y obtained by removing x from
y. We denote by x; seq the sequence obtained by extending x with the sequence
of events seq. Saying that an extension y of x involves only process p means that
all events in (y − x) are only by process p.

Runs x and y are indistinguishable for process p, denoted x[p]y, if the sub-
sequence of all events by p in x is the same as in y, the initial values of the
local registers of p in x are the same as in y, and the values of all the shared
objects in x are the same as in y. Notice that the indistinguishability relation is
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an equivalence relation. We assume that the processes are deterministic, that is,
for every two runs x; e and x; e′ if e and e′ are events by the same process then
e = e′. We notice that if two runs are indistinguishable to a given process, then
the next step by that process in both runs is the same.

3.2 The Impossibility Result

The consensus problem is defined as follows: There are n processes where each
process i ∈ {1, ..., n} has an input value ini. The requirements are that there
exists a decision value v such that, (1) Agreement & termination: each non-faulty
process eventually decides on v; and (2) Validity : v ∈ {in1, ..., inn}. When the
only possible input values are 0 and 1, the problem is called binary consensus.

Theorem 1. For any m ≥ 1, there is no obstruction-free binary consensus algo-
rithm for two (or more) processes using m anonymous RMW bits.

Proof. We assume to the contrary that there is an obstruction-free consensus
algorithm for two processes using m anonymous RMW bits, and show how this
leads to a contradiction. Let p and q be the identifiers of the processes, let S be
the set of all the RMW bits used by the algorithm, and assume that the initial
values of all the RMW bits in S are 0.

Let x0 be a run of the algorithm in which p with input 0 runs alone until
it decides on 0 and terminates. Let x1 be a run of the algorithm in which
p with input 1 runs alone until it decides on 1 and terminates. Clearly, by the
agreement requirement, in any extension of x0 (resp. of x1) in which q runs alone
and decides, q must also decide on 0 (resp. on 1). For an arbitrary run z, let
number(z) be the number of all the RMW bits that, at the end of z, have value
1. Assume w.l.o.g. that number(x0) ≤ number(x1).

Since the anonymous RMW bits do not have global names, each process
independently names each of one of them with a unique name. For simplicity,
assume that the names are natural numbers. The consensus algorithm, assumed
at the beginning of the proof, is correct only if it always reaches agreement
regardless of how the RMW bits are numbered by the different processes. Thus,
it follows from the existence of the run x0 that, for every set of RMW bits R ⊆ S
such that |R| = number(x0), there must exist a run xR

0 of the algorithm such
that: (1) in xR

0 , p with input 0 runs alone until it decides on 0 and terminates,
(2) at the end of xR

0 the values of all the RMW bits in R are 1, and (3) |R| =
number(x0) = number(xR

0 ).
Let x′

1 be a prefix of x1 such that number(x′
1) = number(x0). Notice that

the input of p in x′
1 is 1. Let W be the set of all the RMW bits that, at the

end of x′
1, have value 1. We notice that |W | = number(x0). As explained above

there exists a run xW
0 of the algorithm in which (1) p with input 0 runs alone

until it decides on 0 and terminates, (2) at the end of xW
0 the values of all the

RMW bits in W are 1, (3) |W | = number(x0) = number(xW
0 ).
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Let y be an extension of xW
0 in which q decides and terminates such that (1)

in (y − xW
0 ) only q takes steps, and (2) the input of q is 1 (such an extension

exists by the obstruction-freedom assumption). What is the value that q decides
on in y? There are two possibilities both lead to a contradiction:

1. Process q decides on 0 in y. Since xW
0 [q]x′

1, it follows that z = x′
1; (y − xW

0 )
is a legal run. However, in z process q decides on 0 while the inputs of both
p and q are 1. This contradicts the requirement that the decision value must
be the input value of one of the processes.

2. Process q decides on 1 in y. By assumption, p decides on 0 in xW
0 , and since

xW
0 is a prefix of y, it follows that p decides on 0 in y. Thus p and q decide

on different values in y. A contradiction. �	
An interesting open problem is to determine what are the smallest anonymous
registers with which obstruction-free consensus and set agreement can be solved.

4 Implications of the Impossibility Result

It is easy to design a wait-free consensus algorithm for two processes using three
non-anonymous RMW bits. Assume that the initial values of all the three bits
are 0. Each process uses one bit to announce its input, and then tries to set the
last bit to 1. The decision value is the input of the process that was the first to
access the third bit, changing it from 0 to 1. Thus, by Theorem 1,

Corollary 1. An anonymous RMW bit is strictly weaker than a non-anonymous
RMW bit.

Also, for any n ≥ 1 and m ≥ 1, it is easy to design a wait-free consensus
algorithm for n processes using m anonymous RMW (multi-valued) registers.
Assume that the initial values of all the m registers are 0. Each process first
scans the m registers and only if the value of a register is 0 the process writes its
identifier and input value into that register. The decision value is the input of
the process with the maximum identifier among all the identifiers found in the
m registers. Thus, by Theorem 1,

Corollary 2. An anonymous RMW bit is strictly weaker than an anonymous
RMW register.

We observe that an anonymous RMW register is not necessarily weaker than a
non-anonymous RMW bit since the consensus number of non-anonymous RMW
bits is only two [26]. Although both anonymous RMW bits and anonymous
read/write registers have consensus number one, it is an open question whether
one can implement the other. A RMW bit supports read and write operations,
and it also can be used as a read/write bit. Thus, Theorem 1 implies a similar
result for read/write bits.

Corollary 3 (An impossibility result for anonymous read/write bits).
There is no obstruction-free binary consensus algorithm for two (or more) pro-
cesses using anonymous read/write bits.
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Anonymous bits are non-trivial objects – they can be used to solve problems
whose solutions require communication. An interesting wait-free consensus algo-
rithm that makes use of anonymous read/write bits together with anonymous
RMW bits in a general anonymous shared memory model, is presented in Sect. 5.
We describe below a simple consensus algorithm for a failure-free model.

Proposition 1. There is a binary consensus algorithm for two processes using
two anonymous read/write bits, assuming participation is required and processes
never fail.

Proof. We assume that the initial values of both bits are 0. The two processes
are called the sender and the receiver. When the sender starts, it first sets one of
the bits to 1, then it spins on that bit until its value is changed (by the receiver)
back to 0. When this happens, it writes its input value into the other bit, sets
again to 1 the bit it has previously set to 1, decides on its input and terminates.
The receiver, when it starts, keeps on checking the two bits until it notices that
the value of one of them is 1. Then, it changes this bit back to 0, and spins on
that bit until its value is changed back to 1. When this happens, it decides on
the value of the other bit and terminates. Clearly, the algorithm guarantees that
both processes eventually decides on the input value of the sender. �	
Theorem 2 (main result). In a system of two or more processes:

1. There is a non-trivial oblivious deterministic object which is strictly weaker
than an anonymous (and hence also non-anonymous) read/write register, for
two or more processes;

2. There are non-trivial oblivious deterministic objects with the same set agree-
ment power which have different computational power;

3. Not every non-trivial oblivious deterministic object of consensus number
one is computationally equivalent to or stronger than a non-anonymous (or
anonymous) read/write register.

Proof. An anonymous read/write register trivially implements an anonymous
read/write bit. It was shown in [36], that there is an obstruction-free consensus
algorithm for two (or more) processes using anonymous read/write registers.
Since, by Corollary 3, there is no obstruction-free consensus algorithm for two
(or more) processes using anonymous read/write bits, it follows that anonymous
read/write bits cannot implement an anonymous register. Thus, an anonymous
read/write bit is strictly weaker than an anonymous read/write register.

The k-set agreement problem can trivially be solved for k processes, by sim-
ply letting each process decides on its own input. Thus, the set agreement power
of any object is at least (1, 2, 3, ...). It was proven in [4,20,32], that the set agree-
ment power of a non-anonymous read/write register is exactly (1, 2, 3, ...). Thus,
also the set agreement power of an anonymous register is exactly (1, 2, 3, ...).
Since anonymous bit is strictly weaker than an anonymous register, its set
agreement power is also (1, 2, 3, ...). Thus, anonymous bits and anonymous (or
non-anonymous) registers are deterministic objects with the same set agreement
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power but with different computational power. From the fact that an anonymous
bit is strictly weaker than anonymous (or non-anonymous) register, it immedi-
ately follows that not every non-trivial deterministic object of consensus number
one is computationally equivalent to non-anonymous register. �	

5 Mixing Objects: Wait-Free Consensus for
Two Processes

So far we have considered a model wherein each algorithm processes communi-
cate via anonymous objects all of which are of the same type. We now consider a
more general setting in which, in a given algorithm, processes may access differ-
ent types of anonymous objects. In the more general model, there are different
groups of objects. All the objects in the same group must all be of the same
type. Objects from different groups may be different (but are not required to be
different). All the objects which reside in the same group are anonymous, but
the groups themselves are not anonymous. Thus, when a process needs to access
an object, it can specify in which group the object resides, but cannot point at
a specific object within the group (unless the group is a singleton). We can now
think of a non-anonymous object as an object which resides in a group with
exactly one element (i.e., a singleton).

We have already shown that it is not possible to solve obstruction-free consen-
sus for two processes using only one group of anonymous RMW bits regardless
of the size of that group (Theorem 1). This result immediately implies that it
is not possible to solve obstruction-free consensus for two processes using only
one group of anonymous read/write bits regardless of the size of that group
(Corollary 3). We now prove that it is possible to solve wait-free consensus
for two processes using two groups, where the elements of the first group are
(anonymous) RMW bits, and the elements of the second group are (anonymous)
read/write bits, regardless of the size of the groups. At first sight, this result
seems counterintuitive since RMW registers are strictly stronger the read/write
bits, so how adding read/write bits can make a difference? What makes the dif-
ference is that we now have two groups and, although the objects within each
group are anonymous, the groups are not anonymous.

Theorem 3. For every � ≥ 1 and m ≥ 1, there is a wait-free binary consensus
algorithm for two processes using a group of � anonymous RMW bits, and a
group of m anonymous read/write bits.

It follows immediately from Theorem 3 that,

Corollary 4. Anonymous read/write bits are non-trivial objects, also when
assuming that participation is not required and that processes may fail.

For � = 1 and m = 1, the following result for non-anonymous objects follows
immediately from Theorem 3.
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Corollary 5. There is a wait-free binary consensus algorithm for two processes
using a single (non-anonymous) RMW bit and single (non-anon.) read/write bit.

What is the point of considering the cases when � and m are greater than 1?
In general, the fact that a problem is solvable using m anonymous objects, does
not imply that it is solvable also using m + 1 anonymous objects [36].

5.1 The Algorithm

The code of the algorithm is given in Fig. 1. The algorithm makes use of two
group of objects called X and Y . The group X includes � RMW bits, and the
group Y includes m read/write bits. As the objects within each group do not have
global names, each process independently numbers them. We use the following
notations: X.i[j] denotes the jth RMW bit according to process i numbering,
for 1 ≤ j ≤ �, and Y.i[j] denotes the jth read/write bit according to process i
numbering, for 1 ≤ j ≤ m.

Fig. 1. Wait-free binary consensus for two processes using a group of � ≥ 1 RMW bits
and a group of m ≥ 1 read/write bits.
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5.2 Correctness Proof

Lemma 1. The algorithm is a correct wait-free binary consensus algorithm for
two processes.

Proof. The correctness proof is as follows:

– If both processes have input value 0, then clearly they will both decide on
0, as no read/write bit in group Y is ever updated and hence the values of
all the bits in group Y are always 0. Thus, the condition in line 4 will be
evaluated to true and both processes will decide 0.

– If both processes have input value 1, then clearly they will both decide on 1,
as no RMW bit in group X is ever updated and hence the values of all the
bits in group X are always 0. Thus, the condition in line 13 will be evaluated
to true, and both processes will decide on 1.

– When the processes have different input values, and one of the two processes
is faster and decides on a value without noticing that the other process “is
around”, the common decision value is that of the fast process, or

– When the processes have different input values, and both processes try to
RMW the same bit in group X (i.e., X.i[1] for the process with input 0, and
X.i[index] for the processes with input 1), the common decision value is the
input of the second process that tried to RMW this bit.

This completes the proof. �	

6 Related Work

Anonymous Shared Memory. In [36], the notion of anonymous objects was
defined, and several results were presented for a model where communication is
only via anonymous (read/write) registers. In particular, it was shown that for
a model where the number of processes is not a priori known (or is unbounded)
anonymous registers are strictly weaker than non-anonymous registers. However,
when the number of processes is not a priori known, it seems that anonymous reg-
isters are trivial objects – they cannot be used to solve any problem that requires
communication. The question of whether anonymous registers are weaker than
non-anonymous registers when the number of processes is known is open.1

The work on anonymous objects was inspired by Michael O. Rabin’s paper
on solving the Choice Coordination Problem (k-CCP) [28]. In the k-CCP, n
processes must choose between k alternatives. The agreement on a single choice
is complicated by the fact that there is no a priori agreement on names for the
1 In [36], it is mentioned that anonymous registers are non-trivial objects which are
strictly weaker than non-anonymous registers, when the number of processes is not
a priori known. This statement is misleading. Indeed, it was proved in [36] that
anonymous registers are strictly weaker than non-anonymous registers when the
number of processes is not a priori known (or unbounded). However, it was not
proved that anonymous registers are non-trivial objects for such a model.
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alternatives. Rabin has assumed that processes communicate by applying RMW
operations to exactly k registers which do not have global names. The k different
registers represent the k possible alternatives.

In [2], tight space bounds for solving the symmetric deadlock-free mutual
exclusion problem using anonymous read/write registers and anonymous RMW
registers, are presented. In [14], the election and the de-anonymization problems
are studied in a model where processes may not fail. In the de-anonymization
problem, processes must agree on unique names for the anonymous objects.

In [5], the naming problem of assigning unique names to initially identical
processes is considered. It is assumed that each register is owned by some unique
process which can write into it and that register is partially anonymous for
the other processes that can only read it. For such a model, with single-writer
registers, it is shown that wait-free naming is not solvable by a deterministic
algorithm, while it is solvable by a randomized algorithm. According to our
definition, the notion of an anonymous register is meaningful only when all the
processes can both read and write the register.

In [30], it is shown how the process of genome wide epigenetic modifications,
which allows cells to utilize the DNA, can be modeled as an anonymous shared
memory system where, in addition to the shared memory, also the processes
(that is, proteins modifiers) are anonymous. Epigenetic refers in part to post-
translational modifications of the histone proteins on which the DNA is wrapped.
Such modifications play an important role in the regulation of gene expression.

Consensus Numbers and the Consensus Hierarchy. The consensus prob-
lem was formally defined in [27]. The notion of a consensus number was defined
in [18]. The consensus hierarchy, defined in [18], is an infinite hierarchy of objects
such that the objects at level i of the hierarchy are exactly those objects with
consensus number i. In the consensus hierarchy (1) no object at one level together
with registers can wait-free implement any object at a higher level, and (2) each
object at level i together with registers can wait-free implement any object at a
lower level in a system of i processes.

In [1], it is shown that for every n ≥ 2, there is an infinite sequence of
deterministic objects of consensus number n with strictly increasing computa-
tional power in a system of more than n processes, leaving open the question of
whether all deterministic objects with consensus number 1 are at least as strong
as atomic registers. We resolve this question by showing that the answer is neg-
ative (Theorem 2(1)). In [15], it was shown that there is a non-deterministic
object with consensus number 1 which cannot be wait-free implemented from
atomic registers. Recently, it was shown that there are also deterministic objects
with consensus number 1, but with different set consensus numbers than atomic
registers, which are strictly stronger than atomic registers [11].

The consensus hierarchy is robust if no object in any level of the hierarchy
can be implemented using a number of (possibly different) types of objects from
lower levels [22]. It is shown in [9] that the consensus hierarchy is not robust,
if non-oblivious non-deterministic objects are allowed. In [34] it is proved that
the consensus hierarchy is not robust, even for oblivious objects, if objects with
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unbounded non-determinism are allowed. This last result is improved in [25],
showing that the hierarchy is not robust even when restricted to oblivious objects
when non-determinism is bounded.

The consensus hierarchy is known to be robust for deterministic one-shot
objects [17] and deterministic read-modify-write and readable objects [31]. It
is unknown whether the consensus hierarchy is robust for general deterministic
objects and, in particular, for oblivious deterministic objects. Additional issues
regarding the robustness question are discussed in [22,23]. For randomized com-
putation, the consensus hierarchy collapses [3].

Set Agreement Power. The k-set agreement problem was defined in [10]. In
[7], it was shown that a precise classification of linearizable objects must divide
the objects into uncountably many classes. In [6], it is shown that for every n ≥ 2,
there exists a pair of non-deterministic objects with consensus number n that
have the same set agreement power but are not computationally equivalent.
In [8], it is shown that every level n ≥ 2 of the consensus hierarchy has two
deterministic objects, one of which is a non-oblivious object, with the same set
agreement power that are not equivalent.

We show that in level one of the consensus hierarchy, there is such a pair
of non-trivial oblivious deterministic objects, where one of the two objects is
anonymous (Theorem 2(2)). That is, there exists a pair of non-trivial oblivious
deterministic objects (i.e, an anonymous r/w bit and an atomic r/w register),
that have the same set agreement power but are not computationally equivalent.

In [12], it is written: “We hope that this work will be a step towards prov-
ing a more general conjecture that our set-consensus numbers capture precisely
the computing power of any ‘natural’ shared memory model.” It follows from
Theorem 2 that this hope cannot be realized.

Objects Weaker Than an Atomic Register. The investigation whether
various objects are weaker than an atomic read/write register was initiated in
[24], where three classes of shared registers are defined, which support read and
write operations, called—safe, regular and atomic—depending on their proper-
ties when several reads and/or writes are executed concurrently. It was shown
in [24] that an atomic register can be implemented from both safe bits and from
regular bits.

In [33,35], relaxations of the notions of safe, regular and atomic registers
called k-safe, k-regular and k-atomic registers, were considered and it was shown
that they are all as strong as atomic registers. We have shown that an anony-
mous atomic bit is strictly weaker than an atomic non-anonymous register (The-
orem 2(1)). Hence, an anonymous atomic bit is also strictly weaker than non-
anonymous safe, regular and atomic bits (and registers). It is interesting to
observe that the correctness of the algorithm in Fig. 1 is preserved even when
the anonymous atomic bits are replaced with anonymous safe bits.

In [16] the authors introduce the family of d-solo models, where d processes
may concurrently run solo, 1 ≤ d ≤ n. The 1-solo model corresponds to the wait-
free read/write model and the n-solo model corresponds to the wait-free message-
passing model. Among other results, it is shown that, when the processes are
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anonymous any d-solo model with d ≥ 2, is weaker than the wait-free read/write
model, yet it is powerful enough to solve a non-trivial task, called the (d, ε)-solo
approximate agreement task, which cannot be solved in the (d + 1)-solo model.

In [13], it is shown how n processes, with unique identifiers taken from a very
large namespace, can emulate single-write multi-reader registers non-blocking
using n multi-write multi-reader (MWMR) non-anonymous registers and wait-
free using 2n−1 MWMR non-anonymous registers. The emulations used to prove
these interesting results would not work for anonymous registers.

7 Discussion

We have resolved important open problems, assuming a universe of objects which
includes both non-anonymous and anonymous objects. In particular, we proved
that anonymous bits are non-trivial objects which are strictly weaker than anony-
mous registers. It would be interesting to investigate the “mixed objects” model
further. Finally, it would be interesting to investigate a model where both the
processes and the objects are anonymous, as such a model seems to be suited
for the study of “algorithms in nature”, i.e., how collections of molecules, cells,
and organisms process information and solve computational problems.
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