
Anonymous Read/Write Memory:
Leader Election and De-anonymization

Emmanuel Godard1, Damien Imbs1,
Michel Raynal2,3(B), and Gadi Taubenfeld4

1 LIS, Université d’Aix-Marseille, Marseille, France
2 Univ Rennes IRISA, Rennes, France

raynal@irisa.fr
3 Department of Computing, Polytechnic University, Kowloon, Hong Kong

4 The Interdisciplinary Center, 46150 Herzliya, Israel

Abstract. Anonymity has mostly been studied in the context where
processes have no identity. A new notion of anonymity was recently intro-
duced at PODC 2017, namely, this notion considers that the processes
have distinct identities but disagree on the names of the read/write reg-
isters that define the shared memory. As an example, a register named
A by a process p and a shared register named B by another process q
may correspond to the very same register X, while the same name C
may correspond to different registers for p and q.

Recently, a memory-anonymous deadlock-free mutual exclusion algo-
rithm has been proposed by some of the authors. This article addresses
two different problems, namely election and memory de-anonymization.
Election consists of electing a single process as a leader that is known by
every process. Considering the shared memory as an array of atomic
read/write registers SM [1..m], memory de-anonymization consists in
providing each process pi with a mapping function mapi() such that,
for any two processes pi and pj and any integer x ∈ [1..m], mapi(x) and
mapj(x) allow them to address the same register.

Let n be the number of processes and α a positive integer. The arti-
cle presents election and de-anonymization algorithms for m = α n + β
registers, where β is equal to 1, n − 1, or belongs to a set denoted M(n)
(which characterizes the values for which mutual exclusion can be solved
despite anonymity). The de-anonymization algorithms are based on the
use of election algorithms. The article also shows that the size of the
permanent control information that, due to de-anonymization, a register
must save forever, can be reduced to a single bit.

Keywords: Anonymous registers · Asynchronous system ·
Atomic read/write registers · Concurrent algorithm · Leader election ·
Local memory · Mapping · Memory de-anonymization ·
Mutual exclusion · Synchronization

c© Springer Nature Switzerland AG 2019
K. Censor-Hillel and M. Flammini (Eds.): SIROCCO 2019, LNCS 11639, pp. 246–261, 2019.
https://doi.org/10.1007/978-3-030-24922-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24922-9_17&domain=pdf
https://doi.org/10.1007/978-3-030-24922-9_17

Anonymous Read/Write Memory: Election and De-anonymization 247

1 Anonymous Memory, Model, and Aim of the Article

1.1 Anonymous Memory

Memory Anonymity. While the notion of process anonymity has been studied
for a long time from an algorithmic and computability point of view, both in
message-passing systems (e.g., [1,4,17]) and shared memory systems (e.g., [3,5,
8]), the notion of memory anonymity has been introduced only very recently by
[15]. (See also [11] for an introductory survey on process and memory anonymity.)

Let us consider a shared memory SM made up of m atomic read/write regis-
ters. Such a memory can be seen as an array with m entries, namely SM [1..m]. In
a non-anonymous memory system, for each index x, the name SM [x] denotes the
same register whatever the process that invokes the address SM [x]. As stated in
[15], in the classical system model, there is an a priori agreement on the names
of the shared registers. This a priori agreement facilitates the implementation
of the coordination rules the processes have to follow to progress without vio-
lating the safety (consistency) properties associated with the application they
solve [10,14].

This a priori agreement does no longer exist in a memory-anonymous system.
In such a system the very same identifier SM [x] invoked by a process pi and
invoked by a different process pj does not necessarily refer to the same atomic
read/write register. More precisely, a memory-anonymous system is such that:

– prior the execution, an adversary defined, for each process pi, a permutation
fi() over the set {1, 2, · · · ,m}, such that when pi uses the address SM [x], it
actually accesses SM [fi(x)], and

– no process knows the permutations.

The read/write registers of a memory-anonymous system are necessarily
MWMR.

Results on Memory Anonymity in Mutual Exclusion. The work described in [15]
on anonymous read/write memory addressed mutual exclusion, consensus, elec-
tion and renaming, problems for which it presented algorithms and impossibil-
ity results. The consensus, election and renaming algorithms in [15] satisfy the
starvation-freedom progress condition, namely, if a process executes alone during
a long enough period, it eventually decides. This progress condition is different
from the one considered in this article.

Among the results from [15], one states a condition on the size m of the
anonymous memory which is necessary for any symmetric deadlock-free algo-
rithm, where symmetric means that process identities can only be compared
with equality (hence, there is no notion of a total order on process identi-
ties). More precisely, given an n-process system where n ≥ 2, there is no
deadlock-free mutual exclusion algorithm if the size m does not belong to the
set M(n) = { m such that ∀ � : 1 < � ≤ n: gcd(�,m) = 1} \ {1}.

Recently, it has been shown in [2] that the condition m ∈ M(n) is also a
sufficient condition for symmetric deadlock-free mutual exclusion in read/write
anonymous memory systems.

248 E. Godard et al.

1.2 Computing Model

Processes. The system is composed of a finite set of n ≥ 2 asynchronous processes
denoted p1, .., pn. The subscript i in pi is only a notation convenience, which
is not known by the processes. Asynchronous means that each process proceeds
to its own speed, which can vary with time and remains always unknown to
the other processes. Initially, each process pi knows only its identity idi, the
total number of processes n, and the fact that no two processes have the same
identity. It is assumed that there are no process failures. Furthermore, unlike the
mutual exclusion model where a process may never leave its remainder region,
it is assumed that all the processes must participate in the algorithm.

Anonymous Shared Memory. The shared memory is made up of m atomic anony-
mous read/write registers denoted SM [1...m]. As a system composed of a single
atomic register is not anonymous, it is assumed that m > 1. Hence, all registers
are anonymous. As already indicated, when a process pi invokes the address
SM [x], it actually accesses SM [fi(x)], where fi() is a permutation statically
defined once and for all by an external adversary. We will use the notation SM i[x]
to denote SM [fi(x)], to stress the fact that no process knows the permutations.
It is assumed that all the registers are initialized to the same value. Otherwise,
thanks to their different initial values, it would have been possible to distinguish
different registers, which consequently will no longer be fully anonymous.

Symmetry Constraint on the Algorithms. A symmetric algorithm is an “algo-
rithm in which the processes are executing exactly the same code and the only
way for distinguishing processes is by comparing identifiers. Identifiers can be
written, read, and compared, but there is no way of looking inside an identifier.
Thus it is not possible to know whether an identifier is odd or even” [15]. Further-
more, the only comparison that can be applied to identifiers is equality. There is
no order structuring the identifier name space. (Other notions of symmetry are
described in [6,9]). Let us notice that as all the processes have the same code
and all the registers are initialized to the same value, process identities become a
key element when one has to design an algorithm in such a constrained context.

1.3 Problems Addressed in This Article

Leader Election. In this problem, the input of each process pi is its identity idi.
Its output will be deposited in a write-once local variable leaderi. The aim is to
design an algorithm that provides the local variable leaderi of each process pi

with the same process identity. The only process such that leaderi = idi is the
elected process.

Anonymous Memory De-anonymization. In this problem, as before, the input of
each process pi is its identity idi. The aim is for each process pi to compute an
addressing function mapi(), which is a permutation over the set of the memory
indexes {1, · · · ,m}, such that the two following properties are satisfied.

Anonymous Read/Write Memory: Election and De-anonymization 249

– Safety. Let y ∈ {1, · · · ,m}. For any process pi: SM i[mapi(y)] = SM [y].
– Liveness. There is a finite time after which all the processes have computed

their addressing function mapi().

The safety property states that once a process pi has computed mapi(), its local
anonymous memory address SM i[x], where x = mapi(y), denotes the shared
register SM [y].

1.4 Content

This article presents first an impossibility result. Then, it presents symmetric
algorithms solving the two previous problems in a system where the process
cooperate through m atomic anonymous read/write registers. As already indi-
cated, it is assumed that all the processes participate in the algorithms, and the
size of the memory is m = α n + β, where α is a positive integer and β can take
the following values:

– β = 1. The size of the anonymous memory is then m = α n + 1.
– β = n − 1. The size of the anonymous memory is then m = α n + (n − 1).
– β ∈ M(n) where M(n) is as defined above. Namely, M(n) is the set of values

for which deadlock-free mutual exclusion can be solved [2,15]. This is due
to the fact that when β ∈ M(n), the algorithms use a deadlock-free mutual
exclusion algorithm to solve conflicts - which do not exist when β = 1 or
β = n − 1). In this specific case, α can also be 0.

Find a characterization of the set of the values of m for which leader election
can be solved in a memory anonymous system remains an open problem (see the
Conclusion section).

2 An Impossibility Result

Theorem 1. There is neither a de-anonymizing algorithm nor an election algo-
rithm for n processes using m anonymous registers, where m = α n and α is a
positive integer.

Proof. First, we observe that once de-anonymizing is solved using m = α n
registers, it is straightforward to solve election using m = α n registers. First,
run the de-anonymizing algorithm to get m = α n non-anonymous registers.
Then, using these registers, simply run the symmetric mutual exclusion algo-
rithm from [13] which uses exactly n registers, and let the first process to enter
its critical section be the leader. Thus, to prove the theorem, we only need to
prove that it is impossible to solve election using m = αn registers.

Assume to the contrary, that there is a symmetric election algorithm for n
processes using m = α n registers where α is a positive integer. Let us arrange
the m registers on a ring with m nodes where each register is placed on a different
node. Let us call the n processes p0, ..., pn−1. To each one of the n processes,

250 E. Godard et al.

we assign an initial register (namely, the first register that the process accesses)
such that for every two processes pi and pi+1 (mod n), the distance between their
initial registers is exactly α when walking on the ring in a clockwise direction.
Here we use the assumption that m = α n.

The lack of global names allows us to assign for each process an initial reg-
ister and an ordering which determines how the process scans the registers. An
execution in which the n processes are running in lock steps, is an execution
where we let each process take one step (in the order p0, ..., pn−1), and then
let each process take another step, and so on. For process pi and integer k, let
order(pi, k) denote the kth new register that pi accesses during an execution
where the n processes are running in lock steps, and assume that we arrange
that order(pi, k) is the register whose distance from pi’s initial register is exactly
(k − 1), when walking on the ring in a clockwise direction.

We notice that order(pi, 1) is pi’s initial register, order(pi, 2) is the next new
register that pi accesses and so on. That is, pi does not access order(pi, k + 1)
before accessing order(pi, k) at least once, but for every j ≤ k, pi may access
order(pi, j) several times before accessing order(pi, k + 1) for the first time.1

With this arrangement of registers, we run the n processes in lock steps. Since
only comparisons for equality are allowed, and all registers are initialized to the
same value –which (to preserve anonymity) is not a process identity– processes
that take the same number of steps will be at the same state, and thus it is
not possible to break symmetry. It follows that either all the processes will be
elected, or no process will be elected. A contradiction. ��Theorem1

3 Memory Anonymous Leader Election When
m = α n + 1

3.1 Algorithm

Local Variables. In addition to leaderi, each process pi manages the following
local variables: towritei, overwritteni, writteni, which contain sets of memory
indexes, last i which is a memory index, and nbi which is a non-negative integer.
The meaning of these variables will appear clearly in the text of Algorithm1.

First Part of the Algorithm: Lines 1–12. Each anonymous register SM [x] is
initialized to 〈start,⊥〉, where ⊥ is default value, which can be compared (with
equality) with any process identity.

When it invokes election(idi), a process pi first writes the pair 〈start, idi〉 in
the first (from its point of view) α registers, namely, SM i[1], ...,SM i[α] (line 3).
Then, it waits until all the registers (except one) are tagged start, or a register
in which it wrote 〈start, idi〉 has been overwritten. There are consequently two
cases.

1 Once a process accesses a register for the first time, say register x, we may map x
to any (physical) register that it hasn’t accessed yet. However, when it accesses x
again, it must access the same register it has accessed before when referring to x.

Anonymous Read/Write Memory: Election and De-anonymization 251

– If registers in which pi wrote 〈start, idi〉 have been overwritten (the first
part of the predicate of line 5 is then satisfied), pi updates its local variables
overwritteni, nbi, towritei and last i, and re-enters the repeat loop, the goal
being to have α registers containing 〈start, idi〉.

– If all the registers except one (i.e., exactly m − 1 = α n registers) are tagged
start, pi exits the loop.

As we will see in the proof, it follows from this collective behavior of the processes
that there is time at which exactly one register still contains its initial value
〈start,⊥〉, while for each j ∈ {1, · · · , n}, exactly α registers contain 〈start, idj〉
(this property is named P1 in the algorithm).

init: each SM [x] is initialized to 〈start, ⊥〉; m = α n + 1.

operation election(idi) is % code for process pi, i ∈ {1, · · · , n}
(01) towritei ← {1, ..., α}; overwritteni ← ∅; writteni ← ∅; lasti ← α;
(02) repeat
(03) for each x ∈ towritei do SM i[x] ← 〈start, idi〉 end do;
(04) writteni ← (writteni \ overwritteni) ∪ towritei;
(05) wait until

(
(∃ x ∈ writteni : SM i[x]
= 〈start, idi〉)

∨ (|{� such that SM i[�]
= 〈start, ⊥〉}| = α n)
)
;

(06) if
(|{� such that SM i[�]
= 〈start, ⊥〉}| = α n

)

(07) then exit repeat loop
(08) else overwritteni ← { x ∈ writteni such that SM i[x]
= 〈start, idi〉};
(09) nbi ← |overwritteni|;
(10) towritei ← {lasti + 1, ..., lasti + nbi}; lasti ← lasti + nbi;
(11) end if
(12) end repeat;

% Property P1: There is a time at which exactly one register contains 〈start, ⊥〉
% and, for each j ∈ {1, · · · , n}, α registers contain 〈start, idj〉

(13) let �i be such that SM i[�i] = 〈start, ⊥〉 or SM i[�i] = 〈leader, −〉;
(14) SM i[�i] ← 〈leader, idi〉;
(15) wait until

(
(SM i[�i]
= 〈leader, idi〉)

∨ (SM i[1..m] has exactly α + 1 entries not tagged done)
)
;

(16) for each x such that SM i[x] = 〈start, idi〉 do SM i[x] ← 〈done, idi〉 end for;
% Property P2: There is a time from which there is exactly there is exactly one

% index � ∈ {1, · · · , n} such that a register contains 〈leader, id�〉, and
% for each j ∈ {1, · · · , n}, there are α registers containing 〈done, idj〉

(17) if (SM i[�i]
= 〈leader, idi〉) then
wait until

(
SM i[1..m] has only one entry not tagged done

)
end if;

(18) 〈−, id〉 ← SM i[�i]; leaderi ← id.
% Here, one register is tagged leader, all the others are tagged done.

Algorithm 1: n-process election with m = α n + 1 anonymous read/write
registers

Second Part of the Algorithm: Lines 13–18. As just seen, the previous part of
the algorithm has identified a single register of the anonymous memory, namely
the only one containing 〈start,⊥〉. This register is known by all the processes,
more precisely, it is known as SM i[�i] by pi, SM j [�j] by pj , etc.

252 E. Godard et al.

So, to become the leader, each process pi writes the pair 〈leader, idi〉 in this
register (known as SM i[�i] by pi, line 14). It follows that the last process that
will write this register will be the leader. There are then two cases.

– If pi discovers it has not been elected (we have then SM i[�i] �= 〈leader, idi〉,
first predicate of line 15), it resets all the registers containing its tagged
identity (〈start, idi〉) to the value 〈done, idi〉 (line 16). Then, pi waits until
all registers except one are tagged 〈done,−〉.

– If pi is the last process to write in the single register locally known as SM i[�i],
it waits until all the other processes have written 〈done,−〉 in the registers
containing their identity (second part of the predicate of line 15). When this
is done, the elected process pi writes 〈done, idi〉 in all the registers containing
its identity (line 16), which allows each other process not to remain blocked
at line 17 and progress to the last line of the algorithm. When this occurs,
each process can assign the identity of the leader to its local variable leaderi

(line 18).

As before, we will see in the proof, that there is a time from which there is
exactly one index � ∈ {1, · · · , n} such that a register contains 〈leader, id�〉,
and, for each j ∈ {1, · · · , n}, there are α registers containing 〈done, idj〉 (This
property is named P2 in the algorithm).

3.2 Proof of Algorithm1

Lemma 1 (Property P1). Before a process executes line 14, there is a finite
time at which one register contains 〈start,⊥〉, and, for each j ∈ {1, · · · , n}, α
registers contain 〈start, idj〉.
Proof. Considering time instants before a process executes line 14, we have the
following.

– Let us first observe that the order on the entries of SM [1..m] in which pi writes
them has been statically predefined by the adversary (namely, according to
the –unknown– permutation fi(): SM i[x] is actually SM [fi(x)]). The impor-
tant point is that a process pi never backtracks while scanning SM [1..m], and
its successive accesses are SM [fi(1)], SM [fi(2)], etc.

– The first writes of a process pi involve the registers SM i[1], ..., until SM i[α]
(lines 1 and 3). Then, as indicated above, its next writes in SM follows a
statically predefined order. The process pi issues a write of 〈start, idi〉 in a
register it has not yet written, for each of its previous writes that have been
overwritten by another process (line 4). These writes by pi concern entries of
SM i[1..n] in which it has not yet written (management of the local variables
towritei, overwritteni, writteni, and last i, at lines 1,4, and 8–10). As pi writes
only in new registers, it follows that, for any pi we have |{x such that SM [x] =
〈start, idi〉}| ≤ α, and from a global point of view we have

n∑

i=1

(|{x such that SM [x] = 〈start, idi〉}|) ≤ nα.

Anonymous Read/Write Memory: Election and De-anonymization 253

– It follows from m = α n+1 and the previous inequality, that there is enough
room in the array SM [1..m] for each process pi to write n times the pair
〈start, idi〉. Consequently, there is time after which the first predicate of
line 5 is false for each process pi, and as m = nα + 1, the remaining entry of
SM [1..m] has still its initial value, namely 〈start,⊥〉, from which we conclude
that a process neither remains forever blocked at line 4, nor forever executes
the “repeat” loop (lines 2–12).

It follows from the previous observations that before a process executes line 14,
there is a time at which, for each identity idi, the pair 〈start, idi〉 is present in
α entries of SM [1..m], and an entry of SM [1..m] has still its initial value, which
concludes the proof of the lemma. ��Lemma1

The Number of Write Accesses Between Line 3 and Line 12. When considering
the proof of Lemma 1, it is easy to count the number of writes in the anonymous
memory. In the best case, the (unknown) permutations assigned by the adversary
to the processes are such that no process overwrites the pairs written by the other
processes. In this case, line 2 generates α n writes into the shared memory.

In the worst case, the permutations assigned by the adversary, and the asyn-
chrony among the processes are such that the first α writes of a process are
overwritten (n − 1) times, the first α writes of another process are overwritten
(n − 2) times, etc., until a last process whose none of its first α writes are over-
written. In this case, line 2 generates αn(n+1)

2 writes into the anonymous shared
memory.

Lemma 2 (Property P2). There is a finite time from which there is � ∈ {1, · · · ,
n} such that exactly one register contains 〈leader, id�〉, and, for each j ∈
{1, · · · , n}, there are α registers containing 〈done, idj〉.
Proof. It follows from Lemma 1 that no process blocks or loops forever in the
“repeat” loop (2–12). Hence, each process eventually executes lines 13–14. Let p�

the last process that executes line 14. This means that after it executed this line,
we have SM i[�i] = 〈leader, id�〉 for any process pi (namely, p� is the process
that has been elected). There are two cases.

– A process pi that is not the leader, is such that SM i[�i] �= 〈leader, idi〉.
Consequently, it cannot be blocked at line 15. So, such a process pi eventually
writes 〈done, idi〉 in the α registers containing 〈start, idi〉 (line 16). Let us
recall that, due to Property P1, these exactly α registers do exist. When the
(n−1) processes that are not leader have executed line 16, there are α(n−1)
registers containing 〈done,−〉, α registers containing 〈start, id�〉, and one
register containing 〈leader, id�〉.

– As far as the leader process p� is concerned, we have the following. Due to the
previous item, the second predicate of line 15 is eventually satisfied. When
this occurs, p� writes 〈done, id�〉 in the α registers containing 〈start, id�〉
(line 16) and, from then on, a single register is not tagged 〈done,−〉, namely
the one containing 〈leader, id�〉.

254 E. Godard et al.

The lemma follows directly from the two previous items. ��Lemma2

Theorem 2. Algorithm1 solves the election problem.

Proof. Once Property P2 is satisfied, no non-leader process is blocked at line
17, and each process eventually execute line 18. When this occurs, they all agree
on the very same leader, namely the only process p� whose identity is tagged
leader. ��Theorem2

4 From Leader Election to De-anonymization When
m = α n + 1

4.1 A Simple Leader-Based De-anonymization Algorithm

As soon as a process has been elected, it is easy to de-anonymize the anonymous
memory. To this end, the elected process p� imposes its mapping function to all
the processes.

Algorithm 2 is such a de-anonymization algorithm, which relies on Property
P2. Each process pi invokes the operation election(idi) (line 1). Then for each
register SM �[x], the elected process p� writes the pair 〈desa, x〉 in SM �[x] (line
3). Hence, its mapping function is ∀ x ∈ {1, · · · ,m}: mapi(x) = x. On the other
side, any non-leader process pi waits until all the registers are tagged desa (line
4). When this occurs, pi computes its own mapping function (line 5), which is
such that mapi(y) = x, where SM i[x] = 〈desa, y〉. The proof of this algorithm
is easy and left to the reader.

operation SM i.scan() returns ([SMi[1], · · · , SMi[m]]).

operation de-anonymize(idi) is
(01) election(idi);

% in the following �i has the value computed in election(idi); moreover, if pi is the
% first process that exits from election(idi):
% one register is tagged leader, all the others are tagged done

(02) if (SM i[�i] = 〈leader, idi〉) % this predicate is equivalent to leaderi = idi

(03) then for each x ∈ {1, · · · , m} do SM i[x] ← 〈desa, x〉 end for
% the permutation for pi is: ∀ y ∈ {1, · · · , m}: mapi(y) = y %

(04) else repeat smi ← SM i.scan() until (∀ x : smi[x] is tagged desa) end repeat;
(05) for each x ∈ {1, · · · , m} do mapi(y) ← x where smi[x] = 〈desa, y〉 end for

% perm. of pi is: ∀ y ∈ {1, · · · , m}: mapi(y) = x, where smi[x] = 〈desa, y〉
(06) end if. % Here, each register SM i[x] is tagged desa.

Algorithm 2: Election-based de-anonymization (code for pi, m = α n + 1)

As a simple example see Fig. 1, where p� has been elected as leader, and f�()
is the permutation defined by the adversary for p� (this permutation remains
always unknown to the processes). SM i[x] = 〈desa, y〉, and SM j [z] = 〈desa, y〉
address the same register, which is SM �[y]. Hence, this register is locally known
as SM i[mapi(y)] by pi, SMj [mapj(y)] by pj , and SM �[map�(y)] = SM �[y] by p�.

Anonymous Read/Write Memory: Election and De-anonymization 255

fj(1) fj(2) fj(3) fj(6) fj(7) fj(8) fj(9)fj(4)

fi(1) fi(7)fi(3)fi(2) fi(4) fi(5) fi(8)

SMi[mapi[y]]

Unknown adversary-defined
permutation for pi

Physical registers

Unknown adversary-defined
permutation for pj

SM j [mapj [y]]

fj(5)

fi(6) fi(9)

Fig. 1. An example of de-anonymization, n = 4 and m = 2n + 1

4.2 Using the De-anonymized Memory

When a process pi returns from Algorithm 2, it knows that all the processes
will share the same index for the same register (i.e., if SM i[x] = 〈desa, y〉, then
SMi[mapi(y)] is SM i[x]). When this occurs, process pi could start executing
its local algorithm defined by the upper layer application, but if it writes an
application-related value in some of these registers, this value can overwrite a
pair tagged desa stored in a register not yet read by other processes. A way to
prevent this problem from occurring consists in tagging all the values written by
a process at the application level by the tag apply, and include a field containing
the common index y associated with this register. Hence, at the application level,
a register will contain 〈apply(y), v〉. In this way, despite asynchrony, any process
pj will be able to compute its local mapping function mapj(), and start its upper
layer application part, as soon as it has computed mapj().

Let us notice that one bit is needed to distinguish the tag desa and the
tag apply. Hence each of a pair 〈desa, y〉 and a pair 〈apply(y),−〉 requires
(1 + log2 m) control bits.

4.3 Reducing the Size of the Permanent Control Information

Aim and Additional Assumption. This section shows that, at the price of an
additional synchronization phase, the control information that each register must
forever contain can be reduced from (1 + log2 m) to a single bit.

To this end, we assume now that each atomic read/write register SM [x]
is composed of two parts SM [x].BIT and SM [x].RM (i.e., SM [x] = 〈SM [x].
BIT ,SM [x].RM〉). SM [x].BIT is for example the leftmost bit of SM [x], and

256 E. Godard et al.

SM [x].RM the other bits. The meaning and use of SM [x].RM are exactly the
same as SM [x] in Algorithms 1 and 2. For each x, SM [x].BIT is initialized
to 0, while SM [x].RM is initialized to 〈start,⊥〉. We assume that the previ-
ous algorithms are appropriately updated so that they do not modify the bits
SM [x].BIT .

operation SM i.scan() returns ([SMi[1], · · · , SMi[m]]).

operation efficient de-anonymize(idi) is
(01) de-anonymize(idi);

% As all reg. are tagged desa when the first process returns from de-anonymize()
% the tags start and done disappeared from the system and can be re-used

(02) execute lines 1-10 of Algorithm 1 where start is replaced by desa;
% in the following, �i has the value obtained in de-anonymize(idi)

(03) SM i[�i] ← 〈done, idi〉;
(04) wait until

(
(SM i[�i]
= 〈done, idi〉)

∨ (SM i[1..m] has exactly α + 1 entries not tagged done)
)
;

(05) for each x such that SM i[x] = 〈desa, idi〉 do SM i[x] ← 〈done, idi〉 end for;
% Property P1’: There is a time at which exactly one register contains 〈start, z〉
% where z is an integer and for each j ∈ {1, · · · , n}, α registers contain 〈start, idj〉

(06) if (leaderi = idi)
% Here the leader knows that every process pj knows its mapping function mapj()

(07) then for each x ∈ {1, · · · , m} do BIT i[x] ← 1 end for
(08) else repeat biti ← BIT i.scan() until (∀ x : biti[x] = 1) end repeat
(09) end if.

Algorithm 3: Reduction to a single bit of control information per register (code
for pi)

Not to overload the presentation, the following notation shortcuts are used in
Algorithm 3.

– The read of SM i[x] at lines 3 and 4 concerns the field SM i[x].RM .
– The write of SM i[x] at lines 2 and 4 writes 0 in its leftmost bit (which actually

is not modified).
– The statement “BIT i[x] ← 1” at line 6, means that only the leftmost bit of

SM i[x] is modified. As this statement is issued by the leader process only,
this process can first read SM i[x], prefix it by 1, and rewrite this new value
so that only the leftmost bit SM i[x] is modified.

– The statement “BIT i.scan()” stands for “SM i.scan()” from which only the
leftmost bits are extracted.

After they return from de-anonymize(), the processes execute the same syn-
chronization pattern as lines 14–17 of Algorithm1 where the tag start is
replaced by the tag desa. As the reader can see, at this time the tag done is no
longer present in a register, so it can be re-used. Moreover, as the type “process
identity” and the type “integer” are different, any integer x is considered as a
synonym of ⊥ when looking at a pair 〈desa, x〉 (which now is a synonym of
〈start, x〉).

Anonymous Read/Write Memory: Election and De-anonymization 257

It follows that we have then the property P1’: there is a time at which exactly
one register contains 〈start, z〉 where z is an integer and, for each j ∈ {1, · · · , n},
α registers contain 〈start, idj〉. Here, the important point is that the process
previously elected as a leader knows that any process pj knows its mapping
function mapj(). So, it can inform of it the other processes. This is done at
lines 6–9 of Algorithm 3. As soon as a process pj sees the leftmost bit of all the
registers equal to 1, it knows that each process knows its mapping function, and
pj can consequently start writing application-related values in the other bits of
the registers.

The lines 2–9 of Algorithm 3 and the code of Algorithm 1 are nearly the same.
More precisely, they differ in the fact that Algorithm1 elects a leader at lines
13–14, while Algorithm 3 uses at line 3 the leader that has been previously been
elected. It follows that the proof of Algorithm3 is very close to the proof of
Algorithm 1, and is left to the reader.

5 Memory Anonymous Leader Election When
m = α n + (n − 1)

Leader Election. Algorithm 1, which solves the election problem for a system of
m = α n+1 anonymous registers, is based on the fact that each process can write
its identity in α registers that – after some finite time – will not be overwritten,
and when this occurred, the single remaining not yet written anonymous register
is used to elect the leader (which will be the last process that writes its identity
in this register well-identified by each process).

The principle that underlies the election when there are m = α n + (n − 1)
anonymous registers is dual in the sense that each of the n processes can write its
identity in α +1 anonymous registers, except one which can write its identity in
only α registers. When this occurs, the corresponding process becomes elected.

Algorithm. The operational view of this idea is captured by Algorithm4,
obtained from a simple adaptation of Algorithm1 to the fact that the leader
is selected from a memory occupation criterion (instead of a competition on a
single read/write register, where the last writer is the winner). The main differ-
ence lies in the management of the local variables towritei, overwritteni, writteni,
last i, and nbi. Property P1” captures the result of the algorithm, namely, there
is a time at which α registers contain the same pair 〈start, id�〉, and for each
j ∈ {1, · · · , n} \ {�}, α + 1 registers contain 〈start, idj〉. Its proof is a simple
adaptation of the proof of Algorithm1.

258 E. Godard et al.

init: each SM [x] is initialized to 〈start, ⊥〉. 〈start, ⊥〉; m = (α + 1)n − 1.

operation election(idi) is % code for process pi, i ∈ {1, · · · , n}
(01) towritei ← {1, ..., α + 1}; overwritteni ← ∅; writteni ← ∅; lasti ← α + 1;
(02) repeat
(03) for each x ∈ towritei do SM i[x] ← 〈start, idi〉 end do;
(04) writteni ← (writteni \ overwritteni) ∪ towritei;
(05) wait until

(
(∃ x ∈ writteni : SM i[x]
= 〈start, idi〉)

∨ (|{� such that SM i[�]
= 〈start, ⊥〉}| = m)
)
;

(06) if
(|{� such that SM i[�]
= 〈start, ⊥〉}| = m

)

(07) then exit repeat loop
(08) else overwritteni ← { x ∈ writteni such that SM i[x]
= 〈start, idi〉};
(09) nbi ← |overwritteni|;
(10) towritei ← {lasti + 1, ..., min(lasti + nbi, m)};
(11) lasti ← min(lasti + nbi, m)
(12) end if
(13) end repeat;

% Property P1”: There is a time at which α reg. contain the same pair 〈start, id�〉,
% and for each j ∈ {1, · · · , n} \ {�}, α + 1 registers contain 〈start, idj〉

(14) leaderi ← id where id
(15) is such that α registers exactly contain the same pair 〈start, id〉.

Algorithm 4: n-process election for m = α n + (n − 1) anonymous registers

6 Election and De-anonymization for m = α n + β,
β ∈ M(n)

This section considers the case where an underlying mutex algorithm, suited to
an anonymous memory, is used to elect a leader.

Mutual Exclusion in an Anonymous System. Mutual exclusion in memory
anonymous systems was introduced in [15], which presents a symmetric deadlock-
free mutex algorithm for two processes only, and a theorem stating that there
no symmetric deadlock-free mutual exclusion algorithm if the size m does not
belong to the set M(n) = { m such that ∀ � : 1 < � ≤ n: gcd(�,m) = 1} \ {1}.
Recently, a symmetric deadlock-free mutual exclusion algorithm has been pro-
posed, which works any numbernof processes and for any value m ∈ M(n) [2],
from which follows that m ∈ M(n) is a necessary and sufficient condition for
anonymous mutual exclusion.

Leader Election in a System of m = α n + β Anonymous Registers. The idea
is to rely on the underlying mutex algorithm to elect a leader. But, to this end,
the processes have first to isolate a set of β anonymous registers in order to be
thereafter able to use a symmetric deadlock-free mutex algorithm accessing this
subset of registers.

Anonymous Read/Write Memory: Election and De-anonymization 259

init: each SM [x] is initialized to 〈start, ⊥〉. 〈start, ⊥〉; m = α n + β, β ∈ M(n).

operation election(idi) is % code for process pi, i ∈ {1, · · · , n}
(01) towritei ← {1, ..., α}; overwritteni ← ∅; writteni ← ∅; lasti ← α;

(02) repeat

(03) for each x ∈ towritei do SM i[x] ← 〈start, idi〉 end do;

(04) writteni ← (writteni \ overwritteni) ∪ towritei;

(05) wait until
(
(∃ x ∈ writteni : SM i[x] �= 〈start, idi〉)

∨ (|{� such that SM i[�] = 〈start, ⊥〉}| = β)
)
;

(06) if
(|{� such that SM i[�] = 〈start, ⊥〉}| = β

)

(07) then exit repeat loop

(08) else overwritteni ← { x ∈ writteni such that SM i[x] �= 〈start, idi〉};
(09) nbi ← |overwritteni|;
(10) towritei ← {lasti + 1, ..., lasti + nbi}; lasti ← lasti + nbi

(11) end if

(12) end repeat;

% Property P1”’: There is a time at which β registers contain the pair 〈start, ⊥〉,
% and for each j ∈ {1, · · · , n}, α registers contain 〈start, idj〉

(13) let SMβi[1..β] be the sub-array of the β registers

that do not contain 〈start, id〉, for any process identity id;

(14) Now, using the previous sub-array (locally knows as SMβi[1..β] by pi) the processes

processes execute a symmetric deadlock-free mutex algorithm at the end of which the

last process to enter the critical section is elected. While it is in the critical section,

the elected process p� write 〈leader, id�〉 in all the registers of SMβ�[1..β],

which allows the other processes to know which is the leader.

Algorithm 5: Election in a system of m = α n + β, β ∈ M(n) anonymous reg.

Algorithm 5 realizes this at lines 1–12, which are a simple adaptation of the
same line numbers in Algorithms 1 and 4. When the processes exit the repeat
loop (line 12), we have property P1”, namely, there is a time at which β registers
contain the pair 〈start,⊥〉 and, for each j ∈ {1, · · · , n}, α registers contain
〈start, idj〉. Hence, the set of β registers define a common anonymous memory
on top of which the n processes can execute a symmetric deadlock-free mutex
algorithm. As β ∈ M(n), such mutex algorithms do exist (e.g., [2]). Moreover,
as the mutex algorithm is deadlock-free and each process invokes it once, each
process eventually enters the critical. It is shown in [7] how a symmetric deadlock-
free mutual exclusion algorithm can be used to allow a process to know it is the
last that entered the critical section. Finally, the last process to enter is the
elected process.

We point out that a memory de-anonymization algorithm is described in [7].
However, as it is based on an underlying mutual exclusion algorithm, it is a
specific algorithm that works only for m ∈ M(n), which is not the general case
addressed here, namely m = α n + β.

Memory De-Anonymization in a System of m = α n + β Anonymous regis-
ters. The previous algorithm can be modified in order to solve de-anomymization.
When the last process is inside the critical section, it can impose its mapping
function to all the processes by executing lines 4–5 of Algorithm 2, while all the
other processes execute lines 5–6 of this algorithm.

260 E. Godard et al.

7 Conclusion

This article is on synchronization problems in an n-process system in which the
communication is through m anonymous read/write registers only. In such a
system there is no a priori agreement on the names of the registers: the same
register name A used by several processes can head them to different registers.
In such a context, the article addressed the following problems: leader elec-
tion and memory de-anonymization. It was first shown that these problems are
impossible to solve if m = α n, where α is a positive integer. Then, considering
m = α n + β, it has presented election algorithms for β = 1, β = n − 1, and
β ∈ M(n) where M(n) is the set of the memory anonymous sizes for which
symmetric deadlock-free mutual exclusion can be solved in n-process systems.
De-Anonymization algorithms have also been presented, each based on an under-
lying election algorithm.

As stated in [15], the memory-anonymous communication model “enables us
to better understand the intrinsic limits for coordinating the actions of asyn-
chronous processes”. It consequently enriches our knowledge of what can be (or
cannot be) done when an adversary replaced a common addressing function, by
individual and independent addressing functions, one per process. Additional
results regarding the computational power of anonymous and non-anonymous
objects can be found in [16]. On a more practical side, it appears that the concept
of an anonymous memory allows us to model epigenetic cell modifications [12].

On the open problems side, it seems that finding a characterization of all the
values of m (the size of the read/write anonymous memory) for which leader
election (and de-anonymization) can be solved in an n-process system is partic-
ularly important as soon as we want to understand the power and the limits of
n-process memory anonymous systems. Finally, since we assume a model where
participation is required, in the case where the mutex algorithm from [2] (which
also works when participation is not required) is used, it might be possible to
replace the algorithm from [2] with a simpler algorithm. In such a case we might
not need to assume that β ∈ M(n), but something weaker.

Acknowledgments. This work was partially supported by the French ANR project
DESCARTES (16-CE40-0023-03) devoted to layered and modular structures in dis-
tributed computing. The authors want to thank the referees for their constructive
comments.

References

1. Angluin, D.: Local and global properties in networks of processes. In: Proceedings
of 12th Symposium on Theory of Computing (STOC 1980), pp. 82–93. ACM Press
(1980)

2. Aghazadeh, Z., Imbs, D., Raynal, M., Taubenfeld, G., Woelfel, Ph.: Optimal
memory-anonymous symmetric deadlock-free mutual exclusion. In: Proceedings
of 38th ACM Symposium on Principles of Distributed Computing (PODC 2019),
10 pages. ACM Press (2019)

Anonymous Read/Write Memory: Election and De-anonymization 261

3. Attiya, H., Gorbach, A., Moran, S.: Computing in totally anonymous asynchronous
shared-memory systems. Inf. Comput. 173(2), 162–183 (2002)

4. Bonnet, F., Raynal, M.: Anonymous asynchronous systems: the case of failure
detectors. Distrib. Comput. 26(3), 141–158 (2013)

5. Bouzid, Z., Raynal, M., Sutra, P.: Anonymous obstruction-free (n, k)-set agreement
with (n−k+1) atomic read/write registers. Distrib. Comput. 31(2), 99–117 (2018)

6. Garg, V.K., Ghosh, J.: Symmetry in spite of hierarchy. In: Proceedings of 10th
International Conference on Distributed Computing Systems (ICDCS 1990), pp.
4–11. IEEE Computer Press (1990)

7. Godard E., Imbs D., Raynal M., Taubenfeld G.: Mutex-based de-anonymization of
an anonymous read/write memory. In: Proceedings of 7th International Conference
on Networked Systems (NETYS 2018). LNCS, 15 pages. Springer (2019, to appear)

8. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory com-
putations. Distrib. Comput. 20, 165–177 (2007)

9. Johnson, R.E., Schneider, F.B.: Symmetry and similarity in distributed systems.
In: Proceedings of 4th ACM Symposium on Principles of Distributed Computing
(PODC 1985), pp. 13–22. ACM Press (1985)

10. Raynal, M.: Concurrent Programming: Algorithms, Principles and Foundations.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32027-9. ISBN
978-3-642-32026-2

11. Raynal, M., Cao, J.: Anonymity in distributed read/write systems: an introductory
survey. In: Podelski, A., Täıani, F. (eds.) NETYS 2018. LNCS, vol. 11028, pp. 122–
140. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05529-5 9

12. Rashid, S., Taubenfeld, G., Bar-Joseph, Z.: Genome wide epigenetic modifications
as a shared memory consensus. In: 6th Workshop on Biological Distributed Algo-
rithms (BDA 2018), London (2018)

13. Styer, E., Peterson, G.L.: Tight bounds for shared memory symmetric mutual
exclusion problems. In: Proceedings of 8th ACM Symposium on Principles of Dis-
tributed Computing, pp. 177–191. ACM Press (1989)

14. Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming. Pear-
son Education/Prentice Hall, 423 pages (2006). ISBN 0-131-97259-6

15. Taubenfeld G., Coordination without prior agreement. In: Proceedings of 36th
ACM Symposium on Principles of Distributed Computing (PODC 2017), pp. 325–
334. ACM Press (2017)

16. Taubenfeld, G.: Set agreement power is not a precise characterization for obliv-
ious deterministic anonymous objects. In: Censor-Hillel, K., Flammini, M (eds.)
SIROCCO 2019. LNCS, pp 293–308 (2019)

17. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I-
characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89
(1996)

https://doi.org/10.1007/978-3-642-32027-9
https://doi.org/10.1007/978-3-030-05529-5_9

	Anonymous Read/Write Memory: Leader Election and De-anonymization
	1 Anonymous Memory, Model, and Aim of the Article
	1.1 Anonymous Memory
	1.2 Computing Model
	1.3 Problems Addressed in This Article
	1.4 Content

	2 An Impossibility Result
	3 Memory Anonymous Leader Election When m= n +1
	3.1 Algorithm
	3.2 Proof of Algorithm1

	4 From Leader Election to De-anonymization When m= n +1
	4.1 A Simple Leader-Based De-anonymization Algorithm
	4.2 Using the De-anonymized Memory
	4.3 Reducing the Size of the Permanent Control Information

	5 Memory Anonymous Leader Election When m= n +(n-1)
	6 Election and De-anonymization for m= n +, M(n)
	7 Conclusion
	References

