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Abstract. More than two decades ago, combinatorial topology was
shown to be useful for analyzing distributed fault-tolerant algorithms
in shared memory systems and in message passing systems. In this work,
we show that combinatorial topology can also be useful for analyzing
distributed algorithms in networks of arbitrary structure. To illustrate
this, we analyze consensus, set-agreement, and approximate agreement
in networks, and derive lower bounds for these problems under classical
computational settings, such as the LOCAL model and dynamic networks.
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1 Introduction

1.1 Context and Objective

A breakthrough in distributed computing was obtained in the 1990’s, when com-
binatorial topology, a branch of Mathematics extending graph theory to higher
dimensional objects, was shown to provide a framework in which a large variety
of models can be studied [29,41]. Combinatorial topology provides a powerful
arsenal of tools, which considerably expended our understanding of the solvabil-
ity and complexity of many distributed problems [2,9,10,30]. We refer to the
book by Herlihy et al. [25] for an extended and detailed description of combina-
torial topology applied to distributed computing, in a wide variety of settings.

In a nutshell, combinatorial topology allows us to represent all possible exe-
cutions of a distributed algorithm, along with the relations between them, as a
single mathematical object, whose properties reflect the solvability of a prob-
lem. Combinatorial topology was primarily used to study distributed computing
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in the context of shared memory and message passing systems, but not in the
context of systems in which the presence of a network connecting the processing
elements needs to be taken into account. On the other hand, a large portion of
the study of distributed computing requires to take into account the structure of
the network connecting the processors, e.g, when studying locality. This paper
is a first attempt to approach distributed network computing through the lens
of combinatorial topology.

The base of the topological approach for distributed computing consists of
modeling all possible input (resp., output) configurations as a single object
called input complex (resp., output complex), and specifying a task as a rela-
tion between the input and output complexes. Moreover, computation in a given
model results in a topological deformation that modifies the input complex into
another complex called the protocol complex. The fundamental result of combi-
natorial topology applied to distributed computing [25] is that a task is solvable
in a computational model if and only if there exists a simplicial mapping, called
decision map, from the protocol complex to the output complex, that agrees
with the specification of the task. In other words, for every input configuration,
(1) the execution of the algorithm should lead the system into one or many
configurations, forming a subcomplex of the protocol complex, and (2) the deci-
sion map should map every configuration in this subcomplex (i.e., each of its
simplexes) into a configuration of the output complex that is legal for the given
input configuration, with respect to the specification of the task.

Understanding the power and limitation of a distributed computing model
with respect to solving a given task requires to understand under which condition
the decision map exists. This requires to understand the nature of topological
deformations of the input complex resulting from the execution of an algorithm,
and the outcome of this deformation, i.e., the protocol complex. That is, one
needs to establish the connections between the distributed computing model at
hand, and the topological deformations incurred by the input complex in the
course of a computation under this model.

The connections between the computational models and the topological
deformations are now well understood for several distributed computing models.
For instance, in shared-memory wait-free systems, the protocol complex results
from the input complex by a series of specific subdivisions of its simplexes. Note
that the impossibility result for consensus in shared-memory wait-free systems
is a direct consequence of this fact, as the input complex of consensus is con-
nected, subdivisions maintain connectivity, but the output complex of consensus
is not connected—this prevents the existence of a decision map, independently
of how long the computation proceeds. Similarly, in shared-memory t-resilient
systems, the protocol complex results from the input complex not only by a
series of specific subdivisions, but also by the appearance of some holes in the
course of the computation. This is because every process can wait for hearing
from at least n − t other processes in any n-node t-resilient system. These holes
enable the existence of a decision map in the case of (t + 1)-set-agreement, but
are not sufficient to enable the existence of a decision map for consensus, as long
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as t ≥ 1. And indeed, the FLP result [19] implies that consensus is not solvable
in asynchronous systems even in the presence of at most one failure.

This paper addresses the following issues: What is the nature of the topo-
logical deformations incurred by the input complex in the context of network
computing, i.e., when nodes are bounded to interact only with nearby nodes
according to some graph metric? And, what is the impact of these deformations
on the ability to solve tasks efficiently (e.g., locally) in networks? As a first step
towards answering these questions in general, we tackle them in the framework
of synchronous failure-free computing, which is actually the framework in which
most studies of distributed network computing are conducted [37].

1.2 Our Results

We place ourselves in the context of synchronous failure-free computing in net-
works [37]. As a first step towards understanding the nature of computation in
this model from a topological perspective, we focus on lower bounds. We make
a simplifying assumption which significantly strengthens the model, and there-
fore strengthens our lower bounds as well. We assume structure awareness. This
assumption essentially asserts that each processing node is fully aware of the net-
work it belongs to. More specifically, it assumes that all processes are given the
same adjacency matrix of the network, and every process is given the index in
the matrix of the vertex it occupies in the network. Structural awareness makes
many tasks trivial. This is, for instance, the case of graph problems such as com-
puting a vertex-coloring, an independent set, or a matching, which are among
the main concerns of distributed network computing. Nevertheless, input-output
tasks such as consensus and set-agreement, which are less studied in networks,
yet important tasks as far as distributed computing and combinatorial topology
are concerned [40], remain non-trivial.

The main contribution of this paper is in studying the topological model of
distributed computing in networks, under the assumption of structure awareness.
In particular, we show that the protocol complex involves deformations that were
not observed before in the context of distributed computing, deformations which
we call scissor cuts. These cuts appear between the facets of the input complex,
and depend on the structure of the underlying network governing the way the
information flows between nodes.

We show that this characterization is useful for deriving lower bounds on
agreement tasks. For this purpose, we model the way information flows between
nodes in the network by the so-called information-flow graph, and establish tight
connections between structural properties of this graph, and the ability to solve
agreement tasks in the network. This is achieved thanks to our understanding
of the topology of the protocol complex. For instance, we show that if the domi-
nation number of the information-flow graph is at least k + 1, then the protocol
complex is at least (k − 1)-connected, and if the protocol complex is at least
(k − 1)-connected, then k-set agreement is not solvable.

Interestingly, our results connecting the structure of the information-flow
graph with the topology of the protocol complex, imply lower bounds for solving



6 A. Castañeda et al.

agreement problems in the classical LOCAL model, as well as in dynamic net-
works. For instance, a consequence of our results is that, in the LOCAL model,
solving k-set agreement in a network requires at least r rounds, where r is the
smallest integer such that the r-th power of the network (two nodes are adja-
cent when their distance in the network is at most r) has domination number
at most k. Similarly, we show that solving k-set agreement in a dynamic net-
work (Ht)t≥1 requires at least r rounds, where r is the smallest integer such that
(Ht)1≤t≤r has temporal dominating number at most k.

Applying the topological approach to network computing also enables to
derive fine grained results. For instance, we show that in every n-node network
where consensus is not solvable, ε-approximate agreement is also not solvable
whenever ε < 1

n−1 . This bound is tight, in the sense that there exists a network
where consensus is impossible, while 1

n−1 -approximate agreement is solvable.

1.3 Related Work

The deep connections between combinatorial topology and distributed comput-
ing were concurrently and independently identified in [29] and [41]. Since then,
numerous outstanding results were obtained using combinatorial topology for
various types of tasks, including agreement tasks such as consensus and set-
agreement [40], and symmetry breaking tasks such as renaming [2,9,10]. A recent
work [1] provides evidence that topological arguments are sometimes necessary.
All these contributions were obtained in the asynchronous shared memory model
with crash failures, but combinatorial topology was shown to be applicable to
Byzantine failures as well [36]. Note that the message passing model restricts
itself to complete graphs [16,28]. Recent results showed that combinatorial topol-
ogy can also be applied in the analysis of mobile computing [38], demonstrating
the generality and flexibility of the topological framework applied to distributed
computing. The book [25] provides an extensive introduction to combinatorial
topology applied to distributed computing.

In contrast, distributed network computing has not been impacted by combi-
natorial topology. This domain of distributed computing is extremely active and
productive this last decade, analyzing a large variety of network problems in the so-
called LOCAL model [37], capturing the ability to solve task locally in networks1.
We refer to [4,5,8,13,18,20,21,24,42] for a non exhaustive list of achievements
in context. However, all these achievements were based on an operational app-
roach, using sophisticated algorithmic techniques and tools solely from graph the-
ory. Similarly, the existing lower bounds on the round-complexity of tasks in the
LOCAL model [3,8,23,32,35] were obtained using graph theoretical and combina-
torial arguments. The question of whether adopting a higher dimensional approach
by using topology would help in the context of local computing, be it for a better
conceptual understanding of the algorithms, or providing stronger technical tools
for lower bounds, is, to our knowledge, entirely open.

1 The CONGEST model has also been subject of tremendous progresses, but this model
does not support full information protocols, and thus is out of the scope of our paper.



A Topological Perspective on Distributed Network Algorithms 7

Similarly to (static) distributed network computing, the fundamental
research on dynamic networks [6,11,12,34] has rarely been impacted by com-
binatorial topology. Relevant works in this framework study consensus [17,33],
set-agreement [7,22] and approximate agreement [14]. We also refer to [15,31,39]
which analyze distributed computation in a model where all processes broadcast
messages at each round, but the recipients of these messages are defined by a
graph which may change from round to round. The information-flow graph intro-
duced and analyzed in this paper can be viewed as an abstraction of computation
in dynamic networks, as this graph contains a summary of how information was
transmitted among processes in the network during some interval of time.

2 Model and Definitions

In this section, we describe an abstract model of computation that captures
various models of distributed computing, including the LOCAL model, and com-
puting in dynamic graphs. This model is called KNOW-ALL, for reason that will
soon be apparent.

2.1 The KNOW-ALL Model

We consider a set of n synchronous fault-free processes, with distinct names in
{1, . . . , n}, all running the same algorithm. The processes can model computing
entities exchanging messages through a network, but also software agents or
physical robots moving in space and exchanging messages whenever they meet,
or computing entities in a dynamic network whose links evolve over time. The
processes communicate using some communication medium, and the interactions
are specified by a sequence H of n-node directed labeled graphs (Ht)1≤t≤T . The
label of a node of Ht is a value in {1, . . . , n}, different from the labels of all
other nodes. The process with name p ∈ {1, . . . , n} occupies the node labeled p
in each of the graphs Ht, 1 ≤ t ≤ T . The arcs in Ht represent the interactions
that can take place at the t-th rounds of an algorithm. The core property of
the KNOW-ALL model is that every process is a priori given its name, and the
sequence H = (Ht)1≤t≤T , so every node is given the complete knowledge of the
communication patterns occurring during the T rounds. The only uncertainty is
about the inputs to the nodes.

The KNOW-ALL model is stronger than several classical distributed comput-
ing models. For example, the LOCAL model is also synchronous, fault-free model
but with a fixed communication graph H, i.e., Ht = H for every t ≥ 1, and the
nodes learn only some of the graph topology during an execution. A dynamic
graph computation is defined by a sequence of graphs on the same set of nodes,
and the nodes only gain partial information on the graph sequence during the
execution. This is generalized by the KNOW-ALL model, where all the graph
sequence is given in advance to the processes. Hence, in both cases the KNOW-
ALL model is stronger than the classical model, and lower bounds proven for the
KNOW-ALL model imply lower bounds for the other models as well.
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By no means we claim the KNOW-ALL model to be practical. We make several
simplifying assumptions that are typical in these settings: unbounded compu-
tational power, unbounded communication, failure-freeness, and also structural
awareness, which is not a typical assumption. However, this strong model is suf-
ficient for exhibiting lower bounds, and for establishing impossibility results for
weaker, more realistic models. More important perhaps, it enables us to exhibit
interesting phenomenon regarding the impact of the communication pattern on
the topology of the protocol complex.

2.2 Input-Output Problems and the Information-Flow Graph

We focus on input-output problems, naturally defined as follows. A task (I,O, F )
in the n-process KNOW-ALL model is described by a set I of input values, a set
O of output values, and a mapping

F : In → 2O
n

specifying, for every n-tuple of input values, the set of possible legal n-tuple of
output values. (In the topological sense, we focus on tasks for which the input
complex is a pseudosphere, as explained below.) The input value of process p is
denoted by in(p) ∈ I.

A distributed algorithm solving a task has two components: a communication
protocol enabling each process to gather information about the inputs of other
processes, and a decision function f that maps the gathered information to
an output value. In the KNOW-ALL model, we can restrict our attention to
considering only flooding protocols. At round t of such a protocol, every process p
sends to all its out-neighbors in Ht all the name-input pairs it is aware of, that is,
the pair (p, in(p)), and all the pairs it has received in the previous rounds. After
T rounds, the process takes a decision based on the set of pairs it is aware of.
Considering only flooding protocols does not reduce the computational power,
as the structural awareness allows each process to simulate any other protocol.

Assuming flooding protocols, designing an algorithm boils down to designing
a decision function f which allows each process, given the set of received input
values, to compute an output value such that the collection of output values
produced by the processes is consistent with the collection of input values. More
specifically, for every vector of input values (v1, . . . , vn) ∈ In, given to process
(p1, . . . , pn), respectively, let wi be the vector where for every j ∈ {1, . . . , n},

wi[j] =
{

vj if j = i, or process i receives the pair (j, vj) when flooding in H;
⊥ otherwise.

Then, every process i ∈ {1, . . . , n} must compute an output value

v′
i = f (i, wi)

such that the resulting n-tuple (v′
1, . . . , v

′
n) is in F (v1, . . . , vn).
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In order to analyze flooding protocols, we define the information-flow graph,
which describes the execution of a flooding protocol in the KNOW-ALL model.

Definition 1. Let H = (Ht)1≤t≤T be an instance of the KNOW-ALL model. The
information-flow graph associated with H is the directed graph G whose n nodes
are labeled by 1, . . . , n, and there is an arc (p, q) from p to q in G if q receives
the pair (p, in(p)) when flooding in H.

A crucial observation is that whenever two instances H and H′ of the KNOW-
ALL model yield the same information flow graph, then these two instances have
the same computational power. The structure of the information-flow graph has
a crucial impact on the ability to solve input-output problems in the KNOW-ALL
model, an impact which we study in this paper. In order to clarify the impact
of the structure of the information flow graph on the ability to solve problems,
we apply techniques of combinatorial topology.

3 Topological Description of the KNOW-ALL Model

3.1 Basics Definitions

A simplicial complex is a finite set V along with a collection of nonempty subsets
K of V closed under containment (i.e., if A ∈ K and ∅ �= B ⊂ A, then B ∈ K).
An element of V is called a vertex of K, and the vertex set of K is denoted by
V (K) = V . Each set in K is called a simplex. A subset of a simplex is called a face
of that simplex. The dimension dim σ of a simplex σ is one less than the number
of elements of σ, i.e., |σ| − 1. We use “d-face” as shorthand for “d-dimensional
face”. A simplex σ in K is called a facet of K if σ is not contained in any other
simplex. Note that a set of facets uniquely defines a simplicial complex. The
dimension of a complex is the largest dimension of any of its facets. A complex
is pure if all its facets have the same dimension.

Let K and L be complexes. A vertex map is a function h : V (K) → V (L). If h
also carries simplexes of K to simplexes of L, it is called a simplicial map. We add
one or more labels to the vertices, λ : V → D, where D is an arbitrary domain. In
particular, we have the set {1, . . . , n} of process names, and a label associating
each vertex with a name. Typically, each simplex is properly colored by these
names: if u and v are distinct vertices of a simplex σ, then name(u) �= name(v).
A simplicial map h is chromatic if it preserves names, i.e., name(h(v)) = name(v)
for any vertex v. In this paper, all simplicial maps between colored complexes
will be chromatic. Given two complexes K and L, a carrier map Φ maps each
simplex σ ∈ K to a sub-complex Φ(σ) of L, such that for every two simplexes τ
and τ ′ in K that satisfy τ ⊆ τ ′, we have Φ(τ) ⊆ Φ(τ ′).

Roughly speaking, a geometric realization |K| of a simplicial complex K is a
geometric object defined as follows. Each vertex in V (K) is mapped to a point
in a Euclidean space, such that the images of the vertices are affinely indepen-
dent. Each simplex is represented by a polyhedron, which is the convex hull of
points representing its vertices. Figure 1 displays the geometric representations
of several simplicial complexes that are detailed later.



10 A. Castañeda et al.

Let k be a positive integer. We say that a complex has a hole in dimension k
if the k-sphere Sk embedded in a geometric realization of the complex cannot
be continuously contracted to a single point within that realization. Informally,
a complex is k-connected if it has no holes in dimension k. A complex K is k-
connected if every continuous map h : Sk → |K| can be extended to a continuous
map h′ : Dk+1 → |K| where Dk+1 denotes the (k + 1)-disk. In dimension 0,
this property simply states that any two points can be linked by a path, i.e.,
the complex is path-connected. In dimension 1, it states that any loop can be
filled into a disk, i.e., the complex is simply connected. By convention, a (−1)-
connected complex is just a non-empty complex.

Finally, given a set I, a pseudosphere Ψ({1, . . . , n}, I) is the complex defined
as follows: (1) every pair (i, v) is a vertex, where v ∈ I, and (2) for every index set
J ⊆ {1, . . . , n}, and every multi-set {vj : j ∈ J} of values, the set {(j, vj) : j ∈ J}
is a simplex. Pseudospheres offer a convenient way to describe all possible initial
configurations where each process input is an arbitrary value from I.

3.2 The Topology of Computing in the KNOW-ALL Model

Given a distributed computing task (I,O, F ) to be solved in the KNOW-ALL
model, two complexes play a major role in this framework, the input complex,
denoted by I, and the output complex, denoted by O. Let us fix an information
flow graph G. The input complex I is the pseudosphere Ψ({1, . . . , n}, I), also
defined by its set of facets

{{(1, v1), . . . , (n, vn)} : vi ∈ I
}
.

The set of all facets of the output complex O is
{{(1, v′

1), . . . , (n, v′
n)} : v′

i ∈ O, and ∃v ∈ In, (v′
1, . . . , v

′
n) ∈ F (v)

}
.

Note that the output complex includes only combinations of output values that
are legal with respect to the problem at hand. Note also that the input and
output complexes do not depend on the communication medium considered,
and that both complexes are pure—all their facets have the same dimension.

For instance, in the case of binary consensus in an n-process system (see
Fig. 1), the set of facets of the input complex is

{{(1, v1), . . . , (n, vn)} : vi ∈ {0, 1}}.

This complex is homeomorphic to the (n − 1)-dimensional sphere Sn−1. For the
same example, the output complex is composed of two disjoints (n − 1)-facets,
τ0 and τ1:

τ0 = {(1, 0), . . . , (n, 0)}, and τ1 = {(1, 1), . . . , (n, 1)}.
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Fig. 1. Impact of the information flow graph on the protocol complex for binary con-
sensus with three processes. Labels next to vertices are input and output values, in
the input and output complexes respectively, or views in protocol complexes. A view
“xyz” labeling a vertex means that the process corresponding to this vertex knows the
input values x from process ◦, y from process •, and z from process •. A question mark
in a label indicates that the process does not know the corresponding input value.

One can rephrase the operational definition (I,O, F ) of task in Sect. 2.2 in
the framework of combinatorial topology as follows: a task (I,O,Δ) is described
by a carrier map Δ from I to O. Note that, in absence of failures and asynchrony,
a task can be described merely by a mapping Δ from the facets of I to subsets
of facets of O. For a given facet σ = {(1, v1), . . . , (n, vn)} ∈ I, the set of facets
of Δ(σ) is defined by

{(1, v′
1), . . . , (n, v′

n)} ∈ Δ(σ) ⇐⇒ (v′
1, . . . , v

′
n) ∈ F (v1, . . . , vn). (1)

The carrier map Δ of binary consensus maps every input facet σ containing
both input values 0 and 1 to the two (n − 1)-facets τ0 and τ1, and maps each
(n−1)-facet σb with a unique input value b ∈ {0, 1} to the output (n−1)-facet τb.

In any distributed computing model, in each point in time during the exe-
cution of an algorithm, one can define a complex whose vertices are pairs (p,w)
where w is the state of process p, i.e., its view of the computation. A set of
vertices with distinct process names forms a protocol simplex if there is a pro-
tocol execution where those processes collect those views. All possible protocol
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simplexes make up the protocol complex. The following fact is a direct conse-
quence of the definition of the information flow graph.

Fact 1. Given an information flow graph G, and a task (I,O,Δ), the protocol
complex P associated with G and I is the complex whose facet are all the sets of
the form {(1, w1), . . . , (n,wn)} for which there exists a facet {(1, v1), . . . , (n, vn)}
of I such that, for i = 1, . . . , n, wi = {(j, vj) : i = j or (j, i) ∈ E(G)}. We define
a carrier map Ξ : I → P which carries each facet of I to a single facet of P,
satisfying

Ξ({(1, v1), . . . , (n, vn)}) = {(1, w1), . . . , (n,wn)}.

An important observation is that the facets of the input complex are pre-
served in the protocol complex, i.e., there is a one-to-one correspondence between
the facets of these two complexes. This is because the computation is syn-
chronous and failure-free, from which it follows that each input configuration
yields a single configuration in the protocol complex.

Example. Figure 1 displays two illustrations of the protocol complex for binary
consensus, for two different information flow graphs on three processes: the con-
sistently directed cycle C3, and the directed star S3 whose center has two out-
neighbors. Process names are omitted, and instead are represented by the colors
of the circles (◦, •, and •). The number of vertices in the protocol complexes
depends on the information flow graph.

Let us focus first on process ◦. A vertex (◦, v) in the input complex yields two
vertices in the protocol complex for C3, depending on the input value received
from process •. Instead, a vertex (◦, v) in the input complex yields a single vertex
in the protocol complex for S3 because, according to this information flow graph,
process ◦ receives no inputs from other processes. On the other hand, every vertex
(•, v) in the input complex yields two vertices in both protocol complexes. This
is because, in both information flow graphs, C3 and S3, process • receives the
input from process ◦. Similarly, every vertex (•, v) in the input complex yields
two vertices in both protocol complexes, because in both information flow graphs
process • receives the input from another process, from process • in C3 and from
process ◦ in S3.

3.3 Topological Characterization of Task Solvability

So far, we have proceeded in two parallel paths. The first, operational path,
was about algorithms in the KNOW-ALL model, where information propagates
between processes according to some information flow pattern G. The second,
topological path, relates the inputs of processes defined by an input complex,
their views modeled in the protocol complex, and their desired outputs, appear-
ing in the output complex. The connections between these paths is established
in the next fact, which directly follows from the definitions.

Fact 2. A task (I,O, F ) is solvable in the KNOW-ALL model with information
flow graph G if and only if, for the topological formulation (I,O,Δ) of the task,
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there exists a chromatic simplicial map δ : P → O satisfying δ(Ξ(σ)) ∈ Δ(σ)
for every facet σ ∈ I, where P is the protocol complex associated with G and I.

The simplicial map δ : P → O is called decision map. If δ(i, wi) = (i, v′
i),

then the corresponding algorithm specifies that process i with view wi outputs
f(i, wi) = v′

i.

Example. Let us consider Fig. 1 again. The protocol complex for S3 is discon-
nected, while for C3 it is 0-connected (i.e., path connected). The presence of a
universal node ◦ (dominating all other nodes) in the information flow graph S3

results in all processes becoming aware of the input of the process correspond-
ing to that node. Therefore, the protocol complex for S3 is split into two sub-
complexes, the one corresponding to process ◦ with input 0, and the other cor-
responding to process ◦ with input 1. Similarly, the protocol complex for the
complete graph K3 with bidirectional edges is entirely disconnected, i.e., com-
posed of eight pairwise non-intersecting facets, because there is no uncertainty
under the complete information flow graph, as every process receives the input
of every other process.

Since the protocol complex for S3 is disconnected, consensus is solvable in
this graph. To see why, consider δ that maps every vertex (p, 0∗∗) of the protocol
complex to vertex (p, 0) of the output complex, and every vertex (p, 1 ∗ ∗) of the
protocol complex to vertex (p, 1) of the output complex. This is a chromatic
simplicial map, and thus, by Fact 2 consensus is solvable. In contrast, there is
no such mapping δ : P → O for the protocol complex P corresponding to C3,
because P is 0-connected. Let us consider the path ((◦, 1?1), (•, ?01), (•, 00?)) in
the protocol complex for C3. Vertex (◦, 1?1) must be mapped to vertex (◦, 1)
in the output complex because (◦, 1?1) belongs to a facet with all processes
having input value 1. Similarly, vertex (•, 00?) must be mapped to vertex (•, 0)
because (◦, 00?) belongs to a facet with all processes having input value 0. If a
mapping δ maps (•, ?01) to (•, 1), then the simplex {(•, ?01), (•, 00?)} is mapped
to {(•, 1), (•, 0)}, which is not a simplex of O. The same occurs if (•, ?01) is
mapped to (•, 0), as {(◦, 1), (•, 0)} is not a simplex of O. Thus, there is no
simplicial map δ, and, by Fact 2, consensus is not solvable. We generalize this
result to every information flow graph G, and to k-set agreement, for every k ≥ 1.

4 Applications to Agreement Tasks

In this section, we illustrate the power of using topology for analyzing the KNOW-
ALL model, and its implications on standard models such as LOCAL and dynamic
networks. First, we establish a connection between the structure of the informa-
tion flow graph resulting from some instance of the KNOW-ALL model on the
one hand, and the topology of the protocol complex induced by this instance on
the other hand. Recall that the domination number γ(G) of a graph G is the
number of vertices in a smallest dominating set for G, where, in directed graphs,
a vertex u dominates a vertex v if (u, v) ∈ E(G).
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Theorem 1. Let H be an instance of the KNOW-ALL model, and G be the infor-
mation flow graph associated with it. If γ(G) > k, then the protocol complex P
for H is at least (k − 1)-connected.

Recall that, in the k-set agreement task, the processes must agree on at
most k of the input values. In the context of asynchronous shared memory
computing, the level of connectivity of the protocol complex is closely related
to the ability to solve k-set agreement [26,27,30]. Using a similar connection,
Theorem 1 implies the following.

Theorem 2. Let H be an instance of the KNOW-ALL model, and G be the
information flow graph associated with it. If γ(G) > k, then k-set agreement is
not solvable in H.

To establish Theorem 2, we show that if the protocol complex P for H is
at least (k − 1)-connected, then k-set agreement is not solvable in H, and then
we apply Theorem 1. Observe that the converse of Theorem 2 also holds, i.e.,
if γ(G) ≤ k then k-set agreement is solvable in H. The algorithm performs as
follows. Let D be a dominating set for G, with |D| ≤ k. Since D is dominating,
every process p receives the input value of at least one process in D, and can
decide on such a value as an output. In total, at most |D| ≤ k values are decided.

Theorem 2 implies that, in particular, consensus solvability requires the infor-
mation flow graph to contain a universal node, i.e., a node that dominates all the
other nodes. This theorem has implications for more traditional computational
models, including the LOCAL model. Given a graph H, and r ≥ 1, let Hr denote
the graph on the same set of nodes as H, but in which two nodes are adjacent
if their distance in H is at most r.

Corollary 1. In the LOCAL model, solving k-set agreement in a network H
requires at least r rounds, where r is the smallest integer such that γ(Hr) ≤ k.

Theorem 2 also applies to dynamic networks, in which edges appear and
disappear over time. A dynamic network is a sequence G = (Gt)t≥1 of graphs on
the same set of nodes V , where Gt is the actual network at round t. A set D ⊆ V
is a temporal dominating set for (Gt)1≤t≤r if, for every node v /∈ D, there is a
temporal path from some node u ∈ D to v, i.e., a sequence (u0, . . . , us) of nodes
with u0 = u and us = v, and a sequence 1 ≤ t0 < t1 < · · · < ts ≤ r of rounds
such that {ui, ui+1} ∈ E(Gti) for every i = 0, . . . , s − 1.

Corollary 2. Solving k-set agreement in dynamic network G = (Gt)t≥1 requires
at least r rounds, where r is the smallest integer such that (Gt)1≤t≤r has a
temporal dominating set D with |D| ≤ k.

Finally, recall that, for ε ∈ [0, 1], binary ε-approximate agreement requires the
processes to output values that are not more than ε apart, under the condition
that if all the processes have the same input value v ∈ {0, 1}, then they all
should output v. Using topological arguments applied to the information flow
graph associated with the given instance H of the KNOW-ALL model, we show
the following.
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Theorem 3. Let H be an instance of the KNOW-ALL model. If consensus is
impossible under H, then, for every ε < 1

n−1 , ε-approximate agreement is also
not solvable under H. This bound is tight in the sense that there exists an
instance H of the KNOW-ALL model for which consensus is impossible, while
1

n−1 -approximate agreement is solvable.

The same way Theorem 2 has consequences on the complexity of solving k-
set agreement in concrete computational models such as the LOCAL model and
dynamic networks, Theorem 3 has similar consequences on the complexity of
solving approximate agreement in these latter models.

5 Conclusion and Further Work

We demonstrate that combinatorial topology is applicable to distributed network
computing. Of course, this is just a first step, and further work will require
incorporating features of every distributed network model, in order to capture
the specific characteristics of each of them. For instance, fully capturing the
popular LOCAL model requires removing the structure awareness assumption,
and studying the details of how the protocol complex evolves round after round.

Incorporating asynchrony and failures into network computing, from a topo-
logical perspective, requires understanding the topological impact of simulta-
neously stretching the facets, introducing holes resulting from t-resiliency, and
introducing scissor cuts resulting from the presence of a network. This is defi-
nitely technically challenging, but our paper shows that there are no conceptual
obstacles preventing us from addressing these questions.
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16 A. Castañeda et al.

5. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed sym-
metry breaking. In: 53rd IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 321–330 (2012). https://doi.org/10.1109/FOCS.2012.60

6. Bhadra, S., Ferreira, A.: Computing multicast trees in dynamic networks and the
complexity of connected components in evolving graphs. J. Internet Services Appl.
3(3), 269–275 (2012). https://doi.org/10.1007/s13174-012-0073-z

7. Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrad-
ing consensus and k-set agreement in directed dynamic networks. Theor. Comput.
Sci. 726, 41–77 (2018). https://doi.org/10.1016/j.tcs.2018.02.019

8. Brandt, S., et al.: A lower bound for the distributed Lovász local lemma. In: 48th
ACM Symposium on Theory of Computing (STOC), pp. 479–488 (2016). https://
doi.org/10.1145/2897518.2897570
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