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Preface

This volume contains the papers presented at SIROCCO 2019: the 26th International
Colloquium on Structural Information and Communication Complexity held during
July 1–4, 2019, in L’Aquila. SIROCCO is devoted to the study of the interplay between
structural knowledge, communication, and computing in decentralized systems of
multiple communicating entities. Special emphasis is given to innovative approaches
leading to better understanding of the relationship between computing and communi-
cation. SIROCCO has a tradition of interesting and productive scientific meetings in a
relaxed and pleasant atmosphere, attracting leading researchers in a variety of fields in
which communication and knowledge play a significant role. This year, SIROCCO was
held in L’Aquila, a beautiful historical city on a mountain side, 100 km away from
Rome.

For SIROCCO 2019 we received 39 submissions. Each submission was reviewed
by three reviewers, either Program Committee (PC) members or external reviewers.
The PC decided to accept 19 papers and to invite nine papers to be presented as brief
announcements. The committee decided to give the SIROCCO 2019 Best Student
Paper Award to Sebastian Brandt, Manuela Fischer and Jara Uitto, for their paper
“Breaking the Linear-Memory Barrier in MPC: Fast MIS on Trees with Strongly
Sublinear Memory.”

Selected papers will also be invited to appear in a special issue of the Theoretical
Computer Science journal, devoted to SIROCCO 2019.

In addition to the contributed talks, the conference program included invited talks by
Susanne Albers, Pierre Fraigniaud, and Merav Parter, and a featured talk by Paola
Flocchini – recipient of the 2019 Prize for Innovation in Distributed Computing. Before
the start of the technical program, a 6-hour mini-course by Roger Watthenofer on
blockchain was offered to the participants.

We would like to thank all of the authors for their high-quality submissions and all
of the speakers for their excellent talks. We are grateful to the PC and all external
reviewers for their efforts in putting together a great conference program, to the
Steering Committee, chaired by Andrzej Pelc, for their help and support, and to
everyone who was involved in the local organization. The EasyChair system was used
to handle the submission of papers, manage the review process, and generate these
proceedings.

July 2019 Keren Censor-Hillel
Michele Flammini
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Laudatio: 2019 SIROCCO Prize for Innovation
in Distributed Computing

It is a pleasure to award the 2019 SIROCCO Prize for Innovation in Distributed
Computing to Paola Flocchini. Paola is a well-known member of the distributed
computing community and her work is very closely related to SIROCCO’s area of
interest, i.e., the relationships between information and efficiency in decentralized
computing. Most of her research can be divided into two parts. The first is the analysis
of a property of labeled graphs called “sense of direction”. This property which is a
generalization of the orientation of rings or grids to arbitrary graphs, turns out to have
major impacts on complexity and computational feasibility of communication systems.
Paola’s first publication on this topic [1] appeared in the first edition of SIROCCO and
its journal version was later published in [2]. After that introductory paper, she wrote
over 20 other papers focused on sense of direction, further exploring the impact of this
property in distributed computations, all published in international conferences and top
level international journals, such as the SICOMP paper [3].

The core of this part of Paola Flocchini’s scientific work showed the dramatic effect
that sense of direction has on the communication complexity of several important
distributed problems, such as broadcast, depth-first traversal, election, spanning tree
construction, in several classes of graphs. Before the seminal 1994 paper, an extensive
body of evidence existed on the impact that specific edge labelings have on the
communication complexity of distributed problems, suggesting that these (very
different) labelings shared a common property. However, despite the obvious practical
importance, a formal characterization of this property did not exist. Thus, the impact of
this paper has been to provide a formal definition of sense of direction, defining those
properties which make it possible to reduce the communication complexity in a
distributed scenario. The final outcome of this work was to make explicit the very
specific relationship between three factors: the labeling, the topological structure, and
the local view that an entity has of the system.

Paola’s work on sense of direction attracted a lot of attention in the distributed
computing community, and generated a substantial amount of follow-up, producing a
great body of scientific effort on this topic, as witnessed by over 150 citations
(SCOPUS) of Paola’s papers related to this matter.

The second important part of Paola’s work concerns the theory of computation by
autonomous mobile agents, i.e., distributed systems populated by moving and
computing entities, that aim at solving various tasks. She contributed to the study of
such entities both in the continuous setting (robots moving on a 2D plane), and in the
discrete setting (agents acting in a network). In the continuous setting, she co-created
the asynchronous oblivious mobile robots model called ASYNCH, and then studied
several problems in this model, such as the gathering and the arbitrary pattern
formation problem. She published over 20 papers on this topic, that collected more than
650 citations (SCOPUS), witnessing again the great interest of the distributed



computing community in this area. One of the first of Paola’s papers on mobile robots
[4] was published in SIROCCO, and one of the most influential of her papers on
asynchronous robots computing was the SICOMP paper [5].

Paola’s body of work on mobile agents stimulated a lot of subsequent research,
contributing to the development of this field, witnessed by numerous citations, and by
establishing of the Moving and Computing international workshops, that periodically
gather researchers from the distributed computing community interested in mobile
agents computing.

We award the 2019 SIROCCO Prize for Innovation in Distributed Computing to
Paola Flocchini for her contributions to the study of sense of direction in labeled graphs
and to the analysis of asynchronous systems of mobile agents.

The 2019 Award committee1

Shantanu Das Aix-Marseille Université
Pierre Fraigniaud Université Paris Diderot, CNRS
Andrzej Pelc (Chair) Université du Québec en Outaouais
Christian Scheideler Paderborn University
Jukka Suomela Aalto University
Sébastien Tixeuil Sorbonne Université

Selected Publications Related to Paola Flocchini’s Contribution:

1. P. Flocchini, B. Mans, N. Santoro,
Sense of Direction: Formal Definitions and Properties,
Proc. 1st Colloquium on Structural Information and Communication Complexity,
(SIROCCO 94), 9–33, 1994.

2. P. Flocchini, B. Mans, N. Santoro
Sense of Direction: Definitions, Properties, and Classes,
Networks 32(3), 165–180, 1998.

3. P. Flocchini, A. Roncato, N. Santoro,
Sense of Direction and Backward Consistency in Advanced Distributed Systems,
SIAM Journal on Computing 32(2), 281–306, 2003.

4. P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer,
Pattern Formation by Anonymous Robots Without Chirality,
Proc. 8th International Colloquium on Structural Information and Communication
Complexity (SIROCCO 2001), 147–162, 2001.

5. M. Cieliebak, P. Flocchini, G. Prencipe, N. Santoro,
Distributed Computing by Mobile Robots: Gathering,
SIAM Journal on Computing, 41(4): 829–879, 2012.

x Laudatio: 2019 SIROCCO Prize for Innovation in Distributed Computing

1 We wish to thank the nominators for the nomination and for contributing heavily to this text.

x Laudatio: 2019 SIROCCO Prize for Innovation in Distributed Computing
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On Energy Conservation in Data Centers

Susanne Albers

Department of Computer Science, Technical University of Munich
albers@in.tum.de

Abstract. We study algorithmic problems arising in data center operations with
the objective to minimize the consumed energy. Specifically, we examine two
settings that dynamically rightsize the pool of active servers depending on the
current demand for computing capacity.
Data centers host a large number of power-heterogeneous servers. Each server

has an active state and several standby/sleep states with individual power
consumption rates. The demand for computing capacity varies over time. Idle
servers may be transitioned to low-power modes so as to adjust the pool of
active servers. The goal is to find a state transition schedule for the servers that
minimizes the total energy consumed. For this power/capacity management
problem, we present two main results. First, we investigate the scenario that
each server has two states, i.e. an active state and a sleep state. We show that an
optimal solution, minimizing energy consumption, can be computed in poly-
nomial time by a combinatorial algorithm. The algorithm resorts to a
single-commodity min-cost flow computation. Second, we study the general
scenario that each server has an active state and multiple standby/sleep states.
We devise a s-approximation algorithm that relies on a two-commodity min-cost
flow computation. Here s is the number of different server types. A data center
has a large collection of machines but only a relatively small number of different
server architectures. Moreover, in the optimization one can assign servers with
comparable energy consumption to the same class. Technically, both of our
algorithms involve non-trivial flow modification procedures.
Additionally, we address an optimization problem introduced by Lin, Wier-

man, Andrew and Thereska [3] that, over a time horizon, minimizes a combined
objective function consisting of operating cost, modeled by a sequence of
convex functions, and server switching cost. All prior work addresses a con-
tinuous setting in which the number of active servers, at any time, may take a
fractional value. We investigate for the first time the discrete data-center opti-
mization problem where the number of active servers, at any time, must be
integer valued. Thereby we seek truly feasible solutions. First, we show that the
offline problem can be solved in polynomial time. Our algorithm relies on a new,
yet intuitive graph theoretic model of the optimization problem and performs
binary search in a layered graph. Second, we study the online problem and
extend the algorithm Lazy Capacity Provisioning (LCP) by Lin et al. [3] to the
discrete setting. We prove that LCP is 3-competitive. Moreover, we show that
no deterministic online algorithm can achieve a competitive ratio smaller than 3.
Hence, while LCP does not attain an optimal competitiveness in the continuous
setting, it does so in the discrete problem examined here.
The presentation is based on our publications [1, 2].
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A Topological Perspective on Distributed
Network Algorithms

Armando Castañeda1, Pierre Fraigniaud2, Ami Paz2,
Sergio Rajsbaum1, Matthieu Roy3, and Corentin Travers4

1 UNAM, Mexico
{armando.castaneda,rajsbaum}@im.unam.mx

2 CNRS and Université de Paris, France
{pierref,amipaz}@irif.fr

3 CNRS, France
roy@laas.fr

4 CNRS and University of Bordeaux, France
travers@labri.fr

Abstract. More than two decades ago, combinatorial topology was shown to be
useful for analyzing distributed fault-tolerant algorithms in shared memory
systems and in message passing systems. In this work, we show that combi-
natorial topology can also be useful for analyzing distributed algorithms in
networks of arbitrary structure. To illustrate this, we analyze consensus,
set-agreement, and approximate agreement in networks, and derive lower
bounds for these problems under classical computational settings, such as the
LOCAL model and dynamic networks.



On Sense of Direction and Mobile Agents

Paola Flocchini

University of Ottawa, Canada
paola.flocchini@uottawa.ca

Abstract. An edge-labeled graph is said to have Sense of Direction if the
labeling satisfies a particular set of global consistency properties. When the
graph represents a system of communicating entities, the presence of sense of
direction has been shown to have a strong impact on computability and com-
plexity.
Since its introduction, sense of direction has been investigated from various

view points, revealing interesting graph theoretical properties and providing
useful tools for the design of efficient distributed algorithms; furthermore, its
presence allows to solve some otherwise unsolvable problems.
Far from being exhausted, the study of sense of direction and other consis-

tency properties of edge-labeled graphs is still filled with interesting questions,
open problems, and important new research directions.
In this paper, we revisit sense of direction reviewing the main results in the

context of message passing point-to-point models, showing its impact in the
more recent mobile agents models, and indicating directions for future study.

This work was supported in part by an NSERC Discovery Grant and by Dr. Flocchini’s University
Research Chair.



Secure Distributed Algorithms

Merav Parter

Weizmann Institute, Rehovot, Israel
merav.parter@weizmann.ac.il

Abstract. In the area of distributed graph algorithms a number of network’s
entities with local views solve some computational task by exchanging mes-
sages with their neighbors. Quite unfortunately, an inherent property of most
existing distributed algorithms is that throughout the course of their execution,
the nodes get to learn not only their own output but rather learn quite a lot on the
inputs or outputs of many other entities. This leakage of information might be a
major obstacle in settings where the output (or input) of network’s individual is
a private information (e.g., networks of selfish agents, decentralized digital
currency such as Bitcoin).
While being quite an unfamiliar notion in the classical distributed setting, the

notion of secure multi-party computation (MPC) is one of the main themes in
the Cryptographic community. The existing secure MPC protocols do not quite
fit the framework of classical distributed models in which only messages of
bounded size are sent on graph edges in each round. In [1, 2], we present a new
framework for secure distributed graph algorithms and provide the first general
compiler that takes any “natural” non-secure distributed algorithm that runs in r

rounds, and turns it into a secure algorithm that runs in eOðr � D � polyðDÞÞ
rounds1 where D is the maximum degree in the graph and D is its diameter.
A “natural” distributed algorithm is one where the local computation at each
node can be performed in polynomial time. An interesting advantage of our
approach is that it allows one to decouple between the price of locality and the
price of security of a given graph function f . The security of the compiled
algorithm is information-theoretic but holds only against a semi-honest adver-
sary that controls a single node in the network.
The main technical part of our compiler is based on a new cycle cover

theorem: We show that the edges of every bridgeless graph G of diameter D can
be covered by a collection of cycles such that each cycle is of length eOðDÞ and
each edge of the graph G appears in eOð1Þ many cycles. This is (existentially)
optimal upto polylogarithmic terms.
In the second part of the talk, I will also discuss the notion of optimality in

secure computation [3]. We will see how to adapt the existentially nearly
optimal compiler into one that is nearly optimal (w.r.t. running time) for the
given input graph G.

Keywords: CONGEST model � Cycle cover � Secure computation

Supported in part by grants from the Israel Science Foundation (no. 2084/18).
1 The eOð�Þ notation hides poly-logarithmic terms in the number of vertices n.
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A Topological Perspective on Distributed
Network Algorithms

Armando Castañeda1, Pierre Fraigniaud2(B), Ami Paz2, Sergio Rajsbaum1,
Matthieu Roy3, and Corentin Travers4

1 UNAM, Mexico City, Mexico
{armando.castaneda,rajsbaum}@im.unam.mx

2 CNRS and Université de Paris, Paris, France
{pierref,amipaz}@irif.fr
3 CNRS, Toulouse, France

roy@laas.fr
4 CNRS and University of Bordeaux, Bordeaux, France

travers@labri.fr

Abstract. More than two decades ago, combinatorial topology was
shown to be useful for analyzing distributed fault-tolerant algorithms
in shared memory systems and in message passing systems. In this work,
we show that combinatorial topology can also be useful for analyzing
distributed algorithms in networks of arbitrary structure. To illustrate
this, we analyze consensus, set-agreement, and approximate agreement
in networks, and derive lower bounds for these problems under classical
computational settings, such as the LOCAL model and dynamic networks.

Keywords: Distributed computing · Distributed graph algorithms ·
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1 Introduction

1.1 Context and Objective

A breakthrough in distributed computing was obtained in the 1990’s, when com-
binatorial topology, a branch of Mathematics extending graph theory to higher
dimensional objects, was shown to provide a framework in which a large variety
of models can be studied [29,41]. Combinatorial topology provides a powerful
arsenal of tools, which considerably expended our understanding of the solvabil-
ity and complexity of many distributed problems [2,9,10,30]. We refer to the
book by Herlihy et al. [25] for an extended and detailed description of combina-
torial topology applied to distributed computing, in a wide variety of settings.

In a nutshell, combinatorial topology allows us to represent all possible exe-
cutions of a distributed algorithm, along with the relations between them, as a
single mathematical object, whose properties reflect the solvability of a prob-
lem. Combinatorial topology was primarily used to study distributed computing
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in the context of shared memory and message passing systems, but not in the
context of systems in which the presence of a network connecting the processing
elements needs to be taken into account. On the other hand, a large portion of
the study of distributed computing requires to take into account the structure of
the network connecting the processors, e.g, when studying locality. This paper
is a first attempt to approach distributed network computing through the lens
of combinatorial topology.

The base of the topological approach for distributed computing consists of
modeling all possible input (resp., output) configurations as a single object
called input complex (resp., output complex), and specifying a task as a rela-
tion between the input and output complexes. Moreover, computation in a given
model results in a topological deformation that modifies the input complex into
another complex called the protocol complex. The fundamental result of combi-
natorial topology applied to distributed computing [25] is that a task is solvable
in a computational model if and only if there exists a simplicial mapping, called
decision map, from the protocol complex to the output complex, that agrees
with the specification of the task. In other words, for every input configuration,
(1) the execution of the algorithm should lead the system into one or many
configurations, forming a subcomplex of the protocol complex, and (2) the deci-
sion map should map every configuration in this subcomplex (i.e., each of its
simplexes) into a configuration of the output complex that is legal for the given
input configuration, with respect to the specification of the task.

Understanding the power and limitation of a distributed computing model
with respect to solving a given task requires to understand under which condition
the decision map exists. This requires to understand the nature of topological
deformations of the input complex resulting from the execution of an algorithm,
and the outcome of this deformation, i.e., the protocol complex. That is, one
needs to establish the connections between the distributed computing model at
hand, and the topological deformations incurred by the input complex in the
course of a computation under this model.

The connections between the computational models and the topological
deformations are now well understood for several distributed computing models.
For instance, in shared-memory wait-free systems, the protocol complex results
from the input complex by a series of specific subdivisions of its simplexes. Note
that the impossibility result for consensus in shared-memory wait-free systems
is a direct consequence of this fact, as the input complex of consensus is con-
nected, subdivisions maintain connectivity, but the output complex of consensus
is not connected—this prevents the existence of a decision map, independently
of how long the computation proceeds. Similarly, in shared-memory t-resilient
systems, the protocol complex results from the input complex not only by a
series of specific subdivisions, but also by the appearance of some holes in the
course of the computation. This is because every process can wait for hearing
from at least n − t other processes in any n-node t-resilient system. These holes
enable the existence of a decision map in the case of (t + 1)-set-agreement, but
are not sufficient to enable the existence of a decision map for consensus, as long
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as t ≥ 1. And indeed, the FLP result [19] implies that consensus is not solvable
in asynchronous systems even in the presence of at most one failure.

This paper addresses the following issues: What is the nature of the topo-
logical deformations incurred by the input complex in the context of network
computing, i.e., when nodes are bounded to interact only with nearby nodes
according to some graph metric? And, what is the impact of these deformations
on the ability to solve tasks efficiently (e.g., locally) in networks? As a first step
towards answering these questions in general, we tackle them in the framework
of synchronous failure-free computing, which is actually the framework in which
most studies of distributed network computing are conducted [37].

1.2 Our Results

We place ourselves in the context of synchronous failure-free computing in net-
works [37]. As a first step towards understanding the nature of computation in
this model from a topological perspective, we focus on lower bounds. We make
a simplifying assumption which significantly strengthens the model, and there-
fore strengthens our lower bounds as well. We assume structure awareness. This
assumption essentially asserts that each processing node is fully aware of the net-
work it belongs to. More specifically, it assumes that all processes are given the
same adjacency matrix of the network, and every process is given the index in
the matrix of the vertex it occupies in the network. Structural awareness makes
many tasks trivial. This is, for instance, the case of graph problems such as com-
puting a vertex-coloring, an independent set, or a matching, which are among
the main concerns of distributed network computing. Nevertheless, input-output
tasks such as consensus and set-agreement, which are less studied in networks,
yet important tasks as far as distributed computing and combinatorial topology
are concerned [40], remain non-trivial.

The main contribution of this paper is in studying the topological model of
distributed computing in networks, under the assumption of structure awareness.
In particular, we show that the protocol complex involves deformations that were
not observed before in the context of distributed computing, deformations which
we call scissor cuts. These cuts appear between the facets of the input complex,
and depend on the structure of the underlying network governing the way the
information flows between nodes.

We show that this characterization is useful for deriving lower bounds on
agreement tasks. For this purpose, we model the way information flows between
nodes in the network by the so-called information-flow graph, and establish tight
connections between structural properties of this graph, and the ability to solve
agreement tasks in the network. This is achieved thanks to our understanding
of the topology of the protocol complex. For instance, we show that if the domi-
nation number of the information-flow graph is at least k + 1, then the protocol
complex is at least (k − 1)-connected, and if the protocol complex is at least
(k − 1)-connected, then k-set agreement is not solvable.

Interestingly, our results connecting the structure of the information-flow
graph with the topology of the protocol complex, imply lower bounds for solving
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agreement problems in the classical LOCAL model, as well as in dynamic net-
works. For instance, a consequence of our results is that, in the LOCAL model,
solving k-set agreement in a network requires at least r rounds, where r is the
smallest integer such that the r-th power of the network (two nodes are adja-
cent when their distance in the network is at most r) has domination number
at most k. Similarly, we show that solving k-set agreement in a dynamic net-
work (Ht)t≥1 requires at least r rounds, where r is the smallest integer such that
(Ht)1≤t≤r has temporal dominating number at most k.

Applying the topological approach to network computing also enables to
derive fine grained results. For instance, we show that in every n-node network
where consensus is not solvable, ε-approximate agreement is also not solvable
whenever ε < 1

n−1 . This bound is tight, in the sense that there exists a network
where consensus is impossible, while 1

n−1 -approximate agreement is solvable.

1.3 Related Work

The deep connections between combinatorial topology and distributed comput-
ing were concurrently and independently identified in [29] and [41]. Since then,
numerous outstanding results were obtained using combinatorial topology for
various types of tasks, including agreement tasks such as consensus and set-
agreement [40], and symmetry breaking tasks such as renaming [2,9,10]. A recent
work [1] provides evidence that topological arguments are sometimes necessary.
All these contributions were obtained in the asynchronous shared memory model
with crash failures, but combinatorial topology was shown to be applicable to
Byzantine failures as well [36]. Note that the message passing model restricts
itself to complete graphs [16,28]. Recent results showed that combinatorial topol-
ogy can also be applied in the analysis of mobile computing [38], demonstrating
the generality and flexibility of the topological framework applied to distributed
computing. The book [25] provides an extensive introduction to combinatorial
topology applied to distributed computing.

In contrast, distributed network computing has not been impacted by combi-
natorial topology. This domain of distributed computing is extremely active and
productive this last decade, analyzing a large variety of network problems in the so-
called LOCAL model [37], capturing the ability to solve task locally in networks1.
We refer to [4,5,8,13,18,20,21,24,42] for a non exhaustive list of achievements
in context. However, all these achievements were based on an operational app-
roach, using sophisticated algorithmic techniques and tools solely from graph the-
ory. Similarly, the existing lower bounds on the round-complexity of tasks in the
LOCAL model [3,8,23,32,35] were obtained using graph theoretical and combina-
torial arguments. The question of whether adopting a higher dimensional approach
by using topology would help in the context of local computing, be it for a better
conceptual understanding of the algorithms, or providing stronger technical tools
for lower bounds, is, to our knowledge, entirely open.

1 The CONGEST model has also been subject of tremendous progresses, but this model
does not support full information protocols, and thus is out of the scope of our paper.



A Topological Perspective on Distributed Network Algorithms 7

Similarly to (static) distributed network computing, the fundamental
research on dynamic networks [6,11,12,34] has rarely been impacted by com-
binatorial topology. Relevant works in this framework study consensus [17,33],
set-agreement [7,22] and approximate agreement [14]. We also refer to [15,31,39]
which analyze distributed computation in a model where all processes broadcast
messages at each round, but the recipients of these messages are defined by a
graph which may change from round to round. The information-flow graph intro-
duced and analyzed in this paper can be viewed as an abstraction of computation
in dynamic networks, as this graph contains a summary of how information was
transmitted among processes in the network during some interval of time.

2 Model and Definitions

In this section, we describe an abstract model of computation that captures
various models of distributed computing, including the LOCAL model, and com-
puting in dynamic graphs. This model is called KNOW-ALL, for reason that will
soon be apparent.

2.1 The KNOW-ALL Model

We consider a set of n synchronous fault-free processes, with distinct names in
{1, . . . , n}, all running the same algorithm. The processes can model computing
entities exchanging messages through a network, but also software agents or
physical robots moving in space and exchanging messages whenever they meet,
or computing entities in a dynamic network whose links evolve over time. The
processes communicate using some communication medium, and the interactions
are specified by a sequence H of n-node directed labeled graphs (Ht)1≤t≤T . The
label of a node of Ht is a value in {1, . . . , n}, different from the labels of all
other nodes. The process with name p ∈ {1, . . . , n} occupies the node labeled p
in each of the graphs Ht, 1 ≤ t ≤ T . The arcs in Ht represent the interactions
that can take place at the t-th rounds of an algorithm. The core property of
the KNOW-ALL model is that every process is a priori given its name, and the
sequence H = (Ht)1≤t≤T , so every node is given the complete knowledge of the
communication patterns occurring during the T rounds. The only uncertainty is
about the inputs to the nodes.

The KNOW-ALL model is stronger than several classical distributed comput-
ing models. For example, the LOCAL model is also synchronous, fault-free model
but with a fixed communication graph H, i.e., Ht = H for every t ≥ 1, and the
nodes learn only some of the graph topology during an execution. A dynamic
graph computation is defined by a sequence of graphs on the same set of nodes,
and the nodes only gain partial information on the graph sequence during the
execution. This is generalized by the KNOW-ALL model, where all the graph
sequence is given in advance to the processes. Hence, in both cases the KNOW-
ALL model is stronger than the classical model, and lower bounds proven for the
KNOW-ALL model imply lower bounds for the other models as well.
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By no means we claim the KNOW-ALL model to be practical. We make several
simplifying assumptions that are typical in these settings: unbounded compu-
tational power, unbounded communication, failure-freeness, and also structural
awareness, which is not a typical assumption. However, this strong model is suf-
ficient for exhibiting lower bounds, and for establishing impossibility results for
weaker, more realistic models. More important perhaps, it enables us to exhibit
interesting phenomenon regarding the impact of the communication pattern on
the topology of the protocol complex.

2.2 Input-Output Problems and the Information-Flow Graph

We focus on input-output problems, naturally defined as follows. A task (I,O, F )
in the n-process KNOW-ALL model is described by a set I of input values, a set
O of output values, and a mapping

F : In → 2O
n

specifying, for every n-tuple of input values, the set of possible legal n-tuple of
output values. (In the topological sense, we focus on tasks for which the input
complex is a pseudosphere, as explained below.) The input value of process p is
denoted by in(p) ∈ I.

A distributed algorithm solving a task has two components: a communication
protocol enabling each process to gather information about the inputs of other
processes, and a decision function f that maps the gathered information to
an output value. In the KNOW-ALL model, we can restrict our attention to
considering only flooding protocols. At round t of such a protocol, every process p
sends to all its out-neighbors in Ht all the name-input pairs it is aware of, that is,
the pair (p, in(p)), and all the pairs it has received in the previous rounds. After
T rounds, the process takes a decision based on the set of pairs it is aware of.
Considering only flooding protocols does not reduce the computational power,
as the structural awareness allows each process to simulate any other protocol.

Assuming flooding protocols, designing an algorithm boils down to designing
a decision function f which allows each process, given the set of received input
values, to compute an output value such that the collection of output values
produced by the processes is consistent with the collection of input values. More
specifically, for every vector of input values (v1, . . . , vn) ∈ In, given to process
(p1, . . . , pn), respectively, let wi be the vector where for every j ∈ {1, . . . , n},

wi[j] =
{

vj if j = i, or process i receives the pair (j, vj) when flooding in H;
⊥ otherwise.

Then, every process i ∈ {1, . . . , n} must compute an output value

v′
i = f (i, wi)

such that the resulting n-tuple (v′
1, . . . , v

′
n) is in F (v1, . . . , vn).
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In order to analyze flooding protocols, we define the information-flow graph,
which describes the execution of a flooding protocol in the KNOW-ALL model.

Definition 1. Let H = (Ht)1≤t≤T be an instance of the KNOW-ALL model. The
information-flow graph associated with H is the directed graph G whose n nodes
are labeled by 1, . . . , n, and there is an arc (p, q) from p to q in G if q receives
the pair (p, in(p)) when flooding in H.

A crucial observation is that whenever two instances H and H′ of the KNOW-
ALL model yield the same information flow graph, then these two instances have
the same computational power. The structure of the information-flow graph has
a crucial impact on the ability to solve input-output problems in the KNOW-ALL
model, an impact which we study in this paper. In order to clarify the impact
of the structure of the information flow graph on the ability to solve problems,
we apply techniques of combinatorial topology.

3 Topological Description of the KNOW-ALL Model

3.1 Basics Definitions

A simplicial complex is a finite set V along with a collection of nonempty subsets
K of V closed under containment (i.e., if A ∈ K and ∅ �= B ⊂ A, then B ∈ K).
An element of V is called a vertex of K, and the vertex set of K is denoted by
V (K) = V . Each set in K is called a simplex. A subset of a simplex is called a face
of that simplex. The dimension dim σ of a simplex σ is one less than the number
of elements of σ, i.e., |σ| − 1. We use “d-face” as shorthand for “d-dimensional
face”. A simplex σ in K is called a facet of K if σ is not contained in any other
simplex. Note that a set of facets uniquely defines a simplicial complex. The
dimension of a complex is the largest dimension of any of its facets. A complex
is pure if all its facets have the same dimension.

Let K and L be complexes. A vertex map is a function h : V (K) → V (L). If h
also carries simplexes of K to simplexes of L, it is called a simplicial map. We add
one or more labels to the vertices, λ : V → D, where D is an arbitrary domain. In
particular, we have the set {1, . . . , n} of process names, and a label associating
each vertex with a name. Typically, each simplex is properly colored by these
names: if u and v are distinct vertices of a simplex σ, then name(u) �= name(v).
A simplicial map h is chromatic if it preserves names, i.e., name(h(v)) = name(v)
for any vertex v. In this paper, all simplicial maps between colored complexes
will be chromatic. Given two complexes K and L, a carrier map Φ maps each
simplex σ ∈ K to a sub-complex Φ(σ) of L, such that for every two simplexes τ
and τ ′ in K that satisfy τ ⊆ τ ′, we have Φ(τ) ⊆ Φ(τ ′).

Roughly speaking, a geometric realization |K| of a simplicial complex K is a
geometric object defined as follows. Each vertex in V (K) is mapped to a point
in a Euclidean space, such that the images of the vertices are affinely indepen-
dent. Each simplex is represented by a polyhedron, which is the convex hull of
points representing its vertices. Figure 1 displays the geometric representations
of several simplicial complexes that are detailed later.
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Let k be a positive integer. We say that a complex has a hole in dimension k
if the k-sphere Sk embedded in a geometric realization of the complex cannot
be continuously contracted to a single point within that realization. Informally,
a complex is k-connected if it has no holes in dimension k. A complex K is k-
connected if every continuous map h : Sk → |K| can be extended to a continuous
map h′ : Dk+1 → |K| where Dk+1 denotes the (k + 1)-disk. In dimension 0,
this property simply states that any two points can be linked by a path, i.e.,
the complex is path-connected. In dimension 1, it states that any loop can be
filled into a disk, i.e., the complex is simply connected. By convention, a (−1)-
connected complex is just a non-empty complex.

Finally, given a set I, a pseudosphere Ψ({1, . . . , n}, I) is the complex defined
as follows: (1) every pair (i, v) is a vertex, where v ∈ I, and (2) for every index set
J ⊆ {1, . . . , n}, and every multi-set {vj : j ∈ J} of values, the set {(j, vj) : j ∈ J}
is a simplex. Pseudospheres offer a convenient way to describe all possible initial
configurations where each process input is an arbitrary value from I.

3.2 The Topology of Computing in the KNOW-ALL Model

Given a distributed computing task (I,O, F ) to be solved in the KNOW-ALL
model, two complexes play a major role in this framework, the input complex,
denoted by I, and the output complex, denoted by O. Let us fix an information
flow graph G. The input complex I is the pseudosphere Ψ({1, . . . , n}, I), also
defined by its set of facets

{{(1, v1), . . . , (n, vn)} : vi ∈ I
}
.

The set of all facets of the output complex O is
{{(1, v′

1), . . . , (n, v′
n)} : v′

i ∈ O, and ∃v ∈ In, (v′
1, . . . , v

′
n) ∈ F (v)

}
.

Note that the output complex includes only combinations of output values that
are legal with respect to the problem at hand. Note also that the input and
output complexes do not depend on the communication medium considered,
and that both complexes are pure—all their facets have the same dimension.

For instance, in the case of binary consensus in an n-process system (see
Fig. 1), the set of facets of the input complex is

{{(1, v1), . . . , (n, vn)} : vi ∈ {0, 1}}.

This complex is homeomorphic to the (n − 1)-dimensional sphere Sn−1. For the
same example, the output complex is composed of two disjoints (n − 1)-facets,
τ0 and τ1:

τ0 = {(1, 0), . . . , (n, 0)}, and τ1 = {(1, 1), . . . , (n, 1)}.
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Fig. 1. Impact of the information flow graph on the protocol complex for binary con-
sensus with three processes. Labels next to vertices are input and output values, in
the input and output complexes respectively, or views in protocol complexes. A view
“xyz” labeling a vertex means that the process corresponding to this vertex knows the
input values x from process ◦, y from process •, and z from process •. A question mark
in a label indicates that the process does not know the corresponding input value.

One can rephrase the operational definition (I,O, F ) of task in Sect. 2.2 in
the framework of combinatorial topology as follows: a task (I,O,Δ) is described
by a carrier map Δ from I to O. Note that, in absence of failures and asynchrony,
a task can be described merely by a mapping Δ from the facets of I to subsets
of facets of O. For a given facet σ = {(1, v1), . . . , (n, vn)} ∈ I, the set of facets
of Δ(σ) is defined by

{(1, v′
1), . . . , (n, v′

n)} ∈ Δ(σ) ⇐⇒ (v′
1, . . . , v

′
n) ∈ F (v1, . . . , vn). (1)

The carrier map Δ of binary consensus maps every input facet σ containing
both input values 0 and 1 to the two (n − 1)-facets τ0 and τ1, and maps each
(n−1)-facet σb with a unique input value b ∈ {0, 1} to the output (n−1)-facet τb.

In any distributed computing model, in each point in time during the exe-
cution of an algorithm, one can define a complex whose vertices are pairs (p,w)
where w is the state of process p, i.e., its view of the computation. A set of
vertices with distinct process names forms a protocol simplex if there is a pro-
tocol execution where those processes collect those views. All possible protocol
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simplexes make up the protocol complex. The following fact is a direct conse-
quence of the definition of the information flow graph.

Fact 1. Given an information flow graph G, and a task (I,O,Δ), the protocol
complex P associated with G and I is the complex whose facet are all the sets of
the form {(1, w1), . . . , (n,wn)} for which there exists a facet {(1, v1), . . . , (n, vn)}
of I such that, for i = 1, . . . , n, wi = {(j, vj) : i = j or (j, i) ∈ E(G)}. We define
a carrier map Ξ : I → P which carries each facet of I to a single facet of P,
satisfying

Ξ({(1, v1), . . . , (n, vn)}) = {(1, w1), . . . , (n,wn)}.

An important observation is that the facets of the input complex are pre-
served in the protocol complex, i.e., there is a one-to-one correspondence between
the facets of these two complexes. This is because the computation is syn-
chronous and failure-free, from which it follows that each input configuration
yields a single configuration in the protocol complex.

Example. Figure 1 displays two illustrations of the protocol complex for binary
consensus, for two different information flow graphs on three processes: the con-
sistently directed cycle C3, and the directed star S3 whose center has two out-
neighbors. Process names are omitted, and instead are represented by the colors
of the circles (◦, •, and •). The number of vertices in the protocol complexes
depends on the information flow graph.

Let us focus first on process ◦. A vertex (◦, v) in the input complex yields two
vertices in the protocol complex for C3, depending on the input value received
from process •. Instead, a vertex (◦, v) in the input complex yields a single vertex
in the protocol complex for S3 because, according to this information flow graph,
process ◦ receives no inputs from other processes. On the other hand, every vertex
(•, v) in the input complex yields two vertices in both protocol complexes. This
is because, in both information flow graphs, C3 and S3, process • receives the
input from process ◦. Similarly, every vertex (•, v) in the input complex yields
two vertices in both protocol complexes, because in both information flow graphs
process • receives the input from another process, from process • in C3 and from
process ◦ in S3.

3.3 Topological Characterization of Task Solvability

So far, we have proceeded in two parallel paths. The first, operational path,
was about algorithms in the KNOW-ALL model, where information propagates
between processes according to some information flow pattern G. The second,
topological path, relates the inputs of processes defined by an input complex,
their views modeled in the protocol complex, and their desired outputs, appear-
ing in the output complex. The connections between these paths is established
in the next fact, which directly follows from the definitions.

Fact 2. A task (I,O, F ) is solvable in the KNOW-ALL model with information
flow graph G if and only if, for the topological formulation (I,O,Δ) of the task,
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there exists a chromatic simplicial map δ : P → O satisfying δ(Ξ(σ)) ∈ Δ(σ)
for every facet σ ∈ I, where P is the protocol complex associated with G and I.

The simplicial map δ : P → O is called decision map. If δ(i, wi) = (i, v′
i),

then the corresponding algorithm specifies that process i with view wi outputs
f(i, wi) = v′

i.

Example. Let us consider Fig. 1 again. The protocol complex for S3 is discon-
nected, while for C3 it is 0-connected (i.e., path connected). The presence of a
universal node ◦ (dominating all other nodes) in the information flow graph S3

results in all processes becoming aware of the input of the process correspond-
ing to that node. Therefore, the protocol complex for S3 is split into two sub-
complexes, the one corresponding to process ◦ with input 0, and the other cor-
responding to process ◦ with input 1. Similarly, the protocol complex for the
complete graph K3 with bidirectional edges is entirely disconnected, i.e., com-
posed of eight pairwise non-intersecting facets, because there is no uncertainty
under the complete information flow graph, as every process receives the input
of every other process.

Since the protocol complex for S3 is disconnected, consensus is solvable in
this graph. To see why, consider δ that maps every vertex (p, 0∗∗) of the protocol
complex to vertex (p, 0) of the output complex, and every vertex (p, 1 ∗ ∗) of the
protocol complex to vertex (p, 1) of the output complex. This is a chromatic
simplicial map, and thus, by Fact 2 consensus is solvable. In contrast, there is
no such mapping δ : P → O for the protocol complex P corresponding to C3,
because P is 0-connected. Let us consider the path ((◦, 1?1), (•, ?01), (•, 00?)) in
the protocol complex for C3. Vertex (◦, 1?1) must be mapped to vertex (◦, 1)
in the output complex because (◦, 1?1) belongs to a facet with all processes
having input value 1. Similarly, vertex (•, 00?) must be mapped to vertex (•, 0)
because (◦, 00?) belongs to a facet with all processes having input value 0. If a
mapping δ maps (•, ?01) to (•, 1), then the simplex {(•, ?01), (•, 00?)} is mapped
to {(•, 1), (•, 0)}, which is not a simplex of O. The same occurs if (•, ?01) is
mapped to (•, 0), as {(◦, 1), (•, 0)} is not a simplex of O. Thus, there is no
simplicial map δ, and, by Fact 2, consensus is not solvable. We generalize this
result to every information flow graph G, and to k-set agreement, for every k ≥ 1.

4 Applications to Agreement Tasks

In this section, we illustrate the power of using topology for analyzing the KNOW-
ALL model, and its implications on standard models such as LOCAL and dynamic
networks. First, we establish a connection between the structure of the informa-
tion flow graph resulting from some instance of the KNOW-ALL model on the
one hand, and the topology of the protocol complex induced by this instance on
the other hand. Recall that the domination number γ(G) of a graph G is the
number of vertices in a smallest dominating set for G, where, in directed graphs,
a vertex u dominates a vertex v if (u, v) ∈ E(G).
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Theorem 1. Let H be an instance of the KNOW-ALL model, and G be the infor-
mation flow graph associated with it. If γ(G) > k, then the protocol complex P
for H is at least (k − 1)-connected.

Recall that, in the k-set agreement task, the processes must agree on at
most k of the input values. In the context of asynchronous shared memory
computing, the level of connectivity of the protocol complex is closely related
to the ability to solve k-set agreement [26,27,30]. Using a similar connection,
Theorem 1 implies the following.

Theorem 2. Let H be an instance of the KNOW-ALL model, and G be the
information flow graph associated with it. If γ(G) > k, then k-set agreement is
not solvable in H.

To establish Theorem 2, we show that if the protocol complex P for H is
at least (k − 1)-connected, then k-set agreement is not solvable in H, and then
we apply Theorem 1. Observe that the converse of Theorem 2 also holds, i.e.,
if γ(G) ≤ k then k-set agreement is solvable in H. The algorithm performs as
follows. Let D be a dominating set for G, with |D| ≤ k. Since D is dominating,
every process p receives the input value of at least one process in D, and can
decide on such a value as an output. In total, at most |D| ≤ k values are decided.

Theorem 2 implies that, in particular, consensus solvability requires the infor-
mation flow graph to contain a universal node, i.e., a node that dominates all the
other nodes. This theorem has implications for more traditional computational
models, including the LOCAL model. Given a graph H, and r ≥ 1, let Hr denote
the graph on the same set of nodes as H, but in which two nodes are adjacent
if their distance in H is at most r.

Corollary 1. In the LOCAL model, solving k-set agreement in a network H
requires at least r rounds, where r is the smallest integer such that γ(Hr) ≤ k.

Theorem 2 also applies to dynamic networks, in which edges appear and
disappear over time. A dynamic network is a sequence G = (Gt)t≥1 of graphs on
the same set of nodes V , where Gt is the actual network at round t. A set D ⊆ V
is a temporal dominating set for (Gt)1≤t≤r if, for every node v /∈ D, there is a
temporal path from some node u ∈ D to v, i.e., a sequence (u0, . . . , us) of nodes
with u0 = u and us = v, and a sequence 1 ≤ t0 < t1 < · · · < ts ≤ r of rounds
such that {ui, ui+1} ∈ E(Gti) for every i = 0, . . . , s − 1.

Corollary 2. Solving k-set agreement in dynamic network G = (Gt)t≥1 requires
at least r rounds, where r is the smallest integer such that (Gt)1≤t≤r has a
temporal dominating set D with |D| ≤ k.

Finally, recall that, for ε ∈ [0, 1], binary ε-approximate agreement requires the
processes to output values that are not more than ε apart, under the condition
that if all the processes have the same input value v ∈ {0, 1}, then they all
should output v. Using topological arguments applied to the information flow
graph associated with the given instance H of the KNOW-ALL model, we show
the following.
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Theorem 3. Let H be an instance of the KNOW-ALL model. If consensus is
impossible under H, then, for every ε < 1

n−1 , ε-approximate agreement is also
not solvable under H. This bound is tight in the sense that there exists an
instance H of the KNOW-ALL model for which consensus is impossible, while
1

n−1 -approximate agreement is solvable.

The same way Theorem 2 has consequences on the complexity of solving k-
set agreement in concrete computational models such as the LOCAL model and
dynamic networks, Theorem 3 has similar consequences on the complexity of
solving approximate agreement in these latter models.

5 Conclusion and Further Work

We demonstrate that combinatorial topology is applicable to distributed network
computing. Of course, this is just a first step, and further work will require
incorporating features of every distributed network model, in order to capture
the specific characteristics of each of them. For instance, fully capturing the
popular LOCAL model requires removing the structure awareness assumption,
and studying the details of how the protocol complex evolves round after round.

Incorporating asynchrony and failures into network computing, from a topo-
logical perspective, requires understanding the topological impact of simulta-
neously stretching the facets, introducing holes resulting from t-resiliency, and
introducing scissor cuts resulting from the presence of a network. This is defi-
nitely technically challenging, but our paper shows that there are no conceptual
obstacles preventing us from addressing these questions.
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Abstract. An edge-labeled graph is said to have Sense of Direction
if the labeling satisfies a particular set of global consistency properties.
When the graph represents a system of communicating entities, the pres-
ence of sense of direction has been shown to have a strong impact on
computability and complexity.

Since its introduction, sense of direction has been investigated from
various view points, revealing interesting graph theoretical properties and
providing useful tools for the design of efficient distributed algorithms;
furthermore, its presence allows to solve some otherwise unsolvable prob-
lems.

Far from being exhausted, the study of sense of direction and other
consistency properties of edge-labeled graphs is still filled with interest-
ing questions, open problems, and important new research directions.

In this paper, we revisit sense of direction reviewing the main results in
the context of message passing point-to-point models, showing its impact
in the more recent mobile agents models, and indicating directions for
future study.

1 Introduction

Sense of direction (SD) is a property of edge-labeled graphs that plays a special
role in distributed computing. In fact, its presence has been shown to have a
strong impact on computability of problems, as well as on their complexity. The
power of sense of direction has been originally observed in message passing point-
to-point systems and, more recently, in systems of mobile agents operating and
moving on networks.

Given a simple undirected graph G = (V,E) and a set Σ of labels, let λx

be a function which associates a label to each edge incident on node x ∈ V .
Let (G,λ) be the edge-labeled graph where λ = {λx}. In a distributed system
with point-to-point communication, G would correspond to the communication
topology of the system, and Σ to the set of possible communication link labels,
called port numbers.
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The choice of an appropriate labeling λ = {λx : x ∈ V } is very impor-
tant, because it can be exploited when designing algorithms or can even have an
impact on the solvability of problems. One of the basic properties of λ, under-
lying all point-to-point models, is Local Orientation: having distinct labels for
distinct edges incident on the same node; another is Edge Symmetry, when the
label λy(y, x) can be derived from λx(x, y) (this is the case, for example, of the
left/right labeling of a ring or the “compass” labeling in a torus); a particular
edge-symmetric labeling is Coloring, where λx(x, y) = λy(y, x) (this is the case,
for example, of the “dimensional” labeling in a hypercube).

Fig. 1. Edge-labeled graphs.

Special edge labelings for specific topologies have been often exploited in the
design of distributed algorithms. This has been the case, for example, of leader
election in complete graphs, in hypercubes, in chordal rings, etc. (see [21] and
references therein). In each of those topologies, the specific edge labeling played
a crucial role; what all these different techniques had in common, if anything,
was however quite elusive.

It turns out that there is indeed a particular property at the core of all those
results and a commonality among all those labeled graphs: the fact that, from
a given starting node in the graph, by following any two “labeled walks”, it is
possible to determine whether the walks terminate in the same node or not. Even
more interestingly, the characteristics of those specific labelings, which seemed
to be tightly linked to the topologies where they were defined, can be easily
generalized to construct labelings with this property in any arbitrary topology.
This observation gave rise to the formal definition of Sense of Direction [20].

In this paper, we revisit sense of direction, reviewing what is known in the
context of message passing distributed models, showing its impact in the more
recent mobile agents models, and indicating directions for future study.
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2 Definitions

2.1 Labeled Graphs

Let G = (V,E) be a simple undirected graph; let E(x) denote the set of edges
incident to node x ∈ V , and d(x) = |E(x)| the degree of x.

Given G = (V,E) and a set Σ of labels, a local orientation of x ∈ V is any
injective function λx : E(x) → Σ which associates a distinct label to each edge.
A set λ = {λx : x ∈ V } of local orientations will be called a labeling of G, and by
(G,λ) we shall denote the corresponding (edge-)labeled graph. In the following,
we indicate with n and m, respectively, the number of nodes and edges of G.

A labeling λ is minimal if it uses ΔG = max{d(x) : x ∈ V } labels. It is
symmetric if there exists a bijection ψ : Σ → Σ such that for each (x, y) ∈
E, λy((y, x)) = ψ(λx((x, y))); ψ will be called the edge-symmetry function. A
symmetric labeling is a coloring if the edge symmetry function is the Identity.

A walk π in G is a sequence of edges in which the endpoint of one edge is the
starting point of the next edge. Let P [x] denote the set of all the non empty walks
starting from x ∈ V , P [x, y] the set of walks starting from x ∈ V and ending
in y ∈ V . Let Λx : P [x] → Σ+ and Λ = {Λx : x ∈ V } denote the extension of
λx and λ, respectively, from edges to walks; let Λ[x] = {Λx(π) : π ∈ P [x]}, and
Λ[x, y] = {Λx(π) : π ∈ P [x, y]}.

2.2 Sense of Direction

Sense of Direction is defined by the existence of a consistent coding and a con-
sistent decoding function [20].

Definition 1. Given (G,λ), a consistent coding function (or, simply, coding
function) c for λ is any function with domain Σ+ such that walks originating
from the same node are mapped to the same value (called local name) if and only
if they end in the same node; that is,

∀x, y, z ∈ V,∀π1 ∈ P [x, y], π2 ∈ P [x, z], c(Λx(π1)) = c(Λx(π2)) ⇔ y = z.

A system (G,λ), has weak sense of direction (WSD) iff there exists a coding
function c for λ. We shall denote by N the codomain of c.

Definition 2. Given a coding function c, a decoding function d for c is any
function d : Σ × N → N such that ∀x, y, z ∈ V , with (x, y) ∈ E(x) and π ∈
P [y, z]:

d(λx((x, y)), c(Λy(π)) = c(λx((x, y)) · Λy(π)),

where · is the concatenation operator.

A system (G,λ), has a sense of direction (SD) iff there exists both a coding
function c for λ and a decoding function d for c. We shall also say that (c,d) is
a sense of direction in (G,λ).

Note that SD is a stronger notion than WSD; in fact, it is easy to construct
labeled graphs with WSD but without SD.
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Example 1: Chordal SD. Given any graph G = (V,E), with |V | = n, a
chordal labeling can be obtained by fixing an arbitrary cyclic ordering of the
nodes and labeling an edge (x, y) by the “distance” (modulo n) between y and
x in the predefined ordering (see Fig. 2a). In this case the set of labels Σ is the
set of positive integers modulo n.

With this labeling, (G,λ) has sense of direction (called chordal). The coding
function c : Σ+ → Σ is the function that maps a sequence of labels into their
sum modulo n: for any sequence of labels a1, a2, . . . ak with ai ∈ Σ, c(a1, . . . ak) =
∑k

i=1 ai mod n. The corresponding decoding function is defined as follows: ∀a, b ∈
Σ, d(a, b) = (a + b)mod n. Note that this labeling is edge symmetric; in fact,
λx(x, y) = n − λy(y, x).

Fig. 2. (a) Chordal of SD; (b) Neighbouring SD.

Example 2: Neighboring SD. A graph (G,λ) has neighboring sense of direc-
tion if λ is defined as follows: ∀(x, y) ∈ E[x], (z, w) ∈ E[z], λx(x, y) =
λz(z, w) iff y = w. That is, in a neighboring sense of direction, all the links
ending in the same node are labeled with the same label (see Fig. 2b).

Let Σ be the set of labels; the coding function c : Σ+ → Σ is the following:
for any sequence of labels a1, a2, . . . ak with ai ∈ Σ, c(a1, . . . ak) = ak. The
corresponding decoding function is the following: ∀a, b ∈ Σ, d(a, b) = b. Note
that this labeling is not edge symmetric.

A property of neighboring sense of direction that makes it particularly strong
and sets it apart from most classes of sense of directions is that, when it is present
in an anonymous network (i.e., where nodes are totally indistinguishable), it
always destroys anonymity.

3 Sense of Direction: Properties

The study of the many interesting properties of edge-labeled graphs with sense
of direction is fascinating on its own, even without considering implications on
computability and complexity in distributed computing.
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3.1 Symmetries and Minimal Sense of Direction in Regular Graphs

A minimal SD in a d-regular graph is a SD that uses only d labels. An inter-
esting question is to determine under what conditions a d-regular graph admits
a minimal SD.

Before describing the main results, we need to introduce some symmetry
notions. A graph G is vertex transitive if, ∀x, y ∈ V , there exists an automor-
phism ρ such that (ρ(x), ρ(y)) ∈ E iff (x, y) ∈ E. Consider now a labeled graph
(G,λ).

The surrounding N(u) of a node u in (G,λ) is a labeled graph isomorphic to
(G,λ) through a labeled graph isomorphism χ, together with the image of node
u, χ(u) [22]. A graph is surrounding symmetric if every node has the same sur-
rounding. Intuitively, surrounding symmetry is a generalization to edge-labeled
graphs, of the well known notion of vertex transitivity. The hypercube of Fig. 1(b)
is both vertex transitive and surrounding symmetric; the graph of Fig. 3, instead,
is vertex transitive but there exists no labeling that makes it surrounding sym-
metric.

Fig. 3. A vertex symmetric graph G. The labeled graph (G, λ) is not surrounding
symmetric.

Fig. 4. Graphs that do not admit a Minimal SD.

Vertex transitivity of G is necessary for minimal SD in (G,λ) but it is not
sufficient [15]. Figure 4 shows two regular graphs: the one on the left is not vertex
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symmetric, the one on the right is, but neither graph admits a minimal SD, i.e.,
any SD requires at least fours labels in both graphs.

A regular graph with edge symmetric labeling has a minimal SD iff it is
surrounding symmetric [22]. It can be shown that a labeled graph (G,λ) is
surrounding symmetric iff it is a Cayley graph with a Cayley labeling1. It then
follows that regular graphs with symmetric labeling admitting minimal sense of
direction are all and only Cayley graphs (with Cayley labeling) [22]. This result
holds also for directed graphs [4].

Fig. 5. Minimal SD: (a) with edge symmetry; (b) without edge symmetry

When the labeling is not edge symmetric, the characterization is more com-
plex: a regular labeled graph (G,λ) has a minimal SD iff G is the graph of a
semigroup S which is the direct product of a group and a (particular type of
semigroup called) left-zero semigroup, and λ corresponds to the generators of
S. The graph of a semigroup is the graph where nodes correspond to the ele-
ments of the semigroup and the edges correspond to the action of the generators
[26]. Examples of minimal sense of directions in edge symmetric and non edge
symmetric graphs are shown in Fig. 5.

In [30] the class of d-regular graphs that admit a minimal Chordal SD has
been studied, showing that this class is equivalent to that of circulant graphs,
and presenting a polynomial-time algorithm for recognizing it, when the degree
d is fixed.

1 A Cayley graph is a graph where nodes correspond to the elements of a group
and edges correspond to the action of the generators; a Cayley graph has a Cayley
labeling when labels on the edges correspond to the generators of the group.
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3.2 Minimum Sense of Direction

Let ΔG be the maximum degree of G. When a minimal sense of direction does
not exist in G, a natural question is to design one that uses the minimum possible
number of labels.

It was conjectures that ΔG + 1 labels might be always sufficient. However,
this is not the case; in fact, for sufficiently large n, there are graphs requir-
ing ΔG + Ω(n log log n/logn) labels for WSD, and this is true also for regular
graphs. Moreover Ω(ΔG log log ΔG) labels are necessary in any graph G, and
Ω(d

√
log log d) in regular graphs of degree d [6,7].

3.3 Testing for Sense of Direction

Given a labeled graph (G,λ), how can we verify (decide) whether there is sense
of direction? In [5], this question has been answered by showing that there exist
polynomial algorithms for testing both WSD and SD.

The time complexity of the algorithm for testing WSD is O(n4.752 log n). On
the other hand, the algorithm for testing SD is significantly more complicated
and its time complexity is O(n14.256 log n). Deciding WSD can be done efficiently
in parallel. In fact, considering as model of computation a CRCW PRAM, WSD
is in AC1 for all graphs using n6 processors. Unfortunately, this is not the case
for SD which is in AC1 only for some classes of graphs.

A consequence of these results is a polynomial time algorithm to test whether
a given labeled graph is a Cayley graph (with a Cayley labeling).

A related question is the following: given a graph G and a coding function
c: does G admit a sense of direction that uses c? In [10] it has been shown that
the problem is NP-complete even for simple coding functions; this question has
been answered finding interesting connections between weak sense of direction
and graph embeddings.

3.4 Topological Constraints for Sense of Direction

Since the algorithm for testing sense of direction has a high polynomial complex-
ity, an interesting research direction is the study of how to exploit the topological
properties of G to find simpler testing algorithms.

The interplay between the topology of the system and the properties that
a labeling must satisfy for having sense of direction has been investigated in
[25] where a characterization of graph classes in which every labeling with basic
properties (local orientation, edge-symmetric, coloring) guarantees the existence
of sense of direction has been provided. Not surprisingly, an arbitrary labeling
suffices for having sense of direction only in few trivial graphs; the simultaneous
presence of local orientation and edge symmetry guarantees sense of direction
in a larger class of graphs which includes trees and rings; finally, a coloring
suffices for having sense of direction in an even larger class of graphs which
includes particular types of “spiked rings”. As a consequence, testing for sense
of direction becomes very easy for graphs in those classes; for example, if G is a
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tree or a ring, the test consists in checking whether λ is symmetric and has local
orientation which can be done in O(n).

4 Sense of Direction in Message Passing Systems

4.1 Impact on Complexity

As mentioned in the introduction, some specific labelings in specific topologies,
subsequently identified as particular classes of sense of directions, have been
exploited to reduce the message complexity of solutions for Leader Election.

For example, in complete graphs with chordal SD the complexity of election
has been reduced from Θ(n log n) with arbitrary labelings to O(n) [31,35]; in
chordal rings with chordal SD various improvements have been achieved depend-
ing on the chord structures [2,33,37]; in hypercubes, the traditional dimensional
sense of direction has been used to devise O(n) algorithms [18,34,36]. The same
achievement has been later obtained also using any SD [12]. The Wake-Up

problems, on the other hand, has been shown to be insensitive to SD, at least
in some topologies [14].

The most salient results on the impact of sense of direction hold for universal
protocols (i.e., protocols for arbitrary topologies, without any additional topo-
logical information) [19]. Broadcast and Depth-first Traversal can be
performed with Θ(n) messages with any sense of direction even if the system is
anonymous, a dramatic improvement on the Ω(m) lower bound for these prob-
lems for arbitrary labelings; note that this lower bound holds even if the entities
have distinct identities.

Similarly strong improvement can be achieved for the problems of Leader
Election, Spanning Tree Construction, and Minimum Finding, which
can be solved with Θ(n log n) messages with any sense of direction, improving
on the Ω(m + n log n) lower bound for these problems in the case of arbitrary
labelings.

4.2 Impact on Computability

A fundamental area of distributed computing is the study of computability in
anonymous systems; i.e., the study of what distributed problems can be solved
when nodes do not have distinct identifiers (e.g., [1,38]). Clearly, which problems
can be solved depends on many factors including the properties of the system
as well as the amount and type of knowledge available to the nodes.

The computational power of sense of direction in anonymous systems has
been studied in [24] focusing on different levels of a-priori structural knowledge:
(1) no information; (2) upper bound on network size; (3) knowledge of network
size; (4) topological awareness; and (5) complete topological knowledge, the high-
est knowledge level2.
2 Topological awareness is the knowledge of the adjacency matrix of G. Complete topo-

logical awareness by node x includes knowledge of x’s own position in the adjacency
matrix representation.
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The characterization of what is computable in presence of SD, depending
on the level of structural information available to the entities, has been shown
to be linked to the notion of surrounding, introduced in [22] and already men-
tioned in Sect. 3. The surrounding of a node has been shown to be the maximum
information that an entity can obtain by message transmissions in anonymous
distributed systems with sense of direction; in particular, what is computable
in these systems depends on the number of distinct surroundings, as well as on
their multiplicity [24].

The main impact of the presence of sense of direction in a graph is that with
weak sense of direction, no additional knowledge is needed. More precisely, given
an arbitrary graph G and any structural knowledge K, if a problem P is solvable
in G with knowledge K, then P is solvable in (G,λ) where λ is a weak sense of
direction [24].

This result is based on the fact that, in a labeled graph with weak sense of
direction (and without any other information except the coding function), every
node can construct its surrounding even if the system is anonymous (and, thus,
no leader can be elected). Note that, with an arbitrary labeling, the problem of
constructing the surrounding of a node in anonymous networks is unsolvable.

A powerful implication of this result is that, with weak sense of direction, it
is possible to do shortest path routing in anonymous networks, i.e., even if there
are no global identifiers for neither source nor destination (nor for any other
node in the graph).

5 Sense of Direction in Systems of Mobile Entities

Appropriate edge labelings have a positive impact also in systems of mobile enti-
ties, called agents, moving on graphs. Special labelings have been employed, for
example, for Exploration [27,28], Graph Decontamination [16,17], Graph

Search [8], Rendezvous [3,29], Black Hole Search [9,13]. However, sense
of direction in this context is largely unexplored, with the exception of two
results, described in this Section, that provide a significant evidence of its impact.

5.1 Mobile Agents

A variety of mobile agents models have been defined (for a recent survey, see
[11]). In the following we briefly describe the model used in the next two sections.
Let (G,λ) be an anonymous edge-labeled network; that is, the nodes of G
are unlabeled and thus undistinguishable. A set of autonomous mobile agents
operates in (G,λ), each starting from a homebase. The agents have computing
capabilities and bounded storage, execute the same protocol, and can move from
node to neighbouring node in G. After moving from u to v, an agent has available
the label λu(u, v) of the edge from which it departed, as well as the label λv(v, u)
of the edge from which it arrived.

The agents are asynchronous, in the sense that every action they perform
(computing, moving, etc.) takes a finite but otherwise unpredictable amount of
time, and they are anonymous, thus undistinguishable from each other.
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Each node is provided with a whiteboard, a local storage where agents can
write and read (and erase) information; access to a whiteboard is done in fair
mutual exclusion. Initially, all whiteboards contain the labels of the incident
ports and indicate whether the node is a homebase of some agent.

The behavior of an agent can be described as follows: The agent computes
based on its current state and on the content of the witheboard of the node
currently visited. The computation is undivisible and, upon completion, the
agent changes its state and then possibly departs through an exit port determined
during the computation.

5.2 Black Hole Search

Black Hole Search in arbitrary topologies, and in presence of SD, has been
studied in [13]. The results are briefly summarized in this Section.

The Problem and the Setting. A black hole (Bh) is a node that contains
a stationary process that destroys any agent arriving at that node, leaving no
observable trace of disappearance to the other agents. The location of the black
hole is unknown. The Black Hole Search (Bhs) problem consists of having
a team of agents determining the location of the black hole. More precisely, Bhs

is solved if at least one agent survives and all surviving agents know the location
of the Bh. The main complexity measures of a solution P are: the number of
agents used by P (size) and total number of moves performed by the agents
(cost).

The problem has been studied in different topologies under a variety
of assumptions on the activation scheduler, the communication mechanisms
employed by the agents, the presence of a single or multiple Bh, etc. For a
recent survey, see [32].

Consider an arbitrary 2-connected graph3 G with a team of agents starting
on the same homebase under an asynchronous activation scheduler. Let Δ, the
maximum degree of G, and n be known to the agents4. Three settings with
availability of increasing information have been considered. Topological igno-
rance: when no additional topological information is available; Sense of direc-
tion: when a SD (c,d) is available; Complete topological knowledge: when the
agents have: knowledge of (G,λ); correspondence between port labels and link
labels of (G,λ); location of their homebase in (G,λ).

The Results. With topological ignorance Δ + 1 agents are necessary and they
cannot avoid performing Ω(n2) moves in the worst case. An optimal algorithm
exists that matches both these bounds.

With topological ignorance but with sense of direction: the size of the solution
can be reduced: two agents suffice to locate the black hole; however, Ω(n2) moves
are still necessary in the worst case.

3 If the graph is not 2-connected, the problem is unsolvable.
4 If they are not known, the problem is unsolvable.
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Finally, with complete topological knowledge: also the cost can be reduced
and the problem can be solved with Θ(n log n) moves.

The impact of SD: Danger Awareness. SD is used by the agents to create a
form of cautiousness that allows a small team of two agents to solve the problem.

First of all, observe that any Bhs solution by mobile agents is based on a
cooperative exploration of the graph where, unavoidably, some agent(s) will be
trapped into the Bh. The exploration is performed by having the agents visit
the nodes to verify their status (possibly remaining trapped) following some
traversal strategy.

If there is SD, two agents (a and b) can devise some form of coordination
to visit the nodes. The exploration of a node consists in the traversal of all its
incident edges and it is called expansion. The crucial and difficult task during
an expansion is to prevent both agents entering the Bh from different ports. In
particular, let u be the node currently being expanded. To expand u, agent a
successively traverses the incident unexplored links. However, if some neighbour-
ing node v is currently under exploration by the other agent (from a different
link), the link (u, v) should be avoided because, if v is the black hole, it would
kill both agents. Without SD this avoidance task is impossible. With SD, on
the other hand, coding and decoding functions can be used to identify the ports
leading to the node currently under exploration by the other agent (and thus,
potentially dangerous). If a dangerous node v is identified by agent a, from this
moment on, until told otherwise, a will avoid entering v. The information that
v is dangerous can be modified only by the other agent b. If v was not the Bh, b
will complete the exploration of u and it will reach a following it in its traversal.
Once b reaches the node being expanded by a, it leaves a message on the white-
board for a notifying it of its presence (and, thus, that v is no longer dangerous),
and joins in the expansion.

It is very interesting to note that SD can be exploited to drastically reduce
the size of the team of agents, but the solution incurs in the same O(n2) cost.
Indeed, this cost has been shown to be also a lower bound in the worst case, by
proving that there exists a SD with which any two agents algorithm for locating
a black hole in arbitrary networks must perform Ω(n2) moves in the worst-
case. The cost can instead be reduced to Θ(n log n) if there is full topological
awareness, indicating that, in the case of Bhs, full topological awareness has
stronger implication than SD on the complexity of the problem.

5.3 Leader Election and Rendezvous

Leader Election and Rendezvous in arbitrary topologies, and in presence of
SD, have been studied in [3]. The results are briefly summarized in this Section.

The Problem and the Setting. A group of k anonymous mobile agents oper-
ates asynchronously on an anonymous graph G. The only difference with the
setting considered in Sect. 5.2 is that here the agents start from different home-
bases. Initially, all agents have a predefined state variable set to available. The
Leader Election problem consists of having one agent terminate with its
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state variable set to leader, while the others terminate setting theirs to follower.
Rendezvous consists of having all the agents gather at the same node (not nec-
essarily chosen in advance) and terminate there. In this setting, the two problems
are equivalent; that is, any solution for one can be easily modified to solve the
other, so the rest of the section focuses on election.

The Results. The results depend on the relationship between k, the number
of agents, and n, the number of nodes. If (G,λ) has an arbitrary edge labelings,
the rendezvous problem is unsolvable (even if restricted to the class of inputs
for which gcd(k, n) = 1). If λ is a sense of direction, the election problem is still
unsolvable when gcd(k, n) = d > 1. On the other hand, it becomes solvable if
gcd(k, n) = 1, and the result holds for any sense of direction. In other words,
sense of direction overcomes anonymity if gcd(k, n) = 1.

The Impact of SD: Overcoming Anonymity. The protocol uses a special
mechanism, dynamic name mutation, that allows the anonymous agents in the
anonymous network to distinguish agents and nodes in spite of anonymity.

In presence of SD, even in a totally anonymous system, an agent can locally
(i.e., privately) assign a unique “name” to itself and to the other agents. However,
since all agents are behaviorally identical and start with the same initial values,
there is no guarantee that such a name would be unique. In fact, it is possible
that they all choose the same name for themselves, creating an homonymous
universe. A mechanisms, called dynamic name mutation, is devised exploiting
the presence of sense of direction, to allow the agents to operate in spite of these
limitations, including homonimity.

In this mechanism, initially every agent chooses its private name based on the
labels of the edges incident to its homebase. The private name is then modified
whenever the agent moves on the graph. The name will be always relative to
the current position of the agent. The main difficulty is to modify the names
in such a way that, at any location v, two names will be different if and only
if they refer to different agents. This will ensure that messages written on v’s
whiteboard by different agents will have different signatures. Another related
difficulty is to ensure that an agent is capable of recognizing as its own any
message it has written in previous visits. These difficulties are overcome by the
use of the coding and decoding functions (c,d) by the mobile agents.

Strategy DNM

(1) To determine its initial name, an agent a with homebase u, chooses an
arbitrary neighboring node v ∈ E(u) and determines the label λv(v, u) (e.g.,
by moving to v and coming back). Then, its name is MyN := c(λu(u, v) ·
λv(v, u)).

(2) When an agent with name MyN at node u moves to the neighboring node
v, it modifies its name as follows: MyN := d(λv(v, u),MyN).

The election algorithm proceeds in a sequence of electoral phases with the
anonymous agents following the dynamic name mutation mechanism. The agents
that are candidates in each phase perform: (1) territory acquisition to acquire as
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many nodes as possible, and (2) a sequence of partitioning and pairing rounds
to eliminate as many agents as possible so to decrease the number of candidates.
At the end of a phase, at least half of the candidate agents which entered the
phase become passive, and the number of those which will start the next phase
is still co-prime with n. The total number of moves by the agents during the
execution of the protocol is O(kn).

6 Open Problems

Sense of direction is a global consistency property of local edge-labellings that
has been shown to have an impact in distributed computing. Some of its benefits
are due to the fact that it helps overcoming anonymity, breaking symmetries,
and reducing redundancy of messages.

The study of SD has brought to light interesting graph theoretic properties
of edge-labeled graphs, some of which can be seen as generalizations, to the
edge-labeled realm, of very well known graph properties (for example, with the
notion of labeled isomorphisms, surrounding symmetry is the labeled-analogous
of vertex transitivity). Only the surface of this research area has been scratched,
and a systematic study of labeled graph classes would be a very interesting and
important research direction.

SD is just one of the several global consistency properties of edge-labeled
graphs that could be defined. Only very few other label consistencies have been
studied: the weaker labelings with local orientation, edge symmetry, edge color-
ing; backward sense of direction, where local orientation is not necessary. The
study of other classes of labelings carrying some forms of consistency and of their
computational relationships is wide open.

About its usefulness in message-passing distributed systems, by definition SD
can exist only with point-to-point communications. However, in many message-
passing distributed systems, communication is achieved through broadcast prim-
itives where specific recipients cannot be selected (e.g., wireless networks, optical
networks, ...). The natural question is whether a property analogous to SD can
exist in such systems. The first steps in such direction are the results on a
type of global consistency called Backward SD, which can exist in broadcast-
communication models and has been shown to be computationally equivalent to
SD [23]. Apart from this, nothing is known.

The study of SD in mobile agents models is still largely unexplored. We
have seen that it allows to overcome anonymity providing a private consistent
naming scheme in a totally anonymous environment [3], and that it facilitates
cooperation between agents in the case of the black hole search problem [13].
Nothing else is known and, in particular, no results exist where SD is shown to
be useful to decrease the complexity of solutions in mobile agents’ settings.

Another environment where sense of direction has never been studied is the
one of time varying graphs, which are now intensively investigated from many
perspectives. How can a SD be maintained in a network that changes in time?
How can it be exploited in the design of algorithms? The investigation of its
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impact in dynamic environments (whether in message passing systems or in
mobile agents settings) is a very interesting research avenue.
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Abstract. Many graph problems are locally checkable: a solution is
globally feasible if it looks valid in all constant-radius neighborhoods.
This idea is formalized in the concept of locally checkable labelings (LCLs),
introduced by Naor and Stockmeyer (1995). Recently, Chang et al. (2016)
showed that in bounded-degree graphs, every LCL problem belongs to one
of the following classes:

– “Easy”: solvable in O(log∗ n) rounds with both deterministic and
randomized distributed algorithms.

– “Hard”: requires at least Ω(log n) rounds with deterministic and
Ω(log log n) rounds with randomized distributed algorithms.

Hence for any parameterized LCL problem, when we move from local
problems towards global problems, there is some point at which com-
plexity suddenly jumps from easy to hard. For example, for vertex col-
oring in d-regular graphs it is now known that this jump is at precisely
d colors: coloring with d + 1 colors is easy, while coloring with d colors
is hard.

However, it is currently poorly understood where this jump takes place
when one looks at defective colorings. To study this question, we define
k-partial c-coloring as follows: nodes are labeled with numbers between
1 and c, and every node is incident to at least k properly colored edges.

It is known that 1-partial 2-coloring (a.k.a. weak 2-coloring) is easy
for any d ≥ 1. As our main result, we show that k-partial 2-coloring
becomes hard as soon as k ≥ 2, no matter how large a d we have.

We also show that this is fundamentally different from k-partial 3-
coloring: no matter which k ≥ 3 we choose, the problem is always hard
for d = k but it becomes easy when d � k. The same was known previ-
ously for partial c-coloring with c ≥ 4, but the case of c < 4 was open.

1 Introduction

There is a broad family of graph problems—so-called locally checkable labelings
or LCLs [20]—that exhibits the following dichotomy [9]: either the problem can
be solved in O(log∗ n) rounds with deterministic distributed algorithms, or any
such algorithm requires at least Ω(log n) rounds.
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Table 1. An overview of k-partial c-coloring in d-regular graphs: for each k and c, the
table shows what is the smallest d such that the problem is easy. For example, “4 . . . 5”
means that for these parameters the problem is known to be easy in 5-regular graphs,
while the case of 4-regular graphs is unknown. The new results are highlighted with a
frame. Our main contributions are the new lower bounds for c = 2 (Theorem 2) and
upper bounds for c = 3 (Theorem 1), which were previously completely open. We also
obtain stronger lower bounds for e.g. c = 3, k ≥ 5 (Theorem 3) and stronger upper
bounds for c = k ≥ 4 (Theorem 1).

(a) Before this work: (b) After this work:

c = 2 c = 3 c = 4 c = 5 c = 2 c = 3 c = 4 c = 5

k = 1: 1 1 1 1 1 1 1 1

2: 3 . . .∞ 2 2 2 ∞ 2 2 2

3: 4 . . .∞ 4 . . .∞ 3 3 ∞ 4 . . . 5 3 3

4: 5 . . .∞ 5 . . .∞ 5 . . . 7 4 ∞ 5 . . . 8 5 . . . 6 4

5: 6 . . .∞ 6 . . .∞ 6 . . . 9 6 . . . 9 ∞ 7 . . . 11 6 . . . 9 6 . . . 7

6: 7 . . .∞ 7 . . .∞ 7 . . . 11 7 . . . 11 ∞ 8 . . . 14 7 . . . 11 7 . . . 11

7: 8 . . .∞ 8 . . .∞ 8 . . . 13 8 . . . 13 ∞ 10 . . . 17 9 . . . 13 8 . . . 13

Hence, for any parameterized LCL problem there is a sudden jump in its
deterministic complexity, from O(log∗ n), which is a very slowly-growing function
of n, to Ω(log n), which can be already as much as the diameter of the network.
We will call these two cases “easy” and “hard” from now on.

If we look at d-regular graphs for constant d = O(1), then by prior work the
following thresholds are known [6,9,12,21]:

– Proper vertex coloring with c colors: easy for c ≥ d + 1, hard for c ≤ d.
– Proper edge coloring with c colors: easy for c ≥ 2d − 1, hard for c ≤ 2d − 2.

Here the easy cases are exactly those cases that can be solved with a greedy
algorithm that picks the colors of the nodes or edges one by one; a straightforward
parallelization of this idea then gives an O(log∗ n)-round distributed algorithm.

In this work, we study colorings that are not necessarily proper:

Definition 1. Let G = (V,E) be a graph. Mapping f : V → {1, 2, . . . , c} is a
k-partial c-coloring if for each node v ∈ V , there are at least k neighbors u of v
with f(u) �= f(v).

By prior work on defective colorings, it is known that e.g. k-partial 4-coloring
is hard if d = k ≥ 4 and easy if d � k. However, very little was known about
partial 2-coloring and 3-coloring. In this work we complete the picture and show
that the case of c = 2 is very different from the case c ≥ 3:

– k-partial 2-coloring for any k ≥ 2 is always hard, no matter how large a d we
have,
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– k-partial 3-coloring for any k ≥ 3 is hard for d = k but it becomes easy when
d � k.

We summarize our contributions in Table 1.

2 Preliminaries and Related Work

2.1 LOCAL Model of Computing

We work in the usual LOCAL model of distributed computing [18,22]. Each node
of the input graph G = (V,E) is a computer and each edge is a communication
link. Computation proceeds in rounds: in one round each node can exchange a
message (of any size) with each of its neighbors. Initially each node knows only
n = |V |, and when a node stops, it has to produce its own part of the output—in
our case, its own color from {1, 2, . . . , c}. We say that an algorithm runs in time
T if after T rounds all nodes stop and announce their local outputs.

When we study deterministic algorithms, we assume that each node is labeled
with a unique identifier from {1, 2, . . . , nO(1)}. When we study randomized algo-
rithms, we assume that each node has an unlimited source of random bits. For a
randomized algorithm, we require that it solves the problem correctly with high
probability, i.e., with probability at least 1 − n−c for an arbitrary, but predeter-
mined constant c > 0.

Note that if a problem is solvable in T rounds in the LOCAL model, it also
means that each node can produce its own part of the solution based on the
information that is available in its radius-T neighborhood.

2.2 LCL Problems and Gap Theorems

LCL problems were introduced by Naor and Stockmeyer [20] in 1995. In an LCL
problem, the input is a graph G = (V,E) of maximum degree Δ = O(1), possibly
labeled with some node labels from a constant-size set X. The task is to find
a labeling f : V → Y , for some constant-size set Y , that satisfies some local
constraints—a labeling is globally feasible if it is feasible in all constant-radius
neighborhoods.

For our purposes it is enough to note that k-partial c-coloring in d-regular
graphs is an LCL problem, for any choice of constants k, c, d = O(1). Hence also
everything that we know about LCLs applies here.

In the past four years, we have seen a lot of progress in understanding the
computational complexity of LCL problems in the LOCALmodel [1,2,6–10,13–16].
For us, the most relevant result is the gap theorem by Chang et al. [9]. They show
that every LCL problems belongs to one of the following classes, which we will here
informally call “easy” and “hard”

“Easy”: solvable in O(log∗ n) rounds with both deterministic and randomized
algorithms.

“Hard”: requires Ω(log n) rounds with deterministic algorithms and
Ω(log log n) rounds with randomized algorithms.
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In this work, our main goal is to understand for what values of k, c, d the
problem of finding k-partial c-coloring in d-regular graphs is “hard” and when it
is “easy”. While we will focus on the case of d-regular graphs, most of the results
directly generalize to the case of graphs of minimum degree d (and maximum
degree some constant Δ).

2.3 Prior Work Related to Partial Colorings

Notes on Terminology. In d-regular graphs, a k-partial c-coloring is exactly the
same thing as a (d−k)-defective c-coloring [3, Sect. 6]. While defective colorings
are more commonly discussed in prior work, for our purposes the concept of a
partial coloring is much more convenient, as we will often fix c and k and see
what happens when d increases.

Our definition is in essence equal to k-partially proper colorings used by
Kuhn [17]; for brevity, we call these partial colorings.

Weak Coloring, k = 1. In graphs without isolated nodes, a 1-partial c-coloring
is identical to a weak c-coloring [20]. Weak 2-coloring can be solved in O(log∗ n)
rounds: find a maximal independent set X ⊆ V using e.g. [12,21]; then color all
nodes of X with color 1 and all other nodes with color 2. Naturally, this also
gives a solution for weak c-coloring for any c ≥ 2. Furthermore, this upper bound
is tight: a weak 2-coloring breaks symmetry everywhere in a regular grid, and
the usual lower bounds [18–20] apply.

Weak coloring corresponds to the first row of Table 1.

Partial Coloring for k < c. Above we have seen that we can find a 1-partial
2-coloring by simply finding a maximal independent set (MIS). The same idea
can be generalized to (c − 1)-partial c-coloring for k = c − 1: Find an MIS X1,
label X1 with color 1, and remove X1. Find an MIS X2, label X2 with color
2, and remove X2, etc. We continue this for c − 1 steps and finally label all
remaining nodes with color c.

The region where this simple (folklore?) strategy works is indicated with
green color in Table 1.

Proper Vertex Coloring, k = d. In d-regular graphs, a d-partial c-coloring is a
proper c-coloring. Recall that proper coloring with d + 1 colors is easy [12,21],
while proper coloring with d colors is known to be hard [6,9].

Hardness of proper d-coloring implies the lower bounds in the blue and gray
regions of Table 1a.

Partial Coloring for c ≥ 4. Barenboim et al. [4] gave an algorithm that computes
a 	d/p
-defective p2-coloring in time O(log∗ n), which is essentially a defective
variant of Linial’s O(Δ2)-coloring algorithm [18]. This algorithm requires at least
4 colors, and for the case c = 4 it translates to a �d/2�-partial 4-coloring. For
example, 4-partial 4-coloring is therefore easy in 7-regular graphs, and 5-partial
4-coloring is easy in 9-regular graphs.

This algorithm gives the upper bounds in the blue region of Table 1a.
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Partial Coloring for c ≤ 3. To our knowledge, no O(log∗ n)-time algorithms are
known for k-partial c-coloring for c ≤ 3, k ≥ c. In particular, it is not known
if the problem becomes easy in d-regular graphs for sufficiently large values of
d � k.

This unknown region is indicated with a gray shading in Table 1a.

Algorithms Based on Lovász Local Lemma. Chung et al. [11], Fischer and Ghaf-
fari [13], and Ghaffari et al. [14, full version] present algorithms for defective
coloring (and hence for partial coloring) that are based on the following idea:
formulate a defective coloring as an instance of the Lovász local lemma (LLL),
and then apply efficient distributed algorithms for LLL.

Unfortunately, this approach is unlikely to lead to an O(log∗ n)-time algo-
rithm; LLL is known to be a hard problem for a wide range of parameters [6].

Other Algorithms. Bonamy et al. [5] show that there is an O(log n)-round algo-
rithm for trees that finds an MIS such that every component induced by non-MIS
nodes is of size one or two. This can be interpreted as an algorithm for partial
2-coloring.

However, this approach cannot lead to an O(log∗ n)-time algorithm, either:
if we color the MIS-nodes with color 1 and the non-MIS nodes with colors 2 and
3, we obtain a proper 3-coloring, and finding a 3-coloring in 3-regular trees is
known to be a hard problem [6].

3 Our Contributions

To recap, by prior work, we have a good qualitative understanding of k-partial
c-coloring for c ≥ 4:

– k < c: easy for all d ≥ k.
– k ≥ c: hard for d = k but easy for d � k.

We complete the picture for c ≤ 3. For c = 3, we have precisely the same
situation as above:

– k < c: easy for all d ≥ k.
– k ≥ c: hard for d = k but easy for d � k.

However, the case of c = 2 is fundamentally different:

– k < c: easy for all d ≥ k.
– k ≥ c: hard for all values of d.

3.1 Corollary: Locally Optimal Cuts

Any partial 2-coloring can be interpreted as a cut ; the properly colored edges
are cut edges, and the size of the cut is the number of cut edges. Let us look at
the problem of maximizing the size of a cut with a simple greedy strategy: start
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with any cut and change the color of a node if it increases the size of the cut.
The process will converge to a locally optimal cut, in which changing the color
of any single node does not help.

Now a locally optimal cut in d-regular graphs is precisely the same thing
as a �d/2�-partial 2-coloring. For example, in 3-regular graphs, any 2-partial
2-coloring is also a locally optimal cut, and vice versa.

Locally optimal cuts are easy to find in a centralized, sequential setting. How-
ever, previously it was not known if locally optimal cuts can be found efficiently
in a distributed setting. As a corollary of our work, we now know that this is a
hard problem.

3.2 Key Techniques

Upper Bound for 3-coloring. Prior algorithms for e.g. partial 4-coloring are based
on the idea of organizing nodes in layers and doing two sweeps [4]: top to bottom,
using colors from palette A = {1, 2}, and bottom to top using colors from palette
B = {1, 2}. This way we eventually have a 4-coloring with colors from A × B =
{(1, 1), (1, 2), (2, 1), (2, 2)}. This idea generalizes easily to e.g. 6, 8, 9, . . . colors,
but it is not possible to use this idea to find a useful coloring with less than 4
colors.

We show how to do two sweeps so that the end result is only 3 colors. In
brief, the first sweep uses tentative colors from palette {1, 2}, and the second
sweep finalizes the colors, depending on the tentative colors that we chose in the
first step. Here the second sweep depends on the result of the first sweep, while
in prior algorithms the two sweeps are independent.

Lower Bound for 2-coloring. We show that 2-partial 2-coloring in d-regular
graphs for any constant d is at least as hard to solve as sinkless orientation,
which is known to be hard [6]. The key obstacle here is that sinkless orientation
is known to be hard even if we are given a proper 2-coloring of the graph, so
how could a partial 2-coloring help with it?

The basic idea is as follows: Assume we have a fast algorithm A1 that finds
a 2-partial 2-coloring in d1-regular graphs. Then we can construct algorithm
A2 that finds a sinkless orientation in d2-regular graphs, for a certain constant
d2 � d1 that depends on the exact running time of A1. Given a d2-regular graph
G2, algorithm A2 first replaces all nodes with appropriate gadgets to obtain a
d1-regular graph G1, applies A1 to G1, and extracts enough information from the
partial coloring so that it can find a sinkless orientation. But sinkless orientation
is hard also in d2-regular graphs, no matter how large a constant d2 is.

4 Partial Colorings with More Than Two Colors

In this section we analyze the distributed complexity of k-partial c-coloring in
the case where c is at least 3. More formally, we will prove the following theorem.
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Theorem 1. There exists an algorithm running in O(log∗ n) that is able to
compute:

– A k-partial 3-coloring, if d ≥ 3k − 4 and k ≥ 3;
– A k-partial k-coloring, if d ≥ k + 2 and k ≥ 4.

In order to prove the theorem, we start by providing an algorithm, and then
we will analyze it for the two cases separately.

The Algorithm. The algorithm that we propose is inspired by the procedure
Refine in [3, Sect. 6]. This procedure starts by first finding an acyclic partial
orientation, and then assigns two colors for each node by exploiting the two
possible orders given by the orientation. It finally combines the two colors to
determine the output color. Our algorithm starts in the same way, but it does
not compute two independent colors, allowing us to be slightly more efficient in
some cases.

We start by finding an acyclic partial orientation of the edges. That is, we first
compute an O(d2) coloring in O(log∗ n) rounds. Then, we assign a total order
to the colors, and we orient the edges from the node with the smaller color to
the node with the bigger one. The obtained directed graph is clearly acyclic, and
all directed paths are of length at most O(d2). Nodes reachable from v through
outgoing edges are considered to be above v, while the others are considered to
be below v.

Now, we do two “sweeps” on the obtained acyclic graph, that is, we first
process the nodes from above to below, and then we process them in the reverse
order. More precisely, we start by processing the sinks, and then we continue by
processing all nodes such that all of the nodes above them have already been
processed. This is iterated until all nodes have been processed. Then, we repeat
the same procedure in reverse order, i.e., from below to above. Each sweep takes
O(d2) rounds.

During the first sweep, we assign to each node v a temporary color, by choos-
ing the color that is the least used one among the neighbors above v. Crucially,
during this phase, the choice is not among the full palette, but only colors from
1 to c−1 are allowed. We call color c the special color. During the second sweep,
each node v has three options:

– Keep the current color.
– Choose to switch to color c.
– Choose to switch to a color from 1 to c − 1. This option is allowed only if no

neighbor below v is currently using that color.

Different choices give different guarantees. For example, by choosing to not
change the color, or by choosing to switch to a color from 1 to c − 1, node v is
ensured that the number of properly colored neighbors does not decrease when
the nodes above it will be processed. This property is guaranteed by the fact
that a node can switch to a color in {1, . . . , c − 1} only if no node below it is
using that color. On the other hand, a node may switch to color c even if some
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Fig. 1. Examples of the output of the 3-partial 3-coloring algorithm, running at the
central node v, in a graph where the degree is 5. The figure shows 3 cases: v keeps the
color chosen during the first sweep, v switches to the special color in the second sweep,
v switches to color 2 in the second sweep.

neighbor below it is using color c as well, but then it loses any guarantee about
the nodes above it, which may all decide to switch to color c. See Fig. 1 for an
example of the execution of the algorithm.

The algorithm will make a choice that guarantees that k neighbors have
different color, regardless of whether the nodes above change their color (subject
to the above rules) or not. Accordingly, our task is to prove that such a choice
always exists, provided that d is large enough.

k-partial 3-coloring. We now show that the above described algorithm is able to
compute a k-partial 3-coloring if d ≥ 3k − 4 and k ≥ 3. In order to analyze the
algorithm running on node v, assume without loss of generality that during the
first sweep, v picks color 1 and t nodes above v chose color 2. Note that there
are no more than t other nodes above v, as v picked the color out of {1, 2} that
was least used by the nodes above it in the first sweep. Denote by x, y, z ≥ 0 the
numbers of nodes below v that are colored 1, 2, and 3, respectively, after making
their final choice in the second sweep. Thus, the number of nodes above v that
chose 1 in their first sweep equals d − t − x − y − z ≤ t.

We make a case distinction.

1. t + y + z ≥ k. Thus, v can keep color 1, as the t nodes above it that have
color 2 must then choose a color different from 1.

2. x + y ≥ k. Then v can safely choose color 3.
3. y = 0 and none of the other cases apply. Thus, v is free to switch to color 2.

If it does so, it has x + z nodes of different color below, and d − t − x − z
nodes above that choose a different color than 2. As the first case does not
apply and k ≥ 3, these are at least d − t ≥ d − (k − 1) ≥ 2k − 3 ≥ k nodes.
Hence, switching to color 2 is indeed a valid choice.

Hence, it suffices to show that one of the cases must apply. Assume for contra-
diction that this is false. Thus,

t + y + z ≤ k − 1 , x + y ≤ k − 1 , y ≥ 1 , and d ≤ 2t + x + y + z ,

yielding the contradiction that

d ≤ 2t + x + y + z ≤ 2(k − 1) − y − z + x ≤ 3(k − 1) − 2y − z ≤ 3k − 5 .
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k-partial k-coloring. We now show that the above described algorithm is able
to compute a k-partial k-coloring if d ≥ k + 2 and k ≥ 4. We analyze this
case similarly to the case before. Let t be the number of nodes above v of color
different from v after the first sweep. Without loss of generality, assume that the
color of v is 1, and the special color is k. Let x, y, and z be the number of nodes
below v colored with 1, with color c such that 2 ≤ c ≤ k − 1, and with color
k, respectively. Recall that only colors from 1 to k − 1 are allowed during the
first sweep. As v chooses a minority color among its above neighbors’ choices,
we have r := d − t − x − y − z ≤ t/(k − 2) remaining nodes above v that choose
color 1 in the first sweep.

Let us analyze the second sweep. We make a case distinction.

1. t + y + z ≥ k. Then v can keep color 1.
2. x + y ≥ k. Then v can safely choose color k.
3. There are f > 0 “free” colors from {2, . . . , k − 1} that no neighbor below v

chose and none of the other cases applies. If a free color was picked by at
most d − k above neighbors of v, it may select it with the guarantee that its
other k neighbors end up with a different color.

Assuming for contradiction that there is no such free color, observe that
the least used free color was picked by at most 	t/f
 neighbors above v in
the first sweep. Accordingly, t ≥ f(d − k + 1) ≥ d − k + f . Moreover, clearly
f ≥ k−2−y and, because the first case does not apply, x+r = d−t−y−z ≥
d − (k − 1) ≥ 3. Thus, we can lower bound the total number of neighbors of
v by

d = r + t + x + y + z ≥ d − k + f + y + 3 ≥ d + 1 ,

a contradiction. Therefore, one of the free colors is a valid choice for v.

Hence, there is indeed always a valid choice if we can show that the above case
distinction is exhaustive. Assuming otherwise, collecting inequalities from the
cases and the earlier bound on r we obtain that

t + y + z ≤ k − 1 , x + y ≤ k − 1 , y ≥ k − 2 , and r ≤ t

k − 2
.

Together, this implies

(k − 2)d ≤ (k − 1)(t + x + y + z) − y ≤ (k − 1)2 + (k − 1)(x + y) − ky

≤ 2(k − 1)2 − k(k − 2) = k2 − 2k + 2 ,

yielding the contradiction that d ≤ k + 2/(k − 2) < k + 2 (using that k ≥ 4).

5 Two-Partial Two-Coloring

In this section, we show that, in the LOCAL model, 2-partial 2-coloring requires
Ω(log n) deterministic time and Ω(log log n) randomized time in any d-regular
tree, where d ≥ 2. We show the result by reducing from the sinkless orientation
problem, for which we know that its distributed deterministic complexity is
ω(log∗ n) rounds in the LOCAL model.
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Informally, the proof proceeds in two steps. We first show that, if we can solve
2-partial 2-coloring in constant time in a slightly modified version of the LOCAL
model, which we call DC-LOCAL model, then we can solve sinkless orientation
in the LOCAL model in O(log∗ n) rounds. Subsequently, we show that, if we can
solve an LCL problem P in O(log∗ n) rounds in the LOCAL model, then we can
solve P in the DC-LOCAL model in constant time using a simulation similar
to that of Chang et al. [9]. Therefore no O(log∗ n)-round algorithm exists, i.e.,
the problem is not easy and hence it has to be hard, i.e., it requires Ω(log n)
deterministic time and Ω(log log n) randomized time.

Theorem 2. Computing a 2-partial 2-coloring in d-regular trees in the LOCAL
model requires Ω(log n) deterministic time and Ω(log log n) randomized time, for
any d ≥ 2.

DC-LOCAL Model. Consider the usual LOCAL model with the following modi-
fication. Instead of having unique identifiers, nodes are given as input a color
from a palette of c colors, and this coloring of the nodes guarantees a distance-
k coloring of the graph. In other words, each node sees different colors in its
distance-k ball, but it may see repeated colors in its distance-(k + 1) ball. We
call this model DC-LOCAL(k, c) (where DC stands for distance coloring).

5.1 A Lower Bound for the DC-LOCAL Model

In this section, we show that 2-partial 2-coloring in d-regular trees is not solvable
in k = O(1) rounds in the DC-LOCAL(k + 1, d2(k+1)) model. We show this by
reducing from the sinkless orientation problem in 2-colored trees in the LOCAL
model. More precisely, we show that, if there is an algorithm A solving 2-partial
2-coloring in time k = O(1) in the DC-LOCAL model, then we can use it to
design an O(log∗ n)-round algorithm that solves sinkless orientation in 2-colored
trees in the LOCAL model. This would give an ω(1) lower bound for 2-partial
2-coloring in the DC-LOCAL model, since we know that sinkless orientation
requires Ω(log n) rounds, even in 2-colored trees, in the LOCAL model [8].

Gadgets. Let A be the algorithm that solves 2-partial 2-coloring in time k = O(1)
rounds in d-regular trees in the DC-LOCAL

(
k + 1, d2(k+1)

)
model. We introduce

two gadgets that we will use later for proving the lower bound. Let T be an
arbitrarily distance-(k + 1) colored d-regular tree of depth k + 3, and let u be
the root of T . We run algorithm A on u and on each of its neighbors v ∈ N(u).
We denote with A(v) the output of algorithm A on a node v. Notice that A(v)
is well-defined on these nodes, since their k-radius ball is properly distance-k
colored and fully contained in T . Since algorithm A solves 2-partial 2-coloring,
we are sure that there are two nodes v, z ∈ N(u) such that A(u) �= A(v) = A(z).
Let b ∈ {u, v, z} be a node for which A outputs “black” and w ∈ {u, v, z} be a
node for which A outputs “white”. Let Tw and Tb be the subtrees of depth k
rooted at w and b respectively: these are our gadgets (see Fig. 2 for an example).
The gadgets Tw and Tb satisfy the following property.
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w
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w

Tw

b

Tb
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Fig. 2. In this example k = 2. Algorithm A outputs “white” on the root of T and
“black” on the leftmost child of the root. The gadgets Tw and Tb are trees with depth
2 rooted at w and b respectively.

Property 1. Let c ∈ {black, white} be the color of the root of the gadget and
let c̄ be the opposite color. Among all nodes at distance 2t from the root of the
gadget, there must be at least one node for which the algorithm outputs color c.

Proof. Assume that A outputs c̄ at all nodes at distance 2t from the root. Then
all nodes at distance 2t − 1 must have color c in order to guarantee a 2-proper
2-coloring. This would imply that all nodes at distance 2t − 2 have color c̄. By
applying this reasoning recursively, we conclude that the root must have color
c̄, which is a contradiction.

Reduction. We now show that if there exists an algorithm A that solves 2-partial
2-coloring in time k = O(1) rounds (where k is even) in d-regular trees in the
DC-LOCAL

(
k+1, d2(k+1)

)
model, then we can design an algorithm A′ that solves

sinkless orientation on trees of degree Δ = d2k in which a 2-coloring of the tree
is given, in O(log∗ n) rounds in the LOCAL model.

Consider a Δ-regular 2-colored tree B = (V ∪U,E), where V and U represent
the set of nodes belonging to the two color classes. We construct a virtual tree
in the following way. Each node x ∈ V ∪U pretends to be the root of a d-regular
tree of depth 2k. We call this tree Tvirt(x). Then, each node v ∈ V (resp. u ∈ U)
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Fig. 3. In this example, the merged node of Tvirt(y) and Tvirt(z) has the same color as
node y, hence the edge {y, z} in B is oriented from y to z.

labels the nodes at distance at most k with the same colors of the nodes of the
gadget Tw (resp. Tb). Note that this is possible since Tw and Tb are isomorphic
to the subgraph induced by the nodes at distance at most k from v and u. Then,
we merge the i-th leaf of Tvirt(v) with the j-th leaf of Tvirt(u) if and only if there
is an edge {v, u} connecting v and u through port i of v and port j of u. We call
this node mu,v (merged node). In order to make the graph d-regular, we attach
additional d−2 virtual nodes to each merged node. Note that, since the original
tree B is Δ-regular, and since each virtual tree Tvirt has Δ leaves, then all the
leaves of Tvirt are merged nodes (except for the case in which the original node
is a leaf, where just one leaf of Tvirt is merged). We then color the nodes that
are still uncolored, that is, nodes at distance more than k from the root of the
virtual trees, using a distance-k coloring algorithm. Since the already colored
parts are far enough apart, this can be done efficiently, in O(log∗ n) rounds.

Now, each node v in B simulates the k-round algorithm A on all nodes of
Tvirt(v) and gets a color c ∈ {black, white} for each node. This requires constant
time. Algorithm A outputs “white” at all nodes v ∈ V , since they have the same
view as the root of Tw up to distance k. Similarly, algorithm A outputs “black”
at all nodes u ∈ U . We then orient an edge of B from node y to node z if and
only if my,z has the same color of y (see Fig. 3 for an example). By Property 1,
we know that at least one such a leaf exists for each node in B, meaning that
each node is guaranteed to have at least one outgoing edge. This would solve
sinkless orientation on 2-colored trees in the LOCAL model in O(log∗ n) rounds.
Putting all together, we get the following lemma.

Lemma 1. The complexity of the 2-partial 2-coloring problem in the DC-LOCAL
model is ω(1).
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5.2 From DC-LOCAL to LOCAL

We now show that all LCLs solvable in O(log∗ n) rounds can be solved in a
standard manner, that is, first find a distance-k coloring, for some constant
k, and then apply a constant time algorithm running in at most k rounds. In
particular, we will prove the following lemma.

Lemma 2. Any LCL problem that can be solved in O(log∗ n) rounds in the
LOCAL model can be solved in O(1) rounds in the DC-LOCAL model.

We prove the lemma by simulation. Let P be an LCL problem checkable in
r rounds, where r is some constant. Assume that we have an algorithm A for
the LOCAL model that solves P in f(n) = O(log∗ n) rounds on graphs of size
n in which nodes have unique identifiers in {1, . . . , n}. Let Δ = O(1) be the
maximum degree of the graph.

Fix N to be the smallest integer such that t = f(N)+1 and Δ2(t+r) < N . We
show that we can construct an algorithm A′ running in t rounds that solves P
in the DC-LOCAL

(
t+ r, Δ2(t+r)

)
model. Note that t is constant. In other words,

we design an algorithm that solves P in constant time given the promise that
nodes are labeled with a Δ2(t+r)-coloring of distance (t + r). We assume that
the diameter of the graph is at least 2t, otherwise nodes can gather the entire
graph in constant time and solve P by brute force.

Algorithm A′ executed by a node v is defined as follows. At first, node v
gathers its distance-t neighborhood Bv(t). Then, node v creates a virtual instance
of P by renaming the nodes in Bv(t) and setting their identifiers as their assigned
colors. Now, node v simulates algorithm A on Bv(t), by lying about the size of
the graph and setting it to be N . Finally, the output of A′ is defined to be the
same as the output of algorithm A. Notice that this simulation is clearly possible,
since A, running on instances of size N , terminates in strictly less than t rounds.

We still need to show that the output is valid for the original LCL. For this
purpose, we show that, if the algorithm fails in some neighborhood, then we
can construct an instance in which the original algorithm fails as well. Let G
be the graph in which, given a Δ2(t+r)-coloring of distance (t + r), there is a
node v such that the verifier executed on v rejects (after running for r rounds).
Consider G′ = Bv(t+ r), the subgraph of radius r + t centered at v. All nodes in
G′ have different colors and the number of nodes is at most N , since N satisfies
Δ2(t+r) < N . We now modify G′ in order to make it a graph of size exactly N .
For this purpose, we pick an arbitrary node at distance t + r from v (that exists
by the diameter assumption), and we connect to it a path of as many nodes as
needed. We then complete the coloring of these nodes in some consistent manner.

The identifiers of nodes in G′ are set to be equal to their colors. The ID space
in G′ is in 1, . . . , N . At this point, we run algorithm A on G′. Consider the set S
of nodes at distance at most r from v. For every node u ∈ S, the t-neighborhood
of u is the same on G and G′, hence the output of A on these nodes must be the
same as the output of A′. Thus, the failure of A′ on G implies the failure of A
on G′. Theorem 2 follows by combining Lemmas 1 and 2.
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6 Additional Hardness Results

Theorem 3. Computing a k-partial c-coloring in d-regular graphs, for k ≥
c−1
c d+1, requires Ω(log n) deterministic time and Ω(log log n) randomized time.

Proof. Assume the problem is easy to solve. Each monochromatic subgraph has
a maximum degree x = d−k ≤ d

c −1, and hence it is easy to color with x+1 ≤ d
c

colors. Hence overall we can easily find a proper coloring of a d-regular graph
with at most c · d

c = d colors, but this is known to be hard [6,9].

Acknowledgments. We would like to thank anonymous reviewers for their helpful
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The Los Alamos National Laboratory report number is LA-UR-19-23906.

This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2019
K. Censor-Hillel and M. Flammini (Eds.): SIROCCO 2019, LNCS 11639, pp. 52–65, 2019.
https://doi.org/10.1007/978-3-030-24922-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24922-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-24922-9_4


Near-Gathering of Energy-Constrained Mobile Agents 53

1 Introduction

The problem of gathering is one of the fundamental problems in distributed
computing with mobile entities, which includes mobile agents moving in a graph
or robots moving in a continuous geometric space. In both cases, the objective
is to bring together multiple autonomous agents to a single point (not prede-
termined). Gathering helps in coordination between the mobile agents, sharing
of information between the entities, reassignment of duties among the entities,
and even for protection of the agents (a group of robots gathered together is
easier to protect than those dispersed in large area). Moreover, there are also
theoretical reasons for studying gathering as the problem of selecting a gathering
point is akin to problems of leader election and consensus in distributed systems.
However, in some cases, it may be impossible to solve the problem of gathering,
e.g. due to limitations in the capabilities of the agents, or due to symmetries in
their perception of the environment. In some cases it may be desirable for the
agents to get close to each other without actually meeting [27].

In this paper, we consider mobile agents moving on a graph, with severe
limitations on their movements. We assume that the agents have limited energy
resources and traversing any edge of the graph consumes some of this energy
which can not be replenished. In other words, each agent has an initial energy
budget which limits the total distance it can move in the graph. Under such
constraints, it is not always possible to gather the agents at a single point. Thus,
we consider the problem of moving the agents as close as possible to each other
while respecting the movement constraints, defined below as the near-gathering
problem.

Near-Gathering. A collection of k mobile agents is initially located at an
arbitrary set of nodes of an undirected edge-weighted graph G = (V,E, ω). Each
agent i, i = 1, . . . , k, has an energy capacity bi, which represents the maximum
distance the agent can move in the graph. The agents have global knowledge of
the graph and are controlled by a central entity. The goal is to move the agents
to a configuration where they are as close to each other as possible under their
respective limitations of movement. Closeness criteria can be measured, e.g., as
the size of the smallest region enclosing all the agents, or as the maximum or
average pairwise distance between the agents. We look at each of these criteria
and give a more precise definition of the problem below.

Our Model. We consider an undirected graph G = (V,E, ω), where each edge
e ∈ E has a positive weight ω(e) > 0. As usual, the length of a path is the sum
of the weights of its edges. We think of every edge e = {u, v} as a segment of
infinitely many points, where every point in the edge is uniquely characterized
by its distance from u, which is between 0 and w(e). We consider every such
point to subdivide the edge {u, v} into two edges of lengths proportional to the
position of the point on the edge. Thus, the distance d(p, q) between two points
p and q (nodes or points inside edges) is the length of a shortest path from p to
q in G (with edges subdivided by p, q, respectively). For a point p inside an edge
e ∈ E we write p ∈ G and p ∈ seg(e).
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A collection of k mobile agents is initially located at an arbitrary set of nodes
p1, . . . , pk ∈ V . Each agent i is equipped with an energy budget bi > 0 and can
move along edges of the graph, for a distance of at most bi. In the Near-Gathering
problem, the goal is to relocate every agent into a new position such that the
resulting configuration minimizes one of the following objectives: (i) the radius
of a smallest ball containing all agents, (ii) the maximum distance between any
two agents, or (iii) the average distance between the agents (or, equivalently, the
sum of all distances). We are further interested in two variants of the problem,
where agents can: (I) only be relocated to reachable nodes of the graph, or (II) in
a more general scenario, where the agents are allowed to be relocated to reachable
points (i.e., nodes or points inside edges).

Definition 1 (Near-Gathering).
Instance: I = 〈G, k, (pi)i=1,...,k, (bi)i=1,...,k〉, where G = (V,E, ω) is an undi-

rected edge-weighted graph, k denotes the total number of agents, pi denotes the
initial positions of the agents and bi denotes the total amount of energy each
agent initially has at its disposal.

Feasible solution: Any configuration C = (c1, . . . , ck) of agent end posi-
tions ci, in which for each agent i, 1 ≤ i ≤ k, we have d(pi, ci) ≤ bi. In the
node-stop variant, we additionally require ci ∈ V .

Goals: (i) MinBall: Minimize Radius(C, c) of a smallest ball containing C
around an optimally chosen center c, where Radius(C, c) = maxi d(c, ci). We
consider both the scenario with node centers only, and the scenario with arbitrary
point centers.
(ii) MinDiam: Minimize Diam(C), where Diam(C) = maxi,j d(ci, cj).
(iii) MinSum: Minimize Sum(C), where Sum(C) =

∑
i

∑
j d(ci, cj).

Related Work. The gathering problem has been studied in two very different
scenarios (i) Gathering of mobile agents in a connected (finite or infinite) graph,
and (ii) Gathering of mobile robots in a (bounded or unbounded) plane or other
geometric spaces. In the context of distributed robotics or swarm robotics [23],
the problem of gathering many robots at a single point has been studied as
an agreement problem, where the main issue is feasibility of gathering starting
from arbitrary configurations [12] or gathering without full knowledge of the
configuration [24,26]. The problem of convergence requires the robots to converge
towards a point [13], without actually arriving at the gathering point. When
the robots are not allowed to collide, the problem of moving the robots closer
avoiding any collisions has been studied by Pagli et al. [27]. In all these studies,
the robots can move freely in any direction. For mobile agents on the graph that
are restricted to move along the edges, gathering has been studied under different
models (see e.g. [15,28]). In particular, the gathering of two agents, often called
rendezvous, has attracted a lot of attention, well documented in [1]. The problem
of gathering with the objective of minimizing movements has been studied in
[11]. However to the best of our knowledge, there have no previous studies on
gathering with fixed constraints (budgets) on energy required for movements.
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The model of energy-constrained agents was introduced in [3,7] for single
agent exploration of graphs. Duncan et al. [20] consider a similar model where
the agent is tied with a rope of length b to the starting location. Multi-agent
exploration under uniform energy constraint of b, has been studied for trees
[21,25] with the objective of minimizing the energy budget per agent [22] or the
number k of agents [16] required for exploration, while time optimal exploration
was studied by Dereniowski et al. [19] under the same model. Demaine et al. [17,
18] studied problems of optimizing the total or maximum energy consumption
of the agents when the agents need to place themselves in desired configurations
(e.g. connected or independent configurations); they provided approximation
algorithms and inapproximability results. Similar problems have been studied
for agents moving in the visibility graphs of simple polygons [8].

For the model studied in this paper, where each agent has a distinct energy
budget, the problem of Broadcast and Convergecast was studied in [2] who
provided hardness results for trees and approximation algorithms for arbitrary
graphs. The problem of delivering packages by multiple agents having energy
constraints was studied in [5,6,9,10]. All of these problems were shown to be
NP-hard for general graphs even if the agents are allowed to exchange energy
when they meet [4,14].

Our Contribution and Paper Organization. In Sect. 2, we establish a few
preliminaries and prove that MinBall is solvable in polynomial-time. In Sect. 3
we give a 2-approximation algorithm for MinDiam, together with a matching
NP-hardness lower bound; additionally we show that MinDiam is polynomial-
time solvable on tree graphs. In Sect. 4, we prove that MinSum admits a 2(1− 1

k )-
approximation algorithm but no FPTAS, unless P = NP. We show that the
analysis of the approximation ratio of the provided algorithm is tight.

We conclude with remarks on future research opportunities, including prelim-
inary approximation hardness results for additive approximation of MinDiam, in
Sect. 5. All our results – with the exception of additive approximation – hold for
both node-stop as well as arbitrary-stop scenarios. Omitted proofs are deferred
to the full version of the paper.

2 Preliminaries and Minimizing the Radius

Preliminaries. We first point out some differences in the two scenarios we con-
sider throughout this paper and our general approach on how to tackle and dis-
tinguish those. In the node stop scenario, where each agent i is only allowed to
move to nodes v with distance d(pi, v) ≤ bi, there is a finite number of feasible
configurations C. For the scenario with arbitrary final positions, where agents are
also allowed to move to points p inside edges (as long as d(pi, p) ≤ bi), we dis-
cretize the set of configurations. In the MinBall variant of Near-Gathering, the
discretization turns out to contain at least one optimum solution, for MinDiam

and MinSum it will at least contain a configuration approximating an optimum
solution within a factor of 2 or 2(1 − 1

k ), respectively. To this end, we define sets
of reachable nodes and “maximally reachable” in-edge points as follows:
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Algorithm 1. MinBall (node centers)
Input: An instance 〈G, k, (pi)i∈1,...,k, (bi)i∈1,...,k〉.
Output: Configuration C and center c ∈ V with minimum radius Radius(C, c).
1: for each v ∈ V do
2: Compute Cv := (cv

1 , . . . , c
v
k), where cv

i ∈ argmin{d(v, ci) | ci ∈ B(i) ∪ S(i)}
3: is a point in B(i)∪S(i) minimizing the distance to v, breaking ties arbitrarily.
4: Compute Radius(Cv, v).
5: end for
6: Return argmin

Cv, v : v∈V
Radius(Cv, v).

Definition 2 (Balls, Spheres). For an instance I = 〈G, k, (pi), (bi)〉 with i ∈
1, . . . , k, we define

– B(i) := {v ∈ V | d(pi, v) ≤ bi}, i.e. the ball containing all nodes that agent i
can reach from its initial position pi, and

– S(i) := ∅ for node stops, and S(i) := {p ∈ G | d(pi, p) = bi}\B(i) for arbitrary
stops, i.e. the sphere of all in-edge points that agent i can reach from its initial
position pi only by spending its whole budget bi.

In the same spirit, we can study MinBall-Gathering for centers c being
restricted to nodes in V , or for the continuous set of center points being allowed
to be placed both on nodes as well as the inside of edges of G. To discretize this
set, it will be useful to define a set of midpoints, intuitively consisting of “points
m lying in the middle of a trail between points p and q”:

Definition 3 (Midpoints). Given a set S of points in G, denote by G′ =
(V ′, E′, ω′) the graph we get from G = (V,E, ω) by subdividing the edges in E
with points from S, i.e. V ′ = V ∪ S. We define the midpoint set M(S) of points
in G′ – and by bijection also of G – as:

M(S) := {m ∈ V ′ | ∃ p, q ∈ S : d(p,m) = d(m, q)}
∪ {m ∈ seg(e) | e = {u, v} ∈ E′, ∃ p, q ∈ S :

d(p, u) + d(u,m) = d(m, v) + d(v, q)} .

Lemma 1. The sets B(i), S(i) and M(S) can be computed in time polynomial
in |V |, k and |V |, |S|, respectively.

MinBall for Node Centers. Having defined balls and spheres of reachable
points for the agents, we can immediately give an exhaustive search algorithm
for MinBall for centers restricted to nodes. The main idea of Algorithm 1 is to
fix a node in graph G as a gathering point and then for each agent i compute the
minimum distance to this fixed center it can reach, given its starting position
pi and its energy budget bi. Iterating over all possible center nodes, we find an
optimal solution:
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Algorithm 2. MinBall (arbitrary centers), MinDiam (2–apx / on Trees)
Input: An instance 〈G, k, (pi)i∈1,...,k, (bi)i∈1,...,k〉.
Output: Configuration C and center c ∈ G with minimum radius Radius(C, c).
1: for each p ∈ M

(
V ∪ ⋃

i S(i)
)
do

2: Compute Cp := (cp
1, . . . , c

p
k), where either cp

i = p if d(pi, p) ≤ bi, or
3: cp

i ∈ arg min{d(p, ci) | ci ∈ B(i) ∪ S(i)} (breaking ties arbitrarily) otherwise.
4: Compute Radius(Cp, p).
5: end for
6: Return argmin

Cp, p : p∈M(V ∪⋃
i S(i))

Radius(Cp, p).

Theorem 1 (MinBall, node centers). Algorithm 1 is a polynomial-time algo-
rithm for MinBall with node centers.

The polynomial running time follows immediately from the fact that B(i), S(i)
can be computed in polynomial time and have polynomial size by Lemma 1. As
the algorithm iterates over all possible center nodes, we can establish correctness
by characterizing optimum stopping positions:

Lemma 2. There exists an optimum solution (COpt, cOpt) for MinBall where
every agent i either stops on cOpt or on a point in B(i) ∪ S(i), independent of
whether cOpt is contained in

⋃
i(B(i) ∪ S(i)) or not.

MinBall for Arbitrary Centers. As can be seen from Lemma 2, when testing
for a fixed center c, in addition to checking the points in B(i) ∪ S(i) we should
also consider whether agent i can reach c itself. As candidates for the center c
we take all points in the midpoint set M(V ∪ ⋃

i S(i)):

Theorem 2 (MinBall, arbitrary centers). Algorithm 2 is a poly-time algo-
rithm for MinBall with arbitrary centers.

As before, polynomial running time follows from the polynomial size of the
candidate set M(V ∪ ⋃

i S(i)). Building upon Algorithm 1 and Theorem 1, it
remains to show that this set contains an optimum center:

Lemma 3. There exists an optimum solution (COpt, cOpt) for MinBall where
cOpt is contained in M(V ∪ ⋃

i S(i)).

3 Minimizing the Diameter

In this Section, we prove that Algorithm 2, which computes an optimum solu-
tion for MinBall, also computes a 2-approximation for MinDiam. As we will
show, this is likely best-possible, as there is no polynomial-time (2 − o(1))-
approximation for MinDiam, unless P = NP. Nonetheless, for the special case
of tree graphs, Algorithm 2 even computes an optimum solution for MinDiam.
We start with the positive results:
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Theorem 3 (MinDiam, 2-apx). Algorithm 2 is a polynomial-time
2-approximation algorithm for MinDiam.

Proof. Let configuration C∗ = (c∗
1, . . . , c

∗
k) with center c∗ be the MinBall

solution computed by Algorithm 2. We denote the radius of (C∗, c∗) by r∗ =
Radius(C∗, c∗) = maxj d(c∗, c∗

j ) and the diameter of C∗ by d∗ := Diam(C∗) =
maxi,j d(c∗

i , c
∗
j ). Using the triangle inequality, we have for all configuration points

c∗
i , c

∗
j that d(c∗

i , c
∗
j ) ≤ d(c∗

i , c
∗) + d(c∗

j , c
∗) and thus d∗ ≤ 2 · r∗. Now let

COpt = (o1, . . . , ok) be an optimum configuration for MinDiam with diam-
eter dOpt := Diam(COpt) = maxi,j d(oi, oj). We choose an arbitrary point
o ∈ COpt and compute the radius of a smallest ball around o containing COpt,
ro = Radius(COpt, o) = maxj d(o, oj) ≤ dOpt. By Theorem 2, we have r∗ ≤ ro

(even though o might not have been considered as a center candidate, see e.g.
Fig. 1(left)). Combining all inequalities, we get d∗ ≤ 2 · r∗ ≤ 2 · ro ≤ 2 · dOpt,
hence C∗ is a 2-approximation for MinDiam. 	


p1
b1=4

p2
b2=4

p3
b3=4

4 4

4

4

4

6

S(3)

o3

o1 o2

p1

p2

p3

b1=1

b2=1

b3=11

Fig. 1. (left) MinDiam-instance where agent 3’s final position in the (unique) opti-
mum solution COpt = (o1, o2, o3) is not in B(3)∪S(3). (right) Replacing Radius(Cp, p)
in Lines 4&6 of Algorithm 2 with Diam(Cp) (yielding configurations depicted by × vs
�) improves the quality of a MinDiam solution for certain instances by a factor of 2.

Theorem 4 (MinDiam, on Trees). Algorithm 2 is a polynomial-time algo-
rithm for MinDiam on trees.

Proof. First note that if there is a configuration COpt with maximum distance
Diam(COpt) = 0, it also has radius Radius(COpt, c) = 0 for some center c,
and thus will be found by Algorithm 2 as proven in Theorem 2. Otherwise the
diameter Diam(COpt) of an optimum solution COpt is lower bounded by the
largest diameter among all optimal solutions of the instance reduced to pairs of
agents i, j:

d∗ :=

⎧
⎨

⎩

max
i,j

min
qi∈B(i), qj∈B(j)

d(qi, qj) for the node stop scenario,

max
i,j

d(pi, pj) − bi − bj for arbitrary final positions.

We show that, indeed, Algorithm 2 computes a configuration C∗ with
Diam(C∗) = d∗. To this end, denote by a, b two agents giving rise to d∗, and
let qa ∈ B(a) ∪ S(a), qb ∈ B(b) ∪ S(b) be two points with d(qa, qb) = d∗. Since
we consider tree graphs here, there is a unique shortest path from qa to qb and
thus a unique midpoint c∗ ∈ G with d(c∗, qa) = d(c∗, qb) := d∗

2 . As c∗ is con-
tained in M(V ∪ ⋃

i S(i)), Algorithm 2 will use c∗ as a center point candidate
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for which it computes a configuration C∗ = (c∗
1, . . . , c

∗
k). By definition, we have

d(c∗, c∗
a) = d(c∗, qa) = d∗

2 = d(c∗, qb) = d(c∗, c∗
b).

It is enough to show that for all other agents i we have d(c∗, c∗
i ) ≤ d∗

2 , too.
Assume for the sake of contradiction that this is not the case and that there is an
agent i with d(c∗, c∗

i ) > d∗
2 . Consider the shortest c∗

i -c
∗-path Pi, the shortest c∗

a-
c∗-path Pa and the shortest c∗

b -c
∗-path Pb. By definition of d∗ and c∗, the paths

Pa and Pb must be interiorly disjoint, Pa∩Pb = {c∗}. Since Pi is a path on a tree
ending in the same node c∗, it must be interiorly disjoint with at least one of the
two paths Pa, Pb, without loss of generality with Pa. Because any two points in
a tree are connected by a unique path, we have d(c∗

i , c
∗
a) = d(c∗

i , c
∗)+d(c∗, c∗

a) >
d∗ and thus also minqi∈B(i)∪S(i), qa∈B(a)∪S(a) d(qi, qa) > d∗, contradicting the
maximality of d∗. Hence we have Diam(C∗) ≤ maxi,j d(c∗

i , c
∗) + d(c∗, c∗

j ) = d∗.
	


Replacing the computation of Radius(Cp, p) in Lines 4 and 6 of Algorithm 2
by a computation of Diam(Cp) can improve the quality of a MinDiam solution
by a factor of up to 2 for some instances, see for example Fig. 1(right). However,
this does not translate to the worst-case approximation guarantee, as one can see
in the instance constructed in the following matching approximation hardness
result.

Theorem 5. There exists no deterministic polynomial-time
(
2 − o(1)

)
-

approximation algorithm for MinDiam, unless P = NP. This holds even in
unweighted graphs with uniform budgets bi = 1, i = 1, . . . , k.

Proof (Sketch). We prove Theorem 5 by a reduction from 3Sat to MinDiam:
Let φ be an arbitrary boolean formula in conjunctive normal form, where each
clause contains 3 different literals, and let x1, . . . , xn be the n many variables
and C1, . . . , Cm be the m many clauses of φ. We show that any polynomial-time
(2 − o(1))-approximation algorithm for MinDiam can be used to decide
whether φ is satisfiable. From φ, we construct an instance I =
〈G, k, (pi)i∈1,...,k, (b)i∈1,...,k〉 with k agents of uniform budget b = 1 and a graph
G = (V,E, ω) with uniform edge weights ω = 1 in the following manner.

Set of Nodes V : Using T = true and F = false, we first define the set
of all possible truth assignments of a clause C containing 3 literals, L :=
{TTT,TTF,TFT,TFF,FTT,FTF,FFT,FFF}. Note that every clause C is sat-
isfiable by exactly 7 of the 8 possible truth assignments in L (e.g. x1 ∨ x2 ∨ xn

is satisfied by x1, x2, xn ∈ L \ {FFT}). Now, let V := Vx ∪ V� ∪ VC ∪ VL, where

– Vx = {vi | 1 ≤ i ≤ n} are nodes corresponding to variables x1, . . . , xn,
– V� = {vT

i | 1 ≤ i ≤ n} ∪ {vF
i | 1 ≤ i ≤ n} are nodes corresponding to literals,

i.e. true-value and false-value assignments of the variables xi,
– VC = {cj | 1 ≤ j ≤ m} are nodes corresponding to clauses C1, . . . , Cm,
– VL = {cl

j | 1 ≤ j ≤ m, ∀l ∈ L} are nodes corresponding to all possible truth
assignments of each clause Ci.
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Agents and Reduction Idea: On each of the nodes in Vx ∪ VC we place one
agent with a budget of b = 1, for a total of n+m agents. The main idea is to ini-
tially space the agents by a pairwise distance of 3. We then let agents on Vx “pick
the value assignment of the variables xi” by walking to their respective node in
V�, whereas we let agents on VC “pick the truth assignment of the clauses Cj” by
walking to their respective node in VL. Then a satisfiable assignment of φ exists,
if and only if the variable agents and the clause agents “agree in their choice”
which corresponds to an optimum MinDiam configuration COpt of diameter 1.
Furthermore, any other configuration should have diameter ≥ 2. This gives rise
to the

Set of edges E := Ex� ∪ E�L ∪ ECL ∪ E�� ∪ ELL, where:

– Ex� = {{vi, v
T
i }, {vi, v

F
i } | 1 ≤ i ≤ n : vi ∈ Vx, vT

i , vF
i ∈ V�} are edges

connecting each variable node xi to its two literal nodes,
– ECL = {{cj , c

l
j} | 1 ≤ j ≤ m : cj ∈ VC , cl

j ∈ VL, cl
j satisfies Cj} are edges

connecting each clause node cj with all nodes representing satisfying assign-
ments for clause Cj ,

– E�L = {{vi, c
l
j} | i ≤ n, j ≤ m : vi ∈ {vT

i , vF
i } ⊂ Vx, cl

j ∈ Vl, such that
- either xi does not appear in Cj , or
- xi appears in Cj and vi agrees with cl

j}
are edges connecting unrelated literals and clause truth-assignments, as well
as matching literals and clause truth-assignments.

– E�� = {{u, v} | u, v ∈ V�} and ELL = {{u, v} | u, v ∈ VL} are edges pairwise
connecting nodes in V�, and nodes in VL, respectively.

Fig. 2. A part of an instance of MinDiam, constructed from the 3-SAT instance
C1 ∧ · · · ∧ Cm with variables x1, . . . , xn, displaying the connections between nodes
v1, v2, vn, c1 and cm. Notice that nodes cFFT

1 and cFFF
m are not connected to nodes c1

and cm, respectively. The location of mobile agents is denoted by squares (�).
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Figure 2 shows a part of an instance of MinDiam which is constructed from
an instance of 3Sat as described above. Before continuing with our proof we
need to argue that no agent would stop in the middle of an edge:

Lemma 4. For any configuration C′ = (c′
1, . . . , c

′
k) with an agent i for which

c′
i /∈ {V�∪VL}, there exists another configuration C′′ = (c′′

1 , . . . , c′′
k) with diameter

Diam(C′′) ≤ Diam(C′) for which ∀i : c′′
i ∈ {V� ∪ VL}.

⇒ Continuing with our proof of Theorem 5, we first show that if φ is sat-
isfiable then there exists a configuration C of diameter Diam(C) = 1. Since φ
is satisfiable we have a truth assignment to the variables which satisfies every
clause of φ. For each variable xi, we let agent a(vi) move to node vT

i if xi = true
and to node vF

i otherwise. Next, for each clause Cj , we let agent a(cj) move to
the node cl

i, which corresponds to the correct true/false-assignment picked by
the three agents of the variables in Cj . Note that both types of moves can be
done with an energy of b = 1. By construction of the instance, the maximum
distance of any two agents in this final configuration is 1.

⇐ We now show that if φ is not satisfiable then every solution to MinDiam is
of size greater than or equal to 2.

By Lemma 4, we may assume that every agent starting on some node vi ∈ Vx

moves to one of the nodes vT
i , vF

i , and every agent starting on some node cj ∈ VC

moves to one of the nodes cl
j , l ∈ L (otherwise, if an agent does not move, its

distance is clearly at least 2 from any other agent). Therefore, by inspection of
the final positions of agents starting in Vx, every MinDiam solution corresponds
to a truth assignment. Since φ is not satisfiable, this truth assignment must leave
at least one clause Cy, involving variables xr, xs, xt, unsatisfied. By construction
of the instance, and in particular in view of the fact that the edge {cy, cl�

y } is
missing (where l� is the assignment to xr, xs, xt falsifying Cy), the agent that
started on cy cannot move to cl�

y , and thus it will have a distance of 2 in the
final configuration from at least one of the agents starting on vr, vs, vt.

Since a polynomial-time (2 − o(1))-approximation algorithm for MinDiam

could distinguish between instances with an optimum solution with diameter 1
and instances with an optimum solution with diameter 2, it would also be able
to decide whether φ is satisfiable of not. 	


Algorithm 3. MinSum (2(1 − 1
k )–apx)

Input: An instance 〈G, k, (pi)i∈1,...,k, (bi)i∈1,...,k〉.
Output: Configuration C with Sum(C) ≤ 2(1 − 1

k
) · minfeasible C′ Sum(C′).

1: for each p ∈ V ∪ ⋃
i S(i) do

2: Compute Cp := (cp
1, . . . , c

p
k), where either cp

i = p if d(pi, p) ≤ bi, or
3: cp

i ∈ arg min{d(p, ci) | ci ∈ B(i) ∪ S(i)} (breaking ties arbitrarily) otherwise.
4: Compute Sum(Cp).
5: end for
6: Return argmin

Cp : p∈V ∪⋃
i S(i)

Sum(Cp).
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4 Minimizing the Average Distance

In this Section we describe and analyze an algorithm for minimizing the average
pairwise distance between agents. We complement its approximation ratio of
2(1− 1

k ) with a tight analysis and rule out an FPTAS for MinSum. The main idea
of the presented Algorithm 3 for MinSum is similar to the idea of Algorithm 2
for MinDiam. We fix a point p in the graph G as a gathering point and move
each agent i as close as possible to p with respect to its energy constraint,
breaking ties arbitrarily. Algorithm 3 exhaustively tests all points in V ∪⋃

i S(i)
as possible gathering points and selects the point p for with a configuration
C = (c1, . . . , ck) of minimum sum of pairwise distances between the agents,
Sum(C) =

∑
i

∑
j d(ci, cj). The choice of the search space for gathering points

is based on a characterization of optimum solutions, similar in look to Lemmata 2
and 3:

Lemma 5. There exists an optimum solution COpt for MinSum where every
agent stops on a point in V ∪ ⋃

i S(i).

Theorem 6 (MinSum, 2(1− 1
k )-apx). Algorithm 3 is a polynomial-time 2(1−

1
k )-approximation algorithm (and the approximation ratio is tight).

Proof (Upper bound only). Let C∗ = (c∗
1, . . . , c

∗
k) denote the configuration

computed by Algorithm 3. We denote with s∗ := Sum(C∗) the sum of all
pairwise agent distances in C∗. Furthermore, let COPT = (o1, . . . , ok) be an
optimum MinSum solution in which each agent j stops on a point oj ∈
V ∪ ⋃

i S(i) and let sOpt = Sum(COpt) =
∑

i

∑
j d(oi, oj). Choosing a point

o ∈ arg minoi∈COpt

∑
j d(oi, oj) we get

∑

j

d(o, oj) = 1
k · k

∑

j

d(o, oj) ≤ 1
k ·

∑

i

∑

j

d(oi, oj) = 1
k · sOpt.

Consider now the configuration Co = (co
1, . . . , c

o
k) which Algorithm 3 computed

for point o in Step 2 and let so := Sum(Co) =
∑

i

∑
j d(co

i , c
o
j). Clearly, we have

s∗ ≤ so. Furthermore, o is reachable by at least one agent a, thus by Step 2 we
also have co

a = o. Finally, as Step 2 moves agents as close to o as possible, we
have d(o, co

j) ≤ d(o, oj). Using the triangle inequality, we rewrite so to get

s∗ ≤ so =
∑

i

∑

j

d(co
i , c

o
j) ≤ 2

∑

j

d(co
a, co

j) +
∑

i�=a

∑

j �=a
j �=i

d(co
i , o) + d(o, co

j)

= 2
∑

j

d(o, co
j) + (k − 2)

∑

i�=a

d(co
i , o) + (k − 2)

∑

j �=a

d(o, co
j)

= (2k − 2)
∑

j

d(o, co
j) ≤ (2k − 2)

∑

j

d(o, oj) ≤ 2(1 − 1
k )sOpt. 	
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Theorem 7. There is no FPTAS for MinSum, unless P = NP.

Proof. Assume for the sake of contradiction that there is a polynomial-time
approximation scheme for MinSum which for all ε > 0 computes a (1 + ε)-
approximation in time poly(k, 1

ε ). We reuse the reduction to 3Sat already given
in Theorem 5. Recall from its proof that (i) the underlying 3Sat-formula φ is
satisfiable if and only if there is a Near-Gathering solution C∗ in which all agents
have pairwise distance 1, and that (ii) any other solution C has at least one pair
of agents with distance 2.

Summing up the pairwise distances we get for (i) that Sum(C∗) = k(k − 1),
while for (ii) we have Sum(C) ≥ k(k −1)+1. The existence of an FPTAS, using
ε ≤ 1

k2 , means that we can approximate Sum(C∗) to within (1+ 1
k2 ) ·k(k −1) =

k2−k+1− 1
k < k(k−1)+1 ≤ Sum(C). Hence we could distinguish the existence

of a solution C∗ from any other solution and thus decide satisfiability of φ in
time poly(k, 1

1/k2 ) = poly(k), in contradiction to the assumption P �= NP. 	


5 Additive Approximation and Conclusion

In this paper, we explored the task of Near-Gathering a group of energy-
constrained agents, whose movements are restricted by their energy budget.
We showed how to compute, in polynomial time, an optimum solution for
MinBall (minimizing the radius of a smallest ball containing all agents), a
2-approximation for MinDiam (minimizing the maximum distance between any
two agents), and a 2(1− 1

k )-approximation for MinSum (minimizing the average
distance between any two agents). For MinDiam, we provided a matching hard-
ness result, while for MinSum, we ruled out the existence of an FPTAS, unless
P = NP. Hence for future work, a major open problem is to improve upon the
(in)approximability of MinSum.

A second possible research direction for Near-Gathering is an analysis of
additive approximation. For this, we briefly review how we can reuse our hardness
construction of multiplicative approximation of MinDiam:

Theorem 8. Unless P = NP, there is no deterministic polynomial-time addi-
tive +(2maxi bi −o(1))-approximation algorithm for MinDiam with node stops,
and no deterministic polynomial-time additive +(43 maxi bi−o(1))-approximation
algorithm for MinDiam with arbitrary stops.

This is surprising for two reasons. On the one hand, not moving the agents at
all is already an additive +(2maxi bi)-approximation. On the other hand, this
is the only result in this paper, in which the two scenarios of (I) node stops
and (II) arbitrary stops differ. The difference in the hardness result boils down
to the loss of Lemma 4 in the adaption of the proof of Theorem 5, which we
can only fully salvage for the case of node stops. Does this mean that there
is a polynomial-time +(2maxi bi − o(1))-approximation for the scenario with
arbitrary final positions? This remains completely open.
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Finally, we aim to study the reverse problem of Spreading energy-constrained
mobile agents, with the respective goals of (i) maximizing the radius of a smallest
ball containing all agents, (ii) maximizing the minimum distance between any
two agents, and (iii) maximizing the average distance between any two agents.
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Abstract. The beeping model is an extremely restrictive broadcast com-
munication model that relies only on carrier sensing. In this model, we
obtain time-optimal and deterministic solutions for the fundamental com-
munication task of multi-broadcast. The proposed solutions are com-
pletely uniform, i.e., independent of the network and problem parameters.

We improve on previous results for multi-broadcast by giving effi-
ciently constructible solutions, that is, with local computation cost poly-
nomial in the identifiers’ range. The originality of our approach lies in
the use of (combinatorial) group testing strategies, originally developed
in the centralized context.

Keywords: Beeping model · Group testing · Multi-broadcast

1 Introduction

Wireless networks with weak communication capabilities have received a great
deal of interest recently. In particular, new models assuming very severe restric-
tions on communication capabilities have been proposed. One of them is the
discrete beeping model (BEEP), introduced by Cornejo and Kuhn [7]. Due to
its weak assumptions, BEEP has broad applicability to many different com-
munication networks. It has strong connections with the ad-hoc radio network
model, and has been used to obtain optimal results in radio networks with col-
lision detection [13,15]. In BEEP, the wireless network is modeled by a static
communication graph of diameter D, in which the n nodes represent devices
and the edges represent reachability via direct transmission. Time is divided
into synchronous steps (i.e., rounds), and in each step a node can either listen
or transmit a unary signal (beep) to all its neighbors. As a beep is merely a
detectable burst of energy, a listening node is not notified about the identifiers
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(IDs) of its beeping neighbors. Even more critically, a beeping node receives no
feedback, while a silent (listening) one can only detect whether at least one of
its neighbors beeped or all of them were silent. Although algorithms can take
advantage of the synchronous nature of the rounds to transmit information using
beeps, doing so impacts the time complexity in a quantifiable manner.

Efficient solutions to fundamental communication primitives provide conve-
nient and efficient abstractions of the actual communication mechanisms and
serve as algorithmic building blocks, resulting in simpler algorithm design. Such
primitives are even more important in weak communication models, such as
BEEP. In this model, simultaneous communications produce (non-destructive)
interferences (i.e., two or more beeps cannot be distinguished from a single beep
but can be distinguished from zero beeps), making it difficult for nodes to com-
municate on a global scale.

In the present paper we propose such communication primitives for the multi-
broadcast task. In multi-broadcast, each source node in a subset of at most k
(for some integer k ≤ n) nodes (called sources) communicates its message m
in {1, . . . , M} and its identifier id in {1, . . . , L} to the whole network (referred
to as multi-broadcast with provenance in [8]). We present optimal and nearly
optimal uniform solutions. Contrary to previous results, these solutions are con-
structible. It is important to emphasize that these results come from an entirely
original approach based on (combinatorial) group testing theory. Group testing
is a method coming from statistics, initially introduced during the Second World
War to quickly detect an infection among a group of people [11]. In its original for-
mulation (i.e., as probabilistic group testing), the defects were assumed to follow
some probability distribution, and the goal was to design a strategy identifying
all defects using a small expected number of tests. Probabilistic group testing
has been used for local neighbor discovery tasks in some distributed settings
[19]. In the combinatorial context [16,18], no assumptions are made about the
distribution of the defects and the goal is to design a strategy with a small max-
imum number of tests (i.e., a worst-case scenario). Results from combinatorial
group testing are crucial to the current work. They are used to efficiently detect
all broadcasting sources, since these can be arbitrary, i.e. cannot be assumed to
follow some known probability distribution.

Related Work for Multi-broadcast. In [8], an O(D · log L + k log LM
k ) round

deterministic, completely uniform (in L, D and k) algorithm for k-source multi-
broadcast is presented, and the lower bound of Ω(D +k log LM

k ) rounds is given.
In [13], a time-optimal leader election algorithm is given and is used to slightly
improve these results: O(D · log L) factors are reduced to O(D · min{k, log L})
(by executing k consecutive leader elections). Finally, in [10], the lower bound
for multi-broadcast given in [8] is extended to also apply to randomized algo-
rithms and a time-optimal O(D+k log LM

k ) deterministic and uniform solution to
multi-broadcast is proposed. However, this solution relies on a non-constructive
existence proof of a complex combinatorial structure, meaning that it must be
pre-computed for each possible set of network parameters, and provided to the
network nodes in advance (see discussion below).
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Importantly, by considering the BEEP model, the focus is on how non-
destructive interferences impact the multi-broadcast problem. This improves
the understanding of this problem even for stronger models. For example, in
the related and well-established radio network model assuming O(log n) bit mes-
sages and collision detection (a strictly stronger model than BEEP, to which
BEEP algorithms can be straightforwardly translated), the fastest known (non-
explicit) algorithms were designed in BEEP [10]. Somewhat counter-intuitively,
efficient solutions for the stronger model do not use the O(log n) bits contained
in the messages, but simply rely on collision detection. In comparison, in radio
networks assuming O(log n) bit messages without collision detection (in which
solutions cannot leverage the non-destructive interference for communication),
the best multi-broadcasting randomized algorithm [2] requires O(n log n) time
while the best deterministic algorithm [5] requires O(n log4 n) time.

Explicitness. Algorithms in BEEP (and related models such as ad-hoc radio net-
works) generally seek to minimize the number of rounds required to complete
communication tasks. As a result, the cost of local computations is often ignored.
Indeed, the fastest deterministic communication algorithms in BEEP, and in
radio networks, are often non-explicit : they rely upon the use of combinatorial
objects whose existence is only proven existentially (see e.g. [9,10]). Although
the existence proofs of the combinatorial objects involved are ‘non-constructive’,
they do imply a naive construction: one can simply generate candidate objects
randomly, if shared randomness is available, or in lexicographical order otherwise,
and test if they actually satisfy the conditions of the object. However, there are
exponentially many possible candidates, and testing naively whether these candi-
dates objects are the required combinatorial objects necessitates an exponential
number of computations. Such an approach thus results in an impractically high
computation cost.

In some settings an argument can be made that an exponential computation
cost may still be acceptable, since the construction of suitable combinatorial
objects only ever needs to be performed once, and henceforth the object can be
stored and provided whenever needed to wireless devices. However, in BEEP this
approach poses a problem: the combinatorial objects that we need depend on
the parameters of the network which are not known in advance. Hence, network
nodes would have to be pre-loaded with objects for every possible set of param-
eters. This is again impractical, especially since our aim is to model networks of
weak devices which would generally have very limited space.

Consequently, we are only concerned by computationally tractable solutions.
In BEEP, explicit solutions correspond to algorithms with computation time
polynomial in L and k (for the nodes), and weakly explicit solutions to algorithms
with computation time polynomial in L and exponential in k. The latter can still
be computationally feasible if k << L when performing multi-broadcast, and
thus of practical interest.

Contributions. First, group testing strategies based on list disjunct matri-
ces (see Definition 2) are shown to give efficient solutions for multi-broadcast.
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Then, several constructions of list disjunct matrices are presented, some novel
and some from existing group testing literature, resulting in several algorithms
for the multi-broadcasting task:

– An optimal O(D + k log LM
k )-time weakly explicit deterministic algorithm.

– An explicit deterministic algorithm optimal for most ranges of k and D.
– An explicit randomized algorithm optimal for k = Ω(log log L).

2 Group Testing

We draw from group testing theory to design efficient solutions in BEEP (see
Sect. 5). The objective of group testing is to identify a subset of defective items
in a set, by testing multiple items at a time instead of resorting to individual
testing. One example is the christmas tree lighting problem: to search for a
broken bulb among a group of six, one can arrange electrically in series three
bulbs and apply a voltage. If they light up, then they are in good condition, and
the broken bulb is one of the three others. Some classical applications of group
testing are blood testing, DNA library screening, signal processing, streaming
algorithms and wireless multiple-access communications [12].

Formal Definition. A formal definition of the (d, I)-combinatorial group test-
ing (CGT) problem follows. Consider I items, represented by the integers in
{1, . . . , I}, and any arbitrary subset B of d items. The items in B are said to
be defective. The only way to differentiate defective items from good (i.e., non-
defective) items is through testing. For efficiency reasons, tests consider sets of
items (pools) instead of individual items. When testing a pool, a positive result
(output 1) indicates that at least one item in the pool is defective, whereas a
negative result (output 0) indicates that no item in the pool is defective. Tests
are considered to be error-free. A solution to the CGT problem is a group testing
strategy, that is, a sequence of t tests (for some positive integer t) such that the
set B can be computed from the results by using a decoder. One way of comput-
ing B is to use the naive decoder : a set B′ is initialized to the set of all items
(i.e., {1, . . . , I}) after which for every negative test result (output 0), the items
of the test’s pool are removed from B′. It is important to note that the group
testing strategy is tightly related to the decoder: more complex decoders could
lead to fewer tests.

Explicitness in Group Testing. In group testing literature, testing strategies are
devised to identify defective items from a pool, and efforts have been made to
minimize the number of tests, and stages of adaptivity, required by the strate-
gies. Again, however, it transpires that the best deterministic strategies rely on
existentially-proven combinatorial objects, and so are not efficiently constructible
or decodable, by the tester.

Consequently, computationally tractable solutions are sought, for practical
reasons. In the group testing literature, an explicit strategy is one in which each
test sequence can be constructed and the output decoded, in time polynomial in
I and d. Also of interest is a weaker notion, which we refer to as weak explicitness,
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where construction and decoding time is polynomial in I and exponential in d.
The terminology used here corresponds to that used for multi-broadcast. More
precisely, when an explicit (respectively weakly explicit) testing strategy is used
to obtain a solution to multi-broadcast, the result is an explicit (resp. weakly
explicit) algorithm.

Related Work for Group Testing. In the most frequent setting in group test-
ing, non-adaptive (i.e., offline) group testing, all tests are designed offline: a
test’s outcome does not influence the following tests. Non-adaptive group test-
ing allows tests to be performed in parallel. However, it was proven in [14] that
test strategies in non-adaptive group testing require Ω(d2 · log I

log d ) tests. An explicit
construction with O(d2 · log I) tests for the non-adaptive setting is given in [21].
On the other hand, in a fully adaptive setting (i.e., online setting), where each
test’s pool depends on the results of all previous tests, the information theoretic
lower bound implies that test strategies require Ω(d log I

d ) tests, but all tests
must be performed sequentially. An optimal fully-adaptive test strategy is given
in [16]. Intermediately, adaptive group testing refers to multiple stages of tests:
all tests of a stage are defined independently from the results of the stage, but
can depend on the results of previous stages’ tests. Thus tests in the same stage
can be done in parallel but successive stages must be treated sequentially. Sur-
prisingly enough when compared with non-adaptive group testing, it is possible
to construct two-stage test strategies with Θ(d log I

d ) tests [3,6]. In particular, a
weakly explicit construction for such two-stage testing strategies (with O(d log I

d )
tests) is given in [6]. Additionally, explicit constructions are given in [4,17,20]
with a nearly optimal number of tests. In particular, [20] gives an explicit con-
struction for strategies with O(d1+ε log I) tests for any value ε > 0.

3 Model and Definitions

3.1 Definitions

The communication network is represented by a simple static connected undi-
rected graph G = (V,E), where V is the node set and E the edge set. The
network size |V | is denoted by n and the diameter by D. Nodes have unique
identifiers (IDs). This property is essential in order to break symmetry in deter-
ministic algorithms. The identifier of a node v ∈ V , id(v), is an integer from
{1, . . . , L} where L is some upper bound on the identifiers unknown to nodes.
Then, the maximum length over all identifiers in G is �log L� (also unknown).

We use the terminology of formal language theory. The empty word is denoted
by ε. The operator ‖ is for the word concatenation. For any positive integer i,
0i denotes the concatenation of i symbols 0’s (where 00 = ε). The length of
a word x is denoted by |x|. For any word x and integer j ∈ {1, . . . , |x|}, x[j]
denotes the jth bit of x. For any two words x and y of the same length, we
define the (bitwise OR) superposition of x and y (and say that x and y are (OR)
superposed) as the binary word w of length |w| = |x| such that ∀i ∈ {1, . . . , |w|},
w[i] = 0 ⇔ x[i] = y[i] = 0. We naturally extend the superposition to the case of
several words of the same length. Additionally, for any two words x and y of the
same length, x is said to be included in y if ∀i ∈ {1, . . . , |x|}, x[i] = 1 ⇒ y[i] = 1.
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Multi-broadcast. Let S be a subset of k nodes (for some k > 1) called sources
and having (possibly identical) messages in {1, . . . , M}, where M is unknown
to all nodes. For any node v, m(v) denotes its message. If v is not a source let
m(v) = ε. Equivalently, m(v) refers to an integer in {1, . . . , M} or to its binary
representation of length at most �log M�.

In the multi-broadcast (with provenance) problem, all nodes must receive
from each of the k sources its message with its ID. More precisely, they must
compute the set {(m(v), id(v)) | v is a source }.

Matrix Notations. For any a × b matrix M and any integers i ∈ {1, . . . , a} and
j ∈ {1, . . . , b}, the entry of M in row i and column j is denoted by M [i, j].
Additionally, the ith row of m is denoted by M [i, :] and the the jth column of m
is denoted by M [:, j]. For any integer d, let Id be the d × d identity matrix, that
is, the matrix with entry 1 on the diagonal and 0 otherwise.

3.2 Model Definitions

In the beeping model (BEEP), an execution proceeds in synchronous rounds,
i.e., there are synchronized local clocks and all nodes start at the same time in
a synchronous start. In each round nodes synchronously execute the following
steps. First, each node beeps or listens. Beeps are transmitted to all neighbors
of the beeping node. Then, if a node beeped (in the previous step of the same
round), it learns no information from its neighbors. Otherwise, it knows whether
or not at least one of its neighbors beeped (during the previous step of the same
round). Finally, each node performs local computations. The synchronous start
assumption can be replaced by a slightly weaker variant called wake-on-beep [1],
for an additive factor of O(D) rounds.

4 A General Scheme for Multi-broadcast

A natural solution for multi-broadcast is as follows. First, a leader node (with
the maximum ID) is elected, allowing the network to rely on broadcast and con-
vergecast (respectively, sending a message from and to the leader). Once a leader
has been elected, the ID range L is known to all nodes. Relying on communica-
tions via the leader, it is now possible to efficiently compute global bounds on
the network’s diameter D and the message range M . Then, the k sources are
identified and ordered, as efficiently as possible, by all nodes. Henceforth, this is
referred to as the source identification component. Finally, the sources converge-
cast their messages to the leader (pipelined so that the messages arrive to the
leader contiguously in order), and the leader broadcasts the string of messages
back through the network. Since all nodes agree on the sources’ order, all nodes
now have all the messages together with the corresponding IDs of the sources.
We outline this scheme in Algorithm 1.
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Algorithm 1. Multi-Broadcast Scheme
1: Perform Leader Election
2: Estimate Network Parameters
3: Perform Source Identification
4: Collect Source Messages
5: Broadcast Source Messages

All the steps of Algorithm 1, with the exception of Source Identification, can
be performed efficiently, explicitly, and deterministically using known procedures
from previous works on BEEP:

– Leader election can be performed with O(D + log L) round complexity [13].
The algorithm requires unique identifiers and elects the node with the max-
imum identifier. The output is a boolean indicating whether the executing
node is the leader or not.

– Estimating diameter D can be performed in O(D) rounds [10]. The algorithm
requires a leader, and outputs in all nodes an estimate D̃ with D ≤ ˜D ≤ 2D.
Henceforth, we assume that D is known because ˜D can be used instead of D
with only a constant-factor overhead.

– Message range M can be similarly estimated in O(D + log M) time [10].
– Collecting source messages can be done using the CollectMessages pro-

cedure from [10]. This procedure requires a leader and upper bounds of D
and the maximum length, in bits, of the messages to be collected, denoted
by p. It takes as input a set of messages held by nodes in the network. On
completion, the leader receives the OR superposition of all the messages, and
the running time is O(D + p) rounds.
We apply this procedure by collecting messages of p = k�log M� bits, one
from each source, in which source numbered i in lexicographical order places
its input message into the bit interval [i�log M�, (i + 1)�log M�), with 0’s in
every other position (the values of k and the order i are computed during the
previously performed source identification component). The superposition of
these words is therefore simply the concatenation of all source messages in
order. The running time is O(D + p) = O(D + k log M).

– Broadcasting source messages can be performed using the Beep-Wave pro-
cedure of [10]. This procedure allows a leader to broadcast a p-bit message to
all nodes in O(D + p) time. Applying the procedure to the concatenation of
all k source messages in order yields an O(D + k log M) time.

All these auxiliary procedures terminate such that nodes start each subse-
quent procedure synchronously. Consequently, source identification is the only
remaining step for which there is no efficient procedure, and it is here that the
perspective of group testing allows us to make improvements. We denote the
round complexity of a potential source identification algorithm by TSI . Efficient
source identification solutions are presented in Sect. 5 and their round complexi-
ties are given by Theorems 5 and 8. Moreover, the scheme for source identification
when k is unknown is presented in Sect. 5.3.
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Theorem 1. Multi-broadcast can be solved in O(D + log L + k log M + TSI)
rounds in BEEP.

Proof. Applying the above procedures to the scheme in Algorithm1, the total
running time of steps 1 and 2 is O(D+log L+log M). After these steps, a leader
is elected and all nodes know common constant-factor upper bounds for D, L
and M . The subsequent procedure for source identification takes TSI rounds, and
results in all nodes being aware of all source IDs. Finally, steps 4 and 5 are then
correctly performed, completing multi-broadcast in a further O(D + k log M)
rounds. The total running time is therefore O(D + log L + k log M + TSI).

5 Source Identification and Group Testing

We now show how the problem of source identification can be reduced to that
of combinatorial group testing (defined in Sect. 2). Recall that we have k source
nodes with unique IDs from [L], a specified leader node which is known to all
nodes in the network, and universal knowledge of (linear upper bounds on) L
and D. Upon completing source identification, we require that the leader node
has knowledge of all the source IDs (i.e., of S).

Efficient and simple group testing strategies can be obtained by using list
disjunct matrices (LDM). Such strategies, called LDM-strategies, are presented
in Sect. 5.1 and are the building blocks of the source identification algorithm,
described in two stages. First, a simplified scheme (when the number of sources
k is known) is presented in Sect. 5.2. Then an extended scheme for unknown
k is presented in Sect. 5.3. This extended scheme computes a CLDM-strategy
(an extension of an LDM-strategy), and its time complexity (resp. computation
cost) depends on the CLDM-strategy’s parameters (resp., explicitness property).
Weakly-explicit and explicit constructions of CLDM-strategies with optimal or
nearly optimal parameters are proposed in Sect. 5.4, resulting in efficiently con-
structible source identification and multi-broadcast solutions.

5.1 Group Testing Strategies and LDM-strategies

Recall that the (d, I)-combinatorial group testing problem (CGT) consists of
finding a subset B of d defective items within a set of I items. Good strategies
for CGT use at least 2 stages (see Related work in Sect. 2). In a two-stage strategy,
a first stage determines a subset B1 of {1, . . . , I} with B1 ⊃ B and |B1| = Î,
and the second stage determines a subset B2 of {1, . . . , Î} with B2 ⊃ f1(B) and
|B2| = d (where f1 maps B1 to {1, . . . , Î} in lexicographical order).

Definition 1. Let B be some unknown subset of d defective items within a set
of Î items. A testing strategy using s stages and t tests over all s stages to
determine a superset B′ ⊃ B of size at most d + � − 1 is called a (d, �, Î) s-stage
t-test testing strategy.



74 J. Beauquier et al.

In group testing, it is common to build strategies using list disjunct matrices.
A single list disjunct matrix defines a single stage testing strategy, and a sequence
of s list disjunct matrices defines an s-stage testing strategy (for some integer s).

Definition 2. A (d, �, Î, t)-list disjunct matrix is a t × Î binary matrix M such
that for any disjoint subsets T,R ⊆ {1, . . . , Î} with |T | = d, |R| = �, there is a
row i of the matrix with

∑

j∈T M [i, j] = 0 and
∑

j∈R M [i, j] > 0.

Lemma 1. A (d, �, Î, t)-list disjunct matrix defines a (d, �, Î) single stage t-test
testing strategy: each row M [i, :] defines the pool of the ith test (for 1 ≤ i ≤ t).

Definition 3. A (d, I)-LDM-strategy using s stages and t tests is a sequence
M1, . . . , Ms of list disjunct matrices with parameters (d, �1, I1, t1), . . . , (d, �s, Is, ts)
satisfying:

– I1 = I,
– d + �i − 1 = Ii+1 for all 1 ≤ i < s,

– �s = 1,
–

∑

i≤s ti = t.

Lemma 2. A (d, I)-LDM-strategy using s stages and t tests is a (d, 1, I) s-stage
t-test testing strategy and thus solves (d, I)-CGT.

If d is known then a (d, I)-LDM-strategy can be computed (see Sect. 5.4
for some constructions) and this LDM-strategy defines an s-stage t-test testing
strategy solving (d, I)-CGT.

5.2 Source Identification for Known k

In this section, we give a simplified version (Algorithm 2) of the source identifi-
cation solution, in which we know the number of sources k. This assumption is
removed in the extended scheme presented in Sect. 5.3. Algorithm 2 relies on effi-
cient constructions of LDM-strategies (for example, a 2-stage O(k log L

k ) weakly
explicit LDM-strategy), which are presented later in Sect. 5.4.

Source Identification Scheme (Algorithm 2). The source identification algorithm
first computes a (k, L)-LDM-strategy F using s stages and t tests (which
requires knowing k and L), after which sources are identified in s phases. Let
F = M1, . . . , Ms where Mu (for 1 ≤ u ≤ s) has parameters (k, �u, Lu, tu),
L1 = L and �s = 1. Details on constructions of good LDM-strategies are deferred
to Sect. 5.4. Using a weakly explicit LDM-strategy results in a weakly explicit
source identification solution, and an explicit LDM-strategy in an explicit source
identification solution.

Nodes start with no knowledge about which nodes could be the sources, and
in each phase they obtain more information by implementing a stage of the group
testing strategy defined by F (see Lemma 2). Let f be initialized to the identity
function on {1, . . . , L} in the first phase. The function f is updated so that in
every phase u, it renames some of the identifiers in {1, . . . , L} to {1, . . . , Lu}
(including all source IDs).
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The algorithm executes s phases. In each phase u (for 1 ≤ u ≤ s), a node v
sets cu(v) to Mu[:, f(id(v))] (i.e., the f(id(v))th column of Mu) if it is a source,
and 0tu otherwise (see lines 5–6). The superposition w of the words cu is col-
lected by the leader and then broadcast to all network nodes through the use of
the auxiliary functions described in Sect. 4 (see lines 7–8). Consequently, nodes
compute Su = {x ∈ {1, . . . , Lu} | x is included in w} and update f (see lines
11–12). More precisely, f is updated to fu ◦ f , where fu renames the elements of
Su to {1, . . . , Lu+1} according to their lexicographical order: the yth element of
Su is mapped to y. After all s phases are finished, nodes compute S = f−1(Ss).

Implementation of the Testing Strategy. Each phase u for 1 ≤ u ≤ s implements
the stage u of the testing strategy. Nodes use the tests of stage u to determine
some subset Su of {1, . . . , Lu} which contains f(S) (where |f(S)| = |S| because
no defective item is eliminated by the naive decoder, see Sect. 5.1). Indeed, the
leader collects all messages cu and broadcasts their superposition w to all nodes,
which is the superposition of at most k columns of Mu. Each bit w[i] (for 1 ≤
i ≤ tu) can be seen as the test result of test i of stage u in the testing strategy. In
the last phase, Ss is a subset of {1, . . . , Ls} with |Ss| = k+�s −1 = k. Therefore,
Ss = fs−1 ◦ . . . ◦ f1(S).

Algorithm 2. Source Identification Scheme (with known k)
1: Inputs: k and upper bounds for L,M and D
2: Compute M1, . . . , Ms and their parameters (k, �1, L1, t1), . . . , (k, �s, Ls, ts)
3: f := id(v)
4: for phase u := 1 ; u ≤ s ; u++ do
5: if v is a source node then cu := Mu[:, f ]
6: else cu := 0tu

7: Collect all binary words cu by OR superposition into w at the leader
8: Broadcast the superposition w
9: Get Su = {x ∈ {1, . . . , Lu} | x is included in w}

10: if u < s then
11: Let fu be a function from Su to {1, . . . , Lu+1} in lexicographical order.
12: if v is a source node then f = fu(f)
13: Return S = f−1

1 ◦ . . . ◦ f−1
s−1(Ss) � S is the set of source IDs

Theorem 2. Assume Algorithm2 computes a (k, L)-LDM-strategy F using s
stages and t tests. Then it solves source identification in O(Ds + t) rounds in
BEEP.

Proof. Algorithm 2 solves source identification since the testing strategy defined
by F correctly identifies all k source nodes. In phase u (1 ≤ u ≤ s), the leader
gather binary words of tu bits from the nodes in O(D + tu) rounds. Then the
leader broadcasts the superposition in O(D + tu) rounds. Over all s phases, the
round complexity is O(

∑

u≤s(D + tu)) = O(Ds + t) rounds.
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Therefore, a good source identification solution should use an LDM-strategy
with both small s and small t. The related work in Sect. 2 describes such strate-
gies. However, these either require high computation cost (i.e., weak explicitness)
or non-optimal (but nearly optimal) s and t [20].

5.3 Extending the Source Identification Scheme to Unknown k

An extended scheme (of Algorithm 2), working when k is unknown, is presented
below. The scheme computes an s-stage L-CLDM-strategy (see Definition 5)
instead of a (k, L)-LDM-strategy, where the former object is a sequence of con-
structions that produces an (k̂, L)-LDM-strategy for any number of defective
items k̂ ≤ L, and can thus be computed when k is unknown. Details on con-
structions of good CLDM-strategies are deferred to Sect. 5.4.

Definition 4. A (d̂, Î)-list disjunct matrix construction is a function C with
input (d̂, Î) and output (M, �, t) where M is a (d̂, �, Î, t)-list disjunct matrix.

Definition 5. A I-CLDM-strategy is a sequence C1, . . . , Cs of constructions of
list disjunct matrices satisfying: ∀d̂ ≤ I, let C1(d̂, I) = (M1, �1, t1) and for 1 <

i ≤ s, Ci(d̂, Ii) = (Mi, �i, ti) for Ii = d̂ + �i−1 − 1, then M1, . . . , Ms is a (d̂, I)-
LDM-strategy.

Scheme for Source Identification with Unknown k. The extended scheme first
computes an s-stage L-CLDM-strategy FC = C1, . . . , Cs. Following which,
sources are identified in s phases, and each phase consists of at most �log k� sub-
phases. Similarly to Algorithm 2, nodes start with no knowledge about which
nodes could be the sources, and in each phase u they obtain more informa-
tion by implementing at most �log k� consecutive single stage testing strategies
on {1, . . . , Lu}. Notice that the set of items {1, . . . , Lu} tested upon does not
change throughout the different single stage testing strategies (i.e., subphases)
of the phase u. Let f be initialized to the identity function on {1, . . . , L} in the
first phase. The function f is updated so that in every phase u, it renames some
of the identifiers in {1, . . . , L} to {1, . . . , Lu} (including all source IDs).

Subphase Implementation. In sub-phase r of phase u, if r = 1 then node v
computes k̂1

u, as the smallest power of 2 (k̂1
u = 2gu for some integer gu) such

that Cu(k̂1
u, Lu) = (M1

u , �1u, t1u) satisfies t1u ≥ D. This prerequisite ensures that
the round complexity of phase u in this extended scheme is the same as that in
Algorithm 2. For any other subphase r > 1, node v computes k̂r

u = 2r−1k̂1
u.

Following which, a node v first computes k̂r
u and Cu(k̂r

u, Lu) = (Mr
u, �r

u, tru).
Then, it sets cu to Mr

u[:, f(id(v))] (i.e., the f(id(v))th column of Mr
u) if it is a

source, and 0tu otherwise. The superposition w of the words cu is collected by the
leader and then broadcast to all network nodes through the use of the auxiliary
functions described in Sect. 4. Then, nodes compute Sr

u = {x ∈ {1, . . . , Lu} | x is
included in w}. If |Br

u| ≥ k̂r
u + �r

u, nodes execute subphase r +1 with k̂r+1
u = 2k̂r

u

and still on items {1, . . . , Lu}. Otherwise, nodes finish the current phase and if
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u < s then nodes execute the following phase u + 1 with Lu+1 = k̂r
u + �r

u − 1 (on
items {1, . . . , Lu+1}) and the function f is updated to fu ◦ f , where fu renames
the elements of Sr

u to {1, . . . , Lu+1} according to their lexicographical order: the
yth element of Su is mapped to y.

The last subphase of a phase implements the only successful single stage
testing strategy of the phase. Moreover, if kr

u > k then the single stage testing
strategy defined by Mr

u is guaranteed to return a subset Sr
u of less than k̂r

u+�r
u−1

items. Consequently, each phase has at most �log k� subphases.
This method can be used to solve (k, L)-CGT with unknown k, at the cost of

a multiplicative factor �log k� for both stages and tests in comparison to the cor-
responding (k, L)-LDM-strategy computed when k is known. Fortunately, when
CLDM-strategies are used in our source identification solution, this multiplica-
tive factor does not affect the round complexity (see Lemma 3 and Theorem 3,
whose proofs are deferred to the full version of this paper).

Lemma 3. Each phase u of the extended source identification scheme takes
Ru = O(

∑

r≤r′ tru) rounds for r′ = max{1, �log k� − gu}. Let tu be defined by
Cu(k, Lu). If Cu satisfies t1u = O(D) and if r′ > 1,

∑

r≤r′ tru = O(tu), then it
follows that Ru = O(D + tu).

The conditions of Lemma 3 are satisfied by all 3 CLDM-strategies proposed
in Sect. 5.4. Consequently, the following theorem holds for each:

Theorem 3. Assume that the s-stage L-CDM-strategy FC used in the scheme
satisfies Lemma 3 for each phase u (1 ≤ u ≤ s). The extended scheme solves
source identification with unknown k in O(Ds + t) rounds, where t is defined by
the (k, L)-LDM-strategy computed by FC (with k̂ = k).

5.4 Efficiently Constructible Source Identification Solutions

Various CLDM-strategies resulting in efficient deterministic source identification
solutions are presented in this section. Theorem 2 from Sect. 5.2 emphasizes that
both stages and tests should be as low as possible. However strategies with a
single stage require a non-optimal Ω(d2 · log I

log d ) tests (see Related work in Sect. 2),
thus the CLDM-strategies proposed here have at least 2 stages.

Several constructions of list disjunct matrices are presented, with a trade-off
between computational cost and optimal parameters (optimal number of tests).
First we give a weakly explicit construction with optimal parameters, resulting
in a weakly-explicit (2-stage O(k log L

k )-tests) CLDM-strategy and thus a weakly
explicit round-optimal source identification solution. Following which, we give
two explicit constructions with nearly optimal parameters and use them to con-
struct two different explicit CLDM-strategies. Their combination results in an
explicit nearly optimal (optimal for most ranges of D and k) source identification
solution.

Lemma 4. For any integers k̂, L̂ with L̂ > k̂, the identity matrix IL̂ is
a (k̂, 1, L̂, L̂)-list disjunct matrix. Thus, there exists a construction function
CInd(k̂, L̂) = (IL̂, 1, L̂) with computation cost poly(k̂, L̂).



78 J. Beauquier et al.

The matrix construction CInd defines a testing strategy with individuals tests
on all L̂ items. Although this strategy is not efficient when L̂ >> k̂, it is very
efficient once L̂ = O(k̂ log L̂

k̂
). The challenging part is therefore to reduce L items

which could possibly be defective to a ‘shortlist’ of L̂ = O(k log L
k ) items.

Weakly Explicit Construction with Optimal Parameters. We use an optimal
weakly-explicit group testing result from [6]:

Theorem 4 ([6]). There exists an optimal construction function CW (k̂, L̂) =
(MW , k̂, O(k̂ log L̂

k̂
)) with computation cost O(k̂3L̂2k̂+1 log L̂).

The CLDM-strategy F1 = CW , CInd is a weakly explicit 2-stage O(k log L
k )-

test CDLM-strategy. As a side note, F1 defines what is referred to as a trivial
two-stage testing strategy in group testing (see Related work in Sect. 2): CW

determines most non-defective items, after which CInd can be used to determine
the k defective items (among the remaining O(k) items). When F1 is given to the
source identification scheme in Sect. 5.3, the result is a weakly explicit algorithm
with optimal round complexity for source identification.

Theorem 5. The extended source identification scheme using a testing strat-
egy defined by F1 is a weakly explicit algorithm solving source identification
in optimal O(D + k log L

k ) rounds. Consequently, combining this result and the
multi-broadcast scheme in Sect. 4, the result is a weakly explicit algorithm solving
multi-broadcast in optimal O(D + k log LM

k ) rounds.

Explicit Constructions with Near Optimal Parameters. Unfortunately, there are
no known explicit constructions for group testing strategies using O(k log L

k ) tests
and a constant number of stages. As a result, the best known results in group
testing [20] do not give optimal multi-broadcast algorithms in BEEP. However,
by combining two explicit CLDM-strategies, we can design a multi-broadcast
algorithm in BEEP optimal for most ranges of D and k. For D >> k log L we
can use an existing explicit construction from [20]:

Theorem 6 ([20]). For any constant ε > 0, there exists a construction function
CE(k̂, L̂) = (ME , k̂1+ε, k̂1+ε log L̂) with computation cost poly(k̂, L̂).

For D << k log L we present a new construction (proof deferred to the full
version of this paper):

Theorem 7. Given integers k̂, L̂ with L̂ ≥ 2k̂, let q denote �log2k̂ L̂�. There
exists a construction function CDIG(k̂, L̂) = (MDIG, k̂q, 2k̂q) with computation
cost poly(k̂, L̂).

Two explicit CLDM-strategies are presented here:

– The first strategy F2 = CE , CInd is an explicit 2-stage O(k1+ε log L)-test
CLDM-strategy. It is, similarly to F1, a trivial two-stage testing strategy.
When the source identification scheme in Sect. 5.3 uses a testing strategy
defined by F2, the result is an explicit algorithm for source identification
with optimal round complexity when D = Ω(k1+ε log L).
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– The second strategy F3 is a sequence of O(log k log log L
log k ) + 1 construc-

tions, where constructions Ci = CDIG for 1 ≤ i ≤ O(log k log log L
log k )

and the last construction is CInd. F3 is an explicit CLDM-strategy using
O(log k log log L

log k ) + 1 stages and O(k log L
k ) tests. When the source identifica-

tion scheme in Sect. 5.3 uses a testing strategy defined by F3, the result is
an explicit algorithm for source identification with optimal round complexity
when D = O( k log L

k

log k log log L
log k

).

By executing these two source identification solutions (one defined by F2, the
other by F3) in parallel (i.e., one round of the first algorithm, then one of the
second, and so on), the following result can be obtained.

Theorem 8. Source identification can be solved using an explicit algorithm with
optimal round complexity when either D = O( k log L

k

log k log log L
log k

) or D = Ω(k1+ε log L)

(for any constant ε > 0). As a result, multi-broadcast can be solved using an
explicit algorithm with optimal round complexity for most ranges of k and D.

6 Explicit Solutions Using Randomized Group Testing

While asymptotically optimal explicit 2-stage randomized group testing strate-
gies exist (e.g. constructing a (d̂, O(d̂), Î , O(d̂ log Î

d̂
)) list-disjunct matrix by set-

ting each entry to 1 independently with probability Θ(1/d̂)), these strategies are
not directly implementable in our BEEP framework. This is because they rely on
shared randomness, i.e. the tester must have access to the randomness used to
construct the matrix in order to decode it. However, one practical way to achieve
this in BEEP is to have the leader node generate the random bits to be used, and
broadcast them to the network. This will result in a time cost (in rounds) equiv-
alent to the number of the generated random bits. To minimize this cost and
obtain an efficient randomized multi-broadcast algorithm in BEEP, we present
a new group testing result demonstrating that an optimal testing strategy can
be generated using very few random bits:

Theorem 9. Given d̂, Î with Î ≥ 2d̂, and O(log Î(1+ log log Î

log d̂
)) independent uni-

formly random bits, one can construct an explicit 2-stage group testing strategy
FP such that for any set T of d̂ defective items, the strategy recovers T using
O(d̂ log Î

d̂
) tests and succeeding with high probability (1 − 1/poly(Î)).

This strategy can be used in the same source identification framework as
those in Sect. 5, starting with an estimate k̂ such that k̂ log L

k̂
= Θ(D), and suc-

cessively doubling until the algorithm succeeds. The resulting algorithm solves
source identification in O(D + k log L

k + log L log log L) rounds, with high prob-
ability (i.e., with probability (1 − 1/poly(L))). The proofs of Theorems 9 and 10
are deferred to the full version of this paper.

Theorem 10. Source identification can be solved in BEEP with an explicit ran-
domized algorithm in O(D + k log L

k + log L log log L) rounds, succeeding with
high probability. This round complexity is optimal whenever k = Ω(log log L).
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Abstract. The minimum tracking set problem is an optimization prob-
lem that deals with monitoring communication paths that can be used
for exchanging point-to-point messages using as few tracking devices as
possible. More precisely, a tracking set of a given graph G and a set of
source-destination pairs of vertices, is a subset T of vertices of G such
that the vertices in T traversed by any source-destination shortest path
P uniquely identify P . The minimum tracking set problem has been
introduced in [Banik et al., CIAC 2017] for the case of a single source-
destination pair. There, the authors show that the problem is APX-hard
and that it can be 2-approximated for the class of planar graphs, even
though no hardness result is known for this case. In this paper we focus
on the case of multiple source-destination pairs and we present the first
˜O(

√
n)-approximation algorithm for general graphs. Moreover, we prove

that the problem remains NP-hard even for cubic planar graphs and all
pairs S × D, where S and D are the sets of sources and destinations,
respectively. Finally, for the case of a single source-destination pair, we
design an (exact) FPT algorithm w.r.t. the maximum number of vertices
at the same distance from the source.

1 Introduction

In the context of network monitoring and surveillance, the problem of tracking
moving objects is of primary interest. Think, for example, of a communication
network in which messages are exchanged between pairs of hosts. One might wish
to track the routing patterns of the messages, i.e., for each exchanged message,
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one would like to know its sender, its recipient, and the exact path it followed
in the network. Quite naturally, we assume that messages follow a shortest path
between the source and destination host in the network. One way to achieve this
goal is that of equipping a small number of intermediate hosts with suitable
detectors that activate whenever a message is routed though their hosts, so that
the set of activated detectors uniquely identifies the message’s path.

The above task can be formalized as the minimum tracking set problem
[4], which is exactly the focus of this paper. Given an undirected graph G =
(V (G), E(G)) representing the network, and a set P = {(s1, t1), . . . , (sk, tk)} of k
source-destination pairs of vertices of G, a tracking set (TS) of G w.r.t. P is a sub-
set T of V (G) such that the set of vertices in T traversed by any source-destination
shortest path P in G, uniquely identifies P , that is, for any two distinct shortest
paths P , Q between any two (possibly coinciding) source-destination pairs in P,
we have that V (P ) ∩ T �= V (Q) ∩ T , where V (P ) (resp. V (Q)) denotes the set of
vertices traversed by P (resp. Q), endpoints included.1 The goal is that of finding
a tracking set of G w.r.t. P having minimum cardinality.

The above definition implicitly assumes that the order of activation of the
detectors is unknown. A natural variant asks to uniquely identify P given the
ordered sequence of vertices in T traversed by P . We will refer to such a set T as
an ordered tracking set (OTS), and to the corresponding optimization problem
as the minimum ordered tracking set problem. While a TS is necessarily also a
OTS, the converse is not true in general.

The above problem have been considered in the special case in which P
consists of a single source-destination pair (s, t) [4].2 Notice that, in this case,
every OTS is also a TS, hence the two variants of the problem coincide. Indeed,
any shortest path P from s to t needs to traverse the vertices in V (P ) ∩ T in
increasing order of distance from s in G. The authors of [4] show, among other
results, that the minimum tracking set problem is APX-hard and that it can be
2-approximated for the class of planar graphs, even though no hardness result
is known for this case. Moreover, in [2] it is shown that checking whether an
instance admits a TS of size at most h can be done in O(2h2

nO(1)) time, and
thus this problem is fixed parameter tractable. Notice that no approximation
algorithm is known for general instances, even for the case of single source-
destination pair.

Our Results. In this paper we focus on the case of multiple source-destination
pairs and we present the first ˜O(

√
n)-approximation algorithm for general

graphs. More precisely, in Sect. 3, we obtain a O(
√

n)-approximation for the min-
imum TS problem which we are able to extend to a O(

√
n log n)-approximation

1 Observe that a TS always exists unless P contains two pairs of the form (s, t) and (t, s).
We then assume that our TS instances never contain such pairs.

2 Observe that it is not possible to reduce the multi-source multi-destination case
to the single-pair case by simply adding a super-source and a super-destination
connected to all the sources and all the destinations, respectively, as erroneously
claimed in [4].
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for the minimum OTS problem. Moreover, in Sect. 4, we prove that both prob-
lems remain NP-hard even for cubic planar graphs when the set P contains
all pairs between a given set of sources S ⊆ V (G) and a set of destinations
D ⊆ V (G), i.e., P = S × D. Finally, for the case of a single source-destination
pair, we design an (exact) fixed parameter (FPT) algorithm w.r.t. the maximum
number h of vertices at the same distance from the source, having a running
time of O∗(2h2

), as discussed in Sect. 5.3 Due to space limitations, proofs are
omitted from this version of the paper and will appear in the full version.

Other Related Results. Besides the aforementioned ones, the authors of [4] also
provide two other results. They show that, given a graph G, and a tracking set T
w.r.t. a given pair (s, t), it is possible to efficiently pre-process G and T in order
to build a data structure that is able to quickly answer queries of the form: given
a subset of T , reconstruct the corresponding path P in time proportional to the
number of edges of P . Finally, they provide an exact polynomial time algorithm
for the Catching the intruder problem, in which we are given a graph G, a pair
of vertices (s, t), and a subset of forbidden vertices, and we want to find a set T
of vertices of minimum cardinality such that, a shortest path from s to t passes
through a forbidden vertex if and only if it passes through a vertex of T .

A generalization of the minimum TS problem has been recently considered
in [2], for which hardness results are provided. Moreover, the variant of the
minimum OTS problem in which the objective is to track all paths between
a given pair of nodes is studied in [3]. For this variant, the authors show that
the problem of finding a solution of size at most h is NP-complete and fixed
parameter tractable w.r.t. h.

A problem similar in spirit to the minimum TS problem is the network veri-
fication problem, informally the problem of establishing the accuracy of a high-
level description of its physical topology, by making as few measurements as
possible on its nodes [1,5]. More precisely, this task can be formalized as an
optimization problem that, given a graph and a query model specifying the
information returned by a query at a node, asks for finding a minimum-size sub-
set of nodes to be queried so as to univocally identify the graph. It turns out that
the verification problem with the all-shortest-paths query model is equivalent to
the problem of placing landmarks on a graph [7]. In this problem, we want to
place landmarks on a subset of the nodes in such a way that distinct nodes
have different distance vectors to the landmarks, and the minimum number of
landmarks to be placed is called the metric dimension of a graph [6].

2 Preliminaries

Let G = (V (G), E(G)) be a graph. If P is a simple path from u to v in G that
traverses two vertices x and y, in this order, we will denote by P [x : y] the
subpath of P between x and y. We will use P [: x] and P [x :] as a shorthand

3 The O∗ notation suppresses polynomial multiplicative factors w.r.t. n.
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for P [u : x] and P [x : v], respectively. If P is a path from u to v and Q is a
path from v to w, we will use P ◦ Q to denote the path from u to w obtained by
concatenating P with Q.

Let P (x, y) denote the set of paths from x to y in G and P 2(x, y) = P (x, y)×
P (x, y) be the set of all possible (ordered) pairs of (possibly coinciding) paths
from x to y in G. We say that a pair (P1, P2) ∈ P 2(x, y) is independent if P1

and P2 are vertex disjoint except for their endpoints x and y.4

Given two shortest paths P1, P2 from x to y, we say that the unordered pair
C = {P1, P2} is a relevant cycle if P1 and P2 have length at least 2 and (P1, P2) is
independent. We say that x (resp. y) is the upper endpoint (resp. lower endpoint)
of C. A vertex v ∈ V (G) covers a relevant cycle C if v is an internal vertex of
C, i.e., v ∈ V (P1) ∪ V (P2) \ {x, y}. A set T ⊆ V (G) covers C if it contains at
least one vertex v ∈ T that covers C. We let C(v) be the number of relevant
cycles covered by v.

Given a pair of vertices s, t ∈ V (G), a relevant cycle w.r.t. (s, t) is a relevant
cycle {P1, P2} such that both P1 and P2 are subpaths of paths in P (s, t).

The following lemmas will be useful in the sequel:

Lemma 1. For any two distinct shortest paths P1, P2 between the same pair of
vertices, there exists a relevant cycle {P ′

1, P
′
2} where P ′

1 is a subpath of P1 and
P ′
2 is a subpath of P2.

Lemma 2 ([4]). Given a graph G, and s, t ∈ V (G) with s �= t, a set T ⊆ V (G)
is a TS w.r.t. (s, t) iff T covers all the relevant cycles w.r.t. (s, t).

3 An Approximation Algorithm

This section is devoted to designing an approximation algorithm for the mini-
mum TS and minimum OTS problems. For the sake simplicity, we will start by
devising an approximation algorithm for the minimum TS problem when P con-
tains a single pair (s, t). We will then extend our algorithm to handle arbitrary
sets P while leaving the approximation ratio asymptotically unchanged. With
some additional technical work, we are able to extend our multiple-pair algo-
rithm for the minimum TS problem to the minimum OTS problem, while only
losing a O(

√
log n)-factor in the approximation ratio. Due to space limitations,

this latter extension is omitted and will appear in the full version of the paper.
Our algorithm for the minimum TS problem with a single source-destination

pair (s, t) simulates the execution of the greedy algorithm for the set-cover prob-
lem for the instance I = (I,S) in which the set of items I contains all the
relevant cycles of G w.r.t. (s, t), and the collection of sets S contains one set Sv

per vertex v ∈ V (G), where Sv is the set of relevant cycles w.r.t. (s, t) covered
by v. The greedy algorithm maintains a partial set-cover X and iteratively adds
to X the set S ∈ S that maximizes | ∪S′∈X∪{S} S′|, i.e., the set that covers

4 Notice that, as a consequence of this definition, the pair (P1, P2) in which P1 and
P2 coincide and consist of the single edge (u, v) is independent.
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as many new elements as possible (with ties broken arbitrarily). The algorithm
stops as soon as the current solution X covers all the elements in I. Notice that,
in general, the size of the above set-cover instance can be exponentially larger
than the size of our tracking-path instance. However, we can simulate the greedy
algorithm by only implicitly maintaining I and the partial solution X. Notice
indeed that X is uniquely identified by the set T = {v : Sv ∈ X} in which a
set Sv is represented by the vertex v. In order to select the next set S, we only
need to compute the number C(v, T ) of newly-covered relevant cycles w.r.t. (s, t)
for each vertex v ∈ V \ T . We will now show how these values C(v, T ) can be
efficiently computed. The pseudocode of our algorithm is shown in Algorithm 1.

3.1 Computing the Number of Independent Pairs

From now on, we will denote by �(v) the level vertex v ∈ V (G), i.e., the distance
of v from s in G. In order to compute C(v, T ), we first consider the related
problem of counting the number NG(x, y) of independent pairs of paths in G
between two distinct vertices x and y such that �(x) < �(y).5 In the rest of this
section we will assume that the input graph has been preprocessed so that G
is actually the subgraph of the input graph obtained by the union of all the
shortest paths between s and t.

We first handle some trivial cases: If �(y) ≤ �(x), then N(x, y) = 0, while
if �(y) = �(x) + 1 then N(x, y) = 1 if (x, y) ∈ E(G) and 0 otherwise. We will
therefore assume that �(y) ≥ �(x) + 2.

Consider now a pair (P1, P2) ∈ P 2
G(x, y) that is not independent and let

z �= x, y be the vertex of minimum level that is traversed by both P1 and P2.
We say that (P1, P2) is a z-pair.

It immediately follows that, for z ∈ V (G) with �(x) < �(z) < �(y), (P1, P2)
is a z-pair iff z ∈ V (P1) ∩ V (P2), the subpaths P1[x : z] and P2[x : z] are
independent, and (P1[z : y], P2[z : y]) ∈ P 2

G(z, y) . We therefore have that the
number of z-pairs is exactly N(x, z) · |P (z, y)|2.

Since the sets of z-pairs, for �(x) < �(z) < �(y), partition the set of all
non-independent pairs in P 2

G(x, y), we can write:

N(x, y) = |P (x, y)|2 −
∑

z∈V
�(x)<�(z)<�(y)

N(x, z) · |P (z, y)|2. (1)

All the values |P (u, v)|, u, v ∈ V (G) can be precomputed in polynomial time
using a simple dynamic programming algorithm. Indeed, by fixing v and by
considering the possible choices of u ∈ V (G), with �(u) ≤ �(v) in decreasing
order w.r.t. �(u) (where ties are broken arbitrarily), we have that |P (u, v)| = 1
if u = v, and |P (u, v)| =

∑

(u,x)∈E(G) |P (x, v)| otherwise.
The above observations immediately result in a polynomial-time dynamic

programming algorithm to compute N(x, y). Indeed, it suffices to compute all

5 When the graph G is clear from context, we may omit the subscript.
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Algorithm 1. GreedyTracking(G, s, t)

T ← ∅;
// The values C(v, T ) are computed using Eq. (3.2).

while ∃v ∈ V (G) \ T : C(v, T ) > 0 do
v ← arg maxv∈V (G)\T C(v, T );
T ← T ∪ {v};

return T ;

the (at most O(n2)) values N(u, v) where �(x) ≤ �(u) < �(v) ≤ �(y) in non-
decreasing order of �(v) − �(u). Each N(u, v) is either in one of the trivial cases
described at the beginning of this subsection or can be found in linear time using
Eq. (1).

3.2 Computing the Number of Covered Relevant Cycles

We now tackle the problem of counting the number C(v) of relevant cycles
covered by v, we will then show how to extend this approach to compute C(v, T ).
To this aim, we will focus on the number C(x, u, v, y) of relevant cycles that have
x and y as their upper and lower endpoints, respectively, and are covered by both
vertex u and vertex v. Since, for each relevant cycle C covered by u, there exists
exactly one other vertex v ∈ C such that �(u) = �(v), we can then compute C(v)
using the identity:

C(v) =
∑

x,y∈V (G)
�(x)<�(v)<�(y)

∑

u∈V (G)\{v}
�(u)=�(v)

C(x, u, v, y). (2)

In order to compute C(x, u, v, y) we observe that it is the product of the two
quantities C+(x, u, v) and C−(u, v, y), where C+(x, u, v) and C−(u, v, y) denote
the “upper” and “lower” parts of the cycle C. More formally, C+(x, u, v) is the
number of pairs (P1, P2) such that: (i) P1 is a shortest path from x to u in G,
(ii) P2 is a shortest path from x to v in G, and (iii) P1 and P2 are vertex-disjoint
except for vertex x. Similarly, C−(u, v, y) is the number of pairs (P1, P2) that
satisfy: (i) P1 is a shortest path from u to y in G, (ii) P2 is a shortest path from
v to y in G, and (iii) P1 and P2 are vertex-disjoint except for vertex y.

Consider now the graph G+
u,v that is obtained by adding a new vertex

t′ and the edges (u, t′) and (v, t′) to the subgraph of G induced by all the
vertices of level at most �(v). Notice that C+(x, u, v) is exactly the num-
ber of unordered independent pairs of paths between x and t′ in G+

u,v, i.e.,
C+(x, u, v) = NG+

u,v
(x, t′)/2, where the factor 1/2 accounts for the fact that

NG+
u,v

(s, t′) is defined w.r.t. ordered pairs. A symmetrical argument allows us to
write C−

u,v(u, v, y) = NG−
u,v

(s′, y)/2, where G−
u,v is the subgraph of G induced by

the vertices of a level at least �(v), plus an additional vertex s′ that is connected
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to both u and v. Combining the above observations with Eq. 2, we obtain:

C(v) =
1
4

∑

x,y∈V (G)
�(x)<�(v)<�(y)

∑

u∈V (G)\{v}
�(u)=�(v)

NG+
u,v

(x, t′) · NG−
u,v

(s′, y). (3)

Clearly, C(v) can be computed in polynomial time as Eq. (3) is essentially a
sum of O(n3) terms, each of which can be found in polynomial time.

Handling Already Covered Cycles. We can easily extend the above algorithm
to compute C(v, T ) once we observe that a relevant cycle C containing v is
newly-covered iff T contains at most the lower and the upper endpoints of C.

Since the vertex u in Eq. (3) is on the same level as v, it cannot belong to T
and we can update the range of the inner sum to V (G) \ (T ∪ {v}). Moreover,
the paths P1 and P2 in graph G+

u,v (resp. G−
u,v) cannot contain any vertex in T ,

except possibly for x (resp. y), while all the remaining pairs of paths form a valid
“upper” (resp. “lower”) part of a newly-covered relevant cycle. To summarize,
we can update Eq. (3) as follows:

C(v, T ) =
1
4

∑

x,y∈V (G)
�(x)<�(v)<�(y)

∑

u∈V (G)\(T∪{v})
�(u)=�(v)

NG+
u,v−(T\{x})(x, t′) · NG−

u,v−(T\{y})(s
′, y).

It is easy that the above equation coincides with (3) in the special case T = ∅
and that C(v, T ) can still be found in polynomial time.

3.3 Analysis of the Algorithm

We start by providing a general lower bound to the size Opt of an optimal TS for
an instance 〈G,P〉 of minimum tracking set, where P = {(s1, t1), . . . , (sk, tk)}.

Lemma 3. Opt ≥ log
∑k

i=1 |P (si, ti)|.
From this, it turns out that the following holds:

Theorem 1. GreedyTracking is a polynomial-time
√

3n-approximation algo-
rithm for the minimum TS problem when P = {(s, t)}.

3.4 Extension to the Multiple Pairs Case

Let 〈G, {(s1, t1), . . . , (sk, tk)}〉 be an instance of the multiple-pair tracking path
problem and let Gi be the directed acyclic graph obtained as the union of all
the (directed) shortest paths from si to ti in G.

Observation 1. A (multiple-pair) tracking set for the instance 〈G, {(s1, t1), . . . ,
(sk, tk)}〉 is a (single-pair) tracking set for each 〈Gi, si, ti〉, where i = 1, . . . , k.
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Our algorithm is split into two phases. In the first phase we select a tracking
set T1 that covers all the relevant cycles of each single-pair instance 〈Gi, si, ti〉
(w.r.t. (si, ti)), while in the second phase we focus on selecting a set T2 ⊆ V (G)
covering a collection of polynomially many objects (called unrelated paths and
chromosomes in the sequel), that collectively encode all the pairs of paths that
are not yet covered by T1.

Phase 1. We (implicitly) construct a set-cover instance I = (I,S) where I
is the disjoint union of all relevant cycles in 〈Gi, si, ti〉, for i = 1, . . . , k and
S consists of one set Sv per vertex v ∈ V (G) containing all the cycles of I
that are covered by v. Given a partial tracking set X ⊆ V (G), we can compute
the number of newly-covered items by Sv as

∑k
i=1 CGi

(v, T ). We name the set
computed by the above greedy strategy T1.

Lemma 4. |T1| ≤ √
3n · Opt.

Phase 2. Before describing phase 2, we find it useful to give some preliminary
definitions.

Definition 1. An unrelated pair of G is a pair (i, j) with 1 ≤ i < j ≤ k such
that there exist two vertex-disjoint shortest paths Pi ∈ P (si, ti), Pj ∈ P (sj , tj).

We say that unrelated pair (i, j) is covered by a set T ⊆ V (G) if for all vertex-
disjoint paths Pi ∈ P (si, ti), Pj ∈ P (sj , tj), we have (V (Pi) ∪ V (Pj)) ∩ T �= ∅.

Lemma 5. Let T ⊆ V (G) be a set that covers all the relevant cycles in
〈G1, si, ti〉, for i = 1, . . . , k. Given a pair (i, j), we can decide in polynomial
time whether (i, j) is an uncovered unrelated pair. If this is the case, then there
is a unique pair of paths Pi ∈ P (si, ti), Pj ∈ P (sj , tj) that are vertex-disjoint
and do not contain any vertex in T . The pair Pi,Pj can be found in polynomial
time.

Definition 2. A forward chromosome (resp. backward chromosome) of G is a
quadruple 〈i, j, x, y〉 with 1 ≤ i < j ≤ k such that:

– there are two shortest paths Pi ∈ P (si, ti) and Pj ∈ P (sj , tj) (resp. Pj ∈
P (tj , sj)) that both traverse x and y, in order (possibly x = y).

– The subpaths Pi[: x] and Pj [: x] are vertex-disjoint, except for x. Notice that
this includes the case si = sj = x (resp. si = tj = x).

– The subpaths Pi[y :] and Pj [y :] are vertex-disjoint, except for y. Notice that
this includes the case ti = tj = y (resp. ti = sj = y).

We say that forward or backward chromosome χ = 〈i, j, x, y〉 is covered by
T ⊆ V if, for all the pairs of paths Pi, Pj from the above definition, the set
V (Pi[: x]) ∪ V (Pj [: x]) ∪ V (Pi[y :]) ∪ V (Pj [y :]) \ {x, y} contains at least one
vertex from T . It turns out that, if T is chosen as in Phase 1, then the above set
is uniquely determined by χ, as the following lemma claims (see also Fig. 1).
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Fig. 1. Four different ways in which Pi ∈ P (si, ti) and Pj ∈ P (sj , tj) can interact to
form the forward chromosome χ = 〈i, j, x, y〉. In this example, black vertices belong to
the tracking T1 computed in Phase 1, while the unique paths in Δ(χ) are highlighted
in gray, except for the vertices in {x, y}.

Lemma 6. Let T ⊆ V (G) be a set that covers all the relevant cycles in
〈G1, si, ti〉, for i = 1, . . . , k. Given a quadruple χ = 〈i, j, x, y〉, we can decide in
polynomial time whether 〈i, j, x, y〉 is an uncovered (forward or backward) chro-
mosome. If this is the case, then there exist a unique set Δ(χ) = {Pi[: x], Pj [:
x], Pi[y :], Pj [y :]} where Pi and Pj are as in Definition 2 and do not contain
any vertex in T \ {x, y}. The set Δ(χ) can be computed in polynomial time.

Relevant cycles w.r.t. all (si, ti), unrelated pairs, and (forward and backward)
chromosomes provide a characterizations of the sets T that are also tracking sets,
as shown in the following.

Lemma 7. A set T ⊆ V (G) is a tracking set for 〈G, {(s1, t1), . . . , (sk, tk)}〉 if
and only if all the following conditions are satisfied:

(i) T covers all relevant cycles in 〈Gi, si, ti〉, for all i = 1, . . . , k; and
(ii) T covers all unrelated pairs of G; and
(iii) T covers all (forward and backward) chromosomes of G.

In Phase 2 of our approximation algorithm we consider the set I consisting
of all the unrelated pairs and all (forward and backward) chromosomes of G
that are uncovered by T1. Since the number of unrelated pairs is at most k2, and
the number of chromosomes is at most k2n2, the cardinality of I is O(k2n2).
Moreover, thanks to Lemma 5 we can: (i) enumerate all the possible unrelated
pairs (resp. chromosomes) of G a decide, in polynomial time, whether they are
covered by T1; and (ii) compute (in polynomial time) the set of vertices v ∈ V (G)
that would cause any such uncovered unrelated pair (resp. chromosome) to be
come covered. We define S as a collection containing one set Sv for each vertex
v ∈ V (G), where Sv = {x ∈ I : v covers x}.

Since, by Lemma 7, any multiple-pair tracking set must cover each element
in I at least once, we have that the size of an optimal solution S∗ to the set cover
instance (I,S) is a lower bound to Opt. We then compute a 1+ln |I| = O(log n)
approximation ˜S of the optimal solution for (I,S) and select a partial tracking
set T2 = {v ∈ V : Sv ∈ ˜S}. Then, from Lemma 4, we have:
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Theorem 2. T1 ∪ T2 is a O(
√

n)-approximate multiple-pair tracking set.

4 NP-hardness

In this section we prove that the multiple-pair minimum TS and minimum OTS
problems are NP-hard even when G is a cubic planar graph and P = S × D,
where S,D ⊆ V (G) are the sets of sources and destinations, respectively.

Our reduction is from the vertex-cover problem on planar graphs with min-
imum degree 2 and maximum degree 3, which is known to be NP-hard [8].
An instance of (the decision version of) vertex-cover consists of a connected
graph G′ along with an integer k′. The goal is that of deciding whether there
exists a subset C ⊆ V (G′) of at most k′ vertices that covers all the edges, i.e.,
∀(u, v) ∈ E(G′), u ∈ C or v ∈ C.

Fig. 2. The gadgets used in the NP-hardness reduction: (a) and (b) respectively show
the tracking source and tracking sink gadgets; (c) is the edge gadget corresponding
to the edge e = (u, v) ∈ E(G′), where se is replaced by the tracking source gad-
get, while each of tu,v and tv,u is replaced by the tracking sink gadget; (d) is the
dummy gadget that is used only to guarantee that the constructed graph G is cubic.
Our construction guarantees the existence of an optimal tracking set that contains
all gray vertices. Furthermore, every tracking set must contain at least one vertex in
{u, xu,v, zu,v, v, xv,u, zv,u} for every edge (u, v) ∈ E(G′).

Before describing how the graph G of our multiple-pair minimum TS/OTS
instance is constructed, we first describe two useful gadgets, namely the tracking
source and the tracking sink (see Fig. 2(a) and (b)). The tracking source gadget
contains one source vertex (labeled s and depicted with an hexagonal vertex)
and a vertex c that is used to connect the gadget to the rest of the graph.
The tracking sink gadget is similar: it contains one destination vertex (labeled
t and depicted with a square vertex) and a vertex c that is used to connect
the gadget to the rest of the graph. In our reduction, we will use one tracking
source gadget for each source in S and one tracking sink gadget for each of some
destinations in D. Both gadgets are designed in such a way that every tracking
set T must necessarily contain at least two of the vertices among a1, a2, b2, and
b2, as otherwise there would exist two paths between s and c that traverse the



Tracking Routes in Communication Networks 91

same set of vertices in T (in the same order). Moreover, for the tracking source
(resp., tracking sink) gadget, if T contains a1 and b2 then any path from s (resp.,
t) must traverse at least one tracked vertex of the gadget.

In the following we refer to a tracking source (resp. tracking sink) gadget as if
it were a single vertex and will use two concentric hexagons (resp. two concentric
squares) to distinguish it in the figures.

The graph G of our instance of minimum TS/OTS is obtained from G′ by
replacing each edge of e = (u, v) with the edge gadget shown in Fig. 2(c). The set
S consists of all the sources in the tracking source gadgets labeled se (with e ∈
E(G′)), while the set D contains all the vertices in V (G′) plus all the destination
in the tracking destination gadgets tu,v and tv,u (with (u, v) ∈ E(G′)). Since G′

is a planar cubic graph, the constructed graph G is also planar and the degree of
each vertex is equal to either 2 or 3. We can append the dummy gadget (shown
in Fig. 2(d)) to each vertex of degree 2 in order to obtain a new planar cubic
graph G. It turns out that G′ admits a vertex cover of size at most k′ iff G
admits a TS/OTS of size at most k′ + 8|E(G′)|, from which it follows:

Fig. 3. An instance of vertex cover on a cubic planar graph G′ (left) and its correspond-
ing instance of minimum tracking set on graph G′ (right). The set of source-destination
pairs is P = S × D, where the vertices in S are represented as hexagons and the ver-
tices in T are represented as squares. For the sake of simplicity, dummy gadgets are
not shown. Gray vertices denote a vertex cover (left) and the corresponding tracking
set (right).

Theorem 3. The minimum TS/OTS problem is NP-hard for cubic planar
graphs even when P = S × D.

An example instance of vertex cover on a cubic planar graph G′ and the
corresponding planar graph G resulting from our reduction are shown in Fig. 3.
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5 Exact Algorithm

In this section we design an exact algorithm that solves the problem for a single
(s, t) pair. As before, we assume that G is the union of all the shortest paths
from s to t in the input graph, and we call �(v) the level of vertex v, i.e. the
distance of v from s in G. Our algorithm requires time O∗(2h2

), where h is an
upper bound on the number of vertices of Vi =

{

v ∈ V (G) : �(v) = i
}

, for every
i = 0, . . . , �(t).

The algorithm is based on dynamic programming and computes a tracking
set for the pairs Vi × {t}, for every i, in a bottom up fashion. However, as an
additional input to the problem, we are given a conflict graph H that models
the (unordered) pairs of distinct sources that are indistinguishable. Intuitively,
two sources s1 and s2 of Vi are indistinguishable w.r.t. a tracking set for (s, t) if
there are two shortest paths, one from s to s1 and the other one from s to s2,
that both pass through the same subset of vertices of the tracking set. The idea
of the algorithm is the following: if two sources s1 and s2 are indistinguishable,
then we need to compute a tracking set for the pairs (s1, t) and (s2, t); if s1 and
s2 are distinguishable, then it is enough to compute a set that is a tracking set
for the pair (s1, t) and a tracking set for the pair (s2, t), but not necessarily a
tracking set for both (s1, t) and (s2, t) at the same time!6

We say that T is a tracking set w.r.t. i and H if the following conditions
are satisfied: (i) T is a tracking set w.r.t. (s′, t), for every s′ ∈ Vi; and (ii) for
every two distinct sources s1, s2 ∈ Vi and every pair of paths P1 ∈ P (s1, t) and
P2 ∈ P (s2, t), if (s1, s2) ∈ E(H), then V (P1) ∩ T �= V (P2) ∩ T .

The following lemma characterizes the solutions for the base cases.

Lemma 8. Let H be a conflict graph defined on V�(t)−1. Then T is a tracking
set w.r.t. �(t) − 1 and H iff T is a vertex cover of H.

Let 0 ≤ i < �(t)−1 be fixed, let S ⊆ Vi and let H be a conflict graph defined
on Vi. We define the conflict graph Conflict(S,H) for the level i+1 as follows:
for any two distinct sources s′, s′′ ∈ Vi+1, Conflict(S,H) has edge (s′, s′′) iff
there are two edges (s1, s′), (s2, s′′) ∈ E(G), with s1, s2 ∈ Vi, such that either
s1 = s2 or

(

(s1, s2) ∈ E(H) and s1, s2 �∈ S
)

. Notice that, given a set of vertices
T up to level i such that T ∩ Vi = S and H is conflict graph defined on Vi

which contains the edge (s1, s2) iff s1 and s2 are indistinguishable w.r.t. T , we
have that Conflict(S,H) contains (s′, s′′) iff s′ and s′′ are indistinguishable
w.r.t. T . The following key lemma shows the dependencies among T , H, and
Conflict(S,H).

Lemma 9. Let 0 ≤ i < �(t) − 1, let H be a conflict graph defined on Vi, let T
be a tracking set w.r.t. i and H, and let S = Vi ∩ T . Then T \ S is a tracking
set w.r.t. i + 1 and Conflict(S,H). Furthermore, if T ′ is a tracking set w.r.t.
i + 1 and Conflict(S,H), then T ′ ∪ S is also a tracking set w.r.t. i and H.

6 This means that there may be two paths, one in P (s1, t) and the other one in P (s2, t)
that traverse the same subset of vertices of the tracking set.
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The dynamic programming algorithm computes an optimum solution
Opt(i,H) for every i from �(t) − 1 downto 0 and for every possible conflict
graph H defined on Vi. As proved in Lemma 8, Opt(�(t) − 1,H) corresponds to
a minimum vertex cover of H and can be computed in time O(2hh2). For every
other i < �(t) − 2, Opt(i,H) is computed by guessing the vertices S ⊆ Vi that
are part of an optimal tracking set w.r.t. the pair (s, t) (all the 2h possibilities
are tried out), and by adding to S the vertices of Opt

(

i + 1,Conflict(S,H)
)

.
More precisely, thanks to Lemma 9, we have to select Opt(i,H) so as

∣

∣Opt(i,H)
∣

∣ = min
S⊆Vi

(

|S| +
∣

∣Opt

(

i + 1,Conflict(S,H)
)∣

∣

)

.

Since the number of possible conflict graphs per level is 2(
h
2) ≤ 2h2/2 and the

time needed to find a solution Opt(i,H) is O∗(2h), we have the following result.

Theorem 4. Let h = maxi=0,...,�(t)

∣

∣

{

v ∈ V : �(v) = i
}∣

∣. Then an optimum
tracking set for (s, t) can be found in O∗(2h2

) time.
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verification via routing table queries. J. Comput. Syst. Sci. 81(1), 234–248 (2015)

2. Banik, A., Choudhary, P.: Fixed-parameter tractable algorithms for tracking set
problems. In: Proceedings of the 4th International Conference on Algorithms and
Discrete Applied Mathematics, CALDAM 2018, pp. 93–104 (2018)

3. Banik, A., Choudhary, P., Lokshtanov, D., Raman, V., Saurabh, S.: A polynomial
sized kernel for tracking paths problem. In: Proceedings of the 13th Latin American
Symposium on Theoretical Informatics, LATIN 2018, pp. 94–107 (2018)

4. Banik, A., Katz, M.J., Packer, E., Simakov, M.: Tracking paths. In: Proceedings of
the 10th International Conference on Algorithms and Complexity, CIAC 2017, pp.
67–79 (2017)

5. Beerliova, Z., et al.: Network discovery and verification. IEEE J. Sel. Areas Commun.
24(12), 2168–2181 (2006)

6. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin. 2(191–
195), 1 (1976)

7. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl.
Math. 70(3), 217–229 (1996)

8. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343
(1982)



Positional Encoding by Robots
with Non-rigid Movements

Kaustav Bose , Ranendu Adhikary(B) , Manash Kumar Kundu ,
and Buddhadeb Sau

Department of Mathematics, Jadavpur University, Kolkata, India
{kaustavbose.rs,ranenduadhikary.rs,manashkrkundu.rs,

buddhadeb.sau}@jadavpuruniversity.in

Abstract. Consider a set of autonomous computational entities, called
robots, operating inside a polygonal enclosure (possibly with holes), that
have to perform some collaborative tasks. The boundary of the polygon
obstructs both visibility and mobility of a robot. Since the polygon is ini-
tially unknown to the robots, the natural approach is to first explore and
construct a map of the polygon. For this, the robots need an unlimited
amount of persistent memory to store the snapshots taken from different
points inside the polygon. However, it has been shown by Di Luna et al.
[DISC 2017] that map construction can be done even by oblivious robots
by employing a positional encoding strategy where a robot carefully posi-
tions itself inside the polygon to encode information in the binary rep-
resentation of its distance from the closest polygon vertex. Of course, to
execute this strategy, it is crucial for the robots to make accurate move-
ments. In this paper, we address the question whether this technique can
be implemented even when the movements of the robots are unpredictable
in the sense that the robot can be stopped by the adversary during its
movement before reaching its destination. However, there exists a con-
stant δ > 0, unknown to the robot, such that the robot can always reach
its destination if it has to move by no more than δ amount. This model is
known in literature as non-rigid movement. We give a partial answer to the
question in the affirmative by presenting a map construction algorithm for
robots with non-rigid movement, but having O(1) bits of persistent mem-
ory and the ability to make circular moves.

Keywords: Autonomous robots · Map construction ·
Non-rigid movement · Polygon with holes ·
Look Compute-Move cycle · Distributed algorithm

1 Introduction

Distributed coordination of autonomous mobile robots has been extensively stud-
ied in literature in the last two decades. Fundamental problems like Gathering
[1,6,8,11], Pattern Formation [3,5,12,13] etc., have been studied in the set-
ting where the robots are deployed in the plane with infinite extent and without
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any obstacles. Recently in [10], Meeting, which is a simpler version of the
Gathering problem, has been investigated for robots inside a polygonal enclo-
sure containing polygonal obstacles, where their boundaries limit both visibility
and mobility of a robot. This setting models many real life scenarios like moping
robots inside a room, robots employed in factories or an art gallery etc. To solve
the various distributed problems in this model, the robots may have to first
explore and construct a map of the environment. For this, the robots need an
unlimited amount of persistent memory. However, in [10], it has been shown that
map construction can be done even by oblivious robots with rigid movements,
i.e., where a robot can accurately move by any distance. Their strategy is based
on a positional encoding technique, where the robot carefully moves within the
polygonal enclosure in such a way that their memory is implicitly encoded in
its distance from the closest polygon vertex. In this paper, we show that this
technique can be adapted to the non-rigid setting (where the movements of the
robots can be interrupted by the adversary) as well, provided that the robot has
a constant number of persistent bits and the ability to make circular moves.

2 Model and Definitions

Polygon. A polygon P is a non-empty, connected, and compact region in R
2

whose boundary ∂(P ) is a set of finitely many disjoint simple closed polygonal
chains. There is one connected component of ∂(P ), called the external boundary,
which encloses all others (if any), which are called holes. Vertices and edges of
a polygon can be defined in the standard way. V (P ) and E(P ) will respectively
denote the set of vertices and edges of the polygon. For any two points x, y ∈ P ,
we say that x and y are visible to each other if the line segment joining them lies
in P , i.e., xy ⊂ P . We shall assume that there is some global coordinate system,
with respect to which, the coordinates of the polygon vertices are algebraic
numbers.

Robot. By a robot, we mean an anonymous mobile computational entity mod-
eled as a dimensionless point inside P . A robot positioned at x ∈ P can observe
a point y ∈ P if and only if x and y are visible to each other. The robot is
endowed with O(1) bits of persistent memory. This model is known in literature
as FState [9], where the internal state of the robot can assume a finite number
of ‘colors’. S will denote the set of all possible states of the robot. A robot, when
active, operates according to the so-called LOOK-COMPUTE-MOVE cycle. In
each cycle, a previously idle robot wakes up and executes the following steps. In
the LOOK phase, the robot takes a snapshot of the region of P that it can cur-
rently see. The snapshot is expressed in the local coordinate system of the robot
having the origin at its current position. In the COMPUTE phase, based on the
snapshot and its internal state, the robot performs computations according to a
deterministic algorithm to decide (1) a destination point y ∈ P , (2) a trajectory
to y from its current location x ∈ P , which is either a straight line segment,
or circular arc, (3) a state s ∈ S. Then in the MOVE phase, the robot sets its
internal state to s and moves towards the point y along the decided trajectory.
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When a robot transitions from one LCM cycle to the next, all of its local memory
(past computations and snapshots) are completely erased, and only its internal
state is retained. Depending on whether or not the adversary can stop a robot
before it reaches its computed destination, there are two movement models in
literature, namely rigid and non-rigid, respectively. In the rigid model, a robot
is always able to reach its desired destination without any interruption. In the
case of non-rigid movements, there exists a constant δ > 0, such that if the robot
decides to move by an amount (path length) smaller than δ, then the robot will
reach it; otherwise, it will move by at least δ amount. The value of δ is not known
to the robot.

Geometric Definitions and Notations. Let v be any vertex of P , and u,w
be its two adjacent vertices. We shall say that u is the preceding vertex of v and
w is the succeeding vertex of v if one can reach from vu to vw by moving around
v (staying inside P ) in the counterclockwise direction (according to the sense of
handedness of the robot). For any vertex pi ∈ V (P ), unless mentioned otherwise,
pi−1 and pi+1 will respectively denote the vertices preceding and succeeding pi.

p
p′

x

Fig. 1. The polygon vertex clos-
est to x is p′, but it is not visibile
to x. Its closest visible vertex is
p.

For a set X = {x1, x2, . . . , xn} of distinct
points in R

2, n ≥ 2, the Voronoi region of any
xi ∈ X, denoted by V orX(xi) or simply V or(xi),
is the set of all points in R

2 which are closer to xi

than any other point in X, that is, V orX(xi) =
{y ∈ R

2 | d(y, xi) ≤ d(y, xj),∀i �= j}. Points
shared by two Voronoi regions V orX(xi) and
V orX(xj) constitute the Voronoi edge defined
by xi and xj . Similarly, we can define Voronoi
regions for a set L = {l1, l2, . . . , ln},n ≥ 2 of
straight line segments (any two of which can
intersect only at their endpoints). We will define
the Voronoi region of li ∈ L as LV orL(li) = {y ∈ R

2 | d(y, li) ≤ d(y, lj),∀i �= j}
where d(y, lk) = Inf {d(y, z) | z ∈ lk}. In the context for our problem, there is a
minor technical issue that needs to be addressed. For a polygon P , the polygon
edge closest to a point x ∈ P is of course visible to it. But the vertex closest to
x may not be visible from x (See Fig. 1). In the remainder of the paper, unless
mentioned otherwise, whenever we say ‘closest vertex’, it should be understood
as ‘closest visible vertex’. We will also define the polygon Voronoi region of a
vertex pi, denoted by PV orP (pi), as the set of points x ∈ P such that pi is vis-
ible to x and pi is closer to x than any other vertex visible from x. V orV (P )(pi)
or V orP (pi) will denote the usual Voronoi region of pi for the set V (P ).

For any point x, and any real number r > 0, D(x, r) denotes the closed disc
{y ∈ R

2 | d(y, x) ≤ r}. For any three points c, y, z such that d(y, c) = d(z, c),
we shall denote by arc(y, z, c), the circular arc centered at c drawn from y to
z in counterclockwise direction. Also, arc(y, θ, c) will denote the circular arc
arc(y, z, c) where ∠ycz = θ. A point x ∈ P is said to be properly close to
pi ∈ V (P ), if for any point z ∈ arc(x, y, pi), where y ∈ pipi+1 with d(y, pi) =
d(x, pi), the following holds: (1) z ∈ PV orV (P )(pi) and (2) pi+1 is visible from z.



Positional Encoding by Robots with Non-rigid Movements 97

We can define a coordinate system by any ordered pair of distinct points in the
polygon. The coordinate system defined by (u, v) will be the coordinate system
with origin at u, −→uv as the positive X-axis, d(u, v) as the unit distance and the
positive Y -axis according to the chirality or handedness of the robot.

3 A Brief Overview of the Positional Encoding Technique

Computational Model. We assume that each robot internally runs a Blum-
Shub-Smale machine [2] extended with a square-root primitive. A Blum-Shub-
Smale machine is a random-access machine whose registers can store arbitrary
real numbers and can operate directly on them. Its computational primitives are
the four basic arithmetic operations on real numbers, and it can test whether
a real number is positive. Depending on the application, it is also customary
to extend the basic model with additional primitives, such as root extractions,
trigonometric functions, etc. In our case, we only require the square-root primi-
tive that will be needed in geometric computations.

Encoding Algebraic Reals. Consider an algebraic real number α. The min-
imal polynomial of α over Q is the unique monic polynomial in Q[x] of least
degree which has α as a root. Let m(x) = xn +an−1x

n−1 + . . .+a1x+a0 ∈ Q[x]
be the minimal polynomial of α over Q. Now m has n complex roots. However,
the real roots can be arranged in ascending order. So, let α be the ith real root
of m. Then α can be uniquely represented by (n, i, an−1, . . . , a0). Now any ratio-
nal number (−1)s p

q , with p, q > 0, s ∈ {0, 1}, can represented as a 3-tuple of
non-negative integers as (s, p, q) ∈ Z

3
≥0. Thus α can be represented by an array

of 3n+2 non-negative integers. We can represent each non-negative integer m as
the bit string 0m1. Let us denote by β(α), the bit string obtained by concatenat-
ing the bit strings of the 3n+2 non-negative integers. Now for any non-negative
integer λ, let r(α, λ) < 1 be the real number whose (usual) binary representation
is 0.0λ1β(α). We shall say that r(α, λ) encodes α.

Lemma 1. If 0 < d < 1 be a real number such that d = r(α, λ), for some
algebraic real α and non-negative integer λ, then d

2 = r(α, λ + 1). Therefore,
d
2k

= r(α, λ + k), for any integer k ≥ 1.

Computing the Code. Suppose a basic Blum-Shub-Smale machine has an
algebraic number α stored in its register and it has to construct its code β(α).
The machine will generate all finite sequences of bits in lexicographic order. For
each sequence, it will check if it is a well-formed code of an algebraic number; if
it is, it will extract the coefficients of the polynomial q from it. Then it computes
q(α). Since α is algebraic, eventually a polynomial q is found such that q(α) = 0.
Since q must be a multiple of the minimal polynomial m of α, we can determine
it by finding its irreducible factor that has α as a root. Then Sturm’s theorem
[7] can be applied to find out how many real roots of the minimal polynomial
are smaller than α. Thus we have obtained all that are required to encode α.
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Computations on the Implicit Form. Once a number is encoded in this
form, we cannot necessarily retrieve it in finite time. But we can approximate it
arbitrarily well, for instance via Sturm’s theorem. However, we can do Turing-
computable bit manipulations on this implicit form to compute all kinds of com-
mon functions (e.g. basic arithmetic operations, root extractions of any degree
etc.) on the algebraic number without decoding its explicit form.

Encoding Snapshots. A snapshot taken by a robot contains the visible portion
of the polygon P , which is basically a union of line segments, each of which being
a sub-segment of an edge of P . So, a snapshot can be represented as an array of
real numbers, say S = (x1, y1, x

′
1, y

′
1, x2, y2, x

′
2, y

′
2, . . .), where (xi, yi) and (x′

i, y
′
i)

are the endpoints of the ith visible segment of ∂(P ). Note that none of these
points is necessarily a vertex of P . We have discussed how to compute the code
of a single algebraic number. Now we describe how we can encode a snapshot
of P with algebraic vertices taken from a point x ∈ P . The vertices of P have
algebraic coordinate with respect to some global coordinate system. Of course,
the vertices may not have algebraic coordinates in the local coordinate system
of the robot. Let Φx be the transformation from the global coordinate system
to the local coordinate system of the robot. Note that x is not necessarily an
algebraic point, and the parameters of Φx are not necessarily algebraic numbers
either. Therefore, the coordinates and the distances between vertices of Φx(P )
may not be algebraic. However, all the ratios of the distances are algebraic, as
Φx, being a similarity transformation, preserves ratios between segment lengths.
Then it follows that if the robot picks two visible vertices of Φx(P ), say v and
v′, and transforms all the visible vertices of Φx(P ) in the coordinate system
(v, v′), then they will have algebraic coordinates. Then they can be encoded by
a basic Blum-Shub-Smale machine as we discussed earlier. However, recall that
a snapshot taken from x may not contain only vertices of Φx(P ). We can identify
the potentially non-vertex endpoints by a basic Blum-Shub-Smale machine, as a
non-vertex point (xj , yj) ∈ S is necessarily of the form (xj , yj) = c(xi, yi), c > 1
for some visible polygon vertex (xi, yi). These potentially non-vertex endpoints
will be simply marked with an ‘undefined’ flag in the snapshot. The robot will
pick two ‘defined’ points in the snapshot for the coordinate transformation. The
coordinates of the ‘defined’ points of S will be transformed as discussed earlier,
and each ‘undefined’ point will be simply replaced with a (0, 0) or any algebraic
point of our choice along with the ‘undefined’ flag. Then these coordinates can
be encoded into a finite bit string, and then they can be concatenated into a
single code for the entire snapshot. We can similarly encode multiple snapshots
into a single bit string. Along with the snapshots, we can also pack as many
other finitely described elements as we want.

Positional Encoding. Suppose that β is the code or bit string of the informa-
tion that the robot wants to encode. Let d be a real number that encodes it, i.e.,
the binary representation of d is 0.0λ1β(α) for some non-negative integer λ. The
robot will encode the information by positioning itself in the polygon in such
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a way that its distance from the closest polygon vertex is d (according to its
local coordinate system). From Lemma 1, it follows that the robot can encode
the same information by placing itself at a distance d

2k
from the vertex for any

integer k ≥ 1. This ‘scalability’ property allows the robot to get arbitrarily close
to the vertex without losing information.

4 The Algorithm

In [10], the memory of a robot is encoded in the distance from its closest poly-
gon vertex. Obviously, the robot needs rigid movements to accurately position
itself at a point whose distance from the particular vertex correctly encodes the
memory. In the non-rigid setting, we need some additional options where we can
encode our memory. In particular, apart from the distance from some particular
vertex, we shall also encode the memory in the tangent of the angle that the
robot makes with an edge or a diagonal, at some vertex. In the remainder of the
paper, whenever we say that the memory is encoded in some angle α, it is to
be understood that the memory is encoded by the real number tan(α). Notice
that since tan(α) monotonically tends to 0, as α < π

2 tends to 0, we can use the
scalability property of the encoding scheme to encode the memory in an angle
as small as we want. The persistent bits or the internal states are used so that
each time a robot wakes up, it knows ‘where’ its memory is encoded and which
coordinate system the snapshots in the memory are expressed in. In each case,
the robot also sets a particular polygon vertex, that is visible to it, as its virtual
vertex. A summary of this is provided in Table 1.

Our map construction algorithm is similar to the one presented in [10]. The
robot will keep exploring new vertices (but not touching it), and near each ver-
tex, it will take a new snapshot and encode it, merging with the old snapshots.
As it explores, it keeps track of the vertices that it has seen but not yet visited.
Whenever it reaches a new connected component of the boundary, it explores it
entirely in the counterclockwise direction (i.e., by moving from a vertex to its
succeeding vertex). After exploring a connected component for the first time,
it will take a second tour of it, in the same direction. After completely explor-
ing a previously unexplored connected component, it will choose an unvisited
vertex of a different component and move to it via a suitable path. The robot
repeats this until there are no unvisited vertices recorded in its encoded memory.
Implementation of this strategy in the non-rigid setting is based on four basic
techniques. A brief overview of these techniques are presented in Sect. 4.1. From
there follows the main result of the paper presented in Theorem 1. We refer the
readers to the full version [4] of the paper for further details.

Theorem 1. In FState, a robot inside a polygon P with non-rigid movements
can correctly construct and encode a map of the polygon in finite time.
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Table 1. The virtual vertex and encoded memory of the robot, corresponding to its
internal state.

For any robot r at a point x inside the polygon P

State Virtual vertex Memory

Encoded in Coordinate system

s1 pi = the closest visible
vertex

d(x, pi) (pi, pi+1)

s2 pi = the closest visible
vertex

d(x, pi) (pi−1, pi)

s3 pa = the nearer endpoint
of the closest boundary
segment, say pipi+1,
a ∈ {i, i + 1}

tan(∠xpapb), where pb is
the other endpoint of pipi+1

(pi, pi+1)

s4 pi = the closest visible
vertex

tan(∠xpipi−1 − π
2
) (pi−1, pi)

s5 pi = the closest visible
vertex

tan(π − ∠xpipi+1) (pi, pi+1)

s6 pi = the closest visible
vertex

tan(∠xpiO), where piO is
the angle bisector of
∠pi−1pipi+1

(pi−1, pi)

s7 pi = the closest visible
vertex

tan(∠xpipj), where either x
lies on the interior of the
Voronoi edge
PV or(pi) ∩ PV or(pj) or−→pix intersects
PV or(pi) ∩ PV or(pj) first

(pi, pj) or (pj , pi)

4.1 Four Basic Techniques

Moving from One Virtual Vertex to Another in the Same Connected
Component of the Boundary
Suppose that pi is the virtual vertex of the robot r with internal state s1 (i.e., pi

is the vertex closest to r), and it has to approach the succeeding vertex pi+1. If r
had rigid movements, it could have simply moved to a point suitably close to pi+1

in one go, without any interruption. But since r has non-rigid movements, it can
be stopped multiple times during its journey. Now consider the situation shown
in Fig. 2a. To move towards pi+1 via any path, the robot has to pass through the
Voronoi region of pj . Hence, if r is stopped by the adversary while it is in the
interior of PV orV (P )(pj), it will set pj as its virtual vertex. To resolve this, the
robot will change its state to s3 before moving. When its state is s3, to set the
virtual vertex, it considers the closest boundary segment, instead of the closest
vertex. The endpoint of its closest boundary segment that is closer to it, is set
as the virtual vertex. In case of a tie, any one of the endpoints can be chosen as
the virtual vertex. The robot will move along a path as shown in Fig. 2b. Such
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a path can be defined by a tuple (pi, pi+1, α), where the path consists of two
linear segments piq and qpi+1 of equal length with ∠qpipi+1 = ∠qpi+1pi = α
and q lying on the perpendicular bisector of pipi+1. We shall denote the path as
P(pi, pi+1, α). The path should be chosen in such a way that any point on the
path is closer to the boundary segment pipi+1 than any other point of ∂(P ). In
other words, P(pi, pi+1, α) should be inside LV orE(P )(pipi+1).

pi

pj
pi+1

(a)

pi+1

pi

q

(b)

Fig. 2. (a) If a robot moves from pi towards pi+1, it has to pass through the Voronoi
region of pj . (b) The robot will move along the path P(pi, pi+1, α) drawn in green.
(Color figure online)

Now let us describe our strategy more formally. Suppose that a robot r is at a
point x inside the polygon P , such that the following are true: (A1) r.state = s1,
(A2) x is properly close to the vertex pi. Since r.state = s1, pi is the virtual
vertex of r, and its memory is encoded in the distance d(x, pi) and expressed in
the coordinate system defined by (pi, pi+1). Since r is properly close to pi, if r
moves around pi along a circular arc in counterclockwise direction (i.e., keeping
its distance from pi fixed), pi will remain its virtual vertex and also, all of pipi+1

will remain visible to it. So, r will move around pi in counterclockwise direction to
move to a point x′ such that the following conditions are satisfied: (B1) the data
encoded by α = ∠x′pipi+1 is same as the data encoded by d(x′, pi) = d(x, pi),
both expressed in the coordinate system (pi, pi+1), (B2) the path P(pi, pi+1, α)
is inside LV orE(P )(pipi+1). After reaching such a point x′, r will change its
state to s3. It will then follow the path P(pi, pi+1, α), where α = ∠x′pipi+1, to
move towards pi+1. However, we have not yet specified how close r should get to
pi+1. Our objective is to get close to pi+1, take a new snapshot and encode the
new snapshot (merged with the older ones) in its distance from pi+1. We want
these snapshots to be expressed in the coordinate system defined by (pi+1, pi+2),
where pi+2 is the vertex succeeding pi+1. But in order to do that, pi+2 should be
visible to the robot. Notice that if some portion of pi+1pi+2 \ {pi+1} is visible to
r, then it will be able to see all points of pi+1pi+2 if it goes close enough to pi+1.
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However, if pi+1pi+2 \ {pi+1} is completely invisible to r, the segment pi+1pi+2

will never be completely visible to it, no matter how close it gets to pi+1. In this
section, we will only discuss the first case. The later case is more complex and
will be discussed in the next section.

So, consider the case where some portion of pi+1pi+2 \ {pi+1} is visible to r.
In this case, r will move to a point x′′ that is close enough to pi+1 so that the fol-
lowing conditions are satisfied: (C1) x′′ is properly close to pi+1, (C2) d(x′′, pi+1)
is encoding the old snapshots merged with its current view (newly discovered
vertices), all expressed in the coordinate system defined by (pi+1, pi+2). The
robot will first move close enough to pi+1, say at x′′′, so that the first condition
is satisfied (See Fig. 3), i.e., x′′′ is properly close to pi+1. Then the robot decides
to further move towards pi+1 to a suitable point x′′ in order to fulfill the last con-
dition. There are two ways it may fail to achieve this. First, if d(x′′, x′′′) > δ, the
adversary can stop it at some point x′′′′ in between. However, the old snapshots
are still available as it is encoded in ∠x′′′′pi+1pi = ∠x′′′pi+1pi. So, r can identify
that it has failed to reach its destination. Then it will recompute the destination
and move towards it. Secondly, even if it reaches x′′, a new vertex may be dis-
covered which is not present in the data encoded in d(pi+1, x

′′). Therefore, r will
again recompute a destination so that the newly discovered vertices are encoded
(along with the old data). From the existence of δ > 0 and the fact that the poly-
gon has finitely many vertices, it follows that r can eventually reach a point x′′

where it finds that d(x′′, pi+1) encodes precisely the data encoded by ∠x′′pi+1pi,
merged with the new vertices of the polygon that are visible from x′′. Observe
that the visibility of both pi+1pi and pi+1pi+2 are crucial at any point during
this process. This is because the robot has to transform the data encoded in
∠x′′pi+1pi from the coordinate system (pi, pi+1) to (pi+1, pi+2). When all three
pi, pi+1, pi+2 are visible, the robot knows their exact positions and hence, it can
perform this conversion, which is computable by a rational function, on (the
implicit form of) the old snapshots. When the conditions C1, C2 are achieved,
r will change its state to s1. Clearly we are back to the situation where A1, A2
holds (pi to be replaced with pi+1), and hence r can now move to pi+1 in the
same manner.

Discovering the Succeeding Vertex and Encoding a New Snapshot
Now consider the case where pi+1pi+2 \ {pi+1} is completely invisible to r (See
Fig. 4). This is possible only if ∠pipi+1pi+2 > π. Then no matter how close r
gets to pi+1, pi+1pi+2 \ {pi+1} will remain completely invisible to it. In this
case, r will move to a point x′′ that is close enough to pi+1, such that the
following conditions are satisfied. (D1) d(x′′, pi+1) = d should encode all the old
data encoded by ∠x′′pi+1pi (both) expressed in the coordinate system (pi, pi+1).
(D2) Let S be the semicircular disc of radius 2d, centered at pi+1 and having
diameter along the line ←−−→pipi+1. Then S should not intersect with any portion
of ∂(P ) except pipi+1. (D3) Every point on pipi+1 should be visible from every
point on arc(u, π, pi+1), where u ∈ pipi+1 with d(u, pi+1) = d. When these
conditions are satisfied, the robot will change its state to s2. Clearly, pi+1 is
its virtual vertex. Let y be a point on the line through pi+1 and perpendicular
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pi+2

pi+1

y

(a)

pi+1

pi+2

y
z

(b)

Fig. 3. (a) The shaded circular sector of radius d = d(pi+1, y) intersects no vertex other
than pi+1. Any point on −−−→pi+1y less than d

2
distance away from pi+1 satisfies the first

condition of proper closeness to pi+1. (b) Any point on the interior of pi+1y satisfies
the second condition of proper closeness to pi+1.

to pipi+1, with d(y, pi+1) = d(x′′, pi+1) = d. The robot will then move to the
point y along arc(x′′, y, pi+1). It implies from condition D2 that as r traverses
along this arc (where it can be stopped several times by the adversary), pi+1 will
remain its virtual vertex. Upon reaching the point y, pi+1pi+2 \ {pi+1} may still
be completely invisible. In that case, r will have to move further along a circular
arc and place itself on the extension of the segment pipi+1. But if r revolves
with the same radius, its virtual vertex may change. Therefore it has to first
reduce its distance from pi+1. But recall that its distance from pi+1 is encoding
its memory and hence, the data will be lost if this distance is changed. Therefore,
before changing its distance from pi+1, it will encode the data ‘somewhere’ else,
such that it is preserved while it moves towards pi+1. Notice that although
moving around pi+1 with the same radius can change its virtual vertex, it can
still move by a small enough angle without changing its virtual vertex. From
its view from y, it can compute a point y′′, such that the following conditions
are satisfied: (E1) d(pi+1, y

′′) = d(pi+1, y) = d, (E2) D(y′′, d) ∩ ∂(P ) = {pi+1},
(E3) ∠y′′pi+1y < π

2 encodes the same data encoded by d, both expressed in the
coordinate system (pi, pi+1). Now r will first move to y′′ along a circular arc and
then change its state to s4. Then it will reduce its distance from pi+1 to d′, so
that d′ satisfies the following conditions. (F1) d′ encodes the same data encoded
by ∠y′′pi+1y both expressed in the coordinate system defined by (pipi+1). (F2)
Let z be the point on the extension of the segment pipi+1 with d(z, pi+1) = d′.
Then D(z, d′)∩∂(P ) = {pi+1}. When these conditions are satisfied, it will change
its state to s2. Now r will move to z by moving around pi+1 in counterclockwise
direction maintaining the distance d′ from it. Upon reaching z, it can see at
least some portion of pi+1pi+2 \ {pi+1}. Suppose that it still can not see pi+2.
But since it can see some portion of pi+1pi+2 \ {pi+1}, it can compute the point
z′ on the extension of the segment pi+2pi+1 with d(z′, pi+1) = d′. Now r will
move around pi+1 in clockwise direction towards z′, but not touching it (say by
choosing the middle of arc(z′, z, pi+1) as its destination and so on). Eventually,
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it will be able to see pi+2. In fact, it can see both pi+1pi+2 and pipi+1 entirely.
Now r has to encode a new snapshot (merged with the old ones) in its distance
from pi+1. Before that it will encode its memory in the angle that it makes with
the extension of pi+2pi+1 at pi+1 by revolving further towards z′, and then will
change its state to s5. Then it will move towards pi+1 so that conditions C1, C2
are satisfied. When they are achieved, r will change its state to s1.

pi
pi+1

pi+2

x

y

(a)

pi pi+1

pi+2

y
y

(b)

pi pi+1

pi+2

y
z

(c)

pi+2

z

pi+1

(d)

Fig. 4. The robot moving around pi+1 to discover the succeeding Vertex and encode a
new snapshot. The trail of the robot is shown in blue. (Color figure online)

Taking a Second Tour of a Connected Component of the Boundary
From the two techniques discussed, it is clear how a robot can ‘visit’ all the ver-
tices of a previously unexplored connected component C of ∂(P ). Also, whenever
r encodes a new snapshot, it marks the position of its current virtual vertex with
a ‘visited once’ flag. Upon completing its first tour of C, it will start a second
tour of C in the same direction. In the second tour, the points from where the
snapshots are taken, should constitute an ‘approximation’ of C, say C, such that
the closed polygonal curve C (1) does not self-intersect, (2) does not intersect
∂(P ), and (3) does not intersect any other previous approximations. This will
ensure that eventually all polygon vertices are discovered (See [4]). Suppose that
C is composed of m vertices p1, . . . , pm. Assume that r has started exploring C
from (close to) p1. As described earlier, it will sequentially visit all the vertices
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and eventually arrive at a point close to pm, from where p1 is visible. It can
clearly identify p1 to be a previously visited vertex and will decide to start the
second tour. Now clearly r has a full picture of C. So it can compute a distance
d implicitly and include it in its memory, so that d has the following property.
Let C̃(d) = {p′

1, . . . , p
′
m} denote the approximation of C = {p1, . . . , pm} such

that each p′
ip

′
i+1 is parallel to pipi+1 (pm+1 is to be understood as p1) and the

separation between them is d (See Fig. 5). Then d should be small enough, so
that the approximation C̃(d) satisfies all the three requirements. The points from
where the robot will take snapshots during its second tour, will constitute an
approximation C = {p11, p

2
1, . . . p

1
m, p2m} consisting of 2m points, with C lying in

the region between C and C̃(d).
We shall now discuss the procedure in detail. The robot will approach p1

(with state s3) in the same manner as described previously, but with an extra
requirement that the path it follows should be lying in the region between C
and C̃(d

2 ). Note that although d is computed in the implicit form, r can get
an approximation of d in explicit form that is smaller than the actual value.
First consider the case where ∠pmp1p2 is not reflex. Similar to the first tour,
r goes to a point x so that the conditions C1 and C2 are satisfied (with pi =
pm, pi+1 = p1, pi+2 = p2). We can refer to this in short by simply saying that
‘r takes a snapshot at x’. The extra requirement in this case would be that
d(x, p1) < d

2 . After this, r will change its state to s1. Now r will move around p1
to reach a point x′ so that the condition B2 (with pi = p1, pi+1 = p2) is satisfied,
plus ∠x′p1p2 should encode the view from x′ merged with the older snapshots
(encoded by d(x′, p1)) expressed in the coordinate system (p1, p2). Again using
similar phrasing, we shall refer to this by saying ‘r takes a snapshot at x′’. Let
us denote the points x and x′ by p11 and p21. Note that our constructions ensure
that the line segment p11p

2
1 is inside the region C and C̃(d). Now consider the

case where ∠pmp1p2 is reflex. The robot will go to a point x that is close enough
to p1, such that the following conditions are satisfied: (G1) d(x, p1) encodes the
old snapshots (encoded in ∠xp1pm) expressed in the coordinate system defined
by (pm, p1), (G2) d(x, p1) < d

2 . After reaching such a point x, r will change its
state to s2. Let

−−→
p1A and

−−→
p1B be the extensions of the segments p2p1 and pmp1

respectively. Let
−−→
p1O be the angular bisector of the angle ∠Ap1B. Now r can

move around p1 to place itself at a point p11 between the lines
−−→
p1A and

−−→
p1O

such that the angle ∠p11p1O encodes the view from p11, merged with the older
snapshots, all expressed in the coordinate system defined by (pm, p1). In other
words, r takes a snapshot at p11. Then r will change its state to s6, move towards
p1 to encode the data in its distance from p1, again change its state to s2 and
move around p1 to take a snapshot at a point p21 between the lines

−−→
p1O and

−−→
p1B

encoding the snapshot (merged with the old ones) in the angle ∠p21p1O expressed
in the coordinate system defined by (pm, p1). Then r will again change its state
to s6 and move towards p1 to encode the data in its distance from p1, this time
expressed in the coordinate system (p1, p2). After this, it will change its state
to s1. Continuing in this manner, the robot will revisit all the vertices of the
component, and take snapshots at p1i and p2i , near each vertex pi. The polygonal
chain C clearly satisfies all three desired properties.
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p1

p21
p11

(a)

p1

p21
p11

A

O
B

(b)

Fig. 5. The robot taking a second tour. The trail of the robot is shown in blue. The
approximations C̃(d) and C̃( d

2
) are shown in pink and grey dotted lines respectively.

(Color figure online)

Moving from One Connected Component to Another
A robot will move from a virtual vertex pi to a vertex pj belonging to a different
connected component of ∂(P ) only if pipj ⊂ PV orP (pi)∪PV orP (pj). The robot
r with state s3 will approach pi and encode its memory in its distance from pi,
expressed in the coordinate system defined by (pi−1, pi). The robot will then
change its state to s2. Note that pj may not even be visible from its current
position if ∠pi−1pipi+1 is reflex. If ∠pi−1pipi+1 is reflex and pj lies in the open
half-plane delimited by ←−−→pi−1pi containing pi+1, it will have to encode its memory
in the coordinate system (pi, pi+1) by previously discussed techniques. It will
then change its state to s1. From its memory, it knows that the plan is to
move to pj . It will then move around pi to move to a point x so that the
following conditions are satisfied. (H1) The ray −→pix intersects the interior of the
Voronoi edge V orS(x)(pi)∩V orS(x)(pj), where S(x) denotes the polygon vertices
visible from x. Suppose that the ray intersects the Voronoi edge V orS(x)(pi) ∩
V orS(x)(pj) at point A. (H2) The angle α = ∠xpipj encodes its memory. All
coordinates of the snapshots are expressed in the coordinate system defined by
(pi, pj). The encoding will also contain a rational approximation of 1

2 (pi − pj)
expressed in the local coordinate system of r. The robot will then change its
state to s7, move along P(pi, pj , α) towards pj , i.e., it will first move to A and
then to a point properly close to pj . Consider the situation when r stops at a
point z on the path P(pi, pj , α). When r was at x, it verified H1 by checking
from its snapshot that the disc D(A, d) contains no polygon vertex other than
pi, pj , where d = d(A, pi) = d(A, pj). It implies from this that P(pi, pj , α) ⊂
PV orP (pi) ∪ PV orP (pj). Hence, at z, its closest visible vertex, and hence its
virtual vertex, is either pi or pj . It computes intersections between the ray from
its virtual vertex, passing through it, and the perpendicular bisectors of the
lines joining its virtual vertex and other visible vertices; and then checks if the
intersection point is on the corresponding Voronoi edge. It will find that the
ray intersects the Voronoi edge defined by pi and pj first. However, r does not
immediately know whether it is moving from pi to pj , or from pj to pi. However,
it knows that its memory is encoded in the angle it makes with pipj at its virtual
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vertex ∈ {pi, pj}. But r does not to know if it is encoded with the coordinate
system (pi, pj) or (pj , pi). However, recall that the memory contains a rational
approximation of 1

2 (pi − pj), call it w, expressed in its local coordinate system.
Now r computes w + 1

2 (pi + pj), which gives an approximation of pi. from which
r determines that it is moving away from pi, and also the fact that its encoded
memory is expressed in (pi, pj). So, eventually it will move to a point properly
close to pj so that its distance from pj encodes its memory expressed in either
(pj , pj+1) or (pj−1, pj), and then change its state to s1 or s2 accordingly.

5 Conclusion

In this work, we have shown how a finite state robot with non-rigid movements
can construct the map of a polygon by a positional encoding strategy. The tech-
niques developed here, give a general movement strategy for finite state robots
with non-rigid movements, to move about in the polygon, without losing its
encoded memory. The map construction algorithm can be used as a subroutine
to solve distributed algorithms for mobile robot systems under this model, where
the knowledge of the polygon may be required. For instance, consider the Gath-
ering problem, where a set of autonomous, anonymous, asynchronous finite
state mobile robots with no agreement in coordinate system and no communi-
cation capabilities, have to meet at some point in the polygon. Assume that the
polygon is asymmetric. Then each robot will first construct and encode the map
of the polygon. Since the polygon is asymmetric, the robots can deterministi-
cally pick a polygon vertex as their meeting point. Then using our techniques, the
robots can move to that vertex. However, when the polygon is not asymmetric,
Gathering appears to be challenging even for robots with unlimited memory.
For symmetric polygons, we can consider the relaxed version of Gathering,
called Meeting, where any two of the robots have to become mutually aware
by seeing each other at their LOOK phases. Using our techniques, a patrolling
strategy similar to [10] can be adapted to our setting to solve Meeting.

It would be very interesting to investigate whether map construction or
Meeting can be solved by fully oblivious robots with non-rigid movements.
Another direction would be to study the problems for oblivious robots with
limited visibility. Also, our movement model allows the robots to make circular
moves, as opposed to [10], where the robots can move only along a straight line.
It would be interesting to see if the same result can be achieved without the
ability to make circular moves.
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Abstract. The Arbitrary Pattern Formation problem asks for a
distributed algorithm that moves a set of autonomous mobile robots to
form any arbitrary pattern given as input. The robots are assumed to be
autonomous, anonymous and identical. They operate in Look-Compute-
Move cycles under a fully asynchronous scheduler. The robots do not
have access to any global coordinate system. The existing literature that
investigates this problem, considers robots with unobstructed visibility.
This work considers the problem in the more realistic obstructed visibility
model, where the view of a robot can be obstructed by the presence of
other robots. The robots are assumed to be punctiform and equipped
with visible lights that can assume a constant number of predefined col-
ors. We have studied the problem in two settings based on the level of
consistency among the local coordinate systems of the robots: two axis
agreement (they agree on the direction and orientation of both coordinate
axes) and one axis agreement (they agree on the direction and orienta-
tion of only one coordinate axis). In both settings, we have provided a
full characterization of initial configurations from where any arbitrary
pattern can be formed.

Keywords: Distributed algorithm · Arbitrary pattern formation ·
Leader election · Autonomous robots · Opaque robots ·
Luminous robots · Obstructed visibility · Asynchronous scheduler ·
Look-compute-move cycle

1 Introduction

One of the recent trends of research in robotics is to use a swarm of simple and
inexpensive robots to collaboratively execute complex tasks, as opposed to using
one or few powerful and expensive robots. Robot swarms offer several advantages
over single robot systems, such as scalability, robustness and versatility. Algorith-
mic aspects of decentralized coordination of robot swarms have been extensively
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studied in the literature over the last two decades. In theoretical studies, the tra-
ditional framework models the robot swarm as a set of autonomous, anonymous
and identical computational entities freely moving in the plane. The robots do
not have access to any global coordinate system. Each robot is equipped with
sensor capabilities to perceive the positions of other robots. If the robots are
equipped with camera sensors, then it is unrealistic to assume that each robot
can observe all other robots in the swarm, as the line of sight of a robot can be
obstructed by the presence of other robots. This setting is known as the opaque
robot or obstructed visibility model, where it is assumed that a robot is able to
see another robot if and only if no other robot lies in the line segment joining
them.

Arbitrary Pattern Formation or APF is a fundamental coordination
problem in swarm robotics where the robots are required to form any specific
but arbitrary geometric pattern given as input. In this work, we study the prob-
lem in obstructed visibility model. The majority of the literature that studies
this problem, considers robots with unobstructed visibility. Two recent works
[14,24] investigated two formation problems in the obstructed visibility model.
In [14], Uniform Circle Formation problem was studied, where the robots
are required to form a circle by positioning themselves on the vertices of a reg-
ular polygon. Their approach is to first solve the Mutual Visibility prob-
lem as a subroutine where the robots arrange themselves in a configuration in
which each robot can see all other robots. Then they solved the original prob-
lem from a mutually visible configuration. The more general Arbitrary Pat-

tern Formation problem was first studied in the obstructed visibility model
by Vaidyanathan et al. in [24]. Their algorithm first solves Mutual Visibility

and then elects a leader by probabilistic method. In this work, our aim is to
provide deterministic solutions. For robots with obstructed visibility and having
only partial agreement in coordinate system, deterministic Leader Election

is difficult and is of independent interest. Also, Leader Election and APF
are deterministically unsolvable from some symmetric configurations. Therefore,
trying to first solve Mutual Visibility may create new symmetries, from where
APF is deterministically unsolvable. Hence, if we want to first bring the robots
to a mutually visible configuration, then we have to design an algorithm that
does not create such symmetries. The existing algorithms in the literature for
Mutual Visibility do not have this feature. In both of these works, the robots
are assumed to be luminous, i.e., they are equipped with persistent visible lights
that can assume a constant number of predefined colors.

1.1 Our Contribution

In this paper, we study the Arbitrary Pattern Formation problem for a
system of opaque and luminous robots in a fully asynchronous setting. We have
shown that the problem can be solved from any initial configuration if the robots
agree on the direction and orientation of both X and Y axes. If the robots agree
on the direction and orientation of only X axis, APF is unsolvable when the
initial configuration has a reflectional symmetry with respect to a line K which is
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parallel to the X axis and has no robots lying on K. The same result holds even if
the robots have unobstructed visibility. For all other initial configurations, APF
is solvable.

1.2 Earlier Works

The study of Arbitrary Pattern Formation was initiated by Suzuki and
Yamashita in [22,23]. In these papers, a complete characterization of the class of
formable patterns was provided for autonomous and anonymous robots with an
unbounded amount of memory. The problem was first studied in the weak setting
of oblivious and asynchronous robots by Flocchini et al. in [15]. They showed
that if the robots have no common agreement on coordinate system, then it is
impossible to form an arbitrary pattern. If the robots have one axis agreement,
then any odd number of robots can form an arbitrary pattern, but an even
number of robots cannot, in the worst case. If the robots agree on both X and Y
axes, then any pattern is formable from any configuration of robots. They also
proved that it is possible to elect a leader for n ≥ 3 robots if it is possible to form
any arbitrary pattern. In [12,13], the authors studied the relationship between
Arbitrary Pattern Formation and Leader election. The later consists
in distinguishing a unique robot as the leader. They proved that any arbitrary
pattern can be formed from any initial configuration wherein the leader election
is possible. More precisely, their algorithms work for four or more robots with
chirality and for at least five robots without chirality. Combined with the result in
[15], it follows that Arbitrary Pattern Formation and Leader election

are equivalent, i.e., it is possible to solve Arbitrary Pattern Formation

for n ≥ 4 with chirality (resp. n ≥ 5 without chirality) if and only if Leader

election is solvable. In [8,16], the problem was studied allowing the pattern
to have multiplicities. Recently, the case of n = 4 robots was fully characterized
in [7] in the asynchronous setting, with and without chirality. They proposed a
new geometric invariant that exists in any configuration with four robots, and
using this invariant, they presented an algorithm that forms any target pattern
from any solvable initial configuration. The problem of forming a sequence of
patterns in a given order was studied in [10]. Randomized algorithms for pattern
formation were studied in [26]. In [9,16], the so-called Embedded Pattern

Formation problem was studied where the pattern to be formed is provided as
a set of fixed and visible points in the plane. In [5], the problem was considered
in a grid based terrain where the movements of the robots are restricted only
along grid lines and only by a unit distance in each step. They showed that a set
of fully asynchronous robots without agreement in coordinate system can form
any arbitrary pattern, if their starting configuration is asymmetric.

All the aforementioned works considered robots with unlimited and unob-
structed visibility. In the limited, but unobstructed, visibility setting, the problem
was first studied in [25], and recently in [17]. In obstructed visibility, the Gath-

ering problem have been studied for fat robots in plane [2], and for point robots
in three dimensional space [3]. A related problem in obstructed visibility model is
the Mutual Visibility problem. In this problem, starting from arbitrary config-
uration, the robots have to reposition themselves to a configuration in which every
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robot can see all other robots in the team. The problem has been extensively stud-
ied in the literature under various settings [1,4,11,19–21]. Arbitrary Pattern

Formation in the obstructed visibility model was first studied recently in [24],
without any agreement in coordinate system, where the authors proved runtime
bounds in terms of the time required to solve Leader election. However, they
did not provide any deterministic solution for Leader election and is yet to be
studied in the literature in the obstructed visibility model.

Organization. The paper is organized as follows. In Sect. 2, a formal definition
of the robotic model and the problem is given, along with some basic notations
and terminology. In Sect. 3, we briefly discuss the algorithm for APF under one
axis agreement. The main results of the paper are presented in Sect. 4. We refer
the readers to the full version [6] of the paper for a more detailed description of
the algorithms and formal proofs of correctness.

2 Preliminaries

2.1 Robot Model

A set of n mobile computational entities, called robots, are initially placed at dis-
tinct points in the Euclidean plane. The robots are assumed to be anonymous
(they have no unique identifiers that they can use in a computation), identical
(they are indistinguishable by their physical appearance), autonomous (there is
no centralized control), homogeneous (they execute the same deterministic algo-
rithm). The robots are modeled as points in the plane, i.e., they do not have
any physical extent. The robots do not have access to any global coordinate sys-
tem. Each robot is provided with its own local coordinate system centered at its
current position, and its own notion of unit distance and handedness. However,
the robots may have a priori agreement about the direction and orientation of
the axes in their local coordinate systems. Based on this, we consider the two
models: two axis agreement (they agree on the direction and orientation of both
axes) and one axis agreement (they agree on the direction and orientation of
only one axis).

This paper studies the pattern formation problem in the opaque and luminous
robot model. The opaque robot model assumes that the robots have unlimited
but obstructed visibility, i.e., a point p on the plane is visible to a robot r if
and only if the line segment joining p and r does not contain any other robot.
In the luminous robot model, introduced by Peleg [18], each robot is equipped
with a visible light which can assume a constant number of predefined colors.
The lights serve both as a weak explicit communication mechanism and a form
of internal memory. We denote the set of colors available to the robots by C.

The robots, when active, operate according to the so-called LOOK-
COMPUTE-MOVE cycle. In each cycle, a previously idle or inactive robot wakes
up and executes the following steps. In the LOOK phase, the robot takes a snap-
shot of the current configuration, i.e., it obtains the positions, expressed in its
local coordinate system, of all robots visible to it, along with their respective
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colors. The robot also knows its own color. In the COMPUTE phase, based
on the perceived configuration, the robot performs computations according to a
deterministic algorithm to decide a destination point x ∈ R

2 (expressed in its
local coordinate system) and a color c ∈ C. As mentioned earlier, the determinis-
tic algorithm is same for all robots. In the MOVE phase, the robot then sets its
light to c and moves towards the point x. After executing a LOOK-COMPUTE-
MOVE cycle, a robot becomes inactive. Then after some finite time, it wakes up
again to perform another LOOK-COMPUTE-MOVE cycle. Notice that after a
robot sets it light to a particular color in the MOVE phase of a cycle, it maintains
its color until the MOVE phase of the next LCM cycle. The robots are oblivious
in the sense that when a robot transitions from one LCM cycle to the next, all of
its local memory (past computations and snapshots) are erased, except for the
color of the light. The robots are controlled by a fully asynchronous scheduler
(ASync). In ASync, the robots are activated independently and each robot
executes its cycles independently. The amount of time spent in LOOK, COM-
PUTE, MOVE and inactive states is finite but unbounded, unpredictable and
not same for different robots. As a result, the robots do not have a common
notion of time. Moreover, a robot can be seen while moving, and hence, com-
putations can be made based on obsolete information about positions. Also, the
configuration perceived by a robot during the LOOK phase may significantly
change before it makes a move and therefore, may cause a collision. The sched-
uler that controls the activations and the durations of the operations can be
thought of as an adversary, whose purpose is to disrupt the algorithm. In this
paper, the robots are assumed to have Rigid movements, i.e., each robot is able
to reach its desired destination without any interruption.

2.2 Definitions and Notations

In this section, we introduce the notations that will be used throughout the
paper. We assume that a set R of n robots are placed at distinct positions in
the Euclidean plane. For any time t, C(t) will denote the configuration of the
robots at time t. For a robot r, its position at time t will be denoted by r(t).
When there is no ambiguity, r will represent both the robot and the point in
the plane occupied by it. By 1r, we shall denote the unit distance according to
the local coordinate system of r. At any time t, r(t).light or simply r.light will
denote the color of the light of r at t.

Suppose that a robot r, positioned at point p, takes a snapshot at time t1.
Based on this snapshot, suppose that the deterministic algorithm run in the
COMPUTE phase instructs the robot to change its color (Case 1) or move to a
different point (Case 2) or both (Case 3). In case 1, assume that it changes its
color at time t2 > t1. In case 2, assume that it starts moving at time t3 > t1.
Note that when we say that it starts moving at t3, we mean that r(t3) = p, but
r(t3 + ε) �= p for sufficiently small ε > 0. For case 3, assume that r changes it
color at t2 > t1 and starts moving at t3 > t2. Then we say that r has a pending
move at t if t ∈ (t1, t2) in case 1 or t ∈ (t1, t3] in case 2 and 3. A robot r is
said to be stable at time t, if r is stationary and has no pending move at t. A
configuration at time t is said to be a stable configuration if every robot is stable
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at t. A configuration at time t is said to be a final configuration if (1) every
robot at t is stable, and (2) any robot taking a snapshot at t will not decide to
move or change its color.

With respect to the local coordinate system of a robot, positive and negative
directions of the X-axis will be referred to as right and left, while the positive and
negative directions of the Y -axis will be referred to as up and down. For a robot r,
LV (r) and LH(r) are respectively the vertical and horizontal line passing through
r. We denote by HO

U (r) (resp. HC
U (r)) and HO

B(r) (resp. HC
B(r)) the upper and

bottom open (resp. closed) half-plane delimited by LH(r) respectively. Similarly,
HO

L (r) (resp. HC
L (r)) and HO

R(r) (resp. HC
R(r)) are the left and right open (resp.

closed) half-plane delimited by LV (r) respectively. We define HO(r1, r2) (resp.
HC(r1, r2)) as the horizontal open (resp. closed) strip delimited by LH(r1) and
LH(r2). For a robot r and a straight line L passing through it, r will be called
non-terminal on L if it lies between two other robots on L, and otherwise it will
be called terminal on L.

2.3 Problem Definition

A swarm of n robots is arbitrarily deployed at distinct positions in the Euclidean
plane. Initially, the lights of all the robots are set to a specific color called off.
Each robot is given as input a pattern P, which is a list of n distinct elements
from R

2. Notice that the robots, through the input, implicitly obtain n, the total
number of robots. Without loss of generality, we assume that (1) the n elements
in P are arranged in (ascending) dictionary order, i.e., (x, y) < (x′, y′) iff either
x < x′ or x = x′, y < y′, and (2) (x, y) ∈ R

2
≥0 = {(a, b) ∈ R

2|a, b ≥ 0} for each
element (x, y) in P.

The goal of the Arbitrary Pattern Formation, or in short APF , is to
design a distributed algorithm so that there is a time t such that (1) C(t) is
a final configuration, (2) the lights of all the robots at t are set to the same
color, (3) P can be obtained from C(t) by a sequence of translation, reflection,
rotation, uniform scaling operations, and (4) at any time t′ ∈ [0, t], no two robots
occupy the same position in the plane, i.e., in other words, the movements are
collision-free.

3 Arbitrary Pattern Formation Under One Axis
Agreement

In this section, we shall discuss APF under the one axis agreement model in
ASync. We assume that the robots agree on the direction and orientation of
only X axis. The following theorem presents a basic impossibility result under
this model.

Theorem 1. APF is unsolvable in ASync if the initial configuration has a
reflectional symmetry with respect to a line K which is parallel to the X axis with
no robots lying on K. The same result holds even if the robots have unobstructed
visibility.
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Therefore, we shall assume that in the one axis agreement setting, the ini-
tial configuration does not have such a symmetry. We shall prove that with
this assumption, APF is solvable in ASync. Our algorithm requires six colors,
namely off, terminal, candidate, symmetry, leader, and done. As mentioned
earlier, initially the lights of all the robots are set to off.

The goal of APF is that the robots have to arrange themselves to a configu-
ration which is similar to P with respect to translation, rotation, reflection and
uniform scaling. Since the robots do not have access to any global coordinate
system, there is no agreement regarding where and how the pattern P is to be
embedded in the plane. To resolve this ambiguity, we shall first elect a robot in
the team as the leader. The relationship between leader election and arbitrary
pattern formation is well established in the literature. Once a leader is elected, it
is not difficult to reach an agreement on a suitable coordinate system. Then the
robots have to reconfigure themselves to form the given pattern P with respect
to this coordinate system. Thus, the algorithm is divided into two stages, namely
leader election and pattern formation from leader configuration. The leader elec-
tion stage is again logically divided into two phases, phase 1 and phase 2. Since
the robots are oblivious, in each LCM cycle, it has to infer in which stage or
phase it currently is, from certain geometric conditions and the lights of the
robots in the perceived configuration. These conditions are described in Algo-
rithm1. Notice that due to the obstructed visibility, two robots taking snapshots
at the same time can have quite different views of the configuration. Therefore, it
may happen that they decide to execute instructions corresponding to different
stages or phases of the algorithm.

Algorithm 1. Arbitrary Pattern Formation

Input : The configuration of robots visible to me.
1 Procedure ArbitraryPatternFormation()

2 if there is a robot with light set to leader then // stage 2
3 PatternFormationFromLeaderConfiguration()

4 else // stage 1
5 if there are two robots with light set to candidate on the same

vertical line or at least one robot with light set to symmetry
then

6 Phase2()

7 else
8 Phase1()

3.1 Leader Election

For a group of anonymous and identical robots, leader election is solved on the
basis of the relative positions of the robots in the configuration. But this is
only possible if the robots can see the entire configuration. Therefore, the naive
approach would be to first bring the robots to a mutually visible configuration
where each robot can see all other robots. But as mentioned earlier, this can
create unwanted symmetries in the configuration from where arbitrary pattern
formation may be unsolvable. Therefore, we shall employ a different strategy
that does not require solving mutual visibility.



116 K. Bose et al.

Formally, the aim of the leader election stage is to obtain a stable configura-
tion where there is a unique robot rl such that (1) rl.light = leader, (2) r.light =
off for all r ∈ R \ {rl}, and (3) r ∈ HO

R(rl) ∩ HO
U (rl) for all r ∈ R \ {rl}. We

shall call this a leader configuration, and call rl the leader. As mentioned earlier,
the leader election algorithm consists of two phases, namely phase 1 and phase
2 (See Algorithm 1). We describe the two phases in the following.

Algorithm 2. Phase 1 of Leader Election

Input : The configuration of robots visible to me.
1 Procedure Phase1()

2 r ← myself
3 if r.light = off then
4 if there are no robots in HC

L (r) other than itself and all robots have their
lights set to off then

5 BecomeLeader()

6 else if LeftMostTerminal() = True then
7 (x∗, y∗) ← ComputeDestination()

8 r.light ← terminal
9 Move to (x∗, y∗)

10 else if r.light = terminal then
11 r.light ← candidate
12 else if r.light = candidate then
13 if there is a robot with light candidate in HO

R(r) then
14 r.light ← off

15 else if there is a robot with light off in HO
L (r) then

16 r.light ← off

17 Procedure BecomeLeader()

18 if there are no robots in HC
B(r) other than itself then

19 r.light ← leader
20 else
21 r′ ← the bottommost robot
22 d ← |r′.y|
23 Move d + 1r distance down vertically

24 Function LeftMostTerminal()

25 result ← False
26 if there are no robots in HO

L (r) then
27 if there is H ∈ {HO

B(r), HO
U (r)} such that H ∩ LV (r) contains no robots

then
28 result ← True

29 else if there is exactly one robot r′ in HO
L (r) and r′.light = candidate

then
30 Let H ∈ {HO

B(r), HO
U (r)} be the open half-plane not containing r′

31 if H ∩ LV (r) contains no robots then
32 result ← True

33 return result
34 Function ComputeDestination()

35 if there are no robots in HO
R(r) then

36 return (−1r, 0)
37 else
38 L′ ← the leftmost vertical line containing a robot in HO

R(r)
39 d ← the horizontal distance between r and L′
40 return (−d, 0)
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Algorithm 3. Phase 2 of Leader Election

Input : The configuration of robots visible to me.
1 Procedure Phase2()

2 r ← myself
3 if r.light = candidate then
4 r′ ← another robot on L = LV (r) with light candidate or symmetry

5 L′ ← the leftmost vertical line containing a robot in HO
R(r)

6 K ← the horizontal line passing through the mean of the positions of the robots
lying on L′

7 dr ← distance of r from K
8 dr′ ← distance of r′ from K
9 dLL′ ← distance between L and L′

10 set the positive direction of Y -axis of the local coordinate system towards r′

11 if r′.light = symmetry then
12 if dr < dr′ then
13 Move dr′ − dr distance vertically in direction opposite to r′
14 else if dr = dr′ then
15 r.light ← symmetry

16 else if r′.light = candidate then
17 if r and r′ are in the same closed half-plane delimited by K then
18 if dr > dr′ then
19 Move to ComputeDestination2()

20 else
21 if λ′(r) ≺ λ′(r′) then
22 Move to ComputeDestination2()

23 else if λ′(r) = λ′(r′) then
24 if dr ≥ dr′ then
25 if the number of robots is equal to n and there are no robots in

HO
B(r) then

26 if λ(r) ≺ λ(r′) then
27 Move to ComputeDestination2()

28 else if λ(r) � λ(r′) then

29 Move
dLL′

2 distance right horizontally

30 else if λ(r) = λ(r′) then
31 if K has no robots on it then
32 Move to ComputeDestination2()

33 else
34 r.light ← symmetry

35 else
36 Move dr distance vertically in direction opposite to r′

37 else if r.light = symmetry then
38 if there is a robot in HO

L (r) with light off then
39 r.light ← off

40 else if r.light = off then
41 if there are two robots r1 and r2 in HO

L (r) with light symmetry on the same
vertical line L then

42 K ← the horizontal line passing through the mid-point of the line segment
joining r1 and r2.

43 if r is the leftmost robot lying on K then
44 d ← distance of r from L
45 Move d + 1r distance left

46 Function ComputeDestination2()

47 H ← the open half-plane delimited by LH(r′) not containing r.
48 if L′ ∩ H has no robots then
49 return (−1r, 0)
50 else
51 r′′ ← the robot on L′ ∩ H with maximum y-coordinate

52 return (− 1
2dLL′ r′.y

r′′.y−r′.y , 0)
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Phase 1. Since the robots agree on left and right, if there is a unique leftmost
robot in the configuration, then it can identify this from its local view and elect
itself as the leader. However, there might be more than one leftmost robots in the
configuration. Assume that there are k ≥ 2 leftmost robots in the configuration.
Our aim in this phase is to reduce the number of leftmost robots to k = 2,
or if possible, to k = 1. Suppose that the k ≥ 2 leftmost robots are lying
on the vertical line L. We shall ask the two terminal robots on L, say r1 and
r2, to move horizontally towards left. If both robots move synchronously by
the same distance, then the new configuration will have two leftmost robots.
However, r1 and r2 can not distinguish between this configuration and the initial
configuration, i.e., they can not ascertain from their local view if they are the only
robots on the vertical line due to the obstructed visibility. To resolve this, we shall
ask r1 and r2 to change their lights to terminal before moving. Now, consider the
case where r1 and r2 move different distances with r1 moving further. Suppose
that r2 reaches its destination first, and when it takes the next snapshot, it finds
that r1 (with light terminal) is on the same vertical line. So, r2 incorrectly
concludes that the two terminal robots have been brought on the same vertical
line, while actually r1 is still moving leftwards. To avert this situation, we shall
use the color candidate. After moving, the robots will change their lights to
candidate to indicate that they have completed their moves. So, if we have two
robots with light candidate on the same vertical line, then we are done. On the
other hand, if we end up with the two robots with light candidate not on the
same vertical line, then the one on the left will become the leader. A pseudocode
description of phase 1 is given in Algorithm2.

Phase 2. Phase 1 will end with either a leader configuration or a stable config-
uration where there are two robots r1 and r2 such that (1) r1.light = r2.light =
candidate, (2) r.light = off for all r ∈ R \ {r1, r2}, (3) r1 and r2 are on the
same vertical line, and (4) r ∈ HO

R(r1) for all r ∈ R \ {r1, r2}. We shall refer
to the later configuration as a candidate configuration. In the first case, leader
election is done, and in the second case we enter phase 2. So assume that we
have two leftmost robots, r1 and r2, lying on the vertical line L with their lights
set to candidate.

Let C
′ = C \ {r1, r2} be the configuration of the remaining robots. Let L′

be the leftmost vertical line containing a robot in C
′, and K is the horizontal

line passing through the mean of the positions of the robots lying on L′. Let H1

and H2 be the two open half-planes delimited by K. Let H1 and H2 be their
closure. First assume that both r1 and r2 lie in the same closed half-plane, say
r1, r2 ∈ H1. Then the robot further from K, say r2, will move left. Then clearly
we are back to phase 1, and eventually r2 will become leader. Now assume that
r1 and r2 are in different open half-planes. So, let H1 and H2 be the half-planes
containing r1 and r2 respectively. For each Hi, we define a coordinate system Ci

in the following way. The point of intersection between K and L′ is the origin,
L′ ∩ Hi is the positive Y -axis and the positive direction of X-axis is according
to the global agreement. We express the positions of all the robots in Hi except
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ri with respect to the coordinate system Ci. Now arrange the positions in the
dictionary order. Let λ(ri) denote the string thus obtained. Each term of the
string is an element from R

2. To make the length of the strings λ(r1) and λ(r2)
equal, null elements Φ may be appended to the shorter string. For any non-null
term (x, y) of a string, we set (x, y) < Φ. We shall write λ(r1) ≺ λ(r2) iff λ(r2) is
lexicographically larger than λ(r1). For each string λ(ri), let λ′(ri) be the string
obtained from λ(ri) by deleting all terms with x-coordinate not equal to 0. That
is, the terms of λ′(ri) corresponds to the robots on L′ ∩ Hi. Again, null elements
Φ may be appended to make the length of the strings λ′(r1) and λ′(r2) equal.
The plan is to choose a leader by comparing these strings. First, the robots will
compare λ′(r1) and λ′(r2). Clearly, both of them can see all the robots on L′,
hence can compute λ′(r1) and λ′(r2). If λ′(ri) ≺ λ′(rj), ri will move left. As
before, ri will become leader. If λ′(r1) = λ′(r2), the robots have to compare the
full strings λ(r1) and λ(r2). But in order to compute these strings, the complete
view of the configuration is required. Let dr1 and dr2 be the distance of r1 and
r2 from K respectively. If dri

≥ drj
, ri will move vertically away from rj by a

distance dri
to get the full view of the configuration. It can be proved that after

finitely many steps, it will be able to see all the robots in the configuration.
When it can see all the robots in the configuration, it computes λ(r1) and λ(r2).
If λ(ri) ≺ λ(rj), ri will move left (ri will become leader) and if λ(ri) � λ(rj), ri

will move right (rj will become leader). In the case where λ(ri) = λ(rj) (C′ is
symmetric), ri will move left if K has no robots on it, or otherwise will change
its light to symmetry. In that case where C

′ is symmetric and K has at least one
robot on it, the leftmost robot on K will move towards left to become the leftmost
robot in C and will eventually become the leader. A pseudocode description of
phase 2 is presented in Algorithm 3.

3.2 Pattern Formation from a Leader Configuration

A pseudocode description of this stage is given in Algorithm 4. At the start of
this stage, we have a leader configuration. Let rl be the leader having its light set
to leader. Any robot that can see rl starts executing Algorithm 4. In a leader
configuration, all non-leader robots lie on one of the open half-planes delimited
by the horizontal line passing through the leader rl. This leads to an agreement
on the direction of Y axis, as we can set the empty open half-plane to correspond
to the negative direction of Y -axis or ‘down’. Hence, we have an agreement on
‘up’, ‘down’, ‘left’ and ‘right’. Order the robots in R \ {rl} from bottom to up,
and from left to right in case multiple robots on the same horizontal line. Let
us denote these robots by r1, r2, . . . , rn−1 in this order. Notice that we still do
not have a common notion of unit distance. So, we shall ask r1 to move to the
line LV (rl). The distance of this robot from the leader rl will be set as the unit
distance. Now it only remains to fix the origin. We shall set the origin at a point
such that the coordinates of rl are (−1,−1). Now that we have a common fixed
coordinate system, we embed the pattern P on the plane. Let ti denote the point
in the plane corresponding to P[i]. Let us call these points t0, t1, . . . , tn−1 the
target points. Since P is sorted in dictionary order, t0, t1, . . . , tn−1 are ordered
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from left to right, and from bottom to up in case there are multiple robots
on the same vertical line. For each ti, i = 0, 1, . . . , n − 1, we define a point
pi = (Ψ(i),−1) on LH(rl) in the following way. Let ti = (xi, yi). Let Li be the
vertical line passing through ti, i.e., the line X = xi. Let ti be the kth target
point on Li from bottom, i.e., the kth item in P with the first coordinate equal
to xi. Then Ψ(i) = xi +

(k−1)
2(mi−1)ε, where mi is equal to the total number of target

points on Li, and ε is equal to the smallest horizontal distance between any two
target points not on the same vertical line, or equal to 1 if all target points
are on the same vertical line. The robots r2, . . . , rn−1 will sequentially move
to p2, . . . , pn−1 respectively. Then r2, . . . , rn−1 will sequentially leave LH(rl) to
move to t2, . . . , tn−1 respectively. Before moving, they will change their light to
done. When r1 finds that there is no other robot with light off in HC

U (r1) and
there are no robots in HO

B(r1) except rl, it decides to move to t1. However, in this
case, it will change its light to done after the move (See line 7 in Algorithm 4).
When rl sees no robots with light off, it decides to move to t0. However, since
there is no longer a robot on LV (rl) , it can not ascertain the unit distance of
the agreed coordinate system and therefore, can not determine the point t0 in
the plane. Hence, it has to locate the point t0 by some other means. Let r be
the leftmost (and bottommost in case of tie) robot that rl can see. Clearly, r
is at t1. Hence, rl knows the point in the plane with coordinates P[1], and also
point with coordinates (−1,−1) (its own position). From these two points, it
can easily determine the point t0, i.e., the point in the plane with coordinates
P[0] in the agreed coordinate system. Therefore, it will change its light to done
and move to t0.

4 The Main Results

Theorem 2. For a set of opaque and luminous robots with one axis agreement,
APF is deterministically solvable if and only if the initial configuration is not
symmetric with respect to a line K such that (1) K is parallel to the agreed axis
and (2) K is not passing through any robot. Six colors are sufficient to solve the
problem from any solvable initial configuration.

If the robots agree on the direction and orientation of both axes, then leader
election is easy. If there is a unique leftmost robot r, then as before it will become
leader (by executing BecomeLeader()). If there are multiple leftmost robots,
then the bottommost one will move left. In the next snapshot, it will find itself
eligible to become leader and start executing BecomeLeader(). Therefore,
leader election is solvable using only 2 colors, namely off and leader. Then
stage 2 will be executed by Algorithm 4. Hence, we have the following result.

Theorem 3. For a set of opaque and luminous robots with two axis agree-
ment, APF is deterministically solvable from any initial configuration using
three colors.
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Algorithm 4. Pattern Formation from Leader Configuration

Input : The configuration of robots visible to me.
1 Procedure PatternFormationFromLeaderConfiguration()

2 r ← myself
3 rl ← the robot with light leader
4 if r.light = off then
5 if rl ∈ HO

B(r) ∩ HO
L (r) then

6 if there is a robot with light done then
7 r.light ← done

8 else if there are no robots in HO
B(r) ∩ HO

U (rl) ∩ HO
R(rl) and r is the

leftmost robot on LH(r) ∩ HO
R(rl) then

9 if there is no robot on LV (rl) then
10 p ← the point of intersection of the lines LH(r) and LV (rl)
11 Move to p
12 else
13 if there are k ≥ 0 robots on LH(rl) with light off then
14 Move to (Ψ(k + 2), −1)

15 else if rl ∈ LH(r), there is a robot on LV (rl), and there are no robots
with light off in HO

U (r) ∩ HO
R(rl) then

16 if r.pos = (Ψ(i), −1) and PartialFormation(i) = True then
17 r.light ← done
18 Move to P[i]

19 else if rl ∈ LV (r) then
20 if there is no other robot with light off in HC

U (r) and there are no
robots in HO

B(r) except rl then
21 Move to P[1]

22 else if r.light = leader then
23 if there are no robots with light off then
24 r.light ← done
25 Move to P[0]

26 Procedure PartialFormation(i)
27 if i = 2 then
28 return True
29 else
30 if there is a robot with light done at ti−1 then
31 return True
32 else
33 return False

5 Concluding Remarks

In this work, we have provided a full characterization of initial configurations
from where APF is deterministically solvable in ASync for a system of opaque
and luminous robots with one and two axis agreement. The next step would
be to study the problem with no agreement or agreement on only handedness.
Another interesting question is whether the problem is solvable without light.
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13. Dieudonné, Y., Petit, F., Villain, V.: Leader election problem versus pattern for-
mation problem. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 267–281. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15763-9 26

https://doi.org/10.1007/978-3-030-14094-6_6
https://doi.org/10.1145/3154273.3154322
https://doi.org/10.1007/978-3-319-69084-1_24
https://doi.org/10.1007/978-3-319-69084-1_24
https://doi.org/10.1007/978-3-030-10564-8_28
http://arxiv.org/abs/1902.04950
http://arxiv.org/abs/1902.04950
https://doi.org/10.1007/978-3-030-03232-6_22
https://doi.org/10.1007/s00446-018-0325-7
https://doi.org/10.1007/s00446-018-0333-7
https://doi.org/10.1007/s00446-018-0333-7
https://doi.org/10.1007/s00446-014-0220-9
http://arxiv.org/abs/0902.2851
https://doi.org/10.1007/978-3-642-15763-9_26
https://doi.org/10.1007/978-3-642-15763-9_26


Arbitrary Pattern Formation by Asynchronous Opaque Robots with Lights 123

14. Feletti, C., Mereghetti, C., Palano, B.: Uniform circle formation for swarms of
opaque robots with lights. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS,
vol. 11201, pp. 317–332. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03232-6 21

15. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3),
412–447 (2008). https://doi.org/10.1016/j.tcs.2008.07.026

16. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation
by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015).
https://doi.org/10.1137/140958682

17. Lukovszki, T., Meyer auf der Heide, F.: Fast collisionless pattern formation by
anonymous, position-aware robots. In: Aguilera, M.K., Querzoni, L., Shapiro, M.
(eds.) OPODIS 2014. LNCS, vol. 8878, pp. 248–262. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-14472-6 17

18. Peleg, D.: Distributed coordination algorithms for mobile robot swarms: new direc-
tions and challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.)
IWDC 2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005). https://doi.
org/10.1007/11603771 1

19. Sharma, G., Busch, C., Mukhopadhyay, S.: Mutual visibility with an optimal num-
ber of colors. In: Bose, P., G ↪asieniec, L.A., Römer, K., Wattenhofer, R. (eds.)
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Abstract. Recently, studying fundamental graph problems in the Mas-
sively Parallel Computation (MPC) framework, inspired by the MapRe-
duce paradigm, has gained a lot of attention. An assumption common
to a vast majority of approaches is to allow ˜Ω(n) memory per machine,

where n is the number of nodes in the graph and ˜Ω hides polylogarith-
mic factors. However, as pointed out by Karloff et al. [SODA’10] and
Czumaj et al. [STOC’18], it might be unrealistic for a single machine to
have linear or only slightly sublinear memory.

In this paper, we thus study a more practical variant of the MPC
model which only requires substantially sublinear or even subpolynomial
memory per machine. In contrast to the linear-memory MPC model and
also to streaming algorithms, in this low-memory MPC setting, a single
machine will only see a small number of nodes in the graph. We introduce
a new and strikingly simple technique to cope with this imposed locality.
In particular, we show that the Maximal Independent Set (MIS) prob-
lem can be solved efficiently, that is, in O(log3 log n) rounds, when the
input graph is a tree. This constitutes an almost exponential speed-up
over the low-memory MPC algorithm in ˜O(

√
log n)-algorithm in a con-

current work by Ghaffari and Uitto [SODA’19] and substantially reduces

the local memory from ˜Ω(n) required by the recent O(log log n)-round
MIS algorithm of Ghaffari et al. [PODC’18] to nα for any α > 0, without
incurring a significant loss in the round complexity. Moreover, it demon-
strates how to make use of the all-to-all communication in the MPC
model to almost exponentially improve on the corresponding bound in
the LOCAL and PRAM models by Lenzen and Wattenhofer [PODC’11].

1 Introduction

Parallel Computation Paradigms for Massive Data: When confronted
with huge data sets, purely sequential approaches become untenably inefficient.
To address this issue, several parallel computation frameworks specially tailored
for processing large scale data have been introduced. Inspired by the MapRe-
duce paradigm [21], Karloff, Suri, and Vassilvitskii [27] proposed the Massively
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Parallel Computation (MPC) model, which was later refined in many works
[3,9,10,20,26].

Massively Parallel Computation Model: In the MPC model, an input
instance of size N is distributed across M machines with local memory of size
S each. The computation proceeds in rounds, each round consisting of local
computation at the machines interleaved with global communication (also called
shuffling, adopting the MapReduce terminology) between the machines.

In the shuffling step, every machine is allowed to send as many messages
to as many machines as it wants, as long as for every machine the total size
of sent and received messages does not exceed its local memory capacity. The
quantity of main interest is the round complexity: the number of rounds needed
until the problem is solved, that is, until every machine outputs its part of the
solution. This measure constitutes a good estimate for the actual running time,
as local computation is presumed to be negligible compared to the cost-intensive
shuffling, which requires a massive amount of data to be transferred between
machines.

Sublinear Memory Constraint: Note that S ≥ N leads to a degenerate case
that allows for a trivial solution. Indeed, as the data fits into the local memory of
a single machine, the input can be loaded there, and a solution can be computed
locally. Due to the targeted application of MPC in the presence of massive data
sets, thus large N , it is often crucial that S is not only smaller than N but
actually substantially sublinear in N . The total memory M ·S in the system has
to be at least N , so that the input actually fits onto the machines, but ideally
not much larger. Summarized, one requires S = ˜O (Nα) memory on each of the
M = ˜O

(

N1−α′
)

machines, for 0 < α′ ≤ α < 1.

Sublinear Memory for Graph Problems: Basically all known MPC tech-
niques for graph problems need essentially linear in n—for instance, ˜Ω(n) or
mildly sublinear like n1−o(1)—memory per machine, where n is the number of
nodes in the input graph1. We refer to [12] for a brief discussion of this assump-
tion. Note that for sparse graphs with N = ˜O(n) edges, this violates the sublinear
memory constraint, getting close to the degenerate regime. This issue has been
artificially circumvented by explicitly restricting the attention to dense graphs
with N = ˜Ω(n1+α) edges, as to ensure sublinearity in N while still not having
to relinquish the nice property that (essentially) all nodes fit into the memory
of a single machine [27].

Besides being a stretch of the definition, this additionally imposed condition
of denseness of the input graph does not seem to be realistic. In fact, as recently
also pointed out by [20], most practical large graphs are sparse. For instance
in the Internet, most of the nodes have a small degree. Even for dense graphs,

1 In the context of graph problems, it is typical to assume that all incident edges of a
node are stored on the same machine, resulting in two copies of an edge, one for each
endpoint. We refer to [35, Sect. 1.1] for a thorough discussion. Also see the remark
at the end of this section.
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where in theory the sublinear memory constraint is met, practicability of the
parameter range does not need to be ensured; linear or slightly sublinear in n
might be prohibitively large.

Furthermore, it is a very natural question to ask whether there is a funda-
mental reason why the known techniques get stuck at the near-linear barrier.
One important aspect of our work is, from the theory perspective, that it breaks
this threshold and thereby opens up a whole new unexplored domain of research
questions.

Low-MemoryMPCModel: We study a more realistic regime of the parameters
for problems on large graphs, captured by the following low-memory MPC model.

Low-Memory MPC Model for Graph Problems:
The input is a graph G = (V,E) with n nodes and m edges of size N =
˜O(n + m). Given M = ˜O

(

N1+α′

S

)

machines with local memory S = ˜O (nα)
each, for arbitrary constants α > 0 and α′ ≥ 0, we raise the question of what
problems on G can be solved efficiently—that is, in poly log log n rounds.

Note that for sparse graphs, this condition exactly matches the sublinear
memory constraint, and hence does not allow a trivial solution, as opposed to
the setting with essentially linear memory assumed by all traditional MPC algo-
rithms. We point out that low memory variants of the MPC model have been
studied before [16,36], resulting in O(log n)-round algorithms for a variety of
problems. For many of the fundamental graph problems, however, O(log n) is
often particularly easy to achieve, for instance by directly adopting LOCAL algo-
rithms. We thus restrict our attention to “efficient” algorithms, which we define
to be a poly log log n function, given that the state-of-the-art algorithms in the
MPC model tend to end in this regime of round complexities. Note that no
general super-constant lower bounds are known [37].

Concurrent Related Work: Until very recently, MPC research had focused
on linear-memory algorithms. After (a preliminary version of) this work, the
low-memory setting gained a lot of attention. This led to a variety of new results
for graph problems in this model. In the following, we briefly outline recent
developments that have taken place after this work.

In follow-up works, the authors of this paper [15] as well as independently
Behnezhad et al. [13] devise MIS and matching algorithms in uniformly sparse
graphs in O(log2 log n) rounds. In independent concurrent works, Ghaffari and
Uitto [25] and Onak [33] provide algorithms for the problems of maximal inde-
pendent set and matching in general graphs in ˜O(

√
log n) rounds. In [17], Chang

et al. develop an O(
√

log log n)-round low-memory MPC algorithm for (Δ+1)-list
coloring.

Remark 1. If a node cannot be stored on a single machine, as its degree is larger
than S, one has to introduce some sort of a workaround, e.g., have several
smaller-degree copies of the same node on several separate machines. In the
end of Sect. 2, we argue how to get rid of this issue, in our problem setting,
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by a clean-up phase in the very beginning. To make the statements and argu-
ments more readable, we throughout think of this clean-up as having taken place
already. Instead, one could also work with the simplifying assumption that every
machine has S = ˜O (nα + Δ) memory, so that this issue does not arise in the
first place.

1.1 Limitations of Linear-Memory MPC Techniques

In the following, we briefly overview recent techniques from the world of Massive
Parallel Computation algorithms, and give some indications as to why they
are likely to fail in the low-memory setting. The restriction to substantially
sublinear memory, to the best of our knowledge, indeed rules out all the known
MPC techniques, which seem to hit a boundary at roughly S = ˜Ω(n): moving
from essentially linear to significantly sublinear memory incurs an exponential
overhead in their round complexity, regardless of the density of the graph. This
blow-up in the running time gives rise to the question of to what extent this
near-linear memory is necessary for efficient algorithms.

(Direct) PRAM/LOCAL Simulation: One easy way of devising MPC algo-
rithms is by shoehorning parallel or distributed algorithms into the MPC setting.
For not too resource-heavy PRAM algorithms, there is also a standard simula-
tion technique [26,27] that automatically transforms them into MPC algorithms.
This approach, however, suffers from several shortcomings. First and foremost,
the reduction leads to an Ω(log n) round complexity, which is exponentially
above our efficiency threshold.

Round Compression: Another similar technique, called round compression,
introduced by Assadi and Khanna [5,7], provides a generic way of compressing
several rounds of a distributed algorithm into fewer MPC rounds, resulting in an
(almost) exponential speed-up. However, this method heavily relies on storing
intermediate values, leading to a blow-up of the memory. In particular, when
requiring the algorithm to run in poly log log n rounds, superlinear memory per
machine seems inevitable.

Filtering: The idea of the filtering technique [28,29] is to reduce the size of the
input by carefully removing a large amount of edges from the input graph that do
not contribute to the (optimal) solution of the problem. This reduction is done
by either randomly sampling the edges, or by deterministically choosing sets of
relevant edges, so that the resulting (partial) problem instance fits on a single
machine, and hence can be solved there. This requires significantly superlinear
memory, or logarithmically many rounds if memory is getting close to the linear
regime. Moreover, the approach seems to get stuck fundamentally at S = ˜Ω(n),
since it relies on one machine eventually seeing the whole (filtered) graph.

Coresets: One very recent and promising direction for MPC graph algorithms is
the one of (randomized composable) coresets [6,7], in some sense building on the
filtering approach. The idea is that not all the information of the graph is needed
to (approximately) solve the problem. One thus can get rid of unimportant
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parts of the information. Solving the problem on this core, one then can derive a
perfect solution or a good approximation to it, at much lower cost. This solution,
however, is found by loading the coreset (or parts of it) on one machine, and
then locally computing a solution, which again seems to be stuck at S = ˜Ω(n),
for similar reasons as the filtering approach.

1.2 Local Techniques for Low-Memory MPC

In this section, we propose a direction that seems to be promising to pursue in
order to devise efficient MPC algorithms in the substantially sublinear memory
regime.

Inherent Locality and Local Algorithms: The low-memory MPC model,
as compared to the traditional MPC graph model and the streaming setting,
suffers from inherent locality: Since the memory of a single machine is too small
to fit all the nodes simultaneously, it will never be able to have a global view
of all the nodes in the graph. When devising techniques, we thus need to deal
with this intrinsic local view of the machines. It seems natural to borrow ideas
from local distributed graph algorithms, which are designed exactly to cope
with this locality restriction. A direct simulation, however, in most cases only
results in Ω(poly log n)-round algorithms. The problem is that these algorithms
do not make use of the additional power of the MPC model, the global all-to-all
communication, as the communication in those message-passing-based models is
restricted to neighboring nodes.

Local Meets Global: We propose a strikingly simple technique to enhance
local-inspired approaches with global communication, in order to arrive at effi-
cient algorithms in the world of low-memory MPC which are exponentially faster
than their local counterparts and whose memory requirements are polynomially
smaller per machine than their traditional MPC counterparts. We describe this
technique in the context of the MIS problem on trees, even though it is more
general.

1.3 Our Results

In this paper, we focus on the Maximal Independent Set (MIS) problem, one of
the most fundamental local graph problems. We propose efficient and surpris-
ingly simple algorithms for the case of trees, which is particularly interesting for
the following reason. While trees admit a trivial solution in the linear-memory
MPC model, this cheat will not work in our low-memory setting. In some sense,
it thus is the easiest non-trivial case, which makes it the most natural starting
point for further studies. In fact, we strongly believe that our techniques can be
extended to more general graph families and problems2.

2 Indeed, there is a follow-up work generalizing our approach from trees to uniformly
sparse graphs and from MIS only to MIS and maximal matching [13,15].
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We provide two different efficient algorithms for MIS on trees. Our first algo-
rithm in Theorem 1 is strikingly simple and intuitive, but comes with a small
overhead in the total memory of the system, meaning that M · S is superlinear
in the input size n.

Theorem 1. There is an O(log2 log n)-round MPC algorithm that w.h.p.3 com-
putes an MIS on n-node trees in the low-memory setting, that is, with S = ˜O (nα)
local memory on each of M = ˜O

(

n1−α/3
)

machines, for any 0 < α < 1.

Our second algorithm in Theorem2 gets rid of this overhead at the cost of a
factor of log log n in the running time.

Theorem 2. There is an O(log3 log n)-round MPC algorithm that w.h.p. com-
putes an MIS on n-node trees in the low-memory setting, that is, with S = ˜O (nα)
local memory on each of M = ˜O

(

n1−α
)

machines, for any 0 < α < 1.

The algorithms in Theorems 1 and 2 almost match the conditional lower
bound of Ω(log log n) for MIS (on general graphs) due to Ghaffari, Kuhn, and
Uitto [24], which holds unless there is an o(log n)-round low-memory MPC algo-
rithm for connected components. This, in turn, is believed to be impossible under
a popular conjecture [38].

Our algorithms improve almost exponentially on the ˜O(
√

log n)-round low-
memory MPC algorithms in concurrent works—for bounded-arboricity by Onak
[33] and for general graphs by Ghaffari and Uitto [25]—as well as on the algo-
rithms directly adopted from the PRAM/LOCAL model: an O(log n)-round algo-
rithm for general graphs due to Luby [32] and independently Alon, Babai and
Itai [1], and the O(

√
log n · log log n)-round algorithm for trees by Lenzen and

Wattenhofer [31]. Note that for rooted trees, the PRAM/LOCAL algorithm by
Cole and Vishkin [19] directly gives rise to an O(log∗ n)-round low-memory MPC
algorithm.

Moreover, our result shows that the local memory can be reduced substan-
tially from ˜Ω(n) to nα or even n1/poly log log n (see Corollary 1) while not incurring
a significant loss in the round complexity, compared to the recent O(log log n)-
round MIS algorithm by Ghaffari et al. [23].

Throughout the paper, when we mention the low-memory MPC setting, we
refer to the parameter range for S as given in Theorems 1 and 2, that is, S =
˜O(nα), where α > 0 is an arbitrary constant. However, α does not need to be a
constant. Indeed, we can even go to subpolynomial memory S = no(1).

Corollary 1. For any α = Ω (1/poly log log n), an MIS on an n-node tree can
be computed on M = ˜O

(

n1−α/3
)

machines with S = ˜O (nα) local memory each
in O

(

1
α · log2 log n

)

MPC rounds.

3 As usual, w.h.p. stands for with high probability, and means with probability at least
1 − n−c, for any c ≥ 1.
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1.4 Our Approach in a Nutshell

In the following, we give a short (and slightly imprecise) sketch of the steps of
our algorithm. Our approach is based on the shattering technique which recently
has gained a lot of attention in the LOCAL model of distributed computing [8]
and goes back to the early nineties [11]. The idea of shattering is to randomly
break the graph into several significantly smaller components by computing a
partial solution. The problem on the remaining components then is solved by a
post-shattering algorithm.

Shattering
The goal of our shattering technique is to compute an independent set such that
after the removal of these independent set nodes and all their neighbors, the
remaining graph, w.h.p., consists of components of size at most poly log n. This
is done in two steps: first, the maximum degree, w.h.p., is reduced to poly log n
using the iterated subsample-and-conquer method, and then a local shattering
algorithm is applied to this low-degree graph.

(I) Degree Reduction via Iterated Subsample-and-Conquer
Our subsample-and-conquer method will w.h.p. reduce the maximum degree of
a graph polynomially, from Δ to roughly Δ1/(1+α), as long as Δ = Ω(poly log n).
After O(log1+α log Δ) iterations, the degree of our graph drops to poly log n.

Subsample: We sample the nodes independently with probability roughly
Δ− 1

1+α , where Δ is an upper bound on the current maximum degree4 of the
graph. This subsampling step guarantees, roughly speaking, the following three
very desirable properties of the graph G′ induced by the sampled nodes.

(i) The diameter of each connected component of G′ is bounded by O(logΔ n).
(ii) The number of nodes in each connected component of G′ is at most nα/3.
(iii) Every node with degree Δ1/(1+α) or higher in G has many neighbors in G′.

Conquer: We find a random MIS in all the connected components of G′ in par-
allel. This can be done by gathering the connected components5, locally picking
one of the two 2-colorings of this tree uniformly at random, and adding the black,
say, nodes to the MIS. We will see that properties (i) and (ii) are crucial to ensure
that the gathering can be done efficiently. In particular, storing the components
on a single machine is possible due to the small size of the components, and
the gathering is fast due to the small diameter. Because of property (iii), the
randomness in the choice of the MIS in every connected component, as well as
the tree structure, all high-degree nodes in the original graph (sampled or not),
w.h.p., will have an adjacent independent set node and thus, are removed from
the graph for the next iteration.

4 Note that in the MPC model it is easy to keep track of the maximum degree.
5 Gathering the connected components means loading all the nodes of a connected

component onto the same machine.
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(II) Low-Degree Local Shattering
Once the degree has dropped to Δ′ = poly log n, we apply the shattering
part of the LOCAL MIS algorithm of Ghaffari [22], which runs in O(log Δ′) =
O(log log n) rounds and w.h.p. leads to connected components of size polyΔ′ ·
log n = poly log n in the remainder graph. Observe that the simulation of this
algorithm in the MPC model is straightforward.

Post-shattering
We gather the connected components of size poly log n and solve the remaining
problem locally.

2 Algorithm Overview and Roadmap

In this section, we give the formal statements we need to prove our main result,
and provide an overview of the structure of the remainder of the paper. We
start with a result that is repeatedly used to gather all nodes of a connected
component onto one machine, provided that they fit there. It will come in two
variants, which naturally give rise to Theorems 1 and 2, respectively. The proof
is deferred to Sect. 4 (part (a)) and the full version [14] (part (b)).

Lemma 1 (Gathering). Let G be an n-node graph and G′ any n′-node sub-
graph of G consisting of connected components of size at most k = O

(

nα/3
)

and
diameter at most d. Then there are

(a) an O(log d)-round low-memory MPC algorithm with M = ˜O
(

n1−α/3
)

machines and
(b) an O(log d·log log n)-round low-memory MPC algorithm with M = ˜O

(

n1−α
)

machines, if n′ · d3 = O(n),

that compute an assignment of nodes to machines so that all the nodes of a
connected component of G′ are on the same machine.

Next, we will provide the results corresponding to the two main parts of our
algorithm, the shattering and the post-shattering.

Lemma 2 (Shattering). There are

(a) an O(log log n · log log Δ)-round low-memory MPC algorithm that uses M =
˜O(n1−α/3) machines and

(b) an O(log2 log n · log log Δ)-round low-memory MPC algorithm with M =
˜O(n1−α) machines

that compute an independent set on an n-node tree with maximum degree Δ so
that the remainder graph, after removal of the independent set nodes and their
neighbors, w.h.p. has only components of size at most poly log n.

The proof of this Shattering Lemma can be found in Sect. 3. The following
Post-Shattering Lemma is a direct consequence of the Gathering Lemma.
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Lemma 3 (Post-Shattering). There are

(a) an O(log k)-round low-memory MPC algorithm with M = ˜O
(

n1−α/3
)

machines and
(b) an O(log k·log log n)-round low-memory MPC algorithm with M = ˜O

(

n1−α
)

machines

that find an MIS in an n-node graph consisting of connected components of size
k = O

(

nα/3
)

.

Proof. By Lemma 1, we can gather the connected components in O(log k)
rounds. Then, an MIS of each connected component can be computed locally.
Note that Theorem 1.1 by Ghaffari [22] certifies that the number of nodes remain-
ing after our shattering process can be made small enough to satisfy the condi-
tions required by Lemma 1.

Note that the naive simulation of the corresponding LOCAL post-shattering
algorithm [22,34] would lead to a round complexity of 2O(

√
log log n).

We now put together the results to prove Theorems 1 and 2.

Proof (Proof of Theorems 1 and 2). We apply the shattering algorithm from
Lemma 2 to get an independent set, with connected components of size k =
poly log n in the remainder graph. Then we run the post-shattering algorithm
from Lemma 3 to find an MIS in all these components. The combination of the
initial independent set found by the shattering and all the MIS found by the
post-shattering results in an MIS in the original tree.

Memory per Machine below Δ: If the degree of a node is larger than the local
memory, one needs to store several lower-degree copies of this node on different
machines. Here, we give a short argument for why one can assume without loss
of generality that all incident edges of a node are stored on the same machine.
Notice that in a tree with n nodes, there can be at most n1−α/2 nodes with
degree at least nα/2. If we now just ignore all these high-degree nodes and find
an MIS among the remaining nodes, the resulting graph, after removal of all MIS
nodes and their neighbors, has at most n1−α/2 nodes. Repeating this argument
roughly 2/α times gives an MIS in the whole input graph.

3 Shattering

Lemma 4 (Iterated Subsample-and-Conquer). There are

(a) an O(log1+α log Δ)-round low-memory MPC algorithm with M = ˜O(n1−α/3)
machines and

(b) an O(log1+α log Δ · log log n)-round low-memory MPC algorithm with M =
˜O(n1−α) machines

that compute an independent set on an n-node tree with maximum degree Δ such
that the remainder graph, after removal of the independent set nodes and their
neighbors, w.h.p. has maximum degree poly log n.
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The proof of this lemma can be found in Sect. 3.1.

Lemma 5 (Low-Degree Local Shattering [22]). There is an O(log Δ)-round
LOCAL algorithm that computes an independent set on an n-node graph with
maximum degree Δ so that the remainder graph, after removal of all nodes in
the independent set and their neighbors, w.h.p. has connected components of size
polyΔ · log n.

We now combine these two results to prove Lemma 2.

Proof (Proof of Lemma 2). We apply the algorithm of Lemma4, w.h.p. yield-
ing an independent set with a remainder graph that has maximum degree
Δ′ = poly log n. On this low-degree graph, we simulate the LOCAL algorithm
of Lemma 5 in a straight-forward manner, which takes O(log Δ′) = O(log log n)
rounds and w.h.p. leaves us with connected components of size polyΔ′ · log n =
poly log n.

3.1 Degree Reduction via Iterated Subsampling

We prove the following result, and then show how it can be used to prove
Lemma 4. For the purposes of the proof of Lemma 6 we assume that Δ is a
large enough poly log n in order to be able to apply Lemma1. Notice that from
the perspective of the final runtime, the exponent of the logarithm turns into a
constant factor hidden in the O-notation.

Lemma 6. There are

(a) an O(log log n)-round low-memory MPC algorithm with M = ˜O(n1−α/3)
machines and

(b) an O(log2 log n)-round low-memory MPC algorithm with M = ˜O(n1−α)
machines

that compute an independent set on an n-node tree G with maximum degree Δ =
Ω(poly log n) such that the remainder graph, after removal of the independent set
nodes and their neighbors, w.h.p. has maximum degree at most Δ(1+δ′)δ, for some
δ = Θ (1/(1 + α)) and any δ′ > 0.

Proof. We first outline the algorithm and then slowly go through the steps of
the algorithm again while proving its key properties.

Algorithm: Every node is sampled independently with probability Δ−δ into
a set V ′. The connected components of G′ = G[V ′] are gathered by Lemma 1,
and one of the two 2-colorings is picked uniformly at random, independently
for every connected component. This can be done locally. All the black nodes,
say, are added to the MIS, and are removed from the graph along with their
neighbors.

Subsampling: We first prove that the random subsampling leads to nice prop-
erties of the graph induced by subsampled nodes.
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Lemma 7. After the subsampling, w.h.p., the following holds.

(i) Every connected component of G′ has diameter O
(

1
δ · logΔ n

)

.
(ii) Every connected component of G′ consists of nO((1−δ)/δ) nodes.
(iii) Every node with degree Ω

(

Δ(1+δ′)δ
)

in G has degree Ω(poly log n) in G′.

Proof. Consider an arbitrary path of length � = Ω
(

1
δ · logΔ n

)

in G. This
path is in G′ only if all its nodes are subsampled into V ′, which happens
with probability at most Δ−δ·� = 1

polyn . A union bound over all—at most n2

many—paths in the tree T shows that, w.h.p., the length of every path, and
hence in particular also the diameter of every connected component, in G′ is
bounded by O

(

1
δ · logΔ n

)

. Since the degree among the subsampled nodes is
bounded by O

(

Δ1−δ
)

, w.h.p., which is a simple application of Chernoff and
union bound, it follows that every connected component consists of at most
O

(

Δ(1−δ)·�) = nO((1−δ)/δ) nodes. Finally, another simple Chernoff and union

bound argument shows that every node with degree Ω
(

Δ(1+δ′)δ
)

in the graph

G has at least Ω
(

Δδ′·δ
)

= Ω(poly log n) neighbors in G′, which concludes the
proof of Lemma 7

Gathering: Since G′ consists of components that have a low diameter by
Lemma 7 (i) and that are small enough to fit on a single machine by Lemma 7
(ii)—provided that δ = Θ (1/(1 + α)) is chosen such that the components have
size O

(

nα/3
)

—we can gather them efficiently by Lemma 1, in either O(log log n)
or O(log2 log n) rounds. The random MIS can then be easily computed locally.

Random MIS: It remains to show that every high-degree node in G, w.h.p.,
has at least one adjacent node that joins the random MIS, which leads to the
removal of this high-degree node from the graph. Note that this is trivially true
for all subsampled nodes, by maximality of an MIS.

Now consider an arbitrary non-subsampled node v with degree Ω
(

Δ(1+δ′)δ
)

and its Ω(poly log n) subsampled neighbors, by Lemma 7 (iii). Observe that,
since we are in a tree and thus in particular in a triangle-free graph, there
cannot be edges between these neighbors. Therefore no two neighbors of a non-
subsampled node belong to the same connected component in G′, which means
that all the neighbors in V ′ of v are colored independently, and hence are added to
an MIS independently with probability 1/2. By the Chernoff inequality, w.h.p. at
least one of v’s neighbors must have been added to an MIS, and a union bound
over all nodes concludes the proof of the degree reduction, and hence of Lemma6.

Proof (Proof of Lemma 4). This follows from log 1
(1+δ′)δ

log Δ = log1+α log Δ

many applications of Lemma 6.

4 Gathering Connected Components

In this section, we provide a proof of the Gathering Lemma. Our approach is
essentially a tuned version of the Hash-to-Min algorithm by Chitnis et al. [18]
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and the graph exponentiation idea by Lenzen and Wattenhofer [30]. Notice that,
however, Chitnis et al. only show an O(log n) bound for the round complexity;
it is not possible to just use their method as a black box. The section is divided
into two subsections, where we first give a simple and fast but memory-inefficient
algorithm and then present a slightly slower algorithm that only needs a constant
space overhead.

In very recent works, independent of this paper, Andoni et al. [2] and Assadi
et al. [4] studied, among other problems, finding connected components in the
low-memory setting of MPC. In particular, Andoni et al. give algorithms to find
connected components and to root a forest with constant success probability,
with O(m) total memory in time O(log d · log log n). While their results are more
general, ours have the advantages of being (arguably) much simpler and deter-
ministic. Furthermore, to turn their algorithm to work with high probability, the
straightforward approach requires a logarithmic overhead in the total memory.

In this section, we present the naive gathering algorithm in part (a) of
Lemma 1. The proof of part (b) is deferred to the full version [14].

Proof (Proof of Lemma 1, part (a)). We first present the algorithm. The underly-
ing idea of the algorithm is to find a minimum-ID6 node within every component
and to create a virtual graph that connects all the nodes of that component to
this minimum-ID node, the leader.

Gathering Algorithm: In every round, every node u completes its 1-hop neigh-
borhood to a clique. Once a round is reached in which there are no more edges
to be added, u stops and selects its minimum-ID neighbor as its leader.

Observe that once there is a round in which u does not add any edges, the
component of u forms a clique, and thus all nodes in this component have the
same leader, namely the minimum-ID node in this clique. Next, we prove that
this algorithm terminates quickly.

Lemma 8. The gathering algorithm takes O(log d) rounds on a graph with
diameter d.

Proof. Consider any shortest path u1, . . . , u� of length 2 ≤ � ≤ d. After the
first round, every ui gets connected to ui−2 and ui+2 for 2 < i < � − 1. Thus,
the diameter of the new graph is at most �2d/3�. After O(log d) iterations, the
diameter within each component has reduced to 1, and the algorithm halts.

It remains to show that not too many edges are added, so that the virtual
graph of any component still fits into the memory of a single machine.

Lemma 9. The number of edges in the virtual graph created by the gathering
algorithm in a component of size k is O(k3).

6 We assume without loss of generality that every node has a unique identifier. If
not, every node can draw an O(log n)-bit identifier at random, which w.h.p. will be
unique.
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Proof. During the execution of the algorithm, each node in a component may
create an edge between any other two nodes in the corresponding component,
thus at most k3.

Since we require the components to be of size at most O(nα/3), the previous
claim guarantees that the virtual graph of any connected component indeed fits
into the memory. So as to not overload any machine with too many components,
we assume that the shuffling distributes the components to the machines in an
arbitrary feasible way, e.g., greedily7.

Remark 2. A weakness of the gathering algorithm is that we need O(k3) memory
to store a connected component of size k, even if this component originally just
consisted of as few as k−1 edges. This is because a single edge can exist on up to
k machines. In the worst case, the required memory is blown up by a power 3.
This leads to a super-linear overall memory requirement, that is, we need roughly
N1+2α/3 total memory in the system. Notice that this can be implemented either
by adding more machines or by adding more memory to the machines, since we
do not care on which machines the resulting components lie, as long as they fit
the memory.
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Abstract. We consider the problem of collectively delivering a package
from a specified source to a designated target location in a graph, using
multiple mobile agents. Each agent starts from a distinct vertex of the
graph, and can move along the edges of the graph carrying the package.
However, each agent has limited energy budget allowing it to traverse a
path of bounded length B; thus, multiple agents need to collaborate to
move the package to its destination. Given the positions of the agents
in the graph and their energy budgets, the problem of finding a feasible
movement schedule is called the Collaborative Delivery problem and has
been studied before.

One of the open questions from previous results is what happens when
the delivery must follow a fixed path given in advance. Although this spe-
cial constraint reduces the search space for feasible solutions, the problem
of finding a feasible schedule remains NP hard (as the original problem).
We consider the optimization version of the problem that asks for the
optimal energy budget B per agent which allows for a feasible delivery
schedule, given the initial positions of the agents. We show the existence
of better approximations for the fixed-path version of the problem (at
least for the restricted case of single pickup per agent), compared to the
known results for the general version of the problem, thus answering the
open question from the previous paper.

We provide polynomial time approximation algorithms for both
directed and undirected graphs, and establish hardness of approxima-
tion for the directed case. Note that the fixed path version of collabora-
tive delivery requires completely different techniques since a single agent
may be used multiple times, unlike the general version of collaborative
delivery studied before. We show that restricting each agent to a single
pickup allows better approximations for fixed path collaborative delivery
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compared to the original problem. Finally, we provide a polynomial time
algorithm for determining a feasible delivery strategy, if any exists, for
a given budget B when the number of available agents is bounded by a
constant.

1 Introduction

We consider a team of mobile agents which need to collaboratively deliver a
package from a source location to a destination. The difficulty of collaboration
can be due to several limitations of the agents, such as limited communication,
restricted vision or the lack of persistent memory, and this has been the subject
of extensive research (see [21] for a recent survey). When considering agents
that move physically (such as mobile robots or automated vehicles), a major
limitation of the agents are their energy resources, which restricts the distance
that the robot can travel. This is particularly true for small battery operated
robots or drones, for which the energy limitation is the real bottleneck. We
consider a set of mobile agents where each agent i has a budget Bi on the
distance it can move, as in [1,5,11,12,14,19]. We model the environment as a
directed or undirected edge-weighted graph G, with each agent starting on some
vertex of G and traveling along edges of G, until it runs out of energy and stops
forever. In this model, the agents are obliged to collaborate as no single agent
can usually perform the required task on its own.

Given a graph G with designated source and target vertices, and k agents with
given starting locations and energy budgets, the decision problem of whether the
agents can collectively deliver a single package from the source to the target node
in G is called CollaborativeDelivery. Chalopin et al. [11,12] showed that
CollaborativeDelivery is weakly NP-hard on paths and strongly NP-hard
on general graphs. When the agents are homogenous, each agent has the same
uniform budget initially. The optimization version of this problem asks for the
minimum energy budget B per agent, that allows a feasible schedule for deliver-
ing the package. Throughout this paper we consider agents with uniform budgets.
There exist constant factor approximations [5,11] for the optimal budget needed
for solving CollaborativeDelivery.

Unlike previous papers, this paper considers a version of the problem where
the package must be transported through a designated path that is provided as
input to the algorithm. This is a natural assumption, e.g. for delivery of valuable
packages which must go on a “safe” route, allowing them to be tracked. We call
this variant FixedPath CollaborativeDelivery. Even with this additional
constraint, the problem remains NP-hard for general graphs due to the result in
[11]. Note that on trees, the two problems are equivalent and both problems are
known to be weakly NP-hard. However, for arbitrary graphs, the two problems
are quite different. In particular, in the FixedPath CollaborativeDelivery,
each agent may be used multiple times, while in the original version each agent
participates at most once in any optimal delivery schedule (see [11]). In this
paper, we attempt to find the difference between the two problems in terms of
approximability.
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Our Contributions. We show that the best possible approximation of the
optimal budget B for FixedPath CollaborativeDelivery is between 2 and
3 for directed graphs and at most 2.5 for undirected graphs. In contrast, the
best known approximation ratio for the general version of CollaborativeDe-

livery is 2 for undirected graphs [11], and there is no known lower bound on
approximability.

In the fixed path version of the problem agents may be used multiple times
in a feasible delivery schedule, i.e., the same agent may move the package along
several disjoint segments of the path. Thus, it is not surprising that our solution
for FixedPath CollaborativeDelivery has a higher approximation ratio
than the general version of the problem where each agent is used at most once.

For better comparison, we can make the FixedPath CollaborativeDe-

livery problem easier by restricting each agent to a single pickup of the pack-
age. This easier version of the problem was considered recently in [25] which
provided a 3-approximation algorithm. In this paper we improve upon this
and provide a 2-approximation algorithm for directed graphs and a (2 − 1/2k)-
approximation algorithm for undirected graphs. We also show that there exists
no polynomial-time approximation algorithm with better approximation ratio
than 3

2 for directed graphs.
Finally, for the case where the number of agents k is a constant, we show that

the decision version of FixedPath CollaborativeDelivery can be solved in
pseudo-polynomial time. For this setting, we also provide a fully polynomial-time
approximation scheme (FPTAS) giving a (1 + ε)-approximation to the optimal
budget, for any ε > 0.

Our Model. We consider finite, connected (or strongly connected), edge-
weighted graphs G = (V,E) with n = |V | vertices. For undirected graphs, the
weight w(e) of an edge e ∈ E defines the energy required to cross the edge in either
direction. For directed graphs, there may be up to two directed arcs between any
pair of vertices and the weight of each arc is the energy required to traverse the
arc from its tail to its head. We have k mobile agents which are initially placed on
arbitrary nodes p1, . . . , pk of G, called the starting positions. Each agent has an
initially assigned energy budget B > 0 which allows each agent to move along the
edges of the graph for a total distance of at most B (if an agent travels only on
a part of an edge, its travelled distance is downscaled proportionally to the part
travelled). We say that agents have uniform budget B.

The agents are required to move a package from a given source node s to a
target node t. An agent can pick up the package when it is at the same location
as the package; we say that the agent is carrying the package. An agent carrying
the package can drop it at any location that it visits, i.e., either at a node or
even at a point inside an edge/arc. The agents do not need to return to their
starting locations, after completing their task. We assume that the graph and the
starting locations are initially known and the objective is to compute a strategy
for movements of the agents which allows the delivery of the package from s to
t (along a given s − t path P ). We denote by d(x, y) = dG(x, y) the distance
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between two nodes x, y in G (i.e. the sum of the weights on the shortest path
from x to y). The length of path P is the sum of the weights on the path, denoted
by w(P ) = dP (s, t).

Definitions. Given a graph G with edge-weights w, vertices s �= t ∈ V (G),
starting nodes p1, . . . , pk for the k agents, and an energy budget B, we define
CollaborativeDelivery as the decision problem of whether the agents can
collectively deliver the package.

A solution to CollaborativeDelivery is given in the form of a delivery
schedule which prescribes for each agent whether it moves and if so, the locations
in which it has to pick up and drop off the package. A delivery schedule is
feasible if the package can be delivered from s to t and each agent moves at most
distance B.

Given (G,w, s, t) and the locations p1, . . . , pk of the agents in G, the optimiza-
tion version of CollaborativeDelivery is to compute the minimum value of
B for which there exists a feasible delivery schedule. The problem of Fixed-

Path CollaborativeDelivery provides an additional parameter: an (s − t)
path P in G, and the feasible delivery schedules are restricted to those where
the package travels on the given path P .

Related Work. The model of energy-constrained robot was introduced by
Betke et al. [9] for single agent exploration of grid graphs. Later Awerbuch
et al. [2] studied the same problem for general graphs. In both these papers, the
agent is allowed to return to its starting node to refuel, and between two visits
to the starting node the agent can traverse at most B edges. Duncan et al. [18]
studied a similar model where the agent is tied with a rope of length B to the
starting location and they optimized the exploration time, giving an O(m) time
algorithm. A more recent paper [15] provides a constant competitive algorithm
for the same exploration problem when the value of energy budget B is not much
more than the distance to farthest node.

For energy-constrained agents without the option of refuelling, multiple
agents may be needed to explore even graphs of restricted diameter. Given a
graph G and k agents starting from the same location, each having an energy
constraint of B, deciding whether G can be explored by the agents is NP-hard,
even if graph G is a tree [22]. Dynia et al. studied the online version of the prob-
lem [19,20]. They presented algorithms for exploration of trees by k agents when
the energy of each agent is augmented by a constant factor over the minimum
energy B required per agent in the offline solution. Das et al. [14] presented
online algorithms that optimize the number of agents used for tree exploration
when each agent has a fixed energy bound B. On the other hand, Dereniowski
et al. [17] gave an optimal time algorithm for exploring general graphs using a
large number of agents. When both k and B are fixed, Bampas et al. [3] studied
the problem of maximizing the number of nodes explored by the agents, called
the maximal exploration problem.

When multiple agents start from arbitrary locations in a graph, optimizing
the total energy consumption of the agents is computationally hard for several
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formation problems which require the agents to place themselves in desired con-
figurations (e.g. connected or independent configurations) in a graph [10,16].
Anaya et al. [1] studied centralized and distributed algorithms for the informa-
tion exchange by energy-constrained agents, in particular the problem of trans-
ferring information from one agent to all others (Broadcast) and from all agents
to one agent (Convergecast). For both problems, they provided hardness results
for trees and approximation algorithms for arbitrary graphs. Czyzowicz et al. [13]
recently showed that the problems of collaborative delivery, broadcast and con-
vergecast remain NP-hard for general graphs even if the agents are allowed to
exchange energy when they meet. Further results on collective delivery with
energy exchange showed that the problem remains hard even when B is a small
constant [4].

As mentioned before, the collaborative delivery problem was first studied
by Chalopin et al. [11] in arbitrary undirected graphs for both uniform or non-
uniform budgets. When the agents have non-uniform budgets, they provided
the so-called resource-augmented algorithms where the budgets of the agents are
augmented by a small constant factor to allow polynomial time solutions for all
feasible instances of the original problem. The surprising result that collaborative
delivery non-uniform budgets is weakly NP-hard even for a line was proved in
[12] where a quasi-pseudo-polynomial time algorithm was provided.

Bärtschi et al. [5] considered the returning version of the problem, where each
agent needs to return to its starting location. They showed that, in this case,
the problem can be solved in polynomial time for trees, but the problem is still
NP-hard for arbitrary planar graphs. They provided 2-resource-augmented algo-
rithm for general graphs in this setting and showed that it is the best possible
solution that can be computed in polynomial time. Other variants of collabo-
rative delivery that have been considered are when agents have distinct rate of
energy consumption [6] or when the agents have distinct speeds [7]. In these cases
the optimization criteria is to minimize the total energy consumption and/or
the total time taken for delivery. Another related work [8] studied the collective
delivery problem for selfish agents that try to optimize their personal gain.

2 Lower Bounds on Optimal Budget

In this section we prove some lower bounds on the approximation factor for
any polynomial time algorithm that solves collaborative delivery with uniform
budgets on a fixed path.

We give a reduction from an NP-hard variant of Sat [24]. Note the difference
to the polynomially solvable (3, 3)-Sat, where each variable appears in exactly
three clauses [26].

(≤ 3, 3)-Sat
Input: A formula with a set of clauses C of size three over a set of variables
X, where each variable appears in at most three clauses.
Problem: Is there a truth assignment of X satisfying C?
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Observe that we may assume that each variable appears at most twice in
positive literals and at most once in a negative literal, otherwise we can either
eliminate or negate the variable.

Theorem 1. The minimum uniform budget required to solve FixedPath Col-

laborativeDelivery on directed graphs cannot be approximated to within a
factor better than 2 in polynomial time, unless P = NP.

Proof. We reduce from (≤ 3, 3)-Sat by constructing, for every sufficiently
small ε > 0 and every instance of (≤ 3, 3)-Sat, an instance of FixedPath

CollaborativeDelivery that has a solution with budget B ≤ 2 − ε if and
only if the (≤ 3, 3)-Sat instance has a satisfying assignment. In this case, our
instance always admits a solution with budget B = 1. Since (≤ 3, 3)-Sat is
NP-hard, this then implies that no (2 − ε)-approximation algorithm can exist,
unless P = NP.

In the following, fix 0 < ε < 1 and consider an instance of (≤ 3, 3)-Sat with
variables x1, . . . , xt and clauses C1, . . . , Cm. We construct a (directed) instance
of FixedPath CollaborativeDelivery with k = (3+ q)t agents, where q :=
�3/ε�, starting at vertices p1, . . . , pk. The agents p3i−2, p3i−1, p3i for i ∈ {1, . . . , t}
are associated with the (at most) two positive literals and the single negative
literal of variable xi, in this order, that appear in the clauses. In case variable xi

only appears in a single positive literal, the agent p3i−1 does not represent any
literal. The other agents are so-called blockers. We incrementally construct the
fixed s-t-path P = (v0, v1, . . . , vm+2(q+1)t) that the package has to be transported
along.

The first m arcs of P correspond to the clauses C1, . . . , Cm. Each arc e =
(vj−1, vj) with j ∈ {1, . . . , m} has weight w(e) = 1 and is associated with
clause Cj . For every literal of a variable xi that appears in Cj , we let pij denote
the starting position of the (unique) agent associated with this literal, and we
introduce an arc eij = (pij , vj−1) of weight w(eij) = 0.

Now we add the variable gadgets to the path P . Let qi := m+2(q+1)(i−1).
The gadget associated with each variable xi (cf. Fig. 1) is the subpath Pi =
(vqi , . . . , vqi+1) of P consisting of 2q + 2 edges. The first q arcs have weight ε/3
each, the central two arcs ei = (vqi+q, vqi+q+1) and e′

i = (vqi+q+1, vqi+q+2) have
weights w(ei) = ε/3 and w(e′

i) = 1−ε/3, and the final q arcs have weight 1−ε/3
each. For � ∈ {1, . . . , q}, we connect the starting position of the ((i − 1)q + �)-th
blocker to vqi+�−1 with an arc of weight 0, and we add a shortcut arc (that cannot
be taken by the package) (vqi+�, vqi+1−�) of weight 0. Finally, we connect the
three agents associated with variable xi as follows: We add an arc (p3i−2, vqi+q)
of weight 1 − ε/3, an arc (p3i−1, vqi+q+1) of weight ε/3, and an arc (p3i, vqi+q)
of weight 0.

We first claim that in every solution with B ≤ 2 − ε we can assume that,
without loss of generality, for every i ∈ {1, . . . , t} and every � ∈ {1, . . . , q}, the
((i−1)q+�)-th blocker transports the package across the arc (vqi+�−1, vqi+�), then
takes the shortcut arc (vqi+�, vqi+1−�), and finally transports the package across
the arc (vqi+1−�, vqi+1−�+1). To see this, consider the last arc (vqi+1−1, vqi+1) of P ′

i .
Since the arcs preceding the vertices vqi and vqi+1−1 along P both have length
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at least 1−ε/3, no agent other than the two blockers connected to vqi and vqi+1

can reach vqi+1−1 with more than B − (1 − ε/3) ≤ 1 − 2ε/3 budget remaining,
which is insufficient to cross the last arc of P ′

i . Since there is no disadvantage
in using the ((i − 1)q + 1)-st blocker rather than the ((i − 1)q + 2)-nd, we may
assume that the ((i − 1)q + 1)-st blocker transports the package as claimed. By
repeating this argument (slightly adapted for the iq-th blocker), we can fix all
subsequent blockers, too. Note that each blocker requires only B = 1.

v3i−2 v3i v3i−1

ε
3

ε
3

ε
3

ε
3 1 − ε

3 1 − ε
3 1 − ε

3 1 − ε
3

00

00

1 − ε/3 0 ε/3

Fig. 1. Illustration of the variable gadget. Thick, horizontal arcs are part of the fixed
path of the package. Colors indicate responsibilities: blue is for blockers and green/red
is for agents associated with positive/negative literals. (Color figure online)

After fixing all blockers, we can observe that every agent with budget B ≤
2 − ε can only transport the package along an arc inside a single clause or
variable gadget: This is because transporting the package inside a clause gadget
requires one unit of budget, and entering/leaving a variable gadget before or after
transporting the package across one of its two central arcs also takes at least one
unit of budget (all other arcs of a variable gadget are handled by blockers).

Finally, and crucially, observe that, in order to transport the package across
the two central edges of the variable gadget for xi, either the two agents p3i−2

and p3i−1 associated with the positive literals of xi, or the agent p3i associ-
ated with the negative literal are needed, since blockers cannot help (see above).
We interpret the former situation as xi being set to false, and the latter situa-
tion as xi being set to true. Note that either assignment can be accomplished
with B = 1.

If a variable is set to true, the two agents corresponding to positive literals
are free to transport the package across the single (!) clause gadget each of them
can reach. Otherwise, the agent corresponding to the negative literal is free to
do this. In both cases, we interpret this as the clause being satisfied by the
corresponding variable. Note that satisfying a clause again requires only B = 1.

Clearly, we can turn a satisfying assignment for (≤ 3, 3)-Sat into a feasible
solution of FixedPath CollaborativeDelivery with B = 1. Conversely,
every feasible solution of FixedPath CollaborativeDelivery with B ≤ 2−ε
corresponds to a satisfying assignment for (≤ 3, 3)-Sat. Note that q is constant
for fixed ε, hence our construction can be done in polynomial time.
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3 Approximation Algorithms for Fixed Path Delivery

In this section, we give approximation algorithms solving FixedPath Collab-

orativeDelivery for both directed and undirected graphs. In the following, we
assume that we are given the optimal value of B for a given instance of the prob-
lem and we provide a polynomial time algorithm to compute a delivery strategy
that uses an energy budget of at most α ·B for some constant α > 1. When B is
not known, we can guess the optimal value of B by using a binary search in the
interval [D/k,D] where D is the length of the given fixed path plus the distance
from node s to the nearest agent. The binary search terminates when we find
the smallest B for which our algorithm provides a valid strategy for a budget of
α · B. Clearly this provides an α-approximation algorithm for the optimization
problem.

3.1 Directed Graphs: 3-Approximation

Theorem 2. There is a 3-approximation algorithm for FixedPath Collabo-

rativeDelivery on directed graphs.

Proof. Consider an instance (G,w, P, {pi | 1 ≤ i ≤ k}) of FixedPath Collab-

orativeDelivery on directed graphs and let S be an optimal solution of this
instance with uniform budget B. For i from 0 to � =

⌊
dP (s,t)

B

⌋
, we define mi as

the point on P at distance iB from s. Observe that � = O(min(n, k)) since the
path P is of length less or equal than kB, P has at most n− 1 arcs and each arc
in P has a weight at most B. For i from 0 to �−1, let Ii be the interval [mi,mi+1]
on path P . In the solution S, there is an agent aj starting at position pj that
moves the package from s to some point in I0. Observe that since the length of
each interval is B, for any set I of l intervals at least l different agents must carry
the package inside ∪I∈II, i.e., the trajectory of these agents intersects interval
∪I∈II in S. If the number of such agents for a set I is exactly l, it means each
agent covers exactly an interval of size B and there is no other agent picking
the package at the end of the last interval. This can only happen if I = ∪�−1

i=0Ii,
m� = t and for all 0 ≤ i ≤ � − 1, there is an agent at mi. This case is easy to
check and if it happens, one can construct an easy optimal solution. Hence, we
can assume, w.l.o.g., that any set I of l intervals at least l + 1 different agents
must carry the package inside ∪I∈II. Hence, there exists a bijection f between
a set R ⊆ [1, k] \ {j} and [0, � − 1] such that for each i ∈ R, agent ai carries
the package inside interval If(i) in S. Observe that dG(pj ,m0) ≤ B since agent
aj can reach s = m0 with budget B in the solution S. For all i ∈ R, we have
dG(pi,mf(i)+1) ≤ 2B since agent ai can reach some point in If(i) with budget
B in solution S and then reach mf(i)+1 by moving inside P for a distance at
most B. We can deduce that there is a bijection g between the set R′ = R ∪ {j}
and [0, �] such that dG(pi,mg(i)) ≤ 2B. One can find such a bijection g using the
following algorithm :

1. Construct a weighted bipartite graph H = (A ∪ M,E,wH) with A = [0, k],
M = [0, �], E = M × A and for all i ∈ M, j ∈ A, wH(ij) = dG(mi, pj).
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This can be done in O(k(m + n log n)) using a Dijkstra’s algorithm [23]
starting from each starting position of an agent. Observe that graph H has
O(min(n, k) + k) = O(n + k) vertices and O(min(n, k).k) edges.

2. Compute a maximal matching in H that minimizes the maximum weight.
For each weight ω, one can compute in time O((n + k)2 log(n + k) + k(n +
k)min(n, k)) a maximal matching [23] in the graph H without edges of weight
greater than ω. Hence, one can decide if there is a maximal matching in
H with maximum weight ω and by using binary search, one can compute
a maximal matching in H which minimizes the maximum weight, in time
O(log k((n + k)2 log(n + k) + k(n + k)min(n, k))).

3. For each edge ij in the matching, we fix g(i) = j. This gives us a bijection
g between some set R′ of size � + 1 and M . This bijection minimizes the
maximal distance dG(pi,mg(i)) and this value must be less than 2B since
there is at least one such bijection.

From such a bijection g, we can deduce a 3-approximated solution of our instance:
for each i ∈ [0, �], agent ag−1(i) moves to point mi (cost less than 2B) and then
carries the package to point mi+1 if i < � or t otherwise (cost less than B).

3.2 Undirected Graphs: 2.5-Approximation

Theorem 3. There is a 2.5-approximation algorithm for FixedPath Collab-

orativeDelivery on undirected graphs.

Proof. The proof is similar to that of Theorem2, the intervals are slightly dif-
ferent in order to use the possibility for an agent to move on the path P in both
directions.

Consider an instance (G,w, P, {pi | 1 ≤ i ≤ k}) of FixedPath Collabo-

rativeDelivery on undirected graphs and let S be an optimal solution with
budget B. For i from 0 to � =

⌊
dP (s,t)

B

⌋
, we define mi as the point on P at

distance iB from s (same definition as in proof of Theorem2). For i from 1 to
�, we define m′

i as the point on P at distance iB − B/2 from s. We set m′
0 = s.

Let �′ = � + 1 and m′
�′ be the point of P at distance �B + B/2 from s, if

dP (m�, t) > B
2 , and let �′ = � and m′

�′ = t otherwise. For i from 0 to �′ − 1,
let Ii be the interval [m′

i,m
′
i+1] on path P . Observe that |I0| = B/2, and for

each i ∈ [1, �′ − 1], |Ii| = B. Hence the union of l intervals have a length strictly
greater than (l − 1)B. With a similar argument as proof of Theorem2, there
exists a bijection f between a set R ⊆ [1, k] and [1, �′ − 1] such that for each
i ∈ R, agent ai carries the package inside interval If(i) in S. The starting position
pi of agent ai is at distance at most B from some point sf(i) in If(i). Observe
that for all i ∈ [0, �], we have dP (mi,m

′
i) ≤ B/2 and dP (mi,m

′
i+1) ≤ B/2. It

follows that every point in Ii and so si is at distance at most B/2 of mi. By the
triangular inequality, we have that for all i ∈ [0, �] dP (pi,mf(i)) ≤ 3

2B. One can
find a bijection f having this property with the same algorithm as in the proof
of Theorem 2.
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From a bijection f , we can deduce a 2.5-approximated solution of our
instance: for each i ∈ [0, �], agent af−1(i) moves to point mi (cost less or equal
than 3

2B) and then carries the package to point mi+1 if i < � or t otherwise (cost
less or equal than B).

4 Special Case: Single Pickup Per Agent

In this section, we consider a slightly easier version of the problem when each
agent can pickup the package at most once. We first present a lower bound of 3

2 on
the approximation ratio of optimizing FixedPath CollaborativeDelivery.

v3i−2 v3i v3i−1

1/2 1/2

1/2 0 1/2

Fig. 2. Illustration of the clause gadget for the case where agents cannot pickup the
package more than once.

4.1 Lower Bound

Theorem 4. The minimum uniform budget required to solve FixedPath Col-

laborativeDelivery on directed graphs cannot be approximated to within a
factor better than 1.5 in polynomial time, unless P = NP, even when each agent
may pickup the package at most once.

Proof. We use the same construction as in the proof of Theorem1, but we set
ε = 3/2 and q = 0 (cf. Fig. 2). All claims in the proof of Theorem1 remain valid
for any B < 3/2. Note that, since we eliminated all blockers, no agent has to
pickup the package more than once in the optimum solution.

4.2 Approximation Algorithm for Single Pickup Per Agent

Lemma 1. Given any instance of the decision problem for FixedPath Col-

laborativeDelivery that admits a solution where each agent can pickup the
package at most once; then we can compute in polynomial time a 2-approximate
delivery strategy. When the graph is undirected, we can compute a (2 − 1/2k)-
approximation in polynomial time.

Proof. Suppose there exists a feasible solution S for the problem using uniform
budget B and single pickup per agent. Consider the fixed (s − t) path P and
partition it into segments using the points X = (m1,m2 . . . ml = t) on P , such
that l = �w(P )/B�, the length of segment (mi,mi+1) is B, ∀1 ≤ i < l, and
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the length of the first segment (s,m1) ≤ B. We have the following observations
for strategy S: (1) Any agent that moves the package over point mi in strategy
S must have enough energy to reach point mi, and (2) Any single agent can not
transport the package over two distinct points in X since the distance between
two points is at least B.

Case (i): In strategy S, the agent that picks up the package at s is not the same
agent that moves the package over m1. In this case, there exists a matching
between the agents and the points X+ = (s = m0,m1,m2, . . . ml = t) such
that each agent can reach the point that it is mapped to. We call any such
matching a type M0 matching. Case (ii): In strategy S, a single agent delivers
the package from s to m1 with its original energy budget B. In this case, there
exists a matching between the agents and the points in X (w.l.o.g. agent ai is
mapped to point pi), such that, agent a1 has enough energy to move the package
from s to m1 and ∀i > 1, agent ai can reach mi, using budget B. We call any
such matching a type M1 matching. Note that if S is a feasible solution to the
problem using single pickup per agent, then there exists a matching of type M0

or M1. If we can find such a matching, then, using budget B per agent, we can
move the package to point p1 and move each agent ai to the respective point
mi in path P . If the budget of each agent is augmented by factor 2, then using
the additional budget B, the agent ai that is mapped to point mi can actually
deliver the package to the next point mi+1. This gives a 2-approximate solution
to the problem (for directed and undirected graphs).

For undirected graphs, we will now construct a delivery strategy where each
agent has a budget 2B − B/2l. As per previous discussion, using the original
budget B each agent ai can reach point mi and the package can be moved to
point m1. Each agent ai now has available energy budget of at least B − B/2l

after arriving at the designated point mi.
Consider the points m′

i = mi +B − (2i − 1)B/2l, 1 ≤ i ≤ l − 1. The agent a1

delivers the package from point m1 to m′
1. For 1 < i < l, each agent ai located

at point mi returns to m′
i−1 to pick up the package and then moves the package

to point m′
i. This requires an additional budget of B − (2i −1)B/2l + 2×2iB/2l

= B(1 − 1/2l), for each of these agents. Finally, note that the distance between
point m′

l−1 and the target t = ml is at most B/2 − B/2l, and so the agent al

can move from ml to m′
l−1 to pick up the package and deliver it to the target,

using 2 × (B/2 − B/2l) < B(1 − 1/2l) additional energy.
Since k ≥ l, this provides a (2 − 1/2k)-approximate solution strategy for any

instance which has a feasible solution using k agents and a single pickup per
agent.

The computation of the schedule requires constructing a bipartite graph
between k agents and at most k points, and then solving maximum matching
in this bipartite graph. The former task requires O(n3) time using an all-pair
shortest path algorithm to compute distances in the original graph. The second
task of computing the matching requires at most O(k2) time.

As in the previous section, we use a binary search to find the smallest B for
which there exists a matching of type M0 or M1 from the above lemma. This
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gives us a (2 − 1/2k)-approximate (respectively 2-approximate) solution to the
optimization problem for undirected (resp. directed) graphs. Hence we have the
following results:

Theorem 5. The minimum uniform budget required to solve FixedPath Col-

laborativeDelivery with single pickup per agent on undirected graphs can be
approximated to a factor (2 − 1/2k), in polynomial time.

Theorem 6. The minimum uniform budget required to solve FixedPath Col-

laborativeDelivery with single pickup per agent on directed graphs can be
approximated to a factor 2, in polynomial time.

5 Delivery with Few Agents

In this section we consider the special case when agents are allowed to exchange
the package at vertices only. Using the dynamic programming technique, we
design an algorithm that for a given B, computes whether there exists a feasible
schedule with uniform budget B, and has a running time that is exponential
in k and pseudo-polynomial in n (the run-time will depend on B). To find a
minimum B such that there exists a feasible schedule, we can use binary search
on B, which adds multiplicative log B increase to the run-time.

We keep a boolean table Tv[j|pv
1, . . . , p

v
k|Bv

1 , . . . , Bv
k ] denoting whether there

exists a feasible schedule that delivers the package from s to vertex v on the
path P such that

1. the last agent that delivers the package to vertex v is agent aj ,
2. the positions of the k agents, when the package arrives at v, are pv

1, . . . , p
v
k,

and
3. the remaining budgets of the agents are Bv

1 , . . . , Bv
k .

We initialize Ts[0|p1, . . . , pk|B, . . . , B] = TRUE and initialize Ts[...] = FALSE
for all other values of j and ps

i and Bs
i , i = 1, . . . , k. Here, j = 0 denotes that

no agent has been used yet. We also abuse the notation and use p0 to denote s.
Clearly, Tv[j|pv

1, . . . , p
v
k|Bv

1 , . . . , Bv
k ] = TRUE if and only if pv

j = v, and there exists
a vertex u on the path P before vertex v and an agent’s index j′ �= j such that
there is a feasible schedule where agent aj walks from position pu

j to pick-up the
package at vertex u from agent aj′ and carries it from vertex u to vertex v. I.e.,
we have Tv[j|pv

1, . . . , p
v
k|Bv

1 , . . . , Bv
k ] = TRUE if and only if there exists u and j′

and an entry in the table T such that Tu[j′|pu
1 , . . . , pu

k |Bu
1 , . . . , Bu

k ] = TRUE and
pv

j = v, pv
j′ = pu

j′ = u, pv
i = pu

i for every i �= j, j′, Bv
j = Bu

j − d(pu
j , u) − dP (u, v),

and Bv
i = Bu

i for every i �= j. Recall that dP (u, v) denotes the distance from u
to v on the path P .

At the end, when the whole table is computed, we check whether there is an
entry at target vertex t such that Tt[. . .] = TRUE, in which case there is a feasible
schedule for the uniform budget B, and there is no feasible schedule otherwise. To
compute the feasible schedule, standard bookkeeping techniques can be applied.
There are n · nk · Bk entries in T that need to be computed. To compute one
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entry Tv[j|pv
1, . . . , p

v
k|Bv

1 , . . . , Bv
k ], we need to check the existence of j′ and u

with the above mentioned properties, which can be done in time O(k ·n). Hence,
the total run-time of the algorithm is O(k · nk+2 · Bk). Thus, we have shown the
following:

Theorem 7. There is an algorithm that decides whether a feasible schedule for
uniform budget B exists and runs in O(k · nk+2 · Bk) time.

By using the data rounding technique, we turn the developed algorithm into
a fully polynomial-time approximation scheme (FPTAS). Let ε > 0 be a (small)
error margin for which we want to design a (1+ ε)-approximation algorithm (for
computing a minimum feasible uniform budget B).

We define an alternative weight unit μ := εw(P )/k+X
m2 , where w(P ) is the

weight of the fixed path P , X is the minimum distance of any agent to the path
P , and m is the number of edges of the graph G. We measure the weights w(e)
in the integer multiples of μ, rounded-up, i.e., we define w̄(e) := �w(e)/μ�.

We solve the problem in the new edge weights w̄(e) using the dynamic
programming approach, where we also measure budget in multiples of μ. Let
B̄ be the computed optimum uniform budget for the modified edge-weights.
Our algorithm returns BA = B̄ · μ as the solution for the original edge-
weights. Let P̄1, . . . , P̄k be the walks that the k agents walk in the optimum
solution for the modified edge-weights. Hence, B̄ = maxi{w̄(P̄i)}, and thus
B̄ · μ = maxi{w̄(P̄i) · μ}. Observe also that BA is a feasible budget, since
every path P̄i can be walked with budget BA, since the original length of P̄i

is w(P̄i) ≤ μ · w̄(P̄i) ≤ μB̄.
Let B∗ be the optimum budget for the original edge-weights, and let

P ∗
1 , . . . , P ∗

k be the walks of the k agents in some optimum solution. Hence,
B∗ = maxi{w(Pi)}. We now argue that BA is not much larger than B∗. We

have BA = μ · B̄ = μ · maxi{w̄(P̄i)}
(1)

≤ μ · maxi{w̄(P ∗
i )} = maxi{μ · w̄(P ∗

i )}
(2)

≤
maxi{w(P ∗

i ) + m2μ} = m2μ + maxi{w(P ∗
i )} = m2μ + B∗ = m2

(
εw(P )/k+X

m2

)
+

B∗ (3)

≤ ε · B∗ + B∗ = (1 + ε)B∗. Here, inequality (1) is because maxi P̄i is the
optimum feasible solution in weights w̄; inequality (2) follows because any walk
appears at most m times on the path P , and between any two appearances, the
walk contains at most m edges (this part of the walk is a simple path), inequality
(3) follows because B∗ needs to be at least w(P )/k + X (the average traveled
distance per agent on P plus the distance to get from the initial position to the
path P ).

We now analyze the run-time of the algorithm. Observe first that B∗ ≤
mini d(pi, s)+w(P ) ≤ (X +w(P ))+w(P ) ≤ 2(X +w(P )). Therefore, measured
in the units μ, we search for B̄ in the range between 1 and 2(X + w(P ))/μ ≤
2m2k

ε . Hence, one run of the dynamic programming on the modified weights
takes time O(k · nk+2 · ( 2m2k

ε )k). Using the binary search to find optimum B̄

adds a multiplicative logarithmic factor of log
(

2m2k
ε

)
. Thus, we have shown the

following.
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Theorem 8. For any ε > 0, there is an algorithm that computes a feasible
uniform budget B that is at most (1 + ε)B∗, where B∗ is the optimum uniform
budget, and runs in O

(
k · nk+2 · ( 2m2k

ε )k log
(

2m2k
ε

))
time.

Corollary 1. There exists an FPTAS for the variant where the number of
agents is constant.

6 Conclusions

The problem of collectively delivering a package by mobile agents is a difficult
problem even when the path for moving the package is given in advance. However,
for the case of single pickup per agent, we were able to find better approximation
algorithms for the fixed path version of collaborative delivery. These results
leave many open questions: how to reduce the gap between the upper and lower
bounds for the various versions of the problem? How to extend the results to
agents with non-uniform budgets and find resource-augmented algorithms for
fixed path delivery? Finally, what is the effect of restricting package handovers
to nodes only and not anywhere inside the edges.
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8. Bärtschi, A., Graf, D., Penna, P.: Truthful mechanisms for delivery with agents.
In: 17th Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS 2017). OpenAccess Series in Informatics
(OASIcs), vol. 59, pp. 2:1–2:17 (2017)

9. Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment.
Mach. Learn. 18(2), 231–254 (1995)

https://doi.org/10.1007/978-3-319-72751-6_1


Collaborative Delivery on a Fixed Path 153

10. Bilò, D., Disser, Y., Gualà, L., Mihalák, M., Proietti, G., Widmayer, P.: Polygon-
constrained motion planning problems. In: Flocchini, P., Gao, J., Kranakis, E.,
Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 67–82.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45346-5 6

11. Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery
by energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E.,
Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–
122. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45346-5 9

12. Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-
constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 423–434. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7 36

13. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Communication problems for
mobile agents exchanging energy. In: Suomela, J. (ed.) SIROCCO 2016. LNCS,
vol. 9988, pp. 275–288. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48314-6 18

14. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-
constrained mobile robots. In: Scheideler, C. (ed.) Structural Information and
Communication Complexity. LNCS, vol. 9439, pp. 357–369. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-25258-2 25

15. Das, S., Dereniowski, D., Uznanski, P.: Energy constrained depth first search.
CoRR, abs/1709.10146 (2017)

16. Demaine, E.D., Hajiaghayi, M., Mahini, H., Sayedi-Roshkhar, A.S., Oveisgharan,
S., Zadimoghaddam, M.: Minimizing movement. ACM Trans. Algorithms 5(3),
1–30 (2009)

17. Dereniowski, D., Disser, Y., Kosowski, A., Paj ↪ak, D., Uznański, P.: Fast collabo-
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Abstract. This paper provides a study on the rendezvous problem in
which two anonymous mobile entities referred to as robots rA and rB are
asked to meet at an arbitrary node of a graph G = (V,E). As opposed
to more standard assumptions robots may not be able to visit the entire
graph G. Namely, each robot has its own map which is a connected sub-
graph of G. Such mobility restrictions may be dictated by the topological
properties combined with the intrinsic characteristics of robots prevent-
ing them from visiting certain edges in E.

We consider four different variants of the rendezvous problem intro-
duced in [Farrugia et al. SOFSEM’15 ] which reflect on restricted maneu-
verability and navigation ability of rA and rB in G. In the latter, the
focus is on models in which robots’ actions are synchronised. The authors
prove that one of the maps must be a subgraph of the other. I.e., without
this assumption (or some extra knowledge) the rendezvous problem does
not have a feasible solution. In this paper, while we keep the containment
assumption, we focus on asynchronous robots and the relevant bounds in
the four considered variants. We provide some impossibility results and
almost tight lower and upper bounds when the solutions are possible.

1 Introduction

The Rendezvous problem comprises the task of meeting two anonymous mobile
robots which start at different nodes of a graph or different locations in the
Euclidean space. Many variants (with different assumptions) of rendezvous have
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been studied in the past. An exhaustive survey on the problem can be found
in [15], and some further advances in [1,3–6,9,11,13,16]. In this paper, we are
interested in the design of deterministic algorithms for asynchronous robots mov-
ing across edges in the underlying graph of network connections. The determin-
istic and asynchronous variant of rendezvous in graphs has been first intro-
duced in [8]. Later in [7], the problem has been fully characterised and the
adopted model utilised the minimal setting under which the rendezvous can be
accomplished. The authors of [7] give also the answer to the question posed
in [8] whether there exists a deterministic algorithm for rendezvous of two asyn-
chronous robots in any finite connected graph without knowing any upper bound
on its size. The minimal assumptions to enable rendezvous include:

– The input anonymous graph has no labels on points. Instead, at each node
of degree d, the relevant end points of incident edges are sorted and labelled
by port numbers 1, . . ., d. The local labelling of ports at each node is fixed,
i.e., every robot sees the same local labelling. However, no coherence between
local labellings is assumed. I.e., one edge can have two different port numbers
at its opposite ends. When a robot leaves a node, it is aware of the port
number by which it leaves and when it enters a node, it is aware of the entry
port number. It can also verify, at each node, whether a given positive integer
is a port number at this node.

– Each robot has a unique ID, but no knowledge on the ID of the other robot.
– Robots can meet on nodes or along edges, i.e., forcing robots to meet on nodes

may prevent them from rendezvous.

In the model described above robots do not know G nor the initial distance
between them in G. They cannot mark neither the nodes nor the edges. Ren-
dezvous has to be accomplished for any local labelling of ports. The robots
terminate their walks at the time of meeting one another. The rendezvous algo-
rithm works also for infinite graphs. In fact, in finite graph the resolution of the
rendezvous is often trivial or it can be reduced to the graph exploration problem.
For example, utilising search methods proposed in [10] one can force to meet the
two robots in finite tree. Namely, the rendezvous can be easily reached once both
robots discover the centre(s) of the tree.

In this paper, we are interested in a different model in which robots have no
IDs and most importantly they may not be allowed to access the whole graph.
The roaming space of each robot is limited to a specific subset of nodes and
edges. The reasons to adopt such restriction may vary, however, the restriction
itself is natural and was used earlier, e.g., in the evacuation problem [2] where
an entity may represent a disabled person not able to adopt steep stairs or an
escalator.

The rendezvous problem with heterogeneous (different accessibility restric-
tions) entities was formally introduced in [12] under the name of rendezvous with
different maps. In the most general variant two asynchronous and anonymous
robots rA and rB provided with two different maps GA and GB , both isomorphic
to (possibly different) subgraphs G′

A and G′
B of the finite input graph G. The

meeting can happen only on nodes but it is assumed that traversal of edges is
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mutually exclusive. This assumption is equivalent to the one used in [7], where
robots can also meet on edges.

The main difference between the standard rendezvous problem studied, e.g.,
in [7] and the rendezvous with different maps studied here is in the way robots
build their trajectories. In particular, in the latter the robots do not have to con-
struct their maps (discover reachable nodes and edges). The maps are provided
to them beforehand and the relevant trajectories can be precomputed prior to
the actual search stage. This is in contrast to the model utilised in [7] where the
trajectory of a robot is computed “on-the-go” on the basis of the current local
information about port numbers, node degrees and the ID. Thus the main diffi-
culty in the model adopted here refers to inconsistency of the maps provided to
the robots in which one robot may not be able to access certain nodes or edges
reachable for the other. Similar challenges occur also in blind rendezvous [14].

According to [12] without some extra information (e.g., node IDs) rendezvous
with maps cannot be accomplished if G′

A �⊆ G′
B , where rA is the robot with the

smaller map. Thus here we also assume G′
A ⊆ G′

B . In contrast to [12], we focus
solely on asynchronous robots. We study four natural variants of the rendezvous
with different maps, combining two natural assumptions/properties considered
in [12]: (1) availability of relative (with no explicit labels) ordering of nodes,
and (2) presence of robot weights vs edge weight tolerance. The four variants
are determined by the presence (or absence) of those two properties that we are
going to formally define later. We also discuss two hierarchies (that share the
bottom and the top levels) formed by the four studied variants of the problem.
At the top level of these hierarchies we assume presence of both properties. In
the middle we have two incomparable levels where only one property is present.
Finally at the bottom level we consider the absence of both properties.

We provide both the lower and the upper bounds with respect to the con-
sidered variants. We show that at the bottom level of the hierarchies very little
can be done w.r.t. the rendezvous problem. In particular, the absence of the two
properties makes the problem unsolvable in G with an arbitrary topology, and
is tractable only in the case of simple topologies including paths and stars. We
also show that in the two intermediate (and incomparable) variants rendezvous
can be efficiently concluded in cycles and trees (the robots cannot rendezvous
in cycles at the bottom level). Finally, we propose efficient (in terms of moves
made) algorithm for the upper level requiring only O(N log N) steps. This result
is almost tight in view of the natural lower bound of Ω(N), where N denotes
the cumulative number of vertices of the two maps G′

A and G′
B .

2 Model

We start with a summary and further extension of the computation model intro-
duced in [12]. We consider rendezvous of anonymous (and indistinguishable with
respect to the control mechanism) robots in networks modelled by finite undi-
rected graphs. The network G = (V,E) is a simple connected graph, where
|V | = n and |E| = m. The two robots rA and rB initiate search at differ-
ent starting nodes sA �= sB in G. Each robot rX ∈ {rA, rB} has its own map
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GX = (VX , EX) which is isomorphic to a specific subgraph G′
X = (V ′

X , E′
X) of G

induced by the sets of nodes V ′
X and edges E′

X reachable from sX by robot rX .
In particular, the matching between the map of rX and G′

X is deterministic and
known to rX . We emphasise that each robot rX only knows its own map GX and
the starting node sX . In other words rA has no knowledge of GB and sB , and
vice versa. Moreover, during search rA cannot adopt edges outside of its map
GA and its trajectory is oblivious w.r.t. to the knowledge possessed by rB . Note
that, once rX has computed its trajectory on its map, by the above assump-
tions, it can move on G′

X consistently, without ambiguities. Let nX = |VX | be
the number of nodes of map GX , mX = |EX | be the number of edges of GX ,
while by N and M we denote nA +nB and mA +mB , respectively. Finally, given
a node v ∈ V , the set of its neighbours is denoted by NG(v) = {v′ | (v, v′) ∈ E}.

We assume that the robots act in asynchronous fashion. Each robot computes
its trajectory, the sequence of visited nodes and edges, independently and prior
to the actual search. We assume that the use of edges is exclusive, i.e., two robots
cannot be located (move in either directions) on the same edge at any time. When
the robot is ready to move along a chosen edge it awaits the relevant “green light”
signal (meaning the edge is now available) from the system. In consequence,
rendezvous is possible only on nodes when one robot is immobilised indefinitely
or awaits access of an edge through which the other robot is approaching. The
time required to move across an edge is assumed to be finite but unknown.
In turn, as the complexity of the solution we adopt the sum of the lengths of
the robots’ trajectories before rendezvous, i.e., the number of edges traversed
in total.

In what follows we formalise four different variants of rendezvous with differ-
ent maps. Each variant is determined by the availability of extra knowledge O
and W (for the definition see below) w.r.t. the maps. For all considered variants,
we assume that G′

A is a subgraph of G′
B . Otherwise, as already indicated, the

rendezvous problem with different maps may not have a solution [12].

– Property O: the nodes of G are totally ordered. In particular, if V =
{v1, v2, . . . , vn} then vi < vi+1, for all i = 1, 2, . . . , n−1. We say that Property
O holds if this order is consistent with the order of nodes observed by robot
rX in GX . That is, if VX = {vX

1 , vX
2 , . . . , vX

nX
}, vX

p = vi, and vX
q = vj , where

vi, vj ∈ V and i < j, we also get vX
p < vX

q .
– Property W: each robot rX ∈ {rA, rB} has an associated weight wX ∈ R

+,
and each edge e ∈ E can tolerate weights up to the limit w(e) ∈ R

+. In this
setting let HX denote the (possibly disconnected) subgraph of G induced by
edges e ∈ E such that w(e) ≥ wX . Then G′

X is the connected component of
HX which contains sX . We assume that the maps GX = (VX , EX) contains
information about the weights tolerated by the relevant edges (where w(eX) =
w(e), for each eX ∈ EX represents the edge e ∈ E).

We consider four variants based on properties O and W:

– WO variant, where both properties O and W hold,
– WO variant, where only O holds,
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– WO variant, where only W holds,
– WO variant, where neither O nor W holds.

By slightly abusing our notation the codes WO, WO, WO, and WO will be
used not only to define the variants of the problem, but also the set of instances
of the relevant variants. For example, WO will refer to all instances of rendezvous
with different maps where each robot rX knows: (1) its weighted map GX , (2)
the starting point sX , and (3) it is aware that its node ordering is consistent
with the node ordering of the other robot. Using this notation one can define a
relationship � between the elements of V = {WO,WO,WO,WO}. For example,
WO � WO means that for each instance i ∈ WO it is possible to identify
a set I ⊆ WO of instances induced by i as follows: if i = (GA, sA, GB , sB),
then each instance in I is obtained from i by maintaining (GA, sA, GB , sB) and
by adding any possible consistent ordering on nodes of GA and GB . One can
observe that such relationship defines two hierarchies: WO � WO � WO and
WO � WO � WO. The following holds.

Remark 1. Let V1,V2 ∈ V such that V1 � V2. If i ∈ V1 and I ⊆ V2 is the set of
instances induced by i, then: (1) if i is solvable in V1, then each induced instance
in I is solvable in V2; (2) if all the instances in I are unsolvable in V2, then i is
unsolvable in V1.

In the remaining part of the paper we propose and analyse algorithmic solu-
tions for the rendezvous problem with different maps. Our algorithms assume
each robot rX has the input map GX and the initial position sX . The output of
an algorithm refers the rendezvous trajectory computed by each rX on GX . The
complexity of the solution is defined as the sum of the lengths of trajectories
adopted by both robots until rendezvous takes place. For the sake of simplicity,
knowing that GX and G′

X are isomorphic and that rX is aware of the isomor-
phism, in the following we always write GX rather than G′

X even when we refer
to the moves along edges in G′

X and the properties of G′
X .

3 Preliminary Results

In this section we provide a general lower bound holding for all variants, and a
more restrictive one which does not hold for WO. Then, we present a sufficient
condition for solving the rendezvous problem that we exploit successively in
our resolution algorithms for variants WO and WO. Finally, we provide optimal
algorithms and infeasibility results for maps with specific topologies in the weaker
variants WO and WO. Some of the proofs are omitted due to space constraints.

3.1 Lower Bounds

The following lemma provides a lower bound on the length of the trajectory
performed by robots in any solving algorithm with respect to the WO variant.

Lemma 1. In variant WO, rendezvous requires use of trajectories of length
Ω(N). In particular, each rX must visit all the nX nodes of its map.
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Proof. Consider an instance of the problem where nA = 1. Then, any rendezvous
algorithm is stuck with rA immobilised in the starting node sA. Since rB has no
knowledge of the position of rA, in the worst case it has to move throughout all
the nodes of its map. ��

Thus by Remark 1 and Lemma 1 the lower bound Ω(N) applies also in any
variant in V.

Lemma 2. In variants WO and WO rendezvous requires use of trajectories of
length Ω(M). In particular, each rX must traverse all the mX edges of its map.

Proof. First note that neither in variant WO nor in WO robots have enough
information to meet in (agreed in advance on) a common target node for their
rendezvous.

In variant WO consider the case in which the map of rB is formed of mB =
Ω(n2

B) edges and the map of rA is a single edge e = {v1, v2}. According to
Lemma 1, any rendezvous algorithm A must force robots to visit all nodes in
their map. Thus also rA has to visit both nodes v1 and v2 by traversing the only
edge at most once. If rB traverses only o(mB) edges and stops, the adversary
picks e among edges not traversed by rB with the endpoints different to the node
where rB rests eventually. This is possible if the map of rB is dense enough.
During rendezvous, rA is allowed first to access e and is kept there until rB

stops. Since the final node on rB ’s trajectory is different to v1 and v2 rendezvous
is not reached. In the complementary case, i.e., when rB visits its whole map
we assume that e is the last edge visited by rB . Here also the adversary allows
rA to enter this edge first where rA waits until rB comes to visit this edge. This
will force rB to visit all its mB edges, that is Ω(M) edges.

In variant WO consider a 3-layer graph G = (V,E), where the set of nodes
V is partitioned into three subsets V1, V2 and V3 of the same size n

3 . Also the
set of edges is partitioned into E1 and E2, such that graphs (V1 ∪ V2, E1) and
(V2 ∪ V3, E2) are complete bipartite graphs. We also assume that edge tolerance
within each set Ei, for i = 1, 2, is uniform, however, edges in E2 tolerate wA

but those in E1 don’t. In contrast, all edges in E tolerate wB . Assume also that
sA ∈ V2 and sB ∈ V1. By Lemma 1, rX cannot stay in sX . Let e be the edge
rA traverses first. The adversary temporarily entraps rA on e. If the trajectory
computed by rB is of length at least Ω(n2), due to the uniform weight tolerance
on edges in E2 the adversary can pick e, s.t., occurs on rB ’s trajectory only
after Ω(n2) steps. In the complementary case, when the trajectory of rB is of
length o(n2), the adversary picks e outside of the trajectory of rB . In this case
the adversary instructs rB to move first entrapping it in the last edge e′ of its
trajectory. If the protocol for rA is perpetual or of length Ω(n2) due to uniformity
of edges the adversary can force this protocol to walk Ω(n2) edges before entering
e′, and the rendezvous takes place only if e′ ∈ E2. If the protocol for rA is of
length o(n2) the adversary keeps rB away from e′ and stops at its destination
node v. Finally, rA is released to finish walk at v′. As the robots cannot agree in
advance to meet on the same target node, i.e., v �= v′, there is no rendezvous in



160 S. Cicerone et al.

this case. By the generality of edges e and e′ mentioned in the above arguments,
the claim follows. ��

It follows from Lemma 2 that in variants WO and WO (and by Remark 1 also
in WO) any algorithm has to move robots through all edges of their respective
maps. Whereas, in variant WO this is not true as robots could exploit knowledge
about nodes’ ordering and edges’ weight tolerance.

3.2 A Sufficient Condition for Solving Rendezvous

In this section we provide a sufficient condition for solving rendezvous with
different maps. To this respect it worth to mention [1], where a character-
isation of pairs of walks that enforce rendezvous against an asynchronous
adversary is given. We first formalise concepts of walks and sub-walks in a
graph. A walk in a graph G is an ordered sequence of edges of G, W =
((vi1 , vi2), (vi2 , vi3), . . . , (vik−1 , vik)), where the second node of an edge is the
first node of the subsequent edge; in W , vi1 is the starting node and vik is the
final node. By |W |, we denote the number of edges forming W . Given two walks
W ′ and W ′′ in G, we write W ′ ⊆ W ′′ when W ′ is a sub-walk of W ′′, i.e., W ′ is a
(not necessarily contiguous) sub-sequence of edges in W ′′. If a walk W contains
all edges of G then it is called a complete walk of G.

Lemma 3. Let WX be a complete walk of map GX computed by rX starting
in sX , according to an algorithm A. If WA ⊆ WB, then rA and rB will meet
eventually, even in variant WO.

Proof. According to A, robot rX moves along walk WX starting at sX and
finishing in the final node of WX , unless the rendezvous is accomplished earlier.
Since WA ⊆ WB , robot rB has to visit all edges in WA in the same order as
robot rA does. Thus no adversary can force rB to overpass rA on WA despite
actions of robots being asynchronous. ��

3.3 On the Complexity of Rendezvous in Variants WO and WO

We start the discussion of rendezvous with different maps in variant WO.
As already discussed, one can find in [7] full characterisation of the standard

asynchronous rendezvous problem, including the minimal assumptions under
which the rendezvous can be accomplished. These include (1) port numbering
consistent with the degree of the nodes for the two maps, (2) unique IDs of
robots, and (3) meeting allowed at nodes and edges. Consider now variant WO
variant with an instance in which GA = GB . In such case, one can claim that
“rendezvous with different maps” is equivalent to “standard rendezvous prob-
lem” when neither port numbering nor node IDs are provided.

Thus using the argument above and [7] we get the following theorem.



Asynchronous Rendezvous with Different Maps 161

Theorem 1. In variant WO rendezvous is not feasible.

Note that rendezvous can be obtained in more specific topologies. We discuss
some cases below. It is worth to mention that the rendezvous algorithm for trees
sketched in the introduction does not work when different maps are in use, as
the centres computed for different maps may not coincide.

Lemma 4. In variant WO, if network G is a path or a star graph then ren-
dezvous can be solved optimally.

The next result affirms that in case the input map is a cycle the rendezvous
problem cannot be solved in the WO variant. In fact, cycles will play the central
role in discussion on how the rendezvous complexity changes in the relevant
variants.

Lemma 5. In variant WO, if G is a cycle rendezvous cannot be resolved.

Proof. Consider the case with GA = GB both being a cycle with an even number
of nodes. Assume an instance where the two robots lie at some antipodal nodes
of the cycle. The adversary can force a symmetric behaviour of the two robots.
That is, whatever one robot does according to the provided algorithm, the other
makes exactly the same symmetric move. As robots are always located at some
antipodal positions the meeting will never take place. ��

Consider now the subset I ⊆ WO containing all instances with GA = GB . If
I ′ ⊂ WO contains all instances with wA = wB drawn from I, we conclude using
Theorem 1 that also in variant WO rendezvous is not always feasible.

Theorem 2. In variant WO rendezvous with maps is not always feasible.

The following lemma provides a feasibility results for variant WO when
wA < wB and the topology of G is restricted to cycles.

Lemma 6. In variant WO, if G is a cycle and wA < wB then there exists an
algorithm that allows robots to meet along walks of length O(N · |bA|), where bX

is the binary representation of weight wX .

Proof. Since G is a cycle and GA ⊆ GB ⊆ G then GX is either a path or a cycle.
If GX is a path then rX applies the strategy provided in the proof of Lemma4:

from sX , rX goes to an arbitrary endpoint of the path and then walk along all the
edges to reach the other endpoint. If GX is a cycle, the algorithm works as follows.
Consider the binary representation bX of wX . Initially, robot rX traverses the
whole cycle (returning to sX) in any direction; then, for each bit of bX and
starting from the least significant bit: if the current bit is 1, the robot performs
a complete visit of the cycle in one direction, if the bit is 0, then the robot does
the same in the opposite direction.

If GA is a path, the two robots meet within the first two visits of the cycle
made by rB , hence with a trajectory of length at most 2N . If GA is a cycle and
wA < wB , the two trajectories differ as either (1) bA and bB have different sizes or
(2) they agree on the same direction but differ for on least one bit or (3) they do
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not agree on the same direction but the most significative bit equals 1 for both.
In the first case, rB traverses G more times than rA if they do not meet before,
so they must meet eventually. In the second and the third cases, they traverse
the cycle in the opposite directions at least once, and this is enough to force
their meeting. The complexity of this algorithm is O(N · |bA|), as |bA| ≤ |bB |. ��

4 A O(N logN) Algorithm for Variant WO

In [12], the authors define an algorithm for the case of synchronous robots that
solves the rendezvous in variant WO utilising trajectories of length O(N). A
similar technique for asynchronous robots leads to trajectories of length O(N2).
In what follows we propose a novel algorithm for asynchronous robots with the
complexity O(N log N). The new algorithm is based on new techniques an it
requires better understanding of the considered problem.

We start by observing that in variant WO one can define the total order
≺WO on edges in E, where G = (V,E) is the input network. This ordering is
defined as follows: edges are first ordered according to their (increasing) weights,
and in case of ties edges with smaller endpoints are earlier in the order. For-
mally, given two edges e′ = (vi, vj) and e′′ = (vi′ , vj′) then e′ ≺WO e′′ if and
only if (1) w(e′) < w(e′′), or (2) w(e′) = w(e′′) and min(i, j) < min(i′, j′), or
(3) w(e′) = w(e′′), min(i, j) = min(i′, j′) and i + j < i′ + j′.

Let E = {e1, e2, . . . , em} where ei ≺WO ei+1, for each i = 1, 2, . . . ,m−1 (i.e.,
indices are consistent with the order ≺WO). Hence, if G(i) is the subgraph of G
induced by edges ei, ei+1, . . . , em, the following properties hold: (1) G(i) may be
disconnected, and (2) G(i + 1) is a subgraph of G(i).

Notice that the same notation adopted for elements of E is used to refer to
edges in a map GX , that is, if EX = {eX

1 , eX
2 , . . . , eX

mX
}, then eX

i ≺WO eX
i+1 for

each i = 1, 2, . . . ,mX − 1.
We introduce a rendezvous method called two-steps approach. In the first step,

a rendezvous algorithm A reduces the search space by computing a convenient sub-
map HX ⊆ GX . In the second, A instructs each robot to meet inside HX .

The intuition behind this approach is the smaller/simpler the search space,
rendezvous becomes more efficient. According to Lemma 1, HX must contain all
nX nodes of GX , thus the search space reduction can only affect edges from GX .
Also, since HX must be connected, it contains at least nX − 1 edges in the form
of a spanning tree of GX .

The search space reduction in variant WO is given below. Please note, this
method cannot be used in the other three variants since it relies on order ≺WO

allowing to create the spanning tree TX .

Definition 1. Consider variant WO with maps GX . Denote by TX the maximal
spanning tree of GX obtained by Kruskal’s algorithm, where edges are drawn in
the reverse order to ≺WO.

The following lemma determines a relationship between the maximal span-
ning trees TA and TB .
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Fig. 1. Procedure MakeWalk executed by robot rX ∈ {rA, rB} starting on node sX

of TX . The requested walk WX starting from and ending at the initial robot’s position
sX , and containing all edges in TX is obtained by exploiting the recursive Procedure
MakeSubWalk.

Lemma 7. TA is a subtree of TB.

Proof. According to the imposed order to the edges, assume by contradiction
there exists an edge e ∈ TB whose endpoints are both in VA but e �∈ TA. It
follows that for any e′ ∈ TA we have e′ ≺WO e. In fact edge e appears in TB

because either Property W imposes w(e′) < w(e) or w(e′) = w(e) and e′ ≺WO e
is due to Property O. Thus by applying the Kruskal’s algorithm according to
the reverse order to ≺WO, since rB selects e then w(e) ≥ w(e′). It follows that
w(e) = w(e′) and hence e′ ≺WO e because of Property O. Since rA and rB share
the same node ordering, then e should be selected by rA before any other edge,
and this contradicts the hypothesis. ��

In Fig. 1 we present a pseudo-code of procedure MakeWalk adopting com-
plete walk along edges of tree TX . In particular, given TX and a starting node
sX , by calling MakeWalk(TX , sX) we obtain a walk WX that starts at sX ,
passes through all the edges of the tree (in each direction in the form of well
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defined Euler tour), and finishes at sX . This property is crucial for any ren-
dezvous algorithm based on traversing TX several times. The following lemma
provides a useful relationship between WA and WB .

Lemma 8. Let WA = MakeWalk(TA, sA), and WB = MakeWalk(TB , sB).
Then, WA ⊆ 2 · WB, where 2 · WB is the concatenation of two occurrences of WB.

Proof. Assume first sA = sB . From Lemma 7 we have that TA ⊆ TB . Procedure
MakeWalk ensures that also the ordered tree TA is a subtree of the ordered
tree TB , that is, nodes in the walks maintain their relative ordering. It follows
that WA ⊆ WB . Since in general sA �= sB and the length of WX is 2nX −2, then
WB may contain a suffix (vA

j , vA
j+1), (v

A
j+1, v

A
j+2), . . . , (v

A
2nA−4), v

A
2nA−3) of WA

before its prefix (vA
1 , vA

2 ), (vA
2 , vA

3 ), . . . , (vA
j−2, v

A
j−1), for some 1 < j < 2nA − 2.

However, by concatenating two occurrences of WB , the suffix and the prefix of
WA will appear in the right order at least once. In other words, by traversing
WB twice, we can guarantee rendezvous by visiting WA in the right order at
least once. ��

Algorithm WO-Asynch (cf Fig. 2) exploits Procedure MakeWalk to build
complete walks that fulfill condition of Lemma 8. The following theorem states
that rendezvous in variant WO can be solved with complexity O(N log N), for
the input network G with an arbitrary topology.

Theorem 3. In variant WO, for any network G, Algorithm WO-Asynch guar-
antees rendezvous along a trajectory of length O(N log N).

Proof. Algorithm WO-Asynch can be divided into four parts: (1) in the first
two lines the spanning tree TX is computed along with its integer logarithmic size
(i.e., kX = 
log |TX |�), (2) Line 4, where the walk WX = MakeWalk(TX , sX)
is computed, (3) the block of Lines 5–14, where a target tX is computed, and (4)
block of Lines 15–18, where the complete walk W+

X is computed and performed.
Such a walk W+

X consists of 2kX concatenations of WX plus a sub-sequence of
WX (i.e., the final step) needed to reach the target tX . We now analyze two
cases, according to the sizes kA and kB .

– Case kB > kA. We show that W+
A is a sub-walk of W+

B , and hence from
Lemma 3 the claim holds. In W+

A the sequence WA is repeated 2kA times
plus a subsequence of WA (due to the final step). In W+

B , the sequence WB

is repeated 2kB ≥ 2(kA + 1) times, which is at least 2kA + 2 times. From
Lemma 8, the first two repetitions of WB assure that WA is contained in
2WB , that is a subsequence of W+

B . It follows that 2kA + 2 sequences of WB

include 2kA + 1 sequences of WA. Since W+
A is a subsequence of 2kA + 1

repetitions of WA, then W+
A is contained in W+

B .
– Case kB = kA. We show that robots rA and rB can select a common node tX

to rendezvous. When rB executes Part (3) of the algorithm, it computes a tree
denoted as T (j), which corresponds to the smallest subtree ofTB having size kB .
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Fig. 2. Algorithm WO-Asynch executed by robot rX ∈ {rA, rB}.

Since kB = kA and since Lemma 7 holds, T (j) can be assumed as a sub-tree
of TB isomorphic to TA. We now prove that |TB | < 2|TA| holds, which means
that there cannot exists two distinct sub-trees of TB isomorphic to TA. Accord-
ing to the current hypothesis, we get that the following relationships hold: (1)
|TB | ≥ |TA|, and (2) 
log(|TB |)� = 
log(|TA|)�. Denoting by n′ the integer
value 
log(|TB |)� = 
log(|TA|)� we can represent log(|TB |) and log(|TA|) as
follows:

log(|TB |) = (n′ − 1) + b, log(|TA|) = (n′ − 1) + a, with 0 < a < b ≤ 1.

One can observe that log(|TB |) − log(|TA|) = b − a < 1, which in turn implies
log(|TB |/|TA|) < 1, |TB |/|TA| < 2, and finally the required relationship |TB | <
2|TA|. It follows that if rB selects at Lines 13 and 14 the largest in order edge
e belonging to T (j), and node tX as the endpoint of e with the largest index,
then the same target node will be selected by both rA and rB (i.e., tA = tB).

Summarising, if kB > kA, the algorithm forces robots to meet during the
2kB repetitions of walk WB . And if kB = kA, the algorithm forces robots to
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Fig. 3. Algorithm Tree-WO-Asynch executed by robot rX ∈ {rA, rB}.

meet at tA = tB . The trajectory of each robot is of length at most 2 · kB · |TB | =
2 · 
log |TB |� · |TB |. Thus the total complexity of rendezvous is O(N log N). ��

Theorem 3 indicates that Algorithm WO-Asynch is almost optimal as it
solves rendezvous with trajectories of length O(N log N), and according to
Lemma 1 the relevant lower bound is Ω(N). In terms of further improvements
one could proceed along two different directions. One could try to find a more
efficient algorithm for an arbitrary topology, or focus on some restricted classes
of graphs. With respect to the latter, as the currently best rendezvous algorithm
relies on spanning trees, the restricted cases would likely have to refer to sub-
classes of trees. And indeed observe that the results provided in Sect. 3 for path
graphs and star graphs also hold in variant WO.

5 Algorithms for Variant WO

For variant WO, in [12] one can find a rendezvous algorithm with double expo-
nential (in N) complexity. We improve this result in specific classes of graphs.

First observe that in this variant it is possible to define a total ordering ≺WO

on edges in E, where G = (V,E) is the input network. This ordering is defined
as follows: edges are ordered by utilising the total ordering of nodes. Formally,
given two edges e′ = (vi, vj) and e′′ = (vi′ , vj′) such that vi < vj and vi′ < vj′

then e′ ≺WO e′′ if and only if (1) vi < vi′ , or (2) vi = vi′ and vj < vj′ .
Observe that even if we have the total order ≺WO, in variant WO we cannot

use the two-steps approach proposed in Sect. 4. In fact, if we compute again the
maximal spanning tree (say TX) of GX by using the Kruskal’s according to the
reverse ordering of ≺WO, the required property TA ⊆ TB is not present any longer
in general graphs. This follows from different properties of maps in variants WO
and WO; in particular, here all edges in GB \ GA incident to GA have a lower
weight than any edge in GA. Nevertheless, one can adopt the two-steps approach
in special classes of maps, including trees. Algorithm Tree-WO-Asynch shown
in Fig. 3 can be used to solve rendezvous using trajectories of polynomial length.
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Theorem 4. In variant WO, when G is a tree Algorithm Tree-WO-Asynch

allows robots to meet along a trajectory of length O(N2).

In the remaining, we propose efficient rendezvous algorithms for some other
restricted topologies.

Lemma 9. In variant WO, when G is a cycle one can design an optimal ren-
dezvous algorithm.

Proof. Since G is a cycle and GA ⊆ GB ⊆ G then each map GX is either a path
or the whole cycle. The rendezvous algorithm adopts the following strategy.

If GX is a cycle, robot rX starts at sX , and makes a complete walk in
arbitrary direction visiting all nodes before returning to sX . Then, rX walks to
the largest in provided order node tX . If GX is a path, rX applies the strategy
utilised in Lemma 4, i.e., robot rX visits first an arbitrary endpoint of the path,
then walks to the opposite endpoint on this path.

It is easy to see that robots do meet eventually, either on the final target
node tX or because rB overpasses rA. In both cases, the complexity is bounded
by O(N). ��
Lemma 10. In variant WO, if both GA and GB are complete graphs (or com-
plete bipartite graphs), there exists rendezvous algorithm with the complexity
O(N3).

Proof. Assume that both GA and GB are complete graphs. Each robot rX com-
putes its walk (rendezvous trajectory) WX as follows:

1. Assume robot rX is initially located at sX = vi, which becomes a base node.
2. From the current base node vi, rX visits back and forth all its neighbours

starting from vnX
down to vi+2, and then it moves to the next base node

vi+1 (in the periodic order);
3. Robot rX repeats the same strategy until all nodes on its map served as base

nodes.

On the basis of WX , robot rX computes the complete walk W+
X consisting of

kX concatenations of WX plus a sub-sequence of WX needed to reach the target
node tX which is the largest in the provided order. We now prove that if the
two robots visit their own maps adopting W+

X , the rendezvous is accomplished.
We consider two cases based on the sizes of kA and kB . If |kB | > |kA|, by
construction of W+

X we get WA ⊆ WB , and due to Lemma 3 rendezvous must be
accomplished. If |kB | = |kA|, the thesis trivially follows since the target tX are
the same, tA = tB . Since the trajectory of each robot is at most (kX +1) · |WX |,
and |WX | = O(N2), the total complexity is O(N3).

One can observe that the above algorithm can be easily adapted when both
GA and GB are complete bipartite graphs. ��
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6 Conclusion

We studied deterministic rendezvous of two asynchronous robots in the net-
work modelled by graphs with restrictions imposed on edges. The restrictions
prevent robots from visiting certain parts of the network. We considered four
variants based on all possible combinations of presence/absence of two proper-
ties: (1) coherent ordering of nodes and (2) weighted robots/edges. We provided
some impossibility results, lower bounds, and efficient algorithmic solutions. Two
important problems remain open. The first is to establish whether our algorithm
in variant WO is optimal. The second is to decide whether there exists a ren-
dezvous algorithm in variant WO with the polynomial (in N) complexity, or the
exponential approach provided in [12] cannot be improved.
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Abstract. The Gathering task by means of a swarm of robots disposed
on the vertices of a graph requires robots to move toward a common
vertex from where they do not move anymore.

When dealing with very weak robots in terms of capabilities, consid-
ering synchronous or asynchronous settings may heavily affect the fea-
sibility of the problem. In fact, even though dealing with asynchronous
robots in general requires more sophisticated strategies with respect to
the synchronous counterpart, sometimes it comes out that asynchronous
robots simply cannot solve the problem whereas synchronous robots can.
We study general properties of graphs that can be exploited in order to
accomplish the gathering task in the synchronous setting, obtaining an
interesting sufficient condition for the feasibility, applicable to any topol-
ogy. We then consider dense and symmetric graphs like complete and
complete bipartite graphs where asynchronous robots cannot solve much.
In such topologies we fully characterize the solvability of the gathering
task in the synchronous setting by suitably combining some strategies
arising by the general approach with specific techniques dictated by the
considered topologies.

1 Introduction

In this paper we consider the Gathering task by means of a swarm of very weak
robots initially disposed on different vertices of a graph. The task requires robots
to move toward a common vertex from where they do not move anymore.

Robots are assumed to be: Anonymous: no unique identifiers; Autonomous:
no centralized control; Oblivious: no memory of past events; Homogeneous: they
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all execute the same deterministic algorithm; Silent: no means of communication;
Disoriented: no common orientation. Robots operate in standard Look -Compute-
Move (LCM) cycles. In one cycle a robot takes a snapshot of the current global
configuration (Look) in terms of robots’ locations. Successively, in the Compute
phase it decides whether to move toward a neighboring vertex or not, and in the
positive case it moves (Move).

Cycles might be performed synchronously or asynchronously. Standard mod-
els are:

– Fully-Synchronous (FSync): The activation phase (i.e. the execution of a
LCM-cycle) of all robots can be logically divided into global rounds. In each
round all the robots are activated, obtain the same snapshot of the environ-
ment, compute and perform their move.

– Semi-Synchronous (SSync): It coincides with the FSync model, with the
only difference that not all robots are necessarily activated in each round.

– Asynchronous (Async): The robots are activated independently, and the
duration of each phase is finite but unpredictable.

The amount of time to complete a full LCM-cycle is assumed to be finite but
unpredictable. In particular, in both the SSync and Async cases it is usu-
ally assumed the existence of an adversary which determines the computational
cycles timing. Such timing is assumed to be fair, that is, each robot performs
its LCM-cycle within finite time and infinitely often. Without such an assumption
the gathering would be unsolvable as the adversary could prevent some robots
to ever move.

It is very common (as dictated by impossibility results) that in combination
with the LCM-model, robots are endowed with the so-called multiplicity detection
capability (see e.g. [8,21]). Basically, when more than one robot resides on the
same vertex x, then x is said to be occupied by a multiplicity. A robot is said
to have the (global strong) multiplicity detection ability when it can detect the
exact number of robots composing a multiplicity at any given vertex. Other
weaker forms of multiplicity detection could be defined but they would lead to
wider impossibility results.

While the gathering problem has been deeply investigated and fully charac-
terized for robots moving on the Euclidean plane [8] (also with respect to given
meeting points [4,5,7]), not much is known for the graph environment, apart
from a few of specific topologies. Concerning feasibility aspects, the aim has
been usually that of finding the minimal set of assumptions under which robots
are able to solve the problem. One of the main observations for gathering in
the Euclidean plane has been to show that Async robots are as much powerful
as FSync ones [8], except for the only case of exactly two robots. This case is
unsolvable in the Async or SSync contexts whereas it is solvable by two FSync
robots.

In graphs, a full characterization for the gathering task is missing, even
for FSync robots. Actually, the main results concern (i) Async robots and
(ii) specific topologies.
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The considered topologies so far are trees [9,10,17], rings [11–15,17,19–21],
regular bipartite graphs [18], finite [9] or infinite [16] grids and hypercubes [3],
also from an optimization perspective. Most of the considered topologies are very
symmetric when dealing with anonymous graphs, that is all vertices look equiv-
alent. This choice has been done so that robots cannot exploit much topological
properties. For instance if a tree or a finite grid admits only one center, then
all robots can detect it and move there, even asynchronously. Contrary, in rings,
infinite grids or hypercubes, all vertices are equivalent and the synchronicity may
heavily impact on feasibility.

A main observation coming out from the literature about gathering in graphs
is that feasibility is very constrained with respect to synchronicity. On the one
hand, dealing with Async robots is much harder than considering SSync or
FSync ones. On the other hand, it may happen that Async robots simply
cannot solve some instances, hence sensibly reducing the scope of research for
resolution algorithms. In other words, the graph context seems requiring deep
investigation on the different results one may achieve when switching from the
Async to the SSync or FSync cases.

Our Results. First, we study general properties of graphs that can be exploited
in order to accomplish the gathering task in the SSync (and hence also in
the FSync) setting. The investigation leads to obtain an interesting sufficient
condition for the feasibility, applicable to any topology. We then consider dense
and symmetric graphs like complete and complete bipartite graphs where Async
or SSync robots cannot solve much. In such topologies we fully characterize the
solvability of the gathering task in the FSync setting by suitably combining
some strategies arising by the general approach with specific techniques dictated
by the considered topologies. Also, we evaluate the number of LCM-cycles required
by our algorithms to accomplish the gathering task. Due to space limitations,
some proofs are omitted or just sketched.

2 Problem Definition and General Impossibility Results

The topology where robots are placed on is represented by a simple and con-
nected graph G = (V,E), with vertex set V and edge set E. The cardinality of
V is represented as |V | or |G|. A function λ : V → N represents the number of
robots on each vertex of G, and we call C = (G,λ) a configuration whenever∑

v∈V λ(v) is bounded and greater than zero. A vertex v ∈ V such that λ(v) > 0
is said occupied, unoccupied otherwise. A subset V ′ ⊆ V is said occupied if at least
one of its elements is occupied, unoccupied otherwise. A configuration is initial
if each robot lies on a different vertex (i.e., λ(v) ≤ 1 for each v ∈ V ). A config-
uration is final if all the robots are on a single vertex (i.e., ∃u ∈ V : λ(u) > 0
and λ(v) = 0, ∀v ∈ V \{u}). The Gathering problem can be formally defined as
the problem of transforming an initial configuration into a final one. Through-
out the paper we assume that each initial configuration is composed of at least
two robots (otherwise the problem is trivially solved). A gathering algorithm for
this problem is a deterministic distributed algorithm that brings the robots in
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the system to a final configuration in a finite number of LCM-cycles from any
given initial configuration, regardless of the adversary. Formally, an algorithm A
solves the Gathering problem for an initial configuration C if, for any execution
E : C = C(0), C(1), . . . of A, there exists a time instant i > 0 such that C(i) is
final and no robots move after i, i.e., C(t) = C(i) holds for all t ≥ i. Given an
initial configuration C = (G,λ), if there exists a gathering algorithm for C we
say that C is gatherable, otherwise we say that C is ungatherable. For FSync
robots, the time complexity of a gathering algorithm A is the maximum amount
of time units (that is the number of LCM-cycles) required by A for processing
any gatherable initial configuration. For the gathering problem, a natural lower
bound for the time complexity of any algorithm is Ω(DG), where DG is the
diameter of the graph underlying the configuration.

During an execution, Λ(t) denotes the number of occupied vertices at time
t; formally, Λ(t) = |{u ∈ V : λ(v) > 0}|.

We now recall from [17] the notions of configuration automorphisms and
symmetries to be applied to general graphs, and accordingly we also recall general
impossibility results.

Configuration Automorphisms and Symmetries. Two undirected graphs G =
(VG, EG) and H = (VH , EH) are isomorphic if there is a bijection ϕ from VG to
VH such that {u, v} ∈ EG if and only if {ϕ(u), ϕ(v)} ∈ EH . An automorphism
on a graph G is an isomorphism from G to itself, that is a permutation of the
vertices of G that maps edges to edges and non-edges to non-edges. The set of all
automorphisms of G forms a group called automorphism group of G and denoted
by Aut(G). Two vertices u, v ∈ V are equivalent if there exists an automorphism
ϕ ∈ Aut(G) such that ϕ(u) = v.

The concept of isomorphism can be extended to configurations in a natu-
ral way: two configurations (G,λ) and (G′, λ′) are isomorphic if G and G′ are
isomorphic via a bijection ϕ and for each vertex v in G, λ(v) = λ′(ϕ(v)). An
automorphism on a configuration (G,λ) is an isomorphism from (G,λ) to itself
and the set of all automorphisms of (G,λ) forms a group that we call automor-
phism group of (G,λ), denoted by Aut((G,λ)).

If |Aut(G)| = 1, that is G admits only the identity automorphism, then G is
said asymmetric, otherwise it is said symmetric. Analogously, if |Aut((G,λ))| =
1, we say that the configuration (G,λ) is asymmetric, otherwise it is symmetric.
Two distinct robots r and r′ in a configuration (G,λ) are equivalent if there
exists ϕ ∈ Aut((G,λ)) that makes equivalent the vertices in which they reside.
Note that λ(u) = λ(v) whenever u and v are equivalent. Moreover, if u and v
are equivalent, a robot r cannot distinguish its position at vertex u from robot
r′ located at vertex v = ϕ(u). As a consequence, no algorithm can distinguish
between two equivalent robots.

Given ϕ ∈ Aut((G,λ)) different from the identity, the cyclic subgroup of order
p generated by ϕ is given by H = {ϕ0, ϕ1 = ϕ ◦ ϕ0, ϕ2 = ϕ ◦ ϕ1, . . . , ϕp−1 =
ϕ ◦ ϕp−2}, where ϕ0 is the identity automorphism, ϕi 
= ϕ0 for each 0 < i < p,
and ϕp = ϕ0. In (G,λ), the orbit of a vertex v of G is Hv = {γ(v) | γ ∈ H}.
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Note that (1) the orbits Hv, for each v ∈ V , form a partition of V , and
(2) vertices/robots belonging to any orbit are pairwise equivalent.

The next theorem provides a sufficient condition for a configuration to be
ungatherable, but we first need the following definition:

Definition 1. [17] Given a graph G = (+6V,E), let C = (G,λ) be a configu-
ration. An automorphism ϕ ∈ Aut(C) is said partitive on V ′ ⊆ V if the cyclic
subgroup H = {ϕ0, ϕ1 = ϕ ◦ ϕ0, ϕ2 = ϕ ◦ ϕ1, . . . , ϕp−1 = ϕ ◦ ϕp−2} generated by
ϕ has order p > 1 and is s.t. |Hu| = p for each u ∈ V ′.

The next two claims use this definition to provide general impossibility results
for the gathering problem on graphs. Since they refer to FSync robots, they
also hold for both SSync and Async robots.

Theorem 1. [17] Let G = (V,E) be any graph and let C = (G,λ) be any
non-final configuration. If there exists ϕ ∈ Aut(C) partitive on V then C is
ungatherable.

It is worth to remark that the above theorem requires the existence of an auto-
morphism ϕ, which in turn is based on the function λ defining the exact number
of robots on each vertex. Hence, Theorem 1 holds when the robots are endowed
with the global-strong multiplicity detection. Stating a negative result, it follows
that such a theorem holds even when considering weaker robots (i.e., without
global-strong multiplicity detection).

The following corollary obtained from [17] shows that some configurations
can be gathered only at some predetermined vertices.

Corollary 1. Let G = (V,E) be any graph, C = (G,λ) be any configuration,
and V ′ ⊂ V unoccupied. If there exists an automorphism ϕ ∈ Aut(C) that is
partitive on V \ V ′, then each gathering algorithm for C (if any) must move
robots toward V ′.

3 A Sufficient Condition for Gathering in Arbitrary
Graphs

In this section we provide a sufficient condition for gathering FSync robots in
arbitrary graphs. This result exploits new concepts we define in the following,
like recognizable subgraphs and d-primality.

Recognizable Subgraphs. Informally, a subgraph H of a graph G is said rec-
ognizable if any automorphism of G maps H on itself, that is, H cannot be
confused with other subgraphs. Formally:

Definition 2. A subgraph H = (VH , EH) of a graph G = (V,E) is recognizable
if VH = {ϕ(v) | v ∈ VH} for each automorphism ϕ ∈ Aut(G). A recognizable
subgraph H is minimal if there not exists a proper subgraph H ′ of H such that
H ′ is recognizable.
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In the following, we provide interesting properties of recognizable subgraphs. Let
G = (V,E) be a graph and let G[V ′] denotes the subgraph induced by V ′ ⊆ V .
By definition: (1) the empty subgraph is recognizable; (2) G is recognizable; (3)
if V1 and V2 are the vertex sets of recognizable subgraphs of G, then G[V1 ∪ V2]
is recognizable; (4) if G is asymmetric then any subgraph with a single vertex is
recognizable.

Lemma 1. Let G = (V,E) be a graph. The following properties hold: (1) if
H = (VH , EH) is a recognizable subgraph of G, then G[V \ VH ] is recognizable;
(2) if G[V1] and G[V2] are two distinct minimal recognizable subgraphs of G, with
V1 ⊆ V and V2 ⊆ V , then V1 ∩ V2 is empty.

Proof. Omitted. ��
Theorem 2. The set containing all the minimal recognizable subgraphs of G =
(V,E) forms a unique partition of V .

Proof. The partition can be found with the following procedure. If G is minimal
recognizable, we are done. If G is not minimal recognizable, let G[V1] a minimal
recognizable subgraph of G and let {V1, V \ V1} a partition of V . By Lemma 1,
G[V \V1] is recognizable. If it is also minimal recognizable we are done, otherwise
recursively apply the procedure to G[V \V1]. Regarding the uniqueness, by con-
tradiction let us suppose that there exist {V1, V2, . . . , Vp} and {V ′

1 , V
′
2 , . . . , V ′

p′}
distinct partitions of V such that G[Vi], G[V ′

j ] are minimal recognizable graphs,
for each i = 1, 2, . . . , p and j = 1, 2, . . . , p′. Then, there exists at least a vertex v
such that v ∈ Vi∗ and v ∈ V ′

j∗ and the two sets Vi∗ and V ′
j∗ are distinct. Then

Vi∗ ∩ V ′
j∗ 
= ∅, a contradiction to Lemma 1. ��

The following corollary shows that each pair of vertices inside a minimal recog-
nizable subgraph of G are equivalent.

Corollary 2. Let G = (V,E) be a graph and {V1, V2, . . . , Vp} be the unique
partition of V induced by the minimal recognizable subgraphs. For each pair of
vertices u, v ∈ Vi, i = 1, 2, . . . , p, u and v are equivalent.

Proof. Omitted. ��
Let G = (V,E) be a graph and H be a minimal recognizable subgraph of G. If
H is disconnected, all the connected components are pairwise isomorphic. We
denote by c(H) and s(H) the number of connected components of H and the
size of each connected component of H, respectively.

d-Primality and Batches. In order to make use of a recognizable subgraph H
for gathering purposes, we need to relate the number k of robots of a given
configuration and the topology of H.

Definition 3. Let k and d be two positive integers. We say that k is d–prime if
lpf (k) > d, where lpf (k) denotes the least prime factor of k.
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Notice that when k is d–prime the following properties hold: (1) k > d > 0;
(2) if d = 1 then every k > 1 is d–prime; (3) for each integer 2 ≤ d′ ≤ d, d′ does
not divide k.

Definition 4. Given a graph G = (V,E), let C = (G,λ) be a configuration with
k robots, A be a gathering algorithm for C, and E : C = C(0), C(1), . . . be any
execution of A starting from C. For an integer i, 0 < i ≤ k, the batch Bi(t),
t ≥ 0, is the subset of vertices {u ∈ V | λ(u) = i} in C(t).

We simply use Bi when we are not interested to any specific time instant. The
size of Bi is |Bi|, i.e., the number of vertices in Bi. Given a batch Bi, we use the
following additional notions:

– the order of Bi is i, i.e., there are i robots in each vertex in Bi.
– Bmin and Bmax denote the non-empty batches with minimum and maximum

order, respectively.

By the above definitions, in a configuration C with k robots: (1) |B1| = k iff
C is initial, and (2) Bk 
= ∅ (i.e., Bmax has order k) iff C is final.

Lemma 2. Let G = (V,E) be a graph with n vertices, and let H be a min-
imal recognizable subgraph of G. Let C = (G,λ) be a non-final configuration
composed of k robots, 2 ≤ k ≤ n, all residing on vertices of H, such that k
is max{c(H), s(H)}–prime. If the robots are on different connected components
of H, then (1) two connected components of H contain a different number of
robots, otherwise (2) in H there are batches with different orders.

Proof. Since k is max{c(H), s(H)}–prime, then lpf (k) > max{c(H), s(H)}. This
implies that k is both c(H)–prime and s(H)–prime. These relationships imply
k ≥ lpf (k) > s(H) and k ≥ lpf (k) > c(H); in other words, k is greater than
both c(H) and s(H) and both c(H) and s(H) do not divide k.

If the robots are on different components of H, c(H) > 1. Since k is c(H)-
prime, c(H) does not divide k and this implies case (1). If the robots are on
the same component, since k is s(H)-prime, then the number 1 < s′ ≤ s(H) of
occupied vertices does not divide k. Then, case (2) occurs. ��

The Sufficient Condition. We now use the notions of recognizable graphs,
d-primality, and graph canonization to provide a sufficient condition to the solv-
ability of the gathering problem by means of FSync robots. This condition is
applicable to any graph topology.

In graph theory the graph canonization is the problem of finding a canonical
form of a given graph G. A canonical form is function that associate to G a
labeled graph Canon(G) such that Canon(G) is isomorphic to G and every
graph G′ that is isomorphic to G is such that Canon(G′) = Canon(G) [2]. The
labels are from a linearly ordered set (e.g., {1, 2, . . . , n}). The graph canonization
problem is at least as computationally hard as the graph isomorphism problem,
which is not known to be solvable in polynomial time nor to be NP-complete.
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However in [1] a linear time algorithm is reported that with probability at least
1 − exp(−O(n log n/ log log n)) produce a canonical labeling. This justify the
good behavior in practice of the deterministic algorithm proposed by McKay [22]
whose complexity is studied in [23].

Theorem 3. Let G = (V,E) be a graph with n vertices, and let C = (G,λ) be
an initial configuration composed of k SSync robots, 2 ≤ k ≤ n. If there exists
a minimal recognizable subgraph H of G such that k is max{c(H), s(H)}–prime,
then C is gatherable.

Sketch of the Proof. Consider a canonical labeling Canon(G) and let H̄ =
(V̄ , Ē) be the minimal recognizable subgraph such that k is max{c(H̄), s(H̄)}–
prime and having the vertex with the minimum label. All the robots can agree
on H̄.

We show there exists an algorithm Ag able to gather all robots in C on a
vertex of V̄ . If E : C = C(0), C(1), . . . denotes any execution of Ag, then Ag will
apply the same move m to each active robot in any obtained configuration C(t).
Such a move m is defined as follows:

– (target of m) if there are no robots in V̄ , the target T (t) for m coincides
with V̄ . If there are robots on different components of H̄, T (t) corresponds
to vertices of the connected components that contains the largest number of
robots. If all the robots are on a single component of H̄ then the target T (t)
is the set containing each vertex v ∈ V̄ such that λ(v) is maximum.

– (robots moving according to m) robots allowed to move are all those not on
vertices of T (t);

– (trajectory) if a moving robot r is not on a vertex in T (t), it moves toward an
adjacent vertex along a shortest path to a vertex in T (t) having a minimum
distance from r. If all the robots are on a single connected component of H̄,
the shortest path is taken among the paths having all the vertices in that
component.

Note that it might happen that during a LCM-cycle, only robots lying on the
vertices of T (t) are activated by the adversary, that is no one moves during that
cycle. However, by the fairness assumption, all other robots will be activated
within finite time.

According to Ag, at starting time t0 = 0, as long as there are no robots in H̄,
m allows all robots to move toward V̄ along shortest paths. This implies that there
exists a first time t1 ≥ t0 when at least one robot is inside H̄. For each time t ≥ t1,
subgraph H̄ is not empty because, from time t1 onward, T (t) ⊆ V̄ and robots on
T (t) do not move. This property simple follows from the definition of T (t) that
requires each vertex in T (t) to be occupied when there are robots in H̄.

From t1 on, according to m, all the robots move toward the set of vertices of
the components of H̄ with the largest number of robots. When all the robots are
inside H̄, by Lemma 2, they will convergence at a time t2 ≥ t1 toward a single
component of H̄ with the largest number of robots.
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From t2 on, according to m, the robots will move inside the same compo-
nent toward the batch with maximum order. In particular, Lemma2 guarantees
that there are batches with different orders, and this property makes move m
well defined: robots within batches with non-maximum order move toward the
batch with maximum order. During this phase, robots remain within the same
component and the process continues until only batch Bk is formed. This means
that the gathering is eventually accomplished. ��

Theorem 3 provides a powerful means for gathering purposes as long as the
input graph admits some topological properties like a limited number of centers,
medians, bounded degree nodes and so forth. As we are going to see, still some
of the outcoming techniques can be exploited for FSync robots even in very
symmetric graphs like complete and complete bipartite graphs.

4 Gathering in Complete and Complete Bipartite Graphs

In this section, we provide a full characterization of gathering in two dense and
symmetric topologies that are complete graphs and complete bipartite graphs.

Complete Graphs. From [6] it is known that Async robots cannot accomplish
the gathering task if the underlying graph is a complete graph. The result can
be easily extended to SSync robots (proof omitted). Assuming FSync robots,
we now show there are instances that instead are gatherable.

Theorem 4. Let G be a complete graph with n vertices, and let C = (G,λ) be
an initial configuration with k ≥ 2 FSync robots. C is gatherable if and only if
k is (n − k)–prime.

Sketch of the Proof. (⇐) There exists a simple algorithm Aclique able to gather
all robots in C when k is (n − k)–prime. It uses the following move: if the
configuration is initial (i.e., no multiplicity occurs), then each robot moves toward
an arbitrary unoccupied vertex, otherwise each robot not in Bmax moves toward
an arbitrary vertex in Bmax. After the first move, since k is (n − k)–prime, then
C(1) contains batches with different orders. Moreover, the number of occupied
vertices in C(1) is at most n − k. Thanks to this property and the assumption
that k is (n − k)–prime, the move can be applied again and Bmax is reduced
at each step thereafter until it becomes the set of a single vertex. Hence, the
gathering is accomplished.

(⇒) By Corollary 1, any gathering algorithm must move robots toward the
unoccupied vertices. If k is not (n − k)–prime then k = ik′ for some integer i
such that 2 ≤ i ≤ n−k. Then the adversary can move k′ robots on each of some
i vertices in C(1). Hence in C(1) there exists only one non-empty batch, namely
Bk′ , and this batch has size i ≥ 2. After that, the adversary can always keep
the symmetry of the configuration by keeping this batch during the rest of the
execution. This prevent the gathering. ��
Corollary 3. In any gatherable configuration defined on a n-vertex complete
graph, the gathering problem can be solved by FSync robots in O(log n) time.
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Proof. Let C = (G,λ) be any gatherable initial configuration with k robots and
defined on a complete graph G with n vertices. Consider the algorithm Aclique

proposed in the proof of Theorem4 to process C. After the first move of Aclique ,
each robot not in Bmax moves toward an arbitrary vertex in Bmax. Being C
gatherable, Theorem 4 implies that k is (n− k)–prime. Since k is (n− k)–prime,
this move always reduces the size of Bmax. Hence, the maximum amount of
time is required by any execution of Aclique when Bmax is as large as possible.
According to the move, the following relationship holds for each time instant
i ≥ 1: |Bmax(i + 1)| ≤ min{|Bmax(i)|,

∑
j �=max |Bj(i)|}. By this property, it

follows that the size of Bmax at time instant i + 1 is maximal when at time i
the size of Bmax is comparable to the number of occupied vertices containing
moving robots. Hence, to produce the longest execution for Aclique , half of the
robots should move each time toward Bmax. This produces an execution that
requires O(log k) time units. Since k is (n−k)–prime, we get k ≥ lpf (k) > n−k
and hence k > n/2. ��

Complete Bipartite Graphs. We now consider the gathering problem of FSync
robots on complete bipartite graphs. In the remainder we use the following nota-
tion: if G = (V1 ∪ V2, E) is a complete bipartite graph and C = (G,λ) is any
initial configuration, then n1 and n2 denote the number of vertices of V1 and V2,
respectively; k1 and k2 denote the number of robots on V1 and V2, respectively;
if k1 > 0 and k2 > 0, then lcpf (k1, k2) denotes the least common prime factor of
k1 and k2; and we say that partition Vi, i = 1, 2, is unoccupied (occupied, resp.)
if ki = 0 (ki > 0, resp.).

The following definition extends to bipartite graphs some concepts introduced
in Definition 4.

Definition 5. Let G = (V1 ∪ V2, E) be a complete bipartite graph, C = (G,λ)
be a configuration with k1 + k2 robots, A be a gathering algorithm for C, and
E : C = C(0), C(1), . . . be an execution of A that starts from C. Then:

– B1
i (t) = Bi(t) ∩ V1 and B2

i (t) = Bi(t) ∩ V2, that is, B1
i (t) and B2

i (t) are the
projections of Bi(t) into V1 and V2, respectively;

– B1
min(t) = Bmin(t) ∩ V1 and B2

min(t) = Bmin(t) ∩ V2;
– B1

max(t) = Bmax(t) ∩ V1 and B2
max(t) = Bmax(t) ∩ V2;

– Λ1(t) and Λ2(t) denote the number of occupied vertices at time t in V1 and
V2, respectively;

The next two lemmas concern different cases for gathering on complete bipar-
tite graphs.

Lemma 3. Let G = (V1 ∪ V2, E) be a complete bipartite graph with n1 + n2

vertices, and let C = (G,λ) be an initial configuration composed of k1 + k2
FSync robots, with k1 > 0 and k2 > 0. If k1 and k2 are coprime, then C is
gatherable.

Sketch of the Proof. Consider the algorithm Acop defined by the following
moves:
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– m1: if Λ1(t) = 1 and Λ2(t) = 1, robots in Bmin(t) move toward Bmax(t);
– m2a: if Λ1(t) = 1 and Λ2(t) > 1, robots move toward the unique vertex in

B1
max(t);

– m2b: if Λ1(t) > 1 and Λ2(t) = 1, robots move toward the unique vertex in
B2

max(t);
– m3: if Λ1(t) > 1 and Λ2(t) > 1, robots in V1 (V2, resp.) moves toward B2

max(t)
(B1

max(t), resp.).

Since k1 > 0 and k2 > 0 by hypothesis, move m3 is applied in C(0). This leads to
a configuration C(1) where all robots in V1 moved to V2 and vice versa. As long
as the condition that generates the move m3 is verified, robots will continue
to swap the partition they reside. As m3 implies that the vertices occupied
at time t + 1 form a subset of those occupied at time t, then it is clear that
Λi(t + 1) ≤ Λi(t) holds. Assume now Λi(t + 1) = Λi(t). According to move m3,
this last relationship implies that in Vi there was only the batch Bi

max(t) (i.e.,
all the occupied vertices in Vi had the same multiplicity). But being k1 and k2
coprime, when robots move to Vi necessarily they form batches with different
orders, and this implies |Bi

max(t + 1)| < |Bi
max(t)|. This guarantees that there

exists a time t′ such that C(t′) has at least one partition containing exactly
one occupied vertex. Then, at C(t′) one among moves m1, m2a, or m2b will
accomplish the gathering. ��
Lemma 4. Let G = (V1 ∪ V2, E) be a complete bipartite graph with n1 + n2

vertices, and let C = (G,λ) be an initial configuration composed of k1 + k2
FSync robots, with k1 > 0 and k2 > 0. If k1 and k2 are not coprime, then C is
gatherable if and only if both the following conditions hold:

1. n1 − k1 < lcpf (k1, k2) or n2 − k2 < lcpf (k1, k2),
2. k1 
= k2 or n1 
= n2.

Sketch of the Proof. (⇒) If condition (2) does not hold, then k1 = k2 and n1 =
n2. This means that C is partitive and hence ungatherable by Theorem1. From
now on, assume that condition (1) does not hold. This implies that k1 and k2 are
not coprime, n1 −k1 ≥ d and n2 −k2 ≥ d, where d = lcpf (k1, k2). In C(0), there
exists only the batch B1

1(0) in V1 and, symmetrically, only the batch B2
1(0) in

V2. Since k1 and k2 are not coprime, the size of each of such batches is a multiple
of d.

Assume that robots are moved from V1 to V2. All the robots in one batch
are moved and hence a multiple of d robots are moved. If the target is any
occupied vertex, then all the robots in the same batch are equally distributed by
the adversary in the elements of another batch; if the target is any unoccupied
vertex, then all the robots in the same batch are equally distributed by the
adversary in d vertices (this is possible since n2 − k2 ≥ d).

This analysis still holds when robots are moved from V2 to V1 (by symmetry)
and also when robots are swapped between V1 to V2 (in this case the analysis
of the move toward occupied vertices is the same while it is more evident that
there are always at least d unoccupied vertices in each side). In any case, a batch
with d elements eventually remains.
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(⇐) Consider the algorithm A¬cop defined by the following moves:

– move m1. Let Λ1(t) = 1 and Λ2(t) = 1: if k1 
= k2 then each robot in Bmin(t)
moves toward the unique vertex in Bmax(t) else each robot in the larger
partition between V1 and V2 moves toward the unique occupied vertex in the
other partition;

– move m2a. Let Λ1(t) = 1 and Λ2(t) > 1: each robot moves toward the unique
vertex in B1

max(t);
– move m2b. Let Λ1(t) > 1 and Λ2(t) = 1: each robot moves toward the unique

vertex in B2
max(t);

– move m3. Let C be not initial, Λ1(t) > 1 and Λ2(t) > 1: each robot in V1

moves toward B2
max(t) and each robot in V2 moves toward B1

max(t);
– move m4. Let C be initial, Λ1(t) > 1 and Λ2(t) > 1: each robot in V1 (V2,

resp.) moves toward an arbitrary unoccupied vertex in V2 (V1, resp.).

Move m4 is applied in C(0). This leads to a configuration C(1) where all robots in
V1 moved to the unoccupied vertices in V2 and vice versa. According to condition
1, in C(1) there are batches with order greater than one. This implies that in
C(1) move m3 is applied, thus obtaining a configuration C(2) where again all
robots in V1 moved to V2 and vice versa.

As long as move m3 is applied, robots will continue to swap the partition
they reside until, at a time t′ > 0, there will be at least one partition containing
just one occupied vertex. Then, at C(t′) one among moves m1, m2a, or m2b will
accomplish the gathering. ��

Theorem 5. Let G = (V1 ∪ V2, E) be a complete bipartite graph with n1 + n2

vertices, and let C = (G,λ) be an initial configuration composed of k1+k2 FSync
robots. C is gatherable if and only if one of the following conditions hold:

1. (k2 = 0, k1 is n2–prime) or (k1 = 0, k2 is n1–prime);
2. k1 > 0, k2 > 0, k1 and k2 are coprime;
3. k1 > 0, k2 > 0, k1 and k2 are not coprime, n1−k1 < lcpf (k1, k2) or n2−k2 <

lcpf (k1, k2), k1 
= k2 or n1 
= n2.

Proof. (⇐) We show that Algorithm Abip described in Fig. 1 is able to gather all
robots in C when C fulfills one of the conditions (that are mutually exclusive)
expressed in the statement.

Assume that condition 1 holds. In particular, w.l.o.g. assume k2 = 0 and k1 is
n2–prime. In such a case it is interesting to observe that n1 
= n2 holds. In fact,
since k1 is n2–prime then n2 < lpf (k1) ≤ k1 ≤ n1. In particular, k1 is n2–prime
implies n1 > n2, and hence Abip calls Ag at Line 2 for moving robots in C(0).
Each time that Abip restarts for handling configurations C(1), C(2), . . ., always
Ag is executed. Since n1 > n2, then V2 is a minimal recognizable subgraph
of G and k1 is n2–prime by hypothesis. Hence, by Theorem3 the gathering is
eventually accomplished on a vertex of V2.

If condition 2 holds, then Abip calls Acop at Line 9. As remarked in the proof
of Lemma 3, Acop always swaps robots between V1 and V2 until the last move
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Algorithm: Abip

Input: Configuration C = (G, λ), where G is a complete bipartite graph,
fulfilling conditions of Theorem 5.

1 if n1 > n2 and k1 + k2 is n2–prime then
2 call Ag // gathering accomplished on a vertex in V2

3 end
4 else if n2 > n1 and k1 + k2 is n1–prime then
5 call Ag // gathering accomplished on a vertex in V1

6 end
7 else
8 if k1 > 0, k2 > 0, k1 and k2 are coprime then
9 call Acop

10 end
11 if k1 > 0, k2 > 0, k1 and k2 are not coprime, n1 − k1 < lcpf (k1, k2) or

n2 − k2 < lcpf (k1, k2), k1 �= k2 or n1 �= n2 then
12 call A¬cop

13 end
14 end

Fig. 1. Algorithm Abip for gathering FSync robots in a complete bipartite graph G.
It uses algorithms Ag (from proof of Theorem 3), Acop (from proof of Lemma 3), and
A¬cop (from proof of Lemma 4).

completes the gathering. So, if Abip calls Acop in C(0), then Acop will be always
called until the gathering is accomplished.

If condition 3 holds, then Abip calls A¬cop at Line 12. Similarly to the previous
case, A¬cop always swaps robots between V1 and V2 until the last move completes
the gathering. So, if Abip calls A¬cop in C(0), then A¬cop will be always called
until the gathering is accomplished as proved by Lemma 4.

(⇒) Assume that none of the conditions expressed in the statement applies.
We show that C is ungatherable by analyzing two cases, according whether V1

and V2 are both occupied or not.
If one between V1 or V2 is unoccupied, then neither k1 is n2–prime nor k2

is n1–prime (otherwise condition 1 holds). Let us analyze the case in which k1
is n2–prime, being the other one symmetric. In this case the proof is similar to
that of Theorem 4. In fact, since G is a complete bipartite graph, there exists
an automorphism in Aut(C) that makes all robots pairwise equivalent. In other
words, if A is any gathering algorithm for C, then any move planned by A is per-
formed by each robot. In particular, each move applied at C = C(0) must move
each robot in V1 toward an arbitrary vertex in V2. Since k1 is not n2–prime, then
we get n2 ≥ lpf (k1), that is there exist at least lpf (k1) ≥ 2 unoccupied vertices
in the partition V2 in C(0). Hence, the adversary may select lpf (k1) unoccu-
pied vertices in V2 as targets to create a configuration C(1) consisting of lpf (k1)
occupied vertices with k1

lpf (k1)
robots per vertex. It is easy to observe that in

C(1) there exists an automorphism that makes the lpf (k) multiplicities pairwise
equivalent. Then, from C(1) any possible move will create a configuration C(t),
t > 1, isomorphic to C(1), thus preventing the resolution of the gathering.
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If both V1 and V2 are occupied, then k1 and k2 are not coprime otherwise
condition 2 holds. Since neither condition 3 can apply, then at least one of the
following properties holds: (1) n1 − k1 ≥ lcpf (k1, k2) and n2 − k2 ≥ lcpf (k1, k2),
and (2) k1 = k2 and n1 = n2. This means that the ‘only-if’ case of Lemma 4
holds, and hence C turns out to be ungatherable. ��
As for complete graphs, by similar arguments, the next corollary can be sated.

Corollary 4. In any gatherable configuration defined on a n-vertex complete
bipartite graph, the gathering problem can be solved by FSync robots in O(log n)
time.

5 Concluding Remarks

We have considered the gathering problem of synchronous weak robots mov-
ing in graphs. First we have studied general properties that allow to solve the
problem regardless the underlying topology. Then we have focused on dense
and symmetric graphs like complete and complete bipartite graphs, where we
fully characterize when the gathering can be accomplished by means of FSync
robots. While in complete graphs SSync robots are not able to solve the gath-
ering, it remains open what can they do in complete bipartite graphs. Moreover,
the proposed algorithms require O(log n) time whereas the natural lower bound
for the considered topologies is Ω(DG), with the diameter DG being 1 or 2. Is it
possible to improve the algorithms to this respect or more suitable lower bounds
can be obtained? Our investigation highlights how the graph environment is
very sensible to synchronization issues. This opens a wide area of research since
FSync or SSync robots have not been much considered in graphs.
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Abstract. Two robots stand at the origin of the infinite line and are
tasked with searching collaboratively for an exit at an unknown location
on the line. They can travel at maximum speed b and can change speed
or direction at any time. The two robots can communicate with each
other at any distance and at any time. The task is completed when
the last robot arrives at the exit and evacuates. We study time-energy
tradeoffs for the above evacuation problem. The evacuation time is the
time it takes the last robot to reach the exit. The energy it takes for a
robot to travel a distance x at speed s is measured as xs2. The total and
makespan evacuation energies are respectively the sum and maximum of
the energy consumption of the two robots while executing the evacuation
algorithm.

Assuming that the maximum speed is b, and the evacuation time is at
most cd, where d is the distance of the exit from the origin, we study the
problem of minimizing the total energy consumption of the robots. We
prove that the problem is solvable only for bc ≥ 3. For the case bc = 3,
we give an optimal algorithm, and give upper bounds on the energy for
the case bc > 3.

We also consider the problem of minimizing the evacuation time when
the available energy is bounded by Δ. Surprisingly, when Δ is a constant,
independent of the distance d of the exit from the origin, we prove that
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evacuation is possible in time O(d3/2 log d), and this is optimal up to a
logarithmic factor. When Δ is linear in d, we give upper bounds on the
evacuation time.

Keywords: Energy · Evacuation · Linear · Robot · Speed · Time ·
Trade-offs · Wireless communication

1 Introduction

Linear search is an online problem in which a robot is tasked with finding an
exit placed at an unknown location on an infinite line. It has long been known
that the classic doubling strategy, which guarantees a search time of 9d for an
exit at distance d from the initial location is optimal for a robot travelling at
speed at most 1 (see any of the books [1,2,25] for additional variants, details
and information). If even one more robot is allotted to the search then clearly an
exit at distance d can always be found in time d by one of the robots. Therefore
the problem of group search by multiple robots on the line is concerned with
minimizing the time the last robot arrives at the exit; the problem is also called
evacuation. It was first introduced as part of a study on cycle-search [10] and
further elaborated on an infinite line for multiple communicating robots with
crash [18] and Byzantine faults [16].

The time taken for group search on the line clearly depends on the com-
munication capabilities of the robots. In the wireless communication model, the
robots can communicate at any time and over any distance. In the face-to-face
communication model, the robots can only communicate when they are in the
same place at the same time. A straightforward algorithm achieves evacuation
time 3d in the wireless model, and can be seen to be optimal, while it has been
shown that in the face-to-face model, two robots cannot achieve better evacua-
tion time than one robot [8].

In this paper, we consider the energy required for group search on the line.
We use the energy model proposed in [11] in which the energy consumption of
a robot travelling a distance x at speed s is proportional to xs2. This model
is motivated by the concept of viscous drag in fluid dynamics; see Sect. 1.1 for
more details. The authors of [11], studied the question of the minimum energy
required for group search on the line by two robots travelling at speed at most
b while guaranteeing that both robots reach the exit within time cd, where d is
the distance of the exit from the starting position of the robots. For the special
case b = 1, c = 9, they proved the surprising result that two robots can evacuate
with less energy than one robot, while taking the same evacuation time.

Our main approach throughout the paper is to investigate time-energy trade-
offs for group search by two robots in the wireless communication model. Assum-
ing that the maximum speed is b, and the evacuation time is at most cd, where
d is the distance of the exit from the origin, we study the problem of minimizing
the total energy consumption of the robots. We also consider the problem of
minimizing the evacuation time when the available energy is bounded by Δ.
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1.1 Model and Problem Definitions

Two robots are placed at the origin of an infinite line. An exit is located at
unknown distance d from the origin and can be found if and only if a robot
walks over it. A robot can change its direction or speed at any time, e.g., as a
function of its distance from the origin, or the distance walked so far. Robots
operate under the wireless model of communication in which messages can be
transmitted between robots instantaneously at any distance. Feasible solutions
are robots’ trajectories in which, eventually, both robots evacuate, i.e. they both
reach the exit. Given a location of the exit, the time by which the second robot
reaches the exit is referred to as the evacuation time. We distinguish between
constant-memory robots that can only travel at a constant number of hard-
wired speeds, and unbounded-memory robots that can dynamically compute
speeds and distances, and travel at any possible speed.

The energy model being used throughout the paper is motivated from the
concept of viscous drag in fluid dynamics [4]. In particular, an object moving
with constant speed s will experience a drag force FD proportional1 to s2. In
order to maintain the speed s over a distance x the object must do work equal
to the product of FD and x resulting in a continuous energy loss proportional to
the product of the object’s squared speed and travel distance. For simplicity we
take the proportionality constant to be one, and define the energy consumption
moving at constant speed s over a segment of length x to be xs2. We extend
the definition of energy for a robot moving in the same direction from point
a to point b on the line, using speed s(x) ∈ R, x ∈ [a, b], as

∫ b

a
s2(x)dx. The

total energy of a specific robot traversing more intervals, possibly in different
directions, is defined as the sum of the energies used in each interval.

Given a collection of robots, the total evacuation energy is defined as the
sum of the robots’ energies used till both robots evacuate. Similarly, we define
the makespan evacuation energy as the maximum energy used by any of the two
robots.

For each d > 0 there are two possible locations for the exit to be at distance
d from the origin: we will refer to either of these as input instances d for the
group search problem. More specifically, we are interested in the following three
optimization problems:

Definition 1. Problem EEb
d (c): Minimize the total evacuation energy, given

that the evacuation time is no more than cd (for all instances d) and using
speeds no more than b.

Definition 2. Problem TEb
d (Δ): Minimize the evacuation time, given that the

total evacuation energy is no more than Δ (for all instances d), and using speeds
at most b.

1 The constant of proportionality has (SI) units kg/m and depends, among other
things, on the shape of the object and the density of the fluid through which it
moves.
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Definition 3. Problem MEb
d (Δ): Minimize the evacuation time, given that the

makespan evacuation energy is no more than Δ (for all instances d), and using
speeds at most b.

For the last two problems, we consider two cases when the evacuation energy
Δ is a constant and when it is linear in d.

1.2 Our Results

Consider the following intuitive and simple algorithm for wireless evacuation,
which is a parametrized version of a well-known algorithm for the case of unit
speed robots that achieve evacuation time 3d.

Definition 4 (Algorithm Simple Wireless Search Ns,r). Robots move at
opposite directions with speed s until the exit is found. The finder announces
“exit found” and halts. The other robot changes direction and moves at speed r
until the exit is reached.

We analyze the behaviour of this algorithm for all three proposed problems,
and determine the speeds that achieve the minimum evacuation energy (or time)
among all algorithms of this class, while respecting the given bound on evacua-
tion time (resp. energy). In some cases, the algorithms derived are shown to be
optimal. In particular, our main results are the following:

1. We show that the problem EEb
d (c) admits a solution if and only if cb ≥ 3.

Furthermore, for every c, b > 0 with cb = 3, we show that the optimal total
evacuation energy is 4b2d, and this is achieved by Ns,r with s = r = b
(Theorem 1).

2. For every c, b > 0 with cb ≥ 3, we derive the optimal values of s and r for the
algorithm Ns,r that minimize the total evacuation energy (Theorem2).

3. We observe that if total or makespan energy Δ is a constant, problems
TEb

d (Δ) and MEb
d (Δ) cannot be solved by robots that can only use a finite

number of speeds. We prove that if Δ is bounded by a constant, the optimal
evacuation time is Ω(d3/2) (see Theorem 4). Somewhat surprisingly, we give
an algorithm with total evacuation time O(d3/2 log d) (see Theorem 5); thus
the algorithm is optimal up to a logarithmic factor. Our algorithm requires
the robots to continuously change their speed at every distance x from the
origin. This is the only part that requires robots to have unbounded memory.

4. For the problems TEb
d (Δ) and MEb

d (Δ) with total or makespan energy Δ =
O(d) and b = 1, we give upper bounds on the total evacuation time (see
Theorems 5 and 7 respectively).

Due to space limitations, some proofs are omitted from this extended abstract.
The interested reader may see [12] for a full version of the paper.
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1.3 Related Work

In group search, a set of communicating robots interact and co-operate by
exchanging information in order to complete the task which usually involves find-
ing an exit placed at an unknown location within a given search domain. Some of
the pioneering results related to our work are concerned with search on an infinite
domain, like a straight line [3,5,6,24], while others with search on the perimeter
of a closed domain like unit disk [10] or equilateral triangle or square [20]. The
communication model being used may be either wireless [10] or F2F [7,17,20].
Search and evacuation problems with a combinatorial flavour have been recently
considered in [13,14] and search-and-fetch problems in [22,23], while [9] studied
average-case/worst-case trade-offs for a specific evacuation problem on the disk.
The interested reader may also wish to consult a recent survey paper [15] on
selected search and evacuation topics.

Traditional approaches to evaluating the performance of search have been
mostly concerned with time. This is apparent in the book [2] and the research
described in the seminal works on deterministic [3], stochastic [5,6] and random-
ized [24] search and continued up to the most recent research papers on linear
search for robots with terrain dependent speeds [19] and robots with Byzan-
tine [16] and crash fault behaviour [18] (see also the survey paper [15]). Aside
from the research by [21], in which the authors are looking at the turn cost
when robots change direction during the search, little or no research has been
conducted on other measures of performance.

The first paper on search and evacuation to change this focus from optimiz-
ing the time to the energy consumption required to find the exit as well as to
time/energy tradeoffs is due to [11]. The authors determine optimal (and in some
cases nearly optimal) linear search algorithms inducing the lowest possible energy
consumption and also propose a linear search algorithm that simultaneously
achieves search time 9d and consumes energy 8.42588d, for an exit located at
distance d unknown to the robots. However, the previously mentioned paper [11]
differs from our present work in that the authors focus exclusively on the face-
to-face communication model while here we focus on the wireless model. In the
present paper, we extend the results of [11] to the realm of the wireless commu-
nication model and study time/energy trade-offs for evacuating two robots on
the infinite line. Despite their apparent similarities, the face-to-face and wireless
communication models lead to completely different approaches for the design of
efficient linear search algorithms.

2 Minimizing Energy Given Bounds on Evacuation Time
and Speed

This section is devoted to the problem EEb
d (c) of minimizing the total evacuation

energy, given that the robots can travel at speed at most b and are required to
complete the evacuation within time cd for every instance d where d is the
distance of the exit from the origin. We start with establishing a necessary
condition on the product bc.
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Lemma 1. No online (wireless) algorithm can solve EEb
d (c) if bc < 3.

Proof (Lemma 1). Fix 0 < ε ≤ 3 and let bc = 3 − ε. We show that no algorithm
can solve problem EEb

d (c). For the sake of contradiction, consider a wireless
algorithm solving EE

(3−ε)/b
d (b), and having evacuation time no more than (3 −

ε)d/b, if the exit is placed d away from the origin. For a large enough d > 0, we
let the algorithm run till the first point among ±d is reached by a robot (and
maybe they are reached simultaneously). Without loss of generality, assume that
+d is reached, say by robot R, no later than the other point. Note that for this
point to be reached, at least time d/b has passed. Now, we place the exit at point
−d. The additional time that R needs to reach the exit is 2d/b, for a total time
of 3d/b, a contradiction to the stipulated evacuation time of (3 − ε)d/b.

Next we show that algorithm Nb,b is an optimal solution to the problem
EEb

d (c) when bc = 3. We start with the following lemma:

Lemma 2. Let b, c > 0 with bc = 3 and consider an evacuation algorithm such
that robots use maximum speed b and evacuate by time cd for an exit at distance
d from the origin. Then for every d > 0, the points d,−d, must be visited at time
d/b.

Proof (Lemma 2). Suppose not. Notice that the points ±d cannot be visited
before time d/b using speed at most b. We look at two cases.

Case 1: There exists d > 0 such that neither d nor −d is visited at time d/b.
Consider the first time t > d/b when either of them is visited, wlog let the
point +d be visited at time t > d/b by robot R1. We put the exit at −d. Then
R1 has to travel an additional distance of 2d, and can use speed at most b,
so needs time at least 2d/b to get to the exit. The total time taken by R1 to
evacuate is at least t + 2d/b > 3d/b = cd.

Case 2: There exists d > 0 such that d is visited at time d/b but −d is not
visited at this time (or vice versa). Wlog suppose R1 is at point d at time
d/b. Let −d + 2ε be the closest point to −d that has been visited at time d/b
where ε > 0 since by assumption −d is not visited at this time. We put the
exit at −d + ε. The time limit to evacuate is c(d − ε). At time d/b, R1 is at
distance 2d − ε from the exit, so the total time for R1 to reach the exit is at
least

d/b + (2d − ε)/b = 3d/b − ε/b = cd − cε

3
> cd − cε

In both cases, we showed that the robots cannot evacuate in the required
time bound. This completes the proof by contradiction.

Theorem 1. For every b, c > 0 with bc = 3, the algorithm Nb,b is the only
feasible solution to EEb

d (c), and is therefore optimal, and has total energy con-
sumption 4b2d.
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Proof (Theorem 1). Lemma 2 implies that in order to achieve an evacuation time
cd, both robots must use the maximum speed b and explore in different direc-
tions. If the exit is found at distance d by one of the robots, the time is d/b,
and therefore, the other robot must travel at the maximum speed b in order to
arrive at the exit in time cd. Thus, the only algorithm that can evacuate within
time cd while using speed at most b is Nb,b. A total distance of 4d is travelled
by the two robots, all at speed b, therefore the total energy consumed is 4b2d.

Next we consider the case of c, b > 3 and determine the optimal choices of
speeds s, r for Ns,r, as well as the induced total evacuation energy and compet-
itive ratio for problem EEb

d (c).

Theorem 2. Let δ = 2 + 3
√

2 ≈ 3.25992. For every c, b > 0, problem EEb
d (c)

admits a solution by algorithm Ns,r if and only if cb ≥ 3. For the spectrum of
c, b for which a solution exists, the following choices of speeds s, r are feasible
and optimal for Ns,r

3 ≤ cb ≤ δ cb > δ

s b
bc−2

δ
3√2c

r b δ
c

The induced total evacuation energy is f(cb)2d
c2 , where

f(x) :=

{
x2

(x−2)2 + x2 , 3 ≤ x ≤ δ
1
2

(
2 + 3

√
2
)3

, x > δ

It was observed in [11] that the optimal offline solution, given that d is
known, equals 2d

c2 . The competitive ratio is given by supd
c2

2d e(c, b, d) = f(cb) for
algorithms inducing total evacuation energy e(c, b, d). The competitive ratio of
Ns,r for the choices of Theorem 2 is summarized in Fig. 1. Note that in particular,
Theorem 2 claims that the competitive ratio only depends on the product cb, and
when cb = 3, the competitive ratio is 18 and is decreasing in cb (strictly only
when cb < δ). The optimal speed choices for the unbounded problem EEc

d (∞)
are exactly those that appear under case cb > δ. The remaining of the section is
devoted to proving Theorem2.

First we derive closed formulas for the performance of Ns,r. From the defini-
tion of energy used, and given that the robots move at speed 1, we deduce what
the evacuation time and energy are when the exit is placed at distance d from
the origin. The following two functions will be invoked throughout our argument
below.

T (s, r) :=
1
s

+
2
r

(1)

E (s, r) := s2 + r2 (2)



192 J. Czyzowicz et al.
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Fig. 1. The competitive ratio of Ns,r for the choices of Theorem 2.

Lemma 3. Let b, c be such that there exist s, r for which Ns,r is feasible. Then,
for instance d of EEb

d (c), the induced evacuation time of Ns,r is d · T (s, r) and
the induced total evacuation energy is 2d · E (s, r) .

Next we show the spectrum of c, b for which Ns,r is applicable.

Lemma 4. Algorithm Ns,r gives rise to a feasible solution to problem EEb
d (c)

if and only if bc ≥ 3. For every such b, c > 0, the optimal choices of N f
s,r can be

obtained by solving Convex Program:

min
s,r∈R

E (s, r) (NLPb
c)

s.t. T (s, r) ≤ c

0 ≤ s, r ≤ b.

Moreover, if s0, r0 are the optimizers to NLPb
c, then the competitive ratio of

Ns0,r0 equals c2 · E (s0, r0) .

A corollary of Lemma 4 is that any candidate optimizer to NLPb
c satisfying

1st order necessary optimality conditions is also a global optimizer. As a result,
the proof of Theorem 2 follows by showing the proposed solution is feasible and
satisfies 1st order necessary optimality conditions. This is done in Lemmata 5
and 6.

Towards proving that 1st order optimality conditions are satisfied, we argue
first that for all c, b > 0 with cb ≥ 3, the optimizers of NLPb

c satisfy the time
constraint tightly. Indeed, if not, then one could reduce any of the values among
s, r to make the constraint tight, improving the induced energy. Hence, in the
optimal solutions to NLPb

c, any of s, r ≤ b could be additionally tight or not. In
what follows, δ represents 2 + 3

√
2, as in the statement of Theorem 2.

Lemma 5. For each c, b > 0 for which 3 ≤ cb ≤ δ, the optimal solution to
NLPb

c is given by s = b
bc−2 , r = b.
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Lemma 6. For each c, b > 0 for which cb > δ, the optimal solution to NLPb
c is

given by s = δ
3√2c

, r = δ
c .

Proof (Theorem 2). By Lemmas 4 and 5, the optimal induced energy when 3 ≤
cb ≤ δ is

2dE
(

b

bc − 2
, b

)

= 2d

(
b2

(bc − 2)2
+ b2

)

and the induced competitive ratio is

(cb)2
(

1 +
1

(cb − 2)2

)

.

Finally, by Lemmas 4 and 6, the optimal induced energy when cb > δ is

2dE
(

1 + 22/3

c
,
2 + 3

√
2

c

)

= d

(
2 + 3

√
2
)3

c2
.

Hence the competitive ratio is constant and equals

1
2

(
2 + 3

√
2
)3

≈ 17.3217,

completing the proof of Theorem 2.

3 Minimizing Evacuation Time, Given Constant
Evacuation Energy

In this section we consider the problem of minimizing evacuation time, given
constant total (or makespan) evacuation energy. First we observe that if the
robots can use only a finite number of speeds, there is no feasible solution to the
problems MEb

d (Δ) or TEb
d (Δ).

Theorem 3. If Δ is a constant, and the robots have access to only a finite num-
ber of speeds, there is no feasible solution to the problems MEb

d (Δ) or TEb
d (Δ)

Proof (Theorem 3). Suppose the robots can only use speeds in a finite set. Wlog
let s be the minimum speed in the set. Define d′ = Δ/s2, and place the exit at
d′ + ε for any ε > 0. Travelling at any speed at or above s, it is impossible for
even one of the robots to reach the exit with energy ≤ Δ.

Next we prove a lower bound on the evacuation time in this setting.

Theorem 4. For every constant e ∈ R+, the optimal evacuation time for prob-
lem MEb

d (e) is Ω(d3/2), asymptotically in d.

Proof (Theorem 4). For any arbitrarily large value of d, we place the exit at
distance d from the origin. For any robot to reach the exit before running out of
battery, a robot can travel at speed at most e/

√
d. Therefore the time for even

the first robot to reach the exit is at least d
e/

√
d

= d3/2/e.
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Note that the above lower bound also holds for problem TEb
d (e) (if the total

evacuation energy is no more than e, then also the makespan evacuation energy
is no more than e). Next we prove that this naive lower bound is nearly tight
(up to a log d factor). First we consider the case that e ≤ 1. Then, we show how
to modify our solution to also solve the problem when e > 1.

The key idea is to allow functional speed s = s(x) to depend on the distance
x of the robot from the origin. We will make sure that the choice of s is such
that, for every large enough d, once the exit is located at distance d, there is
“enough” leftover energy for the other robot to evacuate too. For that, we will
choose the maximum possible speed r (which can now depend on d, and which
will be constant) so as to evacuate without exceeding the maximum energy
bounds. Notably, even though our algorithmic solution is described as a solution
to TEb

d (e), it will be transparent in the proof that it is also feasible to MEb
d (e).

Theorem 5. For every constant e ≤ 1, problem TEb
d (e) admits a solution by

Ns,r, where (functional) speed s is chosen as

s(x) =
1√

2 + 2x (1/e + log(1 + x))
.

When the exit is found (hence its distance d from the origin becomes known),
speed r is chosen as

r =
√

e

2d (e log(d + 1) + 1)
,

inducing evacuation time O
(
d3/2 log d

)
, where in particular the constant in the

asymptotic (in d) is independent of e.

Proof (Theorem 5). First we observe that since e ≤ 1, s(x) ≤ 1 for all x ≥ 0.
Given that d is at least, say, 1, it is also immediate that r ≤ 1, hence the speed
choices comply with the speed bound.

The exit placed at distance d from the origin is located by the finder in time

∫ d

0

1
s(x)dx =

2
√

2
(
(d + 1)3/2(3e log(d + 1) − 2e + 3) + 2e − 3

)

9e
≤ d3/2 log d,

where the inequality holds for every e ≤ 1, and for big enough d.
When the exit is located by a robot, the other robot is at distance 2d from

the exit. Moreover, each of the robots have used energy

∫ d

0

s2(x)dx =
e

2
− e

2e log(d + 1) + 2
,

hence the leftover energy for the non-finder (i.e., the robot that did not find the
exit) to evacuate is at least

e − 2
(

e

2
− e

2e log(d + 1) + 2

)

=
e

e log(d + 1) + 1
.
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The non-finder is informed of d, and hence can choose constant speed r so as to
use exactly all of the leftover energy, i.e. by choosing r satisfying

∫ 2d

0

r2dx =
e

e log(d + 1) + 1
.

Note that our choice of r is also feasible to problem MEb
d (e). Solving for r gives

the value declared at the statement of the theorem. Finally, choosing this specific
value of r, the non-finder needs additional 2d/r time to evacuate, which is at
most

(2d)3/2

√
(e log(d + 1) + 1)

e
≤ (2d)3/2

√
log(d + 1)

e
≤ d3/2 log d,

where the last inequality holds for big enough d, since e is constant. So the overall
evacuation time is no more than 2d3/2 log d, for big enough d, as promised.

It remains to address the case e > 1. For this, we recall that we solve TEb
d (e)

for large enough values of d, and we modify our solution so as to choose functional
speed

s̄(x) := min{s(x), 1},

effectively using even less energy than before. The distance that is traversed at
speed 1 depends only on constant e, and hence the additional evacuation time
is O(1) with respect to d.

4 Minimizing Evacuation Time with Bounded Linear
Total Evacuation Energy

In this section we study the problem TE1
d (Δ) of minimizing the total evacua-

tion time, where Δ = ed for some constant e. We show how to choose optimal
speed values s, r for algorithm Ns,r. Note that even though d is unknown to the
algorithm, speeds s, r may depend on the known constant e, and the maximum
speed b = 1.

In this section we prove the following theorem:

Theorem 6. Let δ = 2 + 3
√

2 ≈ 3.25992. For every constant e ∈ R+, problem
TE1

d (ed) admits a solution by Ns,r, where speeds s, r are chosen as follows

e < δ e ∈ [δ, 4) e ≥ 4

s
√

e

2(1+22/3)

√
e−2
2 1

r
√

e

(2+21/3) 1 1

The induced total evacuation time is given by g(e)d where g(e) is given by:

g(e) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
(2+21/3)3

e , e < δ

2 +
√

2
e−2 , e ∈ [δ, 4)

3 , e ≥ 4
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First we observe that, given the values of s = s(e), r = r(e), it is a matter
of straightforward calculations to verify, assuming they are feasible and optimal,
that the induced evacuation time is indeed equal to g(e)d as promised. Given
Lemma 3, we know that the optimal speed choices for algorithm Ns,r, for problem
TE1

d (ed) are obtained as the solution to the following NLP.

min
s,r∈R

1
s + 2

r (NLP′
e)

s.t. 2(s2 + r2) ≤ e

0 ≤ s, r ≤ 1

The optimal solutions to NLP′
e can be obtained by solving complicated algebraic

systems and by invoking KKT conditions, for the various values of e, as we also
did for NLPb

c. However, the advantage is that one can map the optimal solutions
to NLP1

c , see Theorem 2 and use b = 1, to feasible solutions to NLP′
e. Then, we

just need to verify 1st order optimality conditions for the candidate optimizers.
Since the NLP is convex, these should also be unique global optimizers.

Indeed, one of the critical structural properties pertaining to the optimizers
of NLP1

c is that the time constraint 1
s + 2

r ≤ cd is satisfied tightly. At the same
time, the optimal speed values, as described in Theorem2, as a function of c,
achieve evacuation energy equal to f(c)d 2

c2 . Attempting to find the correspon-
dence between parameters c, e (and problems NLP1

c , NLP′
e), we consider the

transformation f(c) 2
c2 = e. For the various cases of the piece-wise function f ,

the transformation gives rise to the piece-wise function g and optimal speeds s, r
(as a function of e) of Theorem 6.

Overall, the previous approach provides just a mapping between the provable
optimizers s(c), r(c) to NLP1

c , and candidate solutions s(e), r(e) to NLP′
e, and

more importantly, it saves us from solving complicated algebraic systems induced
by KKT conditions. What we verify next (which is much easier), is that feasibility
and KKT conditions are indeed satisfied for the obtained candidate solutions
s(e), r(e). Since the NLP is convex, that also shows that s(e), r(e), as stated in
Theorem 6 are actually global optimizers to NLP′

e.

Lemma 7. For every e ∈ R+, speeds s(e), r(e), as they are defined in Theorem6,
are feasible to NLP′

e.

Lemma 8. For every e ∈ R+, speeds s(e), r(e), as stated in Theorem6, are the
optimal solutions to NLP′

e.

5 Minimizing Evacuation Time with Bounded Linear
Makespan Evacuation Energy

In this section we study the problem ME1
d (Δ) of minimizing the makespan

evacuation time, given that the makespan evacuation energy Δ = ed for some
constant e. We show how to choose optimal speed values s, r for algorithm Ns,r.
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Note that even though d is unknown to the algorithm, speeds s, r may depend
on the known value e, and the maximum speed b = 1.

Theorem 7. For every constant e ∈ R+, problem ME1
d (ed) admits a solution

by Ns,r, where speeds s, r are chosen as follows

e < 3 e ≥ 3
s

√
e
3 1

r
√

e
3 1

The induced evacuation time is given by g(e)d where

g(e) :=

{
3
√

3
e , e < 3

1 , e ≥ 3

Proof (Theorem 7). What distinguishes the performance, and feasibility, of Ns,r

between TE1
d (ed) and ME1

d (ed), is that in the former, the total evacuation
energy (equal to d(2s2 +2r2)) is bounded by e, while in the latter the makespan
evacuation energy (equal to d(s2 + 2r2)) is bounded by e. Hence, similar to the
analysis for TE1

d (ed), the optimal speed choices for Ns,r to ME1
d (ed) are the

optimal solutions to the following NLP.

min
s,r∈R

1
s + 2

r (NLP′′
e )

s.t. s2 + 2r2 ≤ e

0 ≤ s, r ≤ 1

Note that NLP′′
e is convex, hence any choice of feasible speeds satisfying 1st

order optimality (KKT) conditions is also the unique global minimizer. More-
over, the choices of s, r of the statement of the theorem are clearly feasible to
NLP′′

e . Hence, it suffices to show that the choices of s, r do indeed satisfy KKT
conditions.

When e < 3 we note that the energy constraint is tight, while both speed
constraints are not tight. Hence, s, r are the unique optimizers if there exists
λ ≥ 0 satisfying

−∇
(

1
s

+
2
r

)

= λ∇(s2 + 2r2) ⇔
(

1/s2

2/r2

)

= λ

(
2s
4r

)

from which we conclude that λ = 1/(2s3) = 1/(2r3) > 0 as wanted (for s = r =√
e/3).
When e ≥ 3 we note that the speed constraints are both tight, while the

energy constraint is tight only when e = 3. In that case, it suffices to show that
there exist nonnegative λ1, λ2 satisfying

−∇
(

1
s

+
2
r

)

= λ1

(
1
0

)

+ λ2

(
0
1

)

Clearly, λ1 = 1/s2 = 1 > 0 and λ2 = 2/r2 = 2 > 0, which concludes the proof.
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6 Conclusion

We investigated how the wireless communication model affects time/energy
trade-offs for completion of the evacuation task by two robots. Our study raises
several interesting problems worth investigating. In addition to improving the
trade-offs, it would be interesting to consider search with multiple agents some
of which may be faulty in linear [16,18] as well as cyclical [10] search domains.
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Abstract. We present an improved algorithm for the problem of evacu-
ating two robots from the unit disk via an unknown exit on the boundary.
Robots start at the center of the disk, move at unit speed, and can only
communicate locally. Our algorithm improves previous results by Brandt
et al. [CIAC’17] by introducing a second detour through the interior of
the disk. This allows for an improved evacuation time of 5.6234. The best
known lower bound of 5.255 was shown by Czyzowicz et al. [CIAC’15].

1 Introduction

We consider the problem of evacuating two robots from the unit disk via an
unknown exit on the boundary. The robots start at the center of the disk and
move at unit speed (with infinite acceleration). They have unlimited comput-
ing resources and we neglect the time taken to perform arbitrary calculations.
However, robots are point-shaped and only perceive the information available
at their respective locations. In particular, they can only exchange information
(in no time) while colocated at the same point on the disk. Both robots have
full knowledge of the algorithms executed by either robot, and they share the
same coordinate system. The objective is to minimize the evacuation time, i.e.,
the time needed until both robots have reached the exit, in the worst case over
all possible positions of the exit. Note that the evacuation time for an algorithm
is equal to its competitive ratio, since the shortest path to any potential exit
location has length one.

This evacuation problem was first introduced by Czyzowicz et al. [12], who
showed that the basic algorithm that moves both robots along the boundary in
opposing directions achieves an evacuation time of 5.74 and gave a lower bound
of 5.199. In a follow-up paper, Czyzowicz et al. [9] presented two improved
algorithms with evacuation times of 5.644 and 5.628. Both these algorithms
introduce detours through the interior of the disk and may lead to a forced
meeting before the exit is found. Additionally, Czyzowicz et al. [9] improved the
lower bound to 5.255. Brandt et al. [5] introduced a general necessary condition
for worst-case exit positions and gave a slightly improved algorithm, without
forced meeting, that achieves an evacuation time of 5.625. Figure 1 shows the
trajectories of both robots in each of these algorithms.
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Fig. 1. From left to right: The evolution of the algorithms presented in [12], [9] and [5].
Green indicates the trajectories of robot R1, red indicates the trajectories of robot R2

and orange indicates that both robots move together. (Color figure online)

1.1 Our Results

The idea behind introducing a detour through the interior of the disk is to
protect the algorithm against the worst-possible exit position: Since the robot
that finds the exit needs to intercept the other robot, it makes sense to move
towards the other robot before reaching the worst-case interception point, which
worsens the evacuation time for some exit positions, but improves it for the worst
case. Of course, we can apply this idea iteratively to improve the new worst case
by introducing a second detour etc. Brandt et al. [5] discuss this idea and state:
“However, the improvement in the evacuation time achieved by the collection
of these very small cuts is negligibly small, even compared to the improvement
given by our algorithm.” We refute this statement by showing that introducing
even only a single additional cut reduces the evacuation time by the same order
of magnitude as the improvement by Brandt et al. [5] relative to the result of
Czyzowicz et al. [9]. Specifically, we improve the evacuation time to 5.6234. This
indicates that there might still be room for improvement in the upper bound
when considering a large family of additional cuts. It is worth noting that our
algorithm does not use a forced meeting of the agents on either detour to the
interior of the disk (see Fig. 5).

1.2 Related Work

Robot evacuation has been studied for various settings, differing in number of
robots and/or exits, robot capabilities, objective, shape of the region, initial
knowledge etc. Most results were obtained for evacuation from the disk with
wireless communication, i.e., for robots that can exchange information at all
times. Czyzowicz et al. [20] and Pattanayak et al. [11] consider evacuation with
multiple exits and known positions of the exists relative to each other. Lamprou
et al. [18] consider two robots of different speeds. Regarding evacuation with
more than two robots, Czyzowicz et al. [13] study the setting with three robots,
one of which may be faulty. Czyzowicz et al. focus on evacuating a single robot,
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the “queen”, that is supported by up to three [14] or more [8] “servants”. Regard-
ing other environments, Czyzowicz et al. [10] study evacuation from equilateral
triangles and squares, and Borowiecki et al. [4] study the evacuation problem in
graphs.

A problem closely related to evacuation is the search problem. Especially
the problem of finding a specific point on the line has received considerable
attention, e.g., [2,3,16], and other works have focused on searching the plane,
e.g., [15]. Another related problem is the rendezvous or gathering problem, where
robots initially located at different points need to find each other [1,6,7,17,21].
Finally, the problem where one robot is trying to catch the other is called the
lion and man problem and was first studied for the unit disk [19].

2 Preliminaries

In this section we define the general notation for the following work. We use the
following notation for line segments and arcs between two points A, B.

AB denotes the straight line segment between A and B.
|AB| denotes the length of the segment AB.
˜AB denotes the shorter arc from A to B along the boundary of the disk for A

and B on the boundary.
|˜AB| denotes the length of the arc ˜AB for A and B on the boundary.

A cut is the movement of a robot from the boundary of the disk into the interior
and back to the point where the robot left the boundary. In general a cut can
have any shape, but our algorithm only uses line segments. The depth of a cut is
defined as half the distance traveled when moving along a cut. The evacuation
time is the time until both robots have reached the exit.

Our task is to define trajectories for the robots that minimize the evacuation
time. To obtain the evacuation time for a given exit we need to know where the
robots exchange the information about the location of the found exit. This is
done by the meeting protocol, a term coined in [9]. For an illustration, refer to
Fig. 2.

Definition 1 (Meeting Protocol). If at any time t0 one of the robots finds
the exit at point E, it computes the shortest additional time t so that the other
robot, after traveling distance t0 + t, is located at point M satisfying |EM | = t.
This ensures that the robot that found the exit can move along the segment EM
to pick the other robot up at point M at time t0 + t. After both robots meet they
evacuate along the segment ME via the exit at E, resulting in an evacuation
time of t0 + 2t.

With the meeting protocol we are able to calculate the evacuation time for
a given exit. Note that, because the robots move at unit speed, we can use time
and traveled distance interchangeably. From the point of view of the robot that
finds the exit, the evacuation time is the sum of the time it takes the robot to
find the exit, the time it takes the robot to pick up the other robot at their
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Fig. 2. Illustration of the meeting protocol while the robots perform the algorithm
presented in [12]. Robot R1 finds the exit at point E, uses the meeting protocol to
calculate the meeting point and picks up robot R2 at point M .

meeting point, and the time it takes to get back to the exit. From the point of
view of the robot that gets picked up, the evacuation time is the sum of the time
it takes the robot to get to the meeting point and the time it takes the robot
to travel from the meeting point to the exit. Note that equations of the form
x + 2 sin ((x + y)/2) = y have to be solved as part of the meeting protocol. In
general there are no closed forms known for these equations and therefore we
have to rely on numeric solutions.

To prove our stated evacuation time we will refer to a criterion established in
[5]. We briefly recap the relevant definitions. To properly define certain relevant
angles we first distinguish two cases regarding the direction of the movement of
the two robots at the exit and the corresponding meeting point.

We say that the movement of the two robots at the exit and the corresponding
meeting point is conform if the two robots would move to the same side of the
infinite line through the exit and the corresponding meeting point if they did not
find the exit, respectively were not picked up at the corresponding meeting point.
If the two robots would move to different sides of the infinite line we say that
their movement (at the exit and the corresponding meeting point) is converse.
For an illustration, refer to Fig. 3. The authors of [5] note that the cases where
one or both robots would move on the infinite line can be arbitrarily considered
to belong to one of the two cases.

For the cases of conform and converse movement we now (under the assump-
tion of local differentiability of the movement) define two angles regarding the
movement of the two robots at the exit E and at the corresponding meeting
point M , respectively, and the straight line segment s between E and M .

We assume that, locally, robot R1 arrives at the exit E via the local lin-
earization of its trajectory g and would continue on g if it did not find the exit
at E. Analogously, we assume that, locally, robot R2 arrives at the correspond-
ing meeting point M via the local linearization of its trajectory h and would
continue on h if it was not picked up at M .
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In the case of conform movement, the angle between g and s is denoted by β
and the angle between s and h by γ. In the case of converse movement the angle
between g and s is denoted by β and the angle between h and s by γ. Note that
only the definition of γ differs in the two cases. For an illustration, refer again
to Fig. 3.

s

g
h

γβE M

s

g

h

γ
βE

M

Fig. 3. Illustration of conform movement (left) and converse movement (right) of the
robots.

Theorem 1 ([5, Corollary 2.5, Theorems 2.8, 2.9 and 2.10]). If the
trajectories of the two robots are differentiable around points E and M and
2 cos (β) + cos (γ) �= 1 holds, then there is an exit position that yields a larger
evacuation time than placing the exit at E.

This means that, to consider an exit E as the worst-case candidate, it is
necessary that either the trajectory of at least one robot is not differentiable
(around the exit or the corresponding meeting point) or 2 cos (β) + cos (γ) = 1.

Like the algorithms illustrated in Fig. 1, our algorithm will follow the idea of
initially moving the robots to an arbitrary point I on the boundary (we denote
the antipodal point by I ′) and then moving one robot counter-clockwise and
the other robot clockwise along the boundary to find the exit. The search on
the boundary will only be interrupted if they get picked up or perform a cut.
We make a statement about algorithms that follow this general idea, which is
helpful to calculate the angles β and γ.

Proposition 1. If the robots start their search for the exit together at an arbi-
trary point I on the boundary, one robot moves counter-clockwise and the other
robot moves clockwise, their movement is conform, they move along the bound-
ary towards the point I ′ and their search along the boundary is only interrupted
if they get picked up or perform cuts, then the following statement holds: If
the corresponding meeting point M of an exit E lies on the boundary, then
β = γ = π − x+y

2 , where x := |ˆIE| and y := |˜IM |.
Proof. We distinguish between the two cases: x + y < π and x + y ≥ π.

For the first case x + y < π see the left side of Fig. 4. Because |OE| = 1
and |OM | = 1, the triangle �EOM is isosceles. Therefore the base angles η
and η′ are equal. With the statement, that the interior angles of a triangle add
up to π, we can express η = η′ as π−(x+y)

2 . Our next observation is that the direc-
tion vector of the tangent at E and the position vector of E are perpendicular
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(the same holds for the tangent at M and the position vector of M). This imme-
diately yields β = π

2 + η. Using our expression for η we get β = π − x+y
2 . The

same follows for γ.
For the second case x + y ≥ π see the right side of Fig. 4. We again have

an isosceles triangle. Therefore the base angles η and η′ are equal. Because of
x + y ≥ π we have to calculate the interior angle of the triangle �EOM at O.
We easily obtain the interior angle by 2π − (x + y). Now analogous to the first
case, with the equality of the base angles and the statement about the interior
angles of a triangle, we can express η as (π − (2π − (x + y))) /2. In this case the
angle β can be obtained by π

2 − η. In conjunction with our expression for η we
have β = π

2 −η = π
2 − (π − (2π − (x + y))) /2 = π − x+y

2 . The same follows for γ
with the equality of the base angles.
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Fig. 4. Illustration of the cases x + y < π (left) and x + y ≥ π (right) in the proof of
Proposition 1.

We also make a straight-forward observation (about algorithms that follow
the mentioned idea) that follows from monotonicity of the trajectories of both
robots along the perimeter of the disk.

Observation 1. For any two exit positions E and E∼ with the corresponding
meeting points M and M∼ lying on the boundary and with |ˆIE| > |¯IE∼|, we
have |˜IM | > |˘IM∼|.

3 Our Algorithm

In this section we present a class A(p1, α1, d1, p2, α2, d2) of parameterized algo-
rithms with two cuts. The position of the first cut is specified by the parame-
ter p1, the parameter α1 specifies the angle of the first cut and d1 describes the
depth of the first cut. Correspondingly, p2 refers to the position, α2 refers to the
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angle and d2 refers to the depth of the second cut. The trajectories of the robots
are described below. For an illustration, refer to Fig. 5.

Algorithm A(p1, α1, d1, p2, α2, d2):

If a robot finds the exit at any point, it immediately performs the meeting pro-
tocol and picks the other robot up at the calculated meeting point M . Both
robots reach M at the same time and evacuate via the now known exit on a
straight line together. Until this happens the trajectories of the robots are as
follows:
1. Both robots move on a straight line to an arbitrary point I on the boundary.

2. At I the robots start their search on the boundary in opposite directions:
robot R1 moves counter-clockwise and robot R2 moves clockwise.

3. After the robots each covered a distance of p1 on the boundary, robot R1 is
at C1 and robot R2 is at C ′

1. There both robots perform their first cut. They
move on a straight line at angle α1 towards the interior (see Figure 5).

4. After they each covered a distance of d1 on the straight line, robot R1 is
at P1 and robot R2 is at P ′

1.
5. Now both robots return on the straight line to C1 and C ′

1, respectively.
6. After reaching C1 and C ′

1, respectively, they continue their search on the
boundary, proceeding as in step 2.

7. After the robots each covered a distance of p2 on the boundary in total,
robot R1 is at C2 and robot R2 is at C ′

2. There both robots perform their
second cut. They move on a straight line at angle α2 towards the interior
(see Figure 5).

8. After they each covered a distance of d2 on the straight line, robot R1 is
at P2 and robot R2 is at P ′

2.
9. Now both robots return on the straight line to C2 and C ′

2 respectively.
10. After reaching C2 and C ′

2 respectively, they continue their search on the
boundary, proceeding as in step 2.

4 Analysis

To achieve the stated bound on the evacuation time of 5.6234 we used local
search to computationally determine the parameters p1 = 2.62666582851, α1 =
2π/9, d1 = 0.490011696287, p2 = 2.97374843355, α2 = 0.05523991π and d2 =
0.1670474016 for our algorithm. In the following we rigorously prove that our
algorithm indeed needs time at most 5.6234 to evacuate two robots from the
unit disk, irrespective of the location of the exit. In order to improve readability,
we refer to the above values of our parameters as p∗

1, α∗
1, d∗

1, p∗
2, α∗

2 and d∗
2.

Because the presented algorithm is symmetric, it is sufficient to analyze only
one half of the disk. We assume that robot R1 finds the exit and robot R2

gets picked up. For the analysis of our algorithm we proceed along the same
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Fig. 5. Illustration of Algorithm A. Left: trajectories of the two robots for the exit
located at I ′. Right: magnification of the region surrounding I ′.

arguments as the authors in [5], but apply these to our approach with two cuts.
First we partition the arc ˆII ′, into the following parts:

¯IE1 For all exits on this arc robot R2 is picked up before it leaves the boundary
at point C ′

1. In particular, if the exit is located at E1, the meeting of the
robots will take place at C ′

1.
˘E1E2 For all exits on this arc, robot R2 is picked up while performing its first

cut. In particular, if the exit is located at E2, robot R2 will be picked up
at C ′

1 after completing its first cut.
˘E2E3 If the exit lies on this arc, robot R1 finds the exit before performing its

first cut, but robot R2 is picked up after performing its first cut.
˘E3E4 This part contains all exits for those robot R2 is picked up while performing

its second cut. In particular, if the exit is located at E4, robot R2 will be picked
up at C ′

2 after completing its second cut. We exclude the point E3 from this
(half-open) part.

˘E4E5 If the exit lies on this arc, robot R1 finds the exit before performing its
second cut, but robot R2 is picked up after performing its second cut.

¯E5I ′ This part contains all exits that robot R1 finds after performing its second
cut. We exclude the point E5 from this (half-open) part.

We note that all points are well-defined for our parameter values. In particular,
if the exit is found after the first cut, the meeting of the robots cannot take place
before the other robot performs its second cut. We obtain (for our parameter val-
ues): |¯IE1| ≈ 0.629973871925, |¯IE2| ≈ 2.590020657077, |¯IE3| = 2.62666582851,
|¯IE4| ≈ 2.972352082515 and |¯IE5| = 2.97374843355.

We now analyze each of these parts in detail and determine possible worst-
case candidates.
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Lemma 1. If there is a (global) worst-case exit position on the arc ¯IE1, then it
is at E1.

Proof. To prove the above statement, we will use Theorem 1 to exclude all inte-
rior points of the arc ¯IE1 as worst-case candidates.

Note that the movement of both robots is not differentiable at I and the
movement of robot R2 is not differentiable at C ′

1. Therefore we cannot use Theo-
rem 1 to exclude I and E1 as worst-case candidates, as the corresponding meeting
point for an exit at E1 is at C ′

1.
Recall that, for all possible exits on the arc ¯IE1, robot R2 is picked up

before it performs its first cut. In particular, for all these possible exits their
corresponding meeting points lie on the boundary. Therefore Proposition 1 is
applicable. Also note that we are in the case of conform movement.

With Proposition 1 we obtain β = γ ≈ 1.51327 for the exit at E1 and
the corresponding meeting point at C ′

1, assuming that robot R2 would con-
tinue its search on the boundary at point C ′

1. This yields 2 cos (1.51327) +
cos (1.51327) < 1. Note that by Proposition 1 and Observation 1 the obtained
value of approximately 1.51327 is a lower bound on β = γ for any exit on
the interior of the arc ¯IE1 and its corresponding meeting point. In conjunction
with the monotonicity of the cosine function on the interval [0, π] the statement
2 cos (β) + cos (γ) < 1 holds for any exit on the interior of the arc ¯IE1 and its
corresponding meeting point. Therefore we can use Theorem 1 to exclude any
exit on the interior of the arc ¯IE1 as possible worst-case candidate.

It remains to show that the exit at I is not a worst-case candidate. This is
obvious since the evacuation time for this placement would only be 1 because
the robots would find the exit together after initially moving to point I.

Before we start with the next arc, we recall a statement by the authors
of [5], that also applies to the second cut. We decouple the exit and meeting
point for a moment and let X be an exit for which robot R2 would be picked
up while it is returning from the tip of a cut to the boundary. Now instead of
the corresponding meeting point, we consider Y as the meeting point for the
exit at X, where Y is on the corresponding cut. Let β′ be the angle between
the direction of movement of robot R1 at X and XY and let γ′ be the angle
between XY and the direction of movement of robot R2 while returning to the
boundary along the corresponding cut. They state:

Lemma 2. If 2 sin (β′) − sin (γ′) > 0, then the value of 2 cos (β′) + cos (γ′)
increases by moving Y by a small ε along the corresponding cut towards the
boundary (but not on to the boundary).

Proof sketch. To prove the statement we observe that moving Y in the aforemen-
tioned way decreases β′ by the same amount by which γ′ is increased. Because the
cosine function is differentiable, if the ε is small enough the mentioned decrease
of β′ gets arbitrarily close to a value that is proportional to the derivative of
the function − cos (θ) at β′. Similarly the increase in γ′ gets arbitrarily close
to a value that is proportional to the derivative of the function cos (θ) at γ′.



Evacuating Two Robots from a Disk: A Second Cut 209

Therefore, if 2 sin (β′) − sin (γ′) > 0 the value of 2 cos (β′) + cos (γ′) increases by
moving Y in the aforementioned way.

We now can start with the analysis of the second arc.1

Lemma 3. If there is a (global) worst-case exit position on the arc ˘E1E2, then
it is at E1 or E2.

For the worst-case candidates on the third arc we get an analogous result. (see
Footnote 1)

Lemma 4. If there is a (global) worst-case exit position on the arc ˘E2E3, then
it is at E2 or E3.

Before we start with the next arc, we recall that we explicitly specified that
E3 does not belong to the arc. To still have a closed arc we add an artificial
point E∼

3 , that coincides with E3. However, for an exit at E∼
3 robot R1 finds

the exit immediately after performing its first cut. Without the addition of the
artificial point E∼

3 our arc would be half open and there could be a sequence
of points that converges towards E3 with increasing evacuation times but the
exit with the largest evacuation time would not belong to the arc. In [5] the
authors observe that the evacuation time for the artificial exit at E∼

3 cannot be
smaller than the evacuation time for the exit at E3. This applies, since otherwise
robot R1 could improve the evacuation time for the exit at E3 by simulating the
movement for the exit at E∼

3 .

Lemma 5. If there is a (global) worst-case exit position on the arc ˙E∼
3 E4, then

it is at E∼
3 or E4.

Proof. To prove the statement, we further divide the arc into three parts. For
this, we calculate the points Q2 and S2, where Q2 is the second intersection of the
boundary and the line through C ′

2 and P ′
2. If the exit is placed at S2, robot R2

will be picked up at P ′
2. We obtain: E∼

3 = E3 ≈ (−0.492471164;−0.870328761),
E4 ≈ (−0.16843;−0.98571), Q2 ≈ (−0.492471152;−0.870328768) and also S2 ≈
(−0.26963;−0.96296), C ′

2 ≈ (0.16706;−0.98595) and P ′
2 ≈ (0.00252;−0.95710).

Note that Q2 has a smaller second coordinate than E∼
3 and hence robot R1

reaches the point Q2 after E∼
3 .

Now we analyze the three arcs ˙E∼
3 Q2, ˘Q2S2 and ˘S2E4 separately.

˙E∼
3 Q2 We first note that our parameters are chosen in such a way that the
meeting point M∼

3 for the exit at E∼
3 is on the line segment C ′

2P
′
2. Once

again we limit the respective β for any exit on the arc ˙E∼
3 Q2 from above. To

do this we decouple exit and meeting point. Instead of the β for the exit at E∼
3

and the corresponding meeting point at M∼
3 , we calculate the angle β′ for the

exit at E∼
3 and consider C ′

2 as the meeting point. We obtain β′ ≈ 0.34139.
Note that because of the definition of Q2 the angle β′ is greater than the
respective β for the exit at E∼

3 and the corresponding meeting point at M∼
3 .

1 This and all other missing proofs can be found in the full version.
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It remains to show that the angle β′ is an upper bound for the respective angle
β of any exit on the arc ˙E∼

3 Q2. Therefore let E be an exit on the arc ˙E∼
3 Q2

and M be the corresponding meeting point on the line segment C ′
2P

′
2. If the

line segment E∼
3 C ′

2 is rotated around the origin so far that the point E is
reached, denote the point on which C ′

2 is rotated by Y . Observe in particular
that the line segment C ′

2P
′
2 is not intersected during the rotation due to the

definition of Q2. We further observe, that the angle between the tangent at
point E and the line segment EY is equal to the angle between the tangent
at point E∼

3 and the line segment E∼
3 C ′

2 (this angle is β′). Because the line
segment EY is above the line segment EM , where M is the corresponding
meeting point of the exit at E, the angle β for an exit at E is smaller than
the angle β′. Therefore, we can limit the respective β for any possible exit on
˙E∼
3 Q2 by β′ ≈ 0.34139.

On the other hand, the angle γ at the corresponding meeting point for
each possible exit of the arc ˙E∼

3 Q2 can be limited from above by the
angle ∠E∼

3 P ′
2Q2 ≈ 0.00000001.

Therefore with the monotonicity of the cosine function, the following state-
ment 2 cos (β) + cos (γ) > 2 cos (0.34139) + cos (0.00000001) > 1.88458 +
0.99999999 > 1 holds for each possible exit on the arc ˙E∼

3 Q2 and the corre-
sponding meeting point. With Theorem1 we can exclude all exits but E∼

3

(because the movement of robot R1 is not differentiable at E∼
3 ) on the

arc ˙E∼
3 Q2 as worst-case candidates.

˘Q2S2 We first note that in this case the movement of the robots is converse
(because of the definition of Q2) and the movement of robot R2 is not dif-
ferentiable around P ′

2 and therefore we cannot exclude the exit at S2 as the
worst-case candidate with Theorem 1. With a similar reasoning as in the first
case we can limit respective β of all other points on the arc ˘Q2S2 from above
by the β for an exit placed at Q2 and its corresponding meeting point. This
statement holds because if we rotate the line segment Q2C ′

2 around the origin
until we reach a point E on the arc ˘Q2S2 and denote the point on which C ′

2 is
rotated on by Y , we observe the following: the line segment EY is above the
line segment EM , where M is the corresponding meeting point of an exit at
E. The one thing left to argue is that while we rotated the line segment Q2C ′

2

we did not intersect the line segment C ′
2P

′
2. This is because the intersection of

the line segment Q2C ′
2 and the perpendicular line that contains the origin O is

above the point P ′
2. Therefore we can limit the respective β by approximately

0.34138552, which is the obtained value of the angle for an exit placed at Q2.
On the other, hand it is easy to verify that the angle γ at the corresponding
meeting point for each possible exit on the arc ˘Q2S2 (but S2, because the
movement of robot R2 is not differentiable at S2) can be limited from above
by the angle ∠Q2P

′
2S2 ≈ 0.195072.

Combining these two observations and with the monotonicity of the cosine
function on the interval [0, π] we can state that for any possible exit (but S2)
on the arc ˘Q2S2 the term 2 cos (β)+cos (γ) is greater than 2 cos (0.34138552)
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+ cos (0.195072) > 1.884583 + 0.98103 > 1. Therefore with Theorem 1 we
can exclude all possible exits (but S2) on the arc ˘Q2S2 as possible worst-case
candidates.

˘S2E4 Here we want to show that 2 cos (β) + cos (γ) < 1 holds for all possible
exits on the interior of the arc ˘S2E4. We first observe that the movement of
robot R2 is not differentiable at point C ′

2, which is the corresponding meeting
point for E4 and that the movement of the robots is conform. To prove the
statement we decouple the exit and the meeting point and use Lemma 2:
Let X be an arbitrary point on the arc ˘S2E4 and Y be an arbitrary point on
the line segment P ′

2C
′
2. First we will show that 2 sin (β′)−sin (γ′) > 0 holds for

all possible combinations of X and Y . To do so we verify the combination of X
and Y that minimizes 2 sin (β′) and the combination that maximizes sin (γ′)
separately. It is easy to understand that 2 sin (β′) is minimized for X = E4

and Y = C ′
2 (note that we allow Y to be on the boundary as it is a lower bound

for 2 sin (β′)) and sin (γ′) is maximized for X = E4 and Y = P ′
2. Calculating

the respective angles we have: 2 sin (β′) − sin (γ′) > 0.33549 − −0.33289 > 0.
Therefore, we can use Lemma 2 and it is enough to show that for every X on
the arc ˘S2E4 and Y = C ′

2 the statement 2 cos (β′) + cos (γ′) < 1 holds. This
is because Lemma 2 says that moving Y closer to C ′

2 only increases the value
of 2 cos (β′) + cos (γ′). Therefore, we need to verify the combinations X and
Y = C ′

2 that maximize 2 cos (β′) and cos (γ′). We once again do this separately
to obtain an upper bound. It is straight forward to verify that for X = E4

the respective expressions are maximized. We calculate the respective angles
(under the assumption that robot R2 would continue his movement at C ′

2 as
he did while returning from the tip of its cut) and obtain 2 cos (β′)+cos (γ′) <
1.971661−0.985099 < 1. Therefore we can use Theorem 1 to exclude all exits
on the interior of the arc ˘S2E4 as possible worst-case candidates. It remains
to show that S2 is not a worst-case candidate either. We do this by comparing
the evacuation times for an exit at S2 and E4. Recall that the corresponding
meeting point for an exit at S2 is at P ′

2. For an exit at S2 we obtain an
evacuation time of approximately 5.39304 and for an exit at E4 we obtain an
evacuation time of approximately 5.62335779. Comparing these evacuation
times we see that S2 is not a worst-case candidate.

Altogether we have shown that for all possible exits (but E∼
3 and E4) on the

arc ˙E∼
3 E4 either 2 cos (β) + cos (γ) > 1 or 2 cos (β) + cos (γ) < 1 holds. With

Theorem 1 we excluded all possible exits (but E∼
3 and E4) on the arc ˙E∼

3 E4 as
worst-case candidates.

We continue with the analysis of the fifth segment.

Lemma 6. If there is a (global) worst-case exit position on the arc ˘E4E5, then
it is at E4 or E5.

Proof. We first note that the movement of robot R2 is not differentiable at the
corresponding meeting point C ′

2 of an exit placed at E4. Furthermore, the move-
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ment of robot R1 is not differentiable at E5. Therefore we cannot use Theorem 1
to exclude E4 and E5 as worst-case candidates.

Recall that for all possible exits on the arc ˘E4E5 robot R2 is picked up
after performing its second cut and robot R1 finds the exit before performing its
second cut (but after continuing its search on the boundary after completing its
first cut). In particular, for all these possible exits their corresponding meeting
points lie on the boundary. Therefore Proposition 1 is applicable. Also note that
we are in the case of conform movement.

With Proposition 1 and Observation 1 we can obtain an upper bound for the
angles β = γ of any exit on the interior of the arc ˘E4E5 and its corresponding
meeting point. We do so by calculating the value of β = γ for the exit placed
at E4 and its corresponding meeting point C ′

2 (assuming that robot R2 would
continue its search on the boundary at point C ′

2). For this exit and meeting point
we obtain β = γ ≈ 0.16855. With the monotonicity of the cosine function on the
interval [0, π] the statement 2 cos (β)+cos (γ) > 2 cos (0.16855)+cos (0.16855) >

2.95748 > 1 holds for any exit on the interior of the arc ˘E4E5 and its correspond-
ing meeting point.

Therefore we can use Theorem 1 to exclude any exit on the interior of the
arc ˘E4E5 as a possible worst-case candidate.

Analogous to our preparation of Lemma5 we again recall that we explicitly
specified that E5 does not belong to the final arc. To still have a closed arc we
add an artificial point E∼

5 , that coincides with E5. For an exit at E∼
5 robot R1

finds the exit immediately after performing its second cut. Again the evacuation
time for the artificial exit at E∼

5 cannot be smaller than the evacuation time
for the exit at E5. This applies, since otherwise robot R1 could improve the
evacuation time for the exit at E5 by simulating the movement for the exit
at E∼

5 . (see Footnote 1)

Lemma 7. If there is a (global) worst-case exit position on the arc ˘E∼
5 I ′, then

it is at E∼
5 .

We summarize the statements of the Lemmas 1 through 7 as follows.

Theorem 2. For Algorithm A (p∗
1, α

∗
1, d

∗
1, p

∗
2, α

∗
2, d

∗
2) the worst-case exit position

is at E1, E2, E∼
3 , E4 or E∼

5 .

To determine the evacuation time for our algorithm, we simply take the
maximum of the evacuation times for these candidates. This leads to our stated
upper bound and main result.

Theorem 3. Algorithm A (p∗
1, α

∗
1, d

∗
1, p

∗
2, α

∗
2, d

∗
2) needs time at most 5.6234 to

evacuate two robots via an unknown exit on the boundary of the closed unit disk.

Proof. For exit E1 we have |¯IE1| ≈ 0.629973871925 and for the corresponding
meeting point M1 we have |¯IM1| = 2.62666582851, which results in an evac-
uation time of less than 5.62335779. For the second worst-case candidate E2

we have |¯IE2| ≈ 2.590020657077 and for the corresponding meeting point M2
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we have |¯IM2| = 2.62666582851, which results in an evacuation time of less
than 5.62335779. For exit E∼

3 we have |¯IE∼
3 | = 2.62666582851 and for the corre-

sponding meeting point M∼
3 we have |C ′

2M
∼
3 | ≈ 0.161251676967, which results

in an evacuation time of less than 5.62335779. For the fourth worst-case can-
didate E4 we have |¯IE4| ≈ 2.972352082515 and for the corresponding meeting
point M4 we have |¯IM4| = 2.97374843355, which results in an evacuation time
of less than 5.62335779. For exit E∼

5 we have |¯IE∼
5 | = 2.97374843355 and for

the corresponding meeting point M∼
5 we have |˘IM∼

5 | = 3.141494005121, which
results in an evacuation time of less than 5.62335778. The maximum of these
evacuation times is limited from above by 5.6234 and we have proved our stated
upper bound on the problem of the two robot evacuation from the closed disk
with face-to-face communication.
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Abstract. Motivated by concerns about diversity in social networks,
we consider the following pattern formation problems in rings. Assume
n mobile agents are located at the nodes of an n-node ring network.
Each agent is assigned a colour from the set {c1, c2, . . . , cq}. The ring
is divided into k contiguous blocks or neighbourhoods of length p. The
agents are required to rearrange themselves in a distributed manner to
satisfy given diversity requirements: in each block j and for each colour
ci, there must be exactly ni(j) > 0 agents of colour ci in block j. Agents
are assumed to be able to see agents in adjacent blocks, and move to any
position in adjacent blocks in one time step.

When the number of colours q = 2, we give an algorithm that termi-
nates in time N1/n∗

1 + k + 4 where N1 is the total number of agents of
colour c1 and n∗

1 is the minimum number of agents of colour c1 required
in any block. When the diversity requirements are the same in every
block, our algorithm requires 3k + 4 steps, and is asymptotically opti-
mal. Our algorithm generalizes for an arbitrary number of colours, and
terminates in O(nk) steps. We also show how to extend it to achieve
arbitrary specific final patterns, provided there is at least one agent of
every colour in every pattern.

1 Introduction

Recent research in sociology and network science indicates that diverse social
connections have many benefits. For example, de Leon et al. [24] conclude that
increasing diversity, and not just increasing size, of social networks may be essen-
tial for improving health and survival among the elderly. Eagle et al. find that
social network diversity is at the very least a strong structural signature for
the economic development of communities [12]. Reagans and Zuckerman [27]
found that increased organizational tenure diversity in R&D teams correlated
positively with higher creativity and productivity.

On the other hand, the pioneering work of Schelling [28,29] provided a model
to describe how even small preferences for locally homogeneous neighbourhoods
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result in globally segregated cities. In his model, individuals of two colours are
situated on a path, ring or mesh (i.e. a one- or two-dimensional grid) and have a
threshold for the minimum number of neighbors of the same colour they require
in their local neighborhood. If this threshold is not met, they move to a random
new location. Schelling showed via simulations that this process inevitably led
to a globally segregated pattern. This model has been studied extensively and
the results confirmed repeatedly; see for example [1,2,10,19,26,31,32]. Recent
work in theoretical computer science [4,20] has shown that the expected size of
these segregated communities can be exponential in the size of the local neigh-
bourhoods in some social network graphs. The Schelling model has also been
studied from a games perspective, where neighborhood formation is determined
by agents that can be selfish, strategic [6,14] or form coalitions [5].

In this paper, we study an algorithmic approach to seeking diversity. Consider
a social network formed by a finite number of individuals, henceforth called
agents that can be classified into a set of categories, called colours. The group
collectively seeks diversity in local neighborhoods. Is it possible to achieve a
specified version of diversity? If so, how can the agents achieve this diversity?
These questions were first raised and studied in a recent paper [22], in which
the authors studied a model with red and blue agents specifying their local
neighbourhood preferences in a ring network. Centralized algorithms to satisfy
the preferences of all agents, when possible, were given in [22].

In this paper, we study distributed algorithms for achieving diversity in local
neighborhoods (blocks) in a ring network.

1.1 Model and Problem Definition

We assume we are given a collection of n agents situated on the nodes of an
n-node ring network. We fix a partition of the ring into k paths or blocks of length
p, with n = kp. Each agent has a colour drawn from the set {c1, c2, . . . , cq}.
For ease of exposition, we initially focus our analysis on the case q = 2, and
call the colours c1 and c2 as blue and red respectively. Any specific clockwise
ordering of these n coloured agents around the ring is called a configuration
or n-configuration. Starting from an initial configuration, we are interested in
distributed algorithms for the agents to rearrange themselves into final config-
urations that meet certain given constraints, for example, alternating red and
blue agents, or each red agent has at least one blue agent as a neighbour.

A configuration can be represented by a string C of length n drawn from the
alphabet {c1, c2, . . . , cq}. Following standard terminology, for any string u, we
denote by |u| the length of u; by ui the string u repeated i times; by uv the string
u concatenated with the string v. The number of occurrences of the colour ci in
a string u is denoted by ni(u). A pattern P is a string of length p drawn from
the alphabet {c1, c2, . . . , cq} with ni(P ) > 0 for all 1 ≤ i ≤ q. Corresponding
to the partition of the ring into blocks mentioned above, a configuration can be
seen as a concatenation of k patterns S1S2 . . . Sk, in which Si is the pattern of
agents in the i-th block.

We are interested in distributed algorithms for the following problems:
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P1: Given positive integers ni(j) for all 1 ≤ i ≤ q and 1 ≤ j ≤ k and a
valid initial configuration C, give a distributed algorithm that achieves a
final configuration S1S2 . . . Sk with ni(Sj) = ni(j) for all 1 ≤ i ≤ q and
1 ≤ j ≤ k.

P2: Given positive integers ni(j) for all 1 ≤ i ≤ q and 1 ≤ j ≤ k and a
valid initial configuration C, give a distributed algorithm that achieves a
final configuration S1S2 . . . Sk with ni(Sj) ≥ ni(j) for all 1 ≤ i ≤ q and
1 ≤ j ≤ k.

P3: Given a sequence of patterns P1, P2, . . . , Pk, and a valid initial configuration
C, give a distributed algorithm to achieve the final configuration P1P2 · · · Pk.

A given initial configuration C is valid for the three problems above (respec-
tively) if and only if for all 1 ≤ i ≤ q, we have (P1) ni(C) =

∑k
j=1 ni(j) (P2)

ni(C) ≥ ∑k
j=1 ni(j) and (P3) ni(C) =

∑k
j=1 ni(Pj). Clearly the problem is only

solvable for valid initial configurations. Figure 1 shows an input configuration
and an output configuration for problem P1 with the required number of agents
of colours c1 and c2 being 2 in all the blocks.

Notice that an algorithm for P1 can be used to solve P3 with a few modifi-
cations. If specific patterns are required in blocks as in Problem P3, we can first
apply an algorithm for problem P1 to obtain the correct number of agents of
different colours in every block. Once a block has the correct number of agents
of every colour, they can rearrange themselves in one additional step to form the
required pattern.

r b

S1
S2 S3

S4S5
S6

r r r r r r

r rrr

b b r
b

bbbbbbbb

r b

S1
S2 S3

S4S5
S6

r r r b r r

r rrr

b b b
b

bbbbrrbb

Fig. 1. An input configuration on the left, and a possible output on the right. (Color
figure online)

Agent Model. Our agent model is similar to the widely studied autonomous
mobile agent model [16], where initially the agents are assumed to occupy
arbitrary positions in the plane, and each agent repeatedly performs a Look-
Compute-Move cycle. First an agent looks at the positions of the other agents.
Then, using the positions of other agents it found and its own, it computes
its next position. Finally it moves to the newly computed position. The agents
are generally assumed to have identical capabilities, they have no centralized
coordination, and they do not communicate with each other. Indeed, their deci-
sions are based only on their observations of their surroundings made during the
look phase. Many different variations of the model have been studied, based on
whether or not the agents are synchronized or not, how far they can see, whether
or not they agree on a coordinate system, etc.
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In this paper, as already stated, we assume that agents are initially placed
at the nodes of a n-node ring network G. They belong to q colour classes, but
agents within a colour class are identical, and they do not have or use any id.
Agents are aware of their position in the ring, and may use this position in
their calculations; for example agents at odd positions in the ring may behave
differently from agents at even positions. They are completely synchronous, and
time proceeds in discrete time steps. We assume that agents have a common
limited visibility range: each agent can see all agents in the ring that are within
the same block or in adjacent blocks. They also have a limited movement range:
in one step, an agent can move to any position in the same or adjacent blocks1.
It is the responsibility of the algorithm designer to ensure that there are no
collisions, i.e., we must never have two agents in the same position in the ring.
Agents are memoryless, and do not communicate; their decisions are made solely
on what they see during their “look” phase. We say that a distributed algorithm
for pattern formation by agents terminates in a time step, if agents have formed
the required pattern, and no agent moves after this time step.

1.2 Our Results

We give solutions for problems P1, P3, and a restricted case of P2. We first
consider in detail the case when the number of blocks k is even, and the number
of colours q = 2, that is, all agents are blue or red. We give an algorithm that
terminates in time Nb/n∗

b + k + 4 where Nb is the total number of blue agents,
and n∗

b is the minimum number of blue agents required in any block (Theorem2).
Note that this time is upper bounded by n/2 in the worst case where n is the
total number of agents. When the requirements are homogeneous, that is, the
same number of blue agents are required in every block, our algorithm terminates
in 3k + 4 steps; we show that this is optimal (Corollary 2).

We then give algorithms for the cases when:

1. k is odd.
2. the number of colours q is more than 2.
3. a specific final configuration P1P2 . . . Pk is desired.

or any combination of the above (see Theorem3). These algorithms terminate
in O(nk) time.

Finally, given n1(j) > 0 for all 1 ≤ j ≤ k, we give an O(nk) algorithm to
achieve a final configuration in which the number of agents of colour c1 is at
least n1(j) in every block Sj (see Theorem 4).

1.3 Related Work

There is a large literature on distributed computing by autonomous mobile
agents, see the book [16] that provides a very complete survey of results in
1 We note that if the visibility and movement ranges are smaller, our algorithms still

work, though they take more time. The details are lengthy and uninteresting, and
therefore omitted from this paper.
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this area. Much of this work is done for mobile agents located in the plane or a
continuous region, and the main problems that have been considered are gath-
ering of robots [8,18], scattering and covering [9], and pattern formation [7,30]
by autonomous mobile robots (see [[17], Sect. 1.3]). The solvability, i.e., termina-
tion or convergence, of these problems depends on the type of synchronization,
visibility, agreement on orientation [16]. In [25], the authors introduce the prob-
lem of using a set of pairwise-communicating processes to constructing a given
network.

In discrete spaces, typically graphs like grids or rings, similar problems have
been studied, see for example: gathering [11,21]; exploration [23]; pattern for-
mation [3]; and deployment [15]. Unlike in our paper, in all these studies, only a
subset of the nodes of the graph is occupied by agents, and typically agents are
identical, and not partitioned into colour classes.

The work closest to our work is [22], which considers a similar setting of red
and blue agents on a ring of n nodes, and every node of a ring contains an agent.
The agents are required to achieve final configurations on a ring, with specified
diversity constraints similar to ours. However, unlike the present paper, in which
the final configuration specifies the diversity constraints per block and agents
are interchangeable, in [22], each agent has a preference for the colours of other
agents in its w-neighborhood. The authors consider there three ways for agents
to specify these preferences: each agent can specify (1) a preference list: the
sequence of colours of agents in the neighborhood, (2) a preference type: the exact
number of neighbors of its own colour in its neighborhood, or (3) a preference
threshold: the minimum number of agents of its own colour in its neighborhood.
The main result of [22] is that satisfying seating preferences is fixed-parameter
tractable (FPT) with respect to parameter w for preference types and thresholds,
while it can be solved in O(n) time for preference lists. They also show a linear
time algorithm for the case when all agents have homogeneous preference types.
However, in [22], all algorithms are centralized unlike in the present paper, in
which we are only interested in distributed algorithms.

2 Distributed Algorithm for Two Colours

In this section we consider problem P1 with q = 2, that is, all agents are blue
or red. We denote the number of blue and red agents in a pattern u by nb(u)
and nr(u) respectively. We first describe an algorithm for the first problem, i.e.
when the exact number of blue and red agents in the i-th block, denoted by
nb(i) and nr(i) respectively, is specified. For simplicity, we assume the number
of blocks k is even. We will show in Sect. 2.2 that the algorithm also works when
k is odd. Let Nb and Nr be the total number of blue and red agents in the initial
configuration. Furthermore, let n∗

b = min1≤j≤k nb(j) and n∗
r = min1≤j≤k nr(j).

We assume without loss of generality that Nb/n∗
b ≤ Nr/n∗

r . If not, we reverse
the roles of the blue and red agents in the algorithm and subsequent analysis.

We use Si to denote both the i-th block and the pattern of agents in it at a
particular time step; the meaning used will be clear from context. For every i,
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1 ≤ i ≤ k we denote by yi the difference between the number of blue agents in
Si and the desired number of blue agents: i.e., yi = nb(Si) − nb(i). We call yi a
surplus if positive, and a deficit if negative.

In each step, we partition the ring into windows of length 2p, each window
consisting of 2 adjacent blocks. If blocks Si and Si+1 are paired into a window
in this partitioning, we denote the window by [Si|Si+1]. Recall that in our agent
model, agents can see and move to adjacent blocks, and know their positions in
the ring. Therefore, agents in the same window can all see each other and can
move to any position within the window (as Si has access to Si+1 and vice-versa).
Also, notice that this pairing is specific to our algorithm, and not a constraint
of our model. Agents in the window [Si|Si+1] execute the following algorithm

Algorithm 1. Algorithm for agents in the window [Si|Si+1]
if yi < 0, i.e., Si has a deficit of blue agents and an excess of red agents then

t ← min(n∗
b , |yi|, nb(Si+1))

Move blue agents before red in order-preserving manner in Si and Si+1,
t leftmost red agents of Si swap places with t leftmost blue agents of Si+1.

end if

Note that neither moving blue agents before red agents, nor the specification
that it is the leftmost agents that swap places, is necessary for the algorithm
to terminate, nor do these affect the termination time; they only simplify the
analysis. Furthermore, agents can compute the net effect of the two moves men-
tioned above, and perform a single movement in a single Look-Compute-Move
cycle; thus Algorithm 1 comprises a single time step.

Clearly agents in different windows can perform the above algorithm in par-
allel in the same time step without collisions. We give our pattern formation
algorithm for agents of two colours below:

Algorithm 2. Pattern Formation Algorithm
i ← 1
loop

Apply in parallel Algorithm 1 to windows [Si|Si+1], . . . , [Si−2, Si−1]
i ← 1 + i mod k

end loop

We call one iteration of the loop in Algorithm2 a round. It is straightforward
to see that each round takes constant time and can be performed without colli-
sions. Notice that if a block is paired with the block on its right in a round, then
it will be paired with the block on its left in the next round. In one round, surplus
red agents (if any) in the blocks Si, Si+2, Si+4, . . . , Si−2 move to Si+1, Si+3, Si+5,
. . . , Si−1 respectively, and in the next round surplus red agents in the blocks
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Si+1, Si+3, Si+5, . . . , Si−1 move to Si+2, Si+4, Si+6, . . . , Si, respectively, and this
is repeated. In other words, there is a flow of red agents to the right and an
equivalent flow of blue agents to the left. Since blue agents moving left from
the block Si+1 to Si are always the leftmost blue agents in Si+1, and move to
positions after the blue agents already present in Si, and the blue agents move
up to the beginning of each block before the next round, each round preserves
the clockwise order of the blue agents as stated in the following lemma:

Lemma 1 (Order-preserving property of blue agents). Let C and C′ be
the configurations before and after a round in Algorithm2. Then the clockwise
ordering of blue agents in C and C′ is the same.

2.1 Proof of Correctness and Termination

We now show that this flow of agents eventually stops, and the algorithm termi-
nates with the desired number of blue and red agents in every block. We first intro-
duce some definitions and observations about the properties of a configuration.
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Fig. 2. The surplus of blue agents yi is shown inside the box for slice Si. The plot
below shows the cumulative surplus y(C, 1, �) on the left and y(C, 6, �) on the right

Definition 1. For any given valid configuration C = S1S2 . . . Sk, define y(C, i, �)
=

∑�−1
j=0 yi+j, i.e., yi is the cumulative surplus of blue agents in � consecutive

blocks starting from Si.

Definition 2. For any given valid configuration C = S1S2 . . . Sk, define y(C, i)
to be the maximum in the set {y(C, i, 1), y(C, i, 2), . . . , y(C, i, k)}.
Figure 2 shows y(C, 1, �) for a sample configuration. Notice that y(C, 1) =
y(C, 1, 5) = 4.

Lemma 2. In any given valid configuration C = S1S2 . . . Sk there exists an
integer i such that y(C, i) = 0.
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Proof. Let j be the integer such that y(C, 1, j) = y(C, 1), i.e., the index of the
block where the sum of differences of number of blue agents between the blocks
and patterns, when counted from S1, is maximized. See Fig. 2. Consider the value
y(C, j + 1, �) for some integer �. Clearly, y(C, j + 1, �) = y(C, 1, �) − y(C, 1, j) ≤ 0
by our choice of j. On the other hand in any valid configuration the total excess
of red agents in the configuration is 0. Thus, y(C, j + 1) = 0. See Fig. 2; in this
example, j = 5; the figure on the right shows y(C, 6, �), which is always ≤ 0 for
every �. ��

Since the input configuration is circular, and the algorithm runs in parallel
in all blocks, we can rename the blocks. We will therefore assume in the sequel
that y(C, 1) = 0. This means that starting in block S1, the cumulative surplus
of blue agents is never positive. This implies the following useful non-positive
prefix and non-negative suffix property.

Lemma 3 (Non-Negative Suffix Property). For any valid input configu-
ration C and for every integer j, 1 ≤ j < k we have:

y(C, 1, j) ≤ 0 and y(C, j + 1, k − j) ≥ 0
In other words, the total surplus of blue agents in the first j blocks is at most 0
while the total surplus of blue agents in the last k − j blocks is at least 0.

Proof. Since y(C, 1) = 0, we have that y(C, 1, j) ≤ 0. Since y(C, 1) = y(C, 1, j) +
y(C, j + 1, k − j) = 0, we get y(C, j + 1, k − j) = −y(C, 1, j) ≥ 0. ��

In particular, notice that the non-negative suffix property implies that yk =
y(C, k, 1) ≥ 0.We now show that every round of Algorithm2 maintains the non-
negative suffix property.

Lemma 4. Let C = S1S2 . . . Sk be a configuration such that for any j, 1 ≤ j ≤
k, we have y(C, 1, j) ≤ 0 and y(C, j + 1, k − j) ≥ 0. Executing one round of
Algorithm2 gives a configuration C′ = S′

1S
′
2 . . . S′

k such that y(C′, 1, j) ≤ 0 and
y(C′, j + 1, k − j) ≥ 0 for any j, 1 ≤ j ≤ k.

Proof. For a block S�, define z� = nr(S�) − nr(�) as the surplus of red agents
in S�. Let � be an integer, 1 ≤ � < k such that Algorithm 1 is applied to the
pair [S�|S�+1]. Assume for now that C′ is the configuration obtained after only
[S�|S�+1] have made their exchanges and no other blocks. We will show that the
conditions of the Lemma hold for C′. This proves our statement, since we may
repeat our analysis by applying the exchanges between pairs of blocks one at a
time while maintaining the invariants of the Lemma.

Performing the exchanges between S� and S�+1 can affect only the suffixes
y(C′, �, k − � + 1) and y(C′, � + 1, k − �); any movement of agents that happens
cannot affect a suffix y(C′, j, k − j) with j < � or j > � + 1. Clearly, if y(S�) ≥ 0
or there are no blue agents in S�+1 then there is no movement of agents between
S� and S�+1 and thus, obviously, y(C′, �, k − � + 1) = y(C, �, k − � + 1) ≥ 0, and
y(C′, 1, � − 1) = y(C, 1, � − 1) ≤ 0.

Thus we only need to consider the case when S� has z� = −yl > 0
excess red agents and S�+1 contains nb(S�+1) > 0 blue agents. Let t =
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min{z�, nb(S�+1), n∗
b}. Then t blue agents move from S�+1 to S� and t move

from S� to S�+1. Clearly, the total surplus of blue agents in the �-th suffix does
not change, that is, y(C′, �, k − � + 1) = y(C, �, k − � + 1) ≥ 0. We only need to
show that the movement of t blue agents to S� does not render the (� + 1)-th
suffix negative. Observe that 0 ≤ y(C, �, k − � + 1) = y(C, � + 1, k − �) − z�.

In other words, since S� lacks z� blue agents and yet the �-th suffix is non-
negative, it must be that the (�+1)-st suffix is at least z�. Thus, y(C, �+1, k−�) ≥
z� ≥ t, and moving t ≤ z� blue agents from S�+1 to S� cannot make the (�+1)-st
suffix negative. That is, y(C′, � + 1, k − �) = y(C, � + 1, k − �) − t ≥ 0. ��

Lemma 4 implies that the property yk ≥ 0 is maintained after every round.
This means Sk never has a deficit of blue agents, and therefore when it partici-
pates in the window [Sk|S1], there is no swap of agents. Therefore we obtain the
following corollary:

Corollary 1. Algorithm2 never does any swap of agents between the blocks Sk

and S1.

We now develop a potential function argument to show that Algorithm2
eventually reaches the desired final configuration, after which no agents ever
move. Given a configuration C = S1S2 · · · Sk, we define the destination block of
the i-th blue agent (from position 1 in the ring) to be

dest(i) = argmin�

∑�
i=1 ni(�) ≥ i

That is, the destination block of the leftmost nb(1) blue agents in the input
configuration is S1, the next nb(2) blue agents in the input configuration is S2,
and so on. Next we define the displacement of the i-th blue agent (from position
1 in the ring) that is located in block Sj to be the difference between the index
of its present block and the index of its destination block:

displacement(i, j) = j − dest(i).
Given a configuration C = S1S2 · · · Sk, we define the distance of the configuration
d(C) to be the sum of displacements of all blue agents in the configuration. We
first prove some properties of the distance function.

Lemma 5. Let C be the configuration after i rounds in Algorithm2. Then:

1. d(C) ≥ 0
2. d(C) ≤ d(C′) where C′ was the configuration before the i-th round.
3. If d(C) = 0, no agent ever moves again.

Proof. It follows from Lemma 4 that the displacement of any blue agent is non-
negative, as otherwise, there would be a deficit of blue agents in some suffix.
Thus d(C) must always be non-negative. Second, since blue agents only move
left in an order-preserving manner (Lemma 1), and from Corollary 1, they never
move left past S1 to Sk, the displacement of any blue agent cannot increase,
and therefore d(C) cannot increase. Finally, if d(C) = 0, then every block has its
desired number of blue agents, and no agent will ever move again. ��

We now show that the distance function is guaranteed to decrease after at
most 2 rounds.
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Lemma 6. Assume that we are given a configuration C = S1S2 . . . , Sk and
positive integers nb(i) > 0 for 1 ≤ j ≤ k such that d(C) > 0. After at most two
rounds in Algorithm2 to C we obtain configuration C′ such that d(C′) ≤ d(C)−1.

Proof. Since d(C) > 0, we know that C is not a valid final configuration, and
Lemma 3 and the assumption nb(i) > 0 for all 1 ≤ j ≤ k implies that there
exists a window [Sj |Sj+1] such that nb(Sj) < nb(j) and nb(Sj+1) > 0, i.e.,
there is a surplus of red agents in Sj , and Sj+1 contains some blue agents. Then
t = min{|yj |, nb(Sj+1), n∗

b} as defined in Algorithm 1 is positive. Now, if the
window [Sj |Sj+1] is active in the next round in Algorithm2, then t blue agents
from Sj+1 are swapped with t red agents from Sj . Clearly, the displacement of
these blue agents goes down by 1. Thus after this round, we obtain configuration
C′ with d(C′) < d(C).

Suppose instead the window [Sj |Sj+1] is not active in the next round of
Algorithm 2. Let C1 be the configuration obtained after the next round of
Algorithm 2. By Lemma 5, d(C1) ≤ d(C). In the following round of Algorithm2
the window [Sj |Sj+1] is active and we transfer t blue agents from Sj+1 to Sj , and
the displacement of these t agent goes down by 1. Thus after two rounds, we obtain
the configuration C′ with d(C′) ≤ d(C1) − 1 ≤ d(C) − 1. ��
Notice that the condition nb(Pj) > 0 for 1 ≤ j ≤ k is necessary. For example, if
there is a block Sj with nb(Pj) = 0 and y(Sj) = 0 then this block will never receive
a blue agent, and this would prevent any flow of blue agents to the left of Sj , even
when blue agents are needed there, and any flow of red agents across Sj .

Theorem 1. Given nb(j) > 0 and nr(j) ≥ 0 for all all 1 ≤ j ≤ k, where k is
even, and a valid input configuration, Algorithm2 reaches a configuration where
nb(Sj) = nb(j) and nr(Sj) = nr(j) in every block Sj. Furthermore, this takes
O(nk) steps, and after this configuration is reached, no agent ever moves again.

Proof. Since the initial value of the distance function is at most nk, the result
follows from Lemma 6 and Lemma 5. ��

In this section, we show an upper bound on the number of iterations required
for Algorithm 2 to terminate. Recall that n∗

b = p − max1≤j≤k(nr(j)) and Nb is
the total number of blue agents in the input configuration C. Let B be the
set of blue agents, and assume (for the purpose of the analysis) that they are
numbered from left to right as b1, b2, . . . bNb

. Partition the members of B into
subsets B1, . . . , BL as follows. Let B1 = {b1, . . . , bn∗

b
}, B2 = {bn∗

b+1, . . . , b2n∗
b
},

and so on, so that L = �Nb/n∗
b� and each subset has n∗

b elements, except perhaps
BL. We say that an agent bi is (t)-cooperative if, in every round t′ ≥ t, either
(1) bi moves left; or (2) bi has reached its destination block as defined in the
previous section.

The key idea is that the first n∗
b blue agents (i.e. B1) start travelling every

round at the latest by round 2 until they reach their destination blocks. After
this round, they “free” the path for the blue agents of B2, which then start
travelling every round from round 4 until they reach their destination blocks.
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This unblocks B3 from round 6, and so on. In the end, the blue agents of BL can
freely travel from round 2L + 2, and they only need to travel at most k slices.
Note that agents in blocks Bl may indeed move before round 2l+2 but they may
be subsequently blocked; however from round 2l + 2 onward, they will continue
to travel every round until they reach their destination block. These ideas are
formalized in the next lemma.

Lemma 7. For every l ∈ [L], each blue agent in Bl is (2l + 2)-cooperative.

Proof. For convenience, define B0 = ∅. We show by induction on l ∈ {0, 1, . . . , L}
that each blue agent in each Bl is (2l + 2)-cooperative. Using l = 0 as a base
case, this statement is vacuously true: each blue agent in B0 is (0)-cooperative.
Now suppose that the lemma holds for all Bl′ with l′ < l. Assume that there
is bi ∈ Bl such that in some round w ≥ 2l + 2, the agent bi does not move left
and it is not in its destination block. Let Sa be the block that contains bi before
(and after) the execution of round w. It follows from the earlier discussions that
Sa 
= S1, as this would mean the destination block of bi requires it to move left
from S1 to Sk. There are 2 cases to consider: either, in round w,
(*) Sa is in the active window [Sa−1|Sa];
(**) Sa is in the active window [Sa|Sa+1].
Details of these two cases do not fit within the page limit, but they can be found
in [13]. ��
Theorem 2. Given even k and positive integers nr(j) and nb(j) for all 1 ≤
j ≤ k and a valid input configuration C, Algorithm2 terminates in at most
2Nb

n∗
b

+ k + 4 time steps, where n∗
b = min1≤j≤k(nb(j)) and Nb is the total number

of blue agents in C.
Proof. Consider the partition B1, . . . , BL of the blue agents as defined above.
We have L = �Nb/n∗

b� ≤ Nb/n∗
b +1. By Lemma 7, each bi is (2L+2)-cooperative,

implying that each bi is also (2Nb/n∗
b + 4)-cooperative. This means that after

at most 2Nb/n∗
b + 4 rounds, every blue agent that is not yet at its destination

block advances a block in every round. Since there are k blocks, such a bi will
reach its destination after at most k additional rounds. Since this holds for any
bi, and recalling that every round can be executed in one step, this proves the
statement. ��
Corollary 2. If the diversity requirements are homogeneous, that is nb(i) = m
for all 1 ≤ j ≤ k, then Algorithm2 terminates in at most 3k + 4 steps, and this
is optimal.

Proof. Suppose nb(j) = m for all 1 ≤ j ≤ k. Then n∗
b = m and Nb = km, and

the bound given by Theorem2 is 2km
m + k + 4 = 3k + 4.

We now show that there are inputs for which Ω(k) is a lower bound on the
number of steps required for any algorithm in our agent model. In particular
consider an input with the size of the blocks p even, and nb(i) = p/2 for every
block i, and the input configuration such that the first k/2 blocks have only red
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agents and the last k/2 blocks have only blue agents. Then pk/4 blue agents need
to move to blocks S1 to Sk/2. Since agents can only move to the next block in a
single time step, all these agents would have to move from Sk/2+1 to Sk/2 or from
Sk to S1 in some step. However, at most p blue agents can move from Sk/2+1 to
Sk and similarly at most p blue agents can move from Sk to S1 in one time step.
It follows that the number of time steps required is at least pk/(4(2p)) = k/8. ��
Notice that when the diversity patterns are identical, given by a string u of
length p, the solution obtained by our algorithm is of type uk. The results in [22]
imply that in the final ring network every neighbourhood of length p starting at
any position of the ring contains the same number of blue and red agents as u.
Thus, our algorithm solves in distributed manner the homogeneous preference
type problem of [22].

2.2 When the Number of Blocks k is Odd

Consider now the situation when the number of blocks k is odd. Notice
that in one round of Algorithm2, the surplus red agents from the blocks
Si, Si+2, Si+4, . . . , Si−3 move to Si+1, Si+3, Si+5, . . . , Si−2, respectively, and in
the next round, surplus red agents from the blocks Si+1, Si+3, Si+5, . . . Si−2 move
to Si+2, Si+4, Si+6, . . . , Si−1 respectively. In this case surplus red agents from
Si−1 can move only in the subsequent third round, but this delay happens to
Si−1 only once in k rounds since the value of i is incremented after every round.
Then in the proof of Lemma6 the window [Si, Si+1] in which there is swap of
agents between Si and Si+1 is only in the third round of the algorithm. Thus,
the value of d(C) is only guaranteed to decrease after 3 rounds. However, due
to the way the windows are shifted in the algorithm after each round, this can
occur to Si−1 only once in k rounds. It is clear that Theorem1 still holds.

3 Distributed Algorithm for q Colours

In this section we consider the pattern formation problem when the given set
of colours {c1, c2, . . . , cq} is of size q ≥ 3. We show that Algorithm 2 can be
generalized to solve the pattern formation problem for any q ≥ 3.

The main idea of the generalization is to iteratively “correct” the number of
agents of colour i, starting with colour c1, while treating the remaining colors
ci+1, ci+2, . . . , cq as a single “new” color c′. Thus, essentially, by repeating q − 1
times Algorithm 2 we get a solution for q colors. An optimized version is given
below in Algorithms 3 and 4.

Clearly, the termination of this algorithm follows directly from the termina-
tion of Algorithm 4 as shown in Theorem 1. Notice that ni(cj) ≥ 1 is needed for
every 1 ≤ i ≤ q − 1 and 1 ≤ j ≤ k to guarantee termination.

Theorem 3. Algorithm4 solves the pattern formation problems P1 and P3 and
terminates in time O(nk) where n is the number of agents and k is the number
of blocks.
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Algorithm 3. Algorithm for a Window [Sj |Sj+1] for Agents of q colours
i ← 1
while i < q & (ni(Sj) = ni(j) & ni(Sj+1) = ni(j + 1)) do

i ← i + 1
end while
if i < q then

if ni(Sj) < ni(j), i.e., Sj needs additional agents of colour ci then
t ← min(ni(j) − ni(Sj), ni(Sj+1))
t agents of colour ci in Sj+1 swap places with t agents of colour greater than

i in Sj

end if
else Rearrange Si into specific pattern Pi if required in the problem specification.
end if

Algorithm 4. Pattern Formation Algorithm for Agents of q colours
i ← 1
loop

Apply in parallel Algorithm 3 to windows [Si|Si+1], [Si+2|Si+3] . . .
i ← 1 + i mod k

end loop

3.1 When There Is a Lower Bound on the Number of Agents

In this section we address a restricted version of the second problem P2: given
n1(j) > 0 and ni(j) = 0 for all 2 ≤ i ≤ q and 1 ≤ j ≤ k, achieve a final
configuration C′ = S1S2 . . . Sk with ni(Sj) ≥ ni(j). In other words, there is a
positive lower bound required on the number of agents of colour c1 in every block,
but no lower bound on agents of any other colour. Observe that in this case a
valid initial configuration w must satisfy the condition n1(C) ≥ ∑k

i=1 n1(Si).
Let d = n1(C)−∑k

i=1 n1(Si), that is, d is the number of extra agents of colour
c1 present in the input configuration. Consider now applying Algorithm2 (for
2 colours) on the given input instance, treating agents of all colours except for
colour c1 as agents of colour c′

2, a new colour. Given a valid block configuration
C we use the definitions of y(C, i, �) and y(C, i, �) from the preceding section. It
is easy to see that by replacing every 0 by d in the statements of Lemmas 2, 3, 4,
and Corollary 1, they remain valid for this problem. This implies that Lemma6
and Theorem 1 remain valid exactly as stated in the previous section. Thus we
get the following:

Theorem 4. Algorithm4 solves the following restricted version of the pattern
formation problem P2 in time O(nk): Given a valid input configuration C and
n1(j) > 0 and ni(j) = 0 for all 2 ≤ i ≤ q and 1 ≤ j ≤ k, achieve a final
configuration C′ = S1S2 . . . Sk with ni(Sj) ≥ ni(j).
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4 Discussion

Given n agents of q different colours situated on the nodes of a ring network
that has been partitioned into k blocks, we gave distributed algorithms for the
agents to move to new locations where they satisfy specified patterns or diversity
constraints in every block. Our analysis for the case of even k and two colours is
tight, but for the other problems, it would be interesting to obtain tight bounds.
Our algorithms need a positive number of agents of at least the first q−1 colours
to be required in the final configuration in every block; it is unclear to what extent
this restriction is necessary for the existence of distributed algorithms for the
problem. It would also be interesting to consider how bounds on the number of
agents moved between bloks or bandwidth would influence the number of steps
needed in the algorithms.
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Abstract. In a distributed locally-checkable proof, we are interested
in checking the legality of a given network configuration with respect
to some Boolean predicate. To do so, the network enlists the help of
a prover—a computationally-unbounded oracle that aims at convincing
the network that its state is legal, by providing the nodes with certifi-
cates that form a distributed proof of legality. The nodes then verify the
proof by examining their certificate, their local neighborhood and the
certificates of their neighbors.

In this paper we examine the power of a randomized form of locally-
checkable proof, called distributed Merlin-Arthur protocols, or dMA for
short. In a dMA protocol, the prover assigns each node a short certificate,
and the nodes then exchange random messages with their neighbors. We
show that while there exist problems for which dMA protocols are more
efficient than protocols that do not use randomness, for several natural
problems, including Leader Election, Diameter, Symmetry, and Count-
ing Distinct Elements, dMA protocols are no more efficient than standard
nondeterministic protocols. This is in contrast with Arthur-Merlin (dAM)
protocols and Randomized Proof Labeling Schemes (RPLS), which are
known to provide improvements in certificate size, at least for some of
the aforementioned properties.

Keywords: Distributed verification · Nondeterminism ·
Interactive computation · Interactive proof systems

1 Introduction

Nondeterminism is a fundamental concept in computer science. In particular,
the class NP, introduced almost half a century ago [6], lies at the heart of com-
putational complexity theory. Moreover, the P versus NP question is the largest
unsolved problem in theoretical computer science.
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One way to define the class NP is as a computationally-efficient proof system:
a language L is in NP if for any input x, a powerful but untrusted prover can
convince a polynomial time verifier to accept whenever x ∈ L, by providing the
verifier with a certificate (a proof). However, if x �∈ L, not certificate will cause
the verifier to accept.

This fundamental notion of nondeterminism (or polynomial time verification)
was extended in the 90s to interactive proof systems [10,11], a model that allows
back-and-forth interaction between the prover (Merlin) and the verifier (Arthur).
This interaction gave the model tremendous power, equivalent to PSPACE [18,22].

Different distributed counterparts of the class NP have been introduced:
locally checkable labelings [20], proof labeling schemes [16], non-deterministic
local decision [8], and others. In all these models, roughly speaking, a powerful
prover gives to every node v ∈ V a certificate c(v). This provides G = (V,E) with
a global distributed certificate. Then, every node v performs a local verification
using its local information together with c(v). Typically, the goal is to verify
whether G belongs to a particular class of graphs (planar, bipartite, connected,
k-colorable, etc.).

Very recently, these distributed NP models evolved—as already happened in
the centralized setting almost thirty years ago—towards the study of distributed
interactive proofs [14,19]. To state our results, let us recall some basic notions.

Distributed Languages. Let G be a simple connected n-node graph, let x :
V (G) → {0, 1}∗ be a function assigning a label to every node of G, and let
id : V (G) → {1, . . . ,poly(n)} be a one-to-one function assigning identifiers to
the nodes. (The identifiers are O(log n)-bit natural numbers.)

A distributed language is a Turing-Machine-decidable collection of triples
(G, x, id), called configurations. In this paper, we are interested in the following
distributed languages:
• leader = {(G, x, id) | x : V (G) → {0, 1} and |{v ∈ V (G) : x(v) = 1}| = 1},

the language of graphs where every node is marked with a bit x ∈ {0, 1}, and
we require that exactly one node be marked 1.

• amos = {(G, x, id)) | x : V (G) → {0, 1} and |{v ∈ V (G) : x(v) = 1}| ≤ 1},
the language of graphs where nodes are marked with a bit, and we require
that at most one node be marked (amos stands for “at most one selected”,
and was introduced in [8]).

• diameter≤k = {(G, x, id) | diam(G) ≤ k}, the language of graphs with
diameter at most k.

• symmetry = {(G, x, id) | G has a non-trivial automorphism}. (An automor-
phism of a graph G is a one-to-one mapping φ : V (G) → V (G) such that
{u, v} ∈ E(G) ⇐⇒ {φ(u), φ(v)} ∈ E(G). It is not-trivial if it is not the
identity function.)

• countk = {(G, x, id) | x : V (G) → {0, 1}∗ and | {x(u) : u ∈ V } | = k}, the
language of graphs where every node has an input x(v) ∈ {0, 1}∗, and there
are exactly k distinct inputs.

None of these languages refer to the node identifiers, but languages like
spanning tree =

{
(G, x, id)) | {{id(v), x(v)}, v ∈ V (G)

}
forms a spanning tree of G

}
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do refer to the identifiers (here, x(v) refers to the id of the parent of v in the
tree).

In a locally-checkable proof, we ask a prover to provide the network nodes
with a certificate that should convince them that (G, x, id) ∈ L. The certificate
is a function c : V → {0, 1}∗ assigning to each v ∈ V a label c(v). The nodes
exchange their certificates with their neighbors, examine their own input, and
then decide whether to accept or reject; we require that (G, x, id) ∈ L iff there
is some certificate c that causes all nodes to accept.

Formally, a deterministic distributed verification algorithm is specified as a
collection of decision functions, A = {accv}v, where each function accv takes the
ids, inputs and certificates of v and its neighbors, and outputs a decision whether
to accept (1) or reject (0). We say that a (G = (V,E), x, id, c) is accepted by A
if for all v ∈ V we have accv({(id(u), c(u), x(v))|u ∈ N [v]}) = 1.

A decision algorithm A verifies a distributed language L if, for every config-
uration (G, x, id),

(G, x, id) ∈ L ⇐⇒ ∃c : V (G) → {0, 1}∗ | (G, x, id, c) is accepted by A.

The cost of the algorithm A is the maximum number of bits assigned to any
node in a certificate accepted by A, that is,

max
(G,x,id,c) accepted by A

max
v∈V

|c(v)|.

The class LCP(k), defined in [12], is the class of all distributed languages
that have a distributed verification protocol with cost k. Other variants exist in
the literature: proof labeling schemes [16] are defined similarly, except that at
every node v, the verification algorithm does not take as input the data x(u)
of neighbors u ∈ N(v), only the neighbors’ certificates; non-deterministic local
decision, defined in [8], is also similar, but the certificate c may not depend on
the identifiers of the nodes (i.e., it is not used by the decision function).

Merlin-Arthur Protocols. Merlin-Arthur (MA) protocols extend locally-
checkable proofs by allowing the nodes to use randomness when deciding whether
to accept or reject. The prover remains nondeterministic, and it does not see the
randomness of the nodes when choosing a certificate. After the prover assigns
certificates to the nodes, each node randomly chooses a message, from a dis-
tribution specified by the protocol. This message is broadcast to all neighbors
of the node, and then each node decides whether to accept or reject, based on
its input and neighbors (including their ids), its certificate, and the messages it
received from its neighbors.

Formally, an MA protocol is specified by two collections of functions, A =
({msgv}v , {accv}v). After receiving a certificate assignment c : V → {0, 1}∗, the
protocol executes in two stages:

(1) Each node v generates a message m(v), by calling the function msgv, which
takes as input id(v), {id(u) : u ∈ N(v)}, x(v), c(v), and a random string
r(v). The message m(v) is broadcast to v’s neighbors.
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(2) Each node v uses the function accv to decide whether to accept or reject;
accv takes as input id(v), {(id(u),m(u)) : u ∈ N(v)}, x(v), c(v), r(v).

For a given protocol A, the acceptance probability of (G, x, id, c) under A is the
probability that all nodes accept the configuration (G, x, id) with certificate c.
The probability here is taken over the nodes’ internal randomness (the random
strings r(v)).

A Merlin-Arthur protocol verifies a distributed language L with success prob-
ability p ∈ (0, 1/2) if, for every configuration (G, x, id),
{

(G, x, id) ∈ L =⇒ ∃c : V (G) → {0, 1}∗ | Pr[A accepts (G, x, id, c)] ≥ p
(G, x, id) /∈ L =⇒ ∀c : V (G) → {0, 1}∗, Pr[A accepts (G, x, id, c))] ≤ 1 − p.

A Merlin-Arthur protocol can be viewed as the non-deterministic version of
randomized decision. It can also be viewed as the randomized version of locally
checkable proofs (the randomized version of proof-labeling schemes has been
considered in [3]).

The cost of an MA protocol is defined as the size of the longest certificate
c(v) accepted by a node v in any configuration on n nodes (the size may grow
with n). (The standard definition of two-party MA protocols also charges for
the communication between the players, which in our case corresponds to the
messages m(v). However, the lower bounds we prove apply even if the messages
have unbounded length, as they depend more on the local knowledge of the nodes
even after seeing the certificates.)

Given a distributed language L, we define its Merlin-Arthur complexity,
denoted dMAp(L), as the minimum cost of a Merlin-Arthur protocol that decides
L with success probability p.

Note that our definition above does not provide node v with the inputs
and neighborhoods of its neighbors; this is similar to proof-labeling schemes
(although we also provide ids), and dissimilar to locally-checkable proofs. How-
ever, it is easy to modify our lower bounds so that the view of a node is the
same as it would be in a locally-checkable proof, except that instead of seeing
the certificates of its neighbors, it only sees the messages they generated.

Comparison with Other Randomized One-Round Models of Verifica-
tion. Let us point out how dMA protocols relate to two other models.

In an Arthur-Merlin distributed decision protocol (or dAM for short) [14],
each node v sends a random string to the prover, and the prover responds by
providing each node with a certificate (which can depend on the random strings
of all the nodes). Each node then makes its decision based on its own randomness,
its neighborhood, and its neighbors’ certificates. The order of interaction is the
opposite of dMA schemes, where the prover first commits to the certificates, and
then the nodes send random messages. As we show in this paper, this reverse
order gives dAM protocols more power than dMA protocols, at least in some
scenarios.

Another related model is randomized proof labeling schemes (RPLS) [3].
These are very similar to dMA protocols, except that the certificate size is
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unbounded, and the protocol is only charged for the randomized messages the
players send to each other. It was shown in [3] that any property admits an RPLS
that is exponentially cheaper than the best proof labeling scheme; however, the
construction in [3] not only does not reduce the certificate size, it in fact blows
it up, by a factor of up to n. We show in this paper that this is inherent: if we
do care about the certificate size, then randomness does not always help.

1.1 Our Results

Both amos and leader have proof-labeling schemes using certificates on
O(log n) bits. (A tree rooted at the leader if any, or at an arbitrary node oth-
erwise, suffices.) The next result shows that one cannot do better, even using
randomization for the verification part.

Theorem 2.2. Any 2-sided error dMA protocol for amos with success probabil-
ity larger than 4/5 requires certificates on Ω(log n) bits. Any 1-sided error dMA
protocol for amos requires certificates on Ω(log n) bits. The same result holds
for leader.

In contrast, whenever randomization is used before interacting with the
prover, amos can be decided with certificates on O(1) bits.

Theorem 2.1. For every k ≥ 1, there exists a dAM protocol for amos with
success probability 1 − 1/2k, using (k + 1)-bit certificates at each node.

This shows that the gap between dAM and dMA (with success probability
≥ 4/5) is potentially unbounded. Next, we show that a certain class of reduc-
tions from 2-party communication complexity can be adapted to show dMA
lower bounds as well. As a consequence, we obtain lower bounds on diameter,
symmetry, and count.

Corollary 3.1. Let 0 ≤ ε < 1/3. Then, dMA1−ε(diameter≤6) = Ω(n/ log n).
That is, every Merlin-Arthur protocol with success probability at least 1 − ε that
is able to decide whether the diameter of the input graph is at most 6 requires
certificates on Ω(n/ log n) bits.

Corollary 3.2. Let 0 ≤ ε < 1/3. Then, dMA1−ε(symmetry) = Ω(n2).

Corollary 3.3. Let 0 ≤ ε < 1/3. Then, dMA1−ε

(
countn/2+1

)
= Ω(n).

Our lower bounds are shown by adapting existing tools for proving lower
bounds on locally-checkable proofs and in CONGEST, thus showing that some
types of lower bounds extend easily to dMA.
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1.2 Related Work

This paper is very much related to two recent contributions on distributed
interactive proofs. The concept of distributed interactive proofs was introduced
in [14]. Among other results, [14] proves that symmetry admits a dMAM proto-
col with O(log n)-bit certificates, and a dAM protocol with O(n log n)-bit certifi-
cates. Moreover, it is also proved that any dAM protocol for symmetry requires
certificates on Ω(log log n) bits. Graph non-isomorphism has also been studied
in [14]—every node is given the adjacency list of a node in some graph H, and
the nodes have to collectively decide whether the actual network G is isomorphic
to H. It is proved that this problem admits a dAMAM protocol with certificates
on O(n log n) bits.

The recent paper [19] carried on the investigations in [14]. In particular,
[19] proves that non-symmetry can be decided by a dAMAM protocol with
O(log n)-bit certificates. It is also proved, using general reductions from circuit
computation, that graph non-isomorphism can be decided by an interactive pro-
tocol with a constant number of interaction rounds between Arthur and Merlin,
and certificates on O(log n) bits. Another variant of graph non-isomorphism is
also considered in [19]—every node is given two subsets of incident edges, and the
nodes have to collectively decide whether the resulting subgraphs of the actual
network G are isomorphic. It is proved that this problem admits a dAMAM
protocol with certificates on O(log n) bits.

Problem diameter≤k has been studied, in the framework of distributed
verification algorithms, in [5]. More precisely, in the proof-labeling scheme model,
the authors show, for the certificate size, an upper bound of O(n log n) and a
lower bounds of Ω(n/k). They manage to improve the previous upper bound by
introducing approximation ([5] defines approximate proof-labeling schemes).

2 Warmup: Deciding AMOS and LEADER

As a warm-up, let us consider the distributed language amos, for “at most one
selected”, introduced in [8]. Recall that for every configuration (G, x, id), we
have (G, x, id) ∈ amos if and only if x(v) ∈ {0, 1} for every v ∈ V (G) and
|{v ∈ V (G) : x(v) = 1}| ≤ 1. A node v with x(v) = 1 is said to be selected.
This language is therefore similar to leader, apart from the fact that having
no leader is a legal configuration.

It is shown in [8] that amos cannot be decided deterministically in sublinear
time without a prover, as a configuration with two selected nodes that are at
distance n − 1 from one another cannot be detected. On the other hand, using
randomization (but still without a prover), amos can be decided in zero rounds
with success probability p = (

√
5 − 1)/2: every selected node accepts with prob-

ability p, and the non-selected nodes all accept. A legal configuration is accepted
with probability exactly p, while an illegal one is accepted with probability at
most p2 = 1 − p. In fact, [8] shows that p is the best success probability possible
for a sublinear-time randomized algorithm.
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A locally checkable proof for amos can simply be designed using certificates
on O(log n) bits. On a legal instance, every node is given a pointer to a neighbor,
on O(log n) bits, such that the set of all pointers encodes a spanning tree T rooted
at an arbitrary node if there are no selected nodes, and rooted at the selected
node otherwise. The certificate also includes O(log n) bits forming a distributed
proof that T is indeed a spanning tree (see [16]). The verification algorithm
consists, for every node v, to check that T is indeed a spanning tree. In addition,
a node with x(v) = 1 that is not the root of T rejects. It was shown in [12]
that O(log n)-bit certificates is the best that can be achieved, that is, there is no
locally checkable proofs for amos with certificates on o(log n) bits.

Remark 2.1. With the previous example we can see the power of the dMA model
in comparison with proof labelling schemes and randomized local decision. Sup-
pose that we want to decide amos∩bipartite (i.e., whether the input is a bipar-
tite graph with at most one selected node). We can combine a one-bit certificate
(for bipartiteness) with local randomness (for at-most-one-selected) in order to
get a one-bit Merlin-Arthur protocol for amos ∩ bipartite with probability of
success at least

√
5−1
2 .

The following result is a simple illustration of the power of Arthur-Merlin
protocols, by showing that one can design an Arthur-Merlin protocol for amos
with success probability as close to 1 as desired, with certificates on O(1) bits.
For leader, we refer to [19] which describes a dMAM protocol using O(1)-bit
certificates, but with one more interaction between Arthur and Merlin.

Theorem 2.1. For every k ≥ 1, there exists a dAM protocol for amos with
success probability 1 − 1/2k, using (k + 1)-bit certificates at each node.

Proof. Let k ≥ 1. Every node picks k bits at random. On a legal instance, and
given these k random bits at each node, Merlin sends −1 to every node if there
are no selected nodes, and otherwise sends the bit string randomly selected by
the selected node. The verification algorithm is as follows. Every node checks
that the certificate given by Merlin is the same as the one given to its neighbors.
If this test is passed, then a non-selected node systematically accepts, and a
selected node accepts only if the bit string sent by Merlin is identical to the one
it randomly generated. If there are more than one selected nodes, the probability
that they all pick the same random string is at most 1/2k, thus the verification
succeedes with probability at least 1 − 1/2k. 
�

In contrast, the following results illustrates the limitation of Merlin-Arthur
protocols, by showing that such protocols cannot achieve success probability
much larger than

√
5−1
2 = 0.61 . . . whenever using certificates on o(log n) bits.

Theorem 2.2. Any 2-sided error dMA protocol for amos with success probabil-
ity larger than 4/5 requires certificates on Ω(log n) bits. Any 1-sided error dMA
protocol for amos requires certificates on Ω(log n) bits. The same result holds
for leader.
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Proof. The intuition of the proof is simple. Consider a configuration I1 ∈ amos
consisting of an n-node cycle with a unique selected node v. Let us then take two
copies of I1, remove the edge e opposite to v in both, and create a cycle with 2n
nodes by glueing the two resulting paths. Let us call this latter configuration I2.
We have I2 /∈ amos. Let us consider a dMA protocol P for amos with success
probability larger than 2/3. We have Pr[P accepts I1] > 2/3 with the appropriate
certificate assignment c to the nodes of I1, and Pr[P rejects I2] > 2/3 for every
certificate assignment to the nodes of I2. On the other hand, for the certificate
assignment c, since the nodes have the same view in I1 and I2, as far as the
certificates are concerned, we get, by the union bound, that Pr[P rejects I2] <
1/3 + 1/3 = 2/3, yielding a contradiction. There is however a gap between this
intuition and a correct proof. In particular, as nodes have identities, one cannot
claim that the extremities of the removed edge e do not “see” the difference
between I1 and I2. glueing legal instances to create illegal instances in which the
nodes cannot distinguish which one they belong to requires some more work.

The sophisticated glueing technique introduced in [12] allowed Göös and
Suomela to show that there is no locally checkable proof for amos and leader
with certificates of size o(log n) bits. This glueing technique can also be used
to prove that the same result holds for dMA protocols with success probability
larger than 4/5. To see why, let us first briefly summarize the construction in [12].

Let n be even, and let us consider an arbitrary partition of {1, . . . , n2} of
the form (Ai, Bi)i∈{1,...,n} such that {1, . . . , n2} = (∪n

i=1Ai) ∪ (∪n
i=1Bi), where

|Ai| = |Bi| = n/2 for every i ∈ {1, . . . , n}. The elements of Ai are enumerated
as Ai[1], . . . , Ai[n/2] for every i ∈ {1, . . . , n}, and the same for every Bi. Let
A = {Ai, i = 1, . . . , n} and B = {Bi, i = 1, . . . , n}.

Given (A,B) ∈ A × B, let RA,B be the n-node ring (v1, . . . , vn), where
id(vi) = A[i] for i = 1, . . . , n/2, and id(vn−i+1) = B[i] for i = 1, . . . , n/2. For
every node v in the ring, let �A,B(v) ∈ {0, 1} be its input label, specifying whether
v is selected or not. Assume that only one node is selected in each RAi,Bj

for
i, j ∈ {1, . . . , n}, and that this node is at distance at least 2 from the nodes
vn−1, vn, v1, v2, with respective identities Bj [2], Bj [1], Ai[1], Ai[2], which form a
path of length 4 in RAi,Bj

.
For (A,B) ∈ A × B, let cA,B(v) be the certificates assigned to the nodes

of RA,B with such a unique selected node, leading all nodes to accept, with
probability > 4/5. Finally, for every node v, let LA,B(v) = (�A,B(v), cA,B(v)),
and set

LA,B = (LA,B(vn−2), LA,B(vn−1), LA,B(vn), LA,B(v1), LA,B(v2), LA,B(v3)).

Let us consider the complete bipartite graph Kn,n with bipartitions A and B,
and let us color every edge {A,B}, (A,B) ∈ A×B, with LA,B . Since LA,B is on
o(log n) bits, it can be shown that the colored Kn,n contains a monochromatic
4-cycle. Let (A1, B1, A2, B2) be such a cycle. The two n-node rings RA1,B1 and
RA2,B2 are then glued to form a 2n-node ring S by removing the edge {vn, v1}
in both n-node rings, and connecting the copy of v1 in one ring to the copy
of vn in the other ring. Note that there are two selected nodes in the ring S.
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Since LA1,B1 = LA2,B1 = LA2,B2 = LA1,B2 , no nodes can distinguish whether
they are in one of the four small (legal) rings RAi,Bj

, i, j ∈ {1, 2}, or in the large
(illegal) ring S.

We are now ready to apply the intuition provided at the beginning of
the proof to the construction in [12]. Let us consider a dMA protocol P for
amos with success probability larger than 4/5. For every i, j ∈ {1, 2}, we have
Pr[P accepts RAi,Bj

] > 4/5, with the appropriate certificate assignment ci,j given
to the nodes of RAi,Bj

. Also, Pr[P rejects S] > 4/5 for every certificate assign-
ment to the nodes of S. However, consider S with the certificate assignment
c consisting in giving the certificates defined by ci,i to the nodes coming from
RAi,Bi

in S, for i = 1, 2. By union bound, we have

Pr[∃v ∈ S : P rejects at vwithcertificatec(v)]

≤ Pr[∃v ∈ {v4, . . . , vn−3} : P rejects at v in RA1,B1 with certificate c1,1]

+ Pr[∃v ∈ {v4, . . . , vn−3} : P rejects at v in RA2,B2 with certificate c2,2]

+ Pr[∃v ∈ {vn−2, vn−1, vn, v1, v2, v3} : P rejects at v in RA2,B1 with certificate c2,1]

+ Pr[∃v ∈ {vn−2, vn−1, vn, v1, v2, v3} : P rejects at v in RA1,B2 with certificate c1,2].

Each of the four terms on the right hand side of the equation above is smaller
than 1/5. It follows that, with the certificate assignment c, we have Pr[∃v ∈ S :
P rejects at v] < 4/5, which contradicts the fact that the success probability of
P is larger than 4/5.

The proof above applies to leader as well since all legal configurations con-
sidered in the proof have exactly one selected node, and all illegal configurations
have exactly two selected nodes. For both amos and leader, the proof also
applies to 1-sider error protocols, since, for such protocols, the union bound
yields Pr[∃v ∈ S : P rejects at v] = 0, that is, P is incorrect with probability 1
for S with certificate c. 
�
Remark 2.2. Both leader and amos have locally checkable proofs with 2-bit
certificates, whenever restricted to trees. Indeed, for leader, the certificate at
every node v in a legal instance consists of the distance of v to the leader in the
tree, modulo 3. The same for amos, apart that, if there is no leader, then the
distance is from an arbitrary node of the tree. Such certificates enable to identify
a unique root of the tree, which is the only node allowed to be leader (it must be
selected in leader, but do not need to be selected in amos).

3 The Canonical 2-Party Reduction

In this section we show that a widely-used class of reductions from 2-party
communication complexity, which is typically used to prove lower bounds in
CONGEST, also yields lower bounds on dMA. These reductions are typically
used to relate the round complexity of a deterministic or randomized algorithm
in CONGEST to the deterministic or randomized communication complexity of
some 2-party problem, but here we use them as reductions from nondeterministic
communication complexity.
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Let Lcomm be a two player communication complexity language with
instances of the form (x, y) ∈ X × Y , where both X and Y are finite sets.
Let Ldist be a distributed language. We consider in this section distributed lan-
guages that represent “pure graph properties”. Therefore, the instances are of
the form (G, id), where G is a graph and id is the list of the identifiers of the
nodes. In fact, for simplicity, we are going to consider the instances as being
just graphs (and the ids will be fixed). In other words, a distributed interactive
protocol Pdist that solves Ldist, needs to implicitly answer whether G ∈ Ldist.

A reduction from Lcomm to Ldist is an explicit transformation of instances
(x, y) of Lcomm into instances Gx,y of Ldist such that (x, y) ∈ Lcomm if and
only if Gx,y ∈ Ldist. If the reduction is such that Gx,y ∈ Ldist has the specific
structure we are going to define in the sequel, we say that the reduction is
canonical . We consider here only reductions that generate graphs over a fixed
set V = {1, . . . , n} of nodes, for any specific n.

The definition below captures “clean-cut” reductions where each player
“owns” part of the graph, with a fixed cut between the two parts. Many reduc-
tions in the literature have this structure, or can be easily modified to have
it.

Definition 3.1. Let s : N → N be a computable function. A reduction from
Lcomm to Ldist is said to be s-canonical if there is some fixed partition V =
(V1, V2) of the node set of the graph, such that for all (x, y) ∈ X × Y ,

• The neighborhood of any node in V1 in Gx,y does not depend on y, and the
neighborhood of any node in V2 in Gx,y does not depend on x.

• Consider the cut E(V1, V2) = {{u, v} ∈ E(Gx,y) : u ∈ V1, v ∈ V2}. Let Vc be
the vertices of the cut (i.e., endpoints of edges in the cut). Then Vc does not
depend on either x or y, and |Vc| ≤ s(n).

Nondeterministic Communication Complexity. A 2-party nondetermin-
istic protocol Π is modelled as a collection Π = {Πc}c∈{0,1}� of deterministic
protocols. On inputs x, y, the protocol begins with the prover presenting Alice
and Bob with a proof c ∈ {0, 1}�; the players then execute the protocol Πc cor-
responding to the proof c. The cost of Π is defined to be � + maxc |Πc|, where
|Πc| is the worst-case number of bits sent by Πc on any input.

The protocol Π solves Lcomm if, for any input (x, y), we have (x, y) ∈ Lcomm

iff there exists a proof c ∈ {0, 1}� such that Πc accepts (x, y).
We denote by N(Lcomm) the nondeterministic cost of solving Lcomm, i.e., the

cost of the best nondeterministic protocol that solves Lcomm. It is known, for
example, that Disjointness has nondeterministic cost Ω(n).

Theorem 3.1. If there exists an s-canonical reduction from Lcomm to Ldist,
then, for every ε < 1/3,

dMA1−ε (Ldist) = Ω
(
N(Lcomm)

s(n)

)
.
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Proof. Consider a dMA protocol P that solves Ldist with success probability
at least 1 − ε and using p(n)-bit certificates. Our goal is to show that p(n) =
Ω

(
N(Lcomm)

s(n)

)
, by constructing a nondeterministic protocol Π for Lcomm with

communication cost O(p(n) · s(n)).
On input (x, y), the protocol Π proceeds as follows:

(1) Alice (resp. Bob) locally constructs Gx,y[V1] from x (resp., Gx,y[V2] from
y). Note that both players agree on the neighborhoods of the cut nodes
Vc, because the reduction is canonical: these nodes’ neighborhoods do not
depend on either x or y.

(2) The prover presents Alice and Bob with a proof π ∈ {0, 1}p(n)·s(n), which
the players interpret as an assignment of certificates to the cut nodes Vc.

(3) Alice (resp. Bob) enumerates over all possible assignments of p(n)-bit cer-
tificates to the nodes in V1 \ Vc (resp. V2 \ Vc), and checks whether there is
an assignment that, together with the certificates π of the cut nodes, causes
all nodes of V1 (resp. V2) to jointly accept with probability at least 1 − ε.

(4) The players inform each other whether they can find such an assignment.
The players accept iff both were able to find some assignment that makes
all nodes in V1 (resp. V2) accept.

Note that both Alice and Bob can perform step (3) above without need of
communication: after fixing the certificates π of the nodes Vc on both sides of
the cut, the acceptance probability of any node in V1 does not depend on y, and
vice-versa. This is because the neighborhood of any node in V1 does not depend
on y, and vice-versa.

Clearly, the cost of Π is s(n) · p(n) + 2. It remains to prove its correctness:

• Suppose that (x, y) is a YES-instance of Lcomm. We are going to show the
existence of a certificate c̃ that causes both Alice and Bob to accept.

By definition of the reduction, Gx,y is a YES-instance of Ldist, so there exist
certificates C to the nodes of Gx,y such that, with probability at least 1 − ε,
all nodes accept. Let π be the restriction of the certificates to the nodes
of Vc. In Π, the prover can give π to the players, causing them to accept:
when enumerating over all possible certificates, Alice and Bob will each find
the restriction of C to the nodes on their side of the graph (V1 and V2,
respectively), and since C causes all nodes to accept w.p. ≥ 1−ε, in particular
it causes all nodes of V1 (resp. V2) to accept w.p. ≥ 1 − ε.

• Suppose that (x, y) is a NO-instance of Lcomm. We need to show that there is
no certificate π that can be given to Alice and Bob to cause them to accept.

Suppose for the sake of contradiction that there is such a certificate π, and
let Cx, Cy be the extensions of π to the nodes of V1 (resp. V2) that cause
them all to accept with probability at least 1 − ε. Now consider the global
certificate assignment C = (Cx, Cy) where in the distributed dMA protocol
P, the prover assigns Cx to the nodes of V1 and Cy to the nodes of V2. By the
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union bound, when assigned C, the probability that either some node in V1 or
some node in V2 (or both) reject is at most 2ε. Overall, we see that the proof
is accepted by all nodes with probability at least 1− 2ε > 1− 2 · (1/3) = 1/3,
which is a contradiction, because Gx,y �∈ Lcomm. 
�

3.1 Lower Bound on DIAMETER

It is known that, for every k ≥ 1, diameter≤k ∈ LCP(O(n log n)), i.e., has
a locally checkable proof—actually, a proof-labeling scheme—using certificates
on O(n log n) bits [5]. (For this certificate, the prover constructs a BFS tree
from every node of the graph.) We show that allowing randomization in the
verification of the proof does not help.

Let disj be the two-player problem the players receive sets x, y ⊆ [n], and
their goal is to accept iff x ∩ y = ∅.

Our canonical reduction from disj to diameter≤6 is a simple modification
of a reduction of Censor-Hillel, Khoury and Paz [4]. The reduction of [4] mostly
has the static structure required for a canonical reduction, and it has a sparse
cut, of size s(n) = O(log n); however, it is not O(log n)-canonical, only because
the neighborhoods of the cut nodes may depend on x or on y. This is easily
solved by replacing each edge in the cut by a path of length 3 (subdividing the
edge by inserting two auxiliary nodes). Let Gx,y be the resulting graph. After
this modification, (x, y) are disjoint iff the diameter of Gx,y is at most 6, and
the new reduction is O(log n)-canonical. Thus, we obtain:

Lemma 3.1. There exists an O(log(n))-canonical reduction from disj to
diameter≤6.

By Theorem 3.1, we have:

Corollary 3.1. Let 0 ≤ ε < 1/3. Then, dMA1−ε(diameter≤6) = Ω(n/ log n).

The proof uses the fact that N(disj) = Ω(n) (see, e.g., the textbook [13]).

3.2 Lower Bound on SYMMETRY

It is known that symmetry is among the most difficult graph properties to
verify in a distributed manner, in the sense that every locally checkable proof
for symmetry requires certificates on Ω(n2) bits [12], while all distributed lan-
guages on n-node graphs can be verified using a certificate on O(n2) bits at each
node [16]. We show that allowing randomization in the verification of the proofs
does not help.

We extend the symmetry lower bound of [12] to dMA. The lower bound
in [12] is not formally stated as a reduction; it essentially “re-proves” the 2-party
nondeterministic lower bound for Equality. By observing that this lower bound
is in fact a canonical reduction, we obtain a dMA lower bound.

Let eqD be the two-player communication language where the players receive
inputs x, y ∈ D, and their goal is to output 1 iff x = y. Here, D is some domain
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of size N , which, following [12], we take to be a set of equivalence classes of
all n-node asymmetric graphs, under the isomorphism equivalence relation. It is
known that |D| = 2Θ(n2) [7].

Let symmetry be the distributed language defined on the set of all graphs,
where the YES-instances are graphs having non-trivial automorphisms. Obvi-
ously, all the graphs in D are NO-instances of symmetry.

Theorem 3.2 ([12], re-phrased). There exists a 2-canonical reduction from eqD
to symmetry that transforms instances (Gx, Gy) ∈ D2 into graphs Gx,y of size
2n + 2.

For completeness, we repeat the argument of [12], and show that it is a
2-canonical reduction:

Proof. Let V1 = {1, . . . , n + 1}, V2 = {n + 2, . . . , 2n + 2}. On inputs Gx, Gy,
Alice and Bob construct the following graph: Alice constructs a copy of some
graph in the equivalence class Gx over the nodes {1, . . . , n}, and Bob constructs
a copy of some graph in Gy over nodes {n + 3, . . . , 2n + 2}. In addition, Alice
connects node n + 1 to node n, Bob connects node n + 2 to n + 3, and “both
players” add the edge {n + 1, n + 2}.

The reduction is 2-canonical because there is only one edge in the cut. Cor-
rectness follows from the fact that, since Gx and Gy contain only asymmetric
graphs, and they are equivalence classes of the isomorphism relation, the result-
ing graph Gx,y is symmetric iff Gx = Gy. 
�

Since the nondeterministic cost of eqD is |D| [13], we obtain:

Corollary 3.2. Let 0 ≤ ε < 1/3. Then, dMA1−ε(symmetry) = Ω(n2).

3.3 Lower Bound on count

Finally, we observe that the notion of a canonical reduction is easily extended
to languages where the nodes have input in addition to the graph: to do this,
we require a transformation from the communication problem Lcomm to config-
urations (Gx,y, d) (keeping the ids fixed, as before), such that (x, y) ∈ Lcomm iff
(Gx,y, d) ∈ Ldist. We require all the conditions from the previous section; more-
over, the input d(u) of any neighbor u ∈ N(v) for v ∈ V1 (resp. V2) may not
depend on y (resp. x). With this additional restriction, Theorem 3.1 continues
to hold.

For example, consider the problem of counting the number of distinct ele-
ments in the input. Cast as a decision problem, we define it as countk =
{(G = (V,E), d) : | {d(u) : u ∈ V } | = k}.

In [21], Patt-Shamir showed by reduction from disj that counting the number
of distinct elements in the input of an n-node network requires ˜Ω(n) rounds in
CONGEST, even if randomization is allowed. A similar argument was used in [2]
to show that streaming algorithms for counting the number of distinct elements
require linear memory (indeed, [2] shows that this holds either for randomized
exact algorithms, or for deterministic approximate algorithms). Implicitly, the
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argument of [2] shows that the nondeterministic cost of disj with input sets of
size n/4, and with the promise that either x ∩ y = ∅ or |x ∩ y| ≥ n/100, is Ω(n).

The reduction of [21] is “almost” 2-canonical. We modify it slightly to make
it 2-canonical; this involves restricting the size of the input sets, and fixing the
input of the cut nodes.

Lemma 3.2. There is a 2-canonical reduction from disj with sets of size n/4
to countn/2+1 in networks of size n/2 + 2.

Proof. The modified reduction features a line network of n/2 + 2 nodes,
1, . . . , n/2 + 2, with Alice controlling nodes 1, . . . , n/2 + 1 and Bob controlling
nodes n/2 + 2, . . . , n/2 + 2. Nodes n/2 + 1, n/2 + 2, which are the cut nodes,
always receive ⊥ as their input (where ⊥ is some fixed element that is not in
the universe of Disj). Let x =

{
x1, . . . , xn/4

}
, y =

{
y1, . . . , yn/4

}
be the inputs

of Alice and bob. Alice assigns each node i the input xi, and Bob assigns each
node n/2 + 1 + j the input yj .

If x ∩ y = ∅, then the total number of distinct elements in the input is
|x| + |y| + 1 = n/2 + 1, whereas if x ∩ y �= ∅, the number of distinct elements is
smaller. 
�

For deterministic algorithms, using the argument from [2], this can be
extended to a sufficiently small constant approximation (e.g., 1 ± 1/100).

We obtain:

Corollary 3.3. Let 0 ≤ ε < 1/3. Then, dMA1−ε

(
countn/2+1

)
= Ω(n).

Let us make two further remarks about verifying the approximate number of
distinct elements in line networks. First, there is an O(log n)-bit dAM scheme for
this problem: we can simulate the execution of the streaming algorithm from [2],
which uses O(log n) bits of randomness and O(log n) bits of memory, and gives
a constant approximation. In the simulation, the first node in the line sends
the prover O(log n) bits of randomness r, which serve to specify a pairwise-
independent hash function in [2]. The prover responds by sending r to all the
nodes, and also, it tell each node i the state of the streaming algorithm of [2]
after processing the inputs of the first i nodes, using the hash function indicated
by r. The nodes verify that they all received the same value of r, and also that,
if node i received state si and node i + 1 received state si+1, then indeed, with
randomness r, the algorithm of [2] transitions from state si to state si+1 upon
processing the input of node i. This idea can be extended to arbitrary networks,
by using mergeable sketches [1], asking the prover to specify a spanning tree, and
“summing” the sketches up the tree.

Next, we observe that Ω(log n) is in fact a lower bound on the dAM-cost of
computing the exact number of elements in a network. This can be shown by
the following argument, which is very similar to a recent Ω(log n) lower bound
for the dAM-cost of symmetry [15].

Theorem 3.3. We have dAM(countn/2) = Ω(log n).
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Proof. Given an �-bit dAM protocol for countn/2, we construct a 2O(�)-bit,
private-coin, randomized two-party protocol for Disj with sets of size n/4 (with-
out a prover). Since disj requires Ω(n) bits of communication, we conclude that
� = Ω(log n).

The protocol proceeds as follows: given inputs (x, y), the players construct
the network from Lemma 3.2, but they use only n/2 nodes in total (with each
player responsible for n/4 nodes), and omit the input ⊥ (it is not necessary here).
Then, Alice and Bob each sample a private random string rA, rB (respectively).
We say that a pair of �-bit certificates c, c′ is rA -good if there is an assignment
of certificates to all the nodes in Alice’s side, where the cut nodes receive the
certificates c and c′ (respectively), such that when their randomness is rA (here,
rA represents a list of the random string of each node on Alice’s side), all nodes
on Alice’s side accept when their randomness is rA. Similarly, we say that c, c′

is rB -good if the same holds for Bob’s side with randomness rB . Alice and
Bob announce to each other the list of pairs c, c′ that are rA-good and rB-good,
respectively. This requires 22� bits. Finally, the players accept iff there is some
pair c, c′ that is good for both players.

It is easy to verify (see, e.g., [14]) that the probability that the players accept
is exactly the probability that a prover has of convincing all nodes of the network
to accept. Therefore, the protocol correctly solves disj. 
�
As a final remark, the argument above also yields an Ω(log log n) lower bound on
the dAM cost of deciding whether the number of distinct elements is (1±1/100)k,
for k = Θ(n). We use the same reduction, but reduce from the gap version
of disj, where it is promised that either x ∩ y = ∅ or |x ∩ y| ≥ n/100. This
problem has randomized private-coin communication complexity Ω(log n) (as its
deterministic cost is Ω(n) [2], and the private-coin randomized cost of a problem
is never exponentially better than its deterministic cost [13]). Interestingly, our
upper bound of O(log n) on approximating the number of distinct elements could
be improved to O(log log n), if the nodes had shared randomness. We could then
simulate the famous Flajolet-Martin streaming algorithm [9], which assumes
perfectly random hash functions, and requires O(log log n) bits of memory.
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Abstract. Anonymity has mostly been studied in the context where
processes have no identity. A new notion of anonymity was recently intro-
duced at PODC 2017, namely, this notion considers that the processes
have distinct identities but disagree on the names of the read/write reg-
isters that define the shared memory. As an example, a register named
A by a process p and a shared register named B by another process q
may correspond to the very same register X, while the same name C
may correspond to different registers for p and q.

Recently, a memory-anonymous deadlock-free mutual exclusion algo-
rithm has been proposed by some of the authors. This article addresses
two different problems, namely election and memory de-anonymization.
Election consists of electing a single process as a leader that is known by
every process. Considering the shared memory as an array of atomic
read/write registers SM [1..m], memory de-anonymization consists in
providing each process pi with a mapping function mapi() such that,
for any two processes pi and pj and any integer x ∈ [1..m], mapi(x) and
mapj(x) allow them to address the same register.

Let n be the number of processes and α a positive integer. The arti-
cle presents election and de-anonymization algorithms for m = α n + β
registers, where β is equal to 1, n − 1, or belongs to a set denoted M(n)
(which characterizes the values for which mutual exclusion can be solved
despite anonymity). The de-anonymization algorithms are based on the
use of election algorithms. The article also shows that the size of the
permanent control information that, due to de-anonymization, a register
must save forever, can be reduced to a single bit.
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1 Anonymous Memory, Model, and Aim of the Article

1.1 Anonymous Memory

Memory Anonymity. While the notion of process anonymity has been studied
for a long time from an algorithmic and computability point of view, both in
message-passing systems (e.g., [1,4,17]) and shared memory systems (e.g., [3,5,
8]), the notion of memory anonymity has been introduced only very recently by
[15]. (See also [11] for an introductory survey on process and memory anonymity.)

Let us consider a shared memory SM made up of m atomic read/write regis-
ters. Such a memory can be seen as an array with m entries, namely SM [1..m]. In
a non-anonymous memory system, for each index x, the name SM [x] denotes the
same register whatever the process that invokes the address SM [x]. As stated in
[15], in the classical system model, there is an a priori agreement on the names
of the shared registers. This a priori agreement facilitates the implementation
of the coordination rules the processes have to follow to progress without vio-
lating the safety (consistency) properties associated with the application they
solve [10,14].

This a priori agreement does no longer exist in a memory-anonymous system.
In such a system the very same identifier SM [x] invoked by a process pi and
invoked by a different process pj does not necessarily refer to the same atomic
read/write register. More precisely, a memory-anonymous system is such that:

– prior the execution, an adversary defined, for each process pi, a permutation
fi() over the set {1, 2, · · · ,m}, such that when pi uses the address SM [x], it
actually accesses SM [fi(x)], and

– no process knows the permutations.

The read/write registers of a memory-anonymous system are necessarily
MWMR.

Results on Memory Anonymity in Mutual Exclusion. The work described in [15]
on anonymous read/write memory addressed mutual exclusion, consensus, elec-
tion and renaming, problems for which it presented algorithms and impossibil-
ity results. The consensus, election and renaming algorithms in [15] satisfy the
starvation-freedom progress condition, namely, if a process executes alone during
a long enough period, it eventually decides. This progress condition is different
from the one considered in this article.

Among the results from [15], one states a condition on the size m of the
anonymous memory which is necessary for any symmetric deadlock-free algo-
rithm, where symmetric means that process identities can only be compared
with equality (hence, there is no notion of a total order on process identi-
ties). More precisely, given an n-process system where n ≥ 2, there is no
deadlock-free mutual exclusion algorithm if the size m does not belong to the
set M(n) = { m such that ∀ � : 1 < � ≤ n: gcd(�,m) = 1} \ {1}.

Recently, it has been shown in [2] that the condition m ∈ M(n) is also a
sufficient condition for symmetric deadlock-free mutual exclusion in read/write
anonymous memory systems.
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1.2 Computing Model

Processes. The system is composed of a finite set of n ≥ 2 asynchronous processes
denoted p1, .., pn. The subscript i in pi is only a notation convenience, which
is not known by the processes. Asynchronous means that each process proceeds
to its own speed, which can vary with time and remains always unknown to
the other processes. Initially, each process pi knows only its identity idi, the
total number of processes n, and the fact that no two processes have the same
identity. It is assumed that there are no process failures. Furthermore, unlike the
mutual exclusion model where a process may never leave its remainder region,
it is assumed that all the processes must participate in the algorithm.

Anonymous Shared Memory. The shared memory is made up of m atomic anony-
mous read/write registers denoted SM [1...m]. As a system composed of a single
atomic register is not anonymous, it is assumed that m > 1. Hence, all registers
are anonymous. As already indicated, when a process pi invokes the address
SM [x], it actually accesses SM [fi(x)], where fi() is a permutation statically
defined once and for all by an external adversary. We will use the notation SM i[x]
to denote SM [fi(x)], to stress the fact that no process knows the permutations.
It is assumed that all the registers are initialized to the same value. Otherwise,
thanks to their different initial values, it would have been possible to distinguish
different registers, which consequently will no longer be fully anonymous.

Symmetry Constraint on the Algorithms. A symmetric algorithm is an “algo-
rithm in which the processes are executing exactly the same code and the only
way for distinguishing processes is by comparing identifiers. Identifiers can be
written, read, and compared, but there is no way of looking inside an identifier.
Thus it is not possible to know whether an identifier is odd or even” [15]. Further-
more, the only comparison that can be applied to identifiers is equality. There is
no order structuring the identifier name space. (Other notions of symmetry are
described in [6,9]). Let us notice that as all the processes have the same code
and all the registers are initialized to the same value, process identities become a
key element when one has to design an algorithm in such a constrained context.

1.3 Problems Addressed in This Article

Leader Election. In this problem, the input of each process pi is its identity idi.
Its output will be deposited in a write-once local variable leaderi. The aim is to
design an algorithm that provides the local variable leaderi of each process pi

with the same process identity. The only process such that leaderi = idi is the
elected process.

Anonymous Memory De-anonymization. In this problem, as before, the input of
each process pi is its identity idi. The aim is for each process pi to compute an
addressing function mapi(), which is a permutation over the set of the memory
indexes {1, · · · ,m}, such that the two following properties are satisfied.
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– Safety. Let y ∈ {1, · · · ,m}. For any process pi: SM i[mapi(y)] = SM [y].
– Liveness. There is a finite time after which all the processes have computed

their addressing function mapi().

The safety property states that once a process pi has computed mapi(), its local
anonymous memory address SM i[x], where x = mapi(y), denotes the shared
register SM [y].

1.4 Content

This article presents first an impossibility result. Then, it presents symmetric
algorithms solving the two previous problems in a system where the process
cooperate through m atomic anonymous read/write registers. As already indi-
cated, it is assumed that all the processes participate in the algorithms, and the
size of the memory is m = α n + β, where α is a positive integer and β can take
the following values:

– β = 1. The size of the anonymous memory is then m = α n + 1.
– β = n − 1. The size of the anonymous memory is then m = α n + (n − 1).
– β ∈ M(n) where M(n) is as defined above. Namely, M(n) is the set of values

for which deadlock-free mutual exclusion can be solved [2,15]. This is due
to the fact that when β ∈ M(n), the algorithms use a deadlock-free mutual
exclusion algorithm to solve conflicts - which do not exist when β = 1 or
β = n − 1). In this specific case, α can also be 0.

Find a characterization of the set of the values of m for which leader election
can be solved in a memory anonymous system remains an open problem (see the
Conclusion section).

2 An Impossibility Result

Theorem 1. There is neither a de-anonymizing algorithm nor an election algo-
rithm for n processes using m anonymous registers, where m = α n and α is a
positive integer.

Proof. First, we observe that once de-anonymizing is solved using m = α n
registers, it is straightforward to solve election using m = α n registers. First,
run the de-anonymizing algorithm to get m = α n non-anonymous registers.
Then, using these registers, simply run the symmetric mutual exclusion algo-
rithm from [13] which uses exactly n registers, and let the first process to enter
its critical section be the leader. Thus, to prove the theorem, we only need to
prove that it is impossible to solve election using m = αn registers.

Assume to the contrary, that there is a symmetric election algorithm for n
processes using m = α n registers where α is a positive integer. Let us arrange
the m registers on a ring with m nodes where each register is placed on a different
node. Let us call the n processes p0, ..., pn−1. To each one of the n processes,
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we assign an initial register (namely, the first register that the process accesses)
such that for every two processes pi and pi+1 (mod n), the distance between their
initial registers is exactly α when walking on the ring in a clockwise direction.
Here we use the assumption that m = α n.

The lack of global names allows us to assign for each process an initial reg-
ister and an ordering which determines how the process scans the registers. An
execution in which the n processes are running in lock steps, is an execution
where we let each process take one step (in the order p0, ..., pn−1), and then
let each process take another step, and so on. For process pi and integer k, let
order(pi, k) denote the kth new register that pi accesses during an execution
where the n processes are running in lock steps, and assume that we arrange
that order(pi, k) is the register whose distance from pi’s initial register is exactly
(k − 1), when walking on the ring in a clockwise direction.

We notice that order(pi, 1) is pi’s initial register, order(pi, 2) is the next new
register that pi accesses and so on. That is, pi does not access order(pi, k + 1)
before accessing order(pi, k) at least once, but for every j ≤ k, pi may access
order(pi, j) several times before accessing order(pi, k + 1) for the first time.1

With this arrangement of registers, we run the n processes in lock steps. Since
only comparisons for equality are allowed, and all registers are initialized to the
same value –which (to preserve anonymity) is not a process identity– processes
that take the same number of steps will be at the same state, and thus it is
not possible to break symmetry. It follows that either all the processes will be
elected, or no process will be elected. A contradiction. ��Theorem1

3 Memory Anonymous Leader Election When
m = α n + 1

3.1 Algorithm

Local Variables. In addition to leaderi, each process pi manages the following
local variables: towritei, overwritteni, writteni, which contain sets of memory
indexes, last i which is a memory index, and nbi which is a non-negative integer.
The meaning of these variables will appear clearly in the text of Algorithm1.

First Part of the Algorithm: Lines 1–12. Each anonymous register SM [x] is
initialized to 〈start,⊥〉, where ⊥ is default value, which can be compared (with
equality) with any process identity.

When it invokes election(idi), a process pi first writes the pair 〈start, idi〉 in
the first (from its point of view) α registers, namely, SM i[1], ...,SM i[α] (line 3).
Then, it waits until all the registers (except one) are tagged start, or a register
in which it wrote 〈start, idi〉 has been overwritten. There are consequently two
cases.

1 Once a process accesses a register for the first time, say register x, we may map x
to any (physical) register that it hasn’t accessed yet. However, when it accesses x
again, it must access the same register it has accessed before when referring to x.
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– If registers in which pi wrote 〈start, idi〉 have been overwritten (the first
part of the predicate of line 5 is then satisfied), pi updates its local variables
overwritteni, nbi, towritei and last i, and re-enters the repeat loop, the goal
being to have α registers containing 〈start, idi〉.

– If all the registers except one (i.e., exactly m − 1 = α n registers) are tagged
start, pi exits the loop.

As we will see in the proof, it follows from this collective behavior of the processes
that there is time at which exactly one register still contains its initial value
〈start,⊥〉, while for each j ∈ {1, · · · , n}, exactly α registers contain 〈start, idj〉
(this property is named P1 in the algorithm).

init: each SM [x] is initialized to 〈start, ⊥〉; m = α n + 1.

operation election(idi) is % code for process pi, i ∈ {1, · · · , n}
(01) towritei ← {1, ..., α}; overwritteni ← ∅; writteni ← ∅; lasti ← α;
(02) repeat
(03) for each x ∈ towritei do SM i[x] ← 〈start, idi〉 end do;
(04) writteni ← (writteni \ overwritteni) ∪ towritei;
(05) wait until

(
(∃ x ∈ writteni : SM i[x] 
= 〈start, idi〉)

∨ (|{� such that SM i[�] 
= 〈start, ⊥〉}| = α n)
)
;

(06) if
(|{� such that SM i[�] 
= 〈start, ⊥〉}| = α n

)

(07) then exit repeat loop
(08) else overwritteni ← { x ∈ writteni such that SM i[x] 
= 〈start, idi〉};
(09) nbi ← |overwritteni|;
(10) towritei ← {lasti + 1, ..., lasti + nbi}; lasti ← lasti + nbi;
(11) end if
(12) end repeat;

% Property P1: There is a time at which exactly one register contains 〈start, ⊥〉
% and, for each j ∈ {1, · · · , n}, α registers contain 〈start, idj〉

(13) let �i be such that SM i[�i] = 〈start, ⊥〉 or SM i[�i] = 〈leader, −〉;
(14) SM i[�i] ← 〈leader, idi〉;
(15) wait until

(
(SM i[�i] 
= 〈leader, idi〉)

∨ (SM i[1..m] has exactly α + 1 entries not tagged done)
)
;

(16) for each x such that SM i[x] = 〈start, idi〉 do SM i[x] ← 〈done, idi〉 end for;
% Property P2: There is a time from which there is exactly there is exactly one

% index � ∈ {1, · · · , n} such that a register contains 〈leader, id�〉, and
% for each j ∈ {1, · · · , n}, there are α registers containing 〈done, idj〉

(17) if (SM i[�i] 
= 〈leader, idi〉) then
wait until

(
SM i[1..m] has only one entry not tagged done

)
end if;

(18) 〈−, id〉 ← SM i[�i]; leaderi ← id.
% Here, one register is tagged leader, all the others are tagged done.

Algorithm 1: n-process election with m = α n + 1 anonymous read/write
registers

Second Part of the Algorithm: Lines 13–18. As just seen, the previous part of
the algorithm has identified a single register of the anonymous memory, namely
the only one containing 〈start,⊥〉. This register is known by all the processes,
more precisely, it is known as SM i[�i] by pi, SM j [�j ] by pj , etc.
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So, to become the leader, each process pi writes the pair 〈leader, idi〉 in this
register (known as SM i[�i] by pi, line 14). It follows that the last process that
will write this register will be the leader. There are then two cases.

– If pi discovers it has not been elected (we have then SM i[�i] �= 〈leader, idi〉,
first predicate of line 15), it resets all the registers containing its tagged
identity (〈start, idi〉) to the value 〈done, idi〉 (line 16). Then, pi waits until
all registers except one are tagged 〈done,−〉.

– If pi is the last process to write in the single register locally known as SM i[�i],
it waits until all the other processes have written 〈done,−〉 in the registers
containing their identity (second part of the predicate of line 15). When this
is done, the elected process pi writes 〈done, idi〉 in all the registers containing
its identity (line 16), which allows each other process not to remain blocked
at line 17 and progress to the last line of the algorithm. When this occurs,
each process can assign the identity of the leader to its local variable leaderi

(line 18).

As before, we will see in the proof, that there is a time from which there is
exactly one index � ∈ {1, · · · , n} such that a register contains 〈leader, id�〉,
and, for each j ∈ {1, · · · , n}, there are α registers containing 〈done, idj〉 (This
property is named P2 in the algorithm).

3.2 Proof of Algorithm1

Lemma 1 (Property P1). Before a process executes line 14, there is a finite
time at which one register contains 〈start,⊥〉, and, for each j ∈ {1, · · · , n}, α
registers contain 〈start, idj〉.
Proof. Considering time instants before a process executes line 14, we have the
following.

– Let us first observe that the order on the entries of SM [1..m] in which pi writes
them has been statically predefined by the adversary (namely, according to
the –unknown– permutation fi(): SM i[x] is actually SM [fi(x)]). The impor-
tant point is that a process pi never backtracks while scanning SM [1..m], and
its successive accesses are SM [fi(1)], SM [fi(2)], etc.

– The first writes of a process pi involve the registers SM i[1], ..., until SM i[α]
(lines 1 and 3). Then, as indicated above, its next writes in SM follows a
statically predefined order. The process pi issues a write of 〈start, idi〉 in a
register it has not yet written, for each of its previous writes that have been
overwritten by another process (line 4). These writes by pi concern entries of
SM i[1..n] in which it has not yet written (management of the local variables
towritei, overwritteni, writteni, and last i, at lines 1,4, and 8–10). As pi writes
only in new registers, it follows that, for any pi we have |{x such that SM [x] =
〈start, idi〉}| ≤ α, and from a global point of view we have

n∑

i=1

(|{x such that SM [x] = 〈start, idi〉}|) ≤ nα.
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– It follows from m = α n+1 and the previous inequality, that there is enough
room in the array SM [1..m] for each process pi to write n times the pair
〈start, idi〉. Consequently, there is time after which the first predicate of
line 5 is false for each process pi, and as m = nα + 1, the remaining entry of
SM [1..m] has still its initial value, namely 〈start,⊥〉, from which we conclude
that a process neither remains forever blocked at line 4, nor forever executes
the “repeat” loop (lines 2–12).

It follows from the previous observations that before a process executes line 14,
there is a time at which, for each identity idi, the pair 〈start, idi〉 is present in
α entries of SM [1..m], and an entry of SM [1..m] has still its initial value, which
concludes the proof of the lemma. ��Lemma1

The Number of Write Accesses Between Line 3 and Line 12. When considering
the proof of Lemma 1, it is easy to count the number of writes in the anonymous
memory. In the best case, the (unknown) permutations assigned by the adversary
to the processes are such that no process overwrites the pairs written by the other
processes. In this case, line 2 generates α n writes into the shared memory.

In the worst case, the permutations assigned by the adversary, and the asyn-
chrony among the processes are such that the first α writes of a process are
overwritten (n − 1) times, the first α writes of another process are overwritten
(n − 2) times, etc., until a last process whose none of its first α writes are over-
written. In this case, line 2 generates αn(n+1)

2 writes into the anonymous shared
memory.

Lemma 2 (Property P2). There is a finite time from which there is � ∈ {1, · · · ,
n} such that exactly one register contains 〈leader, id�〉, and, for each j ∈
{1, · · · , n}, there are α registers containing 〈done, idj〉.
Proof. It follows from Lemma 1 that no process blocks or loops forever in the
“repeat” loop (2–12). Hence, each process eventually executes lines 13–14. Let p�

the last process that executes line 14. This means that after it executed this line,
we have SM i[�i] = 〈leader, id�〉 for any process pi (namely, p� is the process
that has been elected). There are two cases.

– A process pi that is not the leader, is such that SM i[�i] �= 〈leader, idi〉.
Consequently, it cannot be blocked at line 15. So, such a process pi eventually
writes 〈done, idi〉 in the α registers containing 〈start, idi〉 (line 16). Let us
recall that, due to Property P1, these exactly α registers do exist. When the
(n−1) processes that are not leader have executed line 16, there are α(n−1)
registers containing 〈done,−〉, α registers containing 〈start, id�〉, and one
register containing 〈leader, id�〉.

– As far as the leader process p� is concerned, we have the following. Due to the
previous item, the second predicate of line 15 is eventually satisfied. When
this occurs, p� writes 〈done, id�〉 in the α registers containing 〈start, id�〉
(line 16) and, from then on, a single register is not tagged 〈done,−〉, namely
the one containing 〈leader, id�〉.
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The lemma follows directly from the two previous items. ��Lemma2

Theorem 2. Algorithm1 solves the election problem.

Proof. Once Property P2 is satisfied, no non-leader process is blocked at line
17, and each process eventually execute line 18. When this occurs, they all agree
on the very same leader, namely the only process p� whose identity is tagged
leader. ��Theorem2

4 From Leader Election to De-anonymization When
m = α n + 1

4.1 A Simple Leader-Based De-anonymization Algorithm

As soon as a process has been elected, it is easy to de-anonymize the anonymous
memory. To this end, the elected process p� imposes its mapping function to all
the processes.

Algorithm 2 is such a de-anonymization algorithm, which relies on Property
P2. Each process pi invokes the operation election(idi) (line 1). Then for each
register SM �[x], the elected process p� writes the pair 〈desa, x〉 in SM �[x] (line
3). Hence, its mapping function is ∀ x ∈ {1, · · · ,m}: mapi(x) = x. On the other
side, any non-leader process pi waits until all the registers are tagged desa (line
4). When this occurs, pi computes its own mapping function (line 5), which is
such that mapi(y) = x, where SM i[x] = 〈desa, y〉. The proof of this algorithm
is easy and left to the reader.

operation SM i.scan() returns ([SMi[1], · · · , SMi[m]]).

operation de-anonymize(idi) is
(01) election(idi);

% in the following �i has the value computed in election(idi); moreover, if pi is the
% first process that exits from election(idi):
% one register is tagged leader, all the others are tagged done

(02) if (SM i[�i] = 〈leader, idi〉) % this predicate is equivalent to leaderi = idi

(03) then for each x ∈ {1, · · · , m} do SM i[x] ← 〈desa, x〉 end for
% the permutation for pi is: ∀ y ∈ {1, · · · , m}: mapi(y) = y %

(04) else repeat smi ← SM i.scan() until (∀ x : smi[x] is tagged desa) end repeat;
(05) for each x ∈ {1, · · · , m} do mapi(y) ← x where smi[x] = 〈desa, y〉 end for

% perm. of pi is: ∀ y ∈ {1, · · · , m}: mapi(y) = x, where smi[x] = 〈desa, y〉
(06) end if. % Here, each register SM i[x] is tagged desa.

Algorithm 2: Election-based de-anonymization (code for pi, m = α n + 1)

As a simple example see Fig. 1, where p� has been elected as leader, and f�()
is the permutation defined by the adversary for p� (this permutation remains
always unknown to the processes). SM i[x] = 〈desa, y〉, and SM j [z] = 〈desa, y〉
address the same register, which is SM �[y]. Hence, this register is locally known
as SM i[mapi(y)] by pi, SMj [mapj(y)] by pj , and SM �[map�(y)] = SM �[y] by p�.
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fj(1) fj(2) fj(3) fj(6) fj(7) fj(8) fj(9)fj(4)

fi(1) fi(7)fi(3)fi(2) fi(4) fi(5) fi(8)

SMi[mapi[y]]

Unknown adversary-defined
permutation for pi

Physical registers

Unknown adversary-defined
permutation for pj

SM j [mapj [y]]

fj(5)

fi(6) fi(9)

Fig. 1. An example of de-anonymization, n = 4 and m = 2n + 1

4.2 Using the De-anonymized Memory

When a process pi returns from Algorithm 2, it knows that all the processes
will share the same index for the same register (i.e., if SM i[x] = 〈desa, y〉, then
SMi[mapi(y)] is SM i[x]). When this occurs, process pi could start executing
its local algorithm defined by the upper layer application, but if it writes an
application-related value in some of these registers, this value can overwrite a
pair tagged desa stored in a register not yet read by other processes. A way to
prevent this problem from occurring consists in tagging all the values written by
a process at the application level by the tag apply, and include a field containing
the common index y associated with this register. Hence, at the application level,
a register will contain 〈apply(y), v〉. In this way, despite asynchrony, any process
pj will be able to compute its local mapping function mapj(), and start its upper
layer application part, as soon as it has computed mapj().

Let us notice that one bit is needed to distinguish the tag desa and the
tag apply. Hence each of a pair 〈desa, y〉 and a pair 〈apply(y),−〉 requires
(1 + log2 m) control bits.

4.3 Reducing the Size of the Permanent Control Information

Aim and Additional Assumption. This section shows that, at the price of an
additional synchronization phase, the control information that each register must
forever contain can be reduced from (1 + log2 m) to a single bit.

To this end, we assume now that each atomic read/write register SM [x]
is composed of two parts SM [x].BIT and SM [x].RM (i.e., SM [x] = 〈SM [x].
BIT ,SM [x].RM〉). SM [x].BIT is for example the leftmost bit of SM [x], and



256 E. Godard et al.

SM [x].RM the other bits. The meaning and use of SM [x].RM are exactly the
same as SM [x] in Algorithms 1 and 2. For each x, SM [x].BIT is initialized
to 0, while SM [x].RM is initialized to 〈start,⊥〉. We assume that the previ-
ous algorithms are appropriately updated so that they do not modify the bits
SM [x].BIT .

operation SM i.scan() returns ([SMi[1], · · · , SMi[m]]).

operation efficient de-anonymize(idi) is
(01) de-anonymize(idi);

% As all reg. are tagged desa when the first process returns from de-anonymize()
% the tags start and done disappeared from the system and can be re-used

(02) execute lines 1-10 of Algorithm 1 where start is replaced by desa;
% in the following, �i has the value obtained in de-anonymize(idi)

(03) SM i[�i] ← 〈done, idi〉;
(04) wait until

(
(SM i[�i] 
= 〈done, idi〉)

∨ (SM i[1..m] has exactly α + 1 entries not tagged done)
)
;

(05) for each x such that SM i[x] = 〈desa, idi〉 do SM i[x] ← 〈done, idi〉 end for;
% Property P1’: There is a time at which exactly one register contains 〈start, z〉
% where z is an integer and for each j ∈ {1, · · · , n}, α registers contain 〈start, idj〉

(06) if (leaderi = idi)
% Here the leader knows that every process pj knows its mapping function mapj()

(07) then for each x ∈ {1, · · · , m} do BIT i[x] ← 1 end for
(08) else repeat biti ← BIT i.scan() until (∀ x : biti[x] = 1) end repeat
(09) end if.

Algorithm 3: Reduction to a single bit of control information per register (code
for pi)

Not to overload the presentation, the following notation shortcuts are used in
Algorithm 3.

– The read of SM i[x] at lines 3 and 4 concerns the field SM i[x].RM .
– The write of SM i[x] at lines 2 and 4 writes 0 in its leftmost bit (which actually

is not modified).
– The statement “BIT i[x] ← 1” at line 6, means that only the leftmost bit of

SM i[x] is modified. As this statement is issued by the leader process only,
this process can first read SM i[x], prefix it by 1, and rewrite this new value
so that only the leftmost bit SM i[x] is modified.

– The statement “BIT i.scan()” stands for “SM i.scan()” from which only the
leftmost bits are extracted.

After they return from de-anonymize(), the processes execute the same syn-
chronization pattern as lines 14–17 of Algorithm1 where the tag start is
replaced by the tag desa. As the reader can see, at this time the tag done is no
longer present in a register, so it can be re-used. Moreover, as the type “process
identity” and the type “integer” are different, any integer x is considered as a
synonym of ⊥ when looking at a pair 〈desa, x〉 (which now is a synonym of
〈start, x〉).
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It follows that we have then the property P1’: there is a time at which exactly
one register contains 〈start, z〉 where z is an integer and, for each j ∈ {1, · · · , n},
α registers contain 〈start, idj〉. Here, the important point is that the process
previously elected as a leader knows that any process pj knows its mapping
function mapj(). So, it can inform of it the other processes. This is done at
lines 6–9 of Algorithm 3. As soon as a process pj sees the leftmost bit of all the
registers equal to 1, it knows that each process knows its mapping function, and
pj can consequently start writing application-related values in the other bits of
the registers.

The lines 2–9 of Algorithm 3 and the code of Algorithm 1 are nearly the same.
More precisely, they differ in the fact that Algorithm1 elects a leader at lines
13–14, while Algorithm 3 uses at line 3 the leader that has been previously been
elected. It follows that the proof of Algorithm3 is very close to the proof of
Algorithm 1, and is left to the reader.

5 Memory Anonymous Leader Election When
m = α n + (n − 1)

Leader Election. Algorithm 1, which solves the election problem for a system of
m = α n+1 anonymous registers, is based on the fact that each process can write
its identity in α registers that – after some finite time – will not be overwritten,
and when this occurred, the single remaining not yet written anonymous register
is used to elect the leader (which will be the last process that writes its identity
in this register well-identified by each process).

The principle that underlies the election when there are m = α n + (n − 1)
anonymous registers is dual in the sense that each of the n processes can write its
identity in α +1 anonymous registers, except one which can write its identity in
only α registers. When this occurs, the corresponding process becomes elected.

Algorithm. The operational view of this idea is captured by Algorithm4,
obtained from a simple adaptation of Algorithm1 to the fact that the leader
is selected from a memory occupation criterion (instead of a competition on a
single read/write register, where the last writer is the winner). The main differ-
ence lies in the management of the local variables towritei, overwritteni, writteni,
last i, and nbi. Property P1” captures the result of the algorithm, namely, there
is a time at which α registers contain the same pair 〈start, id�〉, and for each
j ∈ {1, · · · , n} \ {�}, α + 1 registers contain 〈start, idj〉. Its proof is a simple
adaptation of the proof of Algorithm1.
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init: each SM [x] is initialized to 〈start, ⊥〉. 〈start, ⊥〉; m = (α + 1)n − 1.

operation election(idi) is % code for process pi, i ∈ {1, · · · , n}
(01) towritei ← {1, ..., α + 1}; overwritteni ← ∅; writteni ← ∅; lasti ← α + 1;
(02) repeat
(03) for each x ∈ towritei do SM i[x] ← 〈start, idi〉 end do;
(04) writteni ← (writteni \ overwritteni) ∪ towritei;
(05) wait until

(
(∃ x ∈ writteni : SM i[x] 
= 〈start, idi〉)

∨ (|{� such that SM i[�] 
= 〈start, ⊥〉}| = m)
)
;

(06) if
(|{� such that SM i[�] 
= 〈start, ⊥〉}| = m

)

(07) then exit repeat loop
(08) else overwritteni ← { x ∈ writteni such that SM i[x] 
= 〈start, idi〉};
(09) nbi ← |overwritteni|;
(10) towritei ← {lasti + 1, ..., min(lasti + nbi, m)};
(11) lasti ← min(lasti + nbi, m)
(12) end if
(13) end repeat;

% Property P1”: There is a time at which α reg. contain the same pair 〈start, id�〉,
% and for each j ∈ {1, · · · , n} \ {�}, α + 1 registers contain 〈start, idj〉

(14) leaderi ← id where id
(15) is such that α registers exactly contain the same pair 〈start, id〉.

Algorithm 4: n-process election for m = α n + (n − 1) anonymous registers

6 Election and De-anonymization for m = α n + β,
β ∈ M(n)

This section considers the case where an underlying mutex algorithm, suited to
an anonymous memory, is used to elect a leader.

Mutual Exclusion in an Anonymous System. Mutual exclusion in memory
anonymous systems was introduced in [15], which presents a symmetric deadlock-
free mutex algorithm for two processes only, and a theorem stating that there
no symmetric deadlock-free mutual exclusion algorithm if the size m does not
belong to the set M(n) = { m such that ∀ � : 1 < � ≤ n: gcd(�,m) = 1} \ {1}.
Recently, a symmetric deadlock-free mutual exclusion algorithm has been pro-
posed, which works any numbernof processes and for any value m ∈ M(n) [2],
from which follows that m ∈ M(n) is a necessary and sufficient condition for
anonymous mutual exclusion.

Leader Election in a System of m = α n + β Anonymous Registers. The idea
is to rely on the underlying mutex algorithm to elect a leader. But, to this end,
the processes have first to isolate a set of β anonymous registers in order to be
thereafter able to use a symmetric deadlock-free mutex algorithm accessing this
subset of registers.
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init: each SM [x] is initialized to 〈start, ⊥〉. 〈start, ⊥〉; m = α n + β, β ∈ M(n).

operation election(idi) is % code for process pi, i ∈ {1, · · · , n}
(01) towritei ← {1, ..., α}; overwritteni ← ∅; writteni ← ∅; lasti ← α;

(02) repeat

(03) for each x ∈ towritei do SM i[x] ← 〈start, idi〉 end do;

(04) writteni ← (writteni \ overwritteni) ∪ towritei;

(05) wait until
(
(∃ x ∈ writteni : SM i[x] �= 〈start, idi〉)

∨ (|{� such that SM i[�] = 〈start, ⊥〉}| = β)
)
;

(06) if
(|{� such that SM i[�] = 〈start, ⊥〉}| = β

)

(07) then exit repeat loop

(08) else overwritteni ← { x ∈ writteni such that SM i[x] �= 〈start, idi〉};
(09) nbi ← |overwritteni|;
(10) towritei ← {lasti + 1, ..., lasti + nbi}; lasti ← lasti + nbi

(11) end if

(12) end repeat;

% Property P1”’: There is a time at which β registers contain the pair 〈start, ⊥〉,
% and for each j ∈ {1, · · · , n}, α registers contain 〈start, idj〉

(13) let SMβi[1..β] be the sub-array of the β registers

that do not contain 〈start, id〉, for any process identity id;

(14) Now, using the previous sub-array (locally knows as SMβi[1..β] by pi) the processes

processes execute a symmetric deadlock-free mutex algorithm at the end of which the

last process to enter the critical section is elected. While it is in the critical section,

the elected process p� write 〈leader, id�〉 in all the registers of SMβ�[1..β],

which allows the other processes to know which is the leader.

Algorithm 5: Election in a system of m = α n + β, β ∈ M(n) anonymous reg.

Algorithm 5 realizes this at lines 1–12, which are a simple adaptation of the
same line numbers in Algorithms 1 and 4. When the processes exit the repeat
loop (line 12), we have property P1”, namely, there is a time at which β registers
contain the pair 〈start,⊥〉 and, for each j ∈ {1, · · · , n}, α registers contain
〈start, idj〉. Hence, the set of β registers define a common anonymous memory
on top of which the n processes can execute a symmetric deadlock-free mutex
algorithm. As β ∈ M(n), such mutex algorithms do exist (e.g., [2]). Moreover,
as the mutex algorithm is deadlock-free and each process invokes it once, each
process eventually enters the critical. It is shown in [7] how a symmetric deadlock-
free mutual exclusion algorithm can be used to allow a process to know it is the
last that entered the critical section. Finally, the last process to enter is the
elected process.

We point out that a memory de-anonymization algorithm is described in [7].
However, as it is based on an underlying mutual exclusion algorithm, it is a
specific algorithm that works only for m ∈ M(n), which is not the general case
addressed here, namely m = α n + β.

Memory De-Anonymization in a System of m = α n + β Anonymous regis-
ters. The previous algorithm can be modified in order to solve de-anomymization.
When the last process is inside the critical section, it can impose its mapping
function to all the processes by executing lines 4–5 of Algorithm 2, while all the
other processes execute lines 5–6 of this algorithm.
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7 Conclusion

This article is on synchronization problems in an n-process system in which the
communication is through m anonymous read/write registers only. In such a
system there is no a priori agreement on the names of the registers: the same
register name A used by several processes can head them to different registers.
In such a context, the article addressed the following problems: leader elec-
tion and memory de-anonymization. It was first shown that these problems are
impossible to solve if m = α n, where α is a positive integer. Then, considering
m = α n + β, it has presented election algorithms for β = 1, β = n − 1, and
β ∈ M(n) where M(n) is the set of the memory anonymous sizes for which
symmetric deadlock-free mutual exclusion can be solved in n-process systems.
De-Anonymization algorithms have also been presented, each based on an under-
lying election algorithm.

As stated in [15], the memory-anonymous communication model “enables us
to better understand the intrinsic limits for coordinating the actions of asyn-
chronous processes”. It consequently enriches our knowledge of what can be (or
cannot be) done when an adversary replaced a common addressing function, by
individual and independent addressing functions, one per process. Additional
results regarding the computational power of anonymous and non-anonymous
objects can be found in [16]. On a more practical side, it appears that the concept
of an anonymous memory allows us to model epigenetic cell modifications [12].

On the open problems side, it seems that finding a characterization of all the
values of m (the size of the read/write anonymous memory) for which leader
election (and de-anonymization) can be solved in an n-process system is partic-
ularly important as soon as we want to understand the power and the limits of
n-process memory anonymous systems. Finally, since we assume a model where
participation is required, in the case where the mutex algorithm from [2] (which
also works when participation is not required) is used, it might be possible to
replace the algorithm from [2] with a simpler algorithm. In such a case we might
not need to assume that β ∈ M(n), but something weaker.
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survey. In: Podelski, A., Täıani, F. (eds.) NETYS 2018. LNCS, vol. 11028, pp. 122–
140. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05529-5 9

12. Rashid, S., Taubenfeld, G., Bar-Joseph, Z.: Genome wide epigenetic modifications
as a shared memory consensus. In: 6th Workshop on Biological Distributed Algo-
rithms (BDA 2018), London (2018)

13. Styer, E., Peterson, G.L.: Tight bounds for shared memory symmetric mutual
exclusion problems. In: Proceedings of 8th ACM Symposium on Principles of Dis-
tributed Computing, pp. 177–191. ACM Press (1989)

14. Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming. Pear-
son Education/Prentice Hall, 423 pages (2006). ISBN 0-131-97259-6

15. Taubenfeld G., Coordination without prior agreement. In: Proceedings of 36th
ACM Symposium on Principles of Distributed Computing (PODC 2017), pp. 325–
334. ACM Press (2017)

16. Taubenfeld, G.: Set agreement power is not a precise characterization for obliv-
ious deterministic anonymous objects. In: Censor-Hillel, K., Flammini, M (eds.)
SIROCCO 2019. LNCS, pp 293–308 (2019)

17. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I-
characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89
(1996)

https://doi.org/10.1007/978-3-642-32027-9
https://doi.org/10.1007/978-3-030-05529-5_9


Faster Construction of Overlay Networks

Thorsten Götte, Kristian Hinnenthal(B), and Christian Scheideler

Paderborn University, Paderborn, Germany
{thgoette,krijan,scheidel}@mail.upb.de

Abstract. We consider the problem of transforming any weakly con-
nected overlay network of polylogarithmic degree into a topology of log-
arithmic diameter. The overlay network is modeled as a directed graph,
in which messages are sent in synchronous rounds, and new edges can
be established by sending node identifiers. However, every node can only
send and receive a polylogarithmic number of bits in each round, which
makes the naive approach of introducing all neighbors to each other until
the network forms a clique infeasible. We present an algorithm that takes
time O(log3/2 n), w.h.p. At the heart of our algorithm lies a determin-
istic strategy to group and merge large components of nodes, but we
make use of randomized load-balancing techniques to keep the commu-
nication load of each node low. To the best of our knowledge, this is the
first algorithm to improve upon the algorithm by Angluin et al. [SPAA
2005], which solves the problem in time O(log2 n), and comes closer to
the Ω(log n) lower bound.

Keywords: Overlay networks · Peer-to-peer · Pointer jumping

In order to exchange information in a distributed system that is established
over the Internet, IP addresses of its members have to be known. If member
v knows the address of member w, we can interpret this as a directed edge
(v, w). The set of these directed edges is commonly referred to as an overlay
network. There exists a vast amount of papers that have already dealt with the
question of how to best maintain an overlay network between the members of a
distributed system. An important and particularly challenging threat to overlay
networks lies in churn and adversarial behavior. Such dynamics may push an
overlay network into a state where it does not function correctly anymore, or,
in the worst case, even becomes disconnected. Recovering an overlay network
from an undesired state is quite difficult. One approach that has been pursued
in theory is to come up with self-stabilizing overlay networks, which are overlay
networks that can recover from any illegal state (as long as its members are still
weakly connected). In order to keep the maintenance overhead low, the members
of a self-stabilizing overlay network should ideally only initiate a repair process if
they discover some problem locally. However, almost none of the self-stabilizing
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overlay networks that follow this approach have been shown to converge quickly
to a legal state, and for the few for which a fast recovery time has been shown,
no reasonable bound on the communication work (i.e., the number of exchanged
messages) is known.

An alternative approach is to start rebuilding an overlay from scratch every
T steps, for some suitable time span T , irrespective of whether its members
noticed a problem with the overlay or not. Once an overlay has been transformed
into a low-degree overlay of logarithmic diameter, one can quickly reconstruct
various overlay topologies from there. In fact, many well-known overlays, e.g., [2,
9,10,15,18–20], can be built in O(log n) rounds if the nodes form a sorted ring.
Given an overlay of logarithmic diameter, a sorted ring can be constructed by
first performing a BFS and then applying the algorithm of [3]. In this paper,
we focus on the problem of transforming an arbitrary overlay of polylogarithmic
degree into a constant degree tree of depth O(log n). Similar problems have been
studied before, but, to the best of our knowledge, the best time bound known to
our problem for more than a decade is O(log2 n). We improve this to O(log3/2 n).

Note that there is a fundamental lower bound of Ω(log n) time steps to con-
struct an overlay of logarithmic diameter, so we make a significant step towards
this lower bound. To illustrate this, consider an overlay that forms a linked list.
Even if all nodes exhaustively exchange their neighborhoods through pointer
jumping in every round, this can only halve the diameter in every iteration.
Hence, it takes Ω(log n) rounds until the diameter is logarithmic.

Model and Problem Statement. We consider overlay networks with a fixed node
set V . Each node u has a unique identifier id(u), which is a bit string of length
O(log n), where n = |V |. Time proceeds in synchronous rounds. Let Ei(u) be
the set of identifiers stored by a node u at the beginning of round i. We define
the set of overlay edges in round i as Ei = {(u, v) | u ∈ V andv ∈ Ei(u)} and the
overlay in round i as Gi = (V,Ei).

In each round i, every node u can send and receive at most a polylogarith-
mic number of messages of size O(log n) (i.e., such a message can carry only a
constant number of identifiers), and messages from node u can only be sent to
nodes in Ei(u). If more than a polylogarithmic number of messages is sent to
a node, it receives an arbitrary subset (and the rest is simply dropped by the
network). A message sent in round i arrives at the beginning of round i + 1. We
assume that every node has sufficient memory for our protocol to work correctly
and every node is sufficiently fast so that it can process all messages that arrived
at the beginning of round i within that round1.

Before we formally define our problem, we first review some basic concepts
from graph theory. A node’s outdegree denotes the number of outgoing edges,
i.e., the number of identifiers it stores. Analogously, its indegree denotes the
number of incoming edges, i.e., the number of nodes that store its identifier. A
node’s degree is the sum of its in- and outdegree, and a graph’s degree is the

1 Note that for our algorithm polylogarithmic memory and a small number of local
computations is sufficient.
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maximum degree of any node. We say that a graph is weakly connected if there is
a (not necessarily directed) path between all pairs of nodes. A graph’s diameter
is the maximum over all node pairs v, w of the length of a shortest path between
v and w (where we ignore the edges’ directions).

Using these definitions, we define the Overlay Construction Problem as fol-
lows. Given a weakly connected graph G0 = (V,E0) of polylogarithmic degree,
the goal is to arrange the nodes into a bidirected tree of constant degree and
depth O(log n) that is rooted at the node with highest identifier as quickly as
possible.

Related Work. General research on overlay networks started in the early 2000s.
Some popular examples for these early overlays are Chord [20], Pastry [19],
and skip graphs [2]. Most of these solutions focus on the problem of efficiently
joining and leaving such an overlay, or keeping it in some legal state despite
some potentially heavy churn (see, e.g., [5,6,12] for some recent works that even
allow adversarial churn). Still, adversarial nodes and churn beyond the limits
prescribed in these papers may push an overlay into an corrupted state. Here,
solutions for self-stabilizing overlays can be used.

There is a rich collection of papers on self-stabilizing overlays, e.g., [9,10,
15,17,18]. Note that a self-stabilizing overlay must be able to recover from any
initial state, including nodes with arbitrarily corrupted local memory. Many of
them do not provide time or work bounds, but rather focus on showing self-
stabilization in a very general context like the asynchronous message passing
model. Some also present bounds on the convergence time, but these are often
much higher than polylogarithmic, like the O(n) time bound for self-stabilizing
lists [17] and the O(n3) time bound for self-stabilizing Delaunay graphs [14].
Notable exceptions are [8,13]: In [13], the authors show a convergence time of
O(log2 n) rounds for the SKIP+ graph, and in [8] the authors present a general
framework for the self-stabilizing construction of a large class of overlays that can
be used, for example, to achieve a convergence time of just O(log n) for SKIP+
graphs. However, no low bounds for the communication work are known; in fact,
the work required for the constructions in [8,13] can be prohibitively large.

The problem of recovering from an arbitrary topology seems to become much
easier once we assume a well-initialized overlay, i.e., the nodes are in a well-
defined initial state. To the best of our knowledge, the first paper that con-
sidered the problem of constructing a low-diameter overlay from an arbitrary
well-initialized overlay is by Angluin et al. [1]. Given an initial graph of degree
d and identifiers of size W , their algorithm constructs an overlay of logarithmic
diameter in time O((d + W ) log n), w.h.p2. Note, however, that their communi-
cation model slightly differs from ours as nodes are only allowed to send O(1)
messages via an edge each round. If we allow polylogarithmic communication on
every edge (and assume that W = O(log n)), the algorithm yields a convergence
time of O(log2 n). Aspnes and Wu [3] came up with an improved time bound if

2 We say an event holds with high probability (w.h.p.), if it holds with probability at
least 1 − 1/nc for any fixed constant c > 0.
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the initial graph has outdegree at most 1. In particular, for that case they gave
a construction that only requires O(log n) time. Gmyr et al. [11] considered the
problem for arbitrary overlays in our model. Incorporating ideas from both [1]
and [3], they were able to present a deterministic algorithm that converges in
O(log2 n) rounds.

The main difficulty of designing efficient algorithms in our model lies in
the fact that, irrespective of its degree, a node is only allowed to send and
receive polylogarithmically many bits in each round. Recently, the impact of
this restriction has been studied in the so-called Node-Capacitated Clique model
[4]. In fact, if we restrict our initial network to be of logarithmic degree only, with
little effort our algorithm would be adaptable to work in the Node-Capacitated
Clique as well. We reuse some of the techniques presented in [4] to quickly
aggregate and disseminate data without violating the communication constraints
(see Sect. 1 for more details).

Our Contribution. We present an algorithm that solves the Overlay Construc-
tion Problem in time O(log3/2 n). The algorithm requires polylogarithmic com-
munication work (i.e., in every round, each node sends and receives a polyloga-
rithmic number of messages), w.h.p., and thereby ensures no message will ever
be dropped. Similar to the algorithms in [1,3,11], we incrementally construct
our desired topology by alternatingly grouping and merging supernodes. Our
improved time bound comes from the fact that we are able to always merge large
clusters of supernodes by first exploring each supernode’s neighborhood up to a
certain distance using pointer jumping. To do so efficiently, we utilize the com-
munication power of a large subset of the nodes that make up each supernode.
As this requires a high amount of coordination between the nodes, we carefully
organize supernodes internally and use a variety of algorithmic techniques.

1 Algorithmic Primitives

Our algorithm relies on a set of primitives, which are briefly described in this
section. Similar to the approach of [4], we distribute the communication load of
a supernode by performing routing strategies in a simulated butterfly network.
Formally, for d ∈ N, the d-dimensional wrapped butterfly is a graph with node set
[d+1]× [2d], where we denote [k] = {0, . . . , k − 1}, and an edge set E1 ∪E2 ∪E3

with

E1 = {{(i, α), (i + 1, α)} | i ∈ [d], α ∈ [2d]},

E2 = {{(0, α), (d, α)} | α ∈ [2d]},

E3 = {{(i, α), (i + 1, β)} | i ∈ [d], α, β ∈ [2d],
α and β differ only at the i-th bit}.

The node set {(i, j) | j ∈ [2d]} represents level i of the butterfly, and node
set {(i, j) | i ∈ [d + 1]} represents column j of the butterfly. As an example, the
columns of the nodes x0, . . . , x7 in Fig. 1 form a 3-dimensional wrapped butterfly
network. Given a d-dimensional butterfly, we introduce the following primitives:
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3 x0 x1 x2 x3 x4 x5 x6 x7

2

1

0

x8 x9

Fig. 1. Internal butterfly Bv of a supernode v with |v| = 10. The nodes x0, . . . , x9 at the
bottom are members of v. The first eight nodes x0, . . . , x7 construct the 3-dimensional
wrapped butterfly by simulating one column each. The other two nodes x8 and x9

connect to their corresponding helper nodes. Indicated by the dashed outline, the first
four nodes x0, . . . , x3 simulate the small butterfly bv, which is described in Sect. 3.2

– Routing. Every node of the butterfly’s top level has at most polylogarithmi-
cally many messages that it wishes to send to nodes of the bottom level such
that every node is the target of at most polylogarithmically many messages.
Using the algorithm from [16], which we refer to as the Routing Primitive,
every message can be routed to its destination within 2d+2 rounds and with
polylogarithmic communication work, w.h.p.

– Aggregate-and-Broadcast. Every node of the butterfly’s top level stores a
subset of input values A := {a0, . . . , a2d} to a distributive aggregate function3

f . The Aggregate-and-Broadcast Primitive allows every node to compute f(A)
within O(d) rounds and with polylogarithmic communication work, w.h.p.

– Pipelined Sampling. Every node of the butterfly’s top level has an infinite
supply of data items that the nodes of the bottom level wish to sample from.
The Pipelined Sampling Primitive ensures that every butterfly node of the
bottom level constantly receives up to a polylogarithmic number of data items
selected uniformly at random at every round in a pipelined fashion (after an
initial delay of O(d)) and with polylogarithmic communication work, w.h.p.

– Filtering. The nodes of the butterfly’s top level store data items (m, g)
each consisting of some payload m of size O(log n) and some group identifier
g ∈ G of size O(log n). The data items are arbitrarily distributed among
the nodes of the butterfly’s top level such that every node stores at most
polylogarithmically many. All data items with the same group identifier have
the same target, which is a node of the butterfly’s bottom level, but every
node is only target of at most polylogarithmically many groups. The Filtering
Primitive passes the data items down in the butterfly such that eventually
exactly one (arbitrary) data item of each group reaches its target within O(d)
rounds and with polylogarithmic communication work, w.h.p.

3 An aggregate function f is called distributive if there is an aggregate function g
such that for any partition A1, ..., Ak ⊂ A, it holds f(A) = g(f(A1), ..., f(Ak)) (e.g.,
Max, Min, and Sum are distributive).
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All of our primitives can be performed using the butterfly’s path system and
techniques from [16] and [4]. At a high level, for the Routing and Filtering
Primitive, we first route messages to random intermediate targets, and finally
forward them to their actual targets. In contrast to classical routing protocols,
we do not wait to send messages. Thereby, we obtain guaranteed runtimes, but
are only able to show that the communication bounds are met w.h.p.

2 High-Level Algorithm

Our algorithm to solve the Overlay Construction Problem is divided into con-
secutive phases, where each phase relies on a set of invariants maintained after
the previous phase. We first present the algorithm from a high level, and then
give the details of a single phase in Sect. 3. Note that as we assume G0 to have
polylogarithmic degree, we can easily bidirect all edges of G0; therefore, we will
refer to them as if they were undirected.

We organize sets of nodes into supernodes, where initially each node makes up
a supernode on its own, and repeatedly merge supernodes into larger supernodes
until only a single supernode containing all nodes of V remains. We internally
organize each supernode v that consists of |v| nodes (we say v is of size |v|)
as a constant degree tree of depth O(log |v|). Whenever a set of supernodes
merges to form a larger supernode u, we maintain this invariant by making sure
that u becomes organized as a constant degree tree of depth O(log |u|) as well.
Maintaining the low-diameter internal structures allows us to merge any set of
supernodes in time O(log m), where m is the size of the resulting supernode. Most
importantly, we always merge large sets of supernodes in a highly coordinated
fashion, which, compared to previous approaches, results in a faster growth of
supernodes, and fewer rounds until only a single supernode remains. Clearly,
once a single supernode remains, all nodes are organized in a constant degree
tree of depth O(log n), and thus the Overlay Construction Problem is solved.

More precisely, our algorithm proceeds in phases 0, . . . , �log log n�, where the
goal of phase i is to grow every supernode of size |v| ∈ [22

i

, 22
i+1 − 1] to a

supernode of size at least 22
i+1

. To optimally balance the number of phases with
the required runtime of each phase, we further divide each phase i into subphases
0, . . . , �

√
2i� − 1. Correspondingly, the goal of subphase j of phase i is to grow

every active supernode, which is a supernode whose size lies in the interval
I = [22

i+j�
√
2i�, 22

i+(j+1)�
√
2i� −1], to a supernode of size at least 22

i+(j+1)�
√
2i�.

If a supernode is of size at least 22
i+(j+1)�

√
2i� already at the beginning of the

subphase, we call it inactive. As we will later show, our algorithm ensures that
there are no supernodes of smaller size than 22

i+j�
√
2i� at the beginning of the

subphase4.

4 For the first subphase, we have to assume that every supernode is of size at least 2
already, which can, e.g., be ensured by letting each node simulate two virtual nodes.



268 T. Götte et al.

Lemma 1. If in subphase j of phase i every active supernode grows to a supern-
ode of size at least 22

i+(j+1)�
√
2i� in time O(2i), then the algorithm merges all

nodes into a single supernode in time O(log3/2 n).

Proof. We only have to prove the overall runtime. Summing up over all phases
results in

∑T :=�log log n�
i=0 O(

√
2i) ·O(2i) = O(

√
log n) ·∑T

i=0 O(2i) = O(log3/2 n).
��

3 A Single Subphase

We now describe the details of a single subphase of the algorithm; more specif-
ically, in the following we consider a subphase j of phase i. The subphase is
divided into three stages: In the Expansion Stage, the goal of each active supern-
ode is to get to know at least 2�

√
2i� other active supernodes. In the Grouping

Stage, every active supernode chooses to merge with at most one supernode
among the active and inactive supernodes it has learned. It remains to reconfig-
ure each resulting component into a constant degree tree of logarithmic depth,
which is the goal of the Merging Stage. Due to space reasons, most proofs of this
section are deferred to the full version of this paper.

3.1 Beginning of the Subphase

Before we present the three stages of the subphase in detail, we first describe the
situation at its beginning. We show that our algorithm ensures the correspond-
ing situation to hold at the beginning of the next subphase, which inductively
establishes the correctness of the overall algorithm. As already mentioned, we
ensure that every supernode is of size at least 22

i+j�
√
2i�. We further make sure

that the members of each supernode (i.e., the nodes of which it consists) know
whether it is active or inactive in this subphase. Let v be an active supernode,
i.e., |v| ∈ [22

i+j�
√
2i�, 22

i+(j+1)�
√
2i� −1], and define �v to be v’s member of high-

est identifier. We ensure that v’s members know v’s identifier id(v) = id(�v) and
v’s size |v|, and are internally organized in two overlay topologies:

– Internal Tree. The internal tree Tv of v is a tree of constant degree and
depth O(log |v|) that consists of all members of v and is rooted at �v.

– Internal Butterfly. The internal butterfly Bv of v is a 	log |v|
-dimensional
wrapped butterfly network consisting of virtual nodes. More specifically, let k
be the largest power of 2 such that k ≤ |v|, and let x0, . . . , x|v|−1 = �v be the
members of v in some arbitrary order. For 0 ≤ l ≤ k−1, xl simulates the nodes
of column l of the butterfly. To do so, xl knows the identifier of every other
member of v that simulates a butterfly node that is adjacent to a butterfly
node of column l. If |v| is not a power of 2, then for every k ≤ l ≤ |v| − 1, the
node xl, which does not simulate a column of the butterfly, is connected to
the butterfly via a bidirected edge to its helper node xl−k. An example of an
internal butterfly can be found in Fig. 1.
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For an inactive supernode u we cannot retain such strong invariants; par-
ticularly, v’s members might not know id(v) nor |v|. Still, we ensure that u is
internally organized as a rooted tree Rv of polylogarithmic degree.

3.2 Expansion Stage

In the Expansion Stage, every active supernode v maintains a set of neighbors
Nv, which initially consists of all active supernodes v is adjacent to in G0 (we say
two supernodes v, u are adjacent in G0 if there exist members x and y of v and
u, respectively, such that {x, y} ∈ E0). v’s goal is to expand its set of neighbors
to be of size 2

√
2i ; this will allow us to find large clusters of supernodes to be

merged in the Grouping Stage. To do so, v performs �
√

2i� introduction steps,
in each of which it introduces all of its neighbors known so far to each other.

To carry out the required communication, v utilizes its (2�
√

2i�)-dimensional
wrapped butterfly that results from taking only the leftmost 22�

√
2i� columns and

bottommost 2�
√

2i�+1 rows of Bv, and which we call v’s small butterfly bv (see
dashed outline in Fig. 1). Note that bv must exist as |v| ≥ 22

i+j�
√
2i� ≥ 22�

√
2i�

for i ≥ 2 (for i ≤ 1 we simply choose bv = Bv). Our idea is to store Nv exclusively
within bv, which allows us to perform each introduction step efficiently. However,
we have to make sure that Nv never grows too large; specifically, we ensure that
Nv contains at most 22�

√
2i� many supernodes.

Computing |Nv|. Before the first introduction step, v has to determine whether
it is already adjacent to at least 2�

√
2i� many active supernodes in G0. To do

so, every member x of v collects all of its neighbors in G0 that are members
of a different active supernode. In the following, we refer to a node that sim-
ulates a column of Bv as a node of Bv. If x is not a node of Bv, its sends
its collected neighbors to its helper node. To correctly determine |Nv|, v needs
to filter all members corresponding to the same supernodes and keeps only one
representative for each of its adjacent supernodes. Then, by using the Aggregate-
and-Broadcast Primitive to count the number of representatives, v learns |Nv|.

More specifically, filtering the members is performed by using the Filtering
Primitive in the following way: Every member x of v that is a node of Bv and
that stores some member y of a supernode u (either because y is a neighbor
of x in G0, or because y has been sent to x by some member of v of which x
is the helper node) sends y from the topmost node of x’s column in Bv to the
bottommost node of column h(id(u)), where h : [n] → [k] is a common (pseudo-)
random hash function5, and k is the number of columns of Bv. Note that as
G0 has polylogarithmic degree, every node is source of at most polylogarithmi-
cally many messages; furthermore, by using Chernoff bounds, it can be shown
that every node is target of at most polylogarithmically many messages, w.h.p.
Therefore, the Filtering Primitive ensures that exactly one member of u reaches
the bottommost node of column h(id(u)) in time O(2i).
5 To agree on a suitable random hash function h, �v needs to broadcast O(log2 n)

random bits to all nodes in Bv (see [4,7] for details).
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Preparation Steps. If |Nv| ≥ 2�
√
2i�, v becomes successful, in which case v does

not participate in the Expansion Stage any further. For the following descrip-
tion we thus assume that v was unsuccessful. Every member of v that stores a
representative a asks a whether its supernode u has been successful. In this case,
v must refrain from introducing u any further, and marks a as finished. Then,
all representatives that have not been marked as finished are moved into bv by
using the Routing Primitive in the following way: Every member x of v that
stores a representative y of some supernode u sends y from the topmost node of
x’s column in Bv (note that x must be a node of Bv) to the bottommost node of
column h′(id(y)), where h′ is h restricted to range [22�

√
2i�]. By using Chernoff

bounds and the fact that there are at most 2�
√
2i� messages, it can easily be

shown that every node is source and target of at most polylogarithmically many
messages, which allows us to route all messages in time O(2i).

Before v can finally begin every representative a of some supernode u that
is stored at a member x of v needs to be replaced by a randomly chosen node
of bu. Note that by using the Pipelined Sampling Primitive, we can steadily
provide all nodes of bv with polylogarithmically many other random nodes of bv.
Thus, x simply requests a random node of bu from a, which becomes v’s new
representative of u. Then, v is ready to begin the first introduction step. It will
continually perform introduction steps until it either declares itself successful at
the end of an introduction step, or after having performed �

√
2i� steps. As each

introduction step takes time O(
√

2i), the total introduction will take time O(2i).

Introduction Step. At the beginning of each introduction step, v stores exactly
one representative of each neighbor u it has learned so far, which is a random
node of bu stored at a random node of bv. To be able to introduce all other
neighbors of v to u, of which there can be up to 2�

√
2i� − 1, v’s goal is to

first obtain 2�
√
2i� many representatives of u. Furthermore, v needs to find an

assignment of representatives to one another such that every neighbor receives
exactly one representative of each other neighbor of v, and each representative
is sent to at most one supernode. It does so by enumerating its neighbors from
0 to |Nv| − 1, and enumerating the representatives of each neighbor from 0 to
2�

√
2i� − 1; then, it introduces the p-th representative of its q-th neighbor to the

q-th representative of its p-th neighbor (if both exist).
To achieve that, v assigns each neighbor u a unique label r(u) ∈ [|Nv|] as

follows. Consider the subtree T of bv that results from taking all paths connecting
the topmost node of column 0 with all nodes on the bottom level of bv. Every
inner node of T can easily compute the number of representatives stored at its
leaves by performing an aggregation in T , and inform its parent about this value.
This allows the root of T to assign intervals of labels to its children in T , which
further divide the interval according to the values received from their children,
until every leaf of T that stores a representative receives unique labels for all
representatives stored at it.

We now show how v obtains 2�
√
2i� representatives of each neighbor u. Along-

side, the process will also assign each representative a of u obtained in that way
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a unique label r(a) ∈ [2�
√
2i�]. Let x be the member of u that stores the first rep-

resentative y of u. First, x sends a request that contains two random nodes of bv
to y. To be able to later locally associate representatives with their supernodes,
the message contains the value r(u); furthermore, it contains an empty bitstring
l from which the representative’s labels will be constructed. When y receives
the request, it responds with two random nodes of bu, each sent to either of the
two nodes contained in the request. One of the messages gets associated with
label 0 ◦ l (where ◦ denotes the concatenation of two binary strings), the other
with 1 ◦ l, and both contain r(u). Whenever a node of bv receives a response
from u associated with label l′, it sends a new request containing r(u) and l′

to the node of bu that was contained in the response. In the �
√

2i�-th iteration,
v receives 2�

√
2i� many representatives of u. Each representative a gets stored

together with its associated label r(a) and u’s label r(u) by its recipient in bv.
To finally perform the actual introduction, every node x of bv that stores a

representative a of some neighbor u aims to send a to the representative b of the
supernode w such that r(a) = r(w) and r(u) = r(b), if that node exists (in which
case we say b is a’s counterpart). However, x does not know b, therefore it first
has to send a to the node of bv that currently stores b, and let that node take
care of the introduction. To do so, we first relocate all representatives in bv to
allow for an easy retrieval: x moves a to the node y of bv that simulates column
h(r(u), r(a)) using the Routing Primitive and a (pseudo-)random hash function
h : [2�

√
2i�]2 → [22�

√
2i�]. Afterwards, y simply routes a message (a, r(a), r(u)) to

the node z that simulates column h(r(a), r(u)). If a’s counterpart b, which is a
member of a supernode w, exists, then it must be stored by z, as h(r(a), r(u)) =
h(r(w), r(b)). Consequently, z can send a to b. Note that z may receive and store
multiple representatives and counterparts, respectively, but is able to match
them accordingly as their labels have been sent along.

After the introduction, the nodes of bv store many representatives, which
need to be filtered such that exactly one representative is stored for each new
neighbor of v. This can easily be done by performing the Filtering Primitive
as in the beginning of the Expansion Stage, but in bv only. v then counts the
number of representatives stored in bv; if this value is at least 2�

√
2i�, it becomes

successful. Irrespectively, v also declares itself successful if one of its neighbors
has become successful in the previous introduction step (i.e., if v has marked one
of its stored representatives as finished at the end of the previous step). Finally,
every member of v that stores a representative a asks a whether its supernode
has been successful; if so, a is marked as finished and does not partake in the
next introduction step.

After v has performed �
√

2i� introduction steps, it stops. If v is unsuccess-
ful until the end of the last introduction step, but determines that one of its
neighbors has become successful in this step, it also declares itself successful.
Note that at the end of the Expansion Stage, v may have been unsuccessful,
and even if is has been successful, it might have learned fewer than 2�

√
2i� many

supernodes (i.e., when it became successful because of one of its neighbors). The
following lemma establishes the correctness of each introduction step.
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Lemma 2. Let v be an active and not yet successful supernode and consider an
introduction step in which none of v’s neighbors have been successful already.
For each u ∈ Nv, v sends exactly one representative for each supernode w ∈ Nv

to u. Further, each representative stored at v is sent at most once, and is the
recipient of at most one representative of another supernode.

Note that the last claim of Lemma 2 also holds when v has already marked
some representative as finished, after which v does not participate in any further
introduction step. We conclude the presentation of the Expansion Stage with
the following lemma.

Lemma 3. Let H = (A,R) be the undirected graph whose node set is the set
of all active supernodes A, and whose edge set R contains an edge {u, v} for
all supernodes u, v that are adjacent in G0. Let C be a connected component of
H. If |C| ≥ 2�

√
2i� + 1, then every supernode in C is successful at the end of

the Expansion Stage. Otherwise, no supernode in C is successful. The Expansion
Stage takes time O(2i).

3.3 Grouping Stage

After having collected potentially large sets of neighbors in the Expansion Stage,
the goal of each active supernode in the Grouping Stage is to establish directed
merge edges between members of supernodes that ensure the following: the total
number of members contained in each component of supernodes connected by
merge edges (which we call merge component) amounts to at least 22

i+(j+1)�
√
2i�.

Successful Supernodes. Let v be a successful supernode. We define t(v) to be the
introduction step in which v became successful; t(v) = 0, if v was successful at
the beginning already. We further define φ(v) = (t(v), id(v)), and let φ(u) < φ(v)
if and only if t(u) < t(v), or t(u) = t(v) and id(u) < id(v). To ensure that v
becomes part of a large merge component, it chooses a neighbor to merge with
according to the following rules:

1. If v has learned a neighbor u in the Expansion Stage such that φ(u) < φ(v),
and there is no neighbor w of v such that φ(w) < φ(u) < φ(v), v chooses u,
randomly picks a member x of v and a member y of u, and selects (x, y) as
its merge edge.

2. If otherwise v has learned a neighbor u whose neighbor w of smallest φ-value
is such that φ(w) < φ(v) (and which, consequently, is not a neighbor of v
itself), and none of v’s neighbors has a neighbor with even smaller φ-value, v
chooses u, randomly picks a member x of v and a member y of u, and selects
(x, y) as its merge edge.

Note that v might be unable to determine a supernode to merge with, i.e.,
if v has the minimum φ-value among all neighbors of v and their respective
neighbors (we say v is a local minimum).

It remains to show how v can retrieve the information required for its choice.
First, note that v can easily determine its own φ-value φ(v), which it sends to all
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of its neighbors via their representatives. By using the Aggregate-and-Broadcast
Primitive, v learns the smallest of all φ-values of its neighbors and can determine
whether it can select a merge edge according to the first rule. In the same way,
we let each supernode inform its neighbors about the smallest φ-value it knows;
this allows v to select a merge edge according to the second rule. If v has selected
a neighbor u to merge with, then the member of v that stores the representative
a of u requests a randomly selected member y of u from a; upon receipt, it sends
y to a randomly selected member x of v, which learns the merge edge (x, y).

Unsuccessful Supernodes. If v was unsuccessful in the Expansion Stage, then
by Lemma 3, the component C of adjacent active supernodes that contains v

consists of fewer than 2�
√
2i� + 1 supernodes, all of which are unsuccessful. It

can easily be seen that the neighborhood of each supernode in C is the set of all
other supernodes in C. Furthermore, if there still exists an inactive supernode,
one of the supernodes of C must be adjacent to an inactive supernode in G0.
Conversely, if none is adjacent to an inactive supernode anymore, C contains
all remaining supernodes. In the first case, we let the supernode u of C that
has lowest identifier merge with an inactive supernode u is adjacent to in G0, if
such a node exists, and let all the others merge with u. In the second case, all
supernodes simply merge with the supernode in C that has lowest identifier.

More specifically, v does the following: it first determines whether it is adja-
cent to an inactive supernode in G0 by performing the Aggregate-and-Broadcast
Algorithm, and, if so, sends its own identifier to all of its neighbors via their rep-
resentatives in v. By performing the algorithm a second time, all members of v
learn the supernode in C that has lowest identifier among all that are adjacent
to an inactive supernode. If u = v, then v determines the edge {x, y} ∈ E0 such
that x is a member of u and y is a member an inactive supernode adjacent to u,
and id(x) ◦ id(y) is minimal among all such edges. The edge (x, y) is selected as
v’s merge edge. If otherwise u �= v, then v creates a merge edge (x, y) between v
and u by randomly choosing a member x of v and replacing its representative of
u by a randomly chosen member y of u as described in the previous paragraph.
Finally, if v did not receive any identifier, and thus no supernode in C is adja-
cent to an inactive supernode, v determines its neighbor u that has the lowest
identifier, and, if id(u) < id(v), creates a random merge to u in the same way.

Lemma 4. After the Grouping Stage, every merge component C is a tree that
(1) entirely consists of at least 2�

√
2i� successful supernodes, (2) consists of unsuc-

cessful supernodes, only its root being an inactive supernode, (3) entirely consists
of unsuccessful supernodes and contains all nodes of V . The Grouping Stage takes
time O(2i).

3.4 Merging Stage

Let C be a merge component, and let v′ be the resulting supernode after
merging C. As we show at the end of this section, |v′| ≥ 22

i+(j+1)�
√
2i�. If
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|v′| ≤ 22
i+(j+2)�

√
2i� − 1, then |v′| will be active in the next subphase; other-

wise, it is too large and will be inactive. In the Merging Stage, we attempt to
construct the internal tree Tv′ of v′ for O(2i) rounds. If we succeed, v′ uses its
internal tree to compute its size, and determines whether it is actually active in
the next subphase. Otherwise, v′ is clearly too large, in which case every member
of v′ will immediately learn that v′ will be inactive. We first describe how Tv′ is
constructed and finally show how to obtain Bv′ as a by-product.

For now, assume that the root of C is an active node, and let v be an inner
node of C (i.e., v has selected a merge edge (x, y) from a member of v to a
member of its parent u). We first establish x as the new root of Tv by performing
a broadcast in Tv. The graph that results from taking the internal trees together
with all merge edges is a rooted tree that contains all nodes of C (i.e., all members
of v′). To transform this tree into a constant degree tree of diameter O(log |v′|),
we perform the merging step of the algorithm of [11]: given a rooted tree of
size m that has polylogarithmic degree, the algorithm transforms it into a tree
of constant degree and diameter O(log m) within O(log m) rounds. By letting
the algorithm run for only O(2i) rounds, v′ can therefore successfully construct
Tv′ , if |v′| ≤ 22

i+(j+2)�
√
2i� − 1. Note that the algorithm can be modified to also

detect whether it has been successful or not.
Now assume that the root u of C is inactive. By our assumption in Sect. 3.1,

u is internally organized as a rooted tree Rv of polylogarithmic degree. Note
that Rv might have large diameter, and thus only the members of u which have
been selected as the endpoint of a merge edge know whether an active supernode
intends to merge with u. However, the members of u irrespectively participate in
the execution of the algorithm of [11], and eventually learn whether it has been
successful or not. By doing so, every inactive supernode essentially attempts to
construct its internal tree in each subphase, and finally succeeds in doing when
its size permits it to become active in the subsequent subphase.

Note that irrespective of whether or not the algorithm is successful, the
internal trees of the supernodes of C (which are not the root u of C), together
with Tu, if u is active, or Ru, otherwise, connected by the merge edges of C,
form a rooted tree of polylogarithmic degree. Therefore, the nodes know Rv′ in
case v′ in inactive in the next subphase.

Finally, we show how to construct Bv′ alongside the above execution of the
algorithm of [11] (we remark that if the algorithm is unsuccessful, then the con-
struction of Bv′ must also be terminated). As an intermediate step, the algorithm
constructs a ring of virtual nodes in which every member of v′ simulates some
node. This ring can easily be transformed into a line that consists of all members
of v′ in an arbitrary order, enumerated from 0 to |v′| − 1, in time O(log |v′|).
Our goal is to let the l-th node of that line simulate column l of the butterfly.
To do so, every node only has to learn the identifier of each node to which its
distance on the line is a power of 2. This can easily be achieved by performing
pointer jumping: Every node with degree 2 introduces its two neighbors to each
other; in each subsequent round, every node that receives two nodes introduces
them to each other. After O(log |v′|) rounds, every node knows the identifiers
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of all nodes simulating its neighbors in the butterfly. Furthermore, if merging is
successful, every member of v′ learns id(v′) and |v′|.

The following lemma follows from [11], the fact that every node is chosen as
the endpoint of a merge edge at most polylogarithmically often, and Lemma4.

Lemma 5. After the Merging Stage, every resulting supernode v is of size at
least 22

i+(j+1)�
√
2i� or contains all nodes of V . If |v| ≤ 22

i+(j+2)�
√
2i� − 1, then

every member of v learns id(v) and |v|, and the algorithm succeeds in constructing
Tv and Bv. Otherwise, the members of v know of their adjacent edges in Rv. The
Merging Stage takes time O(2i).

By taking all lemmas of this section together with Lemma 1, and proving
that the random load-balancing of our algorithm only causes polylogarithmic
communication work, w.h.p., we conclude the following theorem.

Theorem 1. If G0 is a weakly connected graph with polylogarithmic degree, then
the algorithm transforms G0 into a constant degree tree of depth O(log n) in time
O(log3/2 n) and with polylogarithmic communication work, w.h.p.

4 Conclusion

We have shown how to construct overlays from arbitrary initial topologies effi-
ciently by leveraging each supernode’s capability to perform massive amounts
of communication. To the best of our knowledge, this is the first algorithm that
achieves an O(log3/2 n) runtime for this problem, and which is a further step
towards closing the gap to the lower bound of Ω(log n). However, we do not see
any evidence why our algorithm should be asymptotically optimal; for example,
our algorithm is not able to exploit the potential communicational power of a
supernode to its limit. Furthermore, the algorithm does not take into account
the initial graph topology, which might lead to more efficient solutions.

Finally, we point out that our algorithm is a Monte Carlo algorithm: whereas
its runtime is guaranteed, it may require a node to perform more than polyloga-
rithmic communication work with very small probability. However, we strongly
believe that one can derive a Las Vegas algorithm from our algorithm with little
effort, i.e., an algorithm that is guaranteed to work, but whose runtime only holds
w.h.p. It may also be possible to come up with a fully deterministic algorithm.
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Abstract. In this paper, we consider the partial gathering problem
of mobile agents in asynchronous unidirectional rings. This problem
requires that, for a given positive integer g, all the agents terminate
in a configuration such that at least g agents or no agent exist at each
node. While the previous work achieves move-optimal partial gathering
using distinct IDs or knowledge of the number of agents, in this paper
we aim to achieve this without such information. We consider deter-
ministic and randomized cases. First, in the deterministic case, we show
that unsolvable initial configurations exist. In addition, we propose an
algorithm to solve the problem from any solvable initial configuration in
O(gn) total number of moves, where n is the number of nodes. Next,
in the randomized case, we propose an algorithm to solve the problem
in O(gn) expected total number of moves from any initial configuration.
Since agents require Ω(gn) total number of moves to solve the partial
gathering problem, our algorithms can solve the problem in asymptoti-
cally optimal total number of moves without global knowledge.

Keywords: Distributed system · Mobile agent · Gathering problem ·
Partial gathering

1 Introduction

1.1 Background and Related Works

The total gathering problem is a fundamental problem for (mobile) agents’ coordi-
nation. Agents are software object that can traverse the distributed system with
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carrying information collected at visited nodes [1,2]. This problem requires that all
the k agents distributed in the system terminate at a single node in finite time. By
meeting at a single node, all agents can share information or synchronize behav-
iors. The total gathering problem has been considered in various kinds of networks
such as rings [3–5], trees [6], tori [7], and arbitrary networks [8].

Recently, a variant of the total gathering problem, called the g-partial gath-
ering problem [9], has been considered. This problem does not require all the
agents to meet at a single node, but allows the agents to meet partially at sev-
eral nodes. Concretely, the problem requires that, for a given positive integer
g (<k), all the agents terminate in a configuration such that at least g agents
or no agent exist at each node. The g-partial gathering problem is still useful
especially in large-scale networks. That is, after achieving g-partial gathering,
each agent can share information and tasks with at least g agents (or a group)
staying at the same node, and each group can partition the network and patrol
its area that they should monitor efficiently. The g-partial gathering problem
is interesting also from a theoretical point of view. If k/2 < g < k holds, the
g-partial gathering problem is clearly equivalent to the total gathering problem.
On the other hand, if 2 ≤ g ≤ k/2 holds, the requirement for the g-partial gath-
ering problem is no stronger than that for the total gathering problem. Thus,
there exists possibility that the g-partial gathering problem can be solved with
strictly fewer total number of moves (i.e., lower costs) compared to the total
gathering problem.

Our previous works considered the g-partial gathering problem in rings [9],
trees [10], and arbitrary networks [11]. In [9], we considered it in unidirectional
rings with whiteboards (or memory spaces) at nodes. We considered two prob-
lem settings about agents: distinct agents (i.e., agents with distinct IDs) and
anonymous agents (i.e., agents without IDs) with knowledge of k. For distinct
agents, we gave a deterministic algorithm to solve the problem in O(gn) total
number of moves, where n is the number of nodes. For anonymous agents with
knowledge of k, we considered deterministic and randomized cases. In the deter-
ministic case, we showed that unsolvable initial configurations exist. In addition,
we gave an algorithm to solve the problem from any solvable initial configuration
in O(kn) total number of moves. In the randomized case, we gave an algorithm
to solve the problem in O(gn) expected total number of moves. The g-partial
(resp., the total) gathering problem in rings requires Ω(gn) (resp., Ω(kn)) total
number of moves. Thus, the first and third results are asymptotically optimal
in terms of total number of moves, and the total number O(gn) of moves is
strictly fewer than that for the total gathering problem when g = o(k). In tree
and arbitrary networks, we also proposed algorithms to solve the g-partial gath-
ering problem with strictly fewer total number of moves compared to the total
gathering problem for some settings, but we omit to explain the results due to
page limit.
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1.2 Our Contribution

In this paper, for the case of 2 ≤ g ≤ k/2 we consider the g-partial gathering
problem in asynchronous unidirectional ring networks with whiteboards at nodes
as in [9]. While the previous work [9] achieved move-optimal g-partial gathering
using distinct IDs or knowledge of k, in this paper we aim to achieve this without
such information.

As contributions, we consider deterministic and randomized cases. First, in
the deterministic case, we show that the set of unsolvable initial configurations is
the same as that for agents with knowledge of k. We also show (unlike the case of
[9]) that agents cannot detect whether the initial configuration is an unsolvable
one or not. In addition, we propose an algorithm to solve the g-partial gathering
problem from any solvable initial configuration in O(gn) total number of moves.
Next, in the randomized case, we propose an algorithm to solve the problem
with probability 1 in O(gn) expected total number of moves from any initial
configuration. Thus, our algorithms can solve the g-partial gathering problem
in asymptotically optimal total number of moves without distinct IDs or global
knowledge. These results improve our previous results in [9]. Due to page limit,
we omit several pseudocodes and proofs of lemmas and theorems.

2 Preliminaries

2.1 System Model

A unidirectional ring network R is defined as 2-tuple R = (V,E), where
V = {v0, v1, . . . , vn−1} is a set of n nodes and E = {e0, e1, . . . , en−1} (ei =
(vi, v(i+1) mod n)) is a set of directed links. For simplicity, we denote v(i+j) mod n

by vi+j for any integers i and j. The distance from node vi to vj is defined to be
(j−i) mod n. We define the direction from vi to vi+1 (resp., vi−1) as the forward
(resp., backward) direction. We assume that nodes are anonymous. Every node
vi ∈ V has a whiteboard that agents at node vi can read from and write on.

Let A = {a0, a1, . . . , ak−1} be a set of k (≤n) anonymous agents. Agents can
move through directed links, that is, they can move from vi to vi+1 for any i.
Agents do not have knowledge of k or n, and they cannot detect whether other
agents exist at the current node or not.

We consider two models. In the first model, we consider agents executing a
deterministic algorithm. An agent ai is a finite automaton (S,W, δ, sinitial, sfinal,
winitial,w′

initial). The first element S is the set of all states of an agent, including
two special states, initial state sinitial and final state sfinal. The second element
W is the set of all states (contents) of a whiteboard, including two special initial
states winitial and w′

initial. We explain the meanings of winitial and w′
initial later.

The third element δ : S × W �→ S × W × M is the state transition function that
decides the next states of ai and the current node’s whiteboard, and whether ai

moves to the next node or not based on the current states of ai and the white-
board. The variable M = {1, 0} in δ represents whether ai makes a movement
or not. The value 1 represents movement to the next node and 0 represents stay
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at the current node. We assume that δ (sfinal, wi) = (sfinal, wi, 0) holds for any
state wi ∈ W , which means that ai never changes its state, updates the contents
of a whiteboard, or leaves the current node once it reaches state sfinal.

In the second model, we consider agents executing a randomized algorithm.
An agent ai in this model is a probabilistic automaton (S,W,R, δ, sinitial, sfinal,
winitial, w

′
initial). The third element R is a set of random numbers. Since we treat

a randomized algorithm, δ is a mapping S × W × R �→ S × W × M . If the state
of ai is sfinal, then δ (sfinal, wi, r) = (sfinal, wi, 0) holds for any state wi ∈ W and
any random number r ∈ R. The other elements in the automaton are the same
as those in the deterministic model. Note that for both the models all the agents
are modeled by the same state machine since they are anonymous.

In an agent system, (global) configuration c is defined as a product of the
states of all the agents, the states (whiteboards’ contents) of all the nodes, and
the locations (i.e., the current nodes) of all the agents. We define C as a set of
all configurations. In an initial configuration c0 ∈ C, we assume that the states
of all the agents are sinitial, agents are arbitrary placed at nodes so that no two
agents stay at the same node, and the states of whiteboards are winitial or w′

initial

depending on existence of an agent. That is, when an agent exists at node v, the
state of v′s whiteboard is winitial. Otherwise, the state is w′

initial.
During execution of the algorithm, we assume that agents move instanta-

neously, that is, agents always exist at nodes (do not exist on links). Each agent
at node v executes the following four operations in an atomic step: (1) reads the
contents of v’s whiteboard, (2) executes local computation (or changes its state),
(3) updates the contents of v’s whiteboard, and (4) moves to the next node or
stays at v. A configuration changes to the next one when a scheduler activates
some agents and the agents take atomic steps as mentioned before. Concretely,
letting Ai be a non-empty set of agents, configuration ci changes to ci+1 when
the scheduler activates each agent aj ∈ Ai and aj takes an atomic step. If mul-
tiple agents at the same node are included in Ai, the agents take atomic steps
interleavingly in an arbitrary order. We denote the transition by ci

Ai−→ ci+1.
A sequence of configurations E = c0, c1, . . . is called an execution starting

from c0 if there exists a sequence A0, A1, . . . of non-empty agent sets such that
ci

Ai−→ ci+1 holds for every i ≥ 0. Execution E is infinite, or ends in final config-
uration cfinal where every agent’s state is sfinal. We assume that the scheduler is
fair, that is, each agent is activated infinitely often. When the scheduler activates
all the agents for every transition ci

Ai−→ ci+1, that is, ci
A−→ ci+1 holds for every

i, the execution is called a synchronous execution. Otherwise, i.e., if ci
A−→ ci+1

does not always hold, the execution is called an asynchronous execution. In this
paper, we consider the asynchronous execution.
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2.2 Partial Gathering Problem

The requirement of the partial gathering problem is that, for a given integer
g (2 ≤ g ≤ k/2), agents terminate in a configuration such that at least g agents
or no agent exist at each node. Formally, we define the problem as follows.

Definition 1. Execution E solves the g-partial gathering problem when the fol-
lowing conditions hold:

– Execution E is finite (i.e., all agents terminate).
– In the final configuration, all agents are in the finial state, and for any node vj

where an agent exists, at least g agents exist at vj . ��
Definition 2. A deterministic algorithm A solves the g-partial gathering prob-
lem if any fair execution of A solves the problem. ��
Definition 3. A randomized Algorithm A solves the g-partial gathering prob-
lem with probability 1 if an execution of A that solves the problem occurs with
probability 1. ��

In [9], the following lower bound on the total number of agent moves for the
g-partial gathering problem in ring networks is shown.

Theorem 1 [9]. The total number of agent moves required to solve the g-partial
gathering problem is Ω(gn) even if the algorithm is randomized.

3 Deterministic g-partial Gathering

In this section, we consider the deterministic case. First, we show a sufficient
condition of initial configurations from which agents cannot solve the problem,
and then propose an algorithm to solve the problem from any initial configuration
other than unsolvable initial configurations mentioned above. Thus, the sufficient
condition of unsolvable initial configurations is also a necessary condition.

3.1 Unsolvable Initial Configurations

In this section, we show a sufficient condition of unsolvable initial configura-
tions and show that agents cannot detect whether the initial configuration is
an unsolvable one or not. The set of unsolvable configurations is the same as
that for agents with knowledge of k shown in [9]. To prove this, we define peri-
odic initial configurations as follows. At first, we define the i-th (i 	= 0) forward
(resp., backward) agent a′ of agent a as the agent such that i − 1 agents exist
between a and a′ in a’s forward (resp., backward) direction. We call the a’s
1-st forward and backward agents neighboring agents of a. In initial configura-
tion c0, we assume that agents a0, a1, . . . , ak−1 exist in this order, that is, ai is
the i-th forward agent of a0. Then, we define the distance sequence of agent ai

in c0 as Di(c0) = (di
0(c0), . . . d

i
k−1(c0)), where di

j(c0) is the distance from the
j-th forward agent of ai to the (j + 1)-st forward agent of ai in c0. In addition,
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we define the distance sequence D(c0) of configuration c0 as the lexicograph-
ically minimum sequence among {Di(c0)|ai ∈ A}. Moreover, let shift(D,x) =
(dx, dx+1, . . . , dk−1, d0, d1, . . . , dx−1) for sequence D = (d0, d1, . . . , dk−1). Then,
we say that configuration c0 is periodic if D(c0) = shift(D(c0), x) holds for some
x (0 < x < k). Otherwise, we say c0 is aperiodic. For an initial configuration, we
define the period peri of the ring as the minimum positive integer x satisfying
D(C0) = shift(D(C0), x). Then, we have the following theorem.

Theorem 2. No algorithm exists such that all its executions starting from a
periodic initial configuration c0 with peri less than g solve the g-partial gathering
problem. In addition, no algorithm exists such that, in each of its executions, all
agents can detect whether the initial configuration has peri less than g or not.

Proof Sketch. The former argument can be proved by considering a synchronous
execution. For each q (0 ≤ q ≤ peri − 1), agents aq, aq+peri, . . ., aq+�×peri (� =
k/peri) always execute the same action simultaneously and they cannot break the
symmetry. The latter argument holds because some agent a cannot distinguish
a periodic initial configuration c0 with peri ≤ g − 1 from an aperiodic initial
configuration c′

0 with peri = k (>g) that consecutively includes c0 sufficiently
many times as a part of c′

0. Thus, a’s execution starting from c′
0 is the exactly

same as that starting from c0. ��

3.2 Proposed Algorithm

In this section, we propose a deterministic algorithm to solve the problem from
any solvable initial configuration (i.e., any initial configuration with peri ≥ g) in
O(gn) total number of moves. The algorithm consists of two parts. In the first
part, several agents are elected as leader agents by executing the leader election
algorithm to the middle. In the second part, the leader agents instruct the other
agents which node they should meet at, and the other agents move to the node.

3.2.1 The First Part: Leader Election
The aim of this part is similar to [9], that is, to elect several leaders and satisfy
the following properties: (1) At least one agent is elected as a leader, and (2)
at least g − 1 non-leader agents exist between two leaders. Each agent takes a
status from the following three statuses:

– active: The agent is performing leader election as a candidate for leaders.
– inactive: The agent has dropped out from the set of the leader candidates.
– leader: The agent has been elected as a leader.

Initially, all agents are active. At first, we explain the idea of leader election
in [9] to adopt it to this paper. In [9], the network is a unidirectional ring, agents
have distinct IDs, and each node has a whiteboard. For intuitively understanding,
we firstly explain the idea for the case of bidirectional rings. Then, we apply the
idea to the unidirectional ring. The algorithm consists of several phases. In each
phase, each active agent ai compares its own ID with IDs of its forward and
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backward neighboring active agents. Concretely, ai writes its ID on the current
node’s whiteboard, and then moves forward and backward to observe IDs of its
forward and backward active agents. Then, if its own ID is the smallest among
the three IDs, ai remains active (as a candidate for leaders) in the next phase.
Otherwise, ai becomes inactive and drops out from the set of leader candidates.
Note that, in each phase, neighboring active agents never remain active because
of distinct IDs. Hence, the number of inactive agents between two active agents
at least doubles in each phase. Then, from [12], after executing j phases at least
2j − 1 inactive agents exist between two active agents. Thus, after executing

log g� phases, the following properties hold: (1) At least one agent remains
active, and (2) the number of inactive agents between two active agents is at
least g − 1. Therefore, all the remaining active agents become leaders.

Next, we implement the above algorithm in unidirectional rings using a tra-
ditional approach [12]. In unidirectional rings, active agent ai cannot move back-
ward or observe the ID of its backward active agent. Instead, ai moves forward
until it observes IDs of two active agents. Thus, ai observes IDs of three succes-
sive active agents including ai itself, say id1, id2, id3 in this order. Note that id1 is
the ID of ai. Here, this situation is similar to that in which the active agent with
ID id2 observes id1 of its backward active agent and id3 of its forward active
agent in a bidirectional ring. For this reason, ai behaves as if it would be an
active agent with ID id2 in the bidirectional ring. That is, if id2 is the smallest
among the three IDs, ai remains active. Otherwise, ai becomes inactive.

In the following, we explain how to apply the above leader election to anony-
mous agents. Let active nodes (resp., inactive nodes) be nodes where active
agents (resp., inactive agents) start some phase. In this section, agents use vir-
tual IDs. A virtual ID is given in the form of (disArray[ ],nInactive), where
disArray[ ] and nInactive are a distance sequence and the number of inactive
nodes between active nodes, respectively. Concretely, we assume that active
agent ai starts some phase at node vj and vj′ is vj ’s forward active node. In
addition, let v1

ina, v
2
ina, . . . , v

�
ina be inactive nodes between vj and vj′ . That is,

nodes vj (=v0
ina), v

1
ina, v

2
ina, . . . , v

�
ina, vj′ (=v�+1

ina ) exist in this order. Then, when
ai moves from vj to vj′ , it observes a distance sequence (d1, d2, . . . , d�+1),
where dm (1 ≤ m ≤ � + 1) is the distance from vm−1

ina to vm
ina. Then, ai gets

disArray[ ] = (d1, d2, . . . d�+1) and nInactive = � as its virtual ID. An example
is given in Fig. 1(a). Note that each active agent can detect whether the current
node is an active node, an inactive node, or another node using whiteboards.
Each active agent moves until it observes such three virtual IDs. Note that,
multiple agents may have the same virtual ID, and we explain this case next.

After observing three virtual IDs id1, id2, id3, each active agent ai compares
the virtual IDs by the lexicographical order and decides whether it remains active
in the next phase or not. Different from [9], multiple agents may have the same
virtual ID. To treat this, when at least one virtual ID differs from other IDs, if
id2 < min(id1, id3) or id2 = id3 < id1, ai remains active. Otherwise, ai becomes
inactive. When all the three virtual IDs are identical (i.e., id1 = id2 = id3 holds),
ai compares the value of nInactive with the value of g. If nInactive ≥ g−1, it still
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Fig. 1. (a): An example of a virtual ID. (b): An example of comparison of virtual
IDs. Active agents a1, a2, and a3 observe the same virtual IDs ((1, 3, 2), 2). Then, they
remain active if the value 2 of nInactive is g − 1 or larger, and become inactive if the
value is smaller than g − 1.

remains active. Otherwise, it becomes inactive1. After executing such a phase

log g� times, agents complete leader election and all the remaining active agents
become leaders. At the end of leader election, we can show that at least g − 1
inactive agents exist between two leaders (Lemma 1). Intuitively, this is because
(1) when three IDs have different values, neighboring active agents never remain
active, and (2) when at least two IDs have the same value and two neighboring
active agents ai and aj remain active, at least g −1 inactive agents already exist
between ai and aj . An example is given in Fig. 1(b).

The pseudocode of active agents in the first part is described in Algorithm1.
Variable ai.phase (resp., vj .phase) represents the phase number of agent ai (resp.,
node vj). Variable vj .initial represents existence of an agent in the initial config-
uration c0. That is, vj .initial = true holds if an agent exists at node vj in c0 and
vj .initial = false otherwise. In addition, variable vj .inactive represents existence
of an inactive agent. That is, vj .inactive = true holds if an inactive agent exists
at node vj and vj .inactive = false otherwise. Initially, vj .inactive = false holds
for any vj . Moreover, agents use procedure NextActive() to move to the next
active node and get a virtual ID (we omit the detailed description). Concerning
leader election, we have the following lemmas.

Lemma 1. Algorithm1 eventually terminates and satisfies the following two
properties when it terminates.

– At least one leader agent exists.
– At least g − 1 inactive agents exist between two leader agents. ��
Lemma 2. Algorithm1 requires O(n log g) total number of moves. ��

1 Even if ai becomes inactive, it does not happen that all the active agents become
inactive because we consider the case of peri ≥ g.
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Algorithm 1. Behavior of active agent ai in the first part (vj is the current
node of ai.)
Variables for Agent ai

int ai.phase = 0;
int nInactive1,nInactive2,nInactive3;
array disArray1[ ],disArray2[ ],disArray3[ ];
Variables for Node vj
int vj .phase = 0;
boolean vj .initial;
boolean vj .inactive = false;
Main Routine of Agent ai

1: ai.phase++, vj .phase := ai.phase
2: for l = 1, l ≤ 3, l++ do

idl := NextActive(disArrayl[ ],nInactivel)
3: if (id2 < min(id1, id3))∨(id2 = id3 < id1) ∨((id1 = id2 = id3)∧(nInactive2 ≥ g−1))

then
4: if ai.phase = �log g� then terminate the first part and enter the second part

with a leader status
5: else go to line 1
6: else
7: vj .inactive := true
8: terminate the first part and enter the second part with an inactive status
9: end if

3.2.2 The Second Part: Leaders’ Instructions and Agents’ Movement
After leader agent election, agents achieve g-partial gathering by leader agents’
instructions. Let leader nodes be nodes where leader agents start this part. At
the beginning of this part, a node where an agent exists is either a leader node
or an inactive node. We use the same technique as in [9]. We assume that a
leader agent ai starts this part at leader node vj , vj′ is vj ’s next leader node,
and inactive nodes v1

ina, v
2
ina, . . . v

�
ina exist between vj and vj′ . That is, nodes

vj , v
1
ina, v

2
ina, . . . , v

�
ina, vj′ exist in this order. Then, briefly speaking, leader agent

ai at vj moves to the next leader node vj′ . During the movement, ai marks node
vt
ina as a non-gathering node (resp., a gathering node) if (t+1) mod g 	= 0 (resp.,

(t + 1) mod g = 0). That is, each leader continues to mark some consecutive
g−1 inactive nodes as non-gathering nodes and mark the next inactive node as a
gathering node until it visits the next leader node. Then, agents are partitioned
into groups each of which has at least g agents. After the instruction, each agent
moves to the nearest gathering node and they achieve g-partial gathering. This
part can be achieved in O(gn) total number of moves since each link is passed
by at most 2g times. By this fact and Lemma 2, we have the following theorem.

Theorem 3. From any solvable initial configuration, the proposed algorithm
solves the g-partial gathering problem in O(gn) total number of moves. ��
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4 Randomized g-partial Gathering

In this section, for the case of 2 ≤ g ≤ k/2 we propose a randomized algorithm
to solve the problem with probability 1 in O(gn) (i.e., optimal) expected total
number of moves from any initial configuration. The basic idea is the same as
that of the previous section, that is, agents elect multiple leaders by comparing
(virtual) IDs. In this section, since we consider a randomized algorithm, agents
can use random numbers as IDs. In addition, each agent compares 2g−1 random
IDs at one time instead of comparing three IDs as in the previous section. By
this behavior, if there exists a unique minimum ID among any consecutive 2g−1
IDs, agents can make a configuration such that at least g − 1 non-leader agents
exist between two leaders. However, if several IDs have the same minimum value
among the 2g − 1 IDs, agents cannot make such a configuration. Agents treat
this case by additional behaviors explained in the following subsections.

The algorithm consists of two parts. In the first part, agents determine sev-
eral candidate nodes for g-partial gathering using random IDs. In the second
part, agents determine gathering nodes from the candidate nodes and achieve
g-partial gathering. In the following, we refer to “candidate nodes for (g-partial)
gathering” as “gathering candidate nodes”.

4.1 The First Part: Determination of Gathering Candidate Nodes

Each agent takes a status from the following three statuses:

– active: The agent moves in the ring to determine gathering candidate nodes.
– leader: The agent elects the current node as a gathering candidate node.
– waiting: The agent is staying at a gathering candidate node and waiting for

the next instruction.

Initially, all agents are active. This part consists of several phases. At the
beginning of each phase, each active agent ai creates a 
7 log g�-bit random ID,
and writes the ID and the current phase number on the current whiteboard.
Thereafter, ai moves until it observes 2g − 1 random IDs (including the one
it creates) of the current phase. Let id1, id2, . . . , id2g−1 be the IDs. Then, this
situation is similar to that in which the active agent with ID idg observes g − 1
IDs id1, . . . , idg−1 (resp., idg+1, . . . , id2g−1) of its backward (resp., forward) g−1
active agents in a bidirectional ring. Hence, ai behaves as if it would be an active
agent with ID idg (or the ID at the middle of the ID sequence) in the bidirectional
ring. That is, if idg is the uniquely minimum among the 2g − 1 IDs, it becomes
a leader. Different from the behavior of a leader in the previous section, a leader
in this section sets the flag vj .candi to declare that the current node vj is a
gathering candidate node and waits at vj until at least g agents gather at vj .
The reason why leaders execute such a behavior is that, even if some two agents
ai and ai′ become leaders, it is possible that less than g − 1 non-leader agents
exist between ai and ai′ (such a case does not happen in Sect. 3.2), and another
leader ah such that at least g − 1 non-leader agents exist between ah and ah’s
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backward leader agent treats this situation (the detail is explained in the next
part). If idg is not the uniquely minimum, that is, idg is not the minimum or idg

is the minimum but another ID has the same value as idg, ai additionally moves
until it observes g IDs to check whether a gathering candidate node exists within
this range or not. If ai visits a gathering candidate node vj (or vj .candi = true)
during the movement, it enters a waiting status there. Otherwise, ai proceeds
to the next phase. Each active agent repeats such a behavior until it becomes
a leader and sets vj .candi = true, or visits some gathering candidate node and
enters a waiting status. An example is given in Fig. 2.

Fig. 2. Behavior outlines of the first part for the case of g = 3. Each number represents
a random ID written on the whiteboard. For simplicity, we assume that an agent exists
at each node in the initial configuration and random IDs are already written in (a). We
consider behaviors of agents a1, a2, a3, and a4. From (a) to (b), each agent moves until
it observes five (=2g−1) random IDs. Since agent a3 observes random IDs (5, 3, 1, 2, 2)
and the middle ID 1 is the uniquely minimum, it becomes a leader and sets a candidate
flag at vj . On the other hand, the other agents continue to move in the ring. From (b) to
(c), agents a1, a2, and a4 move to observe additional three (=g) random IDs. During
the movement, since agents a1 and a2 observe a candidate flag at vj , they enter a
waiting status there. On the other hand, since a4 does not observe a flag, it updates a
random ID and proceeds to the next phase (the four IDs from the rightmost node are
updated similarly). From (c) to (d), since a4 observes five random IDs (2, 3, 1, 3, 4) and
the middle ID 1 is the uniquely minimum, it becomes a leader and sets a candidate
flag at vj′ . However, no agent exists between vj and vj′ . This situation is handled in
the second part.

The Pseudocode of active agents in the first part is described in Algorithm2.
As in Algorithm 1, variables ai.phase and vj .phase are used to maintain phase
numbers. In addition, agent ai has variables ai.id[ ] and ai.nIDs to store the IDs
and its number that ai observed during the current phase, respectively. Node vj

has variable vj .id to store the random ID created at vj . Variables vj .nVisited
and vj .nAgents represent the number of visited times by active agents during the
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current phase and the number of agents staying at vj , respectively. Moreover, in
Algorithm 2 agents use procedure NextActive2 () to move to the next active node,
and enter a waiting status when visiting a gathering candidate node (we omit
the detailed description). We have the following lemma concerning Algorithm2.

Lemma 3. Algorithm2 eventually terminates with probability 1 and all agents
enter a leader status or a waiting status. ��

4.2 The Second Part: Achievement of g-partial Gathering

In this part, agents achieve g-partial gathering based on the gathering candidate
nodes. Each agent takes a status from the following three statuses:

– leader: The agent checks whether the current candidate node finally becomes
a gathering node or not. If the node becomes a gathering node, the agent
instructs waiting agents where they should move.

– waiting: The agent is waiting for the leader’s instruction.
– moving: The agent moves to its gathering node.

We consider the situation such that all agents complete the first part, stay
at some gathering candidate nodes, and never move from the beginning of this
part2. Then, there exist several (possibly one) gathering candidate nodes, and
at least one candidate node has at least g agents and some candidate nodes
have less than g agents each. Note that at each gathering candidate node one
leader agent exists and the other agents are waiting agents. We denote a set of
candidate nodes with at least g (resp., less than g) agents in the above situation
by V more

candi (resp., V less
candi). Then, the basic movement of this part is as follows.

Each leader agent ai at a node in V more
candi moves to the next candidate node

vj ∈ V more
candi . During the movement, when ai visits a candidate node vj′ ∈ V less

candi,
it sets a flag vj′ .lVisited to declare that vj′ is visited by a leader. Then, all the
agents at vj′ move to the nearest candidate node vj′′ such that the number of
agents existing between vj′ and vj′′ is at least g. After the movement, agents
achieve g-partial gathering.

First, we explain the behavior of leader agents. Each leader agent ai firstly
waits at the current node vj until at least g agents gather at vj . Thereafter, ai

moves to the next candidate node vj′ and sets vj′ .lViisted = true. Then, if at least
g − 1 waiting agents exist at vj′ (i.e., vj′ ∈ V more

candi ), ai terminates the algorithm
at vj′ because all the agents at vj′ eventually terminate the algorithm there and
this guarantees that at least g agents gather at vj′ . If less than g − 1 waiting
agents exist at vj′ (i.e., vj′ ∈ V less

candi), ai stores the number of the waiting agents
at vj′ to a variable ai.nAgentsTemp, moves to the next candidate node vj′′ , and
updates the number of agents staying at vj′′ (or agents that eventually gather
at vj′′) using ai.nAgentsTemp. Then, if the updated number of agents at vj′′ is

2 We consider the situation for explanation, and it is possible that some agents execute
the second part and the other agents still execute the first part.
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Algorithm 2. Behavior of active agent ai in the first part (vj is the current
node of ai.)
Variables for Agent ai

int ai.phase = 1;
int ai.nIDs = 0;
array ai.id[ ];
Variables for Agent vj
int vj .phase = 1;
int vj .nAgents = 0;
int vj .id =⊥;
int vj .nVisited = 0;
boolean vj .candi = false;
Main Routine of Agent ai

1: while true do
2: ai.id[0] := random(�7 log g�),

vj .id := ai.id[0]
3: ai.nIDs := 1, vj .nVisited := 1
4: while ai.nIDs < 2g − 1 do
5: NextActive2 ()
6: ai.id[ai.nIDs] := vj .id
7: ai.nIDs++, vj .nVisited++
8: end while
9: if ∀h ∈ [0, 2g − 2] \ {g − 1}; ai.id[g − 1] < ai.id[h] then
10: vj .candi := true
11: vj .nAgents := 1
12: terminate the first part and enter the second part with a leader status
13: else
14: while ai.nIDs < 3g − 1 do
15: NextActive2 ()
16: ai.nIDs++, vj .nVisited++
17: end while
18: end if
19: ai.phase++, vj .phase := ai.phase
20: end while

at least g, vj′′ eventually becomes a gathering node regardless vj′′ is in V more
candi

or V less
candi. In this case, ai resets ai.nAgentsTemp to 0. If the updated number

is less than g, vj′′ becomes a non-gathering node and ai stores the number of
agents at vj′′ to ai.nAgentsTemp. This operation means that ai.nAgentsTemp
(possibly 0) agents move to the next candidate node. After updating the value
of ai.nAgentsTemp, ai moves to the next candidate node. Each leader agent
repeats such a behavior until it visits a candidate node vj in V more

candi . However,
when a leader agent is staying at node vj until at least g agents gather at vj , it
is possible that vj .lViisted is set to true. This means that another leader agent
ai′ visits vj and vj is in V less

candi. In this case, ai enters a waiting status, whose
behavior is described next.
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Next, we explain the behaviors of waiting agents and moving agents. Each
waiting agent ai stays at the current node vj until some leader agent visits
vj and sets vj .lVisited = true. Then, it checks (from the whiteboard content)
whether at least g agents eventually gather at vj or not. If at least g agents
gather, ai terminates the algorithm there. Otherwise, ai enters a moving status.
Each moving agent ai moves to the next candidate node vj′ and enters a waiting
status there. Then, the number of agents that eventually gather at vj′ is the sum
of agents that visit vj′ from vj and agents that already stay at vj′ Thus, if the
number of agents that eventually gather at vj′ is at least g, ai terminates the
algorithm there. Otherwise, ai enters a moving status again. Each moving agent
repeats such a behavior until it visits a candidate node vj such that at least
g agents eventually gather at vj . When all agents terminate the algorithm, the
final configuration is a solution of the g-partial gathering problem. An example
is given in Fig. 3.

Fig. 3. Behavior outlines of the second part for the case of g = 4. For simplicity, we
omit nodes where no agent exists. From (a) to (b), since the number of agents at nodes
v1
candi and v4

candi are respectively 4 (≥ g), leader agents a1 and a4 move to their next
candidate nodes, respectively. On the other hand, since the number of agents at v2

candi

and v3
candi are respectively less than g, leader agents a2 and a3 stay at the current node.

Then, the system reaches the configuration of (c) and a flag declaring that the node
is visited by a leader is set at v2

candi. Since the number of agents at v2
candi except for

a1 is 3 < g, all the agents (including a leader) at v2
candi move to the next candidate

node v3
candi (d). Then, the system reaches the configuration of (e) and a flag is set by

a1. Since the number of agents at v3
candi except for a1 is 5 > g, a1 moves to the next

candidate node v4
candi and the other agents at v3

candi terminate the algorithm there.
In (f), a1 sets a flag at v4

candi. Since the number of agents that sets the flag (i.e., a1)
and agents that already stay at v4

candi is 4 ≥ g, all the agent at v4
candi terminate the

algorithm there.

We have the following lemmas for the proposed algorithm.

Lemma 4. The proposed algorithm solves the g-partial gathering problem with
probability 1 from any initial configuration. ��
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Lemma 5. The expected total number of moves of the proposed algorithm is
O(gn). ��

By Lemmas 4 and 5, we have the following theorem.

Theorem 4. The proposed algorithm solves the g-partial gathering with proba-
bility 1 in O(gn) expected total number of moves from any initial configuration.

5 Conclusion

In this paper, we considered the g-partial gathering problem for anonymous
agents without global knowledge in asynchronous unidirectional rings. We con-
sidered deterministic and randomized cases. In the deterministic case, we showed
that unsolvable initial configurations exist and agents cannot detect whether the
initial configuration is an unsolvable one or not. In addition, we proposed an
algorithm to solve the problem from any solvable initial configuration in O(gn)
total number of moves. In the randomized case, we proposed an algorithm to
solve the problem with probability 1 in O(gn) expected total number of moves
from any initial configuration. Thus, our algorithms can solve the problem in
asymptotically optimal total number of moves without global knowledge.
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Abstract. Anonymous shared memory systems, recently introduced in
[36], are composed of objects for which there is no a priori agreement
between processes on their names. We resolve the following foundational
open problems in theoretical distributed computing, for a model which
includes both non-anonymous and anonymous shared objects: (1) Are
non-trivial oblivious deterministic objects with the same set agreement
power have the same computational power? (2) Is there a non-trivial
oblivious deterministic object which is strictly weaker than an atomic
read/write register? We prove that the answer to the first problem is
negative, while the answer to the second problem is positive. The positive
answer to the second problem implies that the common belief that every
non-trivial deterministic object of consensus number one is at least as
strong as atomic read/write registers is false. A noteworthy property of
the proofs of our results lies in their simplicity.

Keywords: Anonymous shared memory · Anonymous objects ·
Set agreement · Consensus · Read/write registers · RMW registers

1 Introduction

1.1 Set Agreement, Oblivious Objects, Anonymous Objects

Among the most fundamental problems in distributed computing are agreement
and its generalization, k-set agreement. The k-set agreement problem is to design
an algorithm for n processes, where each process starts with an input value from
some domain and must choose some participating process input as its output.
All n processes together may choose no more than k distinct output values [10].
The 1-set agreement problem is the familiar consensus problem [27]. The k-set
agreement number of an object is the largest integer m such that using any
number of instances of that object and registers k-set agreement can be solved
in a wait-free manner among m processes, or the number is ∞ if k-set agreement
can be solved among any number of processes. The 1-set agreement number is
also called the consensus number [18]. The set agreement power of an object is
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the infinite sequence (n1, n2, ..., nk, ...) where nk is the k-set agreement number
of that object for all k ≥ 1.

A shared object type is defined using a sequential specification, which
describes the operations that may be performed on the object and the responses,
if the operations are performed sequentially. We consider objects that are lin-
earizable (with respect to their sequential specification): they behave as if all
operations, including concurrent ones, are applied sequentially, so that each oper-
ation appears to take effect instantaneously at some distinct point between its
invocation and response [21].

Each operation causes a state transition and may return a response. If the
state transition and response are uniquely determined by the current state of the
object and the operation applied, then the object is deterministic. If the state
transition and the response for any operation do not depend on the process
that invokes the operation and every process can invoke every operation, then
the object is oblivious. All common deterministic object types which are sup-
ported by modern multiprocessor architectures (such as, bits, registers, test&set,
fetch&add, swap, compare&swap, queues, and stacks) are oblivious objects.

Anonymous objects, recently introduced in [36], are objects for which there
is no a priori agreement between processes on their names. That is, anonymous
objects do not have global names. The lack of global names makes it convenient
to think of each process as being assigned an initial object and an ordering of the
objects which determines how the process scans the objects. Thus, algorithms
which use only anonymous objects should be correct assuming a very powerful
adversary, which can determine the order in which processes access the objects.

In addition to its usefulness in modeling biologically inspired distributed
computing methods, especially those that are based on ideas from molecular
biology [30], the anonymous shared memory model enables to understand better
the intrinsic limits for coordinating the actions of asynchronous processes.

1.2 Is the Set Agreement Power a Precise Characterization?

A characterization of objects is precise if it can always indicate when two objects
are able to implement each other. In the last thirty years, researchers have tried
to find a precise characterization of an object’s ability to implement other objects
in a wait-free manner, in the shared memory model. The first suggestion for such
a characterization was the object’s consensus number [18]. However, it was shown
that this characterization is not precise. That is, some objects have the same con-
sensus number but do not have the same computational power (i.e., cannot imple-
ment each other). This was first shown for oblivious non-deterministic objects [29]
and later for oblivious deterministic objects as well [1].

Since the consensus number of an object does not fully characterize its ability
to implement other objects, the next natural question to ask is whether the set
agreement power of an object a precise characterization of its ability to imple-
ment other objects [6,12]? In [6], it was shown that the set agreement charac-
terization is not a precise characterization for non-deterministic objects, leaving
open the question of what happens when the universe of objects is restricted to
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deterministic objects. That is, are any two deterministic objects with the same
set agreement power equivalent (i.e., can they implement each other)?

In [8], it is shown that the answer is negative, for non-oblivious deterministic
objects with consensus numbers greater than 1. Non-oblivious objects, as defined
in [8], have ports, each operation is invoked on a specific port, and the response
received may depend on the port number chosen. Processes can choose to invoke
an operation on any port of any object, but no two operations may be applied
on the same port of an object concurrently. The number of ports of an object
effectively limits the number of processes that may access it concurrently.

It is not possible to simulate non-oblivious objects using oblivious objects by
simply including the port number as part of the process’ input when invoking an
operation. Since the total number of processes may be larger than the number
of ports, in such a naive simulation two or more processes may end up using the
same port number concurrently. So, this leaves open the following question.

Is the set agreement power of a non-trivial oblivious deterministic object
a precise characterization of its ability to implement other oblivious deter-
ministic objects? That is, are any two non-trivial oblivious deterministic
objects with the same set agreement power have the same computational
power?

Non-trivial objects are objects that can be used to solve problems whose solutions
require communication. We prove that for a universe of objects which includes
both non-anonymous and anonymous objects, the answer to the above problem is
negative. That is, there are two non-trivial oblivious deterministic objects (both
with consensus number 1), one of which is an anonymous object, that have the
same set agreement power, yet one of the two is strictly weaker than the other.

1.3 Is an Atomic Read/Write Register the Weakest Object?

A related question that attracted the attention of researchers investigating the
relative computational power of shared objects, is the following open problem
[24],

Is an atomic read/write register computationally the weakest possible non-
trivial object? Put another way, is there a non-trivial deterministic object
strictly weaker than an atomic read/write register?

We prove that for a universe of objects which includes both non-anonymous
and anonymous objects, atomic register is not the weakest non-trivial object.
That is, we show that there is a non-trivial oblivious deterministic anonymous
object which is strictly weaker than an atomic register. The answer to the above
open problem implies that the common belief that every non-trivial determinis-
tic object of consensus number one is computationally equivalent to or stronger
than atomic read/write registers is false.

We managed to resolve the above open problems, by showing that,
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1. Anonymous read/write bits are strictly weaker than both anonymous and
non-anonymous read/write registers (Sects. 3 and 4); and

2. Anonymous read/write bits are non-trivial objects, even when assuming that
processes may fail (Sect. 5).

2 Preliminaries

We consider an asynchronous shared memory system that consists of a collec-
tion of n deterministic processes with unique identifiers which communicate via
anonymous atomic objects that do not have global names and via standard
non-anonymous objects. For m anonymous objects, o1, ..., om, the adversary can
fix, for each process p, a permutation πp : {o1, ..., om} → {o1, ..., om} of the
objects such that, for process p, the j’th anonymous object is πp(oj). In par-
ticular, when process p accesses its j’th anonymous object, it accesses πp(oj).
Algorithms designed for such a system must be correct regardless of the permu-
tations chosen by the adversary.

With an atomic object, it is assumed that operations on the object occur in
some definite order. That is, each operation is an indivisible action. All objects
are assumed to be deterministic, that is, invoking an operation on an object may
have only one possible result. Asynchrony means that there is no assumption on
the relative speeds of the processes. Processes may fail by crashing, that is, they
fail only by never entering the algorithm or by leaving the algorithm at some
point and after that permanently refraining from accessing the shared objects.
A process that crashes is said to be faulty ; otherwise, it is correct.

A read/write register (register for short) is a shared object that supports
(atomic) read and write operations. The fact that anonymous registers do not
have global names implies that only multi-writer multi-reader anonymous regis-
ters are possible. Such registers can both be written and read by all the processes.
A read-modify-write register (RMW register for short) is a shared object that
supports read-modify-write operation in which a process can atomically read a
value of a shared register and based on the value read, compute some new value
and assign it back to the register.

An atomic bit is an object that supports atomic read and write operations,
and can store only two values (0 or 1). Through the paper, by a register we will
mean a multi-valued register, that is, a register which can store many different
values (but only one value at any given time).

Several progress conditions have been proposed for algorithms in which pro-
cesses may fail. The strongest, and most extensively studied condition, is wait-
freedom. Wait-freedom guarantees that every active process will always be able
to complete its pending operations in a finite number of steps [18]. Obstruction-
freedom guarantees that an active process will be able to complete its pending
operations in a finite number of steps, if all the other processes “hold still” long
enough [19]. In a model where participation is required, every correct process
must eventually become active and execute its code. A more common and prac-
tical situation is one in which participation is not required. Unless explicitly
stated otherwise, we assume that participation is not required.
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The sequential specification of an object describes its behavior when opera-
tions are applied sequentially. We consider objects that are linearizable (w. r. t.
their sequential specification): they behave as if all operations, including concur-
rent ones, are applied sequentially, so that each operation appears to take effect
instantaneously at some distinct point between its invocation and response [21].

Two objects with the same consensus number are equivalent if and only if,

1. Their consensus number is 1, and each object can be implemented by instances
of the other object in a wait-free manner; or

2. Their consensus number is more than 1, and each object can be implemented
by instances of the other object and registers in a wait-free manner.

In the above definition, for objects with consensus number 1, the use of registers
is forbidden. Otherwise, we would get that, by definition, no object is weaker
than a register.

3 An Impossibility Result for Anonymous RMW Bits

An object of type A is strictly weaker than an object of type B if using objects
of type B it is possible to implement, in a wait-free manner, an object of type
A, but not vice versa. We show that there is a non-trivial deterministic object,
namely anonymous read/write bit, which is strictly weaker than an (anonymous
or non-anonymous) read/write register, and that there are non-trivial determin-
istic objects with the same set agreement power which have different compu-
tational power. This implies that not every deterministic object of consensus
number one is computationally equivalent to or stronger than a non-anonymous
read/write register.

3.1 Basic Notions and Notations

An event corresponds to an atomic step performed by a process. A (global) state
of an algorithm is completely described by the values of the (local and shared)
objects and the values of the location counters of all the processes. A run is
defined as a sequence of alternating states and events (also referred to as steps).
It is convenient to define a run as a sequence of events omitting all the states
except the initial state. Since the events and the initial state uniquely determine
the states in a run, no information is lost by omitting the states.

We use x, y and z to denote runs. When x is a prefix of y (and y is an
extension of x), we denote by (y−x) the suffix of y obtained by removing x from
y. We denote by x; seq the sequence obtained by extending x with the sequence
of events seq. Saying that an extension y of x involves only process p means that
all events in (y − x) are only by process p.

Runs x and y are indistinguishable for process p, denoted x[p]y, if the sub-
sequence of all events by p in x is the same as in y, the initial values of the
local registers of p in x are the same as in y, and the values of all the shared
objects in x are the same as in y. Notice that the indistinguishability relation is
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an equivalence relation. We assume that the processes are deterministic, that is,
for every two runs x; e and x; e′ if e and e′ are events by the same process then
e = e′. We notice that if two runs are indistinguishable to a given process, then
the next step by that process in both runs is the same.

3.2 The Impossibility Result

The consensus problem is defined as follows: There are n processes where each
process i ∈ {1, ..., n} has an input value ini. The requirements are that there
exists a decision value v such that, (1) Agreement & termination: each non-faulty
process eventually decides on v; and (2) Validity : v ∈ {in1, ..., inn}. When the
only possible input values are 0 and 1, the problem is called binary consensus.

Theorem 1. For any m ≥ 1, there is no obstruction-free binary consensus algo-
rithm for two (or more) processes using m anonymous RMW bits.

Proof. We assume to the contrary that there is an obstruction-free consensus
algorithm for two processes using m anonymous RMW bits, and show how this
leads to a contradiction. Let p and q be the identifiers of the processes, let S be
the set of all the RMW bits used by the algorithm, and assume that the initial
values of all the RMW bits in S are 0.

Let x0 be a run of the algorithm in which p with input 0 runs alone until
it decides on 0 and terminates. Let x1 be a run of the algorithm in which
p with input 1 runs alone until it decides on 1 and terminates. Clearly, by the
agreement requirement, in any extension of x0 (resp. of x1) in which q runs alone
and decides, q must also decide on 0 (resp. on 1). For an arbitrary run z, let
number(z) be the number of all the RMW bits that, at the end of z, have value
1. Assume w.l.o.g. that number(x0) ≤ number(x1).

Since the anonymous RMW bits do not have global names, each process
independently names each of one of them with a unique name. For simplicity,
assume that the names are natural numbers. The consensus algorithm, assumed
at the beginning of the proof, is correct only if it always reaches agreement
regardless of how the RMW bits are numbered by the different processes. Thus,
it follows from the existence of the run x0 that, for every set of RMW bits R ⊆ S
such that |R| = number(x0), there must exist a run xR

0 of the algorithm such
that: (1) in xR

0 , p with input 0 runs alone until it decides on 0 and terminates,
(2) at the end of xR

0 the values of all the RMW bits in R are 1, and (3) |R| =
number(x0) = number(xR

0 ).
Let x′

1 be a prefix of x1 such that number(x′
1) = number(x0). Notice that

the input of p in x′
1 is 1. Let W be the set of all the RMW bits that, at the

end of x′
1, have value 1. We notice that |W | = number(x0). As explained above

there exists a run xW
0 of the algorithm in which (1) p with input 0 runs alone

until it decides on 0 and terminates, (2) at the end of xW
0 the values of all the

RMW bits in W are 1, (3) |W | = number(x0) = number(xW
0 ).
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Let y be an extension of xW
0 in which q decides and terminates such that (1)

in (y − xW
0 ) only q takes steps, and (2) the input of q is 1 (such an extension

exists by the obstruction-freedom assumption). What is the value that q decides
on in y? There are two possibilities both lead to a contradiction:

1. Process q decides on 0 in y. Since xW
0 [q]x′

1, it follows that z = x′
1; (y − xW

0 )
is a legal run. However, in z process q decides on 0 while the inputs of both
p and q are 1. This contradicts the requirement that the decision value must
be the input value of one of the processes.

2. Process q decides on 1 in y. By assumption, p decides on 0 in xW
0 , and since

xW
0 is a prefix of y, it follows that p decides on 0 in y. Thus p and q decide

on different values in y. A contradiction. �	
An interesting open problem is to determine what are the smallest anonymous
registers with which obstruction-free consensus and set agreement can be solved.

4 Implications of the Impossibility Result

It is easy to design a wait-free consensus algorithm for two processes using three
non-anonymous RMW bits. Assume that the initial values of all the three bits
are 0. Each process uses one bit to announce its input, and then tries to set the
last bit to 1. The decision value is the input of the process that was the first to
access the third bit, changing it from 0 to 1. Thus, by Theorem 1,

Corollary 1. An anonymous RMW bit is strictly weaker than a non-anonymous
RMW bit.

Also, for any n ≥ 1 and m ≥ 1, it is easy to design a wait-free consensus
algorithm for n processes using m anonymous RMW (multi-valued) registers.
Assume that the initial values of all the m registers are 0. Each process first
scans the m registers and only if the value of a register is 0 the process writes its
identifier and input value into that register. The decision value is the input of
the process with the maximum identifier among all the identifiers found in the
m registers. Thus, by Theorem 1,

Corollary 2. An anonymous RMW bit is strictly weaker than an anonymous
RMW register.

We observe that an anonymous RMW register is not necessarily weaker than a
non-anonymous RMW bit since the consensus number of non-anonymous RMW
bits is only two [26]. Although both anonymous RMW bits and anonymous
read/write registers have consensus number one, it is an open question whether
one can implement the other. A RMW bit supports read and write operations,
and it also can be used as a read/write bit. Thus, Theorem 1 implies a similar
result for read/write bits.

Corollary 3 (An impossibility result for anonymous read/write bits).
There is no obstruction-free binary consensus algorithm for two (or more) pro-
cesses using anonymous read/write bits.
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Anonymous bits are non-trivial objects – they can be used to solve problems
whose solutions require communication. An interesting wait-free consensus algo-
rithm that makes use of anonymous read/write bits together with anonymous
RMW bits in a general anonymous shared memory model, is presented in Sect. 5.
We describe below a simple consensus algorithm for a failure-free model.

Proposition 1. There is a binary consensus algorithm for two processes using
two anonymous read/write bits, assuming participation is required and processes
never fail.

Proof. We assume that the initial values of both bits are 0. The two processes
are called the sender and the receiver. When the sender starts, it first sets one of
the bits to 1, then it spins on that bit until its value is changed (by the receiver)
back to 0. When this happens, it writes its input value into the other bit, sets
again to 1 the bit it has previously set to 1, decides on its input and terminates.
The receiver, when it starts, keeps on checking the two bits until it notices that
the value of one of them is 1. Then, it changes this bit back to 0, and spins on
that bit until its value is changed back to 1. When this happens, it decides on
the value of the other bit and terminates. Clearly, the algorithm guarantees that
both processes eventually decides on the input value of the sender. �	
Theorem 2 (main result). In a system of two or more processes:

1. There is a non-trivial oblivious deterministic object which is strictly weaker
than an anonymous (and hence also non-anonymous) read/write register, for
two or more processes;

2. There are non-trivial oblivious deterministic objects with the same set agree-
ment power which have different computational power;

3. Not every non-trivial oblivious deterministic object of consensus number
one is computationally equivalent to or stronger than a non-anonymous (or
anonymous) read/write register.

Proof. An anonymous read/write register trivially implements an anonymous
read/write bit. It was shown in [36], that there is an obstruction-free consensus
algorithm for two (or more) processes using anonymous read/write registers.
Since, by Corollary 3, there is no obstruction-free consensus algorithm for two
(or more) processes using anonymous read/write bits, it follows that anonymous
read/write bits cannot implement an anonymous register. Thus, an anonymous
read/write bit is strictly weaker than an anonymous read/write register.

The k-set agreement problem can trivially be solved for k processes, by sim-
ply letting each process decides on its own input. Thus, the set agreement power
of any object is at least (1, 2, 3, ...). It was proven in [4,20,32], that the set agree-
ment power of a non-anonymous read/write register is exactly (1, 2, 3, ...). Thus,
also the set agreement power of an anonymous register is exactly (1, 2, 3, ...).
Since anonymous bit is strictly weaker than an anonymous register, its set
agreement power is also (1, 2, 3, ...). Thus, anonymous bits and anonymous (or
non-anonymous) registers are deterministic objects with the same set agreement
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power but with different computational power. From the fact that an anonymous
bit is strictly weaker than anonymous (or non-anonymous) register, it immedi-
ately follows that not every non-trivial deterministic object of consensus number
one is computationally equivalent to non-anonymous register. �	

5 Mixing Objects: Wait-Free Consensus for
Two Processes

So far we have considered a model wherein each algorithm processes communi-
cate via anonymous objects all of which are of the same type. We now consider a
more general setting in which, in a given algorithm, processes may access differ-
ent types of anonymous objects. In the more general model, there are different
groups of objects. All the objects in the same group must all be of the same
type. Objects from different groups may be different (but are not required to be
different). All the objects which reside in the same group are anonymous, but
the groups themselves are not anonymous. Thus, when a process needs to access
an object, it can specify in which group the object resides, but cannot point at
a specific object within the group (unless the group is a singleton). We can now
think of a non-anonymous object as an object which resides in a group with
exactly one element (i.e., a singleton).

We have already shown that it is not possible to solve obstruction-free consen-
sus for two processes using only one group of anonymous RMW bits regardless
of the size of that group (Theorem 1). This result immediately implies that it
is not possible to solve obstruction-free consensus for two processes using only
one group of anonymous read/write bits regardless of the size of that group
(Corollary 3). We now prove that it is possible to solve wait-free consensus
for two processes using two groups, where the elements of the first group are
(anonymous) RMW bits, and the elements of the second group are (anonymous)
read/write bits, regardless of the size of the groups. At first sight, this result
seems counterintuitive since RMW registers are strictly stronger the read/write
bits, so how adding read/write bits can make a difference? What makes the dif-
ference is that we now have two groups and, although the objects within each
group are anonymous, the groups are not anonymous.

Theorem 3. For every � ≥ 1 and m ≥ 1, there is a wait-free binary consensus
algorithm for two processes using a group of � anonymous RMW bits, and a
group of m anonymous read/write bits.

It follows immediately from Theorem 3 that,

Corollary 4. Anonymous read/write bits are non-trivial objects, also when
assuming that participation is not required and that processes may fail.

For � = 1 and m = 1, the following result for non-anonymous objects follows
immediately from Theorem 3.
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Corollary 5. There is a wait-free binary consensus algorithm for two processes
using a single (non-anonymous) RMW bit and single (non-anon.) read/write bit.

What is the point of considering the cases when � and m are greater than 1?
In general, the fact that a problem is solvable using m anonymous objects, does
not imply that it is solvable also using m + 1 anonymous objects [36].

5.1 The Algorithm

The code of the algorithm is given in Fig. 1. The algorithm makes use of two
group of objects called X and Y . The group X includes � RMW bits, and the
group Y includes m read/write bits. As the objects within each group do not have
global names, each process independently numbers them. We use the following
notations: X.i[j] denotes the jth RMW bit according to process i numbering,
for 1 ≤ j ≤ �, and Y.i[j] denotes the jth read/write bit according to process i
numbering, for 1 ≤ j ≤ m.

Fig. 1. Wait-free binary consensus for two processes using a group of � ≥ 1 RMW bits
and a group of m ≥ 1 read/write bits.
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5.2 Correctness Proof

Lemma 1. The algorithm is a correct wait-free binary consensus algorithm for
two processes.

Proof. The correctness proof is as follows:

– If both processes have input value 0, then clearly they will both decide on
0, as no read/write bit in group Y is ever updated and hence the values of
all the bits in group Y are always 0. Thus, the condition in line 4 will be
evaluated to true and both processes will decide 0.

– If both processes have input value 1, then clearly they will both decide on 1,
as no RMW bit in group X is ever updated and hence the values of all the
bits in group X are always 0. Thus, the condition in line 13 will be evaluated
to true, and both processes will decide on 1.

– When the processes have different input values, and one of the two processes
is faster and decides on a value without noticing that the other process “is
around”, the common decision value is that of the fast process, or

– When the processes have different input values, and both processes try to
RMW the same bit in group X (i.e., X.i[1] for the process with input 0, and
X.i[index] for the processes with input 1), the common decision value is the
input of the second process that tried to RMW this bit.

This completes the proof. �	

6 Related Work

Anonymous Shared Memory. In [36], the notion of anonymous objects was
defined, and several results were presented for a model where communication is
only via anonymous (read/write) registers. In particular, it was shown that for
a model where the number of processes is not a priori known (or is unbounded)
anonymous registers are strictly weaker than non-anonymous registers. However,
when the number of processes is not a priori known, it seems that anonymous reg-
isters are trivial objects – they cannot be used to solve any problem that requires
communication. The question of whether anonymous registers are weaker than
non-anonymous registers when the number of processes is known is open.1

The work on anonymous objects was inspired by Michael O. Rabin’s paper
on solving the Choice Coordination Problem (k-CCP) [28]. In the k-CCP, n
processes must choose between k alternatives. The agreement on a single choice
is complicated by the fact that there is no a priori agreement on names for the
1 In [36], it is mentioned that anonymous registers are non-trivial objects which are
strictly weaker than non-anonymous registers, when the number of processes is not
a priori known. This statement is misleading. Indeed, it was proved in [36] that
anonymous registers are strictly weaker than non-anonymous registers when the
number of processes is not a priori known (or unbounded). However, it was not
proved that anonymous registers are non-trivial objects for such a model.
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alternatives. Rabin has assumed that processes communicate by applying RMW
operations to exactly k registers which do not have global names. The k different
registers represent the k possible alternatives.

In [2], tight space bounds for solving the symmetric deadlock-free mutual
exclusion problem using anonymous read/write registers and anonymous RMW
registers, are presented. In [14], the election and the de-anonymization problems
are studied in a model where processes may not fail. In the de-anonymization
problem, processes must agree on unique names for the anonymous objects.

In [5], the naming problem of assigning unique names to initially identical
processes is considered. It is assumed that each register is owned by some unique
process which can write into it and that register is partially anonymous for
the other processes that can only read it. For such a model, with single-writer
registers, it is shown that wait-free naming is not solvable by a deterministic
algorithm, while it is solvable by a randomized algorithm. According to our
definition, the notion of an anonymous register is meaningful only when all the
processes can both read and write the register.

In [30], it is shown how the process of genome wide epigenetic modifications,
which allows cells to utilize the DNA, can be modeled as an anonymous shared
memory system where, in addition to the shared memory, also the processes
(that is, proteins modifiers) are anonymous. Epigenetic refers in part to post-
translational modifications of the histone proteins on which the DNA is wrapped.
Such modifications play an important role in the regulation of gene expression.

Consensus Numbers and the Consensus Hierarchy. The consensus prob-
lem was formally defined in [27]. The notion of a consensus number was defined
in [18]. The consensus hierarchy, defined in [18], is an infinite hierarchy of objects
such that the objects at level i of the hierarchy are exactly those objects with
consensus number i. In the consensus hierarchy (1) no object at one level together
with registers can wait-free implement any object at a higher level, and (2) each
object at level i together with registers can wait-free implement any object at a
lower level in a system of i processes.

In [1], it is shown that for every n ≥ 2, there is an infinite sequence of
deterministic objects of consensus number n with strictly increasing computa-
tional power in a system of more than n processes, leaving open the question of
whether all deterministic objects with consensus number 1 are at least as strong
as atomic registers. We resolve this question by showing that the answer is neg-
ative (Theorem 2(1)). In [15], it was shown that there is a non-deterministic
object with consensus number 1 which cannot be wait-free implemented from
atomic registers. Recently, it was shown that there are also deterministic objects
with consensus number 1, but with different set consensus numbers than atomic
registers, which are strictly stronger than atomic registers [11].

The consensus hierarchy is robust if no object in any level of the hierarchy
can be implemented using a number of (possibly different) types of objects from
lower levels [22]. It is shown in [9] that the consensus hierarchy is not robust,
if non-oblivious non-deterministic objects are allowed. In [34] it is proved that
the consensus hierarchy is not robust, even for oblivious objects, if objects with
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unbounded non-determinism are allowed. This last result is improved in [25],
showing that the hierarchy is not robust even when restricted to oblivious objects
when non-determinism is bounded.

The consensus hierarchy is known to be robust for deterministic one-shot
objects [17] and deterministic read-modify-write and readable objects [31]. It
is unknown whether the consensus hierarchy is robust for general deterministic
objects and, in particular, for oblivious deterministic objects. Additional issues
regarding the robustness question are discussed in [22,23]. For randomized com-
putation, the consensus hierarchy collapses [3].

Set Agreement Power. The k-set agreement problem was defined in [10]. In
[7], it was shown that a precise classification of linearizable objects must divide
the objects into uncountably many classes. In [6], it is shown that for every n ≥ 2,
there exists a pair of non-deterministic objects with consensus number n that
have the same set agreement power but are not computationally equivalent.
In [8], it is shown that every level n ≥ 2 of the consensus hierarchy has two
deterministic objects, one of which is a non-oblivious object, with the same set
agreement power that are not equivalent.

We show that in level one of the consensus hierarchy, there is such a pair
of non-trivial oblivious deterministic objects, where one of the two objects is
anonymous (Theorem 2(2)). That is, there exists a pair of non-trivial oblivious
deterministic objects (i.e, an anonymous r/w bit and an atomic r/w register),
that have the same set agreement power but are not computationally equivalent.

In [12], it is written: “We hope that this work will be a step towards prov-
ing a more general conjecture that our set-consensus numbers capture precisely
the computing power of any ‘natural’ shared memory model.” It follows from
Theorem 2 that this hope cannot be realized.

Objects Weaker Than an Atomic Register. The investigation whether
various objects are weaker than an atomic read/write register was initiated in
[24], where three classes of shared registers are defined, which support read and
write operations, called—safe, regular and atomic—depending on their proper-
ties when several reads and/or writes are executed concurrently. It was shown
in [24] that an atomic register can be implemented from both safe bits and from
regular bits.

In [33,35], relaxations of the notions of safe, regular and atomic registers
called k-safe, k-regular and k-atomic registers, were considered and it was shown
that they are all as strong as atomic registers. We have shown that an anony-
mous atomic bit is strictly weaker than an atomic non-anonymous register (The-
orem 2(1)). Hence, an anonymous atomic bit is also strictly weaker than non-
anonymous safe, regular and atomic bits (and registers). It is interesting to
observe that the correctness of the algorithm in Fig. 1 is preserved even when
the anonymous atomic bits are replaced with anonymous safe bits.

In [16] the authors introduce the family of d-solo models, where d processes
may concurrently run solo, 1 ≤ d ≤ n. The 1-solo model corresponds to the wait-
free read/write model and the n-solo model corresponds to the wait-free message-
passing model. Among other results, it is shown that, when the processes are



306 G. Taubenfeld

anonymous any d-solo model with d ≥ 2, is weaker than the wait-free read/write
model, yet it is powerful enough to solve a non-trivial task, called the (d, ε)-solo
approximate agreement task, which cannot be solved in the (d + 1)-solo model.

In [13], it is shown how n processes, with unique identifiers taken from a very
large namespace, can emulate single-write multi-reader registers non-blocking
using n multi-write multi-reader (MWMR) non-anonymous registers and wait-
free using 2n−1 MWMR non-anonymous registers. The emulations used to prove
these interesting results would not work for anonymous registers.

7 Discussion

We have resolved important open problems, assuming a universe of objects which
includes both non-anonymous and anonymous objects. In particular, we proved
that anonymous bits are non-trivial objects which are strictly weaker than anony-
mous registers. It would be interesting to investigate the “mixed objects” model
further. Finally, it would be interesting to investigate a model where both the
processes and the objects are anonymous, as such a model seems to be suited
for the study of “algorithms in nature”, i.e., how collections of molecules, cells,
and organisms process information and solve computational problems.
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Abstract. It is well known that the areas of self-stabilizing algorithms
and local algorithms are closely related. Using program transforma-
tion techniques local algorithms can be made self-stabilizing, albeit an
increase in run-time or memory consumption is often unavoidable. Unfor-
tunately these techniques often do not apply to randomized algorithms,
which are often simpler and faster than deterministic algorithms. In this
paper we demonstrate that it is possible to take over ideas from random-
ized distributed algorithms to self-stabilizing algorithms. We present two
simple self-stabilizing algorithms computing a maximal independent set
and a maximal matching and terminate in the synchronous model with
high probability in O(log n) rounds. The algorithms outperform all exist-
ing algorithms that do not rely on unique identifiers.

1 Introduction

Self-stabilizing algorithms are a special type of distributed algorithms. Their dis-
tinctiveness is that they provide non-masking fault tolerance. That means that
after a transient fault they return to a legal state without external interven-
tion within a finite amount of time, i.e., within a finite number of rounds. An
important class of distributed algorithms are local algorithms. They work on the
assumption that each node only knows about its immediate neighborhood. The
majority of the proposed local algorithms work in the synchronous model and
do not care about fault tolerance. Despite some disparity local algorithms and
self-stabilizing algorithms use a common set of models and complexity metrics.
Nevertheless, the two communities do not pay much attention to each others
results as already remarked by Lenzen et al. [18]. Another observation is that
for many classical problems known local algorithms are faster by orders of magni-
tude. Whereas, the majority of self-stabilizing algorithms has prohibitively large
stabilization time of Θ(n) or more, O(log n) or even O(log∗ n) are common run-
times for local algorithms. One reason is that most self-stabilizing algorithms
are order invariant, i.e., they solve the symmetry breaking problem by utilizing
only the ordering of identifiers.
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A breakthrough with respect to efficient self-stabilizing algorithms is due
to Barenboim et al. In 2018 they presented self-stabilizing algorithms with a
sub-linear run-time for some classical problems [5]. In particular they proposed
self-stabilizing algorithms for (Δ+1)–coloring, (2Δ− 1)-edge-coloring, maximal
independent set and maximal matching with O(Δ + log∗n) run-time. For sym-
metry breaking these algorithms still rely on unique identifiers but go beyond
using only the ordering of identifiers.

Using program transformation techniques local algorithms can be made self-
stabilizing. Several transformers were proposed using proof labeling schemes and
self-stabilizing reset algorithms [1,3,4,18]. But they all come with some overhead
in run-time or memory consumption. Lenzen et al. describe a transformer that
also works in the asynchronous message passing model [18]. Each node stores
the messages exchanged with each neighbor in a register. Each node simulates
its own actions during a complete execution of the algorithm and writes its own
outgoing messages into the register. After T +1 asynchronous rounds, the initial
state of the system has been replaced by the values the local algorithm would
compute in a single run, assuming that the original algorithm completes in T
rounds. Hence, the transformed algorithm is self-stabilizing and has the same
time complexity, but it has a high memory overhead. The authors point out,
that this transformation cannot be apply to randomized algorithms.

Using randomization for symmetry breaking has received only limited atten-
tion in self-stabilization [9,10,14,22]. On the other hand it is very well established
in local algorithms. There are many efficient randomized algorithms that work in
the synchronous model. Many make use of a phase concept, the realization of this
concept in the self-stabilizing model requires an additional effort. The question
we are concerned with in this work is how to transform phase-oriented distributed
algorithms into self-stabilizing algorithms without increasing the run-time. Our
main contribution are two randomized self-stabilizing algorithms for maximal
independent set and maximal matching that do not rely on unique identifiers
and stabilize w.h.p. in O(log n) rounds in the synchronous model. In contrast to
the algorithms of Barenboim et al. which are rather difficult to implement our
randomized algorithms have a very simple implementation.

We regard this work as a first step towards a transformation tool that auto-
matically transforms phase-oriented synchronous distributed algorithms into
self-stabilizing algorithms without introducing any overhead.

2 Phase-Oriented Distributed Algorithms

Many distributed algorithms using the synchronous model operate in phases. A
phase consists of a fixed number of rounds. Phases are executed periodically and
nodes perform a dedicated task in each round of a phase. In a phase-oriented
algorithm the number of active nodes decreases in every phase. Initially all nodes
are active. A typical phase is as follows. In the first round active nodes explore
the states of their active neighbors. Next they validate if their state is consistent.
If valid, they inform their neighbors and become passive. Otherwise they change
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their states according to the states of the active neighbors. Phase-oriented algo-
rithms converge fast because in each phase a fair share of the nodes become
passive. Now suppose that, because of some faults, the algorithm starts from
an arbitrary configuration. Then nodes have a validated state, but this is not
consistent with the states of the neighbors, some nodes may be still in the first
step of a phase, some others already in the second step, etc. In such a scenario,
phase-oriented algorithms will produce incorrect results.

The implementation of phases in a synchronous system is based on a syn-
chronized variable counting rounds. This counter enables the nodes to decide in
which round of a phase they are and when a new phase begins. This concept
can be used in a self-stabilizing system if a phase consists only of a single round.
Otherwise an algorithm must be prepared to handle transient faults that hit this
counter. Thus, phase-oriented self-stabilizing algorithms require a self-stabilizing
phase clock algorithm for synchronous networks, i.e., self-stabilizing synchronous
unison. Such algorithms have been proposed but they require Ω(Diam(G)) (the
diameter of G) rounds to stabilize [7,15,17]. Since we aim at a run-time of
O(log n) an approach that relinquishes the phase concept is required.

Instead of operating in globally synchronized phases, we propose that each
node continuously and independently tries to perform its actions in the order
as they would appear in a phase. In order for a node to know in which logical
round of a phase it currently is, we introduce an additional state variable. The
crucial point is that due to transient errors the order in which different nodes
execute their actions is no longer synchronized but interleaved. Thus, we need
additional actions that enforce the correct behavior even if neighboring nodes
are desynchronised. One option is to perform a kind of local reset after detecting
an inconsistency at a node. The peril of this option is that it may trigger a
cascading reset leading to a kind of global reset that may last Diam(G) rounds.
We refrain from synchronizing nodes with respect to their position in a phase.
To deal with the desynchronization effect we map the phase-dependent behavior
to a state variable. This enables a node to determine from its own state and that
of its neighbors its position within a phase and to act accordingly. The essential
point is that when a fault hits the state variable, a node makes a local reset
without triggering an avalanche of corrections.

In this paper we demonstrate this transformation for two phase-oriented
algorithms solving classical problems. We show that the transformed algorithms
are self-stabilizing and retain their run-time despite desynchronization. We like
to point out that this transformation will not work in case the operations of the
phases changes after some rounds. For example, when one algorithm runs for a
fixed number of phases and then another algorithm takes over.

3 Notations and Computational Model

This paper uses the synchronous model of distributed computing as defined in
the standard literature [21]. Extensions to asynchronous systems are discussed
in Sect. 6. A distributed system is represented as an undirected graph G(V,E)
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where V is the set of nodes and E ⊆ V × V is the set of edges. Let n = |V |,
m = |E|, and let Δ denote the maximal degree of G. For any subgraph U of G
and v ∈ U denote by dU (v) the degree of v in U . The set of neighbors of node v
is denoted by N(v) and N [v] = N(v) ∪ {v}. The diameter Diam(G) of a graph
G is the length of the longest shortest path between any two nodes.

Each node stores a set of variables. The values of all variables constitute the
local state of a node. Let σ denote the set of possible local states of a node. The
configuration of a system is the tuple of all local states of all nodes. Σ = σn

denotes the set of global states. A configuration is called legitimate if it conforms
with the specification. Nodes communicate via locally shared memory. In this
model each node executes a protocol consisting of a list of rules of the form
guard −→ statement . The guard is a Boolean expression over the node’s variables
and its neighbors’ variables. The statement consists of a series of commands. A
node is called enabled if one of its guards evaluates to true. The execution of a
statement is called a move.

Execution of the statements is performed in a synchronous style, i.e., all
enabled nodes execute their code in every round. An execution E = c0, c1, . . .,
with ci ∈ Σ is a sequence of configurations, where c0 is called the initial configu-
ration and ci is the configuration at the beginning of round i. Thus, if the current
configuration is ci−1 and all enabled nodes make a move, then this yields ci.

A distributed algorithm is called self-stabilizing if it satisfies two properties:
closure property (every execution with a legitimate initial configuration remains
in legitimate configurations) and convergence property (every execution reaches a
legitimate configuration within finite time). We say that a randomized algorithm
terminates w.h.p. (with high probability) within O(f(n)) time if it does so with
probability at least 1−1/nc for some c ≥ 1. A randomized distributed algorithm
is called self-stabilizing if it satisfies the closure property and if, starting from
any configuration, reaches w.h.p. a legitimate configuration within finite time.

4 Maximal Matching

There is a bulk of literature on self-stabilizing algorithms for maximal match-
ing [5,8,13]. These algorithms operate in different models (asynchronous, syn-
chronous) and have different assumptions (anonymous, unique identifiers).
Except for the algorithm in [5] – which stabilizes in O(Δ + log∗ n) rounds –
all require Ω(n) rounds to stabilize. There are much stronger results for general
distributed algorithms. For example Lotker et al. present a distributed algorithm
to compute a maximal matching with approximation ratio (1 − ε) in O(log n)
rounds [19]. Barenboim et al. proposed a maximal matching algorithm with run-
time O(log Δ + log4 log n) [6]. Fischer recently presented an algorithm based on
rounding requiring O(log2 Δ log n) rounds [11]. In this section we show how to
transform a randomized parallel maximal matching algorithm of Israeli and Itai
[16]. The resulting self-stabilizing algorithm stabilizes w.h.p. in O(log n) rounds.
If log n ∈ o(Δ) it outperforms the algorithm of [5].
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4.1 Algorithm AMAT

The algorithm of Israeli and Itai can be transformed into a distributed algorithm
that uses phases of length four rounds. In the first round each node invites a
random neighbor. In the following round invited nodes randomly accept one
invitation. At this point the accepted invitations form a subgraph U where the
connected components are paths and cycles. In round three a matching of U is
computed. For this purpose, nodes that accepted an invitation or nodes whose
invitation was accepted randomly select either the edge towards the accepted or
to the accepting neighbor, the corresponding edge is called a peer. In the last
round edges that were selected by both end-nodes as peers join the matching.
The corresponding nodes do not participate in the next phase. The algorithm
terminates when none of the remaining nodes are connected by an edge.

To make this algorithm self-stabilizing the nodes mimic the phase-oriented
behavior by storing information about their position within a phase in variable
state. There are four positions: none, invit , accept , and peer . In contrast to the
original algorithm, the positions do not necessarily follow a fixed pattern. A node
may for example remain at invit for some rounds or may transit from invit to
peer in one round. Also, the actions of the individual nodes are not synchronized,
i.e., in one round some nodes invite a neighbor and at the same time other nodes
may already select a peer. The invited, accepted or peered neighbor is stored in
variable partner . AMAT makes use of the following three variables

– match: Indication whether the node is incident to an edge of the matching
(true) or not (false). The fallback value is false.

– partner : The value of this variable is either a neighbor of the node or null.
If match = true then the edge connecting the node with its partner belongs
to the matching. Otherwise it indicates an invitation or the acceptance of an
invitation. The fallback value is null.

– state: It describes the semantics of variable partner : invit (partner is invited),
accept (node accepts invitation of partner), peer (edge connecting node and
partner is proposed for or already belongs to the matching), and none (no
partner selected, i.e., partner = null). The fallback value is none.

There are three rules RESET, MATCH, and RANDOM. The first rule is used to
correct inconsistent states. After an inconsistent state is detected, rule RESET

assigns the fallback values to the three variables. For example if partner = null
but state �= none then RESET sets state to none. Each of the following three
conditions is regarded as an inconsistent state (regardless of the value of match):

– v.state = none but v.partner �= null
– v.state �= none but v.partner = null
– v.partner �∈ N(v) ∪ {null}



314 V. Turau

For a node v with match = true each of the following three conditions is regarded
as an inconsistent state:

– v.state �= peer
– v.partner .partner �= v
– v.partner .state �= peer

The rule MATCH promotes a node with match = false to match = true
provided all of the following three conditions are all fulfilled:

– v.state = peer
– v.partner .partner = v
– v.partner .state = peer

Rule RANDOM only applies to nodes with match = false. It updates variables
partner and state with the help of the following sets which contain the candidates
for a peer, an acceptance, or for an invitation.

– P (v) = {w ∈ N(v) | w.state = accept ∧ w.partner = v ∧ w.match = false} ∪
{v.partner | v.state = accept ∧ v.partner .match = false}

– A(v) = {w ∈ N(v) | w.state = invit ∧ w.partner = v ∧ w.match = false}
– I(v) = {w ∈ N(v) | w.state ∈ {none, invit} ∧ w.match = false}
The three sets are considered in this order and from the first non-empty set
a random element w is selected; w = null if all sets are empty. Let t be the
corresponding state, i.e., peer , accept , or invit if w ∈ P (v), w ∈ A(v), or w ∈ I(v).
The new values of partner and state are w and t respectively. The complete set
of rules is as follows:

RESET: (v.state = none) = (v.partner �= null) ∨ v.partner �∈ N(v) ∪ {null} ∨
(v.match = true ∧ (v.state �= peer ∨ v.partner .partner �= v ∨

v.partner .state �= peer))
−→ v.match := false; v.state := none; v.partner := null;

MATCH: v.state = peer ∧ v.partner .state = peer ∧ v.partner .partner = v
−→ v.match := true

RANDOM: v.match = false ∧ (v.partner , v.state) �= (w, t)
−→ (v.partner , v.state) := (w, t)

Figure 1 shows an execution of algorithm AMAT. In the first round all nodes
make a RANDOM move and invite a neighbor. The invited nodes v1, v2, and v3
thereafter accept an invitation, while v0 and v4 make an new invitation. v1, v2,
and v3 select a peer in round three. None of these three nodes can make a MATCH

move since the selected peers do not match. Thus, in round four v1 and v3 again
make an invitation. Node v2 cannot make an invitation in round four since none
of its neighbors has state ∈ {none, invit}. In round five nodes v0 and v4 select
each other as peer and therefore make a MATCH move in round five. After eight
rounds a legitimate state is reached.

Let E = c0, c1, . . . be an error-free execution of algorithm AMAT. The following
lemma summarizes basic properties of the AMAT.
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Fig. 1. An execution of Algorithm AMAT of length 8. Variable partner is pictured as an
arrow. The attached label indicates the value of variable state. I, A, P , or N stand for
invit , accept , peer , or none. Dark nodes have match = true. In the final configuration
(bottom right) edges (v0, v4) and (v1, v2) form a maximal matching.

Lemma 1. For v ∈ V the following properties hold.

(i) Node v executes rule MATCH at most once in E. If v executes MATCH then
either v.partner .match = true and v.partner is disabled or v.partner exe-
cutes MATCH in the same round. The first case only occurs in round 0.

(ii) Rule RESET is only executed in round 0. In particular after round 0 either
v.state �= none and v.partner ∈ N(v) or v.state = none and v.partner =
null.

(iii) After round 0 (round 1) v has at most one neighbor w with w.partner = v
and w.state = accept (w.state = peer), in particular |P (v)| ≤ 2 after
round 0.
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(iv) If v.state = peer after round 0 then either v.match = true and v is disabled
for the remaining part of E or v has assigned a value to v.peer through
RANDOM in the round before.

(v) If v executes rule RANDOM and sets v.state to peer and v.partner to w after
round 0 then w will also have w.state = peer at the end of the round.

Lemma 2. Let ci with i > 0 be a configuration of E in which no node is enabled.
Then the set

M = {(v, v.partner) | v.match = true in ci}

is a maximal matching.

Proof. If v.match = true then v.partner ∈ N(v), v.partner .partner = v, and
v.partner .match = true since rule RESET is disabled. Thus, M is a matching.

Let v be node with v.match = false. Assume v.state = peer and u =
v.partner . Since RANDOM is not enabled for v we have u ∈ P (v). By definition
of P (v) this implies u.partner = v and u.state = accept . Hence v ∈ P (u). This
yields P (u) �= ∅ and u.state = peer . This contradiction shows v.state �= peer . A
similar argument shows that v.state �= accept . Thus, v.state ∈ {invit ,none}.

Assume there exists an edge e = (v, u) of G such that e is not incident to an
edge of M . Then u.match = v.match = false. Thus, the above implies that I(v)
and I(u) are not empty and hence, u.state = v.state = invit . This yields that
u and v are enabled for rule RANDOM. Contradiction. This proves that M is a
maximal matching. �

Lemma 3. Let v be a node with v.match = false in ci with i > 0.

(i) If v.state = peer then the probability that v.match = true in cj for all
j ≥ i + 1 is at least 0.5.

(ii) If v.state = accept then the probability that v.match = true in cj for all
j ≥ i + 2 is at least 0.5.

(iii) If w.state = invit and w.partner = v then the probability that v.match =
true in cj for all j ≥ i + 3 is at least 0.5.

Proof. (i) By Lemma 1(iv) v has set v.partner to w by executing rule RANDOM

before round i. By Lemma 1(v) w executed RANDOM in the same round and
set w.state to peer . By Lemma 1(iii) |P (w)| ≤ 2. Hence, the probability that
w.partner = v is at least 0.5. Thus, v executes rule MATCH with probability at
least 0.5. The result follows from Lemma 1(i).

(ii) When v changed it state to accept and set v.partner to w, w satisfied
w.state = invit , w.partner = v and w.match = false. Therefore, in ci node w still
satisfies w.match = false. Thus, P (v) �= ∅ since w ∈ P (v). Hence, v will execute
rule RANDOM and set v.state to peer in round i. The lemma follows from (i).

(iii) If v.state ∈ {peer , accept} then the result follows from (i), (ii), and
Lemma 1(i). Otherwise, v will execute rule RANDOM and set v.state to accept .
The result again follows from (ii). �
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For i > 0 let Ui = {v ∈ V | v.match = false in ci} and Gi the subgraph of
G induced by Ui. Note that Gi ⊆ Gi−1 by Lemma 1(i). We will show that after
expected O(log n) rounds graph Gi consists of isolated nodes only.

A node v of a graph G is called good if the degree of more than a third of v’s
neighbors is at most as large as the degree of v. An edge of G is called good if
at least one of its endpoints is good.

Lemma 4. Let i > 0 and v be a good node of Gi. Denote the expected number
of edges incident to v in Gi that are not contained in Gi+4 by Ei(v). Then
Ei(v) ≥ (1 − e−1/6)dGi

(v)/12 for i > 1.

Proof. We can assume d = dGi
(v) > 0. If v.state ∈ {peer , accept} in ci then by

Lemma 3 v will have match = true in ci+2 with probability at least 0.5. Thus,
with probability 0.5 an edge incident to v in Gi will not be contained in Gi+2.
Hence, in this case Ei(v) ≥ dGi

(v)/2.
Next consider the case that v.state ∈ {invit ,none}. Since v is good in Gi it

has k neighbors v1, . . . , vk in Gi with dGi
(vi) ≤ d and k > d/3. Let S be the set

of those nodes vi that set variable state to invit in round i. Thus, v ∈ I(u) for
all u ∈ S. Let s = |S|. First consider the case s ≥ k/2. Then s > d/6. For u ∈ S
we have

Prob(u.partner �= v at the end of round i) ≤ 1 − 1
dGi

(u)
.

This yields

Prob({w ∈ Ui+1 | w.partner = v} = ∅) ≤
∏

u∈S

(
1 − 1

dGi
(u)

)

≤
(

1 − 1
d

)d/6

< e−1/6.

Hence, the probability that there exists a neighbor w ∈ Ui+1 of v with w.state =
invit , and w.partner = v in ci+1 is at least 1 − e−1/6. Thus, Lemma 3 implies
that v.match = true at the end of round i + 4 is greater than (1 − e−1/6)/2.
Thus, for j = 1, . . . , k the probability that edge (v, vj) is not contained in Gi+4

is at least (1 − e−1/6)/2. Hence, in this case Ei(v) ≥ (1 − e−1/6)dGi
(v)/2.

At last consider the case that s < k/2. Note that the neighbors of v in Ui

that are not in S set their variable state to peer or accept . Lemma 3 imply that
with probability 0.5 the edge (v, vj) with vj �∈ S is not contained in Gi+2. Thus,
in this last case Ei(v) ≥ 0.5(k − s) ≥ dGi

(v)/12. �

Theorem 1. Algorithm AMAT is self-stabilizing and computes w.h.p. in O(log n)
rounds using O(log n) memory a maximal matching.

Proof. Denote the number of edges of Gi by mi. By Lemma 4.4 of [2] at least
half of the edges of any graph are good. Thus,

∑

v∈V,v good

dGi
(v) ≥ mi

2
.
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Let Ei be the expected number of edges in Gi that are not contained in Gi+4.
Then by Lemma 4

Ei ≥
∑

v∈V,v good

Ei(v)/2 ≥
∑

v∈V,v good

(1 − e−1/6)dGi
(v)/24 ≥ mi(1 − e−1/6)/48.

Let α = 96/(1 − e−1/6). Hence, in expectation at least 2mi/α edges of Gi are
not contained in Gi+4. Let ξ be the probability that at least 1/α of the edges
of Gi are not contained in Gi+4. Then 2/α ≤ Ei/mi ≤ ξ + (1 − ξ)/α. Hence,
ξ ≥ 1/(α−1). This yields that with probability at least 1/(α−1) at least 1/α of
the edges of Gi are not contained in Gi+4. Thus, in expectation every 4(α − 1)
rounds 1/α of the edges is removed from Gi. Hence, after 4(α− 1)i rounds there
are at most m(1 − 1/α)i edges left. Thus, after 4(α − 1) (log m/ log(α/(α − 1)))
rounds in expectation the algorithm terminates. Let C > 1 be a constant such
that C log n > 4(α − 1) (log m/ log(α/(α − 1))).

For i = 1, . . . , 2(α − 1)C log n let Yi be random variables such that Yi is
equal to 1 if during the rounds 4(α − 1)i, . . . , 4(α − 1)(i + 1) − 1 a fraction of
1/α of the edges disappears and otherwise 0. Then Pr[Yi = 1] = 1/(α − 1). Let
Y =

∑2(α−1)C log n
i=1 Yi. Then E[Y ] = 2C log n. The Chernoff bound implies that

P [Y ≤ (1 − δ)E[Y ]] ≤ e−E[Y ]δ2/2. Let δ = 1/2. Then

e−E[Y ]δ2/2 = e−C log n/4 = 1/nC/4

Thus, w.h.p. we have 2Y > E[Y ] = 2C log n. This yields Y > C log n. There-
fore, we have proved that w.h.p. algorithm AMIS terminates in O(log n) rounds.
Lemma 2 completes the proof. �


5 Maximal Independent Sets

There exist several proposals for self-stabilizing algorithms to compute a max-
imal independent set (MIS), see [13] for a survey. Up to the work of Baren-
boim et al. none had a run-time in o(n) [5]. Their algorithm has a run-time of
O(Δ + log∗ n). A randomized MIS algorithm – albeit not self-stabilizing – with
run-time O(log2 Δ + 2o(

√
log log n)) is also due to Barenboim et al. [6]. This was

later improved by Ghaffari to O(log Δ + 2o(
√
log log n)) [12]. In this section we

transform a randomized MIS-algorithm of Métivier et al. into a self-stabilizing
algorithm that terminates w.h.p. in O(log n) rounds [20].

5.1 Algorithm AMIS

The algorithm of Métivier et al. uses the synchronous model and works in phases,
where one phase lasts three rounds. In each phase some nodes join the MIS.
These nodes and their neighbors become passive, i.e., they do not participate
in future phases. In the first round of each phase the active nodes generate a
random number from a range 0, . . . D, where D is a constant larger than n3.
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Then the nodes exchange their choice among their neighbors. A node is included
in the independent set if its number is minimal within its local neighborhood.
A node informs its neighbors in the second round of a phase in this case. In the
third and final round the neighbors of the inserted nodes announce that they
are passive.

Observe that the correctness does not rely on the phase-oriented execution,
symmetry breaking is not affected. At the end of each phase the nodes that were
included in the MIS together with their neighbors are no longer active. We use
a state variable to indicate, whether a node is active or not. It may happen that
a node that will be excluded in the next round (because one of its neighbors has
joined the MIS in the current round) prevents a neighbor to join the MIS. But
this will only delay convergence. For convenience we describe algorithm AMIS in
the shared memory model. AMIS makes use of the following three variables:

– mis: It indicates whether a node belongs to the independent set (true) or not
(false).

– state: The value true indicates that the node has at least one neighbor with
mis = true. Thus, only nodes with state = false and mis = false are active.

– r : The value is in the range 0, . . . , D − 1 and is used to break symmetries.

For v ∈ V define Nact(v) = {w ∈ N(v) | w.state = false} and Nmis(v) =
{w ∈ N(v) | w.mis = true}. AMIS uses the following five simple rules.

LEAVE : mis = true ∧ Nmis(v) �= ∅
−→ mis := false ∧ state := false

FLAG : mis = false ∧ state �= (Nmis(v) �= ∅)
−→ state := (Nmis(v) �= ∅)

RESET : mis = true ∧ state = true
−→ state := false

JOIN : mis = false ∧ state = false ∧ ∀u ∈ Nact(v) v.r < u.r
−→ mis := true

RANDOM : mis = false ∧ state = false
−→ r := random(D)

A node that is enabled for two or more rules only executes the first of these
rules. Figure 2 shows an execution of algorithm AMIS with an illegal initial con-
figuration.

Let E = c0, c1, . . . be an error-free execution of algorithm AMIS.

Lemma 5. Throughout E each node v ∈ V

(i) makes at most one JOIN move and all nodes in N [v] become disabled after
the following round and remain so in E,

(ii) can only make a LEAVE move in round 0,
(iii) makes after round 1 at most one FLAG move, this move sets state to true,
(iv) can only make a RESET move in round 0.
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Fig. 2. An execution of Algorithm AMIS for a tree. The numbers attached to the nodes
correspond to variable r and the symbol � indicates state = true. Dark nodes have
mis = true. The initial state is illegal, since the neighboring nodes v0 and v2 are both
in the MIS. Therefore, these two nodes make LEAVE moves in round 1. While v1 and v3
are disabled, node v4 makes a FLAG move, and node v5 a RANDOM move in this round.
In round 2 nodes v1, v3, v4 make a FLAG, v0, v2 a RANDOM, and v5 a JOIN move. Node
v3 is the last node to join the MIS. After six rounds a legal configuration is reached.

Proof. (i) When v makes a JOIN move rule FLAG was not enabled. Thus, all
neighbors have mis = false. The condition on variable r enforces that no
neighbor can currently join. In the next round all nodes in Nact(v) will
execute FLAG and set state to true. The nodes in N(v) \ Nact(v) will be
disabled for the rest of E since v will remain disabled. Hence, v and its
neighbors will be disabled thereafter.

(ii) The condition mis = true ∧ Nmis(v) �= ∅ can only be the result of a fault.
(iii) Suppose v makes a FLAG move in round i ≥ 2 setting state to false. Thus,

v.mis = false, v.state = true, and Nmis(v) = ∅ in ci. Assume that v was
disabled in ci−1. This yields that Nmis(v) �= ∅ in ci−1. Hence, a neighbor
of v made a LEAVE move in round i − 1. Property (ii) implies that i = 1.
This contradiction implies that v was enabled in round i − 1 > 0 for move
FLAG. Thus, in ci−1 we had v.mis = false, v.state = false, and Nmis(v) �= ∅.
This requires that a neighbor of v made a LEAVE move in round i − 1.
Contradiction. Hence, a FLAG move in round i ≥ 2 can only set state to
true. Thus, v.mis = false, v.state = false, and Nmis(v) �= ∅ in ci. If a
neighbor of v made a JOIN move in round i − 1 then the result follows from
property (ii). Assume no neighbor of v made a JOIN move in round i − 1.
Hence, Nmis(v) �= ∅ in ci−1. This yields that v was in round i−1 enabled for
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move FLAG, but then v would have v.state = true in ci. This contradiction
proves property (iii).

(iv) Note that if v is enabled for RESET in round i > 0 it was also enabled for
RESET in round i − 1. �


Lemma 6. Let ci ∈ E with i > 1 in which no node is enabled. Then

I = {v ∈ V | v.mis = true in ci}

is a maximal independent set.

Theorem 2. Algorithm AMIS is self-stabilizing and computes w.h.p. in O(log n)
rounds using O(log n) memory an independent set.

Proof. For i > 1 let Ri = {v ∈ V | v.mis = false ∧ v.state = false in ci} and Gi

the subgraph of G induced by Ri. Property (iii) of Lemma 5 implies Ri+1 ⊆ Ri

for all i > 1. Let v, w ∈ Ri. Then P (v.r = w.r) = 1/D. The union bound implies

P (∃v, w ∈ Ri s.t. v.r = w.r) ≤ |Ri|2/2D ≤ n2/2D.

Thus, with probability at least 1−n2/2D ≥ 1−1/2n the values v.r of all v ∈ Ri

are different. Consider the case that all values v.r are different. The following
part of the proof is based on ideas of Métivier et al. [20]. A vertex v making a
JOIN move preemptively removes a neighbor u if v.r is less than u.r and w.r
for all other neighbours w of v and u. If this happens in round i then u will set
state to true in round i+1. Furthermore, v and u will not be in Rj for j ≥ i+2.
We say that in this case the dGi

(u) edges (u,w) are preemptively removed from
Gi. Note an edge (v, u) can only be preemptively removed twice, once when v
preemptively removes u and once when u preemptively removes v.

The probability that v preemptively removes u is at least 1/(dGi
(v)+dGi

(u)),
since the r values of all nodes of Gi are different and this is the probability that
v.r = min{x.r | x ∈ NGi

(v) ∪ NGi
(u)}. Let random variable Xi denote the

number of edges preemptively removed from Gi. Then E[Xi] is at least
⎛

⎝
∑

{v,u}∈Gi

dGi
(u)

dGi
(v) + dGi

(u)
+

dGi
(v)

dGi
(v) + dGi

(u)

⎞

⎠/2 =
mi

2

where mi is the number of edges of Gi. Thus, with probability 1 − n2/2D in
expectation at least half of the edges of Gi are not contained in Gi+2.

Let ξ be the probability that at least a quarter of the edges of Gi are not
contained in Gi+2 provided all values of r are different. Then

1/2 ≤ E[Xi]/mi ≤ ξ + (1 − ξ)/4 = (1 + 3ξ)/4.

Hence, ξ ≥ 1/3. This yields that with probability at least (1−n2/2D)/3 > 1/4 at
least a quarter of the edges of Gi are not contained in Gi+2. Thus, in expectation
every eight rounds at least a quarter of the edges is removed. Hence, after 8i



322 V. Turau

rounds there are at most m(3/4)i edges left. Thus, after 8 (log m/ log(4/3) + 1)
rounds in expectation the algorithm terminates. Let C > 1 be a constant such
that C log n > 8 (log m/ log(4/3) + 1).

For i = 1, . . . , 8C log n let Yi be random variables such that Yi is equal to 1 if
during the rounds 8i, . . . , 8i + 7 a quarter of the edges disappears and otherwise
0. Let Y =

∑8C log n
i=1 Yi. Then E[Y ] = 8pC log n with p = (1 − n2/2D)/3. The

Chernoff bound implies that P [Y ≤ (1 − δ)E[Y ]] ≤ e−E[Y ]δ2/2. For δ = 1/2

e−E[Y ]δ2/2 = e−8pC log n/8 = 1/npC

Hence, limn→∞ e−E[Y ]δ2/2 = 0. Thus, w.h.p. 2Y > E[Y ] = 8pC log n > 2C log n
and Y > C log n. Consequently we have proved that w.h.p. algorithm AMIS

terminates in O(log n) rounds. Lemma 6 completes the proof. �


6 Asynchronous Systems

Self-stabilizing algorithms are often designed for asynchronous systems. The
degree of asynchronicity is controlled by a scheduler acting as an adversary.
It can delay the execution of a move of an enabled node. A common scheduler
is the unfair distributed scheduler. This scheduler can delay a move of a node as
long as other nodes are enabled. Algorithm AMIS does not stabilize under this
scheduler. Consider a graph with three nodes v0, v1, and v2 that form a path such
that v0.mis = true and v1.mis = v2.mis = false. Furthermore, vi.state = false
for all i and v1.r = 0. Then v1 is enabled for rule FLAG and v2 for rule RANDOM.
An unfair distributed scheduler can continuously schedule v2 for execution and
withhold v1 at the same time. A similar example can be constructed for algorithm
AMAT. In general rules that only select a random value such as rule RANDOM in
algorithm AMIS do not work under an unfair distributed scheduler.

What about a fair distributed scheduler? With a fair scheduler each enabled
node eventually is selected for execution, e.g. after at most k rounds. It is easy
to prove that algorithm AMIS is self-stabilizing for the fair distributed scheduler.
Note that nodes make at most one LEAVE, RESET, and JOIN move and at most
three FLAG moves. Thus, the probability that nodes make RANDOM moves that
lead to a configuration with all nodes disabled is positive. The expected number
of rounds strongly depends on the fairness character of the scheduler. A similar
argument shows that this statement also holds for the probabilistic scheduler.

7 Conclusion

In this paper we demonstrated that phase-oriented randomized distributed algo-
rithms can be made self-stabilizing in the synchronous model while retaining
their time complexity. We transformed two classical distributed randomized
graph algorithms into self-stabilizing algorithms. The algorithms are next to
those presented in [5] the only ones with a sublinear stabilization time for the
corresponding problems. The ultimate goal of this work is to operationalize
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this transformation and to have a tool that automatically performs this pro-
gram transformation for a rich class of randomized algorithms even in the asyn-
chronous model.
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Abstract. In the French flag problem, initially uncolored cells on a grid
must differentiate to become blue, white or red. The goal is for the cells
to color the grid as a French flag, i.e., a three-colored triband, in a dis-
tributed manner. To solve a generalized version of the problem in a dis-
tributed computational setting, we consider two models: a biologically-
inspired version relying on morphogens (gradients of chemicals acting
as signals) and a more abstract version based on reliable message pass-
ing between cellular agents. We show that both models easily achieve a
French ribbon - a French flag in the 1D case. However, extending the
ribbon to the 2D flag in the concentration model is somewhat difficult
unless each agent has additional positional information. Assuming that
cells are are identical, it is impossible to achieve a French flag or even a
close approximation. In contrast, using a message-based approach in the
2D case only requires assuming that agents can be represented as con-
stant size state machines. We hope our insights may lay some groundwork
for what kind of message passing abstractions or guarantees are useful
in analogy to cells communicating at long and short distances to solve
patterning problems. In addition, we hope that our models and findings
may be of interest in the design of nano-robots.

1 Introduction

In the French flag problem, initially uncolored cells on a grid must differentiate to
become blue, white, or red, ultimately coloring the grid as three stripes without
centralized decision-making. Wolpert’s original French flag problem formulation
using positional information gives a model of how organisms determine cell type,
a question central to developmental biology [4]. Our work is loosely inspired by
biological mechanisms; we relate a reliable message passing model with local cell-
cell communication and a concentration-based model with chemical gradients
over long distances. By analyzing a generalized French flag problem for k colors
in these two computational models, we aim to understand the minimum set of
assumptions required to solve the problem exactly or approximately. We also
consider whether cells must know their absolute positions to solve the k-flag
problem.
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We begin by studying the French ribbon problem, the 1D scenario in which
both exact and approximate solutions are possible. While both models easily
achieve a French ribbon, extending to the French flag is provably difficult in the
concentration model. We hope this work may illuminate computational abstrac-
tions that may be useful in analogy to cells communicating to solve patterning
problems. For the detailed algorithms and full proofs, see the full paper [1].

Related Work. Gradients of chemicals called morphogens are thought to under-
lie cell-cell communication over long distances, but exactly how they produce
scale-invariant patterns in tissues of varying size is an interesting biological ques-
tion. Mechanisms for local cell-cell communication include cell surface receptors
and ligands, which we liken to message passing between neighboring agents.
Wolpert focused the French flag problem and model on positional information
and its generalization to patterning problems [4]. Subsequent papers validated
the positional information paradigm in empirical studies [3]. We consider mor-
phogens that form steady state gradients and trigger synchronized fate decisions.

Problem Statement and Notation. In the 1D French ribbon problem, we
assume a line graph consisting of n nodes which we refer to as agents. In the
French flag, the graph is a a×b grid on n = a·b agents. To solve the French ribbon
problem, each agent must output a color so that the line is segmented into three
colors: blue, white, and red from left to right. Formally, if b, w, and r denote the
number of agents of each respective color, max{|b − w|, |b − r|, |w − r|} ≤ 1. In
addition, each color should be in a single, contiguous sub-line of the line graph.
We also define the more general 1D k-Ribbon problem in the same model, in
which there are k distinct colors {1, ..., k} which must form bands of approxi-
mately equal size, in increasing numerical order, along a line graph of n agents.
We generally assume the number of colors k to be constant1.

A solution to the French flag problem requires that every agent outputs a
single color, so the grid is divided into three vertical blocks. Rows must abide
by French ribbon requirements, with blue on the left and red on the right. An
agent must be the same color as the agents above and below in its column. The
2D k-flag problem generalizes in the same way.

We say a k-colored flag of dimensions a × b is an ε-approximate flag if for
every color z ∈ {1, ..., k} the following hold. First, agents that are clearly within
one stripe should have the corresponding color. Second, agents close to a color
border (c1, c2) should have either color c1 or c2. Formally, we require that for
each agent u with coordinates (x, y):

– If x ∈ [
( z−1

k + ε) · a, ( z
k − ε) · a

]
, then u has color z.

– If u has color z, then x ∈ [
( z−1

k − ε) · a, ( z
k + ε) · a

]
.

2 Concentration Model

For concentration-based solutions to the French flag problem, we assume that each
agent receives concentration inputs from up to four source agents s1, s2, s3, and s4.
1 However, for clarity, we sometimes highlight the dependency on k.
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The measured concentration from source si at 2D coordinate C = (x, y) is given
by a gradient function λi(C). We assume that the gradient function is (1) invert-
ible and (2) monotonically decreasing in dist(C, si), where dist(C, si), denotes the
distance between the agent at C and the source si. We can choose a gradient func-
tion such as a power-law (e.g., λi(C) = 1/dist(C, si)α) for convenience, but our
bounds hold for general gradient functions satisfying (1) and (2).

We assume zero noise and therefore arbitrarily good precision in measuring
concentration. Agents do not receive any other input such as knowledge of their
coordinate or the total ribbon or flag size, and they perform the same algorithms.
No messages are passed between agents, so we consider only local computation
for time complexity. In the French ribbon, we assume sources s1 and s2 are
positioned at the ends of the line. In the French flag, we assume the sources si

are positioned at the corners. We make this assumption to probe whether the
concentration model can solve the problem without additional communication.

On the positive side, we can solve the French ribbon problem exactly. Con-
sider an n-process line of length a in the concentration model, with morphogens
m1 and m2 (with concentrations c1 and c2) each secreted by an endpoint. We
assume the noiseless, underlying gradient function given position x is the inverse
power law with parameter α, as above.
Algorithm Exact Concentration Ribbon: Assume that m1 is secreted at
x = 0 and m2 is secreted at x = a. We have c1 = 1/xα and c2 = 1/(a−x)α. The
ratio of c2 to c1 is then (a−x)α/xα. Each agent computes this ratio independently
from the measured values of c1 and c2. Let ratio = c2/c1. Each agent computes
the smallest color z such that ratio ≥ ((z − 1)/(k − z))α, decides color z, and
halts. We prove in [1] that this algorithm is size-invariant and holds for any line
graph of arbitrary finite length.

Theorem 1. Algorithm Exact Concentration Ribbon solves the k-ribbon prob-
lem in the concentration model for an n-process line graph of arbitrary finite
length a, with constant time and communication complexity, given that pro-
cesses have knowledge of morphogen concentrations c1 and c2, which have reached
steady states, as well as the gradient function.

On the negative side, extending to the 2D French flag with just four cor-
ner sources is infeasible; symmetry prevents us from obtaining an ε-approximate
algorithm. The following theorem shows that without absolute positional infor-
mation, the concentration model cannot produce a correct French flag (or good
approximation) regardless of the gradient function.

Theorem 2. Consider the concentration model. Fix any ε ∈ (0, 1/6). No algo-
rithm can produce an ε-approximate French flag.

Proof Sketch. Given an arbitrary flag G of dimensions a × b, we show that we
can construct a flag G′ with dimensions a′ ×b′ such that there are agents in both
flags that (1) have the same distances from the respective sources and (2) must
choose different colors. Since the two agents have the same respective distance to
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Fig. 1. (A) depicts an arbitrary original flag. The proof of Theorem 2 argues how to
construct a new flag as in (C) such that there are agents in both flags with exactly
the same distances from the respective sources that must also choose different colors,
yielding impossibility. (B) shows construction of the new flag by modifying the aspect
ratio to maintain the distances but change the correct color for the agent. (Color figure
online)

every source, they receive the same concentration inputs and cannot distinguish
between the settings, making it impossible to always color correctly. See Fig. 1
for an illustration. To show such a G′ exists, we frame the constraints as a system
of equations and show that there is a valid solution. The formal proof is in [1].

3 Message-Passing Model

Our message-passing model is similar to the standard LOCAL distributed model,
with a few exceptions. Agents do not know their global position but have a com-
mon sense of direction dir ∈ {up, down, left, right} and know which of their
neighbors exist, meaning they know whether they are endpoints of rows or
columns (or both, if corners). Initially, all but one arbitrary agent called the
starting agent, representing the source of the communication signal, are asleep
and thus perform no computation. Sleeping agents wake upon receiving a mes-
sage.

We summarize results in Table 1, with exact statements in [1]. We would
like to highlight the memory and message complexity of Bubble Sort, which is
independent of n and constant assuming k = O(1). The full version details all
algorithms, which we summarize below, and shows extension to the 2D case.

Algorithm Exact Count uses a simple binary counter that measures the dis-
tance from the endpoints, from which agents learn their location in the ribbon.
Algorithm Exact Count holds in an asynchronous model. Algorithm Exact Silent
Count is based on the fact that the counters (measuring the distances from the
endpoints) don’t necessarily have to be communicated. Instead, relying on sym-
metry, each agent can count locally how many steps have been passed between
receiving the different counters in order to color itself correctly. The beauty of
Algorithm Bubble Sort lies in the small memory and message sizes. Initially, all
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Table 1. Message passing algorithms.

Algorithm Rounds Memory per agent # Msgs Bits per Msg Exact

Exact Count (2− 1/k)n 3 logn+O(1) O(n) O(log n) �
Exact Silent Count 3n 2 logn+O(1) O(n) O(1) �
Bubble Sort 3n O(log k) O(n2) O(log k) �
Approx Count 2n 2 log log n+O(1) O(n) O(log log n) ×

agents are colored alternatingly, followed by a distributed execution of bubble
sort. Algorithm Approx Count uses an approximate counting argument devel-
oped by Flajolet [2] to color agents approximately correctly.
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Abstract. Emerging networked systems become increasingly flexible
and “reconfigurable”. This introduces an opportunity to adjust net-
worked systems in a demand-aware manner, leveraging spatial and tem-
poral locality in the workload for online optimizations. However, it also
introduces a tradeoff: while more frequent adjustments can improve per-
formance, they also entail higher reconfiguration costs.

This paper initiates the formal study of linear networks which self-
adjust to the demand in an online manner, striking a balance between
the benefits and costs of reconfigurations. We show that the underlying
algorithmic problem can be seen as a distributed generalization of the
classic dynamic list update problem known from self-adjusting datas-
tructures: in a network, requests can occur between node pairs. This
distributed version turns out to be significantly harder than the classi-
cal problem in generalizes. Our main results are a Ω(log n) lower bound
on the competitive ratio, and a (distributed) online algorithm that is
O(log n)-competitive if the communication requests are issued according
to a linear order.

Keywords: Self-adjusting datastructures · Competitive analysis ·
Distributed algorithms · Communication networks

1 Introduction

Communication networks are becoming increasingly flexible, along three main
dimensions: routing (enabler: software-defined networking), embedding (enabler:
virtualization), and topology (enabler: reconfigurable optical technologies, for
example [3]). In particular, the possibility to quickly reconfigure communica-
tion networks, e.g., by migrating (virtualized) communication endpoints [1] or
by reconfiguring the (optical) topology [2], allows these networks to become
demand-aware: i.e., to adapt to the traffic pattern they serve, in an online and
self-adjusting manner. For example, in a self-adjusting network, frequently com-
municating node pairs can be moved topologically closer, saving communica-
tion costs (e.g., bandwidth, energy) and improving performance (e.g., latency,
throughput).
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However, today, we still do not have a good understanding yet of the algorithmic
problems underlying self-adjusting networks. The design of such algorithms faces
several challenges. As the demand is often not known ahead of time, online
algorithms are required to react to changes in the workload in a clever way;
ideally, such online algorithms are “competitive” even when compared to an
optimal offline algorithm which knows the demand ahead of time. Furthermore,
online algorithms need to strike a balance between the benefits of adjustments
(i.e., improved performance and/or reduced costs) and their costs (i.e., frequent
adjustments can temporarily harm consistency and/or performance, or come at
energy costs).

The vision of self-adjusting networks is reminiscent of self-adjusting datas-
tructures such as self-adjusting lists and splay trees, which optimize themselves
toward the workload. In particular, the dynamic list update problem, introduced
already in the 1980s by Sleator and Tarjan in their seminal work [4], asks for an
online algorithm to reconfigure an unordered linked list datastructure, such that
a sequence of lookup requests is served optimally and at minimal reconfigura-
tion costs (i.e., pointer rotations). It is well-known that a simple move-to-front
strategy, which immediately promotes each accessed element to the front of the
list, is dynamically optimal, that is, has a constant competitive ratio.

This paper initiates the study of pairwise communication problems in a
dynamic network reconfiguration model. This model consists of a a set of com-
munication nodes V , and a graph called the host network, denoted H = (N,L)
where L ⊆ N × N . The communication nodes are ‘hosted’ on H, denoted with
an injection h : V → N called a configuration. Without loss of generality, we
assume that |V | = |N |, so that every configuration is a bijection. Two nodes
u, v ∈ V are connected on a configuration h if (h(u), h(v)) ∈ L.

Now, given a communication sequence σ = σ1, σ2, ..., where σi ∈ V × V ,
the pairwise communication problem asks to serve all communication requests
in order. A communication request is served if the two constituent nodes are
connected. Additionally, the network is allowed to be reconfigured, by migrating
any two nodes which are connected. That is, given a configuration h in which
u, v are connected, migrating them corresponds to producing a new configura-
tion h′ where h′(u) = h(v), h′(v) = h(u), and h′(w) = h(w) for w �= u, v. For
simplicity, we assume in this paper that both serving a communication request
and reconfiguring the network are constant cost operations. Note that in general
migrating two nodes is likely (a large constant factor) more expensive than serv-
ing a single communication. However, with the assumption that communicating
and migrating are the same up to a (large) constant factor, one can think of the
communication cost between two arbitrary node as simply the number of recon-
figurations necessary to make them (temporarily) connected. With this simple
cost model, we can thus phrase the pairwise communication problem as:

Definition 1 (Pairwise Communication Problem). Given a host network
with an initial configuration, give an algorithm that serves all communication
requests from a sequence σ that minimises the total reconfiguration cost.
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In the offline version of this problem, σ is given in advance, whereas in an
online setting, a communication request σi is only revealed after σi−1 has been
served. A competitive analysis compares an online algorithm ON to an offline
algorithm OFF. The ultimate goal is to devise online algorithms ON for the
pairwise communication problem which minimise the competitive ratio ρ:

ρ = max
σ

cost(ON(σ))
cost(OFF(σ))

2 Results and Open Problems

In this paper, we study host networks with the topology of a d-dimensional grid.
The primary problem we investigate is therefore:

Definition 2 (Distributed Grid Update). What is the competitive ratio for
the pairwise communication problem for host networks with a d-dimensional grid
topology?

We show that for such networks there is a Ω(log n) lower bound on the compet-
itive ratio. Furthermore, in pursuit of a non-trivial upper bound, we show that
for communication sequences with linear demand, there is an algorithm that is
O(log n)-competitive. A communication sequence is said to have linear demand
if there is a configuration h that serves each request (without reconfigurations),
or more formally:

Definition 3 (Linear Demand). Let R(σ) denote the set of communication
requests interpreted as edges over V . A sequence σ has linear demand over a
network H = (N,L) if there exists a configuration h such that for all (u, v) ∈
R(σ), it holds that (h(u), h(v)) ∈ L.

From a lower bound perspective, our main result is that the competitive ratio is
at least Ω(log n). We show this by explicitly constructing a hard sequence:

Theorem 1. For every online algorithm ON solving Distributed Grid
Update on a grid of n nodes in total and for every 0 < ε ≤ 1, there is a sequence
σON of length O(εn1+ε log n) such that cost(ON(σON)) = Ω(εn1+1/d log n). The
resulting request graph R(σON) is a d-dimensional grid graph.

Since R(σON) is a grid graph, an offline algorithm can simply configure to the
configuration h that serves all requests (i.e. σON has linear demand). From an
arbitrary starting configuration, it takes Ω(n1+1/d|) to configure h, which domi-
nates the cost for serving all requests as long as ε ≤ 1/d. Therefore, we find the
following lower bound on ρ:

ρ ≥ cost(ON(σON))
cost(OFF(σON))

= Ω(log n)

Because we rely on linear demand, our technique does not leverage the full power
available to an offline algorithm: namely reconfigurations in between communi-
cation requests. As future work, we pose the following open problem:
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Problem 1. Construct a sequence σ with nonlinear demand for Distributed
Grid Update, such that any online algorithm is a factor ω(log n) off the optimal
offline algorithm.

From an upper bound perspective, we investigate Distributed Grid Update
restricted to line topologies, dubbed Distributed List Update. We show that
in the very restricted case of linear demand, there is a matching upper bound
to the competitive ratio:

Theorem 2. There is an algorithm Gread solving Distributed List
Update, such that if σ has linear demand, then

cost(Gread(σ)) = O(m + nk log k)

where m = |σ| and k = |R(σ)|
Again, it is the restriction to linear demand that allows for this tight upper
bound. However, we see this as an initial step to finding any nontrivial upper
bound for the general case:

Problem 2. Given a sequence σ for Distributed List Update with arbitrary
request graph R(σ), is there an algorithm with competitive ratio o(n)?

Note that a competitive ratio of o(n) means anything better than a trivial algo-
rithm. However, a better understanding of the behaviour of offline algorithms
for Distributed Grid Update on nonlinear demand is required to answer this
question.
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Abstract. This paper presents a study of the mutual visibility problem
for a set of opaque asynchronous robots in the Euclidean plane. Due
to opacity, if three robots lie on a line, the middle robot obstructs the
visions of the two other robots. The mutual visibility problem requires the
robots to coordinate their movements to form a configuration in which
no three robots are collinear. This work presents a distributed algorithm
which solves the mutual visibility problem for a set of n ≥ 2 asynchronous
robots under the FState computational model. The proposed algorithm
assumes 1 bit of persistent memory and the knowledge of n. The proposed
solution works under the non-rigid movements of the robots and also
provides collision free movements for the robots.

1 Introduction

A swarm of robots is a distributed system of autonomous, homogeneous, anony-
mous small mobile robots which are capable of carrying out some task in a coop-
erative environment. An active robot repeatedly executes a computational cycle
consisting of three phases, look-compute-move. In the look phase, a robot takes
the snapshot of its surrounding. In the compute phase, it computes a destina-
tion point using the information obtained in the look phase. Finally, in the move
phase, it moves towards the destination point. Robots may have some additional
capabilities. Robots may be endowed with visible lights. These lights can assume
a finite number of pre-defined colours. Each colour indicates a different state of
the robots. The colours do not change automatically and they are persistent.
The lights of the robots can be used in three different ways [1]: (i) the robots
can set limited communications between themselves using visible lights and also
retain some information about their previous states (Fall model) or (ii) only to
remember information about their last states (FState model) and this piece of
information is not available to the other robots or (iii) the robots can use visible
lights only to communicate with other robots and a robot does not remember the
color of its light (FComm model). Thus, in FState and FALL models, robots
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use lights as persistent memory to carry forward some information from thier
previous computational cycles.

The problem considered in this work is defined as follows: Consider a set of
stationary robots occupying distinct positions in the Euclidean plane. The mutual
visibility problem requires the robots to form a configuration, within finite time
and without collision, in which no three robots are collinear.

1.1 Earlier Works

The work in [2] proposed a solution to the problem under the SSYNC model
for oblivious robots with the knowledge of n, the total number of robots in
the system. The algorithm in [3] solves the problem under the ASYNC model
for oblivious robots with one coordinate axis agreement and knowledge of n.
Both the algorithms work for non-rigid movements of the robots. The algorithm
proposed in [4] provides a solution to the problem for fat robots under the
ASYNC model with the assumption of common chirality. Di Luna et al. proposed
algorithms to solve the problem both for semi-synchronous and asynchronous
robots under the FAll model [5]. The solution under the SSYNC model uses
3 colors and the solution in the ASYNC model also uses 3 colors with one
coordinate axis agreement. In both the algorithms, the robots do not know the
value of n. Bhagat and Mukhopadhyaya solved the problem for asynchronous
robots under the FAll model using 7 colors [6]. During the execution of their
algorithm, each robot moves exactly once. Recently, Sharma et al. proposed an
algorithm for asynchronous robots under the FAll model using 47 colors which
runs in O(1) asynchronous rounds [7]. Their solution assumes rigid movements
for the robots. The solution presented in [8] works for semi-synchronous robots
under the FState model and uses 1 bit of persistent memory.

1.2 Contribution of the Paper

A distributed algorithm for the mutual visibility problem has been proposed
under ASY NC model. The proposed algorithm considers the FState model
which does not have communication overhead of the FAll model. All the exist-
ing solutions to the mutual visibility problem under the ASYNC model assume
either (i) persistent memory for both communication and internal memory pur-
pose or (ii) axis agreement or (iii) chirality. Our solution does not assume any
axis agreement, chirality and it does not have any communication overhead.
The proposed algorithm uses only 1 bit of persistent memory and the solution
works under the non-rigid movements of the robots. It also provides collision
free movements for the robots.

2 Assumptions and Notations

We consider a set R = {r1, . . . , rn} of n point robots in the Euclidean plane
under the ASYNC model. The robots are opaque. They know the value of n.
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The movements of the robots are non-rigid. Each robot has 1 bit of internal
persistent memory and the piece of information stored in this internal memory
is not available to the other robots. Except this persistent memory, the robots
are oblivious. Let ri(t) denote the position of robot ri at time t. A configuration
R(t) = {r1(t), . . . , rn(t)}, denotes the set of all distinct positions occupied by the
robots at time t. The class of all configurations, in which all the robot positions
are collinear, is denoted by ˜CL. The class of all configurations, in which at
least three robot positions are non-collinear, is denoted by ˜CNL. The vision of
a robot ri at the time t is defined as the set of all distinct positions occupied
by the robots which are visible to ri at time t (ri(t) is not included). This set
is denoted by Vi(t). The robot positions in Vi(t) are sorted angularly in anti
clockwise direction w.r.t. ri(t) (since robots do not have common orientation,
this ordering may vary if computed by the other robots). Starting from any robot
position in Vi(t), if we connect the other robot positions following that ordering,
we get a simple polygon VPi(t). A robot ri is called an internal robot if it lies
between two other robot positions on the line segment joining them. Otherwise,
ri is called a terminal robot. Let Lij(t) denote the straight line passing through
ri(t) and rj(t). The perpendicular distance of the line Lij(t) from the point rk(t)
is denoted by dkij(t). Let Di(t) denote the distance of ri(t) from the closest robot
position in Vi(t).

3 Algorithm MutualV isibility()

A robot uses its persistent 1 bit memory to remember information about its
last movement. Initially all robots have 0 in their persistent memory. A 0 in the
internal bit means that the robot has not made any move yet and 1 means that
it has moved at least once. A robot ri acts according to the following:

(i) If ri is a terminal robot and its internal bit is 0, it computes a destina-
tion point, changes its internal bit to 1 and moves straight towards the
destination point.

(ii) If ri is a terminal robot and its internal bit is 1, it does nothing.
(iii) If ri is a non-terminal robot and |Vi(t)| < n − 1, it does nothing.
(iv) If ri is a non-terminal robot and |Vi(t)| = n − 1, it computes a destination

point, changes its internal bit to 1 and moves straight towards the desti-
nation point. Note that the movements of the non-terminal robots do not
depend on their internal bits; it depends on the number of robots visible to
them.

3.1 Computing Destination Point

Let ri be a robot which finds itself eligible for movement at time t. For R(t) ∈
˜CNL, let Γi(t) = {∠rj(t)ri(t)rk(t) : rj(t), rk(t) are two consecutive vertices on
VPi(t)}. Let αi(t) = max{θ ∈ Γi(t) : θ < π} (tie, if any, is broken arbitrarily).
The bisector of αi(t) is denoted by Biseci(t). Now suppose R(t) ∈ ˜CL. Let L∗
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be the perpendicular at ri(t) to the line of collinearity L̂. The robot ri arbitrarily
chooses a direction along L∗ and let L+ denote the ray along this direction.

Let di(t) = minimum{dkij(t), d
j
ik(t), d

i
jk(t) : ∀rj(t), rk(t) ∈ Vi(t)}. The direc-

tion of movement of ri is along DIRi(t) which is defined as follows:

DIRi(t) =

{

Biseci(t) if C(t) ∈ ˜CNL

L+ if C(t) ∈ ˜CL

The amount of displacement σi(t) of ri at time t is defined as follows,

σi(t) =

{

1
ndi(t) if R(t) ∈ ˜CNL

1
nDi(t) if R(t) ∈ ˜CL

Let pi(t) be the point on DIRi(t) at a distance σi(t) from ri(t). The destination
point of ri(t) is pi(t).

Theorem 1. The mutual visibility problem is deterministically solvable in finite
time for a set of asynchronous robots under the FState model with 1 bit of
persistent memory and non-rigid movements.
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Abstract. We deal with a set of autonomous robots moving on an infi-
nite grid. Those robots are opaque, have limited visibility capabilities,
and run using synchronous Look-Compute-Move cycles. They all agree
on a common chirality, but have no global compass. Finally, they may
use lights of different colors, but except from that, robots have neither
persistent memories, nor communication mean. We consider the infinite
grid exploration (IGE) problem. We first show that two robots are not
sufficient in our settings to solve the problem, even when robots have a
common coordinate system. We then show that if the robots’ coordinate
systems are not self-consistent, three or four robots are not sufficient to
solve the problem neither. Finally, we present three algorithms that solve
the IGE problem in various settings. The first algorithm uses six robots
with constant colors and a visibility range of one. The second one uses
the minimum number of robots, i.e., five, as well as five modifiable col-
ors, still under visibility one. The last algorithm requires seven oblivious
anonymous robots, yet assuming visibility two. Notice that the two last
algorithms also achieve exclusiveness.

1 Context and Motivation

We deal with a swarm of mobile robots having low computation and commu-
nication capabilities. The robots we consider are opaque (i.e., a robot is able
to see another robot if and only if no other robot lies in the line segment join-
ing them) and run in synchronous Look-Compute-Move cycles, where they can
sense their surroundings within a limited visibility range. All robots agree on
a common chirality (i.e., when a robot is located on an axis of symmetry in
its surroundings, it is able to distinguish its two sides one from another), but
have no global compass (they agree neither on a North-South, nor a East-West
direction). However, they may use lights of different colors [13,18]. These lights
can be seen by robots in their surroundings. However, except from those lights,
robots have neither persistent memories nor communication capabilities.
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We are interested in coordinating such weak robots, endowed with both typi-
cally small visibility range (i.e., one or two) and few light colors (only a constant
number of them), to solve an infinite task in an infinite discrete environment.
As an attempt to tackle this general problem, we consider the exploration of an
infinite grid, where nodes represent locations that can be sensed by robots and
edges represent the possibility for a robot to move from one location to another.
Precisely, the exploration task consists in ensuring that each node of the infinite
grid is visited within finite time by at least one robot. We refer to this problem
as the Infinite Grid Exploration (IGE) problem.

2 Contribution

We present both negative and positive results. On the negative side, we show
that if robots have a common chirality but a bounded visibility range, then the
IGE problem is not solvable with:

– two robots, even if those robots agree on common North (the proof is essen-
tially the adaptation to our context of the impossibility proof given in [14]);

– three or four robots with self-inconsistent compass (i.e., the compass may
change throughout the execution).

On the positive side, we provide three algorithms for solving the IGE problem
using opaque robots equipped with self-inconsistent compass, yet agreeing on
a common chirality. Two of them also satisfy exclusiveness [2], which requires
any two robots to never simultaneously occupy the same position nor traverse
the same edge. The first one requires the minimum number of robots, i.e., five,
and ensures exclusiveness. The robots use modifiable lights with only five states,
and have a visibility range restricted to one. The second algorithm solves the
problem with six robots and only three non-modifiable colors, still assuming
visibility range one. The last algorithm requires seven identical robots without
any light (i.e., seven oblivious1 anonymous robots) and ensures exclusiveness,
yet assuming visibility range two. Our contributions are summarized below.

Visibility range # of robots # of colors Modifiable colors? Exclusiveness?

1 5 (opt) 5 Yes Yes

1 6 3 No No

2 7 1 N/A Yes

In order to help the reader, animations, for each algorithm, are available
online [6]. Our algorithms and their proofs of correctness can be found in a
technical report online [5].

1 Oblivious means that robots cannot remember the past.
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3 Related Work

The model of robots with lights have been proposed by Peleg in [13,18]. In [8],
the authors use robots with lights and compare the computational power of such
robots with respect to the three main execution model: fully-synchronous, semi-
synchronous, and asynchronous. Solutions for dedicated problems such as weak
gathering or mutual visibility have been respectively investigated in [16] and [17].

Mobile robot computing in infinite environments has been first studied in the
continuous two-dimensional Euclidean space. In this context, studied problems
are mostly terminating tasks, such as pattern formation [11] and gathering [15],
i.e., problems where robots aim at eventually stopping in a particular configu-
ration specified by their relative positions. A notable exception is the flocking
problem [19], i.e., the infinite task consisting of forming a desired pattern with
the robots and make them moving together while maintaining that formation.

When considering a discrete environment, space is defined as a graph, where
the nodes represent the possible locations that a robot can take and the edges
the possibility for a robot to move from one location to another. In this setting,
researchers have first considered finite graphs and two variants of the exploration
problem, respectively called the terminating and perpetual exploration. The ter-
minating exploration requires every possible location to be eventually visited
by at least one robot, with the additional constraint that all robots stop mov-
ing after task completion. In contrast, the perpetual exploration requires each
location to be visited infinitely often by all or a part of robots. In [9], authors
solve terminating exploration of any finite grid using few asynchronous anony-
mous oblivious robots, yet assuming unbounded visibility range. The exclusive
perpetual exploration of a finite grid is considered in the same model in [3].

Various terminating problems have been investigated in infinite grids such as
arbitrary pattern formation [4], mutual visibility [1], and gathering [10,12]. The
possibly closest related work is that of Emek et al. [14]. In this paper, authors
consider a treasure search problem, which is roughly equivalent to the IGE prob-
lem, in an infinite grid. They consider robots that operate in two models: the
semi-synchronous and synchronous ones. However, they do not impose the exclu-
sivity at all since their robots can only sense the states of the robots located at
the same node (in that sense, the visibility range is zero). The main difference
with our settings is that they assume all robots agree on a global compass, i.e.,
they all agree on the same directions North-South and East-West; while we only
assume here a common chirality. This difference makes their model stronger,
indeed they propose two algorithms that respectively need three synchronous
and four asynchronous robots, while in our settings the IGE problem (even in
its non-exclusive variant) requires at least five robots. They also exclude solu-
tions for two robots. Brandt et al. [7] extend the impossibility result of Emek
et al. Indeed, they show the impossibility of exploring an infinite grid with three
semi-synchronous deterministic robots that agree on a common coordinate sys-
tem. Although proven using similar techniques, this result is not correlated to
ours. Indeed, the lower bound of Brandt et al. holds for robots that are weaker in
terms of synchrony assumption (semi-synchronous vs. fully synchronous in our
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case), but stronger in terms of coordination capabilities (common coordinate
system vs. self-inconsistent compass in our case). In other words, our impossibil-
ity results does not (even indirectly) follows from those of Brandt et al. since in
our model difficulties arise from the lack of coordination capabilities and not the
level asynchrony. As a matter of facts, based on the results of Emek et al. [14],
four (asynchronous) robots are actually necessary and sufficient in their settings,
while in our context five robots are required.
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1 Introduction

We consider a real-life scenario of people using their smartphones in urban areas.
A smartphone can be interpreted as an ad hoc device since it is able to communi-
cate for instance via WiFi Direct or Bluetooth. Smartphones are different as they
combine multiple communication modes in one device and hence are also able to
use a cellular infrastructure to communicate. In metropolitan areas, the density
of smartphones is sufficiently high such that the ad hoc network of smartphones
is connected and, in principle, the entire data transmission between smartphones
could be solely carried out via ad hoc links. The main challenge of data trans-
mission in an ad hoc network of smartphones is routing. Human made obstacles
like buildings interfere wireless communication leading to radio holes in the ad
hoc network. Routing in an ad hoc network without knowledge about shapes and
locations of radio holes potentially leads to very long detours [5]. To overcome
this drawback, the locations and shapes of radio holes can be determined effi-
ciently via the cellular infrastructure. For a fast computation of routing paths, it
makes sense to not consider the exact shape of a hole but a more coarse-grained
abstraction like a bounding box. In metropolitan areas, buildings are usually
convex and rectangular shaped such that the bounding boxes of radio holes only
rarely intersect, rendering the bounding box a practical hole abstraction in the
described scenario.

1.1 Model

The model and definitions are close to those of [3]. We model the participants
of the network as a set of nodes V ⊂ R

2 in the Euclidean plane, where |V | = n.
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Each node is associated with a unique ID (e.g., its phone number). For any given
pair of nodes u, v, we denote the Euclidean distance between u and v by ‖uv‖.
The network is a hybrid directed graph H = (V,E,EAH) where the node set V
represents the set of cell phones, an edge (v, w) is in E whenever v knows the
phone number (or simply ID) of w, and an edge (v, w) ∈ E is also in the ad hoc
edge set EAH whenever v can send a message to w using its WiFi interface. For
all edges (v, w) ∈ E \EAH , v can only use the cellular infrastructure to directly
send a message to w. Since WiFi-communication can only be used over short
distances, EAH can only contain edges which are part of the Unit Disk Graph
of V (UDG(V )). UDG (V ), is a bi-directed graph that contains all edges (u, v)
with ||uv|| ≤ 1. Assume UDG(V ) to be connected so that a message can be sent
from every node to every other node in V by just using ad hoc edges.

While the potential ad hoc edges are fixed, the nodes can change E over time:
If a node v knows the IDs of nodes w and w′, then it can send the ID of w to
w′, which adds (w,w′) to E. Alternatively, if v deletes the address of some node
w with (v, w) ∈ E, then (v, w) is removed from E. There are no other means of
changing E, i.e., a node v cannot learn about an ID of a node w unless w is in
v’s UDG-neighborhood or the ID of w is sent to v by some other node.

Moreover, we consider synchronous message passing in which time is divided
into rounds. We assume that every message initiated in round i is delivered at
the beginning of round i + 1.

1.2 Related Work

For a survey on geometric routing, we refer the reader to [1]. A severe problem of
local routing strategies is the presence of sparse regions in the ad hoc network.
We denote these regions as radio holes. In order to find efficient routing paths
avoiding radio holes, Hybrid Communication Networks have been introduced
[3]. Hybrid Communication Networks enrich the ad hoc network by a secondary
global communication channel which can be used to exchange information about
locations and shapes of radio holes fast. More precisely, in a Hybrid Commu-
nication Network, participants can communicate in their ad hoc range for free
and also make use of long-range links to directly communicate with every other
participant whose ID is known. These long-range links, called Cellular Infras-
tructure, are costly since a third party (e.g. a cell phone provider) is involved. To
find efficient routing paths, the authors in [3] compute an Overlay Network via
the Cellular Infrastructure in which holes are represented by their convex hulls.
It is assumed that the convex hulls of the holes do not intersect. The storage
requirements for some nodes are asymptotically in the size of the sum of all
holes. In this work, we aim to reduce the storage requirements for these nodes
and investigate also the challenging question of c-competitive routing through
intersections of hole abstractions.

1.3 Our Contributions

We consider any hybrid graph G = (V,E,EAH) where the Unit Disk Graph
of V is connected. Let H be the set of radio holes in G and P (h) denotes the
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length of the perimeter of a radio hole h ∈ H. For every radio hole, the nodes
with maximal/minimal x- and y-coordinates are called extreme points. We say
that a path p is c-competitive to a path p′ if ‖p‖ ≤ c · ‖p′‖ where ‖p‖ denotes
Euclidean length of p which is the sum of all Euclidean distances between pairs
of consecutive vertices of p. Our main contribution is:

Theorem 1. For any distribution of the nodes in V that ensures that UDG(V )
is connected and of bounded degree, our algorithm computes an abstraction of
UDG(V ) in O(log2 n) communication rounds using only polylogarithmic com-
munication work at each node. In case of non-intersecting bounding boxes, this
algorithm finds 18.55-competitive paths between all source-destination pairs out-
side of bounding boxes. In case of pairwise overlapping bounding boxes, the paths
are 28.83-competitive.

The storage needed by the four extreme points of each radio hole is O(|H|).
For every other node, the space requirement is constant.

For multiple bounding box intersections, we prove that in case we can find a
c-competitive path between outer intersection points of bounding boxes, we can
also find a (10.68 + c · 12.83)-competitive path between all source-destination
outside of bounding boxes. The full version of this paper is available online [4].

2 High Level Description

We assume that the edges of the ad hoc network form a 2-localized Delaunay
Graph [6]. This graph is a 1.998-spanner of the Unit Disk Graph [7] and can be
constructed in a constant number of communication rounds [6] given an initial
connected Unit Disk Graph. This can be established in a short setup phase. To
find c-competitive routing paths in this network, we make use of a Visibility
Graph approach. A Visibility Graph is a geometric graph in which two vertices
are connected if they have a direct line of sight. In this work, we consider two
nodes to be connected in the Visibility Graph of the hole structure, if the direct
line segment between the two nodes does not intersect any hole of the ad hoc
network. Two nodes which share an edge in the Visibility Graph are called to
be visibile from each other. The interesting relation about Visibility Graphs and
our approach is that a shortest path between to nodes s and t in the Visibility
Graph of the hole structure can be easily converted into a c-competitive path in
the 2-localized Delaunay Graph. Therefore, we prove for visible vertices s and
t in the 2-localized Delaunay Graph that every triangle which is intersected by
the direct line segment st is also contained in the Delaunay Graph of the same
point set. For Delaunay Graphs there are several c-competitive online routing
strategies known. We make use of the latest, MixedChordArc [2], which finds
3.56-competitive paths. Combining both, the core idea is as follows: We compute
a Visibility Graph of the hole structure of the 2-localized Delaunay Graph (in a
distributed manner) and translate a shortest path p in the Visibility Graph into
a c-competitive routing path in the ad hoc network by applying MixedChordArc
along every edge e ∈ p.
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The Visibility Graph can be very large since holes can have many nodes on
their boundaries. We aim for a reduction of the number of considered nodes.
In [3], convex hulls have been used. In this work, we reduce the number of
considered node per hole to a constant by only taking the axis-parallel bounding
box of each hole into account. We denote Visibility Graphs containing the axis-
parallel bounding box of each hole Bounding Box Visibility Graphs. We show
for non-intersecting and pairwise intersecting bounding boxes that Bounding
Box Visibility Graphs contain c-competitive paths to usual Visibility Graphs.
For multiple intersecting bounding boxes, we show how a slight modification of
Bounding Box Visibility Graph can help to find c-competitive paths in the ad
hoc network. Lastly, we also consider the distributed computation of Bounding
Box Visibility Graphs and the embedding of these graphs in the network. The
result is that every extreme point of a bounding box (a node having a maximal or
minimal x/y-coordinate) stores a Bounding Box Visibility Graph of the network
and moreover every node lying on the boundary of a hole knows the coordinates
of the closest extreme points.

The actual routing works as follows: A source node s that wants to send data
to a target node t starts sending its message via the MixedChordArc-algorithm
in the ad hoc network. Either the message arrives at t or the message gets stuck
at a radio hole. In this case, the message is redirected to the closest extreme
point which computes a shortest path in the Bounding Box Visibility Graph
and afterwards the message is sent via MixedChordArc along this path.
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1 Introduction

We consider a set of mobile robots, modelled as points, that move freely in a
continuous 2-dimensional Euclidean space (the current terminology refers to this
model as the OBLOT model [3]).

Two variants for the robots’ visual sensors have been considered so far. With
complete visibility, every other robot is viewed by the sensor and its position in
the ego-centred coordinate system of the observer is returned. A weaker model
that has been considered is the limited visibility sensor [1], where there exists
a constant λ > 0 (generally unknown to the robots) such that every robot at
distance less than λ from from observer is included in the returned view in a
Look phase, while every robot further than λ from the observer is not included
in the returned view.

Ever since the OBLOT model was introduced, its full visibility sensor was
considered unrealistic by practitioners: since robot visual sensors have physical
limitations (e.g. limited resolution for omnidirectional 3D cameras, this intrin-
sically yields a limitation of the visibility range. Limited visibility only partly
addresses this issue. In the real world, the reliability of visual sensors generally
decreases with distance, but not in a binary fashion, and may yield two types
of incorrect outputs: (i) false positives: no robot exists at a position, but one is
output by the vision sensor; (ii) false negatives: a robot exists at a position, but
none is output by the vision sensor. False positives can be alleviated using known
techniques (such as marker based detection) so we do not consider them in this
work. False negatives, that are not addressed by the limited visibility model, are
the focus of this paper. They are generally due to noise, quality of the sensors
and environmental conditions such as smoke or robots unpredictably blending
with the background. We define uncertain visibility sensors for mobile robots as
sensors that satisfy the two following properties: (i) every robot closer that λ is
output by the sensor; (ii) a subset of the robots further than λ is output by the
sensor. Note that when the subset includes all such robots, we fall back to the
complete visibility model, while the case where the subset is empty equates the
limited visibility model.

Since we are interested in characterising the exact limits of models for the
computability of tasks in the OBLOT model, we consider that the subset of
robots beyond λ that remain visible is decided by an adversary. Also, a robot R
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that is at the same distance from two distinct robots A and B may be output
by A’s visibility sensor, but not by B’s.

We unify and generalise the two previously studied visibility models: full
visibility and limited visibility. In more details, we consider that robots further
than λ away may not see each other, depending on the choice of an adversary.
We consider two classes of adversaries, the k-random adversary and the k-enemy
adversaries. The k-random adversary randomly select up to k visibility relations
to be blocked, while the k-enemy adversary purposely selects those k visibility
relations.

Then, we explore the impact of this new visibility model on the feasibility
of benchmarking tasks in mobile robots computing: gathering, luminous ren-
dezvous, and leader election. For each task, we determine the weakest visibility
adversary that prevents task solvability, and the strongest adversary that enables
task solvability. It turns out that for all three tasks, our characterisation is tight
with respect to k, the parameter of the visibility adversary. Our works sheds new
light on the impact of visibility sensors in the context of mobile robot computing,
and paves the way for more realistic algorithms that can cope with uncertain
visibility sensors.

Due to space constraints, proofs are omitted from this brief announcement.

2 Model

With the notable exception of restricted visibility sensors, our model matches the
classical OBLOT model [3] model. Robots are modelled as points in a bidimen-
sional Euclidean space, are anonymous and uniform (that is, they execute the
same code and have no identifiers), and unless specified otherwise, cannot com-
municate explicitly (but can observe other robots positions in their ego-centred
coordinate system) and are oblivious (that is, they cannot remember their past
actions).

In this paper, our focus is on the uncertain part of the visibility model. As
in the OBLOT model, we consider that λ > 0 in unknown to the robots. To
introduce selective vision among robots, we model the Look phase as the sending
and receiving of “visibility messages” between robots. We consider that correctly
viewing a robot A is similar to correctly receiving a “visibility message” from
A. Then, the adversary may simply block a subset of the visibility messages
among robots when they are further than λ away from one another. The scope
of this paper is limited to the FSYNC scheduler, as it more closely matches the
synchronous setting of the paper by Santoro and Widmayer [5], which studied
the impact of similar omission faults on consensus. So, in every synchronous step,
every robot is scheduled for execution, and performs a complete Look-Compute-
Move cycle. We introduce two classes of visibility messages adversaries:

Definition 1 (k-random). k-random adversaries can make up to k visibility
messages disappear in each synchronous round, but those k messages are chosen
uniformly at random.



Mobile Robots with Uncertain Visibility Sensors 351

Definition 2 (k-enemy). k-enemy adversaries can make up to k visibility mes-
sages disappear in each synchronous round, and those k messages are chosen by
the adversary.

3 Results

From definitions of uncertain visibility, we can make the following observations,
considering a FSYNC network of N robots where N(N − 1) visibility messages
are sent each round: (i) 0-random and 0-enemy adversaries are identical, and
equivalent to full visibility, (ii) N(N − 1)-random and N(N − 1)-enemy adver-
saries are identical, equivalent to limited visibility, (iii) The k-enemy adversary
is stronger than the k-random adversary.

Gathering. We first consider the benchmarking problem of gathering N robots
at the same location, not known beforehand, starting from any initial config-
uration. In general, the problem is impossible to solve deterministically in the
SSYNC OBLOT model, but possible in the FSYNC OBLOT model when robots
execute the “centre of gravity” algorithm.

Lemma 1. In FSYNC, if N robots can achieve convergence under a k-enemy
adversary using the move to centre of gravity algorithm, then they also achieve
gathering.

Theorem 1. In FSYNC, deterministic gathering can only be achieved under a
k-random adversary if k ≤ N(N − 1) − 1.

Theorem 2. In FSYNC, gathering can only be achieved under a k-enemy
adversary if k ≤ 2N − 3.

Rendezvous. We then study the effect of uncertain visibility in the context of
luminous robots [2,4] for the problem of gathering for two robots, or rendezvous,
that is solvable in ASYNC.

Theorem 3. Any luminous rendezvous algorithm that achieves rendezvous in
the SSYNC full visibility model fails under the FSYNC 1-enemy adversary.

Leader Election. Within the mobile robot literature, there were several pro-
posed definitions of leader election specification. We define two different types of
leader election. Strict leader election is based on the notion of agreement, while
soft leader election is based around the partition in elected and non-elected
states.

Definition 3 (Strict Leader Election). A leader election process is strict
if at any given time in the execution after leader election, every robot in the
network knows which robot is the leader.

Definition 4 (Soft Leader Election). A leader election process is soft if at
any given point in the execution after the leader has been elected, no other robot
is elected, and the elected leader remains elected.



352 A. Heriban and S. Tixeuil

Theorem 4. In FSYNC, strict leader election is possible with a 0-random
adversary and trivially impossible under the 1-random scheduler.

Theorem 5. In FSYNC, soft leader election based on positions is possible with
a 0-random adversary and impossible under the 1-random scheduler.

4 Conclusion

Overall, we introduced the notion of uncertain visibility for mobile robots. For a
practical point of view, the proposed notion is the most realistic to date. From
a theoretical point of view, uncertain visibility generalises visibility constraints
studied in previous and yields interesting twists in the design of algorithms. We
introduced two variants for uncertainty: a randomised version and an adversarial
version. We presented lower bounds and matching algorithms in the context of
gathering, rendezvous, and leader election protocols. For specifications that must
maintain a global invariant (such as leader election), even the weakest non-trivial
adversary (1-random) prevents the existence of a solution. For specifications with
eventual safety properties (such as gathering and rendezvous), the results are
contrasted: when the algorithm allows all robots to move at every round, strong
adversaries can be handled, when there exists a synchronisation mechanism (as in
rendezvous algorithms for luminous robots), even the weakest non-probabilistic
adversary (1-enemy) precludes any deterministic solution.
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1 Introduction

Self-stabilization [2] is a promising paradigm for designing distributed systems
that are highly-tolerant of transient faults and adaptive to topology changes,
since it guarantees that a system can recover its intended behavior even when
its configuration (or global state) is arbitrarily changed by transient faults or
topology changes. However, the recovery to the intended behavior requires a
sufficiently long period of stable network environments (with no fault or topology
changes). Self-stabilization guarantees nothing when the network has permanent
faults or continuous topology changes. Thus, self-stabilization in the presence of
permanent faults is a challenging and attractive issue.

Combination of tolerance to transient faults (or self-stabilization) and tol-
erance to permanent faults is practically important in distributed systems. It
is common, as also in this paper, that permanent fault tolerance assumes some
upper bound, say f , on the number of permanent faults: protocols work cor-
rectly only when the number of permanent faults never exceeds the bound f
throughout their executions. However in an unexpected event like major power
outage, the number of faults may temporarily exceed the bound. In such cases,
permanent fault tolerance solely can guarantee nothing, but its combination with
self-stabilization can guarantee eventual recovery to the intended behavior of the
distributed systems.

Especially, self-stabilization in the presence of (permanent) Byzantine faults
is a challenging issue. A self-stabilizing system has to respond to a corruption
caused by transient faults to recover its intended behavior, but this makes it
difficult that the system becomes stable in a legitimate configuration in spite of
Byzantine faults: every time Byzantine faults corrupt the system configuration,
the self-stabilizing system responds to the corruption, which may lead the whole
system into permanently unstable behavior.

To circumvent the difficulty, Nesterenko and Arora [4] introduced the strict
stabilization with the aim of containing the influence of repeated malicious
actions of Byzantine faults within some distance (called containment radius)
c© Springer Nature Switzerland AG 2019
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from Byzantine processes. It allows the processes within the containment radius
from Byzantine processes to permanently deviate from the intended behav-
ior (even though they are non-faulty). Unfortunately, the strict stabilization
is attainable only for local problems, where the legitimacy of a configuration is
locally checkable), such as vertex coloring and link coloring. To circumvent the
impossibility, Dubois et al. [3] introduced the strong stabilization as an exten-
sion of the strict stabilization, and presented strongly stabilizing protocols for
non-local problems such as the tree orientation problem and the spanning tree
construction problem. The strong stabilization allows processes outside the con-
tainment radius from Byzantine processes to deviate from the intended behavior
but only a finite number of times even when Byzantine processes make an infinite
number of malicious actions.

This paper considers mobile Byzantine faults, which are modeled as malicious
agents that move process to process and make the visited processes behave mali-
ciously. After an agent leaves a process, the process regains its correct behavior
(or its correct program code). A distributed system containing mobile Byzantine
faults can be represented as a system having a bounded number of Byzantine
processes at any time and their locations change over time. This model captures
phenomena like virus infection over a network. Various models of a distributed
system with mobile Byzantine faults have been proposed and studied.

2 Our Contribution

We consider strong-stabilizing spanning tree construction in the presence of both
mobile Byzantine faults and transient faults. We adopt the model introduced by
Buhrman et al. [1] where malicious agents can move only when messages are
sent. We newly introduce the mechanism of blocking links in the model. When
a process blocks a link, it refuses to receive messages and agents through the
link. Blocking links has the pros and cons. The pros is that the blocked links can
prevent a clean region of the system from being intruded and contaminated by
malicious agents. The cons is that the blocked links also prevent processes from
receiving useful information from their non-faulty neighbors. The introduction
of blocking links to the model is necessary because otherwise a malicious agent
can move to all processes infinitely often, thus we can never contain influence of
the malicious agents in some area of a network.

First, we formalize the notion of strong stabilization for a system with mobile
Byzantine faults. As mentioned above, strong stabilization for an static Byzan-
tine faults requires that the processes outside the containment range deviate
from its intended behavior only finite times. The containment range is defined
as the set of processes whose distance from an Byzantine faulty process is within
a parameter c. However, this definition does not suit to a system with mobile
Byzantine faults because the containment range changes every time a Byzantine
agent moves among processes. Instead, we define strong stabilization based on
the number of legitimate processes. Specifically, we say that an protocol is (k, f)-
strongly stabilizing protocol if, in every execution of the protocol with at most f
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Byzantine agents, at most k processes deviates from the intended behavior after
some point of the execution. Intuitively, this means that the Byzantine agents
must stop harmful actions eventually or they are eventually contained in the set
of at most k processes.

Next, we give the first strongly stabilizing protocol that tolerates mobile
Byzantine faults. This protocol constructs a spanning tree rooted at a designated
process r in a synchronous network. We consider a single Byzantine agent (or
f = 1) under two distinct models depending on whether or not processes can
detect the destination of the Byzantine agent when the agent leaves from them.
The results are summarized in Table 1. If the processes have an ability to detect
the destination of the agent, the proposed protocol is (1, 1)-strongly stabilizing
for any 2-vertex-connected system. Otherwise, the proposed protocol is (2, 1)-
strongly stabilizing for any 3-vertex-connected system.

Table 1. Properties of the proposed protocol

With destination detection Without destination detection

Property (1, 1)-strongly stabilizing (2, 1)-strongly stabilizing

Topology restriction 2-vertex-connected 3-vertex-connected

3 Problem Specification

We assume that each process has a tamper-proof memory where it safely stores
the correct protocol code. When an agent leaves a process, the process can detect
that it was infected in the previous round. Then, it recovers the correct protocol
code from the tamper-proof memory. In this paper, we assume that exactly one
(Byzantine) agent exists in the system. We call this agent the agent and denote
the process that it stays on by vB.

Each process v has an output variable parentv ∈ {0, 1, . . . ,Δv} to designate
one of its neighbors as its parent. (parentv = 0 means v has no parent.) The
goal of spanning tree construction is to set parentv of every process v to form
a spanning tree rooted by r. Process vB can behave as if it is the root forever.
Hence, the other processes cannot determine which is the true root, r or vB.
Thus, we accept a configuration with a spanning forest consisting of two trees,
one is rooted by r and the other is rooted by vB, as a legitimate configuration. We
also assume that vB never exists on r at the beginning of an execution because
otherwise we cannot solve the problem anymore.

4 Key Idea of Proposed Protocol

The variables parent of all the processes form trees and cycles on the system.
Among those trees, we call the tree rooted by r the good tree and the tree rooted
by vB the bad tree. We ignore the value of parent in vB, thus vB never belongs
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to the good tree. In a legitimate configuration, all processes join either the good
tree or the bad tree. The key idea of this protocol is that the root always blocks
its all ports and each process receives a message only from its parent and blocks
all the other ports. This guarantees that the agent cannot move to any process in
the good tree. Each process maintains a kind of its reliability as a non-negative
integer, which corresponds to the number of the passed rounds since it changes its
parent for the last time, and sends its reliability to all its neighbors at each round.
Each process also maintains its level as a non-negative integer, which stores the
distance from the process to r or vB in the constructed tree(s), and sends its level
to all its neighbors at each round. A non-root process memorizes the reliabilities
of its neighbors. At each step, a non-root process receives a message from its
parent, which contains the level and the reliability of the parent. If the non-
root process finds any inconsistency between the message from its parent and
the information it memorizes, it resets the reliabilities of itself and its parent to
zero in its memory, and chooses a neighbor with the maximum reliability in its
memory as a new parent. Otherwise, i.e., if it finds no inconsistency, it increments
its reliability (and the reliabilities of all the neighbors) in its memory. When the
agent leaves a non-root process, the process resets its reliability to zero and
unblocks all its ports (except for the destination port in the detectable model)
to receive messages from all its neighbors so that it can collect the reliabilities
of every neighbor. In the next round, it choose a neighbor with the maximum
reliability as its parent and blocks the ports for the other neighbors.

The processes of the good tree find no inconsistency because the agent cannot
make any influence on them. Therefore, the reliability of the processes in the good
tree increases unboundedly. Thanks to this unbounded increase, the good tree
on any 2-vertex-connected graph in the detectable model (resp. any 3-vertex-
connected graph in the non-detectable model) keeps on growing and its size
will become n − 1 (resp. n − 2 or more) unless the agent stops harmful actions
which prevent the system from reaching a legitimate configuration or deviate
the system from a legitimate configuration.
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Abstract. This paper focuses on the deep analysis of average-based
problems in the population protocol model [1], a model in which agents
are identically programmed, with no identity, and they progress in their
computation through random pairwise interactions.

1 Introduction

This paper focuses on the deep analysis of average-based problems in the popu-
lation protocol model [1], a model in which agents are identically programmed,
with no identity, and they progress in their computation through random pair-
wise interactions. A considerable amount of work has been done so far to deter-
mine which properties can emerge from pairwise interactions between finite-state
agents, together with the derivation of bounds on the time and space needed to
reach such properties. In this work, we are primarily interested in problems that
aim at quantifying properties on the system population, such as the proportion
problem [2] or the counting problem [3]. Namely, we consider a set of n agents,
interconnected by a complete graph, that asynchronously start their execution
in one of two distinct states A (associated with some positive integer m) and B
(associated with 0), and such that nA (resp. nB) is the number of agents whose
initial state is A (resp. B). Such problems can be solved by relying on average-
based population protocols [2–4]. Briefly, n agents starting independently from
each other with an initial integer state, interact randomly by pairs, and at each
interaction, keep the average of both states as their new state. Average-based
protocols have also been used in gossip-based aggregation protocols as well as in
consensus protocols [5].

2 Average-Based Population Protocols

Average-based population protocols use the average technique to compute the
proportion of agents that started their execution in a given state A. The notion of
c© Springer Nature Switzerland AG 2019
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time in population protocols refers to as the successive steps at which interactions
occur, while the parallel time refers to as the successive number of steps each
agent executes. Agents do not maintain nor use identifiers, however, for ease of
presentation the agents are numbered 1, 2, . . . , n. We denote by C

(i)
t the state

of agent i at time t. The stochastic process C = {Ct, t ≥ 0}, where Ct =
(C(1)

t , . . . , C
(n)
t ), represents the evolution of the population protocol. This means

that, for every i = 1, . . . , n, we have C
(i)
0 ∈ {0,m}. At each discrete instant

t, two distinct indices i and j are uniformly chosen among 1, . . . , n, that is
with probability 1/(n(n − 1)). Once chosen, the couple (i, j) interacts, and both
agents update their respective local state C

(i)
t and C

(j)
t by applying the transition

function f , leading to state Ct+1, given by f(C(i)
t , C

(j)
t ) = (C(i)

t+1, C
(j)
t+1) with

(
C

(i)
t+1, C

(j)
t+1

)
=

(⌊
C

(i)
t + C

(j)
t

2

⌋
,

⌈
C

(i)
t + C

(j)
t

2

⌉)
and C

(r)
t+1 = C

(r)
t for r �= i, j.

We denote by � the mean value of the sum of the entries of Ct and by L the
row vector of Rn with all its entries equal to �, that is � =

∑n
i=1 C

(i)
t /n and

L = (�, . . . , �). We denote by ‖.‖ the Euclidean norm and by ‖.‖∞ the infinite
one. Let λ = min {� − ���, ��	 − �} , which is the distance between � and its
nearest integer. It is easily checked that we have 0 ≤ λ ≤ 1/2. In Theorem 4
of [2], we dealt with the case where � − ��� = 1/2. This case implies that n is
even. In the following theorem, we generalize these results to the case where n is
odd. We denote by 1{A} the indicator function, which is equal to 1 if condition
A is true and 0 otherwise.

Theorem 2.1. For all δ ∈ (0, 1), if λ =
(
n − 1{n odd}

)
/(2n) and if there exists

a constant K s.t. ‖C0 −L‖ ≤ K then, for every t ≥ (n−1) (2 ln K − ln δ − ln 2),
we have

P

{
‖Ct − L‖∞ >

n + 1{n odd}
2n

}
= P

{
max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t > 1

}
≤ δ.

The Shadow Process. We introduce what we call a shadow process of the
stochastic process C = {Ct, t ≥ 0}. This shadow process is a stochastic process
denoted by D = {Dt, t ≥ 0} and defined at time t = 0 by D

(i)
0 = C

(i)
0 +1{i∈B0},

where B0 is a non empty subset of b agents with b ≤ n − 1, i.e. B0 ⊂ {1, . . . , n}
and |B0| = b. For every t ≥ 1, the shadow process Dt is defined as process Ct,
that is, when the couple (i, j) is chosen to interact at time t, the vector Dt+1 is
given by

(
D

(i)
t+1, D

(j)
t+1

)
=

(⌊
D

(i)
t + D

(j)
t

2

⌋
,

⌈
D

(i)
t + D

(j)
t

2

⌉)
and D

(r)
t+1 = D

(r)
t for r �= i, j.

Both stochastic processes C and D behave identically and evolve following the
same interactions. The only difference lies their initial values. Note that process
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C is a part of the protocol but not process D which is introduced only for the
probabilistic analysis of C. As we did for process C, we denote by �D the mean
value of the sum of the entries of Dt and by LD the row vector of Rn with all its
entries equal to �D. Lemma 2.2 shows that if at time t = 0, D0 is in the shadow
of C0 then for any time t ≥ 0, Dt remains in the shadow of Ct.

Lemma 2.2. For all t ≥ 0, there exists a non empty set Bt of b agents, i.e.
Bt ⊂ {1, . . . , n} and |Bt| = b, such that for all i ∈ {1, 2, . . . , n}, we have

D
(i)
t = C

(i)
t + 1{i∈Bt}.

Lemma 2.3. For all t ≥ 0, we have

∣∣‖Dt − LD‖∞ − ‖Ct − L‖∞
∣∣ ≤ 1 − 1

n
and

∣∣∣‖Dt − LD‖ − ‖Ct − L‖
∣∣∣ <

√
n.

In Theorem 2.1, we obtained a first bound on the convergence time in the
particular case where λ =

(
n − 1{n odd}

)
/(2n). This result together with Lem-

mas 2.2 and 2.3 are used to obtain general results, i.e. results which apply for
any value of λ.

Theorem 2.4. For all δ ∈ (0, 1), if there exists a constant K such that ‖C0 −
L‖ ≤ K, then, for every t ≥ (n − 1) (2 ln (K +

√
n) − ln δ − ln 2), we have

P

{
max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t > 2

}
≤ δ and P

{
‖Ct − L‖∞ ≥ 3

2

}
≤ δ.

3 Application: Solving the Proportion Problem

We apply our results to the proportion problem.

Definition 3.1. (Proportion Problem). A population protocol solves the pro-
portion problem with precision ε ∈ (0, 1) and with probability at least 1 − δ,
δ ∈ (0, 1), in τ(n, ε, δ) interactions, if at any time t ≥ τ(n, ε, δ), any node is
capable of computing nA/n with an ε-precision without the knowledge of the
population size n.

We denote by γA the proportion of nodes starting with A, i.e. γA = nA/n,
where nA is the number of nodes starting with A. The following theorem gives
an evaluation of the first instant t from which the distance between C

(i)
t /m and

γA is less than a fixed ε with any high probability 1 − δ.

Theorem 3.2. For all δ ∈ (0, 1) and ε ∈ (0, 1), by taking m = �3/(2ε)	, we
have, for all t ≥ (n − 1) [lnn − ln δ + 2 ln(2 + 1/ε) + ln(9/32)],

P
{

|C(i)
t /m − γA| < ε, for all i = 1, . . . , n

}
≥ 1 − δ.



360 Y. Mocquard et al.

10

15

20

25

30

35

40

45

50

10−810−710−610−510−410−310−210−1

P
ar
al
le
l
co
nv

er
ge
nc
e
ti
m
e

ε

τ with n = 105
θ�N(1− )� with n = 105
τ wth n = 104
θ�N(1− )� with n = 104
τ with n = 103
θ�N(1− )� with n = 103

(a) θ�N(1− )� as a function of ε, with =
10−1 and N = 104. From top to the bot-
tom, we have n = 105, n = 104 and n = 103

respectively.

10

15

20

25

30

35

40

45

50

55

10−810−710−610−510−410−310−210−1

P
ar
al
le
l
co
nv

er
ge
nc
e
ti
m
e

ε

τ with = 10−5

θ�N(1− )� with = 10−5

τ with = 10−3

θ�N(1− )� with = 10−3

τ with = 10−1

θ�N(1− )� with = 10−1

(b) θ�N(1− )� as a function of ε, with n = 103

and N = 106. From top to the bottom, we
have = 10−5, 10−3 and 10−1 respectively.

Fig. 1. Comparing the estimation θ�N(1−δ)� with the theoretical bound τ of the parallel
convergence time (Theorem3.2).

Experimental Results. We show how tight our bounds are by comparing the
theoretical bound τ of the parallel convergence time to the results obtained via
extensive simulations (see Fig. 1). We introduce the parallel convergence time θ

defined by θ = inf{t ≥ 0 s.t. for all i, |C(i)
t /m − γA| < ε}/n. We have run N

independent simulations of θ and stored the N values of the parallel convergence
times denoted by θ1, . . . , θN . The estimation of the first instant t such that
P{θ < t} ≥ 1 − δ is thus given by θ�N(1−δ)�.
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1 Introduction

Most of the previous works assume that all the points in the border have the
same priority to be visited. However, the border may consist of sections with
different priority of patrolling such as static guards protecting some sections of
the border. However, these sections are required to be visited regularly to detect
points of failure. On the other side, every high priority point is required to be
visited as often as possible. What strategy must the robots follow to give the
maximum protection to the points of the high priority sections while visiting
infinitely often every point of the border? To answer this question, we consider
the idle time to measure the efficiency of a strategy. Intuitively, the idle time
of a given strategy with k robots measures the maximum period that any high
priority point remains unvisited. In the remaining of the paper, we summarize
the upper and lower bounds.

Model and Problem Statement. Without loss of generality, we model the
border as a segment of unit length C = [0, 1]. The segment is partitioned with
two subsets H and L where H represents the “high priority” sections, and L the
“low priority” sections. We take H to be a finite union of closed intervals. Let n
be the number of high priority segments.

We consider k identical robots with a maximum speed of one. Thus, a robot
can traverse the unit interval in one unit of time. We assume that the acceleration
is infinite. Hence, robots can change speed instantly. Each robot ri follows a
continuous function fi(t) that defines the position of the robot ri in the unit
interval C at time t. A strategy consists of k continuous functions. The idle time
of the strategy is defined as the minimum maximum time that any point in H
remains unvisited.

Given a partition (H,L) of the unit interval C = [0, 1] and a set of k robots
with the same maximum speed, the problem is to determine the optimal idle
time that any strategy can attain, i.e., I∗

k = inf∀A(IA).

Related Work. Different variations of the patrolling problem have been studied
recently. A closely related version was studied in [2] where the border is divided
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into two different types of segments. Namely, the vital sections that are required
to be visited with the minimum time and the neutral sections that are not
required to be visited, but robots can traverse to reach vital sections. They
provide an optimal strategy for the unit segment and the ring. The problem
studied in this paper requires that all points must be visited infinitely often
unlike [2].

Another closely related problem was recently studied in [1] where two robots
are required to patrol a set of points on a unit segment. In that paper, points
can be assigned different priorities. The problem asks to find strategies that
guarantee that the maximum time that a point remains unvisited is at most the
given priority. The authors provide a

√
3-approximation algorithm. A similar

problem was studied in [6] where a single robot is required to visit a set of n points
with priorities. These priorities are updating at a steady rate, and the problem
asks to find a strategy that minimizes the maximum priority ever observed. The
authors study two different variants of the model and provide upper bounds.
Patrolling without priorities have been studied in different contexts. See for
example, [3–5,7].

2 Contributions

The lower and upper bounds are based on single lid covers and double lid covers.
An lk -lid cover [2] is a set {�1, �2 . . . , �k} of k lids such that every high priority
point in p ∈ H is covered by at least one lid, i.e., for every point p ∈ H there
exists �i such that p ∈ �i.

Throughout the paper we consider the minimum lid length, denote as λk,
such that C admits a single λk-lid cover with k lids. Let us denote the order set
of lids of such a cover as Wk. A block in Wk is the tuple B = {�a(1), �a(2), ...�a(b)}
of b lids such Right(�a(i)) = Left(�a(i+1)) for all i ∈ [1, b− 1] where Left(�) and
Right(�) denote the leftmost and rightmost point of �. Now we can define critical
blocks that are of particular importance for the lower bound and upper bound
proofs. A critical block B of Wk is a block such that Left(B) is the leftmost
point of a high priority segment and Right(B) is the rightmost point of a high
priority segment. We show that every single λk-lid cover has a critical block. To
reduce the number of possible single lk-lid covers, we shift to the right all lids of
Wk as far as possible without uncover the high priority points. Let W→

k denote
such a shifted single lk-lid cover. Analogously, we shift to the left all lids of Wk

as far as possible without uncover the high priority points. Let W←
k denote

such a shifted single lk-lid cover.

Lower-Bound. To show the lower bound, first we extend the definition of single
lk-lid cover to strong double lk-lid cover. A strong double lk-lid cover is the
set {�1, �2 . . . , �k} of k lids such that the unit segment C is fully covered and
every high priority point in p ∈ H is covered by at least two distinct lids, i.e.,⋃k

i=1 �i = C and there exist �i and �j �=i such that p ∈ �i ∩ �j for all p ∈ H. We
refer as “strong” to emphasize that it covers the unit interval.
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Throughout the paper we consider the minimum lid length, denoted as Λ2k,
such that C admits a strong double Λ2k-lid cover with 2k lids. Let S2k denote
the order set of lids of such a cover. Similar as before we define S→

2k and S←
2k by

shifting to the left or right the lids as far as we can without violating the strong
double cover property. For the lower bound proof, it is essential to compare
Λ2k and λk−1. Indeed, when Λ2k < λk−1, every lid of the strong double Λ2k-lid
cover covers at least one high priority point which means that the high priority
segments must be uniformly distributed in the unit interval.

A component of a strong double Λ2k-lid cover is a set W = {�a(1), �a(2), ...,
�a(w)} of consecutive lids such that �a(i) ∩ �a(i+1) ∩ H �= ∅. We say that W is
a maximal component if it cannot be extended. A key property of any strong
double Λ2k-lid cover when Λ2k < λk−1 is that every maximal component is of
even length.

For the lower-bound we need to find k + 1 points at distance at least
min(Λ2k, λk−1) where k points are in H. Thus, there is a time where one robot
visits the low priority point and k−1 points cannot visit k high priority point in
time less than 2min(Λ2k, λk−1). We say that a set of points P of C is in general
position if for all a, b, c, d ∈ P , with a ≤ b and c ≤ d, if b−a is a rational multiple
of d − c, then a = c and b = d. A high priority set H is in general position if
the set of all endpoints of intervals in H are in general position. A key property
for the lower bound is that both S→

2k and S←
2k have a critical block. Indeed, the

critical block is common when Λ2k < λk−1 and H is in general position. Using
all previous results, we can find k + 1 points in Wk and S2k where k points are
in H and we can obtain the following theorem.

Theorem 1. If the priority set H is in general position, then I∗
k ≥

2min(Λ2k, λk−1).

Upper Bound. We provide three different strategies for showing the upper
bound. In Strategy 1, we consider Wk−1 = {�1, �2, ..., �k−1} with k − 1 lids of
length λk. Let robot ri cover (move back and forth) at maximum speed lid �i
and robot rk cover the unit segment. Observe that when rk is at distance at
least λk−1 from any lid �i, it cannot help robot ri. Therefore, the idle time of
the strategy is 2λk−1.

For the second and third strategy we consider S2k = �1, �2, ..., �2k with 2k lids
of length Λ2k. We define a cap ci as the union of two consecutive lids �2i−1, �2i,
i.e., ci = {�2i−1, �2i} for all i ∈ [1, k]. For each i let ci = {�2i−1, �2i} be the i-th
cap, and let c∗ = max∀i(len(ci)), where len(ci) is the length of the i-th cap.
Furthermore, for every cap ci, let xi be the center of ci. In Strategy 2, we place
robot ri at xi and let it move back and forth at maximum speed in the segment
[xi − c∗/2, xi + c∗/2]. Thus, the unit segment is split into k segments of length
c∗ not necessarily disjoint. Observe that this strategy requires that robots patrol
their segments synchronously, i.e., robots reach the leftmost and rightmost point
of their respectively segment concurrently. Therefore, although, the length of c∗

can be up to 2Λ2k, the idle time of the second strategy is 3Λ2k since robots help
cover their neighboring segments.
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We can improve the previous strategy with a more complex strategy where
the segments of the robots are not necessarily of equal length, which means that
robots cannot patrol synchronously. In Strategy 3, each robot ri first overs lid
�2i−1 until (at time t0) for each i lid �2i−1 is periodically covered by ri. Then,
the first time after t0 that r1 reaches Right(�1), r1 continues to cover �2. Once
�2 is periodically covered and r2 reaches Right(�3), r2 continues to cover �4, and
so on until for each i the lid �2i is periodically covered by ri. Then the process is
reversed, with rk switching to covering �2k−1, and so on until finally r1 switches
to cover �1, and we repeat. Observe that the idle time of this strategy depends on
the size of the lids. Thus, the idle time of the third strategy is 2Λ2k, Combining
Strategy 1 and 3 we obtain the following theorem.

Theorem 2. There exists an algorithm that attain optimal idle time.

Computing Optimal Lid Covers. The previous strategies rely on a single
λk−1-lid cover with k − 1 lids and a strong double Λ2k-lid cover with 2k lids.
Therefore, it is of vital importance to computing them efficiently. To compute the
values, we define a feasible solution where at least one block is critical, although
not necessarily of optimal length. The idea is that given a length l, we can
determine in O(max(k, n)) time with a simple greedy algorithm whether the unit
segment accepts a strong double cover with 2k lids of length l, respectively. Once
we determine that C accepts a strong double l-lid cover, we can compute the
closest smallest feasible solution. More precisely, if C admits a (strong double)
l-lid cover, then we can obtain in O(n) time a new lid length l′ ≤ l such that C
admits a feasible strong double l′-lid cover. Similarly, we can obtain a feasible
single l′-lid cover. Now can find both Λ2k and λk− such that C accepts a strong
double Λ2k-lid cover and a simple Λ2k-lid cover in O(max(n, k) log n) time using
a binary search. Thus, we obtain the following theorem.

Theorem 3. There exists an algorithm that determines λk−1 and Λ2k in
O(max(n, k) log n) time.
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