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Abstract. Given a two-way finite automaton recognizing a non-empty
language, consider the length of the shortest string it accepts, and, for
each n � 1, let f(n) be the maximum of these lengths over all n-state
automata. It is proved that for n-state two-way finite automata, whether
deterministic or nondeterministic, this number is at least Ω(8n/5) and
less than

(
2n
n+1

)
, with the lower bound reached over an alphabet of

size Θ(n). Furthermore, for deterministic automata and for a fixed
alphabet of size m � 1, the length of the shortest string is at least

e(1+o(1))
√

mn(logn−logm).

1 Introduction

For a one-way nondeterministic finite automaton (1NFA) with n states recog-
nizing a non-empty language, the length of the shortest string it accepts is the
length of the shortest path to an accepting state in the transition graph, and is
accordingly at most n − 1. For other kinds of automata, the question of finding
the exact length of the shortest string in the worst case is much more involved,
and has been a subject of some research. Ellul et al. [4] proved that the greatest
length of the shortest string not accepted by an n-state 1NFA is exponential
in n. The length of the shortest string in the intersection of an m-state and an
n-state deterministic automata (1DFA), as shown by Alpoge et al. [1], can be
up to mn−1 for relatively prime m,n. Chistikov et al. [2] investigated the length
of the shortest string for counter automata. For the intersection of a language
defined by a formal grammar of a given size and a regular language, the length
of a shortest string was estimated by Pierre [11].

This paper investigates the length of a shortest string accepted by a two-way
finite automaton. A simple upper bound on this length follows from the work of
Kapoutsis [7], who proved that every n-state 2NFA can be simulated by an 1NFA
with

(
2n

n+1

)
states; this binomial coefficient is of the order 1√

πn
4n. Therefore, the

shortest string accepted by an n-state 2NFA is of length at most
(

2n
n+1

) − 1.
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Kapoutsis [7] also proved that this transformation of two-way automata to
one-way automata is optimal in the worst case, that is, for every n, there is a
language Ln recognized by an n-state 2DFA, but by no 1NFA with fewer than(

2n
n+1

)
states. However, since all strings in this language are of length 4, this

example does not imply any lower bound on the length of the shortest string.
In this paper, the greatest length of the shortest string is determined up to a

constant factor in the exponent, as 2Θ(n). First, there is a simple construction of
an n-state 2DFA with a shortest string of length ca. 2n/2. This construction is
then improved to obtain n-state 2DFA with shortest strings of length ca. 8n/5. In
both cases, the size of the alphabet is exponential in n. For a fixed alphabet of size
m, a series of n-state automata with shortest strings of length e(1+o(1))

√
mn ln n

m

is constructed.

2 Two-Way Finite Automata

Definition 1. A nondeterministic two-way finite automaton (2NFA) is a quin-
tuple A = (Σ,Q, q0, δ, F ), in which:

– Σ is a finite alphabet, which is extended with a left end-marker � /∈ Σ, and a
right end-marker � /∈ Σ;

– Q is a finite set of states;
– Q0 ∈ Q is the set of initial states;
– δ : Q × (Σ ∪ {�,�}) → 2Q×{−1,+1} is the transition function, which lists

possible transitions in a certain state while observing a certain tape symbol;
– F ⊆ Q is the set of accepting states, effective at the right end-marker �.

Given an input string w ∈ Σ∗, a 2NFA operates on a read-only tape con-
taining this string enclosed within end-markers (�w�). A 2NFA begins its com-
putation in any initial state with the head observing the left end-marker (�). At
every step of the computation, when A is in a state q ∈ Q and observes a square
of the tape containing a symbol a ∈ Σ ∪ {�,�}, the transition function specifies
a set δ(q, a) ⊆ Q × {−1,+1} of all the allowed actions, each being a pair of the
next state and the direction of head’s motion. If δ(q, a) contains multiple ele-
ments, then multiple continuations are possible, and, accordingly, a 2NFA may
have multiple computations on the same input string. If the automaton eventu-
ally reaches an accepting state while at the right end-marker (�), then this is an
accepting computation.

The set of strings, on which there is at least one accepting computation, is
the language recognized by the 2NFA, denoted by L(A).

Other types of finite automata are obtained by restricting 2NFA. An automa-
ton is deterministic (2DFA), if there is at most one possible action in each con-
figuration, that is, if |δ(q, a)| � 1 for all q and a.

A two-way automaton (2DFA for 2NFA) is called sweeping [12], if it can
change its direction of motion only at the end-markers, and thus operates in
alternating left-to-right sweeps and right-to-left sweeps. More precisely, the set of
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states Q is split into two disjoint subsets of right-bound states Q+1 and left-bound
states Q−1, so that all transitions in Qd, except the transition on end-markers,
move the head in the direction d.

For a less restrictive notion of a direction-determinate automaton [9], it is
only required that every state q ∈ Q can be entered by transitions from a single
direction d(q) ∈ {−1,+1}. Every sweeping automaton is direction-determinate,
but not vice versa.

An automaton is one-way (1NFA or 1NFA), if all its transitions move its head
to the right, so that the automaton makes a single left-to-right pass, accepting
or rejecting in the end. In one-way automata, the end-markers are of no use and
are usually omitted from the definition.

3 Upper Bound

An upper bound on the length of a shortest string accepted by a two-way
finite automaton follows from the known transformation of two-way automata
to 1NFA, which is optimal for alphabets of unbounded size.

Theorem A (Kapoutsis [7]). For every n-state 2NFA over an alphabet Σ,
there exists a 1NFA with

(
2n

n+1

)
states, which recognizes the same language. Con-

versely, for every n, there is such an alphabet Σn of size Θ(nn), and such a
language Ln ⊆ Σ∗

n recognized by an n-state 2DFA, that every 1NFA recognizing
Ln must have at least

(
2n

n+1

)
states.

Taking into account that the length of a shortest string accepted by a k-state
1NFA is at most k − 1, this has the following immediate consequence.

Corollary 1. For every n-state 2NFA, the length of the shortest string it accepts
is at most

(
2n

n+1

) − 1.

For direction-determinate automata, the method of Kapoutsis [7] can be
adapted to produce fewer states. As proved by Geffert and Okhotin [6], the
following transformation is optimal for alphabets with three or more symbols.

Theorem B (Geffert and Okhotin [6]). For every n-state direction-
determinate 2NFA over an alphabet Σ, there is a 1NFA with

(
n

�n/2�
)

states that
recognizes the same language. Conversely, for every n, there exists a language
Ln over a fixed 3-symbol alphabet, recognized by an n-state sweeping 2DFA, with
the property that every 1NFA recognizing Ln has at least

(
n

�n/2�
)

states.

Corollary 2. The length of the shortest string accepted by an n-state direction-
determinate 2NFA is at most

(
n

�n/2�
)
.

Using Stirling’s approximation, these binomial coefficients are estimated as
(

2n
n+1

)
= (1 + o(1)) 1√

πn
4n and as

(
n

�n/2�
)

= (1 + o(1))
√

2
πn2n, respectively.

This upper bound is the same for 2NFA and for 2DFA. In fact, as indicated
by the following simple result, the length of shortest strings for 2NFA is the
same as for 2DFA with the same number of states. However, there may still be
some differences in the size of the alphabet necessary to achieve that bound.
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Lemma 1. For every n-state 2NFA (sweeping 2NFA) over an alphabet Σ, there
exists an n-state 2DFA (sweeping 2DFA, respectively) over some alphabet Γ ,
which has the same length of the shortest accepted string. The number of symbols
in Γ is at most (2n)n times the size of Σ.

Proof. For every symbol a ∈ Σ, consider the 2NFA’s transitions by that symbol.
At each of the n states, there can be up to 2n possible transitions. For every
choice of these transitions, let Γ contain a new symbol, which is a marked with
that choice. The 2DFA’s transitions by the marked symbols are defined to act
deterministically according to that choice.

Then, for every string w accepted by the 2NFA, the new 2DFA accepts some
string w′ of the same length, with each symbol marked with the choices made by
the 2NFA on the corresponding symbol of w. Conversely, for each string accepted
by the 2DFA, the original 2NFA accepts the same string without markings. 	


In view of this observation, the rest of this paper concentrates on the case of
deterministic two-way automata.

4 Simple Lower Bound

The following two-way automata have long shortest accepted strings.

Lemma 2. For every odd number m � 1, there exists a 2m-state sweeping
2DFA, defined over an m-symbol alphabet, which recognizes a singleton language
{w}, with |w| = 2m − 1.

Proof. Let the alphabet be Σ = {a1, . . . , am}. The automaton shall make m
passes over the string. At each i-th pass, with i ∈ {1, . . . ,m}, the automaton
marks whether it has encountered any symbol ai since the last symbol with a
number i + 1 or greater. When a symbol with a number i + 1 or greater is read,
the automaton makes sure that it encountered exactly one ai since the previous
such symbol, and resets the mark. The same check is done in the end of each
pass, upon seeing one of the end-markers.

The states are of the form q
(i)
j , with i ∈ {1, . . . , m} and j ∈ {0, 1}, which

indicates making the i-th pass, having seen (j = 1) or not seen (j = 0) any
symbol ai.

Q = { q
(i)
j | i ∈ {1, . . . , m}, j ∈ {0, 1} }

The initial state is q
(1)
0 , in which the automaton begins the first pass.

δ(q(1)0 ,�) = (q(1)0 ,+1)

For each i-th pass, let di ∈ {+1,−1} be the direction of this pass, with di = +1
for odd i, and di = −1 for even i. The transitions at the i-th pass set the mark
upon seeing the corresponding symbol ai.
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Fig. 1. A 6-state 2DFA with a shortest string of length 23 − 1 = 7, constructed as in
Lemma 2, with m = 3.

δ(q(i)0 , ai) = (q(i)1 , di), for i ∈ {1, . . . , m},

For any of the symbols ai+1, . . . , am, the mark of having seen ai is checked and
then reset to false.

δ(q(i)1 , at) = (q(i)0 , di), for i ∈ {1, . . . ,m}
All other input symbols are ignored, that is, the automaton passes them without
changing its state.

δ(q(i)j , at) = (q(i)j , di), for i ∈ {1, . . . , m}, j ∈ {0, 1}, t ∈ {1, . . . , i − 1}
On each end-marker, the mark of having seen ai is again checked, and then the
automaton switches from the i-th pass to the (i + 1)-th.

δ(q(i)1 ,�) = (q(i+1)
0 ,−1), for all odd i < m

δ(q(i)1 ,�) = (q(i+1)
0 ,−1), for all even i < m

The last pass leads the automaton to the right end-marker (�), where it accepts
in the state q

(m)
1 . These transitions are illustrated in Fig. 1 for m = 3, along with

the shortest accepted string of length 7.
Actually, the automaton always accepts a unique string. The following strings

w0, w1, . . . , wm are defined, with w3 illustrated in Fig. 1(right).

w0 = ε

wi = wi−1aiwi−1 (1 � i � m)

The length of each wi is 2i − 1, and one can verify that the last string wm is
accepted by tracing the automaton’s computation. The goal is now to prove that
wm is the unique accepted string.
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Claim. Let w be any string accepted by the automaton, let i ∈ {0, 1, . . . ,m},
and assume that the tape �w� has a substring cu$, where c ∈ {�, ai+1, . . . , am},
$ ∈ {�, ai+1, . . . , am} and u ∈ {a1, . . . , ai}∗. Then, u = wi.

The claim is proved by induction on i, from 0 to m.
The base case i = 0 is trivial: the string u is defined over an empty alphabet,

and therefore must be ε.
For the induction step for i, consider the i-th pass in the automaton’s com-

putation, as it passes through the substring cu$, with the direction of traversal
determined by the parity of i. As it enters the substring u from one side, the state
is reset to q

(i)
0 , and the automaton must emerge on the other side in the state

q
(i)
1 . For this to happen, u must contain exactly one instance of ai, and there-

fore, u = u0aiu1, for some substrings u0, u1 ∈ {a1, . . . , ai−1}∗. By the induction
hypothesis for the substrings u0 and for u1, which are delimited by appropriate
symbols, both are equal to wi−1. Therefore, u = wi−1aiwi−1 = wi.

For i = m, the above claim asserts that every accepted string must be wm.
	


For each number n, Lemma 2 gives an n-state 2DFA with the shortest
accepted string of length 2�n

2 � ≈ 1.414n. Together with the upper bound
(

2n
n+1

)−1
given in Corollary 1, this shows that the maximal length of the shortest string
for n-state 2DFA and 2NFA is between (

√
2)n and 4n. The question is, what is

the precise base?
An easy improvement to this construction is given by counting to 3 rather

than to 2; then, the shortest string is of length 3�n−1
3 � ≈ 1.442n. A construction

that further improves this lower bound is presented in the next section.

5 Improved Lower Bound

A proposed improvement to the lower bound in Lemma 2 is based on the fol-
lowing example of an automaton with a shortest string of length 7, which has
as few as 5 states, cf. 6 states in the automaton provided by Lemma 2.

ba c fd e g
q0
q1
q2
q3
q4

Fig. 2. A 5-state 2DFA with a shortest string of length 7, presented in Example 1.
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Example 1. Let A be a 2DFA over the alphabet Σ = {a, b, c, d, e, f, g}, with the
states Q = {q0, q1, q2, q3, q4}, where q0 is initial and q4 is accepting, and with the
following transitions: δ(q0,�) = (q0,+1), δ(q0, a) = (q0,+1), δ(q1, a) = (q2,+1),
δ(q0, b) = (q1,−1), δ(q2, b) = (q2,+1), δ(q1, c) = (q3,+1), δ(q2, c) = (q2,+1),
δ(q2, d) = (q1,−1), δ(q3, d) = (q3,+1), δ(q1, e) = (q4,+1), δ(q3, e) = (q3,+1),
δ(q1, f) = (q4,+1), δ(q3, f) = (q1,−1), δ(q4, f) = (q2,+1), δ(q2, g) = (q1,−1),
δ(q4, g) = (q4,+1). Then, A is direction-determinate, with d(q1) = −1 and
d(q) = +1 in all other states.

The shortest string accepted by A is w = abcdef g, as illustrated in Fig. 2. To
see that w is indeed the shortest string accepted by A, it is sufficient to transform
this automaton to the minimal equivalent partial 1DFA, which is presented in
Fig. 3. The shortest string is clearly visible in the figure.

a

a

b

b c

d

d e

f

g
c
b

e
d

g

fc
b

Fig. 3. The minimal 1DFA recognizing the same language as the 2DFA in Fig. 2.

The following lemma iteratively applies this example to construct arbitrar-
ily large direction-determinate 2DFA with shortest accepted strings of length
greater than in Lemma 2.

Lemma 3. Let A = (Σ,Q, q0, δ, F ) be a k-state direction-determinate 2DFA
over some alphabet Σ, in which, for every state q ∈ Q, at most one of the
following conditions may hold: (i) δ(q0,�) = q; (ii) q ∈ F ; (iii) δ(q,�) is defined
and q �= q0; (iv) δ(q,�) is defined. Let � − 1 be the length of the shortest string
accepted by A. Then, for every odd number m � 3, there exists a km-state
direction-determinate 2DFA Bm, defined over an alphabet of size m · |Σ|, which
has the shortest accepted string of length �m − 1.

The construction in Lemma 3 actually generalizes that of Lemma 2, and
before presenting it in the general case, it is useful to see how the earlier given
construction fits the statement of Lemma 3. Let the base automaton A be a
2-state partial 1DFA recognizing the language {a} over a one-symbol alphabet
Σ = {a}. Then, during each i-th pass, the automaton in Lemma 2 simulates the
base 1DFA on the symbols ai, ignoring any symbols {a1, . . . , ai−1} encountered.
A separate instance of the base 1DFA is executed for each block delimited by
two symbols in {ai+1, . . . , am,�,�}.

It remains to extend the same construction to an arbitrary base automaton.

Proof. Let A be the given k-state direction-determinate 2DFA over an alphabet
Σ. Let Q = Q+1 ∪ Q−1 be A’s set of states, where the states in each Qd are
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enterable only in the direction d. For q ∈ Qd, denote by d(q) = d the direction
in which q is enterable. Let F ⊆ Q be the set of accepting states of A, effective
at the right end-marker (�).

The alphabet Ω of the new 2DFA B consists of symbols of the form a(i),
where a ∈ Σ is an input symbol of A, and i ∈ {1, . . . , m}.

Σi = { a(i) | a ∈ Σ } (1 � i � m)

Ω =
m⋃

i=1

Σi

The new automaton’s computation is organized into m passes. At each i-th pass,
with i ∈ {1, . . . , m}, the automaton B interprets its tape as �u0#1u1#2 . . . #zuz�,
where the separators #1, . . . ,#z are any symbols of the form a(j), with j > i, and
the substrings u0, . . . , uz are defined over the alphabet Σ1∪. . .∪Σi. The substrings
are processed one by one, from left to right for odd i, and from right to left for even i.
For each string uj , the automaton B simulates the computation of A on that string
(if i is odd) or on its reverse (if i is even), taking into account only symbols a(i),
with a ∈ Σ. All other symbols a(j), with j < i and a ∈ Σ, are ignored by passing
over them without changing the state or the direction; this is possible, because A
is direction-determinate.

Each separator $i acts both as a right delimiter for ui−1 and as a left delimiter
for ui. Conditions (i–iv) ensure that whenever B visits such a separator, it can
always tell whether it is currently simulating a computation of A on ui−1 or on ui.

The states of B are of the form q(i), which means simulating A in a state
q ∈ Q at the i-th pass.

Q = { q(i) | q ∈ Q, i ∈ {1, . . . , m} }
At odd-numbered passes, the substrings u0, . . . , uz are processed from left to
right, and from right to left at even-numbered passes. Let d(i) be the general
direction of traversal at the i-th pass, defined by d(i) = +1 for odd i and d(i) =
−1 for even i. The automaton B shall be direction-determinate with d(q(i)) =
d(q) · d(i).

Let q0 be the initial state of A, in which it makes the initial transition
δ(q0,�) = r. Then, the initial state of B is q

(1)
0 , with the following initial transi-

tion.

δ′(q(1)0 ,�) = (r(1),+1)

At every i-th pass, with i ∈ {1, . . . , m}, each A’s transition δ(q, a) = (r, d(r)),
with a ∈ Σ and q, r ∈ Q, is implemented by the following transition in B.

δ′(q(i), a(i)) = (r(i), d(r) · d(i))

Note that A’s direction “+1” becomes “the direction of the i-th pass”, whereas
A’s direction “−1” now goes in the opposite direction to the i-th pass’ direction.
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Each lesser symbol a(j), with j < i and a ∈ Σ, is ignored by continuing in the
same direction. This is where the direction-determinacy of A becomes essential.

δ′(q(i), a(j)) = (q(i), d(q) · d(i)), where q ∈ Q, j < i, a ∈ Σ

Next, let ci and $i be the end-markers at which the i-th pass begins and ends,
respectively (ci = � and $i = � for i odd, and vice versa for i even). For each
A’s transition δ(q,�) = (r,−1) turning at the right end-marker, with d(q) = +1
and d(r) = −1, the new automaton executes the same turn on any separator
symbols.

δ′(q(i), s) = (r(i),−d(i)), for s ∈ {$i} ∪ Σi+1 ∪ . . . ∪ Σm

Each turn at the left end-marker, δ(q,�) = (r,+1), with q �= q0, d(q) = −1 and
d(r) = +1, is implemented similarly.

δ′(q(i), s) = (r(i), d(i)), for s ∈ {ci} ∪ Σi+1 ∪ . . . ∪ Σm

When A is about to accept at its right end-marker (�) in a state q ∈ F , the
simulating automaton B proceeds through a separator symbol to the next block,
implementing the initial transition δ(q0,�) = r for the next block without actu-
ally entering q0.

δ′(q(i), s) = (r(i), d(i)), for s ∈ Σi+1 ∪ . . . ∪ Σm

At the end of the i-th pass, when A’s accepting state q ∈ F is reached while
at the appropriate end-marker, B proceeds to the next pass by simulating the
transition δ(q0,�) = r (as long as i is less than m).

δ′(q(i), $i) = (r(i+1), d(i + 1))

If that happens for i = m, the automaton B accepts instead.
Since the B proceeds to the next pass only at the end-markers, in order to

accept a string, it needs to make m−1
2 left-to-right passes and m+1

2 right-to-left
passes over the string, with each i-th pass made in the states from Qi. The
moment when the automaton enters any state from Qi+1, it is said to have
completed the i-th pass; the m-th pass is completed upon acceptance.

For every i ∈ {1, . . . , m}, let hi : Ω∗ → Σ∗ be a homomorphism defined by
hi(ai) = a and hi(aj) = ε for j �= i: this is a projection to Σi.

Claim 1. Let w ∈ Ω∗ be any string, let i0 ∈ {0, . . . , m}. Then, B completes the
i0-th pass in its computation on w if and only if, for each i ∈ {1, 2, . . . , i0}, for
the partition w = u0#1u1#2 . . . #kuk, with u0, . . . , uk ∈ (Σ1 ∪ . . . ∪ Σi)∗ and
#1, . . . ,#k ∈ Σi+1 ∪ . . . ∪ Σm, each string hi(uj) (the projection of uj to Σi) is
in L(A) if i is odd, and in L(A)R if i is even.
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The proof is by induction on i. For every next i-th pass, with i odd, it is proved
that B first simulates the computation of A on u0; then, upon acceptance, on
u1; and so on until uk. Each transition of A is simulated by a series of steps of B:
first implementing the original transition, and then skipping any intermediate
symbols in Σ1∪ . . .∪Σi−1. A direct correspondence between these computations
is established. The details of the proof are omitted due to space constraints.

It follows that B completes the last m-th pass if and only if the condition in
Claim 1 is satisfied for all i.

With Claim 1 established, the language recognized by B can be described by
the following formulae.

L0 = {ε}
Li =

⋃

a1...az∈L(A)

Li−1a
(i)
1 Li−1a

(i)
2 Li−1 . . . a(i)

z Li−1, for odd i > 1

Li =
⋃

a1...az∈L(A)

Li−1a
(i)
z Li−1a

(i)
z−1Li−1 . . . a

(i)
1 Li−1, for even i > 1

L(B) = Lm

Claim 2. A string w is accepted by B if and only if, for all i ∈ {0, 1, . . . ,m}
and for every substring cv$ of the tape �w�, with c ∈ {�} ∪ Σi+1 ∪ . . . ∪ Σm,
$ ∈ {�} ∪ Σi+1 ∪ . . . ∪ Σm and v ∈ (Σ1 ∪ . . . ∪ Σi)∗, the string v is in Li.

First assume that B accepts w. The condition is proved by induction on i.
The base case, i = 0, is trivial: the string v is defined over an empty alphabet
and hence must be ε, and ε is in L0.

For the induction step, let i be odd and let cv$ be a substring of the given
form, with v ∈ (Σ1 ∪ . . . ∪ Σi)∗. Consider all occurrences of symbols from Σi in
v, so that v = v0a

(i)
1 v1a

(i)
2 v2 . . . a

(i)
z vz, with v0, . . . , vz ∈ (Σ1 ∪ . . . ∪ Σi−1)∗.

By the induction hypothesis for each substring vj , it belongs to Li−1. On
the other hand, since B completes its i-th pass, by Claim 1, the projection
h(v) = a1 . . . az is accepted by A. This proves that v belongs to the language
Li−1a

(i)
1 Li−1 . . . a

(i)
z Li−1 for some string a1 . . . az ∈ L(A), confirming that v is

in Li. The proof for the case of even i is symmetric.
Conversely, let the condition in Claim 2 hold; the goal is to prove that the

computation of B on w successfully completes all its m passes. For every subse-
quent i-th pass, let w = u0#1u1#2 . . . #kuk, where u0, . . . , uk ∈ (Σ1 ∪ . . .∪Σi)∗

and #1, . . . ,#k ∈ Σi+1 ∪ . . . ∪ Σm. The condition asserts that each string uj is
in Li. Since the hi-projection of every string in Li is a string accepted by A, it is
known that hi(u0), . . . , hi(uk) ∈ L(A). Then, by Claim 1, B completes the i-th
pass. The case of even i is again symmetric. This completes the proof of Claim 2.

Since the length of the shortest string in each Li is �i − 1, the shortest string
accepted by B is of length �m − 1, as claimed. 	


Substituting the 5-state automaton from Example 1 into Lemma 3 yields the
following lower bound.
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Theorem 1. For every n � 1, there is an n-state direction-determinate 2DFA
over an alphabet of size 7
n

5 �, with the shortest accepted string of length 8�n
5 �−1.

6 Small Alphabets

The constructions in Lemmata 2 and 3 depend on using an alphabet of linear
size. As it is often observed in the state complexity research, the assumption
that the alphabet grows with the number of states is not always realistic, and
the case of a fixed alphabet at least deserves a separate investigation.

For a unary alphabet, the expressive power of two-way automata is known
quite well [3,5,8], and the maximal length of a shortest string can be determined
precisely.

The ability of 2DFAs to count in unary notation is described by the following
function, known as Landau’s function [10].

g(n) = max{ lcm(p1, . . . , pk) | k � 1, p1 + . . . + pk � n } = e(1+o(1))
√

n lnn

The value g(n) is known as the maximum order of an element in the group of
permutations of n objects.

Theorem C. For every n � 2, there is an n-state sweeping 2DFA recognizing
the language ag(n−1)−1(ag(n−1))∗.

Using this sweeping 2DFA as the base automaton in Lemma 3 leads to the
following consequence.

Corollary 3. Let Σ be a fixed m-symbol alphabet, with m � 1. Then, for
every number n � 1, there exists an n-state 2DFA over the alphabet Σ, with
the shortest accepted string of length g

(� n
m� − 1

)m − 1, which is of the order

e(1+o(1))
√

mn ln n
m .

An interesting question is whether an exponential lower bound of the form
2Ω(n) can be obtained using a fixed alphabet.

7 On Improving the Estimation

The longest length of a shortest string in an n-state 2DFA is now known to be
between 1.515n and 4n. The question is, what is the exact value?

An obvious way of improving the lower bound is to find a better base automa-
ton for Lemma 3 than the one in Example 1. Any k-state direction-determinate
automaton with the shortest accepting string of length � − 1 would improve
over the existing construction if k

√
� > 5

√
8. On the other hand, the method of

Lemma 3 might have its limitations, and some entirely new methods might yield
better lower bounds.

Turning to the upper bounds, perhaps the bounds in Corollaries 1 and 2 could
be improved by analyzing the constructions in the corresponding Theorems A
and B. One could also try improving the upper bound for small alphabets by
investigating two-way transformation semigroups of Kunc and Okhotin [8].
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