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Abstract. RNA is a chain of ribonucleotides of four kinds (denoted
respectively by the letters A, C, G, U). While being synthesized sequen-
tially from its template DNA (transcription), it folds upon itself into
intricate higher-dimensional structures in such a way that the free energy
is minimized, that is, the more hydrogen bonds between ribonucletoides
or larger entropy a structure has, the more likely it is chosen, and fur-
thermore the minimization is done locally. This phenomenon is called
cotranscriptional folding (CF). It has turned out to play significant roles
in in-vivo computation throughout experiments and recently proven even
programmable artificially so as to self-assemble a specific RNA rectan-
gular tile structure in vitro. The next step is to program a computa-
tion onto DNA in such a way that the computation can be “called” by
cotranscriptional folding. In this novel paradigm of computation, what
programmers could do is only twofold: designing a template DNA and
setting environmental parameters. Oritatami is an introductory “toy”
model to this paradigm of computation. In this model, programmars are
also allowed to employ an arbitrarily large finite alphabet Σ as well as
an arbitrarily complex rule set for binding over Σ ×Σ. We shall present
known architectures of computing in the oritatami model from a simple
half-adder to Turing machine along with several programming techniques
of use, with hope that they will inspire in-vivo architectures of CF-driven
self-assemblable computers, which could be even heritable.

1 Introduction

An organism is encoded on its single-stranded DNA. Its data and functions
are “called” via transcription, in which a temporal copy of a factor of DNA is
synthesized using ribonucleotides of four kinds (ΣRNA = {A, C, G, U}), and trans-
lation, in which the resulting RNA strand is decoded into a chain of amino acids,
that is, protein. DNA, RNA, and protein are all chemically-oriented. The life of
organisms can be regarded as a massive dynamical network of such molecular
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“words” and interactions driven by intermolecular forces among their compo-
sitional units, that is, nucleotides, ribonucleotides, and amino acids (see, e.g.,
[4,12] for further reading of molecular biology).

The last several decades have seen breathtaking growth and developments in
the technology of programming such molecular networks for computation. The
developments were launched by the successful demonstration of DNA computer
to solve a 7-node instance of Hamiltonian path problem by Adleman [1], which
we shall explain in the next paragraph, and have been driven by significant
proof-of-concept multi-stranded architectures for computing including Winfree’s
tile assembly model (TAM) [43], toehold mediated strand displacement (TMSD),
and DNA origami by Rothemund [37]. TAM is a dynamical variant of Wang tiling
[41]. By TAM, Winfree founded the theory of algorithmic molecular self-assembly
by agglomeration of DNA tiles via their programmable interactive sites (see [11]
for a thorough review). TMSD was utilized for the first time for a computational
purpose by Yurke et al. in order to let a DNA “fuel” strand open and close DNA
tweezers [44], though it was known as branch migration since 70s. It has then
been leveraged as various physical and logical computational mechanisms (see
[19] and references therein). DNA origami provides a methodology to fold a
template circular DNA strand by short DNA strands which can be programmed
to “staple” two specific sites of the template together into various shapes. It has
become a ubiquitous methodology in molecular self-assembly. For example, DNA
origami provides a scaffold that accommodates other molecular architectures
such as TMSD; Jonoska and Seeman thus endowed DNA origami-made tiles
with signal-passing mechanisms to turn on/off their interactive sites [28].

The Adleman’s DNA computer provides an introductory example to vari-
ous concepts of significance for molecular architectures for computing. (DNA)
nucleotides (ΣDNA = {A, C, G, T}) tend to form hydrogen bonds according to the
Watson-Crick complementarity A–T and C–G1, which is extended to the antimor-
phic involution θ that satisfies θ(A) = T, θ(C) = G, θ(G) = C, and θ(T) = A in order
to capture hybridization among DNA strands. A DNA strand w and its Watson-
Crick complement strand θ(w) thus form a completely double-stranded DNA. In
the Adleman’s DNA computer, a node x is encoded as a DNA strand pxsx for
some strands px, sx of length 10 and the directed edge from x to y is encoded as
θ(sxpy) = θ(py)θ(sx). This edge strand hybridizes with the strand for x as well as
with the strand for y to result in the following structure of length 40:

−−−−−→px sx
−−−−−→py sy

−−−−−−−→ θ(py)θ(sx)

According to a Hamiltonian path of a given instance, edge strands can thus
concatenate node strands one after another and yield a structure of length
140. These node strands and edge strands are designed so carefully as not to
hybridize between strands or within one strand in any undesirable manner.

1 Other pairs also occur in nature but much less probably.
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Fig. 1. Self-assembly of an RNA rectangular tile by cotranscriptional folding [18]. While
being synthesized (transcribed) by RNA polymerase, the resulting RNA strand (tran-
script) is getting folded into the specific rectangular tile highly probably.

Hairpin-freeness and more general structure-freeness of (sets of) words were thus
motivated (see, e.g., [6,27,29,30] and references therein). A hairpin is formed by
combining x and θ(x) of a factor xyθ(x) into a stem and leaving y as a loop.
For an intermolecular hybridization, its multiple reactants must encounter first.
In contrast, a hairpin finds its interactive sites on one strand and hence forms
fast; with complementary factors x and θ(x), a strand immediately folds into a
hairpin and may get inert, though of course some multi-stranded architectures
for computing rather leverage hairpins for their sake (see, e.g., [38]).

Single-stranded architectures for computing are, in principle, a network of
intramolecular hybridizations if external control is ignored. Hairpins therefore
serve them as a primary driver. Whiplash PCR by Hagiya et al. [20,39] is an
architecture of a DNA strand that makes a transition from a state to another by
hybridizing its 3’-end wp, which encodes the current state p, to the substrand
θ(wpwq) (forming a hairpin), extending the 3’-end enzymatically along θ(wq) via
DNA polymerase, and deforming the hairpin; the resulting DNA strand ends
rather with wq, that is, the system has thus transitioned to the state q. Komiya
et al. demonstrated that their Whiplash PCR can make 8 transitions continu-
ously at around 80 ◦C [31]. Indeed, high thermal stability of DNA precludes the
hairpin deformation at room temperatures. DNA-made architectures are most
often driven by thermodynamic control. Rose et al. [36] eliminated the need of
thermal cycling from Whiplash PCR by incorporating TMSD.

RNA strands serve more naturally as a single-stranded architecture for com-
puting in vivo. Their isothermal reactivity even at room temperatures certainly
makes them more suitable than DNA for in-vivo computation. Computability
of RNA is exploited considerably in nature, often in collaboration with pro-
teins, as represented prominently by ribosome. This high reactivity has thwarted
researchers’ attempts to put RNA under control to a satisfactory extent so far.
Nevertheless, RNA is enhancing its presence in molecular engineering as an alter-
native of DNA (see, e.g., [2,3,15,26,40]) mainly because an RNA strand can be
synthesized enzymatically from its DNA template, which can be synthesized
commercially at a reasonable cost nowadays. These two features are ingeniously
combined in nature into a single-stranded computational engine called cotran-
scriptional folding. The RNA synthetic process is called transcription (see Fig. 1),
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in which an RNA polymerase enzyme attaches to a double-stranded DNA (col-
ored in gray), scans its template strand2 nucleotide by nucleotide from 3’-end
to 5’-end in order to extend an RNA strand called transcript (blue) according
to the lossless mapping A → U, C → G, G → C, and T → A. While being synthe-
sized thus sequentially, the transcript folds upon itself into intricate structures
kinetically, that is, being governed by forces among nucleotides and by likeli-
hood. This is the cotranscriptional folding. A riboswitch, which is a segment of
a (single-stranded) messenger RNA, regulates expression of a gene by folding
cotranscriptionally into one structure with a hairpin called terminator stem in
the absence of NaF or into another structure without the terminator stem in
its existence [42]. Significant roles of cotranscriptional folding in nature like this
have been discovered one after another (see, e.g., [33,35] and references therein).
Researchers have been challenging to tame cotranscriptional folding for biotech-
nological applications. In 2014, Geary, Rothemund, and Andersen successfully
“programmed” an artificial rectangular tile into a DNA strand in such a manner
that, as illustrated in Fig. 1, the corresponding transcript folds cotranscription-
ally into the programmed tile highly probably [18]. An instance of the DNA
program can be reused to yield multiple copies of the tile, which further self-
assemble into the honey-comb structure. The whole architecture is named RNA
origami. Its first step, self-assembly by cotranscriptional folding, is much less
understood than the second, which is accounted by the well-established theory
of DNA algorithmic tile self-assembly ([11] provides a thorough review of this
theory, for example).

Theoretical study of algorithmic self-assembly by cotranscriptional folding
has been initiated by the proposal of a computational model called oritatami
in the conference version of [17]. Oritatami does not aim at predicting RNA
cotranscriptional folding in nature. It rather aims at providing a right angle
to study the novel computational paradigm inspired by cotranscriptional fold-
ing, so-called co-synthetic stepwise optimization. In that paper [17], Geary et al.
demonstrated that one can count in oritatami! This pioneering work of them
was followed by successful reports of programming computational tasks in ori-
tatami such as tautology check [24], bit-string bifurcation [32], and simulation
of nondeterministic finite automata (NFA) [23,32]. In particular, the study by
Masuda, Seki, and Ubukata in [32] initiated another line of research, that is,
self-assembly of shapes by cotranscriptional folding. Demaine et al. [9] and Han
and Kim [21] independently developed this line further for the self-assembly of
general shapes. Throughout progression of studies as such, the oritatami model
has proven itself to be a proper platform to study other key drivers of com-
putation by cotranscriptional folding including modularization, memorization
without random access memory (RAM), steric hindrance, and so on, in spite of
its substantial abstraction. As a first milestone of oritatami research, all of these
key drivers were successfully interlocked together to simulate a universal Turing
machine with just polynomial overhead [16]. The resulting transcript should be
the first single-stranded architecture for universal computation.

2 The other strand is sometimes called coding strand because its sequence is equivalent
to the product RNA transcript.
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⇒

Fig. 2. Abstraction of a design of RNA rectangular tile that is self-assembled by RNA
origami [18] as a directed path over the triangular lattice with pairings. The idea and
artwork were provided by Cody Geary.
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Fig. 3. Folding of a glider motif by a delay-3 deterministic oritatami system. The parts
of the conformation colored in red, black, and blue are the seed, the prefix of transcript
stabilized already, and the nascent suffix (of length 3), respectively. (Color figure online)

2 Single-Stranded Architectures for Computing
in Oritatami

Let us first introduce the oritatami model briefly; for complete descriptions, see
[17]. Terminologies from graph theory are used; for them, see [10]. Oritatami
systems run on the 2-dimensional triangular lattice. As shown in Fig. 2, the
covalent backbone of a single-stranded RNA structure is modeled as a directed
path P over the lattice whose vertices are labeled with an element of Σ, a finite
set of types of abstract molecules (called beads), and hydrogen bonds of the
structure are modeled as a set of edges H that is pairwise-disjoint from the
set of paths in P ; the structure thus abstracted is called a conformation. An
oritatami system Ξ is a 6-tuple (Σ, σ,w,R, δ, α), which folds a word w ∈ Σ∗

(transcript) cotranscriptionally upon an initial conformation σ (seed) according
to a set of (symmetric) rules R ⊆ Σ × Σ that specifies which types of beads are
allowed to form a hydrogen bond once they get next to each other. The other
two parameters δ and α shall be explained shortly.

Dynamics and Glider. A computation by the oritatami system Ξ is a sequence
of conformations C0 = σ,C1, C2, . . . such that Ci is obtained by elongating the
directed backbone path of Ci−1 by the i-th bead (letter) of w so as to maximize
the number of hydrogen bonds. The dynamics of oritatami system should be
explained best by an example. Figure 3 illustrates a directional oritatami motif
called glider, where a seed is colored in red. Let Σ = {a, b, a′, b′, •}, a transcript
w be a repetition of a • bb′ • a′, and the rule set R be {(a, a′), (b, b′)}, that is,
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Fig. 4. Steric hindrance: one smallest-possible bump, formed by the chain L47-L48-L49,
causes a drastic change in the conformation that this probe glider module takes after the
collision. (Color figure online)

•-beads are inert. The delay parameter δ governs how many beads ahead should
be taken into account at the stabilization of a bead. In this example, δ = 3. By
the fragment of the first δ beads a•b, the system elongates the seed in all possible
ways to test how many hydrogen bonds the resulting temporal conformation can
form; note that the hydrogen bond between a c-bead and a d-bead necessitates
that (c, d) ∈ R, these beads be located at unit distance, and they are not bonded
covalently, that is, not contiguous in w. There are three possible elongations of
the seed by a•b in Fig. 3. Since • is inert and there is no sufficiently close a′-bead
around so as for the a-bead to form a hydrogen bond with, the stabilization is
governed by the b-bead, which can form a hydrogen bond only if the fragment is
folded as illustrated bold. Accordingly, the first bead, a, is stabilized to the east
of its predecessor, and then the next (4th) b′-bead is transcribed. This b′-bead
just transcribed cannot override the previous “decision” because with the sole
b-bead around it is bonded covalently. The next •-bead is inert with respect
to R so that it cannot override the previous decision either by definition. This
dynamics is called oblivious. In [17], another kind of dynamics called hasty was
studied, which does not question previous decisions.

Can we save bead types further? What if a′ is replaced by a and the rule
(a, a′) is modified to the self-interaction (a, a)? The resulting system will sta-
bilize the very first a-bead at two different positions nondeterministically. This
nondeterminism can be, however, prevented by setting another arity parameter
α to 1, which bounds the number of hydrogen bonds per bead from above. The
arity is maximum if it is equal to 6, the degree of the triangular grid graph.
Saving bead types is computationally hard in general [22] while some specific
kinds of rules such as self-interaction [25] can be removed in polynomial time.

The glider is the most versatile oritatami motif discovered so far. First of
all, it enables oritatami systems to fold into a directional structure of arbitrary
length. It also serves as a “wire” to propagate 1-bit of information arbitrarily
far [24], which helps to keep functional modules far enough not to interfere.
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The Turing-universal oritatami system in [16] leverages gliders even as a probe
to read out a letter of current binary word (over 0 and 1) of a simulated cyclic
tag system, which is a RAM-free binary string rewriting system proposed by
Cook [8]. See Fig. 4; a probe glider colored in purple is launched from southwest
so as to hit a region where a letter (0 or 1) is encoded geometrically by a bump
or its absence, and the collision redirects the glider either southeastwards or
eastwards.

Nondeterminism. Oritatami systems may encounter nondeterminism in a posi-
tion where a bead is stabilized, as briefly observed above, or in a way a bead forms
hydrogen bonds. The tautology checker [24] and NFA simulator [23] utilize the
position-wise nondeterminism. The bond-wise nondeterminism takes place only
if arity is small enough for a bead to use up its binding capability; for instance,
if arity is 1, a bead immediately gets inert after it forms a bond. This type of
nondeterminism never arises if arity is maximum, i.e., equal to the degree of tri-
angular grid graph because under the current optimization criterion to maximize
the number of bonds, it is not beneficial to give up a bond whenever possible
geometrically. Oritatami systems have been barely studied at any arity but the
maximum; let alone this kind of nondeterminism.

2.1 A Single-Stranded Architecture for Counting in Binary

The first oritatami system Ξbc implemented odd bit-width binary counter under
the hasty dynamics at delay 4 [17]. It employs 60 bead types {0, 1, . . . , 59} and its
transcript is a repetition of 0-1-2- · · · -58-59; with such a periodic transcript, an
oritatami system is said to be cyclic because transcription from a circular DNA
template likely yields a periodic transcript [14]. Modularization proves itself to
be quite fundamental also for oritatami design. The period of the transcript is
semantically divided into four factors called modules A:0-1- · · · -11, B:12-13-
· · · -29, C:30-31- · · · -41, and D:42-43- · · · -59, and the rule set R of Ξbc is
designed in such a way that Modules A and C function as a half-adder and the
interleaving B and D build a scaffold on which the half-adders are interlocked
properly in order for the output and carry-out of a half-adder to be propagated
to other half-adders.

Increment from 0 to 1 by Ξbc is illustrated in stages in Fig. 5. Its seed encodes
the initial count 0 with 3-bits in binary as a sequence of bead types in the fol-
lowing format: 30-39-40-41 to Module A and 0-9-10-11 to C for input bit 0. The
transcript folds macroscopically into one zig (←) and zag (→) to increment the
count by 1. The folding pathway of Ξbc is designed to guarantee that Module A
encounters in a zig only four environments specified by whether the input from
above is

30-39-40-41 (input 0) or 30-35-36-41 (input 1) (1)

and whether it starts folding just below the input (top) or away by distance
3 (bottom). In these environments, Module A folds deterministically into the
respective conformations in the upper row of Fig. 6, or we should say that the
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Fig. 5. The oritatami binary counter increments its value from 0, which is encoded on
its seed, to 1 through one zigzag. (Color figure online)
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Fig. 6. All the six bricks of Module A.

Fig. 7. All the four bricks of Module B: B0 and B1 for zig, B2 for zag, and BT for
zig-to-zag turn.

rule set R is designed to have Module A behave so. Such conformations folded
in an expected environment are called bricks as the whole folding is built upon
them. Module A ends folding at the bottom (with carry-out) only when it started
at the bottom (with carry-in) and read input 1 from above. The interleaving
Module B ends at the same height as it started so that the carry-out from the
Module A is fed into the next Module C properly. Module B utilizes the two
bricks to propagate this carry (see Fig. 7), which also plays a role of spacing
Modules A and C sufficiently to prevent their interference. At the end of the
zig, Module B encounters a signal of carriage-return 27-28-29 encoded on the
seed and folds into the brick BT for zig-to-zag turn. Note that this brick exposes
the signal below to trigger the next zig-to-zag turn. Module C behaves exactly
in the same manner as A mod 30. In contrast, Module D is not such a mod-
30 variant of B. It is rather responsible for right carriage returns. Bit-width
being odd and the introduction of Module D eliminate the need for one module
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to take responsibility for both turns. Observe also that due to the odd bit-
width and alternation of A and C, two instances of A never get adjacent even
vertically or neither do C’s. Being placed side-by-side, instances of A would
interfere quite likely inter-modularily via rules that are supposed to work intra-
modularily, that is, to fold an instance into bricks. One programming principle
of oritatami systems is to design a macroscopic folding pathway in which any
two instances of every module are spaced at least δ +1 away, which is the radius
of the event horizon of delay-δ oritatami systems. Duplicating a module using
pairwise-distinct bead types is quite useful for this purpose though at the cost
of bead types.

The zag formats the count for the sake of succeeding zig. Observe that the
bricks A00, A01, A10, A11 encode output 0 in two ways and 1 in other two ways.
Using two bricks of C which correspond to A0 and A1 in Fig. 6, a zag reformats
these outputs 0 and 1 according to the input format (1) for Module A in a zig.

2.2 Arithmetic Overflow and Infinite Binary Counter.

This counter Ξbc can count up to 2m − 1 but not any further since it is not
capable of handling arithmetic overflow, where m is the width in bits of the
count encoded on the seed (in the example run, m = 3). Precisely speaking,
given 2m − 1 in binary, a zig would end at the bottom (with carry), but as
shown in Fig. 7, Module B is not designed to read carriage-return from distance
3 away. Endowing Module B with the ability to widen width in bits of the count
would convert Ξbc to an infinite counter, which is significant in the theory of
molecular self-assembly (see, e.g., [7]). It should be important to widen by 2 bits
at one time so that the width in bits is kept odd.

2.3 Applications of the Binary Counter

By definition, the oritatami system is not equipped with finite state control unlike
the finite automaton (FA) or Turing machine. The cyclic tag system (CTS) was
chosen as a model to be simulated due to its freeness from random access memory
in order to prove the Turing-universality of oritatami systems [16]. The binary
counter demonstrated two basic ways of information storage and propagation in
oritatami, that is, as a sequence of bead types and as a way to enter a region
where a receiver is to fold. This counter actually provides a medium to store and
propagate even multiple-bit of information arbitrary far; imagine if the zag-to-zig
turn brick of D is modified so as to start the next zig rather at the top (no carry),
then the next zigzag retains the current value instead of incrementing it. Despite
of its weakness as a memory (for example, it cannot even decrement), it found an
intriguing application in the self-assembly of shapes by cotranscriptional folding.

After being modified so as to operate under the oblivious dynamics, the
binary counter was embedded into another oritatami system as a component
(higher-level concept of module) by Masuda, Seki, and Ubukata towards the
self-assembly of Heighway dragon fractal by cotranscriptional folding [32]. This
fractal is an alias of the well-known paper-folding sequence, over {L,R} of left
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Fig. 8. Component automaton for the Heighway dragon oritatami system [32]. Tran-
sitions are labeled with the information propagated.

and right turns. It is an automatic sequence (see [5]) and hence admits a DFA
that outputs its i-th letter, being fed with the binary representation of i from
its least significant bit. Such a DFA for paper-folding sequence Apfs consists of
4 states and is cycle-free. In order to produce Heighway dragon, it hence suffices
to count in binary, to simulate Apfs, and to make a turn according to the simula-
tion while remembering the current count i. In principle, Apfs could be simulated
by the Turing-universal oritatami CTS simulator, but the resulting component
would be literally too large and roughly-faced to be embedded into another sys-
tem and its usage of 542 bead types cannot be ignored, either. Masuda et al.
developed a custom-made simulator of Apfs quite simply by exploiting its cycle-
freeness. This component, denoted by D, does not lose the input count i but
rather propagates it. Another newly-developed component T consists of three
instances of a rhombus-shaped sub-component, which bifurcates3 the binary rep-
resentation of current count i and lets the output of the previous Apfs guide the
transcript so as to read the bifurcated count leftward or rightward. Transcrib-
ing the modified counter, say C, D, T in this order repeatedly4 interlocks these
components properly as illustrated in the component automaton in Fig. 8 into a
finite portion of Heighway dragon fractal.

Can we program an oritatami system to self-assemble the actual infinite
Heighway dragon? Assume that an infinite counter is given, which is nontrivial
but seems feasible as stated in Sect. 2.2. However, it seems challenging for it to

3 It actually does trifurcate a binary string. The output frontward is just not needed
in their system.

4 In fact, the period is twice as long as this because the component D for vertical
segments of the dragon must be distinguished from D for horizontal segments for
some technical reason; see [32].
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reside with other components on a periodic transcript. Periodicity of a transcript
is the only one way known so far to make an infinite oritatami system to be
describable in a finite mean. Once a counter component C is arithmetically
overflown and width in bit is expanded, the succeeding D and T components
must also get expanded, that is, their sequences are lengthened. A solution is to
program all the functions as C, D, and T into one sequence of bead types, but
then how can a system call an appropriate function when needed? It might be
also the case that Heighway dragon cannot be self-assembled by any oritatami
system. If so, how can we prove the impossibility?

3 Towards Algorithmic Programming of Oritatami
Systems

Modularization is one of the most fundamental programming techniques. In addi-
tion to its conventional benefits such as reusability of modules, modularization
has automatized oritatami programming to a considerable extent at least at the
modular level. Consider the following rule design problem (RDP):

Input: a transcript w = 1-2-· · · -n, a set of k pairs of an environment which is
free from any bead 1, 2, . . . , n and a folding path of length n, delay δ, and
arity α;

Output: a rule set R such that at delay δ and arity α, the transcript w folds
deterministically along the j-th folding path in the j-th environment for all
1 ≤ j ≤ k.

This problem is NP-hard in k, the number of pairs of an environment and a tar-
get folding path [17] but linear in n, the length of transcript. Geary et al. have
proposed an algorithm to solve this problem whose time complexity is exponen-
tial only in k and δ [17]. The delay δ has been bounded by 4 in literature so far.
It might be just beyond ability of human programmers to take an exponentially
increasing number of conformations in δ into account at every bead stabiliza-
tion. Hence, the upper bound on k serves as a significant criterion to evaluate a
modularization. The binary counter bounds k by 6 (see Figs. 6 and 7), that is,
it was modularized properly according to this criterion. All of its four modules
A, B, C, and D were programmed by this algorithm indeed.

This fixed-parameter-tractable (FPT) algorithm runs in linear time in n,
but it is still important to bound n by a small constant, that is, to downsize
modules. As long as they are small, the increase in the size of Σ to ensure that
their transcript and environments do not share any bead type remains moderate
or may even be cancelled by the modules’ reusability. It is indispensable for the
transcript not to reuse a bead type or borrow a bead type from environments
for the efficiency of this algorithm. In fact, if the transcript is rather designed
by an adversary using even a bead type from environments, then the resulting
rule set design problem becomes NP-hard in n even when k = 1 [34].
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3.1 Programmability of Modules: Self-standing Shape and Steric
Hindrance

Gliders have proven itself to be quite programmable thanks to its small num-
ber of intramodular bonds (just one per three beads) and its intermodular-
binding-independency (self-standing property). Modules of non-self-standing
shape tend to be less programmable than those of self-standing shape due to
their computationally-meaningless bonds. Compare it with structural modules
B and D (colored in red in Fig. 5). They do bind to the module above even in the
absence of logical need to do so except for carriage return in order merely to be
shaped into a parallelogram. Freeing them from binding intermodularily would
require heavy hardcording with much more intramodular bonds and severely
impair their programmability. Recall that these parallelogram-shaped modules
were designed to operate under the hasty dynamics. Oritatami systems seem
less governable under the oblivious dynamics, which has received a greater deal
of attention. Modules of self-standing shape have thus gained the significance
further.

Programmers should proactively save bonds also from information propa-
gation. In this respect, entering a receiver’s region from different positions is
superior to explicitly encoding as a sequence of bead types. This geometric
encoding utilizes steric hindrance. For example, when an instance of Module
A of the binary counter starts folding with no carry-in, the module “just” above
geometrically precludes many stable conformations that the nascent transcript
fragment could take without anything above; on the other hand, being carried-
in, some bead of the module above might be too far (at least δ + 2 points away)
for the nascent fragment to interact. A sender also can take advantage of steric
hindrance as illustrated in Fig. 4. The CTS simulator [16] encodes 0 as a unit
triangular bump and 1 as its absence (flat surface). When it is read, a glider
is launched towards the position where the letter is thus encoded geometrically.
Unlike Module A, this glider collides with this position always in an identical
manner, but the bump geometrically prevents this glider from changing its direc-
tion obtusely and makes the glider choose the second most stable conformation
that rather redirects the glider acutely.

3.2 Towards Algorithmic Design of Folding Pathways

The FPT algorithm requires folding paths to be followed by a module transcript
given as input. An entirely different problem thus arises of how to design such
paths. This design task is yet to be done algorithmically, but at the modular level,
it might be solvable at worst by brute force as long as modules are sufficiently
small. Above the modular level, programmers encounter global folding pathway
design problem and the astronomical number of global folding pathways stands in
their hope of fully automatizing the design of oritatami architectures. The global
folding pathway design also involves intrinsic issues to decide where modules
should be deployed on the plane and how they should be traversed unicursally
without crossing itself, and desirably these issues are addressed in a way to
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result in a periodic transcript with shortest period possible. Furthermore, global
folding pathway should be designed so as to avoid “functional hotspots” and
rather to scatter functions along the whole transcript as much as possible. The
CTS simulator demonstrates novel techniques for this purpose and also confines
relatively functionally-hot spots geometrically to prevent interference.

The Heighway dragon is unicursally traversable so that the global folding
pathway illustrated in the component automaton in Fig. 8 has been obtained
rather quite naturally. In general, however, this global folding pathway problem
is quite challenging, being illustrated even experimentally in the corresponding
design process of the RNA origami single-stranded architecture [18]. The zigzag
global folding pathway of the binary counter is the most frequently-used so far.

4 Conclusions

Oritatami is a novel computational model of co-synthetic stepwise local opti-
mization, which is a computational paradigm created by RNA cotranscriptional
folding. In this paper, we have introduced existing oritatami architectures for
computing briefly and raised several research directions. The Turing universal-
ity [16] is not the final objective of the study of computability of oritatami at all.
In fact, organisms do not seem to require such a strong computational power to
support their life. Almost nothing is known about the non-Turing universality
of oritatami. Demaine et al. proved that at delay 1 and arity 1, deterministic
oritatami systems can produce conformations of size at most 9m starting from
a seed of size m, and hence, the class of such oritatami systems is not Turing
universal [9]. Some partial results of the non-Turing universality are recently
proved on oritatami systems with unary transcript [13]. Can we characterize a
subclass of oritatami systems that is strictly weaker than the Turing machine?
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