
Deciding Context Unification
(with Regular Constraints)

Artur Jeż(B)

University of Wroc�law, Wroc�law, Poland
aje@cs.uni.wroc.pl

Abstract. Given a ranked alphabet, context are terms with a single
occurrence of a special symbol • (outside of the alphabet), which repre-
sents a missing subterm. One can naturally build equations over contexts:
the context variables are treated as symbols of arity one and a substitu-
tion S assigns to each such a variable a context S(X). A substitution S is
extended to terms with context variables in a natural way: S(X(t)) is a
context S(X) in which the unique occurrence of • is replaced with S(t).
For historical reasons, the satisfiability of context equations is usually
referred to as context unification.

Context unification generalizes word equations and first-order term
unification (which are decidable) and is subsumed by second order unifi-
cation (which is undecidable) and its decidability status remained open
for almost two decades. In this paper I will sketch a PSPACE algorithm
for this problem. The idea is to apply simple compression rules (replac-
ing pairs of neighbouring function symbols) to the solution of the context
equation; to this end we appropriately modify the equation (without the
knowledge of the actual solution) so that compressing the solution can
be simulated by compressing parts of the equation. When the compres-
sion operations are appropriately chosen, then the size of the instance
is polynomial during the whole algorithm, thus giving a PSPACE-upper
bound. The best known lower bounds are as for word equations, i.e.
NP. The method can be extended to the scenario in which tree-regular
constraints for the variables are present, in which case the problem is
EXPTIME-complete.

1 Introduction

Context unification is a generalization of word equations to terms. In the word
equations problem we are given an alphabet Σ and a set of variables X . Then,
given an equation of the form u = v, where both u, v are words over the let-
ters and variables, we ask about the existence of a substitution of variables by
words over the alphabet that turns this formal equation into a true equality
(of words over the alphabet). The first algorithm for this problem was given by
Makanin [18]; the currently best algorithms for this problem utilize different (and
simpler) approach and work in PSPACE [11,22], the best known lower bound is
NP, and it follows easily from, say, the NP-hardness of integer programming.
c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 18–40, 2019.
https://doi.org/10.1007/978-3-030-24886-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_2

Deciding Context Unification with Regular Constraints 19

We view terms as rooted, ordered (meaning that the children of a node are
ordered using a usual left-to-right order) trees, usually denoted with letters t or
s. Nodes are labelled with elements from a ranked alphabet Σ, i.e. each letter
a ∈ Σ has a fixed arity ar(f); those elements are usually called letters. A tree
is well-formed if a node labelled with f has exactly ar(f) children; we consider
only well-formed trees, which can be equivalently seen as ground terms over Σ.
We will also use term notation to denote the trees in text, for example, f(c, c′)
denotes the tree with root labelled with f and two children, first (left) labelled
with c and the second (right) with c′; those children are leaves.

When generalizing the word equations from words to terms, one first needs
to decide, what a variable can represent. If a variable can only represent a well-
formed term, then we arrive at a standard first-order unification problem, which
can be solved in linear time; so this does not even generalize the word equations.
Thus the variables are allowed to take arguments, i.e. they define trees with
missing subtrees. Formally, we extend the alphabet with parameter symbols
•1, •2, . . . of arity 0. If a term t uses •1, •2, . . . , •i then t(t1, . . . , ti), where t1, . . . , ti
do not use parameters, is t in which •j is replaced with tj . Thus the variables
are ranked: X takes ar(X) arguments and the substitution for it has to use
•1, •2, . . . , •ar(X). For instance, an equation f(X(c),X(c)) = X(f(c, c)) has a
solution X = •. Under this substitution both sides evaluate to f(c, c). There
are other solutions, for instance X = f(•, •), which evaluates both sides to
f(f(c, c), f(c, c)); in general, solution that evaluates both sides to full binary
tree of arbitrary height is easy to construct. When no further restrictions are
given, this problem is the second order unification and is undecidable [9].

In context unification we require that each •j is used exactly once. For
instance, the aforementioned equation f(X(c),X(c)) = X(f(c, c)) as an instance
of context unification has exactly one solution: X = •, other solution are
excluded by the restriction that • is used exactly once. It is easy to see that
the case of many argument NP-reduces to the case with only one argument,
and we deal with only this case further on. Context unification was introduced
by Comon [1,2], who also coined the name, and independently by Schmidt-
Schauß [24]. It found usage in analysis of rewrite systems with membership con-
straints [1,2], analysis of natural language [20,21], distributive unification [25]
and bi-rewriting systems [13].

Context unification is both subsumed by second order unification (which is
undecidable) and subsumes word equations (which are decidable). Furthermore,
other natural problems between those two usually trivially reduce to word equa-
tions or are undecidable. Thus, in a sense, context unification is the only such
problem, whose decidability remains open. This is one of the reasons why it
gained considerable attention in the term rewriting community [23] and no won-
der that there was a large body of work focused on context unification and several
partial results were obtained [2,6–8,12,15,17,26,28,29]. Note that in most cases
the corresponding variants of the general second order unification remain unde-
cidable, which supported the conjecture that context unification is decidable.

20 A. Jeż

Context unification was shown to be equivalent to ‘equality up to constraint’
problem [20] (which is a common generalisation of equality constraints, sub-
tree constraints and one-step rewriting constraints). In fact one-step rewriting
constraints, which is a problem extensively studied on its own, are equivalent
to stratified context unification [21]. It is known that the first-order theory of
one-step rewriting constraints is undecidable [19,32,33]. For whole context uni-
fication, already the ∀ ∃8-equational theory is Π0

1 -hard [34].
Some fragments of second order unification are known to reduce to context

unification: the bounded second order unification assumes that the number of
occurrences of the argument of the second-order variable in the substitution
term is bounded by a constant; note that it can be zero and this is the crucial
difference with context unification; cf. monadic second order unification, which
can be seen as a similar variant of word equations, and is known to be NP-
complete [14]. This fragment on one hand easily reduces to context unification
and on the other hand it is known to be decidable [27]; in fact its generalisation
to higher-order unification is decidable as well [30] and it is known that bounded
second order unification is NP-complete [15].

The context unification can be also extended by allowing some additional
constraints on variables, a natural one allows the usage of the tree-regular con-
straints, i.e. for any variable we require that its substitution comes from a certain
regular set of trees. It is known that such an extension is equivalent to the linear
second order unification [16], defined by Levy [12]: in essence, the linear second
order unification allows bounding variables on different levels of the function,
which makes direct translations to context unification infeasible, however, usage
of regular constraints gives enough expressive power to encode such more com-
plex bounding. Note, that the reductions are not polynomial and the equivalence
is stated only on the decidability level.

The usage of regular constraints is very popular in case of word equations,
in particular it is used in generalisations of the algorithm for word equation to
the group case and essentially all known algorithms for word equations problem
can be generalised to word equations with regular constraints [3,4,31].

Results

The decidability status of context unification remained unknown for almost two
decades. In this paper I present a proof that context unification can be solved
in PSPACE, using a generalization of an algorithm for word equations; see [10]
for a full version.

The idea is to apply simple compression rules (replacing pairs of neighbouring
function symbols) to the solution of the context equation; to this end we appro-
priately modify the equation (without the knowledge of the actual solution) so
that compressing the solution can be simulated by compressing parts of the
equation. It is shown that if the compression operations are appropriately cho-
sen, then the size of the instance is polynomial during the whole algorithm, thus
giving a PSPACE-upper bound. The best known lower bounds are the same for
word equations, i.e. context unification is NP-hard. The method can be extended

Deciding Context Unification with Regular Constraints 21

to the scenario in which tree-regular for the variables are present, in which case
the problem is EXPTIME-complete.

This idea, known under the name of recompression, was used before for word
equations [11], simplifying the existing proof of containment in PSPACE. Further-
more, applications of compression to fragments of context unification were known
before [6,8,15,30] and the presented algorithm extends this method to terms in
full generality. In this way solving word equations using recompression [11] gen-
eralises to solving context unification. This in some sense fulfils the original plan
of extending the algorithms for word equations to context unification.

2 Definitions

2.1 Trees

As said before, we are given a ranked alphabet Σ, i.e. there is an arity function
ar : Σ → N, and we deal with rooted (there is a designated root), ordered (there
is a fixed linear order on children of each node) Σ-labelled trees. We say that a
tree is well-formed when a node labelled with a ∈ Σ has ar(a) children. We also
view such trees as terms, then a tree is well-built if seen as a term it is well-built.

2.2 Patterns

We want to replace fragments of a tree with new nodes, those fragments are not
necessarily well-formed. Thus we want to define ‘trees with holes’, where holes
represent missing arguments. Let Y = {•, •1, •2, . . .} be an infinite set of symbols
of arity 0, we think of each of them as a place of a missing argument; its elements
are collectively called parameters. A pattern is a tree over an alphabet Σ ∪ Y,
such that each parameter occurs at most once in it. The usual convention is that
the used parameters are •1, •2, . . . , •k, or •, when there is only 1 parameter;
moreover, we usually assume that the order (according to preorder traversal of
the pattern) of occurrences of the parameters in the pattern is •1, •2, . . . , •k.
We often refer to parameter nodes and non-parameter nodes to refer to nodes
labelled with parameters and non-parameters, respectively. A pattern using r
parameters is called r-pattern. A pattern p occurs (at a node v) in a tree t if p
can be obtained by taking a subtree t′ of t rooted at v and replacing some of
subtrees of t′ by appropriate parameters. This is also called an occurrence of p
in t. A pattern p is a subpattern of t if p occurs in t.

In a more classic terminology, 1-patterns are also called contexts, hence the
name “context unification”.

Given a tree t, its r-subpattern p occurrence and an r-pattern p′ we can
naturally replace p with p′: we delete the part of t corresponding to p with
removed parameters and plug p′ with removed parameters instead and reattach
all the subtrees in the same order; as the number of parameters is the same, this
is well-defined. We can perform several replacements at the same time, as long
as occurrences of replaced patterns do not share non-parameter nodes. In this
terminology, our algorithm will replace occurrences of subpatterns of t in t.

22 A. Jeż

We focus on some specific patterns: A chain is a pattern that consists only
of unary nodes plus one parameter node. Chains that have two nodes that are
labelled with different letters, i.e. of the form a(b(•)) for a �= b, are called pairs;
chains whose all unary nodes are labelled with the same letter a, i.e. of the form
a(a(. . . (a(•) . . .))), are called a-chains. A chain t′ that is a subpattern of t is a
chain subpattern of t, an occurrence of an a-chain subpattern a(a(. . . (a(•) . . .)))
is maximal if it cannot be extended (in t) by a nor up nor down. A pattern of a
form f(•1, •2, . . . , •i−1, c, •i, . . . , •ar(f)−1) is denoted as (f, i, c).

We treat chains as strings and write them in the string notation (in par-
ticular, we drop the parameters) and ‘concatenate’ them, that is, for two
chains sa = a1(a2(. . . ak(•) . . .)) and sb = b1(b2(. . . b�(•) . . .)) we write them
as sa = a1a2 · · · ak and sb = b1b2 · · · b� and their concatenation sasb =
a1a2 · · · akb1b2 · · · b� denotes the chain a1(a2(. . . ak(b1(b2(. . . b�(•) . . .))) . . .)). In
this convention ab denotes a pair and a� denotes an a-chain. We use those con-
ventions also for 1-patterns and also for 1-patterns followed by a single term,
i.e. for 1-patterns p1, . . . , pk and a term t the p1p2 · · · pkt denotes the term
p1(p2(. . . pk(t) . . .)).

2.3 Context Unification: Formal Statement

By V we denote an infinite set of context variables X, Y , Z, We also use
individual term variables x, y, z, . . . taken from X . When we do not want to
distinguish between a context variable or term variable, we call it a variable and
denote it by a small Greek letter, like α, β, γ,

Definition 1. The terms over Σ, X , V are ground terms with alphabet Σ∪X ∪V
in which we extend the arity function ar to X ∪ V by ar(X) = 1 and ar(x) = 0
for each X ∈ V and x ∈ X . A context equation is an equation of the form u = v
where both u and v are terms over Σ ∪ X ∪ V.

We are interested in the solutions of the context equations, i.e. substitutions
that replace term variables with ground terms and context variables with 1-
patterns, such that a formal equality u = v is turned into a valid equality of
ground terms. More formally:

Definition 2. A substitution is a mapping S that assigns a 1-pattern S(X) to
each context variable X ∈ V and a ground term S(x) to each variable x ∈ X .
The mapping S is naturally extended to arbitrary terms as follows:

– S(a) := a for each constant a ∈ Σ;
– S(f(t1, . . . , tn)) := f(S(t1), . . . , S(tm)) for an m-ary f ∈ Σ;
– S(X(t)) := S(X)(S(t)) for X ∈ V.

A substitution S is a solution of the context equation u = v if S(u) = S(v). The
size of a solution S of an equation u = v is |S(u)|, which is simply the total

Deciding Context Unification with Regular Constraints 23

number of nodes in S(u). A solution is size-minimal, if for every other solution
S′ it holds that |S(u)| ≤ |S′(u)|. A solution S is non-empty if S(X) is not a
parameter for each X ∈ X from the context equation u = v.

For a ground term S(u) and an occurrence of a letter a in it we say that this
occurrence comes from u if it was obtained as S(a) in Definition 2 and that it
comes from α if it was obtained from S(α) in Definition 2.

Example 1. Consider an alphabet Σ = {f, c, c′} with ar(f) = 2 and ar(c) =
ar(c′) = 0 and an equation X(c) = Y (c′) over it. It has a solution (which is
easily seen to be size-minimal) S(X) = f(•, c′) and S(Y) = f(c, •); under this
substitution this equation evaluates to S(X(c)) = S(Y (c′)) = f(c, c′).

3 Local Compression of Trees

3.1 Compression Operations

We perform three types of subpattern compression on a tree t:

a-chain compression. For a unary letter a and every � > 1 we replace each
occurrence of a maximal a-chain subpattern a� by a new unary letter a�.

ab compression. For two different unary letters a and b we replace each occur-
rence of a subpattern ab with a new unary letter c.

(f, i, c) compression. For a constant c and letter f of arity ar(f) = m ≥ i ≥ 1,
we replace each occurrence of subpattern (f, i, c), i.e. f(•1, •2, . . . ,
•i−1, c, •i, . . . , •m−1), with subpattern f ′(•1, •2, . . . , •i−1, •i, . . . , •m−1),
where f ′ is a fresh letter of arity m − 1 (intuitively: the constant c on i-th
place is ‘absorbed’ by its father labelled with f).

These operations are collectively called subpattern compressions. When
we want to specify the type but not the actual subpattern compressed,
we use the names chain compression, pair compression and leaf compres-
sion. These operations are also called TreePattComp(ab, t), TreePattComp(a, t)
and TreePattComp((f, i, c), t), or simply TreePattComp(p, t) for a pattern p ∈
{a, ab, (f, i, c)}.

The a-chain compression and ab compression are direct translations of the
operations used in the recompression-based algorithm for word equations [11].
On the other hand, the leaf compression is a new operation that is designed
specifically to deal with trees.

3.2 Compression of Non-crossing Patterns

Consider a context equation u = v and its solution S. Suppose that we want
to perform the ab compression on S(u) and S(v), i.e. we want to replace each
occurrence of a subpattern ab with a fresh unary letter c. Such replacement
is easy, when the occurrence of ab subpattern comes from the letters in the
equation or from S(α) for some variable α: in the former case we modify the

24 A. Jeż

equation by replacing the occurrences of ab with c, in the latter the modification
is done implicitly (i.e. we replace the occurrences of fab in S(α) with c). The
problematic part is with the ab subpattern that is of neither of those forms, as
they ‘cross’ between S(α) and some letter outside S(α). This is formalised in
the below definition, the intuition and definition is similar also for a-chains and
(f, i, c) patterns.

Definition 3. For an equation u = v and a substitution S we say that an occur-
rence of a subpattern p in S(u) (or S(v)) is

explicit with respect to S: if all non-parameter letters in this occurrence
come from explicit letters in u = v;

implicit with respect to S: if all non-parameter letters in this occurrence
come from S(α) for a single occurrence of a variable α;

crossing with respect to S: otherwise.

We say that ab is a crossing pair (a has a crossing chain; (f, i, c) is a crossing
father-leaf subpattern) with respect to S if it has at least one crossing occurrence
(there is a crossing occurrence of an a� chain; has at least one crossing occur-
rence) with respect to S. Otherwise ab (a, (f, i, c)) is a non-crossing pair (has
no crossing chain; is a non-crossing father-leaf subpattern) with respect to S.

To make the notions more uniform, we will also say that p ∈ {ab, a, (f, i, c)} is
a crossing/non-crossing subpattern, meaning that ab is a crossing/noncrossing
pair, a has crossing chain/has no crossing chains and (f, i, c) is a crossing/non-
crossing father-leaf subpattern.

When ab is non-crossing with respect to a solution S, we can simulate
the TreePattComp(ab, S(u)) on u = v simply by performing the ab compres-
sion on the explicit letters in the equation, we refer to this operation as
PattCompNCr(ab, ‘u = v’). Then occurrences of ab that come from explicit let-
ters are compressed, the ones that come from S(α) are compressed by changing
the solution and there are no other possibilities. The same applies also to com-
pression of a-chains and (f, i, c)-compression.

As we discuss correctness of nondeterministic procedures, in the following
we will say that a nondeterministic procedure is sound, if given a non-satisfiable
context equation it cannot transform it to a satisfiable equation, regardless of
the nondeterministic choices.

Lemma 1. PattCompNCr is sound.
Let u = v has a solution S and let p ∈ {ab, a, (f, i, c)} be a noncrossing

subpattern. Then the returned equation u′ = v′ has a solution S′ (over an alpha-
bet expanded by letters introduced during the subpattern compression) such that
S′(u′) = TreePattComp(p, S(u)).

Example 2. Consider the following context equation over the alphabet
{a, b, c, c′, f}, with ar(a) = ar(b) = 1, ar(c) = ar(c′) = 0 and ar(f) = 2:

bXaXc = baa(f(aY c′, bb(f(c, c′)))),

Deciding Context Unification with Regular Constraints 25

b

a

a

f

a

a

f

b

b

f

c c′

c

b

b

f

c c′

a

b

a

a

f

a

a

f

b′

f

c c′

c

b′

f

c c′

a

Fig. 1. An illustration to Example 2. The Figure presents the tree obtained at both
sides under the substitution, the values substitutions for variables are depicted: in
dashed line for X and dotted for Y . On the right the tree after the compression of bb
is depicted.

see also Fig. 1. It is easy to see that there is a unique solution S(X) =
aa(f(•, bb(f(c, c′)))) and S(Y) = aa(f(c, bb(f(c, •)))).

The subpattern ba has a crossing occurrence on the left-hand side, as a
is the first letter of S(X) and bX is a subpattern. Subpattern bb has only
noncrossing occurrences, some of them explicit and some implicit. Subpatterns
(f, 2, c′), (f, 1, c), a3 are also crossing.

Compressing b subpattern leads to an equation

bXaXc = baa(f(baY c′, b′(f(c, c′)))).

Then the solution is S′(X) = aa(f(b•, b′(f(c, c′)))) and S′(Y) =
aa(f(bc, b′(f(c, •)))).

4 Uncrossing

In general, one cannot assume that an arbitrary pair ab, a-chain or (f, i, c) sub-
pattern is non-crossing. However, for a fixed subpattern p and a solution S we
can modify the instance so that this p becomes non-crossing with respect to a
solution S′ (that corresponds to S of the original equation). This modification
is the cornerstone of our main algorithm, as it allows subpattern compression to
be performed directly on the equation, regardless of how the solution actually
looks like.

26 A. Jeż

4.1 Uncrossing a Pair

We begin with showing how to turn a crossing pair ab into a non-crossing one.
As a first step, we characterise crossing pairs in a more operational manner:
for a non-empty substitution S, a variable α and a context variable X by a first
letter of S(α) we denote the topmost-letter in S(α), by the last letter of S(X) we
denote the function symbol that is the father of ‘•’ in S(X). Then ab is crossing
with respect to S if and only if one of the following conditions holds for some
variable α and context variable X:

(CP1) aα occurs in u = v and b is the first letter of S(α) or
(CP2) Xb occurs in u = v and a is the last letter of S(X) or
(CP3) Xα occurs in u = v, a is the last letter of S(X) and b the first letter of

S(α).

In each of (CP1–CP3) it is easy to modify the instance so that ab is no longer
a crossing pair:

Ad (CP1): We pop up the letter b: we replace α with bα. In this way we also
modify the solution S(α) from bt to t. If the new substitution for α
is empty (which can happen only when α is a context variable), we
remove α from the equation.

Ad (CP2): We pop down the letter a: we replace each occurrence of X with
Xa. In this way we implicitly modify the solution S(X) from sa to
s. If the new substitution for X is empty, we remove X from the
equation.

Ad (CP3): this is a combination of the two cases above, in which we need to
pop-down from X and pop-up from α.

The whole uncrossing procedure can be even simplified: for each context
variable X we guess its last letter and it if is a, then we pop it down. Similarly,
for each variable α we guess its first letter and if it is b then we pop it up.
If at any point a context some variable becomes empty then we remove its
occurrences. We call the whole procedure Uncross (ab, ‘u = v’) and its details
are in the pseudocode in Algorithm1.

If u = v has a solution S then for appropriate non-deterministic choices
Uncross(ab, ‘u = v’) returns an equation u′ = v′ that has a solution S′ such that
ab is non-crossing with respect to S′ and S′(u′) = S(u).

Lemma 2. Let a �= b be two different unary letters. Then Uncross(ab, ‘u = v’)
is sound and if u = v has a non-empty solution S (over an alphabet Σ) then
for appropriate non-deterministic choices the returned equation u′ = v′ has a
non-empty solution S′ (over the same alphabet Σ) such that S′(u′) = S(u) and
ab is a non-crossing pair with respect to S′.

Example 3. Continuing Example 2, recall that ba is a crossing subpattern in

bXaXc = baa(f(aY c′, bb(f(c, c′)))),

Deciding Context Unification with Regular Constraints 27

Algorithm 1. Uncross(ab, ‘u = v’)
1: for X ∈ V do
2: if the last letter of S(X) is a then � Guess
3: replace each occurrence of X in u = v by Xa
4: � Implicitly change S(X) = sa to S(X) = s
5: if S(X) is empty then � Guess
6: remove X from u = v: replace each Xs in the equation by s

7: for α ∈ V ∪ X do
8: if the first letter of S(α) is b then � Guess
9: replace each occurrence of α in u = v by bα

10: � Implicitly change S(α) = bs to S(α) = s
11: if S(α) is empty then � Guess; applies only to context variables
12: remove α from u = v: replace each αs in the equation by s

where the alphabet is {a, b, c, c′, f}, with ar(a) = ar(b) = 1, ar(c) =
ar(c′) = 0 and ar(f) = 2 and S(X) = a(a(f(•, b(b(f(c, c′)))))) and S(Y) =
a(a(f(c, b(b(f(c, •)))))). We pop a up from X, obtaining

baXbaaXbc = baa(f(aY c′, bb(f(c, c′)))),

the solution is S′(X) = a(f(•, bb(f(c, c′)))) and S′(Y) = S(Y). It is easy to
verify that ba is no longer crossing.

4.2 Uncrossing Chains

Suppose that some unary letter a has a crossing chain with respect to a non-
empty solution S. As in the case of pairs, it is easy to see that a has a crossing
chain with respect to S if and only if one of the following holds for variable α
and context variable X (note that those conditions are in fact (CP1–CP3) for
a = b):

(CC1) aα occurs in u = v and the first letter of S(α) is a;
(CC2) Xa occurs in u = v and a is the last letter of S(X);
(CC3) Xα occurs in u = v and a is the last letter of S(X) as well as the first

letter of S(α).

The cases (CC1) and (CC2) are symmetric while (CC3) is a composition
of (CC1) and (CC2). So suppose that (CC2) holds. Then we can replace each
occurrence of X in the equation u = v with Xa (implicitly changing the solution
S(X) = ta to S(X) = t), but it can still happen that a is the last letter of S(X).
So we keep popping down a until the last letter of S(X) is not a, in other words
we replace X with Xar, where S(X) = tar and the last letter of t is not a. Then
a and X can no longer satisfy condition (CC2), as the last letter of S′(X) is
different than a. A symmetric action and analysis apply to (CC1), and (CC3)
follows by applying the popping down for X and popping up for α. To simplify
the arguments, for a ground term or 1-pattern t we say that a� is the a-prefix of

28 A. Jeż

t if t = a�t′ and the first letter of t′ is not a (t′ may be empty). Similarly, for a
1-pattern t we say that ar is the a-suffix of t if t = t′ar and the last letter of t′

is not a (in particular, t′ may be empty).
We call this procedure Uncross (a, ‘u = v’), its formal details are given in

Algorithm 2.

Algorithm 2. Uncross (a, ‘u = v’) Uncrossing all a-chains
1: for α ∈ V ∪ X do
2: if a is the first letter of S(α) then � Guess
3: guess � ≥ 1 � a� is the a-prefix of S(α)
4: replace each α in u = v by a�α � implicitly change S(α) = a�t to S(α) = t
5: if S(α) is empty then � Guess; applies only to context variables
6: remove α from u = v: replace each α(t) in the equation by t

7: for X ∈ V do
8: if a is the last letter of S(X) then � Guess
9: guess r ≥ 1 � ar is the a-suffix of S(X)

10: replace each X in u = v by Xar � implicitly change S(X) = tar to
S(X) = t

11: if S(X) is empty then � Guess
12: remove X from u = v: replace each X(t) by t

Lemma 3. Uncross(a, ‘u = v’) is sound and if u = v has a non-empty solution S
(over an alphabet Σ) then for appropriate non-deterministic choices the returned
equation u′ = v′ has a non-empty solution S′ (over the same alphabet Σ) such
that S′(u′) = S(u) and a has no crossing chains with respect to S′.

Example 4. Continuing Example 2:

bXaXc = baa(f(aY c′, bb(f(c, c′)))),

where the alphabet is {a, b, c, c′, f}, with ar(a) = ar(b) = 1, ar(c) = ar(c′) = 0 and
ar(f) = 2 and S(X) = aa(f(•, bb(f(c, c′)))) and S(Y) = aa(f(c, bb(f(c, •)))).

There are crossing a chains, because aY is a subpattern and a is the first
letter of S(Y). We pop the a-prefixes from X,Y , there are no a-suffixes. The
instance is now

baaXaaaXc = baa(f(aaaY c′, bb(f(c, c′)))),

where S′(X) = f(•, bb(f(c, c′))) and S′(Y) = f(c, bb(f(•, c))). It is easy to verify
that a has no crossing chains.

4.3 Uncrossing Father-Leaf Subpattern

We now show how to uncross a father-leaf subpattern (f, i, c). It is easy to observe
that father-leaf subpattern (f, i, c) is crossing (with respect to a non-empty S)
if and only if one of the following holds for some context variable X and term
variable y:

Deciding Context Unification with Regular Constraints 29

(CFL 1) f with an i-th son y occurs in u = v and S(y) = c;
(CFL 2) Xc occurs in u = v and the last letter of S(X) is f and • is its i-th

child;
(CFL 3) Xy occurs in u = v, S(y) = c and f is the last letter of S(X) and • is

its i-th child.

We want to ‘pop-up’ c and ‘pop-down’ f . Popping up c is easy (we replace y
with c); popping-down f is more complex. Let us first present the intuition:

– In (CFL1) we pop up the letter c from y, which in this case means that we
replace each occurrence of y in the equation with c = S(y). Since y is no
longer in the context equation, we can restrict the solution so that it does
not assign any value to y.

– In (CFL2) we pop down the letter f : let S(X) = sf(t1, . . . , ti−1, •, ti, . . . ,
tm−1), where s is a 1-pattern and each ti is a ground term and ar(f) =
m. Then we replace each X with Xf(x1, x2, . . . , xi−1, •, xi, . . . , xm−1), where
x1, . . . , xm−1 are fresh term variables. In this way we implicitly modify the
solution S(X) = s(f(t1, t2, . . . , ti−1, •, ti, . . . , tm−1)) to S′(X) = s and add
S′(xj) = tj for j = 1, . . . , m − 1. If S′(X) is empty, we remove X from the
equation.

– The third case (CFL3) is a combination of (CFL1)–(CFL2), in which we need
to pop-down from X and pop up from y.

We call this procedure Uncross((f, i, c), ‘u = v’), its formal description is given
in Algorithm 3.

Algorithm 3. Uncross((f, i, c), ‘u = v’)
1: for x ∈ X do
2: if S(x) = c then � Guess
3: replace each x in u = v by c � S is no longer defined on x

4: let m ← ar(f)
5: for X ∈ V do
6: if f is the last letter of S(X), • is its i-th child and Xc is a subpattern in u = v

then � Guess
7: replace each X in u = v by X(f(x1, x2, . . . , xi−1, •, xi, . . . , xm1−))

� Implicitly change S(X) = sf(t1, t2, . . . , ti−1, •, ti, . . . , tm−1) to S(X) = s
� Add new variables x1, . . . , xm−1 to X and extend S by setting S(xj) = tj

8: if S(X) is empty then � Guess
9: remove X from the equation: replace each X(t) in the equation by t

10: for new variables x ∈ X do
11: if S(x) = c then � Guess
12: replace each x in u = v by c � S is no longer defined on x

Lemma 4. Let ar(f) ≥ i ≥ 1 and ar(c) = 0, then Uncross((f, i, c), ‘u = v’) is
sound and if u = v has a non-empty solution S (over an alphabet Σ) then for

30 A. Jeż

appropriate non-deterministic choices the returned equation u′ = v′ has a non-
empty solution S′ (over the same alphabet Σ) such that S′(u′) = S(u) and there
is no crossing father-leaf subpattern (f, i, c) with respect to S′.

Example 5. Continuing Example 2, the equations

bXaXc = baa(f(aY c′, bb(f(c, c′)))),

where the alphabet is {a, b, c, c′, f}, with ar(a) = ar(b) = 1, ar(c) = ar(c′) = 0
and ar(f) = 2, has a solution S(X) = aa(f(•, bb(f(c, c′)))) and S(Y) =
aa(f(c, bb(f(c, •)))). A subpattern (f, 2, c′) is crossing, as Y c′ is a subpattern,
the last letter of Y is f and the hole • is the second child of this f We uncross
it by popping down from Y : The instance is now

bXaXc = baa(f(aY (f(y, c′)), bb(f(c, c′))))

where S′(X) = S(X), S′(Y) = f(c, b(b(•))) and S(y) = c. It is easy to see that
(f, 2, c′) is now noncrossing.

5 The Algorithm

In its main part, ContextEqSatSimp iterates the following operation: it nondeter-
ministically chooses to perform one of the compressions: ab compression, a-chain
compression or (f, i, c) compression, where a, b, c, f are some letters of appropri-
ate arity. It then nondeterministically choose, whether this pattern is crossing or
not. If so, it performs the appropriate uncrossing. Then it performs the subpat-
tern compression for p and adds the new letter (or letters, for chains compression)
to Σ. We call one iteration of main loop of ContextEqSatSimp a phase.

Algorithm 4. ContextEqSatSimp(‘u = v’, Σ) Checking the satisfiability of a con-
text equation u = v

1: while |u| > 1 or |v| > 1 do
2: choose p from {a, ab, (f, i, c)} to compress, a, b, c, f ∈ Σ
3: if p is crossing then � Guess
4: Uncross(p, ‘u = v’)

5: PattCompNCr(a, ‘u = v’)
6: add letters representing compressed subpatterns to Σ

7: Solve the problem naively � With sides of size 1, the problem is trivial

The extended algorithm ContextEqSat works in the same way, except that
at the beginning of each iteration it removes from the alphabet the letters that
are neither from the original alphabet neither are present in the current context
equation. It is easy to show that such removal does not change the satisfiability
of the given equation.

Deciding Context Unification with Regular Constraints 31

Theorem 1. ContextEqSatSimp and ContextEqSat store an equation of length
O(n2k2), where n is the size of the input equation and k the maximal arity of
symbols from the input alphabet. They non-deterministically solve context equa-
tions, in the sense that:

– if the input equation is not-satisfiable then they never return ‘YES’;
– if the input equation is satisfiable then for some nondeterministic choices in

O(n3k3 log N) phases they return ‘YES’, where N is the size of size-minimal
solution.

As a corollary we get an upper bound on the computational complexity of
context unification.

Theorem 2. Context unification is in PSPACE.

6 Space Bounds

While the soundness of the algorithm follows from soundness of its subproce-
dures, the space bounds, and so the termination, remains to be shown.

6.1 General Bounds

First, we recall that the following known bound on the size of the a-chains
for size-minimal solutions. This ensures that we can compress the chains in
polynomial space.

Lemma 5 (Exponent of periodicity bound [28]). Let S be a size-minimal
solution of a context equation u = v (for an alphabet Σ). Suppose that S(X) (or
S(x)) can be written as tamt′, where t, t′ are 1-patterns (or t′ is a ground term,
respectively) and a is a unary letter. Then m = 2O(|u|+|v|).

Now we bound the number of variables occurrences during the algorithm.
Note that this bound works for all nondeterministic choices.

Lemma 6. The number of occurrences of context variables during ContextEqSat
is at most n. The number of occurrences of term variables is at most nk.

The bound for context variables is obvious, as we never introduce new ones. For
term variables observe that during the (f, i, c) uncrossing we introduce new term
variables, by popping them from context variables. However, it can be shown
that when we pop new term variables from X, all term variables previously
introduced by X have been removed. This yields the bound.

As a next step, we estimate the number of different crossing subpatterns.
This follows by a simple argument that such a pattern can be associated with a
top or bottom letter in a variable.

Lemma 7. For an equation u = v during ContextEqSat and its solution S the
number of different crossing subpatterns of the form a, ab, (f, i, c) is at most
n(k + 1).

32 A. Jeż

We can also limit the number of new letters introduced during the uncrossing.
Again, this follows a simple calculation.

Lemma 8. Uncrossing and compression of a subpattern introduces at most
n(k + 1) letters to the equation.

6.2 Strategy

The strategy of choosing nondeterministic choices is easy: if there is a noncrossing
pattern, then we compress it, as this decreases both the size of the equation and
of the minimal solution.

If there is none, then we choose a pattern, whose compression makes equation
smallest possible (after this one compression). As there are only n(k + 1) such
candidates, see Lemma 7, one of them will appear roughly (|u| + |v|)/n(k + 1)
many times. Its compression removes (|u|+ |v|)/2n(k +1) letters and introduces
at most n(k + 1) many letters, see Lemma 8. This shows that we never exceed
the quadratic bound on |u| + |v| given in Theorem 1.

If we additionally make choices so as to minimize the size of the solution,
then we can guarantee to terminate after the number of steps depending on
log N (and not N), so as claimed in Theorem 1.

7 Detailed Example

We now run the algorithm on Example 2, see also the Fig. 2. Recall the equation:

bXaXc = ba(a(f(aY c′, b(b(f(c, c′)))))),

where the alphabet is Σ = {a, b, c, c′, f}, with ar(a) = ar(b) = 1, ar(c) =
ar(c′) = 0 and ar(f) = 2 and S(X) = a(a(f(•, b(b(f(c, c′)))))) and S(Y) =
a(a(f(c, b(b(f(c, •)))))). There is no need to preprocess the alphabet.

As b has no crossing chains, so we compress it, obtaining

bXaXc = baa(f(aY c′, b′(f(c, c′)))),

where the alphabet is Σ ∪ {b′}, with ar(b′) = 1 and the solution and S(X) =
aa(f(•, b′(f(c, c′)))) and S(Y) = aa(f(c, b′(f(c, •)))). Now every potential sub-
pattern for compression is crossing. We choose (f, 1, c) for compression and
uncross it. To this end we pop f down from X. Note, that according to the
algorithm, f is not popped down from Y , even though f is its last letter, it does
not take part in any crossing occurrence of a subpattern (f, 1, c). The instance
is now

bX(f(aXf(c, x), x)) = baa(f(aY c′, b′(f(c, c′)))),

with a solution S(X) = aa, S(Y) = aa(f(c, b′(f(c, •)))) and S(x) = b′(f(c, c′)).
We compress (f, 1, c), obtaining

bX(f(aXf ′x, x)) = baa(f(aY c′, b′f ′c′)),

Deciding Context Unification with Regular Constraints 33

b

a

a

f

a

a

f ′

b′′

c′

b′′

c′

a

b

a

a

f

a

a

f

b

b

f

c c′

c

b

b

f

c c′

b

a

a

f

a

a

f

b′

f

c c′

c

b′

f

c c′

a

a

b

a

a

f

a

a

f

b′

f

c c′

c

b′

f

c c′

a

b

a

a

f

a

a

f ′

b′

f ′

c′

b′

f ′

c′

a

b

a

a

f

a

a

f ′

c′′

c′′a

b

a2

f

f ′

c′′

c′′a3

b′′

f

f ′

c′′

c′′a3

b′′

f ′′

f ′

c′′

a3

b′′′

f ′

c′′

a3

b′′′′

f ′

c′′

f ′′

c′′

c′′′

Fig. 2. An illustration of running the algorithm on the instance from Example 2. The
Figure presents the term obtained at both sides under the substitution, the values sub-
stitutions for variables are depicted: in dashed line for X and dotted for Y , later also
dash-dotted for x. The changes are according to the consecutive actions described in the
section: b chains compression, uncrossing (f, 1, c), compression of (f, 1, c), compression
of b′f ′, uncrossing and compression of (b′′, 1, c′), uncrossing a-chains and compression
of a chains, compression of ba2, uncrossing and compression of (f, 2, c′′), compression
of b′′f ′′, compression of b′′′a3, uncrossing and compression of b′′′′f ′ and finally com-
pression of (f ′′, 1, c′′).

with a solution S(X) = aa, S(Y) = aaf ′b′f ′, S(x) = b′f ′c′, here f ′ is of arity
ar(f ′) = 1 is added to the alphabet, which is now Σ ∪ {b′, f ′}. Note that there
is a new term variable x. Now b′f ′ is noncrossing, so we compress it (into b′′ of
arity 1), obtaining

bX(f(aXf ′x, x)) = baa(f(aY c′, b′′c′)),

with a solution S(X) = aa, S(Y) = aaf ′b′′ and S(x) = b′′c′. The b′ is no longer
used, so it is removed from the alphabet, which is now Σ ∪{b′′, f ′} We choose to
compress b′′c′, as a (b, 1, c′) subpattern, we first uncross it by popping f down

34 A. Jeż

from Y and then we compress into a new constant c′′, the b′′ can be removed.
So the alphabet is now Σ ∪ {f ′, c′′} and the equation is

bX(f(aXf ′x, x)) = baa(f(aY c′′, c′′)),

with a solution S(X) = aa, S(Y) = aaf ′ and S(x) = c′′.
Now we uncross and compress a-blocks: in uncrossing we replace X with a2

and pop-up a2 from Y . Afterwards we replace a2 with a2 and a3 with a3. The
alphabet is now Σ ∪ {f ′, c′′, a2, a3} and the equation is

ba2(f(a3f
′x, x)) = ba2(f(a3Y c′′, c′′)),

with a solution S(Y) = f ′ and S(x) = c′′.
Now we compress the noncrossing ba2 into b′′ (note that we reuse the letter

b′′), a2 is removed from the alphabet, which is now Σ ∪ {b′′, f ′, c′′, a3} and the
equation is

b′′(f(a3f
′x, x)) = b′′(f(a3Y c′′, c′′)),

with a solution S(Y) = f ′ and S(x) = c′′. Now we choose to compress (f, 2, c′′),
so we pop up c′′ from x (thus removing it). After the compression, the alphabet
is Σ ∪ {b′′, f ′, f ′′, c′′, a3} and the equation is b′′f ′′a3f

′c′′ = b′′f ′′a3Y c′′, with a
solution S(Y) = f ′.

We compress noncrossing b′′f ′′, obtaining the alphabet Σ ∪ {b′′′, f ′, c′′, a3}
and the equation is b′′′a3f

′c′′ = b′′′a3Y c′′, with a solution S(Y) = f ′. We now
compress b′′a3, which is noncrossing, yielding an equation b′′′′f ′c′′ = b′′′′Y c′′,
with a solution S(Y) = f ′ over an alphabet Σ ∪ {b′′′′, f ′, c′′}.

Now we uncross b′′′′f ′, by replacing Y with f ′ and compress it, obtaining a
trivial equation f ′′c′′ = f ′′c′′ over an alphabet Σ∪{f ′′, c′′}, for which we perform
the final compression (f ′′, 1, c′′), yielding an equation c′′′ = c′′′.

8 Regular Constraints

We now consider the problem of context unification with regular constraints.
In this setting, the input contains (some description of) regular tree languages
L1, . . . , L� of ground terms and/or 1-patterns over the input alphabet Σ. Those
automata are used for enriching the equation with additional constraints of the
form α ∈ Li, meaning that the substitution for the variable α should be from lan-
guage Li. Naturally, those languages have to be specified in some way, we choose
one, see Sect. 8.2, but other natural descriptions are equivalent, see discussion
at the end of that section.

Context unification with regular constraints was investigated mostly because
linear second order unification [12] and context unification with regular con-
straints reduce to each other [16]; note that those reductions are not polynomial-
time, so cannot be used directly to claim the computational complexity of linear
second order unification. On the other hand, adding constraints to unification is
interesting and important on its own.

Deciding Context Unification with Regular Constraints 35

To generalise ContextEqSat to this setting, we assign to each letter in the
alphabet its transition function; such transition functions can be generalised to
patterns, so in particular to substitutions for variables; transition vectors and
vectors of such transitions are defined in Sect. 8.1 and we explain how to use them
to define constraints for context unification in Sect. 8.2. When we compress a
certain subpattern into one letter, we compose those transition functions. When
we pop letters from variables we assign to the variable a new transition function,
so that the composition of transition function of popped letters and the new
transition function for a variable is equal to the old transition function for a
variable.

However, several simplifications do not work in this setting. This is for a
reason: it is known that the non-emptiness problem for intersection of (deter-
ministic) finite tree automata is EXPTIME-complete [5] and we can easily encode
this problem within context unification with regular constraints, so we cannot
hope to extend our algorithm to this setting without affecting the computational
complexity.

To resolve this problem, we extend the input alphabet by adding to it one
letter fΔ for every possible vector of transition functions Δ (we limit the allowed
arities, though, to the maximal arity of letters in the input alphabet). We do
not store this alphabet explicitly, instead we use an (EXPTIME) oracle to decide,
whether a letter belongs to the alphabet or not. It is easy to see that a context
equation is equisatisfiable over its input alphabet and over such an extended
alphabet. Later on, for any equation, we consider its solution over an alphabet
consisting of the extended alphabet and letters present in the equation.

Ultimately, for algorithms ContextEqSatRegSimp and ContextEqSatReg which
are generalisations of ContextEqSatSimp and ContextEqSat to scenarios with reg-
ular constraints, respectively, we want to show the following theorem.

Theorem 3. ContextEqSatRegSimp and ContextEqSatReg keep an equation of
size O(n2k2). Given an unsatisfiable context equation with regular constraints
they never return ‘YES’. Given a satisfiable one with a minimal-size solution of
size N they return ‘YES’ after O(n2k2 log N) compression steps, for appropriate
non-deterministic choices.

ContextEqSatReg uses an oracle for the intersection of tree-regular lan-
guages, which can always be implemented in EXPTIME. Except for that, it runs
in PSPACE.

As a corollary, we get an EXPTIME bound on the satisfiability of context
unification with regular constraints.

Corollary 1. Context unification with regular constraints is EXPTIME-
complete.

8.1 Tree Automata

A tree automaton is defined as a triple (Σ,Q, δf f∈Σ), where Σ is a ranked
alphabet, Q is a set of states and each δf is a transition relation (some-
times called transition function for historical reasons) of a letter from Σ.

36 A. Jeż

To be more precise, when ar(f) = r then δf ⊆ Qr × Q. The meaning of
the transition functions is that we consider labelling of ground terms with
states (such labellings are usually called runs) such that a node labelled with
f whose children are assigned states (q1, q2, . . . , qr) can be assigned any state
q such that (q1, q2, . . . , qr, q) ∈ δf . Thus we think of δf as a nondeterminis-
tic transition function, and by δf (q1, q2, . . . , qar(f)) we denote the set of states
{q : (q1, q2, . . . , qar(f), q) ∈ δf}.

We can treat a letter f as a pattern with a unique non-parameter node f ; in
this way we can define δp for arbitrary patterns: given an r-pattern p the tuple
(q1, q2, . . . , qar(f), q) is in δp if and only if there is a run for p in which nodes
•1, •2, . . . , •ar(f) are labelled with q1, q2, . . . , qar(f) and the root of p is labelled
with q. Note that this implicitly gives a rule of composing transition functions;
such composition is associative in case of 1-patterns.

Concerning the notation, we will explicitly compose only transition func-
tions for patterns that occur during the subpattern compression. Thus for unary
patterns p1, p2, . . . , p� by δp1δp2 . . . δp�

we denote the transition function of the
pattern p1p2 . . . p� and when p1 = p2 = · · · = p� then we denote this function
by (δp1)

�. Similarly, for an r-ary pattern f and ground terms t1, t2, . . . , tm by
δf [•i1/δt1 , •i2/δt2 , . . . , •im

/δtm
] we denote the transition function of a pattern

obtained by replacing •i1 , •i2 , . . . , •im
by t1, t2, . . . , tm, respectively. Note, that

it could be that m < r, i.e. not all parameters of a pattern f are substituted by
ground terms.

For a fixed sequence of automata A1, A2, . . . , A� (and it is fixed for a fixed
instance of context unification with regular constraints) with transition functions
{δ1f}f∈Σ , {δ2f}f∈Σ , . . . , {δ�

f}f∈Σ by Δp we denote the tuple of transition functions
(δ1p, δ2p, . . . , δ�

p) for a pattern p; this is a vector of transitions of this pattern.
Note that this is a vector of sets. We denote vectors of transitions by Δ,Δ1, . . .
and consider them even without underlying patterns, and refer to r-vector of
transitions, when this is a vector of transitions of an r-ary pattern.

We extend the composition of transition functions and its notation to vec-
tors of transitions in a natural way, i.e. we perform the appropriate operation
coordinate-wise on each transition function.

8.2 Context Unification with Regular Constraints

Now we are ready to define the problem of context unification with regular
constraints. As an input we are given a finite alphabet Σ, finite automata
A1, A2, . . . , A� over Σ (with state sets Q1, Q2, . . . , Q� and transition functions
{δ1f}f∈Σ , {δ2f}f∈Σ , . . . , {δ�

f}f∈Σ), a context equation u = v and a set of con-
straints on the vectors of transitions for variables u in total. To be more precise,
those constraints are:

term variable constraints: we are given 0-vectors of transitions Δx for some
variables x ∈ X ;

equations constraints: similarly, we are given 0-vector of transition Δu;
context variable constraints: we are given 1-vectors of transitions ΔX for

some context variables X ∈ V.

Deciding Context Unification with Regular Constraints 37

The meaning of the constraints is clear: we ask, whether there is a substitution
S, such that S(u) = S(v), ΔS(u) = Δu and ΔS(α) = Δα for each variable α.

8.3 Modifications of ContextEqSat

We now explain the modifications of ContextEqSatSimp to ContextEqSatRegSimp,
i.e. consider the algorithm that enriches the alphabet with every letter that it
created.

Compression. When a subpattern p is compressed into f , we calculate its vector
of transitions and set Δf ← Δp.

Popping Letters. When popping letters, we guess the new vectors of transitions
for the variable, so that the composition of vectors of transitions (in the appro-
priate order) of the popped letter and variable is the same as it used to be; this
applies also to popping of term variables during the uncrossing of leaf-pair. For
instance, when we replace X with X(f(x1, •2, x3)) then we guess new transitions
Δ′

X ,Δx1 ,Δx3 , such that ΔX = Δ′
X(Δf [•1/Δx1 , •3/Δx3]); we add Δx1 ,Δx3 to

sets constraints and update ΔX to Δ′
X . When we remove a context variable X,

we need to ensure that its transition function ΔX is the same as Δ(•), i.e. it is an
identity; similarly, when we replace x with c we need to validate that Δx = Δc.

Ending. When the whole equation is reduced to a single equation c = c, we check
whether the transition function for c is the same as for the whole equation, i.e.
Δu = Δc. If so, we accept, if not, we reject.

Satisfiability. Whenever we claim that an equation is satisfiable (so, it has some
solution S), we need to additionally assert that the transition for a variable
(and the whole equation) is as in the constraints kept by the instance, that is,
ΔS(α) = Δα for each variable α and ΔS(u) = Δu.

Subprocedures. Lemma 1 holds in the new setting, to this end it is enough to
recall that during compression the new letter has the same transition function
as the pattern it replaced and for popping, we always guess the popped letters
and the new constraints of variables so that the composition of their vectors of
transitions is equal to the vector of transitions of the variable before the popping.

The discussion above shows the proof of Theorem3 in case of
ContextEqSatRegSimp. The only remaining problem is that the alphabet used
by ContextEqSatRegSimp grows and the size of transition vectors of the involved
letters can be even exponential. However, careful inspection shows that one can
define appropriate subclass of all vectors of transitions, called reachable. They
are of polynomial size and can be composed in polynomial time; moreover, each
letter that occurs during ContextEqSatReg has a reachable vector of transition
and vice versa—each reachable vector of transitions can be realised by tree or a
pattern over the input alphabet. Lastly, one can check in EXPTIME, whether a
vector of transitions is reachable. This ends the analysis for Theorem 3.

38 A. Jeż

9 Open Questions

Computational complexity. The exact computational complexity of context
unification remains unknown: the presented algorithm shows containment
in PSPACE and the best known lower bound is NP, by a trivial reduction
of Integer Programming. Perhaps the additional structure of terms allows
showing a stronger lower bound?

Size of minimal solutions. Extension of the given proof shows that the size of
the smallest solution of a context unification is of at most doubly exponential
size. At the same time, we know no solution which is super-exponential, so the
same as in the case of word equations. An exponential upper bound would
imply containment in NP, a counterexample would somehow suggest that
PSPACE is the computational complexity of the problem.

Unary second order unification. The decidability status of subproblem of
second order unification, in which each second order has arity 1, remains
unknown. The presented approach does not generalize to this case and at
the same time the existing proof of undecidability essentially requires second-
order variables of rank 2.

One context variable. Context unification with one context variable is known
to be in NP [6] and some of its fragments are in P [7,8]. It remains an open
question, whether the whole problem is in P.

References

1. Comon, H.: Completion of rewrite systems with membership constraints. Part
I: deduction rules. J. Symb. Comput. 25(4), 397–419 (1998). https://doi.org/10.
1006/jsco.1997.0185

2. Comon, H.: Completion of rewrite systems with membership constraints. Part II:
constraint solving. J. Symb. Comput. 25(4), 421–453 (1998). https://doi.org/10.
1006/jsco.1997.0186

3. Diekert, V., Gutiérrez, C., Hagenah, C.: The existential theory of equations with
rational constraints in free groups is PSPACE-complete. Inf. Comput. 202(2), 105–
140 (2005). https://doi.org/10.1016/j.ic.2005.04.002

4. Diekert, V., Jeż, A., Plandowski, W.: Finding all solutions of equations in free
groups and monoids with involution. Inf. Comput. 251, 263–286 (2016). https://
doi.org/10.1016/j.ic.2016.09.009

5. Frühwirth, T.W., Shapiro, E.Y., Vardi, M.Y., Yardeni, E.: Logic programs as types
for logic programs. In: LICS, pp. 300–309. IEEE Computer Society (1991). https://
doi.org/10.1109/LICS.1991.151654

6. Gascón, A., Godoy, G., Schmidt-Schauß, M., Tiwari, A.: Context unification with
one context variable. J. Symb. Comput. 45(2), 173–193 (2010). https://doi.org/
10.1016/j.jsc.2008.10.005

7. Gascón, A., Schmidt-Schauß, M., Tiwari, A.: Two-restricted one context unifica-
tion is in polynomial time. In: Kreutzer, S. (ed.) CSL. LIPIcs, vol. 41, pp. 405–
422. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2015). https://doi.org/
10.4230/LIPIcs.CSL.2015.405

https://doi.org/10.1006/jsco.1997.0185
https://doi.org/10.1006/jsco.1997.0185
https://doi.org/10.1006/jsco.1997.0186
https://doi.org/10.1006/jsco.1997.0186
https://doi.org/10.1016/j.ic.2005.04.002
https://doi.org/10.1016/j.ic.2016.09.009
https://doi.org/10.1016/j.ic.2016.09.009
https://doi.org/10.1109/LICS.1991.151654
https://doi.org/10.1109/LICS.1991.151654
https://doi.org/10.1016/j.jsc.2008.10.005
https://doi.org/10.1016/j.jsc.2008.10.005
https://doi.org/10.4230/LIPIcs.CSL.2015.405
https://doi.org/10.4230/LIPIcs.CSL.2015.405

Deciding Context Unification with Regular Constraints 39

8. Gascón, A., Tiwari, A., Schmidt-Schauß, M.: One context unification problems
solvable in polynomial time. In: LICS, pp. 499–510. IEEE (2015). https://doi.org/
10.1109/LICS.2015.53

9. Goldfarb, W.D.: The undecidability of the second-order unification problem. Theor.
Comput. Sci. 13, 225–230 (1981). https://doi.org/10.1016/0304-3975(81)90040-2

10. Jeż, A.: Context unification is in PSPACE. In: Esparza, J., Fraigniaud, P., Hus-
feldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 244–255.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7 21. Full
version http://arxiv.org/abs/1310.4367

11. Jeż, A.: Recompression: a simple and powerful technique for word equations. J.
ACM 63(1), 4:1 (2016). https://doi.org/10.1145/2743014

12. Levy, J.: Linear second-order unification. In: Ganzinger, H. (ed.) RTA 1996. LNCS,
vol. 1103, pp. 332–346. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-61464-8 63

13. Levy, J., Agust́ı-Cullell, J.: Bi-rewrite systems. J. Symb. Comput. 22(3), 279–314
(1996). https://doi.org/10.1006/jsco.1996.0053

14. Levy, J., Schmidt-Schauß, M., Villaret, M.: The complexity of monadic second-
order unification. SIAM J. Comput. 38(3), 1113–1140 (2008). https://doi.org/10.
1137/050645403

15. Levy, J., Schmidt-Schauß, M., Villaret, M.: On the complexity of bounded second-
order unification and stratified context unification. Log. J. IGPL 19(6), 763–789
(2011). https://doi.org/10.1093/jigpal/jzq010

16. Levy, J., Villaret, M.: Linear second-order unification and context unification with
tree-regular constraints. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp.
156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/10721975 11

17. Levy, J., Villaret, M.: Currying second-order unification problems. In: Tison,
S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 326–339. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45610-4 23

18. Makanin, G.: The problem of solvability of equations in a free semigroup. Matem-
aticheskii Sbornik 2(103), 147–236 (1977). (in Russian)

19. Marcinkowski, J.: Undecidability of the first order theory of one-step right ground
rewriting. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 241–253. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-62950-5 75

20. Niehren, J., Pinkal, M., Ruhrberg, P.: On equality up-to constraints over finite
trees, context unification, and one-step rewriting. In: McCune, W. (ed.) CADE
1997. LNCS, vol. 1249, pp. 34–48. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-63104-6 4

21. Niehren, J., Pinkal, M., Ruhrberg, P.: A uniform approach to underspecification
and parallelism. In: Cohen, P.R., Wahlster, W. (eds.) ACL, pp. 410–417. Morgan
Kaufmann Publishers/ACL (1997). https://doi.org/10.3115/979617.979670

22. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J.
ACM 51(3), 483–496 (2004). https://doi.org/10.1145/990308.990312

23. RTA Problem List: Problem 90 (1990). http://rtaloop.mancoosi.univ-paris-
diderot.fr/problems/90.html

24. Schmidt-Schauß, M.: Unification of stratified second-order terms. Internal Report
12/94, Johann-Wolfgang-Goethe-Universität (1994)

25. Schmidt-Schauß, M.: A decision algorithm for distributive unification. Theor.
Comput. Sci. 208(1–2), 111–148 (1998). https://doi.org/10.1016/S0304-
3975(98)00081-4

26. Schmidt-Schauß, M.: A decision algorithm for stratified context unification. J. Log.
Comput. 12(6), 929–953 (2002). https://doi.org/10.1093/logcom/12.6.929

https://doi.org/10.1109/LICS.2015.53
https://doi.org/10.1109/LICS.2015.53
https://doi.org/10.1016/0304-3975(81)90040-2
https://doi.org/10.1007/978-3-662-43951-7_21
http://arxiv.org/abs/1310.4367
https://doi.org/10.1145/2743014
https://doi.org/10.1007/3-540-61464-8_63
https://doi.org/10.1007/3-540-61464-8_63
https://doi.org/10.1006/jsco.1996.0053
https://doi.org/10.1137/050645403
https://doi.org/10.1137/050645403
https://doi.org/10.1093/jigpal/jzq010
https://doi.org/10.1007/10721975_11
https://doi.org/10.1007/3-540-45610-4_23
https://doi.org/10.1007/3-540-62950-5_75
https://doi.org/10.1007/3-540-63104-6_4
https://doi.org/10.1007/3-540-63104-6_4
https://doi.org/10.3115/979617.979670
https://doi.org/10.1145/990308.990312
http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/90.html
http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/90.html
https://doi.org/10.1016/S0304-3975(98)00081-4
https://doi.org/10.1016/S0304-3975(98)00081-4
https://doi.org/10.1093/logcom/12.6.929

40 A. Jeż

27. Schmidt-Schauß, M.: Decidability of bounded second order unification. Inf. Com-
put. 188(2), 143–178 (2004). https://doi.org/10.1016/j.ic.2003.08.002

28. Schmidt-Schauß, M., Schulz, K.U.: On the exponent of periodicity of minimal solu-
tions of context equations. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp.
61–75. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0052361

29. Schmidt-Schauß, M., Schulz, K.U.: Solvability of context equations with two con-
text variables is decidable. J. Symb. Comput. 33(1), 77–122 (2002). https://doi.
org/10.1006/jsco.2001.0438

30. Schmidt-Schauß, M., Schulz, K.U.: Decidability of bounded higher-order unifica-
tion. J. Symb. Comput. 40(2), 905–954 (2005). https://doi.org/10.1016/j.jsc.2005.
01.005

31. Schulz, K.U.: Makanin’s algorithm for word equations-two improvements and a
generalization. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 85–150.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55124-7 4

32. Treinen, R.: The first-order theory of linear one-step rewriting is undecidable.
Theor. Comput. Sci. 208(1–2), 179–190 (1998). https://doi.org/10.1016/S0304-
3975(98)00083-8

33. Vorobyov, S.: The first-order theory of one step rewriting in linear Noetherian
systems is undecidable. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 254–
268. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62950-5 76

34. Vorobyov, S.: ∀∃*-Equational theory of context unification is Π0
1-hard. In: Brim,

L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 597–606.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055810

https://doi.org/10.1016/j.ic.2003.08.002
https://doi.org/10.1007/BFb0052361
https://doi.org/10.1006/jsco.2001.0438
https://doi.org/10.1006/jsco.2001.0438
https://doi.org/10.1016/j.jsc.2005.01.005
https://doi.org/10.1016/j.jsc.2005.01.005
https://doi.org/10.1007/3-540-55124-7_4
https://doi.org/10.1016/S0304-3975(98)00083-8
https://doi.org/10.1016/S0304-3975(98)00083-8
https://doi.org/10.1007/3-540-62950-5_76
https://doi.org/10.1007/BFb0055810

	Deciding Context Unification (with Regular Constraints)
	1 Introduction
	2 Definitions
	2.1 Trees
	2.2 Patterns
	2.3 Context Unification: Formal Statement

	3 Local Compression of Trees
	3.1 Compression Operations
	3.2 Compression of Non-crossing Patterns

	4 Uncrossing
	4.1 Uncrossing a Pair
	4.2 Uncrossing Chains
	4.3 Uncrossing Father-Leaf Subpattern

	5 The Algorithm
	6 Space Bounds
	6.1 General Bounds
	6.2 Strategy

	7 Detailed Example
	8 Regular Constraints
	8.1 Tree Automata
	8.2 Context Unification with Regular Constraints
	8.3 Modifications of ContextEqSat

	9 Open Questions
	References

