
Piotrek Hofman
Michał Skrzypczak (Eds.)

LN
CS

 1
16

47

23rd International Conference, DLT 2019
Warsaw, Poland, August 5–9, 2019
Proceedings

Developments
in Language Theory

Lecture Notes in Computer Science 11647

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Piotrek Hofman • Michał Skrzypczak (Eds.)

Developments
in Language Theory
23rd International Conference, DLT 2019
Warsaw, Poland, August 5–9, 2019
Proceedings

123

Editors
Piotrek Hofman
University of Warsaw
Warsaw, Poland

Michał Skrzypczak
University of Warsaw
Warsaw, Poland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-24885-7 ISBN 978-3-030-24886-4 (eBook)
https://doi.org/10.1007/978-3-030-24886-4

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-24886-4

Preface

This volume of Lecture Notes in Computer Science contains the papers presented at the
23rd International Conference on Developments in Language Theory (DLT 2019)
organized by the faculty of Mathematics, Informatics and Mechanics at University of
Warsaw in Poland, during August 5–9, 2019.

The DLT conference series is one of the major international conference series in
language theory and related areas. Since it was started by G. Rozenberg and A.
Salomaa in Turku (1993), it travelled around the world visiting different locations:
Magdeburg (1995), Thessaloniki (1997), Aachen (1999), Vienna (2001), Kyoto (2002),
Szeged (2003), Auckland (2004), Palermo (2005), Santa Barbara (2006), Turku (2007),
Kyoto (2008), Stuttgart (2009), London (2010), Milan (2011), Taipei (2012),
Marne-la-Vallée (2013), Ekaterinburg (2014), Liverpool (2015), Montréal (2016),
Liège (2017), and Tokyo (2018). In 2019 for the first time it took place in Poland.

The series of International Conference on Developments in Language Theory
(DLT) provides a forum for presenting current developments in formal languages and
automata. Its scope is very general and includes, among others, the following topics
and areas: combinatorial and algebraic properties of words and languages; grammars,
acceptors, and transducers for strings, trees, graphs, arrays; algebraic theories for
automata and languages; codes; efficient text algorithms; symbolic dynamics; decision
problems; relationships to complexity theory and logic; picture description and anal-
ysis; polyominoes and bidimensional patterns; cryptography; concurrency; cellular
automata; bio-inspired computing; and quantum computing.

There were 33 abstract submissions, among which three were withdrawn, from 20
countries: Belarus, Belgium, Canada, China, Czech Republic, Finland, France,
Germany, India, Italy, Japan, Portugal, Russia, Singapore, Slovakia, South Korea,
Taiwan, UAE, UK, and USA. Each of the 30 submissions was reviewed by at least
three reviewers and thoroughly discussed by Program Committee (PC). The committee
decided to accept 20 papers for publication and oral presentation. The volume also
includes papers of three invited talks given at the conference.

We warmly thank all the invited speakers and all authors of the submitted papers for
making DLT 2019 successful. As the PC chairs, we would like to express our cordial
gratitude to the members of the PC and the external reviewers for reviewing the papers,
participating in the selection process, and helping to maintain the high standard of the
DLT conferences. We appreciate the help of the EasyChair conference system for
facilitating our work of organizing DLT 2019 very much. We would like to thank the
editorial staff of Springer, in particular Saravanan Gnanaprakasam, Alfred Hofmann,
Anna Kramer, and Erika Siebert-Cole, for their guidance and help during the process of
publishing this volume.

We also would like to thank Ewelina Sołtan, and all the members of the research
support unit at the Faculty of Mathematics, Informatics, and Mechanics at the
University of Warsaw for their support. Last but not the least, we are grateful to

Organizing Committee members: Grzegorz Fabiański, Kamila Łyczek, Vincent
Michielini, Radosław Piórkowski, and Janusz Schmude. DLT 2019 was financially
supported by University of Warsaw, we would like to express our sincere gratitude for
their philanthropic support.

We are all looking forward to DLT 2020 at that will be held during May 11–15,
2020, at University of South Florida, Tampa FL, USA.

June 2019 Piotr Hofman
Michał Skrzypczak

vi Preface

Organization

Steering Committee

Marie-Pierre Béal University of Paris-Est Marne-la-Vallée, France
Mikołaj Bojańczyk University of Warsaw, Poland
Cristian S. Calude The University of Auckland, New Zealand
Volker Diekert University of Stuttgart, Germany
Yo-Sub Han Yonsei University, Seoul, Republic of Korea
Juraj Hromkovic Swiss Federal Institute of Technology in Zurich,

Switzerland
Oscar H. Ibarra University of California, Santa Barbara, USA
Nataša Jonoska University of South Florida, USA
Juhani Karhumäki University of Turku, Finland
Martin Kutrib University of Giessen, Germany
Giovanni Pighizzini University of Milan, Italy
Michel Rigo University of Liège, Belgium
Antonio Restivo University of Palermo, Italy
Wojciech Rytter University of Warsaw, Poland
Kai Salomaa Queen’s University at Kingston, Ontario, Canada
Shinnosuke Seki University of Electro-Communications, Tokyo, Japan
Mikhail Volkov Ural Federal University, Ekaterinburg, Russia
Takashi Yokomori Waseda University, Tokyo, Japan

Program Committee

Jacques Duparc University of Lausanne, Switzerland
Pierre Ganty IMDEA Research, Spain and Université de Bruxelles,

Belgium
Paweł Gawrychowski University of Wrocław, Poland
Tero Harju University of Turku, Finland
Kenji Hashimoto Nagoya University, Japan
Piotrek Hofman (Co-chair) University of Warsaw, Poland
Tomohiro I. Kyushu Institute of Technology, Japan
Denis Kuperberg École normale superieure de Lyon, France
Christof Löding RWTH Aachen University, Germany
Amaldev Manuel Indian Institute of Technology Goa, India
Thomas Place Université de Bordeaux, France
Svetlana Puzynina Sobolev Institute of Mathematics, Russia
Karin Quaas Leipzig University, Germany
Cristian Riveros Pontifical Catholic University of Chile, Chile
Krishna S. Indian Institute of Technology, Bombay, India
Philippe Schnoebelen Laboratoire Spécification et Vérification, France
Marinella Sciortino University of Palermo, Italy

Michał Skrzypczak (Chair) University of Warsaw, Poland
Mikhail Volkov Ural Federal University, Russia
James Worrell University of Oxford, UK
Georg Zetzsche Max Planck Institute for Software Systems, Germany

Organizing Committee

Grzegorz Fabiański Support
Piotrek Hofman Co-chair
Kamila Łyczek Graphic Designer
Vincent Michielini Support
Radosław Piórkowski Webmaster
Janusz Schmude Brochure Editor
Michał Skrzypczak Chair

Additional Reviewers

Bartłomiej Dudek
Ramanathan Thinniyam
Abhisekh Sankaran
Sarah Winter
Elise Vandomme
Irène Marcovici
Martin Sulzmann
Olga Parshina
Mahsa Shirmohammadi
Mikhail Berlinkov
Matthias Niewerth
Simone Rinaldi
Christian Choffrut
Ulrich Ultes-Nitsche
Zhimin Sun
Carton Olivier
Benjamin Hellouin de Menibus
Arseny Shur
Alessandro De Luca
Andrea Frosini
Vladimir Gusev
Pablo Rotondo
Laurent Doyen

Lucas Martinelli Tabajara
Marek Szykuła
Simon Iosti
Benedikt Bollig
A. V. Sreejith
Stefan Göller
Aleksi Saarela
Kenny Zhuo Ming Lu
Flavio Dalessandro
Anup Basil Mathew
Natalie Schluter
Dmitry Chistikov
Eryk Kopczynski
Dmitry Ananichev
Yasunori Ishihara
Cyril Nicaud
Moses Ganardi
Sylvain Lombardy
Olivier Carton
Markus L. Schmid
Giuseppa Castiglione
Dominik Köppl

viii Organization

Contents

Invited Papers

Inherent Size Blowup in x-Automata . 3
Udi Boker

Deciding Context Unification (with Regular Constraints) 18
Artur Jeż

Single-Stranded Architectures for Computing . 41
Shinnosuke Seki

Regular Papers

A Linear Bound on the K-Rendezvous Time for Primitive Sets
of NZ Matrices . 59

Umer Azfar, Costanza Catalano, Ludovic Charlier,
and Raphaël M. Jungers

Words of Minimum Rank in Deterministic Finite Automata 74
Jarkko Kari, Andrew Ryzhikov, and Anton Varonka

On the Length of Shortest Strings Accepted by Two-Way
Finite Automata . 88

Egor Dobronravov, Nikita Dobronravov, and Alexander Okhotin

Characterizing the Valuedness of Two-Way Finite Transducers. 100
Di-De Yen and Hsu-Chun Yen

Input-Driven Pushdown Automata for Edit Distance Neighborhood 113
Viliam Geffert, Zuzana Bednárová, and Alexander Szabari

The Relative Edit-Distance Between Two Input-Driven Languages 127
Hyunjoon Cheon, Yo-Sub Han, Sang-Ki Ko, and Kai Salomaa

On Shrinking Restarting Automata of Window Size One and Two 140
František Mráz and Friedrich Otto

The Teaching Complexity of Erasing Pattern Languages with Bounded
Variable Frequency . 154

Ziyuan Gao

On Timed Scope-Bounded Context-Sensitive Languages 168
D. Bhave, S. N. Krishna, R. Phawade, and A. Trivedi

Logics for Reversible Regular Languages and Semigroups with Involution. . . 182
Paul Gastin, Amaldev Manuel, and R. Govind

Eventually Safe Languages. 192
Simon Iosti and Denis Kuperberg

Coinductive Algorithms for Büchi Automata . 206
Denis Kuperberg, Laureline Pinault, and Damien Pous

Hole-Free Partially Directed Animals. 221
Paolo Massazza

First Lower Bounds for Palindromic Length . 234
Anna E. Frid

On Palindromic Length of Sturmian Sequences. 244
Petr Ambrož and Edita Pelantová

Separating Many Words by Counting Occurrences of Factors 251
Aleksi Saarela

k-Spectra of Weakly-c-Balanced Words . 265
Joel D. Day, Pamela Fleischmann, Florin Manea, and Dirk Nowotka

Computing the k-binomial Complexity of the Thue–Morse Word 278
Marie Lejeune, Julien Leroy, and Michel Rigo

Context-Free Word Problem Semigroups . 292
Tara Brough, Alan J. Cain, and Markus Pfeiffer

Analysis of Symbol Statistics in Bicomponent Rational Models 306
M. Goldwurm, J. Lin, and M. Vignati

Author Index . 319

x Contents

Invited Papers

Inherent Size Blowup in ω-Automata

Udi Boker(B)

Interdisciplinary Center (IDC) Herzliya, Herzliya, Israel
udiboker@gmail.com

Abstract. We clarify the succinctness of the different ω-automata types
and the size blowup involved in boolean operations on them. We argue
that there are good reasons for the classic acceptance conditions, while
there is also place for additional acceptance conditions, especially in the
deterministic setting; Boolean operations on deterministic automata with
the classic acceptance conditions involve an exponential size blowup,
which can be avoided by using stronger acceptance conditions. In par-
ticular, we analyze the combination of hyper-Rabin and hyper-Streett
automata, which we call hyper-dual, and show that in the determinis-
tic setting it allows for exponential succinctness compared to the classic
types, boolean operations on it only involve a quadratic size blowup, and
its nonemptiness, universality, and containment checks are in PTIME.

Keywords: ω-automata · Size blowup · Acceptance conditions

1 Introduction

Automata on infinite words, often called ω-automata, were introduced in the
1960s in the course of solving decision problems in logic, and since the 1980s
they play a key role in formal verification of reactive systems. Unlike automata
on finite words, these automata have various acceptance conditions (types), the
most classic of which are weak, Büchi, co-Büchi, parity, Rabin, Streett, and
Muller.

There are good reasons for having multiple acceptance conditions in ω-
automata: each is closely connected to some other formalisms and logics, and
has its advantages and disadvantages with respect to succinctness and to the
complexity of resolving decision problems on it (see [6]).

There is a massive literature on the translations between the different
automata types, accumulated along the past 55 years, and continuing to these
days. (See, for example, [4,8,14,17,25,27,32–34,36,37,41].) Having “only” seven
classic types, where each can be deterministic or nondeterministic, we have 175
possible non-self translations between them, which has become difficult to fol-
low. Moreover, it turns out that there is inconsistency in the literature results
concerning the size of automata—Some only consider the number of states, some

This work was supported by the Israel Science Foundation grant 1373/16.

c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 3–17, 2019.
https://doi.org/10.1007/978-3-030-24886-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_1

4 U. Boker

also take into account the index (namely, the size of the acceptance condition),
while ignoring the alphabet size, and some do consider the alphabet size, but
ignore the index.

To make an order with all of these results, we maintain a website [3] that
provides information and references for each of the possible translations. The
high-level tables of the size blowup and of the state blowup involved in the
translations are given in Table 1.

There are many works on the complementation of nondeterministic ω-
automata (see [38] for a survey until 2007, after which there are yet many new
results), while very few on boolean operations on deterministic ω-automata.
This is possibly because nondeterministic automata are exponentially more suc-
cinct than deterministic ones and are adequate for model checking. However,
in recent years there is a vast progress in synthesis and in probabilistic model
checking, which require deterministic or almost deterministic automata, such as
limit-deterministic [39] or good-for-games automata [7,9,21].

In [6], we completed the picture of the size blowup involved in boolean opera-
tions on the classic ω-automata types, as summarized in Table 2. Observe that all
of the classic ω-regular-complete automata types, namely parity, Rabin, Streett,
and Muller, admit in the deterministic setting an exponential size blowup on
boolean operations, even on the positive ones of union and intersection.

Indeed, the problem with boolean operations on classic deterministic
automata and the current interest in the deterministic setting, may explain
the emergence of new, or renewed, automata types in the past seven years.
Among these are “Emerson-Lei” (EL), which was presented in 1985 [18], and
was recently “rediscovered” within the “Hanoi” format [1], “generalized-Rabin”
[24], and “generalized-Streett” [2]. The EL condition allows for an arbitrary
boolean formula over sets of states that are visited finitely or infinitely often,
generalized-Rabin extends the Rabin pairs into lists, and generalized-Streett
analogously extends Streett pairs.

While boolean operations on EL automata are obviously simple, it is known
that its nonemptiness check is NP-complete [18] and its universality check is
EXPSPACE-complete [20].

We analyzed in [6] additional non-classic acceptance conditions, and showed
that there is no inherent reason for having an exponential size blowup in positive
boolean operations on deterministic ω-regular-complete automata that admit a
PTIME nonemptiness check: We observed that generalized-Rabin is a special
case of a disjunction of Streett conditions, which was already considered in 1985
under the name “canonical form” [18], and which we dubbed “hyper-Rabin”.
We showed that it may be exponentially more succinct than the classic types,
it allows for union and intersection with only a quadratic size blowup, and its
nonemptiness check is in PTIME (see Tables 2 and 3). Indeed, there seem to
also be practical benefits for generalized-Rabin automata [13,19,24], which may
possibly be extended to the more general hyper-Rabin condition.

We further analyze in Sect. 5 the possibility of deterministic
ω-regular-complete automata that admit PTIME algorithms for nonemptiness,
universality, and containment checks, and for which all boolean operations,

Inherent Size Blowup in ω-Automata 5

including complementation, only involve a quadratic size blowup. We show
that it is indeed possible with an approach that upfront seems to only bring
redundancy—maintaining a pair of equivalent automata, one with the hyper-
Rabin condition and one with its dual (hyper-Streett) condition. We call such a
pair a hyper-dual automaton. Observe that in the deterministic setting, it is the
same as a pair of hyper-Rabin automata, one for a language L and one for its
complement L.

One may wonder what benefit can we have from a deterministic hyper-dual
automaton, having inner automata for both L and L, rather than having an
automaton only for L, and complementing it when necessary. We list below
some of the benefits:

– A deterministic hyper-dual automaton, despite having a pair of inner
automata for both L and L, is at most twice the size of classic automata,
such as Rabin and Streett, and may be exponentially more succinct than
them. (Propositions 2 and 7).

– The approach of maintaining an automaton and its complement obviously
allows for “free” complementation, yet it might have a price in union and
intersection. For example, a pair of equivalent deterministic automata, one
with the Rabin condition and one with its dual (Streett) condition, would
have an exponential size blowup on both union and intersection. The hyper-
dual combination is strong enough to prevent this price, and not too strong
for preserving decision problems in PTIME.

– In some scenarios, an automaton is generated iteratively, starting with a basic
one, and enlarging it with consecutive boolean operations. In such scenarios, a
hyper-dual automaton may have a big advantage—its initial generation is not
more difficult than of Rabin or Streett automata, and each boolean operation
only involves up to a quadratic size blowup, while preserving the ability to
check nonemptiness, universality, and containment in PTIME.

– Compared to complementing a hyper-Rabin automaton on demand:

• In theory, a deterministic hyper-Rabin automaton can always be com-
plemented into a hyper-Streett automaton that is not bigger than the
corresponding hyper-dual automaton. Yet, the complementation proce-
dure is exponential, and does not guarantee the smallest possible hyper-
Streett automaton. Hence, having in a hyper-dual automaton a small
hyper-Streett automaton in addition to the hyper-Rabin automaton pro-
vides a significant potential advantage.

• In iterative generations, complementation need not be made over and
over again, size optimizations would take into account both the hyper-
Rabin and hyper-Streett conditions, and progress is guaranteed to be
homogenous with no heavy steps in the middle.

• When expressing some property with only a hyper-Rabin automaton in
mind, it might be that we generate a small initial automaton whose
complementation would involve an exponential size blowup. Targeting
hyper-dual automata, we may limit ourselves to properties that can be
expressed with small hyper-dual automata, which then guarantees easy
boolean operations.

6 U. Boker

2 ω-Automata and Their Acceptance Conditions

A nondeterministic automaton is a tuple A = 〈Σ,Q, δ, ι, α〉, where Σ is the input
alphabet, Q is a finite set of states, δ : Q × Σ → 2Q is a transition function,
ι ⊆ Q is a set of initial states, and α is an acceptance condition. If |ι| = 1 and for
every q ∈ Q and σ ∈ Σ, we have |δ(q, σ)| ≤ 1, we say that A is deterministic.

A run r = r(0), r(1), · · · of A on an infinite word w = w(0) · w(1) · · · ∈ Σω

is an infinite sequence of states such that r(0) ∈ ι, and for every i ≥ 0, we have
r(i + 1) ∈ δ(r(i), w(i)). An automaton accepts a word if it has an accepting run
on it (as defined below, according to the acceptance condition). The language
of A, denoted by L(A), is the set of words that A accepts. We also say that
A recognizes the language L(A). Two automata, A and A′, are equivalent iff
L(A) = L(A′).

Acceptance is defined with respect to the set inf(r) of states that the run r
visits infinitely often. Formally, inf(r) = {q ∈ Q | for infinitely many i ∈ IN, we
have r(i) = q}.

We start with describing the most classic acceptance conditions, after which
we will describe some additional ones.

– Büchi, where α ⊆ Q, and r is accepting iff inf(r) ∩ α
= ∅.
– co-Büchi, where α ⊆ Q, and r is accepting iff inf(r) ∩ α = ∅.
– weak is a special case of the Büchi condition, where every strongly connected

component of the automaton is either contained in α or disjoint to α.
– parity, where α = {S1, S2, . . . , S2k} with S1 ⊂ S2 ⊂ · · · ⊂ S2k = Q, and r is

accepting iff the minimal i for which inf(r) ∩ Si
= ∅ is even.
– Rabin, where α = {〈B1, G1〉, 〈B2, G2〉, . . . , 〈Bk, Gk〉}, with Bi, Gi ⊆ Q and r

is accepting iff for some i ∈ [1..k], we have inf(r)∩Bi = ∅ and inf(r)∩Gi
= ∅.
– Streett, where α = {〈B1, G1〉, 〈B2, G2〉, . . . , 〈Bk, Gk〉}, with Bi, Gi ⊆ Q and r

is accepting iff for all i ∈ [1..k], we have inf(r) ∩ Bi = ∅ or inf(r) ∩ Gi
= ∅.
– Muller, where α = {α1, α2, . . . , αk}, with αi ⊆ Q and r is accepting iff for

some i ∈ [1..k], we have inf(r) = αi.

Notice that Büchi and co-Büchi are special cases of the parity condition,
which is in turn a special case of both the Rabin and Streett conditions.

Two additional types that are in common usage are:

– very weak (linear) is a special case of the Büchi (and weak) condition, where
all cycles are of size one (self loops).

– generalized Büchi, where α = {α1, α2, . . . , αk}, with αi ⊆ Q and r is accepting
iff for every i ∈ [1..k], we have inf(r) ∩ αi
= ∅.

A general way of describing an acceptance condition was given by Emerson
and Lei in 1985 [18]: For a set S of states, we define that Inf(S) holds in a run
r if S ∩ inf(r)
= ∅ and Fin(S) holds otherwise. Then,

– Emerson-Lei is an arbitrary boolean formula over Fin and Inf of sets of states.
(A positive boolean formula is enough, as ¬Fin(S) = Inf(S).)

Inherent Size Blowup in ω-Automata 7

Using the Emerson-Lei notation, we define below some additional types that
were defined (or renewed) in recent years.

– Generalized-Rabin:
∨n

i=1 Fin(Bi) ∧ Inf(Gi1) ∧ Inf(Gi2) ∧ . . . ∧ Inf(Giki
).

– Generalized-Streett :
∧n

i=1 Inf(Gi) ∨ Fin(Bi1) ∨ Fin(Bi2) ∨ . . . ∨ Fin(Biki
).

– Hyper-Rabin:
∨n

i=1

∧m
j=1 Fin(Bi,j) ∨ Inf(Gi,j).

– Hyper-Streett :
∧n

i=1

∨m
j=1 Fin(Bi,j) ∧ Inf(Gi,j).

Another related type is circuit [22], which further shortens Emerson-Lei, by
representing the acceptance formula as a boolean circuit. In Sect. 5, we also con-
sider the combination of hyper-Rabin and hyper-Streett automata, which we
call hyper-dual. Very-weak, weak, and co-Büchi automata, as well as determin-
istic Büchi automata, are less expressive than the other automata types, which
recognize all ω-regular languages.

The index of an automaton is the length of the boolean formula describing its
acceptance condition. For the more standard types, this definition coincides with
the standard definition of index: The number of sets in the generalized-Büchi,
parity, and Muller conditions, the number of pairs in the Rabin and Streett
conditions, and 1 in the very-weak, weak, co-Büchi, and Büchi conditions.

The size of an automaton is the maximum size of its elements; that is, it is the
maximum of the alphabet size, the number of states, the number of transitions,
and the index.

3 Succinctness

Size Versus Number of States. Out of the four elements that constitute the size
of an automaton, the number of states and the index are the dominant ones.

Considering the alphabet, the common practice is to provide the upper
bounds for arbitrary alphabets and to seek lower bounds with fixed alphabets.
For example, [28] strengthen the lower bound of [30] by moving to a fixed alpha-
bet, and [41] starts with automata over a rich alphabet and then moves to a fixed
alphabet. It turns out that this approach works well for all relevant translations,
eliminating the influence of the alphabet. As for the number of transitions, they
are bounded by the size of the alphabet times quadratically the number of states,
and the transition blowup tends to go hand in hand with the state blowup.

Considering the number of states and index, one cannot get the full picture by
studying their blowup separately, as they are interconnected, and sometimes have
a trade-off between them. For example, one can translate a Streett automaton
to a Rabin automaton with an exponential state blowup and no index blowup
[14] as well as with only a quadratic state blowup and an exponential index
blowup [5]. Therefore, there is only a quadratic inevitable state blowup and no
inevitable index blowup. Yet, there is an exponential inevitable size blowup [5].

The high-level tables of the size blowup and of the state blowup involved
in the translations of automata with classic acceptance conditions are given
in Table 1. The size blowup relates to an automaton of size n, and the
state blowup to an automaton with n states (and index as large as desired).

8 U. Boker

Table 1. Size blowup and state blowup involved in automata translations [3].

Inherent Size Blowup in ω-Automata 9

The capital letters stand for the type names: Weak, Co-Büchi, Büchi, etc. A
question mark in the tables stands for an exponential gap between the currently
known lower and upper bounds. The size blowup involved in the translations of
the stronger acceptance conditions, as discussed in Sect. 5, is given in Table 4.

Inevitable: Succinctness + Complementation ≥ Double-Exp. Aside from the
translations between specific automata types, one may wonder what might be
the succinctness of an arbitrary, possibly yet unknown, automaton type. It turns
out that there is an inherent tradeoff between the succinctness of an automaton
and the size blowup involved in its complementation—It is shown in [35] that
there is a family of ω-regular languages {Ln}n≥1, such that for every n, there
is an Emerson-Lei automaton of size n for Ln, while every ω-automaton for Ln

has at least 22
n

states.
Hence, for an automaton of some type T whose complementation only

involves a single-exponential size blowup, there must also be at least a single-
exponential size blowup in translating arbitrary ω-automata into T -automata.
Analogously, if we aim for a single-exponential blowup in determinization, and
no blowup in the complementation of deterministic automata, there must be at
least a double-exponential size blowup in translating arbitrary automata into
deterministic T -automata.

In this sense, the classic types, except for Muller, provide a reasonable trade-
off between their succinctness and the size blowup involved in their determiniza-
tion and complementation, having all of these measures singly exponential.

Proposition 1 ([6]). For every n ∈ IN and nondeterministic ω-automaton of
size n, there is an equivalent nondeterministic Büchi automaton of size in 2O(n)

and an equivalent deterministic parity automaton of size in 22
O(n)

.

4 Boolean Operations and Decision Problems

In the nondeterministic setting, boolean operations on the classic automata
types, except for Muller, roughly involve an asymptotically optimal size blowup:
linear for union, quadratic for intersection, and singly exponential for comple-
mentation. These blowups are inevitable already in automata over finite words.
In the deterministic setting, however, the picture is different, having an exponen-
tial size blowup on union or intersection for all of the classic ω-regular-complete
types. In this setting, the stronger acceptance conditions, as elaborated on in
Sect. 5, match the inevitable blowups, having only quadratic size blowup. The
size blowup involved in boolean operations is summarized in Table 2.

Seeking small size blowup on boolean operations is only one side of the
equation—one should consider it in conjunction with the succinctness of the
automaton type and the complexity of the nonemptiness and universality prob-
lems. The EL acceptance condition, for example, is very flexible and there is a
small size blowup in boolean operations on deterministic EL automata, however
at the cost of a high complexity of the decision problems.

10 U. Boker

Table 2. The size blowup involved in boolean operations.

Operations
Size Blowup

On Deterministic Automata On Nondeterministic Automata
Union Intersect. Complement. Union Intersect. Complement.

Weak

Quadratic

No
blowup

Linear

Quad.

2Θ(n)

[31]
(if possible)Co-Büchi No blowup

[25]
(if possible)Büchi

2Θ(n logn)

[11,30,33]
Parity

Exponential
[6,29]

No

blowup

Quad. -
Quartic

Rabin
Quad.

[6]
Exp.
[6]

Exp.
[28]

Quad.
[6]

2Θ(n2 logn)

[10,12,26]
Streett

Exp.
[6]

Quad.
[6]

Muller
Exp.
[6]

Exp.
[33]

Exp.
[6]

Double-Exp.
[6]

Hyper-Rabin Exp.
[6]

Linear

Quad.
Prop. 4,

[6]

Exp.
[6]

Hyper-Streett Quadratic
Prop. 3, [6]

Double-Exp.
[6]

Hyper-dual
Exp.

Prop. 4

Emerson-Lei

No
blowup Double-Exp.

[6]

The best possible complexity for the nonemptiness problem is NLOGSPACE
and linear time, taking its lower bound from the reachability problem. It is indeed
achieved with Büchi automata. For the stronger classic acceptance conditions,
except for Streett, it remains in NLOGSPACE, while exceeding the linear time,
and for Streett it is PTIME-complete. The further stronger conditions either
remain in PTIME, as Hyper-Rabin and Hyper-dual, or become NP-complete, as
hyper-Streett and Emerson-Lei.

The best possible complexity for the universality problem on nondetermin-
istic automata is PSPACE-complete, taking its lower bound from automata on
finite words. It is achieved for all the classic types, as well as for the hyper-Rabin
and hyper-dual types. A possible way to perform the universality check of an
automaton A of these types is the following: translate A to a Streett automaton
B with only a polynomial size blowup, then complement B to a Büchi automaton
C on the fly, having a potential exponential space, and check the nonemptiness
of C in logarithmic space, yielding a PSPACE algorithm in the size of A [33].

The complexity of the nonemptiness and universality problems (of nondeter-
ministic automata) is summarized in Table 3.

Inherent Size Blowup in ω-Automata 11

Table 3. The complexity of the nonemptiness and universality checks of nondetermin-
istic automata. The complexity is w.r.t. the automaton size n, and if specified, w.r.t.
m states and index k.

Checks of
Nondeterministic

Nonemptiness Universality

Weak
Linear time,
NL-complete

[16,40]
Co-Büchi

Büchi

Parity
O(m log k) time,
NL-comp. [18,23]

PSPACE-comp. [33]

Rabin
O(mk) time,
NL-comp. [40]

Streett PTIME-comp. [18]

Muller NL-comp. [15]

Hyper-Rabin
PTIME-comp.

[18]
PSPACE-comp.

[18]

Hyper-Streett
NP-complete

[6]
EXPSPACE-comp.

[20]

Hyper-dual
PTIME-comp.

Prop. 8
PSPACE-comp.

Prop. 8

Emerson-Lei
NP-complete

[18]
EXPSPACE-comp.

[33]

Table 4. The size blowup involved in translations between hyper-Rabin/Streett
automata. The translations to and from generalized-Rabin/Streett automata have the
same blowup. All results are from [6].

Translations
Size Blowup

Deterministic Nondeterministic

From
To

H-Rabin H-Streett H-Rabin H-Streett

Det.
Hyper-Rabin · Exp. · O(n2)

Hyper-Streett Exp. · Exp. ·

Non-
Det.

Hyper-Rabin Exp. · O(n2)

Hyper-Streett Double-Exp. Exp. ·

12 U. Boker

5 Hyper-dual

We look in this section into a new automaton type that consists of two equivalent
inner automata, one with the hyper-Rabin condition and one with the hyper-
Streett condition. In the deterministic setting, it is the same as having two hyper-
Rabin automata, one for the requested language and one for its complement.

Despite the first impression that it only brings redundancy, it seems to have
an interesting potential in the deterministic setting—It allows for all boolean
operations with only a quadratic state blowup, and for polynomial-time algo-
rithms of the decision problems of emptiness, universality, and automata compar-
ison. (A further discussion of its benefits is given at the end of the Introduction.)

Construction. Constructing a hyper-dual automaton is not more difficult than
constructing any classic automaton—having an automaton A with the Rabin or
Streett condition, a pair (A,A) is a proper hyper-dual automaton.

Proposition 2. The Rabin and Streett acceptance conditions are special cases
of both the hyper-Rabin and the hyper-Streett conditions.

Proof. Observe that the Streett condition is the hyper-Rabin condition with a
single disjunct, while the Rabin condition is a hyper-Rabin condition, in which
every disjunct consists of two elements Fin(B) ∨ Inf(∅) and Fin(Q) ∨ Inf(G),
where Q is the entire set of states in the automaton, and B,G ⊆ Q.

As for hyper-Streett, the claim follows from the duality to hyper-Rabin.

Boolean Operations. Further generating deterministic hyper-dual automata by
boolean operations is easy, involving only a quadratic size blowup—The comple-
ment of a deterministic hyper-dual automaton C = (A,B) is C = (B,A), while
the union and intersection of deterministic hyper-dual automata C′ = (A′,B′)
and C′′ = (A′′,B′′) is C = (A′ ∪ A′′,B′ ∪ B′′) and C = (A′ ∩ A′′,B′ ∩ B′′),
respectively, involving a quadratic size blowup (Table 2).

Proposition 3. Complementation of a deterministic hyper-dual automaton
involves no size blowup, and the union and intersection of two deterministic
hyper-dual automata involve a quadratic size blowup.

In the nondeterministic setting, it is almost similar to handling only hyper-
Rabin automata, for a simple reason—translating a nondeterministic hyper-
Rabin automaton into an equivalent hyper-Streett automaton only involves a
quadratic size blowup (Table 4).

Proposition 4. Complementation of a nondeterministic hyper-dual automaton
involves a singly-exponential size blowup, and the union and intersection of two
nondeterministic hyper-dual automata involve a quadratic size blowup.

Inherent Size Blowup in ω-Automata 13

Properness Check. Constructing a hyper-dual automaton from a classic automa-
ton and boolean operations guarantees its properness. Checking whether an arbi-
trary pair of hyper-Rabin and hyper-Streett automata is a proper hyper-dual
automaton might not be too interesting and it is also coNP-complete for deter-
ministic automata and EXPSPACE-complete for nondeterministic automata.

Proposition 5. Given a pair C = (A,B) of a deterministic hyper-Rabin
automaton A and a deterministic hyper-Streett automaton B, the problem of
deciding whether C is a proper hyper-dual automaton is coNP-complete.

Proof. For the upper bound, we should validate that L(A) = L(B). This is the
case iff L(A) ⊆ L(B) and L(B) ⊆ L(A), which is the case iff L(A) ∩ L(B) = ∅
and L(B) ∩ L(A) = ∅.

Observe that L(B) = L(B), and that B is a hyper-Rabin automaton. Thus,
checking whether L(A) ⊆ L(B) is in PTIME: constructing A ∩ B is possible in
quadratic time (Table 2), and its emptiness check in PTIME (Table 3).

As for checking whether L(B) ⊆ L(A), observe that L(A) = L(A), and
that A is a hyper-Streett automaton. Thus, the check is in co-NP: constructing
B ∩ A is possible in quadratic time (Table 2), and its nonemptiness check in NP
(Table 3).

For the lower bound, consider a pair C in which A is an empty automaton.
Then C is proper iff B is empty, and the nonemptiness check of a DHSW is
NP-complete (Table 3).

Proposition 6. Given a pair C = (A,B) of a nondeterministic hyper-Rabin
automaton A and a nondeterministic hyper-Streett automaton B, the problem of
deciding whether C is a proper hyper-dual automaton is EXPSPACE-complete.

Proof. For the upper bound, we can translate A and B to Büchi automata, hav-
ing an exponential size blowup (Proposition 1), and then check the equivalence
of the two Büchi automata in PSPACE.

For the lower bound, consider a pair C in which A is an automaton recognizing
Σω. Then C is proper iff B is universal, and the universality check of a hyper-
Streett automaton is EXPSPACE-complete (Table 3).

Succinctness. Comparing hyper-dual automata to the classic types, there is no
size blowup in the translation of Rabin and Streett automata to a hyper-dual
automaton (Proposition 2), while there is an exponential size blowup in the
other direction when considering deterministic automata—for the translation to
a Rabin automaton, we have the lower bound of deterministic Streett to Rabin,
by considering two copies of the Streett automaton as a hyper-dual automaton,
and analogously to the translation to Streett (Table 1).

Proposition 7. There is a 2ω(n log n) size blowup in the translation of determin-
istic hyper-dual automaton to deterministic Rabin and Streett automata.

14 U. Boker

An upper bound for translating a deterministic hyper-dual automaton to
deterministic Rabin and Streett automata involves a 2O(n4 log n) size blowup:
We can consider a hyper-Rabin automaton of size n with n disjuncts in its
acceptance condition as the union of n deterministic Streett automata of size n,
which can then be viewed as a single nondeterministic Streett automaton of size
n2. A Streett automaton of size m can be translated to deterministic Rabin and
Streett automata of size 2O(m2 log m) (Table 1), providing a total size blowup of
2O(n4 log n).

In the nondeterministic setting there is an exponential blowup in the trans-
lation to a Rabin automaton, due to the lower bound in the translation of
a nondeterministic Streett automaton to a nondeterministic Rabin automaton
(Table 1), while the translation to a Streett automaton only involves a quadratic
size blowup, as a hyper-Rabin automaton with n disjuncts can be viewed as the
union of n Streett automata.

Usage and Decision Procedures. Equipped with both a hyper-Rabin automaton
and a hyper-Streett automaton, we can “enjoy both worlds”, by choosing which
of them to use for each task. As a result, using them for synthesis, model-
checking probabilistic automata, or game solving is not more difficult than using
a hyper-Rabin or hyper-Streett automaton, and all decision problems in the
deterministic setting have polynomial-time algorithms. In the nondeterministic
setting, the decision problems are roughly as for hyper-Streett automata due to
the quadratic translation of hyper-Rabin to hyper-Streett.

Proposition 8. Nonemptiness and universality checks of a deterministic hyper-
dual automaton, as well as the containment and equivalence problems of two
deterministic hyper-dual automata, are in PTIME.

Proof. Consider a hyper-dual automaton C = (A,B). Then C is empty iff A is,
and it is universal iff B is empty, which reduces to checking the (non-)emptiness
of hyper-Rabin automata, which is in PTIME (Table 3).

Consider two hyper-dual automata C′ = (A′,B′) and C′′ = (A′′,B′′). Then
L(C′) ⊆ L(C′′) iff L(A′) ∩ L(B′′) = ∅. Observe that L(B′′) = L(B′′), and that
B′′ is a hyper-Rabin automaton. Thus, checking whether L(A′) ⊆ L(B′′) is in
PTIME: constructing A′ ∩ B′′ is possible in quadratic time (Table 2), and its
emptiness check in PTIME (Table 3).

For checking whether L(C′′) ⊆ L(C′), we can analogously consider A′′ ∩ B′.

6 Conclusions

Automata on infinite words enjoy a variety of acceptance conditions, which are
indeed necessary due to the richness of ω-regular languages and their connection
to various kinds of other formalisms and logics. In the deterministic setting,
which has recently become very relevant, it seems that there is still place for
new acceptance conditions. In particular, when the automata are to be involved
in positive boolean operations, one may consider the hyper-Rabin condition, and
when complementations are also in place, one may consider the hyper-dual type.

Inherent Size Blowup in ω-Automata 15

References

1. Babiak, T., et al.: The Hanoi omega-automata format. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21690-4 31

2. Blahoudek, F.: Translation of an LTL fragment to deterministic Rabin and Streett
automata. Master’s thesis, Masarykova Univerzita (2012)

3. Boker, U.: Word-automata translations (2010). http://www.faculty.idc.ac.il/
udiboker/automata

4. Boker, U.: On the (in)succinctness of muller automata. In: CSL, pp. 12:1–12:16
(2017)

5. Boker, U.: Rabin vs. Streett automata. In: FSTTCS, pp. 17:1–17:15 (2017)
6. Boker, U.: Why these automata types? In: Proceedings of LPAR, pp. 143–163

(2018)
7. Boker, U., Kuperberg, D., Kupferman, O., Skrzypczak, M.: Nondeterminism in

the presence of a diverse or unknown future. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 89–100.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2 11

8. Boker, U., Kupferman, O.: Translating to co-Büchi made tight, unified, and useful.
ACM Trans. Comput. Log. 13(4), 29:1–29:29 (2012)

9. Boker, U., Kupferman, O., Skrzypczak, M.: How deterministic are good-for-games
automata? In: Proceedings of FSTTCS, pp. 18:1–18:14 (2017)

10. Cai, Y., Zhang, T.: A tight lower bound for Streett complementation. In: Proceed-
ings of FSTTCS, pp. 339–350 (2011)

11. Cai, Y., Zhang, T.: Tight upper bounds for Streett and parity complementation.
In: Proceedings of CSL, pp. 112–128 (2011)

12. Cai, Y., Zhang, T., Luo, H.: An improved lower bound for the complementation
of Rabin automata. In: Proceedings of LICS, pp. 167–176 (2009)

13. Chatterjee, K., Gaiser, A., Křet́ınský, J.: Automata with generalized rabin pairs for
probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 559–575. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39799-8 37

14. Choueka, Y.: Theories of automata on ω-tapes: a simplified approach. J. Comput.
Syst. Sci. 8, 117–141 (1974)

15. Clarke, E.M., Browne, I.A., Kurshan, R.P.: A unified approach for showing lan-
guage containment and equivalence between various types of ω-automata. In:
Arnold, A. (ed.) CAAP 1990. LNCS, vol. 431, pp. 103–116. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52590-4 43

16. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Sys. 8(2), 244–263 (1986)

17. Colcombet, T., Zdanowski, K.: A tight lower bound for determinization of transi-
tion labeled Büchi automata. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 151–162.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02930-1 13

18. Emerson, E.A., Lei, C.-L.: Modalities for model checking: branching time logic
strikes back. Sci. Comput. Program. 8, 275–306 (1987)

19. Esparza, J., Křet́ınský, J., Sickert, S.: From LTL to deterministic automata: a
safraless compositional approach. Form. Methods Syst. Des. 49(3), 219–271 (2016)

https://doi.org/10.1007/978-3-319-21690-4_31
http://www.faculty.idc.ac.il/udiboker/automata
http://www.faculty.idc.ac.il/udiboker/automata
https://doi.org/10.1007/978-3-642-39212-2_11
https://doi.org/10.1007/978-3-642-39799-8_37
https://doi.org/10.1007/978-3-642-39799-8_37
https://doi.org/10.1007/3-540-52590-4_43
https://doi.org/10.1007/978-3-642-02930-1_13

16 U. Boker

20. Filiot, E., Gentilini, R., Raskin, J.F.: Rational synthesis under imperfect informa-
tion. In: Proceedings of LICS, pp. 422–431 (2018)

21. Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Ésik, Z.
(ed.) CSL 2006. LNCS, vol. 4207, pp. 395–410. Springer, Heidelberg (2006). https://
doi.org/10.1007/11874683 26

22. Hunter, P., Dawar, A.: Complexity bounds for regular games. In: Jȩdrzejowicz,
J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 495–506. Springer,
Heidelberg (2005). https://doi.org/10.1007/11549345 43

23. King, V., Kupferman, O., Vardi, M.Y.: On the complexity of parity word automata.
In: Honsell, F., Miculan, M. (eds.) FoSSaCS 2001. LNCS, vol. 2030, pp. 276–286.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45315-6 18

24. Křet́ınský, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 7

25. Kupferman, O., Morgenstern, G., Murano, A.: Typeness for ω-regular automata.
In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 324–338. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30476-0 27

26. Kupferman, O., Vardi, M.Y.: Complementation constructions for nondeterministic
automata on infinite words. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005.
LNCS, vol. 3440, pp. 206–221. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-31980-1 14

27. Liu, W., Wang, J.: A tighter analysis of Piterman’s Büchi determinization. Inf.
Process. Lett. 109(16), 941–945 (2009)

28. Löding, C.: Optimal bounds for transformations of ω-automata. In: Rangan, C.P.,
Raman, V., Ramanujam, R. (eds.) FSTTCS 1999. LNCS, vol. 1738, pp. 97–109.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46691-6 8

29. Löding, C., Yue, H.: Memory bounds for winning strategies in infinite games (2008,
unpublished)

30. Michel, M.: Complementation is more difficult with automata on infinite words.
CNET, Paris (1988)

31. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theor. Comput.
Sci. 32, 321–330 (1984)

32. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. Log. Methods Comput. Sci. 3(3), 5 (2007)

33. Safra, S.: Complexity of automata on infinite objects. Ph.D. thesis, Weizmann
Institute of Science (1989)

34. Safra, S.: Exponential determinization for ω-automata with strong-fairness accep-
tance condition. In: Proceedings of 24th ACM Symposium on Theory of Computing
(1992)

35. Safra, S., Vardi, M.Y.: On ω-automata and temporal logic. In: Proceedings of 21st
ACM Symposium on Theory of Computing, pp. 127–137 (1989)

36. Schewe, S.: Büchi complementation made tight. In: Proceedings of 26th Symposium
on Theoretical Aspects of Computer Science, volume 3 of LIPIcs, pp. 661–672
(2009)

37. Schewe, S., Varghese, T.: Determinising parity automata. In: Csuhaj-Varjú, E.,
Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8634, pp. 486–498.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44522-8 41

38. Vardi, M.: The Büchi complementation saga. In: Proceedings of STACS, pp. 12–22
(2007)

39. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: Proceedings of FOCS, pp. 327–338 (1985)

https://doi.org/10.1007/11874683_26
https://doi.org/10.1007/11874683_26
https://doi.org/10.1007/11549345_43
https://doi.org/10.1007/3-540-45315-6_18
https://doi.org/10.1007/978-3-642-31424-7_7
https://doi.org/10.1007/978-3-540-30476-0_27
https://doi.org/10.1007/978-3-540-31980-1_14
https://doi.org/10.1007/978-3-540-31980-1_14
https://doi.org/10.1007/3-540-46691-6_8
https://doi.org/10.1007/978-3-662-44522-8_41

Inherent Size Blowup in ω-Automata 17

40. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994)

41. Yan, Q.: Lower bounds for complementation of ω-automata via the full automata
technique. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 589–600. Springer, Heidelberg (2006). https://doi.org/
10.1007/11787006 50

https://doi.org/10.1007/11787006_50
https://doi.org/10.1007/11787006_50

Deciding Context Unification
(with Regular Constraints)

Artur Jeż(B)

University of Wroc�law, Wroc�law, Poland
aje@cs.uni.wroc.pl

Abstract. Given a ranked alphabet, context are terms with a single
occurrence of a special symbol • (outside of the alphabet), which repre-
sents a missing subterm. One can naturally build equations over contexts:
the context variables are treated as symbols of arity one and a substitu-
tion S assigns to each such a variable a context S(X). A substitution S is
extended to terms with context variables in a natural way: S(X(t)) is a
context S(X) in which the unique occurrence of • is replaced with S(t).
For historical reasons, the satisfiability of context equations is usually
referred to as context unification.

Context unification generalizes word equations and first-order term
unification (which are decidable) and is subsumed by second order unifi-
cation (which is undecidable) and its decidability status remained open
for almost two decades. In this paper I will sketch a PSPACE algorithm
for this problem. The idea is to apply simple compression rules (replac-
ing pairs of neighbouring function symbols) to the solution of the context
equation; to this end we appropriately modify the equation (without the
knowledge of the actual solution) so that compressing the solution can
be simulated by compressing parts of the equation. When the compres-
sion operations are appropriately chosen, then the size of the instance
is polynomial during the whole algorithm, thus giving a PSPACE-upper
bound. The best known lower bounds are as for word equations, i.e.
NP. The method can be extended to the scenario in which tree-regular
constraints for the variables are present, in which case the problem is
EXPTIME-complete.

1 Introduction

Context unification is a generalization of word equations to terms. In the word
equations problem we are given an alphabet Σ and a set of variables X . Then,
given an equation of the form u = v, where both u, v are words over the let-
ters and variables, we ask about the existence of a substitution of variables by
words over the alphabet that turns this formal equation into a true equality
(of words over the alphabet). The first algorithm for this problem was given by
Makanin [18]; the currently best algorithms for this problem utilize different (and
simpler) approach and work in PSPACE [11,22], the best known lower bound is
NP, and it follows easily from, say, the NP-hardness of integer programming.
c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 18–40, 2019.
https://doi.org/10.1007/978-3-030-24886-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_2

Deciding Context Unification with Regular Constraints 19

We view terms as rooted, ordered (meaning that the children of a node are
ordered using a usual left-to-right order) trees, usually denoted with letters t or
s. Nodes are labelled with elements from a ranked alphabet Σ, i.e. each letter
a ∈ Σ has a fixed arity ar(f); those elements are usually called letters. A tree
is well-formed if a node labelled with f has exactly ar(f) children; we consider
only well-formed trees, which can be equivalently seen as ground terms over Σ.
We will also use term notation to denote the trees in text, for example, f(c, c′)
denotes the tree with root labelled with f and two children, first (left) labelled
with c and the second (right) with c′; those children are leaves.

When generalizing the word equations from words to terms, one first needs
to decide, what a variable can represent. If a variable can only represent a well-
formed term, then we arrive at a standard first-order unification problem, which
can be solved in linear time; so this does not even generalize the word equations.
Thus the variables are allowed to take arguments, i.e. they define trees with
missing subtrees. Formally, we extend the alphabet with parameter symbols
•1, •2, . . . of arity 0. If a term t uses •1, •2, . . . , •i then t(t1, . . . , ti), where t1, . . . , ti
do not use parameters, is t in which •j is replaced with tj . Thus the variables
are ranked: X takes ar(X) arguments and the substitution for it has to use
•1, •2, . . . , •ar(X). For instance, an equation f(X(c),X(c)) = X(f(c, c)) has a
solution X = •. Under this substitution both sides evaluate to f(c, c). There
are other solutions, for instance X = f(•, •), which evaluates both sides to
f(f(c, c), f(c, c)); in general, solution that evaluates both sides to full binary
tree of arbitrary height is easy to construct. When no further restrictions are
given, this problem is the second order unification and is undecidable [9].

In context unification we require that each •j is used exactly once. For
instance, the aforementioned equation f(X(c),X(c)) = X(f(c, c)) as an instance
of context unification has exactly one solution: X = •, other solution are
excluded by the restriction that • is used exactly once. It is easy to see that
the case of many argument NP-reduces to the case with only one argument,
and we deal with only this case further on. Context unification was introduced
by Comon [1,2], who also coined the name, and independently by Schmidt-
Schauß [24]. It found usage in analysis of rewrite systems with membership con-
straints [1,2], analysis of natural language [20,21], distributive unification [25]
and bi-rewriting systems [13].

Context unification is both subsumed by second order unification (which is
undecidable) and subsumes word equations (which are decidable). Furthermore,
other natural problems between those two usually trivially reduce to word equa-
tions or are undecidable. Thus, in a sense, context unification is the only such
problem, whose decidability remains open. This is one of the reasons why it
gained considerable attention in the term rewriting community [23] and no won-
der that there was a large body of work focused on context unification and several
partial results were obtained [2,6–8,12,15,17,26,28,29]. Note that in most cases
the corresponding variants of the general second order unification remain unde-
cidable, which supported the conjecture that context unification is decidable.

20 A. Jeż

Context unification was shown to be equivalent to ‘equality up to constraint’
problem [20] (which is a common generalisation of equality constraints, sub-
tree constraints and one-step rewriting constraints). In fact one-step rewriting
constraints, which is a problem extensively studied on its own, are equivalent
to stratified context unification [21]. It is known that the first-order theory of
one-step rewriting constraints is undecidable [19,32,33]. For whole context uni-
fication, already the ∀ ∃8-equational theory is Π0

1 -hard [34].
Some fragments of second order unification are known to reduce to context

unification: the bounded second order unification assumes that the number of
occurrences of the argument of the second-order variable in the substitution
term is bounded by a constant; note that it can be zero and this is the crucial
difference with context unification; cf. monadic second order unification, which
can be seen as a similar variant of word equations, and is known to be NP-
complete [14]. This fragment on one hand easily reduces to context unification
and on the other hand it is known to be decidable [27]; in fact its generalisation
to higher-order unification is decidable as well [30] and it is known that bounded
second order unification is NP-complete [15].

The context unification can be also extended by allowing some additional
constraints on variables, a natural one allows the usage of the tree-regular con-
straints, i.e. for any variable we require that its substitution comes from a certain
regular set of trees. It is known that such an extension is equivalent to the linear
second order unification [16], defined by Levy [12]: in essence, the linear second
order unification allows bounding variables on different levels of the function,
which makes direct translations to context unification infeasible, however, usage
of regular constraints gives enough expressive power to encode such more com-
plex bounding. Note, that the reductions are not polynomial and the equivalence
is stated only on the decidability level.

The usage of regular constraints is very popular in case of word equations,
in particular it is used in generalisations of the algorithm for word equation to
the group case and essentially all known algorithms for word equations problem
can be generalised to word equations with regular constraints [3,4,31].

Results

The decidability status of context unification remained unknown for almost two
decades. In this paper I present a proof that context unification can be solved
in PSPACE, using a generalization of an algorithm for word equations; see [10]
for a full version.

The idea is to apply simple compression rules (replacing pairs of neighbouring
function symbols) to the solution of the context equation; to this end we appro-
priately modify the equation (without the knowledge of the actual solution) so
that compressing the solution can be simulated by compressing parts of the
equation. It is shown that if the compression operations are appropriately cho-
sen, then the size of the instance is polynomial during the whole algorithm, thus
giving a PSPACE-upper bound. The best known lower bounds are the same for
word equations, i.e. context unification is NP-hard. The method can be extended

Deciding Context Unification with Regular Constraints 21

to the scenario in which tree-regular for the variables are present, in which case
the problem is EXPTIME-complete.

This idea, known under the name of recompression, was used before for word
equations [11], simplifying the existing proof of containment in PSPACE. Further-
more, applications of compression to fragments of context unification were known
before [6,8,15,30] and the presented algorithm extends this method to terms in
full generality. In this way solving word equations using recompression [11] gen-
eralises to solving context unification. This in some sense fulfils the original plan
of extending the algorithms for word equations to context unification.

2 Definitions

2.1 Trees

As said before, we are given a ranked alphabet Σ, i.e. there is an arity function
ar : Σ → N, and we deal with rooted (there is a designated root), ordered (there
is a fixed linear order on children of each node) Σ-labelled trees. We say that a
tree is well-formed when a node labelled with a ∈ Σ has ar(a) children. We also
view such trees as terms, then a tree is well-built if seen as a term it is well-built.

2.2 Patterns

We want to replace fragments of a tree with new nodes, those fragments are not
necessarily well-formed. Thus we want to define ‘trees with holes’, where holes
represent missing arguments. Let Y = {•, •1, •2, . . .} be an infinite set of symbols
of arity 0, we think of each of them as a place of a missing argument; its elements
are collectively called parameters. A pattern is a tree over an alphabet Σ ∪ Y,
such that each parameter occurs at most once in it. The usual convention is that
the used parameters are •1, •2, . . . , •k, or •, when there is only 1 parameter;
moreover, we usually assume that the order (according to preorder traversal of
the pattern) of occurrences of the parameters in the pattern is •1, •2, . . . , •k.
We often refer to parameter nodes and non-parameter nodes to refer to nodes
labelled with parameters and non-parameters, respectively. A pattern using r
parameters is called r-pattern. A pattern p occurs (at a node v) in a tree t if p
can be obtained by taking a subtree t′ of t rooted at v and replacing some of
subtrees of t′ by appropriate parameters. This is also called an occurrence of p
in t. A pattern p is a subpattern of t if p occurs in t.

In a more classic terminology, 1-patterns are also called contexts, hence the
name “context unification”.

Given a tree t, its r-subpattern p occurrence and an r-pattern p′ we can
naturally replace p with p′: we delete the part of t corresponding to p with
removed parameters and plug p′ with removed parameters instead and reattach
all the subtrees in the same order; as the number of parameters is the same, this
is well-defined. We can perform several replacements at the same time, as long
as occurrences of replaced patterns do not share non-parameter nodes. In this
terminology, our algorithm will replace occurrences of subpatterns of t in t.

22 A. Jeż

We focus on some specific patterns: A chain is a pattern that consists only
of unary nodes plus one parameter node. Chains that have two nodes that are
labelled with different letters, i.e. of the form a(b(•)) for a �= b, are called pairs;
chains whose all unary nodes are labelled with the same letter a, i.e. of the form
a(a(. . . (a(•) . . .))), are called a-chains. A chain t′ that is a subpattern of t is a
chain subpattern of t, an occurrence of an a-chain subpattern a(a(. . . (a(•) . . .)))
is maximal if it cannot be extended (in t) by a nor up nor down. A pattern of a
form f(•1, •2, . . . , •i−1, c, •i, . . . , •ar(f)−1) is denoted as (f, i, c).

We treat chains as strings and write them in the string notation (in par-
ticular, we drop the parameters) and ‘concatenate’ them, that is, for two
chains sa = a1(a2(. . . ak(•) . . .)) and sb = b1(b2(. . . b�(•) . . .)) we write them
as sa = a1a2 · · · ak and sb = b1b2 · · · b� and their concatenation sasb =
a1a2 · · · akb1b2 · · · b� denotes the chain a1(a2(. . . ak(b1(b2(. . . b�(•) . . .))) . . .)). In
this convention ab denotes a pair and a� denotes an a-chain. We use those con-
ventions also for 1-patterns and also for 1-patterns followed by a single term,
i.e. for 1-patterns p1, . . . , pk and a term t the p1p2 · · · pkt denotes the term
p1(p2(. . . pk(t) . . .)).

2.3 Context Unification: Formal Statement

By V we denote an infinite set of context variables X, Y , Z, We also use
individual term variables x, y, z, . . . taken from X . When we do not want to
distinguish between a context variable or term variable, we call it a variable and
denote it by a small Greek letter, like α, β, γ,

Definition 1. The terms over Σ, X , V are ground terms with alphabet Σ∪X ∪V
in which we extend the arity function ar to X ∪ V by ar(X) = 1 and ar(x) = 0
for each X ∈ V and x ∈ X . A context equation is an equation of the form u = v
where both u and v are terms over Σ ∪ X ∪ V.

We are interested in the solutions of the context equations, i.e. substitutions
that replace term variables with ground terms and context variables with 1-
patterns, such that a formal equality u = v is turned into a valid equality of
ground terms. More formally:

Definition 2. A substitution is a mapping S that assigns a 1-pattern S(X) to
each context variable X ∈ V and a ground term S(x) to each variable x ∈ X .
The mapping S is naturally extended to arbitrary terms as follows:

– S(a) := a for each constant a ∈ Σ;
– S(f(t1, . . . , tn)) := f(S(t1), . . . , S(tm)) for an m-ary f ∈ Σ;
– S(X(t)) := S(X)(S(t)) for X ∈ V.

A substitution S is a solution of the context equation u = v if S(u) = S(v). The
size of a solution S of an equation u = v is |S(u)|, which is simply the total

Deciding Context Unification with Regular Constraints 23

number of nodes in S(u). A solution is size-minimal, if for every other solution
S′ it holds that |S(u)| ≤ |S′(u)|. A solution S is non-empty if S(X) is not a
parameter for each X ∈ X from the context equation u = v.

For a ground term S(u) and an occurrence of a letter a in it we say that this
occurrence comes from u if it was obtained as S(a) in Definition 2 and that it
comes from α if it was obtained from S(α) in Definition 2.

Example 1. Consider an alphabet Σ = {f, c, c′} with ar(f) = 2 and ar(c) =
ar(c′) = 0 and an equation X(c) = Y (c′) over it. It has a solution (which is
easily seen to be size-minimal) S(X) = f(•, c′) and S(Y) = f(c, •); under this
substitution this equation evaluates to S(X(c)) = S(Y (c′)) = f(c, c′).

3 Local Compression of Trees

3.1 Compression Operations

We perform three types of subpattern compression on a tree t:

a-chain compression. For a unary letter a and every � > 1 we replace each
occurrence of a maximal a-chain subpattern a� by a new unary letter a�.

ab compression. For two different unary letters a and b we replace each occur-
rence of a subpattern ab with a new unary letter c.

(f, i, c) compression. For a constant c and letter f of arity ar(f) = m ≥ i ≥ 1,
we replace each occurrence of subpattern (f, i, c), i.e. f(•1, •2, . . . ,
•i−1, c, •i, . . . , •m−1), with subpattern f ′(•1, •2, . . . , •i−1, •i, . . . , •m−1),
where f ′ is a fresh letter of arity m − 1 (intuitively: the constant c on i-th
place is ‘absorbed’ by its father labelled with f).

These operations are collectively called subpattern compressions. When
we want to specify the type but not the actual subpattern compressed,
we use the names chain compression, pair compression and leaf compres-
sion. These operations are also called TreePattComp(ab, t), TreePattComp(a, t)
and TreePattComp((f, i, c), t), or simply TreePattComp(p, t) for a pattern p ∈
{a, ab, (f, i, c)}.

The a-chain compression and ab compression are direct translations of the
operations used in the recompression-based algorithm for word equations [11].
On the other hand, the leaf compression is a new operation that is designed
specifically to deal with trees.

3.2 Compression of Non-crossing Patterns

Consider a context equation u = v and its solution S. Suppose that we want
to perform the ab compression on S(u) and S(v), i.e. we want to replace each
occurrence of a subpattern ab with a fresh unary letter c. Such replacement
is easy, when the occurrence of ab subpattern comes from the letters in the
equation or from S(α) for some variable α: in the former case we modify the

24 A. Jeż

equation by replacing the occurrences of ab with c, in the latter the modification
is done implicitly (i.e. we replace the occurrences of fab in S(α) with c). The
problematic part is with the ab subpattern that is of neither of those forms, as
they ‘cross’ between S(α) and some letter outside S(α). This is formalised in
the below definition, the intuition and definition is similar also for a-chains and
(f, i, c) patterns.

Definition 3. For an equation u = v and a substitution S we say that an occur-
rence of a subpattern p in S(u) (or S(v)) is

explicit with respect to S: if all non-parameter letters in this occurrence
come from explicit letters in u = v;

implicit with respect to S: if all non-parameter letters in this occurrence
come from S(α) for a single occurrence of a variable α;

crossing with respect to S: otherwise.

We say that ab is a crossing pair (a has a crossing chain; (f, i, c) is a crossing
father-leaf subpattern) with respect to S if it has at least one crossing occurrence
(there is a crossing occurrence of an a� chain; has at least one crossing occur-
rence) with respect to S. Otherwise ab (a, (f, i, c)) is a non-crossing pair (has
no crossing chain; is a non-crossing father-leaf subpattern) with respect to S.

To make the notions more uniform, we will also say that p ∈ {ab, a, (f, i, c)} is
a crossing/non-crossing subpattern, meaning that ab is a crossing/noncrossing
pair, a has crossing chain/has no crossing chains and (f, i, c) is a crossing/non-
crossing father-leaf subpattern.

When ab is non-crossing with respect to a solution S, we can simulate
the TreePattComp(ab, S(u)) on u = v simply by performing the ab compres-
sion on the explicit letters in the equation, we refer to this operation as
PattCompNCr(ab, ‘u = v’). Then occurrences of ab that come from explicit let-
ters are compressed, the ones that come from S(α) are compressed by changing
the solution and there are no other possibilities. The same applies also to com-
pression of a-chains and (f, i, c)-compression.

As we discuss correctness of nondeterministic procedures, in the following
we will say that a nondeterministic procedure is sound, if given a non-satisfiable
context equation it cannot transform it to a satisfiable equation, regardless of
the nondeterministic choices.

Lemma 1. PattCompNCr is sound.
Let u = v has a solution S and let p ∈ {ab, a, (f, i, c)} be a noncrossing

subpattern. Then the returned equation u′ = v′ has a solution S′ (over an alpha-
bet expanded by letters introduced during the subpattern compression) such that
S′(u′) = TreePattComp(p, S(u)).

Example 2. Consider the following context equation over the alphabet
{a, b, c, c′, f}, with ar(a) = ar(b) = 1, ar(c) = ar(c′) = 0 and ar(f) = 2:

bXaXc = baa(f(aY c′, bb(f(c, c′)))),

Deciding Context Unification with Regular Constraints 25

b

a

a

f

a

a

f

b

b

f

c c′

c

b

b

f

c c′

a

b

a

a

f

a

a

f

b′

f

c c′

c

b′

f

c c′

a

Fig. 1. An illustration to Example 2. The Figure presents the tree obtained at both
sides under the substitution, the values substitutions for variables are depicted: in
dashed line for X and dotted for Y . On the right the tree after the compression of bb
is depicted.

see also Fig. 1. It is easy to see that there is a unique solution S(X) =
aa(f(•, bb(f(c, c′)))) and S(Y) = aa(f(c, bb(f(c, •)))).

The subpattern ba has a crossing occurrence on the left-hand side, as a
is the first letter of S(X) and bX is a subpattern. Subpattern bb has only
noncrossing occurrences, some of them explicit and some implicit. Subpatterns
(f, 2, c′), (f, 1, c), a3 are also crossing.

Compressing b subpattern leads to an equation

bXaXc = baa(f(baY c′, b′(f(c, c′)))).

Then the solution is S′(X) = aa(f(b•, b′(f(c, c′)))) and S′(Y) =
aa(f(bc, b′(f(c, •)))).

4 Uncrossing

In general, one cannot assume that an arbitrary pair ab, a-chain or (f, i, c) sub-
pattern is non-crossing. However, for a fixed subpattern p and a solution S we
can modify the instance so that this p becomes non-crossing with respect to a
solution S′ (that corresponds to S of the original equation). This modification
is the cornerstone of our main algorithm, as it allows subpattern compression to
be performed directly on the equation, regardless of how the solution actually
looks like.

26 A. Jeż

4.1 Uncrossing a Pair

We begin with showing how to turn a crossing pair ab into a non-crossing one.
As a first step, we characterise crossing pairs in a more operational manner:
for a non-empty substitution S, a variable α and a context variable X by a first
letter of S(α) we denote the topmost-letter in S(α), by the last letter of S(X) we
denote the function symbol that is the father of ‘•’ in S(X). Then ab is crossing
with respect to S if and only if one of the following conditions holds for some
variable α and context variable X:

(CP1) aα occurs in u = v and b is the first letter of S(α) or
(CP2) Xb occurs in u = v and a is the last letter of S(X) or
(CP3) Xα occurs in u = v, a is the last letter of S(X) and b the first letter of

S(α).

In each of (CP1–CP3) it is easy to modify the instance so that ab is no longer
a crossing pair:

Ad (CP1): We pop up the letter b: we replace α with bα. In this way we also
modify the solution S(α) from bt to t. If the new substitution for α
is empty (which can happen only when α is a context variable), we
remove α from the equation.

Ad (CP2): We pop down the letter a: we replace each occurrence of X with
Xa. In this way we implicitly modify the solution S(X) from sa to
s. If the new substitution for X is empty, we remove X from the
equation.

Ad (CP3): this is a combination of the two cases above, in which we need to
pop-down from X and pop-up from α.

The whole uncrossing procedure can be even simplified: for each context
variable X we guess its last letter and it if is a, then we pop it down. Similarly,
for each variable α we guess its first letter and if it is b then we pop it up.
If at any point a context some variable becomes empty then we remove its
occurrences. We call the whole procedure Uncross (ab, ‘u = v’) and its details
are in the pseudocode in Algorithm1.

If u = v has a solution S then for appropriate non-deterministic choices
Uncross(ab, ‘u = v’) returns an equation u′ = v′ that has a solution S′ such that
ab is non-crossing with respect to S′ and S′(u′) = S(u).

Lemma 2. Let a �= b be two different unary letters. Then Uncross(ab, ‘u = v’)
is sound and if u = v has a non-empty solution S (over an alphabet Σ) then
for appropriate non-deterministic choices the returned equation u′ = v′ has a
non-empty solution S′ (over the same alphabet Σ) such that S′(u′) = S(u) and
ab is a non-crossing pair with respect to S′.

Example 3. Continuing Example 2, recall that ba is a crossing subpattern in

bXaXc = baa(f(aY c′, bb(f(c, c′)))),

Deciding Context Unification with Regular Constraints 27

Algorithm 1. Uncross(ab, ‘u = v’)
1: for X ∈ V do
2: if the last letter of S(X) is a then � Guess
3: replace each occurrence of X in u = v by Xa
4: � Implicitly change S(X) = sa to S(X) = s
5: if S(X) is empty then � Guess
6: remove X from u = v: replace each Xs in the equation by s

7: for α ∈ V ∪ X do
8: if the first letter of S(α) is b then � Guess
9: replace each occurrence of α in u = v by bα

10: � Implicitly change S(α) = bs to S(α) = s
11: if S(α) is empty then � Guess; applies only to context variables
12: remove α from u = v: replace each αs in the equation by s

where the alphabet is {a, b, c, c′, f}, with ar(a) = ar(b) = 1, ar(c) =
ar(c′) = 0 and ar(f) = 2 and S(X) = a(a(f(•, b(b(f(c, c′)))))) and S(Y) =
a(a(f(c, b(b(f(c, •)))))). We pop a up from X, obtaining

baXbaaXbc = baa(f(aY c′, bb(f(c, c′)))),

the solution is S′(X) = a(f(•, bb(f(c, c′)))) and S′(Y) = S(Y). It is easy to
verify that ba is no longer crossing.

4.2 Uncrossing Chains

Suppose that some unary letter a has a crossing chain with respect to a non-
empty solution S. As in the case of pairs, it is easy to see that a has a crossing
chain with respect to S if and only if one of the following holds for variable α
and context variable X (note that those conditions are in fact (CP1–CP3) for
a = b):

(CC1) aα occurs in u = v and the first letter of S(α) is a;
(CC2) Xa occurs in u = v and a is the last letter of S(X);
(CC3) Xα occurs in u = v and a is the last letter of S(X) as well as the first

letter of S(α).

The cases (CC1) and (CC2) are symmetric while (CC3) is a composition
of (CC1) and (CC2). So suppose that (CC2) holds. Then we can replace each
occurrence of X in the equation u = v with Xa (implicitly changing the solution
S(X) = ta to S(X) = t), but it can still happen that a is the last letter of S(X).
So we keep popping down a until the last letter of S(X) is not a, in other words
we replace X with Xar, where S(X) = tar and the last letter of t is not a. Then
a and X can no longer satisfy condition (CC2), as the last letter of S′(X) is
different than a. A symmetric action and analysis apply to (CC1), and (CC3)
follows by applying the popping down for X and popping up for α. To simplify
the arguments, for a ground term or 1-pattern t we say that a� is the a-prefix of

28 A. Jeż

t if t = a�t′ and the first letter of t′ is not a (t′ may be empty). Similarly, for a
1-pattern t we say that ar is the a-suffix of t if t = t′ar and the last letter of t′

is not a (in particular, t′ may be empty).
We call this procedure Uncross (a, ‘u = v’), its formal details are given in

Algorithm 2.

Algorithm 2. Uncross (a, ‘u = v’) Uncrossing all a-chains
1: for α ∈ V ∪ X do
2: if a is the first letter of S(α) then � Guess
3: guess � ≥ 1 � a� is the a-prefix of S(α)
4: replace each α in u = v by a�α � implicitly change S(α) = a�t to S(α) = t
5: if S(α) is empty then � Guess; applies only to context variables
6: remove α from u = v: replace each α(t) in the equation by t

7: for X ∈ V do
8: if a is the last letter of S(X) then � Guess
9: guess r ≥ 1 � ar is the a-suffix of S(X)

10: replace each X in u = v by Xar � implicitly change S(X) = tar to
S(X) = t

11: if S(X) is empty then � Guess
12: remove X from u = v: replace each X(t) by t

Lemma 3. Uncross(a, ‘u = v’) is sound and if u = v has a non-empty solution S
(over an alphabet Σ) then for appropriate non-deterministic choices the returned
equation u′ = v′ has a non-empty solution S′ (over the same alphabet Σ) such
that S′(u′) = S(u) and a has no crossing chains with respect to S′.

Example 4. Continuing Example 2:

bXaXc = baa(f(aY c′, bb(f(c, c′)))),

where the alphabet is {a, b, c, c′, f}, with ar(a) = ar(b) = 1, ar(c) = ar(c′) = 0 and
ar(f) = 2 and S(X) = aa(f(•, bb(f(c, c′)))) and S(Y) = aa(f(c, bb(f(c, •)))).

There are crossing a chains, because aY is a subpattern and a is the first
letter of S(Y). We pop the a-prefixes from X,Y , there are no a-suffixes. The
instance is now

baaXaaaXc = baa(f(aaaY c′, bb(f(c, c′)))),

where S′(X) = f(•, bb(f(c, c′))) and S′(Y) = f(c, bb(f(•, c))). It is easy to verify
that a has no crossing chains.

4.3 Uncrossing Father-Leaf Subpattern

We now show how to uncross a father-leaf subpattern (f, i, c). It is easy to observe
that father-leaf subpattern (f, i, c) is crossing (with respect to a non-empty S)
if and only if one of the following holds for some context variable X and term
variable y:

Deciding Context Unification with Regular Constraints 29

(CFL 1) f with an i-th son y occurs in u = v and S(y) = c;
(CFL 2) Xc occurs in u = v and the last letter of S(X) is f and • is its i-th

child;
(CFL 3) Xy occurs in u = v, S(y) = c and f is the last letter of S(X) and • is

its i-th child.

We want to ‘pop-up’ c and ‘pop-down’ f . Popping up c is easy (we replace y
with c); popping-down f is more complex. Let us first present the intuition:

– In (CFL1) we pop up the letter c from y, which in this case means that we
replace each occurrence of y in the equation with c = S(y). Since y is no
longer in the context equation, we can restrict the solution so that it does
not assign any value to y.

– In (CFL2) we pop down the letter f : let S(X) = sf(t1, . . . , ti−1, •, ti, . . . ,
tm−1), where s is a 1-pattern and each ti is a ground term and ar(f) =
m. Then we replace each X with Xf(x1, x2, . . . , xi−1, •, xi, . . . , xm−1), where
x1, . . . , xm−1 are fresh term variables. In this way we implicitly modify the
solution S(X) = s(f(t1, t2, . . . , ti−1, •, ti, . . . , tm−1)) to S′(X) = s and add
S′(xj) = tj for j = 1, . . . , m − 1. If S′(X) is empty, we remove X from the
equation.

– The third case (CFL3) is a combination of (CFL1)–(CFL2), in which we need
to pop-down from X and pop up from y.

We call this procedure Uncross((f, i, c), ‘u = v’), its formal description is given
in Algorithm 3.

Algorithm 3. Uncross((f, i, c), ‘u = v’)
1: for x ∈ X do
2: if S(x) = c then � Guess
3: replace each x in u = v by c � S is no longer defined on x

4: let m ← ar(f)
5: for X ∈ V do
6: if f is the last letter of S(X), • is its i-th child and Xc is a subpattern in u = v

then � Guess
7: replace each X in u = v by X(f(x1, x2, . . . , xi−1, •, xi, . . . , xm1−))

� Implicitly change S(X) = sf(t1, t2, . . . , ti−1, •, ti, . . . , tm−1) to S(X) = s
� Add new variables x1, . . . , xm−1 to X and extend S by setting S(xj) = tj

8: if S(X) is empty then � Guess
9: remove X from the equation: replace each X(t) in the equation by t

10: for new variables x ∈ X do
11: if S(x) = c then � Guess
12: replace each x in u = v by c � S is no longer defined on x

Lemma 4. Let ar(f) ≥ i ≥ 1 and ar(c) = 0, then Uncross((f, i, c), ‘u = v’) is
sound and if u = v has a non-empty solution S (over an alphabet Σ) then for

30 A. Jeż

appropriate non-deterministic choices the returned equation u′ = v′ has a non-
empty solution S′ (over the same alphabet Σ) such that S′(u′) = S(u) and there
is no crossing father-leaf subpattern (f, i, c) with respect to S′.

Example 5. Continuing Example 2, the equations

bXaXc = baa(f(aY c′, bb(f(c, c′)))),

where the alphabet is {a, b, c, c′, f}, with ar(a) = ar(b) = 1, ar(c) = ar(c′) = 0
and ar(f) = 2, has a solution S(X) = aa(f(•, bb(f(c, c′)))) and S(Y) =
aa(f(c, bb(f(c, •)))). A subpattern (f, 2, c′) is crossing, as Y c′ is a subpattern,
the last letter of Y is f and the hole • is the second child of this f We uncross
it by popping down from Y : The instance is now

bXaXc = baa(f(aY (f(y, c′)), bb(f(c, c′))))

where S′(X) = S(X), S′(Y) = f(c, b(b(•))) and S(y) = c. It is easy to see that
(f, 2, c′) is now noncrossing.

5 The Algorithm

In its main part, ContextEqSatSimp iterates the following operation: it nondeter-
ministically chooses to perform one of the compressions: ab compression, a-chain
compression or (f, i, c) compression, where a, b, c, f are some letters of appropri-
ate arity. It then nondeterministically choose, whether this pattern is crossing or
not. If so, it performs the appropriate uncrossing. Then it performs the subpat-
tern compression for p and adds the new letter (or letters, for chains compression)
to Σ. We call one iteration of main loop of ContextEqSatSimp a phase.

Algorithm 4. ContextEqSatSimp(‘u = v’, Σ) Checking the satisfiability of a con-
text equation u = v

1: while |u| > 1 or |v| > 1 do
2: choose p from {a, ab, (f, i, c)} to compress, a, b, c, f ∈ Σ
3: if p is crossing then � Guess
4: Uncross(p, ‘u = v’)

5: PattCompNCr(a, ‘u = v’)
6: add letters representing compressed subpatterns to Σ

7: Solve the problem naively � With sides of size 1, the problem is trivial

The extended algorithm ContextEqSat works in the same way, except that
at the beginning of each iteration it removes from the alphabet the letters that
are neither from the original alphabet neither are present in the current context
equation. It is easy to show that such removal does not change the satisfiability
of the given equation.

Deciding Context Unification with Regular Constraints 31

Theorem 1. ContextEqSatSimp and ContextEqSat store an equation of length
O(n2k2), where n is the size of the input equation and k the maximal arity of
symbols from the input alphabet. They non-deterministically solve context equa-
tions, in the sense that:

– if the input equation is not-satisfiable then they never return ‘YES’;
– if the input equation is satisfiable then for some nondeterministic choices in

O(n3k3 log N) phases they return ‘YES’, where N is the size of size-minimal
solution.

As a corollary we get an upper bound on the computational complexity of
context unification.

Theorem 2. Context unification is in PSPACE.

6 Space Bounds

While the soundness of the algorithm follows from soundness of its subproce-
dures, the space bounds, and so the termination, remains to be shown.

6.1 General Bounds

First, we recall that the following known bound on the size of the a-chains
for size-minimal solutions. This ensures that we can compress the chains in
polynomial space.

Lemma 5 (Exponent of periodicity bound [28]). Let S be a size-minimal
solution of a context equation u = v (for an alphabet Σ). Suppose that S(X) (or
S(x)) can be written as tamt′, where t, t′ are 1-patterns (or t′ is a ground term,
respectively) and a is a unary letter. Then m = 2O(|u|+|v|).

Now we bound the number of variables occurrences during the algorithm.
Note that this bound works for all nondeterministic choices.

Lemma 6. The number of occurrences of context variables during ContextEqSat
is at most n. The number of occurrences of term variables is at most nk.

The bound for context variables is obvious, as we never introduce new ones. For
term variables observe that during the (f, i, c) uncrossing we introduce new term
variables, by popping them from context variables. However, it can be shown
that when we pop new term variables from X, all term variables previously
introduced by X have been removed. This yields the bound.

As a next step, we estimate the number of different crossing subpatterns.
This follows by a simple argument that such a pattern can be associated with a
top or bottom letter in a variable.

Lemma 7. For an equation u = v during ContextEqSat and its solution S the
number of different crossing subpatterns of the form a, ab, (f, i, c) is at most
n(k + 1).

32 A. Jeż

We can also limit the number of new letters introduced during the uncrossing.
Again, this follows a simple calculation.

Lemma 8. Uncrossing and compression of a subpattern introduces at most
n(k + 1) letters to the equation.

6.2 Strategy

The strategy of choosing nondeterministic choices is easy: if there is a noncrossing
pattern, then we compress it, as this decreases both the size of the equation and
of the minimal solution.

If there is none, then we choose a pattern, whose compression makes equation
smallest possible (after this one compression). As there are only n(k + 1) such
candidates, see Lemma 7, one of them will appear roughly (|u| + |v|)/n(k + 1)
many times. Its compression removes (|u|+ |v|)/2n(k +1) letters and introduces
at most n(k + 1) many letters, see Lemma 8. This shows that we never exceed
the quadratic bound on |u| + |v| given in Theorem 1.

If we additionally make choices so as to minimize the size of the solution,
then we can guarantee to terminate after the number of steps depending on
log N (and not N), so as claimed in Theorem 1.

7 Detailed Example

We now run the algorithm on Example 2, see also the Fig. 2. Recall the equation:

bXaXc = ba(a(f(aY c′, b(b(f(c, c′)))))),

where the alphabet is Σ = {a, b, c, c′, f}, with ar(a) = ar(b) = 1, ar(c) =
ar(c′) = 0 and ar(f) = 2 and S(X) = a(a(f(•, b(b(f(c, c′)))))) and S(Y) =
a(a(f(c, b(b(f(c, •)))))). There is no need to preprocess the alphabet.

As b has no crossing chains, so we compress it, obtaining

bXaXc = baa(f(aY c′, b′(f(c, c′)))),

where the alphabet is Σ ∪ {b′}, with ar(b′) = 1 and the solution and S(X) =
aa(f(•, b′(f(c, c′)))) and S(Y) = aa(f(c, b′(f(c, •)))). Now every potential sub-
pattern for compression is crossing. We choose (f, 1, c) for compression and
uncross it. To this end we pop f down from X. Note, that according to the
algorithm, f is not popped down from Y , even though f is its last letter, it does
not take part in any crossing occurrence of a subpattern (f, 1, c). The instance
is now

bX(f(aXf(c, x), x)) = baa(f(aY c′, b′(f(c, c′)))),

with a solution S(X) = aa, S(Y) = aa(f(c, b′(f(c, •)))) and S(x) = b′(f(c, c′)).
We compress (f, 1, c), obtaining

bX(f(aXf ′x, x)) = baa(f(aY c′, b′f ′c′)),

Deciding Context Unification with Regular Constraints 33

b

a

a

f

a

a

f ′

b′′

c′

b′′

c′

a

b

a

a

f

a

a

f

b

b

f

c c′

c

b

b

f

c c′

b

a

a

f

a

a

f

b′

f

c c′

c

b′

f

c c′

a

a

b

a

a

f

a

a

f

b′

f

c c′

c

b′

f

c c′

a

b

a

a

f

a

a

f ′

b′

f ′

c′

b′

f ′

c′

a

b

a

a

f

a

a

f ′

c′′

c′′a

b

a2

f

f ′

c′′

c′′a3

b′′

f

f ′

c′′

c′′a3

b′′

f ′′

f ′

c′′

a3

b′′′

f ′

c′′

a3

b′′′′

f ′

c′′

f ′′

c′′

c′′′

Fig. 2. An illustration of running the algorithm on the instance from Example 2. The
Figure presents the term obtained at both sides under the substitution, the values sub-
stitutions for variables are depicted: in dashed line for X and dotted for Y , later also
dash-dotted for x. The changes are according to the consecutive actions described in the
section: b chains compression, uncrossing (f, 1, c), compression of (f, 1, c), compression
of b′f ′, uncrossing and compression of (b′′, 1, c′), uncrossing a-chains and compression
of a chains, compression of ba2, uncrossing and compression of (f, 2, c′′), compression
of b′′f ′′, compression of b′′′a3, uncrossing and compression of b′′′′f ′ and finally com-
pression of (f ′′, 1, c′′).

with a solution S(X) = aa, S(Y) = aaf ′b′f ′, S(x) = b′f ′c′, here f ′ is of arity
ar(f ′) = 1 is added to the alphabet, which is now Σ ∪ {b′, f ′}. Note that there
is a new term variable x. Now b′f ′ is noncrossing, so we compress it (into b′′ of
arity 1), obtaining

bX(f(aXf ′x, x)) = baa(f(aY c′, b′′c′)),

with a solution S(X) = aa, S(Y) = aaf ′b′′ and S(x) = b′′c′. The b′ is no longer
used, so it is removed from the alphabet, which is now Σ ∪{b′′, f ′} We choose to
compress b′′c′, as a (b, 1, c′) subpattern, we first uncross it by popping f down

34 A. Jeż

from Y and then we compress into a new constant c′′, the b′′ can be removed.
So the alphabet is now Σ ∪ {f ′, c′′} and the equation is

bX(f(aXf ′x, x)) = baa(f(aY c′′, c′′)),

with a solution S(X) = aa, S(Y) = aaf ′ and S(x) = c′′.
Now we uncross and compress a-blocks: in uncrossing we replace X with a2

and pop-up a2 from Y . Afterwards we replace a2 with a2 and a3 with a3. The
alphabet is now Σ ∪ {f ′, c′′, a2, a3} and the equation is

ba2(f(a3f
′x, x)) = ba2(f(a3Y c′′, c′′)),

with a solution S(Y) = f ′ and S(x) = c′′.
Now we compress the noncrossing ba2 into b′′ (note that we reuse the letter

b′′), a2 is removed from the alphabet, which is now Σ ∪ {b′′, f ′, c′′, a3} and the
equation is

b′′(f(a3f
′x, x)) = b′′(f(a3Y c′′, c′′)),

with a solution S(Y) = f ′ and S(x) = c′′. Now we choose to compress (f, 2, c′′),
so we pop up c′′ from x (thus removing it). After the compression, the alphabet
is Σ ∪ {b′′, f ′, f ′′, c′′, a3} and the equation is b′′f ′′a3f

′c′′ = b′′f ′′a3Y c′′, with a
solution S(Y) = f ′.

We compress noncrossing b′′f ′′, obtaining the alphabet Σ ∪ {b′′′, f ′, c′′, a3}
and the equation is b′′′a3f

′c′′ = b′′′a3Y c′′, with a solution S(Y) = f ′. We now
compress b′′a3, which is noncrossing, yielding an equation b′′′′f ′c′′ = b′′′′Y c′′,
with a solution S(Y) = f ′ over an alphabet Σ ∪ {b′′′′, f ′, c′′}.

Now we uncross b′′′′f ′, by replacing Y with f ′ and compress it, obtaining a
trivial equation f ′′c′′ = f ′′c′′ over an alphabet Σ∪{f ′′, c′′}, for which we perform
the final compression (f ′′, 1, c′′), yielding an equation c′′′ = c′′′.

8 Regular Constraints

We now consider the problem of context unification with regular constraints.
In this setting, the input contains (some description of) regular tree languages
L1, . . . , L� of ground terms and/or 1-patterns over the input alphabet Σ. Those
automata are used for enriching the equation with additional constraints of the
form α ∈ Li, meaning that the substitution for the variable α should be from lan-
guage Li. Naturally, those languages have to be specified in some way, we choose
one, see Sect. 8.2, but other natural descriptions are equivalent, see discussion
at the end of that section.

Context unification with regular constraints was investigated mostly because
linear second order unification [12] and context unification with regular con-
straints reduce to each other [16]; note that those reductions are not polynomial-
time, so cannot be used directly to claim the computational complexity of linear
second order unification. On the other hand, adding constraints to unification is
interesting and important on its own.

Deciding Context Unification with Regular Constraints 35

To generalise ContextEqSat to this setting, we assign to each letter in the
alphabet its transition function; such transition functions can be generalised to
patterns, so in particular to substitutions for variables; transition vectors and
vectors of such transitions are defined in Sect. 8.1 and we explain how to use them
to define constraints for context unification in Sect. 8.2. When we compress a
certain subpattern into one letter, we compose those transition functions. When
we pop letters from variables we assign to the variable a new transition function,
so that the composition of transition function of popped letters and the new
transition function for a variable is equal to the old transition function for a
variable.

However, several simplifications do not work in this setting. This is for a
reason: it is known that the non-emptiness problem for intersection of (deter-
ministic) finite tree automata is EXPTIME-complete [5] and we can easily encode
this problem within context unification with regular constraints, so we cannot
hope to extend our algorithm to this setting without affecting the computational
complexity.

To resolve this problem, we extend the input alphabet by adding to it one
letter fΔ for every possible vector of transition functions Δ (we limit the allowed
arities, though, to the maximal arity of letters in the input alphabet). We do
not store this alphabet explicitly, instead we use an (EXPTIME) oracle to decide,
whether a letter belongs to the alphabet or not. It is easy to see that a context
equation is equisatisfiable over its input alphabet and over such an extended
alphabet. Later on, for any equation, we consider its solution over an alphabet
consisting of the extended alphabet and letters present in the equation.

Ultimately, for algorithms ContextEqSatRegSimp and ContextEqSatReg which
are generalisations of ContextEqSatSimp and ContextEqSat to scenarios with reg-
ular constraints, respectively, we want to show the following theorem.

Theorem 3. ContextEqSatRegSimp and ContextEqSatReg keep an equation of
size O(n2k2). Given an unsatisfiable context equation with regular constraints
they never return ‘YES’. Given a satisfiable one with a minimal-size solution of
size N they return ‘YES’ after O(n2k2 log N) compression steps, for appropriate
non-deterministic choices.

ContextEqSatReg uses an oracle for the intersection of tree-regular lan-
guages, which can always be implemented in EXPTIME. Except for that, it runs
in PSPACE.

As a corollary, we get an EXPTIME bound on the satisfiability of context
unification with regular constraints.

Corollary 1. Context unification with regular constraints is EXPTIME-
complete.

8.1 Tree Automata

A tree automaton is defined as a triple (Σ,Q, δf f∈Σ), where Σ is a ranked
alphabet, Q is a set of states and each δf is a transition relation (some-
times called transition function for historical reasons) of a letter from Σ.

36 A. Jeż

To be more precise, when ar(f) = r then δf ⊆ Qr × Q. The meaning of
the transition functions is that we consider labelling of ground terms with
states (such labellings are usually called runs) such that a node labelled with
f whose children are assigned states (q1, q2, . . . , qr) can be assigned any state
q such that (q1, q2, . . . , qr, q) ∈ δf . Thus we think of δf as a nondeterminis-
tic transition function, and by δf (q1, q2, . . . , qar(f)) we denote the set of states
{q : (q1, q2, . . . , qar(f), q) ∈ δf}.

We can treat a letter f as a pattern with a unique non-parameter node f ; in
this way we can define δp for arbitrary patterns: given an r-pattern p the tuple
(q1, q2, . . . , qar(f), q) is in δp if and only if there is a run for p in which nodes
•1, •2, . . . , •ar(f) are labelled with q1, q2, . . . , qar(f) and the root of p is labelled
with q. Note that this implicitly gives a rule of composing transition functions;
such composition is associative in case of 1-patterns.

Concerning the notation, we will explicitly compose only transition func-
tions for patterns that occur during the subpattern compression. Thus for unary
patterns p1, p2, . . . , p� by δp1δp2 . . . δp�

we denote the transition function of the
pattern p1p2 . . . p� and when p1 = p2 = · · · = p� then we denote this function
by (δp1)

�. Similarly, for an r-ary pattern f and ground terms t1, t2, . . . , tm by
δf [•i1/δt1 , •i2/δt2 , . . . , •im

/δtm
] we denote the transition function of a pattern

obtained by replacing •i1 , •i2 , . . . , •im
by t1, t2, . . . , tm, respectively. Note, that

it could be that m < r, i.e. not all parameters of a pattern f are substituted by
ground terms.

For a fixed sequence of automata A1, A2, . . . , A� (and it is fixed for a fixed
instance of context unification with regular constraints) with transition functions
{δ1f}f∈Σ , {δ2f}f∈Σ , . . . , {δ�

f}f∈Σ by Δp we denote the tuple of transition functions
(δ1p, δ2p, . . . , δ�

p) for a pattern p; this is a vector of transitions of this pattern.
Note that this is a vector of sets. We denote vectors of transitions by Δ,Δ1, . . .
and consider them even without underlying patterns, and refer to r-vector of
transitions, when this is a vector of transitions of an r-ary pattern.

We extend the composition of transition functions and its notation to vec-
tors of transitions in a natural way, i.e. we perform the appropriate operation
coordinate-wise on each transition function.

8.2 Context Unification with Regular Constraints

Now we are ready to define the problem of context unification with regular
constraints. As an input we are given a finite alphabet Σ, finite automata
A1, A2, . . . , A� over Σ (with state sets Q1, Q2, . . . , Q� and transition functions
{δ1f}f∈Σ , {δ2f}f∈Σ , . . . , {δ�

f}f∈Σ), a context equation u = v and a set of con-
straints on the vectors of transitions for variables u in total. To be more precise,
those constraints are:

term variable constraints: we are given 0-vectors of transitions Δx for some
variables x ∈ X ;

equations constraints: similarly, we are given 0-vector of transition Δu;
context variable constraints: we are given 1-vectors of transitions ΔX for

some context variables X ∈ V.

Deciding Context Unification with Regular Constraints 37

The meaning of the constraints is clear: we ask, whether there is a substitution
S, such that S(u) = S(v), ΔS(u) = Δu and ΔS(α) = Δα for each variable α.

8.3 Modifications of ContextEqSat

We now explain the modifications of ContextEqSatSimp to ContextEqSatRegSimp,
i.e. consider the algorithm that enriches the alphabet with every letter that it
created.

Compression. When a subpattern p is compressed into f , we calculate its vector
of transitions and set Δf ← Δp.

Popping Letters. When popping letters, we guess the new vectors of transitions
for the variable, so that the composition of vectors of transitions (in the appro-
priate order) of the popped letter and variable is the same as it used to be; this
applies also to popping of term variables during the uncrossing of leaf-pair. For
instance, when we replace X with X(f(x1, •2, x3)) then we guess new transitions
Δ′

X ,Δx1 ,Δx3 , such that ΔX = Δ′
X(Δf [•1/Δx1 , •3/Δx3]); we add Δx1 ,Δx3 to

sets constraints and update ΔX to Δ′
X . When we remove a context variable X,

we need to ensure that its transition function ΔX is the same as Δ(•), i.e. it is an
identity; similarly, when we replace x with c we need to validate that Δx = Δc.

Ending. When the whole equation is reduced to a single equation c = c, we check
whether the transition function for c is the same as for the whole equation, i.e.
Δu = Δc. If so, we accept, if not, we reject.

Satisfiability. Whenever we claim that an equation is satisfiable (so, it has some
solution S), we need to additionally assert that the transition for a variable
(and the whole equation) is as in the constraints kept by the instance, that is,
ΔS(α) = Δα for each variable α and ΔS(u) = Δu.

Subprocedures. Lemma 1 holds in the new setting, to this end it is enough to
recall that during compression the new letter has the same transition function
as the pattern it replaced and for popping, we always guess the popped letters
and the new constraints of variables so that the composition of their vectors of
transitions is equal to the vector of transitions of the variable before the popping.

The discussion above shows the proof of Theorem3 in case of
ContextEqSatRegSimp. The only remaining problem is that the alphabet used
by ContextEqSatRegSimp grows and the size of transition vectors of the involved
letters can be even exponential. However, careful inspection shows that one can
define appropriate subclass of all vectors of transitions, called reachable. They
are of polynomial size and can be composed in polynomial time; moreover, each
letter that occurs during ContextEqSatReg has a reachable vector of transition
and vice versa—each reachable vector of transitions can be realised by tree or a
pattern over the input alphabet. Lastly, one can check in EXPTIME, whether a
vector of transitions is reachable. This ends the analysis for Theorem 3.

38 A. Jeż

9 Open Questions

Computational complexity. The exact computational complexity of context
unification remains unknown: the presented algorithm shows containment
in PSPACE and the best known lower bound is NP, by a trivial reduction
of Integer Programming. Perhaps the additional structure of terms allows
showing a stronger lower bound?

Size of minimal solutions. Extension of the given proof shows that the size of
the smallest solution of a context unification is of at most doubly exponential
size. At the same time, we know no solution which is super-exponential, so the
same as in the case of word equations. An exponential upper bound would
imply containment in NP, a counterexample would somehow suggest that
PSPACE is the computational complexity of the problem.

Unary second order unification. The decidability status of subproblem of
second order unification, in which each second order has arity 1, remains
unknown. The presented approach does not generalize to this case and at
the same time the existing proof of undecidability essentially requires second-
order variables of rank 2.

One context variable. Context unification with one context variable is known
to be in NP [6] and some of its fragments are in P [7,8]. It remains an open
question, whether the whole problem is in P.

References

1. Comon, H.: Completion of rewrite systems with membership constraints. Part
I: deduction rules. J. Symb. Comput. 25(4), 397–419 (1998). https://doi.org/10.
1006/jsco.1997.0185

2. Comon, H.: Completion of rewrite systems with membership constraints. Part II:
constraint solving. J. Symb. Comput. 25(4), 421–453 (1998). https://doi.org/10.
1006/jsco.1997.0186

3. Diekert, V., Gutiérrez, C., Hagenah, C.: The existential theory of equations with
rational constraints in free groups is PSPACE-complete. Inf. Comput. 202(2), 105–
140 (2005). https://doi.org/10.1016/j.ic.2005.04.002

4. Diekert, V., Jeż, A., Plandowski, W.: Finding all solutions of equations in free
groups and monoids with involution. Inf. Comput. 251, 263–286 (2016). https://
doi.org/10.1016/j.ic.2016.09.009

5. Frühwirth, T.W., Shapiro, E.Y., Vardi, M.Y., Yardeni, E.: Logic programs as types
for logic programs. In: LICS, pp. 300–309. IEEE Computer Society (1991). https://
doi.org/10.1109/LICS.1991.151654

6. Gascón, A., Godoy, G., Schmidt-Schauß, M., Tiwari, A.: Context unification with
one context variable. J. Symb. Comput. 45(2), 173–193 (2010). https://doi.org/
10.1016/j.jsc.2008.10.005

7. Gascón, A., Schmidt-Schauß, M., Tiwari, A.: Two-restricted one context unifica-
tion is in polynomial time. In: Kreutzer, S. (ed.) CSL. LIPIcs, vol. 41, pp. 405–
422. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2015). https://doi.org/
10.4230/LIPIcs.CSL.2015.405

https://doi.org/10.1006/jsco.1997.0185
https://doi.org/10.1006/jsco.1997.0185
https://doi.org/10.1006/jsco.1997.0186
https://doi.org/10.1006/jsco.1997.0186
https://doi.org/10.1016/j.ic.2005.04.002
https://doi.org/10.1016/j.ic.2016.09.009
https://doi.org/10.1016/j.ic.2016.09.009
https://doi.org/10.1109/LICS.1991.151654
https://doi.org/10.1109/LICS.1991.151654
https://doi.org/10.1016/j.jsc.2008.10.005
https://doi.org/10.1016/j.jsc.2008.10.005
https://doi.org/10.4230/LIPIcs.CSL.2015.405
https://doi.org/10.4230/LIPIcs.CSL.2015.405

Deciding Context Unification with Regular Constraints 39

8. Gascón, A., Tiwari, A., Schmidt-Schauß, M.: One context unification problems
solvable in polynomial time. In: LICS, pp. 499–510. IEEE (2015). https://doi.org/
10.1109/LICS.2015.53

9. Goldfarb, W.D.: The undecidability of the second-order unification problem. Theor.
Comput. Sci. 13, 225–230 (1981). https://doi.org/10.1016/0304-3975(81)90040-2

10. Jeż, A.: Context unification is in PSPACE. In: Esparza, J., Fraigniaud, P., Hus-
feldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 244–255.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7 21. Full
version http://arxiv.org/abs/1310.4367

11. Jeż, A.: Recompression: a simple and powerful technique for word equations. J.
ACM 63(1), 4:1 (2016). https://doi.org/10.1145/2743014

12. Levy, J.: Linear second-order unification. In: Ganzinger, H. (ed.) RTA 1996. LNCS,
vol. 1103, pp. 332–346. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-61464-8 63

13. Levy, J., Agust́ı-Cullell, J.: Bi-rewrite systems. J. Symb. Comput. 22(3), 279–314
(1996). https://doi.org/10.1006/jsco.1996.0053

14. Levy, J., Schmidt-Schauß, M., Villaret, M.: The complexity of monadic second-
order unification. SIAM J. Comput. 38(3), 1113–1140 (2008). https://doi.org/10.
1137/050645403

15. Levy, J., Schmidt-Schauß, M., Villaret, M.: On the complexity of bounded second-
order unification and stratified context unification. Log. J. IGPL 19(6), 763–789
(2011). https://doi.org/10.1093/jigpal/jzq010

16. Levy, J., Villaret, M.: Linear second-order unification and context unification with
tree-regular constraints. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp.
156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/10721975 11

17. Levy, J., Villaret, M.: Currying second-order unification problems. In: Tison,
S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 326–339. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45610-4 23

18. Makanin, G.: The problem of solvability of equations in a free semigroup. Matem-
aticheskii Sbornik 2(103), 147–236 (1977). (in Russian)

19. Marcinkowski, J.: Undecidability of the first order theory of one-step right ground
rewriting. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 241–253. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-62950-5 75

20. Niehren, J., Pinkal, M., Ruhrberg, P.: On equality up-to constraints over finite
trees, context unification, and one-step rewriting. In: McCune, W. (ed.) CADE
1997. LNCS, vol. 1249, pp. 34–48. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-63104-6 4

21. Niehren, J., Pinkal, M., Ruhrberg, P.: A uniform approach to underspecification
and parallelism. In: Cohen, P.R., Wahlster, W. (eds.) ACL, pp. 410–417. Morgan
Kaufmann Publishers/ACL (1997). https://doi.org/10.3115/979617.979670

22. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J.
ACM 51(3), 483–496 (2004). https://doi.org/10.1145/990308.990312

23. RTA Problem List: Problem 90 (1990). http://rtaloop.mancoosi.univ-paris-
diderot.fr/problems/90.html

24. Schmidt-Schauß, M.: Unification of stratified second-order terms. Internal Report
12/94, Johann-Wolfgang-Goethe-Universität (1994)

25. Schmidt-Schauß, M.: A decision algorithm for distributive unification. Theor.
Comput. Sci. 208(1–2), 111–148 (1998). https://doi.org/10.1016/S0304-
3975(98)00081-4

26. Schmidt-Schauß, M.: A decision algorithm for stratified context unification. J. Log.
Comput. 12(6), 929–953 (2002). https://doi.org/10.1093/logcom/12.6.929

https://doi.org/10.1109/LICS.2015.53
https://doi.org/10.1109/LICS.2015.53
https://doi.org/10.1016/0304-3975(81)90040-2
https://doi.org/10.1007/978-3-662-43951-7_21
http://arxiv.org/abs/1310.4367
https://doi.org/10.1145/2743014
https://doi.org/10.1007/3-540-61464-8_63
https://doi.org/10.1007/3-540-61464-8_63
https://doi.org/10.1006/jsco.1996.0053
https://doi.org/10.1137/050645403
https://doi.org/10.1137/050645403
https://doi.org/10.1093/jigpal/jzq010
https://doi.org/10.1007/10721975_11
https://doi.org/10.1007/3-540-45610-4_23
https://doi.org/10.1007/3-540-62950-5_75
https://doi.org/10.1007/3-540-63104-6_4
https://doi.org/10.1007/3-540-63104-6_4
https://doi.org/10.3115/979617.979670
https://doi.org/10.1145/990308.990312
http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/90.html
http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/90.html
https://doi.org/10.1016/S0304-3975(98)00081-4
https://doi.org/10.1016/S0304-3975(98)00081-4
https://doi.org/10.1093/logcom/12.6.929

40 A. Jeż

27. Schmidt-Schauß, M.: Decidability of bounded second order unification. Inf. Com-
put. 188(2), 143–178 (2004). https://doi.org/10.1016/j.ic.2003.08.002

28. Schmidt-Schauß, M., Schulz, K.U.: On the exponent of periodicity of minimal solu-
tions of context equations. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp.
61–75. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0052361

29. Schmidt-Schauß, M., Schulz, K.U.: Solvability of context equations with two con-
text variables is decidable. J. Symb. Comput. 33(1), 77–122 (2002). https://doi.
org/10.1006/jsco.2001.0438

30. Schmidt-Schauß, M., Schulz, K.U.: Decidability of bounded higher-order unifica-
tion. J. Symb. Comput. 40(2), 905–954 (2005). https://doi.org/10.1016/j.jsc.2005.
01.005

31. Schulz, K.U.: Makanin’s algorithm for word equations-two improvements and a
generalization. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 85–150.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55124-7 4

32. Treinen, R.: The first-order theory of linear one-step rewriting is undecidable.
Theor. Comput. Sci. 208(1–2), 179–190 (1998). https://doi.org/10.1016/S0304-
3975(98)00083-8

33. Vorobyov, S.: The first-order theory of one step rewriting in linear Noetherian
systems is undecidable. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 254–
268. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62950-5 76

34. Vorobyov, S.: ∀∃*-Equational theory of context unification is Π0
1-hard. In: Brim,

L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 597–606.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055810

https://doi.org/10.1016/j.ic.2003.08.002
https://doi.org/10.1007/BFb0052361
https://doi.org/10.1006/jsco.2001.0438
https://doi.org/10.1006/jsco.2001.0438
https://doi.org/10.1016/j.jsc.2005.01.005
https://doi.org/10.1016/j.jsc.2005.01.005
https://doi.org/10.1007/3-540-55124-7_4
https://doi.org/10.1016/S0304-3975(98)00083-8
https://doi.org/10.1016/S0304-3975(98)00083-8
https://doi.org/10.1007/3-540-62950-5_76
https://doi.org/10.1007/BFb0055810

Single-Stranded Architectures
for Computing

Shinnosuke Seki1,2(B)

1 University of Electro-Communiactions, 1-5-1, Chofugaoka, Chofu,
Tokyo 1828585, Japan
s.seki@uec.ac.jp

2 École Normale Superiéure de Lyon, 46 allée d’Italie, 69007 Lyon, France

Abstract. RNA is a chain of ribonucleotides of four kinds (denoted
respectively by the letters A, C, G, U). While being synthesized sequen-
tially from its template DNA (transcription), it folds upon itself into
intricate higher-dimensional structures in such a way that the free energy
is minimized, that is, the more hydrogen bonds between ribonucletoides
or larger entropy a structure has, the more likely it is chosen, and fur-
thermore the minimization is done locally. This phenomenon is called
cotranscriptional folding (CF). It has turned out to play significant roles
in in-vivo computation throughout experiments and recently proven even
programmable artificially so as to self-assemble a specific RNA rectan-
gular tile structure in vitro. The next step is to program a computa-
tion onto DNA in such a way that the computation can be “called” by
cotranscriptional folding. In this novel paradigm of computation, what
programmers could do is only twofold: designing a template DNA and
setting environmental parameters. Oritatami is an introductory “toy”
model to this paradigm of computation. In this model, programmars are
also allowed to employ an arbitrarily large finite alphabet Σ as well as
an arbitrarily complex rule set for binding over Σ ×Σ. We shall present
known architectures of computing in the oritatami model from a simple
half-adder to Turing machine along with several programming techniques
of use, with hope that they will inspire in-vivo architectures of CF-driven
self-assemblable computers, which could be even heritable.

1 Introduction

An organism is encoded on its single-stranded DNA. Its data and functions
are “called” via transcription, in which a temporal copy of a factor of DNA is
synthesized using ribonucleotides of four kinds (ΣRNA = {A, C, G, U}), and trans-
lation, in which the resulting RNA strand is decoded into a chain of amino acids,
that is, protein. DNA, RNA, and protein are all chemically-oriented. The life of
organisms can be regarded as a massive dynamical network of such molecular

This work is in part supported by the JST Program to Disseminate Tenure Tracking
System, MEXT, Japan, No. 6F36 and JSPS KAKENHI Grant-in-Aid for Challenging
Research (Exploratory) No. 18K19779, both to S.S.

c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 41–56, 2019.
https://doi.org/10.1007/978-3-030-24886-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_3

42 S. Seki

“words” and interactions driven by intermolecular forces among their compo-
sitional units, that is, nucleotides, ribonucleotides, and amino acids (see, e.g.,
[4,12] for further reading of molecular biology).

The last several decades have seen breathtaking growth and developments in
the technology of programming such molecular networks for computation. The
developments were launched by the successful demonstration of DNA computer
to solve a 7-node instance of Hamiltonian path problem by Adleman [1], which
we shall explain in the next paragraph, and have been driven by significant
proof-of-concept multi-stranded architectures for computing including Winfree’s
tile assembly model (TAM) [43], toehold mediated strand displacement (TMSD),
and DNA origami by Rothemund [37]. TAM is a dynamical variant of Wang tiling
[41]. By TAM, Winfree founded the theory of algorithmic molecular self-assembly
by agglomeration of DNA tiles via their programmable interactive sites (see [11]
for a thorough review). TMSD was utilized for the first time for a computational
purpose by Yurke et al. in order to let a DNA “fuel” strand open and close DNA
tweezers [44], though it was known as branch migration since 70s. It has then
been leveraged as various physical and logical computational mechanisms (see
[19] and references therein). DNA origami provides a methodology to fold a
template circular DNA strand by short DNA strands which can be programmed
to “staple” two specific sites of the template together into various shapes. It has
become a ubiquitous methodology in molecular self-assembly. For example, DNA
origami provides a scaffold that accommodates other molecular architectures
such as TMSD; Jonoska and Seeman thus endowed DNA origami-made tiles
with signal-passing mechanisms to turn on/off their interactive sites [28].

The Adleman’s DNA computer provides an introductory example to vari-
ous concepts of significance for molecular architectures for computing. (DNA)
nucleotides (ΣDNA = {A, C, G, T}) tend to form hydrogen bonds according to the
Watson-Crick complementarity A–T and C–G1, which is extended to the antimor-
phic involution θ that satisfies θ(A) = T, θ(C) = G, θ(G) = C, and θ(T) = A in order
to capture hybridization among DNA strands. A DNA strand w and its Watson-
Crick complement strand θ(w) thus form a completely double-stranded DNA. In
the Adleman’s DNA computer, a node x is encoded as a DNA strand pxsx for
some strands px, sx of length 10 and the directed edge from x to y is encoded as
θ(sxpy) = θ(py)θ(sx). This edge strand hybridizes with the strand for x as well as
with the strand for y to result in the following structure of length 40:

−−−−−→px sx
−−−−−→py sy

−−−−−−−→ θ(py)θ(sx)

According to a Hamiltonian path of a given instance, edge strands can thus
concatenate node strands one after another and yield a structure of length
140. These node strands and edge strands are designed so carefully as not to
hybridize between strands or within one strand in any undesirable manner.

1 Other pairs also occur in nature but much less probably.

Single-Stranded Architectures for Computing 43

Fig. 1. Self-assembly of an RNA rectangular tile by cotranscriptional folding [18]. While
being synthesized (transcribed) by RNA polymerase, the resulting RNA strand (tran-
script) is getting folded into the specific rectangular tile highly probably.

Hairpin-freeness and more general structure-freeness of (sets of) words were thus
motivated (see, e.g., [6,27,29,30] and references therein). A hairpin is formed by
combining x and θ(x) of a factor xyθ(x) into a stem and leaving y as a loop.
For an intermolecular hybridization, its multiple reactants must encounter first.
In contrast, a hairpin finds its interactive sites on one strand and hence forms
fast; with complementary factors x and θ(x), a strand immediately folds into a
hairpin and may get inert, though of course some multi-stranded architectures
for computing rather leverage hairpins for their sake (see, e.g., [38]).

Single-stranded architectures for computing are, in principle, a network of
intramolecular hybridizations if external control is ignored. Hairpins therefore
serve them as a primary driver. Whiplash PCR by Hagiya et al. [20,39] is an
architecture of a DNA strand that makes a transition from a state to another by
hybridizing its 3’-end wp, which encodes the current state p, to the substrand
θ(wpwq) (forming a hairpin), extending the 3’-end enzymatically along θ(wq) via
DNA polymerase, and deforming the hairpin; the resulting DNA strand ends
rather with wq, that is, the system has thus transitioned to the state q. Komiya
et al. demonstrated that their Whiplash PCR can make 8 transitions continu-
ously at around 80 ◦C [31]. Indeed, high thermal stability of DNA precludes the
hairpin deformation at room temperatures. DNA-made architectures are most
often driven by thermodynamic control. Rose et al. [36] eliminated the need of
thermal cycling from Whiplash PCR by incorporating TMSD.

RNA strands serve more naturally as a single-stranded architecture for com-
puting in vivo. Their isothermal reactivity even at room temperatures certainly
makes them more suitable than DNA for in-vivo computation. Computability
of RNA is exploited considerably in nature, often in collaboration with pro-
teins, as represented prominently by ribosome. This high reactivity has thwarted
researchers’ attempts to put RNA under control to a satisfactory extent so far.
Nevertheless, RNA is enhancing its presence in molecular engineering as an alter-
native of DNA (see, e.g., [2,3,15,26,40]) mainly because an RNA strand can be
synthesized enzymatically from its DNA template, which can be synthesized
commercially at a reasonable cost nowadays. These two features are ingeniously
combined in nature into a single-stranded computational engine called cotran-
scriptional folding. The RNA synthetic process is called transcription (see Fig. 1),

44 S. Seki

in which an RNA polymerase enzyme attaches to a double-stranded DNA (col-
ored in gray), scans its template strand2 nucleotide by nucleotide from 3’-end
to 5’-end in order to extend an RNA strand called transcript (blue) according
to the lossless mapping A → U, C → G, G → C, and T → A. While being synthe-
sized thus sequentially, the transcript folds upon itself into intricate structures
kinetically, that is, being governed by forces among nucleotides and by likeli-
hood. This is the cotranscriptional folding. A riboswitch, which is a segment of
a (single-stranded) messenger RNA, regulates expression of a gene by folding
cotranscriptionally into one structure with a hairpin called terminator stem in
the absence of NaF or into another structure without the terminator stem in
its existence [42]. Significant roles of cotranscriptional folding in nature like this
have been discovered one after another (see, e.g., [33,35] and references therein).
Researchers have been challenging to tame cotranscriptional folding for biotech-
nological applications. In 2014, Geary, Rothemund, and Andersen successfully
“programmed” an artificial rectangular tile into a DNA strand in such a manner
that, as illustrated in Fig. 1, the corresponding transcript folds cotranscription-
ally into the programmed tile highly probably [18]. An instance of the DNA
program can be reused to yield multiple copies of the tile, which further self-
assemble into the honey-comb structure. The whole architecture is named RNA
origami. Its first step, self-assembly by cotranscriptional folding, is much less
understood than the second, which is accounted by the well-established theory
of DNA algorithmic tile self-assembly ([11] provides a thorough review of this
theory, for example).

Theoretical study of algorithmic self-assembly by cotranscriptional folding
has been initiated by the proposal of a computational model called oritatami
in the conference version of [17]. Oritatami does not aim at predicting RNA
cotranscriptional folding in nature. It rather aims at providing a right angle
to study the novel computational paradigm inspired by cotranscriptional fold-
ing, so-called co-synthetic stepwise optimization. In that paper [17], Geary et al.
demonstrated that one can count in oritatami! This pioneering work of them
was followed by successful reports of programming computational tasks in ori-
tatami such as tautology check [24], bit-string bifurcation [32], and simulation
of nondeterministic finite automata (NFA) [23,32]. In particular, the study by
Masuda, Seki, and Ubukata in [32] initiated another line of research, that is,
self-assembly of shapes by cotranscriptional folding. Demaine et al. [9] and Han
and Kim [21] independently developed this line further for the self-assembly of
general shapes. Throughout progression of studies as such, the oritatami model
has proven itself to be a proper platform to study other key drivers of com-
putation by cotranscriptional folding including modularization, memorization
without random access memory (RAM), steric hindrance, and so on, in spite of
its substantial abstraction. As a first milestone of oritatami research, all of these
key drivers were successfully interlocked together to simulate a universal Turing
machine with just polynomial overhead [16]. The resulting transcript should be
the first single-stranded architecture for universal computation.

2 The other strand is sometimes called coding strand because its sequence is equivalent
to the product RNA transcript.

Single-Stranded Architectures for Computing 45

⇒

Fig. 2. Abstraction of a design of RNA rectangular tile that is self-assembled by RNA
origami [18] as a directed path over the triangular lattice with pairings. The idea and
artwork were provided by Cody Geary.

a

b b′

a′ a

b b′

a′ a

b b′

a′ a

b b′

a′

ab a

b
a

b

=⇒
a

b

b′ b′

b′

=⇒
a

b

b′

=⇒
a

b

Fig. 3. Folding of a glider motif by a delay-3 deterministic oritatami system. The parts
of the conformation colored in red, black, and blue are the seed, the prefix of transcript
stabilized already, and the nascent suffix (of length 3), respectively. (Color figure online)

2 Single-Stranded Architectures for Computing
in Oritatami

Let us first introduce the oritatami model briefly; for complete descriptions, see
[17]. Terminologies from graph theory are used; for them, see [10]. Oritatami
systems run on the 2-dimensional triangular lattice. As shown in Fig. 2, the
covalent backbone of a single-stranded RNA structure is modeled as a directed
path P over the lattice whose vertices are labeled with an element of Σ, a finite
set of types of abstract molecules (called beads), and hydrogen bonds of the
structure are modeled as a set of edges H that is pairwise-disjoint from the
set of paths in P ; the structure thus abstracted is called a conformation. An
oritatami system Ξ is a 6-tuple (Σ, σ,w,R, δ, α), which folds a word w ∈ Σ∗

(transcript) cotranscriptionally upon an initial conformation σ (seed) according
to a set of (symmetric) rules R ⊆ Σ × Σ that specifies which types of beads are
allowed to form a hydrogen bond once they get next to each other. The other
two parameters δ and α shall be explained shortly.

Dynamics and Glider. A computation by the oritatami system Ξ is a sequence
of conformations C0 = σ,C1, C2, . . . such that Ci is obtained by elongating the
directed backbone path of Ci−1 by the i-th bead (letter) of w so as to maximize
the number of hydrogen bonds. The dynamics of oritatami system should be
explained best by an example. Figure 3 illustrates a directional oritatami motif
called glider, where a seed is colored in red. Let Σ = {a, b, a′, b′, •}, a transcript
w be a repetition of a • bb′ • a′, and the rule set R be {(a, a′), (b, b′)}, that is,

46 S. Seki

Fig. 4. Steric hindrance: one smallest-possible bump, formed by the chain L47-L48-L49,
causes a drastic change in the conformation that this probe glider module takes after the
collision. (Color figure online)

•-beads are inert. The delay parameter δ governs how many beads ahead should
be taken into account at the stabilization of a bead. In this example, δ = 3. By
the fragment of the first δ beads a•b, the system elongates the seed in all possible
ways to test how many hydrogen bonds the resulting temporal conformation can
form; note that the hydrogen bond between a c-bead and a d-bead necessitates
that (c, d) ∈ R, these beads be located at unit distance, and they are not bonded
covalently, that is, not contiguous in w. There are three possible elongations of
the seed by a•b in Fig. 3. Since • is inert and there is no sufficiently close a′-bead
around so as for the a-bead to form a hydrogen bond with, the stabilization is
governed by the b-bead, which can form a hydrogen bond only if the fragment is
folded as illustrated bold. Accordingly, the first bead, a, is stabilized to the east
of its predecessor, and then the next (4th) b′-bead is transcribed. This b′-bead
just transcribed cannot override the previous “decision” because with the sole
b-bead around it is bonded covalently. The next •-bead is inert with respect
to R so that it cannot override the previous decision either by definition. This
dynamics is called oblivious. In [17], another kind of dynamics called hasty was
studied, which does not question previous decisions.

Can we save bead types further? What if a′ is replaced by a and the rule
(a, a′) is modified to the self-interaction (a, a)? The resulting system will sta-
bilize the very first a-bead at two different positions nondeterministically. This
nondeterminism can be, however, prevented by setting another arity parameter
α to 1, which bounds the number of hydrogen bonds per bead from above. The
arity is maximum if it is equal to 6, the degree of the triangular grid graph.
Saving bead types is computationally hard in general [22] while some specific
kinds of rules such as self-interaction [25] can be removed in polynomial time.

The glider is the most versatile oritatami motif discovered so far. First of
all, it enables oritatami systems to fold into a directional structure of arbitrary
length. It also serves as a “wire” to propagate 1-bit of information arbitrarily
far [24], which helps to keep functional modules far enough not to interfere.

Single-Stranded Architectures for Computing 47

The Turing-universal oritatami system in [16] leverages gliders even as a probe
to read out a letter of current binary word (over 0 and 1) of a simulated cyclic
tag system, which is a RAM-free binary string rewriting system proposed by
Cook [8]. See Fig. 4; a probe glider colored in purple is launched from southwest
so as to hit a region where a letter (0 or 1) is encoded geometrically by a bump
or its absence, and the collision redirects the glider either southeastwards or
eastwards.

Nondeterminism. Oritatami systems may encounter nondeterminism in a posi-
tion where a bead is stabilized, as briefly observed above, or in a way a bead forms
hydrogen bonds. The tautology checker [24] and NFA simulator [23] utilize the
position-wise nondeterminism. The bond-wise nondeterminism takes place only
if arity is small enough for a bead to use up its binding capability; for instance,
if arity is 1, a bead immediately gets inert after it forms a bond. This type of
nondeterminism never arises if arity is maximum, i.e., equal to the degree of tri-
angular grid graph because under the current optimization criterion to maximize
the number of bonds, it is not beneficial to give up a bond whenever possible
geometrically. Oritatami systems have been barely studied at any arity but the
maximum; let alone this kind of nondeterminism.

2.1 A Single-Stranded Architecture for Counting in Binary

The first oritatami system Ξbc implemented odd bit-width binary counter under
the hasty dynamics at delay 4 [17]. It employs 60 bead types {0, 1, . . . , 59} and its
transcript is a repetition of 0-1-2- · · · -58-59; with such a periodic transcript, an
oritatami system is said to be cyclic because transcription from a circular DNA
template likely yields a periodic transcript [14]. Modularization proves itself to
be quite fundamental also for oritatami design. The period of the transcript is
semantically divided into four factors called modules A:0-1- · · · -11, B:12-13-
· · · -29, C:30-31- · · · -41, and D:42-43- · · · -59, and the rule set R of Ξbc is
designed in such a way that Modules A and C function as a half-adder and the
interleaving B and D build a scaffold on which the half-adders are interlocked
properly in order for the output and carry-out of a half-adder to be propagated
to other half-adders.

Increment from 0 to 1 by Ξbc is illustrated in stages in Fig. 5. Its seed encodes
the initial count 0 with 3-bits in binary as a sequence of bead types in the fol-
lowing format: 30-39-40-41 to Module A and 0-9-10-11 to C for input bit 0. The
transcript folds macroscopically into one zig (←) and zag (→) to increment the
count by 1. The folding pathway of Ξbc is designed to guarantee that Module A
encounters in a zig only four environments specified by whether the input from
above is

30-39-40-41 (input 0) or 30-35-36-41 (input 1) (1)

and whether it starts folding just below the input (top) or away by distance
3 (bottom). In these environments, Module A folds deterministically into the
respective conformations in the upper row of Fig. 6, or we should say that the

48 S. Seki

Fig. 5. The oritatami binary counter increments its value from 0, which is encoded on
its seed, to 1 through one zigzag. (Color figure online)

Single-Stranded Architectures for Computing 49

Fig. 6. All the six bricks of Module A.

Fig. 7. All the four bricks of Module B: B0 and B1 for zig, B2 for zag, and BT for
zig-to-zag turn.

rule set R is designed to have Module A behave so. Such conformations folded
in an expected environment are called bricks as the whole folding is built upon
them. Module A ends folding at the bottom (with carry-out) only when it started
at the bottom (with carry-in) and read input 1 from above. The interleaving
Module B ends at the same height as it started so that the carry-out from the
Module A is fed into the next Module C properly. Module B utilizes the two
bricks to propagate this carry (see Fig. 7), which also plays a role of spacing
Modules A and C sufficiently to prevent their interference. At the end of the
zig, Module B encounters a signal of carriage-return 27-28-29 encoded on the
seed and folds into the brick BT for zig-to-zag turn. Note that this brick exposes
the signal below to trigger the next zig-to-zag turn. Module C behaves exactly
in the same manner as A mod 30. In contrast, Module D is not such a mod-
30 variant of B. It is rather responsible for right carriage returns. Bit-width
being odd and the introduction of Module D eliminate the need for one module

50 S. Seki

to take responsibility for both turns. Observe also that due to the odd bit-
width and alternation of A and C, two instances of A never get adjacent even
vertically or neither do C’s. Being placed side-by-side, instances of A would
interfere quite likely inter-modularily via rules that are supposed to work intra-
modularily, that is, to fold an instance into bricks. One programming principle
of oritatami systems is to design a macroscopic folding pathway in which any
two instances of every module are spaced at least δ +1 away, which is the radius
of the event horizon of delay-δ oritatami systems. Duplicating a module using
pairwise-distinct bead types is quite useful for this purpose though at the cost
of bead types.

The zag formats the count for the sake of succeeding zig. Observe that the
bricks A00, A01, A10, A11 encode output 0 in two ways and 1 in other two ways.
Using two bricks of C which correspond to A0 and A1 in Fig. 6, a zag reformats
these outputs 0 and 1 according to the input format (1) for Module A in a zig.

2.2 Arithmetic Overflow and Infinite Binary Counter.

This counter Ξbc can count up to 2m − 1 but not any further since it is not
capable of handling arithmetic overflow, where m is the width in bits of the
count encoded on the seed (in the example run, m = 3). Precisely speaking,
given 2m − 1 in binary, a zig would end at the bottom (with carry), but as
shown in Fig. 7, Module B is not designed to read carriage-return from distance
3 away. Endowing Module B with the ability to widen width in bits of the count
would convert Ξbc to an infinite counter, which is significant in the theory of
molecular self-assembly (see, e.g., [7]). It should be important to widen by 2 bits
at one time so that the width in bits is kept odd.

2.3 Applications of the Binary Counter

By definition, the oritatami system is not equipped with finite state control unlike
the finite automaton (FA) or Turing machine. The cyclic tag system (CTS) was
chosen as a model to be simulated due to its freeness from random access memory
in order to prove the Turing-universality of oritatami systems [16]. The binary
counter demonstrated two basic ways of information storage and propagation in
oritatami, that is, as a sequence of bead types and as a way to enter a region
where a receiver is to fold. This counter actually provides a medium to store and
propagate even multiple-bit of information arbitrary far; imagine if the zag-to-zig
turn brick of D is modified so as to start the next zig rather at the top (no carry),
then the next zigzag retains the current value instead of incrementing it. Despite
of its weakness as a memory (for example, it cannot even decrement), it found an
intriguing application in the self-assembly of shapes by cotranscriptional folding.

After being modified so as to operate under the oblivious dynamics, the
binary counter was embedded into another oritatami system as a component
(higher-level concept of module) by Masuda, Seki, and Ubukata towards the
self-assembly of Heighway dragon fractal by cotranscriptional folding [32]. This
fractal is an alias of the well-known paper-folding sequence, over {L,R} of left

Single-Stranded Architectures for Computing 51

Seed

C
ounter

C

i+
+
if carried

Dv
Turner T

Counter C
i++ if carried

Dh

Turner T

(i = j1, no carry)

i

(i, R)

(i, L)

(i, carry)

i

(i, R)

(i, L)

(i, carry)

Fig. 8. Component automaton for the Heighway dragon oritatami system [32]. Tran-
sitions are labeled with the information propagated.

and right turns. It is an automatic sequence (see [5]) and hence admits a DFA
that outputs its i-th letter, being fed with the binary representation of i from
its least significant bit. Such a DFA for paper-folding sequence Apfs consists of
4 states and is cycle-free. In order to produce Heighway dragon, it hence suffices
to count in binary, to simulate Apfs, and to make a turn according to the simula-
tion while remembering the current count i. In principle, Apfs could be simulated
by the Turing-universal oritatami CTS simulator, but the resulting component
would be literally too large and roughly-faced to be embedded into another sys-
tem and its usage of 542 bead types cannot be ignored, either. Masuda et al.
developed a custom-made simulator of Apfs quite simply by exploiting its cycle-
freeness. This component, denoted by D, does not lose the input count i but
rather propagates it. Another newly-developed component T consists of three
instances of a rhombus-shaped sub-component, which bifurcates3 the binary rep-
resentation of current count i and lets the output of the previous Apfs guide the
transcript so as to read the bifurcated count leftward or rightward. Transcrib-
ing the modified counter, say C, D, T in this order repeatedly4 interlocks these
components properly as illustrated in the component automaton in Fig. 8 into a
finite portion of Heighway dragon fractal.

Can we program an oritatami system to self-assemble the actual infinite
Heighway dragon? Assume that an infinite counter is given, which is nontrivial
but seems feasible as stated in Sect. 2.2. However, it seems challenging for it to

3 It actually does trifurcate a binary string. The output frontward is just not needed
in their system.

4 In fact, the period is twice as long as this because the component D for vertical
segments of the dragon must be distinguished from D for horizontal segments for
some technical reason; see [32].

52 S. Seki

reside with other components on a periodic transcript. Periodicity of a transcript
is the only one way known so far to make an infinite oritatami system to be
describable in a finite mean. Once a counter component C is arithmetically
overflown and width in bit is expanded, the succeeding D and T components
must also get expanded, that is, their sequences are lengthened. A solution is to
program all the functions as C, D, and T into one sequence of bead types, but
then how can a system call an appropriate function when needed? It might be
also the case that Heighway dragon cannot be self-assembled by any oritatami
system. If so, how can we prove the impossibility?

3 Towards Algorithmic Programming of Oritatami
Systems

Modularization is one of the most fundamental programming techniques. In addi-
tion to its conventional benefits such as reusability of modules, modularization
has automatized oritatami programming to a considerable extent at least at the
modular level. Consider the following rule design problem (RDP):

Input: a transcript w = 1-2-· · · -n, a set of k pairs of an environment which is
free from any bead 1, 2, . . . , n and a folding path of length n, delay δ, and
arity α;

Output: a rule set R such that at delay δ and arity α, the transcript w folds
deterministically along the j-th folding path in the j-th environment for all
1 ≤ j ≤ k.

This problem is NP-hard in k, the number of pairs of an environment and a tar-
get folding path [17] but linear in n, the length of transcript. Geary et al. have
proposed an algorithm to solve this problem whose time complexity is exponen-
tial only in k and δ [17]. The delay δ has been bounded by 4 in literature so far.
It might be just beyond ability of human programmers to take an exponentially
increasing number of conformations in δ into account at every bead stabiliza-
tion. Hence, the upper bound on k serves as a significant criterion to evaluate a
modularization. The binary counter bounds k by 6 (see Figs. 6 and 7), that is,
it was modularized properly according to this criterion. All of its four modules
A, B, C, and D were programmed by this algorithm indeed.

This fixed-parameter-tractable (FPT) algorithm runs in linear time in n,
but it is still important to bound n by a small constant, that is, to downsize
modules. As long as they are small, the increase in the size of Σ to ensure that
their transcript and environments do not share any bead type remains moderate
or may even be cancelled by the modules’ reusability. It is indispensable for the
transcript not to reuse a bead type or borrow a bead type from environments
for the efficiency of this algorithm. In fact, if the transcript is rather designed
by an adversary using even a bead type from environments, then the resulting
rule set design problem becomes NP-hard in n even when k = 1 [34].

Single-Stranded Architectures for Computing 53

3.1 Programmability of Modules: Self-standing Shape and Steric
Hindrance

Gliders have proven itself to be quite programmable thanks to its small num-
ber of intramodular bonds (just one per three beads) and its intermodular-
binding-independency (self-standing property). Modules of non-self-standing
shape tend to be less programmable than those of self-standing shape due to
their computationally-meaningless bonds. Compare it with structural modules
B and D (colored in red in Fig. 5). They do bind to the module above even in the
absence of logical need to do so except for carriage return in order merely to be
shaped into a parallelogram. Freeing them from binding intermodularily would
require heavy hardcording with much more intramodular bonds and severely
impair their programmability. Recall that these parallelogram-shaped modules
were designed to operate under the hasty dynamics. Oritatami systems seem
less governable under the oblivious dynamics, which has received a greater deal
of attention. Modules of self-standing shape have thus gained the significance
further.

Programmers should proactively save bonds also from information propa-
gation. In this respect, entering a receiver’s region from different positions is
superior to explicitly encoding as a sequence of bead types. This geometric
encoding utilizes steric hindrance. For example, when an instance of Module
A of the binary counter starts folding with no carry-in, the module “just” above
geometrically precludes many stable conformations that the nascent transcript
fragment could take without anything above; on the other hand, being carried-
in, some bead of the module above might be too far (at least δ + 2 points away)
for the nascent fragment to interact. A sender also can take advantage of steric
hindrance as illustrated in Fig. 4. The CTS simulator [16] encodes 0 as a unit
triangular bump and 1 as its absence (flat surface). When it is read, a glider
is launched towards the position where the letter is thus encoded geometrically.
Unlike Module A, this glider collides with this position always in an identical
manner, but the bump geometrically prevents this glider from changing its direc-
tion obtusely and makes the glider choose the second most stable conformation
that rather redirects the glider acutely.

3.2 Towards Algorithmic Design of Folding Pathways

The FPT algorithm requires folding paths to be followed by a module transcript
given as input. An entirely different problem thus arises of how to design such
paths. This design task is yet to be done algorithmically, but at the modular level,
it might be solvable at worst by brute force as long as modules are sufficiently
small. Above the modular level, programmers encounter global folding pathway
design problem and the astronomical number of global folding pathways stands in
their hope of fully automatizing the design of oritatami architectures. The global
folding pathway design also involves intrinsic issues to decide where modules
should be deployed on the plane and how they should be traversed unicursally
without crossing itself, and desirably these issues are addressed in a way to

54 S. Seki

result in a periodic transcript with shortest period possible. Furthermore, global
folding pathway should be designed so as to avoid “functional hotspots” and
rather to scatter functions along the whole transcript as much as possible. The
CTS simulator demonstrates novel techniques for this purpose and also confines
relatively functionally-hot spots geometrically to prevent interference.

The Heighway dragon is unicursally traversable so that the global folding
pathway illustrated in the component automaton in Fig. 8 has been obtained
rather quite naturally. In general, however, this global folding pathway problem
is quite challenging, being illustrated even experimentally in the corresponding
design process of the RNA origami single-stranded architecture [18]. The zigzag
global folding pathway of the binary counter is the most frequently-used so far.

4 Conclusions

Oritatami is a novel computational model of co-synthetic stepwise local opti-
mization, which is a computational paradigm created by RNA cotranscriptional
folding. In this paper, we have introduced existing oritatami architectures for
computing briefly and raised several research directions. The Turing universal-
ity [16] is not the final objective of the study of computability of oritatami at all.
In fact, organisms do not seem to require such a strong computational power to
support their life. Almost nothing is known about the non-Turing universality
of oritatami. Demaine et al. proved that at delay 1 and arity 1, deterministic
oritatami systems can produce conformations of size at most 9m starting from
a seed of size m, and hence, the class of such oritatami systems is not Turing
universal [9]. Some partial results of the non-Turing universality are recently
proved on oritatami systems with unary transcript [13]. Can we characterize a
subclass of oritatami systems that is strictly weaker than the Turing machine?

Acknowledgements. This paper mainly summarizes the author’s collaboration with
Cody Geary, Pierre-Étienne Meunier, and Nicolas Schabanel. Artworks in Figs. 1 and 2
are by Geary and those in Figs. 4, 5, 6, and 7 are by Schabanel. The author would like
to take this opportunity to express his sincere gratitude towards them.

References

1. Adleman, L.: Molecular computation of solutions to combinatorial problems. Sci-
ence 266, 1021–1024 (1994)

2. Afonin, K.A., et al.: In vitro assembly of cubic RNA-based scaffolds designed in
silico. Nat. Nanotechnol. 5(9), 676–682 (2010)

3. Afonin, K.A., Kireeva, M., Grabow, W.W., Kashiev, M., Jaeger, L., Shapiro, B.A.:
Co-transcriptional assembly of chemically modified RNA nanoparticples function-
alized with siRNAs. Nano Lett. 12(10), 5192–5195 (2012)

4. Alberts, B., et al.: Molecular Biology of the Cell, 6th edn. Garland Science,
New York (2014)

5. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press, Cambridge (2003)

Single-Stranded Architectures for Computing 55

6. Arita, M., Kobayashi, S.: DNA sequence design using templates. New Gener. Com-
put. 20(3), 263–277 (2002). https://doi.org/10.1007/BF03037360

7. Bryans, N., Chiniforooshan, E., Doty, D., Kari, L., Seki, S.: The power of nonde-
terminism in self-assembly. Theor. Comput. 9, 1–29 (2013)

8. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40
(2004)

9. Demaine, E.D., et al.: Know when to fold ’em: self-assembly of shapes by folding in
oritatami. In: Doty, D., Dietz, H. (eds.) DNA 2018. LNCS, vol. 11145, pp. 19–36.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00030-1 2

10. Diestel, R.: Graph Theory, 4th edn. Springer, Heidelberg (2010)
11. Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88

(2012)
12. Elliott, D., Ladomery, M.: Molecular Biology of RNA, 2nd edn. Oxford University

Press, Oxford (2016)
13. Fazekas, S.Z., Maruyama, K., Morita, R., Seki, S.: On the power of oritatami

cotranscriptional folding with unary bead sequence. In: Gopal, T.V., Watada,
J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 188–207. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-14812-6 12

14. Geary, C.W., Andersen, E.S.: Design principles for single-stranded RNA origami
structures. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp.
1–19. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11295-4 1

15. Geary, C., Chworos, A., Verzemnieks, E., Voss, N.R., Jaeger, L.: Composing RNA
nanostructures from a syntax of RNA structural modules. Nano Lett. 17, 7095–
7101 (2017)

16. Geary, C., Meunier, P.E., Schabanel, N., Seki, S.: Proving the Turing universality
of oritatami cotranscriptional folding. In: Proceedings of the ISAAC 2018. LIPIcs,
vol. 123, pp. 23:1–23:13 (2018)

17. Geary, C., Meunier, P.E., Schabanel, N., Seki, S.: Oritatami: a computational
model for molecular co-transcriptional folding. Int. J. Mol. Sci. 20, 2259 (2019).
Its Conference Version was Published in Proceedings of the MFCS 2016

18. Geary, C., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture for
cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014)

19. Guo, Y., et al.: Recent advances in molecular machines based on toehold-mediated
strand displacement reaction. Quant. Biol. 5(1), 25–41 (2017). https://doi.org/10.
1007/s40484-017-0097-2

20. Hagiya, M., Arita, M., Kiga, D., Sakamoto, K., Yokoyama, S.: Towards parallel
evaluation and learning of boolean μ-formulas with molecules. In: Proceedings of
the DNA3. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 48, pp. 57–72 (1999)

21. Han, Y.-S., Kim, H.: Construction of geometric structure by oritatami system. In:
Doty, D., Dietz, H. (eds.) DNA 2018. LNCS, vol. 11145, pp. 173–188. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00030-1 11

22. Han, Y.S., Kim, H.: Ruleset optimization on isomorphic oritatami systems. Theor.
Comput. Sci. 575, 90–101 (2019)

23. Han, Y.S., Kim, H., Masuda, Y., Seki, S.: A general architecture of oritatami
systems for simulating arbitrary finite automata. In: Proceedings of the CIAA2019.
LNCS, Springer (2019, in press)

24. Han, Y.S., Kim, H., Ota, M., Seki, S.: Nondeterministic seedless oritatami sys-
tems and hardness of testing their equivalence. Nat. Comput. 17(1), 67–79 (2018).
https://doi.org/10.1007/s11047-017-9661-y

https://doi.org/10.1007/BF03037360
https://doi.org/10.1007/978-3-030-00030-1_2
https://doi.org/10.1007/978-3-030-14812-6_12
https://doi.org/10.1007/978-3-319-11295-4_1
https://doi.org/10.1007/s40484-017-0097-2
https://doi.org/10.1007/s40484-017-0097-2
https://doi.org/10.1007/978-3-030-00030-1_11
https://doi.org/10.1007/s11047-017-9661-y

56 S. Seki

25. Han, Y.S., Kim, H., Rogers, T.A., Seki, S.: Self-attraction removal from oritatami
systems. Int. J. Found. Comput. Sci. (2019, in press)

26. Jepsen, M.D.E., et al.: Development of a genetically encodable FRET system using
fluorescent RNA aptamers. Nat. Commun. 9, 18 (2018)

27. Jonoska, N., Mahalingam, K.: Languages of DNA based code words. In: Chen, J.,
Reif, J. (eds.) DNA 2003. LNCS, vol. 2943, pp. 61–73. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24628-2 8

28. Jonoska, N., Seeman, N.C.: Molecular ping-pong game of life on a two-dimensional
DNA origami array. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 373(2046)
(2015)

29. Kari, L., Konstantinidis, S., Sośık, P., Thierrin, G.: On hairpin-free words and
languages. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp.
296–307. Springer, Heidelberg (2005). https://doi.org/10.1007/11505877 26

30. Kari, L., Seki, S.: On pseudoknot-bordered words and their properties. J. Comput.
Syst. Sci. 75(2), 113–121 (2009)

31. Komiya, K., et al.: DNA polymerase programmed with a hairpin DNA incorporates
a multiple-instruction architecture into molecular computing. Biosystems 83(1),
18–25 (2006)

32. Masuda, Y., Seki, S., Ubukata, Y.: Towards the algorithmic molecular self-assembly
of fractals by cotranscriptional folding. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS,
vol. 10977, pp. 261–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-94812-6 22

33. Merkhofer, E.C., Hu, P., Johnson, T.L.: Introduction to cotranscriptional RNA
splicing. Methods Mol. Biol. 1126, 83–96 (2014). https://doi.org/10.1007/978-1-
62703-980-2 6

34. Ota, M., Seki, S.: Ruleset design problems for oritatami systems. Theor. Comput.
Sci. 671, 26–35 (2017)

35. Parales, R., Bentley, D.: “Co-transcriptionality” - the transcription elongation com-
plex as a nexus for nuclear transactions. Mol. Cell 36(2), 178–191 (2009)

36. Rose, J.A., Komiya, K., Yaegashi, S., Hagiya, M.: Displacement whiplash PCR:
optimized architecture and experimental validation. In: Mao, C., Yokomori, T.
(eds.) DNA 2006. LNCS, vol. 4287, pp. 393–403. Springer, Heidelberg (2006).
https://doi.org/10.1007/11925903 31

37. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature
440(7082), 297–302 (2006)

38. Sakamoto, K., et al.: Molecular comuptation by DNA hairpin formation. Science
288, 1223–1226 (2000)

39. Sakamoto, K., et al.: State transitions by molecules. Biosystems 52(1–3), 81–91
(1999)

40. Schwarz-Schilling, M., Dupin, A., Chizzolini, F., Krishnan, S., Mansy, S.S., Simmel,
F.C.: Optimized assembly of a multifunctional RNA-protein nanostructure in a
cell-free gene expression system. Nano Lett. 18, 2650–2657 (2018)

41. Wang, H.: Proving theorems by pattern recognition. Bell Syst. Tech. J. 40(1), 1–41
(1961)

42. Watters, K.E., Strobel, E.J., Yu, A.M., Lis, J.T., Lucks, J.B.: Cotranscriptional
folding of a riboswitch at nucleotide resolution. Nat. Struct. Mol. Biol. 23(12),
1124–1131 (2016)

43. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, Caltech, June 1998
44. Yurke, B., Turberfield Jr., A.J., Simmel, A.P.M.: A DNA-fuelled molecular machine

made of DNA. Nature 406, 605–608 (2000)

https://doi.org/10.1007/978-3-540-24628-2_8
https://doi.org/10.1007/11505877_26
https://doi.org/10.1007/978-3-319-94812-6_22
https://doi.org/10.1007/978-3-319-94812-6_22
https://doi.org/10.1007/978-1-62703-980-2_6
https://doi.org/10.1007/978-1-62703-980-2_6
https://doi.org/10.1007/11925903_31

Regular Papers

A Linear Bound on the K-Rendezvous
Time for Primitive Sets of NZ Matrices

Umer Azfar1, Costanza Catalano2(B), Ludovic Charlier1,
and Raphaël M. Jungers1

1 ICTEAM, UCLouvain, Av. Georges Lemâıtres 4-6, Louvain-la-Neuve, Belgium
{umer.azfar,ludovic.charlier}@student.uclouvain.be,

raphael.jungers@uclouvain.be
2 Gran Sasso Science Institute, Viale Francesco Crispi 7, L’Aquila, Italy

costanza.catalano@gssi.it

Abstract. A set of nonnegative matrices is called primitive if there
exists a product of these matrices that is entrywise positive. Motivated
by recent results relating synchronizing automata and primitive sets,
we study the length of the shortest product of a primitive set having
a column or a row with k positive entries (the k-RT). We prove that
this value is at most linear w.r.t. the matrix size n for small k, while
the problem is still open for synchronizing automata. We then report
numerical results comparing our upper bound on the k-RT with heuristic
approximation methods.

Keywords: Primitive set of matrices · Synchronizing automaton ·
Černý conjecture

1 Introduction

Primitive Sets of Matrices. The notion of primitive matrix1, introduced by
Perron and Frobenius at the beginning of the 20th century in the theory that
carries their names, can be extended to sets of matrices: a set of nonnegative
matrices M = {M1, . . . ,Mm} is called primitive if there exists some indices
i1, . . . , ir ∈ {1, . . . , m} such that the product Mi1 · · · Mir is entrywise positive.
A product of this kind is called a positive product and the length of the shortest
positive product of a primitive set M is called its exponent and it is denoted by
exp(M). The concept of primitive set was just recently formalized by Protasov
and Voynov [31], but has been appearing before in different fields as in stochastic
switching systems [20,30] and time-inhomogeneous Markov chains [19,34]. It has
lately gained more importance due to its applications in consensus of discrete-
time multi-agent systems [9], cryptography [12] and automata theory [4,6,15].
1 A nonnegative matrix M is primitive if there exists s ∈ N such that Ms > 0

entrywise.

R.M. Jungers is a FNRS Research Associate. He is supported by the French Community
of Belgium, the Walloon Region and the Innoviris Foundation.

c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 59–73, 2019.
https://doi.org/10.1007/978-3-030-24886-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_4

60 U. Azfar et al.

Deciding whether a set is primitive is a PSPACE-complete problem for sets
of two matrices [15], while it is an NP-hard problem for sets of at least three
matrices [4]. Computing the exponent of a primitive set is usually hard, namely
it is an FPNP[log]-complete problem [15]; for the complexity of other problems
related to primitivity and the computation of the exponent, we refer the reader
to [15]. For sets of matrices having at least one positive entry in every row
and every column (called NZ [15] or allowable matrices [18,20]), the primitivity
problem becomes decidable in polynomial-time [31], although computing the
exponent remains NP-hard [15]. Methods for approximating the exponent have
been proposed [7] as well as upper bounds that depend just on the matrix size;
in particular, if we denote with expNZ(n) the maximal exponent among all the
primitive sets of n × n NZ matrices, it is known that expNZ(n) ≤ (15617n3 +
7500n2 + 56250n − 78125)/46875 [4,36]. Better upper bounds have been found
for some classes of primitive sets (see e.g. [15] and [19], Theorem 4.1). The NZ
condition is often met in applications and in particular in the connection with
synchronizing automata.

Synchronizing Automata. A (complete deterministic finite state) automaton
is a 3-tuple A = 〈Q,Σ, δ〉 where Q = {q1, . . . , qn} is a finite set of states,
Σ = {a1, . . . , am} is a finite set of input symbols (the letters of the automaton)
and δ : Q × Σ → Q is the transition function. Let i1, i2, . . . , il ∈ {1, . . . , m}
be indices. Then w = ai1ai2 . . . ail is called a word and we define δ(q, w) =
δ(δ(q, ai1ai2 . . . ail−1), ail). An automaton is synchronizing if it admits a word w,
called a synchronizing or a reset word, and a state q such that δ(q′, w) = q for
any state q′ ∈ Q. In other words, the reset word w brings the automaton from
every state to the same fixed state.

Remark 1. The automaton A can be equivalently represented by the set of matri-
ces {A1, . . . , Am} where, for all i = 1, . . . ,m and l, k = 1, . . . , n, (Ai)lk = 1 if
δ(ql, ai) = qk, (Ai)lk = 0 otherwise. The action of a letter ai on a state qj is
represented by the product eT

j Ai, where ej is the j-th element of the canonical
basis. Notice that the matrices A1, . . . , Am are binary2 and row-stochastic, i.e.
each of them has exactly one entry equal to 1 in every row and zero everywhere
else. In this representation, the automaton A is synchronizing if and only if there
exists a product of its matrices with a column whose entries are all equal to 1
(also called an all-ones column).

The idea of synchronization is quite simple: we want to restore control over a
device whose current state is unknown. For this reason, synchronizing automata
are often used as models of error-resistant systems [8,11], but they also find
application in other fields such as in symbolic dynamics [25], in robotics [26] or
in resilience of data compression [33,37]. For a recent survey on synchronizing
automata we refer the reader to [42]. We are usually interested in the length of
the shortest reset word of a synchronizing automaton A, called its reset threshold
and denoted by rt(A). Despite the fact that determining whether an automa-
ton is synchronizing can be done in polynomial time (see e.g. [42]), computing
2 A binary matrix is a matrix having entries in {0, 1}.

A Linear Bound on the K-Rendezvous Time for Primitive Sets 61

its reset threshold is an NP-hard problem [11]3. One of the most longstanding
open questions in automata theory concerns the maximal reset threshold of a
synchronizing automaton, presented by Černý in 1964 in his pioneering paper:

Conjecture 1. (The Černý conjecture [39]). Any synchronizing automaton on n
states has a synchronizing word of length at most (n − 1)2.

Černý also presented in [39] a family of automata having reset threshold
of exactly (n − 1)2, thus demonstrating that the bound in his conjecture (if
true) cannot be improved. Exhaustive search confirmed the Černý conjecture
for small values of n [2,5,24,38] and within certain classes of automata (see
e.g. [22,35,41]), but despite a great effort has been made to prove (or disprove)
it in the last decades, its validity still remains unclear. Indeed on the one hand,
the best upper bound known on the reset threshold of any synchronizing n-state
automaton is cubic in n [13,28,36], while on the other hand automata having
quadratic reset threshold, called extremal automata, are very difficult to find
and few of them are known (see e.g. [10,16,23,32]). Some of these families have
been found by Ananichev et al. [3] by coloring the digraph of primitive matrices
having large exponent; this has been probably the first time where primitivity
has been successfully used to shed light on synchronization.

Connecting Primitivity and Synchronization. The following definition and
theorem establish the connection between primitive sets of binary NZ matrices
and synchronizing automata. From here on, we will use the matrix representation
of deterministic finite automata as reported in Remark 1.

Definition 1. Let M be a set of binary NZ matrices. The automaton associated
to the set M is the automaton Aut(M) such that A ∈ Aut(M) if and only if
A is a binary and row-stochastic matrix and there exists M ∈ M such that
A ≤ M (entrywise). We denote with Aut(MT) the automaton associated to the
set MT = {MT

1 , . . . ,MT
m}.

Theorem 1. ([4]Theorems 16–17, [15]Theorem2). LetM={M1, . . . ,Mm}
be a primitive set of binary NZmatrices. ThenAut(M) andAut(MT) are synchro-
nizing and it holds that:

rt
(
Aut(M)

) ≤ exp(M) ≤ rt
(
Aut(M)

)
+ rt

(
Aut(MT)

)
+ n − 1. (1)

Notice that the requirement in Theorem 1 that the set M has to be made of
binary matrices is not restrictive, as the primitivity property does not depend
on the magnitude of the positive entries of the matrices of the set. We can thus
restrict ourselves to the set of binary matrices by using the Boolean product
between them4, that is setting for any A and B binary matrices, (AB)ij = 1 any
time that

∑
s AisBsj > 0. In this framework, primitivity can be also rephrased

3 Moreover, even approximating the reset threshold of an n-state synchronizing
automaton within a factor of n1−ε is known to be NP-hard for any ε > 0, see [14].

4 In other words, we work with matrices over the Boolean semiring.

62 U. Azfar et al.

as a membership problem (see e.g. [27,29]), where we ask whether the all-ones
matrix belongs to the semigroup generated by the matrix set. The follow-
ing example reports a primitive set M of NZ matrices and the synchronizing
automata Aut(M) and Aut(MT).

Example 1. Here we present a primitive set and its associated automata:
M=

{(
0 1 0
0 0 1
1 0 0

)
,
(

0 1 0
1 0 1
0 0 1

)}
, Aut(M)=

{
a =

(
0 1 0
0 0 1
1 0 0

)
, b1 =

(
0 1 0
1 0 0
0 0 1

)
, b2 =

(
0 1 0
0 0 1
0 0 1

)}
,

Aut(MT)=
{
a′ =

(
0 0 1
1 0 0
0 1 0

)
, b1 =

(
0 1 0
1 0 0
0 0 1

)
, b′

2 =
(

0 1 0
1 0 0
0 1 0

)}

.It holds that exp(M)=7, rt
(
Aut(M)

)
=2 and rt

(
Aut(MT)

)
=3. See also Fig. 1.

3

12

a, b1, b2

b1

b1, b2

a, b2 a

3

12

b1, b
′
2

a′, b1, b′
2

b1

a′, b′
2 a′

Fig. 1. The automata Aut(M) (left) and Aut(MT) (right) of Example 1.

Equation (1) shows that the behavior of the exponent of a primitive set of
NZ matrices is tightly connected to the behavior of the reset threshold of its
associated automaton. A primitive set M with quadratic exponent implies that
one of the automata Aut(M) or Aut(MT) has quadratic reset threshold; in
particular, a primitive set with exponent greater than 2(n − 1)2 + n − 1 would
disprove the Černý conjecture. This property has been used by the authors
in [6] to construct a randomized procedure for finding extremal synchronizing
automata.

The synchronization problem for automata is about finding the length of
the shortest word mapping the whole set of states onto one single state. We can
weaken this request by asking what is the length of the shortest word w such that
there exists a set of k ≥ 2 states mapped by w onto one single state. In the matrix
framework, we are asking what is the length of the shortest product having a
column with k positive entries. The case k = 2 is trivial, as any synchronizing
automaton has a letter mapping two states onto one; for k = 3 Gonze and
Jungers [17] presented a quadratic upper bound in the number of the states of
the automaton while, to the best of our knowledge, the cases k ≥ 4 are still
open. Clearly, the case k = n is the problem of computing the reset threshold.

In view of the connection between synchronizing automata and primitive
sets, we extend the above described problem to primitive sets by introducing
the k-rendezvous time (k-RT): the k-RT of a primitive set M is the length of the
shortest product having a row or a column with k positive entries. The following
proposition shows how the k-RT of a primitive set M of NZ matrices (denoted
by rtk(M)) is linked to the length of the shortest word for which it exists a
set of k states mapped by it onto a single state in the automata Aut(M) and
Aut(MT) (lengths denoted respectively by rtk(Aut(M)) and rtk(Aut(MT))).

A Linear Bound on the K-Rendezvous Time for Primitive Sets 63

Proposition 1. Let M be a primitive set of n × n binary NZ matrices and let
Aut(M) and Aut(MT) be the automata defined in Definition 1. Then for every
2 ≤ k ≤ n, it holds that rtk(M) = min

{
rtk

(
Aut(M)

)
, rtk

(
Aut(MT)

)}
.

Proof. Omitted due to length restrictions.

Our Contribution. In this paper we prove that for any primitive set M of
n × n NZ matrices, the k-rendezvous time rtk(M) is upper bounded by a linear
function in n for any fixed k ≤ √

n, problem that is still open for synchronizing
automata. Our result also implies that min

{
rtk

(
Aut(M)

)
, rtk

(
Aut(MT)

)}
is

upper bounded by a linear function in n for any fixed k ≤ √
n, in view of Propo-

sition 1. We then show that our technique for upper bounding rtk(M) cannot
be much improved as it is, and so new strategies have to be implemented in
order to possibly achieve better upper bounds. Finally, we report some numer-
ical experiments comparing our theoretical upper bound on the k-RT with the
real k-RT (or an approximation of it when it becomes too hard to compute it)
for some examples of primitive sets.

2 Notation and Preliminaries

The set {1, . . . , n} is represented by [n]. The support of a nonnegative vector v
is the set supp(v) = {i : vi > 0} and the weight of a nonnegative vector v is the
cardinality of its support.

Given a matrix A, we denote by A∗j its j-th column and by Ai∗ its i-th row. A
permutation matrix is a binary matrix having exactly one positive entry in every
row and every column. We remind that an n × n matrix A is called irreducible
if for any i, j ∈ [n], there exists a natural number k such that Ak

ij > 0. A matrix
A is called reducible if it is not irreducible.

Given M a set of matrices, we denote with Md the set of all the products of
at most d matrices from M. A set of matrices M = {M1, . . . ,Mm} is reducible if
the matrix

∑
i Mi is reducible, otherwise it is called irreducible. Irreducibility is

a necessary but not sufficient condition for a matrix set to be primitive (see [31],
Sect. 1). Given a directed graph D = (V,E), we denote by v → w the directed
edge leaving v and entering in w and with v → w ∈ E the fact that the edge
v → w belongs to the digraph D.

Lemma 1. Let M be an irreducible set of n×n NZ matrices, A ∈ M and i, j ∈
[n]. Then there exists a matrix B ∈ Mn−1 such that supp(A∗i) ⊆ supp((AB)∗j).

Proof. We consider the labeled directed graph DM = (V,E) where V = [n] and
i → j ∈ E iff there exists a matrix A ∈ M such that Aij > 0. We label the
edge i → j ∈ E by all the matrices A ∈ M such that Aij > 0. We remind
that a directed graph is strongly connected if there exists a directed path from
any vertex to any other vertex. Notice that a path in DM from vertex k to
vertex l having the edges sequentially labeled by the matrices As1 , . . . , Asr

from
M means that (As1 · · · Asr

)kl > 0. Since M is irreducible, it follows that DM

64 U. Azfar et al.

is strongly connected and so, since V has cardinality n, any pair of vertices in
DM are connected by a path of length at most n − 1. Consider a path connect-
ing vertex i to vertex j whose edges are sequentially labeled by the matrices
As1 , . . . , Ast

from M and let B = As1 · · · Ast
. Clearly B ∈ Mn−1; furthermore

it holds that Bij > 0 and so supp(A∗i) ⊆ supp
(
(AB)∗j

)
.
�

Definition 2. Let M be a finite set of n × n NZ matrices. We define the pair
digraph of the set M as the labeled directed graph PD(M) = (V, E) where V =
{(i, j) : 1 ≤ i ≤ j ≤ n} is the vertex set and (i, j) → (i′, j′) ∈ E if and only if
there exists A ∈ M such that

Aii′ > 0 and Ajj′ > 0, or Aij′ > 0 and Aji′ > 0. (2)

An edge (i, j) → (i′, j′) ∈ E is labeled by any matrix A ∈ M for which Eq. (2)
holds. A vertex of the form (s, s) is called a singleton.

Lemma 2. Let M be a finite set of n×n NZ matrices and let PD(M) = (V, E)
be its pair digraph. Let i, j, k ∈ [n] and suppose that there exists a path in
PD(M) from the vertex (i, j) to the singleton (k, k) having the edges sequen-
tially labeled by the matrices As1 , . . . , Asl

from M. Then it holds that for every
A ∈ M, supp(A∗i) ∪ supp(A∗j) ⊆ supp((AAs1 · · · Asl

)∗k). Furthermore if M is
irreducible, then M is primitive if and only if for any (i, j) ∈ V there exists a
path in PD(M) from (i, j) to some singleton.

Proof. By the definition of the pair digraph PD(M) (Definition 2), the exis-
tence of a path in PD(M) from vertex (i, j) to vertex (k, k) labeled by the
matrices As1 , . . . , Asl

implies that (As1 · · · Asl
)ik > 0 and (As1 · · · Asl

)jk > 0.
By Lemma 1, it follows that supp(A∗i) ∪ supp(A∗j) ⊆ supp

(
(AAs1 · · · Asl

)∗k

)
.

Suppose now that M is irreducible. If M is primitive, then there exists a
product M of matrices from M such that for all i, j, Mij > 0. By the definition of
PD(M), this implies that any vertex in PD(M) is connected to any other vertex.
On the other hand, if every vertex in PD(M) is connected to some singleton,
then for every i, j, k ∈ [n] there exists a product As1 · · · Asl

of matrices from M
such that (As1 · · · Asl

)ik > 0 and (As1 · · · Asl
)jk > 0. This suffices to establish

the primitivity of M by Theorem 1 in [1]5.
�

3 The K-Rendezvous Time and a Recurrence Relation
for Its Upper Bound

In this section, we define the k-rendezvous time of a primitive set of n × n NZ
matrices and we prove a recurrence relation for a function Bk(n) that upper
bounds it.

5 The theorem states that the following condition is sufficient for an irreducible matrix
set M to be primitive: for all indices i, j, there exists an index k and a product M
of matrices from M such that Mik > 0 and Mjk > 0.

A Linear Bound on the K-Rendezvous Time for Primitive Sets 65

Definition 3. Let M be a primitive set of n×n NZ matrices and 2 ≤ k ≤ n. We
define the k-rendezvous time (k-RT) to be the length of the shortest product of
matrices from M having a column or a row with k positive entries and we denote
it by rtk(M). We indicate with rtk(n) the maximal value of rtk(M) among all
the primitive sets M of n × n NZ matrices.

Our goal is to find, for any n ≥ 2 and 2 ≤ k ≤ n, a function Bk(n) such that
rtk(n) ≤ Bk(n).

Definition 4. Let n, k integers such that n ≥ 2 and 2 ≤ k ≤ n − 1. We denote
by Sn

k the set of all the n×n NZ matrices having every row and column of weight
at most k and at least one column of weight exactly k. For any A ∈ Sk

n, let CA

be the set of the indices of the columns of A having weight equal to k. We define
an

k (A) = minc∈CA
|{i : supp(A∗i) � supp(A∗c)}| and an

k = minA∈Sk
n

an
k (A).

In other words, an
k (A) is the minimum over all the indices c ∈ CA of the number

of columns of A whose support is not contained in the support of the c-th
column of A. Since the matrices are NZ, it clearly holds that for any A ∈ Sk

n,
1 ≤ an

k ≤ an
k (A). The following theorem shows that for every n ≥ 2, we can

recursively define a function Bk(n) ≥ rtk(n) on k by using the term an
k .

Theorem 2. Let n ≥ 2 integer. The following recursive function Bk(n) is such
that for all 2 ≤ k ≤ n, rtk(n) ≤ Bk(n).

{
B2(n) = 1
Bk+1(n) = Bk(n) + n(1 + n − an

k)/2 for 2 ≤ k ≤ n − 1.
(3)

Proof. We prove the theorem by induction.
Let k = 2. Any primitive set of NZ matrices must have a matrix with a row

or a column with two positive entries, as otherwise it would be made of just
permutation matrices and hence it would not be primitive. This trivially implies
that rt2(n) = 1 ≤ B2(n).

Suppose now that rtk(n) ≤ Bk(n), we show that rtk+1(n) ≤ Bk+1(n). We
remind that we denote with Md the set of all the products of matrices from
M having length smaller than or equal to d. If in Mrtk(M)+n−1 there exists a
product having a column or a row with k + 1 positive entries then rtk+1(M) ≤
rtk(M) + n − 1 ≤ Bk+1(n). Suppose now that this is not the case. This means
that in Mrtk(M)+n−1 every matrix has all the rows and columns of weight at
most k. Let A ∈ Mrtk(M) be a matrix having a row or a column of weight k,
and suppose it is a column. The case when A has a row of weight k will be
studied later. By Lemma 1 applied on the matrix A, for every i ∈ [n] there exists
a matrix Wi ∈ Mrtk(M)+n−1 having the i-th column of weight k (and all the
other columns and rows of weight ≤k). Every Wi has at least an

k (see Definition 4)
columns whose support is not contained in the support of the i-th column of Wi:
let c1i , c

2
i , . . . , c

an
k

i be the indices of these columns. Notice that any product B of
matrices from M of length l such that Bis > 0 and Bcjis > 0 for some s ∈ [n]
and j ∈ [an

k] would imply that WiB has the s-th column of weight at least k + 1

66 U. Azfar et al.

and so rtk+1(M) ≤ rtk(M) + n − 1 + l. We now want to minimize this length
l over all i, s ∈ [n] and j ∈ [an

k]: we will prove that there exists i, s ∈ [n] and
j ∈ [an

k] such that l ≤ n(n − 1 − an
k)/2 + 1. To do this, we consider the pair

digraph PD(M) = (V, E) (see Definition 2) and the vertices

(1, c11), (1, c21), . . . , (1, c
an
k

1), (2, c12), . . . , (2, c
an
k

2), . . . , (n, c1n), . . . , (n, c
an
k

n). (4)

By Lemma 2, for each vertex in Eq. (4) there exists a path in PD(M) connecting
it to a singleton. By the same lemma, a path of length l from (i, cj

i) to a singleton
(s, s) would result in a product Bj of matrices from M of length l such that
WiBj has the s-th column of weight at least k + 1. We hence want to estimate
the minimal length among the paths connecting the vertices in Eq. (4) to a
singleton. Notice that Eq. (4) contains at least
nan

k/2� different elements, since
each element occurs at most twice. It is clear that the shortest path from a vertex
in the list (4) to a singleton does not contain any other element from that list. The
vertex set V of PD(M) has cardinality n(n + 1)/2 and it contains n vertices of
type (s, s). It follows that the length of the shortest path connecting some vertex
from the list (4) to some singleton is at most of n(n + 1)/2 − n −
nan

k/2� + 1 ≤
n(n − 1 − an

k)/2 + 1. In view of what said before, we have that there exists a
product B of matrices from M of length ≤ n(n − 1 − an

k)/2 + 1 and i ∈ [n]
such that WiBj has a column of weight at least k + 1. Since WiBj belongs to
Mrtk(M)+n−1+n(n−1−an

k)/2+1, it follows that rtk+1(M) ≤ rtk(M) + n(n + 1 −
an

k)/2 ≤ Bk+1(n).
Suppose now A ∈ Mrtk(M) has a row of weight k. We can use the same

argument as above on the matrix set MT made of the transpose of all the
matrices in M.
�
Notice that the above argument stays true if we replace an

k by a function b(n, k)
such that for all n ≥ 2 and 2 ≤ k ≤ n − 1, 1 ≤ b(n, k) ≤ an

k . It follows that
Eq. (3) still holds true if we replace an

k by b(n, k).

4 Solving the Recurrence

We now find an analytic expression for a lower bound on an
k and we then solve

the recurrence (3) in Theorem 2 by using this lower bound. We then show that
this is the best estimate on an

k we can hope for.

Lemma 3. Let n, k integers such that n ≥ 2 and 2 ≤ k ≤ n − 1, and let an
k as

in Definition 4. It holds that an
k ≥ max{n − k(k − 1) − 1,
(n − k)/k�, 1}.

Proof. We have that an
k ≥ 1 since k ≤ n − 1 and the matrices are NZ.

Let now A ∈ Sk
n (see Definition 4) and let a be one of its columns of weight

k. Let S = supp(a); by assumption, the rows of A have at most k positive
entries, so there can be at most (k − 1)k columns of A different from a whose
support is contained in S. Therefore, since A is NZ, there must exist at least
n − k(k − 1) − 1 columns of A whose support is not contained in supp(a) and so
an

k ≥ n − k(k − 1) − 1.

A Linear Bound on the K-Rendezvous Time for Primitive Sets 67

Let again A ∈ Sk
n and let a be one of its columns of weight k. Let S =

[n]\supp(a); S has cardinality n − k and since A is NZ, for every s ∈ S there
exists s′ ∈ [n] such that Ass′ > 0. By assumption each column of A has weight
of at most k, so there must exist at least
(n−k)/k� columns of A different from
a whose support is not contained in supp(a). It follows that an

k ≥
(n−k)/k�.
�
Since
(n − k)/k� ≥ (n − k)/k, n − k(k − 1) − 1 ≥ (n − k)/k for k ≤

�√n� and (n − k)/k ≥ 1 for k ≤ �n/2�, the recursion (3) with an
k replaced by

max{n − k(k − 1) − 1, (n − k)/k, 1} now reads as:

B̃k+1(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if k = 1
B̃k(n) + n(1 + k(k − 1)/2) if 2 ≤ k ≤ �√n�
B̃k(n) + n(1 + n(k − 1)/2k) if �√n� + 1 ≤ k ≤ �n/2�
B̃k(n) + n2/2 if �n/2� + 1 ≤ k ≤ n − 1

. (5)

The following proposition shows the solution of the recursion (5):

Proposition 2. Equation (5) is fulfilled by the following function:

B̃k(n)=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n(k3 − 3k2 + 8k − 12)

6
+ 1 if 2 ≤ k ≤ �√n�

B̃�√
n�(n) +

n(n+ 2)(k − �√n�)
2

− n2

2

k−1∑
i=�√

n�

1

i
if �√n� + 1 ≤ k ≤ � n

2
�

B̃� n
2 �(n) +

(k − � n
2

�)n2

2
if � n

2
� + 1 ≤ k ≤ n

. (6)

Therefore, for any constant k such that k ≤ √
n, the k-rendezvous time rtk(n)

is at most linear in n.

Proof. If 2 ≤ k ≤ �√n�, let Ck(n) = B̃k(n)/n. By Eq. (5), it holds that
Ck+1(n)−Ck(n) = 1+k(k−1)/2. By setting Ck(n) = αk3+βk2+γk+δ, it follows
that 3αk2 +(3α+2β)k +α+β +γ = k2/2−k/2+1. Since this must be true for
all k, by equating the coefficients we have that Ck(n) = k3/6 − k2/2 + 4k/3 + δ.
Imposing the initial condition B̃2(n) = 1 gives finally the desired result B̃k(n) =
n(k3 − 3k2 + 8k − 12)/6 + 1.

If �√n� + 1 ≤ k ≤ �n/2�, let again Ck(n) = B̃k(n)/n. By Eq. (5), it holds
that Ck+1(n) − Ck(n) = 1 + n(k − 1)/2k and so Ck(n) = C�√

n�(n) + (k −
2)(1 + n/2) − (n/2)

∑k−1
i=�√

n� i−1. Since C�√
n�(n) = B̃�√

n�(n)/n, it follows that

B̃k(n) = B̃�√
n�(n) + (k − �√n�)n(n + 2)/2 − (n2/2)

∑k−1
i=�√

n� i−1.
If �n/2�+1 ≤ k ≤ n−1, by Eq. (5) it is easy to see that B̃k(n) = B̃�n/2�(n)+

(k − �n/2�)n2/2, which concludes the proof.
�
We now show that an

k =max{n − k(k − 1) − 1,
(n − k)/k�, 1}, and so we cannot
improve the upper bound B̃k(n) on rtk(n) by improving our estimate of an

k .

68 U. Azfar et al.

Lemma 4. Let n, k integers such that n ≥ 2 and 2 ≤ k ≤ n − 1. It holds that:

1 ≤ an
k ≤ u(n, k) :=

{
n − k(k − 1) − 1 if n − k(k − 1) − 1 ≥
(n − k)/k�

(n − k)/k� otherwise

.

Proof. We need to show that for every n ≥ 2 and 2 ≤ k ≤ n − 1, there exists a
matrix A ∈ Sk

n such that an
k (A) = u(n, k) (see Definition 4). We define the matrix

Cm1×m2
i as the m1 × m2 matrix having all the entries of the i-th column equal

to 1 and all the other entries equal to 0, and the matrix Rm1×m2
i as the m1 ×m2

matrix having all the entries of the i-th row equal to 1 and all the other entries
equal to 0. We indicate with 0m1×m2 the m1 × m2 matrix having all its entries
equal to zero and with Im×m the m×m identity matrix. Let vn

k =
(n−k)/k�+1
and q = n mod k.
Suppose that n−k(k−1)−1 ≥
(n−k)/k� and set α = n−k(k−1)−1−
(n−k)/k�.
Then the following matrix Â is such that an

k (Â) = n − k(k − 1) − 1 = u(n, k):

Â =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C
k×vn

k
1 R

k×(k−1)
1 R

k×(k−1)
2 · · · R

k×(k−1)
k

C
k×vn

k
2
... 0(n−k)×[k(k−1)] D

C
k×vn

k
vn
k −1

C
q×vn

k
vn
k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,D =

⎡

⎣
0k×α

Iα×α

0(n−k−α)×α

⎤

⎦ .

Indeed by construction, the first column of Â has exactly k positive entries. The
columns of Â whose support is not contained in Â∗1 are the columns Â∗i for
i = 2, . . . , vn

k and all the columns of D. In total we have
(n − k)/k� + α =
n − k(k − 1) − 1 columns, so it holds that an

k (Â) = n − k(k − 1) − 1.
Suppose that n − k(k − 1) − 1 ≤
(n − k)/k�. Then the following matrix Ã

is such that an
k (Ã) =
(n − k)/k� = u(n, k):

Ã =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C
k×vn

k
1 R

k×(k−1)
1 R

k×(k−1)
2 · · · R

k×(k−1)
k−1 R

k×(n−vn
k −(k−1)2)

k

C
k×vn

k
2
...

C
k×vn

k
vn
k −1 0(n−k)×(n−vn

k)

C
q×vn

k
vn
k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Indeed by construction, the first column of Ã has exactly k positive entries and
the columns of Ã whose support is not contained in Ã∗1 are the columns Ã∗i for
i = 2, . . . , vn

k . Therefore it holds that an
k (Ã) = vn

k − 1 =
(n − k)/k�.
�

5 Numerical Results

We report here some numerical results that compare the theoretical bound B̃k(n)
on rtk(n) of Eq. (6) with either the exact k-RT or with an heuristic approxima-
tion of the k-RT when the computation of the exact value is not computationally

A Linear Bound on the K-Rendezvous Time for Primitive Sets 69

feasible. In Fig. 2 we compare our bound with the real k-RT of the primitive sets
MCPR and MK reported here below:

MCPR =

⎧
⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

0 0 1 0
1 1 0 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎠

⎫
⎪⎪⎬
⎪⎪⎭

, MK =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

The sets MK and MCPR are primitive sets of matrices that are based on the
Kari automaton [21] and the Černý-Piricka-Rozenaurova automaton [40] respec-
tively. We can see that for small values of k, the upper bound is fairly close to
the actual value of rtk(M).

Fig. 2. Comparison between the bound B̃k(n), valid for all primitive NZ sets, and
rtk(M) for M = MCPR (left) and M = MK (right).

When n is large, computing the k-RT for every 2 ≤ k ≤ n becomes hard,
so we compare our upper bound on the k-RT with a method for approximating
it. The Eppstein heuristic is a greedy algorithm developed by Eppstein in [11]
for approximating the reset threshold of a synchronizing automaton. Given a
primitive set M of binary NZ matrices, we can apply a slightly modified Eppstein
heuristic to obtain, for any k, an upper bound on rtk(M). The description of
this modified heuristic is not reported here due to length restrictions.

In Fig. 3 we compare our upper bound with the results of the Eppstein heuris-
tic on the k-RT of the primitive sets with quadratic exponent presented by Cata-
lano and Jungers in [6], Sect. 4; here we denote these sets by MCn

where n is
the matrix dimension. Finally, Fig. 4 compares the evolution of our bound with
the results of the Eppstein heuristic on the k-RT of the family MCn

for fixed
k = 4 and as n varies. It can be noticed that the bound B̃k(n) does not increase
very rapidly as compared to the Eppstein approximation.

70 U. Azfar et al.

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

(a) n = 10, M = MC10

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800

(b) n = 25, M = MC25

Fig. 3. Comparison between B̃k(n) and the Eppstein approx. of rtk(M), for M =
MC10 (left) and M = MC25 (right). We recall that B̃k(n) is a generic bound valid for
all primitive NZ sets, while the Eppstein bound is computed on each particular set.

21 22 23 24 25 26 27 28 29 30
40

60

80

100

120

140

160

180

200

Fig. 4. Comparison between B̃k(n) and the Eppstein approx. of rtk(MCn) for k = 4.
We recall that B̃k(n) is a generic bound valid for all primitive NZ sets, while the
Eppstein bound is computed on each particular set.

6 Conclusions

In this paper we have shown that we can upper bound the length of the shortest
product of a primitive NZ set M having a column or a row with k positive entries
by a linear function of the matrix size n, for any constant k ≤ √

n. We have
called this length the k-rendezvous time (k-RT) of the set M, and we have shown
that the same linear upper bound holds for min

{
rtk

(
Aut(M)

)
, rtk

(
Aut(MT)

)}
,

where Aut(M) and Aut(MT) are the synchronizing automata defined in Defini-
tion 1. We have also showed that our technique cannot be improved as it already
takes into account the worst cases, so new strategies have to be implemented in
order to possibly obtain a better upper bound on rtk(n). The notion of k-RT
for primitive sets comes as an extension to primitive sets of the one introduced
for synchronizing automata. For automata, the problem whether there exists a
linear upper bound on the k-RT for small k is still open, as the only nontrivial

A Linear Bound on the K-Rendezvous Time for Primitive Sets 71

result on the k-RT that appears in the literature, to the best of our knowledge,
proves a quadratic upper bound on the 3-RT [17]. We believe that our result
could help in shedding light to this problem and possibly to the Černý conjec-
ture, in view of the connection between synchronizing automata and primitive
NZ sets established by Theorem 1.

References

1. Al’pin, Y.A., Al’pina, V.S.: Combinatorial properties of irreducible semigroups of
nonnegative matrices. J. Math. Sci. 191(1), 4–9 (2013)

2. Ananichev, D.S., Gusev, V.V.: Approximation of reset thresholds with greedy algo-
rithms. Fundam. Inform. 145(3), 221–227 (2016)

3. Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs with large expo-
nents and slowly synchronizing automata. J. Math. Sci. 192(3), 263–278 (2013)

4. Blondel, V., Jungers, R.M., Olshevsky, A.: On primitivity of sets of matrices. Auto-
matica 61, 80–88 (2015)

5. de Bondt, M., Don, H., Zantema, H.: DFAs and PFAs with long shortest synchro-
nizing word length. In: Charlier, É., Leroy, J., Rigo, M. (eds.) DLT 2017. LNCS,
vol. 10396, pp. 122–133. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-62809-7 8

6. Catalano, C., Jungers, R.M.: On randomized generation of slowly synchronizing
automata. In: Mathematical Foundations of Computer Science, pp. 48:1–48:21
(2018)

7. Catalano, C., Jungers, R.M.: The synchronizing probability function for primitive
sets of matrices. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp.
194–205. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-8 16

8. Chen, Y.B., Ierardi, D.J.: The complexity of oblivious plans for orienting and
distinguishing polygonal parts. Algorithmica 14(5), 367–397 (1995)

9. Chevalier, P.Y., Hendrickx, J.M., Jungers, R.M.: Reachability of consensus and
synchronizing automata. In: IEEE Conference in Decision and Control, pp. 4139–
4144 (2015)

10. Dzyga, M., Ferens, R., Gusev, V.V., Szyku�la, M.: Attainable values of reset thresh-
olds. In: Mathematical Foundations of Computer Science, vol. 83, pp. 40:1–40:14
(2017)

11. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3),
500–510 (1990)

12. Fomichev, V.M., Avezova, Y.E., Koreneva, A.M., Kyazhin, S.N.: Primitivity and
local primitivity of digraphs and nonnegative matrices. J. Appl. Ind. Math. 12(3),
453–469 (2018)

13. Frankl, P.: An extremal problem for two families of sets. Eur. J. Comb. 3(3), 125–
127 (1982)

14. Gawrychowski, P., Straszak, D.: Strong inapproximability of the shortest reset
word. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS,
vol. 9234, pp. 243–255. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48057-1 19

15. Gerencsér, B., Gusev, V.V., Jungers, R.M.: Primitive sets of nonnegative matrices
and synchronizing automata. SIAM J. Matrix Anal. Appl. 39(1), 83–98 (2018)

https://doi.org/10.1007/978-3-319-62809-7_8
https://doi.org/10.1007/978-3-319-62809-7_8
https://doi.org/10.1007/978-3-319-98654-8_16
https://doi.org/10.1007/978-3-662-48057-1_19
https://doi.org/10.1007/978-3-662-48057-1_19

72 U. Azfar et al.

16. Gonze, F., Gusev, V.V., Gerencsér, B., Jungers, R.M., Volkov, M.V.: On the inter-
play between babai and Černý’s conjectures. In: Charlier, É., Leroy, J., Rigo, M.
(eds.) DLT 2017. LNCS, vol. 10396, pp. 185–197. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-62809-7 13

17. Gonze, F., Jungers, R.M.: On the synchronizing probability function and the triple
Rendezvous time. In: Dediu, A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.)
LATA 2015. LNCS, vol. 8977, pp. 212–223. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-15579-1 16

18. Hajnal, J.: On products of non-negative matrices. Math. Proc. Cambr. Philos. Soc.
79(3), 521–530 (1976)

19. Hartfiel, D.J.: Nonhomogeneous Matrix Products. World Scientific Publishing,
London (2002)

20. Hennion, H.: Limit theorems for products of positive random matrices. Ann. Prob.
25(4), 1545–1587 (1997)

21. Kari, J.: A counter example to a conjecture concerning synchronizing words in
finite automata. Bull. EATCS 73, 146 (2001)

22. Kari, J.: Synchronizing finite automata on eulerian digraphs. Theor. Comput. Sci.
295(1), 223–232 (2003)

23. Kisielewicz, A., Szyku�la, M.: Synchronizing automata with extremal properties.
In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol.
9234, pp. 331–343. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48057-1 26

24. Kisielewicz, A., Kowalski, J., Szyku�la, M.: Experiments with synchronizing
automata. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp.
176–188. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40946-7 15

25. Mateescu, A., Salomaa, A.: Many-valued truth functions, Černý’s conjecture and
road coloring. In: EATCS Bulletin, pp. 134–150 (1999)

26. Natarajan, B.K.: An algorithmic approach to the automated design of parts ori-
enters. In: SFCS, pp. 132–142 (1986)

27. Paterson, M.: Unsolvability in 3 × 3 matrices. Stud. Appl. Math. 49(1), 105–107
(1996)

28. Pin, J.E.: On two combinatorial problems arising from automata theory. In: Inter-
national Colloquium on Graph Theory and Combinatorics, vol. 75, pp. 535–548
(1983)

29. Potapov, I., Semukhin, P.: Decidability of the membership problem for 2×2 integer
matrices. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 170–186 (2017)

30. Protasov, V.Y.: Invariant functions for the Lyapunov exponents of random matri-
ces. Sbornik Math. 202(1), 101 (2011)

31. Protasov, V.Y., Voynov, A.S.: Sets of nonnegative matrices without positive prod-
ucts. Linear Algebra Appl. 437, 749–765 (2012)

32. Rystsov, I.K.: Reset words for commutative and solvable automata. Theor. Com-
put. Sci. 172(1), 273–279 (1997)

33. Schützenberger, M.: On the synchronizing properties of certain prefix codes. Inf.
Control 7(1), 23–36 (1964)

34. Seneta, E.: Non-Negative Matrices and Markov Chains, 2nd edn. Springer, New
York (1981). https://doi.org/10.1007/0-387-32792-4

35. Steinberg, B.: The averaging trick and the Černý conjecture. In: Gao, Y., Lu,
H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 423–431. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14455-4 38

https://doi.org/10.1007/978-3-319-62809-7_13
https://doi.org/10.1007/978-3-319-62809-7_13
https://doi.org/10.1007/978-3-319-15579-1_16
https://doi.org/10.1007/978-3-319-15579-1_16
https://doi.org/10.1007/978-3-662-48057-1_26
https://doi.org/10.1007/978-3-662-48057-1_26
https://doi.org/10.1007/978-3-319-40946-7_15
https://doi.org/10.1007/0-387-32792-4
https://doi.org/10.1007/978-3-642-14455-4_38

A Linear Bound on the K-Rendezvous Time for Primitive Sets 73

36. Szyku�la, M.: Improving the upper bound the length of the shortest reset words. In:
Symposium on Theoretical Aspects of Computer Science, vol. 96, pp. 56:1–56:16
(2018)

37. Biskup, M.T., Plandowski, W.: Shortest synchronizing strings for Huffman codes.
Theor. Comput. Sci. 410, 3925–3941 (2009)

38. Trahtman, A.: Notable trends concerning the synchronization of graphs and
automata. Electron. Notes Discrete Math. 25, 173–175 (2006)

39. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Matematicko-fysikalny Casopis SAV 14(14), 208–216 (1964)

40. Černý, J., Piricka, A., Rosenaueriva, B.: On directable automata. Kybernetika 7,
289–298 (1971)

41. Volkov, M.V.: Synchronizing automata preserving a chain of partial orders. In:
Holub, J., Žd’árek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 27–37. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76336-9 5

42. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4 4

https://doi.org/10.1007/978-3-540-76336-9_5
https://doi.org/10.1007/978-3-540-88282-4_4

Words of Minimum Rank
in Deterministic Finite Automata

Jarkko Kari1(B), Andrew Ryzhikov2, and Anton Varonka3

1 University of Turku, Turku, Finland
jkari@utu.fi

2 LIGM, Université Paris-Est, Marne-la-Vallée, France
3 Belarusian State University, Minsk, Belarus

Abstract. The rank of a word in a deterministic finite automaton is the
size of the image of the whole state set under the mapping defined by this
word. We study the length of shortest words of minimum rank in sev-
eral classes of complete deterministic finite automata, namely, strongly
connected and Eulerian automata. A conjecture bounding this length is
known as the Rank Conjecture, a generalization of the well known Černý
Conjecture. We prove upper bounds on the length of shortest words of
minimum rank in automata from the mentioned classes, and provide
several families of automata with long words of minimum rank. Some
results in this direction are also obtained for automata with rank equal
to period (the greatest common divisor of lengths of all cycles) and for
circular automata.

Keywords: Minimum rank word · Synchronizing automaton ·
Eulerian automaton

1 Introduction

A complete deterministic finite automaton (which we simply call an automaton
in this paper) is a triple A = 〈Q,Σ, δ〉, where Q is a finite non-empty set of
states, Σ is a finite non-empty alphabet, and δ : Q × Σ → Q is a complete
transition function. We extend δ to Q × Σ∗ and 2Q × Σ∗ in the usual way:
δ(q, w) = δ(δ(q, v), a) if w = va for some word v ∈ Σ∗ and a ∈ Σ, and δ(S,w) =
{δ(q, w) | q ∈ S} for S ⊆ Q. We call the automaton binary or ternary if |Σ| = 2
or |Σ| = 3, respectively.

An automaton A is called synchronizing if there is a word w that resets it,
that is, brings it to a particular state no matter at which state the word has
been applied: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. Any such word w is said to be
a synchronizing word (or a reset word) for the automaton while the minimum

Jarkko Kari is supported by the Academy of Finland grant 296018. Anton Varonka
is supported by Poland’s National Science Centre (NCN) grant no. 2016/21/D/
ST6/00491.

c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 74–87, 2019.
https://doi.org/10.1007/978-3-030-24886-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_5

Words of Minimum Rank in Deterministic Finite Automata 75

length of a synchronizing word for A is called the reset threshold of A and is
denoted rt(A).

A natural question arises: how large can the reset threshold of n-state syn-
chronizing automaton be? In 1964 Černý [9] constructed an n-state synchronizing
automaton Cn with two letters which reset threshold is (n−1)2 for all n > 1. The
state set of Cn is Q = {1, 2, . . . , n} and the letters a and b act on it as follows:

δ(i, a) =

{
i, if i > 1
2, if i = 1;

δ(i, b) =

{
i + 1, if i < n

1, if i = n.

We refer to automata of this series as the Černý automata.
Some time later (e.g. [8]) it was conjectured that every synchronizing automa-

ton with n states can be reset by a word of length (n− 1)2. This is known as the
Černý Conjecture which remains open more than 50 years later (for a survey on
this topic see [20]).

Given an automaton A = 〈Q,Σ, δ〉, the rank of a word w ∈ Σ∗ with respect
to A is the number of states active after applying it, that is, the number |δ(Q,w)|.
When the automaton is clear from the context, we just call it the rank of w. The
rank of an automaton is the minimum rank among all words with respect to the
automaton. A synchronizing word (automaton) is thus a word (automaton) of
rank 1. We call the length of a shortest word of minimum rank of an automaton
A the minimum rank threshold of A. We denote it mrt(A).

Pin [17] proposed the following generalization of the Černý Conjecture: for
every n-state automaton having a word of rank at most r, there exists such
a word of length at most (n − r)2. A cubic upper bound is proved for this
conjecture [16]. However, Kari [14] found a counterexample to the conjectured
(n − r)2 bound for r = 2, which is a binary automaton K with n = 6 states.
As a consequence, a modification of this generalized conjecture was proposed by
Pribavkina restricting it to r being the rank of the considered automaton (K
is synchronizing but the Pin’s bound is exceeded for a word of rank 2). This
restricted case has not been disproved yet, and is sometimes referred to as the
Rank Conjecture (or the Černý-Pin Conjecture in [1]). The case r = 1 is the
Černý Conjecture.

It was pointed out in [2] that one of the reasons why the Černý Conjecture is
so hard to tackle is the lack of examples of slowly synchronizing automata. The
same is true concerning the Rank Conjecture. Pin [18] provided the following
example. The automaton with two letters consists of r connected components,
one of which is the Černý automaton Cn−r+1 and r −1 others are isolated states
with loops labeled with both letters. The automaton thus constructed has n
states, rank r and its minimum rank threshold is precisely (n−r)2. However, this
automaton is not strongly connected (an automaton is called strongly connected
if any state can be mapped to any other state by some word), so this case in
some sense reduces to the rank 1 case. No series of strongly connected automata
with mrt(A) close to the (n − r)2 bound were introduced so far.

In this paper, we propose a number of techniques to construct strongly con-
nected automata of rank r with large minimum rank thresholds. The families

76 J. Kari et al.

of automata we obtain do not reach the conjectured bound (n − r)2, but the
minimum rank threshold is typically of the order (n−r)2

r , or within a constant
multiple of this. We provide families of automata having additional properties
such as being Eulerian or circular, or having rank equal to the period (see Sect. 2
for definitions of these concepts). We also consider upper bounds: we prove the
Rank Conjecture for Eulerian automata, and obtain an upper bound on the
minimum rank threshold of circular automata.

The paper is organized as follows. In Sect. 2 we provide the main defini-
tions and preliminary results. In Sect. 3 we provide constructions for turning a
binary synchronizing automaton into a higher rank ternary (Sect. 3.1) or binary
(Sect. 3.2) automaton having its minimum rank threshold close to the reset
threshold of the original automaton. Applying these constructions on known
series of synchronizing automata yield new series of automata of higher ranks
r > 1. In Sect. 3.3 we show how upper bounds on the reset threshold can be
turned into upper bounds on the minimum rank thresholds on automata with
period equal to rank. In Sect. 4 we prove the Rank Conjecture for automata
based on Eulerian digraphs, along with exhibiting lower bounds on minimum
rank thresholds. In Sect. 4.2 we present a way to transform known bounds from
Eulerian automata to circular automata. In particular, quadratic upper bounds
on minimum rank thresholds for circular automata (including the reset thresh-
old) are proved. In Sect. 4.3 we contribute to the Road Coloring Problem, pre-
senting a nearly-linear algorithm of finding a coloring of minimum rank for an
Eulerian digraph.

2 Main Definitions and Preliminary Results

All our digraphs are multigraphs and they are allowed to have loops. The under-
lying digraph D(A) of an automaton A = 〈Q,Σ, δ〉 has vertex set Q, and for
any q, p ∈ Q, there are as many edges from q to p as there are letters a ∈ Σ such
that δ(q, a) = p. An automaton A is called a coloring of its multigraph D(A).
The underlying digraph of every automaton has the same outdegree at all its
vertices. From now on, we consider only digraphs with this property.

A digraph D is called strongly connected if for every pair (v, v′) of vertices
there exists a directed path from v to v′. An automaton is strongly connected if
its underlying digraph is strongly connected.

The period of a digraph D is the greatest common divisor of the lengths
of its cycles, and the period of an automaton is defined as the period of its
underlying digraph. Let us remark explicitly that digraphs with period p > 1 do
not have synchronizing colorings. The following lemma is essential to understand
the period of a digraph.

Lemma 1 ([5], p. 29). Let D be a digraph with period p. Then the set V of
vertices of D can be partitioned into p nonempty sets V1, V2, . . . , Vp where each
edge of D goes from a vertex from Vi and enters some vertex in Vi+1 for some
i (the indices are taken modulo p).

Words of Minimum Rank in Deterministic Finite Automata 77

We will call this partition a p-partition of a digraph or of its coloring.
Much of the literature on synchronizing automata concentrates on the prim-

itive case. A digraph is called primitive if it is strongly connected and the period
is p = 1. In this paper we are interested in automata with underlying digraphs
which are strongly connected but not necessarily primitive.

A digraph is Eulerian if for each vertex the outdegree is equal to the indegree.
The automaton is Eulerian if it is strongly connected and its underlying digraph
is Eulerian. Equivalently, at every state there must be exactly |Σ| incoming
transitions, where Σ is the alphabet of the automaton. An automaton is circular
if there is a letter which acts on its set of states as a cyclic permutation.

3 Strongly Connected Automata

3.1 A Lower Bound for Ternary Automata

We start with a construction yielding a series of strongly connected ternary
automata. We transform a synchronizing binary automaton A into a ternary
automaton A′ of a given rank r > 1 such that mrt(A′) is related to rt(A).

We start with a synchronizing binary automaton A = 〈Q, {a, b}, δ〉 with t
states q1, . . . , qt. We define a ternary automaton A′ = 〈Q′, {a, b, c}, δ′〉 of rank
r with the size n = r · t state set Q′ =

⋃r−1
i=0 Qi where each Qi contains t

states qi,1, . . . , qi,t. The action of the transition function δ′ on the set Q0 repeats
the action of δ on set Q for the letters a, b: for x = a and x = b we have
δ′(q0,j , x) = q0,k if and only if δ(qj , x) = qk. On the other sets Q1, . . . , Qr−1 the
transitions by the letters a, b are self-loops: we set δ′(qi,k, x) = qi,k for x = a and
x = b, for all i �= 0 and all k. Finally, the letter c shifts states of Qi to the next
set Qi+1: we define δ′(qi,k, c) = qi+1,k where i + 1 is counted modulo r, that is,
elements of Qr−1 are shifted to the set Q0. Note that the construction preserves
the property of the automaton to be strongly connected or Eulerian.

Since A is synchronizing, we certainly obtain an automaton of rank r as the
result of this construction. No two states from different sets Qi, Qj with i �= j
can be merged for the obvious reason. Each of them though can be mapped
using the letter c to Q0 which, in turn, can be mapped to a single state.

If w is a shortest reset word for A, a trivial way to compose a word of rank
r for A′ is as follows. We use w to merge the states of Q0 to one particular
state, then use the letter c to shift the set at play and continue until every set
Qi is merged into one state. The resulting word w′ = wcw . . . cw thus has length
rt(A) · r + r − 1. Moreover, w′ is the shortest word of rank r. Indeed, since all
the transitions in the sets Q1, Q2, . . . , Qr−1 are self-loops for a, b, the only place
where merging of states takes place is inside Q0. While states of some Qi are
treated there, the states of all Qj , j �= i, remain invariant. Obviously, c has to
be applied at least r − 1 times. Hence, by the pigeonhole principle, the existence
of a shorter word of minimum rank would imply that an automaton induced by
the action of {a, b} on Q0 can be synchronized faster than in rt(A) steps.

If we apply the construction to the Černý automaton Cn
r
, we get the following.

78 J. Kari et al.

Proposition 1. For every n and every r > 1 such that r divides n, there exists
a ternary strongly connected automaton with n states and rank r such that the
length of its shortest word of minimum rank is (n−r)2

r + r − 1.

It is natural to ask for a lower bound on the minimum rank threshold for
binary automata. There are some techniques known to decrease the alphabet size
of an automaton while not changing the length of a shortest synchronizing word
significantly. By carefully applying the construction encoding letters in states
[4,21] one can get a lower bound of n2

3r − 7
3n + 5r for the binary case. Another

technique decreasing alphabet size, namely by encoding binary representation
of letters in states [4, Lemma 3], does not yield any better bounds. Below we
present some different ideas providing stronger lower bounds on mrt(A) in the
class of binary strongly connected automata.

3.2 Lower Bounds for Binary Automata

In the ternary construction above we may represent the actions of words ac and
bc by two new letters, and afterwards remove the original letters a, b, c. This
yields a binary automaton of rank r. More generally, we can do this on the
analogous construction from an automaton with alphabet size k to size k + 1,
obtaining again an automaton with alphabet size k and having rank r.

The detailed construction goes as follows. Given a strongly connected syn-
chronizing automaton A = 〈Q,Σ, δ〉 over any alphabet Σ and with state set
Q = {q1, . . . , qt}, we define the automaton A′ = 〈Q′, Σ, δ′〉 over the same alpha-
bet as follows. As in the ternary construction, the state set is Q′ =

⋃r−1
i=0 Qi

where each Qi contains t states qi,1, . . . , qi,t. The transitions from Q0 to Q1 imi-
tate the transitions of A: for every letter a ∈ Σ we set δ′(q0,j , a) = q1,k if and
only if δ(qj , a) = qk. For the states in Qi with i �= 0 we define the transitions by
just shifting a state to the state with the same index in the next set: for every
a ∈ Σ we set δ′(qi,j , a) = qi+1,j , with the index i + 1 taken modulo p.

Observe that the action of the set of words Σr on the set Qi in A′ induces
the automaton A (up to duplicating its letters). Moreover, the words of length
r − 1 only shift the states of the set Q1 to Q0. Thus, any word synchronizing Q1

is of length at least rt(A)·r over the initial alphabet. Clearly, this automaton has
rank r, and its period is also r because A is synchronizing and thus primitive.
We obtain the following result.

Proposition 2. For every t-state strongly connected synchronizing automaton
A and for every r there exists a tr-state strongly connected automaton A′ over
the same alphabet, with period and rank equal to r, such that mrt(A′) = rt(A) ·r.

Observe that the construction described preserves the property of the
automaton to be strongly connected, circular or Eulerian. Applied to the Černý
automaton this construction yields the following result.

Corollary 1. For every n and every r such that r divides n, there exists an n-
state circular binary automaton of period and rank r with minimum rank thresh-
old (n−r)2

r .

Words of Minimum Rank in Deterministic Finite Automata 79

The Wielandt digraph Wn has n > 1 vertices 0, . . . , n − 1. From each vertex
i > 0 there are two edges to the next vertex i + 1 modulo n, and from vertex 0
there are single edges to vertices 1 and 2. Introduced in [22], and studied in
connection to synchronizing automata in [2], these digraphs have the interesting
property that they admit only one coloring, when automata obtained by renam-
ing letters are considered identical. The reset threshold of this n-state Wielandt
automaton was proved in [2] to be n2 − 3n + 3.

The Hybrid Černý-Road Coloring problem (see [2,7]) asks for the shortest
length of a synchronizing word among all colorings of a fixed primitive digraph
with n vertices. Since Wn has only one coloring, it provides the lower bound
n2 − 3n + 3 on this quantity. We can apply the binary construction of this
section on the Wielandt automaton. The resulting automaton of rank r also
admits only one coloring. Hence we get the following result in the spirit of the
Hybrid Černý-Road Coloring problem, generalizing it to cases r > 1.

Corollary 2. For every n > 1 and every r such that r divides n, there exists
an n-vertex strongly connected digraph D of constant outdegree 2 such that all
colorings of D are circular, have the same period and rank r, and for every
coloring the length of a word of minimum rank is (n−r)2

r − n + 2r.

It is interesting to note that the digraphs D in Corollary 2 are the digraphs
with the largest possible index, described in Theorem 4.3 of [13], after duplicating
some edges to make all outdegrees equal to 2. Recall that the index of a strongly
connected digraph with period r is the smallest k such that any pair of vertices
are connected by a directed path of length k if and only if they are connected
by a path of length k + r. In fact, one can easily show the following relationship
(proof omitted), which also appears in [12] for the primitive case r = 1.

Proposition 3. For a strongly connected n-state automaton A of rank r and
period r the following holds:

mrt(A) ≥ k(A) − n + r,

where k(A) is the index of the underlying digraph of A.

Since the index of D in Corollary 2 was proved in [13] to be (n−r)2

r + r, we
get from Proposition 3 the same lower bound as in Corollary 2.

We finish this section with a family of strongly connected binary automata
that reach the same minimum rank threshold as the ternary automata in Propo-
sition 1. Recall the n-state Černý automaton from Sect. 1. Let r be a number
that divides n. Change in the Černý automaton the transition from state 1 by
letter a to go into state r +1 instead of state 2. After this change, for any states
i and j such that i ≡ j modulo r, also δ(i, x) ≡ δ(j, x) modulo r holds for both
x = a and x = b. This means that states in different residue classes modulo r
cannot be merged, so that the rank of this automaton is at least r. Using the
trick from [2], we introduce a new input letter c that acts as the word ab does.
Now letters c and b define exactly the modified Wielandt automaton leading to

80 J. Kari et al.

Corollary 2 above, so there is a word of rank r with letters c and b. Hence our
automaton has rank r as well.

Since the action of word aa is the same as the action of a, a shortest minimum
rank word w cannot contain factor aa. The word wb has also minimum rank,
and it can be factored into ab’s and b’s. Viewing this as a word over letters c
and b, we see that the number of c’s and b’s must be at least the minimum rank
threshold (n−r)2

r − n + 2r from Corollary 2. Since b is a permutation and since
c merges at most one pair of states, there must be at least n − r letters c used.
Each c counts as two letters over the alphabet {a, b}, so the length of word wb
is at least

(n − r)2

r
− n + 2r + (n − r) =

(n − r)2

r
+ r.

Removing the last b from wb we obtain the following lower bound. Observe that
the bound is exactly the same as in the ternary case in Proposition 1.

Proposition 4. For every n and every r > 1 such that r divides n, there exists
a binary n-state circular automaton A of rank r having mrt(A) = (n−r)2

r +r−1.

3.3 Upper Bound in the Case When the Rank Equals the Period

Obviously, the period of an automaton is a lower bound on its rank. It is inter-
esting to consider the special case of automata where these two values are equal.
For lower bounds, observe that the rank r automata reported in Corollaries 1
and 2 have the same period as the rank. In this section we obtain upper bounds
on the minimum rank threshold from any known upper bounds on the reset
threshold, in the case that the rank equals the period.

For every n, let f(n) denote the maximum of reset thresholds of n-state
synchronizing automata.

Theorem 1. Let A be an automaton of rank r and period r. Then mrt(A) ≤
r2 · f(n

r) + (r − 1).

Proof. Let A = 〈Q,Σ, δ〉. By Lemma 1 there exists a partition of the set Q
into the sets Q0, . . . , Qr−1 such that every transition maps a state in Qi to
a state in Qi+1 (with the index i + 1 taken modulo r). Since the rank of A
equals its period, each of the sets Q0, . . . , Qr−1 is synchronizable (a set is called
synchronizable if there is a word mapping this set to a single state). Assume
without loss of generality that Q0 is the smallest set in the partition. Consider
then the automaton Ar = 〈Q0, Σ

r, δ′〉 induced by the actions of all the words of
length r on Q0. This automaton is synchronizing, and by our assumption there
is a word synchronizing it of length at most f(|Q0|) ≤ f(n

r) over the alphabet
Σr. Over the alphabet Σ this word has length at most r · f(n

r). Then to find a
word of minimum rank it is enough to subsequently map each set Q1, . . . , Qr−1

to Q0 and apply the described word. In total we get a word of minimum rank of
length at most r2 · f(n

r) + (r − 1). ��

Words of Minimum Rank in Deterministic Finite Automata 81

For example, using the unconditional upper bound f(n) ≤ n3−n
6 on the reset

threshold [17] we get that for every n-state automaton of rank r and period r

we have mrt(A) ≤ n(n2−r2)
6r +(r −1), which is roughly r times stronger than the

best known upper bound for the general case [16]. The Černý Conjecture implies
the upper bound of (n − r)2 + (r − 1). Thus, in the case of automata with rank
equal to period the Rank Conjecture is implied by the Černý Conjecture up to
an additive factor of (r − 1). However we conjecture that in this case the upper
bound can be improved to (n−r)2

r + O(n).

4 Eulerian Automata

4.1 The Rank Conjecture

We continue our discussion on the Rank Conjecture proving it for a particular
class of automata, namely the Eulerian automata. Eulerian automata have been
widely studied, in particular, Kari [15] showed that rt(A) ≤ (n − 1)(n − 2) + 1
for any synchronizing Eulerian n-state automaton, thus proving the Černý Con-
jecture for this class of automata. We extend the mentioned result to the case
of arbitrary minimum rank.

Theorem 2. Let A be an n-state Eulerian automaton of rank r. Then A has a
word of rank r of length at most (n − r − 1)(n − r) + 1.

Proof. Let A = 〈Q,Σ, δ〉. Following [15], we consider the set Q, |Q| = n, of
states as an orthonormal basis of Rn with subsets of states corresponding to the
sums of the basis vectors. Thus, a set S ⊆ Q is viewed as a vector

∑
q∈S q.

Every word w ∈ Σ∗ defines a state transition function fw : Q → Q on the
set of states, with fw(q) = δ(q, w). Furthermore, f−1

w (q) = {v | fw(v) = q}.
Since we know the values of f−1

w on all the basis vectors, there is a unique way
to extend it to a linear mapping f−1

w : Rn → R
n. Clearly, for a set S ⊆ Q we

have f−1
w (S) =

∑
q∈S f−1

w (q). Moreover, for a vector x = (x1, . . . , xn) we define
a linear weight function |x| such that |(x1, . . . , xn)| = x1 + . . . + xn. The weight
of a set S ⊆ Q is just its cardinality.

Let Z1 ⊆ R
n be the set of all non-extendable vectors, i.e. such vectors x that

there exists no word w with |f−1
w (x)| �= |x| (all the remaining vectors we call

extendable). Observe that
∑

w∈Σk |f−1
w (S)| = |Σ|k · |S|. Thus, if there exists a

word w of length k such that |f−1
w (S)| �= |S| then there is a word of the same

length extending S (a word v is said to extend S if |f−1
v (S)| > |S|). We will refer

to that as the averaging argument.
Note that Z1 is a linear subspace of Rn of dimension at least r. First we prove

that it is a linear subspace. Indeed, consider a linear combination λ1v1 + . . . +
λkvk of vectors from Z1. Since the weight function is linear, any image of this
combination under f−1

w has the same weight, and thus the combination belongs
to Z1. To bound the dimension of Z1 from below, consider a word w of minimum
rank such that there exists a partition of Q into sets S1, . . . , Sr, such that each

82 J. Kari et al.

Si is a maximal synchronizable set. Such a word exists by Proposition 1 of [15].
The vectors corresponding to S1, . . . , Sr are then non-extendable, and linearly
independent since they have disjoint non-zero coefficients in the standard basis
decomposition. We apply some linear algebra to obtain the following lemma.

Lemma 2. For every extendable vector x there exists a word w of length at most
n − r such that |f−1

w (x)| �= |x|.
Proof. Suppose the contrary: let x be extendable such that the shortest word w
such that |f−1

w (x)| �= |x| has length m > n − r. Note that for any words u, v we
have f−1

uv (x) = f−1
u (f−1

v (x)). Take Z0 to be the orthogonal complement of Z1.
Since the dimension of Z1 is at least r, the dimension of Z0 is at most n − r.
For every i ≤ m we denote xi = f−1

wi
(x) where wi is the suffix of w of length i,

and we write xi = x
(0)
i + x

(1)
i for x

(0)
i ∈ Z0 and x

(1)
i ∈ Z1. Since m is greater

than the dimension of Z0, vectors x
(0)
0 , x

(0)
1 , . . . , x

(0)
m−1 are linearly dependent.

This means that for some k < m the vector x
(0)
k is a linear combination λ0x

(0)
0 +

· · · + λk−1x
(0)
k−1 of vectors before it, with coefficients λi ∈ R. The corresponding

linear combination of vectors xi is λ0x0 + · · · + λk−1xk−1 = xk + x′ for some
x′ ∈ Z1. Let w = uv where v is the suffix of w of length k. Then, f−1

u (xk) =
f−1

u (f−1
v (x)) = f−1

w (x). Moreover, for every i < k we have |f−1
u (xi)| = |xi|.

Indeed, f−1
u (xi) = f−1

u (f−1
wi

(x)) = f−1
uwi

(x) has the same weight as x because uwi

is shorter than w, and of course |xi| = |x|. Also, because x′ is non-extendable,
we have |f−1

u (x′)| = |x′|. Putting all together, using linearity of f−1
u and the

weight function, we obtain |f−1
w (x)| = |x|, a contradiction. ��

By the averaging argument we obtain from Lemma 2 that for any extendable
set S of states there is a word w of length at most n − r such that |f−1

w (S)| ≥
|S| + 1. Now we apply this extension procedure as follows. Start with a one-
state set. Extend it step by step to a maximal synchronizable set (having size
n
r). Then add another state to this maximal synchronizable set and extend this
new set to a union of two disjoint maximal synchronizable sets. Repeat this
procedure of adding a new state and extending the set to a union of several
maximal synchronizable sets until the whole set of states of the automaton is
reached. The extension is possible, since at every step the set S that we have
to extend is a disjoint union of several maximal synchronizable subsets and a
non-maximal synchronizable subset S′. Any word extending S′ extends S, since
f−1

w preserves the weights of all the maximal synchronizable subsets for any word
w (since otherwise by the averaging argument such sets are extendable).

For each step of this algorithm, we have a word of length at most n − r
to extend a set by one element. Each maximal synchronizable set has size n

r ,
and we have to reach r such sets, so the total length of the word is at most
(n − r)(n

r − 1)r = (n − r)2. We can initially choose a one-state set extendable
by a word of length 1, which improves the bound to (n − r)(n − r − 1) + 1. ��

To obtain a lower bound on the minimum rank threshold of Eulerian
automata, recall the construction used to prove the bound of Proposition 1.

Words of Minimum Rank in Deterministic Finite Automata 83

It was mentioned previously that applying it to an Eulerian automaton yields
another Eulerian automaton. Thus, we repeat the same reasoning starting with
a synchronizing n-state Eulerian automaton over alphabet of size 4 having reset
threshold n2−3

2 , for any n > 1 such that n ≡ 1 (mod 4), see [19].

Proposition 5. For every n and every r < n such that n = (4p + 1)r, there
exists an n-state Eulerian automaton A of rank r with mrt(A) = n2−r2

2r − 1.

The standard binarization methods cannot be applied to provide the lower
bounds for binary Eulerian automata. However, we can apply the argument of
Proposition 2 to the n-state binary Eulerian automaton whose reset threshold
is at least n2−3n+4

2 for odd n ≥ 3 [12]. (This was proved for all odd n ≥ 5 in [12]
but the same construction also covers the case n = 3.) The automaton we obtain
is also Eulerian.

Proposition 6. For every n and every r such that r divides n and n/r ≥ 3
is odd, there exists an n-state binary Eulerian automaton A of rank r having
mrt(A) ≥ (n−2r)2+nr

2r .

The multiplicative gap between the lower and the upper bounds consists
intuitively of two parts. The factor of two comes from the gap between the
known bounds on the reset threshold of Eulerian automata, while the factor r
comes from the gap on the minimum rank threshold in general strongly connected
automata that we see in the results in Sect. 3.

4.2 A Corollary for Circular Automata

In this section we provide a simple trick, similar to the idea of [6], which allows
to transfer the results on Eulerian automata to the class of circular automata.
Recall that an automaton is called circular if there is a letter which acts on its
set of states as a cyclic permutation. The Černý Conjecture for this automata
class was proved by Dubuc [11]. Note that the Černý automata are circular and
possess the largest known reset thresholds.

Let us consider an n-state circular automaton A = 〈Q,Σ, δ〉 such that some
letter b ∈ Σ acts as a cyclic permutation on Q. Let us replace each a ∈ Σ by n
letters a0, . . . , an−1, where ai acts on Q the same way as the word abi does in
the original automaton. Let Σ′ be the obtained new alphabet of size n · |Σ|. It is
not hard to prove that the obtained automaton is Eulerian (we omit the proof
because of the space constraints).

Observe that this transformation preserves the synchronization properties of
the initial automaton in the following sense. A word of rank r over Σ is clearly a
word of rank r over Σ′ because Σ ⊂ Σ′. The opposite holds as well since every
word over Σ′ can be rewritten as a word over Σ. It follows that the rank of the
resulting automaton is equal to the rank of the initial one.

Theorem 3. Every n-state circular automaton of rank r < n has a minimum
rank word of length at most (2n − r − 1)(n − r − 1) + 1.

84 J. Kari et al.

Proof. Let A = 〈Q,Σ, δ〉 be an n-state circular automaton with a cyclic per-
mutation letter b. An Eulerian automaton A′ = 〈Q,Σ′, δ′〉 with n states is
constructed as above. Now we show how to use the procedure described in
Theorem 2 to get the upper bound.

Observe that any word over Σ′ can be written as a concatenation of words
over Σ. In other words, any extendable vector s can be extended by words made
of letters in Σ only. Moreover, we can apply Lemma 2 for words over Σ, and get
that the shortest word w ∈ Σ∗ such that |f−1

w (s)| �= |s| has length at most n−r.
Let w = cv where c ∈ Σ and v ∈ Σ∗. Now consider all the words of the form

σv with σ ∈ Σ′. Clearly, w is one of them. Because A′ is Eulerian, we have∑
σ∈Σ′

|f−1
σv (x)| =

∑
σ∈Σ′

|f−1
σ (f−1

v (x))| = |Σ′| · |f−1
v (x)| = |Σ′| · |x|.

Since there exists a word w = cv such that |f−1
w (x)| �= |x|, the above equality

implies that there is u = σv such that |f−1
u (x)| > |x|. Notice that v is a word of

length at most n−r−1 over Σ, and hence u is of length |σ|+|v| ≤ n+(n−r−1) =
2n − r − 1 over Σ.

Thus we showed that every extendable set of states in A′ can be extended
by a word of length at most 2n − r − 1 (over the alphabet Σ). We can now use
the extension procedure described in Theorem 2 (starting from a one-state set
extendable by a word of length 1) and get the upper bound of (2n − r − 1)(n −
r − 1) + 1 on the length of a shortest word of minimum rank in A. ��

4.3 A Road Coloring Algorithm

As proved by Kari [15], every primitive strongly connected Eulerian digraph such
that all its vertices have equal outdegrees has a synchronizing coloring. If the
primitiveness condition is omitted, the period of a digraph is a lower bound on
the rank of any coloring. A coloring of rank equal to period always exists and
can be found in quadratic time [3]. We show that for Eulerian digraphs it can
be found in almost linear time. We use the approach described in Sect. 3 of [15]
and show how to generalize it and turn into an algorithm.

First observe that a permutation coloring (a coloring of rank n) of an Eulerian
digraph with n vertices and constant outdegree k corresponds to a partition of
a regular bipartite graph with n vertices and kn edges into k perfect matchings
(Lemma 1 of [15]), and thus can be computed in O(kn log k) time [10].

The construction of a permutation coloring is used as a subroutine in order
to construct a coloring with a stable pair of states. A pair of states p, q of an
automaton is called stable if application of any word to this pair results in a
synchronizable pair. For a permutation coloring A = 〈Q,Σ, δ〉 of a digraph take
a state x ∈ Q such that y = δ(x, a) �= δ(x, b) = z for some letters a, b ∈ Σ. Note
that in a strongly connected digraph such state always exists, otherwise the
digraph consists of one cycle and we have nothing to prove. We swap the letters
coloring the edges x → y and x → z. As proved in Theorem 1 of [15], the pair
y, z is then stable in the resulting automaton A′ and thus defines a congruence

Words of Minimum Rank in Deterministic Finite Automata 85

relation (that is, an equivalence relation invariant under application of any word)
≡ on its state set. The quotient automaton A′/ ≡ is then obtained by merging
all the states of each congruence class. If A′ is Eulerian, so is A′/ ≡ [15].

Lemma 3. Let A′ be the Eulerian automaton, and y, z be the stable pair with
corresponding congruence relation ≡ obtained as described above. Then the quo-
tient automaton A′/ ≡ has at most half as many states as A′.

Proof. We compute A′/ ≡ following the Merge procedure described in [3]. We
start by merging the congruent pair y, z and then propagate this equivalence to
the images of y, z under all the letters in Σ until we get a deterministic automa-
ton. Observe that since we start with a permutation coloring, each state that has
not yet been merged with some other state has all incoming edges of different
colors. Thus, if there is such a state in the pair to be merged, the second state in
this pair is different from it, and thus further calls of merging their successor will
be performed. Moreover, assume that some state is not merged with any state
during this procedure. Then there is such a state p having a transition going
to it from some already merged state q, otherwise the digraph is not strongly
connected. This means that during the first merging for q, merging for p has to
be called, which is a contradiction. Hence, each state is in a congruence class
of cardinality at least 2, and after taking the quotient, the number of states of
A′/ ≡ is at most half of the number of states A′. ��
Theorem 4. Given a strongly connected Eulerian digraph of period r with n
vertices and outdegree k, a coloring of rank r of this digraph can be found in
O((k log k + α(n)) · n) time, where α(·) is the inverse Ackermann function.

Proof. The algorithm is recursive. At each iteration we start by finding a color-
ing with a stable pair as described above. Then we proceed by computing the
quotient automaton as in Lemma 3. The automaton we obtain is Eulerian [15],
moreover, it has the same period since no pair of states from different sets in a
p-partition can be stable (since no such pair can be synchronized). If the automa-
ton has rank r, we stop, otherwise we call the same algorithm for coloring it and
then recover the final coloring by taking for every vertex the same permutation
of the colors of outgoing edges as used for the equivalence class of this vertex
(see Theorem 1 of [15]).

To analyze the time complexity, we estimate the complexity of one recursion
step. Let � be the size of the automaton at some iteration. As it was mentioned
before, it takes O(k� log k) time to find a permutation coloring. The Merge pro-
cedure requires O(k�) time for traversing and O(�α(�)) time for merging the
sets. Moreover, recovering the coloring from the smaller automaton can be done
in O(k�) time by storing the quotient automaton (together with the correspon-
dence between the states and their equivalence classes) at each iteration. Hence,
the time complexity of one iteration is O(�(k log k + α(�))).

Now we can sum up the time complexity of all recursion steps. Lemma 3
implies that the number of states of each next automaton in the recursion call is
decreased at least twice. Thus, the total time complexity is O(n(k log k+α(n))),
where n is the number of vertices of the initial digraph. ��

86 J. Kari et al.

References

1. Almeida, J., Steinberg, B.: Matrix Mortality and the Černý-Pin Conjecture. In:
Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 67–80. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02737-6 5

2. Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and
digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
55–65. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2 7

3. Béal, M., Perrin, D.: A quadratic algorithm for road coloring. Discrete Appl. Math.
169, 15–29 (2014). https://doi.org/10.1016/j.dam.2013.12.002

4. Berlinkov, M.V.: On two algorithmic problems about synchronizing automata. In:
Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 61–67. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09698-8 6

5. Berman, A., Plemmons, R.: Nonnegative Matrices in the Mathematical Sciences.
Classics in Applied Mathematics. Society for Industrial and Applied Mathematics,
Philadelphia (1994)

6. Carpi, A., D’Alessandro, F.: Strongly transitive automata and the černý conjecture.
Acta Informatica 46(8), 591–607 (2009)

7. Carpi, A., D’Alessandro, F.: On the hybrid Černý-Road coloring problem and
Hamiltonian paths. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS,
vol. 6224, pp. 124–135. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14455-4 13

8. Černý, J., Pirická, A., Rosenauerova, B.: On directable automata. Kybernetika
7(4), 289–298 (1971)

9. Černý, J.: Pozńamka k homoǵennym eksperimentom s konečńymi automatami,
Matematicko-fyzikalny Casopis Slovensk. Akad. Vied 14(3), 208–216 (1964)

10. Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in O(E logD)
time. Combinatorica 21(1), 5–12 (2001)

11. Dubuc, L.: Sur les automates circulaires et la conjecture de černý. RAIRO - Theor.
Inform. Appl. 32(1–3), 21–34 (1998)

12. Gusev, V.V.: Lower bounds for the length of reset words in eulerian automata.
Int. J. Found. Comput. Sci. 24(2), 251–262 (2013). https://doi.org/10.1142/
S0129054113400108

13. Heap, B.R., Lynn, M.S.: The structure of powers of nonnegative matrices: I. The
index of convergence. SIAM J. Appl. Math. 14(3), 610–639 (1966)

14. Kari, J.: A counter example to a conjecture concerning synchronizing words in
finite automata. Bull. EATCS 73, 146 (2001)

15. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theor. Comput. Sci.
295(1), 223–232 (2003)

16. Klyachko, A.A., Rystsov, I.K., Spivak, M.A.: In extremal combinatorial problem
associated with the bound on the length of a synchronizing word in an automaton.
Cybernetics 23(2), 165–171 (1987)

17. Pin, J.: On two combinatorial problems arising from automata theory. In: Berge, C.,
Bresson, D., Camion, P., Maurras, J., Sterboul, F. (eds.) Combinatorial Mathemat-
ics, North-Holland Mathematics Studies, vol. 75, pp. 535–548. North-Holland, Ams-
terdam (1983)

18. Pin, J.E.: Le problème de la synchronisation et la conjecture de Cerný. In: Luca,
A.D. (ed.) Non-commutative structures in algebra and geometric combinatorics,
vol. 109, pp. 37–48. Quaderni de la Ricerca Scientifica, CNR (Consiglio nazionale
delle ricerche, Italy) (1981)

https://doi.org/10.1007/978-3-642-02737-6_5
https://doi.org/10.1007/978-3-642-15155-2_7
https://doi.org/10.1016/j.dam.2013.12.002
https://doi.org/10.1007/978-3-319-09698-8_6
https://doi.org/10.1007/978-3-642-14455-4_13
https://doi.org/10.1007/978-3-642-14455-4_13
https://doi.org/10.1142/S0129054113400108
https://doi.org/10.1142/S0129054113400108

Words of Minimum Rank in Deterministic Finite Automata 87

19. Szyku�la, M., Vorel, V.: An extremal series of Eulerian synchronizing automata. In:
Brlek, S., Reutenauer, C. (eds.) DLT 2016. LNCS, vol. 9840, pp. 380–392. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53132-7 31

20. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In:
Mart́ın-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp.
11–27. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4 4

21. Vorel, V.: Subset synchronization and careful synchronization of binary finite
automata. Int. J. Found. Comput. Sci. 27(5), 557–577 (2016). https://doi.org/
10.1142/S0129054116500167

22. Wielandt, H.: Unzerlegbare, nicht negative matrizen. Mathematische Zeitschrift
52(1), 642–648 (1950)

https://doi.org/10.1007/978-3-662-53132-7_31
https://doi.org/10.1007/978-3-540-88282-4_4
https://doi.org/10.1142/S0129054116500167
https://doi.org/10.1142/S0129054116500167

On the Length of Shortest Strings
Accepted by Two-Way Finite Automata

Egor Dobronravov, Nikita Dobronravov, and Alexander Okhotin(B)

St. Petersburg State University, 7/9 Universitetskaya nab.,
Saint Petersburg 199034, Russia

yegordobronravov@mail.ru, dobronravov1999@mail.ru,
alexander.okhotin@spbu.ru

Abstract. Given a two-way finite automaton recognizing a non-empty
language, consider the length of the shortest string it accepts, and, for
each n � 1, let f(n) be the maximum of these lengths over all n-state
automata. It is proved that for n-state two-way finite automata, whether
deterministic or nondeterministic, this number is at least Ω(8n/5) and
less than

(
2n
n+1

)
, with the lower bound reached over an alphabet of

size Θ(n). Furthermore, for deterministic automata and for a fixed
alphabet of size m � 1, the length of the shortest string is at least

e(1+o(1))
√

mn(logn−logm).

1 Introduction

For a one-way nondeterministic finite automaton (1NFA) with n states recog-
nizing a non-empty language, the length of the shortest string it accepts is the
length of the shortest path to an accepting state in the transition graph, and is
accordingly at most n − 1. For other kinds of automata, the question of finding
the exact length of the shortest string in the worst case is much more involved,
and has been a subject of some research. Ellul et al. [4] proved that the greatest
length of the shortest string not accepted by an n-state 1NFA is exponential
in n. The length of the shortest string in the intersection of an m-state and an
n-state deterministic automata (1DFA), as shown by Alpoge et al. [1], can be
up to mn−1 for relatively prime m,n. Chistikov et al. [2] investigated the length
of the shortest string for counter automata. For the intersection of a language
defined by a formal grammar of a given size and a regular language, the length
of a shortest string was estimated by Pierre [11].

This paper investigates the length of a shortest string accepted by a two-way
finite automaton. A simple upper bound on this length follows from the work of
Kapoutsis [7], who proved that every n-state 2NFA can be simulated by an 1NFA
with

(
2n

n+1

)
states; this binomial coefficient is of the order 1√

πn
4n. Therefore, the

shortest string accepted by an n-state 2NFA is of length at most
(

2n
n+1

) − 1.

Supported by Russian Science Foundation, project 18-11-00100.

c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 88–99, 2019.
https://doi.org/10.1007/978-3-030-24886-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_6&domain=pdf
http://orcid.org/0000-0002-1615-2725
https://doi.org/10.1007/978-3-030-24886-4_6

On the Length of Shortest Strings Accepted by Two-Way Nite Automata 89

Kapoutsis [7] also proved that this transformation of two-way automata to
one-way automata is optimal in the worst case, that is, for every n, there is a
language Ln recognized by an n-state 2DFA, but by no 1NFA with fewer than(

2n
n+1

)
states. However, since all strings in this language are of length 4, this

example does not imply any lower bound on the length of the shortest string.
In this paper, the greatest length of the shortest string is determined up to a

constant factor in the exponent, as 2Θ(n). First, there is a simple construction of
an n-state 2DFA with a shortest string of length ca. 2n/2. This construction is
then improved to obtain n-state 2DFA with shortest strings of length ca. 8n/5. In
both cases, the size of the alphabet is exponential in n. For a fixed alphabet of size
m, a series of n-state automata with shortest strings of length e(1+o(1))

√
mn ln n

m

is constructed.

2 Two-Way Finite Automata

Definition 1. A nondeterministic two-way finite automaton (2NFA) is a quin-
tuple A = (Σ,Q, q0, δ, F), in which:

– Σ is a finite alphabet, which is extended with a left end-marker � /∈ Σ, and a
right end-marker � /∈ Σ;

– Q is a finite set of states;
– Q0 ∈ Q is the set of initial states;
– δ : Q × (Σ ∪ {�,�}) → 2Q×{−1,+1} is the transition function, which lists

possible transitions in a certain state while observing a certain tape symbol;
– F ⊆ Q is the set of accepting states, effective at the right end-marker �.

Given an input string w ∈ Σ∗, a 2NFA operates on a read-only tape con-
taining this string enclosed within end-markers (�w�). A 2NFA begins its com-
putation in any initial state with the head observing the left end-marker (�). At
every step of the computation, when A is in a state q ∈ Q and observes a square
of the tape containing a symbol a ∈ Σ ∪ {�,�}, the transition function specifies
a set δ(q, a) ⊆ Q × {−1,+1} of all the allowed actions, each being a pair of the
next state and the direction of head’s motion. If δ(q, a) contains multiple ele-
ments, then multiple continuations are possible, and, accordingly, a 2NFA may
have multiple computations on the same input string. If the automaton eventu-
ally reaches an accepting state while at the right end-marker (�), then this is an
accepting computation.

The set of strings, on which there is at least one accepting computation, is
the language recognized by the 2NFA, denoted by L(A).

Other types of finite automata are obtained by restricting 2NFA. An automa-
ton is deterministic (2DFA), if there is at most one possible action in each con-
figuration, that is, if |δ(q, a)| � 1 for all q and a.

A two-way automaton (2DFA for 2NFA) is called sweeping [12], if it can
change its direction of motion only at the end-markers, and thus operates in
alternating left-to-right sweeps and right-to-left sweeps. More precisely, the set of

90 E. Dobronravov et al.

states Q is split into two disjoint subsets of right-bound states Q+1 and left-bound
states Q−1, so that all transitions in Qd, except the transition on end-markers,
move the head in the direction d.

For a less restrictive notion of a direction-determinate automaton [9], it is
only required that every state q ∈ Q can be entered by transitions from a single
direction d(q) ∈ {−1,+1}. Every sweeping automaton is direction-determinate,
but not vice versa.

An automaton is one-way (1NFA or 1NFA), if all its transitions move its head
to the right, so that the automaton makes a single left-to-right pass, accepting
or rejecting in the end. In one-way automata, the end-markers are of no use and
are usually omitted from the definition.

3 Upper Bound

An upper bound on the length of a shortest string accepted by a two-way
finite automaton follows from the known transformation of two-way automata
to 1NFA, which is optimal for alphabets of unbounded size.

Theorem A (Kapoutsis [7]). For every n-state 2NFA over an alphabet Σ,
there exists a 1NFA with

(
2n

n+1

)
states, which recognizes the same language. Con-

versely, for every n, there is such an alphabet Σn of size Θ(nn), and such a
language Ln ⊆ Σ∗

n recognized by an n-state 2DFA, that every 1NFA recognizing
Ln must have at least

(
2n

n+1

)
states.

Taking into account that the length of a shortest string accepted by a k-state
1NFA is at most k − 1, this has the following immediate consequence.

Corollary 1. For every n-state 2NFA, the length of the shortest string it accepts
is at most

(
2n

n+1

) − 1.

For direction-determinate automata, the method of Kapoutsis [7] can be
adapted to produce fewer states. As proved by Geffert and Okhotin [6], the
following transformation is optimal for alphabets with three or more symbols.

Theorem B (Geffert and Okhotin [6]). For every n-state direction-
determinate 2NFA over an alphabet Σ, there is a 1NFA with

(
n

�n/2�
)

states that
recognizes the same language. Conversely, for every n, there exists a language
Ln over a fixed 3-symbol alphabet, recognized by an n-state sweeping 2DFA, with
the property that every 1NFA recognizing Ln has at least

(
n

�n/2�
)

states.

Corollary 2. The length of the shortest string accepted by an n-state direction-
determinate 2NFA is at most

(
n

�n/2�
)
.

Using Stirling’s approximation, these binomial coefficients are estimated as
(

2n
n+1

)
= (1 + o(1)) 1√

πn
4n and as

(
n

�n/2�
)

= (1 + o(1))
√

2
πn2n, respectively.

This upper bound is the same for 2NFA and for 2DFA. In fact, as indicated
by the following simple result, the length of shortest strings for 2NFA is the
same as for 2DFA with the same number of states. However, there may still be
some differences in the size of the alphabet necessary to achieve that bound.

On the Length of Shortest Strings Accepted by Two-Way Nite Automata 91

Lemma 1. For every n-state 2NFA (sweeping 2NFA) over an alphabet Σ, there
exists an n-state 2DFA (sweeping 2DFA, respectively) over some alphabet Γ ,
which has the same length of the shortest accepted string. The number of symbols
in Γ is at most (2n)n times the size of Σ.

Proof. For every symbol a ∈ Σ, consider the 2NFA’s transitions by that symbol.
At each of the n states, there can be up to 2n possible transitions. For every
choice of these transitions, let Γ contain a new symbol, which is a marked with
that choice. The 2DFA’s transitions by the marked symbols are defined to act
deterministically according to that choice.

Then, for every string w accepted by the 2NFA, the new 2DFA accepts some
string w′ of the same length, with each symbol marked with the choices made by
the 2NFA on the corresponding symbol of w. Conversely, for each string accepted
by the 2DFA, the original 2NFA accepts the same string without markings. 	

In view of this observation, the rest of this paper concentrates on the case of
deterministic two-way automata.

4 Simple Lower Bound

The following two-way automata have long shortest accepted strings.

Lemma 2. For every odd number m � 1, there exists a 2m-state sweeping
2DFA, defined over an m-symbol alphabet, which recognizes a singleton language
{w}, with |w| = 2m − 1.

Proof. Let the alphabet be Σ = {a1, . . . , am}. The automaton shall make m
passes over the string. At each i-th pass, with i ∈ {1, . . . ,m}, the automaton
marks whether it has encountered any symbol ai since the last symbol with a
number i + 1 or greater. When a symbol with a number i + 1 or greater is read,
the automaton makes sure that it encountered exactly one ai since the previous
such symbol, and resets the mark. The same check is done in the end of each
pass, upon seeing one of the end-markers.

The states are of the form q
(i)
j , with i ∈ {1, . . . , m} and j ∈ {0, 1}, which

indicates making the i-th pass, having seen (j = 1) or not seen (j = 0) any
symbol ai.

Q = { q
(i)
j | i ∈ {1, . . . , m}, j ∈ {0, 1} }

The initial state is q
(1)
0 , in which the automaton begins the first pass.

δ(q(1)0 ,�) = (q(1)0 ,+1)

For each i-th pass, let di ∈ {+1,−1} be the direction of this pass, with di = +1
for odd i, and di = −1 for even i. The transitions at the i-th pass set the mark
upon seeing the corresponding symbol ai.

92 E. Dobronravov et al.

Fig. 1. A 6-state 2DFA with a shortest string of length 23 − 1 = 7, constructed as in
Lemma 2, with m = 3.

δ(q(i)0 , ai) = (q(i)1 , di), for i ∈ {1, . . . , m},

For any of the symbols ai+1, . . . , am, the mark of having seen ai is checked and
then reset to false.

δ(q(i)1 , at) = (q(i)0 , di), for i ∈ {1, . . . ,m}
All other input symbols are ignored, that is, the automaton passes them without
changing its state.

δ(q(i)j , at) = (q(i)j , di), for i ∈ {1, . . . , m}, j ∈ {0, 1}, t ∈ {1, . . . , i − 1}
On each end-marker, the mark of having seen ai is again checked, and then the
automaton switches from the i-th pass to the (i + 1)-th.

δ(q(i)1 ,�) = (q(i+1)
0 ,−1), for all odd i < m

δ(q(i)1 ,�) = (q(i+1)
0 ,−1), for all even i < m

The last pass leads the automaton to the right end-marker (�), where it accepts
in the state q

(m)
1 . These transitions are illustrated in Fig. 1 for m = 3, along with

the shortest accepted string of length 7.
Actually, the automaton always accepts a unique string. The following strings

w0, w1, . . . , wm are defined, with w3 illustrated in Fig. 1(right).

w0 = ε

wi = wi−1aiwi−1 (1 � i � m)

The length of each wi is 2i − 1, and one can verify that the last string wm is
accepted by tracing the automaton’s computation. The goal is now to prove that
wm is the unique accepted string.

On the Length of Shortest Strings Accepted by Two-Way Nite Automata 93

Claim. Let w be any string accepted by the automaton, let i ∈ {0, 1, . . . ,m},
and assume that the tape �w� has a substring cu$, where c ∈ {�, ai+1, . . . , am},
$ ∈ {�, ai+1, . . . , am} and u ∈ {a1, . . . , ai}∗. Then, u = wi.

The claim is proved by induction on i, from 0 to m.
The base case i = 0 is trivial: the string u is defined over an empty alphabet,

and therefore must be ε.
For the induction step for i, consider the i-th pass in the automaton’s com-

putation, as it passes through the substring cu$, with the direction of traversal
determined by the parity of i. As it enters the substring u from one side, the state
is reset to q

(i)
0 , and the automaton must emerge on the other side in the state

q
(i)
1 . For this to happen, u must contain exactly one instance of ai, and there-

fore, u = u0aiu1, for some substrings u0, u1 ∈ {a1, . . . , ai−1}∗. By the induction
hypothesis for the substrings u0 and for u1, which are delimited by appropriate
symbols, both are equal to wi−1. Therefore, u = wi−1aiwi−1 = wi.

For i = m, the above claim asserts that every accepted string must be wm.
	

For each number n, Lemma 2 gives an n-state 2DFA with the shortest
accepted string of length 2�n

2 � ≈ 1.414n. Together with the upper bound
(

2n
n+1

)−1
given in Corollary 1, this shows that the maximal length of the shortest string
for n-state 2DFA and 2NFA is between (

√
2)n and 4n. The question is, what is

the precise base?
An easy improvement to this construction is given by counting to 3 rather

than to 2; then, the shortest string is of length 3�n−1
3 � ≈ 1.442n. A construction

that further improves this lower bound is presented in the next section.

5 Improved Lower Bound

A proposed improvement to the lower bound in Lemma 2 is based on the fol-
lowing example of an automaton with a shortest string of length 7, which has
as few as 5 states, cf. 6 states in the automaton provided by Lemma 2.

ba c fd e g
q0
q1
q2
q3
q4

Fig. 2. A 5-state 2DFA with a shortest string of length 7, presented in Example 1.

94 E. Dobronravov et al.

Example 1. Let A be a 2DFA over the alphabet Σ = {a, b, c, d, e, f, g}, with the
states Q = {q0, q1, q2, q3, q4}, where q0 is initial and q4 is accepting, and with the
following transitions: δ(q0,�) = (q0,+1), δ(q0, a) = (q0,+1), δ(q1, a) = (q2,+1),
δ(q0, b) = (q1,−1), δ(q2, b) = (q2,+1), δ(q1, c) = (q3,+1), δ(q2, c) = (q2,+1),
δ(q2, d) = (q1,−1), δ(q3, d) = (q3,+1), δ(q1, e) = (q4,+1), δ(q3, e) = (q3,+1),
δ(q1, f) = (q4,+1), δ(q3, f) = (q1,−1), δ(q4, f) = (q2,+1), δ(q2, g) = (q1,−1),
δ(q4, g) = (q4,+1). Then, A is direction-determinate, with d(q1) = −1 and
d(q) = +1 in all other states.

The shortest string accepted by A is w = abcdef g, as illustrated in Fig. 2. To
see that w is indeed the shortest string accepted by A, it is sufficient to transform
this automaton to the minimal equivalent partial 1DFA, which is presented in
Fig. 3. The shortest string is clearly visible in the figure.

a

a

b

b c

d

d e

f

g
c
b

e
d

g

fc
b

Fig. 3. The minimal 1DFA recognizing the same language as the 2DFA in Fig. 2.

The following lemma iteratively applies this example to construct arbitrar-
ily large direction-determinate 2DFA with shortest accepted strings of length
greater than in Lemma 2.

Lemma 3. Let A = (Σ,Q, q0, δ, F) be a k-state direction-determinate 2DFA
over some alphabet Σ, in which, for every state q ∈ Q, at most one of the
following conditions may hold: (i) δ(q0,�) = q; (ii) q ∈ F ; (iii) δ(q,�) is defined
and q �= q0; (iv) δ(q,�) is defined. Let � − 1 be the length of the shortest string
accepted by A. Then, for every odd number m � 3, there exists a km-state
direction-determinate 2DFA Bm, defined over an alphabet of size m · |Σ|, which
has the shortest accepted string of length �m − 1.

The construction in Lemma 3 actually generalizes that of Lemma 2, and
before presenting it in the general case, it is useful to see how the earlier given
construction fits the statement of Lemma 3. Let the base automaton A be a
2-state partial 1DFA recognizing the language {a} over a one-symbol alphabet
Σ = {a}. Then, during each i-th pass, the automaton in Lemma 2 simulates the
base 1DFA on the symbols ai, ignoring any symbols {a1, . . . , ai−1} encountered.
A separate instance of the base 1DFA is executed for each block delimited by
two symbols in {ai+1, . . . , am,�,�}.

It remains to extend the same construction to an arbitrary base automaton.

Proof. Let A be the given k-state direction-determinate 2DFA over an alphabet
Σ. Let Q = Q+1 ∪ Q−1 be A’s set of states, where the states in each Qd are

On the Length of Shortest Strings Accepted by Two-Way Nite Automata 95

enterable only in the direction d. For q ∈ Qd, denote by d(q) = d the direction
in which q is enterable. Let F ⊆ Q be the set of accepting states of A, effective
at the right end-marker (�).

The alphabet Ω of the new 2DFA B consists of symbols of the form a(i),
where a ∈ Σ is an input symbol of A, and i ∈ {1, . . . , m}.

Σi = { a(i) | a ∈ Σ } (1 � i � m)

Ω =
m⋃

i=1

Σi

The new automaton’s computation is organized into m passes. At each i-th pass,
with i ∈ {1, . . . , m}, the automaton B interprets its tape as �u0#1u1#2 . . . #zuz�,
where the separators #1, . . . ,#z are any symbols of the form a(j), with j > i, and
the substrings u0, . . . , uz are defined over the alphabet Σ1∪. . .∪Σi. The substrings
are processed one by one, from left to right for odd i, and from right to left for even i.
For each string uj , the automaton B simulates the computation of A on that string
(if i is odd) or on its reverse (if i is even), taking into account only symbols a(i),
with a ∈ Σ. All other symbols a(j), with j < i and a ∈ Σ, are ignored by passing
over them without changing the state or the direction; this is possible, because A
is direction-determinate.

Each separator $i acts both as a right delimiter for ui−1 and as a left delimiter
for ui. Conditions (i–iv) ensure that whenever B visits such a separator, it can
always tell whether it is currently simulating a computation of A on ui−1 or on ui.

The states of B are of the form q(i), which means simulating A in a state
q ∈ Q at the i-th pass.

Q = { q(i) | q ∈ Q, i ∈ {1, . . . , m} }
At odd-numbered passes, the substrings u0, . . . , uz are processed from left to
right, and from right to left at even-numbered passes. Let d(i) be the general
direction of traversal at the i-th pass, defined by d(i) = +1 for odd i and d(i) =
−1 for even i. The automaton B shall be direction-determinate with d(q(i)) =
d(q) · d(i).

Let q0 be the initial state of A, in which it makes the initial transition
δ(q0,�) = r. Then, the initial state of B is q

(1)
0 , with the following initial transi-

tion.

δ′(q(1)0 ,�) = (r(1),+1)

At every i-th pass, with i ∈ {1, . . . , m}, each A’s transition δ(q, a) = (r, d(r)),
with a ∈ Σ and q, r ∈ Q, is implemented by the following transition in B.

δ′(q(i), a(i)) = (r(i), d(r) · d(i))

Note that A’s direction “+1” becomes “the direction of the i-th pass”, whereas
A’s direction “−1” now goes in the opposite direction to the i-th pass’ direction.

96 E. Dobronravov et al.

Each lesser symbol a(j), with j < i and a ∈ Σ, is ignored by continuing in the
same direction. This is where the direction-determinacy of A becomes essential.

δ′(q(i), a(j)) = (q(i), d(q) · d(i)), where q ∈ Q, j < i, a ∈ Σ

Next, let ci and $i be the end-markers at which the i-th pass begins and ends,
respectively (ci = � and $i = � for i odd, and vice versa for i even). For each
A’s transition δ(q,�) = (r,−1) turning at the right end-marker, with d(q) = +1
and d(r) = −1, the new automaton executes the same turn on any separator
symbols.

δ′(q(i), s) = (r(i),−d(i)), for s ∈ {$i} ∪ Σi+1 ∪ . . . ∪ Σm

Each turn at the left end-marker, δ(q,�) = (r,+1), with q �= q0, d(q) = −1 and
d(r) = +1, is implemented similarly.

δ′(q(i), s) = (r(i), d(i)), for s ∈ {ci} ∪ Σi+1 ∪ . . . ∪ Σm

When A is about to accept at its right end-marker (�) in a state q ∈ F , the
simulating automaton B proceeds through a separator symbol to the next block,
implementing the initial transition δ(q0,�) = r for the next block without actu-
ally entering q0.

δ′(q(i), s) = (r(i), d(i)), for s ∈ Σi+1 ∪ . . . ∪ Σm

At the end of the i-th pass, when A’s accepting state q ∈ F is reached while
at the appropriate end-marker, B proceeds to the next pass by simulating the
transition δ(q0,�) = r (as long as i is less than m).

δ′(q(i), $i) = (r(i+1), d(i + 1))

If that happens for i = m, the automaton B accepts instead.
Since the B proceeds to the next pass only at the end-markers, in order to

accept a string, it needs to make m−1
2 left-to-right passes and m+1

2 right-to-left
passes over the string, with each i-th pass made in the states from Qi. The
moment when the automaton enters any state from Qi+1, it is said to have
completed the i-th pass; the m-th pass is completed upon acceptance.

For every i ∈ {1, . . . , m}, let hi : Ω∗ → Σ∗ be a homomorphism defined by
hi(ai) = a and hi(aj) = ε for j �= i: this is a projection to Σi.

Claim 1. Let w ∈ Ω∗ be any string, let i0 ∈ {0, . . . , m}. Then, B completes the
i0-th pass in its computation on w if and only if, for each i ∈ {1, 2, . . . , i0}, for
the partition w = u0#1u1#2 . . . #kuk, with u0, . . . , uk ∈ (Σ1 ∪ . . . ∪ Σi)∗ and
#1, . . . ,#k ∈ Σi+1 ∪ . . . ∪ Σm, each string hi(uj) (the projection of uj to Σi) is
in L(A) if i is odd, and in L(A)R if i is even.

On the Length of Shortest Strings Accepted by Two-Way Nite Automata 97

The proof is by induction on i. For every next i-th pass, with i odd, it is proved
that B first simulates the computation of A on u0; then, upon acceptance, on
u1; and so on until uk. Each transition of A is simulated by a series of steps of B:
first implementing the original transition, and then skipping any intermediate
symbols in Σ1∪ . . .∪Σi−1. A direct correspondence between these computations
is established. The details of the proof are omitted due to space constraints.

It follows that B completes the last m-th pass if and only if the condition in
Claim 1 is satisfied for all i.

With Claim 1 established, the language recognized by B can be described by
the following formulae.

L0 = {ε}
Li =

⋃

a1...az∈L(A)

Li−1a
(i)
1 Li−1a

(i)
2 Li−1 . . . a(i)

z Li−1, for odd i > 1

Li =
⋃

a1...az∈L(A)

Li−1a
(i)
z Li−1a

(i)
z−1Li−1 . . . a

(i)
1 Li−1, for even i > 1

L(B) = Lm

Claim 2. A string w is accepted by B if and only if, for all i ∈ {0, 1, . . . ,m}
and for every substring cv$ of the tape �w�, with c ∈ {�} ∪ Σi+1 ∪ . . . ∪ Σm,
$ ∈ {�} ∪ Σi+1 ∪ . . . ∪ Σm and v ∈ (Σ1 ∪ . . . ∪ Σi)∗, the string v is in Li.

First assume that B accepts w. The condition is proved by induction on i.
The base case, i = 0, is trivial: the string v is defined over an empty alphabet
and hence must be ε, and ε is in L0.

For the induction step, let i be odd and let cv$ be a substring of the given
form, with v ∈ (Σ1 ∪ . . . ∪ Σi)∗. Consider all occurrences of symbols from Σi in
v, so that v = v0a

(i)
1 v1a

(i)
2 v2 . . . a

(i)
z vz, with v0, . . . , vz ∈ (Σ1 ∪ . . . ∪ Σi−1)∗.

By the induction hypothesis for each substring vj , it belongs to Li−1. On
the other hand, since B completes its i-th pass, by Claim 1, the projection
h(v) = a1 . . . az is accepted by A. This proves that v belongs to the language
Li−1a

(i)
1 Li−1 . . . a

(i)
z Li−1 for some string a1 . . . az ∈ L(A), confirming that v is

in Li. The proof for the case of even i is symmetric.
Conversely, let the condition in Claim 2 hold; the goal is to prove that the

computation of B on w successfully completes all its m passes. For every subse-
quent i-th pass, let w = u0#1u1#2 . . . #kuk, where u0, . . . , uk ∈ (Σ1 ∪ . . .∪Σi)∗

and #1, . . . ,#k ∈ Σi+1 ∪ . . . ∪ Σm. The condition asserts that each string uj is
in Li. Since the hi-projection of every string in Li is a string accepted by A, it is
known that hi(u0), . . . , hi(uk) ∈ L(A). Then, by Claim 1, B completes the i-th
pass. The case of even i is again symmetric. This completes the proof of Claim 2.

Since the length of the shortest string in each Li is �i − 1, the shortest string
accepted by B is of length �m − 1, as claimed. 	

Substituting the 5-state automaton from Example 1 into Lemma 3 yields the
following lower bound.

98 E. Dobronravov et al.

Theorem 1. For every n � 1, there is an n-state direction-determinate 2DFA
over an alphabet of size 7
n

5 �, with the shortest accepted string of length 8�n
5 �−1.

6 Small Alphabets

The constructions in Lemmata 2 and 3 depend on using an alphabet of linear
size. As it is often observed in the state complexity research, the assumption
that the alphabet grows with the number of states is not always realistic, and
the case of a fixed alphabet at least deserves a separate investigation.

For a unary alphabet, the expressive power of two-way automata is known
quite well [3,5,8], and the maximal length of a shortest string can be determined
precisely.

The ability of 2DFAs to count in unary notation is described by the following
function, known as Landau’s function [10].

g(n) = max{ lcm(p1, . . . , pk) | k � 1, p1 + . . . + pk � n } = e(1+o(1))
√

n lnn

The value g(n) is known as the maximum order of an element in the group of
permutations of n objects.

Theorem C. For every n � 2, there is an n-state sweeping 2DFA recognizing
the language ag(n−1)−1(ag(n−1))∗.

Using this sweeping 2DFA as the base automaton in Lemma 3 leads to the
following consequence.

Corollary 3. Let Σ be a fixed m-symbol alphabet, with m � 1. Then, for
every number n � 1, there exists an n-state 2DFA over the alphabet Σ, with
the shortest accepted string of length g

(� n
m� − 1

)m − 1, which is of the order

e(1+o(1))
√

mn ln n
m .

An interesting question is whether an exponential lower bound of the form
2Ω(n) can be obtained using a fixed alphabet.

7 On Improving the Estimation

The longest length of a shortest string in an n-state 2DFA is now known to be
between 1.515n and 4n. The question is, what is the exact value?

An obvious way of improving the lower bound is to find a better base automa-
ton for Lemma 3 than the one in Example 1. Any k-state direction-determinate
automaton with the shortest accepting string of length � − 1 would improve
over the existing construction if k

√
� > 5

√
8. On the other hand, the method of

Lemma 3 might have its limitations, and some entirely new methods might yield
better lower bounds.

Turning to the upper bounds, perhaps the bounds in Corollaries 1 and 2 could
be improved by analyzing the constructions in the corresponding Theorems A
and B. One could also try improving the upper bound for small alphabets by
investigating two-way transformation semigroups of Kunc and Okhotin [8].

On the Length of Shortest Strings Accepted by Two-Way Nite Automata 99

References

1. Alpoge, L., Ang, T., Schaeffer, L., Shallit, J.: Decidability and shortest strings in
formal languages. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds.) DCFS 2011.
LNCS, vol. 6808, pp. 55–67. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22600-7 5

2. Chistikov, D., Czerwinski, W., Hofman, P., Pilipczuk, M., Wehar, M.: Shortest
paths in one-counter systems. In: Jacobs, B., Löding, C. (eds.) FoSSaCS 2016.
LNCS, vol. 9634. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49630-5 27

3. Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47,
pp. 149–158 (1986). https://doi.org/10.1016/0304-3975(86)90142-8. Errata: vol.
302, pp. 497–498 (2003).https://doi.org/10.1016/S0304-3975(03)00136-1

4. Ellul, K., Krawetz, B., Shallit, J., Wang, M.-W.: Regular expressions: new results
and open problems. J. Autom. Lang. Comb. 10(4), 407–437 (2005). https://doi.
org/10.25596/jalc-2005-407

5. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic
unary automata into simpler automata. Theor. Comput. Sci. 295(1–3), 189–203
(2003). https://doi.org/10.1016/S0304-3975(02)00403-6

6. Geffert, V., Okhotin, A.: One-way simulation of two-way finite automata over small
alphabets. In: NCMA 2013, Ume̊a, Sweden, 13–14 August 2013

7. Kapoutsis, C.A.: Removing bidirectionality from nondeterministic finite automata.
In: Jȩdrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618. Springer,
Heidelberg (2005). https://doi.org/10.1007/11549345 47

8. Kunc, M., Okhotin, A.: Describing periodicity in two-way deterministic finite
automata using transformation semigroups. In: Mauri, G., Leporati, A. (eds.) DLT
2011. LNCS, vol. 6795. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22321-1 28

9. Kunc, M., Okhotin, A.: Reversibility of computations in graph-walking automata.
In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 595–606.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40313-2 53

10. Landau, E.: Über die Maximalordnung der Permutationen gegebenen Grades (On
the maximal order of permutations of a given degree). Archiv der Mathematik und
Physik, Ser. 3(5), 92–103 (1903)

11. Pierre, L.: Rational indexes of generators of the cone of context-free lan-
guages. Theor. Comput. Sci. 95(2), 279–305 (1992). https://doi.org/10.1016/0304-
3975(92)90269-L

12. Sipser, M.: Lower bounds on the size of sweeping automata. In: STOC, pp. 360–364
(1979). https://doi.org/10.1145/800135.804429

https://doi.org/10.1007/978-3-642-22600-7_5
https://doi.org/10.1007/978-3-642-22600-7_5
https://doi.org/10.1007/978-3-662-49630-5_27
https://doi.org/10.1007/978-3-662-49630-5_27
https://doi.org/10.1016/0304-3975(86)90142-8
https://doi.org/10.1016/S0304-3975(03)00136-1
https://doi.org/10.25596/jalc-2005-407
https://doi.org/10.25596/jalc-2005-407
https://doi.org/10.1016/S0304-3975(02)00403-6
https://doi.org/10.1007/11549345_47
https://doi.org/10.1007/978-3-642-22321-1_28
https://doi.org/10.1007/978-3-642-22321-1_28
https://doi.org/10.1007/978-3-642-40313-2_53
https://doi.org/10.1016/0304-3975(92)90269-L
https://doi.org/10.1016/0304-3975(92)90269-L
https://doi.org/10.1145/800135.804429

Characterizing the Valuedness
of Two-Way Finite Transducers

Di-De Yen and Hsu-Chun Yen(B)

Department of Electrical Engineering, National Taiwan University, Taipei 106,
Taiwan, ROC

bottle1116@hotmail.com, hcyen@ntu.edu.tw

Abstract. A transducer is infinite-valued if the maximal number of dif-
ferent outputs for an input string is not bounded by any constant. For
one-way finite transducers, Weber gave sufficient and necessary condi-
tions in terms of the structure of a transducer to characterize whether
the transducer is infinite-valued or not. As crossing sequences in two-
way automata often play similar roles as states in their one-way counter-
parts, we derive in this paper analogous criteria in the setting of crossing
sequences to characterize the infinite-valuedness of two-way finite trans-
ducers.

Keywords: Crossing sequence · Finite transducer · Valuedness

1 Introduction

Finite transducers are finite automata with outputs. It is well known that one-
way and two-way finite automate have the same expressive power as they both
characterize the class of regular languages. Things change substantially when we
switch from automata to transducers. In fact, two-way finite transducers (2FTs)
are strictly more expressive than one-way finite transducers (1FTs).

Among various problems investigated in the literature for finite transducers,
the valuedness problem has received considerable attention as it is related to
several other problems in automata and formal languages. A finite transducer
is k-valued if for every input, there are at most k different outputs. It is single-
valued (or called functional) if k = 1. A transducer is finite-valued if it is k-valued
for some k; otherwise it is infinite-valued. For 1FTs, the single-valuedness [2], the
k-valuedness [8], as well as the finite-valuedness [12] problems are all decidable.
For 2FTs, the single-valuedness problem and the k-valuedness problem were
shown to be decidable in [4,5].

In [13], it was shown that a finite-valued 1FT can be effectively decom-
posed into finitely many single-valued ones. Likewise, a k-valued 1FT can be
decomposed into exactly k single-valued ones as reported in [9,11,14]. For 1FTs,

Research supported in part by Ministry of Science and Technology, Taiwan, under
grant MOST 106-2221-E-002-036-MY3.

c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 100–112, 2019.
https://doi.org/10.1007/978-3-030-24886-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_7

Characterizing the Valuedness of Two-Way Finite Transducers 101

an important consequence of being finite-valued is the ability to apply known
results/techniques available for single-valued ones to cope with problems for
finite-valued counterparts taking advantage of the decomposition technique. As
testing equivalence for single-valued transducers follows from the decidability of
the functionality, the equivalence problem becomes decidable for k-valued finite
transducers using the decomposition result. Note, in general, that the equivalence
problem for finite transducers is undecidable [6]. The reader is referred to, e.g.,
[3,4,7] for more about decidability results for various types of one-way/two-way
finite transducers.

To show the decidability of the finite-valuedness problem for 1FTs, Weber [12]
gave two criteria in terms of the structure of a transducer to capture infinite-
valuedness. As the structural criteria can easily be checked, the decidability of
the finite-valuedness follows immediately. The aim of this paper is to investi-
gate the finite-valuedness problem for 2FTs. Motivated by the fact that crossing
sequences in two-way automata often play similar roles as states in their one-way
counterparts, the main contribution of the paper is to derive a crossing-sequence
version of Weber’s criteria to characterize the infinite-valuedness of 2FTs. Our
attempt starts with restricting our attention to bounded-crossing 2FTs, i.e., all
the crossing sequences along an accepting computation are of finite length. It can
easily be shown that if a 2FT is not bounded-crossing, then either an equivalent
bounded-crossing one can be constructed or the transducer is infinite-valued.
We then divide infinite-valued 2FTs into two kinds, i.e., with length-conflicts or
with position-conflicts. We employ some of the ideas used in [9,10,12], to clas-
sify computations into finite classes, and utilize the notion of a so-called pattern
introduced in this paper to provide a finer classification of computations. We
feel that the techniques/results derived in the paper might have the potential to
serve as a key for the decidability/complexity analysis of the valuedness problem
and other problems for 2FTs.

2 Preliminaries

In this paper, we use N (resp., Z+) to denote the set of non-negative integers
(resp., positive integers). For n ∈ Z

+, We write [n] to denote the set {1, . . . , n}.
We assume that the reader is familiar with the basic tenants of formal languages
and automata theory. Given a set S, we let |S| denote the cardinality of S. For a
string w in Σ∗, |w| is the length of w. Given a vector of strings u = (u1, . . . , um),
we write |u| for

∑m
i=1 |ui|, i.e., the sum of the lengths of strings in u. For a

binary relation R, Dom(R) and Im(R) represent the domain and image of R,
respectively.

A two-way finite transducer (2FT) is a 6-tuple (Q,Σ, Γ, q0, F,Δ), where Q is
a finite set of states, Σ is a finite input alphabet, Γ is a finite output alphabet,
q0 ∈ Q is the initial state, F ⊆ Q is the set of finial states, and Δ ⊆ Q ×
(Σ ∪ {�, �}) × Q × Γ ∗ × {−1, 1} is the finite set of transitions, where � (the
left endmarker) and � (the right endmarker) are two symbols not in Σ, −1 and
1 represent the left and right moves, respectively. T is called a one-way finite
transducer (1FT) if the input head always moves to the right upon reading a
symbol.

102 D.-D. Yen and H.-C. Yen

A configuration of a 2FT T on string σ(= σ1 · · · σm) ∈ (Σ ∪ {�, �})∗ is a
pair (q, i), meaning that T is in state q(∈ Q) reading σi, i ∈ [m]. We write
(q, i) � (q′, i + d) if (q, σi, q

′, v, d) ∈ Δ, for some v. A computation is a sequence
of configurations π = (q1, i1) . . . (qn, in) such that (qk, ik) � (qk+1, ik+1), ∀k ∈
[n − 1]. The output string associated with the above π on string σ, written as
outπ(σ), is v1v2 · · · vn−1, where (qk, σik

, qk+1, vk, ik+1 − ik)(∈ Δ), vk ∈ Γ ∗ and
k ∈ [n − 1], is the transition executed in (qk, ik) � (qk+1, ik+1). Computation
π = (q1, i1) . . . (qn, in) between input positions 1 and m is a right traversal if
i1 = 1, in = m; left traversal if i1 = m, in = 1; right U-turn if i1 = 1, in = 1; left
U-turn if i1 = m, in = m, and for each 2 ≤ j ≤ n − 1, 1 < ij < m. If q1 = q0
(the initial state) and qn ∈ F , then π is said to be an accepting computation on
string σ. W.l.o.g., we assume that an accepting computation always ends in a
configuration with the input head reading the right endmarker �.

We write T (u), u ∈ Σ∗, to denote {outπ(�u�) | π is an accepting computation
on �u�}. The transduction of T , denoted by R(T), is a binary relation {(u, v) |
v ∈ T (u), u ∈ Σ∗} over Σ∗×Γ ∗. Dom(T) is the domain of R(T). A transducer T
is k-valued if |{v|(u, v) ∈ R(T)}| ≤ k for each u ∈ Σ∗. T is single-valued if k = 1.
T is finite-valued if it is k-valued, for some k; otherwise it is infinite-valued.

A state q ∈ Q is useful if there exist an input string u and an accepting
computation π = (q1, i1)(q2, i2) . . . (qn, in) on �u� such that qi = q for some
i ∈ [n], otherwise it is useless. In our subsequent discussion, we assume our
2FTs to be always trim, i.e., all states are useful.

� σ1 σ2 σ3 σ4 σ5 σ6 �

q1 q2 q3 q4 q5 q6 q7 q8

q9q10q11

q12 q13 q14

v1 v2 v3 v4 v5 v6 v7

v8
v9v10

v11
v12 v13

Fig. 1. The crossing sequence between cells σ5 and σ6 is (q7, 1)(q10, −1)(q13, 1), where
1 is for “right” and −1 is for “left”. Cπ[7] = (q7, 1)(q10, −1)(q13, 1), and Cπ[8] =
(q8, −1)(q9, −1)(q14, 0), where the “0” in q14 represents the end of the computation.

In what follows, we recall the notion of crossing sequences which play an
important role in the analysis of various 2-way automata as reported in the
literature. Intuitively, a crossing sequence captures the behavior of an automa-
ton between two neighboring cells of the tape. See Fig. 1 for an example. The
reader should notice that our definition of a crossing sequence here might
be slightly different from some of those appearing in the literature. Given a
crossing sequence c = (p1, a1) . . . (pm, am), we write state(c) = {p1, . . . , pm},
state(c, [pi, pj]) = {pi, . . . , pj}, i ≤ j, and state(c, [pi, pj〉) = {pi, . . . , pj−1} (i.e.,
excluding qj), i < j. Let π = (q1, i1)(q2, i2) . . . (qn, il) be a computation on string
�σ1 · · · σm�. We use Cπ[k] to denote the crossing sequence w.r.t. the boundary

Characterizing the Valuedness of Two-Way Finite Transducers 103

between the (k − 1)-th and the k-th positions along π, 1 ≤ k ≤ m+1, where the
k = 0 refers to the position left to the �.

Fig. 2. The pattern from c1 to c2 is (1, 2)(3, 1′)(2′, 3′)(4′, 4)(5, 5′), with (1, 2) a right
U-turn, (3, 1′) a right traversal, (2′, 3′) a left U-turn, (4′, 4) a left traversal, and (5, 5′)
a right traversal.

In what follows, we define a binary relation
σ|γ−−→ (σ ∈ Σ∪{�, �} and γ ∈ (Γ ∗)k,

for some k) between two crossing sequences c and c′, written as c
σ|γ−−→ c′. Con-

sider the first two crossing sequences c1 and c2 in Fig. 2. Suppose u1 = σ ∈ Σ.
The computation between c1 and c2 can be characterized by a sequence of cross-
ing pairs (p1, p2) (p3, p′

1) (p′
2, p

′
3) (p′

4, p4) (p5, p′
5), each of which corresponds to a

transition reading symbol σ. Furthermore, the output strings associated with the

above sequence are w1, . . . , w5. We therefore write c1
σ|(w1,...,w5)−−−−−−−−→ c2. The above

is abbreviated as c
σ|−−−→ c′ if the vector of output strings is irrelevant.

In c
σ|−−−→ c′, we associate states along c (resp., c′) from top to bottom with

numbers 1, 2, . . . ,m (resp., 1′, 2′, . . . , n′), for some m,n. A valid sequence of cross-
ing pairs (s1, t1) . . . (sk, tk) becomes a sequence of pairs of numbers in {1, ...,m} ∪
{1′, . . . , n′}, which will be called a pattern. An (i, i + 1) (resp., (i′, (i + 1)′), (i, j′),
and (i′, j)) in a pattern is called a right U-turn (resp., left U-turn, right traversal,
left traversal). It is not hard to see that with the sequences of states in c and c′

given, a pattern corresponds to a valid sequence of crossing pairs. With a slight
abuse of notations, we write (p, q) ∈ z, where p and q are states, to denote a cross-
ing pair whose corresponding pair of numbers is in z.

A valid sequence δ of crossing pairs between two crossing sequences c and c′

can be viewed as a layout of a (weighted) directed graph with states (in the given
order) of c and c′ placed as left and right columns and directed edges connecting
nodes specified in δ. The weight of an edge corresponds to the output string
associated with the pair of states. It should be noticed that as long as the nodes
on the left and right columns respect the order given in the crossing sequences,
edges do not cross as they are parts of a single computation from the initial state
to a final state.

104 D.-D. Yen and H.-C. Yen

Given c1
σ1|γ1−−−→ c2 and c2

σ2|γ2−−−→ c3 (where σ1, σ2 ∈ Σ and γ1 ∈ Γ k1 , γ2 ∈
Γ k2 , for some k1, k2) with valid sequences δ1 and δ2, respectively, we write

c1
σ1σ2|γ1⊕γ2−−−−−−−→ c3 to denote a valid sequence of crossing pairs (s1, t1) . . . (sm, tm)

(where si, ti ∈ state(c1) ∪ state(c3)), written as δ1 ⊕ δ2, in the following way.
(si, ti) ∈ δ1 ⊕ δ2 if there is a directed path from si to ti possibly through states

in c2. Consider Fig. 2 in which the crossing pairs associated with c1
u1|−−−−→ c2

and c2
u2|−−−−→ d1 are δ1 and δ2, respectively. Then δ1 ⊕ δ2 contains crossing pairs

(p1, p2)(p3, q1)(q2, q3)(q4, p4)(p5, q5), in which q2
σ1σ2|x2w3x3−−−−−−−−→ q3 is through inter-

mediate states p′
2 and p′

3 of c2. It is easy to see that the constructed δ1⊕δ2 satis-
fies the required conditions of a valid sequence. Let z1 and z2 be the patterns of δ1
and δ2, respectively. With a slight abuse of the use of notation ⊕, we write z1⊕z2
to denote the new pattern associated with δ1⊕δ2, and γ1⊕γ2 to denote the com-
bined output vector of strings. In Fig. 2, z1 ⊕ z2 is (1, 2)(3, 1′)(2′, 3′)(4′, 4)(5, 5′)
and γ1 ⊕ γ2 is (w1, w2x1, x2w3x3, x4w4, w5x5). A pattern satisfying z ⊕ z = z is
called idempotent. The interested reader is referred to [1] for a similar concept
called idempotent loops in 2FTs.

We write c
σ1···σm−1|γ⊕···⊕γm−1−−−−−−−−−−−−−−−→ c′ if there exist crossing sequences c1, ..., cm,

such that c = c1, c′ = cm and ci
σi|γi−−−→ ci+1, where σi ∈ Σ ∪ {�, �}, γi ∈ (Γ ∗)ki ,

for some ki, 1 ≤ i ≤ m − 1. We write c
σ|(γ)z−−−−→

z
c′ if it is important to specify the

pattern z associated with the computation from c to c′.

Let z = (a1, b1)...(an, bn) be the pattern associated with a computation c
u|w−−→
z

d. If we partition z into two factors z1 and z2, then c (resp., d) can also be parti-
tioned into two factors c′

1 and c′
2 with c = c′

1c
′
2 (resp., d′

1 and d′
2 with d = d′

1d
′
2)

such that c′
1

u|w1−−−→
z1

d′
1 and c′

2

u|w2−−−→
z2

d′
2 and w = w1w2. For instance, if we par-

tition the pattern between c1 and c2 in Fig. 2 into z1 = (1, 2)(3, 1′)(2′, 3′) and

z2 = (4′, 4)(5, 5′), then such a partition induces two subcomputations c′
1

u|v1−−−→
z1

d′
1

and c′
2

u|v2−−−→
z2

d′
2 with v1 = (w1, w2, w3) and v2 = (w4, w5).

For 1FT s, if p
u1|v1−−−→ q and q

u2|v2−−−→ r, then p
u1u2|v1v2−−−−−−→ r, where p, q, r are

states. Regarding crossing sequences, we have the following result, whose proof
follows from the definition of patterns.

Lemma 1. The following properties hold:

(1) (Transitivity) If c
u1|(v1,...,vl)z1−−−−−−−−−→

z1
d and d

u2|(w1,...,wm)z2−−−−−−−−−−→
z2

e, then

c
u1u2|(x1,...,xn)z−−−−−−−−−−−→

z
e, for some strings x1, ..., xn and pattern z, and

∑n
i=1 |xi| =

∑l
i=1 |vi|+

∑m
i=1 |wi|. For ease of expression, the new computation is also writ-

ten as c
u1u2|(v1,...,vl)z1⊕(w1,...,wm)z2−−−−−−−−−−−−−−−−−−−−−→

z1⊕z2
e.

Characterizing the Valuedness of Two-Way Finite Transducers 105

(2) (Interchangeability) If c
u|(v1,··· ,vn)z−−−−−−−−→

z
d and c

u|(w1,··· ,wn)z−−−−−−−−−→
z

d, then

c
u|(x1,··· ,xn)z−−−−−−−−−→

z
d where xi ∈ {vi, wi} for each i ∈ [n].

The following result concerning patterns will be used later in the paper.

Lemma 2. Let z be a pattern. If z(⊕z)n−1 exists for all n ∈ Z
+, then there is

a p ∈ Z
+ such that z′ = z(⊕z)p−1 and z′ ⊕ z′ = z′, i.e., z′ is idempotent.

Given v1, v2 ∈ Γ ∗ with v1 �= v2, one of the following statements is true:

(1) |v1| �= |v2|.
(2) v1(i) �= v2(i) for some i ∈ [|v1|] ∩ [|v2|].
We call the first case a length-conflict and the second case a position-conflict.

If for every n ∈ Z
+, there exist a u ∈ Σ∗ and v1, v2, . . . , vn ∈ Γ ∗ such that

(u, vi) ∈ R(T), 1 ≤ i ≤ n, vi and vj have a length-conflict (resp., position-
conflict), ∀1 ≤ i, j ≤ n, i �= j, then T (or R(T)) is said to have length-conflicts
(resp., position-conflicts). It is not hard to see that a 2FT T is infinite-valued
iff T has length-conflicts or position-conflicts.

Regarding the cardinality of T (u), u ∈ Σ∗, there are two possibilities: (1)
T (u) is finite for all u ∈ Dom(T), and (2) T (u) is infinite for some u ∈ Dom(T).
If the second condition holds, T clearly has length-conflicts, and hence, it is
infinite-valued. However, T could still be infinite-valued if the first but not the
second condition holds, as the size of T (u) may grow unboundedly.

In what follows, we give a sufficient and necessary condition to characterize
the existence of a u ∈ Dom(T) such that T (u) is infinite, i.e., Condition (2)
above.

Lemma 3. Given a 2FT T , T (u) is infinite for some u ∈ Dom(T) iff
there exists an accepting computation π on u and a crossing sequence c =
(q1, a1) . . . (qn, an), qi ∈ Q, ai ∈ {1,−1}, 1 ≤ i ≤ n, such that (qj , aj) = (qk, ak),
for some 1 ≤ j �= k ≤ n, where the output string associated with the computation
from state qj to state qk of c along π is not ε.

A 2FT T is bounded-crossing if there is a constant k such that for every
input string u, no tape cell is read more than k times for T on u. Throughout
the rest of the paper, we assume our 2FTs to be bounded-crossing; otherwise,
either it can be made bounded-crossing by removing loops of ε outputs, or it is
infinite-valued as we have shown above.

3 Some Properties of Bounded-Crossing 2FTs

For convenience, the following notations regarding a 2FT T = (Q,Σ, Γ, q0, F,Δ)
will be used throughout this paper.

• NC : the number of crossing sequences.
• NS : the number of different subsets of crossing sequences, i.e., NS = 2NC .
• ψ = 2 × d × |Q| × (NC)3, where d = Max{|v||(p, u, q, v, d) ∈ Δ}.

106 D.-D. Yen and H.-C. Yen

Notice that each of the above is in fact a constant.
Let C and D be two sets of crossing sequences. D is said to be accessible

from C (written as C
 D) if there is a u ∈ Σ∗ such that for every c ∈ C, there

exists a d ∈ D such that c
u|−−−→ d, and for any d ∈ D, there is a c ∈ C such that

c
u|−−−→ d. The u is called a witnessing string for C
 D. It is easy to see that

C
 D and D
 E imply C
 E, hence,
 is transitive. C and D are said to
be equivalent, denoted by C ∼= D, if C
 D and D
 C. Notice that witnessing
strings for C
 D and D
 C need not be the same. Let u be an input string
and Ci denote the set {Cπ[i] | π is an accepting computation on u} for each
i ∈ [|u| + 2], i.e., Ci is the set of crossing sequences each of which appears at
position i in some accepting computation. Obviously, Ci
 Cj for every i ≤ j.

The following lemma plays a key role in our subsequent discussion:

Lemma 4. Given an input u ∈ Dom(T), there exists a sequence 1 = i1 < i2 <
... < ik = |u| + 2, for some k ≤ NS, such that

(1) Cij+1 �∼= Cij
∀j ∈ [k − 1], and

(2) Cl
∼= Cm ∀j ∈ [k − 1], ∀l,m ∈ [ij , ij+1 − 1].

We now give some properties concerning computations of 2FTs without
length-conflicts. Similar results for 1FTs can be found in [9].

Lemma 5. Given a bounded-crossing 2FT T = (Q,Σ, Γ, q0, F,Δ) having no
length-conflicts, let c,d, e, f be crossing sequences, u, u1, u2 ∈ Σ∗, v1, . . . , vn,
v′
1, . . . , v

′
n ∈ Γ ∗, x1, x2, x

′
1, x

′
2, w, x, y be vectors of strings over Γ ∗, and a pattern

z, the following hold:

(1) If c
u|−−−→ c, c

u|(v1,...,vn)z−−−−−−−−→
z

d, c
u|(v′

1,...,v′
n)z−−−−−−−−→

z
d, and d

u|−−−→ d, then ||vi|−|v′
i||

≤ ψ, ∀1 ≤ i ≤ n.

(2) If c
u1u2|−−−−−−→ c, c

u1|x1−−−→ e, c
u1|x′

1−−−→ f , e
u2|x2−−−→ d,f

u2|x′
2−−−→ d, and d

u1u2|−−−−−−→ d,
then ||xi| − |x′

i|| ≤ ψ, for i = 1, 2.

(3) If c
u|w−−→ c, c

u|x−−→ d, and d
u|y−−→ d, then |w| = |y|.

Lemma 6. If a 2FT T has length-conflicts, for each N ∈ N, there are two
crossing sequences c,d, a string u, and two vectors of strings v, w such that

c
u|v−−→ c, c

u|w−−→ d, d
u|−−−→ d, and ||v| − |w|| ≥ N .

4 Sufficient and Necessary Conditions for the Infinite-
Valuedness of 2FTs

In [12], Weber gave two criteria, IV1 and IV2 (depicted in Figs. 3(a) and (b)),
to characterize the infinite-valuedness of 1FT s. For IV1 in Fig. 3(a), |y1| �= |y2|,
and for IV2 in Fig. 3(b), v1 �= ε and v2(i) �= v3(i) for some i ∈ [|v2|] ∩ [|v3|].
IV1 captures length-conflicts, whereas IV2 is a sufficient condition but not a
necessary condition for position-conflicts.

Characterizing the Valuedness of Two-Way Finite Transducers 107

Consider the analogous versions of IV1 (called CIV1) and IV2 (called CIV2)
in the setting of crossing sequences. To understand the structure of CIV1 bet-
ter, the reader is referred to Fig. 3(a) by replacing p, q, q1, q2, q3 with crossing
sequences c,d,d1,d2,d3, respectively, and strings xi, yi, zi with (xi

1, ..., x
i
si

),
(yi

1, ..., y
i
ki

), (zi
1, ..., z

i
ti

), respectively, and for CIV2, replacing p and q in Fig. 3(b)
with c and d, respectively, and v1, v2, v3, v4 with (w1, . . . , wl), (x1, . . . , xm),
(x′

1, . . . , x
′
m), and (y1, . . . , yn), respectively.

(CIV1) There exists an accepting computation π along which there are cross-
ing sequences c,d1,d2,d3,d, indices si, ki, ti ∈ N , strings u, v, w ∈ Σ∗, and
vectors of strings (xi

1, ..., x
i
si

), (yi
1, ..., y

i
ki

), (zi
1, ..., z

i
ti

) over Γ ∗, 1 ≤ i ≤ 3, such
that

(1) c
u|(xi

1,...,xi
si

)−−−−−−−−→ di for i = 1, 2,

(2) d
u|(x3

1,...,x3
s3

)−−−−−−−−→ d3,

(3) di

v|(yi
1,...,yi

ki
)−−−−−−−−→ di for i = 1, 2, 3,

(4) d1

w|(z1
1 ,...,z1

t1
)−−−−−−−−→ c, and

(5) di

w|(zi
1,...,zi

ti
)−−−−−−−−→ d for i = 2, 3, and

(6)
∑k1

j=1 |y1
j | �= ∑k2

j=1 |y2
j |.

We now have our first main result.

Theorem 1. A 2FT T has length-conflicts iff it satisfies criterion CIV1.

(CIV2) There exists an accepting computation π along which there are cross-
ing sequences c,d, patterns z1, z2, z3, strings u ∈ Σ+, w1, . . . , wl, x1, . . . , xm,
x′
1, . . . , x

′
m, y1, . . . , yn ∈ Γ ∗,

(1)

• c
u|(w1,...,wl)z1−−−−−−−−−→

z1
c,

• c
u|(x1,...,xm)z2−−−−−−−−−→

z2
d,

• c
u|(x′

1,...,x′
m)z2−−−−−−−−−→

z2
d,

• d
u|(y1,...,yn)z3−−−−−−−−−→

z3
d,

and for some index ι ∈ [m], there is a position-conflict between xι and x′
ι

(2) xι (x′
ι) corresponds to either a left or a right traversal between some state

p in c and some state q in d, and

• (right traversal): if π : · · · p1
u|wj−−−→ p

u|xι−−−→ q
u|yk−−−→ q1 · · · , then

∑j
t=1 |wt| �= ∑k−1

t=1 |yt|
• (left traversal): if π : · · · q1

u|yk−−−→ q
u|xι−−−→ p

u|wj−−−→ p1 · · · , then
∑j−1

t=1 |wt| �= ∑k
t=1 |yt|

To understand the intuition behind CIV2, consider Fig. 2. Assume c1 = c2
(= c), d1 = d2(= d) and u1 = u2 = u3(= u ∈ Σ∗). Suppose x4

and x′
4 have a position-conflict. It is not hard to see that there is an accept-

ing computation associated with input vunv′, for all n ≥ 1. Consider the

108 D.-D. Yen and H.-C. Yen

Fig. 3. Weber’s Criteria for Infinite-valuedness of 1FT s.

computation c0
v|(s1,...,s5)z−−−−−−−−→

z

i
︷ ︸︸ ︷

c
u|(w1,...,w5)z1−−−−−−−−−→

z1
...

u|(w1,...,w5)z1−−−−−−−−−→
z1

c
u|(x1,...,x5)z2−−−−−−−−−→

z2

j
︷ ︸︸ ︷

d
u|(y1,...,y5)z3−−−−−−−−−→

z3
...

u|(y1,...,y5)z3−−−−−−−−−→
z3

d
v′|(s′

1,...,s′
5)z′−−−−−−−−−→

z′
cf , where i + j = n and c0 and

cf are the initial and accepting crossing sequences, respectively. The output is
w̄x4w̄

′, for some w̄ and w̄′, where |w̄| =
∑3

t=1 |st| + (
∑3

t=1 |wt|)i +
∑3

t=1 |xt| +
(
∑4

t=1 |yt|)j +
∑4

t=1 |s′
t|. Suppose

∑3
t=1 |wt| �= ∑4

t=1 |yt|, different combinations
of i and j (with i+j = n) result in w̄ of different lengths. Hence, for each 1 ≤ i ≤ n,
the ability to choose between (x1, ..., x5) and (x′

1, ..., x
′
5) (both are of pattern z2)

will result in the transducer being infinite-valued.
Consider Fig. 5(left), in which a position-conflict occurs between xι and x′

ι (a
right traversal). The wj (resp., yk) in the above description of CIV2 corresponds
to wl2 (resp., yn1+1) in Fig. 5(left). As a result,

∑j
t=1 |wt| �= ∑k−1

t=1 |yt| in CIV2
simply means

∑l2
t=1 |wt| �= ∑n1

t=1 |yt| in Fig. 5(left).

Lemma 7. If T be a 2FT satisfying CIV2, then T has position-conflicts and
hence is infinite-valued.

Fig. 4. Crossing sequences c ∈ C and d ∈ D.

To show CIV2 to be necessary for 2FT s without length-conflicts to exhibit
position-conflicts, we employ some of the ideas used in [9]. Consider Fig. 4 in
which c ∈ C,d ∈ D and C ∼= D, and a position-conflict occurs between output

Characterizing the Valuedness of Two-Way Finite Transducers 109

strings x and y upon reading u from c to d. The first step to prove the necessity
of CIV2 is to show the presence of some sort of “pumpable loops” before c and
after d. With such pumpable loops, an unbounded number of position-conflicts
in output strings can be obtained by pumping the two loops provided they have
a “disparity in length” which will be clarified later.

Lemma 8. Given an infinite-valued 2FT T without length-conflicts, there exists
a ū ∈ Σ∗ which can be divided into u1u2 · · · uk (based on the ∼= relation, see
Lemma 4), there exist c ∈ Ch and d ∈ Ch′ , Ch

∼= Ch′ , h and h′ are positions
falling inside ur, for some 1 ≤ r ≤ k, such that

(1) c
u|(w1,...,wl)z1−−−−−−−−−→

z1
c,

(2) c
u|(x1,...,xm)z2−−−−−−−−−→

z2
d,

(3) c
u|(x′

1,...,x′
m)z2−−−−−−−−−→

z2
d,

(4) d
u|(y1,...,yn)z3−−−−−−−−−→

z3
d,

(5) |xi| = |x′
i|, 1 ≤ i ≤ m, xι and x′

ι

have a position conflict, for some ι,
(6) |xι| = |x′

ι| > 2ψ, and
(7) z1 and z3 are idempotent.

for some u ∈ Σ+.

Lemma 8 guarantees that Condition (1) in the statement of CIV2 holds. It
remains to show Condition (2) also holds. To see this, we first discuss two base
cases and then show how the general cases can be reduced to the base cases.

• (Base case: traversal)

Consider Fig. 5 (left). Let π: c2
u|(w1,...,wl)z1−−−−−−−−−→

z1
c1

u|(x1,...,xm)z2−−−−−−−−−→
z2

d1

u|(y1,...,yn)z3−−−−−−−−−→
z3

d2 be a computation on u3 (where c1 = c2 = c and d1 =

d2 = d), along which xι and x′
ι (both are right-traversals from p ∈ c to q

∈ d) have a position-conflict. The left-traversal case is similar and is therefore
omitted here. The conditions for this base case require

(i) (p, p′) ∈ z1, (q′, q) ∈ z3 are right traversals, for some p′ and q′, and
(ii) for every s ∈ state(c1, [p′, p〉), (resp., state(d1, [q, q′〉)), if (s, t) ∈ z1 or z2

(resp., z3 or z2), then the pair must be a U-turn.

The (ii) above simply says that all the crossing pairs from p′ to p in c1
(and q to q′ in d1) are U-turns. As z1 and z3 are idempotent, it is not hard
to see that p′ to p in c2 (as well as q to q′ in d2) is also composed of a
sequence of U-turns. To show Condition (2) of CIV2 holds, if suffices to show
(A)

∑l1
i=1 |wi| =

∑n1
i=1 |yi|, and (B)

∑l2
i=l1+1 |wi| �= 0, which together imply

∑l2
i=1 |wi| >

∑n1
i=1 |yi|. The intuitive idea behind proving (A) above relies

on the ability to shift the block containing (x1 · · · xm1) (i.e., the red block)
to the right with the original location replaced by the block (w1 · · · wl1).
Notice that the original crossing sequence d1 might change. As such a shifting
can be done to the left or to the right for an arbitrary number of times,
we are able to yield length-conflicts (due to Statement (3) in Lemma 5) if

110 D.-D. Yen and H.-C. Yen

Fig. 5. Base case: traversal (left); U-turn (right).

∑l1
i=1 |wi| �= ∑n1

i=1 |yi|. (B) can be shown using a similar idea except that we
shift the block (xι . . . xm2) to the left.

• (Base case: U-turn)
Consider Fig. 5 (right). Suppose xι and x′

ι are right U-turns from p to q in
c1. The left U-turn case is similar. The conditions for this base case require

(i) (p, p′) ∈ z1 and (q, q) ∈ z1 are right and left traversals, respectively, and
(ii) for every s ∈ state(c1, [p′, p〉), if (s, t) ∈ z1 or z2, then the pair must be a

U-turn,

Fig. 6. On ui+2, contracting the subcomputation from p to q in c2 of Fig. 5(right) with

the right U-turn labeled xm2 in c1
u|−−−→ d1.

It is not hard to see c2
u|(w1,...,wl1+f−1,xι,wl2+1,...,wl)z′

1−−−−−−−−−−−−−−−−−−−−−−−→
z′
1

c′
1

uu|−−−−→ d2, for

some c′
1, z′

1 and wl1+f is the output from p to p′, i.e., the computation
from p to q in c2 is replaced by xm2 = xι. See Fig. 6. According to State-
ment (2) in Lemma 5, |∑l2

i=l1+f |wi| − |xι|| is bounded by ψ. As |xι| > 2ψ,
∑l2

i=l1+1 |wi| �= 0.

Characterizing the Valuedness of Two-Way Finite Transducers 111

By contracting k copies of c
u|−−−→ c in a way shown in Fig. 6, we have

c

i−k−1
︷ ︸︸ ︷
u|(w1,...,wl)−−−−−−−−→ c

u|(w1,...,wl1+f−1,xι,wl2+1,...,wl)−−−−−−−−−−−−−−−−−−−−−→ c′

k
︷ ︸︸ ︷
u|(w1,...,wl1 ,wl2+1,...,wl)−−−−−−−−−−−−−−−−→ c′

u|(x1,...,xm1 ,xm2+1,...,xm)−−−−−−−−−−−−−−−−−→ d
u|(y1,...,yn)−−−−−−−→ d

for any 0 ≤ k < i. Because T has no length-conflicts,
∑l2

i=l1+1 |wi| = 0;
otherwise, there will be k outputs of different lengths.

Fig. 7. General case: traversal (left); U-turn (right).

Due to the above contradicting results, the right U-turn case does not exist.
• (General case)

Consider Fig. 7(left) in which c2
u|−−−→
z1

c1
u|−−−→
z2

d1
u|−−−→
z3

d2 on u3 witnesses

a position-conflict between xι and x′
ι, and the two base cases do not apply.

That is, either p1 �= p2 or q1 �= q2. We show in the following how to locate
another witnessing computation such that one of the two base cases holds.

As z1 and z3 are idempotent (i.e., z1 ⊕ z1 = z1 and z3 ⊕ z3 = z3), c2
u|−−−→
z1

c1

(resp., d1
u|−−−→
z3

d2) can be “pumped” an arbitrary number of times to yield

ci+1
u|−−−→
z1

ci with ci = c1 (resp., di
u|−−−→
z3

di+1 with di = d1), i = 2, ..., as

shown in Fig. 7, while retaining the same pattern z1 (resp., z3). From p2, we
trace the computation backward until reaching either c3 or d3, and let the
state be p3. Likewise, q3 is obtained by tracing the computation forward from
q2 until reaching either c3 or d3. The pi and qi, i ≥ 4, are obtained iteratively
in the same way.

Suppose (p2, q2) is a right traversal on u3 and p3 is located in c3 (see

Fig. 7(left)). Let (p2, r) ∈ z1, for some r. In c3
u2|−−−−→ c1, we have (p3, r) ∈

z1 ⊕ z1 (= z1), as z1 is an idempotent. Hence, p3 = p2. Likewise, if q3 is
located in d3 (i.e., q2 to q3 is a right traversal), then q2 = q3.

Figure 7(right) displays the case when (p2, q2) is a left U-turn, p3 to p2 is a left
traversal, and q2 to q3 is a right traversal. As (z1⊕)iz2(⊕z3)i = z1 ⊕ z2 ⊕ z3

112 D.-D. Yen and H.-C. Yen

for each i ∈ Z
+, we have p2 = p3 and q2 = q3. In fact, in either case in Fig. 7,

pi = p2, qi = q2, for each i ≥ 3.

In the case of Fig. 7(left), by letting u′ = u3, the computation c5
u′|−−−−→

c2
u′|−−−−→ d2

u′|−−−−→ d5 is a right traversal meeting the conditions of a base
case. The remaining cases are similar.

The above, together with Lemma 7, yields our second main result:

Theorem 2. Let T be a bounded-crossing 2FT having no length-conflicts. T is
infinite-valued iff it satisfies CIV2.

References

1. Baschenis, F., Gauwin, O., Muscholl, A., Puppis, G.: One-way definability of two-
way word transducers. Logical Methods Comput. Sci. 14, 1–54 (2018)

2. Blattner, M., Head, T.: Single-valued a-transducers. J. Comput. Syst. Sci. 15(3),
310–327 (1977)

3. Blattner, M., Head, T.: The decidability of equivalence for deterministic finite
transducers. J. Comput. Syst. Sci. 19, 45–49 (1979)

4. Culik II, K., Karhumäki, J.: The equivalence of finite valued transducers (on hdt0l
languages) is decidable. Theor. Comput. Sci. 47(1), 71–84 (1986)

5. Culik II, K., Karhumäki, J.: The equivalence problem for single-valued two-way
transducers (on NPDTOL languages) is decidable. SIAM J. Comput. 16(2), 221–
230 (1987)

6. Griffiths, T.V.: The unsolvability of the equivalence problem for λ-free nondeter-
ministic generalized machines. J. ACM 15(3), 409–413 (1968)

7. Gurari, E.: The equivalence problem for deterministic two-way sequential trans-
ducers is decidable. SIAM J. Comput. 11, 448–452 (1982)

8. Gurari, E., Ibarra, O.H.: A note on finite-valued and finitely ambiguous transduc-
ers. Math. Syst. Theor. 16(1), 61–66 (1983)

9. Muchnik, A.A., Gorbunova, K.Y.: Algorithmic aspects of decomposition and equiv-
alence of finite-valued transducers. Probl. Inf. Transm. 51(3), 267–288 (2015)

10. Sakarovitch, J., de Souza, R.: On the decidability of bounded valuedness for trans-
ducers. Math. Found. Comput. Sci., 588–600 (2008)

11. Sakarovitch, J., de Souza, R.: Lexicographic decomposition of k-valued transducers.
Theor. Comput. Syst. 47(3), 758–785 (2010)

12. Weber, A.: On the valuedness of finite transducers. Acta Informatica 27(8), 749–
780 (1990)

13. Weber, A.: Decomposing finite-valued transducers and deciding their equivalence.
SIAM J. Comput. 22(1), 175–202 (1993)

14. Weber, A.: Decomposing a k-valued transducer into k unambiguous ones. RAIRO -
Theoretical Informatics and Applications - Informatique Théorique et Applications
30(5), 379–413 (1996)

Input-Driven Pushdown Automata
for Edit Distance Neighborhood

Viliam Geffert(B), Zuzana Bednárová, and Alexander Szabari

Department of Computer Science, P. J. Šafárik University,
Jesenná 5, 04154 Košice, Slovakia

{viliam.geffert,zuzana.bednarova,alexander.szabari}@upjs.sk

Abstract. Edit distance �-neighborhood of a language L is the set of
strings that can be obtained by at most � elementary edit operations—
deleting or inserting one symbol in the string—from some string in L. We
show that if L is recognized by a nondeterministic input-driven pushdown
automaton (pda) with ‖Γ‖ pushdown symbols and ‖Q‖ states, then its
edit distance �-neighborhood can be recognized by a nondeterministic
input-driven pda with 2·‖Γ‖+1 pushdown symbols and O(‖Q‖·�·‖Γ‖�)
states, which improves the known upper bound. We have obtained also
a lower bound, namely, at least (‖Q‖−1)·‖Γ‖� states are required. If
the measure of edit distance includes also the operation of rewriting one
symbol with another, the edit distance �-neighborhood can be recognized
with 2·‖Γ‖+1 pushdown symbols and O(‖Q‖·�·‖Γ‖2·�) states.

Keywords: Context-free languages · Edit distance ·
Input-driven pushdown automata

1 Introduction

Edit distance is the standard measure of similarity between two strings, defined
as the smallest number of elementary edit operations—such as inserting or
removing one symbol in the string—that is required to transform one string into
another. Based on this, we can consider E�(L), an edit distance �-neighborhood of
a given language L ⊆ Σ∗: this is the set of all strings at edit distance at most �
from some string in L.

The notion of edit distance was first used by Levenshtein [12]; the algorithm
for computing edit distance between two strings was presented in [23]. However,
several independent early papers utilized this idea, e.g., [1,7,15], in applications
devoted, among others, to self-correcting codes, to correction of spelling errors,
and to parsing for context-free languages with error-recovery. See also [6,11,20]
for overview and history, and [5,6,9,14] for other applications, like, e.g., the edit
distance between two languages.

Supported by the Slovak grant contracts VEGA 1/0056/18 and APVV-15-0091.

c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 113–126, 2019.
https://doi.org/10.1007/978-3-030-24886-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_8

114 V. Geffert et al.

It turned out that most programming languages used in real life can be
parsed by pushdown automata (pdas) that are input-driven, for which the cur-
rent input symbol determines whether the automaton should push one symbol
on top of the pushdown store, pop one symbol from top, or leave the pushdown
store untouched. These machines were introduced by Mehlhorn in [13], under the
name visibly pushdown automata, and later studied in [2,3]. This language class
has nice closure properties, among others, it is closed under all Boolean opera-
tions, concatenation, and Kleene star. The edit-distance between two languages
accepted by input-driven automata is computable [8], which does not hold for
general context-free languages [14]. Moreover, nondeterministic and determinis-
tic variants of input-driven pdas are equivalent in power and can be simulated
deterministically in log n space [4,21]. For a survey, see also [17].

It is known that the regular languages are closed under �-neighborhood
[16,22]; the same holds for context-free languages, which can be derived by the
use of a grammar [1] for parsing a context-free language with error-recovery.

It was shown that even the input-driven pdas are closed under edit dis-
tance �-neighborhood [18]: if L is recognized by a nondeterministic input-driven
pda with ‖Γ‖ pushdown symbols and ‖Q‖ states, then E1(L) can be recog-
nized with O(‖Γ‖2) pushdown symbols and O(‖Q‖·‖Γ‖) states. Since E�(L) =
E1(E�−1(L)), the �-neighborhood can be obtained by applying this construc-
tion � times. However, this way we use more than ‖Γ‖2�

pushdown symbols
and ‖Q‖·‖Γ‖2�−1 states. In [19], the journal version of [18] (published online
only three days before closing submissions for DLT’19, pointed to us by one
of the reviewers), the authors improved this to ‖Γ‖+1 pushdown symbols and
‖Q‖·(2·‖Γ‖+3) states for E1(L) which, iterated, gives ‖Γ‖+� pushdown sym-
bols and ‖Q‖· ∏�−1

i=0(2·‖Γ‖+3+2·i) states for E�(L). Still, this requires at least
‖Q‖·2�·(‖Γ‖ + 3

2)� states, so the gap between this bound and our upper bound
presented below broadens with growing � quite rapidly.

In this paper, we show that 2·‖Γ‖+1 pushdown symbols and O(‖Q‖·�·‖Γ‖�)
states are sufficient1 to recognize E�(L) by a nondeterministic input-driven pda.
We have also obtained a delicate lower bound, depending on ‖Q‖, �, and ‖Γ‖:
for each ‖Γ‖ ≥ 2 and ‖Q‖ > ‖Γ‖, there exists a language L that can be rec-
ognized by a deterministic input-driven pda using ‖Γ‖ pushdown symbols and
‖Q‖ states but, for each � ≥ 1, any nondeterministic input-driven pda recogniz-
ing E�(L) needs at least (‖Q‖−1)·‖Γ‖� states. Last but not least, we obtain the
machine for the �-neighborhood by a single straightforward construction. (To
obtain a machine for E�(L) by the use of [18,19], one has to combine six separate
constructions—for insertions/deletions of neutral/pushing/popping symbols—
and iterate them � times.)

By increasing the number of finite control states to O(‖Q‖·�·‖Γ‖�+1), we can
reduce the size of the pushdown alphabet in the machine for E�(L) to ‖Γ‖+1.
If, beside deleting or inserting one symbol in the string, the measure of edit

1 Throughout the paper, the notation O(f(�, ‖Q‖, ‖Γ‖)) represents a function the
exact value of which is at most c·f(�, ‖Q‖, ‖Γ‖), for some constant c > 0. This
bound involves all positive values �, ‖Q‖, ‖Γ‖.

Input-Driven Pushdown Automata for Edit Distance Neighborhood 115

distance includes the operation of rewriting one symbol with another, then
2·‖Γ‖+1 pushdown symbols with O(‖Q‖·�·‖Γ‖2·�) states are sufficient.

2 Input-Driven Pushdown Automata

We assume the reader is familiar with the standard models of finite state
automata and pushdown automata (see, e.g., [10]).

Definition 1. A nondeterministic input-driven pushdown automaton (pda,
for short) is a septuplet A = 〈Q,Σ,Γ, qI,⊥,H, F 〉, in which Q is a finite set
of states, Σ = Σ0 ∪ Σ+ ∪ Σ− is an input alphabet, partitioned into three
disjoint sets, namely, Σ0 —the set of neutral input symbols, Σ+ —the set of
pushing input symbols, and Σ− —the set of popping input symbols. Γ denotes
a pushdown alphabet, qI ∈ Q is an initial state, ⊥ /∈ Γ a special push-
down bottom endmarker, F ⊆ Q a set of accepting (final) states, and H ⊆
(Q×Σ0×Q) ∪ (Q×Σ+×Q×Γ) ∪ (Q×Σ−×(Γ∪{⊥})×Q) ∪ (Q×Q) is a transition
relation. A transition from the set H establishes a machine’s instruction with
the following meaning:

(I) (q, a0)→(q′): if the next input symbol is a0 ∈ Σ0, the machine A gets from
the state q ∈ Q to q′ ∈ Q by reading a0, not using the pushdown store.

(II) (q, a+)→(q′, A): if the next input symbol is a+ ∈ Σ+, the machine gets from
q to q′ by reading a+ and pushing the symbol A ∈ Γ onto the pushdown.

(III) (q, a−, A)→(q′): if the next input symbol is a− ∈ Σ− and the symbol on
top of the pushdown is A ∈ Γ, the machine gets from q to q′ by reading a−
and popping A from the pushdown store.

(III’) (q, a−,⊥)→(q′): if the next input symbol is a− ∈ Σ− and the symbol on
top of the pushdown is ⊥, the machine gets from q to q′ by reading a−.
However, the bottom endmarker ⊥ is not popped.

(IV) (q)→(q′): the machine A gets from the state q to the state q′ without using
the input tape or the pushdown store.

An accepting computation begins in the state qI with the pushdown store con-
taining only the bottom endmarker ⊥ and ends in an accepting state q′ ∈ F after
reading the entire input. A is ε-free, if there are no transitions of type (IV).

A local configuration of A is an ordered pair 〈q, ϕ〉 ∈ Q×Γ∗, in which q is
the current finite control state and ϕ the current pushdown contents, with the
topmost symbol displayed on the left. The bottom endmarker ⊥ is not displayed.

Traditionally, transitions are given by a set of partial transition functions
{δa : a ∈ Σ} of different types, depending on whether the input symbol a is
neutral, pushing, or popping. (See, e.g., [2,4,17,18].) For example, a transition
of type (II) corresponds to (q′, A) ∈ δa+(q) in [17,18], while a transition of
type (III) to q′ ∈ δa−(q,A). However, apart from notation, the machine model
introduced by Definition 1 agrees with the standard model in the literature. The
only difference is that the traditional literature does not allow ε-moves of type
(IV); the machine must move forward along the input in each step.

116 V. Geffert et al.

Theorem 1. For each input-driven pda A with ε-transitions, there exists an
equivalent input-driven pda A′ without ε-transitions. Moreover, A′ uses the
same finite control states, the same pushdown alphabet, and the same partition-
ing of the input alphabet to neutral, pushing, and popping symbols.

Proof. The machine A = 〈Q,Σ,Γ, qI,⊥,H, F 〉 is replaced by A′ = 〈Q,Σ,Γ, qI,
⊥,H ′, F ′〉, in which, for each sequence of ε-moves (q0)→(q1), . . . , (qr−1)→(qr)
in H, with r ∈ {0, . . . , ‖Q‖−1} (not excluding sequences of length zero, with
qr = q0), we include the following transitions in H ′:

– If (qr, a0)→(q′) ∈ H, then (q0, a0)→(q′) ∈ H ′.
– If (qr, a+)→(q′, A) ∈ H, then (q0, a+)→(q′, A) ∈ H ′.
– If (qr, a−, A)→(q′) ∈ H, then (q0, a−, A)→(q′) ∈ H ′,

not excluding the special case of A = ⊥.

Analogically, we establish the set of accepting states: if qr ∈ F , then q0 ∈ F ′. ��

3 Edit Distance Neighborhood

For the purposes of our main construction, we found it useful to introduce
also Ẽ�(L), an edit distance �-neighborhood with marked corrections. To give
an idea, consider the following example. Let the string w′ = “missspeldd” be
in E4(L), and let w = “misspelled” be in L. The corresponding string with
marked corrections will be w̃ = “missspeldl ed′′, in which all deletions are
overlined and all insertions underlined. (This string is not unique.) In general,
having given w′ ∈ E�(L), we replace each letter a ∈ Σ to be deleted by its over-
lined version a ∈ Σ and insert each a ∈ Σ in its underlined version a ∈ Σ . Here
Σ and Σ denote two new copies of the original input alphabet Σ, and hence
w̃ ∈ Σ̃∗, where Σ̃ = Σ ∪ Σ ∪ Σ . The original input w′ ∈ E�(L) can be recon-
structed from w̃ by using w′ = h′(w̃), the corrected version w ∈ L by w = h(w̃),
and the number of used edit changes transforming w′ into w is equal to |herr(w̃)|,
where h′, h, herr are homomorphisms from Σ̃∗ to Σ∗ defined as follows:

h′(a) = a , h′(a) = a , h′(a) = ε ,
h(a) = a , h(a) = ε , h(a) = a ,

herr(a) = ε , herr(a) = a , herr(a) = a .
(1)

By definition, w̃ ∈ Ẽ�(L), if the corrected version w is in L and the number of
marked edit operations is bounded by �. This leads to the following definition
of Ẽ�(L), which gives also an alternative characterization of E�(L):

Ẽ�(L) = {w̃ ∈ Σ̃∗ : h(w̃) ∈ L and |herr(w̃)| ≤ �} ,

E�(L) = {w′ ∈ Σ∗ : w′ = h′(w̃) for some w̃ ∈ Ẽ�(L)} . (2)

Now we can turn our attention to the main problem. Let A be an input-
driven pda accepting a language L ⊆ Σ∗. For the given � ≥ 0, this machine

Input-Driven Pushdown Automata for Edit Distance Neighborhood 117

0

0

�

�

�

�

� � �

�

�

�

�

�

�

� �

�

�

� �

� �

�

�

� �

� �

�

� �

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

� �

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

π̃i

πi−π̃i

g

f

πi

0

0

if

ig
i0

Fig. 1. Pushdown heights πi, π̃i along the inputs h(w̃) and w̃ (top), and their difference
πi−π̃i (bottom).

should be transformed to an input-driven pda for E�(L). Recall that, since A is
input-driven, we have a partitioning of input symbols to Σ = Σ0 ∪ Σ+ ∪ Σ−,
depending on whether they are processed as neutral, pushing, or popping.

As the first step, we shall convert A to an input-driven pda with ε-transitions
accepting Ẽ�(L) ⊆ Σ̃∗. By definition of Ẽ�(L), the input symbols in Σ̃ are par-
titioned to Σ̃ = Σ ∪ Σ ∪ Σ , depending on whether they are kept untouched,
marked as deleted, or marked as inserted. Taking also into account partitioning
given by A, we shall therefore work with the following input alphabet:

Σ̃ = Σ0 ∪ Σ+ ∪ Σ− ∪ Σ0 ∪ Σ+ ∪ Σ− ∪ Σ 0 ∪ Σ+ ∪ Σ − .

All these sets are pairwise disjoint. For future use, we fix partitioning of Σ̃ to
neutral, pushing, and popping symbols as follows:

Σ̃0 = Σ0 ∪ Σ0 ∪ (Σ 0 ∪ Σ+ ∪ Σ −) ,

Σ̃+ = Σ+ ∪ Σ+ ,

Σ̃− = Σ− ∪ Σ− . (3)

Before passing further, we need also more details about the pushdown heights.

Definition 2. Let A be an input-driven pda accepting a language L ⊆ Σ∗, let
Ã be any input-driven pda with ε-transitions that works with the partitioning
of Σ̃ given by (3)—not necessarily accepting Ẽ�(L), and let w̃ = b1b2· · ·b|w̃| ∈ Σ̃∗

be an input for Ã. Now, for these given A, Ã, and w̃, let

π̃i denote the pushdown height of Ã (i.e., the number of symbols stored in the
pushdown, not counting ⊥) at the moment when Ã has read the prefix b1· · ·bi,
and let

πi be the corresponding pushdown height of A at the moment when A has read
the string h(b1· · ·bi), where h is the homomorphism introduced by (1).

118 V. Geffert et al.

The values π̃i, πi are illustrated by Fig. 1. These values π̃i, πi are given unam-
biguously. As an example, π̃i = max{π̃i−1−1, 0}, if bi ∈ Σ− ∪ Σ−. On the other
hand, πi = max{πi−1−1, 0} for bi ∈ Σ−, but πi = πi−1 for bi ∈ Σ−, because
h(b1· · ·bi) = h(b1· · ·bi−1). By analysis of all cases in Σ̃, we get:2

π0 = π̃0 = 0 ,

πi−π̃i = (πi−1−π̃i−1) + δi , for some δi ∈ {−1, 0,+1} ,

|πi−π̃i| ≤ |πi−1−π̃i−1| , if bi /∈ Σ ∪ Σ . (4)

By the use of (4) for w̃ ∈ Ẽ�(L), we can easily see that −� ≤ πi−π̃i ≤ +� for
each i, since there are at most � marked edit changes along this input. We are
now going to narrow the range for πi−π̃i:

Lemma 1. For any given � ≥ 1, pdas A, Ã, and input w̃ = b1· · ·b|w̃| ∈ Ẽ�(L)
(see Definition 2), there exists g ∈ {−�, . . . , 0} such that the machine A has an
accepting computation path on h(w̃) satisfying πi − π̃i ∈ {g, . . . , g+�} for each
i ∈ {0, . . . , |w̃|}.

We are now ready to present a pda Ã� for Ẽ�(L). By (1) and (2), to decide
whether the given input w̃ ∈ Σ̃∗ is in Ẽ�(L), it is sufficient to simulate the
machine A on w = h(w̃) ∈ Σ∗ and, in parallel, to count the number of marked
edit changes along the input in the finite state control, up to �. During this
simulation, we skip each input symbol a ∈ Σ (marked deletion) as if it were not
present and interpret each a ∈ Σ (marked insertion) in the same way as the
corresponding a ∈ Σ. If, at the end of the input, we reach an accepting state
of A and the number of marked edit changes does not exceed �, we accept.

However, for future use, the new pda Ã� should be input-driven in accordance
with the partitioning given by (3). That is, marked deletions should push and
pop the pushdown store as if they were their unmarked counterparts and marked
insertions should not manipulate the pushdown at all.

The underlying idea for solving this is based on Lemma 1: for a “properly”
chosen g ∈ {−�, . . . , 0}, the original machine accepts h(w̃) along a path satisfying
πi − π̃i ∈ {g, . . . , g+�} at each input position i ∈ {0, . . . , |w̃|}. Thus, if we take
g′ = (−g) ∈ {0, . . . , �} and put g′ copies of some new symbol “�” into the
pushdown store at the beginning, the updated heights will satisfy (πi+g′)− π̃i ∈
{0, . . . , �} during the course of the computation. This allows us to represent the
pushdown store of A, now of updated height πi+g′, by two quantities, keeping
the topmost (πi+g′)− π̃i symbols in a “buffer”—in the finite state control—and
the remaining π̃i symbols in the “real” pushdown store of Ã�. The symbols are
pushed and popped on top of the buffer, as the simulation of A demands, but,
independently, the symbols are moved from the bottom of the buffer to the top
of the real pushdown store—or the other way round—depending on whether the
input symbol is neutral, pushing, or popping, in accordance with (3).
2 The last inequality in (4) cannot be changed to “=” because the bottom endmarker ⊥

is never popped out. Namely, if bi ∈ Σ−, and either π̃i−1 > πi−1 = 0 or πi−1 >
π̃i−1 = 0, we have |πi−π̃i| = |πi−1−π̃i−1| − 1.

Input-Driven Pushdown Automata for Edit Distance Neighborhood 119

The only trouble-making case is a transition of type (III’) in Definition 1,
at the moment when the buffer is empty and the next input symbol is some
a− ∈ Σ −: at this moment, the simulation requires to verify that the original
pushdown store of A is empty, i.e., apart from �g′

, we have no more symbols
stored below the bottom of the buffer. This could be checked by testing the
top of the real pushdown store of Ã�. However, since a− ∈ Σ − ⊆ Σ̃0, this is
forbidden by (3). To fix this, we need a more detailed implementation.

Theorem 2. For each � ≥ 1 and each input-driven pda A = 〈Q,Σ,Γ, qI,

⊥,H, F 〉 accepting a language L, there exists an input-driven pda Ã� with
ε-transitions accepting the language Ẽ�(L), using at most 2·‖Γ‖+1 pushdown
symbols and O(‖Q‖·�·‖Γ‖�) states, if ‖Γ‖ ≥ 2. Moreover, Ã� works with the
partitioning of the input alphabet given by (3).

Proof. The machine Ã� simulates A on h(w̃) along the input w̃ as follows. If
the pushdown store of A contains some ϕ = Aπi

· · ·A2A1 ∈ Γ∗ after reading the
first i input symbols, with Aπi

on top, the machine Ã� keeps the string ϕ′ =
ϕ⊥�g′

= Aπi
· · ·A2A

⊥
1 �g′

, where A⊥
1 ∈ Γ⊥ is a new copy of the original pushdown

symbol A1 ∈ Γ and � /∈ Γ is a new symbol. The value g′ ∈ {0, . . . , �} has been
fixed nondeterministically at the very beginning. The string ϕ′ is partitioned to
ϕ′ = γ γ′, with γ of length (πi+g′) − π̃i ∈ {0, . . . , �} kept in a “buffer” and γ′ of
length π̃i kept in the “real” pushdown store of Ã�.

However, in the case of ϕ = ε, the machine Ã� keeps ϕ′ = γ γ′ = ε⊥�g′
,

where “ε⊥” is a new special symbol, a placeholder for carrying the “⊥” mark.
γ′ is of length π̃i also in this special case but, because of the placeholder, γ is
one symbol longer than in the standard case. The special symbol ε⊥ can never
be pushed to the real pushdown store of Ã� (but A⊥ ∈ Γ⊥ can).

Thus, whenever the special “⊥” mark is absent in the buffer, it is present
on the deepest symbol of ϕ, placed in the real pushdown store of Ã� below the
bottom of the buffer, and hence ϕ �= ε. This way we can test whether ϕ = ε
without testing the real pushdown store of Ã� at all.

The current state q ∈ Q of A is manipulated in a straightforward way. In
parallel, Ã� counts also the number of marked edit changes along the input, for
e = 0, . . . , �. The values e, q, γ are kept in the finite state control. For the “proper”
nondeterministic choice of g′ ∈ {0, . . . , �}, Lemma 1 ensures that |γ| ∈ {0, . . . , �},
and hence the buffer does not overflow/underflow. This leads to the following
construction of Ã� = 〈Q̃�, Σ̃, Γ̃, q̃I,⊥, H̃�, F̃�〉:
– Γ̃ = Γ ∪ Γ⊥ ∪ {�}, where Γ⊥ = {A⊥ : A ∈ Γ} is a new copy of the original

pushdown alphabet and � /∈ Γ is a new pushdown symbol,
– ε⊥ is yet another new auxiliary symbol — the “placeholder” ε⊥ /∈ Γ̃,
– G̃� = {γ ∈ Γ∗ ∪ Γ∗·Γ⊥·{�}∗ : 0 ≤ |γ| ≤ �} ∪ {ε⊥�i : 0 ≤ i ≤ �} is an auxiliary

set— the “buffer”,
– Q̃� = {0, . . . , �}×Q×G̃� ∪ {q̃I}, where q̃I is a new state,
– F̃� = {〈e, q, γ〉 ∈ Q̃� : q ∈ F},
– Σ̃ is the input alphabet, partitioned to Σ̃0, Σ̃+, Σ̃− as shown by (3) above.

120 V. Geffert et al.

We are now ready to present the machine’s transitions in H̃�.
Initially, we set e = 0, q = qI, and γ = ε⊥�g′

, for a nondeterministically
chosen g′. Since the initial contents of the real pushdown store is γ′ = ε, this
gives the initial value γ γ′ = ε⊥�g′

. For this reason,

(I) (q̃I)→(〈0, qI, ε
⊥�g′〉) ∈ H̃�, for each g′ ∈ {0, . . . , �}.

Transitions for “untouched” (i.e., not marked) input symbols work as follows.
As the simulation of A demands, the symbols are pushed/popped on top of the
buffer (the left end of γ). The real pushdown store of Ã� must be pushed/popped
as well, so we pop or push, respectively, some other symbol from/to the bottom
of the buffer (the right end of γ) and use this symbol to push or pop on top of the
real pushdown store, carrying also the “⊥” mark, if present. However, if the buffer
is empty, the symbols are pushed/popped directly on top the real pushdown store
of Ã�. There are several special cases for processing a popping symbol a− ∈ Σ−,
depending on whether the pushdown store of A is empty and/or the pushdown
store of Ã� is empty. All these cases are detected easily; by checking whether
γ = ε; whether ε⊥ is on top of the buffer; and/or whether ⊥ is on top of the real
pushdown. Finally, the counter for detected marked deletions/insertions does not
change. The following transitions are therefore defined for each e ∈ {0, . . . , �}:

(II) If (q, a0)→(q′) ∈ H, then
(〈e, q, ψ〉, a0)→(〈e, q′, ψ〉) ∈ H̃�, provided that ψ ∈ G̃�.

(III) If (q, a+)→(q′, A) ∈ H, then
(〈e, q, ψB〉, a+)→(〈e, q′, Aψ〉, B) ∈ H̃�, provided that ψB,Aψ ∈ G̃�,
(〈e, q, ε〉, a+)→(〈e, q′, ε〉, A) ∈ H̃�,
(〈e, q, ε⊥�i+1〉, a+)→(〈e, q′, A⊥�i〉, �) ∈ H̃�, provided that ε⊥�i+1 ∈ G̃�,
(〈e, q, ε⊥〉, a+)→(〈e, q′, ε〉, A⊥) ∈ H̃�.

(IV) If (q, a−, A)→(q′) ∈ H, then
(〈e, q, Aψ〉, a−, B)→(〈e, q′, ψB〉) ∈ H̃�, provided that Aψ,ψB ∈ G̃�,
(〈e, q, A⊥�i〉, a−, �)→(〈e, q′, ε⊥�i+1〉) ∈ H̃�, provided that A⊥�i ∈ G̃�,
(〈e, q, ε〉, a−, A)→(〈e, q′, ε〉) ∈ H̃�,
(〈e, q, ε〉, a−, A⊥)→(〈e, q′, ε⊥〉) ∈ H̃�,
(〈e, q, Aψ〉, a−,⊥)→(〈e, q′, ψ〉) ∈ H̃�, provided that Aψ ∈ G̃�,
(〈e, q, A⊥�i〉, a−,⊥)→(〈e, q′, ε⊥�i〉) ∈ H̃�, provided that A⊥�i ∈ G̃�.

(IV’) If (q, a−,⊥)→(q′) ∈ H, then
(〈e, q, ε⊥�i〉, a−, �)→(〈e, q′, ε⊥�i+1〉) ∈ H̃�, provided that ε⊥�i+1 ∈ G̃�,
(〈e, q, ε⊥�i〉, a−,⊥)→(〈e, q′, ε⊥�i〉) ∈ H̃�, provided that ε⊥�i ∈ G̃�.

Transitions for marked deletions push and pop the real pushdown store in
accordance with (3), but the simulation of A is temporarily interrupted. Thus,
we push or pop one symbol to/from the top of real pushdown and, respectively,
pop or push this symbol from/to the bottom of the buffer, so that the value γ γ′

does not change. If the real pushdown store of Ã� is empty, no symbol moves
from the real pushdown to the buffer. Processing a marked deletion requires
to increase e, the counter for marked edit changes. If the limit on the number

Input-Driven Pushdown Automata for Edit Distance Neighborhood 121

of edit changes has been exhausted, i.e., if e = �, the computation is aborted
by undefined transition. The same holds for buffer overflow/underflow, which
may happen due to a wrong nondeterministic choice of g′ in the past. By this
reasoning, the following transitions are defined for each e ∈ {0, . . . , �−1}:

(V) For each a0 ∈ Σ0 and q ∈ Q,
(〈e, q, ψ〉, a0)→(〈e+1, q, ψ〉) ∈ H̃�, provided that ψ ∈ G̃�.

(VI) For each a+ ∈ Σ+, q ∈ Q, and B ∈ Γ̃,
(〈e, q, ψB〉, a+)→(〈e+1, q, ψ〉, B) ∈ H̃�, provided that ψB ∈ G̃�.

(VII) For each a− ∈ Σ−, q ∈ Q, and B ∈ Γ̃,
(〈e, q, ψ〉, a−, B)→(〈e+1, q, ψB〉) ∈ H̃�, provided that ψB ∈ G̃�,
(〈e, q, ψ〉, a−,⊥)→(〈e+1, q, ψ〉) ∈ H̃�, provided that ψ ∈ G̃�.

Transitions for marked insertions simulate A by manipulating the topmost
symbols of the original pushdown in the buffer, without touching the real push-
down store of Ã� at all. By checking whether ε⊥ is on top of the buffer, we test
whether the original pushdown is empty. Processing a marked insertion increases
the counter e. If e = � or the buffer overflows/underflows, the computation is
aborted. This gives the following transitions, for each e ∈ {0, . . . , �−1}:

(VIII) If (q, a0)→(q′) ∈ H, then
(〈e, q, ψ〉, a0)→(〈e+1, q′, ψ〉) ∈ H̃�, provided that ψ ∈ G̃�.

(IX) If (q, a+)→(q′, A) ∈ H, then
(〈e, q, ψ〉, a+)→(〈e+1, q′, Aψ〉) ∈ H̃�, provided that Aψ ∈ G̃�

(〈e, q, ε⊥�i〉, a+)→(〈e+1, q′, A⊥�i〉) ∈ H̃�, provided that A⊥�i ∈ G̃�.
(X) If (q, a−, A)→(q′) ∈ H, then

(〈e, q, Aψ〉, a−)→(〈e+1, q′, ψ〉) ∈ H̃�, provided that Aψ ∈ G̃�,
(〈e, q, A⊥�i〉, a−)→(〈e+1, q′, ε⊥�i〉) ∈ H̃�, provided that A⊥�i ∈ G̃�.

(X’) If (q, a−,⊥)→(q′) ∈ H, then
(〈e, q, ε⊥�i〉, a−)→(〈e+1, q′, ε⊥�i〉) ∈ H̃�, provided that ε⊥�i ∈ G̃�.

By induction on i ∈ {0, . . . , |w̃|}, analyzing all cases presented by items
(II)–(X’), it is easy to show that, if the number of marked edit changes in b1· · ·bi is
equal to some e ≤ � and A can get from the local configuration 〈qI, ε〉 ∈ Q×Γ∗ to
〈q, ϕ〉 by a computation path reading the string h(b1· · ·bi) ∈ Σ∗, then the machine
Ã� can get from the local configuration 〈〈0, qI, ε

⊥�g′〉, ε〉 ∈ Q̃�×Γ̃∗ to the local
configuration 〈〈e, q, γ〉, γ′〉 by a computation path reading the string b1· · ·bi ∈ Σ̃∗,
where γ γ′ = ϕ⊥�g′

and |γ′| = π̃i, provided that, for the given g′, the buffer does
not overflow/underflow, i.e., provided that, at each input tape position j ≤ i,
we have (πj+g′)−π̃j ∈ {0, . . . , �}. However, if w̃ = b1· · ·b|w̃| is in Ẽ�(L), this
condition is ensured by Lemma 1 for at least one value g′ ∈ {0, . . . , �}, and
hence w̃ is accepted by Ã�, guessing the value g′ at the very beginning.

Conversely, by induction on i ∈ {0, . . . , |w̃|} again, we get that if, for some
g′ ∈ {0, . . . , �}, the machine Ã� can get from 〈〈0, qI, ε

⊥�g′〉, ε〉 to 〈〈e, q, γ〉, γ′〉 by a
computation path reading b1· · ·bi ∈ Σ̃∗, the number of marked symbols in b1· · ·bi

122 V. Geffert et al.

is equal to e ≤ �. In addition, γ γ′ = ϕ⊥�g′
, for some ϕ⊥ ∈ Γ∗Γ⊥ ∪{ε⊥}, such that

the machine A can get from 〈qI, ε〉 to 〈q, ϕ〉 by a path reading h(b1· · ·bi) ∈ Σ∗.
Thus, if w̃ = b1· · ·b|w̃| is accepted by Ã�, it is in Ẽ�(L).

It only remains to bound the number of states. First, for each i ∈ {1, . . . , �},
the number of strings of length i in G̃� can be bounded by

Gi = ‖Γ‖i +
∑i

j=1
‖Γ‖j + 1 ≤ 2 · ‖Γ‖ − 1

‖Γ‖ − 1
·‖Γ‖i,

using ‖Γ‖ ≥ 2. There is also one string of length 0, namely, ε, and one string of
length �+1, namely, ε⊥��. This gives G0+G�+1 = 2 ≤ (2·‖Γ‖−1)/(‖Γ‖−1)·‖Γ‖0.
But then the total number of different strings in G̃� is

‖ ˜G�‖ = G0+G�+1 +
∑�

i=1
Gi ≤

∑�

i=0

2 · ‖Γ‖ − 1

‖Γ‖ − 1
·‖Γ‖i =

2 · ‖Γ‖ − 1

‖Γ‖ − 1
· ‖Γ‖�+1 − 1

‖Γ‖ − 1

≤ 2 · ‖Γ‖ − 1

‖Γ‖ − 1
· ‖Γ‖
‖Γ‖ − 1

·‖Γ‖� = (2+
1

‖Γ‖ − 1
)·(1+

1

‖Γ‖ − 1
)·‖Γ‖� ≤ 3·2·‖Γ‖�.

Finally, ‖Q̃�‖ = 1 + (�+1)·‖Q‖·‖G̃�‖ ≤ O(‖Q‖·�·‖Γ‖�). ��
Now we are ready to convert the input-driven pda Ã� accepting Ẽ�(L) ⊆ Σ̃∗

to an input-driven pda A� accepting the language E�(L) ⊆ Σ∗, in which correc-
tions are not marked. This is based on the homomorphic characterization of E�(L)
by Ẽ�(L), presented by (2), and heavy use of ε-transitions:

Theorem 3. For each � ≥ 1 and each input-driven pda A = 〈Q,Σ,Γ, qI,
⊥,H, F 〉 accepting a language L, there exists an input-driven pda A� with
ε-transitions accepting the language E�(L), using at most 2·‖Γ‖+1 pushdown
symbols and O(‖Q‖·�·‖Γ‖�) states, if ‖Γ‖ ≥ 2. Moreover, A� uses the same
partitioning of the input alphabet to neutral, pushing, and popping symbols as
does A.

Proof. The machine Ã� = 〈Q̃�, Σ̃, Γ̃, q̃I,⊥, H̃�, F̃�〉 for Ẽ�(L), presented in Theo-
rem 2, is replaced by A� = 〈Q̃�, Σ, Γ̃, q̃I,⊥,H�, F̃�〉. The new machine uses the
same states and pushdown symbols; only the input alphabet and the set of tran-
sitions are modified, so that A� gets, in one step, from a local configuration 〈p, φ〉
to some local configuration 〈p′, φ′〉 by reading h′(b) ∈ Σ ∪ {ε} from the input if
and only if Ã� gets, in one step, from 〈p, φ〉 to 〈p′, φ′〉 by reading b ∈ Σ̃. This will
hold for each p,p′ ∈ Q̃�, each b ∈ Σ̃, and each φ, φ′ ∈ Γ̃∗. Here h′ denotes the
homomorphism introduced by (1), that is, h′(a) = h′(a) = a and h′(a) = ε. Thus,
if Ã� accepts w̃ = b1b2· · ·b|w̃| ∈ Σ̃∗ along some computation path, A� accepts
the input w′ = h′(w̃) ∈ Σ∗ along the corresponding path. Vice versa, if w′ ∈ Σ∗

is accepted by A�, the machine Ã� has an accepting computation path for some
w̃ ∈ Σ̃∗ satisfying h′(w̃) = w′. By (2), we thus have that A� accepts the lan-
guage E�(L). To see that the new machine A� stays input-driven, we need a more
detailed description of the updated transition set H�.

Input-Driven Pushdown Automata for Edit Distance Neighborhood 123

First, the initial ε-transitions are not changed. That is:

(I) If (q̃I)→(p′) ∈ H̃�, then (q̃I)→(p′) ∈ H�.

Also the transitions for “untouched” (i.e., not marked) input symbols are
preserved, since h′(a) = a for each a ∈ Σ:

(II) If (p, a0)→(p′) ∈ H̃�, then (p, a0)→(p′) ∈ H�.
(III) If (p, a+)→(p′,B) ∈ H̃�, then (p, a+)→(p′,B) ∈ H�.
(IV) If (p, a−,B)→(p′) ∈ H̃�, then (p, a−,B)→(p′) ∈ H�,

not excluding B = ⊥, which covers also (IV’) in the proof of Theorem 2.

Next, since h′(a) = a for each a ∈ Σ, the machine A� processes each marked
deletion as not deleted:

(V) If (p, a0)→(p′) ∈ H̃�, then (p, a0)→(p′) ∈ H�.
(VI) If (p, a+)→(p′,B) ∈ H̃�, then (p, a+)→(p′,B) ∈ H�.

(VII) If (p, a−,B)→(p′) ∈ H̃�, then (p, a−,B)→(p′) ∈ H�,
not excluding the case of B = ⊥.

Finally, since h′(a) = ε for each a ∈ Σ , the machine A� processes each
marked insertion as not inserted, which changes transitions reading these sym-
bols to ε-transitions:

(VIII) If (p, a0)→(p′) ∈ H̃�, then (p)→(p′) ∈ H�.
(IX) If (p, a+)→(p′) ∈ H̃�, then (p)→(p′) ∈ H�.
(X) If (p, a−)→(p′) ∈ H̃�, then (p)→(p′) ∈ H�,

which covers also (X’) in the proof of Theorem 2.

Summing up, we have obtained the following four types of transitions in H�:
(p, a0)→(p′), with a0 ∈ Σ0, (p, a+)→(p′,B), with a+ ∈ Σ+, (p, a−,B)→(p′),
with a− ∈ Σ−, and (p)→(p′), covering also the case of p = q̃I. ��

Now, by applying Theorem 1 on A� constructed in Theorem 3, we can get
the standard input-driven pda without ε-transitions:

Theorem 4 (Upper Bound). For each � ≥ 1 and each input-driven pda A =
〈Q,Σ,Γ, qI,⊥,H, F 〉 accepting a language L, there exists an ε-free input-driven
pda A′

� accepting E�(L), the edit distance �-neighborhood of L, using at most
2·‖Γ‖+1 pushdown symbols and O(‖Q‖·�·‖Γ‖�) states, if ‖Γ‖ ≥ 2. Moreover,
A′

� uses the same partitioning of the input alphabet to neutral, pushing, and
popping symbols as does A.

The corresponding lower bound is also single exponential in �:

Theorem 5 (Lower Bound). For each ‖Γ‖ ≥ 2 and each ‖Q‖ > ‖Γ‖, there
exists a language L that can be recognized by a deterministic input-driven pda
A using ‖Γ‖ pushdown symbols and ‖Q‖ states but, for each � ≥ 1, any nonde-
terministic input-driven pda A′ recognizing the language E�(L) with the same
partitioning of the input alphabet to neutral, pushing, and popping symbols needs
at least (‖Q‖−1)·‖Γ‖� states.

124 V. Geffert et al.

We conclude this section with some variants. First, by increasing the number
of states, we can reduce the size of the pushdown alphabet to ‖Γ‖+1:

Corollary 1. For each � ≥ 1 and each input-driven pda A = 〈Q,Σ,Γ, qI,⊥,
H, F 〉 accepting a language L, there exists an ε-free input-driven pda accept-
ing E�(L), using at most ‖Γ‖+1 pushdown symbols and O(‖Q‖·�·‖Γ‖�+1) states,
if ‖Γ‖ ≥ 2. This machine uses the same partitioning of the input alphabet to
neutral, pushing, and popping symbols as does A.

The definition of edit distance sometimes includes the operation of rewriting
one symbol with another. This establishes R�(L), an edit distance �-neighbor-
hood with rewritings: this is the set of all strings that can be obtained by at
most � deletions, insertions, or rewritings from some string in the given lan-
guage L. A rewriting can be implemented as a combination of one deletion
followed, at the same input position, by one insertion. (Thus, “missspeldl ed”
can be viewed as containing one deletion, one rewriting, and one insertion.)
Therefore, each w′ ∈ R�(L) is in E2·�(L). Using the homomorphisms introduced
by (1), the string w′ is in R�(L) if and only if w′ = h′(w̃) for some w̃ ∈ Σ̃∗, such
that h(w̃) ∈ L and the number of marked deletions, insertions, and rewritings
in w̃ is bounded by �. A marked rewriting is displayed in w̃ by a combination of
two letters, as aa′ ∈ Σ·Σ . The set of such strings w̃ will be denoted by R̃�(L).
Note that, passing through a marked rewriting aa′ along the input, we count
the number of marked edit changes as follows: ei = ei−1 = ei−2+1. This gives:

Theorem 6. For each � ≥ 1 and each input-driven pda A = 〈Q,Σ,Γ, qI,⊥,
H, F 〉 accepting a language L, there exists an ε-free input-driven pda accept-
ing R�(L), the edit distance �-neighborhood of L with rewritings, using at
most 2·‖Γ‖+1 pushdown symbols and O(‖Q‖·�·‖Γ‖2·�) states, if ‖Γ‖ ≥ 2. This
machine uses the same partitioning of the input alphabet to neutral, pushing,
and popping symbols as does A.

Independently, using ‖Γ‖+� pushdown symbols and O(‖Q‖·�2·�·‖Γ‖2·�) states,
an upper bound for R�(L) appears as Lemma 11 in [6].

4 Concluding Remarks

We tackled the problem of converting a nondeterministic input-driven pda recog-
nizing a language L with ‖Γ‖ pushdown symbols and ‖Q‖ states into a machine
recognizing E�(L), the edit distance �-neighborhood. We have improved the upper
bound, from above ‖Q‖·2�·(‖Γ‖+ 3

2)� states, presented in [19], to O(‖Q‖·�·‖Γ‖�).
The following techniques were essential: First, as an intermediate step, we have
constructed a machine for Ẽ�(L), the set of strings at edit distance at most � in
which all deletions and insertions are marked. Second, to construct this machine,
we have used ε-transitions. Such machine is then converted into a standard ε-free
input-driven pda for the standard E�(L), using the homomorphic characteriza-
tion of E�(L) by Ẽ�(L). Both edit distance neighborhood with marked corrections

Input-Driven Pushdown Automata for Edit Distance Neighborhood 125

and input-driven pdas with ε-transitions are of independent interest. (As the
next step, we are going to reduce the number of states down to O(‖Q‖·‖Γ‖�),
that is, to eliminate the cost of the counter for edit changes and match asymp-
totically the lower bound (‖Q‖−1)·‖Γ‖�. Because of the page limit, this recent
improvement will appear in a full version of the paper only.)

Some questions were left open. First, Theorem 5 provides the lower bound
(‖Q‖−1)·‖Γ‖� on the number of states only if ‖Q‖ > ‖Γ‖, the case of ‖Q‖ ≤ ‖Γ‖
is open. Second, in Corollary 1, we have shown that already ‖Γ‖+1 pushdown
symbols are sufficient for an input-driven pda to recognize E�(L). We conjecture
that ‖Γ‖ symbols are not sufficient, however, the argument is an open problem.
Finally, we do not have a corresponding lower bound for Theorem 6.

References

1. Aho, A., Peterson, T.: A minimum distance error-correcting parser for context-free
languages. SIAM J. Comput. 1, 305–312 (1972)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings ACM
Symposium Theory of Computing, pp. 202–211 (2004)

3. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. Assoc. Comput.
Mach. 56(3) (2009). Art. No.16

4. von Braunmühl, B., Verbeek, R.: Input driven languages are recognized in log n
space. Ann. Discrete Math. 24, 1–20 (1985)

5. Chatterjee, K., Henzinger, T.A., Ibsen-Jensen, R., Otop, J.: Edit distance for push-
down automata. Logical Methods Comput. Sci. 13(3:23), 1–23 (2017)

6. Cheon, H., Han, Y.-S., Ko, S.-K., Salomaa, K.: The relative edit-distance between
two input-driven languages. DLT 2019. LNCS, vol. 11647, pp. 127–139. Springer,
Heidelberg (2019)

7. Damerau, F.: A technique for computer detection and correction of spelling errors.
Comm. Assoc. Comput. Mach. 7, 171–176 (1964)

8. Han, Y.-S., Ko, S.-K.: Edit-distance between visibly pushdown languages. In: Stef-
fen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.)
SOFSEM 2017. LNCS, vol. 10139, pp. 387–401. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-51963-0 30

9. Han, Y.-S., Ko, S.-K., Salomaa, K.: The edit-distance between a regular language
and a context-free language. Int. J. Found. Comput. Sci. 24, 1067–1082 (2013)

10. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Harlow (2001)

11. Kruskal, J.: An overview of sequence comparison. In: Sankoff, D., Kruskal, J.
(eds.) Time Warps, String Edits, and Macromolecules: The Theory and Practice
of Sequence Comparison, pp. 1–44. Addison-Wesley, Stanford (1983)

12. Levenshtein, V.: Binary codes capable of correcting deletions, insertions and rever-
sals. Soviet Phys. Dokl. 10, 707–710 (1966)

13. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2 89

14. Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms.
Int. J. Found. Comput. Sci. 14, 957–982 (2003)

15. Morgan, H.: Spelling correction in systems programs. Commun. Assoc. Comput.
Mach. 13, 90–94 (1970)

https://doi.org/10.1007/978-3-319-51963-0_30
https://doi.org/10.1007/978-3-319-51963-0_30
https://doi.org/10.1007/3-540-10003-2_89

126 V. Geffert et al.

16. Ng, T., Rappaport, D., Salomaa, K.: State complexity of neighbourhoods and
approximate pattern matching. Int. J. Found. Comput. Sci. 29, 315–329 (2018)

17. Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata.
SIGACT News 45, 47–67 (2014)

18. Okhotin, A., Salomaa, K.: Edit distance neighbourhoods of input-driven pushdown
automata. In: Weil, P. (ed.) CSR 2017. LNCS, vol. 10304, pp. 260–272. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-58747-9 23

19. Okhotin, A., Salomaa, K.: Edit distance neighbourhoods of input-driven pushdown
automata. Theoret. Comput. Sci. (2019). https://www.sciencedirect.com/science/
article/pii/S0304397519301525

20. Pighizzini, G.: How hard is computing the edit distance? Inform. Comput. 165,
1–13 (2001)

21. Rytter, W.: An application of Mehlhorn’s algorithm for bracket languages to
log n space recognition of input-driven languages. Inform. Process. Lett. 23, 81–84
(1986)

22. Salomaa, K., Schofield, P.N.: State complexity of additive weighted finite automata.
Int. J. Found. Comput. Sci. 18, 1407–1416 (2007)

23. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. Assoc.
Comput. Mach. 21, 168–173 (1974)

https://doi.org/10.1007/978-3-319-58747-9_23
https://www.sciencedirect.com/science/article/pii/S0304397519301525
https://www.sciencedirect.com/science/article/pii/S0304397519301525

The Relative Edit-Distance Between Two
Input-Driven Languages

Hyunjoon Cheon1, Yo-Sub Han1, Sang-Ki Ko2(B), and Kai Salomaa3

1 Department of Computer Science, Yonsei University, 50, Yonsei-Ro,
Seodaemun-Gu, Seoul 120-749, Republic of Korea

{hyunjooncheon,emmous}@yonsei.ac.kr
2 AI Research Center, Korea Electronics Technology Institute, Seongnam-si,

Gyeonggi-do, Republic of Korea
sangkiko@keti.re.kr

3 School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
ksalomaa@queensu.ac.kr

Abstract. We study the relative edit-distance problem between two
input-driven languages. The relative edit-distance is closely related to
the language inclusion problem, which is a crucial problem in formal
verification. Input-driven languages are a robust subclass of context-
free languages that enable to model program analysis questions within
tractable time complexity. For instance, the language inclusion (or equiv-
alence) problem is undecidable for context-free languages whereas the
problem is solvable in polynomial time for input-driven languages spec-
ified by deterministic input-driven pushdown automata (IDPDAs) and
is EXPTIME-complete for nondeterministic IDPDAs. Our main contri-
bution is to prove that the relative edit-distance problem for two input-
driven languages is decidable by designing a polynomial time IDPDA
construction, based on the edit-distance, that recognizes a neighbour-
hood of a given input-driven language. In fact, the relative edit-distance
problem between two input-driven languages turns out to be EXPTIME-
complete when the neighbourhood distance threshold is fixed as a
constant.

Keywords: Input-driven languages · Visibly pushdown languages ·
Edit-distance · Algorithm · Decidability · Complexity

1 Introduction

Edit-distance between two strings is the smallest number of insertion, deletion
and substitution operations required to transform one string into the other [12].
We can use the edit-distance as a similarity measure between two strings; the
shorter distance implies that the two strings are more similar. We can compute
the distance between two strings using a bottom-up dynamic programming algo-
rithm [21]. The edit-distance problem arises in many areas such as computational

c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 127–139, 2019.
https://doi.org/10.1007/978-3-030-24886-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_9

128 H. Cheon et al.

biology, text processing and speech recognition [14,18,20] and can be used to
compute the similarity or dissimilarity between languages [5,9,11,14].

There are two types of metrics for measuring the distance between two lan-
guages L1 and L2. The minimum edit-distance between two languages is defined
as the minimum edit-distance of two strings, where one string is from L1 and
the other string is from L2. Mohri [14] considered the problem of computing
the edit-distance between two regular languages given by finite-state automata
(FAs) of sizes m and n, and presented an O(mn log mn) time algorithm. He
also proved that it is undecidable to compute the edit-distance between two
context-free languages using the undecidability of the intersection emptiness of
two context-free languages. As an intermediate result, Han et al. [9] considered
the edit-distance between an FA and a pushdown automaton (PDA) and pro-
posed a poly-time algorithm. Ko et al. [11] studied the approximate matching
problem between a regular language given by an FA and a context-free language
given by a context-free grammar. Recently, two of the authors studied the min-
imum edit-distance between two IDPDAs and established its decidability and
computational complexity [8].

The second approach, which is of our interest, is called the relative edit-
distance. The relative edit-distance is the supremum over all strings in L1 of
the distance of the string to L2. Note that the relative edit-distance is non-
symmetric. Given two languages L1 and L2, the relative edit-distance problem
is to compute the relative edit-distance drel(L1, L2) from L1 to L2. It is easy to
see that the relative edit-distance problem is a generalization of the language
inclusion problem since the relative edit-distance is 0 if and only if L1 ⊆ L2. The
Hausdorff distance is max{drel(L1, L2), drel(L2, L1)}, thus symmetric. Choffrut
and Pighizzini [5] studied the Hausdorff distance between languages by investi-
gating the properties of relations and proved that the Hausdorff distance can be
computed between regular languages. Benedikt et al. [2] considered this prob-
lem as a software verification task and defined two types of problem called the
bounded repairability problem and the threshold problem. The former is to decide
whether the relative edit-distance is bounded by a constant and the latter is to
compute the actual relative edit-distance between two languages. They showed
that computing the relative edit-distance is PSPACE-complete when the two
languages are given by DFAs or NFAs. Bourhis et al. [3] studied the bounded
repairability problem for regular tree languages and proved that the problem
is coNEXP-complete between two bottom-up tree automata. Chatterjee et al.
[17] proved that the relative edit-distance problem is EXPTIME-complete if L1

is given by a (deterministic) PDA and L2 is given by a (deterministic) FA. They
also showed that the undecidability holds when L2 is deterministic context-free
and L1 is regular.

Input-driven languages are recognizable by input-driven pushdown automata
(IDPDAs), which are a special type of pushdown automata for which stack
behavior is driven by the input symbols according to a partition of the alpha-
bet. Note that these automata were originally introduced by Mehlhorn [13] with
the name of input-driven pushdown automata in 1980. Later in 2004, Alur and

The Relative Edit-Distance Between Two Input-Driven Languages 129

Table 1. Complexity of the language inclusion problem from L1 to L2.

L1 L2

DFA NFA DIDPDA NIDPDA DPDA NPDA

(D,N)FA P PSPACE-c P (Proposition 2) EXPTIME-c

(Proposition 1)

P Undec.

(D,N)IDPDA EXPTIME-c

(Theorem3)

EXPTIME-c [1] Undec.

(Corollary 5)

(D,N)PDA EXPTIME-c [17] Undec. (Theorem4) Undec

Table 2. Complexity of the relative edit-distance problem from L1 to L2. (*) The
PSPACE-hardness for DFAs and NFAs holds if the threshold k is given by a unary
notation. (**) The EXPTIME upper bound holds even when the threshold k is given
by a unary notation. Note that the other entries hold for fixed k.

L1 L2

DFA, NFA DIDPDA, NIDPDA (D,N)PDA

(D,N)FA PSPACE-complete [2]* EXPTIME-complete (Theorem13) Undec. [17]

(D,N)IDPDA EXPTIME-complete (Theorem9)**

(D,N)PDA EXPTIME-complete [17] Undec. (Corollary 14)

Madhusudan [1] reintroduced the model under the name of visibly pushdown
automata. The class of input-driven languages lies in between the class of regular
languages and the class of context-free languages. They are useful to describe pro-
gram analysis queries because these queries can be answered within a tractable
time complexity. Recently, there have been many results about input-driven lan-
guages because of nice closure properties. Note that context-free languages are
not closed under intersection and complement and deterministic context-free lan-
guages are not closed under union, intersection, concatenation, and Kleene-star.
On the other hand, input-driven languages are closed under all these operations.
Moreover, language inclusion, equivalence and universality are all decidable for
input-driven languages whereas they are undecidable for context-free languages.

We first study the language inclusion problem for IDPDAs and further inves-
tigate the relative edit-distance problem for IDPDAs since the language inclusion
problem is the simplest case of the relative edit-distance problem. Since the rela-
tive edit-distance is not symmetric, we distinguish the two languages L1 and L2

by calling L1 a source language and L2 a target language. It is EXPTIME-complete
for the inclusion problem from DIDPDAs to NFAs. The inclusion problem is in
P when the source language is described by an NIDPDA and the target language
is described by a DIDPDA. The problem turns out to be undecidable when the
source language is deterministic context-free and the target language is an input-
driven language. The main complexity results on the language inclusion problem
are summarized in Table 1.

The most interesting contribution of our paper is the EXPTIME-completeness
of the relative edit-distance problem when both the source and target languages
are input-driven languages. We also establish that the undecidability holds when
the source language is deterministic context-free using the undecidability of the

130 H. Cheon et al.

inclusion problem. Our main contributions on the relative edit-distance problem
for IDPDAs are presented in Table 2.

2 Preliminaries

We recall some basic definitions and fix notation. For more detailed knowledge
in automata theory, the reader may refer to textbooks [10,22].

The size of a finite set S is |S|. Let Σ denote a finite alphabet and Σ∗ denote
the set of all finite strings over Σ. For m ∈ N, Σ≤m is the set of strings of length
at most m over Σ. A language over Σ is a subset of Σ∗. Given a set X, 2X

denotes the power set of X. The symbol λ denotes the empty string.
A nondeterministic finite automaton (NFA) is specified by a tuple A =

(Q,Σ, δ, I, F), where Q is a finite set of states, Σ is an input alphabet,
δ : Q × Σ → 2Q is a multi-valued transition function, I ⊆ Q is a set of ini-
tial states and F ⊆ Q is a set of final states. The automaton A is a deterministic
finite automaton (DFA) if |I| = 1 and |δ(q, a)| ≤ 1 for all q ∈ Q and a ∈ Σ.
A string x ∈ Σ∗ is accepted by A if there is a labeled path from s ∈ I to a
final state in F such that this path spells out x, namely, δ(s, x) ∩ F �= ∅. The
language L(A) is the set of all strings accepted by A. It is well-known that NFAs
and DFAs both recognize the class of regular languages [10,22].

A nondeterministic pushdown automaton (NPDA) is an extended computa-
tion model from NFA by adding a stack of unbounded size. An NPDA is specified
by a tuple P = (Q,Σ, Γ, δ, I, F), where Q is a finite set of states, Σ is a finite
input alphabet, Γ is a finite stack alphabet, δ : Q × (Σ ∪ {λ}) × Γ → 2Q×Γ ∗

is
a transition function, I ⊆ Q is a set of initial states, and F ⊆ Q is a set of final
states. An NPDA is a deterministic pushdown automaton (DPDA) if I is a single-
ton set and there is at most one applicable transition with any label a ∈ Σ∪{λ}.
It is also well-known that NPDAs recognize the class of context-free languages
whereas DPDAs only recognize a proper subclass of context-free languages—
deterministic context-free languages.

A nondeterministic input-driven pushdown automaton (NIDPDA) [1,13] is a
restricted version of a PDA, where the input alphabet consists of three disjoint
sets—Σc ∪Σr ∪Σl. The class of the input alphabet determines the type of stack
operation. The automaton always pushes a symbol onto the stack when it reads
a call symbol in Σc. If the input symbol is a return symbol in Σr, then the
automaton pops a symbol from the stack. Finally, the automaton neither uses
the stack nor even examines the content of the stack for the local symbols in Σl.
Formally, the input alphabet is defined as a triple ˜Σ = (Σc, Σr, Σl), where three
components are finite disjoint sets.

An NIDPDA is specified by a tuple A = (Q, ˜Σ,Γ, δ, I, F), where Q is a finite
set of states, Σ = Σc ∪ Σr ∪ Σl is an input alphabet, Γ is a finite set of stack
symbols, I ⊆ Q is a set of initial states, F ⊆ Q is a set of final states, and
δ = δc ∪ δr ∪ δl is a set of transitions, where δc ⊆ Q × Σc × Q × Γ is the set
of transitions for push operations, δr ⊆ Q × Σr × (Γ ∪ {⊥}) × Q is the set of
transitions for pop operations, and δl ⊆ Q × Σl × Q is the set of transitions for
local symbols. We use ⊥ /∈ Γ to denote the top of an empty stack.

The Relative Edit-Distance Between Two Input-Driven Languages 131

A configuration of A is a triple (q, w, v), where q ∈ Q is a current state,
w ∈ Σ∗ is a remaining input, and v ∈ Γ ∗ is a stack content. Let C(A) denote
the set of configurations of A. Then, we define the single step computation with
the relation �A⊆ C(A) × C(A) as follows:

– Push: (q, aw, v) �A (q′, w, γv) for all a ∈ Σc, (q, a, q′, γ) ∈ δc, γ ∈ Γ,w ∈ Σ∗

and v ∈ Γ ∗.
– Pop: (q, aw, γv) �A (q′, w, v) for all ∈ Σr, (q, a, γ, q′) ∈ δr, γ ∈ Γ,w ∈ Σ∗ and

v ∈ Γ ∗; furthermore, (q, aw, λ) �A (q′, w, λ), for all a ∈ Σr, (q, a,⊥, q′) ∈ δr

and w ∈ Σ∗.
– Local: (q, aw, v) �A (q′, w, v), for all a ∈ Σl, (q, a, q′) ∈ δl, w ∈ Σ∗ and

v ∈ Γ ∗.

An initial configuration of an NIDPDA A = (˜Σ,Γ,Q, I, F, δc, δr, δl) is
(s, w, λ), where s ∈ I is an initial state, w is an input string and λ implies
an empty stack. An NIDPDA accepts w if A arrives at a final state after pro-
cessing w from the initial configuration. Then, the language L(A) recognized by
A is

L(A) = {w ∈ Σ∗ | (s, w, λ) �∗
A (q, λ, v) for some s ∈ I, q ∈ F, and v ∈ Γ ∗}.

An NIDPDA is deterministic (DIDPDA) if there is only one initial state,
and for each configuration with at least one remaining input symbol, the next
configuration is uniquely determined. It should be noted that NIDPDAs and
DIDPDAs recognize the same class of languages—input-driven languages. The
class of input-driven languages is a proper subclass of deterministic context-free
languages and a proper superclass of regular languages. Input-driven languages
are closed under complementation and intersection, as well as other basic oper-
ations such as concatenation, union, and Kleene-star.

3 Edit-Distance

We define a function d : Σ∗ × Σ∗ → N0 to be a distance if it satisfies the
followings for all x, y, z ∈ Σ∗:

(i) d(x, y) = 0 if and only if x = y, (identity)
(ii) d(x, y) = d(y, x), and (symmetry)
(iii) d(x, z) ≤ d(x, y) + d(y, z). (triangle inequality)

In other words, a distance between two strings is a function from Σ∗ ×Σ∗ to
the non-negative integers that (i) has value zero only for two identical strings,
(ii) is symmetric, and (iii) satisfies the triangle inequality [6].

The Levenshtein distance (edit-distance) between two strings is the smallest
number of operations that transform one string to the other [12]. In the edit-
distance, atomic edit operations on a string x consist of substituting an element
of Σ by another element of Σ, deleting an element of Σ from x, or inserting

132 H. Cheon et al.

an element of Σ into x. Then, given a non-negative integer r and a language L,
we define a language Lr to be the edit-distance neighbourhood of L of radius r
if every string in Lr has an edit-distance of at most r from a string in L—
Lr = {w ∈ Σ∗ | ∃u ∈ L d(u,w) ≤ r}.

We can define the edit-distance between languages by extending the distance
function to two languages. Let L1 and L2 be two languages. One way of defining
an edit-distance between L1 and L2 is to find a most similar pair of strings w1 ∈
L1 and w2 ∈ L2, and compute their edit-distance. Formally, the edit-distance
between L1 and L2 is dmin(L1, L2) = inf{d(w1, w2) | w1 ∈ L1, w2 ∈ L2}. We
call this distance the minimum edit-distance between L1 and L2. Note that
the minimum edit-distance implies the degree of difference between two most
similar strings from L1 and L2. Thus, even if two languages are quite different,
the minimum edit-distance becomes zero if both have one same string.

Another way of defining the distance between L1 and L2 is to consider all
strings from L1 and look for the most similar counterpart string from L2 for each
string, and compute the edit-distance between a string from L1 and its most
similar string from L2. Then, we compute the maximum distance d among all
pairs—if the relative edit-distance from L1 to L2 is at most k, then for any string
w1 ∈ L1 there exists w2 ∈ L2 such that d(w1, w2) ≤ k. We call this distance the
relative edit-distance from L1 to L2 and formally define it as follows:

drel(L1, L2) = sup
w1∈L1

inf
w2∈L2

d(w1, w2).

It is easy to see that the relative edit-distance from L1 to L2 is 0 if and only if
L1 is included in L2. When we compute the relative distance from L1 to L2, we
call L1 the source language and L2 the target language. We also note that the
functions dmin and drel are not distance functions since they are not satisfying
(i) the identity property and (ii) symmetry property, respectively. For example,
dmin({a, aa}, {a}) = 0, drel({a, aa}, {a}) = 1, and drel({a}, {a, aa}) = 0.

We are now ready to formally present our main problem. Let k ∈ N be
a constant and consider two classes X and Y of automata, where X,Y ∈
{DFA,NFA,DPDA,NPDA,DIDPDA,NIDPDA}.

The relative k-edit-distance problem from class X to class Y is to decide, for
an automaton A in class X and an automaton B in class Y , whether or not
drel(L(A), L(B)) ≤ k. For simplicity, we just use relative edit-distance problem in
the rest of the paper.

4 Inclusion Problem for IDPDAs

Before we tackle the relative edit-distance problem between two NIDPDAs, we
first study the language inclusion problem for NIDPDAs since the inclusion
problem is a special case of the relative edit-distance problem. The following
two results are easy consequences from well-known facts for NIDPDAs [1].

Proposition 1. Given an NFA (or a DFA) A and an NIDPDA B, the problem
of deciding whether or not L(A) ⊆ L(B) is EXPTIME-complete.

The Relative Edit-Distance Between Two Input-Driven Languages 133

Proposition 2. Given an NIDPDA A and a DIDPDA B, the problem of decid-
ing whether or not L(A) ⊆ L(B) can be solved in polynomial time.

Now we consider the language inclusion problem from a DIDPDA (or an NID-
PDA) to an NFA and establish the EXPTIME-completeness result. Note that we
also use the reduction from the membership problem of linear-space alternat-
ing Turing machines (ATM), which is known to be EXPTIME-complete [4]. Our
proof is inspired by the EXPTIME-completeness proof of the inclusion problem
for DPDAs by Chatterjee et al. [17] but the computation trees of linear-space
alternating Turing machine in our proof are encoded in a different manner due to
additional restrictions imposed on the IDPDAs. For instance, the original encod-
ing of computation trees in Chatterjee et al. [17] does not work for IDPDAs since
the proof utilizes the same characters for pushing and popping stack symbols at
the same time, which is not allowed in the IDPDAs. In order to operate with the
restrictions of IDPDAs, we encode the computation trees in a different way—the
IDPDAs can process the encoded strings without any conflict.

Theorem 3. Given a DIDPDA (or an NIDPDA) A and an NFA B, the problem
of deciding whether or not L(A) ⊆ L(B) is EXPTIME-complete.

Proof. It is known that the complement of an NFA B is constructed in expo-
nential time. Moreover, L(A) ⊆ L(B) if and only if L(A) ∩ L(B)c = ∅, and we
can compute the intersection L(A) ∩ L(B)c in polynomial-time in the sizes of A
and the NFA for L(B)c. Hence, the inclusion problem from NIDPDAs to NFAs
is decidable in EXPTIME.

For the EXPTIME-hardness, we reduce the membership problem of linear-
space alternating Turing machine (ATM) M , which is to decide whether M
accepts a given string w over an alphabet Σ with the tape of size linear in |w|.
The membership problem on an ATM is known to be EXPTIME-complete [4].

We make a language L of strings that encode every valid accepting com-
putation of M on the given input w of length n. Let M = (Q,Σ, δ, q0, g) be
a linear-space ATM, where Q is a finite set of states, Σ is an input alphabet,
δ : Q × Σ → 2Q×Σ×{L,R} is the transition function, q0 ∈ Q is the initial state,
g : Q → {∧,∨, accept, reject} specifies the type of each state. Without loss of
generality, we assume that existential and universal transitions of M alternate.
We encode a configuration of M on w ∈ Σn as a string of length n + 1 of the
form ΣiqΣn−i, where q ∈ Q is a state of M . Let C1 be the initial configuration
q0w of M on w. If the state q0 is an existential state, an existential transi-
tion takes M to the successor configuration C2 that contains an occurrence of a
universal state q′ of M .

From the configuration C2, an universal transition of M branches into two
successor configurations C3 and C4. We can encode such a computation tree as
C1(CR

2 $lC3(· · ·)$rC4(· · ·)), where CR
i is the reversal of a configuration Ci. Note

that ‘· · · ’ after the configuration C3 (resp., C4) implies the substring encoding
the successor configurations of C3 (resp., C4).

A computation of M on the input string w is accepting if every leaf node
of the computation tree is accepting. Therefore, any string over the alphabet

134 H. Cheon et al.

Σ′ = Σ ∪ Q ∪ {$l, $r, (,)} encodes an accepting computation of M on w when
the following four conditions are satisfied:

(i) the string encodes a tree,
(ii) the initial configuration is q0w,
(iii) the successive configurations are valid, and
(iv) every final configuration is accepting.

Then, we construct a DIDPDA A and an NFA B over Σ′ that satisfy the
following conditions. The DIDPDA A accepts strings that satisfy the condition
(i) and a part of the condition (iii) which is about the validity of the right
successor of a universal configuration (namely, from C2 to C4). The NFA B
accepts strings that violate any of the conditions (ii), (iv), and a part of (iii) which
is about the validity of the successor of an existential configuration (namely, from
C1 to C2) and the left successor of a universal configuration (from C2 to C3).

First, we present the construction of the NFA B. It is easy to verify that we
can check whether or not strings violate the condition (ii) or (iv) with a DFA
of polynomial size. The DFA accepts strings that violate the condition (ii) by
checking whether the sequence of first |w| + 1 symbols is not q0w and strings
that violate the condition (iv) by checking whether there exists a substring that
corresponds to a non-accepting final configuration. We can also check the validity
of the successive configurations (from C1 to C2 and from C2 to C3) by an NFA as
follows. First, the NFA B nondeterministically guesses the position while reading
the configuration C1 (or CR

2) in the first phase (reading phase) and check whether
or not the corresponding part in the successive configuration CR

2 (or C3) is valid
in the second phase (checking phase).

In the reading phase, the NFA B reads the first configuration, say C1, and
nondeterministically guess a position where there exists an inconsistency between
two configurations (C1 and the following configuration CR

2) considering the tran-
sition function δ of M . Since we only need to compare at most three symbols to
check the inconsistency, we only need a polynomial number of states to remem-
ber the sub-configuration consisting of three symbols. In the checking phase, B
goes to the position where we nondeterministically guessed in the reading phase
and compare (at most) three symbols to check whether the successive configu-
rations are valid. By taking the union of these NFAs, we construct the desired
NFA B which still has polynomially many states.

The DIDPDA A construction is rather simple. Note that ‘(’ and the symbols
that encode a universal configuration (C2) are push symbols, and ‘)’ and the
symbols for a right successor (C4) are pop symbols. We can deterministically
validate the input string by pushing ‘(’ and following symbols that encode C2,
letting the subtree rooted at C3 be processed recursively, reading $r that indi-
cates the starting of right successor, compare C4 using the stack symbols that
pushed while reading C2, and pop ‘(’ while reading ‘)’.

From the constructions, we can see that the intersection of L(B)c and L(A)
contains only the strings that encode valid accepting computations of M on
a given string w, thus checking the intersection emptiness is EXPTIME-hard.

The Relative Edit-Distance Between Two Input-Driven Languages 135

Since L(B)c ∩ L(A) = ∅ and L(A) ⊆ L(B) are logically equivalent, the inclusion
problem from DIDPDAs to NFAs is EXPTIME-hard. ��

Next, we consider the case when the source language is deterministic context-
free and the target language is non-regular. If the target language is also deter-
ministic context-free, then the inclusion problem is already proved to be unde-
cidable [10].

We improve the current undecidability result by showing that the undecid-
ability holds even when the target is an input-driven language.

Theorem 4. Given a DPDA A and a DIDPDA B, the problem of deciding
whether or not L(A) ⊆ L(B) is undecidable.

Proof. Let M = (Q,Σ, δ, q0, F) be a linear bounded automaton (LBA). A valid
computation of M is a string w1#wR

2 #w3#wR
4 · · · ∈ (Σ ∪ Q ∪ {#})∗ such that

(i) each wi is a configuration of M of the form Σ∗qΣ∗ for a state q ∈ Q,
(ii) w1 is the initial configuration of the form q0w for the input string w ∈ Σ∗,
(iii) wn is a final configuration of the form Σ∗qfΣ∗ for a final state qf ∈ F , and
(iv) wi+1 is a successor configuration of wi by the transition function δ for

1 ≤ i < n.

Without loss of generality, ‘#’ is a border symbol in neither Q nor Σ. We
construct a DPDA A and a DIDPDA B that accept strings x1#x2# · · · #xm# ∈
(Σ ∪ Q ∪ {#})∗.

We use A to check the validity of two consecutive configurations xi and xi+1

for odd i’s and B for even i’s. The important thing is that the symbols encoding
the ith configuration for even i’s should be call symbols and the symbols for odd
i’s should be return symbols of B. Therefore, we need to use two disjoint sets of
symbols to encode configurations. We make a copy (denoted by Σ and Q) of Σ
and Q of M . We make a disjoint copy of Σ ∪ Q and denote it by Σ ∪ Q. Then,
we use Σ ∪ Q to encode the configurations in even positions and use Σ ∪ Q to
encode configurations in odd positions.

The DPDA A also checks if x1 is the initial configuration. We can also check
if xm is a final configuration by A or B depending on m being odd or even,
respectively. It is immediate from the construction that L(A) ∩ L(B) is the set
of all valid computations of M . Since the class of input-driven languages is closed
under complement, we can compute a DIDPDA B′ for L(B)c and L(A) ⊆ L(B′)
implies that there is no valid computation of M and, thus, L(M) is empty.
Since the emptiness problem of LBAs is undecidable, the inclusion problem from
DPDAs to DIDPDAs is also undecidable. ��

Using a simple modification of the proof of Theorem4, we also establish:

Corollary 5. Given a DPDA A and a DIDPDA B, the problem of deciding
whether or not L(B) ⊆ L(A) is undecidable.

136 H. Cheon et al.

5 Relative Edit-Distance Problem

Recall that the relative edit-distance problem is a generalization of the inclusion
problem in the sense that the relative edit-distance problem with zero threshold
is the inclusion problem. Hence, every lower bound for the complexity or the
decidability of the inclusion problem naturally carries over to the relative edit-
distance problem.

First, we show that the relative edit-distance problem from NIDPDAs to
NFAs is in EXPTIME. Our EXPTIME algorithm is based on the following propo-
sition.

Proposition 6 ([15,19]). Let A be an NFA with n states and r ∈ N. The
neighbourhood of L(A) of radius r can be recognized by an NFA B with n·(r+1)
states. The NFA B can be constructed in time that depends polynomially on n
and r.

Lemma 7. Given an NIDPDA A and an NFA B, the relative edit-distance prob-
lem from L(A) to L(B) is decidable in EXPTIME.

Proof. Let n be the number of states in B. Based on Proposition 6, we construct
an NFA B′ with n · (r + 1) states that recognizes the neighbourhood of L(B) of
radius r. Then, the size of the DFA B′′ for L(B′)c is 2n·(r+1) in the worst-case.
We can decide L(A) ⊆ L(B′) by checking whether or not L(A)∩L(B′)c is empty,
which is decidable in polynomial-time in the sizes of A and B′′. Hence, it follows
that the relative edit-distance problem is decidable in exponential time in the
sizes of A and B. ��

Language inclusion is a special case of the relative edit distance problem.
This means that Theorem 3 implies that the relative edit-distance problem from
DIDPDAs to NFAs is EXPTIME-hard. We further have the following lemma for
the lower bound for the problem from DIDPDAs even to DFAs. The proof is
a modification of the proof of Lemma 10 in Otop et al. [17] showing that the
relative edit-distance problem from DPDAs to DFAs is EXPTIME-hard.

Lemma 8. Given a DIDPDA A and a DFA B, the relative edit-distance problem
from L(A) to L(B) is EXPTIME-hard.

Proof. We reduce the inclusion problem from a DIDPDA A to an NFA B, which
is EXPTIME-complete by Theorem 3. Let us change the name of the NFA B used
in Theorem 3, to AN for notational convenience.

By construction, the transition set δN of the NFA AN can be partitioned into
two sets δN,1 and δN,2 where δN,1 is a function and every accepting path in AN

uses exactly one transition from the set δN,2. Recall that the transitions of δN,2

are used to make a nondeterministic guess of the position where two successive
configurations are not valid.

For all transitions in δN,2, we extend the alphabet Σ of AN to Σ′ by
adding new symbols where each symbol corresponds to a transition in δN,2.

The Relative Edit-Distance Between Two Input-Driven Languages 137

Namely, Σ′ = Σ ∪ {�(q,a,p) | (q, a, p) ∈ δN,2}. After then, we replace the char-
acter used in the transition of δN,2 by the corresponding symbol to make AN

deterministic. For instance, if there is a transition (q, a, p) in δN,2, then we replace
the transition by (q, �(q,a,p), p). It is easy to verify that the resulting NFA AD

does not have nondeterministic transition anymore.
Note that every string accepted by the DFA AD is different from the corre-

sponding original string in L(AN) at exactly one position. This in turn implies
that, for every string w in L(A), there exists a string in L(AD) which is differ-
ent from w at exactly one position. Hence, L(A) ⊆ L(AN) (over Σ) is reduced
to drel(L(A), L(AD)) ≤ 1 (over Σ′). Since the inclusion problem is EXPTIME-
complete, the relative edit-distance problem is EXPTIME-hard. ��

From Lemmas 7 and 8, we prove that the following theorem holds.

Theorem 9. Given an NIDPDA (or a DIDPDA) A and an NFA (or a DFA) B,
the relative edit-distance problem from L(A) to L(B) is EXPTIME-complete.

Recently, Okhotin and Salomaa [16] showed that the class of input-driven lan-
guages is closed under the edit distance neighbourhood operation. In other words,
the neighbourhood of an input-driven language is still an input-driven language.
They presented a neighbourhood automaton construction of size O(nmr), where
n is the number of states of an input IDPDA, m is the number of stack sym-
bols, and r ∈ N is the radius of the neighbourhood. In their construction, they
only considered two basic operations—insertion and deletion—for constructing
its neighbourhood. We revise the construction to cope with substitution and
establish the following result.

Lemma 10. Let A be an NIDPDA with m states and n stack symbols. The
neighbourhood of L(A) of radius one can be recognized by an NIDPDA with
O(mn2) states and n + 1 stack symbols.

By iteratively applying the construction in the proof of Lemma10, we estab-
lish the following descriptional complexity for the complete edit-distance neigh-
bourhood of the input-driven languages.

Lemma 11. Given an NIDPDA A of m states and n stack symbols and a non-
negative integer r ∈ N, it is possible to construct an NIDPDA B recognizing the
neighbourhood of L(A) of radius r in size O(m · (n + r)2r).

We have to mention that there is a very recent result by Geffert et al. [7] on
the descriptional complexity of IDPDAs for the complete edit-distance neigh-
bourhood. For the radius r neighbourhood of an NIDPDA with m states and n
stack symbols Geffert et al. [7] construct an NIDPDA with O(mr · n2r) states
and 2n + 1 stack symbols. The upper bound is slightly better than the bound
given by Lemma 11. Both constructions yield the same EXPTIME upper bound
for the complexity of deciding the relative edit-distance problem of NIDPDAs.

Based on the NIDPDA construction of the edit-distance neighbourhood of
L(A), we obtain the EXPTIME upper bound on the complexity of the relative
edit-distance problem for two NIDPDAs.

138 H. Cheon et al.

Lemma 12. Given two NIDPDAs A and B, the relative edit-distance problem
from L(B) to L(A) is decidable in EXPTIME.

Proof. We can construct an NIDPDA A′ recognizing the radius r neighbourhood
of L(A) in polynomial time in the size of A as r is fixed by the problem definition.
Then, the relative edit-distance problem from L(B) to L(A) is equivalent to the
problem of deciding whether or not L(B) ⊆ L(A′).

Since L(B) ⊆ L(A′) if and only if L(B) ∩ L(A′)c �= ∅, we obtain the com-
plement of L(A′) and decide whether or not the intersection between L(B) and
L(A′)c is empty. Note that the problem belongs to EXPTIME since the size of
the neighbourhood automaton is polynomial in the size of A and only the com-
plementation of L(A′) involves exponential blow-up in size. ��

Following Lemmas 8 and 12, we have the tight complexity bound for the
relative edit-distance problem as follows:

Theorem 13. Given two NIDPDAs A and B, the relative edit-distance problem
from L(B) to L(A) is EXPTIME-complete.

Finally, we mention that the relative edit-distance problem from DPDAs to
DIDPDAs is undecidable following the undecidability of the inclusion problem
in Theorem 4.

Corollary 14. Given a DIDPDA A and a DPDA B, the relative edit-distance
problem from L(B) to L(A) is undecidable.

6 Conclusions

The class of input-driven languages is interesting both from theoretical and prac-
tical viewpoints since many computational problems are decidable whereas the
same problems are undecidable even for deterministic context-free languages.
We have investigated the unknown computational complexity results regarding
the inclusion problem, which is one of the most fundamental problems in formal
verification. Moreover, we have considered a more general version of the inclusion
problem called the relative edit-distance problem that is relaxed by allowing a
fixed number of errors.

For the inclusion problem, we have proved that the problem between IDPDAs
and PDAs (or DPDAs) is undecidable and the problem from NFAs to NIDPDAs
is EXPTIME-complete. We also have established that the relative edit-distance
problem is EXPTIME-complete if both languages are input-driven, and undecid-
able if one of the languages is deterministic context-free.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
36th Annual ACM Symposium on Theory of Computing, pp. 202–211 (2004)

The Relative Edit-Distance Between Two Input-Driven Languages 139

2. Benedikt, M., Puppis, G., Riveros, C.: Bounded repairability of word languages.
J. Comput. Syst. Sci. 79(8), 1302–1321 (2013)

3. Bourhis, P., Puppis, G., Riveros, C., Staworko, S.: Bounded repairability for regular
tree languages. ACM Trans. Database Syst. 41(3), 18:1–18:45 (2016)

4. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (1981)

5. Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of rela-
tions. Theor. Comput. Sci. 286(1), 117–138 (2002)

6. Deza, M.M., Deza, E.: Encyclopedia of Distances, pp. 1–583. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00234-2 1

7. Geffert, V., Bednárová, Z., Szabari, A.: Input-driven pushdown automata for edit
distance neighborhood. In: Hofman, P., Skrzypczak, M. (eds.) DLT 2019. LNCS,
vol. 11647, pp. 113–126. Springer, Cham (2019)

8. Han, Y.-S., Ko, S.-K.: Edit-distance between visibly pushdown languages. In: Stef-
fen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.)
SOFSEM 2017. LNCS, vol. 10139, pp. 387–401. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-51963-0 30

9. Han, Y.S., Ko, S.K., Salomaa, K.: The edit-distance between a regular language
and a context-free language. Int. J. Found. Comput. Sci. 24(7), 1067–1082 (2013)

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation, 2nd edn. Addison-Wesley, Reading (1979)

11. Ko, S.K., Han, Y.S., Salomaa, K.: Approximate matching between a context-free
grammar and a finite-state automaton. Inf. Comput. 247, 278–289 (2016)

12. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)

13. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2 89

14. Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms.
Int. J. Found. Comput. Sci. 14(6), 957–982 (2003)

15. Ng, T., Rappaport, D., Salomaa, K.: State complexity of neighbourhoods and
approximate pattern matching. In: Proceedings of the 19th International Confer-
ence on Developments in Language Theory, pp. 389–400 (2015)

16. Okhotin, A., Salomaa, K.: Edit distance neighbourhoods of input- driven pushdown
automata. Theor. Comput. Sci. (2019). https://doi.org/10.1016/j.tcs.2019.03.005

17. Otop, J., Ibsen-Jensen, R., Henzinger, T.A., Chatterjee, K.: Edit distance for push-
down automata. Log. Methods Comput. Sci. 13 (2017)

18. Pevzner, P.A.: Computational Molecular Biology - An Algorithmic Approach. MIT
Press, Cambridge (2000)

19. Povarov, G.: Descriptive complexity of the Hamming neighborhood of a regular
language. In: Proceedings of the 1st International Conference on Language and
Automata Theory and Applications, pp. 509–520 (2007)

20. Thompson, K.: Regular expression search algorithm. Commun. ACM 11(6), 419–
422 (1968)

21. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21,
168–173 (1974)

22. Wood, D.: Theory of Computation. Harper & Row, New York (1987)

https://doi.org/10.1007/978-3-642-00234-2_1
https://doi.org/10.1007/978-3-319-51963-0_30
https://doi.org/10.1007/978-3-319-51963-0_30
https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1016/j.tcs.2019.03.005

On Shrinking Restarting Automata
of Window Size One and Two

Frantǐsek Mráz1 and Friedrich Otto2(B)

1 Faculty of Mathematics and Physics, Department of Computer Science,
Charles University, Malostranské nám. 25, 118 00 Prague 1, Czech Republic

frantisek.mraz@mff.cuni.cz
2 Fachbereich Elektrotechnik/Informatik, Universität Kassel, 34109 Kassel, Germany

f.otto@uni-kassel.de

Abstract. Here we study the expressive power of shrinking RWW- and
RRWW-automata the window size of which is just one or two. We show
that for shrinking RRWW-automata that are nondeterministic, window
size one suffices, while for nondeterministic shrinking RWW-automata,
we already need window size two to accept all growing context-sensitive
languages. In the deterministic case, shrinking RWW- and RRWW-
automata of window size one accept only regular languages, while those
of window size two characterize the Church-Rosser languages. In addi-
tion, we study shrinking RWW- and RRWW-automata of window size
one that are monotone.

Keywords: Restarting automaton · Weight function ·
Language class · Window size

1 Introduction

The restarting automaton was introduced in [3] as a formal model for the lin-
guistic technique of ‘analysis by reduction’. A restarting automaton, RRWW-
automaton for short, is a device M that consists of a finite-state control, a
flexible tape containing a word delimited by sentinels, and a read/write window
of fixed finite size. This window is moved along the tape by move-right steps
until the control decides (nondeterministically) that the contents of the window
should be rewritten by some shorter string. In fact, the new string may contain
auxiliary symbols that do not belong to the input alphabet. After a rewrite, M
can continue to move its window until it either halts and accepts, or halts and
rejects, or restarts, which means that it places its window over the left end of
the tape and reenters its initial state. It follows that each computation of M can
be described through a sequence of cycles and a tail computation, where a cycle
is a part of a computation that begins after a restart step (or by the first step
from an initial configuration) and that ends with the next restart step, and the
tail is the part of a computation that begins after the last restart step, that is,

c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 140–153, 2019.
https://doi.org/10.1007/978-3-030-24886-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_10

Window Size One and Two 141

it ends with either an accept step or with M getting stuck in a configuration to
which no transition applies.

By requiring that an RRWW-automaton always performs a restart step
immediately after executing a rewrite operation, we obtain the so-called RWW-
automaton. Within any cycle such an automaton cannot scan the suffix of the
tape contents that is to the right of the position at which the rewrite operation
is performed. Although the definition of the RWW-automaton is clearly much
more restricted than that of the RRWW-automaton, it is a long-standing open
problem whether the class of languages L(RWW) accepted by RWW-automata
coincides with the class of languages L(RRWW) accepted by RRWW-automata.

In order to investigate the relationship between RWW- and RRWW-
automata, a generalization of the restarting automaton, called shrinking restart-
ing automaton, was introduced in [5]. A shrinking restarting automaton M is
defined just like an RRWW-automaton with the one exception that it is no longer
required that each rewrite step u → v of M must be length-reducing. Instead
there must exist a weight function ω that assigns a positive integer ω(a) to each
letter a of M ’s tape alphabet Γ such that, for each rewrite step u → v of M ,
ω(u) > ω(v) holds. Here the function ω is extended to a morphism ω : Γ ∗ → N

as usual.
In [4] it was shown that the monotone variants (see Sect. 3) of the nonde-

terministic RWW- and RRWW-automaton accept exactly the context-free lan-
guages, while the corresponding deterministic automata characterize the class
of deterministic context-free languages. In [17] Schluter proves that the context-
free languages are already accepted by monotone RWW-automata of window
size two, and in [12] a corresponding result has been established for deterministic
monotone RWW-automata. In fact, these results carry over to shrinking RWW-
automata (see, e.g., [16]). Further, it is shown in [17] that for nondeterministic
RRWW-automata, window size two suffices, while for deterministic RWW-and
RRWW-automata, which characterize the Church-Rosser languages [13,14], it is
still open whether there exists an infinite ascending hierarchy of language classes
based on window size. Finally, it has been noted that deterministic RWW- and
RRWW-automata of window size one just accept the regular languages [6,10].

Here we study the expressive power of shrinking RWW- and RRWW-
automata of window size one and two. We will see that for nondeterministic
shrinking RRWW-automata, already window size one suffices. On the other
hand, for nondeterministic shrinking RWW-automata, window size nine suffices,
but window size one does not, as for these automata we already need window
size two to accept all growing context-sensitive languages. In fact, it remains
open whether window size nine is the smallest possible, that is, whether shrink-
ing RWW-automata of window size eight are really less powerful than those of
window size nine.

We also consider shrinking RWW-automata and monotone shrinking
RRWW-automata of window size one and their deterministic variants. We
will see that deterministic shrinking RWW- and RRWW-automata of win-
dow size one just accept the regular languages, as do the monotone shrinking

142 F. Mráz and F. Otto

RWW-automata of window size one. However, shrinking RWW-automata and
monotone shrinking RRWW-automata of window size one are strictly more
expressive.

This paper is structured as follows. After presenting the necessary definitions
and some notation in Sect. 2, we concentrate on monotone nondeterministic and
deterministic shrinking RWW- and RRWW-automata of window size one and
two in Sect. 3, and in the next section we study non-monotone automata. The
paper closes with Sect. 5 in which we summarize our results using a diagram
displaying all the language classes considered and state some open problems.

2 Definitions and Notation

Throughout the paper λ will denote the empty word, and N+ will denote the
set of all positive integers, while N is used to denote the set of all non-negative
integers. Further, for any type of automaton X, we will use the notation L(X) to
denote the class of languages that are accepted by automata of type X.

A (one-way) restarting automaton, RRWW-automaton for short, is a one-
tape machine that is described by an 8-tuple M = (Q,Σ, Γ, ¢, $, q0, k, δ), where
Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite tape alphabet
containing Σ, the symbols ¢, $ �∈ Γ , called sentinels, serve as markers for the
left and right borders of the work space, respectively, q0 ∈ Q is the initial state,
k ≥ 1 is the size of the read/write window, and

δ : Q × PC(k) → P((Q × ({MVR} ∪ PC≤(k−1))) ∪ {Restart,Accept})

is the transition relation. Here P(S) denotes the powerset of the set S, PC(k) is
the set of possible contents of the read/write window of M , where

PC(i) := ({¢} · Γ i−1) ∪ Γ i ∪ (Γ≤i−1 · {$}) ∪ ({¢} · Γ≤i−2 · {$}) (i ≥ 0),

and

Γ≤n :=
n⋃

i=0

Γ i and PC≤(k−1) :=
k−1⋃

i=0

PC(i).

For any contents u ∈ PC(k) of the read/write window and a state q ∈ Q, the
transition relation δ(q, u) can contain four different types of transition steps:

1. A move-right step is of the form (q′,MVR) ∈ δ(q, u), where q′ ∈ Q and u �= $.
If M is in state q and sees the string u in its read/write window, then this
move-right step causes M to shift the read/write window one position to
the right and to enter state q′. However, if the contents u of the read/write
window is only the symbol $, then no shift to the right is possible.

2. A rewrite step is of the form (q′, v) ∈ δ(q, u), where q′ ∈ Q, u �= $, and
v ∈ PC≤(k−1) such that |v| < |u|. It causes M to replace the contents u of
the read/write window by the string v, thereby shortening the tape, and to
enter state q′. Further, the read/write window is placed immediately to the

Window Size One and Two 143

right of the string v. However, some additional restrictions apply in that the
sentinels ¢ and $ must not disappear from the tape nor that new occurrences
of these symbols are created.

3. A restart step is of the form Restart ∈ δ(q, u). It causes M to place the
read/write window over the left end of the tape, so that the first symbol it
sees is the left sentinel ¢, and to reenter the initial state q0.

4. An accept step of the form Accept ∈ δ(q, u) causes M to halt and accept.

If δ(q, u) = ∅ for some q ∈ Q and u ∈ PC(k), then M necessarily halts when
it is in state q with the string u in its window, and we say that M rejects in this
situation. There is one additional restriction that the transition relation must
satisfy. This restriction says that, when ignoring move operations, rewrite steps
and restart steps alternate within any computation of M , with a rewrite step
coming first.

A configuration of M can be described by a string αqβ, where q ∈ Q, and
either α = λ and β ∈ {¢} · Γ ∗ · {$} or α ∈ {¢} · Γ ∗ and β ∈ Γ ∗ · {$}; here
q represents the current state, αβ is the current contents of the tape, and it
is understood that the window contains the first k symbols of β or all of β
when |β| ≤ k. A restarting configuration is of the form q0¢w$, where w ∈ Γ ∗; if
w ∈ Σ∗, then q0¢w$ is an initial configuration. Thus, initial configurations are
a particular type of restarting configurations.

A phase of a computation of M , called a cycle, begins with a restarting
configuration, the window moves along the tape performing MVR operations
and a single rewrite operation until a restart operation is performed and, thus,
a new restarting configuration is reached. Hence, a computation consists of a
sequence of cycles that is followed by a tail, which is the part of a computation
that comes after the last restart operation. By 	c

M we denote the relation on
restarting configurations that is induced through the execution of a cycle, and we
use 	c∗

M to denote its reflexive and transitive closure. The above restriction on the
transition relation implies that M performs exactly one rewrite operation during
each cycle – thus each new phase starts on a shorter word than the previous one,
and that it executes at most one rewrite operation during a tail computation.

An input word w ∈ Σ∗ is accepted by M , if there is a computation which,
starting with the initial configuration q0¢w$, finishes by executing an accept
step. By L(M) we denote the language consisting of all (input) words accepted
by M ; we say that M accepts the language L(M).

In general, an RRWW-automaton is nondeterministic, that is, for some pairs
(q, u), there may be more than one applicable transition step. If this is not the
case, then the automaton is deterministic. We use the prefix det- to denote
classes of deterministic restarting automata.

An RWW-automaton is an RRWW-automaton that is required to execute a
restart step immediately after performing a rewrite step. Accordingly, for RWW-
automata we combine a rewrite step with the subsequent restart step into a single
combined rewrite/restart step to simplify the notation:

– A combined rewrite/restart step is of the form v ∈ δ(q, u), where q, q′ ∈ Q,
u ∈ PC(k), u �= $, and v ∈ PC≤(k−1) such that |v| < |u|. It causes M to

144 F. Mráz and F. Otto

replace the contents u of the read/write window by the string v, thereby
shortening the tape, to place the read/write window over the left end of the
tape, so that the first symbol it sees is the left sentinel ¢, and to reenter the
initial state q0.

The size of the read/write window is an essential parameter of a restarting
automaton. For each k ≥ 1, we use the notation X(k) to denote those restarting
automata of type X that have a read/write window of size k.

Recall that the computation of a restarting automaton proceeds in cycles,
where each cycle contains exactly one rewrite step. Thus, each cycle C contains
a unique configuration of the form αqβ in which a rewrite step is applied. Now
|β| is called the right distance of C, which is denoted by Dr(C).

A sequence of cycles S = (C1, C2, . . . , Cn) is called monotone if Dr(C1) ≥
Dr(C2) ≥ · · · ≥ Dr(Cn). A computation is monotone, if the corresponding
sequence of cycles is monotone. Observe that here the tail of the computation
is not taken into account. Finally, a restarting automaton is called monotone,
if all its computations that start with an initial configuration are monotone.
The prefix mon- is used to denote the various classes of monotone restarting
automata.

The following result is an extension of the characterization of the (determin-
istic) context-free languages by (deterministic) monotone restarting automata
that is presented in [4].

Theorem 1 [12,17]
(a) CFL = L(mon-RWW(2)) = L(mon-RRWW(2)).
(b) DCFL = L(det-mon-RWW(2)) = L(det-mon-RRWW(2)).

Concerning window size one, the following results are known.

Theorem 2 [6,10]
(a) REG = L((mon-)RWW(1)) = L(det-(mon-)RRWW(1)).
(b) REG � L(mon-RRWW(1)) � CFL.

Thus, window size one restricts the expressive power of monotone determin-
istic and non-deterministic RWW- and RRWW-automata considerably.

3 On Monotone Shrinking Restarting Automata

The shrinking restarting automaton, which was introduced in [5], is a generalized
type of restarting automaton. A shrinking restarting automaton M is defined just
like an RRWW-automaton with the one exception that it is no longer required
that each rewrite step u → v of M must be length-reducing. Instead there must
exist a weight function ω that assigns a positive integer ω(a) to each letter a of
M ’s tape alphabet Γ such that, for each rewrite step u → v of M , ω(u) > ω(v)
holds. Here the function ω is extended to a morphism ω : Γ ∗ → N by taking
ω(λ) = 0 and ω(wa) = ω(w) + ω(a) for all words w ∈ Γ ∗ and all letters a ∈ Γ .

Window Size One and Two 145

We will use the notation sRRWW and sRWW to denote shrinking RRWW- and
RWW-automata.

It has been observed that the simulations of monotone RRWW-automata
by pushdown automata presented in [4] extend to shrinking RRWW-automata,
both in the nondeterministic as well as in the deterministic case [16]. Thus, we
immediately obtain the following result from Theorem 1.

Corollary 3 [12,17]
(a) CFL = L(mon-sRWW(2)) = L(mon-sRRWW(2)).
(b) DCFL = L(det-mon-sRWW(2)) = L(det-mon-sRRWW(2)).

Next we study monotone sRWW- and sRRWW-automata of window size
one. Concerning the former we have the following result which extends the cor-
responding result for monotone RWW(1)-automata.

Theorem 4. L(mon-sRWW(1)) = REG.

Proof. This result can be proved by using a construction that turns a mono-
tone sRWW(1)-automaton M into a stateless ORWW-automaton Ms such that
L(Ms) = L(M). Here an ORWW-automaton is an sRWW(3)-automaton the
rewrite steps of which just replace the symbol in the middle of the window by
a smaller letter, that is, by a letter with less weight. These ORWW-automata
have been studied in [8,9]. An ORWW-automaton is called stateless, if it has
no other states but the initial one. It is known that stateless ORWW-automata
just accept the regular languages [8]. �

For monotone sRRWW(1)-automata, we have the following result.

Theorem 5. REG � L(mon-RRWW(1)) � L(mon-sRRWW(1)).

Proof. Let M = (Q, {a, b}, {a, b}, ¢, $, q0, 1, δ) be the RRWW(1)-automaton that
is defined by taking Q = {q0, q1, q2, p0, p1, p2} and by defining the transition
relation δ as follows:

(1) δ(q0, ¢) = {(q0,MVR)}, (7) δ(q1, b) = {(p1, λ)},
(2) δ(q0, $) = {Accept}, (8) δ(q2, b) = {(p2, λ)},
(3) δ(q0, a) = {(p0, λ), (q2,MVR)}, (9) δ(p1, b) = {(p2,MVR)},
(4) δ(q1, a) = {(p2, λ), (q2,MVR)}, (10) δ(p2, b) = {(p1,MVR)},
(5) δ(q2, a) = {(p1, λ), (q1,MVR)}, (11) δ(p2, $) = {Restart}.
(6) δ(p0, $) = {Accept},

We claim that L(M) = { ambn | m ∈ {n, n + 1}, n ≥ 0 }, which is not a regular
language. Obviously, M accepts the empty word λ and the word a. Further, it is
easily seen that M only accepts words from the regular language a∗ · b∗. Now let
w = ambn be given as input, that is, we have the initial configuration q0¢ambn$.
If M deletes one of the first m − 1 occurrences of the letter a, then it gets stuck
immediately thereafter. Hence, we see that M either deletes the last occurrence
of the letter a or the first occurrence of the letter b, which implies that M is
monotone. From the indices of the states used, we see that to complete a cycle

146 F. Mráz and F. Otto

through the restart operation (11), M must delete the last occurrence of the
letter a, if m and n do not have the same parity mod 2, and M must delete the
first occurrence of the letter b, if m and n have the same parity mod 2. Indeed,
if m is even, then depending on the parity of n, we have the following cycles:

q0¢a2rb2s+1$ 	2r
M ¢a2r−1q2ab2s+1$ 	M ¢a2r−1p1b

2s+1$
	2s+1
M ¢a2r−1b2s+1p2$ 	M q0¢a2r−1b2s+1$,

or

q0¢a2rb2s$ 	2r+1
M ¢a2rq1b

2s$ 	M ¢a2rp1b
2s−1$

	2s−1
M ¢a2rb2s−1p2$ 	M q0¢a2rb2s−1$,

and analogously for the case that m is uneven. Further, in each of these cases,
if another occurrence of the letter b is added, in this way changing the relative
parities of a’s and b’s, then M reaches the right sentinel while being in state p1,
and hence, it gets stuck. It follows that L(M) = L′

2.
By replacing the first letter a by an auxiliary letter a′ and verifying that

the number of a’s has the same parity mod 2 as the number of b’s on the tape
during the first cycle, the monotone RRWW(1)-automaton above is turned into
a monotone sRRWW(1)-automaton for the language L2 = { ambm | m ≥ 0 }.
However, it is easily seen that this language is not accepted by any RRWW(1)-
automaton. �

In fact, even the language Lpal,c = {wcwR | w ∈ {a, b}∗ } of marked palin-
dromes is accepted by a monotone sRRWW(1)-automaton. Currently it remains
open whether all context-free languages can be accepted by monotone sRRWW-
automata of window size one.

4 On Non-monotone Shrinking Restarting Automata

In [5] the following result has been established, where FA denotes the class of
finite-change automata from [18]. A finite-change automaton is a nondeterminis-
tic linear-bounded automaton that does not change the contents of any tape cell
more than r times during any accepting computation, where r ≥ 1 is a constant.

Theorem 6 [5]. L(FA) = L(sRWW) = L(sRRWW).

In the proof of Lemma 17 in [5] it is shown that a finite-change automa-
ton A can be simulated by an sRRWW-automaton M of window size one. In
fact, the sRRWW(1)-automaton M just performs rewrites that replace a sin-
gle letter by another single letter. Hence, M can be interpreted as an ordered
RRWW-automaton (ORRWW-automaton) as defined in [7]. These are sRRWW-
automata that have a window of size three, but the rewrite steps of which just
replace the symbol in the middle of the window by a smaller letter, that is, by
a letter of less weight. This yields the following consequence.

Window Size One and Two 147

Corollary 7. L(FA) = L(sRRWW(1)) = L(ORRWW).

The simulation of an sRRWW-automaton of window size k by an sRWW-
automaton given in [5] yields that the latter has window size max{2k, 9}, which
gives the following result.

Corollary 8. L(FA) = L(sRWW(9)).

It remains open whether sRWW-automata of window size k ∈ {2, 3, . . . , 8}
are really less expressive than finite-change automata. However, concerning
sRWW(1)-automata we have the following result. Recall that an ORWW-
automaton is an sRWW(3)-automaton the rewrite steps of which just replace
the symbol in the middle of the window by a smaller letter, that is, by a letter
with less weight [8,9].

Theorem 9. REG � L(sRWW(1)) ⊆ L(ORWW).

Proof. As a finite-state acceptor can be simulated by an sRWW(1)-automaton
that does not use any rewrite/restart operations, REG ⊆ L(sRWW(1)). To
prove that this is a proper inclusion, we consider the example language
L≥ = { am+nbn | m,n ≥ 0 }, which is easily seen to be a deterministic
context-free language that is not regular. An sRWW(1)-automaton M≥ =
(Q, {a, b}, Γ, ¢, $, q0, 1, δ) for this language can be defined by taking Q =
{q0, q1, q2, p0, p1, p2}, Γ = {a, b, a1, a2, a3, b1, b2}, and by defining the transition
relation δ as follows:

(1) δ(q0, ¢) = {(q0,MVR)}, (12) δ(q1, b2) = {(p1,MVR)},
(2) δ(q0, $) = {Accept}, (13) δ(q1, $) = {Accept},
(3) δ(q0, a) = {a1}, (14) δ(q2, a) = {(q2,MVR)},
(4) δ(q0, a1) = {(q1,MVR), a2}, (15) δ(q2, b1) = {b2},
(5) δ(q0, a2) = {(q2,MVR), a3}, (16) δ(q2, b2) = {(p2,MVR)},
(6) δ(q0, a3) = {(q0,MVR)}, (17) δ(p1, b2) = {(p1,MVR)},
(7) δ(q0, b2) = {(p0,MVR)}, (18) δ(p1, b) = {b1},
(8) δ(p0, b2) = {(p0,MVR)}, (19) δ(p1, $) = {Accept},
(9) δ(p0, $) = {Accept}, (20) δ(p2, b2) = {(p2,MVR)},

(10) δ(q1, a) = {(q1,MVR)}, (21) δ(p2, b1) = {b2}.
(11) δ(q1, b) = {b1},

From the form of the transitions it is easily seen that M≥ performs an accepting
tail computation iff the tape contents is of the form z = am

3 bn2 for some m,n ≥ 0
or of the form am

3 a1a
rbn2 for some m,n, r ≥ 0. Thus, the corresponding input is

of the form asbt for some s, t ≥ 0. During an accepting computation on an input
of this form, the occurrences of the letter a are rewritten, from left to right,
first into a1, then into a2, and finally into a3. Analogously, the occurrences
of the letter b are rewritten, from left to right, first into b1 and then into b2.
However, an occurrence of b can only be rewritten into b1 if in that cycle, the
rightmost occurrence of the letter a that has already been rewritten happens to
be an a1, and an occurrence of b1 can only be rewritten into b2 if in that cycle,

148 F. Mráz and F. Otto

the rightmost occurrence of the letter a that has already been rewritten happens
to be an a2. It follow that s ≥ t, that is, L(M≥) = L≥. Thus, REG is indeed a
proper subclass of L(sRWW(1)).

Next we prove that each sRWW(1)-automaton can be simulated by an
ORWW-automaton. Let M = (Q,Σ, Γ, ¢, $, q0, 1, δ) be an sRWW(1)-automaton
that is compatible with the weight function ϕ : Γ → N+, and let c = max{ϕ(X) |
X ∈ Σ }. Without loss of generality we can assume that M only accepts with
its read/write window on the right sentinel $.

We define an ORWW-automaton Mo = (Q,Σ,Δ, ¢, $, q0, 3, δo, >) as follows.
First let Δ = Σ ∪ { [α] | α ∈ Γ ∗, ϕ(α) ≤ c }. Here the symbol [α] encodes
the word α ∈ Γ ∗, where the weight ϕ(α) is bounded by the constant c. As
the weight of each letter a ∈ Γ is positive, we see that there are only finitely
many words from Γ ∗ with weight bounded from above by c. Hence, Δ is indeed
a finite alphabet. We define a morphism ψ : Δ∗ → Γ ∗ through ψ(a) = a for
all a ∈ Σ and ψ([α]) = α for all [α] ∈ Δ � Σ, and we define the partial
ordering > on Δ by taking, for all a, b ∈ Σ, a > [a], and for all x, y ∈ Δ � Σ,
x > y if ϕ(ψ(x)) > ϕ(ψ(y)). Finally we specify the transition relation δo as
follows, where 	MVR denotes the single-step computation relation that is induced
by the MVR steps of M , a, b ∈ Σ, u, v, z, α, γ ∈ Γ ∗, ω ∈ Δ, X,Y ∈ Γ , and
q, q1, q2 ∈ Q:

(1) δo(q0, ¢$) = {Accept}, if q0¢$ �MVR ¢q1$ and δ(q1, $) = {Accept},
(2) δo(q0, ¢a$) = {¢[a]$},

(3) δo(q0, ¢[u]$) = {Accept}, if q0¢u$ �|u|+1
MVR ¢uq1$ and δ(q1, $) = {Accept},

(4) δo(q0, ¢[uXv]$) � ¢[uzv]$, if q0¢uXv$ �|u|+1
MVR ¢uq1Xv$ and δ(q1, X) � z,

(5) δo(q0, ¢ab) = {¢[a]b},

(6) δo(q0, ¢[u]ω) � (q1,MVR), if q0¢uψ(ω) �|u|+1
MVR ¢uq1ψ(ω),

(7) δo(q0, ¢[uXv]ω) � ¢[uzv]ω, if q0¢uXv �|u|+1
MVR ¢uq1Xv and δ(q1, X) � z,

(8) δo(q1, [α]ab) = {[α][a]b},

(9) δo(q1, [α][u]ω) � (q2,MVR), if q1uψ(ω) �|u|
MVR uq2ψ(ω),

(10) δo(q1, [α][uXv]ω) � [α][uzv]ω, if q1uXv �|u|
MVR uq2Xv and δ(q2, X) � z,

(11) δo(q1, [α]a$) = {[α][a]$},

(12) δo(q1, [α][u]$) = {Accept}, if q1u$ �|u|
MVR uq2$ and δ(q2, $) = {Accept},

(13) δo(q1, [α][uXv]$) � [α][uzv]$, if q1uXv �|u|
MVR uq2Xv and δ(q2, X) � z.

All rewrite steps of Mo do either replace an input letter a by the auxiliary
letter [a] or they simulate a rewrite step of M on some auxiliary symbol. Hence,
each rewrite step replaces a letter by a smaller one with respect to the partial
ordering >. Thus, we see that Mo is indeed an ORWW-automaton.

It remains to prove that Mo accepts the same language as M . It is easily seen
from the definition of δo that Mo accepts on input λ iff M accepts on input λ.
So let w = a1a2 · · · an be given as input, where n ≥ 1 and a1, a2, . . . , an ∈ Σ.
Assume that w ∈ L(M), that is, M has an accepting computation on input w.

Window Size One and Two 149

As M only accepts with its read/write window on the right sentinel $, this
computation looks as follows:

q0¢w$ = q0¢a1a2 · · · an$ 	c
M q0¢w1$ 	c

M q0¢w2$
	c
M . . . 	c

M q0¢wm$ 	+
MVR ¢wmq+$ 	M Accept,

where q+ ∈ Q, δ(q+, $) = {Accept}, and w1, w2, . . . , wm ∈ Γ ∗. As M is shrinking
and has window size one, each word wi can be factored as wi = ui,1ui,2 · · · ui,n,
where ui,j is the factor of wi that is obtained from the input letter aj by those
rewrite steps in the above computation that have been applied to aj and to the
j-th factors of w2, w3, . . . , wi−1.

Now the ORWW-automaton Mo proceeds as follows. On input w =
a1a2 · · · an, it replaces each letter aj by the auxiliary symbol [aj] using instruc-
tions (2), (5), (8), and (11). Then it simulates the cycles of M by performing the
rewrite steps from M ’s computation within the corresponding auxiliary symbols,
that is, if in a cycle

q0¢wi$ = q0¢ui,1ui,2 · · · ui,j−1ui,jui,j+1 · · · ui,n$
	c
M q0¢ui,1ui,2 · · · ui,j−1ui+1,jui,j+1 · · · ui,n$
= q0¢wi+1$

the factor ui,j is rewritten into the factor ui+1,j , then Mo executes the cycle

q0¢w′
i$ = q0¢[ui,1][ui,2] · · · [ui,j−1][ui,j][ui,j+1] · · · [ui,n]$

	c
M q0¢[ui,1][ui,2] · · · [ui,j−1][ui+1,j][ui,j+1] · · · [ui,n]$
= q0¢w′

i+1$

by rewriting the letter [ui,j] into the letter [ui+1,j], using one of the instructions
(4), (7), (10), and (13). Here it is possible that some of the factors ui,j+1 to
ui,n are just input letters that have not yet been rewritten by Mo into auxiliary
symbols. Finally, as

q0¢wm$ = q0¢um,1um,2 · · · um,n$ 	∗
MVR ¢um,1um,2 · · · um,nq+$

and δ(q+, $) = {Accept}, Mo can execute an accepting tail computation starting
from the configuration

q0¢w′
m$ = q0¢[um,1][um,2] · · · [um,n]$

using instructions (3), (6), (9), and (12).
Conversely, it is easily seen that each accepting computation of Mo is just

the simulation of an accepting computation of M . Thus, L(M0) = L(M) follows,
which completes the proof of Theorem 9. �

The technique used in the construction of the sRWW(1)-automaton for the
language L≥ can easily be extended to show that also the following language

L′
copy = {w#u | w, u ∈ {a, b}∗, |w|, |u| ≥ 2, u is a scattered subword of w }

150 F. Mráz and F. Otto

is accepted by an sRWW(1)-automaton. In [8] it is shown that this language is
not even growing context-sensitive.

Based on a pumping lemma for ORWW-automata, it is shown in [9] that
the deterministic linear language L = { anbn | n ≥ 0 } is not accepted
by any ORWW-automaton. Thus, L(ORWW) is clearly a proper subclass of
L(sRWW) = L(FA). It remains open whether the inclusion L(sRWW(1)) ⊆
L(ORWW) is proper.

Now we turn to sRWW-automata of window size two. We will see that these
automata accept all growing context-sensitive languages. The growing context-
sensitive languages (GCSL) are generated by growing grammars, that is, a lan-
guage L ⊆ Σ∗ is growing context-sensitive if it is generated by a grammar
G = (N,Σ, S, P) such that, for each production (
 → r) ∈ P ,
 = S or
|
| < |r| (see, e.g., [2]), but they have also been characterized by shrinking two-
pushdown automata (sTPDA) in [1]. Based on this characterization and the fact
that GCSL � L(sRWW) = L(FA), the following inclusion result can be derived.

Theorem 10. GCSL � L(sRWW(2)).

Proof. As the language L′
copy mentioned above is accepted by an sRWW(1)-

automaton, we see that L(sRWW(2)) contains a language that is not growing
context-sensitive. On the other hand, it can be shown that each sTPDA can be
simulated by an sRWW(2)-automaton. �

Further, it is easily seen that each ORWW-automaton can be simulated by
an sRWW(2)-automaton, that is, we also have the following proper inclusion.

Corollary 11. L(ORWW) � L(sRWW(2)).

Finally, we consider deterministic sRWW- and sRRWW-automata. The con-
struction in the second part of the proof of Theorem 9 carries over to the
deterministic case, and it can easily be extended to simulate a det-sRRWW(1)-
automaton by a det-ORRWW-automaton. As det-ORWW-automata and det-
ORRWW-automata only accept regular languages (see [7,11]), we obtain the
following results.

Theorem 12. (a) L(det-sRWW(1)) = L(det-ORWW) = REG.
(b) L(det-sRRWW(1)) = L(det-ORRWW) = REG.

Also the simulation of an sTPDA by an sRWW(2)-automaton in the proof
of Theorem 10 carries over to the deterministic case. As deterministic sTPDAs
characterize the class CRL of Church-Rosser languages [15], this yields the fol-
lowing result.

Corollary 13. L(det-sRWW(2)) = L(det-sRRWW(2)) = CRL.

Window Size One and Two 151

5 Conclusion

We have studied the expressive power of shrinking restarting automata of small
window size. We have seen that for sRRWW-automata, already window size
one suffices, while for monotone and/or deterministic sRWW- and sRRWW-
automata, window size two is required to obtain the full expressive power of
these types of automata. In particular, we have seen that for deterministic
shrinking RWW- and RRWW-automata, the hierarchy based on window size
consists of only two levels: window size one yields the regular languages, and
window size k ≥ 2 yields the Church-Rosser languages. The corresponding
question is still open for deterministic RWW- and RRWW-automata (see [12]).
Also it remains open whether sRWW(1)-automata are as powerful as ORWW-
automata, whether window size nine is really needed to obtain the full power of

Fig. 1. The taxonomy of (shrinking) restarting automata with small window size. An
arrow → denotes a proper inclusion, while →? denotes an inclusion which is not known
to be proper.

152 F. Mráz and F. Otto

sRWW-automata, and whether monotone sRRWW(1)-automata accept all
context-free languages. The diagram in Fig. 1 summarizes the characterizations
and inclusion relations that we have obtained for (shrinking) restarting automata
of small window size.

References

1. Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser
languages. Inf. Comput. 141, 1–36 (1998)

2. Dahlhaus, E., Warmuth, M.: Membership for growing context-sensitive grammars
is polynomial. J. Comput. Syst. Sci. 33, 456–472 (1986)

3. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-60249-6 60

4. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On monotonic automata with a restart
operation. J. Aut. Lang. Comb. 4, 287–311 (1999)

5. Jurdziński, T., Otto, F.: Shrinking restarting automata. Int. J. Found. Comput.
Sci. 18, 361–385 (2007)

6. Kutrib, M., Reimann, J.: Succinct description of regular languages by weak restart-
ing automata. In: Loos, R., Fazekas, S., Martin-Vide, C. (eds.) Preproc., LATA
2007, pp. 343–354. Report 35/07, Research Group on Mathematical Linguistics,
Universitat Rovira i Virgili, Tarragona (2007)

7. Kwee, K., Otto, F.: On ordered RRWW-automata. In: Brlek, S., Reutenauer,
C. (eds.) DLT 2016. LNCS, vol. 9840, pp. 268–279. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53132-7 22

8. Kwee, K., Otto, F.: On the effects of nondeterminism on ordered restarting
automata. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM 2016. LNCS,
vol. 9587, pp. 369–380. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49192-8 30

9. Kwee, K., Otto, F.: Nondeterministic ordered restarting automata. Int. J. Found.
Comput. Sci. 29, 663–685 (2018)

10. Mráz, F.: Lookahead hierarchies of restarting automata. J. Aut. Lang. Comb. 6,
493–506 (2001)

11. Mráz, F., Otto, F.: Ordered restarting automata for picture languages. In: Geffert,
V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS,
vol. 8327, pp. 431–442. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
04298-5 38

12. Mraz, F., Otto, F.: Window size two suffices for deterministic monotone RWW-
automata. In: Freund, R., Holzer, M., Sempere, J. (eds.) Proceedings of NCMA
2019, books@ocg.at, vol. 336, pp. 139–154. Österreichische Computer Gesellschaft,
Wien (2019)

13. Niemann, G., Otto, F.: Restarting automata, Church-Rosser languages, and rep-
resentations of r.e. languages. In: Rozenberg, G., Thomas, W. (eds.) Proceedings
of DLT 1999, pp. 103–114. World Scientific, Singapore (2000)

14. Niemann, G., Otto, F.: Further results on restarting automata. In: Ito, M., Imaoka,
T. (eds.) Words, Languages and Combinatorics III, Proceedings, pp. 352–369.
World Scientific, Singapore (2003)

15. Niemann, G., Otto, F.: The Church-Rosser languages are the deterministic variants
of the growing context-sensitive languages. Inf. Comput. 197, 1–21 (2005)

https://doi.org/10.1007/3-540-60249-6_60
https://doi.org/10.1007/3-540-60249-6_60
https://doi.org/10.1007/978-3-662-53132-7_22
https://doi.org/10.1007/978-3-662-49192-8_30
https://doi.org/10.1007/978-3-662-49192-8_30
https://doi.org/10.1007/978-3-319-04298-5_38
https://doi.org/10.1007/978-3-319-04298-5_38

Window Size One and Two 153

16. Otto, F.: On shrinking restarting automata. In: Freund, R., Mráz, F., Pr̊uša,
D. (eds.) Proceedings of NCMA 2017, books@ocg.at, vol. 329, pp. 181–195.
Österreichische Computer Gesellschaft, Wien (2017)

17. Schluter, N.: Restarting automata with auxiliary symbols restricted by lookahead
size. Int. J. Comput. Math. 92, 908–938 (2015)

18. von Braunmühl, B., Verbeek, R.: Finite-change automata. In: Weihrauch, K. (ed.)
GI-TCS 1979. LNCS, vol. 67, pp. 91–100. Springer, Heidelberg (1979). https://doi.
org/10.1007/3-540-09118-1 11

https://doi.org/10.1007/3-540-09118-1_11
https://doi.org/10.1007/3-540-09118-1_11

The Teaching Complexity of Erasing
Pattern Languages with Bounded

Variable Frequency

Ziyuan Gao(B)

Department of Mathematics, National University of Singapore,
10 Lower Kent Ridge Road, Singapore 119076, Republic of Singapore

matgaoz@nus.edu.sg

Abstract. Patterns provide a concise, syntactic way of describing a set
of strings, but their expressive power comes at a price: a number of fun-
damental decision problems concerning (erasing) pattern languages, such
as the membership problem and inclusion problem, are known to be NP-
complete or even undecidable, while the decidability of the equivalence
problem is still open; in learning theory, the class of pattern languages
is unlearnable in models such as the distribution-free (PAC) framework
(if P/poly �= NP/poly). Much work on the algorithmic learning of pat-
tern languages has thus focussed on interesting subclasses of patterns
for which positive learnability results may be achieved. A natural restric-
tion on a pattern is a bound on its variable frequency – the maximum
number m such that some variable occurs exactly m times in the pat-
tern. This paper examines the effect of limiting the variable frequency
of all patterns belonging to a class Π on the worst-case minimum num-
ber of labelled examples needed to uniquely identify any pattern of Π
in cooperative teaching-learning models. Two such models, the teaching
dimension model as well as the preference-based teaching model, will be
considered.

1 Introduction

In the context of this paper, a pattern is a string made up of symbols from two
disjoint sets, a countable set X of variables and an alphabet Σ of constants.
The non-erasing pattern language generated by a pattern π is the set of all
words obtained by substituting nonempty words over Σ for all the variables in
π, under the condition that for any variable, all of its occurrences in π must
be replaced with the same word; the erasing pattern language generated by π
is defined analogously, the only difference being that the variables in π may be
replaced with the empty string. Unless stated otherwise, all pattern languages in
the present paper refer to erasing pattern languages. In computational learning
theory, the non-erasing pattern languages were introduced by Angluin [3] as a
motivating example for her work on the identification of uniformly decidable
families of languages in the limit. Shinohara [28] later introduced the class of
c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 154–167, 2019.
https://doi.org/10.1007/978-3-030-24886-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_11

Erasing Pattern Languages with Bounded Variable Frequency 155

erasing pattern languages, proving that the class of all such languages generated
by regular patterns (patterns in which every variable occurs at most once) is
polynomial-time learnable in the limit. Patterns and allied notions – such as
that of an extended regular expression [1,8,13,26], which has more expressive
power than a pattern – have also been studied in other fields, including word
combinatorics and pattern matching. For example, the membership problem for
pattern languages is closely related to the problem of matching ‘patterns’ with
variables (based on various definitions of ‘pattern’) in the pattern matching
community [2,6,9–11].

The present paper considers the problem of uniquely identifying pattern lan-
guages from labelled examples – where a labelled example for a pattern language
L is a pair (w, ∗) such that ∗ is “+” if w belongs to L and “−” otherwise – based
on formal teaching-learning models. We shall study two such models in the com-
putational learning theory literature: the well-known teaching dimension (TD)
model [16,27] and the preference-based teaching (PBT) model [15] (c.f. Sect. 3).
Given a model T and any class Π of patterns to be learnt, the maximum size of
a sample (possibly ∞) needed for a learner to successfully identify any pattern
in Π based on the teaching-learning algorithm of T is known as the teaching
complexity of Π (according to T). The broad question we try to partly address
is: what properties of the patterns in a given class Π of patterns influence the
teaching complexity of Π according to the TD and PBT models? More specifi-
cally, let Πm be a class of patterns π such that the maximum number of times
any single variable occurs in π (known here as the variable frequency of π) is at
most m; how does the teaching complexity of Πm vary with m? The variable
frequency of a pattern is quite a natural parameter that has been investigated
in other problems concerning pattern languages. For example, Matsumoto and
Shinohara [21] established an upper bound on the query complexity of learning
(non-erasing) pattern languages in terms of the variable frequency of the pat-
tern and other parameters; Fernau and Schmid [12] proved that the membership
problem for patterns remains NP-complete even when the variable frequency is
restricted to 2 (along with other parameter restrictions).

In this paper, one motivation for concentrating on the variable frequency
of a pattern rather than, say, the number of distinct variables occurring in the
pattern, comes from examining the teaching complexity of some basic patterns.
Take the constant pattern 0, where 0 is a letter in the alphabet Σ of constants.
The language generated by this pattern cannot be finitely distinguished (i.e.,
distinguished using a finite set of labelled examples) from every other pattern
language, even only those generated by a pattern with at most one variable.
Indeed, any finite set {(0,+), (w1,−), . . . , (wk,−)} of labelled examples for the
pattern 0 is also consistent with the pattern 0xm where m = max1≤i≤k |wi|. The
latter observation depends crucially on the fact that a variable may occur any
number of times in a pattern, and less so on the number of distinct variables
occurring in a pattern. A similar remark applies to the pattern languages gen-
erated by patterns with a constant part of length at least 2 [7, Theorem 3]. On
the other hand, if one were to teach the singleton language {0} w.r.t. all lan-
guages generated by patterns with variable frequency at most k for some fixed

156 Z. Gao

k, then a finite distinguishing set for {0} could consist of (0,+) plus all negative
examples (0n,−) with 2 ≤ n ≤ k + 1. This seems to suggest that the maximum
variable frequency of the patterns in a class of patterns may play a crucial role
in determining whether or not the languages generated by members of this class
are finitely distinguishable.

The first section of this work studies the teaching complexity of simple block-
regular patterns, which are equivalent to patterns of the shape x1a1x2a2 . . . an−1

xn, where x1, . . . , xn are distinct variables and a1, . . . , an−1 are constants. They
make up one of the simplest, non-trivial classes of patterns that have a restric-
tion on the variable frequency. Bayeh et al. [7] showed that over alphabets of size
at least 4, the languages generated by such patterns are precisely those that are
finitely distinguishable; we refine this result by determining, over any alphabet,
the TD and PBT dimensions of the class of simple block-regular patterns. Fur-
ther, we calculate the TD of these patterns w.r.t. the class of regular patterns
and provide an asymptotic lower bound for the TD of any given simple block-
regular pattern w.r.t. the whole class of patterns. In the subsequent section, we
proceed to the more general problem of determining, for various natural classes
Π of patterns that have a uniformly bounded variable frequency, those members
of Π that are finitely distinguishable. It will be proven that all m-quasi-regular
patterns (i.e. every variable of the pattern occurs exactly m times) and m-regular
(i.e. every variable occurs at most m times) non-cross patterns are finitely distin-
guishable w.r.t. the class of m-quasi-regular and m-regular non-cross patterns
respectively; moreover, the TD of the class of m-regular non-cross patterns is
even finite and in fact sublinear in m. Next, we present partial results on the
problem of determining the subclass of m-regular patterns that have a finite
TD. Over any infinite alphabet, every m-regular pattern is finitely distinguish-
able – contrasting quite sharply with the previously mentioned theorem that
over alphabets with at least 4 letters, the only patterns with a finite TD are the
simple block-regular ones. Over binary alphabets, on the other hand, there are
patterns that are not finitely distinguishable even when the variable frequency
is restricted to 4.

Due to space constraints, most proofs have been omitted. The full version of
the paper is available at https://arxiv.org/pdf/1905.07737.pdf.

2 Preliminaries

N0 denotes the set of natural numbers {0, 1, 2, . . .} and N = N0 \ {0}. Let X =
{x1, x2, x3, . . .} be an infinite set of variable symbols. An alphabet is a finite or
countably infinite set of symbols, disjoint from X. Fix an alphabet Σ. A pattern
is a nonempty finite string over X ∪ Σ. The class of patterns over any alphabet
Σ with z = |Σ| is denoted by Πz; this notation reflects the fact that all the
properties of patterns and classes of patterns considered in the present work
depend only on the size of the alphabet and not on the actual letters of the
alphabet. The erasing pattern language L(π) generated by a pattern π over Σ
consists of all strings generated from π when replacing variables in π with any

https://arxiv.org/pdf/1905.07737.pdf

Erasing Pattern Languages with Bounded Variable Frequency 157

string over Σ, where all occurrences of a single variable must be replaced by the
same string [28]. Patterns π and τ over Σ are said to be equivalent iff L(π) =
L(τ); they are similar iff π = α1u1α2u2 . . . unαn and τ = β1u1β2u2 . . . unβn

for some u1, u2, . . . , un ∈ Σ+ and α1, . . . , αn, β1, . . . , βn ∈ X∗. Unless specified
otherwise, we identify any pattern π belonging to a class Π of patterns with
every other π′ ∈ Π such that L(π) = L(π′). Var(π) (resp. Const(π)) denotes the
set of all distinct variables (resp. constant symbols) occurring in π.

For any symbol a and n ∈ N0, an denotes the string equal to n concatenated
copies of a. For any alphabets A and B, a morphism is a function h : A∗ → B∗

with h(uv) = h(u)h(v) for all u, v ∈ A∗. A substitution is a morphism h :
(Σ ∪ X)∗ → Σ∗ with h(a) = a for all a ∈ Σ. By abuse of notation, we will often
use the same symbol h to represent the morphism (X ∪Σ)∗ �→ Σ∗ that coincides
with the substitution h on individual variables and with the identity function on
letters from Σ. Ih,π denotes the mapping of closed intervals of positions of π to
closed intervals of positions of h(π) induced by h; π(ε) denotes the word obtained
from π by substituting ε for every variable in π. Let 	 denote the subsequence
relation on Σ∗: u 	 v holds iff there are numbers i1 < i2 < . . . < i|u| such that
vij

= uj for all j ∈ {1, . . . , |u|}. Given any u, v ∈ Σ∗, the shuffle product of u and
v, denoted by u� v, is the set {u1v1u2v2 . . . ukvk : ui, vi ∈ Σ∗ ∧ u1u2 . . . uk =
u ∧ v1v2 . . . vk = v}. Given any A,B ⊆ Σ∗, the shuffle product of A and B,
denoted by A� B, is the set

⋃
u∈A∧v∈B u� v. If A = {u}, we will often write

A�B as u�B.

3 Teaching Dimension and Preference-Based Teaching
Dimension

Machine teaching focusses on the problem of designing, for any given learning
algorithm, an optimal training set for every concept belonging to a class of
concepts to be learnt [29]. Such a training set is sometimes known as a teaching
set. In this work, an “optimal” teaching set for a pattern π is one that has
the minimum number of examples labelled consistently with π needed for the
algorithm to successfully identify π (up to equivalence). We study the design
of optimal teaching sets for various classes of pattern languages w.r.t. (i) the
classical teaching dimension model [16,27], where it is only assumed that the
learner’s hypotheses are always consistent with the given teaching set; (ii) the
preference-based teaching model [15], where the learner has, for any given concept
class, a particular “preference relation” on the class, and the learner’s hypotheses
are always not only consistent with the given teaching set, but also not less
preferred to any other concept in the class w.r.t. the preference relation.

Fix an alphabet Σ. Let Π be any class of patterns, and suppose π ∈ Π. A
teaching set for πw.r.t. Π is a set T ⊆ Σ × {+,−} that is consistent with
π but with no other pattern in Π (up to equivalence), that is, w ∈ L(π)
for all (w,+) ∈ T and w /∈ L(π) for all (w,−) ∈ T . The teaching dimen-
sion of πw.r.t. Π, denoted by TD(π,Π) is defined as TD(π,Π) = inf{|T | :
T is a teaching set for π w.r.t. Π}. Furthermore, if Π ′ ⊆ Π, then the teaching

158 Z. Gao

dimension of Π ′w.r.t. Π, denoted by TD(Π ′,Π), is defined as TD(Π ′,Π) =
sup{TD(π,Π) : π ∈ Π ′}. The teaching dimension of Π, denoted by TD(Π), is
defined as TD(Π,Π).

In real-world learning scenarios, even the smallest possible teaching set for a
given concept relative to some concept class may be impractically large. Learn-
ing algorithms often make predictions based on a set of assumptions known
as the inductive bias, which may allow the algorithm to infer a target concept
from a small set of data even when there is more than one concept in the class
that is consistent with the data. Certain types of bias impose an a priori prefer-
ence ordering on the learner’s hypothesis space; for example, an algorithm that
adheres to the Minimum Description Length (MDL) principle favours hypothe-
ses that have shorter descriptions based on some given description language. The
preference-based teaching model, to be defined shortly, considers learning algo-
rithms with an inductive bias that specifies a preference ordering of the learner’s
hypotheses.

Let ≺ be a strict partial order on Π, i.e., ≺ is asymmetric and transitive.
The partial order that makes every pair π, π′ ∈ Π (where L(π)
= L(π′)) incom-
parable is denoted by ≺∅. For every π ∈ Π, let Π≺π = {π′ ∈ Π : π′ ≺ π} be the
set of patterns over which π is strictly preferred (as mentioned earlier, equiva-
lent patterns are identified with each other). A teaching set for πw.r.t. (Π,≺) is
defined as a teaching set for π w.r.t. Π\Π≺π. Furthermore define PBTD(π,Π,≺)
= inf{|T | : T is a teaching set for π w.r.t. (Π,≺)} ∈ N0 ∪ {∞}. The num-
ber PBTD(Π,≺) = supπ∈Π PBTD(π,Π,≺) ∈ N0 ∪ {∞} is called the teaching
dimension of (Π,≺). The preference-based teaching dimension of Π is given by
PBTD(Π) = inf{PBTD(Π,≺) :≺ is a strict partial order on Π}. For all pat-
tern classes Π and Π ′ with Π ′ ⊆ Π, K(Π ′) ≤ K(Π) for K ∈ {TD,PBTD} (i.e.
the TD and PBTD are monotonic) and PBTD(Π) ≤ TD(Π) [15].

4 Simple Block-Regular Patterns

Fix an alphabet Σ of size z ≤ ∞. A pattern π ∈ Πz is said to be simple block-
regular if it is of the shape X1a1X2a2 . . . an−1Xn, where X1, . . . , Xn ∈ X+,
a1, . . . , an−1 ∈ Σ, and for all i ∈ {1, . . . , n}, Xi contains a variable that does
not occur in any other variable block Xj with j
= i. Every simple block-regular
pattern is equivalent to a pattern π′ of the shape y1a1y2a2 . . . akyk+1, where
k ≥ 0, a1, a2, . . . , ak ∈ Σ and y1, y2, . . . , yk+1 are k + 1 distinct variables [17,
Theorem 6(b)]. SRΠz denotes the class of all simple block-regular patterns in
Πz. SRΠz is a subclass of the family of regular patterns (denoted by RΠz),
which are patterns in which every variable occurs at most once.

As mentioned in the introduction, the simple block-regular patterns consti-
tute precisely the subclass of finitely distinguishable patterns over any alphabet
of size at least 4 [7, Theorem 3]. The language generated by a simple block-
regular pattern is known as a principal shuffle ideal in word combinatorics [19,
§6.1], and the family of all such languages is an important object of study in the
PAC learning model [5].

Erasing Pattern Languages with Bounded Variable Frequency 159

The goal of this section is to determine the teaching complexity of the
class of simple block-regular patterns over any alphabet Σ w.r.t. three classes:
SRΠ |Σ| itself, RΠ |Σ| and Π |Σ|. It will be shown that TD(SRΠ |Σ|) <

TD(SRΠ |Σ|,RΠ |Σ|) < TD(SRΠ |Σ|,Π |Σ|). To this end, we introduce a uniform
construction of a certain negative example for any given pattern π; this exam-
ple is powerful enough to distinguish π from every simple block-regular pattern
whose constant part is a proper subsequence (not necessarily contiguous) of the
constant part of π.

Notation 1. For any word w = δm1
1 δm2

2 . . . δmk

k , where δ1, . . . , δk ∈ Σ and δi
=
δi+1 whenever 1 ≤ i < k, m1, . . . , mk ≥ 1 and k ≥ 1, define

ŵ := δm1−1
1 δm2

2 δ1
︸ ︷︷ ︸

δm2−1
2 δm3

3 δ2
︸ ︷︷ ︸

. . . δmi−1
i δ

mi+1
i+1 δi

︸ ︷︷ ︸
. . . δ

mk−1−1
k−1 δmk

k δk−1
︸ ︷︷ ︸

δmk−1
k︸ ︷︷ ︸

. (1)

(In particular, if m ≥ 1, then δ̂m
1 = δm−1

1 .)

Lemma 2. Fix any z ∈ N ∪ {∞} and any π, τ ∈ SRΠz with π(ε)
= ε. Then
π̂(ε) /∈ L(π). Furthermore, if τ(ε) � π(ε), then π̂(ε) ∈ L(τ).

Proof. Suppose π(ε) = δm1
1 δm2

2 . . . δmk

k , where δ1, . . . , δk ∈ Σ and δi
= δi+1

whenever 1 ≤ i < k, m1, . . . , mk ≥ 1 and k ≥ 1. That π̂(ε) /∈ L(π) may be
argued as follows: if k = 1, then π̂(ε) = δm1−1

1 � π(ε) is immediate; if k ≥ 2,
then one shows by induction that for i = 1, . . . , k − 1, δm1

1 δm2
2 . . . δmi

i δi+1
	
δm1−1
1 δm2

2 δ1
︸ ︷︷ ︸

δm2−1
2 δm3

3 δ2
︸ ︷︷ ︸

. . . δmi−1
i δ

mi+1
i+1 δi

︸ ︷︷ ︸
. For the second part of the lemma,

suppose τ(ε) = δn1
1 δn2

2 . . . δnk

k , where 0 ≤ ni ≤ mi for all i ∈ {1, . . . , k} and
ni0 ≤ mi0 −1 for some least number i0. Taking w = π(ε) in Eq. (1), observe that
δni
i 	 δmi−1

i δ
mi+1
i+1 δi for all i < i0, δ

ni0
i0

	 δ
mi0−1
i0

, and δ
nj

j 	 δ
mj

j δj−1δ
mj−1
j for

all j > i0. Thus, since τ is simple block-regular, one has that π̂(ε) ∈ L(τ). �

Lemma 2 now provides a tool for establishing the TD of SRΠz.

Theorem 3. For any z ∈ N ∪ {∞}, TD(SRΠz) = 2 and PBTD(SRΠz) = 1.

Proof. Fix any 0 ∈ Σ. The pattern π := x10x2 needs to be taught with at
least one negative example in order to distinguish it from x1. Suppose a teach-
ing set for π contains (w1w2 . . . wk,−), where w1, . . . , wk ∈ Σ. For any m ≥ 3,
w1w2 . . . wk /∈ L(π′), where π′ := x1w1x2w2x3 . . . xkwkxk+10xk+20 . . . 0xk+m.
Since π′ is simple block-regular and L(π′)
= L(π), at least one additional exam-
ple is required to distinguish π from π′. Hence TD(SRΠz) ≥ 2.

Let π be any simple block-regular pattern. Since x1 can be taught with the
single example (ε,+), we will suppose that π(ε)
= ε. A teaching set for π consists
of the two examples (π(ε),+) and (π̂(ε),−). By Lemma 2, (π̂(ε),−) is consistent
with π and (π̂(ε),−) distinguishes π from all patterns π′ such that π′(ε) � π(ε),
while (π(ε),+) distinguishes π from all patterns π′′ such that π′′(ε)
	 π(ε).

160 Z. Gao

Let ≺ be a preference relation on SRΠz such that for any π, τ ∈ SRΠz

with L(π)
= L(τ), π ≺ τ iff |π(ε)| < |τ(ε)|. Every π ∈ SRΠz can be taught
w.r.t. (SRΠz,≺) using the example (π(ε),+): for every τ ∈ SRΠz such that
L(τ)
= L(π) and π(ε) ∈ L(τ), τ(ε) � π(ε); thus |τ(ε)| < |π(ε)| and so π � τ . �

Not surprisingly, the TD of a simple block-regular pattern is in general larger
w.r.t. the whole class of regular patterns than w.r.t. the restricted class of simple
block-regular patterns. It might be worth noting that a smallest teaching set for
a simple block-regular pattern π need not necessarily contain π(ε) as a positive
example, as the proof of the following result shows.

Theorem 4. TD(SRΠz,RΠz) = 3.

To prove the lower bound in Theorem 4, it suffices to observe that any teaching
set (w.r.t. the whole class of regular patterns) for a non-constant regular pattern
not equivalent to x1 must contain at least two positive examples and one negative
example; for a very similar proof, see [7, Theorem 12.1]. We prove the upper
bound. If z = 1, then RΠz is the union of SRΠz and all constant patterns (up to
equivalence). By the proof of Theorem 3, any π ∈ SRΠz can be distinguished
from every non-equivalent τ ∈ SRΠz with one positive example or one positive
and one negative example; to distinguish π from any constant pattern, at most
one additional positive example is needed. Suppose z ≥ 2. The proof will be split
into the cases (i) |Σ| = 2 and (ii) |Σ| ≥ 3.

Lemma 5. If π ∈ SRΠ2, then TD(π,RΠ2) ≤ 3.

The basic proof idea of Lemma 5 – using positive examples to exclude certain
types of constant segments of the target pattern – can also be generalised to the
case |Σ| ≥ 3, although the details of the construction are more tedious.

Lemma 6. Suppose z = |Σ| ≥ 3. If π ∈ SRΠz, then TD(π,RΠz) ≤ 3.

The next result determines upper (for |Σ| ∈ {1,∞}) and lower (for |Σ| ∈
N ∪ {∞}) bounds for the TD of any given simple block-regular pattern w.r.t.
the whole class of patterns. It turns out that these bounds vary with the alpha-
bet size.

Theorem 7. Suppose z ∈ N ∪ {∞} and π = x1c1x2 . . . cn−1xn for some c1, . . . ,
cn−1 ∈ Σ and n ≥ 2. (i) If z ∈ {1,∞}, then TD(π,Πz) ∈ {1, 3}. (ii) If 2 ≤ z < ∞,
then TD(π,Πz) = Ω(|π|).

We do not know whether the lower bound given in Assertion (ii) of Theorem 7
is also an upper bound (up to numerical constant factors). In the proof of [7,
Proposition 4], it was shown that the TD of every simple block-regular pattern
π is O(2|π|).

Erasing Pattern Languages with Bounded Variable Frequency 161

5 Finite Distinguishability of m-Quasi-Regular,
Non-cross m-Regular and m-Regular Patterns

This section studies the problem of determining the subclass of finitely distin-
guishable patterns w.r.t. three classes: the m-quasi-regular patterns, the non-
cross m-regular patterns, and the m-regular patterns. The first two classes are
interesting from an algorithmic learning perspective as they provide natural
examples of pattern language families that are learnable in the limit1 [22,24].
The m-regular patterns are a fairly natural generalisation of the m-quasi-regular
patterns; as will be seen later, the class of constant-free 4-regular patterns is
not identifiable in the limit over binary alphabets, and in particular, not all
m-regular patterns are finitely distinguishable over binary alphabets.

Notation 8. Fix any � ≥ 0 and z,m ≥ 1. An �-variable pattern is one that has
at most � distinct variables. Let Πz

�,m denote the class of �-variable patterns π
such that every variable occurs at most m times in π; if � = ∞, then there is
no uniform upper bound on the number of distinct variables occurring in any
π ∈ Πz

�,m; if m = ∞, then there is no uniform upper bound on the number of
times any variable can occur. We call every π ∈ Πz

∞,m an m-regular pattern.
Πz

∞,m,cf denotes the class of all constant-free m-regular patterns.
Let QRΠz

�,m denote the class of all �-variable patterns π such that every
variable of π occurs exactly m times; again, if � = ∞, then there is no uniform
upper bound on the number of distinct variables occurring in any π ∈ QRΠz

�,m.
Every π ∈ QRΠz

∞,m is known as an m-quasi-regular pattern [22]. We denote
the class of constant-free m-quasi-regular patterns by QRΠz

∞,m,cf .

Mitchell [22] showed that for any m ≥ 1, the class of m-quasi-regular pattern
languages is learnable in the limit. The next theorem shows that for all z ≥ 1,
every m-quasi-regular pattern even has a finite teaching set w.r.t. QRΠz

∞,m.
Thus, at least as far as m-quasi-regular patterns are concerned, version space
learning with a helpful teacher is just as powerful as learning in the limit. We
begin with a lemma, which states that for any given m-quasi-regular pattern π
and every m-quasi-regular pattern τ with L(τ)
⊆ L(π), there is some S ⊆ Var(τ)
of size at most linear in |Var(π)| for which L

(
τ
∣
∣
Σ∪S

)

⊆ L(π); for any S′ ⊆ X∪Σ,

τ
∣
∣
S′ is the subsequence of τ obtained by deleting symbols not in S′.

Lemma 9. Fix Σ with z = |Σ| ≥ 2 and {0, 1} ⊆ Σ. Suppose m ≥ 1 and
π, τ ∈ QRΠz

∞,m. If τ(ε) = π(ε) and L(τ)
⊆ L(π), then there is some S ⊆ Var(τ)
with |S| ≤ 1 + (|π(ε)| + m + 4) · |Var(π)| such that L

(
τ
∣
∣
Σ∪S

)

⊆ L(π).

1 Roughly speaking, a class of languages is learnable in the limit if there is a learning
algorithm such that, given any infinite sequence of all positive examples for any
language L in the class, the algorithm outputs a corresponding sequence of guesses
for the target language (based on a representation system for the languages in the
class) that converges to a fixed representation for L; this model is due to Gold [14].

162 Z. Gao

Theorem 10. If z = 1, then TD(QRΠz
∞,m) = 3. If z ≥ 2, then for every

π ∈ QRΠz
∞,m, TD(π,QRΠz

∞,m) = O(2|π(ε)| + D · (|π(ε)| + D · m)D·m), where
D := max({(1/m) · (2 · |π| − |π(ε)|), 1 + (|π(ε)| + m + 4) · |Var(π)|}).

Next, we show that the PBTD of the class of constant-free m-quasi-regular
pattern languages is exactly 1 for large enough alphabet sizes. We establish
this value by observing that if the adjacency graph of a constant-free m-quasi-
regular pattern π [20, Chapter 3] has a colouring satisfying certain conditions,
where each colour corresponds to a letter in the alphabet, then such a colouring
can be used to construct a positive example for π that distinguishes it from all
shorter constant-free m-quasi-regular patterns.

Theorem 11. For any z ≥ 1, TD(QRΠz
∞,1,cf) = PBTD(QRΠz

∞,1,cf) = 0.
Suppose m ≥ 2. If z = |Σ| ≥ 4m2 + 1, then PBTD(QRΠz

∞,m,cf) = 1.

While the PBTD of the class of m-quasi-regular patterns remains open in full
generality, we observe that over unary alphabets, the PBTD of this class is
exactly 2 for any m ≥ 1.

Proposition 12. For any m ≥ 1, PBTD(QRΠ1
∞,m) = 2. If z ≥ 2, then

PBTD(QRΠz
∞,m) ≥ 2.

A non-cross pattern π is a constant-free pattern of the shape xn0
0 xn1

1 . . . xnk

k ,
where n0, n1, . . . , nk ∈ N. Let NCΠz

∞,m denote the class of all non-cross patterns
π over any Σ with |Σ| = z such that every variable of π occurs at most m times.
NCΠz

∞,∞ coincides with NCΠz, the class of all non-cross patterns. The next
main result shows that for any fixed m, the TD of every pattern in NCΠz

∞,m is
not only finite, but also has a uniform upper bound depending only on m. Slightly
more interestingly, the teaching complexity of NCΠz

∞,m in the preference-based
teaching model varies with the alphabet size when m ≥ 2: over unary alphabets,
the PBTD of this class is exactly linear in m, while over alphabets of size at least
2, the PBTD is exactly 1. In the following lemma, we observe certain properties
of an “unambiguous” word that was constructed in [24, Lemma 13].

Lemma 13 (Based on [24, Lemma 13]). Suppose {0, 1} ⊆ Σ. Fix any m ≥ 2,
and let π = xn0

0 . . . xnk

k , where n0, . . . , nk ∈ {2, . . . , m}. Suppose there are positive
numbers � and i1, . . . , i� such that

w := (01)i1

︸ ︷︷ ︸
I1

(001)i2

︸ ︷︷ ︸
I2

. . . (0j1)ij

︸ ︷︷ ︸
Ij

. . . (0�−11)i�−1

︸ ︷︷ ︸
I�−1

(0�1)i�

︸ ︷︷ ︸
I�

∈ L(π), (2)

where, for each j ∈ {1, . . . , �}, Ij is the closed interval of positions of w occupied
by the subword (0j1)ij as indicated with braces in Eq. (2). For each j ∈ {0, . . . , k},
let Jj denote the closed interval of positions of π occupied by x

nj

j . Let h be any
substitution such that h(π) = w and h(xi)
= ε for all i ∈ {0, . . . , k}. Then the
following hold.

Erasing Pattern Languages with Bounded Variable Frequency 163

(i) For all j ∈ {0, . . . , k}, h(xj) is of the shape (0j′
1)i′

for some j′ ∈ {1, . . . , �}
and i′ ∈ {1, . . . , ij′}.

(ii) For each j ∈ {1, . . . , �}, there are gj ∈ {0, . . . , k} and hj ∈ {0, . . . , k − gj}
such that Ij =

∐hj

l=0 Ih,π(Jgj+l).

Theorem 14. For all z ∈ N ∪ {∞}, TD(NCΠz
∞,1) = PBTD(NCΠz

∞,1) = 0.
Suppose m ≥ 2.

(i) If z = 1, then TD(NCΠz
∞,m) = Θ(m) and PBTD(NCΠz

∞,m) = Θ(m).
(ii) For any n ∈ N0, let ω(n) denote the number of distinct prime factors of

n and let Π(n) denote the number of prime powers not exceeding n. If
z ≥ 2, then max({ω(n) : n ≤ m}) ≤ TD(NCΠz

∞,m) ≤ 2 + Π(m − 1) and
PBTD(NCΠz

∞,m) = PBTD(NCΠz) = 1. In particular, max({ω(n) : n ≤

m}) ≤ TD(NCΠz
∞,m) < O

(
(m − 1)

1
2 log(m − 1)

)
+

1.25506(m − 1)
log(m − 1)

.

It is possible that neither the lower bound nor the upper bound on TD(NCΠz
∞,m)

given in Theorem 14 is tight for almost all m. The proof of Theorem 14 shows that
the TD of any general non-cross pattern π w.r.t. NCΠz

∞,m (for any fixed z ≥ 2
and m ≥ 2) is at most 2 plus the number of maximal proper prime factors of the
variable frequencies of π, but as the following example shows, this upper bound
is not always sharp even for non-cross succinct patterns with three variables; a
pattern π is succinct [22,25] iff there is no pattern τ such that L(τ) = L(π) and
|τ | < |π|.

Example 15. Suppose {0, 1} ⊆ Σ. Let π = x4
1x

8
2x

9
3. There are 3 maximal proper

prime power factors of 4, 8 and 9, namely, 2, 4 and 3, and so by the proof of
Theorem 14, the TD of π w.r.t. NCΠ

|Σ|
∞,9 is at most 2 + 3 = 5. However, π has

a teaching set of size 4.

The next result exemplifies the general observation that a larger alphabet allows
pattern languages to be distinguished using a relatively smaller number of
labelled examples.

Theorem 16. PBTD(Π∞) = 2 and for any m ≥ 1, PBTD(Π1
∞,m) = Θ(m).

The next series of results deal with the finite distinguishability problem for the
general class of m-regular patterns. We begin with a few preparatory results.
The first part of Theorem 17 gives a sufficient criterion for the inclusion of
pattern languages, and it was observed by Jiang, Kinber, Salomaa and Yu [18];
the second part, due to Ohlebusch and Ukkonen [23], states that the existence
of a constant-preserving morphism from π to τ (where π and τ are similar) also
implies L(τ) ⊆ L(π) if Σ contains at least two letters that do not occur in π or
τ . The second result is based on a few lemmas due to Reidenbach [25, Lemmas
4–6], adapted to the case of general patterns over an infinite alphabet.

164 Z. Gao

Theorem 17 [18,23]. Let Σ be an alphabet, and let π, τ ∈ Π |Σ|. Then L(π) ⊆
L(τ) if there exists a constant-preserving morphism g : (X ∪ Σ)∗ �→ (X ∪ Σ)∗

with g(τ) = π. If |Σ| ≥ |Const(π)| + 2, |Σ| ≥ |Const(τ)| + 2 and π is similar
to τ , then L(π) ⊆ L(τ) only if there exists a constant-preserving morphism
g : (X ∪ Σ)∗ �→ (X ∪ Σ)∗ with g(τ) = π.

Lemma 18 (Based on [25]). Suppose |Σ| = ∞. Fix any π ∈ Π∞ such that π
is succinct. Let Y = {y1, y2, . . .} be an infinite set of variables such that Y ∩
Var(π) = ∅. Suppose τ ∈ π� Y ∗. Then L(τ) = L(π) iff

(i) For all Y ′ ∈ Y + and δ, δ′ ∈ Const(π), the following hold: (a) Y ′δ is not a
prefix of τ , (b) δY ′ is not a suffix of τ , (c) δY ′δ′ is not a substring of τ ;

(ii) There is a constant-preserving morphism g : (X ∪ Σ)∗ �→ (X ∪ Σ)∗ such
that g(π) = τ ;

(iii) For all constant-preserving morphisms h : (X ∪ Σ)∗ �→ (X ∪ Σ)∗ with
h(π) = τ and for all x ∈ Var(π), if there exist Y1, Y2 ∈ Y ∗ such that
Y1xY2 is a substring of τ and Y1 (resp. Y2) is not immediately preceded
(resp. succeeded) by any y ∈ Y w.r.t. τ , then there are splittings Y 1

1 Y 2
1 and

Y 1
2 Y 2

2 of Y1 and Y2 respectively for which h(x) = Y 2
1 xY 1

2 .

The next crucial lemma shows that for any fixed m ≥ 1, only finitely many neg-
ative examples are needed to distinguish a succinct pattern π from all patterns
π′ ∈ Π∞

∞,m obtained by shuffling π with an infinite set Y of variables such that
Y and Var(π) are disjoint.

Lemma 19. Fix Σ with |Σ| = ∞. Suppose k ≥ 0, m ≥ 1 and π ∈ Π∞
k,m.

Let Y = {y1, y2, . . .} be an infinite set of variables such that Y ∩ Var(π) = ∅.
Suppose τ ∈ (π� Y ∗) ∩ Π∞

∞,m. There is some τ ′ ∈ Π∞
4mk+|π|+2,m such that

τ ′ = τ
∣
∣
Σ∪Var(π)∪S

for some finite S ⊂ Y , and if L(π) ⊂ L(τ), then L(π) ⊂ L(τ ′).

Theorem 20. Suppose m ≥ 1.

(i) TD(Π1
∞,m) ≤ 2m +m+1 and for all π ∈ Π∞

k,m with k ≥ 1, TD(π,Π∞
∞,m) =

O((D + 1)D), where D := (4mk + |π| + 2) · m.
(ii) Let 1Πz

m denote the class of patterns π over any alphabet of size z such that
π contains at most one variable that occurs more than m times. Suppose
π ∈ 1Πz

m. If z ≥ 4, then TD(π, 1Πz
m) < ∞ only if π contains a variable that

occurs more than m times or π ∈ SRΠz. If z = ∞, then TD(π, 1Πz
m) < ∞

if π contains a variable that occurs more than m times or π ∈ SRΠz.

The next result shows that over binary alphabets, even the class of constant-free
4-regular pattern languages contains patterns with infinite TD. We prove this
by modifying Reidenbach’s [24] proof of the non-learnability of x2

1x
2
2x

2
3 so that

every pattern constructed in the proof has variable frequency at most 4.

Theorem 21 (Based on [24, Theorem 5]). Suppose π = x2
1x

2
2x

2
3. For any m ≥ 4,

TD(π,Π2
∞,m,cf) = ∞.

Erasing Pattern Languages with Bounded Variable Frequency 165

Remark 22. The lower bound 4 on m in Theorem 21 is tight in the
sense that the TD of π := x2

1x
2
2x

2
3 w.r.t. Π2

∞,3 is finite. In fact, T :=
{(ε,+), (021202,+), (0,−), (0120, −), (03,−), ((01)2(021)2(031)2(041)2,−)} is a
teaching set for π w.r.t. Π2

∞,3.

6 Conclusion

Table 1 summarises some of the main results of this paper. For three types of
pattern classes studied – the simple block-regular, m-quasi-regular and m-regular
non-cross patterns – it was found that over any alphabet size, every pattern in
the class is finitely distinguishable; in the case of simple block-regular and m-
regular non-cross patterns, one also has an upper bound on the TD of the class
of such patterns that is, depending on the alphabet size, constant, linear or
sublinear in m. The most delicate questions appear to be those concerning the
m-regular patterns for finite alphabets of size at least 2; we only know that for all
m ≥ 4, there are patterns in Π2

∞,m,cf that are not finitely distinguishable (and
even not learnable in the limit). We note that the class of non-cross patterns over
any alphabet and the class of all patterns over infinite alphabets are learnable

Table 1. TD and PBTD of various pattern classes. In each entry, m ≥ 1, the universal
(resp. existential) quantifier is taken over all patterns belonging to the class in the
corresponding row and Π refers to the class in the corresponding row.

z = 1 2 ≤ z < ∞ z = ∞
SRΠz TD = 2, TD = 2, TD = 2,

PBTD = 1
(Theorem 3)

PBTD = 1
(Theorem 3)

PBTD = 1
(Theorem 3)

QRΠz
∞,m TD = 3 (∀π)[TD(π, Π) < ∞] (∀π)[TD(π, Π) < ∞]

(Theorem 10) (Theorem 10) (Theorem 10)

PBTD = 2
(Proposition 12)

PBTD ≥ 2
(Proposition 12)

PBTD = 2
(Proposition 12,

Theorem 16)

NCΠz
∞,m TD/PBTD =

Θ(m), m ≥ 2,
TD = o(m), TD = o(m),

TD/PBTD =
0, m = 1

PBTD = 1, m ≥ 2, PBTD = 0, m = 1

(Theorem 14) PBTD = 0, m = 1 (Theorem 14)

(Theorem 14)

Πz
∞,m TD = O(2m) (∃π)[TD(π, Π2

∞,4,cf) = ∞] (∀π)[TD(π, Π) < ∞]

(Theorem 20(i)) (Theorem 21) (Theorem 20(i))

PBTD = Θ(m)
(Theorem 16)

PBTD ≥ 2
(Proposition 12)

PBTD = 2
(Proposition 12,

Theorem 16)

166 Z. Gao

in the limit2 [22,24], but they have relatively restricted subclasses of finitely
distinguishable patterns [7, Theorems 3,10]. Thus the fact that every pattern in
the m-regular versions of these classes has a finite TD suggests that the variable
frequency of a pattern class may play a role in determining whether any given
pattern π can be finitely distinguished from all π′ such that L(π′)
⊆ L(π). On the
other hand, we have seen in Theorem 20(ii) that even constant patterns cannot
be finitely distinguished w.r.t. the class of patterns with at most one variable
(but no uniform upper bound on the number of variable occurrences). It might
be interesting to know whether there is a ‘natural’ class Π of m-regular patterns
such that Π is learnable in the limit but TD(π,Π) = ∞ for some π ∈ Π. We
also suspect that TD(Π∞

∞,m) = ∞ for some m ≥ 2 and TD(QRΠz
∞,m) = ∞ for

some finite z ≥ 2 and m ≥ 1, but as yet do not know how to prove this.

Acknowledgements. The author was supported (as RF) by the Singapore Ministry
of Education Academic Research Fund grant MOE2016-T2-1-019/R146-000-234-112. I
sincerely thank Fahimeh Bayeh, Sanjay Jain and Sandra Zilles for proofreading the
manuscript; their numerous suggestions for corrections and improvements (such as
studying the PBTD of m-quasi-regular patterns over unary alphabets) are gratefully
acknowledged. Many thanks are also due to the anonymous referees of this paper for
their very helpful comments and suggestions.

References

1. Aho, A.V.: Algorithms for finding patterns in strings. In: van Leeuwen, J. (ed.)
Handbook of Theoretical Computer Science. Algorithms and Complexity, vol. A,
chap. 5, pp. 257–300. MIT Press, Oxford (1990)

2. Amir, A., Nor, I.: Generalized function matching. J. Disc. Algorithms 5(3), 514–523
(2007)

3. Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci.
21, 46–62 (1980)

4. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Con-
trol 45(2), 117–135 (1980)

5. Angluin, D., Aspnes, J., Eisenstat, S., Kontorovich, A.: On the learnability of
shuffle ideals. J. Mach. Learn. Res. 14, 1513–1531 (2013)

6. Baker, B.S.: Parameterized pattern matching: algorithms and applications. J. Com-
put. Syst. Sci. 52(1), 28–42 (1996)

7. Bayeh, F., Gao, Z., Zilles, S.: Erasing pattern languages distinguishable by a finite
number of strings. In: ALT, pp. 72–108 (2017)

8. Campeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions.
Int. J. Found. Comput. Sci. 14(6), 1007–1018 (2003)

9. Day, J.D., Fleischmann, P., Manea, F., Nowotka, D.: Local patterns. In: FSTTCS,
pp. 24:1–24:14 (2017)

2 This implies that for every pattern π belonging to any one of these classes, L(π)
contains a finite set that distinguishes π from all π′ in the class such that L(π′) ⊂
L(π) [4, Theorem 1].

Erasing Pattern Languages with Bounded Variable Frequency 167

10. Day, J.D., Fleischmann, P., Manea, F., Nowotka, D., Schmid, M.L.: On matching
generalised repetitive patterns. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS,
vol. 11088, pp. 269–281. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98654-8 22

11. Fernau, H., Manea, F., Mercas, R., Schmid, M.L.: Pattern matching with variables:
fast algorithms and new hardness results. In: STACS, pp. 302–315 (2015)

12. Fernau, H., Schmid, M.L.: Pattern matching with variables: a multivariate com-
plexity analysis. Inf. Comput. 242, 287–305 (2015)

13. Freydenberger, D.D., Schmid, M.L.: Deterministic regular expressions with back-
references. In: STACS, pp. 33:1–33:14 (2017)

14. Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)
15. Gao, Z., Ries, C., Simon, H.U., Zilles, S.: Preference-based teaching. J. Mach. Learn.

Res. 18, 1–32 (2017)
16. Goldman, S.A., Kearns, M.J.: On the complexity of teaching. J. Comput. Syst. Sci

50, 20–31 (1995)
17. Jain, S., Ong, Y.S., Stephan, F.: Regular patterns, regular languages and context-

free languages. Inf. Proc. Lett. 110(24), 1114–1119 (2010)
18. Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S.: Pattern languages with

and without erasing. Int. J. Comput. Math. 50, 147–163 (1994)
19. Lothaire, M.: Combinatorics on Words, Cambridge Mathematical Library. Cam-

bridge University Press, Cambridge (1997). Corrected reprint of the 1983 original
20. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics

and its Applications. Cambridge University Press, Cambridge (2002)
21. Matsumoto, S., Shinohara, A.: Learning pattern languages using queries. In: Ben-

David, S. (ed.) EuroCOLT 1997. LNCS, vol. 1208, pp. 185–197. Springer, Heidel-
berg (1997). https://doi.org/10.1007/3-540-62685-9 16

22. Mitchell, A.R.: Learnability of a subclass of extended pattern languages. In: COLT,
pp. 64–71 (1998)

23. Ohlebusch, E., Ukkonen, E.: On the equivalence problem for e-pattern languages.
Theor. Comput. Sci 186(1–2), 231–248 (1997)

24. Reidenbach, D.: A non-learnable class of e-pattern languages. Theor. Comput. Sci
350(1), 91–102 (2006)

25. Reidenbach, D.: Discontinuities in pattern inference. Theor. Comput. Sci 397, 166–
193 (2008)

26. Schmid, M.L.: Characterising REGEX languages by regular languages equipped
with factor-referencing. Inf. Comput. 249, 1–17 (2016)

27. Shinohara, A., Miyano, S.: Teachability in computational learning. New Gener.
Comput. 8(4), 337–347 (1991)

28. Shinohara, T.: Polynomial time inference of extended regular pattern languages. In:
Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.) RIMS Sym-
posia on Software Science and Engineering. LNCS, vol. 147, pp. 115–127. Springer,
Heidelberg (1983). https://doi.org/10.1007/3-540-11980-9 19

29. Zhu, X., Singla, A., Zilles, S., Rafferty, A.N.: An overview of machine teaching
(2018, manuscript). http://arxiv.org/abs/1801.05927

https://doi.org/10.1007/978-3-319-98654-8_22
https://doi.org/10.1007/978-3-319-98654-8_22
https://doi.org/10.1007/3-540-62685-9_16
https://doi.org/10.1007/3-540-11980-9_19
http://arxiv.org/abs/1801.05927

On Timed Scope-Bounded
Context-Sensitive Languages

D. Bhave1, S. N. Krishna1, R. Phawade2(B), and A. Trivedi3

1 IIT Bombay, Mumbai, India
{devendra,krishnas}@cse.iitb.ac.in

2 IIT Dharwad, Dharwad, India
prb@iitdh.ac.in

3 CU Boulder, Boulder, USA
ashutosh.trivedi@colorado.edu

Abstract. Perfect languages, characterized by closure under Boolean
operations and decidable emptiness problem, form the basis for decid-
able automata-theoretic model-checking for the corresponding class of
models. Regular languages and visibly pushdown languages are paradig-
matic examples of perfect languages. In a previous work authors have
established a timed context-sensitive perfect language characterized by
multistack pushdown automata (MPA) with an explicit bound on num-
ber of rounds where in each round at most one stack is used. This paper
complements the results of on bounded-round timed MPA by characteriz-
ing an alternative restriction on timed context-sensitive perfect languages
called the scope-bounded multi-stack timed push-down automata where
every stack symbol must be popped within a bounded number of stack
contexts. The proposed model uses visibly-pushdown alphabet and event
clocks to recover a bounded-scope MPA with decidable emptiness, closure
under Boolean operations, and an equivalent logical characterization.

1 Introduction

The Vardi-Wolper [18] recipe for an automata-theoretic model-checking for a
class of languages requires that class to be closed under Boolean operations and
have decidable emptiness problem. Esparza, Ganty, and Majumdar [11] coined
the term “perfect languages” for the classes of languages satisfying these proper-
ties. However, several important extensions of regular languages, such as push-
down automata and timed automata, do not satisfy these requirements. In order
to lift the automata-theoretic model-checking framework for these classes of lan-
guages, appropriate restrictions have been studied including visibly pushdown
automata [5] (VPA) and event-clock automata [4] (ECA). Tang and Ogawa [17]
introduced a perfect class of timed context-free languages generalized both vis-
ibly pushdown automata and event-clock automata to introduce event-clock
visibly pushdown automata (ECVPA). This paper proposes a perfect class of

Partially supported by grant MTR/2018/001098.

c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 168–181, 2019.
https://doi.org/10.1007/978-3-030-24886-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_12

On k-scoped Context-Sensitive Timed Languages 169

timed context-sensitive languages inspired by the scope-bounded restriction on
multi-stack visibly pushdown languages introduced by La Torre, Napoli, and
Parlato [13] and presents a logical characterization for the proposed subclass.

Automata Characterizing Perfect Context-Free Languages. Alur and
Madhusudan [5] introduced visibly pushdown automata as a specification for-
malism where the call and return edges are made visible in a structure of the
word. This notion is formalized by giving an explicit partition of the alphabet
into three disjoint sets of call, return, and internal or local symbols and the visi-
bly pushdown automata must push one symbol to the stack while reading a call
symbol, and must pop one symbol (given the stack is non-empty) while reading
a return symbol, and must not touch the stack while reading an internal symbol.

Automata Characterizing Perfect Timed Regular Languages. Alur-Dill
timed automata [3] is a generalization of finite automata with continuous vari-
ables called clocks that grow with uniform rate in each control location and
their valuation can be used to guard the transitions. Each transition can also
reset clocks, and that allows one to constrain transitions based on the duration
since a previous transition has been taken. However, the power of reseting clocks
contributed towards timed automata not being closed under complementation.
In order to overcome this limitation, Alur, Fix, and Henzinger [4] introduced
event-clock automata where input symbol dictate the resets of the clocks. In an
event-clock automata every symbol a is implicitly associated with two clocks xa

and ya, where the recorder clock xa records the time since the last occurrence of
the symbol a, and the predictor clock ya predicts the time of the next occurrence
of symbol a. Hence, event-clock automata do not permit explicit reset of clocks
and it is implicitly governed by the input timed word.

Proposed Model For Perfect Context-Sensitive Timed Languages.
We study dense-time event-clock multistack visibly pushdown automata (dt-
ECMVPA) that combines event-clock dynamics of event-clock automata with
multiple visibly pushdown stacks. We assume a partition of the alphabet among
various stacks, and partition of the alphabet of each stack into call, return, and
internal symbols. Moreover, we associate recorder and predictor clocks with each
symbol. Inspired by Atig et al. [1] we consider our stacks to be dense-timed, i.e.
we allow stack symbols to remember the time elapsed since they were pushed to
the stack.

A finite timed word over an alphabet Σ is a sequence (a1, t1), . . . , (an, tn) ∈
(Σ × R≥0)∗ such that ti ≤ ti+1 for all 1 ≤ i ≤ n − 1. Alternatively, we can
represent timed words as tuple (〈a1, . . . , an〉, 〈t1, . . . , tn〉). We may use both of
these formats depending on the context and for technical convenience. Let TΣ∗

denote the set of finite timed words over Σ.
We briefly discuss the concepts of rounds and scope as introduced by [13].

Consider an pushdown automata with n stacks. We say that for a stack h, a
(timed) word is a stack-h context if all of its symbols belong to the alphabet
of stack h. A round is fixed sequence of exactly n contexts one for each stack.
Given a timed word, it can be partitioned into sequences of contexts of various

170 D. Bhave et al.

stacks. The word is called k-round if it can be partitioned into k rounds. We say
that a timed word is k-scoped if for each return symbol of a stack its matching
call symbol occurs within the last k contexts of that stack. A visibly-pushdown
multistack event-clock automata is scope-bounded if all of the accepting words
are k-scoped for a fixed k ∈ N.

Fig. 1. A dense-time multistack visibly pushdown automata (from Example 1).

Example 1. Consider the timed language whose untimed component is of
the form L = {âaxbydyclalbzcxĉdz | x, l, z ≥ 1, y ≥ 2} with the critical timing
restrictions among various symbols in the following manner. The time delay
between the first occurrence of b and the last occurrence of d in the substring
bydy is at least 4 time-units. The time-delay between this last occurrence of d and
the next occurrence of b is at most 2 time-units. Finally the last d of the input
string must appear within 2 time units of the last b, and ĉ must occur within 5
time units of corresponding â. This language is accepted by a dt-ECMVPA with
two stacks shown in Fig. 1. We annotate a transition with the symbol and cor-
responding stack operations if any. We write popi or pushi to emphasize pushes
and pops to the i-th stack. We also use popi(X) ∈ I to check if the age of the
popped symbol X belongs to the interval I. In addition, we use simple constraints
on predictor/recorder clock variables corresponding to the symbols. Let a, â and
c, ĉ (b and d, resp.) be call and return symbols for the first (second, resp.) stack.
The Stack alphabet for the first stack is Γ 1 = {α, $} and for the second stack
is Γ 2 = {$}. In Fig. 1 clock xa measures the time since the occurrence of the
last a, while constraints pop(γ) ∈ I checks if the age of the popped symbol γ
is in a given interval I. This language is 3-scoped and is accepted by a 6-round
dt-ECMVPA. But if we consider the Kleene star of this language, it will be still
3-scoped and its machine can be built by fusing states l0 and l10 in Fig. 1.

The formalisms of timed automata and pushdown stack have been combined
before. First such attempt was timed pushdown automata [9] by Bouajjani, et al.
and was proposed as a timed extension of pushdown automata which uses global

On k-scoped Context-Sensitive Timed Languages 171

clocks and timeless stack. We follow the dense-timed pushdown automata by
Abdulla et al. [1]. The reachability checking of a given location from an initial
one was shown to be decidable for this model. Trivedi and Wojtczak [16] studied
the recursive timed automata in which clock values can be pushed onto a stack
using mechanisms like pass-by-value and pass-by-reference. They studied reach-
ability and termination problems for this model. Nested timed automata (NeTA)
proposed by Li et al. [15] is a relatively recent model which, an instance of timed
automata itself can be pushed on the stack along with the clocks. The clocks of
pushed timed automata progress uniformly while on the stack. From the perspec-
tive of logical characterization, timed matching logic, an existential fragment of
second-order logic, identified by Droste and Perevoshchikov [10] characterizes
dense-timed pushdown automata.

We earlier [6] studied MSO logic for dense-timed visibly pushdown automata
which form a subclass of timed context-free languages. This subclass is closed
under union, intersection, complementation and determinization. The work pre-
sented in this paper extends the results from [7] for bounded-round dt-ECMVPA
to the case of bounded-scope dt-ECMVPA. We study bounded-scope dt-ECMVPA
and show that they are closed under Boolean operations with decidable emptiness
problem. We also present a logical characterization for these models.

In the next section we recall the definitions of event clock and visibly push-
down automata. In Sect. 3 we define k-scope dense time multiple stack visibly
push down automata with event clocks and its properties. In the following section
these properties are used to decide emptiness checking and determinizability of
k-scope ECMVPA with event clocks. Building upon these results, we show decid-
ability of these properties for k-scope dt-ECMVPA with event clocks. In Sect. 5
we give a logical characterization for models introduced.

2 Preliminaries

Due to space limitation, we only give a very brief introduction of required con-
cepts in this section, and for a detailed background on these concepts we refer
the reader to [2,4,5]. We assume that the reader is comfortable with standard
concepts such as context-free languages, pushdown automata, MSO logic from
automata theory; and clocks, event clocks, clock constraints, and valuations from
timed automata. Before we introduce our model, we revisit the definitions of
event-clock automata.

The general class of TA [2] are not closed under Boolean operations. An
important class of TA which is determinizable is Event-clock automata (ECA) [4],
and hence closed under Boolean operations. Here the determinizability is
achieved by making clock resets “visible”.

To make clock resets visible we have two clocks which are associated with
every action a ∈ Σ : xa the “recorder” clock which records the time of the
last occurrence of action a, and ya the “predictor” clock which predicts the
time of the next occurrence of action a. For example, for a timed word w =
(a1, t1), (a2, t2), . . . , (an, tn), the value of the event clock xa at position j is tj −ti

172 D. Bhave et al.

where i is the largest position preceding j where an action a occurred. If no a
has occurred before the jth position, then the value of xa is undefined denoted
by a special symbol �. Similarly, the value of ya at position j of w is undefined
if symbol a does not occur in w after the jth position. Otherwise, it is tk − tj
where k is the first occurrence of a after j.

We write C for the set of all event clocks and we use R�
>0 for the set R>0 ∪ {�}.

Formally, the clock valuation after reading j-th prefix of the input timed word
w, νw

j : C 	→ R
�
>0, is defined as follows: νw

j (xq) = tj−ti if there exists an
0≤ i < j such that ai = q and ak �= q for all i < k < j, otherwise νw

j (xq) = �
(undefined). Similarly, νw

j (yq) = tm − tj if there is j < m such that am = q and
al �= q for all j < l < m, otherwise νw

j (yq) =�. A clock constraint over C is a
boolean combination of constraints of the form z ∼ c where z ∈ C, c ∈ N and
∼∈ {≤,≥}. Given a clock constraint z ∼ c over C, we write νw

i |= (z ∼ c) to
denote if νw

j (z) ∼ c. For any boolean combination ϕ, νw
i |= ϕ is defined in an

obvious way: if ϕ = ϕ1∧ϕ2, then νw
i |= ϕ iff νw

i |= ϕ1 and νw
i |= ϕ2. Likewise, the

other Boolean combinations are defined. Let Φ(C) define all the clock constraints
defined over C.

3 Dense-Time Visibly Pushdown Multistack Automata

A visibly pushdown alphabet is a tuple 〈Σc, Σr, Σl〉 where Σc is call alpha-
bet, Σr is a return alphabet, and Σl is internal alphabet. This section intro-
duces scope-bounded dense-timed multistack visibly pushdown automata and
give some properties about words and languages accepted by these machines.

Let Σ = 〈Σh
c , Σh

r , Σh
l 〉n

h=1 where Σi
x ∩Σj

x = ∅ whenever either i �= j or x �= y,
and x, y ∈ {c, r, l}. Let Σh = 〈Σh

c , Σh
r , Σh

l 〉. Let Γh be the stack alphabet of the
h-th stack and Γ =

⋃n
h=1 Γh. For notational convenience, we assume that each

symbol a ∈ Σh has an unique recorder xa and predictor ya clock assigned to it.
Let Ch denote the set of event clocks corresponding to stack h and Φ(Ch) denote
the set of clock constraints defined over Ch. Let cmax be the maximum constant
used in the clock constraints Φ(Ch) of all stacks. Let I denote the finite set of
intervals {[0, 0], (0, 1), [1, 1], (1, 2), . . . , [cmax, cmax], (cmax,∞)}.

Definition 2. A dense-timed visibly pushdown multistack automata (dt-
ECMVPA) over 〈Σh

c , Σh
r , Σh

l 〉n
h=1 is a tuple (L,Σ, Γ, L0, F,Δ = (Δh

c ∪ Δh
r ∪

Δh
l)n

h=1) where

– L is a finite set of locations including a set L0 ⊆ L of initial locations,
– Γh is the finite alphabet of stack h and has special end-of-stack symbol ⊥h,
– Δh

c ⊆ (L × Σh
c × Φ(Ch) × L × (Γh\{⊥h})) is the set of call transitions,

– Δh
r ⊆ (L × Σh

r × I × Γh × Φ(Ch) × L) is set of return transitions,
– Δh

l ⊆ (L × Σh
l × Φ(Ch) × L) is set of internal transitions, and

– F⊆L is the set of final locations.

Let w = (a0, t0), . . . , (ae, te) be a timed word. A configuration of the dt-ECMVPA
is a tuple (
, νw

i , (γ1σ1, age(γ1σ1)), . . . , (γnσn, age(γnσn))) where
 is the current

On k-scoped Context-Sensitive Timed Languages 173

location of the dt-ECMVPA, function νw
i gives the valuation of all the event clocks

at position i ≤ |w|, γhσh ∈ Γh(Γh)∗ is the content of stack h with γh being the
topmost symbol, and σh the string representing stack contents below γh, while
age(γhσh) is a sequence of real numbers denoting the ages (the time elapsed
since a stack symbol was pushed on to the stack) of all the stack symbols in
γhσh. We follow the assumption that age(⊥h) = 〈�〉 (undefined). If for some
string σh ∈ (Γh)∗ we have age(σh) = 〈t1, t2, . . . , tg〉 and for τ ∈ R≥0 then we
write age(σh) + τ for the sequence 〈t1 + τ, t2 + τ, . . . , tg + τ〉. For a sequence
σh = 〈γh

1 , . . . , γh
g 〉 and a stack symbol γh we write γh::σh for 〈γh, γh

1 , . . . , γh
g 〉.

A run of a dt-ECMVPA on a timed word w = (a0, t0), . . . , (ae, te) is a sequence
of configurations:

(
0, νw
0 , (〈⊥1〉, 〈�〉), . . . , (〈⊥n〉, 〈�〉)), (
1, νw

1 , ((σ1
1 , age(σ1

1)), . . . , (σ
n
1 , age(σn

1)))),
. . . , (
e+1, ν

w
e+1, (σ

1
e+1, age(σ1

e+1)), . . . , (σ
n
e+1, age(σn

e+1))) where
i ∈ L,
0 ∈ L0,
σh

i ∈ (Γh)∗⊥h, and for each i, 0 ≤ i ≤ e, we have:
– If ai ∈ Σh

c , then there is (
i, ai, ϕ,
i+1, γ
h) ∈ Δh

c such that νw
i |= ϕ. The sym-

bol γh ∈ Γh\{⊥h} is then pushed onto the stack h, and its age is initialized
to zero, i.e. (σh

i+1, age(σh
i+1)) = (γh :: σh

i , 0 :: (age(σh
i) + (ti − ti−1))). All

symbols in all other stacks are unchanged, and they age by ti − ti−1.
– If ai ∈ Σh

r , then there is (
i, ai, I, γh, ϕ,
i+1) ∈ Δh
r such that νw

i |= ϕ. Also,
σh

i = γh :: κ ∈ Γh(Γh)∗ and age(γh) + (ti − ti−1) ∈ I. The symbol γh is
popped from stack h obtaining σh

i+1 = κ and ages of remaining stack symbols
are updated i.e., age(σh

i+1) = age(κ) + (ti − ti−1). However, if γh = 〈⊥h〉,
then γh is not popped. The contents of all other stacks remains unchanged,
and simply age by (ti − ti−1).

– If ai ∈ Σh
l , then there is (
i, ai, ϕ,
i+1) ∈ Δh

l such that νw
i � ϕ. In this case

all stacks remain unchanged i.e. σh
i+1=σh

i , but their contents age by ti − ti−1

i.e. age(σh
i+1)=age(σh

i) + (ti − ti−1) for all 1 ≤ h ≤ n.

A run ρ of a dt-ECMVPA M is accepting if it terminates in a final location. A
timed word w is an accepting word if there is an accepting run of M on w. The
language L(M) of a dt-ECMVPA M , is the set of all timed words w accepted by
M and is called dt-ECMVPL.

A dt-ECMVPA M = (L,Σ, Γ, L0, F,Δ) is said to be deterministic if it has
exactly one start location, and for every configuration and input action exactly
one transition is enabled. Formally, we have the following conditions: for any two
moves (
, a, φ1,

′, γ1) and (
, a, φ2,

′′, γ2) of Δh

c , condition φ1∧φ2 is unsatisfiable;
for any two moves (
, a, I1, γ, φ1,

′) and (
, a, I2, γ, φ2,

′′) in Δh

r , either φ1 ∧ φ2

is unsatisfiable or I1 ∩ I2 = ∅; and for any two moves (
, a, φ1,

′) and (
, a, φ2,

′)
in Δh

l , condition φ1 ∧ φ2 is unsatisfiable.
An Event clock multi stack visibly push down automata (ECMVPA) is a

dt-ECMVPA where the stacks are untimed i.e., a dt-ECMVPA (L,Σ, Γ, L0, F,Δ),
with I = [0,+∞] for every (
, a, I, γ, φ,
′) ∈ Δh

r , is an ECMVPA.
A dtECVPA is a dt-ECMVPA restricted to single stack.
We now define a matching relation ∼h on the positions of input timed word

w which identifies matching call and return positions for each stack h. Note that
this is possible because of the visibility of the input symbols.

174 D. Bhave et al.

Definition 3 (Matching relation). Consider a timed word w over Σ. Let Ph
c

(resp. Ph
r) denote the set of positions in w where a symbol from Σh

c i.e. a call
symbol (resp. Σh

r i.e. a return symbol) occurs. Position i (resp. j) is called call
position (resp. return position). For each stack h the timed word w, defines a
matching relation ∼h⊆ Ph

c × Ph
r satisfying the following conditions:

1. for all positions i, j with i ∼h j we have i < j,
2. for any call position i of Ph

c and any return position j of Ph
r with i < j, there

exists l with i ≤ l ≤ j for which either i ∼h l or l ∼h j,
3. for each call position i ∈ Ph

c (resp. i ∈ Ph
r) there is at most one return

position j ∈ Ph
r (resp. j ∈ Ph

c) with i ∼h j (resp. j ∼h i).

For i ∼h j, position i (resp. j) is called matching call (resp. matching return).
This definition of matching relation extends that defined by La Torre,

et al. [14] to timed words. As matching relation is completely determined by
stacks and timestamps of the input word does not play any role, we claim that
above definition uniquely identifies matching relation for a given input word w
using uniqueness proof from [14].

Fix a k from N. A stack-h context is a word in Σh(Σh)∗. Given a
word w and a stack h, the word w has k maximal h-contexts if w ∈
(Σh)∗((

⋃
h�=h′ Σh′

)∗(Σh)∗)k−1. A timed word over Σ is k-scoped if for each
matching call of stack h, its corresponding return occurs within at most k max-
imal stack-h contexts.

Let Scope(Σ, k) denote the set of all k-scope timed words over Σ. For
any fixed k, a k-scope dt-ECMVPA over Σ is a tuple A = (k,M) where
M = (L,Σ, Γ, L0, F,Δ) is a dt-ECMVPA over Σ. The language accepted by A is
L(A) = L(M)∩Scope(Σ, k) and is called k-scope dense-timed multistack visibly
pushdown language (k-scoped-dt-ECMVPL). We define k-scoped-ECMVPL in a
similar fashion. We now recall some key definitions from La Torre [13,14] which
help us extend the notion of scoped words from untimed to timed words.

Definition 4 (k-scoped splitting [13,14]). A cut of w is w1:w2 where w =
w1w2. The cutting of w is marked by “:”. A cut is h-consistent with matching rela-
tion ∼h if no call occuring in w1 matches with a return in w2 in ∼h. A splitting
of w is a set of cuts w1 . . . wi : wi+1 . . . wm such that w = w1 . . . wiwi+1 . . . wm

for each i in {1, . . . , m − 1}. An h-consistent splitting of w is the one in which
each specified cut is h-consistent. A context-splitting of word w is a splitting
w1 : w2 : . . . : wm such that each wi is an h-context for some stack h and
i ∈ {1, . . . , m}. A canonical context-splitting of word is a context-splitting of w
in which no two consecutive contexts belong to the same stack.

Given a context-splitting of timed word w, we obtain its h-projection by
removing all non stack-h contexts. Observe that an h-projection is a context-
splitting. An ordered tuple of m h-contexts is k-bounded if there there exists
a h-consistent splitting of this tuple, where each component of the cut in the
splitting is a concatenation of at most k consecutive h-contexts of given tuple.
A k-scoped splitting of word w is the canonical splitting of w equipped with

On k-scoped Context-Sensitive Timed Languages 175

additional cuts for each stack h such that, if we take h-projection of w with these
cuts it is k-bounded. The main purpose for introducing all the above definitions
is to come up with a scheme which will permit us to split any arbitrary length
input timed word into k-scoped words. Using [13,14] for untimed words we get
the following Lemma.

Lemma 5. A timed word w is k-scoped iff there is a k-scoped splitting of w.

Next we describe the notion of switching vectors for timed words [6], which
are used in determinization of k-scope dt-ECMVPA.

3.1 Switching Vectors

Let A be k-scoped dt-ECMVPA over Σ and let w be a timed word accepted by
A. Our aim is to simulate A on w by n different dtECVPAs, Ah for each stack-h
inputs. We insert a special symbol # at the end of each maximal context, to
obtain word w′ over Σ ∪{#,#′}. We also have recorder clocks x# and predictor
clocks y# for symbol #. For h-th stack, let dtECVPA Ah be the restricted ver-
sion of A over alphabet Σ ∪ {#,#′} which simulates A on input symbols from
Σh. Then, it is clear that at the symbol before #, stack h may be touched by
dt-ECMVPA A and at the first symbol after #, stack h may be touched again.
But it may be the case that at positions where # occurs stack h may not be
empty i.e., cut defined position of # may be not be h-consistent.

To capture the behaviour of Ah over timed word w we have a notion of
switching vector. Let m be the number of maximal h-contexts in word w
and wh be the h-projection of w i.e., wh = uh

1 . . . uh
m. In particular, m could

be more than k. A switching vector V
h of A for word w is an element of

(L, I, L)m, where V
h[l] = (q, Il, q

′) if in the run of A over wh we have q
uh
l−−→ q′.

Let w′h = uh
1#uh

2# . . . uh
m#, where uh

i = (ah
i1, t

h
i1), (a

h
i2, t

h
i2) . . . (ah

i,si
, thi,si

) is a
stack-h context, where si = |uh

i |. Now we assign time stamps of the last let-
ter read in the previous contexts to the current symbol # to get the word
κh = uh

1 (#, th1,s1
)uh

2 (#, th2,s2
) . . . uh

m(#, thm,sm
).

We take the word w′h and looking at this word we construct another word
w̄h by inserting symbols #′ at places where the stack is empty after popping
some symbol, and if #′ is immediately followed by # then we drop # symbol.
We do this in a very canonical way as follows: In this word w′h look at the first
call position c1 and its corresponding return position r1. Then we insert #′ after
position r1 in wh. Now we look for next call position c2 and its corresponding
return position r2 and insert symbol #′ after r2. We repeat this construction
for all call and its corresponding return positions in w′h to get a timed word w̄h

over Σ ∪ {#,#′}. Let w̄h = ūh
1#̂ūh

2#̂ . . . #̂ūh
z , where #̂ is either # or #′, and

ūh
i = (āh

i1, t̄
h
i1), (ā

h
i2, t̄

h
i2) . . . (āh

i,si
, t̄hi,si

), is a timed word.
The restriction of A which reads w̄h is denoted by Ah

k . Assign timestamps
of the last letter read in the previous contexts to the current symbol #̂ to get
the word κ̄h = ūh

1 (#̂, t̄h1,s1
)ūh

2 (#̂, t̄h2,s2
) . . . ūh

z (#̂, t̄hz,sz
), where si = |ūh

i | for i in

176 D. Bhave et al.

{1, . . . , z}. A stack-h switching vector V̄
h is a z-tuple of the form (L, I, L)z,

where z > 0 and for every j ≤ z if V̄h[j] = (qj , Ij , q
′
j) then there is a run of Ah

from location qj to q′
j .

By definition of k-scoped word we are guaranteed to find maximum k number
of # symbols from cj to rj . And we also know that stack-h is empty whenever we
encounter #′ in the word. In other words, if we look at the switching vector V̄h of
A reading w̄h, it can be seen as a product of switching vectors of A each having a
length less than k. Therefore, V̄h = Πr

i=1V
h
i where r ≤ z and V h

i = (L×I×L)≤k.
When we look at a timed word and refer to the switching vector corresponding
to it, we view it as tuples of switching pairs, but when we look at the switching
vectors as a part of state of Ah

k then we see at a product of switching vectors of
length less than k.

A correct sequence of context switches for Ah
k wrt κ̄h is a sequence of pairs

V̄
h = Ph

1 Ph
2 . . . Ph

z , where Ph
i = (
h

i , Ih
i ,
′h

i), 2 ≤ h ≤ n, Ph
1 = (
h

1 , νh
1 ,
′h

1) and
Ih
i ∈ I such that

1. Starting in
h
1 , with the h-th stack containing ⊥h, and an initial valuation

νh
1 of all recorders and predictors of Σh, the dt-ECMVPA A processes uh

1 and
reaches some
′h

1 with stack content σh
2 and clock valuation ν′h

1 . The processing
of uh

2 by A then starts at location
h
2 , and a time t ∈ Ih

2 has elapsed between
the processing of uh

1 and uh
2 . Thus, A starts processing uh

2 in (
h
2 , νh

2) where νh
2

is the valuation of all recorders and predictors updated from ν′h
1 with respect

to t. The stack content remains same as σh
2 when the processing of uh

2 begins.
2. In general, starting in (
h

i , νh
i), i > 1 with the h-th stack containing σh

i , and
νh

i obtained from νh
i−1 by updating all recorders and predictors based on the

time interval Ih
i that records the time elapse between processing uh

i−1 and uh
i ,

A processes uh
i and reaches (
′h

i , ν′h
i) with stack content σh

i+1. The processing
of uh

i+1 starts after time t ∈ Ih
i+1 has elapsed since processing uh

i in a location

h
i+1, and stack content being σh

i .

These switching vectors were used in to get the determinizability of k-round
dt-ECMVPA [6] In a k-round dt-ECMVPA, we know that there at most k-contexts
of stack-h and hence the length of switching vector (whichever it is) is at most
k for any given word w. See for example the MVPA corresponding to Kleene
star of language given in the Example 1. In k-scope MVPA for a given w, we
do not know beforehand what is the length of switching vector. So we employ
not just one switching vector but many one after another for given word w, and
we maintain that length of each switching vector is at most k. This is possible
because of the definition of k-scope dt-ECMVPA and Lemma 5.

Lemma 6 (Switching Lemma for Ah
k). Let A = (k, L,Σ, Γ, L0, F,Δ) be a k-

scope-dt-ECMVPA. Let w be a timed word with m maximal h-contexts and
accepted by A . Then we can construct a dtECVPA Ah

k over Σh ∪ {#,#′} such
that Ah

k has a run over w̄h witnessed by a switching sequence V̄
h = Πr

i=1V̄
h
i

where r ≤ z and V̄
h
i = (L × I × L)≤k which ends in the last component V̄

h
r of

V̄
h iff there exists a k-scoped switching sequence V̄

′h of switching vectors of A
such that for any v′ of V̄′h there exist vi and vj in V̄

′ with i ≤ j and v′[1] = vi[1]
and v′[|v′|] = vj [|vj |].

On k-scoped Context-Sensitive Timed Languages 177

Proof. We construct a dtECVPA Ak
h = (Lh, Σ ∪ {#,#′}, Γh, L0, Fh = F,Δh)

where, Lh ⊆ (L × I × L)≤k × Σ ∪ {#,#′} and Δh are given below.

1. For a in Σ:
(Ph

1 , . . . , Ph
i = (q, Ih

i , q′), b)
a,φ−−→ (Ph

1 , . . . , P ′h
i = (q, I ′h

i , q′′), a), when q′ a,φ−−→
q′′ is in Δ, and b ∈ Σ.

2. For a in Σ:
(Ph

1 , . . . , Ph
i = (q, Ih

i , q′),#)
a,φ∧x#=0−−−−−−−→ (Ph

1 , . . . , P ′h
i = (q, I ′h

i , q′′), a), when

q′ a,φ−−→ q′′ is in Δ, and b ∈ Σ.
3. For a in Σ:

(Ph
1 , . . . , Ph

i = (q, Ih
i , q′),#′)

a,φ∧x#′=0−−−−−−−→ (Ph
1 , . . . , P ′h

i = (q, I ′h
i , q′′), a), when

q′ a,φ−−→ q′′ is in Δ, and b ∈ Σ.
4. For a = #,

(Ph
1 , . . . , Ph

i = (q, Ih
i , q′), b)

a,φ∧xb∈I′h
i+1−−−−−−−−→ (Ph

1 , . . . , P ′h
i+1 = (q′′, I ′h

i+1, q
′′),#),

when q′ a,φ−−→ q′′ is in Δ.
5. For a = #′,

(Ph
1 , . . . , Ph

i = (q, Ih
i , q′), a)

a,φ,x#′ ∈Îh
1−−−−−−−→ (P̂h

1 = (q′, Îh
1 , q′),#′), when q′ a,φ−−→ q′′

is in Δ.

Given a timed word w accepted by A, when A is restricted to Ah then it
is running on w′h, the projection of w on Σh, interspersed with # separating
the maximal h-contexts in original word w. Let v1, v2, . . . , vm be the sequence
of switching vectors witnessed by Ah while reading w′h.

Now when w′h is fed to the constructed machine Ak
h, it is interspersed with

new symbols #′ whenever the stack is empty just after a return symbol is read.
Now w̄h thus constructed is again a collection of z stack-h contexts which
possibly are more in number than in w′h. And each newly created context is
either equal to some context of w′h or is embedded in exactly one context of w′h.
These give rise to sequence of switching vectors v′

1, v
′
2, . . . , v

′
z, where m ≤ z. That

explains the embedding of switching vectors witnessed by Ak
h, while reading w̄h,

into switching vectors of A, while reading wh. ��
Let w be in L(A). Then as described above we can have a sequence of switch-

ing vectors V̄h for stack-h machine Ah
k . Let dh be the number of h-contexts

in the k-scoped splitting of w i.e., the number of h-contexts in w̄h. Then we
have those many tuples in the sequence of switching vectors V̄

h. Therefore,
V̄

h = Πy∈{1,...,dh}〈lhy , Ih
y , l′hy 〉.

We define the relation between elements of V̄
h across all such sequences.

While reading the word w, for all h and h′ in {1, . . . , n} and for some y in
{1, . . . , dh} and some y′ in {1, . . . , dh′} we define a relation follows(h, y) = (h′y′)
if y-th h-context is followed by y′-th h′-context.

A collection of correct sequences of context switches given via switching vec-
tors (V̄1, . . . , V̄n) is called globally correct if we can stitch together runs of all
Ah

ks on w̄h using these switching vectors to get a run of A on word w.

178 D. Bhave et al.

In the reverse direction, if for a given k-scoped word w over Σ which is in
L(A) then we have, collection of globally correct switching vectors (V̄1, . . . , V̄n).

The detailed proof of the following lemma is given in [8].

Lemma 7 (Stitching Lemma). Let A = (k, L,Σ, Γ, L0, F,Δ) be a k-scope dt-
ECMVPA. Let w be a k-scoped word over Σ. Then w ∈ L(A) iff there exist a
collection of globally correct sequences of switching vectors for word w.

4 Scope-Bounded ECMVPA and dt-ECMVPA

Fix a k ∈ N. Decidability of emptiness checking of k-round ECMVPA has been
shown in [7]. This proof works for any general ECMVPA as the notion k-round has
not been used and we use the same for emptiness checking of k-scope ECMVPA.
Detailed proofs for the theorems in this section are given in [8].

Theorem 8. Emptiness checking for k-scope ECMVPA is decidable.

Using Lemmas 6 and 7 we get the following theorem.

Theorem 9. The class of k-scope ECMVPA are determinizable.

To prove the decidability of emptiness checking for k-scope dt-ECMVPA, we
first do untime its stack to get k-scope ECMVPA for which emptiness is shown
to be decidable in Theorem 8.

Theorem 10. The emptiness checking for k-scope dt-ECMVPA is decidable.

Theorem 11. The k-scope dt-ECMVPA are determinizable.

Proof (sketch). From a k-scope dt-ECMVPA using the stack untiming construc-
tion we get a k-scope ECMVPA, which is determinized using Theorem 9. We
convert this back to get deterministic k-scope dt-ECMVPA.

It is easy to show that k-scoped ECMVPAs and k-scoped dt-ECMVPAs are
closed under union and intersection; using Theorems 9 and 11 we get closure
under complementation.

Theorem 12. The classes of k-scoped ECMVPLs and k-scoped dt-ECMVPLs are
closed under Boolean operations.

5 Logical Characterization of k-dt-ECMVPA

Let w = (a1, t1), . . . , (am, tm) be a timed word over alphabet Σ = 〈Σi
c, Σ

i
l , Σ

i
r〉n

i=1

as a word structure over the universe U = {1, 2, . . . , |w|} of positions in w. We
borrow definitions of predicates Qa(i),�a(i),�a(i) from [6]. Following [12], we use
the matching binary relation μj(i, k) which evaluates to true iff the ith position is a
call and the kth position is its matching return corresponding to the jth stack. We
introduce the predicate θj(i) ∈ I which evaluates to true on the word structure iff

On k-scoped Context-Sensitive Timed Languages 179

w[i] = (a, ti) with a ∈ Σj
r and w[i] ∈ Σj

r , and there is some k < i such that μj(k, i)
evaluates to true and ti−tk ∈ I. The predicate θj(i)measures time elapsed between
position k where a call was made on the stack j, and position i, its matching return.
This time elapse is the age of the symbol pushed onto the stack during the call at
position k. Since position i is the matching return, this symbol is popped at i, if
the age lies in the interval I, the predicate evaluates to true. We define MSO(Σ),
the MSO logic over Σ, as:

ϕ := Qa(x) | x ∈ X | μj(x, y) | �a (x) ∈ I | �a (x) ∈ I | θj(x) ∈ I |¬ϕ | ϕ ∨ ϕ| ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, xa ∈ CΣ , x is a first order variable and X is a second order
variable.

The models of a formula φ ∈ MSO(Σ) are timed words w over Σ. The
semantics is standard where first order variables are interpreted over positions
of w and second order variables over subsets of positions. We define the language
L(ϕ) of an MSO sentence ϕ as the set of all words satisfying ϕ.

Words in Scope(Σ, k), for some k, can be captured by an MSO formula
Scopek(ψ) =

∧

1≤j≤n

Scopek(ψ)j , where n is number of stacks, where

Scopek(ψ)j
def
= ∀yQa(y) ∧ a ∈ Σr

j ⇒ (∃xμj(x, y) ∧ (ψj
kcnxt ∧ ψj

matcnxt ∧ ψnoxcnxt))

where ψj
kcnxt, ψj

matcnxt, and ψnoxcnxt are defined as

ψj
kcnxt = ∃x1...k(x1≤ . . . ≤xk≤y

∧

1≤q≤k

(Qa(xq) ∧ a ∈ Σj ∧ (Qb(xq−1) ⇒ b/∈Σj)),

ψj
matcnxt =

∨

1≤q≤k

∀xi(xq ≤ xi ≤ x(Qc(xi) ⇒ c ∈ Σj)), and

ψnoxcnxt = ∃xl(x1 ≤ xl ≤ y)(Qa(l) ∧ a ∈ Σj ∧ Qb(xl − 1) ∧ b ∈ Σj) ⇒ 1≤l≤k.

Formulas ψnoextracnxt and ψkcnxt say that there are at most k contexts of
j-th stack, while formula ψmatcnxt says where matching call position x of return
position y is found. Conjuncting the formula obtained from a dt-ECMVPA M
with Scope(ψ) accepts only those words which lie in L(M) ∩ Scope(Σ, k). Like-
wise, if one considers any MSO formula ζ = ϕ ∧ Scope(ψ), it can be shown that
the dt-ECMVPA M constructed for ζ will be a k-dt-ECMVPA. Hence we have the
following MSO characterization.

Theorem 13. A language L over Σ is accepted by an k-scope dt-ECMVPA iff
there is a MSO sentence ϕ over Σ such that L(ϕ) ∩ Scope(Σ, k) = L.

The two directions, dt-ECMVPA to MSO, as well as MSO to dt-ECMVPA can
be handled using standard techniques, and can be found in [8].

References

1. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In: Pro-
ceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS
2012, Dubrovnik, Croatia, pp. 35–44, 25–28 June 2012. IEEE Computer Society.
https://doi.org/10.1109/LICS.2012.15

https://doi.org/10.1109/LICS.2012.15

180 D. Bhave et al.

2. Alur, R., Dill, D.: A theory of timed automata. Theoret. Comput. Sci. 126, 183–235
(1994)

3. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990).
https://doi.org/10.1007/BFb0032042

4. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class
of timed automata. Theoret. Comput. Sci. 211(1–2), 253–273 (1999)

5. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.) Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago,
IL, USA, pp. 202–211, 13–16 June 2004. ACM. https://doi.org/10.1145/1007352.
1007390

6. Bhave, D., Dave, V., Krishna, S.N., Phawade, R., Trivedi, A.: A logical character-
ization for dense-time visibly pushdown automata. In: Dediu, A.-H., Janoušek, J.,
Mart́ın-Vide,C.,Truthe,B. (eds.) LATA2016. LNCS, vol. 9618, pp. 89–101. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30000-9 7

7. Bhave, D., Dave, V., Krishna, S.N., Phawade, R., Trivedi, A.: A perfect class of
context-sensitive timed languages. In: Brlek, S., Reutenauer, C. (eds.) DLT 2016.
LNCS, vol. 9840, pp. 38–50. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53132-7 4

8. Bhave, D., Krishna, S.N., Phawade, R., Trivedi, A.: On timed scope-bounded
context-sensitive languages. Technical report, IIT Bombay (2019). www.cse.iitb.
ac.in/internal/techreports/reports/TR-CSE-2019-77.pdf

9. Bouajjani, A., Echahed, R., Habermehl, P.: On the verification problem of non-
regular properties for nonregular processes. In: Proceedings, 10th Annual IEEE
Symposium on Logic in Computer Science, San Diego, California, USA, pp. 123–
133, 26–29 June 1995. IEEE Computer Society. https://doi.org/10.1109/LICS.1995.
523250

10. Droste, M., Perevoshchikov, V.: A logical characterization of timed pushdown lan-
guages. In: Beklemishev, L.D., Musatov, D.V. (eds.) CSR 2015. LNCS, vol. 9139,
pp. 189–203. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20297-
6 13

11. Esparza, J., Ganty, P., Majumdar, R.: A perfect model for bounded verification. In:
Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science,
LICS 2012, Dubrovnik, Croatia, pp. 285–294, 25–28 June 2012. https://doi.org/10.
1109/LICS.2012.39

12. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS, pp. 161–170 (2007)

13. La Torre, S., Napoli, M., Parlato, G.: Scope-bounded pushdown languages. In:
Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 116–128. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09698-8 11

14. La Torre, S., Napoli, M., Parlato, G.: Scope-bounded pushdown languages. Int. J.
Found. Comput. Sci. 27(2), 215–234 (2016)

15. Li, G., Cai, X., Ogawa, M., Yuen, S.: Nested timed automata. In: Braberman, V.,
Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 168–182. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40229-6 12

16. Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A.,
Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15643-4 23

https://doi.org/10.1007/BFb0032042
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1007/978-3-319-30000-9_7
https://doi.org/10.1007/978-3-662-53132-7_4
https://doi.org/10.1007/978-3-662-53132-7_4
www.cse.iitb.ac.in/internal/techreports/reports/TR-CSE-2019-77.pdf
www.cse.iitb.ac.in/internal/techreports/reports/TR-CSE-2019-77.pdf
https://doi.org/10.1109/LICS.1995.523250
https://doi.org/10.1109/LICS.1995.523250
https://doi.org/10.1007/978-3-319-20297-6_13
https://doi.org/10.1007/978-3-319-20297-6_13
https://doi.org/10.1109/LICS.2012.39
https://doi.org/10.1109/LICS.2012.39
https://doi.org/10.1007/978-3-319-09698-8_11
https://doi.org/10.1007/978-3-642-40229-6_12
https://doi.org/10.1007/978-3-642-15643-4_23

On k-scoped Context-Sensitive Timed Languages 181

17. Van Tang, N., Ogawa, M.: Event-clock visibly pushdown automata. In: Nielsen, M.,
Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM
2009. LNCS, vol. 5404, pp. 558–569. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-540-95891-8 50

18. Vardi, M., Wolper, P.: Reasoning about infinite computations. Inform. Comput.
115(1), 1–37 (1994)

https://doi.org/10.1007/978-3-540-95891-8_50
https://doi.org/10.1007/978-3-540-95891-8_50

Logics for Reversible Regular Languages
and Semigroups with Involution

Paul Gastin1, Amaldev Manuel2(B), and R. Govind3,4

1 LSV, ENS Paris-Saclay & CNRS, University Paris-Saclay, Cachan, France
2 Indian Institute of Technology Goa, Ponda, India

devmanuel@gmail.com
3 Chennai Mathematical Institute, Chennai, India

4 LaBRI, University of Bordeaux, Bordeaux, France

Abstract. We present MSO and FO logics with predicates ‘between’ and
‘neighbour’ that characterise various fragments of the class of regular
languages that are closed under the reverse operation. The standard
connections that exist between MSO and FO logics and varieties of finite
semigroups extend to this setting with semigroups extended with an
involution. The case is different for FO with neighbour relation where we
show that one needs additional equations to characterise the class.

1 Introduction

In this paper we look closely at the class of regular languages that are closed
under the reverse operation. We fix a finite alphabet A for the rest of our dis-
cussion. The set A∗ (respectively A+) denotes the set of all (resp. non-empty)
finite words over the alphabet A. If w = a1 · · · ak with ai ∈ A is a word then
wr = ak · · · a1 denotes the reverse of w. This notion is extended to sets of words
pointwise, i.e. Lr = {wr | w ∈ L} and we can talk about reverse of languages. A
regular language L ⊆ A∗ is closed under reverse or simply reversible if Lr = L.
We let Rev denote the class of all reversible regular languages. Clearly Rev is a
strict subset of the class of all regular languages.

The class Rev is easily verified to be closed under union, intersection and com-
plementation. It is also closed under homomorphic images, and inverse homomor-
phic images under alphabetic (i.e. length preserving) morphisms. However they
are not closed under quotients. For instance, the language L = (abc)∗ +(cba)∗ is
closed under reverse but the quotient a−1L = bc(abc)∗ is not closed under reverse.
Thus the class Rev fails to be a variety of languages—i.e. a class closed under
Boolean operations, inverse morphic images and quotients. However reversible
languages are closed under bidirectional quotients, i.e. quotients of the form
u−1Lv−1 ∪ (vr)−1

L (ur)−1, given words u, v. Thus, to a good extent, Rev shares
properties similar to that of regular languages. Hence it makes sense to ask the
question

Partly supported by UMI ReLaX. The work was carried out at Chennai Mathematical
Institute.

c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 182–191, 2019.
https://doi.org/10.1007/978-3-030-24886-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_13

Logics for Reversible Regular Languages and Semigroups with Involution 183

“are there good logical characterisations for the class Rev and its well
behaved subclasses?”.

Our Results. We suggest a positive answer to the above question. We introduce
two predicates between (bet(x, y, z) is true if position y is between positions x
and z) and neighbour (N(x, y) is true if positions x and y are adjacent). The
predicates between and neighbour are the natural analogues of the order relation
< and successor relation +1 in the undirected case. In fact this analogy extends
to the case of logical definability. We show that Rev is the class of monadic second
order (MSO) definable languages using either of the predicates, i.e. MSO(bet) or
MSO(N). This is analogous to the classical Büchi-Elgot-Trakhtenbrot theorem
relating regular languages and MSO logic. This connection extends to the case
of first order logic as well. We show that FO(bet) definable languages are pre-
cisely the reversible languages definable in FO(<). However the case of successor
relation is different, i.e. the class of FO(N) definable languages is a strict subset
of reversible languages definable in FO(+1). The precise characterisation of this
class is one of our main contributions.

The immediate question that arises from the above characterisations is one of
definability: Given a reversible language is it definable in the logic?”. The case of
FO(bet) is decidable due to Schützenberger-McNaughton-Papert theorem that
states that syntactic monoids of FO(<) definable languages are aperiodic (equiva-
lent to the condition that the monoid contains no groups as subsemigroups) [8,9].
However the question for FO(N) is open. We prove a partial characterisation in
terms of semigroups with involution. It is to be noted that the characterisation
of FO(+1) is a tedious one that goes via categories [11].

Related Work. A different but related between predicate (namely a(x, y), for
a ∈ A, is true if there is an a-labelled position between positions x and y) was
introduced and studied in [5–7]. Such a predicate is not definable in FO2(<), the
two variable fragment of first-order logic (which corresponds to the well known
semigroup variety DA [12]). The authors of [5–7] study the expressive power
of FO2(<) enriched with the between predicates a(x, y) for a ∈ A, and show
an algebraic characterisation of the resulting family of languages. The between
predicate (predicates rather) in [5] is strictly less expressive than the between
predicate introduced in this paper. However the logics considered in [5] have the
between predicates in conjunction with order predicates < and +1. Hence their
results are orthogonal to ours.

Another line of work that has close parallels with the one in this paper is
the variety theory of involution semigroups (also called �-semigroups) (see [3]
for a survey). Most investigations along these lines have been on subvarieties of
regular �-semigroups (i.e. �-semigroups satisfying the equation xx�x = x). As
far as we are aware the equation introduced in this paper has not been studied
before.

Structure of the Paper. In Sect. 2 we introduce the predicates and present our log-
ical characterisations. This is followed by a characterisation of FO(N). In Sect. 3

184 P. Gastin et al.

we discuss semigroups with involution, a natural notion of syntactic semigroups
for reversible languages. In Sect. 4 we conclude.

2 Logics with Between and Neighbour

As usual we represent a word w = a1 · · · an as a structure containing positions
{1, . . . , n}, and unary predicates Pa for each letter a in the alphabet. The pred-
icate Pa is precisely true at those positions labelled by letter a. The atomic
predicate x < y (resp. x + 1 = y) is true if position y is after (resp. immediately
after) position x. The logic FO is the logic containing atomic predicates, boolean
combinations (φ ∨ ψ, φ ∧ ψ, ¬ψ whenever φ, ψ are formulas of the logic), and
first order quantifications (∃xψ, ∀xψ if ψ is a formula of the logic). The logic
MSO in addition contains second order quantification as well (∃X ψ, ∀X ψ if ψ
is a formula of the logic)—i.e. quantification over sets of positions. By FO(τ) or
MSO(τ) we mean the corresponding logic with atomic predicates τ in addition to
the unary predicates Pa. The classical result relating MSO and regular languages
states that MSO(<) = MSO(+1) defines all regular languages. We introduce two
analogous predicates for the class Rev of reversible regular languages.

2.1 MSO(bet),MSO(N) and FO(bet)

The ternary between predicate bet(x, y, z) is true for positions x, y, z when y is
in between x and z, i.e.

bet(x, y, z) := x < y < z or z < y < x.

Example 1. The set of all words containing the subword a1a2 · · · ak or
akak−1 · · · a1 is defined by the formula

∃x1∃x2 · · · ∃xk

k∧

i=1

Pai
(xi) ∧

k−1∧

i=2

bet(xi−1, xi, xi+1).

The ‘successor’ relation of bet is the binary predicate neighbour N(x, y) that
holds true when x and y are neighbours, i.e.

N(x, y) := x + 1 = y or y + 1 = x.

Example 2. The set of words of even length is defined by the formula

∃X(X(e1) ∧ ¬X(e2) ∧ ∀x∀y(N(x, y) → (X(x) ↔ ¬X(y))))

where e1, e2 are the endpoints, i.e. the two positions with exactly one neighbour
(defined easily in FO(N)).

The relation N(x, y) can be defined in terms of bet using first-order quantifiers
as x �= y ∧ ∀z ¬bet(x, z, y). One can also define bet(x, y, z) in terms of N, but
using second-order set quantification. To do this we assert that any subset X of
positions

Logics for Reversible Regular Languages and Semigroups with Involution 185

– that contains x, z and at least some other position
– and such that any position in X, except for x and z, has exactly two neigh-

bours in X, contains the position y.

Proposition 1. For definable languages, MSO(bet) = MSO(N) = Rev.

Proof. Clearly from the discussion above, MSO(bet) = MSO(N) ⊆ Rev. To show
the other inclusion, let L be a reversible regular language and let ϕ be a formula
in MSO(<) defining it. Pick an endpoint e of the given word, an endpoint is a
position with exactly one neighbour, a property expressible in FO(N) ⊆ FO(bet).
We relativize the formula ϕ with respect to e by replacing all occurrences of x < y
in the formula by (e = x �= y)∨bet(e, x, y). Let ϕ′(e) be the formula obtained in
this way and let ψ(e) = ¬∃x, y (x �= y ∧ N(e, x) ∧ N(e, y)) be the FO(N) formula
asserting that e is an endpoint, then we claim that

χ = ∃e (ψ (e) ∧ ϕ′ (e))

defines the language L. Let w be a word of length k ≥ 1 then,

w |= χ ⇔ w, 1 |= ϕ′(e) or w, k |= ϕ′(e)
⇔ w |= ϕ or wr |= ϕ

⇔ w |= ϕ (since L is reversible)

Hence L(χ) = L(ϕ) = L. ��
The above proposition says that MSO(bet) = MSO(<) ∩ Rev. This carries

down to the first-order case using the same relativization idea. In fact the result
holds for the prefix class Σi (first-order formulas in prenex normal form with i
blocks of alternating quantifiers starting with ∃-block).

Proposition 2. The following is true for definable languages.

1. FO(bet) = FO(<) ∩ Rev.
2. Σi(bet) = Σi(<) ∩ Rev.

Proof. Given an FO(<) formula in prenex form defining a language in Rev, we
replace every occurrence of x < y by (e = x �= y)∨bet(e, x, y) as before, where e
is asserted to be an endpoint with ψ(e) = ∀x, y ¬bet(x, e, y). For every formula
in Σi(<), i ≥ 2 this results in an equivalent formula in Σi(bet). For the case of
Σ1, let us note that every formula in Σ1(<) defines a union of languages of the
form A∗a1A

∗a2A
∗ · · · A∗akA∗. Such a language can be written as a disjunction

of formulas like the one in Example 1. ��

2.2 FO(N)

Next we address the expressive power of FO with the neighbour predicate.
We start by detailing the class of locally threshold testable languages. Recall

that word y is a factor of word u if u = xyz for some x, z in A∗. We use 	(u, y)
to denote the number of times the factor y appears in u.

186 P. Gastin et al.

Let ≈t
k, for k, t > 0, be the equivalence on A∗, whereby two words u and

v are equivalent if either they both have length at most k − 1 and u = v, or
otherwise they have

1. the same prefix of length k − 1,
2. the same suffix of length k − 1,
3. and the same number of occurrences, upto threshold t, for all factors of length

≤ k, i.e. for each word y ∈ A∗ of length at most k, either 	(u, y) = 	(v, y) < t,
or 	(u, y) ≥ t and 	(v, y) ≥ t.

Example 3. We have ababab ≈1
2 abab �≈1

2 abbab. Indeed, all the words start and
end with the same letter. In the first two words the factors ab as well as ba
appear at least once. While in the last word the factor bb appears once while
it is not present in the word abab. Notice also that ababab �≈2

2 abab due to the
factor ba.

A language is locally threshold testable (or LTT for short) if it is a union of
≈t

k classes, for some k, t > 0.

Example 4. The language (ab)∗ is LTT. In fact it is locally testable (the special
case of locally threshold testable with t = 1). Indeed, (ab)∗ is the union of three
classes: {ε}, {ab} and abab(ab)∗ which is precisely the set of words that begin
with a, end with b, and the only factors are ab and ba.

A language that is definable in FO(<) and not LTT is c∗ac∗bc∗. In this lan-
guage if a and b are sufficiently separated by c-blocks then the order between
a and b cannot be differentiated. It can be proved that for any t, k there is a
sufficiently large n such that cnacnbcn ≈t

k cnbcnacn.

Locally threshold testable languages are precisely the class of languages defin-
able in FO(+1) [1,13]. Since we can define the neighbour predicate N using +1,
clearly FO(N) ⊆ FO(+1)∩Rev = LTT∩Rev. But this inclusion is strict as shown
in Example 6.

Example 5. Consider the language L = ua∗ +a∗ur of words which have either u
as prefix and followed by an arbitrary number of a’s, or ur as suffix and preceded
by an arbitrary number of a’s. The language L is in FO(N). When u = a1 · · · an,
it can be defined by a formula of the form ∃x1, . . . , xn ψ where ψ states that x1

is an endpoint,
∧

1≤i<n N(xi, xi+1),
∧

1<i<n xi−1 �= xi+1,
∧

1≤i≤n Pai
(xi), and all

other positions are labelled a.

Example 6. Consider the language L over the alphabet {a, b, c},

L = {w | 	(w, ab) = 2, 	(w, ba) = 1 or 	(w, ab) = 1, 	(w, ba) = 2}.

Since L is locally threshold testable and reverse closed, L ∈ FO(+1) ∩ Rev.
We can show that L �∈ FO(N) by showing that the words,

ck ab ck ba ckab ck ∈ L ck ab ck ab ck ab ck �∈ L

Logics for Reversible Regular Languages and Semigroups with Involution 187

for k > 0 are indistinguishable by an FO(N) formula of quantifier depth k. For
showing the latter claim, one uses Ehrenfeucht-Fraissé games and argues that
in the k-round EF-game the duplicator has a winning strategy. The strategy is
roughly described below:

ckabckb ackabck ckabcka bckabck

Any move of the spoiler is mimicked by the duplicator in the corresponding
underlined or non-underlined part of the other word, while maintaining the
neighbourhood relation between positions. For instance, if the spoiler plays the
first b on the underlined part of the first word, then the duplicator chooses
the last b on the underlined portion of the word on the right. Similarly, if the
spoiler plays the first a on the non-underlined part of the first word, the dupli-
cator chooses the last a on the non-underlined portion of the word on the right.
Note that, since no order on positions in the words can be checked with the
neighbour predicate, there is no way to distinguish between these words, if the
duplicator plays in the above way ensuring that the position played has the
same neighbourhood relation as the position played by the spoiler. Therefore,
the Neighbour predicate will not be able to distinguish between ab and ba when
they are sufficiently separated by c’s.

From the above example, we get,

Proposition 3. For definable languages, FO(N) � FO(+1) ∩ Rev = LTT ∩ Rev.

Next we will characterise the class of languages accepted by FO(N). For t > 0
we define the equality with threshold t on the set N of natural numbers by i =t j
if i = j or i, j ≥ t. Recall that 	(w, v) denotes the number of occurrences of v in
w, i.e. the number of pairs (x, y) such that w = xvy. We extend this to 	r(w, v)
which counts the number of occurrences of v or vr in w, i.e. the number of
pairs (x, y) such that w = xvy or w = xvry. Notice that 	r(w, v) = 	r(w, vr) =
	r(wr, v) = 	r(wr, vr).

We define now the locally-reversible threshold testable (LRTT) equivalence
relation. Let k, t > 0. Two words w,w′ ∈ A∗ are (k, t)-LRTT equivalent, denoted
w

r≈t
k w′ if |w| < k and w′ ∈ {w,wr}, or

– w,w′ are both of length at least k, and
– 	r(w, v) =t 	r(w′, v) for all v ∈ A≤k, and
– if x, x′ are the prefixes of w,w′ of length k − 1 and y, y′ are the suffixes of

w,w′ of length k − 1 then {x, yr} = {x′, y′r}.

Notice that w
r≈t

k wr for all w ∈ A∗ and w ≈t
k w′ implies w

r≈t
k w′ for all

w,w′ ∈ A∗. Notice also that
r≈t

k is not a congruence. Indeed, we have ab
r≈t

k ba

but aba � r≈t
k baa. On the other hand, if v

r≈t
k w then for all u ∈ A∗ we have

uv
r≈t

k uw or uv
r≈t

k uwr, and similarly vu
r≈t

k wu or vu
r≈t

k wru.

Definition 1 (Locally-Reversible Threshold Testable Languages). A
language L is locally-reversible threshold testable, LRTT for short, if it is a
union of equivalence classes of

r≈t
k for some k, t > 0.

188 P. Gastin et al.

Theorem 1. Languages defined by FO(N) are precisely the class of locally-
reversible threshold testable languages.

Proof. (⇐) Assume we are given an LRTT language, i.e. a union of
r≈t

k-classes
for some k, t > 0. We explain how to write an FO(N) formula for each

r≈t
k-class.

Consider a word v = a1a2 · · · an ∈ A+. For m ∈ N, we can say that v or its
reverse occurs at least m times in a word w ∈ A∗, i.e. 	r(w, v) ≥ m, by the
formula

ϕ≥m
v = ∃x1,1 · · · ∃x1,n · · · ∃xm,1 · · · ∃xm,n

m∧

i=1

(n−1∧

j=1

N(xi,j , xi,j+1) ∧
n−1∧

j=2

(xi,j−1 �= xi,j+1) ∧
n∧

j=1

Paj
(xi,j)

)

∧
∧

1≤i<j≤m

¬((xi,1 = xj,1 ∧ xi,n = xj,n) ∨ (xi,1 = xj,n ∧ xi,n = xj,1)) .

Similarly, we can write a formula ψv ∈ FO(N) that says that a word belongs
to {v, vr}. Finally, given two words of same length u, v ∈ An, we can write a
formula χu,v ∈ FO(N) that says that u, v occur at two different end points of
a word w, i.e. that {x, yr} = {u, v} where x, y are the prefix and suffix of w of
length n.

(⇒) Hanf’s theorem [4] states that two structures A and B are m-equivalent
(i.e. indistinguishable by any FO formula of quantifier rank at most m), for some
m ∈ N if for each 3m ball type S, both A and B have the same number of 3m

balls of type S upto a threshold m × e, where e ∈ N. Applying Hanf’s theorem
to undirected path graphs, we obtain that given an FO(N) formula Φ, there exist
k, t > 0 such that the fact that a word w satisfies Φ only depends on its

r≈t
k-class.

The set of all such words is therefore an LRTT language. ��

3 Semigroups with Involution

In this section we address the question of definability of a language—“is the
given reversible regular language definable by a formula in the logic?”—in the
previously defined logics. We show that in the case of FO(bet) the existing the-
orems provide an algorithm for the problem, while for FO(N) the answer is not
yet known.

First we recall the notion of recognisability by a finite semigroup. A finite
semigroup (S, ·) is a finite set S with an associative binary operation · : S ×S →
S. If the semigroup operation has an identity, then it is necessarily unique and
is denoted by 1. In this case S is called a monoid. A semigroup morphism from
(S, ·) to (T,+) is a map h : S → T that preserves the semigroup operation, i.e.
h(a · b) = h(a) + h(b) for a, b in S. Further if S and T are monoids the map is a
monoid morphism if h maps the identity of S to the identity of T .

The set A∗ (resp. A+) under concatenation forms a free monoid (resp. free
semigroup). A language L ⊆ A∗ is recognised by a semigroup (or monoid) (S, ·),
if there is a morphism h : A∗ → (S, ·) and a set P ⊆ S, such that L = h−1(P).

Logics for Reversible Regular Languages and Semigroups with Involution 189

Given a language L, the syntactic congruence of L, denoted as ∼L is the
congruence on A∗,

x ∼L y if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ A∗.

The quotient A∗/ ∼L, (resp. A+/ ∼L) denoted as M(L), is called the syntactic
monoid (resp. syntactic semigroup). It recognises L and is the unique minimal
object with this property: any monoid S recognising L has a surjective morphism
from a submonoid of S to M(L) [11].

In the particular case of reversible languages the syntactic monoid described
above admits further properties. The observation is that the reverse operation
can be extended to congruence classes of the syntactic congruence by letting
[x]r = [xr] for each word x and it is well defined since if x ∼L y then xr ∼L yr

as can be easily verified. Moreover this operation is an involution, i.e. ([x]r)r =
([xr])r = [(xr)r] = [x], and an anti-isomorphism on the congruence classes, i.e.
([x] · [y])r = ([x · y])r = [(x ·y)r] = [yr · xr] = [yr] · [xr] = [y]r · [x]r. Therefore one
can enrich the notion of semigroups for recognisability in the case of reversible
languages as below.

A semigroup with involution (also called a �-semigroup) (S, ·, �) is a semi-
group (S, ·) extended with an operation � : S → S (called the involution) such
that

1. the operation � is an involution on S, i.e. (a�)� = a for all elements a of S,
2. the operation � is an anti-automorphism on S (isomorphism between S and

opposite of S), i.e. (a · b)� = b� · a� for any a, b in S.

It is a �-monoid if S is a monoid. It is easy to see that in the case of �-monoids,
necessarily 1� = 1. Clearly the free monoid A∗ with the reverse operation r as
the involution is a �-monoid, since (wr)r = w and (v ·w)r = wr · vr. When there
is no ambiguity, we just write A∗ to refer to the �-monoid (A∗, ·, r).

A map h : S → T between two �-semigroups (S, ·, �) and (T,+, †) is a mor-
phism if it is a morphism between the semigroups (S, ·) and (T,+) that preserves
the involution, i.e. h(a�) = h(a)†.

A language L ⊆ A∗ is said to be recognised by a �-semigroup (S, ·, �), if there
is a morphism h : (A∗, ·, r) → (S, ·, �) and a set P ⊆ S, such that P � = P and
L = h−1(P). The following proposition summarises the discussion so far.

Proposition 4. The following are equivalent for a language L.

1. L is a reversible regular language,
2. L is recognised by a finite �-monoid,
3. M(L) with the reverse operation is a finite �-monoid with P = P � where

P = {[u] | u ∈ L}, i.e. (M(L), ·, r) recognises L as a �-monoid.

A semigroup (or monoid) is aperiodic if there is some n ∈ N such that
an = an+1 for each element a of the semigroup. Schützenberger-McNaughton-
Papert theorem states that a language L is definable in FO(<) if and only if the
syntactic monoid is aperiodic. This theorem in conjunction with Proposition 2
gives that,

190 P. Gastin et al.

Proposition 5. A reversible language L is definable in FO(bet) if and only if
M(L) is aperiodic.

The above theorem hence yields an algorithm for definability of a language
in FO(bet), i.e. check if the language is reversible, if so compute the syntactic
monoid (which is also a monoid with an involution) and test for aperiodicity.

Next we look at the logic FO(N). The characterisation theorem for FO(+1)
due to Brzozowski and Simon [2], and Beauquier and Pin [1], is stated below.
Recall that an element of a semigroup e is an idempotent if e · e = e.

Theorem 2 (Brzozowski-Simon, Beauquier-Pin). The following are equiv-
alent.

1. L is locally threshold testable.
2. L is definable in FO(+1).
3. The syntactic semigroup of L is finite, aperiodic and satisfies the identity

e x f y e z f = e z f y e x f for all e, f, x, y, z ∈ M(L) with e, f idempotents.

Because of Proposition 3 we need to add more identities to characterise the
logic FO(N) in terms of �-semigroups.

Theorem 3. The syntactic �-semigroup of an FO(N)-definable language satis-
fies the identity

exe� = ex�e�,

where e is an idempotent, and x is any element of the semigroup.

Proof. Assume we are given an FO(N)-language L, with its syntactic �-semigroup
M = (A+/∼L, ·, �), and h : A+ → M the canonical morphism recognising L. Let
e be an idempotent of M , and let x be an element of M . Pick nonempty words
u and s such that h(u) = e and h(s) = x.

By definition of the involution, h(ur) = e� and h(sr) = x�. We are going to
show that usur ∼L usrur and hence they will correspond to the same element
in the syntactic �-semigroup, proving that exe� = ex�e�.

Since L is FO(N) definable, we know by Theorem 1 that L is a union of
r≈t

k equivalence classes for some k, t > 0. Consider the words w = (uk)s(uk)r

and wr = (uk)sr(uk)r, obtained by pumping the words corresponding to e and
e�. Since e, e� are idempotents, it is clear that h(w) = h(usur) = exe� and
h(wr) = h(usrur) = ex�e�.

For all contexts α, β ∈ A∗, we show below that αwβ
r≈t

k αwrβ, which implies
αwβ ∈ L iff αwrβ ∈ L since L is a union of

r≈t
k classes. It follows that w ∼L wr

and therefore h(w) = h(wr), which will conclude the proof.
Fix some contexts α, β ∈ A∗. Since u �= ε, the words αwβ and αwrβ have

the same prefix of length k−1 and the same suffix of length k−1. Now, consider
v ∈ Ak. If an occurrence of v (resp. vr) in αwβ overlaps with α or β then
we have the very same occurrence in αwrβ. Using w

r≈t
k wr, we deduce that

	r(αwβ, v) =t 	r(αwrβ, v). Therefore, αwβ
r≈t

k αwrβ. ��
The converse direction is open. The similar direction in the case of FO(+1) goes
via categories [14] and uses the Delay theorem of Straubing [10,11].

Logics for Reversible Regular Languages and Semigroups with Involution 191

4 Conclusion

The logics MSO(bet),MSO(N) and FO(bet) behave analogously to the classical
counterparts MSO(<),MSO(+1) and FO(<). But the logic FO(N) gives rise to
a new class of languages, locally-reversible threshold testable languages. The
quest for characterising the new class takes us to the formalism of involution
semigroups. The full characterisation of the new class is the main question we
leave open. Another line of investigation is to study the equationally-defined
classes that arise naturally from automata theory.

References

1. Beauquier, D., Pin, J.: Languages and scanners. Theor. Comput. Sci. 84(1), 3–21
(1991)

2. Brzozowski, J.A., Simon, I.: Characterizations of locally testable events. In: Pro-
ceedings of the 12th Annual Symposium on Switching and Automata Theory (Swat
1971), pp. 166–176. SWAT 1971 (1971)

3. Crvenković, S., Dolinka, I.: Varieties of involution semigroups and involution semir-
ings: a survey. In: Proceedings of the International Conference “Contemporary
Developments in Mathematics” (Banja Luka, 2000), pp. 7–47. Bulletin of Society
of Mathematicians of Banja Luka (2000)

4. Ebbinghaus, H., Flum, J.: Finite Model Theory. Perspectives in Mathematical
Logic. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-662-03182-7

5. Krebs, A., Lodaya, K., Pandya, P., Straubing, H.: Two-variable logic with a
between relation. In: Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2016, pp. 106–115 (2016)

6. Krebs, A., Lodaya, K., Pandya, P.K., Straubing, H.: An Algebraic Decision Pro-
cedure for Two-Variable Logic with a Between Relation. In: 27th EACSL Annual
Conference on Computer Science Logic (CSL 2018), Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 119, pp. 28:1–28:17 (2018)

7. Krebs, A., Lodaya, K., Pandya, P.K., Straubing, H.: Two-variable logics with
some betweenness relations: expressiveness, satisfiability and membership. arXiv
preprint arXiv:1902.05905 (2019)

8. McNaughton, R., Papert, S.A.: Counter-Free Automata (M.I.T. Research Mono-
graph No. 65). The MIT Press (1971)

9. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8(2), 190–194 (1965)

10. Straubing, H.: Finite semigroup varieties of the form V �D. J. Pure Appl. Algebra
36, 53–94 (1985)

11. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser
Verlag, Basel (1994)

12. Tesson, P., Therien, D.: Diamonds are forever: the variety DA. In: Semigroups,
Algorithms, Automata and Languages, Coimbra (Portugal) 2001, pp. 475–500.
World Scientific (2002)

13. Thomas, W.: Classifying regular events in symbolic logic. J. Comput. Syst. Sci.
25(3), 360–376 (1982)

14. Tilson, B.: Categories as algebra: an essential ingredient in the theory of monoids.
J. Pure Appl. Algebra 48(1–2), 83–198 (1987)

https://doi.org/10.1007/978-3-662-03182-7
http://arxiv.org/abs/1902.05905

Eventually Safe Languages

Simon Iosti1 and Denis Kuperberg2(B)

1 Verimag, Université Grenoble-Alpes, Saint-Martin-d’Hères, France
2 CNRS, LIP, ENS, Lyon, France
denis.kuperberg@ens-lyon.fr

Abstract. Good-for-Games (GFG) automata constitute a sound alter-
native to determinism as a way to model specifications in the Church
synthesis problem. Typically, inputs for the synthesis problem are in the
form of LTL formulas. However, the only known examples where GFG
automata present an exponential gap in succinctness compared to deter-
ministic ones are not LTL-definable. We show that GFG automata still
enjoy exponential succinctness for LTL-definable languages. We intro-
duce a class of properties called “eventually safe” together with a spec-
ification language EνTL for this class. We finally give an algorithm to
produce a Good-for-Games automaton from any EνTL formula, thereby
allowing synthesis for eventually safe properties.

1 Introduction

Synthesis is one of the most classical applications of automata theory. It asks,
given a specification, whether there exists a reactive system complying with it.
We also want to automatically build such a system when it exists. The spec-
ification is typically given in a logic such as Linear Temporal Logic (LTL).
The problem was solved positively by Büchi and Landweber [5] for the case of
ω-regular specifications. The usual approach to this problem consists in building
a deterministic automaton from the specification, and then solving a game based
on this automaton. Henzinger and Piterman [11] have proposed a model oprob-
lem was solved positively byf Good-For-Games (GFG) automata as a weakening
of determinism that is still sound for solving the synthesis problem. An automa-
ton is GFG if there exists a strategy that resolves the non-deterministic choices,
by taking into account only the prefix of the input ω-word read so far. The
strategy must guarantee to build an accepting run whenever the input word is
in the language of the automaton. In [15], the question of succinctness of GFG
automata compared to deterministic ones is answered. A family (Ln) of lan-
guages is exhibited, such that for each n there is a GFG coBüchi automaton
of size n for Ln, but any deterministic Streett automaton for Ln must have
size exponential in n. Therefore, GFG automata offer a promising alternative to
deterministic ones for synthesis, and this work is part of an effort to systemati-
cally study their applicability in this context.

However, one of the potential issues with the use of GFG automata for syn-
thesis lies in the fact that the most usual specification formalism for synthesis
c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 192–205, 2019.
https://doi.org/10.1007/978-3-030-24886-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_14

Eventually Safe Languages 193

is LTL. It is therefore natural to ask whether GFG automata can be useful in
this context. We show that the languages Ln witnessing succinctness of GFG
automata are not LTL-definable. Moreover, a close look at the structure of GFG
coBüchi automata, as studied in [15], suggests that the ability to permute states
is an essential feature of non-trivial GFG automata. It is therefore plausible
that GFG automata are no longer succinct (compared to deterministic ones) for
LTL-definable languages, where such permutations are forbidden [7].

We answer this question here, by building a family (Kn) of LTL-definable
languages presenting the same succinctness gap as the family (Ln) between GFG
and deterministic automata. Although this shows that GFG automata are still
succinct for LTL-definable languages, the issue of practicability is still unclear,
due to the fact that the LTL formulas representing Kn have exponential size.
Moreover, we show that there are simple μ-calculus formulas of linear size for the
same languages. Interestingly, a by-product of this work is the exhibition of the
family Kn as a candidate witness for an exponential gap succinctness of linear
μ-calculus compared to LTL, a problem that is open to our knowledge. This
suggests that μ-calculus is more suited than LTL for describing specifications
that are recognized by small GFG automata. We therefore aim at proposing a
framework based on μ-calculus for building succinct GFG automata.

This leads us to a second issue standing in the way of bringing GFG
automata to practical applications. Due to their semantic definition, building
GFG automata is a hard problem and requires an understanding of their syn-
tactical shape. A first way to achieve this has been given in [14], building GFG
automata in an incremental way from non-deterministic ones. The algorithm
tries bigger and bigger automata until a GFG one is reached, the worst case being
when a full determinization construction is needed. The only knowledge about
GFG automata that is used in this construction is in the subroutine used to test
whether an automaton is GFG. We propose here an alternative approach, build-
ing automata that are GFG by construction, using the understanding acquired
in [15] about the structure of GFG coBüchi automata.

Considering restricted classes of specifications is a classical way to try to
tackle the difficulty of the synthesis problem. The classes of safety and liveness
properties [1] have gathered particular interest [18,20], as they simplify algo-
rithms while expressing typical requirements on reactive systems. We introduce
a class of properties called “eventually safe” and noted ESafe, for which we give
a specification language EνTL and an algorithm systematically producing GFG
automata from this language. The class ESafe can be seen as a natural compro-
mise between safety and liveness, and is defined as the class of languages of the
form Σ∗Lsafe where Lsafe is a suffix-closed safety language. Equivalently, the
class ESafe is the class of prefix-independent coBüchi languages. As an example,
the following specification can be formalized in ESafe: “after being started, the
system must eventually start interacting with external agents, and must answer
their requests within a fixed finite time”.

Both families (Ln) and (Kn) are expressible in the logic EνTL in a very
natural way and with formulas of size linear in n. This approach is orthogonal
to the one from [14] that we outlined above. Here, we restrict the class of inputs

194 S. Iosti and D. Kuperberg

to the class ESafe that is natural for verification purposes, and for which GFG
automata are well-suited. We show that unfortunately, translating a formula of
EνTL to a GFG automaton is still doubly exponential in the worst case. This is
not surprising, as it was shown in [4] that this is already the case for translating
LTL (or linear μ-calculus) formulas for “bounded” languages, i.e. languages that
are both safe and co-safe, to GFG automata. However we believe that this model
is worth exploring, in order to understand the power and possible limitations of
GFG automata for synthesis. Moreover, recent works such as [8,13] rely on a
modular treatment of specifications, and can call subroutines to build automata
for restricted fragments of LTL. This is particularly suitable to embed GFG
automata for well-behaved fragments, and the present work brings a clearer
understanding of the possibilities and theoretical limitations of this approach.

Let us give another example of application of the EνTL formalism, in the
spirit of this modular approach. Properties required of systems are often subject
to fairness assumptions. This is expressed by specifications of the form ψ ⇒ ϕ
for some fairness assumption ψ, that typically consists in liveness properties.
This can be treated by building a GFG automaton for ¬ψ, in addition to the
automaton for ϕ. In this context, EνTL would for example allow to model the
fairness assumption that a finite set of agents (that can be dynamically renamed)
will all be activated infinitely many times, as the complement of such a language
is similar to the language Ln discussed in this work.

Outline of the Paper

We start by recalling definitions on logical formalisms and automata in Sect. 2.
In Sect. 3, we recall the definition of the (Ln) language family from [15], and show
that it is not LTL-definable. In Sect. 4, we define the (Kn) family, show that it
also witnesses succinctness of GFG automata compared to deterministic ones,
and give a family of LTL formulas of exponential size for the languages (Kn).
In Sect. 5, we define the safety fragment SνTL of linear μ-calculus, show that it
is equivalent to safety languages, and build the logic EνTL based on its syntax
by using an alternative semantic. We show that both families of languages (Kn)
and (Ln) have linear-size representations in EνTL, and give a generic algorithm
to translate an EνTL formula to a GFG coBüchi automaton. We also exhibit
an EνTL formula witnessing that the translation to GFG coBüchi automata
is doubly exponential in the worst case. Detailed proofs can be found in the
appendix of the online version.

2 Definitions

We will use Σ to denote an arbitrary finite alphabet. The empty word is denoted
ε. If i ≤ j, the set {i, i + 1, i + 2, . . . , j} is denoted [i, j]. The set of finite words
on Σ is denoted Σ∗, and the set of infinite words Σω. We note Σ∞ = Σ∗ ∪ Σω.
If X ⊆ Σω, we note pref (X) the set of finite prefixes of words in X, and suff (X)
the set of infinite suffixes of words in X. A set X ⊆ Σω is prefix-independent if
for all u, v ∈ Σ∗ and w ∈ Σω, we have uw ∈ X ⇔ vw ∈ X. A set X ⊆ Σω is
suffix-closed if suff (X) = X.

Eventually Safe Languages 195

2.1 Logic

We define here the linear temporal logic (LTL) and the linear μ-calculus.
The syntax of LTL is defined with the following grammar, where a ranges

over Σ:
ϕ := a | ϕ ∨ ϕ | ¬ϕ | 	ϕ | ϕUϕ

The semantic �ϕ� ⊆ Σω of a formula ϕ of LTL is defined recursively on the
formula:

– �a� = {aw | w ∈ Σω},
– �ϕ ∨ ψ� = �ϕ� ∪ �ψ�,
– �¬ϕ� = Σω \ �ϕ�,
– �	ϕ� = {aw ∈ Σω | a ∈ Σ,w ∈ �ϕ�},
– �ϕUψ� = {a0a1 · · · ∈ Σω | ∃i ∈ N,∀j < i, ajaj+1 · · · ∈ �ϕ�, and aiai+1 · · · ∈

�ψ�}.

Let a be an arbitrary letter in Σ and ϕ,ψ be LTL formulas. We will
use the syntactic sugar ϕ ∧ ψ,
, ⊥, Fϕ, Gϕ and ϕWUψ as shorthands for
¬((¬ϕ) ∨ (¬ψ)), a ∨ ¬a, ¬
,
Uϕ,¬F¬ϕ and Gϕ ∨ ϕUψ respectively.

The linear μ-calculus has the following syntax, where a ranges over Σ, and
X over a countable set V of variables:

ϕ := a | X | ϕ ∨ ϕ | ¬ϕ | 	ϕ | μX.ϕ | νX.ϕ

Its semantic �ϕ�μ,val relative to a valuation val : V → 2Σω

of the variables is
defined similarly to the semantic of LTL for their common symbols (using the
μ-calculus semantic instead of the LTL semantic), with the following additional
rules for the new symbols, where gfp and lfp denote the greatest fixed point and
the least fixed point operators respectively, and val [X → S] is the valuation val
except for val(X) = S:

– �X�μ,val = val(X);
– �μX.ϕ�μ,val = lfp(S → �ϕ�μ,val[X→S]);
– �νX.ϕ�μ,val = gfp(S → �ϕ�μ,val[X→S]).

The semantic �ϕ�μ of a closed formula ϕ is �ϕ�μ,∅ where ∅ is the empty
valuation.

The DAG-size of a formula is a measure of the size of the formula using the
directed acyclic graph (DAG) representing the formula instead of the syntactic
tree. We define formally the DAG-size |ϕ|dag of a formula ϕ as the size of the set
sub(ϕ) of subformulas of ϕ. This representation of a formula as a DAG is usually
the one used in algorithms taking as input LTL or μ-calculus formulas (e.g. the
translation from a LTL formula to a Büchi automaton), and is therefore a more
sensible measure of the size of a formula than the size of its syntactic tree.

196 S. Iosti and D. Kuperberg

2.2 Automata

A non-deterministic automaton A is a tuple (Q,Σ, q0,Δ, F) where Q is the set
of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, Δ : Q × Σ → 2Q

is the transition function, and F ⊆ Q is the set of accepting states. If for all
(p, a) ∈ Q × Σ there is at most one q ∈ Q such that q ∈ Δ(p, a), we say that A
is deterministic.

If u = a1 . . . an is a finite word of Σ∗, a run of A on u is a sequence q0q1 . . . qn

such that for all i ∈ [1, n], we have qi ∈ Δ(qi−1, ai). The run is said to be accepting
if qn ∈ F . If u = a1a2 . . . is an infinite word of Σω, a run of A on u is a sequence
q0q1q2 . . . such that for all i > 0, we have qi ∈ Δ(qi−1, ai). A run is said to
be Büchi accepting if it contains infinitely many accepting states, and coBüchi
accepting if it contains finitely many non-accepting states. Automata on infinite
words will be called Büchi and coBüchi automata, to specify their acceptance
condition.

We will note NFA (resp. DFA) for a non-deterministic (resp. deterministic)
automaton on finite words, and NCW (resp. DCW) for a non-deterministic (resp.
deterministic) coBüchi automaton. An automaton A is a safety automaton if
F = Q, and every run is accepting.

Non-deterministic automata can be generalized to alternating automata,
where the transition function associates to each pair (p, a) ∈ Q × Σ a posi-
tive boolean combination of states instead of a disjunction. We refer the reader
to [9] for formal definitions and basic constructions on alternating automata.

We also mention the Rabin condition on infinite words: it consists of a list
of pairs (Ei, Fi) ∈ 2Q × 2Q and an infinite run is accepting if there is i such
that some states from Ei are seen infinitely often and all states from Fi are
seen finitely often. Its dual, the negation of a Rabin condition, is called a Streett
condition. They both generalize the parity condition.

The language of an automaton A, noted L(A), is the set of words on which the
automaton A has an accepting run. Two automata are equivalent if they recog-
nise the same language. For a property P of automata (e.g. safety, or coBüchi),
a language is said to be P if it is the language of a P automaton.

An automaton A is determinisable by pruning (DBP) if an equivalent deter-
ministic automaton can be obtained from A by removing some transitions.

An automaton A is Good-For-Games (GFG) if there exists a function
σ : Σ∗ → Q (called GFG strategy) that resolves the non-determinism of A
depending only on the prefix of the input word read so far: over every word
u = a1a2a3 . . . (finite or infinite depending on the type of automaton consid-
ered), the sequence of states σ(ε)σ(a1)σ(a1a2)σ(a1a2a3) . . . is a run of A on u,
and it is accepting whenever u ∈ L(A). For instance every DBP automaton is
GFG. See [2] for more introductory material and examples on GFG automata.

Lemma 1. GFG automata are closed under the standard union and intersection
constructions using cartesian products.

Eventually Safe Languages 197

3 The Original Family Ln

We start by recalling the family of languages Ln from [15], witnessing an expo-
nential blow-up in the state space for determinisation of GFG automata.

The language Ln is defined on alphabet Σ = {ι, σ, π, �}. Each letter represents
a permutation of the set [0, 2n−1]: ι is the identity, σ is the cycle (0 1 2 . . . 2n−1),
π is the transposition (0 1), and � is the identity on [1, 2n − 1] and is undefined
on 0.

An infinite word w ∈ Σω describes an infinite graph noted Graph(w) with
vertices [0, 2n − 1] × N, where letter w(i) representing a permutation α induces
edges from vertice (k, i) to (α(k), i+1) for each k ∈ [0, 2n−1] where α is defined.
An example is given below for n = 2.

w:

Graph(w):

time:

0
1
2
3

0

σ

1

π

2

ι

3

σ

4

�

5

σ

6

π

7

� . . .

8 . . .

. . .

. . .

. . .

. . .

The language Ln is then defined as

Ln = {w ∈ Σω | Graph(w) contains an infinite path}
The infinite path required in the definition of Ln needs not start at time 0.
Notice that Ln is suffix-closed and prefix-independent.

Theorem 2 [15]. There is a GFG-NCW with 2n + 1 states for Ln, but any

deterministic Streett1 automaton for Ln has at least
2n

2n + 1
states.

However, this example does not settle the blowup problem for languages
represented by LTL formulas. Indeed, for any n ≥ 1, the language Ln is not
LTL-definable:

Lemma 3. For all n ≥ 1, there is no LTL formula for the language Ln.

Proof. We use the characterization of LTL-definable languages as aperiodic lan-
guages [7]. Let M be the syntactic monoid of Ln, and h : Σ∗ → M be the corre-
sponding syntactic morphism. Assume there is u, v ∈ Σ∗ such that for infinitely
many k ∈ N, (ukv)ω ∈ Ln and (uk+1v)ω /∈ Ln. Then we have h(u)k �= h(u)k+1

for infinitely many k, so the syntactic monoid of Ln cannot be aperiodic, and
therefore Ln is not LTL-definable. Hence it suffices to find such u, v to prove
that Ln is not LTL-definable. We can take here u = σ and v = �. Indeed, if k is
a multiple of 2n, we have (σk�)ω ∈ Ln and (σk+1�)ω /∈ Ln.
1 Note that the Streett acceptance condition is not specified in [15], but it is in the
relevant result of [2]. The Streett condition for D is needed so that the condition
of the form “A accepts or D rejects” is Rabin, and the game admits positional
strategies.

198 S. Iosti and D. Kuperberg

Moreover, it is shown in [15] that in some sense, the languages Ln essentially
constitute the canonical example for coBüchi GFG automata. Indeed, in order to
show that deciding whether a NCW is GFG can be done in polynomial time, it is
shown that GFG-NCW are very close to the following structure: the automaton
deterministically follows a safe path, and when a coBüchi state is encountered,
the automaton jumps to another such safe path ; in particular, the safe paths
can in some sense be “permuted”, and a bad choice of path for the automaton
can eventually be corrected by jumping to the right path later, provided the
GFG strategy has enough memory to remember how paths were permuted. It is
thus plausible that the reason exponential memory is needed in GFG-NCW is
the presence of arbitrary permutations, and that this could not happen for LTL-
definable languages, where permutations of states are forbidden in the run-DAG
of the corresponding automaton [7].

We show in the next section that this is not the case: this exponential blowup
result still holds for LTL-definable languages. This gives hope for the use of GFG
automata in the context of LTL synthesis.

4 A Family of LTL-definable Languages Kn with Succinct
GFG Representations

We will define for every n ≥ 1 a LTL-language Kn. We show that for all n ≥ 1
there is a GFG-NCW of size 2n+1 recognizing Kn, but there is no deterministic
Streett automaton recognizing Kn of size less than 2n

2n+1 .

4.1 Definition of the Language Kn

The language Kn is defined on alphabet Σ = {ι, a0, a1, . . . a2n−2, b0, b1 . . . b2n−2}.
As in Ln, each letter x ∈ L is mapped to a bipartite graph G(x) describ-

ing a partial function [0, 2n − 1] → [0, 2n − 1]. A word w = x1x2 . . . is in
Kn if and only if the DAG Graph(w) with vertices [0, 2n − 1] × N obtained
by concatenating all the slices G(x1)G(x2) . . . contains an infinite path, not
necessarily starting in [0, 2n − 1] × {0}, so we define Kn = {w ∈ Σω |
Graph(w) contains an infinite path}.

The graph G(ι) will represent the identity function. For all i ∈ [0, 2n−2], the
graph G(ai) maps i to i+1, is undefined on i+1, and leaves [0, 2n−1]\{i, i+1}
unchanged. For all i ∈ [0, 2n − 2], the graph G(bi) maps i + 1 to i, is undefined
on i, and leaves [0, 2n − 1] \ {i, i + 1} unchanged. An example of Graph(w) for
n = 2 is given below.

w:

Graph(w):

time:

0
1
2
3

0

b0

1

a0

2

a1

3

ι

4

b1

5

a1

6

b2

7

a0 . . .

8 . . .

. . .

. . .

. . .

. . .

Eventually Safe Languages 199

4.2 Aperiodicity of Kn and Succinctness of GFG Automaton

Theorem 4. There is a GFG coBüchi automaton of size 2n+1 for Kn, but any

deterministic Streett automaton for Kn has at least
2n

2n + 1
states.

Proof (Scheme). The same proof scheme as the one from [15] showing the expo-
nential blowup for the family Ln can be used here. We need to adapt it to account
for the specificities of Kn, namely modify the construction to avoid crossings of
paths.

Lemma 5. Kn is LTL-definable, via a formula of DAG-size at least exponential
in n.

Proof (Scheme). LTL definability is shown via the aperiodicity of Kn [7]. We
also provide an explicit formula, defined by induction on n, where each induction
steps doubles the depth of the formula.

Conjecture 6. There is no LTL formula for Kn with DAG-size polynomial in n.

In the next section, we define a specification logic more suited to this setting.

5 A Modal Logic for Eventually Safe Properties

5.1 The Safety Logic SνTL

We recall here the formalism SνTL, a fragment of linear μ-calculus designed
to express safety properties. This fragment has been studied in several works,
usually in the branching time setting ; see for example [19], from which we
extract (in Theorem 7 below) part of the characterization of SνTL as the safety
fragment of the μ-calculus. A similar characterization for LTL is sketched in the
conclusions of [18].

Formulas of SνTL are given by the following syntax, where a stands for
letters of Σ.

ϕ := a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | 	ϕ | X | νX.ϕ

If ϕ is a formula of SνTL, we will note �ϕ� its semantic as a linear μ-calculus
formula.

Theorem 7. A language is definable in SνTL if and only if it is a safety lan-
guage.

Proof (Scheme). For the left to right implication, we follow a more general con-
struction that has been proposed in [19], for branching μ-calculus. In our case,
the states of the constructed alternating safety automaton are subformulas of
the input SνTL formula ψ, and the transition function describes the subformu-
las that should be true after reading a letter, using alternation to encode the
disjunctions and conjunctions. Since alternating safety automata are equivalent
to safety languages through standard powerset constructions we are done. For
the right to left implication, we build a SνTL formula from a non-deterministic
safety automaton by encoding into the formula the transition function; loops in
the automaton are encoded using the operator νX.

200 S. Iosti and D. Kuperberg

5.2 The Logic EνTL for Eventually Safe Properties

We introduce here a second semantic �·�E for SνTL formulas, called the eventual
semantic, in the following way:

�ϕ�E := {uw ∈ Σω | w ∈ suff (�ϕ�)}.

That is to say, �ϕ�E denotes infinite words that have a suffix that is also
a suffix of �ϕ�. This logic can be seen as a way to specify what we mean by
a safe behaviour, letting the semantic automatically generate the language of
eventually safe behaviours. Notice that since GFG automata are closed under
union and intersection by Lemma 1, the technique introduced in this paper can
be combined with others in order to treat more advanced specifications.

We call EνTL the logic SνTL equipped with the eventual semantic.

Lemma 8. A language is definable in EνTL if and only if it is of the form
Σ∗Lsafe , where Lsafe is a suffix-closed safety language.

Proof. If L is defined in EνTL via the formula ϕ, then L = Σ∗suff (�ϕ�), which
is of the wanted form. Conversely, if L = Σ∗Lsafe with Lsafe a suffix-closed
safety language, then by Theorem 7 there is a formula ϕ of SνTL such that
�ϕ� = Lsafe , and we obtain L = �ϕ�E .

Let us call ESafe the class of such languages. Notice that EνTL uses a syntax
for safety properties, but with our semantics, the languages defined by EνTL
are actually liveness properties [1]: if L ∈ ESafe, any finite word can be extended
to a word in L.

5.3 Properties of the Class ESafe

The following theorem states that the class ESafe captures exactly prefix-
independent coBüchi languages, and that it is equivalent to represent a language
from ESafe directly with a NCW, or via its suffix-closed safety language Lsafe .

Theorem 9. CobCaract ESafe is equal to the class of prefix-independent
coBüchi languages. Moreover, if L = Σ∗Lsafe is accepted by a NCW C, we can
build a non-deterministic safety automaton Asafe from C recognizing Lsafe with
the same number of states. Conversely, if we have a non-deterministic safety
automaton for Lsafe , we can build a NCW C for L with one more state.

Lemma 10. Given a regular language L, it is decidable whether it is in ESafe.
If L is given by a DCW, the problem is in NL, whereas it is PSPACE-complete
if L is given by a NCW.

The complexity of deciding whether an arbitrary regular language (given
by various models of automata and LTL formulas) is coBüchi-recognizable, and
obtaining an equivalent DCW or NCW automaton, is studied in [3]. This com-
pletes the picture for the problem of deciding whether an arbitrary language can
be represented using EνTL.

Eventually Safe Languages 201

5.4 A Succinct EνTL Formula for the Language Kn

The formula we aim to build will describe the safety languages of words for
which the path starting in (0, 0) is infinite. It recognizes Kn via the eventually
safe semantic. We use the weak until operator WU as syntactic sugar, defined
as ϕWUψ := νX.ψ ∨ (ϕ ∧ 	X).

The pure LTL formula for Kn from Lemma 5 has DAG-size at least expo-
nential in n. The formulas we will define here will instead be linear in n. Let
N = 2n − 1. Let αi = Σ \ {ai−1, ai, bi, bi+1} be the subalphabet leaving i
unchanged. We define inductively the formulas ψi for i from N to 0, each one
containing Xi−1 as a free variable, except for ψ0 which is closed:

ψN = νXN .((αN ∧ 	XN) ∨ (bN−1 ∧ 	XN−1))
For 0 < i < N : ψi = νXi.((αi ∧ 	Xi) ∨ (ai ∧ 	ψi+1) ∨ (bi−1 ∧ 	Xi−1))

ψ0 = νX0.((α0 ∧ 	X0) ∨ (a0 ∧ 	ψ1))

We finally define Φ := ψ0.

Lemma 11. The formula Φ has size linear in n, and �Φ�E = Kn.

We note that a similar formula can be explicited for the original family
of languages (Ln) witnessing exponential succinctness of GFG automata. This
formula allows to encode the examples of specifications on interacting agents
given in the introduction.

5.5 From EνTL to GFG CoBüchi Automata

In this section, we describe a general algorithm for translating any EνTL for-
mula to an equivalent GFG-NCW. Recall that since GFG automata are sound
for synthesis [11], this translation can be used as a blackbox for solving synthesis
of ESafe properties, specified via the logic EνTL. As explained before, this trans-
lation can also be used in a modular way, and combined with other deterministic
or GFG automata as shown in Lemma 1. We now describe the algorithm, taking
as input an EνTL formula ψ. We can view ψ as a SνTL formula and build an
alternating safety automaton Aalt recognizing �ψ� as described in the proof of
Theorem 7.

We use a powerset construction to obtain an equivalent non-deterministic
safety automaton And. Determinizing And to a deterministic safety automa-
ton Adet through another powerset construction is standard. Since Adet can be
equivalently seen as a safety DFA, it can be minimized into a safety deterministic
automaton Amin = (Q,Σ, q0,Δ) using standard techniques. Minimization tech-
niques can also be applied on the intermediate automaton And, for instance using
bisimulation equivalence [17]. Here we omitted the accepting states of Amin, since
all runs are accepting. We assume that all states of Amin are reachable from q0.

We will now build a GFG coBüchi automaton C = (Q′, Σ, q0,Δ, F) for �ψ�E ,
based on Amin. We take Q′ = Q ∪ {⊥}, F = Q, and

Δ′ = Δ ∪ {(p, a,⊥) | ∀q ∈ Q, (p, a, q) /∈ Δ} ∪ ({⊥} × Σ × Q
)

The following theorem states that the algorithm is correct.

202 S. Iosti and D. Kuperberg

Theorem 12. C is a GFG-NCW for �ψ�E.

Proof (Scheme). C will deterministically follow paths made of safe transitions,
and will go to ⊥ when the path it is currently following is cut. The only non-
determinism to resolve is: where to jump from ⊥ ? It suffices to jump to the
path that has been uncut for the longest time.

Remark 13. An alternative construction where strongly connected components
of And are determinized separately is also possible and allows more optimiza-
tions, we discuss this in the appendix of the online version. This can yield smaller
GFG automata in cases where the size of the biggest strongly connected com-
ponent of And is small in front of its total size, or if some components cover the
safe languages of others.

The complexity of this algorithm is doubly exponential in terms of number
of states. The following theorem shows that this cannot be avoided.

Theorem 14. The translation of EνTL formulas to GFG-NCW is doubly expo-
nential.

Proof. This result for general LTL formulas has been proven in [4] using a lan-
guage family (Ln) defined in [16], itself adapted from a language of finite words
given in [6]. However, the particular structure of the class ESafe prevents us
from using the results of [4,6,16] as blackboxes. The language Ln as defined
by the LTL formula from [16] is Fn�ω where Fn is the language defined by
Fn = {{0, 1,#}∗ · # · w · # · {0, 1,#}∗ · $ · w | w ∈ {0, 1}n}. We will use similar
ideas here, while taking care of the special semantic of EνTL.

Let Σ = {0, 1,#, $, �}. We change the formula from [16] so that we iterate
the closure of Fn, with � as separator. Intuitively, the SνTL formula ϕn states
that any word on {0, 1}∗ immediately following a $ has length n, is followed by a
�, and is identical to a word that occurred between the last � and the $ following
it. Let Θ = 0 ∨ 1 and Θ� = Θ ∨ �, we define the following formulas:

ϕword(X) = Θ ∧ 	(Θ∧ n· · · 	(Θ ∧ 	(� ∧ 	X)) · · ·)
ϕi,x = (ix ∧ (Θ�WU($ ∧ 	ix))) for 1 ≤ i ≤ n and x ∈ {0, 1}
ϕmatch =

∧
1≤i≤n(ϕi,0 ∨ ϕi,1)

ϕn = νX.Θ�WU[# ∧ ϕmatch ∧ (Θ�WU($ ∧ 	ϕword(X)))]

The formula ϕword(X) checks for {0, 1}n�X, where X is a free variable. The
formula ϕi,x checks that ith letter is x and that it is again the case after the
next $. The formula ϕmatch enforces that the current word u ∈ {0, 1}n must be
matched by a $u at the next $. Finally, ϕn ensures that before the next $, we
encounter some �u where u is further matched by $u�, after which we reiterate the
constraint. Notice that |ϕn| is quadratic in n, and �ϕn�E ∩ (Σ∗�)ω = Σ∗(Fn�)ω.
Let us assume that we have a GFG-NCW automaton C for �ϕn�E . We show that
C must have at least 22

n−1 states. Let Q be the set of states of C and σ : Σ∗ → Q
be the GFG strategy of C. Let us assume that |Q| < 22

n−1. We call the type of

Eventually Safe Languages 203

a finite run of C the pair (c, q), where c is a bit specifying whether a rejecting
state has been seen, and q is the last state of the run. The number of possible
types is 2|Q| < 22

n

. To any set of words X = {u1, u2, . . . , uk} ⊆ {0, 1}n, we
associate a word wX = #u1#u2# . . . #uk, where the ui’s are lexicographically
sorted. Since there are 22

n

such sets, there must be X1 �= Y1 ⊆ {0, 1}n such that
σ(wX1) and σ(wY1) have same type. Without loss of generality let w1 ∈ X1 \Y1,
we have wX1$w1 ∈ Fn but wY1$w1 /∈ Fn. Again, there are X2, Y2, q2, w2 such that
σ(wX1$w1�wX2) and σ(wY1$w1�wY2) have same type on the suffix starting with
$w1�, and w2 ∈ X2\Y2. By iterating this construction, we build two infinite words
v = wX1$w1�wX2$w2� . . . and v′ = wY1$w1�wY2$w2� . . . such that σ accepts v
if and only if σ accepts v′, but we have v ∈ �ϕn�E while v′ /∈ �ϕn�E . We obtain
a contradiction with the fact that C recognizes �ϕn�E with GFG strategy σ.

However, our algorithm can perform well in practice, as witnessed by the
languages Kn and Ln. Indeed, if the input is the formula Φ from Sect. 5.4 (resp.
ϕ0, see online version) describing the language Kn (resp. Ln), the algorithm
computes an automaton of size linear in n, while any deterministic automaton
would be exponential, by Theorem 4 (resp. Theorem 2).

6 Conclusion

We showed that GFG automata still enjoy an exponential succinctness gap com-
pared to deterministic automata for the class of LTL-definable languages, by giv-
ing a family of languages (Kn) witnessing this gap. However, the LTL formula we
give for Kn is exponential in n, while there is an equivalent μ-calculus formula
that is linear in n. We conjecture that the family (Kn) can be used as a witness to
prove an exponential gap in succinctness between the linear μ-calculus and LTL.
We defined and studied a class ESafe of eventually safe languages, a natural
compromise between safety and liveness specifications. We defined a fragment
of linear μ-calculus, the logic EνTL, that describes the class ESafe, and can be
translated to GFG coBüchi automata.

The idea of using automata that are allowed to non-deterministically jump
to a new path to improve performances in LTL synthesis was implemented in
[10], but the so-called “shift automaton” was based on a powerset construction,
and the notion of Good-for-Games was not identified, replaced by the weaker
condition of being Determinisable by Pruning. Prior to the discovery of succinct-
ness of GFG automata, a GFG-based algorithm for model-checking of Markov
decision process has been implemented in [12], where it turned out that this
particular approach was not more efficient than standard ones.

As future work, we plan to implement our approach that makes use of newly
discovered features of GFG automata, in order to compare benchmarks with
those present in [10,12]. A related open challenge is to find fragments of LTL
or other logics that can be translated to GFG automata with only a single
exponential blowup.

204 S. Iosti and D. Kuperberg

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985)

2. Boker, U., Kuperberg, D., Kupferman, O., Skrzypczak, M.: Nondeterminism in
the presence of a diverse or unknown future. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 89–100.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2 11

3. Boker, U., Kupferman, O.: Co-büching them all. In: Hofmann, M. (ed.) FoSSaCS
2011. LNCS, vol. 6604, pp. 184–198. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19805-2 13

4. Boker, U., Kupferman, O., Skrzypczak, M.: How deterministic are Good-For-
Games automata? In: FSTTCS 2017–37th IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science. Leibniz Inter-
national Proceedings in Informatics (LIPIcs) (2017)

5. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. Am. Math. Soc. 138, 295–311 (1969)

6. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133
(1981)

7. Diekert, V., Gastin, P.: First-order definable languages. Logic and Automata: His-
tory and Perspectives. Texts in Logic and Games, pp. 261–306. Amsterdam Uni-
versity Press, Amsterdam (2008)

8. Esparza, J., Kret́ınský, J., Sickert, S.: One theorem to rule them all: a unified trans-
lation of LTL into ω-automata. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, pp. 384–393, Oxford, UK,
09–12 July 2018

9. Fellah, A., Jürgensen, H., Sheng, Y.: Constructions for alternating finite automata.
Int. J. Comput. Math. 35(1–4), 117–132 (1990)

10. Harding, A., Ryan, M., Schobbens, P.-Y.: A new algorithm for strategy synthesis
in LTL games. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol.
3440, pp. 477–492. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31980-1 31

11. Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Pro-
ceedings of Computer Science Logic, 20th International Workshop, CSL2006, 15th
Annual Conference of the EACSL, pp. 395–410, Szeged, Hungary, 25–29 September
2006

12. Klein, J., Müller, D., Baier, C., Klüppelholz, S.: Are good-for-games automata
good for probabilistic model checking? In: Proceedings of Language and Automata
Theory and Applications - 8th International Conference, LATA 2014, pp. 453–465,
Madrid, Spain, 10–14 March 2014

13. Kret́ınský, J., Meggendorfer, T., Sickert, S., Ziegler, C.: Rabinizer 4: from LTL to
your favourite deterministic automaton. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10981, pp. 567–577. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96145-3 30

14. Kuperberg, D., Majumdar, A.: Width of non-deterministic automata. In 35th Inter-
national Symposium on Theoretical Aspects of Computer Science, STACS, 29th
February–3rd March 2018, p. 2018, Caen, France (2018)

15. Kuperberg, D., Skrzypczak, M.: On determinisation of good-for-games automata.
In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9135, pp. 299–310. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47666-6 24

https://doi.org/10.1007/978-3-642-39212-2_11
https://doi.org/10.1007/978-3-642-19805-2_13
https://doi.org/10.1007/978-3-642-19805-2_13
https://doi.org/10.1007/978-3-540-31980-1_31
https://doi.org/10.1007/978-3-540-31980-1_31
https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.1007/978-3-662-47666-6_24

Eventually Safe Languages 205

16. Kupferman, O., Vardi, M.Y.: From linear time to branching time. ACM Trans.
Comput. Log. 6(2), 273–294 (2005)

17. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

18. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects Comput.
6(5), 495–511 (1994)

19. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Belg. Math. Soc. Simon Stevin 8(2), 359 (2001)

20. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A symbolic approach to
safety ltl synthesis. Hardware and Software: Verification and Testing. LNCS, vol.
10629, pp. 147–162. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70389-3 10

https://doi.org/10.1007/978-3-319-70389-3_10
https://doi.org/10.1007/978-3-319-70389-3_10

Coinductive Algorithms for Büchi
Automata

Denis Kuperberg(B), Laureline Pinault, and Damien Pous

Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
denis.kuperberg@ens-lyon.fr

Abstract. We propose a new algorithm for checking language equiva-
lence of non-deterministic Büchi automata. We start from a construc-
tion proposed by Calbrix, Nivat and Podelski, which makes it possible
to reduce the problem to that of checking equivalence of automata on
finite words. Although this construction generates large and highly non-
deterministic automata, we show how to exploit their specific structure
and apply state-of-the art techniques based on coinduction to reduce
the state-space that has to be explored. Doing so, we obtain algorithms
which do not require full determinization or complementation.

Keywords: Büchi automata · Language equivalence · Coinduction

1 Introduction

Büchi automata are machines which make it possible to recognise sets of infinite
words. They form a natural counterpart to finite automata, which operate on
finite words. They play a crucial role in logic for their links with monadic second
order logic (MSO) [5], and in program verification. For instance, they are widely
used in model-checking tools, in order to check whether a given program satisfies
a linear temporal logic formula (LTL) [13,29].

A key algorithmic property of Büchi automata is that checking whether
two automata recognise the same language is decidable, and in fact PSpace-
complete, like in the finite case with non-deterministic finite automata. This is
how one obtains model-checking algorithms. Several algorithms have been pro-
posed in the literature [1,5,14,18] and implemented in various tools [15,24,28].

Two families of algorithms were discovered for non-deterministic automata
on finite words, which drastically improved over the pre-existing ones in practice:
antichain-based algorithms [3,10,30] and algorithms based on bisimulations up to
congruence [4]. In both cases, those algorithms explore the starting automata

This work has been funded by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157), and
was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon,
within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the
French National Research Agency (ANR).

c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 206–220, 2019.
https://doi.org/10.1007/978-3-030-24886-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_15

Coinductive Algorithms for Büchi Automata 207

by resolving non-determinism on the fly through the powerset construction, and
they exploit subsumption techniques to avoid the need to explore all reachable
states (which can be exponentially many). The algorithms based on bisimulations
up to congruence improve over those based on antichains by using simultaneously
the antichain techniques and an older technique for deterministic automata,
due to Hopcroft and Karp [17]. Note that both families of algorithms require
exponential space (and time) in worst-case complexity, for a problem which is
only PSpace. In practice however, they perform better than existing PSpace
algorithms, because the latter require exponential time even for best cases.

The antichain-based algorithms could be adapted to Büchi automata by
exploiting constructions to compute the complement of a Büchi automaton,
either Ramsey-based [11,12] or rank-based [9,10]. Unfortunately, those com-
plementation operations do not make it possible to adapt the algorithms based
on bisimulations up to congruence: those require a proper powerset construction
for determinization, which is not available for Büchi automata. Here we propose
to circumvent this difficulty using a construction by Calbrix, Nivat, and Podel-
ski [6], which makes it possible to reduce the problem of checking Büchi automata
equivalence to that of checking equivalence of automata on finite words.

The first observation, which is used implicitly in the so-called Ramsey-based
algorithms from the literature [1,11,12], is that it suffices to consider ultimately
periodic words: if the languages of two Büchi automata differ, then they must
differ on an ultimately periodic word. The second observation is that the set
of ultimately periodic words accepted by a Büchi automaton can be faithfully
represented as a rational language of finite words, for which Calbrix et al. give an
explicit non-deterministic finite automaton. This automaton contains two layers:
one for the prefixes of the ultimately periodic words, and one for their periods.
We show that algorithms like HKC [4] can readily be used to reason about the
prefix layer, without systematically determinising it. The period layer requires
more work in order to avoid paying a doubly exponential price. We show how to
analyse it to compute discriminating sets that summarize the periodic behaviour
of the automaton, and suffice to check language equivalence.

We first recall the algorithms from [4] for checking equivalence of automata on
finite words (Sect. 2). Then we revisit the construction of Calbrix et al., making
their use of the Büchi transition monoid [25] explicit (Sect. 3). We define the
new algorithm HKCω in Sect. 4. We conclude with directions for future work in
Sect. 5.

Notation. We denote sets by capital letters X,Y, S, T . . . and functions by lower
case letters f, g, . . . Given sets X and Y , X×Y is their Cartesian product, X�Y
is the disjoint union, XY is the set of functions f : Y → X. The collection of
subsets of S is denoted by P(S). The collection of relations on S is denoted by
Rel(S) = P(S2). Given a relation R ∈ Rel(X), we write x R y for 〈x, y〉 ∈ R. We
fix an arbitrary alphabet A ranged over using lowercase letters a, b. We write A∗

for the set of all finite words over A; ε the empty word; w1w2 the concatenation
of words w1, w2 ∈ A∗; and |w| for the length of a word w and wi for its ith letter

208 D. Kuperberg et al.

(when i < |w|). We write A+ for the set of non-empty words and Aω for the set
of infinite words over A . We use 2 for the set {0, 1} (Booleans).

A semilattice is a tuple 〈O,+, 0〉 where O is a set of elements, +: O2 → O
is an associative, commutative and idempotent binary operation, and 0 ∈ O is a
neutral element for +. For instance, 〈2,max, 0〉 is a semilattice. More generally
〈P(X),∪, ∅〉 is a semi-lattice for every set X.

2 Coinductive Algorithms for Finite Automata

We will need to work with Moore machines, which generalise finite automata by
allowing output values in an arbitrary set rather than Booleans. We keep the
standard automata terminology for the sake of readability.

A deterministic finite automaton (DFA) over the alphabet A and with out-
puts in O is a triple 〈S, o, t〉, where S is a finite set of states, o : S → O is the
output function, and t : A × S → S is the transition function which returns, for
each letter a ∈ A and for each state x, the next state ta(x). Note that we do
not specify an initial state in the definition of DFA: rather than comparing two
DFAs, we shall compare two states in a single DFA (obtained as disjoint union
if necessary).

Every DFA A = 〈S, o, t〉 induces a function [·]A : S → OA∗
, mapping each

state to a weighted language with weights in O. This function is defined by
[x]A(ε) = o(x) for the empty word, and [x]A(aw) = [ta(x)]A(w) otherwise. We
shall omit the subscript A when it is clear from the context. For a state x of a
DFA, [x] is called the language accepted by x. The languages accepted by some
state in a DFA with Boolean outputs are the rational languages.

2.1 Deterministic Automata: Hopcroft and Karp’s Algorithm

We fix a DFA 〈S, o, t〉. Coinductive algorithms for checking language equivalence
proceed by trying to find a bisimulation relating the given starting states.

Definition 1 (Bisimulation). Let g : Rel(S) → Rel(S) be the function on rela-
tions defined as

g(R) = {〈x, y〉 | o(x) = o(y) and ∀a ∈ A, ta(x) R ta(y)}
A bisimulation is a relation R such that R ⊆ g(R).

The above function g being monotone, it admits the union of all bisimulations as
a greatest fixpoint, by Knaster-Tarski’s theorem [19,27]. This greatest-fixpoint
is actually language equivalence:

Theorem 1. For all x, y ∈ S, [x] = [y] iff there is a bisimulation R with x R y.

This theorem yields two families of algorithms: on the one hand, backward algo-
rithms like partition-refinement [16] make it possible to compute the largest
bisimulation, and thus to minimize DFA; on the other hand, forward algorithms

Coinductive Algorithms for Büchi Automata 209

make it possible to compute the smallest bisimulation containing a given pair
of states (if any), and thus to check language equivalence locally, between two
states [17]. The latter problem is the one we are interested in in this paper.
(Unlike with languages of finite words, there is no canonical notion of minimal
automaton for Büchi automata.) For deterministic automata on finite words this
problem is slightly easier complexity-wise: when the starting automaton has size
n, minimisation can be solved in time o(nln(n)) while language equivalence of
two given states can be tested in almost linear time [26].

input :A DFA A = 〈S, o, t〉 and two states x, y ∈ S
output : true if [x]A = [y]A; false otherwise

1 R := ∅; todo := {〈x, y〉};
2 while todo �= ∅ do

// invariant: 〈x, y〉 ∈ R ⊆ g(f(R ∪ todo))
3 extract 〈x′, y′〉 from todo;
4 if o(x′) �= o(y′) then return false;
5 if 〈x′, y′〉 ∈ f(R ∪ todo) then skip;
6 forall a ∈ A do
7 insert 〈ta(x′), ta(y′)〉 in todo;
8 insert 〈x′, y′〉 in R;
9 return true; // because: 〈x, y〉 ∈ R ⊆ g(f(R))

Fig. 1. Coinductive algorithm for language equivalence in a DFA; the function f on
line 5 ranges over the identity for the naive algorithm (Naive(A, x, y)) or e for Hopcroft
& Karp’s algorithm (HK(A, x, y)).

A preliminary algorithm for checking language equivalence of two states
x, y ∈ S is obtained as follows: try to complete the relation {〈x, y〉} into a bisim-
ulation, by adding the successors along all letters and checking that o agrees on
all inserted pairs. This algorithm is described in Fig. 1; it is quadratic in worst
case since a pair of states is added to the relation R at each iteration. The stan-
dard and almost linear algorithm by Hopcroft and Karp [17,26], can be seen
as an improvement of this naive algorithm where one searches for bisimulations
up to equivalence rather than plain bisimulations:

Definition 2. Let e : Rel(S) → Rel(S) be the function mapping a relation R to
the least equivalence relation containing R. A bisimulation up to equivalence is
a relation R such that R ⊆ g(e(R)).

This coarser notion makes it possible to take advantage of the fact that language
equivalence is indeed an equivalence relation, so that one can skip pairs of states
whose equivalence follows by transitivity from the previously visited pairs. The
soundness of this technique is established by the following Proposition:

Proposition 1 ([4, Thm. 1]). If R is a bisimulation up to equivalence, then
e(R) is a bisimulation.

210 D. Kuperberg et al.

Complexity-wise, when looking for bisimulations up to equivalence in a DFA
with n states, at most n pairs can be inserted in R in the algorithm in Fig. 1:
at the beginning, e(R) corresponds to a discrete partition with n equivalence
classes; at each iteration, two classes of e(R) are merged.

Note that Hopcroft and Karp’s algorithm proceeds forward and computes
the smallest bisimulation up to equivalence containing the starting pair of
states, if any. As mentioned above, this contrasts with partition-refinement algo-
rithms [16], which proceed backward: they start with a coarse partition (accept-
ing v.s. non-accepting states), which they refine by reading transitions backward.

2.2 Non-deterministic Automata: HKC

A non-deterministic finite automaton (NFA) over the alphabet A and with out-
puts in O is a triple 〈S, o, t〉, where S is a finite set of states, o : S → O is the
output function, and t : A × S → P(S) is the transition function which returns,
for each letter a ∈ A and for each state x, a set ta(x) of potential successors.
Like for DFA, we do not specify a set of initial states in the definition of NFA.

We fix an NFA 〈S, o, t〉 in this section and we assume that the set O of outputs
is a semilattice. Under this assumption, an NFA A = 〈S, o, t〉 can be transformed
into a DFA A# = 〈P(S), o#, t#〉 using the well-known powerset construction:

o#(X) =
∑

x∈X

o(x) t#a (X) =
⋃

x∈X

ta(x)

This construction makes it possible to extend the function [·] into a function from
sets of states of a given NFA to weighted languages. It also gives immediately
algorithms to decide language equivalence in NFA: just use algorithms for DFA
on the resulting automaton. Note that when doing so, it is not always necessary
to compute the determinised automaton beforehand. For instance, with coinduc-
tive algorithms like in Fig. 1, the determinised automaton can be explored on
the fly. This is useful since this DFA can have exponentially many states, even
when restricting to reachable subsets.

The key idea behind the HKC algorithm [4] is that one can actually do better
than Hopcroft and Karp’s algorithm by exploiting the semilattice structure of
the state-space of NFA determinised through the powerset construction. This is
done using bisimulations up to congruence.

Definition 3. Let c : Rel(P(S)) → Rel(P(S)) be the function mapping a rela-
tion R to the least equivalence relation H containing R and such that X H Y and
X ′ H Y ′ entail (X ∪ X ′) H (Y ∪ Y ′) for all X,X ′, Y, Y ′ ∈ P(S). A bisimulation
up to congruence is a relation R such that R ⊆ g(c(R)).

The function g here is defined as in Sect. 2.1, but with respect to the determinized
DFA with state space P(S), so its type is Rel(P(S)) → Rel(P(S)).

Proposition 2 ([4, Thm. 2]). If R is a bisimulation up to congruence, then
c(R) is a bisimulation.

Coinductive Algorithms for Büchi Automata 211

Checking whether a pair of sets belongs to the congruence closure of a finite
relation can be done algorithmically (see [4, Sect. 3.4]). The algorithm HKC [4] is
obtained by running the algorithm from Fig. 1 on A#, replacing the function f on
l.5 with the congruence closure function c. We provide a variant of this algorithm
in Fig. 2, where we prepare the ground for the algorithms we will propose for
Büchi automata. There, we only explore the transitions of the determinised
automaton, leaving aside the verification that the output function agrees on
all pairs. This corresponds to using a function g′ instead of g, defined as

g′(R) =
{〈x, y〉 | ∀a ∈ A, t#a (x) R t#a (y)

}

input :A NFA A = 〈S, o, t〉 and two sets of states X, Y ⊆ S
output : a relation R such that [X] = [Y] iff ∀〈X ′, Y ′〉 ∈ R, o#(X ′) = o#(Y ′)

1 R := ∅; todo := {〈X, Y 〉};
2 while todo �= ∅ do

// invariant: 〈X, Y 〉 ∈ R ⊆ g′(c(R ∪ todo))
3 extract 〈X ′, Y ′〉 from todo;
4 if 〈X ′, Y ′〉 ∈ c(R ∪ todo) then skip;
5 forall a ∈ A do
6 insert 〈t#a (X ′), t#a (Y ′)〉 in todo;
7 insert 〈X ′, Y ′〉 in R;
8 return R;

Fig. 2. HKC’(A, X, Y): computing a pre-bisimulation up to congruence in a NFA.

Indeed, while this verification step is usually done on the fly in order to fail
faster when a counter-example is found (as in Fig. 1, line 4), it will be useful
later to perform this step separately.

As mentioned in the Introduction, the advantage of HKC over HK is that in
practice it often makes it possible to skip reachable subsets from the deter-
minised automaton, even when the algorithm answers positively, thus achieving
substantial gains in terms of performance: there are families of examples where it
answers positively in polynomial time even though the underlying minimal DFA
has exponential size. Actually it can also improve exponentially over the more
recent antichain-based algorithms [4, Sect. 4]. These latter gains can be explained
by the fact that we focus on language equivalence rather than language inclusion:
while the two problems are interreducible (e.g., [X] ⊆ [Y] iff [X ∪ Y] = [Y]),
working with equivalence relations makes it possible to strengthen the coinduc-
tive argument used implicitly by both algorithms.

3 From Büchi Automata to Finite Words Automata

Let 3 be the set {0, 1, �}. A (non-deterministic) Büchi automaton (NBW) over
the alphabet A is a tuple 〈S, T 〉 where S is a finite set of states, and T : A → 3S2

212 D. Kuperberg et al.

is the transition function. Like for DFA and NFA, we do not include a set of initial
states in the definition. We work with Büchi automata with Büchi transitions
rather than Büchi states, hence the type of T (the two models are equivalent
and the one we chose is slightly more succinct). We write Ta for T (a), x

a−→ x′

when Ta(x, x′) �= 0, and x
a=⇒ x′ when Ta(x, x′) = �; the latter denote Büchi

transitions, that should be fired infinitely often in order to accept an infinite
word.

Given a NBW A = 〈S, T 〉 and w ∈ Aω an infinite word, we say that a
sequence of states χ ∈ Sω accepts w if the sequence (Twi

(χi, χi+1))i∈N contains
infinitely many � and no 0. The ω-language [X]A of a set of states X ⊆ S is the
set of infinite words accepted by a sequence χ such that χ0 ∈ X. The ω-languages
accepted by some set of states in a NBW are the rational ω-languages [5].

Given a finite word u ∈ A∗ and a finite non-empty word v ∈ A+, write uvω

for the infinite word w ∈ Aω defined by wi = ui if i < |u| and wi = v(i−|u|)mod|v|
otherwise. Ultimately periodic words are (infinite) words of the form uvω for
some u, v ∈ A∗ × A+. Given an ω-language L ⊆ Aω, we set

UP (L) = {uvω | uvω ∈ L} L$ = {u$v | uvω ∈ L}

UP (L) is a ω-language over A while L$ is a language of finite words over the
alphabet A$ = A � {$}. The first key observation is that the ultimately periodic
words of a rational ω-language fully characterize it:

Proposition 3 ([6, Fact 1]). For all rational ω-languages L,L′, we have that
UP (L) = UP (L′) entails L = L′.

Proof. Consequence of the closure of rational ω-languages under Boolean oper-
ations [5], and the fact that every non-empty rational ω-language contains at
least one ultimately periodic word.
�
As a consequence, to compare the ω-languages of two sets of states in a NBW,
it suffices to compare the ω-languages of ultimately periodic words they accept.
Calbrix et al. show that these ω-languages can be faithfully represented as ratio-
nal languages (of finite words):

Proposition 4 ([6, Prop. 4]). If L ⊆ Aω is ω-regular, then L$ is regular.

To prove it, Calbrix et al. construct a NFA for L$ from a NBW A for L, with
two layers. The first layer recognizes the prefixes (the u in uvω). This is a copy
of the NBW for L (without accepting states, and where the Büchi status of the
transitions is ignored). This layer guesses non-deterministically when to read the
$ symbol and then jumps into the second layer, whose role is to recognise the
period (the v in uvω). We depart from [6] here, by using notions from [25] which
make the presentation easier and eventually make it possible to propose our
algorithm. We use the (Büchi) transition monoid of the NBW A = 〈S, T 〉 [25]
to define the second layer.

Coinductive Algorithms for Büchi Automata 213

Consider the set 3 as an idempotent semiring, using the following operations:

+ 0 1 �
0 0 1 �
1 1 1 �
� � � �

· 0 1 �
0 0 0 0
1 0 1 �
� 0 � �

Write M = 3S2
for the set of square matrices over 3 indexed by S; it forms

a Kleene algebra [7,20] and in particular a semiring. Let I denote the identity
matrix of M . The transition function of A has type A → M ; we extend it to
finite words by setting Tε = I and Tu1...un

= Tu1 ·· · · ·Tun
. We have that Tu(x, x′)

is � if there is a path along u from x to x′ visiting an accepting transition, 0 if
there is no path from x to x′ along u, and 1 otherwise. We extend the notations
x

u−→ x′ and x
u=⇒ x′ to words accordingly.

A periodic word vω is accepted from a state x in A if and only if there is a
lasso for v starting from x: a state y and two natural numbers n,m such that
x

vn

−→ y
vm

=⇒ y. This information can be computed from the matrix Tv: given a
matrix M , compute1 its Kleene star M∗ and set

ω(M) = {x ∈ S | ∃y ∈ S, M∗(x, y) �= 0 ∧ M∗(y, y) = �} . (†)

At this point, one can notice that with the previously defined operations,
matrices and subsets form the Wilke algebra associated to the NBW as in [25].

Lemma 1. For all words v, vω is accepted from a state x iff x ∈ ω(Tv).

We can now formally define the desired NFA: set A$ = 〈S$, o$, T $〉, where
S$ = S � S×M is the disjoint union of S and |S| copies of M , and

{
T $

a (x) = {x′ | Ta(x, x′) �= 0}
T $

a (〈x, M〉) = {〈x, M · Ta〉}

{
T $
$ (x) = {〈x, I〉}

T $
$ (〈x, M〉) = ∅

{
o$(x) = 0

o$(〈x, M〉) = x ∈ ω(M)

The set M can be replaced here by its accessible part M ′ = {Tu | u ∈ A∗}.
The main difference with the construction from [6] is that we use deterministic
automata in the second layer, which enable a streamlined presentation in terms
of matrices—which are not mentioned explicitly in [6]. The construction of A$

preserves the semantics of all sets of states, up to L �→ L$:

Theorem 2. For all sets X of states from A, we have [X]A$ = ([X]A)$.

1 To compute M∗, one can use the fact that M∗ = (I + M)n with n = |S|, and use
iterated squaring.

214 D. Kuperberg et al.

Example 1. To illustrate this construction, consider the NBW depicted on the
left in Fig. 3. The state 0 accepts the words with a finite but non-zero num-
ber of b’s; the state 1 only accepts the word aω. Accordingly, we have [0]$A =
(a + b)∗ba∗$a+ and [1]$A = a∗$a+. These are indeed the languages respectively
recognized by the states 0 and 1 from the NFA A$ on the right.

We only depicted the relevant part of the second layer: the only reachable
matrices are those of the form Tu for some word u. There are only three of them
in this example since Ta · Tb = Tb · Ta = Tb · Tb = Tb and Ta · Ta = Ta. We
might want to prune A$ so that all states may reach an accepting state, but we
want in the sequel to exploit the structure shared by the copies of the transition
monoid: they only differ by the accepting status of their states, by definition.

Note that since the second layer of A$ is already deterministic, one can
determinise A$ into a DFA with at most 2n+2n3n2

states, where n is the number
of states of A. This is slightly better than the 2n +22n2+n bound obtained in [6].

We summarize the operations defined so far on languages and automata in
Fig. 4; we define the operations in the right-most column in the following section.

0 1

a, b

b

a

Ta =
(

1 0
0 �

)
Tb =

(
1 �
0 0

)

T ∗
a = Ta T ∗

b = Tb

ω(Ta) = {1} ω(Tb) = ∅

0 1

a, b

b

a

0, I

0, Ta 0, Tb

a b

b

a a, b

1, I

1, Ta 1, Tb

a b

b

a a, b

$ $

Fig. 3. A NBW A (left) and the reachable part of its associated NFA A$ (right).

ω-regular

L : Aω → 2
L1 = L2

ultimately periodic

L : Aω → 2
UP (L1) = UP (L2)

rational

L$: (A$)∗ → 2
L$

1 = L$
2

A+-weigthed

L£ : A∗ → P(A+)
L£

1 = L£
2

NBW
A

[X]A = [Y]A

NFA
A$

[X]A$ = [Y]A$

weighted NFA
A£

[X]A£ = [Y]A£

Ramsey/ranked based HKC HKCω

⇔ ⇔ ⇔

⇔ ⇔

Fig. 4. Summary of the operations and algorithms on languages and automata.

Coinductive Algorithms for Büchi Automata 215

4 HKC for Büchi Automata

By Proposition 3 and Theorem 2, given two sets of states X,Y of a NBW A,
we have [X]A = [Y]A iff [X]A$ = [Y]A$. One can thus use any algorithm for
language equivalence on NFA to solve language equivalence on NBW. Given the
structure (and size) of A$, this would however be inefficient: each time the letter
$ is read, the algorithm would explore one of the automata for the second layer,
without ever realising that the transition structure of those automata is always
the same, only the accepting status of their states differ. We show in this section
that we can do better, by using a weighted automata.

Given a an ω-language L, the language L$ can be seen as a weighted language
L£ : A∗ → P(A+) with weights in the semilattice 〈P(A+),∪, ∅〉:

L£ : u �→ {
v ∈ A+ | uvω ∈ L

}

Given a NBW A = 〈S, T 〉, one can immediately construct a NFA A£ =
〈S£, T£, o£〉 such that for every set of states X, [X]£A = [X]A£ . This is just
the first layer from the previous construction: set S£ = S and

T£
a (x) = {x′ | Ta(x, x′) �= 0} o£(x) =

{
v ∈ A+ | vω ∈ [x]A

}

input :A NBW A = 〈S, T 〉
output :The set of discriminating sets D = {ω(Tv) | v ∈ A∗}

1 D := ∅; M := ∅; todo := {I};
2 while todo �= ∅ do
3 extract M from todo;
4 if M ∈ M then skip;
5 forall a ∈ A do
6 insert M · Ta in todo;
7 insert M in M; insert ω(M) in D;
8 return D;

Fig. 5. Discr(A): exploring the Büchi transition monoid of a NBW A to compute
discriminating sets.

Let A£# be the powerset automaton of A£. To use algorithms such as HKC
on A£, it suffices to be able to compare the outputs of any two states of A£#, i.e.,
compare the languages o£#(X) and o£#(Y) for any two sets X,Y ⊆ S. Since
those languages are rational (using the second layer of the previous construction),
it might be tempting to use algorithms such as HK or HKC to perform this task. We
proceed differently in order to exploit the shared structure of those languages.

Lemma 2. For all states x ∈ S and sets X ⊆ S, we have

o£(x) =
{
v ∈ A+ | x ∈ ω(Tv)

}

o£#(X) =
{
v ∈ A+ | X ∩ ω(Tv) �= ∅}

216 D. Kuperberg et al.

Proof. Immediate consequence of Lemma 1 and the definitions of o£ and o£#.
Note that allowing empty v would not change the statement since ω(Tε) =
ω(I) = ∅.

Proposition 5. For all sets X,Y ⊆ S,

o£#(X) = o£#(Y) iff forall v ∈ A+,X ∩ ω(Tv) = ∅ ⇔ Y ∩ ω(Tv) = ∅.

This result shows that an explicit computation of o£# is not necessary, as the
knowledge of {ω(Tv), v ∈ A+} is enough to assess whether X and Y have same
output. Let D = {ω(Tv) | v ∈ A+}. We call the sets in D discriminating sets.
Again, allowing empty v here would make no difference: the discriminating set ∅
is useless to distinguish two sets X,Y ⊆ S. As subsets of S, there are at most 2|S|

discriminating sets. Those can be enumerated since the Tv range over finitely
many matrices (at most 3|S|2). This is what is done in the algorithm from Fig. 5.

We finally obtain the algorithm in Fig. 6 for language equivalence in a NBW:
we compute the discriminating sets (D) and a relation (R) which is almost a
bisimulation up to congruence: the outputs of its pairs must be checked against
the discriminating sets, which we achieve with a simple loop (lines 2-4).

input :A NBW A = 〈S, T 〉 and two sets X, Y ⊆ S
output : true if [X]A = [Y]A; false otherwise

1 R := HKC′(A£, X, Y) || D := Discr(A);
2 forall 〈X ′, Y ′〉 ∈ R, D ∈ D do
3 if X ′ ∩ D = ⇔�∅ Y ′ ∩ D = ∅ then return false;
4 return true;

Fig. 6. HKCω(A, X, Y): checking language equivalence in a NBW using bisimulations
up to congruence.

Example 2. We execute HKCω on the NBW on the left below, starting with states
{0} and {1}. The transition monoid has 13 elements (see [21, App A]). They give
rise to three discriminating sets: ∅, {0, 1}, and {0, 1, 2}, which arise for instance
from the three matrices on the right, using formula (†) on page 8:

0 1

2

b

a

b

a

b ab

b

Tb =

⎛

⎝
1 0 1
1 0 0
1 0 1

⎞

⎠ Ta =

⎛

⎝
0 � 0
0 � 1
0 0 0

⎞

⎠ Tba =

⎛

⎝
0 � 0
0 � 0
0 � 0

⎞

⎠

HKC’ returns the relation R = {〈{0} , {1}〉, 〈{1} , {1, 2}〉}, which contains only two
pairs. The pairs 〈{0, 2} , {0}〉, 〈{1, 2} , {1, 2}〉, and 〈{0} , {0, 2}〉, which are reach-
able from 〈{0} , {1}〉 by reading the words b, aa, and ab, are skipped thanks to the
up to congruence technique. For instance to obtain the pair 〈{0, 2} , {0}〉, start-
ing from 〈{0} , {1}〉 and 〈{1} , {1, 2}〉 we can obtain 〈{0} , {1, 2}〉 by transitivity,

Coinductive Algorithms for Büchi Automata 217

from which we deduce 〈{0, 2} , {1, 2}〉 by union with 〈{2} , {2}〉. By transitivity
and symmetry we can finally obtain 〈{0, 2} , {0}〉.

The two pairs of R cannot be told apart using the three discriminating sets
and HKCω returns true. States 0 and 1 are indeed equivalent: they accept the
words with infinitely many a’s. If instead we start HKCω from sets {0} and {2},
it returns false: the discriminating set {0, 1} distinguishes {0} and {2}. Indeed,
the state 2 recognises the words starting with b and with infinitely many a’s.

Note that HKCω can be instrumented to return a counterexample in case of
failure: it suffices to record the finite word u that lead to each pair in R as well
the finite word v that lead to each discriminating set in D: if the check on line 3
fails, the corresponding word uvω is a counter-example to language equivalence.

Also note that HKCω is intrinsically parallel: the computations of D and R
can be done in parallel, and the checks in lines 2–4 can be performed using a
producer-consumer pattern where they are triggered whenever new values are
inserted in D or R. Alternatively, those checks can be delegated to a SAT solver.
Indeed, given a discriminating set D, define the following formula with 2|D|
variables {xd | d ∈ D} ∪ {yd | d ∈ D}:

ϕD =
∨

d∈D

xd ⇔
∨

d∈D

yd

For all sets X,Y ⊆ S, we have X ∩ D = ∅ ⇔ Y ∩ D = ∅ iff ϕD evaluates
to true under the assignment xd �→ d ∈ X and yd �→ d ∈ Y . Given the set of
discriminating sets D, it thus suffices to build the formula ϕD =

∧
D∈D ϕD with

2|S| variables, and to evaluate it on all pairs from the relation R returned by
HKC’. The main advantage of proceeding this way is that the SAT solver might
be able to represent ϕD in a compact and efficient way. If we moreover use an
incremental SAT solver, this formula can be built incrementally, thus avoiding
the need to store explicitly the set D.

One can also use a (incremental) SAT solver in a symmetrical way: Given
a pair of sets 〈X,Y 〉 ∈ S2, define the following formula with |S| variables {xs |
s ∈ S}:

ψ〈X,Y 〉 =
∨

s∈X

xs ⇔
∨

s∈Y

xs

For all sets D, we have X ∩ D = ∅ ⇔ Y ∩ D = ∅ iff ψ〈X,Y 〉 evaluates to true
under the assignment xs �→ s ∈ D. Like previously, one can thus construct incre-
mentally the formula ψR =

∧
p∈R ψp before evaluating it on all discriminating

sets.

5 Conclusion and Future Work

We presented an algorithm for checking language equivalence of non-
deterministic Büchi automata. This algorithm exploits advanced coinductive

218 D. Kuperberg et al.

techniques to analyse the finite prefixes of the considered languages, through
bisimulations up to congruence, as in the algorithm HKC for NFA. The periodic
part of the considered languages is also analysed coinductively, in order to com-
pute the discriminating sets. Those sets make it possible to classify the periodic
words accepted by the various states of the starting automaton, thus providing
all the necessary information together with the analysis of the finite prefixes.

A prototype implementation is available; it makes it possible to test several
combinations of up-to techniques [22].

Our algorithm stems from the construction of Calbrix et al. [6], which we
revisited using notions from [25] in Sect. 3. HKCω is rather close to Ramsey-based
algorithms [1,11] (as opposed to rank-based ones [8–10,23]). In particular, our
matrices are often called super-graphs in Ramsey-based algorithms. A key differ-
ence is that we focus on language equivalence, thus enabling stronger coinductive
proof principles.

The next step is to design up-to techniques in order to reduce the explo-
ration of the periodic layer, to compute the discriminating sets more efficiently.
We provide two such techniques in the extended version of this abstract [21],
namely coinduction up to unions and coinduction up to equivalence. Using the
two techniques at the same time is likely to be possible, i.e., using coinduction
up to congruence; this however requires further investigations, especially in order
to find reasonably efficient ways to perform the corresponding tests.

Along the same vein, we also want to investigate how to exploit techniques
using simulation relations, which were successfully used in [1,2,10,24] and which
tend to nicely fit in the coinductive framework we propose here [4, Sect. 5].

Acknowledgements. We would like to thank Dmitriy Traytel for pointing us to the
work of Calbrix et al. [6].

References

1. Abdulla, P.A., et al.: Simulation subsumption in Ramsey-based Büchi automata
universality and inclusion testing. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 132–147. Springer, Heidelberg (2010)

2. Abdulla, P.A., et al.: Advanced Ramsey-Based Büchi automata inclusion testing.
In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 187–202.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-14295-6 14

3. Abdulla, P.A., Chen, Y.-F., Hoĺık, L., Mayr, R., Vojnar, T.: When simulation meets
antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
158–174. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-
2 14

4. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congru-
ence. In: Proceedings POPL, pp. 457–468. ACM (2013). https://doi.org/10.1145/
2429069.2429124

5. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Mac
Lane, S., Siefkes, D. (eds.) The Collected Works of J. Richard Büchi, pp. 425–435.
Springer, New York (1990). https://doi.org/10.1007/978-1-4613-8928-6 23

https://doi.org/10.1007/978-3-642-14295-6_14
https://doi.org/10.1007/978-3-642-12002-2_14
https://doi.org/10.1007/978-3-642-12002-2_14
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.1007/978-1-4613-8928-6_23

Coinductive Algorithms for Büchi Automata 219

6. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational w-
languages. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.)
MFPS 1993. LNCS, vol. 802, pp. 554–566. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58027-1 27

7. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London
(1971)

8. Doyen, L., Raskin, J.-F.: Improved Algorithms for the Automata-Based Approach
to Model-Checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol.
4424, pp. 451–465. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-71209-1 34

9. Doyen, L., Raskin, J.: Antichains for theautomata-based approach to model-
checking. Logical Meth. Comput. Sci. 5, 1 (2009). http://dx.doi.org/10.2168/
LMCS-5(1:5)2009

10. Doyen, L., Raskin, J.-F.: Antichain algorithms for finite automata. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12002-2 2

11. Fogarty, S., Vardi, M.Y.: Büchi complementation and size-change termination. In:
Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 16–30.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2 2

12. Fogarty, S., Vardi, M.Y.: Efficient Büchi universality checking. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 205–220. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-12002-2 17

13. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4 6

14. Gurumurthy, S., Kupferman, O., Somenzi, F., Vardi, M.Y.: On Complementing
Nondeterministic Büchi Automata. In: Geist, D., Tronci, E. (eds.) CHARME 2003.
LNCS, vol. 2860, pp. 96–110. Springer, Heidelberg (2003). https://doi.org/10.1007/
978-3-540-39724-3 10

15. Holzmann, G.J.: The model checker spin. IEEE Trans., Softw. Eng. 23(5), 279–295
(1997)

16. Hopcroft, J.E.: An n log n algorithm for minimizing in a finite automaton. In:
Proceedings International Symposium of Theory of Machines and Computations,
189–196. Academic Press, Cambridge (1971)

17. Hopcroft, J.E., Karp, R.M.: A linear algorithm for testing equivalence of finite
automata. Technical report, 114, Cornell University, December 1971. http://
techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR71-114

18. Hutagalung, M., Lange, M., Lozes, E.: Revealing vs. concealing: more simulation
games for Büchi inclusion. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.)
LATA 2013. LNCS, vol. 7810, pp. 347–358. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37064-9 31

19. Knaster, B.: Un théorème sur les fonctions d’ensembles. Annales de la Société
Polonaise de Mathématiques 6, 133–134 (1928)

20. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110(2), 366–390 (1994). https://doi.org/10.1006/inco.1994.
1037

21. Kuperberg, D., Pinault, L., Pous, D.: Extended version of this abstract (2018).
https://hal.archives-ouvertes.fr/hal-01928701/

22. Kuperberg, D., Pinault, L., Pous, D.: Web appendix for this paper (2019). http://
perso.ens-lyon.fr/damien.pous/covece/hkcw

https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/978-3-540-71209-1_34
https://doi.org/10.1007/978-3-540-71209-1_34
http://dx.doi.org/10.2168/LMCS-5(1:5)2009
http://dx.doi.org/10.2168/LMCS-5(1:5)2009
https://doi.org/10.1007/978-3-642-12002-2_2
https://doi.org/10.1007/978-3-642-00768-2_2
https://doi.org/10.1007/978-3-642-12002-2_17
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/978-3-540-39724-3_10
https://doi.org/10.1007/978-3-540-39724-3_10
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR71-114
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR71-114
https://doi.org/10.1007/978-3-642-37064-9_31
https://doi.org/10.1007/978-3-642-37064-9_31
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1006/inco.1994.1037
https://hal.archives-ouvertes.fr/hal-01928701/
http://perso.ens-lyon.fr/damien.pous/covece/hkcw
http://perso.ens-lyon.fr/damien.pous/covece/hkcw

220 D. Kuperberg et al.

23. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Trans. Comput. Log. 2(3), 408–429 (2001). https://doi.org/10.1145/377978.377993

24. Mayr, R., Clemente, L.: Advanced automata minimization. In: 2013 Proceedings
POPL, pp. 63–74. ACM (2013). https://doi.org/10.1145/2429069.2429079

25. Perrin, D., Pin, J.É.: Semigroups and automata on infinite words. NATO ASI
Series C Mathematical and Physical Sciences-Advanced Study Institute 466, 49–
72 (1995)

26. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM
22(2), 215–225 (1975). https://doi.org/10.1145/321879.321884

27. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5(2), 285–309 (1955)

28. Tsai, M.-H., Tsay, Y.-K., Hwang, Y.-S.: GOAL for games, omega-automata, and
logics. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 883–889.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 62

29. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60915-6 6

30. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: a new algo-
rithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006). https://doi.
org/10.1007/11817963 5

https://doi.org/10.1145/377978.377993
https://doi.org/10.1145/2429069.2429079
https://doi.org/10.1145/321879.321884
https://doi.org/10.1007/978-3-642-39799-8_62
https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1007/11817963_5
https://doi.org/10.1007/11817963_5

Hole-Free Partially Directed Animals

Paolo Massazza(B)

Dipartimento di Scienze teoriche e applicate, Università degli studi dell’Insubria,
Varese, Italy

paolo.massazza@uninsubria.it

Abstract. We consider the class HFPDA of hole-free partially directed
animals. This is the class of all polyominoes P such that every cell of P
can be reached from any cell in the first column of P with a path (inside
P) which makes only North, South and East steps, and such that there
is not a finite region of empty unitary squares which is surrounded by
cells belonging to P . We provide a generation algorithm that allows us
to enumerate HFPDA(n) in constant amortized time using O(n) space.

1 Introduction

A polyomino is a finite and connected union of unitary squares (called cells)
in the plane Z × Z, considered up to translations [11]. The number of cells
of a polyomino is its area. To classify polyominoes and to tackle some difficult
questions about them (for instance, counting and exhaustive generation), several
subclasses have been introduced in literature. For instance, the class of convex
polyominoes (i.e. polyominoes whose intersection with any vertical or horizontal
line is connected) and its subclasses have been studied under several points of
view [2,5–8].

In this paper we consider a class of polyominoes contained in the class PDA
of partially directed animals [17]. A polyomino P is in PDA if and only if every
cell of P can be reached from any cell in the first column of P with a path (inside
P) which makes only North, South and East steps, see Fig. 1. Furthermore, if
P belongs to PDA and has no holes (a hole is a closed region of cells not in P ,
that is, a finite set of cells not in P surrounded by cells of P), then it belongs
to HFPDA (Hole-Free Partially Directed Animals), see Fig. 1(b).

We see that the set of polyominoes of area n in HFPDA can be generated by an
algorithm that runs in Constant Amortized Time (CAT) and uses space O(n).
We recall that suitable families of directed animals (obtained by considering
paths made of North and East steps) have been enumerated in [1].

CAT algorithms for the exhaustive generation by area of the class of con-
vex polyominoes and of many of its subclasses have been recently presented
[3,4,14–16]. The problem of efficiently generating non-convex polyominoes is of
particular interest. The most used algorithm to generate the whole class of poly-
ominoes runs in exponential time and exponential space [12]. This algorithm has
been used to compute the exact number of polyominoes of area n for n ≤ 56.

c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 221–233, 2019.
https://doi.org/10.1007/978-3-030-24886-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_16

222 P. Massazza

(b)(a)

Fig. 1. A partially directed animal with two holes (a) and a hole-free partially directed
animal (b).

The number of polyominoes of area n seems to grow as cλn

n for two values c, λ
estimated as c = 0.3169 and λ = 4.0626, see [13]. Very recently, CAT generation
algorithms for PDA and for the class of 2-Polyominoes have been presented in
[9,10].

In Sect. 2 we give some preliminaries and notation, whereas in Sect. 3 we
define a discrete dynamical system that is used to generate polyominoes in
HFPDA column-by-column. In Sect. 4 we describe the algorithm and the data
structure used to represent a polyomino. Time and space complexity are then
discussed. Finally, in Sect. 5 we give some brief conclusions.

2 Notation and Preliminaries

The area A(P) of a polyomino P is the number of its cells. A polyomino can
be seen as a finite sequence of columns. A column of a polyomino consists of
a sequence of vertical segments separated by empty unitary squares. A vertical
segment is a sequence of cells q1, q2, . . . , qk which are in the same column and
such that qi is edge-adjacent to qi+1 for 1 ≤ i < k (two cells are edge-adjacent
if they have a common edge). The position of a cell is its y-coordinate. The
position of the top (resp., bottom) cell of a segment s is denoted by Top(s)
(resp., Bot(s)). We represent a segment s of a column by means of the pair
(A(s) ,Top(s)). Segments belonging to the same column are numbered from the
top to the bottom, thus a column with p segments is simply a sequence of disjoint
segments c = (s1, . . . , sp), with Top(si) < Top(si−1) − A(si−1) for 1 < i ≤ p.
Furthermore, the position of c is the position of its first segment, Top(c) =
Top(s1). Similarly, we set Bot(c) = Bot(sp). Given a segment s and an integer
j such that Top(s) > j ≥ Bot(s), we denote by s>j (resp., s≤j) the part of s
consisting of the cells with position greater than j (resp., smaller than or equal
to j). The part of a column c that is above a position j is c>j (c≥j , c≤j and c<j

are defined similarly). Given two segments s and t with Bot(s) > Top(t), their
distance is Dist(s, t) = Bot(s) − Top(t) − 1.

Segments can be ordered with respect to their position and their area.

Hole-Free Partially Directed Animals 223

Definition 1 (< on segments). Let u and v be two segments. Then, one has
u < v if and only if Top(u) > Top(v) or Top(u) = Top(v) and A(u) > A(v).

A total order on columns (denoted by ≺) can be obtained by extending <.

Definition 2 (≺ on columns). Let b = (s1, . . . , sp) and c = (t1, . . . , tq) be two
columns. Then, one has b ≺ c if and only if either A(b) > A(c), or A(b) = A(c)
and there exists m with 1 ≤ m ≤ min(p, q) such that sj = tj for all j < m and
sm < tm.

We assume that the position of the bottom cell of the last segment of the first
column of a polyomino is 0. We denote by Pol(n) the set of polyominoes of area
n. If P ∈ Pol(n) then P≤i and Pi indicate the i-prefix of P (the sequence of the
first i columns of P) and the i-th column of P , respectively. Notice that P≤i is
not necessarily a polyomino, as well as an arbitrary sequence of columns does
not generally represent a polyomino but a set of polyominoes. The width w(P)
of a polyomino P is the number of its columns. A segment s of Pi is left-adjacent
(l-adjacent for short) to a segment t of Pi−1 if there exists a cell of s that is edge-
adjacent to a cell of t. We consider an alternative (but equivalent) definition for
the class of polyominoes known as partially directed animals [17,18].

Definition 3 (TheclassPDA). The class PDA(n) of Partially Directed Ani-
mals of area n is the class containing all P ∈ Pol(n) such that P≤i is a polyomino
for all i ∈ N with 1 ≤ i ≤ w(P).

Given P ∈ PDA, we say that P has a hole if there exists a maximal set S of
empty unit squares such that:

1. for any two squares a and b in S, there exists a path connecting a to b, which
makes only North, West, South and East steps, and that crosses only squares
in S;

2. for any two empty unit squares c �∈ S and a ∈ S, there is not a path connecting
c to a that uses only North, West, South and East steps, and that crosses
only empty unit squares.

We are interested in a particular subclass of PDA, called HFPDA (Hole-Free
Partially Directed Animals), which contains all polyominoes in PDA without
holes. It is immediate to prove that any polyomino in HFPDA has the following
property.

Lemma 1. Let P ∈ HFPDA. Then, for all i ∈ N, 1 < i ≤ w(P), any segment
of Pi is l-adjacent to exactly one segment of Pi−1.

As a matter of fact, any two consecutive columns of a polyomino in HFPDA(n)
satisfy a particular relation called compatibility.

Definition 4 (Compatibility of columns). Given P ∈ Pol(n), Pi is compat-
ible with Pi−1, denoted by Pi � Pi−1, if every segment of Pi is l-adjacent to
exactly one segment of Pi−1.

224 P. Massazza

Remark 1. For any n > 0, a one-column polyomino (((n), n − 1)) consisting of
one segment of area n is in HFPDA(n). Then, a polyomino P is in HFPDA if and
only if for all i, with 1 < i ≤ w(P), one has P≤i−1 ∈ HFPDA and Pi � Pi−1.

The set of all columns that are compatible with a column a and have area r is
indicated by Comp(a, r) = {b | b � a and A(b) = r}.

The (right) column concatenation | is the operation which takes a polyomino
P ∈ HFPDA and a column c such that c�Pw(P), and produces a polyomino
P ′ = P |c, with w(P) + 1 columns, which is still in HFPDA. The main idea of
the paper is to generate all polyominoes in HFPDA(n) according to the following
total order.

Definition 5 (Order onHFPDA). Given P,Q ∈ HFPDA(n), P < Q if there
exists i such that P≤i = Q≤i and Pi ≺ Qi.

From here on, given a segment s of Pi, the two segments immediately above and
below s are denoted by s↑ and s↓, respectively. The second segment below s is
s↓↓, and the segment of Pi−1 to which s is l-adjacent is indicated by ←−s .

3 A Dynamical System for Columns

In this section we are going to define a family fa,r of discrete dynamical systems
depending on two parameters: a column a and an integer r. For fixed values of
the parameters, fa,r takes in input a column b such that b � a and A(b) = r,
and outputs c such that c � a A(c) = r and b ≺ c.

Given a, the initial state of the system is the column b = min≺{c | c �
a,A(c) = r}. This is a column consisting of one segment of area r whose bottom
cell has position Top(a), b = ((r,Top(a) + r − 1)). The evolution rule of fa,r

rearranges the cells of the column given in input according to three operations
called moves. Informally, a move in a column b can only occur in a position j
occupied by a cell of a segment s of b. It can be of three different types, namely
a split move or a shift move or a shift-and-split move. A split move occurs when
Bot(s) ≤ j < Top(s) and Top(←−s) > j. In this case, s is split into two parts,
s>j and s≤j . The segment s>j remains in its position (so it is l-adjacent to ←−s)
whereas s≤j is shifted k positions downwards, where k is the smallest integer
greater than 0 such that the shifted segment is l-adjacent either to ←−s or to
(←−s)↓ (possibly it joins s↓, unless Dist(s, s↓) = 1, j > Bot(←−s) and ←−s �= ←−s↓), see
Fig. 2(a). If such a k does not exist then the move is not defined.

A shift move at j has the effect of shifting the segment s of b with Top(s) = j.
In this case, s is shifted k positions downwards, where k is the smallest integer
greater than 0 such that the shifted segment is l-adjacent either to ←−s or to
(←−s)↓, see Fig. 2(a) (with k = 1). Possibly, the shifted segment joins s↓ (unless
Dist(s, s↓) = 1, Top(s) > Bot(←−s) and ←−s �= ←−s↓). The move is undefined if such
a k does not exist.

Lastly, a shift-and-split move at j occurs when j = Top(s), A(s) > 1,
Bot(s) = Top(←−s), Dist(s, s↓) = 1 and ←−s �= ←−s↓ . In this case s is shifted one

Hole-Free Partially Directed Animals 225

Shift&Split(a,b,6)

6

5

4

3

2
1

b Split(a,b,3) Shift(a,b,1)a

(a)

a b

(b)

Fig. 2. A column admitting a split move at 3 and a shift move at 1 (a). A column
admitting a Split-and-Shift move at 6 (b).

position downwards and joins s↓, producing a new segment that is l-adjacent
both to ←−s and to ←−s↓ , which is then split at Top(←−s) − 1 to satisfy the prop-
erty in Lemma 1, see Fig. 2(b). We denote by Split(a,b, j), Shift(a,b, j) and
Shift&Split(a,b, j) the three operations applied to the position j of a column b
such that b � a.

When the column a is clear from the context, we simply write b
j→ b′

if either b′ = Shift(a,b, j) or b′ = Split(a,b, j) or b′ = Shift&Split(a,b, j).
Furthermore, we indicate by Mc(b) the set of positions where a move can occur

in b, that is, Mc(b) = {j ∈ N | b j→ b′}. In particular, we are interested in the
move occurring at position min(Mc(b)). This move occurs in the last segment s
of b if and only if Top(s) > Bot(t), where t is the last segment of a. Otherwise,
one has Top(s) = Bot(t) and the move occurs in s↑. More precisely, one has:

Lemma 2. Let a, b be two columns such that b � a, and let s (resp., t) be the
lowest segment in b (resp., a). Then, one has min(Mc(b)) = j, where

j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Bot
(
s↑) if Top(s) = Bot(t) ∧

(
A

(
s↑) = 1 ∨ Bot

(
s↑) < Top

(←−−(
s↑)

))

Top
(
s↑) if Top(s) = Bot(t) ∧ A

(
s↑) > 1 ∧ Bot

(
s↑) = Top

(←−−(
s↑)

)

Top(s) if Top(s) > Bot(t) ∧ Bot(s) = Top(←−s)
Bot(s) if Bot(s) > Bot(t) ∧ Bot(s) < Top(←−s)
Bot(t) + 1 if Top(s) > Bot(t) ∧ Bot(s) ≤ Bot(t)

Proof. Figure 3 illustrates the five cases (in order from left to right). First,
consider the case Top(s) = Bot(t). Obviously, no move can occur in s oth-
erwise there would be a segment that is not l-adjacent to a segment of a.
If A

(
s↑) = 1 then Shift(a,b,Top

(
s↑)) is always defined (possibly s↑ joins s,

and the new segment is l-adjacent to exactly one segment of a). Similarly,

A
(
s↑) > 1 ∧ Bot

(
s↑) < Top

(←−−(
s↑)

)
implies that Split(a,b,Bot

(
s↑)) is defined.

226 P. Massazza

tt t t t

Fig. 3. The lowest move in a column: the cell where the move occurs is shaded.

So, consider the case A
(
s↑) > 1 and Bot

(
s↑) = Top

(←−−(
s↑)

)
. For all j with

Bot
(
s↑) ≤ j < Top

(
s↑), the move Split(a,b, j) is not defined since it would

produce a segment that is not l-adjacent to a segment of a. So, if Dist(s↑, s) > 1

or
←−−(
s↑) = ←−s then Shift(a,b,Top

(
s↑)) is defined (more precisely, s↑ is shifted

one position downwards). Otherwise one has Dist(s↑, s) = 1 and
←−−(
s↑) �= ←−s , and

the move Shift&Split(a,b,Top
(
s↑)) is defined.

Now, consider the case Top(s) > Bot(t). If Bot(s) = Top(←−s) then, for all j
such that Bot(s) ≤ j < Top(s), the move Split(a,b, j) is not defined, whereas
Shift(a,b,Top(s)) is defined. Otherwise, one has Bot(s) < Top(←−s) and either
Split(a,b,Bot(s)) (if Bot(s) > Bot(t)) or Split(a,b,Bot(t) + 1) (if Bot(s) <
Bot(t) and Top(s) > Bot(t) + 1) or Shift(a,b,Bot(t) + 1) (if Bot(s) < Bot(t)
and Top(s) = Bot(t) + 1)) is defined. ��
The lowest move in b determines a particular column, called the grand ancestor
of b with respect to a and denoted by GA(b,a). The grand ancestor GA(b,a)
is defined so that it allows to get the column that follows b in the ordered (with
respect to ≺) sequence of columns belonging to Comp(a,A(b)).

Definition 6 (Grand ancestor). Let a and b be two columns such that
b � a. Consider the last segment s of b and the position j of the lowest
move, j = min(Mc(b)). If j ≤ Top(s) or j = Top

(
s↑) and Shift&Split(a,b, j)

is defined, then GA(b,a) = b. Otherwise, one has Top(s) = Bot(a) ∧ j ∈
{Top(s↑) ,Bot

(
s↑)} (see Lemma 2) and

GA(b,a) = min≺{c|A(c) = A(b) , c<Bot(b′)−2 � a, c≥Bot(b′)−2 = b′},

where b′ is obtained from b by deleting s and replacing s↑ by a segment
t with Top(t) = Top

(
s↑) and A(t) = A

(
s↑) + p, for a suitable integer p

which is determined as follows. Let δ1 = min(A(s) ,Dist(s↑, v↓) − 1), δ2 =
min(A(s) ,Dist(s↑, v↓) − 2, 0), Δ1 = min(A(s) ,Dist(s↑, v↓↓) − 1) and Δ2 =
min(A(s) ,Dist(s↑, v↓↓) − 2). One has:

Hole-Free Partially Directed Animals 227

(v = ←−s) p = A(s);
(v↓ = ←−s) if j ≤ Bot(v) then p = A(s). Otherwise, one has j > Bot(v) and either

p = δ1 (if Top(s) < Top(v↓)) or p = δ2 (if Top(s) = Top(v↓));
(Top(v↓↓) ≥ Top(s)) if j ≤ Bot(v) then either p = Δ1 (if Top(s) < Top(v↓↓)) or

p = Δ2 (if Top(s) = Top(v↓↓)). Otherwise, one has j > Bot(v) and p = δ1.

In general, GA(b,a) is not compatible with a, since the segment t of b′ such
that Bot(t) ≤ j ≤ Top(t) may be l-adjacent to two segments of a (a property
that does not hold after the move at j). Nevertheless, it follows by Definition 6

that it is possible to make a move at j = min(Mc(b)) in GA(b,a), GA(b,a)
j→

c, obtaining a compatible column c, c � a. The construction of the column
GA(b,a) is straightforward. Indeed, once the column b′ of Definition 6 has been
determined it is sufficient to add all the segments obtained by applying the
following procedure (based on Definition 2). Let k1 = A(b)−A(b′) be the number
of cells to add. Determine the highest position p1 (with p1 ≤ Bot(b′) − 2) for
a segment t1 of maximal area a1 ≤ k1 and such that t1 = (a1, p1) is l-adjacent
to exactly one segment of a. Add t1 to b′ and get a column b′′. If a1 = k1 then
GA(b,a) = b′′, otherwise iterate the procedure on b′′ (with k2 = k1 − a1 cells
to add), that is, find the highest position p2 smaller than Bot(b′′) − 1 for an
l-adjacent segment t2 of maximal area a2 ≤ k2, and so on. Obviously, after at
most A(s) steps the column GA(b,a) is obtained, see Fig. 4.

Remark: a particular case occurs when the procedure adds a segment s′

that is l-adjacent to the second to last segment t of a, with A(t↓) = 1 and
Bot(s′) = Top(t↓) + 1. In this case, if the area of the column is smaller than
A(b) then s′ has to be shortened (i.e. Bot(s′) = Top(t↓) + 2) so that a segment

s′
↓ (with Top

(
s′

↓
)

= Top(t↓)) can be added to obtain the smallest compatible
column.

GA(b,a)

a

b

a a

b’

Fig. 4. The grand ancestor.

228 P. Massazza

We define a discrete dynamical system fa,r : Comp(a, r) → Comp(a, r) over
columns as follows.

Definition 7. Let a, b be two columns such that b ∈ Comp(a, r) for a suitable
integer r > 0. Then,

fa,r(b) =

{
c GA(b,a)

j→ c, j = min(Mc(b))
((r,Bot(a)) if Mc(b) = ∅

Remark that ((r,Bot(a)) is a fixed point for fa,r. We denote by fn
a,r the n-fold

composition of fa,r with itself.
For simplicity’s sake, fa,r is defined for a given column a, extending the

definition to polyominoes in HFPDA is straightforward. The main properties of
the dynamical system are stated in the following lemma.

Lemma 3. Fix an integer r and a column a. Then, for all b ∈ Comp(a, r) it
holds:

1. fn
a,r(b) ≺ fn+1

a,r (b) for b �= ((r,Bot(a));
2.

⋃
n∈N

fn
a,r(((r,Top(a) + r − 1)) = Comp(a, r).

Proof. (outline)

1. The column c = fa,r(b) is such that for j = min(Mc(b)) one has c>j = b>j .
Furthermore, the position j is empty in c whereas in b it is occupied by a
cell of a segment, hence b ≺ c by Definition 2.

2. We argue by contradiction and let c′ be the smallest column that is missing.
We distinguish two cases. First, suppose that b = fa,r(b) and b ≺ c′. Since
b = ((r,Bot(a))), the relation b ≺ c′ implies that any segment in c′ is not
l-adjacent to a segment of a, hence c′ /∈ Comp(a, r).
Now, suppose that there exists b = (. . . , s↑, s) such that b ≺ c′ ≺ c, where
c = fa,r(b). We distinguish five cases depending on j (see Lemma 2).
If j = Bot(s) then b = GA(b,a), and c is obtained by shifting downwards
the cell with position j in b. Since c>j = b>j = c′

>j , the two columns
c′ and c differ only in their last segments, say v′ and v respectively, with
A(v′) = A(v) = 1. By recalling how the moves Shift, Split and Shift&Split are
defined, it follows that the position of v can not be smaller than the position
of v′, hence c′ �≺ c or c′ /∈ Comp(a, r). The same reasoning holds if j = Top(s)
and the whole segment s is shifted. Thus, consider the case j = Bot(←−s) + 1
and j > Bot(s) (occurring when Bot(←−s) = Bot(a) and Bot(a) > Bot(s)). In
this case c is obtained from b by shifting s≤j one position downwards, that
is by placing a segment v with Top(v) = Bot(a). Hence, c′ ≺ c implies that
in c′ there exists a segment v′ that is not l-adjacent to a segment of a since
Top(v′) < Bot(a).
Now, consider the case j = Bot

(
s↑). Since Top(s) = Bot(a) (otherwise a

move would occur in s), the relation b ≺ c′ implies that in c′ the position j is
empty. Let v′ be the first segment of c′ such that Top(v′) < j. By Definition 6,
the first segment v of c with Top(v) < j has the highest position so that the

Hole-Free Partially Directed Animals 229

column is compatible with a. Furthermore, once the position is determined,
v has also the largest possible area, hence v < v′ or v′ = v. All the segments
below v have the highest possible position and the largest area. So, if v′ = v
then either v↓ < v′

↓ or v′
↓ = v↓, and so on. Finally, we get the contradiction

c ≺ c′ or c = c′.
Lastly, let j = Top

(
s↑). This means that A

(
s↑) = 1 or Bot

(
s↑) = Top

(←−
s↑

)
.

In both cases the relation b ≺ c′ implies that the position j is empty in c′.
Indeed, either c′ has an empty unitary square at j or it has a segment v′ such
that v′ = (A

(
s↑) ,Top

(
s↑)) and s < v′

↓. This implies that v′
↓ is not l-adjacent to

a segment of a, hence c′ /∈ Comp(a, r). So, let v′ (resp., v) be the first segment
in c′ (resp., in c) having a position smaller than j. Note that v is obtained by
shifting the segment t with Top(t) = j in GA(b,a). By Definition 6, t is shifted
downwards as few positions as possible in order to obtain a compatible column.
Furthermore, the area of t is as large as possible. Hence v < v′ or v = v′. The
same remarks about the position and the area hold for all segments below v,
so we obtain the contradiction c ≺ c′ or c = c′. ��

4 Exhaustive Generation

An algorithm for generating HFPDA(n) can be obtained from Lemma 3 by adopt-
ing an inductive approach. We suppose that at step i we have already generated
a polyomino P≤i ∈ HFPDA(n−r). Thus, the aim is to add all compatible (i+1)-
th columns of area at most r (one at a time, by exploiting Lemma 3). Then, for
each of these columns we recursively add all compatible (i + 2)-th columns, and
so on until we obtain a polyomino P ∈ HFPDA(n).

The computation starts by calling HFPDAGen(n) (see Algorithm 1), which
sets the first column of the polyomino (a segment of area r, with 1 ≤ r ≤ n)
and then calls ColGen to (recursively) add all subsequent columns, until the
area reaches the value n. The procedure ColGen(i, r) (see Algorithm 2) adds
all i-th columns that are compatible with the column Pi−1 of the polyomino
P≤i−1 ∈ HFPDA(n − r), which has been already generated. Notice that the
order of generation derives from Definition 5, and that the area of the columns
is at most r, the number of remaining cells. As a matter of fact, the Procedure
ColGen is an application of Lemma 3 and consists of a while-loop (lines 5–9)
where at each iteration a move is executed (line 7). The polyomino is given in
output if the area is n; otherwise a recursive call is made (line 8). The Procedure
GrAn(Pi, Pi−1) restores the grand ancestor of the current column Pi (w.r.t.
Pi−1) and returns min(Mc(Pi)). The procedure call Move(i, j) at line 7 executes
a move at j in the grand ancestor (either a Shift or a Split or a Shift&Split).

4.1 Data Structure

A polyomino P is simply a sequence of columns, where a column b is represented
by a doubly-linked list Lb associated with the sequence of segments in b (as
many nodes as segments). So, a node of the list corresponds to a segment s and
contains five entries (A(s) ,Top(s) , l1, l2, l3) where:

230 P. Massazza

– l1 is the link to the preceding node in the list Lb (for s↑);
– l2 is the link to the next node in the list Lb (for s↓);
– l3 is a link to the node associated with ←−s (in the previous list).

Algorithm 1. Generation of HFPDA(n).
1: Procedure HFPDAGen(n)
2: P := ((n, n − 1)); Output(P);
3: for r := n − 1 to 1 do
4: P1 := ((r, r − 1))); ColGen(2, n − r);
5: end for

Algorithm 2. Generation of columns.
1: Procedure ColGen(i, r)
2: for d := r downto 1 do
3: Pi:= ((d,Top(Pi−1) + d − 1)); {the smallest column w.r.t. ≺}
4: if d < r then ColGen(i + 1, r − d); else Output(P); endif
5: while not IsFixedPoint(Pi) do
6: j:=GrAn(Pi, Pi−1); {restore the grand ancestor}
7: Move(i, j); {Pi is changed according to a move in the position j}
8: if d < r then ColGen(i + 1, r − d); else Output(P); endif
9: end while

10: end for

Figure 5 shows the data structure representing the polyomino in Fig. 1(b).
Lemma 2 states that the move in the position min(Mc(b)) regards either the
last or the second to last segment of b. Thus, P is represented by an array of
records, where the i-th record has two fields, the area of Pi and a link to the
node associated with the last segment of Pi.

4.2 Complexity

Obviously, the data structure used to represent a polyomino of area n requires
space O(n). In order to determine the time complexity, notice that the execution
of HFPDAGen(n) is described by a tree with the following properties:

– the root corresponds to the procedure call HFPDAGen(n);
– an internal node v at the level i, with i > 0, corresponds to the procedure

call ColGen(i + 1, r) for a suitable r > 0. Such a call adds all compatible
(i + 1)-th columns of area at most r (associated with the children of v) to a
particular polyomino with i columns and area n − r, uniquely identified by
the path from the root of the tree to v;

– there is a one-to-one mapping between the leaves and the polyominoes in
HFPDA(n);

– each internal node has at least two children or the only child is a leaf.

Hole-Free Partially Directed Animals 231

2

6 5

41

21

12

11

35

25

15

14
P

6

5

3

3

Fig. 5. The data structure for the polyomino of Fig. 1(b).

The complexity of ColGen depends on the complexity of the procedures
IsFixedPoint, GrAn and Move. First, by using the data structure described
in Sect. 4.1, one can easily develop a function IsFixedPoint that runs in
constant time. Indeed, a column Pi of area d is a fixed point if and only if
Pi = ((d,Bot(Pi−1))).

The procedure GrAn(Pi, Pi−1) is used to restore the grand ancestor of the
current column Pi with respect to Pi−1. By Lemma 2, the value j = min(Mc(Pi))
indicates a cell in the last two segments of Pi, and it can be determined in time
O(1). Unfortunately, the construction of the grand ancestor does not always
run in time O(1) (as in the case Pi = GA(Pi, Pi−1)). Indeed, it runs in time
O(min(p,A(s))), where p is the number of segments of the column Pi−1 and s is
the last segment of Pi, see also Fig. 4. Nevertheless, an amortized analysis leads
to the following result.

Lemma 4. Let b, c be two columns in Comp(Pi−1, r) such that GrAn(b, Pi−1)
and GrAn(c, Pi−1) have cost Θ(p1) and Θ(p2), respectively. Then there exist
two sets T1, T2 ⊆ Comp(Pi−1, r), with |T1| = Ω(p1), |T2| = Ω(p2) and T1 ∩ T2 =
∅, such that GrAn(d, Pi−1) has cost O(1) for any d ∈ T1 ∪ T2.

Proof. (outline) Let t be the last segment of a = Pi−1. Consider GA(b,a) =

(. . . , se, v, . . .) and the column b′ = (. . . , se, v
′, . . .), where GA(b,a)

j→ b′, j =
min(Mc(b)) and Bot(v) ≤ j ≤ Top(v). If the construction of GA(b,a) has cost
Θ(p1) then in a there exist Θ(p1) segments with position smaller than Bot(v),
with A

(
b′

<Bot(v)

) ≥ p1. Define the set

T1 = {c ∈ Comp(a, r)|c = (. . . , se, v
′, . . . , (1,Bot

(
t↑

)
), (k,Bot(t))), 1 ≤ k < p1}.

It is immediate that |T1| = Ω(p1) and that for d ∈ T1 the call GrAn(d,a) has
cost O(1).

232 P. Massazza

Now, consider c and let h be the integer such that b>h = c>h and b≥h �= c≥h.
Furthermore, let GA(c,a) = (. . . , tf , w, . . .) and c′ = (. . . , tf , w′, . . .), where

GA(c,a) k→ c′, k = min(Mc(c)) and Bot(w) ≤ k ≤ Top(w). Define the set

T2 = {c ∈ Comp(a, r)|c = (. . . , tf , w′, . . . , (1,Bot
(
t↑

)
), (k,Bot(t))), 1 ≤ k < p2}.

If h > j then for p ∈ T1 and q ∈ T2 it holds p≥h �= q≥h, hence Ti ∩ T2 = ∅.
Otherwise, one has h ≤ j. Notice that j �= k implies p≥h �= q≥h and then

Ti ∩ T2 = ∅. Lastly, the case j = k can not occur. Indeed, suppose that j = k.
Without loss of generality, let b ≺ c (this means that the position h identifies
a segment in b and an empty cell in c). By hypothesis, the construction of
GA(b,a) (resp., GA(c,a)) has cost Θ(p1) (resp., Θ(p2)). This means that the
position j (resp., k) is occupied by the second to last segment u (resp. z) of b
(resp., c). Furthermore, one necessarily has h ≥ Bot(u), otherwise b and c have
not the same area. As Bot(z) > h, by Lemma 2 it follows that j = Top(u), which
means that u>Bot(u) is not l-adjacent. Finally, if u>Bot(u) is not l-adjacent then
also z is not l-adjacent and c is not compatible with a. ��
From Lemma 4 one easily obtains the following lemma and the main result.

Lemma 5. Let P≤i ∈ HFPDA. Then ColGen(i+1, r) runs in time O(t) where
t is the number of all (i + 1)-th columns c (of area at most r) that can be added
to P≤i so that P≤i|c ∈ HFPDA.

As a matter of fact, the running time of HFPDAGen(n) is just the sum of the
running times of all the procedure calls ColGen(i, r) associated with the inter-
nal nodes of the execution tree of HFPDAGen(n). The properties of such a tree
imply that the number of internal nodes is O(C(n)), where C(n) = |HFPDA(n)|.
Thus, by Lemma 5 we obtain:

Theorem 1. HFPDAGen(n) runs in constant amortized time.

5 Conclusions and Further Work

This paper further deepens the approach to polyominoes generation based on
discrete dynamical systems, which has been used in [9,10] for the class of partially
directed animals and of 2-polyominoes, respectively. Furthermore, by combining
the dynamical system of Sect. 3 and the one used in [9], we can obtain a CAT
algorithm for the class of partially directed animals with at most k holes, for
any k ≥ 0. An implementation of such an algorithm is ongoing and will appear
in the full version of this paper, together with the counting sequences associated
with these classes of polyominoes.

References

1. Barcucci, E., Del Lungo, A., Pergola, E., Pinzani, R.: Directed animals, forests and
permutations. Discrete Math. 204(1–3), 41–71 (1999)

Hole-Free Partially Directed Animals 233

2. Bousquet-Mélou, M.: A method for the enumeration of various classes of column-
convex polygons. Discrete Math. 154(1–3), 1–25 (1996)

3. Brocchi, S., Castiglione, G., Massazza, P.: On the exhaustive generation of k-convex
polyominoes. Theor. Comput. Sci. 664, 54–66 (2017)

4. Castiglione, G., Massazza, P.: An efficient algorithm for the generation of Z-convex
polyominoes. In: Barneva, R.P., Brimkov, V.E., Šlapal, J. (eds.) IWCIA 2014.
LNCS, vol. 8466, pp. 51–61. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-07148-0 6

5. Castiglione, G., Restivo, A.: Reconstruction of L-convex polyominoes. Electron.
Notes Discrete Math. 12, 290–301 (2003)

6. Del Lungo, A., Duchi, E., Frosini, A., Rinaldi, S.: On the generation and enumer-
ation of some classes of convex polyominoes. Electron. J. Comb. 11(1), 60 (2004)

7. Delest, M.-P., Viennot, G.: Algebraic languages and polyominoes enumeration.
Theor. Comput. Sci. 34(1–2), 169–206 (1984)

8. Duchi, E., Rinaldi, S., Schaeffer, G.: The number of Z-convex polyominoes. Adv.
Appl. Math. 40(1), 54–72 (2008)

9. Formenti, E., Massazza, P.: From tetris to polyominoes generation. Electron. Notes
Discrete Math. 59, 79–98 (2017)

10. Formenti, E., Massazza, P.: On the generation of 2-polyominoes. In: Konstantinidis,
S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 101–113. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94631-3 9

11. Golomb, S.W.: Checker boards and polyominoes. Am. Math. Mon. 61, 675–682
(1954)

12. Jensen, I.: Enumerations of lattice animals and trees. J. Stat. Phys. 102(3), 865–
881 (2001). https://doi.org/10.1023/A:1004855020556

13. Jensen, I., Guttmann, A.J.: Statistics of lattice animals (polyominoes) and poly-
gons. J. Phys. A: Math. Gen. 33(29), L257–L263 (2000)

14. Mantaci, R., Massazza, P.: From linear partitions to parallelogram polyominoes. In:
Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 350–361. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22321-1 30

15. Massazza, P.: On the generation of L-convex polyominoes. In: Proceedings of GAS-
Com12, Bordeaux, 25–27 June 2012

16. Massazza, P.: On the generation of convex polyominoes. Discrete Appl. Math. 183,
78–89 (2015)

17. Privman, V., Barma, M.: Radii of gyration of fully and partially directed lattice
animals. Z. Phys. B: Condens. Matter 57(1), 59–63 (1984). https://doi.org/10.
1007/BF01679926

18. Redner, S., Yang, Z.R.: Size and shape of directed lattice animals. J. Phys. A:
Math. Gen. 15(4), L177–L187 (1982)

https://doi.org/10.1007/978-3-319-07148-0_6
https://doi.org/10.1007/978-3-319-07148-0_6
https://doi.org/10.1007/978-3-319-94631-3_9
https://doi.org/10.1023/A:1004855020556
https://doi.org/10.1007/978-3-642-22321-1_30
https://doi.org/10.1007/BF01679926
https://doi.org/10.1007/BF01679926

First Lower Bounds for Palindromic
Length

Anna E. Frid(B)

Aix Marseille University, CNRS, Centrale Marseille, I2M, Marseille, France
anna.e.frid@gmail.com

Abstract. We study possible behaviour of the function of prefix palin-
dromic length PPLu(n) of an infinite word u, that is, the minimal num-
ber of palindromes to which the prefix of length n of u can be decom-
posed. In a 2013 paper with Puzynina and Zamboni we stated the con-
jecture that PPLu(n) is unbounded for every infinite word u which is
not ultimately periodic. Up to now, the conjecture has been proved only
for some particular cases including all fixed points of morphisms and,
later, Sturmian words.

To give an upper bound for the palindromic length, it is in general suf-
ficient to point out a decomposition of a given word to a given number of
palindromes. Proving that such a decomposition does not exist is a trick-
ier question. In this paper, we summarize the existing techniques which
can be used for lower bounds on the palindromic length. In particular,
we completely describe the prefix palindromic length of the Thue-Morse
word and use appropriate numeration systems to give a lower bound for
the palindromic length of some Toeplitz words.

1 Introduction

As usual, a palindrome is a finite word p = p[1] · · · p[n] on a finite alphabet such
that p[i] = p[n− i+1] for every i. We consider decompositions of a finite word s
to a minimal number of palindromes which we call a palindromic length of s: for
example, the palindromic length of abbaba is equal to 3 since this word is not a
concatenation of two palindromes, but abbaba = (abba)(b)(a) = (a)(bb)(aba). A
decomposition to a minimal possible number of palindromes is called optimal.

In this paper, we are interested in the palindromic length of prefixes of an
infinite word u = u[1] · · · u[n] · · · . The palindromic length of the prefix of u of
length n is denoted by PPLu(n) and is the main object studied in this paper.

The length of the shortest prefix of u of palindromic length k is denoted by
SPu(k) and can be considered as a kind of an inverse function to PPLu(n).
Clearly, SPu(k) can be infinite: for example, if u = abababab · · · , SPu(k) = ∞
for every k ≥ 3.

The following conjecture was first formulated, in slightly different terms, in
our 2013 paper [7] with Puzynina and Zamboni.

Conjecture 1.1. For every non ultimately periodic word u, the function PPLu(n)
is unbounded, or, which is the same, SPu(k) < ∞ for every k ∈ N.
c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 234–243, 2019.
https://doi.org/10.1007/978-3-030-24886-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_17

First Lower Bounds for Palindromic Length 235

Note that in fact, two versions of the conjecture were considered in [7], one
with the prefix palindromic length and the other with the palindromic length of
any factor of u. However, Saarela [10] later proved the equivalence of these two
statements.

In [7], the conjecture was proved for the case when u is k-power-free for some
k, as well as for the more general case when a so-called (k, l)-condition, discussed
below in Sect. 5, holds for some k and l. For the other cases the conjecture
remains unsolved, except for Sturmian words [5]. Most of published papers on
palindromic length concern algorithmic aspects; in particular, there exist several
fast effective algorithms for computing PPLu(n) [4,8,9].

Among rare combinatorial results on the palindromic length, I mention the
paper [2] by Ambrož et al. where some upper bounds were obtained on the palin-
dromic length of fixed points of morphisms from a so-called class P discussed
below in Sect. 4. However, these are not upper but lower bounds which are more
difficult to obtain and which may lead to proving Conjecture 1.1. So, in this
paper we focus on them.

The original proof of Conjecture 1.1 for the k-power-free words is not con-
structive. The upper bound for a length N such that PPL(N) ≥ k for a given k
is given as a solution of a transcendental equation and grows with k faster than
any exponential function. However, this bound does not look the best possible.
So, it is reasonable to state the following conjecture.

Conjecture 1.2. If a word u is P -power free for some P , then lim sup PPLu(n)
lnn > 0,

or, which is the same, SPu(k) ≤ Ck for some C. The constant C can be chosen
independently of u as a function of P .

The first cases for which we prove this conjecture here are the Thue-Morse
word and a special family of Toeplitz words. Even for k-power-free Sturmian
words including the Fibonacci word, the conjecture remains open, as well as for
the general fixed points of morphisms from the class P. Proofs for these families
of words, which we leave to further research, can contribute to the proof of
Conjecture 1.2.

The notion of palindromic length (or palindromic width) is independently
studied in groups not semigroups (see [3,10]).

Throughout the paper, we use the notation w(i..j] = w[i+1]..w[j] for a factor
of a finite or infinite word w starting at position i + 1 and ending at j.

2 General Properties

The following lemma is a particular case of Lemma 6 from [10].

Lemma 2.1. For every word u and for every n ≥ 0, we have

PPLu(n) − 1 ≤ PPLu(n + 1) ≤ PPLu(n) + 1.

In other terms, first differences of the prefix palindromic length can be equal
only to −1, 0, or 1. It is not clear, however, if this condition is sufficient or not.
We can only prove the following

236 A. E. Frid

Lemma 2.2. For every non-decreasing function f : N → N such that f(1) = 1
and f(n + 1) ≤ f(n) + 1, there exists a ternary word u with PPLu(n) = f(n)
for all n.

Proof. It is sufficient to define u[1] = a and u[n + 1] = u[n] + f(n + 1) − f(n),
where the addition is defined as a + 1 = b, b + 1 = c, c + 1 = a. So, for example,
if f(n) = 1, 1, 1, 2, 2, 3, 4, 5, 5, 5, · · · , we obtain u = aaabbcabbb · · · . Clearly, all
palindromes in u are powers of letters, which proves the lemma. �

3 Prefix Palindromic Length of the Thue-Morse Word

In this section, it is convenient to consider the famous Thue-Morse word

t = abbabaabbaababba · · ·

as the fixed point starting with a of the morphism

τ :

{
a → abba,

b → baab.

It is convenient since both images of letters under this morphism, the square of
the usual Thue-Morse morphism a → ab, b → ba, are palindromes.

Theorem 3.1. The following identities hold for all n ≥ 0:

PPLt(4n) = PPLt(n), (1)
PPLt(4n + 1) = PPLt(n) + 1, (2)
PPLt(4n + 2) = min(PPLt(n), PPLt(n + 1)) + 2, (3)
PPLt(4n + 3) = PPLt(n + 1) + 1. (4)

Before proving the theorem, let us discuss what it means in terms of the first
differences of the prefix palindromic length defined as the sequence (dt(n))∞

n=0,
where dt(n) = PPLt(n + 1) − PPLt(n); here we set PPLt(0) = 0. Due to
Lemma 2.1, dt(n) ∈ {−1, 0,+1} for every n; so, it is a sequence on a finite
alphabet which we prefer to denote {−, 0,+}.

The following corollaries of Theorem3.1 are more or less straightforward.

Corollary 3.2. The sequence (dt(n)) is the fixed point of the morphism

δ :

⎧⎪⎨
⎪⎩

+ �→ + + 0−,

0 �→ + + −−,

− �→ +0 − −.

To prove this corollary, it is sufficient to see that there three possible differ-
ences dt(n) = PPLt(n + 1) − PPLt(n), described by the signs +, 0 or −.
The equality (2) means that the first symbol of any morphic image of δ is +;

First Lower Bounds for Palindromic Length 237

the equality (4) means that the last symbol of any morphic image of δ is −; the
two symbols in the middle are clear from (3) and depend on dt(n).

In particular, this means that in all cases,

PPLt(4n + 2) > PPLt(4n + 4). (5)

The next corollary is a direct consequence of basic properties of k-regular
sequences in the sense of [1].

Corollary 3.3. The sequence PPLt(n) is 4-regular.

At last, the next corollary can be obtained from Theorem3.1 by elementary
computations.

Corollary 3.4. We have SPt(1) = 1, SPt(2) = 2, SPt(3) = 6 and for all k > 0,

SPt(k + 3) = 16SPt(k) − 6.

To prove Theorem 3.1, we need several observations. First of all, the shortest
non-empty palindrome factors in the Thue-Morse word are a, b, aa, bb,aba,bab,
abba, baab. All the longer palindromes are of even length and have aa or bb in
the center: if t(i..i + 2k] is a palindrome, then t(i + k − 1, i + k + 1] = aa or bb.

Let us say that an occurrence of a palindrome t(i..j] is of type (i′, j′) if i′ is
the residue of i and j′ is the residue of j modulo 4. For example, the palindrome
t(5..7] = aa is of type (1, 3), the palindrome t(4, 8] = baab is of type (0, 0), and
the palindrome t(7..9] = bb is of type (3, 1).

Proposition 3.5. Every occurrence of a palindromic factor of length not equal
to one or three to the Thue-Morse word is of a type (m, 4 − m) for some m ∈
{0, 1, 2, 3}.
Proof. Every such a palindrome in the Thue-Morse word is of even length which
we denote by 2k, and every its occurrence is of the form t(i..i + 2k]. Its center
t(i + k − 1, i + k + 1] is equal to aa or bb, and these two words always appear in
t at positions of the same parity: t(i + k − 1, i + k + 1] = xx = t(2l − 1, 2l + 1],
where x = a or x = b, for some l ≥ 1. So, i + k − 1 = 2l − 1, meaning that
i = 2l − k and i + 2k = 2l + k. So, modulo 4, we have i + (i + 2k) = 4l ≡ 0, that
is, i ≡ −(i + 2k). �

Note that the palindromes of odd length in the Thue-Morse word are, first,
a and b, which can be of type (0, 1), (1, 2), (2, 3) or (3, 0), and second, aba and
bab, which can only be of type (2, 1) or (3, 2).

Proposition 3.6. Let t(i..i + k] for i > 0 be a palindrome of length k > 0 and
of type (m, 4 − m) for some m 	= 0. Then t(i − 1..i + k + 1] is also a palindrome,
as well as t(i + 1..i + k − 1].

Proof. The type of the palindrome is not (0, 0), meaning that its first and last
letters t[i + 1] and t[i + k] are not the first the last letters of τ -images of letters.
Since these first and last letters are equal and their positions in τ -images of
letters are symmetric and determine their four-blocks abba or baab, the letters

238 A. E. Frid

t[i] and t[i+ k +1] are also equal, and thus t(i− 1..i+ k +1] is a palindrome. As
for t(i + 1..i + k − 1], it is a palindrome since is obtained from the palindrome
t(i..i + k] by erasing the first and the last letters. �

Let us say that a decomposition of t(0..4n] to palindromes is a
0-decomposition if all palindromes in it are of type (0, 0). The minimal num-
ber of palindromes in a 0-decomposition is denoted by PPL0

t (4n).

Proposition 3.7. For every n ≥ 1, we have PPLt(n) = PPL0
t (4n) ≥

PPLt(4n).

Proof. It is sufficient to note that τ is a bijection between all palindromic
decompositions of t(0..n] and 0-decompositions of t(0..4n]. �
Proof of Theorem 3.1. The proof is done by induction on n. Clearly,
PPLt(0) = 0, PPLt(1) = PPLt(4) = 1, and PPLt(2) = PPLt(3) = 2, the
equalities (1)–(4) hold for n = 0, and moreover, (1) is true for n = 1. Now
suppose that they all, and, as a corollary, (5), hold for all n < N , and (1) holds
also for n = N . We fix an N > 0 and prove for it the following sequence of
propositions.

Proposition 3.8. An optimal decomposition to palindromes of the prefix
t(0..4N + 1] cannot end by a palindrome of length 3.

Proof. Suppose the opposite: some optimal decomposition of t(0..4N + 1] ends
by the palindrome t(4N − 2..4N + 1]. This palindrome is preceded by an optimal
decomposition of t(0..4N −2]. So, PPLt(4N +1) = PPLt(4N −2)+1; but by (5)
applied to N −1, which we can use by the induction hypothesis, PPLt(4N −2) >
PPLt(4N). So, PPLt(4N + 1) > PPLt(4N) + 1, contradicting to Lemma2.1. �

Proposition 3.9. There exists an optimal decomposition to palindromes of the
prefix t(0..4N + 2] which does not end by a palindrome of length 3.

Proof. The opposite would mean that all optimal decompositions of t(0..4N+2]
end by the palindrome t(4N − 1..4N +2] preceded by an optimal decomposition
of t(0..4N − 1]. So, PPLt(4N + 2) = PPLt(4N − 1) + 1; by the induction
hypothesis, PPLt(4N−1) = PPLt(4N)+1. So, PPLt(4N+2) = PPLt(4N)+2,
and thus another optimal decomposition of t(0..4N + 2] can be obtained as an
optimal decomposition of t(0..4N] followed by two palindromes of length 1. A
contradiction. �

Proposition 3.10. For every m ∈ {1, 2, 3} and every n ≥ 0, the equality holds

PPLt(4N + m) = min(PPLt(4N + m − 1), PPLt(4N + m + 1)) + 1.

Proof. Consider an optimal decomposition t(0..4N + m] = p1 · · · pk, where
k = PPLt(4N+m). Denote the ends of palindromes as 0 = e0 < e1 < · · · < ek =
4N+m, so that pi = t(ei−1, ei] for each i. Since m 	= 0 and due to Proposition 3.5,
there exist some palindromes of length 1 or 3 in this decomposition. Let pj be
the last of them.

First Lower Bounds for Palindromic Length 239

Suppose first that j = k. Then due to the two previous propositions, pk is of
length 1 not 3, so that t(0..4N + m − 1] = p1 · · · pk−1 is decomposable to k − 1
palindromes. Due to Lemma 2.1, we have PPLt(4N + m − 1) = k − 1, and thus
PPLt(4N + m) = PPLt(4N + m − 1) + 1. Again due to Lemma 2.1, we have
PPLt(4N + m + 1) ≥ PPLt(4N + m) − 1 = PPLt(4N + m − 1), and so the
statement holds.

Now suppose that j < k, so that ej−1 = ej−1 and ej ≡ −ej+1 ≡ ej+2 ≡ · · · ≡
(−1)k−jek mod 4. Since pj is the last palindrome in the optimal decomposition
of p1 · · · pj , it is of length 1 not 3 due to the two previous propositions applied to
some smaller length. Here ek ≡ m 	= 0 mod 4, so, applying Proposition 3.6, we see
that p′

j = t(ej−1..ej+1+1] is a palindrome, as well as p′
j+1 = t(ej+1+1..ej+2−1]

and so on up to p′
k−1 = t(ek−1 +(−1)k−j ..ek − (−1)k−j]. Since ek = 4N +m, we

see that p1 · · · pj−1p
′
j · · · p′

k−1 is a decomposition of t(0..4N+m−(−1)k−j] to k−1
palindromes. So, as above, PPLt(4N +m) = PPLt(4N +m− (−1)k−j)+1, and
since PPLt(4N+m+(−1)k−j) ≥ PPLt(4N+m)−1 = PPLt(4N+m−(−1)k−j),
the proposition holds. �

Proposition 3.11. Every optimal palindromic decomposition of t(0..4N + 4] is
a 0-decomposition, and thus PPLt(4N + 4) = PPLt(N + 1).

Proof. Suppose the opposite; then the last palindrome in the optimal decom-
position which is not of type (0,0) is of type (m, 0) and thus is of length 1
not 3. Since (1) holds for all n < N + 1, this is the very last palindrome
of the optimal decomposition, and so PPLt(4N + 4) = PPLt(4N + 3) + 1.
Now let us use Proposition 3.10 applied to m = 3, 2, 1; every time we get
PPLt(4N + m) = PPLt(4N + m − 1) + 1. Summing up these inequali-
ties, we get PPLt(4N + 4) = PPLt(4N) + 4, which is impossible since
PPLt(4N) = PPLt(N) and PPLt(4N +4) ≤ PPLt(N +1) ≤ PPLt(N)+1. A
contradiction. �

We have proved (1) for n = N + 1. It remains to prove (2)–(4) for n = N .
Indeed, we know that

− 1 ≤ PPLt(4N + 4) − PPLt(4N) = PPLt(N + 1) − PPLt(N) ≤ 1. (6)

Now to prove (2) suppose by contrary that PPLt(4N + 1) ≤ PPLt(4N) =
PPLt(N). Due to Proposition 3.10, this means that PPLt(4N + 1) =
PPLt(4N +2)+1, that is, PPLt(4N +2) < PPLt(4N), and, again by Proposi-
tion 3.10, PPLt(N+1) = PPLt(4N+2)−2. Thus, PPLt(N)−PPLt(N+1) ≥ 3,
a contradiction to (6). So, (2) is proved.

The equality (4) is proved symmetrically. Now (3) follows from them both
and Proposition 3.10. �

4 A Lower Bound for Toeplitz Morphisms

Usually, any result proved for the Thue-Morse word can immediately be gen-
eralized to fixed points of at least some other morphisms. For this problem, it

240 A. E. Frid

would be natural to work with the morphism from the class P. Following [2],
we say that a morphism ψ belongs to the class P if it is primitive (meaning
that every letter a appears in some power ψk(b) for any letter b) and there exist
palindromes p and qa for each letter a ∈ Σ, such that for every a ∈ Σ

ψ(a) = pqa.

So, the Thue-Morse morphism τ of length 4 belongs to the class P with the
empty p and qa = abba, qb = baab.

In [2], it was proved that lim sup PPLu(n)
lnn , and, moreover, the palindromic

length of every factor of u, is bounded (from above) for every fixed point of a
morphism of the class P. In this paper it would be nice to add to that result a
lower bound or even a precise description of the function PPLu(n) if u is such
a fixed point. However, even for the period doubling word, which is the fixed
point of the morphism a → ab, b → aa, the problem looks not so easy. At the
moment, except for the Thue-Morse word, we are able to prove a lower bound
for sup PPLt(n)

lnn only for the following family.
Denote by ϕd, d ≥ 2, the morphism

ϕd :

{
a → ad−1b,

b → ad.

Clearly, the period-doubling morphism a → ab, b → aa is ϕ2; the main result
of this section, Theorem 4.5, holds however only for d ≥ 3.

In several following propositions, we write numbers in d-ary notation, sepa-
rating digits by the sign | to avoid ambiguity with multiplication or with decimal
notation: n = xl| · · · |x0 means n =

∑l
i=0 xid

i, where 0 ≤ xi ≤ d − 1. We also
denote x = d − 1 − x; here normally x and x are digits between 0 and d − 1.

Proposition 4.1. For every d ≥ 2, a factor vd(i..j] is a palindrome if and only
if at least one of the following properties holds:

1. i = xl| · · · |xm| · · · |x0 and j = xl| · · · |xm+1|ym|xm−1| · · · |x0 for some digits
x0, · · · , xl, ym ∈ {0, . . . , d − 1}, ym > xm;

2. i = s.dm+2 + (d − 1)|xm| · · · |x0 and j = (s + 1)dm+2 + 0|ym|xm−1| · · · |x0.
Here again x0, · · · , xm, ym are digits from {0, . . . , d − 1} and s is a positive
integer; note that the d-ary representation of i (j) is just a concatenation of
the d-ary representation of s (s + 1) and the described last m + 2 digits.

The respective palindromes will be called below palindromes of the first or
the second type.

Example 4.2. Consider d = 4 and the word v4 = aaabaaabaaabaaaaaaab
aaab · · · . For the palindrome v4(18..21] = aba we have 18 = 1|0|2 and 21 = 1|1|1,
so, this is a palindrome of the first type with l = 2 and m = 1; here 1 = 2. For
the palindrome v4(12, 17] = aaaaa, we have 12 = (0)|3|0 and 17 = 1|0|1, so, it
is a palindrome of the second type with s = 0 and m = 0. For the palindrome
v4(12, 19] = aaaaaaa, we have 12 = (0)|3|0 and 19 = 1|0|3, so, it is a palindrome
of both types.

First Lower Bounds for Palindromic Length 241

Proposition 4.3. Denote by Ld(i) the number of digits not equal to 0 or d − 1
in the d-representation of an integer i. Then for every d ≥ 3 and for every
palindrome vd(i..j], we have Ld(j) ≤ Ld(i) + 2.

Proof. The operation x → x preserves the function Ld, so, if the palindrome
is of the first type, the only digit which may add 1 to Ld is that at position m.
If the palindrome is of the second type, however, in addition to the position m,
a new symbol not equal to 0 or d − 1 may appear in the d-decomposition of the
number s which turns into s + 1 (as in the palindrome v4(12, 17] in the previous
example). �

Proposition 4.4. For every d ≥ 3, consider the length nk = 12k−1 in the d-ary
numeration system. Then PPLvd

(nk) ≥ k.

Proof. The statement follows directly from the previous proposition and the
fact that the prefix palindrome vd(0..i] of any decomposition cannot be of the
second type. �

The following theorem is a direct corollary of Proposition 4.4.

Theorem 4.5. For every d ≥ 3,

lim sup
PPLvd

(n)
ln n

≥ 1
2 ln d

.

The lower bound from Theorem 4.5 looks not at all optimal. In particular, the
calculations show that we have PPLv3(1

k) = k. So, we may state a conjecture
that lim sup PPLvd

(n)

lnn = 1
ln d , but its proof will not be so easy.

5 Words with Longer Powers

The proof of Theorem 4.5 can be immediately extended to a wider class of words.
Namely, consider a sequence d = (dn) of integers, dn ≥ 2, and the word

vd = ϕd1 ◦ ϕd2 ◦ · · · ◦ ϕdn
◦ · · · (a).

Clearly, it is well-defined, and if di = d for all i, we have vd = vd. If by con-
trary the sequence d is unbounded, we obtain one of the easiest possible examples
of an infinite word which does not satisfy any (k, l)-condition formulated in [7].
This means exactly the following: for every l and every k there exists a position
in the word covered by at least l different k-powers (here different powers mean
powers of primitive words of different lengths).

Clearly, if d is unbounded, then the very first position in vd is covered by an
infinite number of k-powers for every k. Another example of words not satisfying
any (k, l)-condition are Sturmian words with the unbounded directive sequence
considered in [5], but the words fd form an even simplier family.

242 A. E. Frid

For each such word, we can construct a respective numeration system, in
which a number N is represented as

N =
n∑

i=0

(d1 · · · di)xi = x0 + x1d1 + x2d1d2 + · · · + xn

n∏
i=1

di,

where 0 ≤ xi < di+1. In this case, the choice of xi is unique up to leading zeros,
and the word N can be written as N = xn| . . . |x0. If di = d for all i, it is just a
usual d-ary numeration system.

Propositions 4.1 and 4.3 can be directly extended to such numeration systems,
with only one change of notation: the digit xi changes between 0 and di+1 − 1,
and xi is defined as di+1 − 1 − xi. So, instead of Proposition 4.4, we can state
the following.

Theorem 5.1. Consider a word vd corresponding to a sequence d with dni
> 2

for an infinite sequence of digits (ni). Consider a number Nk = xn2k−1 | · · · |x0 such
that xni

= 1 for i = 1, . . . , 2k − 1 and xj = 0 for j 	= ni. Then PPLvd
(Nk) ≥ k.

6 Conclusion

At the moment, up to my knowledge, the only existing lower bounds for the
lim sup of the prefix palindromic length are the following:

– A general bound for k-power-free words from [7], obtained as a solution of a
transcendental equation and growing slower than any logarithmic function.

– A bound for Sturmian words which are not k-power-free, described in [5] in
terms of the Ostrowski numeration systems.

– The bounds obtained here for the Thue-Morse word (together with the
explicit function PPLt(n)) and Toeplitz words vd, under the conditions
described in Theorems 4.5 and 5.1.

At the same time, even for famous and simple examples like the period doubling
word or the Fibonacci word, the only existing lower bounds are those from [7],
even though in [6], some calculations allowed to state a reasonable exponential
conjecture on the SP (k) of the Fibonacci word. So, the following range of the
open questions can be added to Conjectures 1.1 and 1.2.

Problem 6.1. Find a precise formula for the prefix palindromic length of the
period-doubling word, or a lower bound for its lim sup.

Problem 6.2. Find a precise formula for the prefix palindromic length of the
Fibonacci word, or a lower bound for its lim sup.

Problem 6.3. Is it true that the function PPLu(n) is d-regular for any
d-automatic word u? Fibonacci-regular for the Fibonacci word?

Problem 6.4. Describe all functions N → N which can be prefix palindromic
length functions of an infinite word.

First Lower Bounds for Palindromic Length 243

As for Conjecture 1.1, it seems that the remaining case when no (k, l)-
condition holds can be treated with the help of specially constructed numeration
systems, like in [5] or here in Theorem5.1. The proof of this kind will inevitably
be very technical.

References

1. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, General-
izations. Cambridge University Press, Cambridge (2003)

2. Ambrož, P., Kadlec, O., Masáková, Z., Pelantová, E.: Palindromic length of words
and morphisms in class P. Preprint. https://arxiv.org/abs/1812.00711

3. Bardakov, V., Shpilrain, V., Tolstykh, V.: On the palindromic and primitive widths
of a free group. J. Algebra 285, 574–585 (2005)

4. Fici, G., Gagie, T., Kärkkäinen, J., Kempa, D.: A subquadratic algorithm for
minimum palindromic factorization. J. Discr. Alg. 28, 41–48 (2014)

5. Frid, A.E.: Sturmian numeration systems and decompositions to palindromes. Eur.
J. Combin. 71, 202–212 (2018)

6. Frid, A.: Representations of palindromes in the Fibonacci word. In: Proceedings of
Numeration, pp. 9–12 (2018)

7. Frid, A., Puzynina, S., Zamboni, L.: On palindromic factorization of words. Adv.
Appl. Math. 50, 737–748 (2013)

8. Borozdin, K., Kosolobov, D., Rubinchik, M., Shur, A.M.: Palindromic length in
linear time. In: CPM 2017, pp. 23:1–23:12 (2017)

9. Rubinchik, M., Shur, A.M.: EERTREE: an efficient data structure for processing
palindromes in strings. Eur. J. Combin. 68, 249–265 (2018)

10. Saarela, A.: Palindromic length in free monoids and free groups. In: Brlek, S., Dolce,
F., Reutenauer, C., Vandomme, É. (eds.) WORDS 2017. LNCS, vol. 10432, pp.
203–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66396-8 19

https://arxiv.org/abs/1812.00711
https://doi.org/10.1007/978-3-319-66396-8_19

On Palindromic Length of Sturmian
Sequences

Petr Ambrož(B) and Edita Pelantová

FNSPE, Czech Technical University in Prague, Trojanova 13,
120 00 Praha 2, Czech Republic

{petr.ambroz,edita.pelantova}@fjfi.cvut.cz

Abstract. Frid, Puzynina and Zamboni (2013) defined the palindromic
length of a finite word w as the minimal number of palindromes whose
concatenation is equal to w. For an infinite word u we study palu , that
is, the function that assigns to each positive integer n, the maximal
palindromic length of factors of length n in u. Recently, Frid (2018)
proved that lim supn→∞ palu (n) = +∞ for any Sturmian word u. We
show that there is a constant K > 0 such that palu (n) ≤ K lnn for
every Sturmian word u, and that for each non-decreasing function f
with property limn→∞ f(n) = +∞ there is a Sturmian word u such that
palu (n) = O(f(n)).

Keywords: Palindromes · Palindromic length · Sturmian words

1 Introduction

Palindromic length of a word v, denoted by |v|pal, is the minimal number K of
palindromes p1, p2, . . . , pK such that v = p1p2 · · · pK . This notion has been intro-
duced by Frid, Puzynina and Zamboni [3] along with the following conjecture.

Conjecture 1. If there is a positive integer P such that |v|pal ≤ P for every factor
v of an infinite word w then w is eventually periodic.

Frid et al. proved validity of the conjecture for r-power-free infinite words,
i.e., for words which do not contain factors of the form vr = vv · · · v (r times for
some integer r ≥ 2). By result of Mignosi [6] the conjecture thus holds for any
Sturmian word whose slope has bounded coefficients in its continued fraction.
Recently, Frid [2] proved the conjecture for all Sturmian words.

In this paper we study asymptotic growth of function palu : N → N defined
for an infinite word u by

palu (n) = max{|v|pal : v is factor of length n in u}.

The aforementioned result by Frid can be stated, using function palu , in the
form of the following theorem.

c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 244–250, 2019.
https://doi.org/10.1007/978-3-030-24886-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_18&domain=pdf
http://orcid.org/0000-0002-7134-0497
http://orcid.org/0000-0003-3817-2943
https://doi.org/10.1007/978-3-030-24886-4_18

On Palindromic Length of Sturmian Sequences 245

Theorem 1 ([2]). Let u be a Sturmian word. Then lim sup
n→∞

palu (n) = +∞.

We prove the following two theorems about the rate of growth of function
palu for Sturmian words.

Theorem 2. Let f : N → R be a non-decreasing function with lim
n→∞ f(n) = +∞.

Then there is a Sturmian word u such that palu (n) = o(f(n)).

Theorem 3. There is a constant K such that for every Sturmian word u we
have palu (n) ≤ K ln n.

In other words, palu may grow into infinity arbitrarily slow (Theorem 2)
and not faster than O(ln n) (Theorem 3). Let us stress that the constant K in
Theorem 3 is universal for every Sturmian word.

Both theorems refer to upper estimates on the growth of palu . Indeed, it
is much more difficult to obtain a lower bound on the growth, such bound is
not known even for the Fibonacci word. Recently, Frid [1] considered a certain
sequence of prefixes of the Fibonacci word, denoted (w(n)), and she formulated a
conjecture about the precise value of |w(n)|pal. This conjecture can be rephrased
in the following way (cf. Remark 1).

Conjecture 2. Let f be the Fibonacci word, that is, the fixed point of the mor-
phism 0 �→ 01, 1 �→ 0. Then

lim sup
n→∞

palf (n)
ln n

≥ 1
3 ln τ

,

where τ is the golden ratio.

We propose (see Remark 1 for more details) the following extension of this
so far unproved statement.

Conjecture 3. Let u be a Sturmian word whose slope has bounded coefficients
in its continued fraction. Then

lim sup
n→∞

palu (n)
ln n

> 0.

2 Preliminaries

An alphabet A is a finite set of letters. A finite sequence of letters of A is called
a (finite) word. The length of a word w = w1w2 · · · wn, that is, the number of
its letters, is denoted |w| = n. The notation |w|a is used for the number of
occurrences of the letter a in w. The empty word is the unique word of length
0, denoted by ε. The set of all finite words over A (including the empty word)
is denoted by A∗, equipped with the operation of concatenation of words A∗

is a free monoid with ε as its neutral element. We consider also infinite words
u = u0u1u2 · · · , the set of infinite words over A is denoted by AN.

246 P. Ambrož and E. Pelantová

A word w is called a factor of v ∈ A∗ if there exist words w(1), w(2) ∈ A∗

such that v = w(1)ww(2). The word w is called a prefix of v if w(1) = ε, it is
called a suffix of v if w(2) = ε. The notions of factor and prefix can be easily
extended to infinite words. The set of all factors of an infinite word u, called the
language of u, is denoted by L(u). Let w be a prefix of v, that is, v = wu for
some word u. Then we write w−1v = u.

The slope of a nonempty word w ∈ {0, 1}∗ is the number π(w) = |w|1
|w| . Let

u = (un)n≥0 be an infinite word. Then the limit

ρ = lim
n→∞ π(u0 · · · un−1) =

|u0 · · · un−1|1
n

(1)

is the slope of the infinite word. Obviously, the slope of u is equal to the frequency
of the letter 1 in u.

In this paper we are concerned with the so-called Sturmian words [8]. These
are infinite words over a binary alphabet that have exactly n+1 factors of length
n for each n ≥ 0. Sturmian words admit several equivalent definitions and have
many interesting properties. We will need the following two fact above all. The
limit in (1) exists, and thus the slope of a Sturmian word is well defined, and,
moreover, it is an irrational number [4]. Two Sturmian words have the same
language if and only if they have the same slope [5].

A morphism of the free monoid A∗ is a map ϕ : A∗ → A∗ such that ϕ(vw) =
ϕ(v)ϕ(w) for all v, w ∈ A∗. A morphism ϕ is called Sturmian if ϕ(u) is a
Sturmian word for every Sturmian word u. The set of all Sturmian morphisms
coincides with the so-called Monoid of Sturm [7], it is the monoid generated by
the following three morphisms

E :
0 �→ 1
1 �→ 0

, G :
0 �→ 0
1 �→ 01

, G̃ :
0 �→ 0
1 �→ 10

.

3 Images of Sturmian Words

In this section we study length and palindromic length of images of words under
morphisms ψb : {0, 1}∗ → {0, 1}∗, where b ∈ N, b ≥ 1 and

ψb(0) = 10b−1,

ψb(1) = 10b.
(2)

Note that ψb is a Sturmian morphism since ψb = G̃b−1 ◦ E ◦ G.

Lemma 1. Let b, c ∈ N, b, c ≥ 1 and let v ∈ {0, 1}∗. Then

(i) |ψb(v)| ≥ b|v|,
(ii) |(ψc ◦ ψb)(v)| ≥ 2|v|.

On Palindromic Length of Sturmian Sequences 247

Proof. (i) Let x = |v|0 and y = |v|1. Then ψb(v) contains x′ := (b−1)x+by zeros
and y′ := x + y ones. Thus |ψb(v)| = x′ + y′ = bx + (b + 1)y ≥ b(x + y) = b|v|.

(ii) The word (ψc◦ψb)(v) contains x′′ := (c−1)x′+cy′ zeros and y′′ := x′+y′

ones. Thus |(ψc ◦ψb)(v)| = x′′ +y′′ = cx′ +(c+1)y′ ≥ x′ +2y′ ≥ 2y′ = 2(x+y) =
2|v|. 	

Lemma 2. Let b ∈ N, b ≥ 1 and let v ∈ {0, 1}∗. Then |ψb(v)|pal ≤ |v|pal + 1.

Proof. One can easily check that if p is a palindrome then both ψb(p)1 and
1−1ψb(p) are palindromes.

If v = p1p2 · · · p2q, where all pi are palindromes, then

ψb(v) = ψb(p1)1
︸ ︷︷ ︸

p′
1

· 1−1ψb(p2)
︸ ︷︷ ︸

p′
2

·ψb(p3)1
︸ ︷︷ ︸

p′
3

· 1−1ψb(p4)
︸ ︷︷ ︸

p′
4

· · · ψb(p2q−1)1
︸ ︷︷ ︸

p′
2q−1

· 1−1ψb(p2q)
︸ ︷︷ ︸

p′
2q

is a factorization of ψb(v) into 2q palindromes and therefore we have |ψb(v)|pal ≤
|v|pal.

On the other hand, if |v|pal is odd the factorization of ψb(v) is almost the
same with the only exception that at the end there is (possibly non-palindromic)
image of the last palindrome, i.e., ψb(p2q+1). The statement follows from the fact
that ψb(p2q+1) = 1 · 1−1ψb(v2q+1). 	

Lemma 3. Let u be a Sturmian word with slope α ∈ (0, 1) and let the continued
fraction of α be α = [0, a1, a2, a3, . . .]. Then ψb(u) is a Sturmian word with slope
β, where β = [0, b, a1, a2, a3, . . .].

Proof. Recall that α is the frequency of the letter 1 in u, that is,

α = lim
|v|→∞

|v|1
|v|0 + |v|1 , where v ∈ L(u).

Let us consider the image of v ∈ L(u) under ψb. We have |ψb(v)|0 = (b−1)|v|0+
b|v|1 and |ψb(v)|1 = |v|0 + |v|1. Therefore

β = lim
|v|→∞

|ψb(v)|1
|ψb(v)|0 + |ψb(v)|1 = lim

|v|→∞
|v|0 + |v|1

b|v|0 + (b + 1)|v|1

= lim
|v|→∞

1

b + |v|1
|v|0+|v|1

=
1

b + α
.

	

Lemma 4. Let v ∈ {0, 1}∗ be a factor of a Sturmian word u with slope β =
[0, b, a1, a2, a3, . . .] and let |v|1 ≥ 2. Then there are words v′, vL, vR such that v′ �= ε
is a factor of a Sturmian word with slope α = [0, a1, a2, a3, . . .], vL is a proper suffix
of ψk(x) and vR is a proper prefix of ψk(y) for some x, y ∈ {0, 1}, and

(i) v = vLψb(v′)vR,
(ii) |v|pal ≤ 4 + |v′|pal.

248 P. Ambrož and E. Pelantová

Proof. (i) Let u be a Sturmian word with slope α = [0, a1, a2, a3, . . .]. By
Lemma 3, ψk(u) has slope β = [0, b, a1, a2, a3, . . .]. Recall that the language of a
Sturmian word is entirely determined by its slope, thus we have v ∈ L(ψb(u)).
Since by assumption v contains at least two ones, we can unambiguously write
it in the required form.

(ii) This statement then follows from inequalities |v|pal ≤ |vL|pal+|ψb(v′)|pal+
|vR|pal, |vL|pal ≤ 1, |vR|pal ≤ 2 and from Lemma 2. 	

4 Proofs of Main Theorems

Both proofs make use of the following idea. Let u be a Sturmian word with
slope α = [0, a1, a2, a3, . . .]. Let v = v(1) ∈ L(u). By successive application of
Lemma 4 we find words v(2), v(3), . . . , v(j+1) such that for every i = 1, 2, . . . , j
we have

(i) v(i) is a factor of a Sturmian word with slope [0, ai, ai+1, ai+2, . . .],
(ii) |v(i)| ≥ |ψai

(v(i+1))| ≥ ai|v(i+1)| (this follows from Lemmas 1 and 4),
(iii) |v(i)|pal ≤ 4 + |v(i+1)|pal,
(iv) v(j+1) does not contain two ones, in particular |v(j+1)|pal ≤ 2 and |v(j+1)| ≥

1.

Altogether we have

|v| = |v(1)| ≥ a1a2 · · · aj ,

|v|pal ≤ 4j + 2.
(3)

Proof (of Theorem 2). Let f : N → R be a non-decreasing function with
limn→∞ f(n) = +∞. We find a1 ∈ N, a1 ≥ 2 such that f(a1) ≥ 1, then a2 ∈ N,
a2 ≥ 2 such that f(a1a2) ≥ 22, and so on, i.e., we proceed recurrently to find
ak ∈ N, ak ≥ 2 such that

f(a1a2 · · · ak) ≥ k2 for all k ∈ N, k ≥ 1. (4)

Using (3), (4) and monotony of f we can estimate

|v|pal
f(|v|) ≤ 4j + 2

f(a1a2 · · · aj)
≤ 4j + 2

j2
.

Obviously j → ∞ as |v| = n → ∞ and therefore

lim sup
n→∞

palu (n)
f(n)

≤ lim
j→∞

4j + 2
j2

= 0.

	

On Palindromic Length of Sturmian Sequences 249

Proof (of Theorem 3). The estimate |v| ≥ a1a2 · · · aj is weak in the case where
most of the coefficients of the continued fraction are equal to 1. Therefore, we
use the fact that v(i) contains factor (ψai

◦ ψai+1)(v
(i+2)). By Lemma 1 we have

|v(i)| ≥ 2|v(i+2)| and thus |v| ≥ 2� j
2 	. Using this estimate we get

|v|pal
ln |v| ≤ 4j + 2

j−1
2 ln 2

j→∞−−−−−→ 8
ln 2

.

Statement of the theorem follows, using K = 8
ln 2 . 	

Remark 1. In [1], Frid defined the sequence (w(n)) of prefixes of the Fibonacci
word f , where |w(n)| has representation (100)2n−1101 in the Ostrowski numer-
ation system.

Using the Fibonacci sequence (Fn)n≥0 (given by F0 = 1, F2 = 2 and Fn+2 =
Fn+1+Fn for n ∈ N) one gets |w(n)| = F0+F2+

∑2n−1
k=1 F3k+2 < F6n. Frid proved

that |w(n)|pal ≤ 2n+1, while she conjectured that the equality |w(n)|pal = 2n+1
holds. Since Fn = 1√

5
τn+2(1+o(1)), the validity of Frid’s conjecture would imply

|w(n)|pal
ln |w(n)| ≥ 2n + 1

lnF6n
=

2n + 1
(6n + 2) ln τ(1 + o(1))

n→∞−−−−→ 1
3 ln τ

(5)

as stated in Conjecture 2.
In her proof of the fact that for a Sturmian word u the function palu (n)

is not bounded, Frid considered only prefixes of u. This was made possible by
the following result by Saarela [9]: for a factor x of a word y we have |x|pal ≤
2|y|pal. Computer experiments do indicate that the prefixes w(n) have the highest
possible ratio |w|pal

ln |w| (among all prefixes of f). However, it is still possible that
there is a sequence of factors (not prefixes) of f which can be used to enlarge
the constant 1

3 ln τ in (5).

Acknowledgements. This work was supported by the project CZ.02.1.01/0.0/
0.0/16 019/0000778 from European Regional Development Fund. We also acknowledge
financial support of the Grant Agency of the Czech Technical University in Prague,
grant No. SGS14/205/OHK4/3T/14.

References

1. Frid, A.: Representations of palindromes in the Fibonacci word. In: Numera-
tion 2018, pp. 9–12 (2018). https://numeration2018.sciencesconf.org/data/pages/
num18 abstracts.pdf

2. Frid, A.E.: Sturmian numeration systems and decompositions to palindromes. Eur.
J. Combin. 71, 202–212 (2018). https://doi.org/10.1016/j.ejc.2018.04.003

3. Frid, A.E., Puzynina, S., Zamboni, L.Q.: On palindromic factorization of words. Adv.
Appl. Math. 50(5), 737–748 (2013). https://doi.org/10.1016/j.aam.2013.01.002

4. Lothaire, M.: Algebraic combinatorics on words. In: Encyclopedia of Mathemat-
ics and its Applications, vol. 90. Cambridge University Press, Cambridge (2002).
https://doi.org/10.1017/CBO9781107326019

https://numeration2018.sciencesconf.org/data/pages/num18_abstracts.pdf
https://numeration2018.sciencesconf.org/data/pages/num18_abstracts.pdf
https://doi.org/10.1016/j.ejc.2018.04.003
https://doi.org/10.1016/j.aam.2013.01.002
https://doi.org/10.1017/CBO9781107326019

250 P. Ambrož and E. Pelantová

5. Mignosi, F.: Infinite words with linear subword complexity. Theoret. Comput. Sci.
65(2), 221–242 (1989). https://doi.org/10.1016/0304-3975(89)90046-7

6. Mignosi, F.: On the number of factors of Sturmian words. Theoret. Comput. Sci.
82(1), 71–84 (1991). https://doi.org/10.1016/0304-3975(91)90172-X

7. Mignosi, F., Séébold, P.: Morphismes sturmiens et règles de Rauzy. J. Théor. Nom-
bres Bordeaux 5(2), 221–233 (1993). http://jtnb.cedram.org/item?id=JTNB 1993
5 2 221 0

8. Morse, M., Hedlund, G.A.: Symbolic dynamics II Sturmian trajectories. Amer. J.
Math. 62, 1–42 (1940). https://doi.org/10.2307/2371431

9. Saarela, A.: Palindromic length in free monoids and free groups. In: Brlek, S., Dolce,
F., Reutenauer, C., Vandomme, É. (eds.) WORDS 2017. LNCS, vol. 10432, pp. 203–
213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66396-8 19

https://doi.org/10.1016/0304-3975(89)90046-7
https://doi.org/10.1016/0304-3975(91)90172-X
http://jtnb.cedram.org/item?id=JTNB_1993__5_2_221_0
http://jtnb.cedram.org/item?id=JTNB_1993__5_2_221_0
https://doi.org/10.2307/2371431
https://doi.org/10.1007/978-3-319-66396-8_19

Separating Many Words by Counting
Occurrences of Factors

Aleksi Saarela(B)

Department of Mathematics and Statistics, University of Turku,
20014 Turku, Finland

amsaar@utu.fi

Abstract. For a given language L, we study the languages X such that
for all distinct words u, v ∈ L, there exists a word x ∈ X appearing a
different number of times as a factor in u and in v. In particular, we are
interested in the following question: For which languages L does there
exist a finite language X satisfying the above condition? We answer this
question for all regular languages and for all sets of factors of infinite
words.

Keywords: Combinatorics on words · Regular language ·
Infinite word · k-abelian equivalence · Separating words problem

1 Introduction

The motivation for this article comes from three sources.
First, a famous question about finite automata is the separating words prob-

lem. If sep(u, v) is the size of the smallest DFA that accepts one of the words
u, v and rejects the other, then what is the maximum of the numbers sep(u, v)
when u and v run over all words of length at most n? This question was first
studied by Goralč́ık and Koubek [8], and they proved an upper bound o(n) and
a lower bound Ω(log n). The upper bound was improved to O(n2/5(log n)3/5)
by Robson [18], and this remains the best known result. A survey and some
additional results can be found in the article by Demaine, Eisentat, Shallit and
Wilson [6]. Several variations of the problem exist. For example, NFAs [6] or
context-free grammars [5] could be used instead of DFAs. More generally, we
could try to separate two disjoint languages A and B by providing a language
X from some specified family of languages such that A ⊆ X and B ∩ X = ∅.
As an example related to logic, see [16]. Alternatively, we could try to separate
many words w1, . . . , wk by providing languages X1, . . . , Xk with some specific
properties such that wi ∈ Xj if and only if i = j. As an example, see [9].

Let |w|x denote the number of occurrences of a factor x in a word w. A
simple observation that can be made about the separating words problem is
that if |u|x �= |v|x, then |u|x �≡ |v|x (mod p) for some relatively small prime p
(more specifically, p = O(log(|uv|))), and the number of occurrences modulo a
prime can be easily counted by a DFA. So if u and v have a different number of
c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 251–264, 2019.
https://doi.org/10.1007/978-3-030-24886-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_19&domain=pdf
http://orcid.org/0000-0002-6636-2317
https://doi.org/10.1007/978-3-030-24886-4_19

252 A. Saarela

occurrences of some short factor x, then sep(u, v) is small, see [6] for more details.
Unfortunately, this approach does not provide any general bounds, and more
complicated ideas are required to prove the results mentioned in the previous
paragraph.

In this article, we are interested in the question of how well words can be
separated if we forget about automata and only consider the simple idea of
counting occurrences of factors. For any two distinct words u and v of length
n, we can find a factor x of length �n/2� + 1 or less such that |u|x �= |v|x. A
proof of this simple fact can be found in an article by Manuch [13]. See [19] for
a variation where also the positions of the occurrences modulo a certain number
are taken into account. The question becomes more interesting if we want to
separate more than two words (possibly infinitely many) at once, and we can
do this by counting the numbers of occurrences of more than one factor. We are
particularly interested in the following question.

Question 1.1. Given a language L, does there exist a finite language X such
that for all distinct words u, v ∈ L, there exists x ∈ X such that |u|x �= |v|x?

The second source of motivation is an old guessing game for two players, let
us call them Alice and Bob: From a given set of options, Alice secretly picks
one. Bob is allowed to ask any yes-no questions, and he is trying to figure out
what Alice picked. Two famous versions are the game “Twenty Questions” and
the children’s board game “Guess Who”. In their simplest forms, these kinds of
games are easy to analyze: The required number of questions is logarithmic with
respect to the number of options. However, many more complicated variations
have been studied. As examples, see [15] and [1].

In this article, we are interested in a variation where the options are words
and, instead of arbitrary yes-no questions, Bob is allowed to ask for the number
of occurrences of any factor in the word Alice has chosen. Usually in games like
this, Bob can decide every question based on the previous answers, but we can
also require that Bob needs to decide all the questions in advance.

Question 1.2. Given a language from which Alice has secretly picked one word
w, can Bob find a finite language X such that the answers to the questions
“What is |w|x?” for all x ∈ X are guaranteed to reveal the correct word w?

It is easy to see that Questions 1.1 and 1.2 are equivalent. In this article, we
will use the formulation of Question 1.1 instead of talking about games.

The third source of motivation is k-abelian complexity. For a positive integer
k, words u and v are said to be k-abelian equivalent if |u|x = |v|x for all factors
x of length at most k. The factor complexity of an infinite word w is a function
that maps a number n to the number of factors of w of length n. The k-abelian
complexity of w similarly maps a number n to the number of k-abelian equiva-
lence classes of factors of w of length n. k-abelian equivalence was first studied by
Karhumäki [10]. Many basic properties were proved by Karhumäki, Saarela and
Zamboni in the article [11], where also k-abelian complexity was introduced.
Several articles have been published about k-abelian complexity [3,4,12], and

Separating Many Words by Counting Occurrences of Factors 253

about abelian complexity (that is, the case k = 1) already earlier [17]. Perhaps
the most interesting one from the point of view of this paper is [3], where the
relationships between the k-abelian complexities of an infinite word for differ-
ent values of k were studied. However, the following simple question was not
considered in that article.

Question 1.3. Given an infinite word, does there exist a number k ≥ 1 such that
the k-abelian complexity of the word is the same as the usual factor complexity
of the word?

For a given language, we can define its growth function and k-abelian growth
function as concepts analogous to the factor complexity and k-abelian complexity
of an infinite word. Then the above question can be generalized. We are specif-
ically interested in the case of regular languages. Some connections between
k-abelian equivalence and regular languages have been studied by Cassaigne,
Karhumäki, Puzynina and Whiteland [2].

Question 1.4. Given a language, does there exist a number k ≥ 1 such that the
growth function of the language is the same as the k-abelian growth function of
the language?

In this article, we first define some concepts related to Question 1.1 and prove
basic properties about them. As stated above, Questions 1.1 and 1.2 are equiv-
alent, and so is Question 1.4, but this requires a short proof. We answer these
questions for two families of languages: Sets of factors of infinite words (this
corresponds to Question 1.3) and regular languages. In the first case, the result
is not surprising: The answer is positive if and only if the word is ultimately
periodic. Our main result is a characterization in the case of regular languages:
The answer is positive if and only if the language does not have a subset of the
form xw∗yw∗z for any words w, x, y, z such that wy �= yw.

2 Preliminaries

Throughout the article, we use the symbol Σ to denote an alphabet. All words
are over Σ unless otherwise specified.

Primitive Words and Lyndon Words. A nonempty word is primitive if it is not
a power of any shorter word. The primitive root of a nonempty word w is the
unique primitive word p such that w ∈ p+. It is well known that nonempty words
u, v have the same primitive root if and only if they commute, that is, uv = vu.

Words u and v are conjugates if there exist words p, q such that u = pq and
v = qp. All conjugates of a primitive word are primitive. If two nonempty words
are conjugates, then their primitive roots are conjugates.

We can assume that the alphabet Σ is ordered. This order can be extended
to a lexicographic order of Σ∗. A Lyndon word is a primitive word that is lex-
icographically smaller than all of its other conjugates. We use Lyndon words

254 A. Saarela

when we need to pick a canonical representative from the conjugacy class of a
primitive word. The fact that this representative happens to be lexicographically
minimal is not actually important in this article.

The Lyndon root of a nonempty word w is the unique Lyndon word that is
conjugate to the primitive root of w.

Occurrences. Let u and w be words. An occurrence of u in w is a triple (x, u, y)
such that w = xuy. The number of occurrences of u in w is denoted by |w|u.

Let (x, u, y) and (x′, u′, y′) be occurrences in w. If

max(|x|, |x′|) < min(|xu|, |x′u′|),

then we say that these occurrences have an overlap of length

min(|xu|, |x′u′|) − max(|x|, |x′|).

If |x| ≥ |x′| and |y| ≥ |y′|, then we say that (x, u, y) is contained in (x′, u′, y′).
If (x, u, y) is an occurrence in w and u ∈ L, then (x, u, y) is an L-occurrence

in w. It is a maximal L-occurrence in w if it is not contained in any other
L-occurrence in w.

k-abelian Equivalence. Let k be a positive integer. Words u, v ∈ Σ∗ are k-abelian
equivalent if |u|x = |v|x for all x ∈ Σ≤k. k-abelian equivalence is an equivalence
relation and it is denoted by ≡k.

Here are some basic facts about k-abelian equivalence (see [11]): u, v ∈ Σ≥k−1

are k-abelian equivalent if and only if they have a common prefix of length k −1
and |u|x = |v|x for all x ∈ Σk. The condition about prefixes can be replaced by a
symmetric condition about suffixes. Words of length 2k − 1 or less are k-abelian
equivalent if and only if they are equal. k-abelian equivalence is a congruence,
that is, if u ≡k u′ and v ≡k v′, then uv ≡k u′v′.

We are going to use the following simple fact a couple of times when showing
that two words are k-abelian equivalent: If u, v, w, x ∈ Σ∗, |v| = k − 1, and
|x| = k, then

|uvw|x = |uv|x + |vw|x.

Example 2.1. The words aabab and abaab are 2-abelian equivalent: They have
the same prefix of length one, one occurrence of aa, two occurrences of ab, one
occurrence of ba, and no occurrences of bb.

The words aba and bab have the same number of occurrences of every factor
of length two, but they are not 2-abelian equivalent, because they have a different
number of occurrences of a.

Let k ≥ 1. The words u = akbak−1 and v = ak−1bak are k-abelian equivalent:
They have the same prefix of length k − 1, and |u|x = 1 = |v|x if x = ak or
x = aibak−i−1 for some i ∈ {0, . . . , k−1}, and |u|x = 0 = |v|x for all other factors
x of length k. On the other hand, u and v are not (k + 1)-abelian equivalent,
because they have a different prefix of length k.

Separating Many Words by Counting Occurrences of Factors 255

Growth Functions and Factor Complexity. The growth function of a language L
is the function

PL : Z≥0 → Z≥0, PL(n) = |L ∩ Σn|
mapping a number n to the number of words of length n in L. The factor
complexity of an infinite word w, denoted by Pw, is the growth function of the
set of factors of w (technically, the domain of Pw is often defined to be Z+

instead of Z≥0).
We can also define k-abelian versions of these functions. The k-abelian growth

function of a language L is the function

Pk
L : Z≥0 → Z≥0, PL(n) = |(L ∩ Σn)/ ≡k |,

where (L∩Σn)/ ≡k denotes the set of equivalence classes of elements of L∩Σn.
The k-abelian complexity of an infinite word w, denoted by Pk

w, is the k-abelian
growth function of the set of factors of w.

An infinite word w is ultimately periodic if there exist finite words u, v such
that w = uvω. An infinite word is aperiodic if it is not ultimately periodic. It
was proved by Morse and Hedlund [14] that if w is ultimately periodic, then
Pw(n) = O(1), and if w is aperiodic, then Pw(n) ≥ n + 1 for all n.

3 Separating Sets of Factors

A language X is a separating set of factors (SSF) of a language L if for all
distinct words u, v ∈ L, there exists x ∈ X such that |u|x �= |v|x. The set X is
size-minimal if no set of smaller cardinality is an SSF of L, and it is inclusion-
minimal if X does not have a proper subset that is an SSF of L.

Example 3.1. Let Σ = {a, b}. The language a∗ has two inclusion-minimal SSFs:
{ε} and {a}. The language Σ2 = {aa, ab, ba, bb} has eight inclusion-minimal
SSFs:

{a, ab}, {a, ba}, {b, ab}, {b, ba}, {aa, ab, ba}, {aa, ab, bb}, {aa, ba, bb}, {ab, ba, bb}.

The first four are size-minimal.

Example 3.2. Let Σ = {a, b, c, d, e, f}. The language L = {ac, ad, be, bf} has
a size-minimal SSF {a, c, e}. In terms of the guessing game mentioned in the
introduction, this means that if Alice has chosen w ∈ L, then Bob can ask for
the numbers |w|a, |w|c, |w|e, and this will always reveal w. Actually, two questions
are enough if Bob can choose the second question after hearing the answer to
the first one: He can first ask for |w|a, and then for either |w|c or |w|e depending
on whether |w|a = 1 or |w|a = 0.

The following lemma contains some very basic results related to the above
definitions. In particular, it proves that every language has an inclusion-minimal
SSF, and all SSFs are completely characterized by the inclusion-minimal ones.

256 A. Saarela

Lemma 3.3. Let L and X be languages.

1. If L �= ∅, then L has a proper subset that is an SSF of L.
2. If X is an SSF of L and K ⊆ L, then X is an SSF of K.
3. If X is an SSF of L and X ⊆ Y , then Y is an SSF of L.
4. If X is an SSF of L, then X has a subset that is an inclusion-minimal SSF

of L.

Proof. To prove the first claim, let w ∈ L be of minimal length and let X =
L � {w}. Let u, v ∈ L and u �= v. By symmetry, we can assume that |u| ≤ |v|
and v �= w. Then v ∈ X and |u|v = 0 �= 1 = |v|v. This shows that X is an SSF
of L.

The second and third claims follow directly from the definition of an SSF.
The fourth claim is easy to prove if X is finite. In the general case, it can be

proved by Zorn’s lemma as follows. Consider the partially ordered (by inclusion)
family of all subsets of X that are SSFs of L. The family contains at least X,
so it is nonempty. By Zorn’s lemma, if every nonempty chain (that is, a totally
ordered subset of the family) C has a lower bound in this family, then the family
has a minimal element, which is then an inclusion-minimal SSF of L. We show
that the intersection I of the sets in C is an SSF of L, and therefore it is the
required lower bound. For any u, v ∈ L such that u �= v and for any Y ∈ C,
there exists y ∈ Y such that |u|y �= |v|y. Then y must be a factor of u or v, so if
u and v are fixed, then there are only finitely many possibilities for y. Thus at
least one of the words y is in all sets Y and therefore also in I. This shows that
I is an SSF of L. This completes the proof. �

The next lemma shows a connection between SSFs and k-abelian equivalence.

Lemma 3.4. Let L be a language.

1. Let k ∈ Z+. The language Σ≤k is an SSF of L if and only if the words in L
are pairwise k-abelian nonequivalent.

2. The language L has a finite SSF if and only if there exists a number k such
that the words in L are pairwise k-abelian nonequivalent.

Proof. The first claim follows directly from the definitions of an SSF and k-abelian
equivalence. The “only if” and “if” directions of the second claim can be proved
as follows: If a finite set X is an SSF of L, then X ⊆ Σ≤k for some k, and then
the words in L are pairwise k-abelian nonequivalent. Conversely, if the words in
L are pairwise k-abelian nonequivalent, then Σ≤k is an SSF of L. �

Note that the condition “the words in L are pairwise k-abelian nonequivalent”
can be equivalently expressed as “PL = Pk

L”. This means that Lemma 3.4 proves
the equivalence of Questions 1.1 and 1.4.

Example 3.5. Let w, x, y, z ∈ {a, b}∗ and L = {awa, axb, bya, bzb}. No two words
in L have both a common prefix and a common suffix of length one, so the words
are pairwise 2-abelian nonequivalent. By the first claim of Lemma3.4, {a, b}≤2

Separating Many Words by Counting Occurrences of Factors 257

is an SSF of L. This SSF is not size-minimal (by the first claim of Lemma 3.3,
L has an SSF of size three), but it has the advantage of consisting of very
short words and not depending on w, x, y, z. Actually, also {ε, a, aa, ab, ba} is
an SSF of L. This follows from the fact that |u|b = |u|ε − |u|a − 1 and |u|bb =
|u|ε − |u|aa − |u|ab − |u|ba − 2 for all u ∈ {a, b}∗.

Example 3.6. In a list of about 140000 English words (found in the SCOWL
database1), there are no 4-abelian equivalent words. Therefore, by Lemma3.4,
Σ≤4 is an SSF of the language formed by these words (the alphabet Σ here
contains the 26 letters from a to z and also many accented letters and other
symbols). The only pairs of 3-abelian equivalent words are reregister, registerer
and reregisters, registerers. The number of other pairs of 2-abelian equivalent
words is also small enough that they can be listed here:

indenter, intender indenters, intenders

pathophysiologic, physiopathologic pathophysiological, physiopathological

pathophysiology, physiopathology pathophysiologies, physiopathologies

tamara, tarama tamaras, taramas

tantarara, tarantara tantararas, tarantaras

tantaras, tarantas

This means that most words of length 4 and 3 are not needed in the SSF. For
example, the set Σ≤2 ∪ {rere, hop, ind, tan, tar} is an SSF of the language. We
did not try to find a minimal SSF.

In the next lemma, we consider whether the properties of having or not having
a finite SSF are preserved under the rational operations union, concatenation and
Kleene star.

Lemma 3.7. Let K and L be languages.

1. If L has a finite SSF and F is a finite language, then L∪F has a finite SSF.
2. If L does not have a finite SSF, then L ∪ K does not have a finite SSF.
3. If L has a finite SSF and w is a word, then wL and Lw have finite SSFs.
4. If L does not have a finite SSF and K �= ∅, then neither KL nor LK have

finite SSFs.
5. L∗ has a finite SSF if and only if there exists a word w such that L ⊆ w∗.
6. If the symmetric difference of K and L is finite, then either both or neither

have a finite SSF.

Proof. 1. Let X be a finite SSF of L. Let u, v ∈ L ∪ F and u �= v. First, if
u, v ∈ L, then |u|x �= |v|x for some x ∈ X. Second, if u ∈ F and |u| = |v|,
then |u|u �= |v|u. Finally, if |u| �= |v|, then |u|ε �= |v|ε. Thus X ∪ F ∪ {ε} is an
SSF of L ∪ F .

2. If a finite set is an SSF of L ∪ K, then it is also an SSF of L.
1 http://wordlist.aspell.net/.

http://wordlist.aspell.net/.

258 A. Saarela

3. Let wL have no finite SSF. Let k ∈ Z+ and k′ = k + |w|. By Lemma 3.4,
there exist two k′-abelian equivalent words wu,wv ∈ wL. Then u and v have
a common prefix p of length k − 1. For all x ∈ Σk,

|u|x = |wu|x − |wp|x = |wv|x − |wp|x = |v|x,

so u ≡k v. We have shown that for all k ≥ 1, there exist two k-abelian
equivalent words in L. By Lemma 3.4, L does not have a finite SSF. The case
of Lw is symmetric.

4. Let L have no finite SSF and let w ∈ K. Let k ∈ Z+. By Lemma 3.4, there
exist two k-abelian equivalent words u, v ∈ L, and then wu,wv ∈ KL are
k-abelian equivalent. We have shown that for all k ≥ 1, there exist two k-
abelian equivalent words in KL. By Lemma 3.4, KL does not have a finite
SSF. The case of LK is symmetric.

5. If L ⊆ w∗, then {w} is an SSF of L. If there does not exist w such that
L ⊆ w∗, then there exist u, v ∈ L such that uv �= vu. For all k ∈ Z+, the
words ukvuk−1, uk−1vuk ∈ L∗ are distinct. They have the same prefix of
length k − 1. If u1 is the prefix and u2 is the suffix of uk−1 of length k − 1,
then

|ukvuk−1|x = |uk|x + |u2vu1|x + |uk−1|x = |uk−1vuk|x
for all x ∈ Σk, so ukvuk−1 ≡k uk−1vuk. We have shown that for all k ≥ 1,
there exist two k-abelian equivalent words in L∗. By Lemma 3.4, L∗ does not
have a finite SSF.

6. If K has a finite SSF, then so does K ∩ L. If L � K is finite, then also L has
a finite SSF by the first claim of this lemma. Similarly, if L has a finite SSF
and K � L is finite, then also K has a finite SSF. �

Example 3.8. We give an example showing that the property of having a finite
SSF is not always preserved by union and concatenation. Let L = {akbak−1 |
k ∈ Z+}. Then both L and Laa have the finite SSF {ε}. On the other hand,
L{ε, aa} = L∪Laa contains the k-abelian equivalent words akbak−1 and ak−1bak

for all k ≥ 2, so by Lemma 3.4, L ∪ Laa does not have a finite SSF even though
both L and Laa do have a finite SSF, and L{ε, aa} does not have a finite SSF
even though both L and {ε, aa} do have a finite SSF.

4 Infinite Words

In this section, we give an answer to Question 1.3.

Theorem 4.1. Let w be an infinite word. There exists k ∈ Z+ such that Pw =
Pk

w if and only if w is ultimately periodic.

Proof. First, let w be ultimately periodic. Then we can write w = uvω, where v
is primitive and v is not a suffix of u. Let k = |uv| + 1 and let x, y be k-abelian
equivalent factors of w. If x and y are shorter than uv, then x = y. Otherwise x
and y have a common prefix of length k − 1 = |uv| and we can write x = u′v′x′

Separating Many Words by Counting Occurrences of Factors 259

and y = u′v′y′, where |u′| = |u| and |v′| = |v|. Here v′ is a factor of vω, so
it must be a conjugate of v, and it is followed by a (v′)ω. Thus x′ and y′ are
prefixes of (v′)ω and they are of the same length, so x′ = y′ and thus x = y. We
have proved that no two factors of w are k-abelian equivalent. It follows that
Pw = Pk

w.
Second, let w be aperiodic and let k ≥ 2 be arbitrary. Let n = Pw(k −1)+1.

There must exist a word u of length (k − 1)n that occurs infinitely many times
in w as a factor. We can write u = x1 · · · xn, where x1, . . . , xn ∈ Σk−1. By
the definition of n, there exist two indices i, j ∈ {1, . . . , n} such that xi = xj .
Let i < j, x = xi = xj and y = xi+1 · · · xj−1. Then xyx is a factor of u
and thus occurs infinitely many times in w as a factor. Therefore we can write
w = z0xyxz1xyxz2xyx · · · for some infinite sequence of words z0, z1, z2, If the
words xy and xzi have the same primitive root p for all i ∈ Z+, then w = z0p

ω,
which contradicts the aperiodicity of w. Thus there exists i such that xy and xzi

have a different primitive root. Then xyxzi �= xzixy and thus xyxzix �= xzixyx.
On the other hand, xyxzix and xzixyx are k-abelian equivalent because they
have the same prefix x of length k − 1 and

|xyxzix|t = |xyx|t + |xzix|t = |xzix|t + |xyx|t = |xzixyx|t
for all t ∈ Σk. Moreover, xyxzix and xzixyx are factors of w. It follows that
Pw �= Pk

w. �

Corollary 4.2. The set of factors of an infinite word w has a finite SSF if and
only if w is ultimately periodic.

Proof. Follows from Theorem 4.1 and Lemma 3.4. �

5 Regular Languages

In this section, we give an answer to Question 1.1 for regular languages.

Lemma 5.1. If a language L has a subset of the form xw∗yw∗z for some words
w, x, y, z such that wy �= yw, then L does not have a finite SSF.

Proof. For all k ∈ Z+, the words xwkywk−1z and xwk−1ywkz are distinct. They
have the same prefix of length k − 1. If w1 is the prefix and w2 is the suffix of
wk−1 of length k − 1, then

|xwkywk−1z|t = |xw1|t + |wk|t + |w2yw1|t + |wk−1|t + |w2z|t = |xwk−1ywkz|t
for all t ∈ Σk, so xwkywk−1z ≡k xwk−1ywkz. We have shown that for all k ≥ 1,
there exist two k-abelian equivalent words in L. By Lemma 3.4, L does not have
a finite SSF. �

A language L is bounded if it is a subset of a language of the form

v∗
1 · · · v∗

n,

260 A. Saarela

where v1, . . . , vn are words. It was proved by Ginsburg and Spanier [7] that a
regular language is bounded if and only if it is a finite union of languages of the
form

u0v
∗
1u1 · · · v∗

nun,

where u0, . . . , un are words and v1, . . . , vn are nonempty words.

Lemma 5.2. Every regular language is bounded or has a subset of the form
xw∗yw∗z for some words w, x, y, z such that wy �= yw.

Proof. The proof is by induction. Every finite language is bounded. We assume
that A and B are regular languages that have the claimed property and prove
that also A ∪ B, AB and A∗ have the claimed property.

First, we consider A ∪ B. If both A and B are bounded, then so is A ∪ B by
the characterization of Ginsburg and Spanier. If at least one of A and B has a
subset of the form xw∗yw∗z for some words w, x, y, z such that wy �= yw, then
A ∪ B has this same subset.

Next, we consider AB. If both A and B are bounded or if one of them is
empty, then AB is bounded by the definition of bounded languages. If A and
B are nonempty and at least one of them has a subset of the form xw∗yw∗z
for some words w, x, y, z such that wy �= yw, then AB has a subset of the same
form with a different x or z.

Finally, we consider A∗. If A ⊆ u∗ for some word u, then A∗ ⊆ u∗ is bounded.
If A is not a subset of u∗ for any word u, then there exist w, y ∈ A such that
wy �= yw, and A∗ has w∗yw∗ as a subset. �

By Lemmas 5.1 and 5.2, if a regular language is not bounded, then it does
not have a finite SSF. Thus we can concentrate on bounded regular languages.
We continue with a technical lemma.

Lemma 5.3. Let L be a bounded regular language. There exist numbers n, k ≥ 0
and a finite set of Lyndon words P such that the following are satisfied:

1. If p, q ∈ P , p �= q, and l,m ≥ 0, then pl and qm do not have a common factor
of length n.

2. If u ∈ L and p ∈ P , then either there is at most one maximal p≥n-occurrence
in u or L has a subset of the form x(pm)∗y(pm)∗z, where py �= yp and m ≥ 1.

3. If u ∈ L and x is a factor of u of length at least k, then x has a factor pn+1

for some p ∈ P .

Proof. If L is finite, then the claim is basically trivial. If L is infinite, then

L =
s⋃

i=1

ui0

ri∏

j=1

v∗
ijuij ,

Separating Many Words by Counting Occurrences of Factors 261

where s ≥ 1 and r1, . . . , rs ≥ 0, ri ≥ 1 for at least one i, and the words vij are
nonempty. We can let P be the set of Lyndon roots of the words vij and

n = 2 · max
{

|ui0

ri∏

j=1

vijuij |
∣∣∣ i ∈ {1, . . . , s}

}
,

k = max
{

|ui0

ri∏

j=1

vn+2
ij uij |

∣∣∣ i ∈ {1, . . . , s}
}

.

The proof can be found in the arXiv version of this paper.2 �

Now we are ready to prove our main theorem.

Theorem 5.4. A regular language L has a finite SSF if and only if L does not
have a subset of the form xw∗yw∗z for any words w, x, y, z such that wy �= yw.

Proof. The “only if” direction follows from Lemma 5.1. To prove the “if” direc-
tion, let n, k, P be as in Lemma 5.3 (L is bounded by Lemma 5.2). Let u, v ∈ L
be k-abelian equivalent. We are going to show that u = v. This proves the the-
orem by Lemma 3.4. If |u| = |v| < k, then trivially u = v, so we assume that
|u| = |v| ≥ k.

Let Pj = {pi | p ∈ P, i ≥ j} for all j. Let the maximal Pn-occurrences in u
be

(x1, p
m1
1 , x′

1), . . . , (xr, p
mr
r , x′

r), (1)

where p1, . . . , pr ∈ P . It follows from |u| ≥ k and Condition 3 of Lemma 5.3 that
r ≥ 1. We can assume that the occurrences have been ordered so that |x1| ≤ · · · ≤
|xr|. By Condition 2 of Lemma 5.3, the words p1, . . . , pr are pairwise distinct.
All Pn-occurrences in u are contained in one of the maximal occurrences (1).
By Condition 1 of Lemma 5.3, pn cannot be a factor of p

mj

j if p ∈ P � {pj}, so
if p ∈ P � {p1, . . . , pr}, then there are no p≥n-occurrences in u, and all p≥n

i -
occurrences are (xip

l
i, p

j
i , p

mi−j−l
i x′

i) for j ∈ {n, . . . , mi} and l ∈ {0, . . . ,mi − j}.
In particular, |u|pn

i
= mi − n + 1.

Similarly, let the maximal Pn-occurrences in v be

(y1, qn1
1 , y′

1), . . . , (ys, q
ns
s , y′

s),

where s ≥ 1 and q1, . . . , qs ∈ P . As above, we can assume that the occurrences
have been ordered so that |y1| ≤ · · · ≤ |ys|, and we can prove that the words
q1, . . . , qs are pairwise distinct, pn cannot be a factor of q

nj

j if p ∈ P � {qj},
and if p ∈ P � {q1, . . . , qs}, then there are no p≥n-occurrences in v, all q≥n

i -
occurrences are (yiq

l
i, q

j
i , q

ni−j−l
i y′

i) for j ∈ {n, . . . , ni} and l ∈ {0, . . . , ni − j},
and |v|qn

i
= ni − n + 1.

If p ∈ P , then |pn| < k by Condition 3 of Lemma 5.3, and then |u|pn = |v|pn

because u ≡k v. It follows that r = s and {p1, . . . , pr} = {q1, . . . , qs}. We have
seen that |u|pn

i
= mi − n + 1 and |v|qn

j
= nj − n + 1, so if pi = qj , then mi = nj .

2 http://arxiv.org/abs/1905.07223.

http://arxiv.org/abs/1905.07223

262 A. Saarela

We prove by induction that (xi, pi,mi) = (yi, qi, ni) for all i ∈ {1, . . . , r}.
First, we prove the case i = 1. The words u and v have prefixes x1p

n
1 and y1q

n
1 ,

respectively. There is only one Pn-occurrence and no Pn+1-occurrences in x1p
n
1 .

Similarly, there is only one Pn-occurrence and no Pn+1-occurrences in y1q
n
1 . By

Condition 3 of Lemma 5.3, |x1p
n
1 | < k and |y1qn

1 | < k. Because u and v are k-
abelian equivalent, they have the same prefix of length k − 1, and thus one of
x1p

n
1 and y1q

n
1 is a prefix of the other. If, say, x1p

n
1 is a prefix of y1q

n
1 , then

y1q
n
1 has an occurrence (x1, p

n
1 , z) for some word z, and this must be the unique

Pn-occurrence (y1, qn
1 , ε). It follows that x1 = y1 and p1 = q1, and then also

m1 = n1.
Next, we assume that (xi, pi,mi) = (yi, qi, ni) for some i ∈ {1, . . . , r − 1}

and prove that (xi+1, pi+1,mi+1) = (yi+1, qi+1, ni+1). Let xi+1 = xip
mi−n
i x′′

i

and yi+1 = yiq
ni−n
i y′′

i = xip
mi−n
i y′′

i . The unique shortest factor in u beginning
with pn

i and ending with pn for some p ∈ P � {pi} is the factor x′′
i pn

i+1 starting
at position |xip

mi−n
i | and ending at position |xi+1p

n
i+1|. Similarly, the unique

shortest factor in v beginning with pn
i and ending with pn for some p ∈ P �{pi}

is the factor y′′
i qn

i+1 starting at position |yiq
ni−n
i | = |xip

mi−n
i | and ending at

position |yi+1q
n
i+1|. There are no Pn+1-occurrences in these factors, so they are

of length less than k by Condition 3 of Lemma 5.3, and they must be equal
because u ≡k v. It follows that pi+1 = qi+1, x′′

i = y′′
i , and xi+1 = yi+1, and then

also mi+1 = ni+1.
It follows by induction that xrp

mr
r = yrq

nr
r . Because |u| = |v|, it must be

|x′
r| = |y′

r|. Because x′
r does not have any Pn+1-occurrences, |x′

r| < k by Con-
dition 3 of Lemma 5.3. Because u and v are k-abelian equivalent, they have the
same suffix of length k − 1, so x′

r = y′
r. Thus u = v. This completes the proof. �

Example 5.5. First, consider the language K = a∗(abab)∗ba(ba)∗. It has a subset
(abab)∗ba(ba)∗ = (abab)∗b(ab)∗a, which has a subset (abab)∗b(abab)∗a. It follows
from Theorem 5.4 that K does not have a finite SSF.

Then, consider the language L = a∗(abab)∗aba(ba)∗ = a∗(abab)∗(ab)∗aba =
a∗(ab)∗aba. It can be proved that if L has a subset xw∗yw∗z with w �= ε, then
the Lyndon root of w is a or ab, and wy = yw. It follows from Theorem 5.4 that
L has a finite SSF.

6 Conclusion

In this article, we have defined and studied separating sets of factors. In partic-
ular, we have considered the question of whether a given language has a finite
SSF. We have answered this question for sets of factors of infinite words and for
regular languages. In the future, this question could be studied for other families
of languages. We can also ask the following questions:

– Given a language with a finite SSF, what is the minimal size of an SSF of
this language? For example, this could be considered for Σn.

– Given a language with no finite SSF, how “small” can the growth function of
an SSF of this language be? For example, this could be considered for Σ∗.

Separating Many Words by Counting Occurrences of Factors 263

References

1. Ambainis, A., Bloch, S.A., Schweizer, D.L.: Delayed binary search, or play-
ing twenty questions with a procrastinator. Algorithmica 32(4), 641–650 (2002).
https://doi.org/10.1007/s00453-001-0097-4

2. Cassaigne, J., Karhumäki, J., Puzynina, S., Whiteland, M.A.: k-abelian equivalence
and rationality. Fund. Inform. 154(1–4), 65–94 (2017). https://doi.org/10.3233/
FI-2017-1553

3. Cassaigne, J., Karhumäki, J., Saarela, A.: On growth and fluctuation of k-abelian
complexity. Eur. J. Combin. 65, 92–105 (2017). https://doi.org/10.1016/j.ejc.2017.
05.006

4. Chen, J., Lü, X., Wu, W.: On the k-abelian complexity of the cantor sequence. J.
Combin. Theory Ser. A 155, 287–303 (2018). https://doi.org/10.1016/j.jcta.2017.
11.010

5. Currie, J., Petersen, H., Robson, J.M., Shallit, J.: Separating words with small
grammars. J. Autom. Lang. Comb. 4(2), 101–110 (1999)

6. Demaine, E.D., Eisenstat, S., Shallit, J., Wilson, D.A.: Remarks on separating
words. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds.) DCFS 2011. LNCS, vol.
6808, pp. 147–157. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22600-7 12

7. Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proc. Amer. Math. Soc. 17,
1043–1049 (1966). https://doi.org/10.2307/2036087

8. Goralč́ık, P., Koubek, V.: On discerning words by automata. In: Kott, L. (ed.)
ICALP 1986. LNCS, vol. 226, pp. 116–122. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-16761-7 61

9. Holub, V., Kortelainen, J.: On partitions separating words. Int. J. Algebra Comput.
21(8), 1305–1316 (2011). https://doi.org/10.1142/S0218196711006650

10. Karhumäki, J.: Generalized Parikh mappings and homomorphisms. Inf. Control
47(3), 155–165 (1980). https://doi.org/10.1016/S0019-9958(80)90493-3

11. Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of Abelian equiva-
lence and complexity of infinite words. J. Combin. Theory Ser. A 120(8), 2189–2206
(2013). https://doi.org/10.1016/j.jcta.2013.08.008

12. Karhumäki, J., Saarela, A., Zamboni, L.Q.: Variations of the Morse-Hedlund theo-
rem for k-abelian equivalence. Acta Cybernet. 23(1), 175–189 (2017). https://doi.
org/10.14232/actacyb.23.1.2017.11

13. Maňuch, J.: Characterization of a word by its subwords. In: Proceedings of the 4th
DLT, pp. 210–219. World Scientific Publication (2000). https://doi.org/10.1142/
9789812792464 0018

14. Morse, M., Hedlund, G.A.: Symbolic dynamics. Amer. J. Math. 60(4), 815–866
(1938). https://doi.org/10.2307/2371264

15. Pelc, A.: Solution of Ulam’s problem on searching with a lie. J. Combin. Theory
Ser. A 44(1), 129–140 (1987). https://doi.org/10.1016/0097-3165(87)90065-3

16. Place, T., Zeitoun, M.: Separating regular languages with first-order logic. Log.
Methods Comput. Sci. 12(1), 31 (2016). https://doi.org/10.2168/LMCS-12(1:
5)2016. Paper No. 5

17. Richomme, G., Saari, K., Zamboni, L.Q.: Abelian complexity of minimal subshifts.
J. Lond. Math. Soc. 83(1), 79–95 (2011). https://doi.org/10.1112/jlms/jdq063

https://doi.org/10.1007/s00453-001-0097-4
https://doi.org/10.3233/FI-2017-1553
https://doi.org/10.3233/FI-2017-1553
https://doi.org/10.1016/j.ejc.2017.05.006
https://doi.org/10.1016/j.ejc.2017.05.006
https://doi.org/10.1016/j.jcta.2017.11.010
https://doi.org/10.1016/j.jcta.2017.11.010
https://doi.org/10.1007/978-3-642-22600-7_12
https://doi.org/10.1007/978-3-642-22600-7_12
https://doi.org/10.2307/2036087
https://doi.org/10.1007/3-540-16761-7_61
https://doi.org/10.1007/3-540-16761-7_61
https://doi.org/10.1142/S0218196711006650
https://doi.org/10.1016/S0019-9958(80)90493-3
https://doi.org/10.1016/j.jcta.2013.08.008
https://doi.org/10.14232/actacyb.23.1.2017.11
https://doi.org/10.14232/actacyb.23.1.2017.11
https://doi.org/10.1142/9789812792464_0018
https://doi.org/10.1142/9789812792464_0018
https://doi.org/10.2307/2371264
https://doi.org/10.1016/0097-3165(87)90065-3
https://doi.org/10.2168/LMCS-12(1:5)2016
https://doi.org/10.2168/LMCS-12(1:5)2016
https://doi.org/10.1112/jlms/jdq063

264 A. Saarela

18. Robson, J.M.: Separating strings with small automata. Inform. Process. Lett.
30(4), 209–214 (1989). https://doi.org/10.1016/0020-0190(89)90215-9

19. Vyaly̆ı, M.N., Gimadeev, R.A.: On separating words by the occurrences of sub-
words. Diskretn. Anal. Issled. Oper. 21(1), 3–14 (2014). https://doi.org/10.1134/
S1990478914020161

https://doi.org/10.1016/0020-0190(89)90215-9
https://doi.org/10.1134/S1990478914020161
https://doi.org/10.1134/S1990478914020161

k-Spectra of Weakly-c-Balanced Words

Joel D. Day1, Pamela Fleischmann2(B), Florin Manea2, and Dirk Nowotka2

1 Loughborough University, Loughborough, UK
J.Day@lboro.ac.uk

2 Kiel University, Kiel, Germany
{fpa,flm,dn}@informatik.uni-kiel.de

Abstract. Aword u is a scattered factor ofw if u can be obtained fromw
by deleting some of its letters. That is, there exist the (potentially empty)
words u1, u2, ..., un, and v0, v1, .., vn such that u = u1u2...un and w =
v0u1v1u2v2...unvn. We consider the set of length-k scattered factors of a
givenwordw, called here k-spectrum and denoted ScatFactk(w).We prove
a series of properties of the sets ScatFactk(w) for binaryweakly-0-balanced
and, respectively, weakly-c-balanced words w, i.e., words over a two-letter
alphabet where the number of occurrences of each letter is the same, or,
respectively, one letter has c-more occurrences than the other. In particu-
lar, we consider the question which cardinalities n = | ScatFactk(w)| are
obtainable, for a positive integer k, when w is either a weakly-0-balanced
binary word of length 2k, or a weakly-c-balanced binary word of length
2k − c. We also consider the problem of reconstructing words from their
k-spectra.

1 Introduction

Given a word w, a scattered factor (also called scattered subword, or simply
subword in the literature) is a word obtained by removing one or more factors
from w. More formally, u is a scattered factor of w if there exist u1, . . . , un ∈
Σ∗, v0, . . . , vn ∈ Σ∗ such that u = u1u2 . . . un and w = v0u1v1u1 . . . unvn.
Consequently a scattered factor of w can be thought of as a representation of
w in which some parts are missing. As such, there is considerable interest in
the relationship of a word and its scattered factors from both a theoretical and
practical point of view. For an introduction to the study of scattered factors, see
Chapter 6 of [9]. On the one hand, it is easy to imagine how, in any situation
where discrete, linear data is read from an imperfect input – such as when
sequencing DNA or during the transmission of a digital signal – scattered factors
form a natural model, as multiple parts of the input may be missed, but the rest
will remain unaffected and in-sequence. For instance, various applications and
connections of this model in verification are discussed in [6,14] within a language
theoretic framework, while applications of the model in DNA sequencing are
discussed in [4] in an algorithmic framework. On the other hand, from a more
algebraic perspective, there have been efforts to bridge the gap between the
non-commutative field of combinatorics on words with traditional commutative
c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 265–277, 2019.
https://doi.org/10.1007/978-3-030-24886-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_20

266 J. D. Day et al.

mathematics via Parikh matrices (cf. e.g., [11,13]) which are closely related to,
and influenced by the topic of scattered factors.

The set (or also in some cases, multi-set) of scattered factors of a word w,
denoted ScatFact(w) is typically exponentially large in the length of w, and
contains a lot of redundant information in the sense that, for k′ < k ≤ |w|, a
word of length k′ is a scattered factor of w if and only if it is a scattered factor
of a scattered factor of w of length k. This has led to the idea of k-spectra:
the set of all length-k scattered factors of a word. For example, the 3-spectrum
of the word ababbb is the set {aab, aba, abb, bab, bbb}. Note that unlike some
literature, we do not consider the k-spectra to be the multi-set of scattered
factors in the present work, but rather ignore the multiplicities. This distinction
is non-trivial as there are significant variations on the properties based on these
different definitions (cf. e.g., [10]). Also, the notion of k-spectra is closely related
to the classical notion of factor complexity of words, which counts, for each
positive integer k, the number of distinct factors of length k of a word. Here, the
cardinality of the k-spectrum of a word gives the number of the word’s distinct
scattered factors of length k.

One of the most fundamental questions about k-spectra of words, and indeed
sets of scattered factors in general, is that of recognition: given a set S of words
(of length k), is S the subset of a k-spectrum of some word? In general, it remains
a long standing goal of the theory to give a “nice” descriptive characterisation of
scattered factor sets (and k-spectra), and to better understand their structure [9].
Another fundamental question concerning k-spectra, and one well motivated
in several applications, is the question of reconstruction: given a word w of
length n, what is the smallest value k such that the k-spectrum of w is uniquely
determined? This question was addressed and solved successively in a variety of
cases. In particular, in [3], the exact bound of n

2 + 1 is given in the general case.
Other variations, including for the definition of k-spectra where multiplicities are
also taken into account, are considered in [10], while [7] considers the question
of reconstructing words from their palindromic scattered factors.

In the current work, we consider k-spectra in the restricted setting of a binary
alphabet Σ = {a, b}. For such an alphabet, we can always identify the natural
number c ∈ N0 which describes how weakly balanced a word is: c is the difference
between the amount of as and bs. Thus, it seems natural to categorise all words
over Σ according to this difference: a binary word where one letter has exactly c
more occurrences than the other one is called weakly-c-balanced. In Section 3 the
cardinalities of k-spectra of weakly-c-balanced words of length 2k−c are investi-
gated. Our first results concern the minimal and maximal cardinality ScatFactk

might have. We show that the cardinality ranges for weakly-0-balanced between
k + 1 and 2k, and determine exactly for which words of length 2k these values
are reached. In the case of weakly-c-balanced words, we are able to replicate the
result regarding the minimal cardinality of ScatFactk, but the case of maximal
cardinality seems to be more complicated. To this end, it seems that the words
containing many alternations between the two letters of the alphabet have larger
sets ScatFactk. Therefore, we first investigate the scattered factors of the words

k-Spectra of Weakly-c-Balanced Words 267

which are prefixes of (ab)ω and give a precise description of all scattered fac-
tors of any length of such words. That is, not only we compute the cardinality of
ScatFactk(w), for all such words w, but also describe a way to obtain directly the
respective scattered factors, without repetitions. We use this to describe exactly
the sets ScatFacti for the word (ab)k−cac, which seems a good candidate for a
weakly-c-balanced word with many distinct scattered factors.

Further, in Sect. 4, we explore more the cardinalities of ScatFactk(w) for
weakly-0-balanced words w of length 2k. We obtain for these words that the
smallest three numbers which are possible cardinalities for their k-spectra are
k + 1, 2k, and 3k − 3, thus identifying two gaps in the set of such cardinalities.
Among other results on this topic, we show that for every constant i there exist
a word w of length 2k such that |ScatFactk(w)| ∈ Θ(ni); we also show how such
a word can be constructed.

Finally, in Sect. 5, we also approach the question of reconstructing weakly-
0-balanced words from k-spectra in the specific case that the spectra are also
limited to weakly-0-balanced words only. While we are not able to resolve the
question completely, we conjecture that the situation is similar to the general
case: the smallest value k such that the k-spectrum of w is uniquely determined
is k = |w|

2 + 1 if |w|
2 is odd and k = |w|

2 + 2, otherwise, in the case when w
contains at most two blocks of bs.

After introducing a series of basic definitions, preliminaries, and notations,
the organisation of the paper follows the description above. The proofs can be
found in [2].

2 Preliminaries

Let N be the set of natural numbers, N0 = N ∪ {0}, and let N≥k be all natural
numbers greater than or equal to k. Let [n] denote the set {1, . . . , n} and [n]0 =
[n] ∪ {0} for an n ∈ N.

We consider words w over the alphabet Σ = {a, b}. Σ∗ denotes the set of
all finite words over Σ, also called binary words. Σω the set of all infinite words
over Σ, also called binary infinite words. The empty word is denoted by ε and
Σ+ is the free semigroup Σ∗\{ε}. The length of a word w is denoted by |w|.
Let Σ≤k := {w ∈ Σ∗| |w| ≤ k} and Σk be the set of all words of length exactly
k ∈ N. The number of occurrences of a letter a ∈ Σ in a word w ∈ Σ∗ is denoted
by |w|a. The ith letter of a word w is given by w[i] for i ∈ [|w|]. For a given
word w ∈ Σn the reversal of w is defined by wR = w[n]w[n−1] . . . w[2]w[1]. The
powers of w ∈ Σ∗ are defined recursively by w0 = ε, wn = wwn−1 for n ∈ N.

A word w ∈ Σ∗ is called weakly-c-balanced if ||w|a−|w|b| = c for c ∈ N0. Thus
weakly-0-balanced words have the same number of as and bs. Let Σ∗

wzb be the set
of all weakly-0-balanced words over Σ. For example, abaa is weakly-2-balanced,
aba is weakly-1-balanced, while abbaba is weakly-0-balanced.

A word u ∈ Σ∗ is a factor of w ∈ Σ∗, if w = xuy holds for some words
x, y ∈ Σ∗. Moreover, u is a prefix of w if x = ε holds and a suffix if y = ε
holds. The factor of w from the ith to the jth letter will be denoted by w[i..j] for

268 J. D. Day et al.

0 ≤ i ≤ j ≤ |w|. Given a letter a ∈ Σ and a word w ∈ Σ∗, a block of a is a factor
u = w[i..j] with u = aj−i, such that either i = 1 or w[i − 1] = b �= a and either
j = |w| or w[j + 1] = b �= a. For example the word abaaabaabb has 3 a-blocks
and 3 b-blocks. Scattered factors and k-spectra are defined as follows.

Definition 1. A word u = a1 . . . an ∈ Σn, for n ∈ N, is a scattered factor of
a word w ∈ Σ+ if there exists v0, . . . , vn ∈ Σ∗ with w = v0a1v1 . . . vn−1anvn.
Let ScatFact(w) denote the set of w’s scattered factors and consider addition-
ally ScatFactk(w) and ScatFact≤k(w) as the two subsets of ScatFact(w) which
contain only the scattered factors of length k ∈ N or the ones up to length k ∈ N.

The sets ScatFact≤k(w) and ScatFactk(w) are also known as full k-spectrum
and, respectively, k-spectrum of a word w ∈ Σ∗ (see [1,10,12]) and moreover,
scattered factors are often called subwords or scattered subwords. Obviously the
k-spectrum is empty for k > |w| and contains exactly w’s letters for k = 1 and
only w for k = |w|. Considering the word w = abba, the other spectra are given
by ScatFact2(w) = {a2, b2, ab, ba} and ScatFact3(w) = {ab2, aba, b2a}.

It is worth noting that if u is a scattered factor of w, and v is a scattered
factor of u, then v is a scattered factor of w. Additionally, notice two important
symmetries regarding k-spectra. For w ∈ Σ∗ and the renaming morphism · :
Σ → Σ with a = b and b = a we have ScatFact(wR) = {uR | u ∈ ScatFact(w)}
and ScatFact(w) = {u | u ∈ ScatFact(w)}. Thus, from a structural point of view,
it is sufficient to consider only one representative from the equivalence classes
induced by the equivalence relation where w1 is equivalent to w2 whenever w2

is obtained by a composition of reversals and renamings from w1. Considering
w.l.o.g. the order a < b on Σ, we choose the lexicographically smallest word as
representative from each class. As such, we will mostly analyse the k-spectra of
words starting with a. We shall make use of this fact extensively in Sect. 4.

3 Cardinalities of k-Spectra of Weakly-c-Balanced Words

In the current section, we consider the combinatorial properties of k-spectra of
weakly-c-balanced finite words. In particular, we are interested in the cardinali-
ties of the k-spectra and in the question: which cardinalities are (not) possible?
Since the k-spectra of an and bn are just ak and bk respectively for all n ∈ N0

and k ∈ [n]0, we assume |w|a, |w|b > 0 for w ∈ Σ∗. It is a straightforward obser-
vation that not every subset of Σk is a k-spectrum of some word w. For example,
for k = 2, aa and bb can only be scattered factors of a word containing both as
and bs, and therefore having either ab or ba as a scattered factor as well. Thus,
there is no word w such that ScatFact2(w) = {aa, bb}.

In general, for any word containing only as or only bs, there will be exactly
one scattered factor of each length, while for words containing both a’s and b’s,
the smallest k-spectra are realised for words of the form w = anb (up to renaming
and reversal), for which ScatFactk(w) = {ak, ak−1b} for each k ∈ [|w|]. On the
other hand, as Proposition 5 shows, the maximal k-spectra are those containing
all words of length k – and hence have size 2k, achieved by e.g. w = (ab)n

k-Spectra of Weakly-c-Balanced Words 269

for n ≥ k. Note that when weakly-0-balanced words are considered, the same
maximum applies, since (ab)n is weakly-0-balanced, while the minimum does
not, since anb is not weakly-0-balanced.

It is straightforward to enumerate all possible k-spectra, and describe the
words realising them for k ≤ 2, hence we shall generally consider only k-spectra
in the sequel for which k ≥ 3. Our first result generalises the previous observation
about minimal-size k-spectra.

Theorem 2. For k ∈ N≥3, c ∈ [k − 1]0, i ∈ [c]0, and a weakly-c-balanced word
w ∈ Σ2k−c, we have |ScatFactk−i(w)| ≥ k − c + 1, where equality holds if and
only if w ∈ {akbk−c, ak−cbk, bkak−c, bk−cak}. Moreover, if w ∈ Σ2k

wzb\{akbk},
then |ScatFactk(w)| ≥ k + 3.

Remark 3. Theorem 2 answers immediately the question, whether a given set
S ⊆ Σk, with |S| < k + 1 or |S| = k + 2, is a k-spectrum of a word w ∈ Σ2k

wzb in
the negative.

Theorem 2 shows that the smallest cardinality of the k-spectrum of a word w
is reached when the letters in w are nicely ordered, both for weakly-0-balanced
words as well as for weakly-c-balanced words with c > 0. The largest cardinality
is, not surprisingly, reached for words where the alternation of a and b letters
is, in a sense, maximal, e.g., for w = (ab)k. To this end, one can show a general
result.

Theorem 4. For w ∈ Σ∗, the k-spectrum of w is Σk if and only if

{ab, ba}k ∩ ScatFact2k(w) �= ∅.

The previous theorem has an immediate consequence, which exactly charac-
terises the weakly-0-balanced words of length 2k for which the maximal cardi-
nality of ScatFactk(w) is reached.

Proposition 5. For k ∈ N≥3 and w ∈ Σ2k
wzb we have w ∈ {ab, ba}k if and only

if ScatFactk(w) = Σk.

To see why from w ∈ {ab, ba}k it follows that ScatFactk(w) = Σk, note that,
by definition, a word w ∈ {ab, ba}k is just a concatenation of k blocks from
{ab, ba}. To construct the scattered factors of w, we can simply select from each
block either the a or the b. The resulting output is a word of length k, where
in each position we could choose freely the letter. Consequently, we can produce
all words in Σk in this way. The other implication follows by induction.

Generalising Proposition 5 for weakly-c-balanced words requires a more sophis-
ticated approach. A generalisation would be to consider w ∈ {ab, ba}k−cac. By
Theorem 4 we have ScatFactk−c(w) = Σk−c. But the size of ScatFactk−i(w)
for i ∈ [c]0 depends on the specific choice of w. To see why, consider the words
w1 = baabba and w2 = (ba)3. Then by Proposition 5, |ScatFact3(w1)| = 8 =
|ScatFact3(w2)|. However, when we append an a to the end of both w1 and w2, we

270 J. D. Day et al.

see that in fact |ScatFact4(w1a)| = 11 �= 12 = |ScatFact4(w2a)|. The main differ-
ence between weakly-0-balanced and weakly-c-balanced words for c > 0, regarding
the maximum cardinality of the scattered factors-sets, comes from the role played
by the factors a2 and b2 occurring in w.

In the remaining part of this section we present a series of results for weakly-
c-balanced words. Intuitively, the words with many alternations between a and b
have more distinct scattered factors. So, we will focus on such words mainly. Our
first result is a direct consequence from Theorem 4. The second result concerns
words avoiding a2 and b2 gives a method to identify efficiently the �-spectra of
words which are prefixes of (ab)ω, for all �. Finally, we are able to derive a way to
efficiently enumerate (and count) the scattered factors of length k of (ab)k−cac.

Corollary 6. For k ∈ N≥3, c ∈ [k]0, and w ∈ Σ2k−c weakly-c-balanced, the
cardinality of ScatFactk−c(w) is exactly 2k−c if and only if ScatFact2(k−c)(w) ∩
{ab, ba}k−c �= ∅.

As announced, we further focus our investigation on the words w =
(ab)k−cac. By Theorem 4 we have |ScatFacti(w)| = Σi for all i ∈ [k − c]0.
For all i with k − c < i ≤ k, a more sophisticated counting argument is needed.
Intuitively, a scattered factor of length i of (ab)k−cac consists of a part that is a
scattered factor (of arbitrary length) of (ab)k−c followed by a (possibly empty)
suffix of as. Thus, a full description of the �-spectra of words that occur as pre-
fixes of (ab)ω, for all appropriate �, is useful. To this end, we introduce the notion
of a deleting sequence: for a word w and a scattered factor u of w the deleting
sequence contains (in a strictly increasing order) w’s positions that have to be
deleted to obtain u.

Definition 7. For w ∈ Σ∗, σ = (s1, . . . , s�) ∈ [|w|]�, with � ≤ |w| and si < si+1

for all i ∈ [� − 1], is a deleting sequence. The scattered factor uσ associated
to a deleting sequence σ is uσ = u1 . . . u�+1, where u1 = w[1..s1 − 1], u�+1 =
w[s� + 1..|w|], and ui = w[si−1 + 1..si − 1] for 2 ≤ i ≤ �. Two sequences σ, σ′

with uσ = uσ′ are called equivalent.

For the word w = abbaa and σ = (1, 3, 4) the associated scattered factor is
uσ = ba. Since ba can also be generated by (1, 3, 5), (1, 2, 4) and (1, 2, 5), these
sequences are equivalent.

In order to determine the �-spectrum of a word w ∈ Σn for �, n ∈ N, we
can determine how many equivalence classes does the equivalence defined above
have, for sequences of length k = n− �. The following three lemmas characterise
the equivalence of deleting sequences.

Lemma 8. Let w ∈ Σn be a prefix of (ab)ω. Let σ = (s1, . . . , sk) be a deleting
sequence for w such that there exists j ≥ 2 with sj−1 < sj −1 and sj +1 = sj+1.
Then σ is equivalent σ′ = (s1, . . . , sj−1, sj − 1, sj+1 − 1, sj+2, . . . sk), i.e., σ′ is
the sequence σ where both sj and sj+1 were decreased by 1.

Lemma 9. Let w ∈ Σn be a prefix of (ab)ω. Let σ = (s1, . . . , sk) be a deleting
sequence for w. Then there exists an integer j ≥ 0 such that σ is equivalent to the

k-Spectra of Weakly-c-Balanced Words 271

deleting sequence (1, 2, . . . , j, s′
j+1, . . . , s

′
k), where s′

j+1 > j +1 and s′
i > s′

i−1 +1,
for all j < i ≤ k. Moreover, j ≥ 1 if and only if σ contained two consecutive
positions or σ started with 1.

Lemma 10. Let w ∈ Σn be a prefix of (ab)ω. Let σ1 = (1, 2, . . . , j1, s
′
j1+1,

. . . , s′
k), where s′

j1+1 > j1 + 1 and s′
i > s′

i−1 + 1, for all j1 < i ≤ k, and
σ2 = (1, 2, . . . , j2, s

′′
j2+1, . . . , s

′′
k), where s′′

j2+1 > j2 + 1 and s′′
i > s′′

i−1 + 1, for all
j2 < i ≤ k. If σ1 �= σ2 then σ1 and σ2 are not equivalent (i.e., uσ1 �= uσ2).

Lemmas 8, 9, and 10 show that the representatives of the equivalence classes
w.r.t. the equivalence relation between deleting sequences, introduced in Def-
inition 7, are the sequences (1, 2, . . . , j, s′

j+1, . . . , s
′
k), where s′

j+1 > j + 1 and
s′

i > s′
i−1 + 1, for all j < i ≤ k. For a fixed j ≥ 1, the number of such

sequences is
(
(n−j−1)−(k−j)+1

k−j

)
=

(
n−k
k−j

)
. For j = 0, we have

(
(n−1)−k+1

k

)
=

(
n−k

k

)

nonequivalent sequences (note that none starts with 1, as those were counted
for j = 1 already). In total, we have, for a word w of length n, which is a prefix
of (ab)ω, exactly

∑
j∈[k]0

(
n−k
k−j

)
nonequivalent deleting sequences of length k, so

∑
j∈[k]0

(
n−k
k−j

)
different scattered factors of length n − k. In the above formula,

we assume that
(
a
b

)
= 0 when a < b.

Moreover, the distinct scattered factors of length � = n − k of w can be
obtained efficiently as follows. For j from 0 to �, delete the first j letters of
w. For all choices of � − j positions in w[j + 1..n], such that each two of these
positions are not consecutive, delete the letters on the respective positions. The
resulted word is a member of ScatFact�(w), and we never obtain the same word
twice by this procedure. The next theorem follows from the above.

Theorem 11. Let w be a word of length n which is a prefix of (ab)ω. Then
|ScatFact�(w)| =

∑
j∈[n−�]0

(
�

n−�−j

)
.

A straightforward consequence of the above theorem is that, if � ≤ n − � then
|ScatFact�(w)| = 2�. With Theorem 11, we can now completely characterise the
cardinality of the �-spectra of the weakly-c-balanced word (ab)k−cac for � ≤ k.

Theorem 12. Let w = (ab)k−cac for k ∈ N, c ∈ [k]0. Then, for i ≤ k − c
we have |ScatFacti(w)| = 2i. For k ≥ i > k − c we have |ScatFacti(w)| =
1 + 2k−c +

∑
j∈[(i+c)−k−1]0

|ScatFacti−j−1((ab)k−c−1a)|.
As in the case of the scattered factors of prefixes of (ab)ω, we have a precise

and efficient way to generate the scattered factors of w = (ab)k−cac. For scat-
tered factors of length i ≤ k−c of w, we just generate all possible words of length
i. For greater i, on top of ai, we generate separately the scattered factors of the
form ubaj , for each j ∈ [i − 1]0. It is clear that, in such a word, |u| = i − j − 1,
and if j ≥ c then u must be a scattered factor of (ab)k−j−1a, while if j < c
then u must be a scattered factor of (ab)k−c−1a. If j ≥ (i + c) − k then, by
Theorem 11, u can take all 2i−j−1 possible values. For smaller values of j, we
need to generate u of length i− j − 1 as a scattered factor of (ab)k−c−1a, by the
method described after Proposition 5.

272 J. D. Day et al.

Nevertheless, Theorems 11 and 12 are useful to see that in order to determine
the cardinality of the sets of scattered factors of words consisting of alternating
as and bs or, respectively, of (ab)k−cac, it is not needed to generate these sets
effectively.

4 Cardinalities of k-Spectra of Weakly-0-Balanced Words

In the last section a characterisation for the smallest and the largest k-spectra
of words of a given length are presented (Theorem 2 and Proposition 5). In this
section the part in between will be investigated for weakly-0-balanced words
(i.e. words of length 2k with k occurrences of each letter). As before, we shall
assume that k ∈ N≥3. In the particular case that k = 3, we have already proven
that the k-spectrum with minimal cardinality has 4 elements and that the max-
imal cardinality is 8. Moreover as mentioned in Remark 3 a k-spectrum of car-
dinality 5 does not exist for weakly-0-balanced words of length 2k. The question
remains if k-spectra of cardinalities 6 and 7 exist, and if so, for which words.

Before showing that a k-spectrum of cardinality 2k −1 for weakly-0-balanced
words of length 2k also exists for all k ∈ N≥3, we prove that only scattered
factors of the form bi+1ak−i−1 for i ∈ [k − 2]0 (up to renaming, reversal) can
be “taken out” from the full set of possible scattered factors independently,
without additionally requiring the removal of additional scattered factors as
well. In particular, if a word of length k of another form is absent from the set
of scattered factors of w, then |ScatFactk(w)| < 2k − 1 follows.

Lemma 13. If for w ∈ Σ2k
wzb there exists u /∈ ScatFactk(w) with u /∈ {biak−i |

i ∈ [k − 1]} ∪ {aibk−i | i ∈ [k − 1]}, then |ScatFactk(w)| < 2k − 1.

Proposition 14. For k ∈ N≥3 and w ∈ Σ2k
wzb, the set ScatFactk(w) has 2k − 1

elements if and only if w ∈ {(ab)ia2b2(ab)k−i−2 | i ∈ [k − 2]0} (up to renaming
and reversal). In particular ScatFactk(w) = Σk\{bi+1ak−i−1} holds for w =
(ab)ia2b2(ab)k−i−2 with i ∈ [k − 2]0.

By Proposition 14 we get that 7 is a possible cardinality of the set of scattered
factors of length 3 of weakly-0-balanced words of length 6 and, moreover, that
exactly the words a2b2ab and aba2b2 (and symmetric words obtained by reversal
and renaming) have seven different scattered factors. The following theorem
demonstrates that there always exists a weakly-0-balanced word w of length 2k
such that |ScatFactk(w)| = 2k. Thus, for the case k = 3 also the question if six
is a possible cardinality of ScatFact3(w) can be answered positively.

Theorem 15. The k-spectrum of a word w ∈ Σ2k
wzb has exactly 2k elements

if and only if w ∈ {ak−1babk−1, ak−1bka} holds (up to renaming and rever-
sal). Moreover, there does not exist a weakly-0-balanced word w ∈ Σ2k

wzb with a
k-spectrum of cardinality 2k − i for i ∈ [k − 2].

k-Spectra of Weakly-c-Balanced Words 273

By Proposition 14 and Theorem 15 the possible cardinalities of ScatFact3(w)
for weakly-0-balanced words w of length 6 are completely characterized. Theo-
rem 15 determines the first gap in the set of cardinalities of |ScatFactk(w)| for
w ∈ Σ2k

wzb: there does not exist a word w ∈ Σ2k
wzb with |ScatFactk(w)| = k+ i+1

for i ∈ [k − 2] and k ≥ 3, since all words that are not of the form akbk,
bkak, ak−1babk−1, or ak−1bka have a scattered factor set of cardinality at least
2k + 1. As the size of this first gap is linear in k, it is clear that the larger k is,
the more unlikely it is to find a k-spectrum of a small cardinality.

In the following we will prove that the cardinalities 2k + 1 up to 3k − 4 are
not reachable, i.e. 3k − 3 is the thirst smallest cardinality after k + 1 and 2k
(witnessed by, e.g. ak−2bka2).

Lemma 16. For i ∈ [�k
2 �] and j ∈ [k − 1]

– |ScatFactk(ak−ibkai)| = k(i + 1) − i2 + 1 for k ≥ 4,
– |ScatFactk(ak−1b2abk−2)| = 3k − 2,
– |ScatFactk(ak−2bjabk−ja)| = k(2j + 2) − 6j + 2 for k ≥ 5, and
– |ScatFactk(ak−2bja2bk−j)| = k(2j + 1) − 4j + 2.

Notice that for i ∈ [�k
2 �] the sequence (k(2i+1)−4i+2)i is increasing and its

minimum is 3k−2 while for i ∈ [�k
2 �] the sequence (k(2i+2)−6i+2)i is increasing

and its minimum is 4k − 4. The following lemma only gives lower bounds for
specific forms of words, since, on the one hand, it proves to be sufficient for the
Theorem 18 which describes the second gap, and, on the other hand, the proofs
show that the formulas describing the exact number of scattered factors of a
specific form are getting more and more complicated. It has to be shown that
also words starting with i letters a, for i ∈ [k − 3], have a k-spectrum of greater
(as lower is already excluded) cardinality. By Lemma 16 only words with another
transition from a’s to b’s need to be considered, (w = ar1bs1w1ar1bs2). W.l.o.g.
we can assume s1 to be maximal, such that w1 starts with an a, and similarly,
by maximality of r2, ends with a b, thus only words of the form ar1bs1 . . . arnbsn

have to be considered, and by Proposition 5, it is sufficient to investigate n < k.

Lemma 17. – |ScatFactk(ak−2biabjabk−i−j)| ≥ 3k−3 for i, j ∈ [k−2], i+j ≤
k − 1,

– |ScatFactk(ak−2bs1ar1bs2ar2bs3)| ≥ 3k − 4 for s1 + s2 + s3 = k, r1 + r2 =
2,s1 > 0, r1, r2, s2, s3 ≥ 0,

– |ScatFactk(ar1bs1 . . . arnbsn)| ≥ 3k−3 for r1 ≤ k−3,
∑

i∈[n] ri =
∑

i∈[n] si =
k, and ri, si ≥ 1.

By Lemmas 16 and 17 we are able to prove the following theorem, which
shows the second gap in the set of cardinalities of ScatFactk for words in Σ2k

wzb.

Theorem 18. For k ≥ 5 there does not exist a word w ∈ Σ2k
wzb with k-spectrum

of cardinality 2k+ i for i ∈ [k−4]. In other words, i.e. between 2k+1 and 3k−4
is a cardinality-gap.

Going further, we analyse the larger possible cardinalities of ScatFactk, trying
to see what values are achievable (even if only asymptotically, in some cases).

274 J. D. Day et al.

Corollary 19. All square numbers, greater or equal to four, occur as
the cardinality of the k-spectrum of a word w ∈ Σ2k

wzb; in particular
|ScatFactk(a

k
2 bka

k
2)| =

(
k
2 + 1

)2
holds for k even.

Inspired by the previous Corollary, we can show the following result con-
cerning the asymptotic behaviour of the cardinality of ScatFactk for words of
length 2k.

Proposition 20. Let i > 1 be a fixed (constant) integer. Let d = �k
i � and

r = k − di, and d′ = � k
i−1� and r′ = k − d′(i − 1). Then the following hold:

– the word arbr(adbd)i has Θ(k2i−1) scattered factors of length n;
– the word arbr′

(adbd′
)i−1ad has Θ(k2i−2) scattered factors of length n.

Remark 21. Let i be an integer, and consider k another integer divisible by i.
Consider the word wk = (a

k
i b

k
i)i. The exact number of scattered factors of length

k of wk equals to the number C
(
k, 2i, k

i

)
of weak 2i-compositions of k, whose

terms are bounded by k
i , i.e., the number of ways in which k can be written

as a sum
∑

j∈[2i] rj where rj ∈ [
k
i

]
0
. From Proposition 20 we also get that this

number is Θ(n2k−1), but we also have:

C

(
k, 2i,

k

i

)
=

∑

0≤j<M

(−1)j

(
2i

j

)(
k + 2i − j(k

i + 1) − 1
2i − 1

)
,

for M = i(k+2i−1)
k+i . It is known that there exists a constant E > 0 such that

C

(
k, 2i,

k

i

)
≤ E ·

∑

0≤j<M

(−1)j

(
2i

j

) (
k + 2i − j

(
k

i
+ 1

)
− 1

)2i−1

.

The coefficient of k2i−1 in the right hand side of this inequality has to be positive.
Consequently

∑
0≤j<M (−1)j

(
2i
j

)
(i − j)2i−1 > 0. This seems to be an interesting

combinatorial inequality in itself.
One can also show as in Proposition 20 that the number of scattered factors of

length k of wk, which have, at their turn, (ab)i as a scattered factor, is Θ(k2i−1).
This number also equals the number C ′ (k, 2i, k

i

)
of 2i-compositions of k whose

terms are strictly positive integers upper bounded by k
i , i.e., the number of ways

in which k can be written as a sum
∑

j∈[2i] rj where rj ∈ [
k
i

]
. Just as above,

from this we get
∑

0≤j<i(−1)j
(
2i
j

)
(i − j)2i−1 > 0. Again, this inequality seems

interesting to us.

We will end this analysis with the conjecture that, in contrast to the first
gap, which always starts immediately after the first obtainable cardinality, the
last gap ends earlier the larger k is. More precisely, if w = a2b2(ab)k−3−iba(ab)i

for k ∈ N≥4, i ∈ [k − 2]0 then |ScatFactk(w)| = 2k − 2 − i.

k-Spectra of Weakly-c-Balanced Words 275

At the end of this section, we will briefly introduce θ-palindromes in this
specific setting. Let θ : Σ∗ → Σ∗ be an antimorphic involution, i.e. θ(uv) =
θ(v)θ(u) and θ2 is the identity on Σ∗. By Σ = {a, b} only the identity and
renaming are such mappings. The fixed points of θ are called θ-palindromes
(ab3.θ(b)3θ(a)) and exactly the words where wR = w holds. They were studied
in different fields well (see e.g., [5,8]). A word w ∈ Σ2k

wzb is a θ-palindrome
iff either w ∈ {aw′b, bw′a} for some θ-palindrome w′ ∈ Σ

2(k−1)
wzb or additionally

w = a
k
2 bka

k
2 in the case that k is even. Two cardinality results for θ-palindromes

are presented in Lemma 16 and Corollary 19. We believe that persuing the k-
spectra of θ-palindromes may lead to a deeper insight of which cardinalities can
be reached, but due to space restrictions we will only mention one conjecture
here, which may already show that cardinalities are somehow propagating for
θ-palindromes. Notice that this conjecture implies that indeed similar to the
second gap here 4k − 4 is always reached but that in contrast to the second gap,
the third gap is not of the form 4k − 4 − i for i ∈ [k − 4].

Conjecture 22. The k-spectrum of w = abk−1ak−1b has 4(k − 1) elements and
moreover if w′ = wR with a k-spectrum of cardinality � ∈ N≥12 then the scat-
tered factor set of awb has cardinality 21

4� − 5.

5 Reconstructing Weakly-0-Balanced Words from Their
k-Spectra

In the final section we consider the slightly different problem of reconstructing
a word from its scattered factors, or more specifically in this case, k-spectra.
More generally, we are interested in how much information about a (weakly-0-
balanced) word w is contained in its scattered factors, and more precisely, which
scattered factors are not necessary or useful for reconstructing the word w, or
distinguishing it from others. Since w is a scattered factor of itself, it is trivial
that the scattered factor of length |w| is sufficient to uniquely reconstruct w. On
the other hand, all words over {a, b}∗ containing both letters will have the same
1-spectrum. Thus we see that the length of the scattered factors of a word w
plays a role in how much information about w they contain. This relationship
is described more precisely by the following result of Dress and Erdös [3] along
with the fact that (cf. e.g. Proposition 5) a word of length 2k is not uniquely
determined by its scattered factors of length k.

Proposition 23 (Dress and Erdös [3]). If ScatFactk+1(w) = ScatFactk+1(w′)
holds for w,w′ ∈ Σ≤2k then w = w′ follows.

In the proof of Proposition 23, a pivotal role is played by scattered factors
which contain many as and a few bs or vice-versa. The question arises as to
whether this is due to the fact that these scattered factors contain inherently
more information about the structure of the whole word than e.g., weakly-0-
balanced ones. In the general case, the answer is, sometimes at least, yes: we

276 J. D. Day et al.

cannot distinguish between e.g. two words in {a}∗ by their weakly-0-balanced
scattered factors, as the only such factor is ε. The same problem arises for all
words which have a sufficiently uneven ratio of as to bs.

However, if in addition we consider only weakly-0-balanced words, then the
situation changes. We conjecture that in fact, for these words w, the weakly-0-
balanced scattered factors are just as informative about the w as the unbalanced
ones. More formally, we believe the following adaptation of Proposition 23 holds:

Conjecture 24. Let k ∈ N. Let k′ = k+1 for odd k, and k′ = k+2 for even k. Let
w,w′ ∈ Σ2k

wzb such that ScatFactk′(w) ∩ Σk′
wzb = ScatFactk′(w′) ∩ Σk′

wzb. Then
w = w′.

While we do not resolve the conjecture, we give an example of a subclass of
words for which it holds true, namely when there are at most two blocks of bs
(and therefore by symmetry if there are at most two blocks of as).

Proposition 25. Let k ∈ N. If k is odd, then each word w ∈ a∗b∗a∗b∗a∗ ∩
Σ2k

wzb is uniquely determined by the set ScatFactk+1(w) ∩ Σk+1
wzb . Similarly, if k

is even, then each word w ∈ a∗b∗a∗b∗a∗ ∩ Σ2k
wzb is uniquely determined by the

set ScatFactk+2(w) ∩ Σk+2
wzb .

The difficulty in proving Conjecture 24 seems to arise from the fact that,
for different pairs of words w,w′ ∈ Σwzb, the set of scattered factors which
distinguish them, namely the symmetric difference of ScatFactk(w) ∩ Σk

wzb and
ScatFactk(w′) ∩ Σk

wzb (for appropriate k), varies considerably, unlike with the
proof(s) of Proposition 23, where the set of distinguishing scattered factors is
always made up words of the same form, regardless of the choice of w and w′. As
an example, consider the words w = ababab, w′ = bababa, and w′′ = ababba.
Then the symmetric difference of ScatFact4(w)∩Σ4

wzb and ScatFact4(w′)∩Σ4
wzb

is {aabb, bbaa}. On the other hand, considering ScatFact4(w′) ∩ Σ4
wzb and

ScatFact4(w′′) ∩ Σ4
wzb, the symmetric difference is {baab}.

6 Conclusions

We have considered properties of k-spectra of weakly-0-balanced words. In par-
ticular, in Sect. 3 we give several insights into the structure of the set of all
k-spectra of weakly-0-balanced words of length 2k by considering for which num-
bers n there exists w such that the k-spectrum of w has cardinality n. In par-
ticular, we characterise the first two gaps in the possibilities for each k which
are regular (in the sense that the first and second gaps are always from k + 2 to
2k − 1 and 2k +1 to 3k − 4 (inclusive). On the other hand, we see that the third
gap is considerably less regular and thus resists a natural characterisation.

In Sect. 4, we consider the task of reconstructing weakly-0-balanced words
from their k-spectra. We note that this is, in a sense, as hard as in the general
case, however, we also conjecture that even if we consider only the scattered
factors which are also weakly-0-balanced, then the situation remains the same,

k-Spectra of Weakly-c-Balanced Words 277

in the sense that it can be achieved for the same choices of k. Resolving this
conjecture appears to require some new approach however since the techniques
for the general case are not easily adapted.

As mentioned at the end of Sect. 3 some of the weakly-0-balanced words are
θ-palindromes. Since the θ-palindromes of length 2k are constructible from the
ones of length 2(k − 1) (except for each even k exactly one θ-palindrome) we
surmised that the structure and properties propagate. Moreover we expected
that the knowledge of the word’s second half helps in finding the cardinalities of
the k-spectra. Nevertheless we were only able to get results for θ-palindromes in
the same manner as for the other words, but we still believe that the structure
of the θ-palindromes can reveal more insights with further work.

References

1. Berstel, J., Karhumäki, J.: Combinatorics on words - a tutorial. BEATCS: Bull.
Eur. Assoc. Theor. Comput. Sci. 79 (2003)

2. Day, J.D., Fleischmann, P., Manea, F., Nowotka, D.: k-spectra of weakly-c-balanced
words (2019). https://arxiv.org/abs/1904.09125

3. Dress, A.W.M., Erdös, P.: Reconstructing words from subwords in linear time.
Ann. Comb. 8(4), 457–462 (2004)

4. Elzinga, C.H., Rahmann, S., Wang, H.: Algorithms for subsequence combinatorics.
Theor. Comput. Sci. 409(3), 394–404 (2008)

5. Fazekas, S.Z., Manea, F., Mercas, R., Shikishima-Tsuji, K.: The pseudopalindromic
completion of regular languages. Inf. Comput. 239, 222–236 (2014)

6. Halfon, S., Schnoebelen, P., Zetzsche, G.: Decidability, complexity, and expressive-
ness of first-order logic over the subword ordering. In: Proceedings of LICS 2017,
pp. 1–12 (2017)

7. Holub, Š., Saari, K.: On highly palindromic words. Discrete Appl. Math. 157,
953–959 (2009)

8. Kari, L., Mahalingam, K.: Watson-Crick palindromes in DNA computing. Nat.
Comput. 9(2), 297–316 (2010)

9. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

10. Manuch, J.: Characterization of a word by its subwords. In: Developments in Lan-
guage Theory, pp. 210–219. World Scientific (1999)

11. Mateescu, A., Salomaa, A., Yu, S.: Subword histories and Parikh matrices. J. Com-
put. Syst. Sci. 68(1), 1–21 (2004)

12. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages (3 volumes).
Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6

13. Salomaa, A.: Connections between subwords and certain matrix mappings. Theor.
Comput. Sci. 340(2), 188–203 (2005)

14. Zetzsche, G.: The complexity of downward closure comparisons. In: Proceedings of
the ICALP 2016. LIPIcs, vol. 55, pp. 123:1–123:14 (2016)

https://arxiv.org/abs/1904.09125
https://doi.org/10.1007/978-3-642-59126-6

Computing the k-binomial Complexity
of the Thue–Morse Word

Marie Lejeune(B) , Julien Leroy, and Michel Rigo

Department of Mathematics, University of Liège,
Allée de la Découverte 12 (B37), 4000 Liège, Belgium

{M.Lejeune,J.Leroy,M.Rigo}@uliege.be

Abstract. Two finite words are k-binomially equivalent whenever they
share the same subwords, i.e., subsequences, of length at most k with
the same multiplicities. This is a refinement of both abelian equivalence
and the Simon congruence. The k-binomial complexity of an infinite
word x maps the integer n to the number of classes in the quotient,
by this k-binomial equivalence relation, of the set of factors of length
n occurring in x. This complexity measure has not been investigated
very much. In this paper, we characterize the k-binomial complexity of
the Thue–Morse word. The result is striking, compared to more familiar
complexity functions. Although the Thue–Morse word is aperiodic, its k-
binomial complexity eventually takes only two values. In this paper, we
first express the number of occurrences of subwords appearing in iterates
of the form Ψ �(w) for an arbitrary morphism Ψ . We also thoroughly
describe the factors of the Thue–Morse word by introducing a relevant
new equivalence relation.

1 Introduction

The Thue–Morse word t = 011010011001 · · · is ubiquitous in combinatorics on
words [1,20,27]. It is an archetypal example of a 2-automatic sequence: it is the
fixed point of the morphism 0 �→ 01, 1 �→ 10. See, for instance, [2]. Its most
prominent property is that it avoids overlaps, i.e., it does not contain any factor
of the form auaua where u is a word and a a symbol. Consequently it also avoids
cubes, i.e., words of the form uuu, and is aperiodic.

Various measures of complexity of infinite words have been considered in the
literature. The most usual one is the factor complexity that one can, for instance,
relate to the topological entropy of a symbolic dynamical system. The factor
complexity of an infinite word x simply counts the number px(n) = #Facn(x)
of factors of length n occurring in x. One can also consider other measures
such as abelian complexity or k-abelian complexity [10]. For instance, in the
sixties, Erdős raised the question whether abelian squares can be avoided by an
infinite word over an alphabet of size 4. In an attempt to generalize Parikh’s
theorem on context-free languages, k-abelian complexity counts the number of

The first author is supported by a FNRS fellowship.

c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 278–291, 2019.
https://doi.org/10.1007/978-3-030-24886-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_21&domain=pdf
http://orcid.org/0000-0001-5620-8052
http://orcid.org/0000-0001-7463-8507
https://doi.org/10.1007/978-3-030-24886-4_21

Computing the k–binomial Complexity of the Thue–Morse Word 279

equivalence classes partitioning the set of factors of length n for the so-called
k-abelian equivalence. Two finite words u and v are k-abelian equivalent if
|u|x = |v|x, for all words x of length at most k, and where |u|x denotes the
number of occurrences of x as a factor of u.

The celebrated theorem of Morse–Hedlund characterizes ultimately periodic
words in terms of a bounded factor complexity function; for a reference, see
[2,16] or [4, Sect. 4.3]. Hence, aperiodic words with the lowest factor complexity
are exactly the Sturmian words characterized by px(n) = n+1. It is also a well-
known result of Cobham that a k-automatic sequence has factor complexity in
O(n). The factor complexity of the Thue–Morse word is in Θ(n) and is recalled
in Proposition 6.

For many complexity measures, Sturmian words have the lowest complexity
among aperiodic words, and variations of the Morse–Hedlund theorem notably
exist for k-abelian complexity [11].

Binomial coefficients of words have been extensively studied [15]:
(
u
x

)
denotes

the number of occurrences of x as a subword, i.e., a subsequence, of u. They
have been successfully used in several applications: p-adic topology [3], non-
commutative extension of Mahler’s theorem on interpolation series [19], formal
language theory [9], Parikh matrices, and a generalization of Sierpiński’s trian-
gle [14].

Binomial complexity of infinite words has been recently investigated [21,23].
The definition is parallel to that of k-abelian complexity. Two finite words u and
v are k-binomially equivalent if

(
u
x

)
=

(
v
x

)
, for all words x of length at most k.

This relation is a refinement of abelian equivalence and Simon’s congruence. We
thus take the quotient of the set of factors of length n by this new equivalence
relation. For all k ≥ 2, Sturmian words have k-binomial complexity that is the
same as their factor complexity. However, the Thue–Morse word has bounded
k-binomial complexity [23]. So we have a striking difference with the usual com-
plexity measures. This phenomenon therefore has to be closely investigated. In
this paper, we compute the exact value of the k-binomial complexity bt,k(n)
of the Thue–Morse word t. To achieve this goal, we first obtain general results
computing the number of occurrences of a subword in the (iterated) image by a
morphism. This discussion is not restricted to the Thue–Morse morphism.

This paper is organized as follows. In Sect. 2, we recall basic results about
binomial coefficients, binomial equivalence and the Thue–Morse word. In Sect. 3,
we give an expression to compute the coefficient

(
Ψ(w)

u

)
for an arbitrary morphism

Ψ in terms of binomial coefficients for the preimage w. To that end, we study
factorizations of u of the form u = xΨ(u′)y.

In the second part of this paper, we specifically study the k-binomial com-
plexity of the Thue–Morse word. For k = 1, the abelian complexity of t is well
known and takes only the values 2 and 3. The case k = 2 is treated in Sect. 4. In
the last three sections, we consider the general case k ≥ 3. The precise statement
of our main result is given in Theorem5. The principal tool to get our result is a
new equivalence relation discussed in Sect. 6. This relation is based on particular
factorizations of factors occurring in the Thue–Morse word.

280 M. Lejeune et al.

Due to space limitations for this 12-page version, we have omitted most of
the technical difficulties but tried to convey the main ideas and concepts. The
reader can find a comprehensive presentation in [13].

2 Basics

Let A = {0, 1}. Let ϕ : A∗ → A∗ be the classical Thue–Morse morphism defined
by ϕ(0) = 01 and ϕ(1) = 10. The complement of a word u ∈ A∗ is the image of
u under the involutive morphism mapping 0 to 1 and 1 to 0. It is denoted by u.
The length of the word u is denoted by |u|.

2.1 Binomial Coefficients and Binomial Equivalence

The binomial coefficient
(
u
v

)
of two finite words u and v is the number of times v

occurs as a subsequence of u (meaning as a “scattered” subword). As an example,
we consider two particular words over {0, 1} and

(
101001

101

)
= 6 .

For more on these binomial coefficients, see, for instance, [15, Chap. 6]. In
particular,

(
u
ε

)
= 1. In this paper, a factor of a word is made of consecutive

letters. However this is not necessarily the case for a subword of a word.

Definition 1 (Binomial equivalence). Let k ∈ N and u, v be two words over
A. We let A≤k denote the set of words of length at most k over A. We say that
u and v are k-binomially equivalent if

(
u

x

)
=

(
v

x

)
, ∀x ∈ A≤k .

We simply write u ∼k v if u and v are k-binomially equivalent. The word u is
obtained as a permutation of the letters in v if and only if u ∼1 v. In that case,
we say that u and v are abelian equivalent. Note that, for all k ≥ 1, if u ∼k+1 v,
then u ∼k v.

Example 2. The four words 0101110, 0110101, 1001101 and 1010011 are
2-binomially equivalent. Let u be any of these four words. We have

(
u

0

)
= 3,

(
u

1

)
= 4,

(
u

00

)
= 3,

(
u

01

)
= 7,

(
u

10

)
= 5,

(
u

11

)
= 6 .

For instance, the word 0001111 is abelian equivalent to 0101110 but these two
words are not 2-binomially equivalent. To see this, simply compute the number
of occurrences of the subword 10 in each.

Computing the k–binomial Complexity of the Thue–Morse Word 281

Many classical questions in combinatorics on words can be considered in this
binomial context [22,24]. Avoiding binomial squares and cubes is considered in
[21]. The problem of testing whether two words are k-binomially equivalent or
not is discussed in [7]. In particular, one can introduce the k-binomial complexity
function.

Definition 3 (Binomial complexity). Let x be an infinite word. The
k-binomial complexity function of x is defined as

bx,k : N → N, n �→ #(Facn(x)/∼k)

where Facn(x) is the set of factors of length n occurring in x.

2.2 Context of This Paper

The Thue–Morse word denoted by t is the fixed point starting with 0 of the
morphism ϕ. In [23, Thm. 13], it is shown that t has a bounded k-binomial
complexity. Actually, this behavior occurs for all morphisms where images of
letters are permutations of the same word.

Theorem 4 [23]. Let k ≥ 1. There exists Ck > 0 such that the k-binomial
complexity of the Thue–Morse word satisfies bt,k(n) ≤ Ck for all n ≥ 0.

Our contribution is the exact characterization of bt,k(n).

Theorem 5. Let k be a positive integer. For all n ≤ 2k − 1, we have

bt,k(n) = pt(n).

For all n ≥ 2k, we have

bt,k(n) =
{

3 · 2k − 3, if n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise.

Observe that 3 · 2k − 4 is exactly the number of words of length 2k − 1 in t,
for k
= 2. Indeed, the factor complexity of t is well known [4, Corollary 4.10.7].

Proposition 6 [4–6]. The factor complexity pt of the Thue–Morse word is given
by pt(0) = 1, pt(1) = 2, pt(2) = 4 and for n ≥ 3,

pt(n) =
{

4n − 2 · 2m − 4, if 2 · 2m < n ≤ 3 · 2m;
2n + 4 · 2m − 2, if 3 · 2m < n ≤ 4 · 2m.

There are 2 factors of length 1 = 21−1 and 6 factors of length 3 = 22−1. The
number of factors of t of length 2k−1 for k ≥ 3 is given by 2(2k−1)+4·2k−2−2 =
3 · 2k − 4,

(pt(2k − 1))k≥0 = 1, 2, 6, 20, 44, 92, 188, 380, 764, 1532, . . .

which is exactly one of two values stated in our main result, Theorem5.

282 M. Lejeune et al.

3 Occurrences of Subwords in Images by ϕ

The aim of this section is to obtain an expression for coefficients of the form(
ϕ(w)

u

)
. Even though we are mainly interested in the Thue–Morse word, our

observations can be applied to any non-erasing morphism as summarized by
Theorem 15.

A multiset is just a set where elements can be repeated with a (finite) integer
multiplicity. If x belongs to a multiset M , its multiplicity is denoted by mM (x)
or simply m(x). If x
∈ M , then mM (x) = 0. If we enumerate the elements of
a multiset, we adopt the convention to write multiplicities with indices. The
multiset sum M �N of two multisets M,N is the union of the two multisets and
the multiplicity of an element is equal to the sum of the respective multiplicities.

Let us start with an introductory example. We hope that this example will
forge the intuition of the reader about the general scheme.

Example 7. We want to compute
(

ϕ(01100)
u

)
with u = 011.

The word w = ϕ(01100) belongs to {01, 10}∗. It can be factorized with consec-
utive blocks b1b2 · · · b5 of length 2. To count the number of occurrences of the
subword u in the image by ϕ of a word, two cases need to be taken into account:

– the three symbols of u appear in pairwise distinct 2-blocks of w (each 2-block
contains both 0 and 1 exactly once), and there are

(|w|/2
|u|

)
=

(
5
3

)

such choices, or;
– the prefix 01 of u is one of the 2-blocks bi of w and the last symbol of u

appears in subsequent distinct 2-block bj , j > i. Since ϕ(0) = 01, we have to
count the number of occurrences of the subword 0z, for all words z of length
1, in the preimage of w. There are

∑

z∈A

(
01100

0z

)
= 4 + 1 = 5

such choices.

The general scheme behind this computation is expressed by Theorem 12 given
below. The reader can already feel that we need to take into account particular
factorizations of u with respect to occurrences of a factor ϕ(0) or ϕ(1). The two
cases discussed in Example 7 correspond to the following factorizations of u:

011, ϕ(0)1.

We thus introduce the notion of a ϕ-factorization.

Computing the k–binomial Complexity of the Thue–Morse Word 283

Definition 8 (ϕ-(factorization). If a word u ∈ A∗ contains a factor 01 or 10,
then it can be factorized as

u = w0 ϕ(a1)w1 · · · wk−1 ϕ(ak)wk (1)

for some k ≥ 1, a1, . . . , ak ∈ A and w0, . . . , wk ∈ A∗ (some of these words are
possibly empty). We call this factorization, a ϕ-factorization of u. It is coded by
the k-tuple of positions where the ϕ(ai)’s occurs:

κ = (|w0|, |w0ϕ(a1)w1|, |w0ϕ(a1)w1ϕ(a2)w2|, . . . , |w0ϕ(a1)w1ϕ(a2)w2 · · · wk−1|).

The set of all the ϕ-factorizations of u is denoted by ϕ-Fac(u).

Since |ϕ(a)| = 2, for all a ∈ A, observe that if (i1, . . . , ik) codes a
ϕ-factorization, then ij+1 − ij ≥ 2 for all j. Note that u starts with a prefix
01 or 10 if and only if there are ϕ-factorizations of u coded by tuples starting
with 0.

We define a map f from A∗ to the set of finite multisets of words over A∗.
This map is defined as follows.

Definition 9. If u ∈ 0∗ ∪ 1∗, then f(u) = ∅ (the meaning for this choice will be
clear with Theorem12). If u is not of this form, it contains a factor 01 or 10.
With every ϕ-factorization κ ∈ ϕ-Fac(u) of u of the form (1)

u = w0 ϕ(a1)w1 · · · wk−1 ϕ(ak)wk

for some k ≥ 1, a1, . . . , ak ∈ A and w0, . . . , wk ∈ A∗, we define the language

L(u, κ) := A|w0| a1 A|w1| · · · A|wk−1|akA|wk|

of words of length |u| − k (there are 2|u|−2k of these words1). Such a language
is considered as a multiset whose elements have multiplicities equal to 1. Now,
f(u) is defined as the multiset sum (i.e., we sum the multiplicities) of the above
languages for all ϕ-factorizations of u, i.e.,

f(u) :=
⊎

κ∈ϕ-Fac(u)

L(u, κ) .

Definition 10. Now that f is defined over A∗, we can extend it to any finite
multiset M of words over A. It is the multiset sum of the f(v)’s, for all v ∈ M ,
repeated with their multiplicities.

Remark 11. If u does not belong to 0∗∪1∗, then f |u|−2(u) contains only elements
in {0, 1, 00, 01, 10, 11} and f |u|−1(u) contains only elements in {0, 1}. For n ≥ |u|,
fn(u) is empty.

1 We have all the words of length |u| − k where in k positions the occurring symbol is
given.

284 M. Lejeune et al.

Recall that f(u) is a multiset. Hence mf(u)(v) denotes the multiplicity of v
as element of f(u).

Theorem 12. With the above notation, for all words u,w, we have
(

ϕ(w)
u

)
=

(|w|
|u|

)
+

∑

κ∈ϕ-Fac(u)
v∈L(u,κ)

(
w

v

)
=

(|w|
|u|

)
+

∑

v∈f(u)

mf(u)(v)
(

w

v

)
.

We can then establish the following result.

Corollary 13. Let k ≥ 1. For all words u, v, we have

u ∼k v ⇒ ϕ(u) ∼k+1 ϕ(v) .

In particular, ϕk(0) ∼k ϕk(1) for all k ≥ 1.

Theorem 12 can be extended to iterates of ϕ.

Corollary 14. With the above notation, for � ≥ 1 and all words u,w, we have

(
ϕ�(w)

u

)
=

�−1∑

i=0

∑

v∈fi(u)

mfi(u)(v)
(|ϕ�−i−1(w)|

|v|
)

+
∑

x∈f�(u)

mf�(u)(x)
(

w

x

)
.

The reader should be convinced that the following general statement holds.

Theorem 15. Let Ψ : A∗ → B∗ be a non-erasing morphism and u ∈ B+,
w ∈ A+ be two words. We have

(
Ψ(w)

u

)
=

|u|∑

k=1

∑

u1,...,uk∈B+

u=u1···uk

∑

a1,...,ak∈A

(
Ψ(a1)

u1

)
· · ·

(
Ψ(ak)

uk

)(
w

a1 · · · ak

)
.

The word u occurs as a subword of Ψ(w) if and only if there exists k ≥ 1 such
that u can be factorized into u1 · · · uk where, for all i, ui is a non-empty subword
occurring in Ψ(ai) for some letter ai and such that a1 · · · ak is a subword of w.

4 Computing bt,2(n)

In this section we compute the value of bt,2(n). First of all, the next proposition
ensures us that all the words we will consider in the proof of Theorem17 really
appear as factors of t.

Proposition 16 (folklore). Let k,m ∈ N and a, b ∈ {0, 1}. Let pu be a suffix
of ϕk(a) and su be a prefix of ϕk(b). There exists z ∈ {0, 1}m such that puϕk(z)su

is a factor of t.

Using this result, we can compute the values of bt,2.

Computing the k–binomial Complexity of the Thue–Morse Word 285

Theorem 17 [12, Thm. 3.3.6]. We have bt,2(0) = 1, bt,2(1) = 2, bt,2(2) = 4,
bt,2(3) = 6 and for all n ≥ 4,

bt,2(n) =
{

9, if n ≡ 0 (mod 4);
8, otherwise.

Proof. Assume n ≥ 4.
We have to consider four cases depending on the value of λ ∈ {0, 1, 2, 3} such

that λ = n mod 4. For every one of them, we want to compute

bt,2(n) = #
{((

u

0

)
,

(
u

01

))
∈ N × N : u ∈ Facn(t)

}
.

Since t is the fixed point of the morphism ϕ, we know that every factor u
of length n of t can be written puϕ2(z)su for some z ∈ A∗ and pu (resp., su)
suffix (resp., prefix) of a word in {ϕ2(0), ϕ2(1)}. From the previous proposition,
we also know that every word of that form occurs at least once in t. Moreover,
we have |pu| + |su| ∈ {λ, λ + 4} and, as a consequence, |z| =

⌊
n
4

⌋
= n−λ

4 or
|z| =

⌊
n
4

⌋ − 1. Set � = n−λ
4 .

Let us first consider the case λ = 0. We have

Facn(t) = {ϕ2(az), 0ϕ2(z)011, 0ϕ2(z)100, 1ϕ2(z)011, 1ϕ2(z)100,

01ϕ2(z)01, 01ϕ2(z)10, 10ϕ2(z)01, 10ϕ2(z)10,

110ϕ2(z)0, 110ϕ2(z)1, 001ϕ2(z)0, 001ϕ2(z)1 : z ∈ A�−1, a ∈ A, az ∈ Fac(t)}.

Let us illustrate the computation of
((

u
0

)
,
(

u
01

))
on u = 0ϕ2(z)011 ∈ Facn(t).

Firstly, (
u

0

)
=

(
0
0

)
+

(
ϕ2(z)

0

)
+

(
011
0

)
= 2 + 2|z| = 2�

since |z| = � − 1. Similarly, we have(
u

01

)
=

(
0

01

)
+

(
ϕ2(z)

01

)
+

(
011

01

)
+

(
0

0

)(
ϕ2(z)

1

)
+

(
0

0

)(
011

1

)
+

(
ϕ2(z)

0

)(
011

1

)

=

(
|ϕ(z)|

2

)
+

(
ϕ(z)

0

)
+ 2 + |ϕ(z)| + 2 + 2|ϕ(z)|

= |z|(2|z| − 1) + |z| + 6|z| + 4 = 2�2 + 2�.

All the computations are summarized in the table below. We give the form
of the factors and respective values for the pairs

((
u
0

)
,
(

u
01

))
.

Case ϕ2(az) 0ϕ2(z)011 1ϕ2(z)100 0ϕ2(z)100 001ϕ2(z)0
01ϕ2(z)10 001ϕ2(z)1 110ϕ2(z)0
10ϕ2(z)01(

u
0

)
2� 2� 2� 2� + 1 2� + 1(

u
01

)
2�2 2�2 + 2� 2�2 − 2� 2�2 − 1 2�2

Case 1ϕ2(z)011 110ϕ2(z)1 01ϕ2(z)01 10ϕ2(z)10(
u
0

)
2� − 1 2� − 1 2� 2�(

u
01

)
2�2 2�2 + 1 2�2 + 1 2�2 − 1

286 M. Lejeune et al.

This is thus clear that if n ≡ 0 (mod 4), we have bt,2(n) = 9.
The same type of computations can be carried out in cases where λ
= 0, and

give 8 equivalence classes. The obtained values can be found in [13].

5 How to Cut Factors of the Thue–Morse Word

Computing bt,k(n), for all k ≥ 3, will require much more knowledge about the
factors of t. This section is concerned about particular factorizations of factors
occurring in t. Similar ideas first appeared in [25,26].

Since t is a fixed point of ϕ, it is very often convenient to view t as a
concatenation of blocks belonging to {ϕk(0), ϕk(1)}. Hence, we first define a
function bark that roughly plays the role of a ruler marking the positions where
a new block of length 2k occurs (these positions are called cutting bars of order k).
For all k ≥ 1, let us consider the function bark : N → N defined by

bark(n) = |ϕk(t[0,n))| = n · 2k,

where t[0,n) is the prefix of length n of t.
Given a factor u of t, we are interested in the relative positions of bark(N)

in u: we look at all the occurrences of u in t and see what configurations can be
achieved, that is how an interval I such that tI = u can intersect bark(N).

Definition 18 (Cutting set). For all k ≥ 1, we define the set Cutk(u) of
non-empty sets of relative positions of cutting bars

Cutk(u) :=
{

(
[i, i + |u|] ∩ bark(N)

) − i | i ∈ N, u = t[i,i+|u|)

}
.

A cutting set of order k is an element of Cutk(u). Observe that we consider the
closed interval [i, i + |u|] because we are also interested in knowing if the end of
u coincide with a cutting bar.

Example 19. The word u = 01001 is the factor t[3,8) so the set {1, 3, 5} which is
equal to ([3, 8]∩2N)−3 is a cutting set of order 1 of u. Observing that the factor
00 can only occur as a factor of ϕ(10), one easily deduces that it is the unique
cutting set of order 1 of u. On the opposite, we have 010 = t[3,6) = t[10,13), so
that Cut1(010) contains both {1, 3} and {0, 2}.

Remark 20. Let u be a factor of t. Observe that, for all � ≥ 1, Cut�(u)
= ∅. It
results from the following three observations.

Obviously, bark(N) ⊂ bark−1(N) and thus if Cutk(u) is non-empty, then
the same holds for Cutk−1(u). Next notice that if Cutk(u) contains a singleton,
then Cutk+1(u) contains a singleton. Finally, there exists a unique k such that
2k−1 ≤ |u| ≤ 2k − 1. There also exists i such that u = t[i,i+|u|). Simply notice
that either [i, i + |u|] ∩ bark(N) is a singleton or, [i, i + |u|] ∩ bark−1(N) is a
singleton.

Computing the k–binomial Complexity of the Thue–Morse Word 287

Observe that for any word u and any set C ∈ Cutk(u), there is a unique
integer r ∈ {0, 1, . . . , 2k − 1} such that C ⊂ 2k

N + r.

Lemma 21. Let k be a positive integer and u be a factor of t. Let C be a set
{i1 < i2 < · · · < in} in Cutk(u). There is a unique factor v of t of length n − 1
such that u = pϕk(v)s, with |p| = i1. Furthermore, if i1 > 0 (resp., in < |u|),
there is a unique letter a such that p (resp., s) is a proper suffix (resp., prefix)
of ϕk(a).

Definition 22. (Factorization of order k). Let u be a factor of t and C a
cutting set in Cutk(u). By Lemma 21, we can associate with C a unique pair
(p, s) ∈ A∗ × A∗ and a unique triple (a, v, b) ∈ (A ∪ {ε}) × A∗ × (A ∪ {ε}) such
that u = pϕk(v)s, where either a = p = ε (resp., b = s = ε), or a
= ε and
p is a proper suffix of ϕk(a) (resp., b
= ε and s is a proper prefix of ϕk(b)).
In particular, we have a = p = ε exactly when min(C) = 0 and b = s = ε
exactly when max(C) = |u|. The triple (a, v, b) is called the desubstitution of u
associated with C and the pair (p, s) is called the factorization of u associated
with C. If C ∈ Cutk(u), then (a, v, b) and (p, s) are respectively desubstitutions
and factorizations of order k.

Pursuing the reasoning of Example 19, one could easily show that for any
factor u of t of length at least 4, Cut1(u) contains a single set. Furthermore, the
substitution ϕ being primitive and t being aperiodic, Mossé’s recognizability
theorem ensures that the substitution ϕk is bilaterally recognizable [17,18] for all
k ≥ 1, i.e., any sufficiently long factor u of t can be uniquely desubstituted by ϕk

(up to a prefix and a suffix of bounded length). In the case of the Thue–Morse
substitution, we can make this result more precise. Similar results are considered
in [8] where the term (maximal extensible) reading frames is used.

Lemma 23. Let k ≥ 3 be an integer and u be a factor of t of length at least
2k − 1. Then Cutk(u) is a not a singleton if and only if u is a factor of
ϕk−1(010) or of ϕk−1(101), in which case we have Cutk(u) = {C1, C2} and
|min C1 −min C2| = 2k−1. In this case, let (p1, s1), (p2, s2) be the two factoriza-
tions of order k respectively associated with C1, C2 ∈ Cutk(u). Without loss of
generality, assume that |p1| < |p2|. Then, there exists a ∈ A such that either

|p1| + |s1| = |p2| + |s2| and (p2, ϕk−1(a)s2) = (p1ϕk−1(a), s1)

or,

||p1| + |s1| − (|p2| + |s2|)| = 2k and (p2, s2) = (p1ϕk−1(ā), ϕk−1(a)s1).

Example 24. Let us consider u = 101001011. It is a factor of ϕ2(010). We
have Cut3(u) = {{2}, {6}}, which means that (p1, s1) = (10, 1001011) and
(p2, s2) = (101001, 011) are two factorisations of u of order 3. By taking a = 1,
we have (p2, ϕ2(a)s2) = (101001, 1001011) = (p1ϕ2(a), s1) as claimed in the
previous lemma.

288 M. Lejeune et al.

6 Types Associated with a Factor

Remark 25. All the following constructions rely on Lemma23. Thus, in the
remaining of this paper, we will always assume that k ≥ 3.

Lemma 23 ensures us that whenever a word has two cutting sets, then their
associated factorizations are strongly related. We will now show that whenever
two factors u, v of the same length of t admit factorizations of order k that are
similarly related, then these two words are k-binomially equivalent.

To this aim, we introduce an equivalence relation ≡k on the set of pairs
(x, y) ∈ A<2k × A<2k

. The core result of this section is given by Theorem31
stating that two words are k-binomially equivalent if and only if their factoriza-
tions of order k are equivalent for this new relation ≡k. So, the computation of
bt,k(n) amounts to determining the number of equivalence classes for ≡k among
the factorizations of order k for words in Facn(t).

Definition 26. Two pairs (p1, s1) and (p2, s2) of A<2k × A<2k

are equivalent
for ≡k whenever there exists a ∈ A such that one of the following situations
occurs:

1. |p1| + |s1| = |p2| + |s2| and
(a) (p1, s1) = (p2, s2);
(b) (p1, ϕk−1(a)s1) = (p2ϕk−1(a), s2);
(c) (p2, ϕk−1(a)s2) = (p1ϕk−1(a), s1);
(d) (p1, s1) = (s2, p2) = (ϕk−1(a), ϕk−1(ā));

2.
∣
∣|p1| + |s1| − (|p2| + |s2|)

∣
∣ = 2k and

(a) (p1, s1) = (p2ϕk−1(a), ϕk−1(ā)s2);
(b) (p2, s2) = (p1ϕk−1(a), ϕk−1(ā)s1).

Remark 27. Note that if (p1, s1) ≡k (p2, s2), then either |p1| = |p2| or,
||p1| − |p2|| = 2k−1. So (p1, s1) ≡k (p2, s2) implies that |p1| ≡ |p2| (mod 2k−1).

The next result is a direct consequence of Lemma 23.

Corollary 28. If a factor of t has two distinct factorizations of order k, then
these two are equivalent for ≡k.

Definition 29 (Type of order k). Given a factor u of t of length at least
2k−1, the type of order k of u is the equivalence class of a factorization of order k
of u. We also let (pu, su) denote the factorization of order k of u for which |pu|
is minimal (we assume that k is understood from the context). Therefore, two
words u and v have the same type of order k if and only if (pu, su) ≡k (pv, sv).

Example 30. Continuing Example 24, the word u has two factorizations of order
3 that verify case 1.(c) in Definition 26. Thus, (10, 1001011) ≡3 (101001, 011)
and the type of order 3 of u is {(10, 1001011), (101001, 011)}.

Computing the k–binomial Complexity of the Thue–Morse Word 289

Theorem 31. Let u, v be factors of t of length n ≥ 2k − 1. We have

u ∼k v ⇔ (pu, su) ≡k (pv, sv).

The proof that the condition is sufficient easily follows from Corollary 13
and [13, Lemma 31].

The proof that the condition is necessary is done in the extended version of
this paper [13]. First, we consider the case of words u, v that do not have any
non-empty common prefix or suffix and split the result into two lemmas: either
|pu|
≡ |pv| (mod 2k−1) or, |pu| ≡ |pv| (mod 2k−1). We then add a lemma that
permits us to deal with factors having some common prefix or suffix.

7 k-binomial Complexity of the Thue–Morse Word

The first results of this section deal with small factors.

Proposition 32. Let u, v be two different factors of t of length n ≤ 2k − 1,
which do not have any common prefix or suffix. We have u
∼k v.

Corollary 33. Let k ≥ 3. For all n ≤ 2k − 1, we have bt,k(n) = pt(n).

Proof. Let us take two different factors u and v of the same length n ≤ 2k − 1.
If u and v do not share any common prefix or suffix, u
∼k v by the previous
proposition. Otherwise, there exist words x, y, u′, v′ such that u = xu′y and
v = xv′y, where u′ and v′ do not share any common prefix or suffix. We apply the
previous proposition to u′, v′ and conclude because u′
∼k v′ implies u
∼k v [13,
Lemma 10].

Due to Theorem 31, the k-binomial complexity of t can be computed from

bt,k(n) = # (Facn(t)/∼k) = # ({(pu, su) : u ∈ Facn(t)}/≡k) .

The last theorem provides this quantity. The idea of the proof is just to
enumerate all the possible factorizations and count them. The proof can be
found in the extended version [13].

Theorem 34. For all k ≥ 3, n ≥ 2k, we have

#({(pu, su) : u ∈ Facn(t)}/≡k) =
{

3 · 2k − 3, if n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise.

As a consequence of Corollary 33, Theorems 31 and 34, we get the expected
result stated in Theorem 5.

Acknowledgments. We would like to thank Jeffrey Shallit for his participation in
the statement of the initial problem. A conjecture about bt,k(n) was made when he
was visiting the last author.

290 M. Lejeune et al.

References

1. Allouche, J.-P., Shallit, J.: The ubiquitous Prouhet-Thue-Morse sequence. In: Ding,
C., Helleseth, T., Niederreiter, H. (eds.) Sequences and their Applications. Dis-
crete Mathematics and Theoretical Computer Science, pp. 1–16. Springer, London
(1999). https://doi.org/10.1007/978-1-4471-0551-0 1

2. Allouche, J.-P., Shallit, J.: Automatic Sequences. Theory, Applications, General-
izations. Cambridge University Press, Cambridge (2003)

3. Berstel, J., Crochemore, M., Pin, J.-E.: Thue-Morse sequence and p-adic topology
for the free monoid. Discrete Math. 76, 89–94 (1989)

4. Berthé, V., Rigo, M. (eds.): Combinatorics, Automata and Number Theory. Ency-
clopedia Mathematics and Its Application, vol. 135. Cambridge University Press,
Cambridge (2010)

5. Brlek, S.: Enumeration of factors in the Thue-Morse word. Discrete Appl. Math.
24, 83–96 (1989)

6. de Luca, A., Varricchio, S.: Some combinatorial properties of the Thue-Morse
sequence and a problem in semigroups. Theor. Comput. Sci. 63, 333–348 (1989)

7. Freydenberger, D.D., Gawrychowski, P., Karhumäki, J., Manea, F., Rytter, W.:
Testing k-binomial equivalence. arXiv:1509.00622 (2015)

8. Greinecker, F.: On the 2-abelian complexity of the Thue-Morse word. Theor. Com-
put. Sci. 593, 88–105 (2015)

9. Karandikar, P., Kufleitner, M., Schnoebelen, P.: On the index of Simon’s congru-
ence for piecewise testability. Inf. Process. Lett. 115, 515–519 (2015)

10. Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of abelian equiva-
lence and complexity of infinite words. J. Combin. Theory Ser. A 120, 2189–2206
(2013)

11. Karhumäki, J., Saarela, A., Zamboni, L.Q.: Variations of the Morse-Hedlund the-
orem for k -abelian equivalence. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014.
LNCS, vol. 8633, pp. 203–214. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-09698-8 18

12. Lejeune, M.: Au sujet de la complexité k-binomiale. Master thesis, University of
Liège (2018). http://hdl.handle.net/2268.2/5007

13. Lejeune, M., Leroy, J., Rigo, M.: Computing the k-binomial complexity of the
Thue-Morse word. arXiv:1812.07330, 34 p. (2018)

14. Leroy, J., Rigo, M., Stipulanti, M.: Generalized Pascal triangle for binomial coef-
ficients of words. Adv. Appl. Math. 80, 24–47 (2016)

15. Lothaire, M.: Combinatorics on Words. Cambridge Mathematical Library. Cam-
bridge University Press, Cambridge (1997)

16. Morse, M., Hedlund, G.A.: Symbolic dynamics II. Sturmian trajectories. Am. J.
Math. 62, 1–42 (1940)

17. Mossé, B.: Puissances de mots et reconnaissabilité des points fixes d’une substitu-
tion. Theor. Comput. Sci. 99, 327–334 (1992)

18. Mossé, B.: Reconnaissabilité des substitutions et complexité des suites automa-
tiques. Bull. Soc. Math. France 124, 329–346 (1996)

19. Pin, J.É., Silva, P.V.: A noncommutative extension of Mahler’s theorem on inter-
polation series. Eur. J. Combin. 36, 564–578 (2014)

20. Pytheas Fogg, N., et al.: Substitutions in Dynamics, Arithmetics and Combi-
natorics. Lecture Notes in Mathematics, vol. 1794. Springer, Heidelberg (2002).
https://doi.org/10.1007/b13861

https://doi.org/10.1007/978-1-4471-0551-0_1
http://arxiv.org/abs/1509.00622
https://doi.org/10.1007/978-3-319-09698-8_18
https://doi.org/10.1007/978-3-319-09698-8_18
http://hdl.handle.net/2268.2/5007
http://arxiv.org/abs/1812.07330
https://doi.org/10.1007/b13861

Computing the k–binomial Complexity of the Thue–Morse Word 291

21. Rao, M., Rigo, M., Salimov, P.: Avoiding 2-binomial squares and cubes. Theor.
Comput. Sci. 572, 83–91 (2015)

22. Rigo, M.: Formal Languages, Automata and Numeration Systems 1, Introduction
to Combinatorics on Words. Network and Telecommunications Series. ISTE-Wiley,
London (2014)

23. Rigo, M., Salimov, P.: Another generalization of abelian equivalence: binomial
complexity of infinite words. Theor. Comput. Sci. 601, 47–57 (2015)

24. Rigo, M.: Relations on words. Indag. Math. (N.S.) 28, 183–204 (2017)
25. Shur, A.M.: The structure of the set of cube-free words over a two-letter alphabet.

Izv. Math. 64, 847–871 (2000)
26. Shur, A.M.: Combinatorial complexity of rational languages. Diskretn. Anal. Issled.

Oper. Ser. 1 12, 78–99 (2005). (Russian)
27. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Kra.

Vidensk. Selsk. Skrifter. I. Mat. Nat. Kl. 10, Christiana (1912)

Context-Free Word Problem Semigroups

Tara Brough1 , Alan J. Cain1(B) , and Markus Pfeiffer2

1 Centro de Matemática e Aplicações, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

{t.brough,a.cain}@fct.unl.pt
2 School of Computer Science, University of St Andrews, North Haugh, St Andrews,

Fife KY16 9SS, UK
markus.pfeiffer@st-andrews.ac.uk

Abstract. This paper studies the classes of semigoups and monoids
with context-free and deterministic context-free word problem. First,
some examples are exhibited to clarify the relationship between these
classes and their connection with the notions of word-hyperbolicity and
automaticity. Second, a study is made of whether these classes are closed
under applying certain semigroup constructions, including direct prod-
ucts and free products, or under regressing from the results of such con-
structions to the original semigroup(s) or monoid(s).

1 Introduction

The deep connections between formal language theory and group theory are per-
haps most clearly evidenced by the famous 1985 theorem of Muller and Schupp,
which says that a group has context-free word problem if and only if it is vir-
tually free [9,22]; indeed, virtually free groups have deterministic context-free
word problem. Since then, many studies have analyzed the classes of groups
with word problems in various families of formal languages. Herbst and Thomas
characterized the groups with one-counter word problem [14, Theorem 5.1]. (For
a later elementary proof of this result, see [17].) The first author of the present
paper investigated groups whose word problem is an intersection of finitely many
context-free languages [2,5]. Holt et al. studied the class of groups whose co-word
problem is context-free [18] and Holt and Röver studied the class of groups whose
co-word problem is indexed [19].

The word problem of a group is the language of words representing the iden-
tity over some set of generators and their inverses. Thus two words u and v are
equal in a group G if and only if uV is in the word problem, where V is obtained
from v by replacing each symbol by its inverse and reversing the word. A natural
question is how to generalize this definition to semigroups. Duncan and Gilman
[8, Definition 5.1] defined the word problem of a semigroup S with respect to a
generating set A to be

WP(S,A) =
{

u#vrev : u, v ∈ A+, u =S v
}
, (1)

c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 292–305, 2019.
https://doi.org/10.1007/978-3-030-24886-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_22&domain=pdf
http://orcid.org/0000-0002-3576-0670
http://orcid.org/0000-0002-0706-1354
http://orcid.org/0000-0002-9881-4429
https://doi.org/10.1007/978-3-030-24886-4_22

Context-Free Word Problem Semigroups 293

where vrev is the reverse of v. This definition fits well with the group defini-
tion and is natural when considering word problems recognizable by automata
equipped with a stack. It was used by Holt, Owens, and Thomas in their study
of groups and semigroups with one-counter word problem [17], and by Hoffmann
et al. in their study of semigroups with context-free word problem [15].

The main conclusions of Hoffmann et al.’s earlier study were the result that
the class of semigroups with context-free word problem is closed under passing
to finite Rees index subsemigroups and extensions [15, Theorem 1] and a char-
acterization of completely simple semigroups with context-free word problem as
Rees matrix semigroups over virtually free groups [15, Theorem 2].

This paper explores new directions in the study of the class of semigroups
with context-free word problem, including monoids with context-free word prob-
lem, and also considers the classes of semigroups and monoids with determin-
istic context-free word problem. First, Sect. 3 exhibits some natural classes of
semigroups and monoids that lie within and outside these classes; in particular
Example 2 shows that having context-free and deterministic context-free word
problem do not coincide for semigroups or monoids, unlike (as noted above)
for groups. Section 4 discusses connections with the theories of word-hyperbolic
and automatic semigroups: any semigroup or monoid with context-free word
problem is word-hyperbolic, but there are non-automatic semigroups that have
context-free word problem. The remainder of the core of the paper (Sects. 5–8)
focuses on various constructions: direct products, free products, strong semilat-
tices of semigroups, Rees matrix semigroups and Bruck–Reilly extensions. For
each construction, the questions of interest are: (1) Are the classes of semigroups
and monoids with context-free or deterministic context-free word problem closed
under that construction? (2) If the result of applying such a construction lies
in one of these classes, must the original semigroup(s) or monoids(s) lie in that
same class? Finally, Sect. 10 lists some open problems.

2 Preliminaries

The word problem for a semigroup S is defined as (1) above. Similarly, the word
problem for a monoid M with respect to a generating set A is the language

WP(M,A) =
{

u#vrev : u, v ∈ A∗, u =M v
}
. (2)

Proposition 1 ([15, Proposition 8]). Let C be a class of languages closed
under inverse homomorphisms and intersection with regular languages. Then

1. If a semigroup or monoid has word problem in C with respect to some gener-
ating set, then it has word problem in C with respect to any generating set.

2. The class of semigroups (resp. monoids) with word problem in C is closed
under taking finitely generated subsemigroups (resp. submonoids).

The preceding result applies in particular when C is the class of context-free
or deterministic context-free languages [12,20].

294 T. Brough et al.

If a semigroup (resp. monoid) has word problem in a class of languages C, it
is said to be a U(C) semigroup (resp. monoid). We denote the classes of context-
free and deterministic context-free languages by CF and DCF respectively. The
‘U ’ notation is because (1) and (2) treat the word problem as an ‘unfolded’
relation rather than a ‘two-tape’ relation; see [4] for a systematic study.

3 Examples

We recall some less commonly-used terms from the theory of rewriting systems;
see [1] for general background. A rewriting system (A,R) is monadic if it is
length-reducing and the right-hand side of each rewrite rule in R lies in A∪{ε}.
A monadic rewriting system (A,R) is regular (respectively, context-free) if, for
each a ∈ A∪{ε}, the set of all left-hand sides of rewrite rules in R with right-hand
side a is a regular (respectively, context-free) language.

Theorem 1 ([6,Theorem 3.1]). Let (A,R) be a confluent context-free monadic
rewriting system. Then the monoid presented by 〈A |R〉 is U(CF), and a context-
free grammar generating its word problem can be effectively constructed from
context-free grammars describing R.

(The preceding result originally stated that a monoid satisfying the hypoth-
esis was word-hyperbolic; however, the proof proceeds by constructing the word
problem for the monoid. The ‘effective construction’ part follows easily by
inspecting the construction in the proof.)

Example 1. This example shows that a U(CF) monoid need not have a context-
free cross section (that is, a language over some generating set containing a
unique representative for every element).

Let K = {aαbαcα : α ∈ N ∪ {0}} and let L = {a, b, c}∗ − K. It is well-known
that K is not a context-free language but that L is a context-free language. Let
A = {a, b, c, x, y, z} and let R = {(xwy, z) : w ∈ L}. Let M be the monoid
presented by 〈A |R〉. By Theorem 1, M is U(CF). Suppose that M admits a
context-free cross-section. Then M admits a context-free cross-section J ⊆ A∗.
Let u be the unique word in J such that u =M z, and let J ′ = (J \ {u}) ∪ {z};
then J ′ is also a context-free cross-section of M . Let H = J ′ ∩x{a, b, c}∗

y. Then
H is context-free and comprises precisely the words xwy where w ∈ K, for if
w ∈ L, then xwy =M z, and the representative of z in J ′ is the word z itself.
Hence, since the class of context-free languages is closed under right and left
quotients with regular sets, K = x\H/y is context-free. This is a contradiction,
and so M does not admit a context-free cross-section.

Example 2. This example shows that the class of U(DCF) semigroups is properly
contained in the class of U(CF) semigroups.

Let K be the language of palindromes over {a, b}. It is well-known that K
is context-free but not deterministic context-free. Let A = {a, b, x, y, z} and let
R = { (xwy, z) : w ∈ L }. Let M be the monoid presented by 〈A |R〉.

Context-Free Word Problem Semigroups 295

By Theorem 1, M is U(CF). Suppose, with the aim of obtaining a con-
tradiction, that M is U(DCF). Then WP(M,A) is deterministic context-free.
Let L = (WP(M,A) ∩ A∗#z)/{#z} ∩ {a, b, x, y}∗; then L is the language of
words over {a, b, x, y} that are equal to z in M . Furthermore, L is determinis-
tic context-free, since the class of deterministic context-free languages is closed
under intersection with regular languages [20, Theorem 10.4] and right quotient
by regular languages [20, Theorem 10.2].

Now, K = x\L/y. The class of deterministic context-free languages is closed
under left quotient by a singleton (since a deterministic pushdown automaton can
simulate reading a fixed word before it starts reading input), and, as noted above,
is closed under right quotient by regular languages. Hence K is deterministic
context-free. This is a contradiction, and so M is not U(DCF).

Example 3. An example of a monoid that is ‘close’ to being a free group but is not
U(CF) is the free inverse monoid of rank 1 and hence (by Proposition 1) of any
finite rank. This follows from applying the pumping lemma to the intersection
of the word problem and the regular language x∗(x−1)∗x∗#x∗ (where x is the
free generator); see [3, Theorem 1].

4 Relationship to Word-Hyperbolicity and Automaticity

Hyperbolic groups have become one of the most fruitful areas of group theory
since their introduction by Gromov [13]. The concept of hyperbolicity can be
generalized to semigroups and monoids in more than one way, but here we con-
sider the linguistic definition that uses Gilman’s characterization of hyperbolic
groups using context-free languages [11]. A word-hyperbolic structure for a semi-
group S is a pair (L,M(L)), where L is a regular language over an alphabet A
representing a finite generating set for S such that L maps onto S, and where

M(L) = {u#1v#2w
rev : u, v, w ∈ L ∧ uv =S w}

(where #1 and #2 are new symbols not in A) is context-free.

Theorem 2. Every U(CF) semigroup is word-hyperbolic.

The proof is in effect the first paragraph of the proof of Theorem 1 as given
in [6, Proof of Theorem 2].

All hyperbolic groups are automatic [10, Theorem 3.4.5], but word-hyperbolic
semigroups may not even be asynchronously automatic [16, Example 7.7]. Even
within the smaller class of U(CF) semigroups, one can find semigroups that are
not automatic:

Example 4. Let A = {a, b, c, d, z}, let R = {(abαcαd, z) : α ∈ N}. Let M be
the monoid presented by 〈A |R〉. Then M is U(CF) by Theorem 1, but cannot
be automatic [7, Corollary 5.5]. (In fact, it can be shown that M is not even
asynchronously automatic.)

Given that U(CF) groups are virtually free and thus automatic, and since
the monoid in Example 4 is not cancellative, the following question is natural:

Question 1. Is a cancellative U(CF) semigroup necessarily automatic?

296 T. Brough et al.

5 Direct Products

A direct product of two finitely generated semigroups is not necessarily finitely
generated. However, a direct product of two U(CF) semigroups is not necessarily
U(CF), even if it is finitely generated: for example, the free monoid of rank
1 is U(CF), but the direct product of two copies of this monoid is the free
commutative monoid of rank 2, which is finitely generated but not U(CF).

For a semigroup S, we say that S is decomposable if S2 = S. We will show
that for a direct product of two U(CF) semigroups to be U(CF), it is necessary
and sufficient that one of the factors is finite and decomposable (decomposability
being necessary to ensure finite generation). First we establish sufficiency.

Lemma 1. The classes of U(CF) and U(DCF) semigroups are closed under
taking direct product with a finite decomposable semigroup.

Proof. Let S be a U(CF) semigroup and T a finite decomposable semigroup.
Then S × T is finitely generated [23, Theorem 8.2]. Let C be a finite generating
set for S ×T and let A and B be the projections of C onto S and T respectively.
Then A and B are finite generating sets for S and T respectively. Thus there
exists a pushdown automaton A recognising WP(S,A), which can be modified to
give a pushdown automaton A′ recognising WP(S×T,A×B), by processing the
symbols from A as usual, while using the states to record the finite information
required to check validity of the input on the second tape. Hence S×T is U(CF).
Moreover, if S is U(DCF), then A can be taken to be deterministic, in which
case A′ is also deterministc, so S × T is U(DCF). 	

Necessity arises from the following language-theoretic result, which encap-
sulates the idea that context-free languages cannot admit ‘cross-dependencies’.
For words w,w′, we use the notation w′ � w to mean that w′ is a subword of w.

Lemma 2. Let A and B be disjoint alphabets, and let ρA, ρB be equivalence
relations on A∗ and B∗ respectively with infinitely many equivalence classes.
Then the language L(ρA, ρB) = {u1v1u2v2 : (u1, u2) ∈ ρA, (v1, v2) ∈ ρB} is not
context-free.

Proof. Suppose that L = L(ρA, ρB) is context-free, and let k be the pumping
constant for L. Let EA be the set of all equivalence classes of ρA that contain a
word of length at most k, and define EB similarly.

Let w = u1v1u2v2 ∈ L with |v1|, |u2| > k. Then we can write w = pqrst
where |qrs| ≤ k, |qs| ≥ 1 and pqirsit ∈ L for all i ∈ N0. Due to the form of
words in L, q and s must each be a subword of some ui or vi. Moreover, the
lengths of u2 and v1 preclude the possibility that q � u1 and s � u2 or p � v1
and q � v2. Let w′ = prt = u′

1v
′
1u

′
2v

′
2. Then we have u′

i = ui for some i ∈ {1, 2}
and v′

j = vj for some j ∈ {1, 2}. Since w′ ∈ L, this implies that the equivalence
classes of the factors are unchanged between w and w′. By induction, we can
repeat this process until we obtain a word w� = u�

1v
�
1u

�
2v

�
2 ∈ L with |v�

1| ≤ k or
|u�

2| ≤ k, where the u�
i are in the same ρA-equivalence class as the ui and the v�

i

Context-Free Word Problem Semigroups 297

are in the same ρB-equivalence class as the vi. Hence our original word w had
either ui ∈ C for some C ∈ EA or vi ∈ D for some D ∈ EB . But EA and EB

are both finite, and so L cannot contain all words of the form u1v1u2v2 with
(u1, u2) ∈ ρA and (v1, v2) ∈ ρB . Hence L is not context-free. 	

The preceding lemma is immediately applicable only to monoids.

Lemma 3. The direct product of two infinite monoids cannot be U(CF).

Proof. Let S = 〈A〉 and T = 〈B〉 be infinite monoids. Then the relations
ρA = WP(S,A) and ρB = WP(T,B) both have infinitely many equivalence
classes. Moreover, the language L = WP(S × T,A ∪ B) ∩ A∗B∗#A∗B∗ has as
a homomorphic image the language L(ρA, ρB) defined in Lemma 2. Since the
class of context-free languages is closed under homorphisms and intersection
with regular sets, this implies that S × T is not U(CF).

Thus if S × T is U(CF), then at least one of S or T is finite. 	

In order to extend Lemma 3 to all semigroups, we first establish the following

fact (which is clear for monoids, where direct factors are submonoids).

Lemma 4. The class of U(CF) semigroups is closed under taking direct factors.

Proof. Assume that S × T is U(CF). In particular, S × T is finitely generated.
By [23, Theorem 2.1], S and T are finitely generated, and S2 = S and T 2 = T .

Let C = {c1, . . . , ck} be a finite generating set for T . Since T 2 = T , we can
choose a factorization ci = ciζui for each ci ∈ C. Construct a labelled digraph
with vertex set C and an edge from ci to ciζ labelled by ui for each ci ∈ C.
Since this digraph is finite, it must contain a circuit. Fix some vertex c on that
circuit and let w be the concatenation in reverse order of the labels on the edges
around the circuit. Then cw = c.

Let A be a finite generating set for S × T and let B be a finite generating
set for S. Then X = A ∪ (B × {c, w}) is a finite generating set for S × T . Let
R be the regular language (B × {c})(B × {w})∗#(B × {w})∗(B × {c}). Let
L = WP(S × Y,X) ∩ R. Then

(b1, c)(b2, w) · · · (bm, w)#(b′
n, w) · · · (b′

2, w)(b1, c) ∈ L

⇐⇒ (b1b2 · · · bm, cwm−1) =S×T (b′
1b

′
2 · · · b′

n, cwn−1)
⇐⇒ (b1b2 · · · bm, c) =S×T (b′

1b
′
2 · · · b′

n, c)
⇐⇒ b1b2 · · · bm =S b′

1b
′
2 · · · b′

n.

(3)

Define a homomorphism

π :
(
(B × {c, w}) ∪ {#}) → (

B ∪ {#})
, (b,) �→ b, # �→ #.

Then (3) shows that Lπ = WP(S,B). Since the class of context-free languages
is closed under homomorphism [20, Corollary to Theorem 6.2], S is a U(CF)
semigroup. 	

298 T. Brough et al.

Theorem 3. The direct product of two semigroups is U(CF) if and only if it is
finite or one of the factors is U(CF) and the other factor is finite and decom-
posable.

Proof. Sufficiency was already established in Lemma 1.
Conversely suppose that S × T is U(CF). Let C be a finite generating set

for S × T with the projection of C onto the first component being A and the
projection onto the second component being B. By Lemma 4, S and T are both
U(CF). Let A1 = A×{1}, B1 = {1}×B, and C1 = A1∪B1∪C. We will describe a
pushdown automaton P recognising WP(S1×T 1, C1). This automaton is defined
in terms of pushdown automata A, B and C, recognising WP(S,A), WP(T,B)
and WP(S × T,C) respectively.

On input (x, y) ∈ C, the automaton P behaves as a ‘delayed’ version of C,
storing the input symbol in the state and then (except in the start state, which
has no stored symbol) simulating C on input of the current stored symbol. The
automaton may guess at any point that the input is complete, and process the
stored symbol from the current state as an ε-transition. In this case we move to a
state with no stored symbol and accepting no further input, which is a final state
if and only if it is a final state in C. Thus on input in (C ∪ {#})∗, P behaves
exactly like C but ‘one step behind’, and so the sublanguage of (C ∪ {#})∗

accepted by P is WP(S × T,C).
In order to work with input from A1 ∪ B1 we choose, for all x, x′ ∈ A and

y, y′ ∈ B, representatives wx,x′,y and wx,y,y′ in C for the elements (xx′, y) and
(x, yy′) of S × T .

Now, if the automaton P reads the symbol (x′, 1) in a state with stored
symbol (x, y), it simulates reading all but the final symbol of wx,x′,y′ in C from
the current state, and stores the final symbol in the last state of this computation.
Symmetrically, the same occurs when we replace (x′, 1) by (1, y′) and wx,x′,y by
wx,y,y′ . Thus on input u#v from CC∗

1#CC∗
1 , the automaton is able to simulate

processing in C some u′#v′ such that u =S×T u′ and v =S×T v′.
Finally, on input from A1 or B1 in the start state, the automaton guesses

whether the remaining (non-#) input will be in A∗
1 resp. B∗

1 . If it guesses yes,
it moves to a copy of the appropriate automaton A resp. B, treating input
(x, 1) as x and (1, y) as y. Thus the sublanguage of (A1 ∪ {#})∗ recognised
by P is WP(S × {1}, A1), while the sublanguage of (B1 ∪ {#})∗ recognised is
WP({1} × T,B1). If, on the other hand, the automaton guesses no, we describe
what happens on input from A1, the other case being symmetric. Supposing the
input is (x, 1), the automaton guesses which y ∈ B will be read next, and stores
this guess in the state, along with the symbol (x, y). States with a stored guess
y ∈ B operate as usual, except on input of the form (x, y). On such input, the
automaton deletes the ‘guess’ y and otherwise operates as if the input were (x, 1),
since it already simulated reading y earlier. (If x = 1, then we simply delete the
guess and otherwise do nothing.) The automaton must similarly make a guess
on input from A1 or B1 in a state with stored symbol #. Since (x, 1)w(x′, y) =
(x, y)w(x′, 1) for w ∈ A∗

1, the automaton P is now able to simulate reading
a corresponding word in C∗ for any input not in (A1 ∪ {#})∗ ∪ (B1 ∪ {#})∗.

Context-Free Word Problem Semigroups 299

Combined with the fact that P can also simulate the automata A and B on
appropriate inputs, this establishes that P recognises WP(S1 × T 1, C1).

Thus S1×T 1 is U(CF), and so by Lemma 3, without loss of generality we can
assume T 1 is finite. Moreover, S1 is U(CF), and hence so is S, by Proposition 1.2.
By [23, Theorem 8.1], if S is infinite then T must also be decomposable, since
S × T is finitely generated. 	

6 Free Products

Theorem 4. The class of U(CF) semigroups is closed under taking semigroup
free products and under taking free factors.

Proof. Let S and T be U(CF) semigroups. Let AS and AT be finite generating
sets for S and T , respectively, and for X ∈ {S, T}, let PX be a pushdown
automaton recognizing WP(X,AX) accepting by final state, Assume that in
PX , the initial stack content is only a stack bottom symbol ⊥X , which is never
never popped or pushed.

Construct a new pushdown automaton Q recognizing words over AS ∪ AT ∪
{#}, functioning as follows. First, Q will recognize words in (AS ∪AT)+#(AS ∪
AT)+; since this is a regular language, assume without loss that the input is in
this form. When Q begins, it reads a symbol from AX (for some X ∈ {S, T}). It
pushes ⊥X onto its stack and begins to simulate PX . Whenever it is simulating
PX and reads a symbol from AY , where Y �= X, it pushes the current state of
PX onto the stack, then pushes ⊥Y onto the stack and begins to simulate PY .
These alternating simulations of PS and PT continue until the # is encountered.

On reading the symbol #, the automaton Q continues to simulate whichever
PX it was currently simulating. After this point, whenever it is simulating PX

(for some X ∈ {S, T}) and reads a symbol from AY , where Y �= X, how it
proceeds depends on whether the currently-simulated PX is in an accept state:

– If it is in accept state, Q pops symbols from its stack until it encounters
⊥X , which it pops, then pops the state of PY , restores the simulation of PY

from this state (and with the stack contents down to the symbol ⊥Y), and
simulates PY on reading # and then on reading the symbol just read by Q.
(If after popping ⊥X the stack of Q is empty, it fails.)

– If it is not in an accept state, Q fails.

These alternating simulations of PS and PT continue until the end of the input
unless Q fails before then. At this point Q accepts if the currently-simulated
PX is in an accept state, and if the stack only contains symbols from the stack
alphabet BX plus a single symbol ⊥X .

It follows from the above description that Q recognizes strings of the form

u1u2 · · · uk#vrev
k · · · vrev

2 vrev
1 , (4)

where ui#vrev
i ∈ L(PX(i)) and either X(2j) = S and X(2j + 1) = T , or else

X(2j) = T and X(2j + 1) = S. Thus Q recognizes strings (4) such that

u1u2 · · · uk =S∗T v1v2 · · · vk,

300 T. Brough et al.

and the ui and vi are either both in A+
X or both in A+

Y for alternating i. Thus
Q recognizes WP(S ∗ T,AX ∪ AY).

The free factors of a finitely generated free product are themselves finitely
generated, so closure under free factors follows from Proposition 1(2). 	

Notice that the strategy of the proof of Theorem 4 cannot be applied to
show that the class of U(DCF) semigroups is closed under taking free products.
The problem is in the very last step: after the automaton has read its last
input symbols from some AX , it cannot deterministically check that the stack
only contains symbols from the stack alphabet BX plus a single symbol ⊥X .
Therefore the following question remains open:

Question 2. Is the class of U(DCF) semigroups closed under forming free prod-
ucts?

Theorem 5. The class of U(CF) monoids is closed under taking monoid free
products and free factors.

Proof (Sketch proof). It is easy to see that the construction of the Q from the
proof of Theorem 4 can be adapted to the case of monoid free products. Using the
notation from that proof, one observes that for X ∈ {S, T} the language of words
over AX representing the identity of X is a context-free language KX . Then one
first modifies Q to accept # (that is, the empty word, followed by #, followed
by the empty word), then modifies Q so that it can non-deterministically read a
string from either KX at any point (including while reading another string from
KY for Y ∈ {S, T}, so that such strings can be ‘nested’). 	

7 Strong Semilattices

We recall the definition of a strong semilattice of semigroups here, and refer the
reader to [21, Sect. 4.1] for further background reading:

Let Y be a semilattice. Recall that the meet of α, β ∈ Y is denoted α ∧ β.
For each α ∈ Y , let Sα be a semigroup. For α ≥ β, let φα,β : Sα → Sβ be a
homomorphism such that

1. For each α ∈ Y , the homomorphism φα,α is the identity mapping.
2. For all α, β, γ ∈ Y with α ≥ β ≥ γ, φα,βφβ,γ = φα,γ .

The strong semilattice of semigroups S = S[Y ;Sα;φα,β] consists of the disjoint
union

⋃
α∈Y Sα with the following multiplication: if x ∈ Sα and y ∈ Sβ , then

xy = (xφα,α∧β)(yφβ,α∧β).

Theorem 6. Let C be a class of languages closed under finite union, inverse
gsm-mappings and intersection with regular languages (in particular, the class
CF). A strong semilattice of semigroups is U(C) if and only if it is finitely
generated and all the semigroups in its semilattice are U(C).

Context-Free Word Problem Semigroups 301

Proof. Let S = S[Y ;Sα;φα,β] be a strong semilattice of semigroups. If S is U(C),
then it is finitely generated by some set A. It follows from the definition of a
strong semilattice of semigroups that Y is generated by those α ∈ Y such that
A ∩ Sα �= ∅, and so is finite, and that each Sα is finitely generated by elements
of the form aφβ,α where a ∈ Sβ and β ≥ α. Moreover, all the Sα are U(C), since
they are finitely generated subsemigroups of S.

Conversely, suppose that Y is finite and each Sα is U(C). For each α ∈ Y ,
let Aα be a finite generating set for Sα and A′

α =
⋃

β≥α Aα. Let A =
⋃

α∈Y Aα.
Define homomorphisms φα : (A′

α)∗ → A∗
α by x �→ xφβ,α for x ∈ Aβ .

We can view WP(S,A) as the union of its restrictions to each Sα: that is, as
the union of the languages Lα = {u#vrev ∈ WP(S,A) : u, v ∈ Sα}. In turn, each
Lα can be expressed as L′

α ∩Rα, where L′
α = {u#vrev : u, v ∈ A∗, uφα =Sα

vφα}
and Rα = {u#vrev : u, v ∈ A∗, u, v ∈ Sα}. Note that u#vrev ∈ L′

α implies u, v ∈
Sβ for some β ≥ α, since otherwise φα is not defined. We have L′

α, Rα ⊆ (A′
α)∗

for all α ∈ Y .
Defining R′

α = {w ∈ (A′
α)∗ : w ∈ Sα}, we have Rα = R′

α#R′
α (since member-

ship of w in Sα depends only on the content of w). The language R′
α is recognised

by a finite automaton consisting of the semilattice Y with an adjoined top ele-
ment � as the start state, and final state α. The transition function is given by
the meet operation: (�, x) �→ γ and (β, x) �→ β ∧ γ for x ∈ Aγ . A word w is
accepted by this automaton if and only if the meet of all γ such that w contains
a symbol in Aγ is α. Thus R′

α is regular, and hence so is Rα, as a concatenation
of regular languages.

Now choose a homomorphism ψα : (A′
α)∗ → A∗

α defined by x �→ wx such that
wx =S xφα. Let W = { wx : w ∈ A∗

α } and M = WP(Sα, Aα)∩W ∗. Then M ∈ C,
and L′

α is the inverse image of M under the gsm-mapping from (A′
α)∗#(A′

α)∗

to (Aα)∗#(Aα)∗ that preserves # and maps all symbols in x before the # to
xψα and all symbols x after the # to (xψα)rev. Since C is closed under inverse
gsm-mappings, L′

α is thus in C. In turn, Lα is in C, hence so is WP(S,A), as the
union of the finitely many Lα. 	

The class DCF is not closed under finite union [20, Theorem 10.5(b)]. We con-
jecture that a finitely generated strong semilattice of U(DCF) semigroups need
not be U(DCF). Let Y = {α, β} be a two-element semilattice with α > β. Let Sα

be the free group generated by {x, y} and let Sβ be Z (under +). Define φα,β to
be the homomorphism extending x �→ 1, y �→ −1. Both Sα and Sβ are virtually
free groups and so U(DCF), but the word problem of S[

Y ; {Sα, Sβ};φα,β

]
does

not appear to be deterministic context-free, for checking equality in Sα seems
to require computing reduced words on the stack, while checking equality in Z

seems to require using the stack as a counter, and there is no way to know in
advance which is required.

8 Rees Matrix Semigroups

Let us recall the definition of a Rees matrix semigroup. Let S be a semigroup,
let I and Λ be abstract index sets, and let P ∈ MatΛ×I(S) (that is, P is a Λ× I

302 T. Brough et al.

matrix with entries from S). Denote the (λ, i)-th entry of P by pλi. The Rees
matrix semigroup over S with sandwich matrix P , denoted M[S; I, Λ;P], is the
set I × S × Λ with multiplication defined by

(i, x, λ)(j, y, μ) = (i, xpλjy, μ).

This construction is important because it arises in the classification of completely
simple semigroups as Rees matrix semigroups over groups; see [21, Sect. 3.2–3.3].

Hoffmann et al. showed that a completely simple semigroup is U(CF) if and
only if it is isomorphic to a Rees matrix semigroup over a finitely generated vir-
tually free group [15, Theorem 2]; their proof depends on virtually free groups
having deterministic context-free word problem. The following theorem general-
izes Hoffmann et al.’s characterization to Rees matrix semigroups over arbitrary
semigroups. See [12,20] for background on inverse gsm-mappings.

Theorem 7. Let C be a class of languages closed under inverse gsm-mappings
and intersection with regular languages (in particular, CF or DCF). Then a
finitely generated Rees matrix semigroup over a semigroup S is U(C) if and only
if S is U(C).

Proof. Let M = M[S; I, Λ;P] be a Rees matrix semigroup and let C be as in
the statement of the theorem. If M is U(C), then it must be finitely generated,
hence S is also finitely generated and thus U(C).

Conversely, suppose that S is U(C) and M is finitely generated by B ⊆
I × S × Λ, and let A be the projection of B onto S. For each i ∈ I and λ ∈ Λ,
choose a word wλi ∈ A∗ representing pλi. Let W be the (finite) set of all the wλi.
Let L = WP(S,A) ∩ (AW)∗A#A(WA)∗, which is in C, as the intersection of
a language in C with a regular language. We will define a gsm-mapping Φ such
that WP(M,B) is the inverse image of L under Φ.

First, define a gsm-mapping φ : B∗ → A∗ by

(i1, x1, λ1) . . . (im, xm, λm) �→ x1wλ1i2x2 . . . wλm−1im
xm.

Then for w = (i1, x1, λ1) . . . (im, xm, λm) we have w =M (i(w), wφ, λ(w)), where
i(w) := i1 and λ(w) := λm.

Now extend φ to a gsm-mapping Φ : (B ∪ {#})∗ → (A ∪ {#})∗ as follows:
For u, v ∈ B∗ and w ∈ (B ∪ {#})∗, let (u#vrev)Φ = uφ#(vφ)revc, where c = ε
if i(u) = i(v) and λ(u) = λ(v), and c = # otherwise. (Since I and Λ are finite,
the computation of c can be done by storing i(u) and λ(u) in the state and then
checking against λ(v) and i(v).) Let (u#vrev#w)Φ = uφ#(vφ)rev# (achieved by
storing in the state whether # has already been seen).

The preimage of L in (B ∪ {#})∗ under Φ consists of all words of the form
u#vrev with u, v ∈ B∗ such that i(u) = i(v), λ(u) = λ(v) and uφ#(vφ)rev ∈
WP(S,A). But this is exactly all u#vrev such that u =M v, so LΦ−1 =
WP(M,B). Hence M is U(C), since its word problem is obtained from a language
in C by an inverse gsm-mapping. 	

Context-Free Word Problem Semigroups 303

The fact that every completely regular semigroup is isomorphic to a semilat-
tice (not necessarily strong) of completely simple semigroups [21, Theorem 4.1.3]
raises the following question:

Question 3. Which completely regular semigroups are U(CF)?

9 Bruck–Reilly Extensions

Let M be a monoid with presentation 〈A |R〉 and φ : M → M an endomorphism.
The Bruck–Reilly extension BR(M,φ) of M by φ is the monoid with presentation
〈A, b, c |R, bc = 1, ba = (aφ)b, ac = c(aφ) (a ∈ A)〉. This is an analogue for
monoids of the notion of HNN-extensions for groups.

If φ is the identity endomorphism, then BR(M,φ) is isomorphic to the direct
product of M with the bicyclic monoid generated by {b, c}. Thus by Lemma 3 the
class of U(CF) semigroups is not closed under Bruck–Reilly extensions. However,
we can establish a necessary and sufficient condition for BR(M,φ) to be U(CF),
though we omit the proof here.

Theorem 8. Let M be a monoid and φ : M → M an endomorphism. Then
BR(M,φ) is U(CF) if and only if M is U(CF) and imφn is finite for some n.

10 Further Open Problems

Question 4. Does every cancellative U(CF) semigroup have deterministic
context-free word problem?

Question 5. Is it possible to characterize the commutative (respectively, can-
cellative, inverse) U(CF) semigroups?

The previous two questions are motivated by the group case, since the classes
of U(CF) and U(DCF) groups coincide and are precisely the virtually free
groups. In particular, the abelian U(CF) groups are thus either finite or of the
form Z × F , where F is finite and abelian.

Question 6. Does there exist an infinite periodic U(CF) semigroup?

Acknowledgements. The first author was supported by the FCT (Fundação para a
Ciência e a Tecnologia/Portuguese Foundation for Science and Technology) fellowship
SFRH/BPD/121469/2016 and by the FCT project UID/Multi/04621/2013.

The second author was supported by the ‘Investigador FCT’ fellowship IF/
01622/2013/CP1161/CT0001.

For the first and second authors, this work was partially supported by FCT
projects UID/MAT/00297/2019 (Centro de Matemática e Aplicações), PTDC/MHC-
FIL/2583/2014 and PTDC/MAT-PUR/31174/2017.

This work was started during a visit by the third author to the Universidade
Nova de Lisboa, which was supported by the exploratory project IF/01622/2013/
CP1161/CT0001 attached to the second author’s research fellowship.

304 T. Brough et al.

References

1. Book, R.V., Otto, F.: String Rewriting Systems. Texts and Monographs in Com-
puter Science. Springer, New York (1993). https://doi.org/10.1007/978-1-4613-
9771-7

2. Brough, T.: Groups with poly-context-free word problem. Groups Complex. Cryp-
tol. 6(1), 9–29 (2014). https://doi.org/10.1515/gcc-2014-0002

3. Brough, T.: Word problem languages for free inverse monoids. In: Konstantinidis,
S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 24–36. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94631-3 3

4. Brough, T., Cain, A.J.: A language hierarchy of binary relations (2018)
5. Brough, T.R.: Groups with poly-context-free word problem. Ph.D. thesis, Univer-

sity of Warwick (2010). https://wrap.warwick.ac.uk/35716/
6. Cain, A.J., Maltcev, V.: Context-free rewriting systems and word-hyperbolic struc-

tures with uniqueness. Int. J. Algebra Comput. 22(7) (2012). https://doi.org/10.
1142/S0218196712500610

7. Campbell, C.M., Robertson, E.F., Ruškuc, N., Thomas, R.M.: Automatic semi-
groups. Theor. Comput. Sci. 250(1–2), 365–391 (2001). https://doi.org/10.1016/
S0304-3975(99)00151-6

8. Duncan, A., Gilman, R.H.: Word hyperbolic semigroups. Math. Proc. Camb. Phi-
los. Soc. 136(3), 513–524 (1999). https://doi.org/10.1017/S0305004103007497

9. Dunwoody, M.J.: The accessibility of finitely presented groups. Invent. Math.
81(3), 449–457 (1985). https://doi.org/10.1007/BF01388581

10. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S.,
Thurston, W.P.: Word Processing in Groups. Jones & Bartlett, Boston (1992)

11. Gilman, R.H.: On the definition of word hyperbolic groups. Math. Z. 242(3), 529–
541 (2002). https://doi.org/10.1007/s002090100356

12. Ginsburg, S., Greibach, S.: Deterministic context free languages. Inf. Control 9(6),
620–648 (1966). https://doi.org/10.1016/S0019-9958(66)80019-0

13. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group The-
ory. Mathematical Sciences Research Institute Publications, vol. 8, pp. 75–263.
Springer, New York (1987). https://doi.org/10.1007/978-1-4613-9586-7 3

14. Herbst, T., Thomas, R.M.: Group presentations, formal languages and charac-
terizations of one-counter groups. Theor. Comput. Sci. 112(2), 187–213 (1993).
https://doi.org/10.1016/0304-3975(93)90018-O

15. Hoffmann, M., Holt, D.F., Owens, M.D., Thomas, R.M.: Semigroups with a
context-free word problem. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS,
vol. 7410, pp. 97–108. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31653-1 10

16. Hoffmann, M., Kuske, D., Otto, F., Thomas, R.M.: Some relatives of automatic
and hyperbolic groups. In: Gomes, G.M.S., Pin, J.É., Silva, P.V. (eds.) Semigroups,
Algorithms, Automata and Languages, pp. 379–406. World Scientific, River Edge
(2002). https://doi.org/10.1142/9789812776884 0016

17. Holt, D.F., Owens, M.D., Thomas, R.M.: Groups and semigroups with a one-
counter word problem. J. Aust. Math. Soc. 85(02), 197 (2008). https://doi.org/
10.1017/S1446788708000864

18. Holt, D.F., Rees, S., Röver, C.E., Thomas, R.M.: Groups with context-free co-word
problem. J. London Math. Soc. 71(3), 643–657 (1999). https://doi.org/10.1112/
S002461070500654X

https://doi.org/10.1007/978-1-4613-9771-7
https://doi.org/10.1007/978-1-4613-9771-7
https://doi.org/10.1515/gcc-2014-0002
https://doi.org/10.1007/978-3-319-94631-3_3
https://wrap.warwick.ac.uk/35716/
https://doi.org/10.1142/S0218196712500610
https://doi.org/10.1142/S0218196712500610
https://doi.org/10.1016/S0304-3975(99)00151-6
https://doi.org/10.1016/S0304-3975(99)00151-6
https://doi.org/10.1017/S0305004103007497
https://doi.org/10.1007/BF01388581
https://doi.org/10.1007/s002090100356
https://doi.org/10.1016/S0019-9958(66)80019-0
https://doi.org/10.1007/978-1-4613-9586-7_3
https://doi.org/10.1016/0304-3975(93)90018-O
https://doi.org/10.1007/978-3-642-31653-1_10
https://doi.org/10.1007/978-3-642-31653-1_10
https://doi.org/10.1142/9789812776884_0016
https://doi.org/10.1017/S1446788708000864
https://doi.org/10.1017/S1446788708000864
https://doi.org/10.1112/S002461070500654X
https://doi.org/10.1112/S002461070500654X

Context-Free Word Problem Semigroups 305

19. Holt, D.F., Röver, C.E.: Groups with indexed co-word problem. Int. J. Algebra
Comput. 16(5), 985–1014 (2006). https://doi.org/10.1142/S0218196706003359

20. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation, 1st edn. Addison-Wesley, Reading (1979)

21. Howie, J.M.: Fundamentals of Semigroup Theory. London Mathematical Society
Monographs: New Series, vol. 12. Clarendon Press, Oxford University Press, New
York (1995)

22. Muller, D.E., Schupp, P.E.: Groups, the theory of ends, and context-free lan-
guages. J. Comput. Syst. Sci. 26(3), 295–310 (1983). https://doi.org/10.1016/
0022-0000(83)90003-X

23. Robertson, E.F., Ruškuc, N., Wiegold, J.: Generators and relations of direct prod-
ucts of semigroups. Trans. Am. Math. Soc. 350(07), 2665–2686 (1998). https://
doi.org/10.1090/S0002-9947-98-02074-1

https://doi.org/10.1142/S0218196706003359
https://doi.org/10.1016/0022-0000(83)90003-X
https://doi.org/10.1016/0022-0000(83)90003-X
https://doi.org/10.1090/S0002-9947-98-02074-1
https://doi.org/10.1090/S0002-9947-98-02074-1

Analysis of Symbol Statistics
in Bicomponent Rational Models

M. Goldwurm1(B), J. Lin2, and M. Vignati1

1 Dipartimento di Matematica, Università degli Studi di Milano, Milan, Italy
massimiliano.goldwurm@unimi.it

2 Department of Mathematics, Khalifa University, Abu Dhabi, United Arab Emirates

Abstract. We study the local limit distribution of sequences of random
variables representing the number of occurrences of a symbol in words
of length n in a regular language, generated at random according to a
rational stochastic model. We present an analysis of the main local limits
when the finite state automaton defining the stochastic model consists
of two primitive components. Our results include an evaluation of the
convergence rate, which in the various cases is of an order slightly slower
than O(n−1/2).

1 Introduction

This work continues the analysis developed in [3,7,10] on the limit distribution
of the number of symbol occurrences in words of given length, chosen at random
in regular languages. More precisely, we consider sequences of random variables
{Yn}, where each Yn is the number of occurrences of a symbol a in a word w
of length n, generated at random in a rational stochastic model. Such a model
can be formally defined by a finite state automaton with real positive weights on
transitions. In this setting the probability of generating a word w is proportional
to the weight the automaton associates with w; thus, the language recognized
by the automaton is the family of all words having non-null probability to be
generated. This model is quite general, it includes as special cases the traditional
Bernoullian and Markovian sources [13,14] and contains the random generation
of words of length n in any regular language under uniform distribution.

The properties of {Yn} are of particular interest for the analysis of regular
patterns occurring in words generated by Markovian models [3,13,14] and for
the asymptotic estimate of the coefficients of rational series in commutative vari-
ables [3,4]. They are also related to the study of the descriptional complexity
of languages and computational models [5] and to the analysis of the values
of additive functions defined on regular languages [11]. Clearly, the asymptotic
behaviour of {Yn} depends on the properties of the finite state automaton A
defining the stochastic model. It is known that if A has a primitive transition
matrix then Yn has a Gaussian limit distribution [3,13] and, under a suitable
aperiodicity condition, it also satisfies a local limit theorem [3]. The limit distri-
bution of Yn in the global sense is known also when the transition matrix of A
c© Springer Nature Switzerland AG 2019
P. Hofman and M. Skrzypczak (Eds.): DLT 2019, LNCS 11647, pp. 306–318, 2019.
https://doi.org/10.1007/978-3-030-24886-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24886-4_23&domain=pdf
https://doi.org/10.1007/978-3-030-24886-4_23

Analysis of Symbol Statistics in Bicomponent Rational Models 307

consists of two primitive components [7] and a first (non-Gaussian) local limit
theorem in a particular bicomponent case is presented in [10].

Here we improve these results presenting an analysis of the local limits of {Yn}
when the transition matrix of A consists of two primitive components equipped
with some transition from the first to the second component. At the cost of
adding suitable aperiodicity conditions, we prove that the main convergences
in distribution obtained in [7] also hold true in the local sense. Moreover, we
evaluate the rates of convergence to our limits both in the primitive case and
in all bicomponent cases (a tight convergence rate is a natural goal in these
contexts [12]). Our results are obtained by applying the Saddle Point Method
[8, Chapter VII] and, as our limit densities often are not normal, proofs can be
regarded as an application of this tool in non-Gaussian cases1.

In this context it is crucial to observe that a local limit theorem does not fol-
low immediately from a traditional convergence in distribution (which occurs for
instance in the usual central limit theorems), since single probabilities are differ-
ences of values of the corresponding distribution functions, and hence they may
not be detected by a standard analysis of convergence in law. Usually, in order to
prove a local limit theorem from a convergence in distribution, some additional
regularity or aperiodicity conditions are necessary; standard counterexamples
show that such conditions cannot be avoided [4,9].

The material we present is organized as follows. In Sect. 2 we define the
problem, recalling the notions of convergence in distribution and local limit law.
In Sect. 3 we revise the primitive case stating a local limit theorem for our
statistics Yn with a convergence rate of the order O(n−1/2). In Sect. 4 we study
the behaviour of Yn in (communicating) bicomponent models: first we show a
Gaussian local limit property when there is a dominant component, yielding a
convergence rate analogous to the primitive model. Then, in Subsect. 4.1, we
consider the equipotent bicomponent case, occurring when the main eigenvalues
of the two components coincide; in this case the results depend on the values of
four constants: β1, γ1 and β2, γ2, representing the leading terms of mean value
and variance of our statistics associated to the first and the second component,
respectively. When β1 �= β2 we strengthen the result on local limit towards a
uniform density obtained in [10] by showing a convergence rate “almost” of the
order O(n−1/2 log3/2 n). If β1 = β2 but γ1 �= γ2, then the local limit density
turns out to be a suitable mixture of Gaussian densities, with a convergence
rate “almost” of the order O(n−1/2 log2 n). When β1 = β2 and γ1 = γ2 we
obtain again a Gaussian local limit with convergence rate O(n−1/2). Finally,
these results are summarized in the last section, where we discuss possible future
investigations.

2 Problem Setting

Given the binary alphabet {a, b}, for every word w ∈ {a, b}∗ we denote by |w|
the length of w and by |w|a the number of occurrences of a in w. For each n ∈ N,
1 However, due to space constraints, all proofs in the present work are omitted.

308 M. Goldwurm et al.

we also represent by {a, b}n the set {w ∈ {a, b}∗ : |w| = n}. Here a formal series
in the non-commutative variables a, b is a function r : {a, b}∗ → R+, where
R+ = {x ∈ R | x ≥ 0}, and for every w ∈ {a, b}∗ we denote by (r, w) the
value of r at w. Such a series r is called rational if for some integer m > 0
there is a monoid morphism μ : {a, b}∗ → R

m×m
+ and two arrays ξ, η ∈ R

m
+ ,

such that (r, w) = ξ′μ(w)η, for every w ∈ {a, b}∗ [2,15]. In this case, as the
morphism μ is generated by matrices A = μ(a) and B = μ(b), we say that the
4-tuple (ξ,A,B, η) is a linear representation of r of size m. Clearly, such a 4-
tuple can be considered as a finite state automaton over the alphabet {a, b}, with
transitions (as well as initial and final states) weighted by positive real values.
Throughout this work we assume that the set {w ∈ {a, b}n : (r, w) > 0} is not
empty for every n ∈ N+ (so that ξ �= 0 �= η), and that A and B are not null
matrices, i.e. A �= [0] �= B. Then we can consider the probability measure Pr
over the set {a, b}n given by

Pr(w) =
(r, w)

∑
x∈{a,b}n(r, x)

=
ξ′μ(w)η

ξ′(A + B)nη
∀ w ∈ {a, b}n

Note that, if r is the characteristic series of a language L ⊆ {a, b}∗ then Pr is
the uniform probability function over the set L ∩ {a, b}n. Thus we can define
the random variable (r.v. for short) Yn = |w|a, where w is chosen at random in
{a, b}n with probability Pr(w). As A �= [0] �= B, Yn is not a degenerate r.v.. It
is clear that, for every k ∈ {0, 1, . . . , n},

pn(k) := Pr(Yn = k) =

∑
|w|=n,|w|a=k(r, w)
∑

w∈{a,b}n(r, w)

Since r is rational also the previous probability can be expressed by using its
linear representation. It turns out that

pn(k) =
[xk]ξ′(Ax + B)nη

ξ′(A + B)nη
∀ k ∈ {0, 1, . . . , n} (1)

For sake of brevity we say that Yn is defined by the linear representation
(ξ,A,B, η). The distribution of Yn can be represented by the map hn(z) and
the characteristic function Ψn(t), given respectively by

hn(z) = ξ′(Aez + B)nη ∀ z ∈ C (2)

Ψn(t) =
∑n

k=0 pn(k)eitk = ξ′(Aeit+B)nη
ξ′(A+B)nη = hn(it)

hn(0) ∀ t ∈ R (3)

In particular mean value and variance of Yn are determined by

E(Yn) =
h′

n(0)
hn(0)

, Var(Yn) =
h′′

n(0)
hn(0)

−
(

h′
n(0)

hn(0)

)2

(4)

Our general goal is to study the limit distribution of {Yn} as n grows to +∞
and in particular its possible local limit law.

Analysis of Symbol Statistics in Bicomponent Rational Models 309

We recall that a sequence of r.v.’s {Xn} converges in distribution (or in law) to
a random variable X of distribution function F if limn→+∞ Pr(Xn ≤ x) = F (x) ,
for every x ∈ R of continuity for F . The central limit theorems yield classical
examples of convergence in distribution to a Gaussian random variable.

Instead, the local limit laws establish the convergence of single probabilities to
a density function (see for instance [1,8,9]). More precisely, consider a sequence
of r.v.’s {Xn} such that each Xn takes value in {0, 1, . . . , n}. We say that {Xn}
satisfies a local limit law of Gaussian type if there are two real sequences {an},
{sn}, satisfying an ∼ E(Xn), s2n ∼ Var(Xn) and sn > 0 for all n, such that for
some real εn → 0, the relation

∣
∣
∣
∣
∣
snPr (Xn = k) − e−(k−an

sn
)2/2

√
2π

∣
∣
∣
∣
∣

≤ εn (5)

holds uniformly for every k ∈ {0, 1, . . . , n} and every n ∈ N large enough. Here,
εn yields the convergence rate (or the speed) of the law. A well-known example
of such a property is given by the de Moivre-Laplace local limit theorem, which
concerns sequences of binomial r.v.’s [9].

Similar definitions can be given for other (non-Gaussian) types of local limit
laws. In this case the Gaussian density e−x2/2/

√
2π appearing in (5) is replaced

by some density function f(x); clearly, if f(x) is not continuous at some points,
the uniformity of k must be adapted to the specific case.

3 Primitive Models

A relevant case occurs when M = A + B is primitive, i.e. Mk > 0 for some
k ∈ N [16]. In this case it is known that Yn has a Gaussian limit distribution
and satisfies a local limit property [3,13]. Here we improve this result, showing
a convergence rate O(n−1/2), and revisit some material appearing in [3,4] that
is useful in the following sections.

Since M is primitive, by Perron-Frobenius Theorem, it admits a real eigen-
value λ > 0 greater than the modulus of any other eigenvalue. Thus, we can
consider the function u = u(z) implicitly defined by the equation

Det(Iu − Aez − B) = 0

such that u(0) = λ. It turns out that, in a neighbourhood of z = 0, u(z) is
analytic, is a simple root of the characteristic polynomial of Aez + B and |u(z)|
is strictly greater than the modulus of all other eigenvalues of Aez+B. Moreover,
a precise relationship between u(z) and function h(z), defined in (2), is proved in
[3] stating that there are two positive constants c, ρ and a function r(z) analytic
and non-null at z = 0, such that

hn(z) = r(z) u(z)n + O(ρn) ∀z ∈ C : |z| ≤ c (6)

where ρ < |u(z)| and in particular ρ < λ.

310 M. Goldwurm et al.

Mean value and variance of Yn can be estimated from relations (4) and (6).
In turns out [3] that the constants

β =
u′(0)

λ
and γ =

u′′(0)
λ

−
(

u′(0)
λ

)2

(7)

are strictly positive and satisfy the relations

E(Yn) = βn + O(1) and Var(Yn) = γn + O(1)

Other properties concern function y(t) = u(it)/λ, defined for real t in a neigh-
bourhood of 0. In particular, there exists a constant c > 0, for which relation
(6) holds true, satisfying the following relations [3]:

|y(t)| = 1 − γ

2
t2 + O(t4), arg y(t) = βt + O(t3), |y(t)| ≤ e− γ

4 t2 ∀ |t| ≤ c (8)

The behaviour of y(t) can be estimated precisely when t tends to 0. For any q
such that 1/3 < q < 1/2 it can be proved [3] that

y(t)n = e− γ
2 t2n+iβtn(1 + O(t3)n) for |t| ≤ n−q (9)

The previous properties can be used to prove a local limit theorem for {Yn}
when M is primitive, with a convergence rate O(n−1/2). The result, stated in
Theorem 1 below, holds under a further assumption, introduced to avoid period-
icity phenomena. To state this condition properly, consider the transition graph
of the finite state automaton defined by matrices A and B, i.e. the directed
graph G with vertex set {1, 2, . . . ,m} such that, for every i, j ∈ {1, 2, . . . ,m}, G
has an edge from i to j labelled by a letter a (b, respectively) whenever Aij > 0
(Bij > 0, resp.). Also denote by d the GCD of the differences in the number
of occurrences of a in the (labels of) cycles of equal length of G. Here and in
the sequel we say that the pair (A,B) is aperiodic if d = 1. Such a property is
often verified; for instance it holds true whenever Aij > 0 and Bij > 0 for two
(possibly equal) indices i, j.

Theorem 1. Let {Yn} be defined by a linear representation (ξ,A,B, η) such
that M = A + B is primitive, A �= [0] �= B and (A,B) is aperiodic. Moreover,
let β and γ be defined by equalities (7). Then, as n tends to +∞, the relation

∣
∣
∣
∣
∣
∣

√
nPr (Yn = k) − e− (k−βn)2

2γn√
2πγ

∣
∣
∣
∣
∣
∣

= O
(
n−1/2

)
(10)

holds true uniformly for every k ∈ {0, 1, . . . , n}.

4 Bicomponent Models

In this section we study the behaviour of {Yn}n∈N defined by a linear rep-
resentation (ξ,A,B, η) of size m, such that the matrix M = A + B con-
sists of two irreducible components. Formally, there are two linear representa-
tions, (ξ1, A1, B1, η1) and (ξ2, A2, B2, η2), of size m1 and m2 respectively, where
m = m1 + m2, such that:

Analysis of Symbol Statistics in Bicomponent Rational Models 311

(1) for some A0, B0 ∈ R
m1×m2
+ we have

ξ′ = (ξ′
1, ξ

′
2), A =

(
A1 A0

0 A2

)

, B =
(

B1 B0

0 B2

)

, η =
(

η1
η2

)

(11)

(2) M1 = A1 + B1 and M2 = A2 + B2 are irreducible matrices and we denote
by λ1 and λ2 the corresponding Perron-Frobenius eigenvalues;

(3) ξ1 �= 0 �= η2 and matrix M0 = A0 + B0 is different from [0].

Note that condition (2) is weaker than a primitivity hypothesis for M1 and
M2. Condition (3) assures that there is communication from the first to the
second component and hence the main term of the probability function of Yn

also depends on the convolution of their behaviours.
Assuming these hypotheses the limit properties of {Yn} first depend on

whether λ1 �= λ2 or λ1 = λ2. In the first case there is a dominant compo-
nent, corresponding to the maximum between λ1 and λ2, which determines the
asymptotic behaviour of {Yn}. In the second case the two components are equipo-
tent and they both contribute to the limit behaviour of {Yn}. In both cases the
corresponding characteristic function has some common properties.

For j = 1, 2, let us define h
(j)
n (z), uj(z), yj(t), βj , and γj , respectively, as the

values hn(z), u(z), y(t), β, γ referred to component j. We also define H(x, y) as
the matrix-valued function given by

H(x, y) =

+∞∑

n=0

(Ax + B)nyn =

[
H(1)(x, y) G(x, y)

0 H(2)(x, y)

]
, where

H(1)(x, y) =
Adj (I − (A1x + B1)y)

Det (I − (A1x + B1)y)
, H(2)(x, y) =

Adj (I − (A2x + B2)y)

Det (I − (A2x + B2)y)
, (12)

G(x, y) = H(1)(x, y) (A0x + B0)y H(2)(x, y) .

Thus, the generating function of {hn(z)}n satisfies the following identities

∞∑

n=0

hn(z)yn = ξ′H(ez, y)η = ξ′
1H

(1)(ez, y)η1 + ξ′
1G(ez, y)η2 + ξ′

2H
(2)(ez, y)η2 (13)

Hence, setting gn(z) = [yn]ξ′
1G(ez, y)η2 , we obtain

hn(z) = h(1)
n (z) + gn(z) + h(2)

n (z) (14)

to be used in the analysis of the characteristic function Ψn(it) given by (3).
The dominant case is similar to the primitive one. Assume that λ1 > λ2, M1

is aperiodic (and hence primitive) and A1 �= [0] �= B1. For sake of brevity, we
say that {Yn} is defined in a dominant bicomponent model with λ1 > λ2. In this
case we have 0 < β1 < 1, 0 < γ1, and it is known that Yn−β1n√

γ1n converges in
distribution to a normal r.v. of mean value 0 and variance 1 [7]. Moreover, one
can prove the following result:

312 M. Goldwurm et al.

Theorem 2. Let {Yn} be defined in a dominant bicomponent model with λ1 >
λ2 and assume (A1, B1) aperiodic. Then, as n tends to +∞, the relation

∣
∣
∣
∣
∣
∣

√
nPr (Yn = k) − e− (k−β1n)2

2γ1n

√
2πγ1

∣
∣
∣
∣
∣
∣

= O
(
n−1/2

)

holds true uniformly for every k ∈ {0, 1, . . . , n}.

4.1 Equipotent Case

Now, let us assume that λ1 = λ2 = λ, both matrices M1 and M2 are aperiodic
(and hence primitive) and Aj �= [0] �= Bj for j = 1, 2. Under these hypotheses
we say that {Yn} is defined in an equipotent bicomponent model. In this case the
limit distribution of {Yn} depends on the parameters β1, β2, γ1, γ2, defined as
in (7), which now satisfy conditions 0 < βj < 1 and 0 < γj , for both j = 1, 2.
Before studying the different cases, we recall some properties presented in [7]
that are useful in our context.

Observe that both h
(1)
n (z) and h

(2)
n (z) satisfy relation (6). Moreover, from

relations (12) and an analysis of function ξ′
1G(ez, y)η2, for some c > 0 it can be

shown that

gn(z) = s(z)
n−1∑

j=0

u1(z)ju2(z)n−1−j + O(ρn) ∀z ∈ C : |z| ≤ c (15)

where s(z) is an analytic and non-null function for |z| ≤ c, and ρ < max{|u1(z)|,
|u2(z)|}. Therefore, by equality (14) we obtain

hn(z) = s(z)
n−1∑

j=0

u1(z)ju2(z)n−1−j + O(u1(z)n) + O(u2(z)n) ∀z ∈ C : |z| ≤ c

(16)
This relation has two consequences. First, since u1(0) = λ = u2(0), it implies

hn(0) = s(0)nλn−1(1 + O(1/n)) (s(0) �= 0) (17)

Second, if u1(z) �= u2(z) for some z ∈ C satisfying 0 < |z| ≤ c, then one gets

hn(z) = s(z)
u1(z)n − u2(z)n

u1(z) − u2(z)
+ O(u1(z)n) + O(u2(z)n) (18)

Finally, in the equipotent bicomponent models the aperiodicity condition
consists of requiring that both pairs (A1, B1) and (A2, B2) are aperiodic. Under
this hypothesis, the following property holds true.

Proposition 3. Let {Yn} be defined in an equipotent bicomponent model and
let both pairs (A1, B1) and (A2, B2) be aperiodic. Then, for every c ∈ (0, π) there
exists ε ∈ (0, 1) such that |Ψn(t)| = O(εn) for all t ∈ R satisfying c ≤ |t| ≤ π.

Analysis of Symbol Statistics in Bicomponent Rational Models 313

4.1.1 Local Limit with Different β’s
In this subsection we assume an equipotent bicomponent model with β1 �= β2.
In this case it is known that {Yn/n} converges in distribution to a uniform
r.v. [7]. Here we state a local limit theorem with a speed of convergence of
an order arbitrarily slower than O(n−1/2(log n)3/2), thus improving a recent
result presented in [10]. To this end, in view of Proposition 3, we study the
characteristic function Ψn(t) for |t| ≤ c, where c ∈ (0, π) is a constant satisfying
relation (16). Recall that in such a set both functions y1(t) = u1(it)/λ and
y2(t) = u2(it)/λ satisfy relations (8), and hence for every real t such that |t| ≤ c,
we have

y1(t) = 1 + iβ1t + O(t2) , y2(t) = 1 + iβ2t + O(t2) (19)

|y1(t)| ≤ e− γ1
4 t2 , |y2(t)| ≤ e− γ2

4 t2 (20)

Moreover, since in the present case (18) holds true for z near 0, using the previous
relations, for a suitable c ∈ (0, π) and every t ∈ R such that 0 < |t| ≤ c, we obtain

Ψn(t) =
hn(it)
hn(0)

=
1 + O(t)

1 + O(1/n)

(
y1(t)n − y2(t)n

i (β1 − β2) tn

)

+
∑

j=1,2

O

(
yj(t)n

n

)

(21)

Now, for such a constant c, let us split [−c, c] into sets Sn and Vn, given by

Sn =

{
t ∈ R : |t| ≤

√
log n

n
τ1/3

n

}
, Vn =

{
t ∈ R :

√
log n

n
τ1/3

n < |t| ≤ c

}
(22)

where {τn} ⊂ R+ is any sequence such that τn → +∞ and τn = o(log log n)
(i.e. τn tends to +∞ with an arbitrarily slow order of growth). The behaviour of
Ψn(t) in these sets is given by the following two propositions, where we assume
an equipotent bicomponent model with β1 �= β2.

Proposition 4. For some a > 0 one has |Ψn(t)| = o
(
n−aτ2/3

n

)
for all t ∈ Vn.

In order to evaluate Ψn(t) for t ∈ Sn, let us define

Kn(t) =
e− γ1

2 t2n+iβ1tn − e− γ2
2 t2n+iβ2tn

i(β1 − β2)tn
(23)

and consider relation (21). Since for t ∈ Sn one has nO(t3) = o(1), relation (9)
applies to both y1(t) and y2(t) yielding

yj(t)n = e− γj
2 t2n+iβjtn(1 + nO(t3)) ∀ t ∈ Sn, j = 1, 2

Replacing these values in (21), after some computation one gets

Ψn(t) =
[
1 + O(t) + nO(t3) + O(1/n)

]
Kn(t) + O(1/n) ∀ t ∈ Sn (24)

314 M. Goldwurm et al.

Proposition 5. Defining Sn and Kn(t) as in (22) and (23), we have

∣
∣
∣
∣

∫

Sn

(Ψn(t) − Kn(t)) dt

∣
∣
∣
∣ = O

((
log n

n

)3/2

τn

)

Now, we are able to state the local limit in the present case. Set b1 =
min{β1, β2}, b2 = max{β1, β2} and denote by fU (x) the density function of
a uniform r.v. U in the interval [b1, b2], that is

fU (x) =
1

b2 − b1
χ[b1,b2](x) ∀x ∈ R

where χI denotes the indicator function of the interval I ⊂ R. Then we have

Theorem 6. Let {Yn}n∈N be defined in an equipotent bicomponent model with
β1 �= β2 and assume aperiodic both pairs (A1, B1) and (A2, B2). Then, for n
tending to +∞, the r.v. Yn satisfies the relation

|n Pr(Yn = k) − fU (x)| = O

(
(log n)3/2 τn√

n

)

(25)

for every real sequence {τn} satisfying τn → +∞, τn = o(log log n) and for every
integer k = k(n), provided that k/n → x for a constant x such that β1 �= x �= β2.

As an example, consider the rational stochastic model defined by the weighted
finite automaton of Fig. 1, where each transition is labelled by an alphabet sym-
bol and a weight, together with the arrays ξ = (1, 0, 0, 0) and η = (0, 0, 1, 1).
Such an automaton recognizes the set of all words w ∈ {a, b, c}∗ of the form
w = xcy, such that x, y ∈ {a, b}∗ and the strings aa and bb do not occur in
x and y, respectively. Clearly this is a bicomponent model, with both pairs
(A1, B1) and (A2, B2) aperiodic. Moreover M1 = M2, while A1 �= A2. Hence the
two components are equipotent and β1 �= β2. This means that Yn/n converges
in distribution to a uniform r.v. of extremes β1, β2, and Yn satisfies Theorem 6.
Note that simple changes may modifies the limit distribution: for instance, set-
ting to 3 the weight of transition 2 b→ 1 makes dominant the first component,
implying a Gaussian local limit law (Theorem 2).

��
��
1�

��
��
2 ��

��
3��

�	
4

 �
�

(b, 1)
 �
�

(a, 1)

�(a, 2)
�(c, 1) �(b, 2)

�
(b, 1)

�
(a, 1)�

(c, 1)

Fig. 1. Weighted finite automaton defining an equipotent bicomponent model (λ1 =
λ2 = 2) with 1/3 = β1 �= β2 = 2/3.

Analysis of Symbol Statistics in Bicomponent Rational Models 315

4.1.2 Local Limit with Equal β’s and Different γ’s
In this section we present a local limit theorem for {Yn} defined in an equipotent
bicomponent model with β1 = β2 and γ1 �= γ2. In this case, setting β = β1 = β2

and γ = γ1+γ2
2 , it is known [7] that Yn−βn√

γn weakly converges to a random variable
T whose distribution is a mixture of Gaussian laws of mean 0 and variance
uniformly distributed over the interval of extremes γ1

γ and γ2
γ .

Formally, the density function of T is given by

fT (x) =
γ

γ2 − γ1

∫ γ2
γ

γ1
γ

e− x2
2s√

2πs
ds ∀ x ∈ R (26)

In passing, we observe that, for each x ∈ R, fT (x) may be regarded as the mean

value of the “heat kernel” K(x, t) = (4πt)−1/2e
−x2
4t at point x in the time

interval of extremes γ1/(2γ) and γ2/(2γ) [6].
Note that E(T) = 0 and Var(T) = 1, while its characteristic function is

ΦT (t) =
∫ +∞

−∞
fT (x)eitxdx = 2γ

e− γ1
2γ t2 − e− γ2

2γ t2

(γ2 − γ1)t2
(27)

Then, fT (x) can be expressed in the form

fT (x) =
1
2π

∫ +∞

−∞
ΦT (t)e−itxdt =

1
2π

∫ +∞

−∞
2γ

e− γ1
2γ t2 − e− γ2

2γ t2

(γ2 − γ1)t2
e−itxdt

Our goal is to present a local limit property for {Yn} (suitably scaled) toward
the r.v. T , with a speed of convergence of an order arbitrarily slower than
O

(
log2 n√

n

)
.

Also in this case we assume aperiodic both pairs (A1, B1) and (A2, B2), which
implies Proposition 3. As in the previous section, c ∈ (0, π) is a constant for which
relation (16) holds true; as a consequence, both functions y1(t) and y2(t) satisfy
relations (8), which now can be refined in the following form:

yj(t) =
uj(it)

λ
= 1 + iβt − γj + β2

2
t2 + O(t3) , ∀ x ∈ R : |t| ≤ c, j = 1, 2

Applying these values in (18), which is valid also in the present case for z near
to 0, and using (17), for some c ∈ (0, π) and every t ∈ R such that 0 < |t| ≤ c,
we obtain

Ψn(t) =
hn(it)
hn(0)

= 2
1 + O(t)
n + O(1)

y1(t)n − y2(t)n

(γ2 − γ1)t2 + O(t3)
+

∑

j=1,2

O

(
yj(t)n

n

)

(28)

Now, for such a constant c, split the interval [−c, c] into sets Sn and Vn given by

Sn =

{
t ∈ R : |t| ≤

√
log n

n
τ1/4

n

}
, Vn =

{
t ∈ R :

√
log n

n
τ1/4

n < |t| ≤ c

}
(29)

316 M. Goldwurm et al.

where τn is defined as in (22). The behaviour of Ψn(t) in these sets is described
by the propositions below where we assume an equipotent bicomponent model
with β1 = β2 = β and γ1 �= γ2.

Proposition 7. For some a > 0 we have |Ψn(t)| = o
(
n−aτ1/2

n

)
for every t ∈ Vn.

For sake of brevity, we define

Kn(t) = 2
e− γ1

2 t2n − e− γ2
2 t2n

(γ2 − γ1)t2n
eiβtn , ∀ t ∈ R (30)

It is easy to see that |Kn(t)| ≤ 2
∑

j=1,2

(
1 − e− γj

2 t2n

|γ2 − γ1|t2n

)

for every t ∈ R. A simple

study of these expressions shows that both addends take their maximum value at
t = 0, where they have a removable singularity, and such values are independent
of n. As a consequence we can state that |Kn(t)| ≤ γ1+γ2

|γ2−γ1| , for every n ∈ N+

and every t ∈ Sn.

Proposition 8. Defining Sn and Kn(t) by (29) and (30), respectively, we have
∫

Sn

|Ψn(t) − Kn(t)| dt = O

(
(log n)2 τn

n

)

Now we can state the local limit theorem in the present case:

Theorem 9. Let {Yn}n∈N be defined in an equipotent bicomponent model with
β1 = β2 = β, γ1 �= γ2, assume aperiodic pairs (A1, B1) and (A2, B2) and set
γ = (γ1 + γ2)/2. Then, for n tending to +∞, Yn satisfies the relation

∣
∣
∣
∣
√

γn Pr(Yn = k) − fT

(
k − βn√

γn

)∣
∣
∣
∣ = O

(
(log n)2 τn√

n

)

(31)

uniformly for k ∈ {0, 1, . . . , n}, where fT is defined in (26) and {τn} ⊂ R+ is
any sequence such that τn → +∞ and τn = o(log log n).

4.1.3 Local Limit with Equal β’s and Equal γ’s
In this section we study the local limit properties of {Yn} assuming an equipotent
bicomponent model with β1 = β2 = β and γ1 = γ2 = γ. In this case, it is known
[7] that Yn−βn√

γn converges in distribution to a Gaussian random variable of mean
0 and variance 1. Here we prove that a Gaussian local limit property holds true
with a convergence rate of the order O(n−1/2), assuming aperiodic both pairs
(A1, B1) and (A2, B2).

Again we assume c ∈ (0, π) is a constant for which equality (16) holds true,
so that both functions y1(t) and y2(t) satisfy relations (8) and (9), which we now
restate in the following form for sake of clearness:

|yj(t)| ≤ e− γ
4 t2 ∀ t ∈ R : |t| ≤ c, j = 1, 2 (32)

yj(t)n = e− γ
2 t2n+iβtn(1 + nO(t3)) ∀ t ∈ R : |t| ≤ n−q, j = 1, 2 (33)

where q is an arbitrary value such that 1/3 < q < 1/2.

Analysis of Symbol Statistics in Bicomponent Rational Models 317

The following propositions yield properties of the characteristic function
Ψn(t) respectively for |t| ≤ n−q and n−q < |t| ≤ c.

Proposition 10. For every q ∈ (1/3, 1/2), we have

|Ψn(t)| = O
(
e− γ

4 n1−2q
)

∀ t ∈ R : n−q < |t| ≤ c

Proposition 11. For every q ∈ (1/3, 1/2), we have
∫

|t|≤n−q

∣
∣
∣Ψn(t) − e− γ

2 t2n+iβtn
∣
∣
∣ dt = O(n−1)

Then, our last result follows:

Theorem 12. Let {Yn}n∈N be defined in an equipotent bicomponent model with
β1 = β2 = β and γ1 = γ2 = γ, and assume aperiodic both pairs (A1, B1) and
(A2, B2). Then, for n tending to +∞ the relation

∣
∣
∣
∣
∣
∣

√
nPr (Yn = k) − e− (k−βn)2

2γn√
2πγ

∣
∣
∣
∣
∣
∣

= O
(
n−1/2

)

holds true uniformly for every k ∈ {0, 1, . . . , n}.

5 Conclusions

The analysis of the symbol statistics Yn’s presented in this work concerns the
cases when the rational stochastic model consists of one or two primitive com-
ponents. Our results are summarized in Table 1, which refers to the previous
literature for already known properties.

Table 1. Symbols N0,1, Uβ1,β2 and T denote respectively a Gaussian, uniform and
T -type local limit, T being defined in Sect. 4.1.2. Also, τn is defined in Theorem 6

Primitive models Bicomponent models

Dominant Equipotent

β1 �= β2
β1 = β2

γ1 �= γ2

β1 = β2

γ1 = γ2

Local limit
distribution

N0,1 (see [3]) N0,1 Uβ1,β2 (see [10]) T N0,1

Convergence
rate

O(n−1/2) O(n−1/2) O
(

τn log3/2 n√
n

)
O

(
τn log2 n√

n

)
O(n−1/2)

Natural extensions of these results concern rational models with more than
two primitive components having equal dominant eigenvalue and, possibly, the

318 M. Goldwurm et al.

evaluation of neglected terms in the asymptotic expressions. Also in the case of
bicomponent models our analysis is not complete as it does not include the non-
communicating cases (M0 = [0]) nor the degenerate cases (when, for a dominant
component i ∈ {1, 2}, either Ai = 0 or Bi = 0). In these cases rather different
limit distributions are obtained [7, Sect. 8], due to the diverse type of generating
functions appearing therein. Even if these situations are somehow particular,
they are representative of typical regular languages, and hence they seem to be
natural subjects for future investigations.

References

1. Bender, E.A.: Central and local limit theorems applied to asymptotic enumeration.
J. Comb. Theory 15, 91–111 (1973)

2. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer, Hei-
delberg (1988)

3. Bertoni, A., Choffrut, C., Goldwurm, M., Lonati, V.: On the number of occurrences
of a symbol in words of regular languages. Theoret. Comput. Sci. 302, 431–456
(2003)

4. Bertoni, A., Choffrut, C., Goldwurm, M., Lonati, V.: Local limit properties for
pattern statistics and rational models. Theory Comput. Syst. 39, 209–235 (2006)

5. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: A hitchhiker’s guide to descrip-
tional complexity through analytic combinatorics. Theoret. Comput. Sci. 528, 85–
100 (2014)

6. Cannon, J.R.: The One-Dimensional Heat Equation. Encyclopedia of Mathematics
and its Applications, vol. 23. Addison-Wesley Publishing Company, Boston (1984)

7. de Falco, D., Goldwurm, M., Lonati, V.: Frequency of symbol occurrences in bicom-
ponent stochastic models. Theoret. Comput. Sci. 327(3), 269–300 (2004)

8. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2009)

9. Gnedenko, B.V.: Theory of Probability. Gordon and Breach Science Publishers,
Amsterdam (1997)

10. Goldwurm, M., Lin, J., Vignati, M.: A local limit property for pattern statistics in
bicomponent stochastic models. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS
2018. LNCS, vol. 10952, pp. 114–125. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94631-3 10

11. Grabner, P., Rigo, M.: Distribution of additive functions with respect to numera-
tion systems on regular languages. Theory Comput. Syst. 40, 205–223 (2007)

12. Hwang, H.-K.: On convergence rates in the central limit theorem for combinatorial
structures. Europ. J. Comb. 19, 329–343 (1998)

13. Nicodeme, P., Salvy, B., Flajolet, P.: Motif statistics. Theoret. Comput. Sci.
287(2), 593–617 (2002)

14. Régnier, M., Szpankowski, W.: On pattern frequency occurrences in a Markovian
sequence. Algorithmica 22(4), 621–649 (1998)

15. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Springer, New York (1978). https://doi.org/10.1007/978-1-4612-6264-0

16. Seneta, E.: Non-negative Matrices and Markov Chains. Springer, New York (1981).
https://doi.org/10.1007/0-387-32792-4

https://doi.org/10.1007/978-3-319-94631-3_10
https://doi.org/10.1007/978-3-319-94631-3_10
https://doi.org/10.1007/978-1-4612-6264-0
https://doi.org/10.1007/0-387-32792-4

Author Index

Ambrož, Petr 244
Azfar, Umer 59

Bednárová, Zuzana 113
Bhave, D. 168
Boker, Udi 3
Brough, Tara 292

Cain, Alan J. 292
Catalano, Costanza 59
Charlier, Ludovic 59
Cheon, Hyunjoon 127

Day, Joel D. 265
Dobronravov, Egor 88
Dobronravov, Nikita 88

Fleischmann, Pamela 265
Frid, Anna E. 234

Gao, Ziyuan 154
Gastin, Paul 182
Geffert, Viliam 113
Goldwurm, M. 306
Govind, R. 182

Han, Yo-Sub 127

Iosti, Simon 192

Jeż, Artur 18
Jungers, Raphaël M. 59

Kari, Jarkko 74
Ko, Sang-Ki 127
Krishna, S. N. 168
Kuperberg, Denis 192, 206

Lejeune, Marie 278
Leroy, Julien 278
Lin, J. 306

Manea, Florin 265
Manuel, Amaldev 182
Massazza, Paolo 221
Mráz, František 140

Nowotka, Dirk 265

Okhotin, Alexander 88
Otto, Friedrich 140

Pelantová, Edita 244
Pfeiffer, Markus 292
Phawade, R. 168
Pinault, Laureline 206
Pous, Damien 206

Rigo, Michel 278
Ryzhikov, Andrew 74

Saarela, Aleksi 251
Salomaa, Kai 127
Seki, Shinnosuke 41
Szabari, Alexander 113

Trivedi, A. 168

Varonka, Anton 74
Vignati, M. 306

Yen, Di-De 100
Yen, Hsu-Chun 100

	Preface
	Organization
	Contents
	Invited Papers
	Inherent Size Blowup in -Automata
	1 Introduction
	2 -Automata and Their Acceptance Conditions
	3 Succinctness
	4 Boolean Operations and Decision Problems
	5 Hyper-dual
	6 Conclusions
	References

	Deciding Context Unification (with Regular Constraints)
	1 Introduction
	2 Definitions
	2.1 Trees
	2.2 Patterns
	2.3 Context Unification: Formal Statement

	3 Local Compression of Trees
	3.1 Compression Operations
	3.2 Compression of Non-crossing Patterns

	4 Uncrossing
	4.1 Uncrossing a Pair
	4.2 Uncrossing Chains
	4.3 Uncrossing Father-Leaf Subpattern

	5 The Algorithm
	6 Space Bounds
	6.1 General Bounds
	6.2 Strategy

	7 Detailed Example
	8 Regular Constraints
	8.1 Tree Automata
	8.2 Context Unification with Regular Constraints
	8.3 Modifications of ContextEqSat

	9 Open Questions
	References

	Single-Stranded Architectures for Computing
	1 Introduction
	2 Single-Stranded Architectures for Computing in Oritatami
	2.1 A Single-Stranded Architecture for Counting in Binary
	2.2 Arithmetic Overflow and Infinite Binary Counter.
	2.3 Applications of the Binary Counter

	3 Towards Algorithmic Programming of Oritatami Systems
	3.1 Programmability of Modules: Self-standing Shape and Steric Hindrance
	3.2 Towards Algorithmic Design of Folding Pathways

	4 Conclusions
	References

	Regular Papers
	A Linear Bound on the K-Rendezvous Time for Primitive Sets of NZ Matrices
	1 Introduction
	2 Notation and Preliminaries
	3 The K-Rendezvous Time and a Recurrence Relation for Its Upper Bound
	4 Solving the Recurrence
	5 Numerical Results
	6 Conclusions
	References

	Words of Minimum Rank in Deterministic Finite Automata
	1 Introduction
	2 Main Definitions and Preliminary Results
	3 Strongly Connected Automata
	3.1 A Lower Bound for Ternary Automata
	3.2 Lower Bounds for Binary Automata
	3.3 Upper Bound in the Case When the Rank Equals the Period

	4 Eulerian Automata
	4.1 The Rank Conjecture
	4.2 A Corollary for Circular Automata
	4.3 A Road Coloring Algorithm

	References

	On the Length of Shortest Strings Accepted by Two-Way Finite Automata
	1 Introduction
	2 Two-Way Finite Automata
	3 Upper Bound
	4 Simple Lower Bound
	5 Improved Lower Bound
	6 Small Alphabets
	7 On Improving the Estimation
	References

	Characterizing the Valuedness of Two-Way Finite Transducers
	1 Introduction
	2 Preliminaries
	3 Some Properties of Bounded-Crossing 2FTs
	4 Sufficient and Necessary Conditions for the Infinite-Valuedness of 2FTs
	References

	Input-Driven Pushdown Automata for Edit Distance Neighborhood
	1 Introduction
	2 Input-Driven Pushdown Automata
	3 Edit Distance Neighborhood
	4 Concluding Remarks
	References

	The Relative Edit-Distance Between Two Input-Driven Languages
	1 Introduction
	2 Preliminaries
	3 Edit-Distance
	4 Inclusion Problem for IDPDAs
	5 Relative Edit-Distance Problem
	6 Conclusions
	References

	On Shrinking Restarting Automata of Window Size One and Two
	1 Introduction
	2 Definitions and Notation
	3 On Monotone Shrinking Restarting Automata
	4 On Non-monotone Shrinking Restarting Automata
	5 Conclusion
	References

	The Teaching Complexity of Erasing Pattern Languages with Bounded Variable Frequency
	1 Introduction
	2 Preliminaries
	3 Teaching Dimension and Preference-Based Teaching Dimension
	4 Simple Block-Regular Patterns
	5 Finite Distinguishability of m-Quasi-Regular, Non-cross m-Regular and m-Regular Patterns
	6 Conclusion
	References

	On Timed Scope-Bounded Context-Sensitive Languages
	1 Introduction
	2 Preliminaries
	3 Dense-Time Visibly Pushdown Multistack Automata
	3.1 Switching Vectors

	4 Scope-Bounded ECMVPA and dt-ECMVPA
	5 Logical Characterization of k-dt-ECMVPA
	References

	Logics for Reversible Regular Languages and Semigroups with Involution
	1 Introduction
	2 Logics with Between and Neighbour
	2.1 MSO (bet), MSO (N) and FO (bet)
	2.2 FO (N)

	3 Semigroups with Involution
	4 Conclusion
	References

	Eventually Safe Languages
	1 Introduction
	2 Definitions
	2.1 Logic
	2.2 Automata

	3 The Original Family Ln
	4 A Family of LTL-definable Languages Kn with Succinct GFG Representations
	4.1 Definition of the Language Kn
	4.2 Aperiodicity of Kn and Succinctness of GFG Automaton

	5 A Modal Logic for Eventually Safe Properties
	5.1 The Safety Logic STL
	5.2 The Logic ETL for Eventually Safe Properties
	5.3 Properties of the Class ESafe
	5.4 A Succinct ETL Formula for the Language Kn
	5.5 From ETL to GFG CoBüchi Automata

	6 Conclusion
	References

	Coinductive Algorithms for Büchi Automata
	1 Introduction
	2 Coinductive Algorithms for Finite Automata
	2.1 Deterministic Automata: Hopcroft and Karp's Algorithm
	2.2 Non-deterministic Automata: HKC

	3 From Büchi Automata to Finite Words Automata
	4 HKC for Büchi Automata
	5 Conclusion and Future Work
	References

	Hole-Free Partially Directed Animals
	1 Introduction
	2 Notation and Preliminaries
	3 A Dynamical System for Columns
	4 Exhaustive Generation
	4.1 Data Structure
	4.2 Complexity

	5 Conclusions and Further Work
	References

	First Lower Bounds for Palindromic Length
	1 Introduction
	2 General Properties
	3 Prefix Palindromic Length of the Thue-Morse Word
	4 A Lower Bound for Toeplitz Morphisms
	5 Words with Longer Powers
	6 Conclusion
	References

	On Palindromic Length of Sturmian Sequences
	1 Introduction
	2 Preliminaries
	3 Images of Sturmian Words
	4 Proofs of Main Theorems
	References

	Separating Many Words by Counting Occurrences of Factors
	1 Introduction
	2 Preliminaries
	3 Separating Sets of Factors
	4 Infinite Words
	5 Regular Languages
	6 Conclusion
	References

	k-Spectra of Weakly-c-Balanced Words
	1 Introduction
	2 Preliminaries
	3 Cardinalities of k-Spectra of Weakly-c-Balanced Words
	4 Cardinalities of k-Spectra of Weakly-0-Balanced Words
	5 Reconstructing Weakly-0-Balanced Words from Their k-Spectra
	6 Conclusions
	References

	Computing the k-binomial Complexity of the Thue–Morse Word
	1 Introduction
	2 Basics
	2.1 Binomial Coefficients and Binomial Equivalence
	2.2 Context of This Paper

	3 Occurrences of Subwords in Images by
	4 Computing b`3́9`42`"̇613A``45`47`"603At,2(n)
	5 How to Cut Factors of the Thue–Morse Word
	6 Types Associated with a Factor
	7 k-binomial Complexity of the Thue–Morse Word
	References

	Context-Free Word Problem Semigroups
	1 Introduction
	2 Preliminaries
	3 Examples
	4 Relationship to Word-Hyperbolicity and Automaticity
	5 Direct Products
	6 Free Products
	7 Strong Semilattices
	8 Rees Matrix Semigroups
	9 Bruck–Reilly Extensions
	10 Further Open Problems
	References

	Analysis of Symbol Statistics in Bicomponent Rational Models
	1 Introduction
	2 Problem Setting
	3 Primitive Models
	4 Bicomponent Models
	4.1 Equipotent Case

	5 Conclusions
	References

	Author Index

