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Preface

Anyone with a sense for mathematics, science, and engineering would surely agree with
the assertion that the development of differential and integral calculus is one of
humanity’s greatest intellectual achievements and that one of the most incredible success
stories of modern times has been the astonishing exploration of the inner and outermost
reaches of our solar system by sophisticated satellites and spacecraft. It is the primary
aim of this text to demonstrate how calculus informs our understanding of the solar
system and the navigation of the spacecraft sent to study it.

Basic calculus provides fundamental information about the motion of the planets,
their moons, asteroids, comets, and artificial satellites in their orbits, and the way
spacecraft travel along their trajectories. The reason that simple, one-variable calculus
can be applied to these studies, is the fact that orbiting planets and other celestial bodies
move in planes that are essentially fixed (at least during long stretches of time), so that
their motion can be analyzed in two dimensions with functions of a single variable. The
same is true—in a modified sense—for the trajectories of spacecraft. During the stretches
of time when a spacecraft is subject to a single, dominant force, say the gravitational pull
of the Sun or a planet, then in the same way, its motion can be modeled with functions of
a single variable. When additional forces are involved, then the craft’s trajectory is too
complex for such an approach. What saves the day, is the way that the missions of
spacecraft are traditionally designed. For the most part, the flight of a spacecraft relies on
the pull of a single gravitational force and additional forces, such as the thrust of the main
rocket engine or a second gravitational force, are operative only intermittently and
briefly. A single, dominant gravitational force on a spacecraft acts in the direction of its
point of origin (for example, the center of mass of the Sun, a nearby planet, or a moon)
and satisfies an inverse square law with regard to the distance involved. It follows from
Newton’s theory of gravitation that in any such situation, its trajectory is a segment of a
conic section. These trajectories can be ellipses, but they can also be parabolas and
hyperbolas. As a consequence, the trajectory of a spacecraft is a “patched conic,”meaning
that it is a conic section as long as a single force acts, followed by a brief, more com-
plicated path when additional forces act, then another conic section when a single force is
again operative, and so on. The bottom line is that the trajectory of a spacecraft is a
sequence of arcs of conic sections (joined to each other by short, more complicated
segments of curves) and that the motion of the craft along each of these arcs can be
studied with the methods of basic one-variable calculus. More definitive and far-reaching
analyses involving Second Order Differential Equations, Multivariable Vector Calculus,
Spherical Harmonic Functions, Probability Theory, Statistical Methods, (and hundreds
or thousands of pages of computer code) notwithstanding, much can already be said with
single-variable calculus. We’ll now turn to a brief outline of the text.

Chapter 1 is a historical essay that provides the context and sets the stage for all that
follows. It recalls humanity’s efforts to understand the planets, moons, comets, and
asteroids and how they move, from the time of the Greeks, to Isaac Newton and the
Scientific Revolution, to the discovery of the vast, expanding universe of galaxies in the
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twentieth century. In describing the decisive contributions of Kepler, Newton, Hubble,
and those of other pioneering scientists, the chapter considers some of the elementary
mathematical elements involved by introducing the ellipse, parabola, and hyperbola as
well as very basic concepts and principles of the physics of motion.

Chapter 2 provides an overview of the information that today’s spacecraft have
returned from the near and far corners of the solar system. The American and Russian
space programs of the last decades of the twentieth century began to explore the planets
and their moons. Joined by European, Japanese, Chinese, and Indian contributions in the
twenty-first century, this effort has accelerated. The chapter describes the most impor-
tant of the many unmanned missions that have explored the solar system and provides
some of the spectacular images and wealth of information about the planets, their moons,
asteroids, and comets that they have captured. Some elements of calculus are introduced
toward the end to explain basic aspects of the rocket engines that propel these probes.
The study of the flight of the Juno spacecraft to Jupiter provides an initial look at the
analysis that the last chapter of the text undertakes in detail.

Chapter 3 presents some basic mathematics. The importance of the rectangular or
Cartesian coordinate system to the disciplines of geometry, trigonometry, and calculus
and their applications cannot be overstated. These disciplines depend on the interplay
between geometry and algebra that this coordinate system makes possible. The polar
coordinate system makes this connection also. By identifying a location in the plane with
respect to a fixed reference point and a ray that emanates from it, it provides a framework
that is tailor-made for the analysis of the trajectory of any object that moves in response
to a gravitational force. The chapter develops the essentials about the polar coordinate
plane, the polar equations for the ellipse, parabola, and hyperbola, the calculus of polar
functions, as well as the trigonometry needed along the way.

Chapter 4 applies polar calculus within a comprehensive, self-contained treatment of
Newton’s theory of gravitation. Newton’s treatise Principia Mathematica had been a
miracle. It provided a synthesizing and penetrating solution to a question that had
occupied many of humanity’s best minds for about 3000 years: how do the heavens work?
Kepler had discovered the three laws of planetary motion with painstaking observations,
but Newton came to recognize the deeper reality. All three of Kepler’s laws rest on a
combination of mathematical methods, basic laws of motion, and the inverse square law
of universal gravitation. The chapter includes a complete analysis of the connection
between the magnitude of a centripetal force and the geometry of the trajectory of a
point-mass—or a sphere that has its mass radially distributed—on which the force acts.

Chapter 5 discusses the motion of an object that is propelled in an elliptical orbit by a
gravitational force. The distance, speed, and direction of the motion of the object (rel-
ative to the attracting body) are determined as functions of the elapsed time from
periapsis (the point of nearest approach to the attracting body). This study proceeds via
the calculus of trigonometric functions and relies on Kepler’s equation and its solution.
Several concluding sections apply power series in the solution of relevant definite inte-
grals. One of them computes the length of a planet’s elliptical orbit and another provides
an analysis of the precession of the orbit’s perihelion.

Chapter 6 is a discussion of the complex aspects of the design of the trajectory of a
spacecraft and the maneuvers that direct it to its target. Applying Newton’s analysis and
using the NEAR- Shoemaker, the Voyagers, and Cassini missions as contexts, the chapter
studies the essentials of gravitational spheres of influence, transfer orbits, orbit insertion,
hyperbolic gravity assist flybys, and the ephemerides of trajectories. The study of
hyperbolic trajectories and the motion of spacecraft along them is analogous to their
motion along elliptical orbits, except that in terms of the calculus involved, hyperbolic
functions and the hyperbolic Kepler equation take the place of trigonometric functions
and the elliptical Kepler equation.
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Even more succinctly put, this book is organized into three components of two
chapters each. The first component is primarily historical. It sketches humanity’s
understanding of our universe from the thoughts of the Greeks to the exploration of the
Sun, moon, planets, asteroids, and comets of our solar system by sophisticated modern
spacecraft. The second component is mathematical. It presents the calculus of polar
functions in detail and applies it to a self-contained development of Newton’s theory of
gravity. The final component takes on the theory of elliptical orbits and hyperbolic
trajectories and applies it to a study of the NEAR-Shoemaker, Voyager, and Cassini
missions. The text cites many websites that provide visual details and rich illustrations
of the discussions. (If a particular website is no longer active, it should be possible to use
relevant key words from the context or from its address to search and find an equivalent
or updated alternative.)

As Text for a Course: This text is suitable for a college course for students who have a
good understanding of geometry, algebra, trigonometry, precalculus, and the very basics
of ordinary one-variable calculus with its limit strategies. Many of today’s more advanced
high school students will have had course offerings that provide such an understanding.
Students who complete this course—including students with majors in engineering dis-
ciplines, science, and mathematics—will not only have a sense of the astonishing dis-
coveries that the world’s space programs are making, but they will also have a compelling
answer to the question “what is this mathematical stuff actually good for.” A college
course using this text could be a one-semester or two-semester course. A one-semester
course could cover the first four chapters and insert reviews of mathematical concepts and
details along the way. Such a course would combine the rich history of humanity’s
understanding of the universe and its modern efforts to explore it, with the basic calculus
that is necessary to comprehend both. A course that adds the last two chapters to this
agenda by taking on the theory of elliptical orbits and hyperbolic trajectories and its
applications to the motion of the bodies of the solar system and the navigation of
spacecraft is more than likely a two-semester course. This especially, if it makes extensive
use of the sets of problems and topic-expanding discussions—over 70 pages in all—that
follow the chapters. These problems and discussions vary in terms of difficulty, so that
an instructor needs to assign them with care. Solution sets are posted to Springer’s
website

https://www.springer.com/us/book/9783030248673.

For readers who wish to test their understanding of the content, whether as students in a
formal course or as independent learners, the website hosts solutions to all the odd problems
of the text. Full solution sets are available to instructors who adopt this text for a course.

Prerequisites: Coordinate geometry, functions and graphs, basic trigonometry, basic
functions, including trigonometric functions, inverses, exponential, and logarithm func-
tions. A working knowledge of the basics of one-variable calculus including derivatives,
integrals, and the fundamental theorem.

Conventions and Practices: The physical units used in the text are the meter, kilogram,
second of the MKS system and units that are derived from them. The computations are
carried out with the calculator https://web2.0calc.com/. Those that are more complex,
consider significant figures and round off answers accordingly. In simpler situations, the
adherence to such procedures is less strict. It should not come as a surprise that the
results of computations that lead to quantitative information about the motion of
planets, their moons, asteroids, comets, and spacecraft are only approximations. This
begins with the fact that the numerical data on which they rely are themselves
approximations. The question of how accurate these approximations are does not get
much explicit attention in this text. But there is a general understanding that the fol-
lowing examples convey. Consider the information 1 au � 1:49598� 1011m (the symbol
� means “is approximately equal to”) and GM = 1.32712 � 1020 m3/sec2 used in Chapter
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2E. The approximation provides a value of the astronomical unit au in meters. The fact
that the approximating number is listed with five decimal places tells us that in this case
� is accurate to within five decimal places (1 au = 1.495978707 � 1011 m “on the nose”).
The equality GM = 1.32712 � 1020 m3/sec2 (where G is Newton’s gravitational constant
and M the mass of the Sun) is only an approximation. The point is that we’ll take the
approximation to be an equality within a given computation if it is accurate enough.
When greater accuracy is called for in Chapter 5J, GM = 1.32712440042 � 1020 m3/sec2 is
used. (In case you’re wondering, GM has been measured with an accuracy of GM �
1.32712440041939400 � 1020 m3/sec2.)

The terms velocity and speed are often used interchangeably. The context makes it
clear whether a vector or scalar quantity is being discussed. The two aspects of velocity
are generally studied separately with the magnitude as speed and the direction in terms of
an angle. Angles are understood to be given in radians unless stated otherwise.

Notre Dame, USA Alexander J. Hahn
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1From Kepler to Newton to a Picture of the Universe

This chapter is an historical essay that provides the context and sets the stage for all that follows.

It recalls the evolution of our understanding of the universe from the Greeks to the Scientific

Revolution and beyond. The chapter also turns to some of the basic mathematical elements involved

by introducing the ellipse, parabola, and hyperbola and by describing the decisive contributions of

Kepler, Newton, Cavendish, and those of other pioneering scientists.

Within the vast expanse of the universe, our solar system of Sun, planets, moons, comets and

asteroids is but a tiny collection of whirling specs in the Milky Way galaxy. This galaxy with its

many billions of stars is in turn a small cluster in this vast expanse. While it may be tiny in reference

to the cosmic scale, it is our system and it has been an enduring as well as incredibly challenging

focus of study for at least three thousand years. Efforts to understand and organize the night sky go

back to the ancient Greeks and the Babylonians before them. The Greeks thought that the stars are

fixed on a large celestial sphere that has the Earth at its center. This sphere of stars rotates once a

day around the axis that the Earth’s center and the northern pole star determine. They grouped the

stars into recognizable clusters called constellations. Against the fixed patterns of the constellations

they identified a few wandering points of lights that proceeded in one direction and then, for a

time, looped back in the other. The Greeks called them planets, and recorded their paths. They

regarded the realm of the Moon and above to be perfect and eternal. Spherical objects moved along

predictable paths of circles or combinations of circles around the fixed Earth. This stood in sharp

contrast to what they observed below the orbiting Moon including the surface of Earth where things

were in a constant state of flux and hence beyond organized, predictive understanding. Given the

grand design of the Greek cosmos and the later influence of Rome, it is not surprising that many of

the names for these celestial objects, Mercury, Venus, Mars, Jupiter, and Saturn for example, come

from the Roman names of the gods in the Greek pantheon. The Earth, Sun, and Moon have always

been a part of the human experience. Our words for them come from the Old Germanic, Old English,

and Old Norse: erda, eorpe, jord, and sonne, sunne, sunna, and, finally, mano, mona, and mani.

Figure 1.1 depicts a version of this Greek picture of the universe from the Middle Ages. It adds

a place for heaven around the sphere of stars. “Coelum Empireum Habitaculum Dei Et Omnium

Electorum” translates to “the empire of heaven, habitation of God and all the elected.” The circu-

lar orbits of Saturn, Jupiter, Mars, Sun, Venus, Mercury, and Moon follow inside. The Earth is at

the center of the scheme. The sphere determined by the orbit of the Moon (labeled Lunae) marks
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the border between stability and instability. Outside it things are stable and eternal. Inside it all is

unstable, always in danger of turning into chaos. The Earth was considered heavy and dirty because

of the biblical Fall of Man. If God were to give up control, everything would turn to disorder and

chaos. When Greek astronomers observed that the positions of the planets in the heavens differed

from those that the simple circular scheme of Figure 1.1 predicted, they eventually replaced this

simple orbital scheme with a complex clockwork of circles upon circles. This Ptolemaic model of

the universe—named after the mathematician and astronomer Claudius Ptolemy—held sway as the

accepted explanation of the universe for a millennium and a half. It began to collapse in the 16th

Figure 1.1. Petrus Apianus, a German mathematician, astronomer, and cartographer. The image is taken from his
Cosmographicus Liber, 1524. This highly respected work on astronomy and navigation was reprinted at least 30 times
in 14 languages and remained popular until the end of the 16th century.
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and 17th centuries, pushed aside by the insights of the Scientific Revolution. Its overthrow—not

at all easy to achieve—was an effort led by an international cast of mathematicians, astronomers,

and scientists: the Pole Nicolaus Copernicus, the Dane Tycho Brahe, the Italian Galileo Galilei, the

German Johannes Kepler, and the Englishman Isaac Newton. This chapter presents an overview of

the remarkable advances that they and their successors made (but it leaves aside the biographical

details of these brilliant, as well as colorful characters).

1A. Copernicus Moves the Sun to the Center. Copernicus (1473–1543) realized that the

motion of the planets and the Moon in the night sky is much better explained by applying the circular

geometry of the Greeks to planetary orbits that have the Sun—not the Earth—as their center. The

assumption that the Earth—rather than the entire cosmic sphere of the stars—rotates once a day

seemed simpler and more compelling to him. He responded by publishing his own comprehensive

study De Revolutionibus Orbium Coelestium (On the Revolutions of the Heavenly Spheres) in 1543.

Let’s turn to a description of the basic structure of Copernicus’s Sun-centered universe. The Sun

is motionless at the center of an immense, unmoving sphere of fixed stars. The six planets Mercury,

Venus, Earth, Mars, Jupiter, and Saturn (known since their discovery by the ancient astronomers)

orbit the Sun in circles. The radii of these circles increase in the same order. The Moon is in circular

orbit around the Earth. The motion of the Earth has two primary aspects, both illustrated in

Figure 1.2. One is the Earth’s daily rotation around an axis through its poles. In the figure, this

axis is represented by the arrow N (defining the direction north). The speed of the rotation is

constant. The other motion is Earth’s circular orbit around the Sun. The Earth’s axis of rotation

N

N
N

N

Sun

spring
equinox

autumn
equinox

winter
solstice

summer
solstice

the plane P

Figure 1.2

is perpendicular to the plane of its equator, but not to the plane of its orbit.

Let P be the plane through the center of the Sun parallel to the plane of Earth’s equator, or,

equivalently, perpendicular to the Earth’s axis of rotation. The plane P is indicated in Figure 1.2

in perspective by the two dashed lines through the Sun. As the figure shows, the Earth moves

alternately above and below the plane P . There are two occasions when the Earth’s center and

hence its equator lie in the plane P . On either of these two days, consider a point on the Earth’s

surface at sunrise, follow it around, and notice that exactly one-half of a rotation of the Earth
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later, the Sun will set over this point. These are the days of spring equinox and autumn equinox.

On these two days, the time from sunrise to sunset is the same as the time from sunset to sunrise.

Since the center of the Earth lies in the plane P at the two equinox positions, the line that joins

them—the line of equinoxes—lies in P . This is one of the two dashed lines in the figure. The other

is the line in the plane P that is perpendicular to the line of equinoxes. When the Earth is at its

lowest point below the plane P , the Sun is highest in the sky at midday in the Northern Hemisphere

and shines down on it most directly. This is summer solstice. On this day, the Sun is above the

horizon for the longest period of time at any location in the Northern Hemisphere. It is the day of

longest daylight. From the perspective of Figure 1.2, when the Earth is at its highest point above

the plane P , the Sun is lowest in the sky at noon in the Northern Hemisphere, and the smallest

portion of this hemisphere is exposed to the Sun. This is winter solstice. It is the day on which the

Sun is above the horizon for the shortest period of time in the Northern Hemisphere. It is the day

of shortest daylight. The figure indicates the dark and sunlit regions of the Earth at each of the four

positions we have singled out. These four positions define the seasons. The time the Earth moves

from spring equinox to summer solstice is spring, the time it moves from summer solstice to autumn

equinox is summer, the time from autumn equinox to winter solstice is autumn or fall, and the time

from winter solstice to spring equinox is winter. Figure 1.3 is a close-up of the summer solstice

position of Figure 1.2. The angle between the Earth’s equator and the parallel rays of the Sun is

approximately 231
2

◦
. It is the angle between the plane of the Earth’s equator and the plane of its

orbit. This angle determines a circle on the surface of the Earth known as the Tropic of Cancer.

Cancer

Capricorn

23   1
2–

N

the Sun’s rays

o

Tropic of

Tropic of

Figure 1.3

The Tropic of Capricorn is the corresponding circle in the Southern Hemisphere. Figures 1.2 and 1.3

tell us that the Earth’s axis of rotation is tilted with respect to the plane of its orbit. In Figure 1.4

the Earth’s orbital plane is rotated to make this explicit.
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Copernicus’s geometry of the universe provided a new explanation of the phenomenon of the

“precession of the equinoxes” that the ancient astronomers had observed within their Earth-centered

perspective as a slow rotation of the line of equinoxes. This explanation is provided by the fact that

N N

N

N

spring
equinox

autumn
equinox

winter
solstice

summer
solstice

Sun

Figure 1.4

the Earth’s polar axis of rotation revolves very slowly with respect to the line perpendicular to

its orbit. Figure 1.5 captures what happens. This revolution of the axis is extremely slow. By

relying on observations of the ancients, Copernicus’s De Revolutionibus records that one revolution

23.50o

N

Figure 1.5

of the Earth’s axis requires 25,816 years. Today’s more accurate value is 25,772 years.

Now comes the all-important question. Was Copernicus’s model with the planets in circular orbits

around the Sun in sync with what was observed in the heavens? With an accuracy that measured

up to the standards of the time? The answer is no! Certainly not if the orbits are taken to be circles

with the Sun at their center (or the Earth in the case of the Moon). Copernicus was aware of these
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inaccuracies, and the De Revolutionibus responded by replacing the scheme of simple circular orbits.

The off-centered circle—with center an abstract point near, but different from the Sun—became the

basis of Copernicus’s orbital geometry. But attached to it were smaller circles, so that ultimately

Copernicus’s scheme of circles was nearly as complicated as the intricate clockwork that the Greek

Claudius Ptolemy had devised. However, the central purpose of Copernicus’s modifications was

completely different. Instead of having to explain the complications that resulted from the Earth-

centered point of view, Copernicus’s supplementary circles were small and were built in to account

for the differences between his basic model of the orbit—his off-centered circle—and Kepler’s later

description of the actual orbit—the ellipse.

There was another issue that needed attention. Using careful shadow measurements, the Greek

astronomers had determined the time between successive summer solstices or spring equinoxes (or

autumn equinoxes or winter solstices) to be 3651
4

days. This time period is the tropical year. The

word tropical is derived from the Greek word tropos for “turn” (and refers to the time it takes the

Sun to “turn” from its highest point in the sky to its lowest and back again). This tropical year is

the year of the Julian calendar of the Romans (after Julius Caesar) that was used in Europe. The

problem was that 3651
4

days was over 11 minutes longer than the actual time between successive

summer solstices or spring equinoxes. As a consequence, the Julian calendar became increasingly

out of phase with the seasons. By the time Copernicus published his De Revolutionibus in 1543, the

spring equinox, which was used in determining Easter, the most important feast of the Catholic,

Orthodox, and Protestant churches, had moved 10 days from its target date of March 21st. The

Council of Trent, convened by the Church in 1545, authorized the pope to take corrective action.

Decades later, in 1582, during the papacy of Gregory XIII, the Jesuit astronomer Christopher

Clavius (1537–1612) was able to draw up a revision. January 1st was declared to be the beginning

of the year and renumbering October 5th as October 15th took care of the 10 day shift. In addition,

there was a correction to the “every fourth year is a leap year” strategy of the Julian calendar. Only

every fourth centennial year would be a leap year. So 1600 would be a leap year, 1700, 1800, 1900

would not be, but 2000 would again be a leap year, and so on. This leap year convention reduced

the calendar year from 365.25 days (365 days 6 hours) to an average of 365.2425 days (365 days 5

hours 49 minutes and 12 seconds). The new Gregorian calendar also laid down rules for calculating

the date of Easter. This Gregorian calendar was quickly adopted in Catholic countries. Given the

divisive and even hostile relationship between the Christian churches, there was a pause of more than

a century before the first Protestant countries made the transition to the new calendar. Orthodox

Russia and Greece did not do so until the first part of the 20th century.

1B. From Tycho to Kepler to Newton. The Dane Tycho Brahe (1546–1601) provided concrete

evidence that the Greek picture was on shaky ground. For over twenty years of the last part of the

16th century he deployed his array of large instruments (and his bare eyes and those of his assistants)

to measure everything that happened in the sky with much greater accuracy than ever before. The

sudden appearance of a new star—known today to have been a supernova, namely the explosion

of an existing star—suggested to him that the heavens are subject to sudden change. A few short

years thereafter in 1577 Tycho observed a large comet (see Figure 1.6) and was able to show that

it streaked through the skies far beyond the orbiting Moon. Had the comet not been very distant,

Tycho would have observed a shift—known as parallax—in its position against the fixed stars of
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Figure 1.6. The Great Comet of 1577, as seen over Prague. Near the center of the picture, Tycho Brahe wearing a
ruffle collar, focuses his attention on a depiction of the comet. Engraving by Jiri Daschitzky. Zentralbibliothek Zürich.

the constellations. Since his instruments detected no shifts, it followed that the Greek concept of an

unchanging clockwork of stars and planets could not be correct. Early in the 17th century, Galileo

(1564–1642) demonstrated that the phenomenon of projectile motion on Earth’s surface can be

understood with a combination of experimental and mathematical methods. The fact that at least

some of the supposedly chaotic goings-on on Earth could be captured with mathematics contradicted

another basic tenet of the Greek understanding of the universe. Galileo fashioned a telescope and

pointed it skyward. He saw that our Moon is not perfectly spherical, but that it has mountains and

craters. With his discovery of the four large moons of Jupiter (now known as Ganymede, Europa,

Io, and Callisto) he found a system of heavenly bodies that did not have the Earth as their center

of motion. Galileo also saw that the pattern of moon-shaped phases exhibited by the planet Venus

was inconsistent with the picture of the universe that has the Earth at its center. Given the sum

of his observations, Galileo became a vocal proponent of the Copernican Sun-centered system. A

fixed Sun, however, contradicted a passage in Scripture in which God commanded the moving Sun

to stand still. The Catholic Church, already dealing with the threat of the Protestant Reformation,

regarded Galileo’s views as a challenge to its authority to interpret the Bible. Called to Rome by

the Inquisition, Galileo was silenced and placed under house arrest.
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Having fallen out of favor with the Danish royals who financed his astronomical observatory,

Tycho Brahe, by then a celebrated observer of the heavens, gained employment as astronomer at

the court of the Habsburg emperor in Prague. In a move that was to be of major consequence, he

called the young astronomer-mathematician Kepler (1571–1630) to assist him. After Tycho’s sudden

death at the beginning of the 17th century (history tells us that the cause was an exploded bladder),

the role of imperial astronomer fell to Kepler. After a few years of painstaking calculations, Kepler

hit on the ellipse—a curve studied two thousand years earlier by the Greeks—as the key to the

understanding of planetary orbits.

Here is what Kepler discovered. Figure 1.7 shows an ellipse with center O and long diameter

AB. The length a = AO = OB is the semimajor axis of the ellipse. The point C on the ellipse is

chosen so that OC is perpendicular to AB. The points F1 and F2 are the two points on the long

F
B

O

C

A

a

2F 1

a

Figure 1.7

diameter with the property that F1C = F2C = a. These points are the focal points of the ellipse.

(More detailed information about the ellipse follows in the next section of the chapter.) Focusing

on Mars by relying heavily on the massive amounts of observational data that Tycho had collected,

and painstakingly checking and rechecking his computations, Kepler showed that the orbit of Mars

around the Sun is not a circle, but an ellipse. After a successful five year long “battle with Mars,”

Kepler published his three laws of planetary motion. They are still the basis of our understanding

of the movement of the planets of our solar system.

1. The orbit of any planet P around the Sun S is an ellipse with S at one of the focal points

of the ellipse.

2. As the planet P moves in its orbit, the segment SP sweeps out equal areas in equal times.

3. Let a be the semimajor axis of a planet’s elliptical orbit and let T be its period, namely the

time it takes to complete one orbit. Then the ratio a3

T 2 has the same value for all planets.

The elliptical orbits of the planets are all close to being circles. If scaled down to fit on this

page they would be indistinguishable from circles. This fact makes it all the more remarkable that

Kepler was able to identify them as ellipses. Kepler had observed exceedingly well. But what are

the underlying explanations? The road from observation to explanation is long and difficult. It was

Isaac Newton who informed us how it is traveled.
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In 1687, Newton (1642–1727) collected his deep reflections about the dynamics of the solar system

as well as the physical laws and mathematical methods that explain it in his treatise Philosophiae

Naturalis Principia Mathematica known simply as the Principia. This work is among the most

celebrated and influential treatises in the history of science. One of Newton’s major achievements

(although not his achievement alone) is his discovery and formulation of the fundamental concepts

and laws that underlie motion:

Law I. The Law of Inertia: An object that is at rest or moving in a straight line with

constant speed will continue in this state unless a change is brought about by an external

force.

Law II. The action of a force brings about an acceleration of the object, namely a change

in the speed and direction of its motion. The directions of the acceleration and the force

are the same and the magnitude of the force is proportional to the magnitude of the

acceleration, with the mass of the object the constant of proportionality.

Law III. For every action, there is an equal and opposite reaction.

Let’s elaborate. Take the meaning of force from everyday experience as any action of pulling

or pushing. A force has a numerical magnitude that can be measured. For example, an amount of

push or pull can be measured by the amount of the displacement it produces in some standardized

steel spring. A force also acts in a direction. The magnitude and direction together determine the

force. Quantities that are determined by a direction and a magnitude are called vectors that are

represented by arrows. Given a vector quantity, the arrow representing it points in the direction

involved and its length is equal to the vector’s magnitude. Both aspects of a vector may vary. The

motion of a moving point is given by a vector known as the point’s velocity. Its magnitude is its

speed.1 In a similar way, the acceleration of a moving point is also a vector. Newton’s second law

can be expressed as the vector equation F = ma, where F is the force acting on the object, a is the

acceleration that the force imparts to it, and m is its mass. Newton’s first law is a direct consequence

the second: if the magnitude of a force is zero, then the acceleration it produces in the motion of

the object is zero, and hence the object’s speed and direction remain constant. The third law says

that for every force there is always an equal and opposite force. If you push against a wall with your

hand, the wall will push back on your hand with an equal and opposite force. If this opposing force

were not to exist, your hand would push the wall over (or go through the wall). So forces always

occur in pairs of equal magnitude. The two forces do not act on the same object. The push by your

hand is a force against the wall. The push by the wall is a force on your hand.

Late in November of 1679, Robert Hooke (1635–1703), a broadly brilliant scientist and Newton’s

colleague in the prestigious scientific Royal Society of London, began a probing correspondence

with Newton about the nature of planetary orbits. What did Newton think about the idea of

“compounding the celestiall motions of the planetts [out] of a direct motion by the tangent & an

attractive motion towards the central body.” Hooke was unable to do anything with this insight.

1In this text, there are discussions involving the velocity of an object that focus entirely on the magnitude of the
velocity (and not on the direction). In such a situation, the term velocity is at times used to refer to the speed of the
object. In this regard, the given context will prevent any ambiguities.
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He lacked Newton’s mathematical genius and (along with most astronomers) did not recognize the

significance of Kepler’s second law. But Hooke’s question seems to be the moment that Newton

is first introduced to the thought that the curving motion of a planet could be understood as the

simultaneous composite of a tangential motion along a straight line together with one that is the

result of an attractive force in the direction of the Sun. In a subsequent letter to Newton of January

1680, Hooke asked again about the nature of the trajectory of an object that is bent away from

its inertial linear path by an attractive force that acts in the direction of a fixed point and varies

inversely with the square of the distance of the object from this point. Hooke’s letter also included

the erroneous suggestion that under the action of such an attractive force, a planet’s orbital speed

would be inversely proportional to its distance from the point of attraction. He concludes “I doubt

not but that by your excellent method you will easily find out what that Curve must be, and its

propertys, and suggest a physicall Reason of this proportion.”

A few months later, the Great Comet of 1680 appeared. Figure 1.8 presents a dramatic rendition

of it. Comets, seen as irregular, fleeting, changeable bodies, were thought to follow different laws

Figure 1.8. Lieve Verschuier, The Great Comet of 1680 over Rotterdam, oil on panel, 25.5 cm by 32.5 cm, Historisch
Museum Rotterdam. Image courtesy of the Hesburgh Library, University of Notre Dame.
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of motion than the planets. Kepler was convinced that comets move along straight lines. In fact

in the 1670s this was still the prevailing point of view. Newton observed the great comet from

December 1680 until March 1681 when it became too faint. He had acquired a telescope for the

purpose and kept a careful, almost daily log. If Hooke’s question about the motion of the planets

had not already done so, it was the puzzle of the comets that moved Newton to think deeply about

the comings and goings of the objects in the heavens. What was the explanation of Kepler’s elliptical

orbits? What forces accounted for the motion of the streaking comets?

These and related questions occupied the minds and conversations of the distinguished men of

the Royal Society in London during this time, including Hooke, the astronomers John Flamsteed

(1646–1719) and Edmond Halley (1656–1742), and the architect Christopher Wren. After one of

these discussions in August of 1684, Halley decided to travel up to Cambridge to consult Newton

about these central scientific matters. Newton recalled one of their conversations as follows:

“the Dr asked him what he thought the Curve would be that would be described by the

Planets supposing the force of attraction towards the Sun to be reciprocal to the square

of their distance from it. Sr Isaac replied immediately that it would be an Ellipsis. The

Doctor struck with joy & amazement asked him how he knew it, why saith he I have

calculated it.”

Newton did not have a solution to hand to Halley, but his inquiry inspired him to write one

up. He buried himself in his quarters at Cambridge from August 1684 until the spring of 1687. In

December of 1684, Halley gave an early account of Newton’s work to the Royal Society. A year later,

Newton had produced a simplified, but still preliminary description of the orbits of planets, moons,

comets, and tides for lectures he was to give as professor at Cambridge. By April 1686, Newton

had sent Halley the complete text of Book I of the Principia. The trajectory of the Great Comet

of 1680 continued to present a challenge. As late as June 1686, Newton wrote to Halley that “In

Autumn last I spent two months in calculations to no purpose” and that “The third [book of the

Principia] wants ye Theory of Comets.” After another year, Newton succeeded. He fit a parabola

to the observed positions of the comet by relying on the assumption—the same assumption that

explained the orbits of the planets—that the Sun pulled on the comet along its entire trajectory with

a force inversely proportional to the square of the distance between them. He concluded that the

comet looped around the Sun and hence that the comet that had approached the Sun and the one

that receded from it later were one and the same! The final third book of the Principia, The System

of the World included the study of comets and was completed in the spring of 1687. With financing

arranged by Halley, the Principia was published in the summer that followed. A second edition of

the Principia included the study of a comet that Halley had observed in November of 1682. The

properties of its orbit were so similar to those of comets that had appeared in 1531 and 1607, that

Halley concluded that these comets must be one and the same. Noticing the period of the orbit to

be about 76 years, he predicted that the comet would return in the year 1758. This prediction was

confirmed (long after Halley’s death) and the comet became known as Halley’s comet.

1C. The Conic Sections. Newton knew that when a comet passes in the vicinity of the Sun or

close enough to a planet (especially the massive Jupiter or Saturn), then its path would be deflected
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by the attractive force of the Sun or the planet. He came to realize that such deflections can follow

not only elliptical curves, but parabolic and hyperbolic curves as well. Therefore his mathematical

investigations of the dynamics of the solar system needed to consider not only the ellipse, but also

the parabola and hyperbola. We’ll begin by describing the basic aspects of these curves.

Let’s start with the ellipse. Let a and b with a ≥ b be two positive constants, and let c =
√

a2 − b2.

Place the points O,C, and F1 as indicated in Figure 1.9. If a > b, form the triangle ΔOF1C.

Since a2 = b2 + c2, this is a right triangle with hypothenuse CF1 = a. Extend the base of this

triangle and place the point F2 as indicated. If a = b, then c = 0. In this case, take F1 = F2 = O.

The ellipse that the constants a and b determine is the set of all points P such that the lengths

of the two segments PF1 and PF2 add up to 2a. Notice that if a = b, then this is a circle of

radius a. The graph of the ellipse is shown in the figure. The length a is the semimajor axis and

the length b is the semiminor axis of the ellipse. The semimajor and semiminor axes are both

positive numbers (in spite of the terminology, neither is an axis). The points F1 and F2 are the focal

points of the ellipse and the point O is its center. The axis determined by the two focal points is

the focal axis. In the case of the circle, the focal axis can be any axis through F1 = F2 = O. The

a SO

b a

c 

focal axis

BA

F2 F1

C

c 

Figure 1.9

eccentricity ε of the ellipse is defined by ε = c
a
. Since c < a, it follows that ε < 1. If ε = 0, then c = 0.

So a = b and the ellipse is a circle. The closer ε is to 1, the closer c is to a, the smaller b is relative to

a, and the flatter the ellipse is. Consider the focal point F1. Let A and B be the points of intersection

of the ellipse and its focal axis. A look at the figure tells us that B is the point on the ellipse closest

to F1 and that A is the point on the ellipse farthest from F1. The point B is the periapsis and A

the apoapsis both relative to F1. Notice that their distances from F1 are a − c = a − aε = a(1 − ε)

and a + c = a + aε = a(1 + ε), respectively. (With respect to the focal point F2 the roles of B and

A are reversed.) In the case of a circle, any point can be the periapsis with the point opposite to it

the apoapsis. If the ellipse is an orbit and F1 the position of the Sun, then B and A are known as
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the perihelion and aphelion, respectively. Let the point O be the origin of an xy-coordinate plane

as shown in Figure 1.9 and let P = (x, y) be any point in the plane. The formula for the distance

between two points in the coordinate plane and a bit of standard algebra show that P is on the

ellipse precisely when x2

a2 + y2

b2
= 1. This is a standard equation of the ellipse.

A parabola is specified by a line L and a point F not on the line, called directrix and focal point

respectively, as the set of all points that are equidistant from F and L. See Figure 1.10. The line

through the focal point perpendicular to the directrix is the focal axis of the parabola. The eccen-

tricity ε of the parabola is defined to be equal to 1. The point of intersection of the parabola and

its focal axis is the point on the parabola closest to F . It is the periapsis of the parabola. Take it

to be the origin O of an xy-coordinate system as shown in the figure. If c is the distance between F

and O, then F = (0, c) and L is the line y = −c. Let P = (x, y) be any point in the plane. By the

F 

directrix  L

focal axis 

c

O c
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distance formula for two points in the plane,
√

(y − c)2 + x2 = y + c. After simplifying this equation,

we see that P is on the parabola precisely when x2 = 4cy. This is a standard equation of the parabola.

We’ll conclude with the hyperbola. Let a and b be two positive constants and set c =
√

a2 + b2.

Extend the right triangle with sides a and b and hypotenuse c to the rectangle with center O shown

in Figure 1.11. Draw in an axis that bisects the rectangle and place the two points F1 and F2 on

this axis as shown in the figure. The hyperbola that a and b determine is the set of all points P such

that the absolute value of the difference in the lengths of the segments PF1 and PF2 is equal to 2a.

The length a is the semimajor axis of the hyperbola. The two points F1 and F2 in the figure are the

focal points of the hyperbola and the line that they determine is its focal axis. The extensions of the

two diagonals of the rectangle are both asymptotes of the hyperbola (this means that the hyperbola

converges to these two lines as shown in the figure). The eccentricity ε of the hyperbola is defined

by ε = c
a
. Since c > a, it follows that ε > 1. Consider the left branch of the hyperbola and its focal

point F1. The point of intersection of the left branch with the focal axis is the periapsis of the left
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branch. The periapsis of the right branch of the hyperbola is defined similarly. Let the midpoint

of the segment F1F2 be the origin O be of an xy-coordinate system with x-axis the focal axis and

b

O

a

c

focal axis
c

asymptote

asymptote

F1 F2c

Figure 1.11

y-axis perpendicular to it through O. Let P = (x, y) be any point in the plane. With the distance

formula for two points in the plane in combination with several algebraic steps it can be verified

that P is on the hyperbola precisely if x2

a2 − y2

b2
= 1. This is a standard equation of the hyperbola.

The ellipse, parabola, and hyperbola are called conic sections because each of them arises as the

points of intersection of a cone with a plane. The word “section” comes from the Latin for “cut.”

Take a circle and consider the axis through its center and perpendicular to its plane. Fix a point on

the axis distinct from the circle’s center. The resulting cone is the set of all points that lie on some

line through the point and the circle. It can be shown that any curve obtained by intersecting such

a cone with a plane is an ellipse, a parabola, a hyperbola (or in some “degenerate” cases, a point

or a line) and that any ellipse, parabola, and hyperbola can be obtained in this way. If this plane is

taken to be perpendicular to the central axis, then the intersection is a circle (or a point).

1D. Newton’s Incisive Insights. We’re now ready to describe the essential aspects of what

Newton achieved in the Principia. We’ll describe Newton’s methods, but only with a broad brush.

Complete proofs of his central assertions from a more modern point of view will follow in a later

chapter.

After a presentation of the “method of prime and ultimate ratios,” in other words the basics of

his differential calculus, Newton turns to the study of the gravitational forces of attraction in the

solar system. Initially, he does so in a completely abstract way with a focus on “centripetal force”

that is to say any force by which, according to Newton “bodies are drawn, impelled, or any way

tend towards a point, as to a centre.” Put another way, a force is centripetal if it always acts in

the direction of a single fixed point, called the center of force. The magnitude of a centripetal force

is free to vary. Think of a point-mass as a particle that is tiny in dimension but has no limit on
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its mass. Suppose that a point-mass P of mass m is propelled by a centripetal force of variable

magnitude F and that this is the only force acting on P . Let S be the fixed center of force and

let rP be the variable distance between P and S. Consider the plane determined by the point S

and the direction of the velocity of P at a given time. Since the force vector lies in this plane, it

follows that this is the plane in which P moves. We’ll refer to the path of the point-mass P as

its orbit or its trajectory, with preference to the former in elliptical situations. The essence of the

matter is depicted in Figure 1.12. In this completely abstract setting, Book I of the Principia sets

S

PP

orbit

mass mF

Pr

Figure 1.12

out to study the connection between the shape of the orbit of the point-mass P and the magnitude

FP of centripetal force. The key statements of Newton’s famous treatise about a point-mass that is

propelled by a centripetal force of magnitude FP with center of force S are these:

Conclusion A. The motion of the point-mass satisfies Kepler’s second law: the segment SP sweeps

out equal areas in equal times. In particular, if At is the area swept out by SP during some time t,

then At

t
is the same constant κ, no matter what t is equal to and no matter where in the orbit this

occurs. See Figure 1.13a. Kepler’s equal areas in equal times law follows directly from the equality

At = κt. We’ll call κ the Kepler constant of the orbit.

Conclusion B. If the orbit is an ellipse, a parabola, or a hyperbola and the center of force S is at

a focal point, then the magnitude FP of the force is given by the formula

FP =
8κ2m

L

1

r2P
,

where m is the mass of the point-mass, L is the latus rectum of the orbit (see Figure 1.13b), and

rP is the distance between P and S. Let the orbit be an ellipse with semimajor axis a, semiminor

axis b, and period T . Since abπ is the area of the ellipse and L = 2b2

a
, this formula becomes

FP =
4π2a3m

T 2

1

r2P
.
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Conclusion C. If the centripetal force satisfies an inverse square law, more specifically if FP is

given by an equation of the form

FP = Cm
1

r2P
,

where m is the mass of the point-mass and C is some constant, then the orbit is either an ellipse,

a parabola, or a hyperbola, and the center of force S is at a focal point.

The term 1
r2

gives the equation F = Cm 1
r2

its name. It is an Inverse Square Law of Force.

Conclusion C tells us that Kepler’s first law of the elliptical orbits of the planets (since planetary

orbits are finite in extent) is a mathematical consequence of Newton’s inverse square law. In his

proofs Newton assumes that the centripetal force acts intermittently (machine gun style) in bursts

that are a small fixed time interval apart. In view of the fact that the planets trace out their orbits

around the Sun continuously and smoothly, this assumption is counterintuitive. However, it is also
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ingenious, because it provides an approximation of the orbit of P as a sequence of line segments

and (consequently) of the area that P traces out as a sum of triangles. Working with this simplified

S

Q R

P

Z

A

Figure 1.15

triangular geometry, Newton derives approximate versions of the conclusions above. These snap to

“on the nose precision” when he lets the time interval between the bursts shrink to zero. This is
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the strategy with which Newton derivers his equalities.

The three diagrams above illustrate how Newton proceeds. Figure 1.14 is central to the proof of

Kepler’s second law as Conclusion A formulates it. It approximates the path of P as the sequence

of segments from A to B, B to C, and so on. The key is Newton’s observation that the areas of

consecutive triangles in the figure are essentially equal. In Figure 1.15, Newton views the motion

from P to Q as the composite of the tangential motion from P to R and the accelerated, force-driven

motion from R to Q. He then approximates the area of the wedge SPQ as the area of the triangle

ΔSPQ and applies Conclusion A. Figure 1.15 is an important component in Figure 1.16 which

Newton uses in a lengthy and delicate argument to prove the formula of Conclusion B in the case

where the orbit is an ellipse with S at a focal point.

Historical commentary often asserts that even though Newton developed calculus, when it came

to the mathematics of his magnum opus, he uses geometry instead. The fact is that Newton derives

his equations in the Principia by letting things shrink to zero, and in so doing he uses a fundamental

strategy of calculus. However, the calculus in the Principia is a calculus that lives in geometric

constructs and is not today’s calculus of functions. We will take up a modern approach to Newton’s

derivations in Chapter 4 of this text by making use of the calculus of functions in polar coordinates.

While Newton derives his conclusions in the abstract setting of centripetal forces and point-

masses, he believes that they apply to the gravitational forces with which more massive bodies in

the universe pull on much lighter ones. Suppose that S is a very massive body, that P is a much

lighter one, and consider the gravitational force of attraction between them. Since S is massive, the

gravitational force of P on S will have only a very small effect, so that S will move only very little.

By assuming that the masses of S and P are concentrated at their centers of mass, Newton can take

the gravitational force of S on P to be a centripetal force on a point-mass directed to the center of

S. He is confident that these considerations apply to the gravitational pull of the Sun on a planet,

that of a planet on one of its moons, or that of the Sun or a planet on a comet (at least in a tightly

approximate way).

Kepler’s observation that the orbits of the planets are ellipses in combination with Conclusion B

above provides Newton with evidence that his inverse square law

FP = CP m
1

r2

offers a valid quantitative description of the gravitational force FP with which a massive body S

attracts an object P of smaller mass m at a distance r from S, where CP some constant depending

on P. He becomes convinced that this law is valid not only for the Sun and any planet, for a planet

and any of its moons, but indeed, for any two masses anywhere in the universe. Newton now takes

a further step. If S exerts a pull on P , then by his third law of motion, P pulls with an equal

and opposite force FS on S. So P pulls on S with a force of magnitude FS = FP . See Figure 1.17.

PS
P SFF

r

Figure 1.17
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The symmetry of the situation requires that FS should satisfy

FS = CSM
1

r2

where M is the mass of S and CS is a constant depending on S. Newton puts the matter this way:

“Since the action of the centripetal force upon bodies attracted is, at equal distances,

proportional to the quantities of matter in those bodies, reason requires that it should be

also proportional to the quantity of matter in the body attracting.”

Since FS = FP , we see that CSM = CP m and hence that CS

m
= CP

M
. Now let G = CS

m
= CP

M
and notice

that CS = Gm and CP = GM . Let F = FP = FS and substitute to get

F = G
mM

r2
.

This equation is Newton’s Law of Universal Gravitation. Newton is convinced that the masses m

and M and the distance r between them are the essential elements that determine the force, and

that the factor G should be a universal constant, in other words, a constant that is the same for

any two such masses separated by any distance anywhere in the universe.

Newton turns next to any situation in the universe of a body S that is very massive relative to

the objects in orbit around it. Let P be an object in an elliptical orbit around S. Let m be the mass

of P , and let a and T be the semimajor axis and the period of its orbit. By Newton’s Conclusion B,

the attractive force of S on P satisfies

F =
4π2a3

T 2
m

1

r2
,

where r is the distance between P and the center of S. By his law of universal gravitation,

F = G
mM

r2
,

with M the mass of S. After a little algebra, Newton gets

a3

T 2
=

GM

4π2
.

Notice that the term GM
4π2 on the right has nothing to do with the particulars of the object P and its

orbit. In other words, it is the same for any P in orbit around S. It follows that the ratio a3

T 2 of the

cube of the semimajor axis a to the square of the period T of the orbit is the same for any body P

in orbit around S. This is precisely what Kepler had asserted about the planets orbiting the Sun.

So Newton has shown that Kepler’s third law is a consequence of his theory of gravitation! Refer

to Conclusions A and C above, and observe that Newton has demonstrated that all three of Kepler’s

laws are consequences of his theory.

1E. Testing the Moon and Charting the Solar System. To confirm that his conclusions

apply in the real world, Newton tests them against available evidence. In particular, he verifies that

basic observations about the Moon’s orbit around the Earth are consistent with his theory.
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Let’s begin with some numerical data about the Moon’s orbit. By Newton’s time, these were

much more accurate than the earlier estimates of Copernicus, Kepler, and others. The French had

calculated the radius of the Earth at the equator to be R = 19,615,800 Paris feet. (Today’s foot,

equal to about 94% of a Paris foot, is a little smaller). It was known that the Moon completes an

orbit in 27 days, 7 hours, and 43 minutes, or 39,343 minutes. The average distance from the center

of the Earth to the center of the Moon was known to be close to 60R.

For the purpose of corroborating his theory, Newton assumes that the Moon is in a circu-

lar orbit of radius 60R around the center of the Earth. He takes the Moon in a typical posi-

tion P and lets it be at Q exactly 1 minute later. In Figure 1.18, the motion of the Moon from

Q
x

P

60 R

60 R

Earth

Q

θ

`

Figure 1.18

P to Q is decomposed into the tangential component PQ′ and the component Q′Q in the direction

of the Earth. Newton knows that the angle θ is equal to 360
39343

degrees and is able

to compute 1 − cos θ = 0.0000000127 with remarkable accuracy. From the figure, cos θ =
60R

x+60R
, so that 1 − 60R

x+60R
= 1 − cos θ = 0.0000000127. Hence x

x+60R
= 0.0000000127 and

x = (0.0000000127)(x + 60R). Solving for x and taking R = 19,615,800 Paris feet provides the value

x = 14.95 Paris feet.

This estimate for the distance of the “fall” of the Moon toward the Earth in 1 minute is a consequence

of observational data alone. Is the value provided by Newton’s theory at least approximately the

same?
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An application of his second law of motion and his law of universal gravitation to an object of

mass m on the Earth’s surface tells Newton that the gravitational pull of the Earth on the object

is mg = GmME

R2 , where g is the gravitational acceleration near Earth’s surface and ME is the mass

of the Earth. So g = GME

R2 . Applying the same two laws to the gravitational force of the Earth on

the Moon informs him that this force is ma = GmME

(60R)2
, where m is the mass of the Moon and a the

acceleration of the Moon’s fall toward the Earth. Since a = GME

(60R)2
, Newton knows that

a =
GME

602R2
=

g

602
.

At the latitude of Paris, the gravitational constant g was known to be equal to g = 30.22 Paris

feet per second2 (for us, this is equivalent to 32.17 feet/sec2) and hence to g = (30.22)(602) Paris

feet per minute2. Therefore the acceleration of the Moon’s fall is a = 30.22 Paris feet per minute2.

Since the initial velocity of the Moon’s fall toward Earth from Q′ to Q is zero, Newton uses elements

of his calculus to conclude that the velocity of the Moon along the line from Q′ to the center of the

Earth is v = at, where t is the elapsed time of this fall. This in turn tells him that the distance of this

fall is 1
2
at2. Taking t = 1 minute, Newton’s theory predicts that the Moon would fall a distance of

x = 1
2
a = 15.11 Paris feet

toward Earth.

Newton’s theory has passed the test. The agreement between the observation of x = 14.95 Paris

feet, and the result x = 15.11 Paris feet predicted by Newton’s theory is good. The discrepancy can

be explained by the fact that simplifying assumptions were made. For example, the Moon’s orbit

was assumed to be circular and the gravitational effects of the Sun on the Moon were ignored.

Newton was aware that the orbit of the Moon around the Earth is much more complicated than he

assumed within his quick calculation above. In fact, Newton needed to fine-tune his earlier thinking.

The diagram of Figure 1.17 illustrating that the bodies S and P attract each other mutually with

forces of the same magnitude, tells us what is involved. Newton put it this way:

“I have hitherto explained the motions of bodies attracted towards an immoveable centre,

though perhaps no such motions exist in nature. For attractions are made towards bodies;

and the actions of bodies attracting and attracted are always mutual and equal, by the

third law of motion: so that, if there are two bodies, neither the attracting nor the attracted

body can really be at rest; but both as it were by a mutual attraction, revolve about the

common center of gravity.”

What Newton concludes is that both P and S are in fact in elliptical orbits and that the center of

mass of P and S is the relevant focal point for both orbits. This common center of mass is usually

referred to as the barycenter of the system.

To illustrate more concretely what Newton is saying, let’s return to the Earth–Moon system. The

center of mass of this system is about 4,900 kilometers (or 3000 miles) from the center of the Earth,

or about 1,500 kilometers (or 950 miles) below its surface. What Newton realized is that the centers

of mass of both the Moon and the Earth travel along ellipses around the barycenter positioned at a
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focal point of each ellipse. To get a sense of what is going on, think of the centers of the Earth and

Moon as being connected with a horizontally placed lever with fulcrum at the barycenter B. See

Figure 1.19 and note that the lever is balanced. Now think of the lever as revolving in the horizontal

Moon

Earth

fulcrum

B
C lever

Figure 1.19

plane. This simulates the essential dynamics of the Earth–Moon system. The Moon is in a

month-long orbit around B. This is a circular orbit in the simulation, but elliptical in fact.

The center C of the Earth is also in “orbit” around B. In other words, as Figure 1.20 illus-

trates, the Moon’s gravitational pull on Earth causes it to wobble in a monthly elliptical cycle

about the barycenter B. In terms of Earth’s orbit around the Sun, it is the barycenter B of the

C
C

`̀

C

`

B

Figure 1.20

Earth–Moon system (rather than the center of the Earth) that describes an elliptical orbit about

the Sun. As the barycenter of the Earth–Moon revolves around the Sun and the Moon circles around

this barycenter, one would expect for the Moon’s path around the Sun to be “loopy.” But this is not

the case. The reason is that the speed with which the Moon moves around the Earth is much less

than the speed of the Earth in its orbit around the Sun. The Moon’s orbit around the Sun should

be thought of as a flat sine wave that is bent into an elliptical shape around the Sun. (We will take

this question up in the Problems and Discussion section of this chapter.)

While continuing to pursue scientific matters after the publication of the Principia, Newton also

investigated theological questions and experimented with alchemy. Interested in social standing and
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a secure income, Newton moved to London in 1696 to accept the position of Warden of the Royal

Mint, and subsequently that of the more lucrative Master of the Mint. An able administrator, he

supervised the recall of England’s coinage (that was often forged as the metal in a coin had become

Figure 1.21. William Whitson, A scheme of the solar system with the orbits of the planets and comets belonging
thereto. Engraved by John Senex in London, 1720. Size 69 × 60 cm. Division of Maps, Library of Congress.
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worth more than its face value) and oversaw the issuance of a more reliable one. His scientific work

had largely ended when he resigned from his professorship at Cambridge University in 1702.

William Whitson, a theologian, historian, and mathematician was appointed to succeeded

Newton as professor at Cambridge. A leading figure in the popularization of Newton’s ideas,

Whitson produced a chart of the solar system (see Figure 1.21) that shows the orbits of the six

planets known at the time, the trajectories of 24 comets, and summarizes—without the mathe-

matical details—what Newton had discovered and what the astronomer Halley had catalogued.

A closer study of the engraving, especially the narrative (zoom in on the electronic version

https://www.loc.gov/resource/g3180.ct003814/

of the Library of Congress) shows that it contains much accurate information. This includes the

distances of the planets from the Sun. For example, the semimajor axis of the orbit of the Earth–

Moon system around the Sun is listed as 81 million English statute miles. Since the English statute

mile of that time (as well as the mile of today) is equivalent to about 1.61 kilometers, this corre-

sponds to 130 million kilometers, or about 87% of the modern value of 150 million kilometers. For

some reason, the more accurate result—equivalent to 140 million kilometers—that the astronomers

Cassini and Flamsteed achieved in 1672 is bypassed. (See the Problems and Discussion section.)

The semimajor axis of the Moon’s orbit around the Earth is given as 240,000 miles, the equivalent

of 386,400 kilometers, and very close to today’s 384,400 kilometers. The periods of the orbits of the

planets are also recorded with good accuracy. For Earth’s orbit, the chart takes the 3651
4

days that

the Julian calendar assigns to the tropical year. The period of the Moon’s orbit around Earth is

given as 27 days, 7 hours, and 43 minutes, almost identical to today’s value of 27.322 days. Given

that their approximate distances from Earth were available, the diameters of the planets could be

estimated fairly accurately from the sizes of their telescopic images. For instance, Whitson’s chart

lists the diameters of Jupiter and Saturn as 83,000 and 68,000 English statute miles respectively.

In terms of today’s definitive values, this corresponds to 96% for Jupiter and 87% for Saturn. The

diameter of the Sun is given as 763,000 English statute miles, about 88% of today’s value.

The orbits of the comets on Whitson’s chart are numbered. The numbers are placed inside

the outer circle, near the next circle (Saturn’s orbit). The incoming and outgoing segments of the

comets’ curving paths are labeled with the same number. The path labeled 3 (look in the 2 o’clock

position of the chart) refers to a comet that appeared in 1577, no doubt the comet that Tycho Brahe

had observed. One of the curving paths is labeled with the three numbers 14, 16, and 17 (look in

the 7 o’clock position). They refer to different passages of Halley’s comet. The chart lists its period

as 751
2

years and predicts its return in 1758. The orbit of the Great Comet of 1680 received the

number 1 (just above the 9 o’clock position). It is drawn as a tight parabola. Its period is given as

575 years and the perihelion and aphelion distances are listed as 496,000 miles and 11,000 million

miles, respectively. This last distance corresponds to about 18,000 million kilometers. It tells us that

Newton and Halley not only had a grasp of the size of the planetary system as then known, but

that they seemed to have a remarkable understanding of the vastness of the solar system beyond it!

1F. The Size and Scope of the Solar System. Ancient civilizations observed five planets

Mercury, Venus, Mars, Jupiter, and Saturn as points of light wandering against the fixed patterns

https://www.loc.gov/resource/g3180.ct003814/
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of the stars of the constellations. They have been a focus of study ever since. And ever since,

questions have remained. Had all of these wanderers been detected? Or were some missed? If so,

just an isolated few, or possibly swarms of them? And at what distances from the Sun? And about

the comets. How many are there? And where do they come from?

For some of the answers to these questions, we’ll need a convenient unit for measuring distances

in the solar system. The semimajor axis of Earth’s orbit has served this purpose. This distance,

later known as the astronomical unit, was very difficult to measure with accuracy. (See the segment

The Parallax of Mars of the Problems and Discussion section of this chapter.) In Newton’s time,

values equivalent to 130 million kilometers and also 140 million kilometers were in use. The value

of 150 million kilometers turns out to be very close to today’s definitive astronomical unit. The

symbol “au” is the abbreviated notation.

In the 1760s and 1770s the two German astronomers Johann Titius and Johann Bode played

the following numerical game. Start with 0 and 3, double 3 to get 6, and keep doubling to get the

sequence of numbers

0 3 6 12 24 48 96 192 384 . . .

Add 4 to each of them to get

4 7 10 16 28 52 100 196 388 . . .

and divide each of these numbers by 10 to arrive at

0.4 0.7 1 1.6 2.8 5.2 10 19.6 38.8 . . .

Consider a body in orbit around the Sun and let a and T be the semimajor axis and period of

its orbit in the units au and year. For Earth, both a and T are equal to 1, so that the ratio a3

T 2 for

the Earth is also equal to 1. Kepler’s third law tells us that a3

T 2 is equal to 1 for any body in orbit

around the Sun. So a3 = T 2 and hence a = T
2
3 au. Since accurate measurements of the periods of

the planets had existed since the time of Tycho Brahe and Kepler, astronomers understood the

semimajor axes of the orbits of the planets in terms of the astronomical unit since the 17th century.

The specific values for Mercury, Venus, Mars, Jupiter, and Saturn were known to be

Mercury Venus Earth Mars Jupiter Saturn

0.39 au 0.72 au 1.00 au 1.52 au — 5.20 au 9.54 au

Titius and Bode noticed that, except for the gap at 2.8, the distances of the planets from the Sun

given by their semimajor axes matched up very well with the numbers of their numerical game.

The English astronomer William Herschel (1738–1822) surveyed the skies in the latter part

of the 18th century. The telescopes that he built with the large, precise mirrors that he ground,

were superior even to those used at the Royal Observatory. In 1781, he discovered a new planet,

the first since ancient times! It was later named Uranus after the Roman god of the sky. The

semimajor axis of its elliptical orbit was calculated to be 19.19 au. The fact that this was close

to the Titius-Bode number 19.6, seemed convincing evidence that the relationship that Titius and

Bode had observed was valid. Not surprisingly, the question “what about the gap at 2.8?” became
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a pressing concern and the search was on for a planet between Mars and Jupiter with a semimajor

axis near 2.8. An association of astronomers was formed to look for such a planet in a systematic

way. Remarkably, soon thereafter, in January of 1801, such an object was discovered by an Italian

astronomer (who was not a member of this club) peering into the night sky from his observatory in

Palermo on the island of Sicily. He named the object Ceres after the ancient Roman goddess and

patroness of the island. Unfortunately, the tiny arc that his six weeks of observations drew in the

sky was not enough to allow him to pinpoint the orbit. The identification of the orbit was essential.

Only by understanding it would other astronomers be able to locate the object and confirm the

discovery. Indeed, soon after its discovery, the small, wandering point of light had disappeared.

Some astronomers searched for it and others attempted to compute its orbit from the sparse data

that was available. All these efforts failed. But a 24 year old German took up the challenge and

succeeded! Carl Friedrich Gauss—whose mathematical discoveries later established him as one of

history’s greatest mathematicians—developed a method for computing an entire orbit from just a

few points of observation. Searching along the path that Gauss predicted, Ceres was rediscovered

in December of 1801. The orbital elements that Gauss computed placed Ceres in an elliptical orbit

between Mars and Jupiter with semimajor axis 2.77 au. A complete triumph of the Titius-Bode

scheme? Not quite! With its radius of only 470 kilometers, Ceres was less than 1/3 the size of our

Moon and was not regarded to be a legitimate planet. The search for the “real” planet went on.

Between 1801 and 1808, astronomers tracked down three more such bodies in this region of the solar

system. All were smaller than Ceres. Viewed with the telescopes of the day, they resembled small

stars so much that astronomers suggested that they be called asteroids, meaning “star-like”. The

discovery of such asteroids continued and by the year 1900 about 450 had been identified. All were

small and it became clear that there was no single large planet between Mars and Jupiter. Instead,

there was a swarm of smaller bodies revolving around the Sun in this region. The table

Ceres Vesta Pallas Hygeia

2.77 au 2.36 au 2.77 au 3.14 au

lists the semimajor axes of the elliptical orbits of the four largest of these asteroids.

Astrophysicists have reconstructed the history of the solar system. It began as a cloud of gas

and dust in space. Over time, gravity pulled the gas and dust together and the cloud began to spin

as it collapsed into a disk. As the disk got hotter and thinner, particles began to stick together to

form clumps. In the process some clumps got bigger, eventually forming planets and moons. Near

the center of the cloud, rocky material survived the heat and the inner planets formed. In the cooler

parts of the disc, farther from the center, massive planets composed mostly of gases with a relatively

small rocky core developed. The largest was Jupiter. Jupiter’s strong gravitational forces sped up

the clumps orbiting in its region of space. Instead of fusing together, they collided and shattered.

The debris became the swarm of asteroids, now called the main asteroid belt (to distinguish it from

smaller swarms of asteroids in the solar system). The asteroids of the main belt form a flat, donut-

shaped region between the orbits of Mars and Jupiter. Its cross-section is shown in Figure 1.22. Most

asteroids are irregularly shaped and are often pitted or cratered. As they revolve around the Sun

they often tumble as they go. The main belt is estimated to contain between one and two million

asteroids larger than 1 kilometer in diameter, and many millions of smaller ones. The number of
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asteroids in the main belt is huge, but they are sparsely distributed over the vast region of space

that they occupy. The total mass of the asteroids in the main belt has been estimated to be 4% of

the mass of our Moon. The four largest, Ceres, Vesta, Pallas, and Hygeia make up about half of

this mass.

By 1846, Uranus had completed nearly one full trip around the Sun since its discovery.

Astronomers studying its orbit detected irregularities. The astronomers Urbain Le Verrier (1811–

1877) in Paris and John Couch Adams (1819–1892) in Cambridge analyzed these and conjectured

them to be the consequence of the gravitational tug of some other planet in orbit beyond Uranus.

Sure enough, soon thereafter, a new planet was located near the predicted position. It was later

named Neptune after the Roman god of the sea. The semimajor axis of Neptune’s orbit was cal-

culated to be 30.07 au, far off the 38.8 au that the Titius-Bode law would have called for. This

substantial difference, combined with the lack of a scientific explanation for it, finally put the law

to rest.

Continued observations in the late 19th century led some astronomers to speculate that Neptune

might not be the only planet that perturbed the orbit of Uranus and that there might well be another

0       0.5        1        1.5      2
au

Figure 1.22. Diagram adapted from https://spaceplace.nasa.gov/ice-dwarf/en/. Courtesy NASA/JPL-Caltech

https://spaceplace.nasa.gov/ice-dwarf/en/
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planet that did so. In response, an effort was launched to find one. At an observatory in Arizona,

the young astronomer Clyde Tombaugh deployed a sophisticated new telescope to image regions

of the night sky on photographic plates. In 1930, after a year of systematically comparing plates,

he detected a small point of light that shifted its position slightly from one plate to the next. This

point of light became the ninth planet of the solar system. Named Pluto, after the Roman god of the

underworld, its orbit had a semimajor axis of 39.53 au and an eccentricity of 0.25, both larger than

those of the planets discovered previously. But when its mass turned out to be less that 1/5 of the

mass of our Moon, it was realized that it could not have a measurable impact on the orbits of either

Uranus or Neptune. With the discovery of Pluto, the picture of the solar system as it was known

in the 1930s and 1940s was complete. As seen from a vantage point high above the Earth’s north

pole, all planets move counterclockwise around the Sun in essentially the same plane. Figure 1.22

provides a diagram of their orbits. Both of its components are to scale.

In the 1950s, the Dutch-American astronomer Gerard Kuiper (1905–1973) proposed the existence

of a region of icy, rocky, Pluto-like objects that circle the Sun in elliptical orbits at a distance of

30 to 55 au. And indeed, since the 1990s dozens of such “Kuiper belt objects” have been located,

some of them about as large as Pluto. Would they become the tenth, eleventh, . . . planets of the

solar system? Or should the meaning of the word planet be revisited? In 2006, the International

Astronomical Union—the governing body for such issues—met to consider the matter and defined

a planet to be an object in orbit around the Sun that is not only massive enough to be rounded into

a spherical shape by its own gravitational force, but so massive as to have cleared the vicinity of its

orbit of other objects by collision or by attracting them as moons. With this definition, Mercury,

Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune qualified as planets, but Pluto did not.

Its mass is large enough to give it a spherical shape, but too small to have cleared its orbital path.

Pluto was stripped of its status. Along with several similar Kuiper belt objects and the asteroid

Ceres, it joined the new category of dwarf planet.

Our understanding of the solar system underwent one final expansion. Some theoretical models

of the early solar system predicted that the formation of the giant planets would have scattered

a vast number of icy objects into the outer solar system and beyond it. Some would have had

enough velocity to escape the Sun’s gravitational pull, but many others would have been drawn

into orbit around it. Accordingly, in 1950, the Dutch astronomer Jan Oort (1900–1992) proposed

that in the far reaches of the solar system—at distances from hundreds to hundreds of thousands

astronomical units from the Sun—there should be swarms of billions of chunks of icy debris. The

most distant part of this region, now known as the Oort cloud, is roughly spherical and surrounds

the solar system at its gravitational edge. Comets are believed to be icy fragments from both the

Oort cloud and the Kuiper belt that were deflected into the inner solar system by gravitational

interactions. Short-period comets, those with periods less than 200 years, are thought to have come

from the Kuiper belt. Comets with periods from hundreds to thousands of years must come from

much greater distances and give evidence for the existence of the Oort cloud. We saw earlier that

both Newton and Halley had some insight into the enormous size of the solar system. The written

comment along the trajectory of the Comet of 1680 in Whitson’s engraving (this is the parabola
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labeled 1 in the 9 o’clock position of the outer circle of Figure 1.21) lists the comet’s greatest

distance from the Sun as 11,200 million miles. This is equivalent to about 120 astronomical units.

1G. The Metric System of Units. In the 18th century, Europe used an array of different units

for measuring things. The French foot and the English statute mile that Newton made use of are

but two examples. In France alone, hundreds of different units of measurement were in use. The

quantity associated with each unit could differ from town to town and from merchant to merchant.

These variations gave rise to fraud and hindered commerce and taxation. The metric system was a

response to this confusion. In 1790, a year after the start of the French Revolution, a proposal was

put to the French National Assembly to create a standard system of units of measurement. On the

recommendation of the French Academy of Sciences, the National Assembly accepted the meter as

the standard unit of length and the gram as the unit of weight. This was the beginning of a system

that the world would come to use—in refined and expanded form—to do its science and commerce.

The meter is defined to be equal to one ten-millionth of the distance between the North Pole

and the Equator of the Earth. The kilogram is declared to be the mass of one thousandth of a cubic

meter of water (a few degrees centigrade above freezing). Thereafter, the second was added as a unit

of time. It is defined in terms of the solar day, the time from the instant the Sun is highest in the sky

to the instant this occurs a day later. Since the duration of the solar day varies, the average solar

day is taken. The second is defined so that the average solar day consists of precisely 86,400 seconds.

With this definition, and the understanding that one minute has 60 seconds and one hour has 60

minutes, the average solar day is exactly 24 hours long. In 1832, the famous German mathematician

Carl Friedrich Gauss (we met him in the context of the discovery of the asteroid Ceres) promoted

this system as the appropriate set of units for the physical sciences. In 1875, the inter-governmental

agency General Conference on Weights and Measures (CGPM is its international acronym) was

organized. Under its stewardship, the meter–kilogram–second system was extended coherently to

the electrical realm with the addition of the ampere as the unit of current. In 1960, the CGMP

launched the Système International d’Unités, or SI, with its seven coherent base units that include

the meter, kilogram, second, and ampere, (as well as units that measure the amount of a substance

in terms of elementary particles such as atoms or molecules, thermodynamic temperature, and light

intensity). Since the time of their introduction, the definitions of these units have been refined and

made more precise. For instance, the second is now defined to be the duration of 9,192,631,770

periods of the radiation frequency at which atoms of the element cesium 133 change from one state

to another. This atomic cesium clock is so precise that it looses/gains less than 1 second in a million

years. The meter has become the distance traveled by light in a vacuum during a time interval of
1

299,792,458
of a second. It follows from this definition that light travels exactly 299,792,458 meters in

one second.

The system consisting of the meter, kilogram, and second is the international MKS system of

units. We will usually abbreviate the meter by m, the kilogram by kg, and the second by sec. An

overview of the metric units that have been discussed as well as some of the units derived from

them follows below. The American equivalents are included for readers whose intuitive sense is

more aligned with them. Precise values are expressed in bold type. One big advantage of the MKS

system is that its units and derived units (except for units of time) parallel our base 10 decimal
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number system. This provides this system with a coherence that the American system with its inch,

foot, yard, and mile and its blob, slug, and pound mass, etc., does not have.

Length: 1 centimeter = 1
100

meter, 1 kilometer = 1000 meters, 1 inch = 2.54 centime-

ters, 1 foot = 0.3048 meters, 1 meter = 3.280840 feet, 1 mile = 1.609344 kilometers, 1

kilometer = 0.621371 miles, and 1 mile = 5280 feet. The centimeter and the kilometer

are abbreviated by cm and km, respectively.

Mass: 1 gram = 1
1000

kilogram, 1 metric ton (or tonne) = 1000 kilograms, 1 slug =

14.593903 kilograms, 1 kilogram = 0.0685218 slugs.

Time: 1 minute = 60 seconds, 1 hour = 60 minutes, 1 day = 24 hours = 86,400 seconds.

Consider an object of 1 kg in mass. Suppose that a constant force imparts an acceleration of

1 m
sec

per second to the object. So during each second the object’s speed is increased by 1 meter per

second. The equation F = ma implies that 1 kg · 1 m
sec2

is the force on the object. The unit kg·m
sec2

is

the basic unit of force in MKS. Appropriately, it is named newton and abbreviated by N.

Force: 1 pound force = 4.45359237 newtons, 1 newton = 0.22480894 pounds force,

1 kilonewton = 1000 newtons. The kilonewton is abbreviated by kN.

Recall from section 1F that the astronomical unit is based on the semimajor axis of Earth’s

elliptical orbit around the Sun. In the 20th century, after the invention of radar and the precise

determination of the speed of light, distances in the solar system could be determined accurately.

This is done by timing (with atomic clocks) how long it takes a radar beam traveling at the speed

of light to travel to an object and bounce back to Earth (or a spacecraft). This approach resulted

in the value of 149,597,870.7 kilometers for the semimajor axis of Earth’s orbit. This measurement

in turn became the basis of the official definition of the astronomical unit au as

1 au = 149,597,870.7 kilometers.

We turn to the issue of the meaning of the year. The tropical year is defined to be the duration

of time from one summer solstice to the next (or from one spring equinox to the next). It comprises

a complete cycle of the seasons. This is the year the world’s calendars are based on. The Gregorian

calendar of 365.2425 days had been introduced to correct the 365.25 days that the Julian calendar

assigned to the tropical year. The Gregorian calendar is also not completely accurate. The modern

value for the average tropical year is approximately 365.242189 days. But from one year to the next,

the tropical year can vary by as much as 20 minutes (or 0.012593 days).

With regard to astronomy and Newton’s formulas in particular, it is the period of Earth’s orbit—

the time that the Earth requires to complete exactly one orbit—that is important. Is this equal to

one tropical year? The answer is no, because—as was observed in section 1A—the precession of the

equinoxes tells us that the position of Earth’s summer solstice shifts slightly from one orbit to the

next. Take any point along Earth’s orbit and measure the time it takes for Earth to return to the

same point. The area that the segment from the Earth to the Sun traces out during this time is equal

to the area of Earth’s ellipse. It follows from Kepler’s second law, that the time required for Earth

to make one complete revolution around the ellipse does not depend on the starting point. We’ll call
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the time it takes for the Earth to move from one perihelion to the next the perihelion period. It too

varies slightly. The Earth’s perihelion period has been calculated to be on average 365.259636 days

long. The perihelion period is defined in the same way for all the planets and their moons, as well

as for comets and asteroids. There is a consideration that complicates things. It has been known

for some time that as each planet traces out its elliptical orbit, the ellipse itself moves. Its focal

axis—fixed at the Sun—rotates in the same direction as the planet’s motion taking the perihelion

and aphelion positions with it. See Figure 1.23. This rotation of a planet’s ellipse is known as the

S

P
focal axis

perihelion

aphelion

Figure 1.23

precession of perihelion. Careful observations have shown that these rotations are extremely slow.

For example, one complete rotation of the Earth’s ellipse takes about 112,000 years. During one

perihelion period, a planet—given the slow “forward” rotation of its ellipse—moves slightly past

Figure 1.24. On the left the Earth and it’s orbit are depicted in blue and the Sun in orange against the night sky.
On the right the Earth and Sun are shown in the same position against the same section of sky. Image credit for the
starry background: Bruce MacEvoy, Astronomical Files from Black Oak Observatory.
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the perihelion position of its previous orbit.

Another measure of a planet’s period is the time it takes for it to return from a given position

in its orbit—as pinpointed by its location relative to the a frame of reference determined by a set of

distant fixed stars—to the same (or most closely the same) position in its next orbit. This duration

of time is a planet’s sidereal period (from the Latin sidereus meaning “relating to stars”). For the

Earth it is on average equal to 365.256363 days. Figure 1.24 gives a sense of what is involved. For

the Earth, the difference between the average perihelion period and the average sidereal period is

less than 5 minutes. (Note that the ellipses in Figures 1.23 and 1.24 are exaggerated. The orbits of

the planets are much more circular than depicted.)

When it comes to the year as a unit of time, this text follows the International Astronomical

Union that has defined 1 year to be equal to precisely 365.25 days or 365.25(86,400) = 31,557,600

seconds. Note that this is the Julian year of ancient Roman times. Simple calculations show that

the Earth’s tropical year, perihelion period of 365.259636 days, and sidereal period of 365.256363

days are respectively, 0.9999786, 1.0000264, and 1.0000174 years long.

1H. Cavendish and the Gravitational Constants G and g. Consider the rewritten form

GM =
4π2a3

T 2

of Newton’s version of Kepler’s third law as discussed in section 1D. This equation tells us that the

semimajor axis a and the perihelion period T of an object moving in an elliptical orbit determines

the product GM where M is the mass of the body at the focus of the ellipse that drives the motion

of the object with its gravitational force.

Newton drew the following conclusion from this formula. We’ll use data from Whitson’s chart

of Figure 1.21. The values 81 × 106 English statute miles for the semimajor axis of Earth’s orbit

about the Sun and 365.25 days for its period T provides Newton with the approximation

GMS ≈ 4π2(81 × 106)3

365.252
≈ 20.98 × 1024

13.34 × 104
≈ 1.57 × 1020 miles3

day2
,

where MS is the mass of the Sun.

For the orbit of the Moon around Earth, Whitson’s chart provides the value a ≈ 240,000 miles

for the semimajor axis and T ≈ 27.322 days for the period. This told Newton that with ME the

mass of the Earth,

GME ≈ 4π2(24 × 104)3

27.322
≈ 54.57 × 1016

7.46 × 102
≈ 7.32 × 1014 miles3

day2
.

It follows directly that

MS

ME

≈ 1.57 × 1020

7.32 × 1014
≈ 214,000.

So the conclusion is that Sun is approximately 214,000 times more massive than the Earth.

This turns out to be not very accurate. Nor is the assertion that the Sun is “in quantity of Matter

230,000 times as great as the Earth” of Whitson’s chart. Newton’s data for the orbits of the Earth

around the Sun and the Moon around Earth were not precise enough. The principal culprit is the
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inaccurate value of 81 million miles for the semimajor axis of the Earth’s orbit around the Sun. The

correct value of 93 million miles would have gotten Newton much closer.

The precise value for the Sun/Earth mass ratio is 332,945. Today’s values for GME and GMS

also make use of Newton’s version of Kepler’s third law, but they rely on the precise orbital data

that spacecraft and artificial satellites provide. The MESSENGER spacecraft (derived from MEr-

cury Surface, Space ENvironment, GEochemistry, and Ranging that describe its mission) has sent

back the precise values of 57,909,050 km for the semimajor axis of Mercury’s orbit around the Sun

and 87.969 days for the orbital period. This information tells us that GMS = 1.32712 × 1020 m3

sec2
.

Bouncing laser beams from Earth off the satellite LAGEOS (the name is taken from LAser GEO-

dynamic Satellite) has provided accurate information about its orbit around Earth, and in turn the

value GME = 3.98600 × 1014 m3

sec2
. It follows that MS

ME
≈ 1.32712×1020

3.98600×1014
≈ 332,945.

As an important special case of Newton’s second law F = ma, consider the acceleration generated

by the force of gravity on an object falling near Earth’s surface. By the early 17th century Galileo

had concluded from his studies in the city of Pisa that this acceleration, nowadays labeled g, is the

same no matter what the mass m of the falling object is. The magnitude of the gravitational force

F = mg is the weight of the object. Since g is now known to be approximately 9.8 m
sec2

(or about

32 feet
sec2

), the mass m of the body can be determined from its weight.

If the law of universal gravitation holds everywhere in the universe, it should also apply to an

object of mass m on or near the surface of Earth. The Earth’s matter is distributed in such a way

that its density is approximately the same at equal distances from its center. This means that with

regard to gravity, all of its mass ME can be regarded to be concentrated at its center. Inserting the

radius r of the Earth into the law of universal gravitation tells us that the Earth’s gravitational pull

F on the object is F = GmME

r2
. Since also F = mg, it follows that

g = G
ME

r2
.

The Earth is essentially a sphere, but due to its rotation, it is a sphere that is flattened at the

poles and bulging at the equator. See Figure 1.25. In other words, the distance r varies from being

smallest at the poles and largest at the equator. So g varies as well, from being largest at the poles

m

r

ME

Figure 1.25. The Earth’s cross-section through its center and North Pole is not a circle but an ellipse (that is close
to a circle). The ellipse is exaggerated and much flatter in the figure than in fact.
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and smallest at the equator. So the motion of a thrown object as we observe it every day on the

surface of our planet is also impacted by Newton’s law of universal gravitation. Using the Earth’s

average radius r = 6371 km and the value GME = 3.98600 × 1014 m3

sec2
provides the approximation

g ≈ GME

6,371,0002
≈ 3.98600 × 1014

(6.371 × 106)2
≈ 9.82 m

sec2
.

The use of precise values for the distance r tells us that g varies from about 9.7639 m
sec2

at the

top of one the peaks of the Andes in Peru (why would it not instead be at the top of Mt. Everest?)

to 9.8337 m
sec2

on the surface of the Arctic Ocean. In New York, Washington DC, Chicago, Denver,

San Francisco, Madrid, Rome, Tokyo, Sydney, and Buenos Aires, the value of g is close to 9.80 m
sec2

.

In Vancouver, London, Paris, Amsterdam, and Frankfurt it is close to 9.81 m
sec2

, and a bit farther

north, in Oslo, Stockholm, Helsinki, and St. Petersburg for example, it is approximately 9.82 m
sec2

.

A question at hand is “what are the masses of the Sun and the Earth?” Since, as we have seen,

GME and GMS can be tightly computed, this reduces to the determination of the value of the

universal constant G. Newton did not think that this was possible:

“Perhaps it may be objected, according to this philosophy all bodies should mutually

attract one another, contrary to the evidence of experiments in terrestrial bodies. But I

answer, that the experiments in terrestrial bodies come to no account. For the attraction

of homogeneous spheres near their surface are as their diameters. Whence a sphere of

one foot in diameter, and of like nature to the Earth, would attract a small body placed

near its surface with a force of 20,000,000 less than the Earth would do if placed near its

surface. But so small a force could produce no sensible effect.”

In other words, the great man regarded it to be an insurmountable task to devise an experiment that

would lead to a calculation of G. (There is more about his thinking in this regard in the Problems

and Discussions section.)

This time Newton was wrong! About 100 years after Newton completed his Principia, in 1798 to

be exact, the Englishman Henry Cavendish devised a delicate experiment that provided an estimate

for G. As brilliant as Cavendish was as an experimental scientist, as a person he was an even stranger

C

B

A

Figure 1.26
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bird than the anti-social Newton. He was reclusive, published little, and—even though wealthy—

dressed shabbily. He spoke rarely. As one of his contemporaries put it, he “probably uttered fewer

words in the course of his life than any man who ever lived fourscore years, not at all excepting the

monks of the Trappist Order.”

In Cavendish’s experimental setup a fine wire is suspended from a fixed point A and a rigid

“crossbar” BC is attached to it. Refer to Figure 1.26. From BC in turn, two heavy iron balls

are suspended. They are shown in black. Cavendish then moved two more heavy iron balls (shown

lightly shaded) into place so that they almost touched the two others. He balanced and controlled his

apparatus in the most delicate terms and was able to measure the gravitational force F between the

two pairs of balls from the rotation of the axis BC that this force brought about. Since Cavendish

knew the masses of the balls and the distances between them, the equation F = GmM
r2

allowed him

to derive an estimate for G. Expressed in MKS, Cavendish’s experiment provided the value

G ≈ 6.75 × 10−11 m3

kg·sec2

The units meter, kilogram, and second can be seen or sensed. They are all of a human size and scale.

However, the factor 10−11 tells us that the constant G is incredibly small on the human scale, so

that gravity is a very weak force. But how is it then that when we jump up, the force of gravity pulls

us quickly and powerfully back down to Earth? The answer is that it is the enormously massive

Earth that does the pulling!

The results of recent experiments—most of them using refined versions of Cavendish’s “torsion

balance”—tell us that Newton’s assertion that “so small a force could produce no visible effect” has a

certain validity. Into the 21st century, the accepted value for G was 6.67259 × 10−11 m3

kg·sec2 . A careful

experiment carried out in 2010 provided the value G = 6.67384 × 10−11 m3

kg·sec2 . This value is still in

common use by astrophysicists. A 10-year experiment produced the value G = 6.67545 × 10−11 m3

kg·sec2
in 2012. In 2014, the Committee on Data for Science and Technology (CODATA) recommended

the value G = 6.67408 × 10−11 m3

kg·sec2 . Also in 2014, a conceptually completely different approach—

measuring how several hundred kilograms of tungsten distorts the gravitational effect on super-

cooled rubidium atoms—yielded the value G = 6.67191 × 10−11 m3

kg·sec2 . The discrepancies between

these results suggest that the measurement of G is a very delicate matter. They also raise obvious

questions. Is the correct value of the coefficient of 10−11 m3

kg·sec2 when rounded off to the third decimal

place, equal to 6.672, 6.673, 6.674, or 6.675? Are these differences explained simply as experimental

error? Or does the value of G depend on how it is measured or where on Earth the measurement is

made? Is the value affected by the changing astronomical environment as Earth moves around the

Sun and as the solar system moves within our galaxy? No doubt, further studies and experiments

are called for to clarify these questions about the value of G.

The assumption that Newton’s law of universal gravitation is accurate has the consequence

that GM can be computed with precision for any body of mass M if precise information about

an object that is in orbit about the body is available. In such a situation, the uncertainty about

G just discussed necessarily implies an uncertainty about M . The websites of the space agency

NASA list the Earth’s mass as 5.9724 × 1024 kg and the Sun’s mass as 1,988,500 × 1024 kg. The

definitive values GME = 3.98600 × 1014 m3

sec2
and GMS = 1.32712 × 1020 m3

sec2
used above imply that
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G ≈ 3.98600×1014

5.9724×1024
m3

kg·sec2 ≈ 6.67402 × 10−11 m3

kg·sec2 and G ≈ 1.32712×1020

1.98850×1030
m3

kg·sec2 ≈ 6.67398 × 10−11 m3

kg·sec2 .

We can conclude that NASA is working with the approximation G ≈ 6.674 × 10−11 m3

kg·sec2 .

1I. The Sun. The Sun is the massive body that holds the solar system together. The entire

solar system—the planets with their moons, the asteroid belts, the comets, as well as the objects

of the Kuiper belt and the Oort cloud—is driven by the gravitational pull that the Sun exerts on

Figure 1.27. NASA’s Solar Dynamics Observatory is an Earth satellite launched in 2010 to observe the Sun. Its
goal is to understand how the Sun transfers energy into space and to predict the solar activity that influences our
technological systems on Earth. Due to its high data transmission rate, the satellite was placed into an orbit that
allows it to be in contact with a ground station in Las Cruces, New Mexico. The image was captured on October
2014 in the extreme ultraviolet light-band. Image credit: NASA/SDO and the AIA, EVE, and HMI science teams.
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everything. In terms of the Sun’s impact, there is the additional fact that without the Sun there

would be no life on our planet and, as far as we know, no life anywhere in the solar system.

The Sun has been observed with telescopes since the time of Galileo, but definitive information

about it is recent. The Sun has a radius of 695,700 km. The core of the Sun is a spherical region at

its center of radius about 140,000 km. The extreme pressure and temperature in the core transform

hydrogen to helium in a process called nuclear fusion. In the process, relatively small amounts of

matter are converted into large amounts of energy. The core is a nuclear fusion reactor that produces

almost all of the Sun’s energy. (Scientists have been attempting to construct—unsuccessfully so far—

a tiny version of such a fusion reactor here on Earth.) The energy produced by the core is transferred

through the Sun’s successive layers until it radiates into space in the form of heat, light, and charged

atomic particles. The core’s temperature is estimated to be about 16 million degrees Celsius (also

known as centigrade) and that of its surface around 6,000 ◦C. The image of Figure 1.27, taken in

October 2014, shows solar flares and ejections of solar mass. A very intense flare is seen to erupt

from the lower half of the Sun. Others arc above the Sun’s edge along looping magnetic fields. Such

intense bursts of radiation are our solar system’s largest explosive events. The dark curving filament

in the picture is a huge arc of electrified gas in the Sun’s atmosphere. It too is hot, but it looks dark

core of the Sun

Figure 1.28. Motion of the solar system’s barycenter relative to the Sun 1945–1995. Image credit: Carl Smith. See
https://commons.wikimedia.org/wiki/File:Solar system barycenter.svg

https://commons.wikimedia.org/wiki/File:Solar_system_barycenter.svg
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because it is not as hot as the Sun’s surface under it.

The center of the gravitational force that holds the solar system together is in fact not Sun

but the center of mass, or barycenter, of the entire solar system. Every single object in the solar

system, from the enormous Sun to the tiniest speck, exerts a gravitational pull on everything else.

The solar system is basically a massive game of tug of war, and all of the pulling balances out at

the barycenter of the system. This is the point that is the focal point of the ellipses of the orbits of

the Earth–Moon system and all other planet-moon systems. Since the Sun comprises 99.86% of the

mass of the solar system, in the larger scheme of things the center of the Sun and the barycenter of

the solar system are not far apart. Figure 1.28 shows how the barycenter of the solar system moved

relative to the Sun in the years from 1945 to 1994. A better way of thinking about this motion (in

analogy with the Earth’s movement around the Earth–Moon barycenter) is to regard the Sun to be

in an elliptical orbit about, or more descriptively, in an elliptical wobble around, the barycenter of

the solar system.

1J. Galaxies and the Expanding Universe. There is one major question that the brilliant

scientists of the Scientific Revolution were not able to respond to. The Greek model of the universe

places all the stars on a large sphere with center the Earth. Does the consequence that all stars

are at the same distance from us correspond—at least more or less—to the facts? What about the

constellations that the Greeks identified and measured the motion of the planets against? Are the

stars of a particular constellation equally far away?

In the latter part of the 18th century, the French astronomer Charles Messier was focused on his

passion of tracking comets with the simple telescopes that existed at the time. As he peered into the

night sky he took note of other interesting formations of light. His Catalogue of Nebulae and Star

Clusters recorded over one hundred, mostly small and fuzzy clusters of stars and clouds of stellar

dust and gas that caught his eye. To this day, these objects are still referred to by their Messier

numbers. In Messier’s time, no one had any sense of the size of the universe and the distance of these

objects from Earth. The parallax measurements of the 1830s provided some early insights. Friedrich

Bessel aimed his split image telescope at a rather faint star (actually a binary system of two stars) on

a cloudless night and six months later, with Earth on the opposite side of its orbit, he did so again.

When he compared the two images, he observed a very small shift—less than 0.00002 degrees—in

the position of the star against the backdrop of a very distant cluster of stars that remained fixed.

This parallax measurement not only confirmed the Earth’s orbital motion, it also told us that the

universe is huge. While it takes light, speeding along at 300,000 km/sec, about 8 minutes to travel

the 150 million km from the Sun to Earth, light requires an almost incomprehensible 11 years to

reach our planet from the stars that Bessel observed. (See the Problems and Discussions section.)

The distance that light travels in one year, the light-year, became the unit in which the distances

to the stars were measured. Bessel’s stars were 11 light-years away from us! The fact that there are

close to 63,200 astronomical units in 1 light-year is numerical indication that the size of our solar

system is minuscule compared to the size of the universe of stars. In the 1850s, scientists pointed the

newly invented spectroscope toward the Sun. By examining the chemical signature its light, they

discovered that the Sun was composed of elements that also existed on Earth. This established a
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physical link between Earth and the heavens. The chemical signatures of the light of some stars were

later found to be virtually identical to those of the Sun. From this observation sprang the conclusion

that except for the distances involved, the other stars of our universe were just like our Sun.

The discovery that the universe is in fact much much bigger still than the early parallax mea-

surements had shown was made in the 1920s. The American astronomer Edwin Hubble (1889–1953)

was working at the Mount Wilson Observatory in Los Angeles with the largest telescope in existence

at the time when he began to suspect that the smudge that Messier had recorded as M31 was a

separate universe of stars far outside our own. See Figure 1.29. The existence of such galaxies of

Figure 1.29. This spectacular image of galaxy M31 is a digital mosaic of 20 frames taken with a small telescope.
Some of the stars in the image are actually stars in our Milky Way galaxy that are well in front of M31. Image credit
& Copyright: Robert Gendler. Many thanks to astrophotographer Dr. Gendler for permitting its use.

stars very far from ours was soon confirmed. A headline of the New York Times of January 21,

1925, proclaimed

“Another Universe Seen by Astronomer. Dr. Hubble Describes Mass of Celestial Bodies

700,000 light-years away.”

Measurements involving “standard candles” had provided the confirmation. A standard candle is a

class of stars that are known to have the same inherent brightness no matter were they are. A sailor
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of long ago might have made use of the principle involved. Think of a standard candle as a standard

lighthouse. A sailor with a sense of the brightness of the light that it emits, would have been able to

approximate his ship’s distance from it on a clear night by assessing the brightness of the light that

he observed. A much more rigorous and involved use of this principle told Hubble that M31 was

about 700,000 light-years away. Since this was far greater than the estimated diameter of our own

Milky Way galaxy, M31 had to lie far beyond it. Hubble’s discovery had completely changed our

understanding of the universe. It has since been shown that M31 is in fact 2.5 million light-years

away. Even at this distance, M31 is one of the galaxies nearest our own. Like ours, it has hundreds

of billions of stars and is more than 100,000 light-years across.

The image of a comet in Figure 2.23 (in Chapter 2E) shows a small, cigar-shaped sliver of

light in the comet’s tail. This faint cluster of stars was discovered in 1784 but was not included in

“Messier’s 100.” However, it was included in The New General Catalogue of Nebulae and Clus-

ters of Stars compiled about 100 years later. The 7,840 objects that it identifies are known

as NGC objects. The faint sliver in the comet’s tail is listed as NGC 891. Figure 1.30 shows

it “up close.” Today we know that NGC 891 is also a large spiraling galaxy similar to M31.

Figure 1.30. This remote-controlled image of NGC 891 was taken in November 2008 from Munich/Germany by
Volker Wendel, Stefan Binnewies, and Josef Pöpsel using the telescope at the Skinakas Observatory in Crete, Greece.
Many thanks to the photographers for allowing the use of the image. See their very informative website http://www.
capella-observatory.com/GalaxiesIndex.htm for many more compelling images.

From Earth, we see M31 at an angle, but from our perspective NGC 891 is exactly edge-on. Also

known as “Silver Sliver,” NGC 891 spans about 100 thousand light-years across and contains about

http://www.capella-observatory.com/GalaxiesIndex.htm
http://www.capella-observatory.com/GalaxiesIndex.htm
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500 billion stars. At a distance of about 30 million light-years, it is much farther away than M31.

Its flat, thin, galactic disk of stars is cut through the middle by regions of dark, obscuring dust.

Apparent in this edge-on view of NGC 891’s are filaments of dust that extend hundreds of light-years

above and below the dark central line.

The 51st entry in the Catalogue of Nebulae and Star Clusters first attracted Messier’s interest in

1773 when he located it in the sky near the handle of the Big Dipper constellation. The fuzzy object’s

structure was not revealed until later. When an astronomer trained a large reflecting telescope on

M51 in the middle of the 19th century, its graceful, winding arms were first observed. It was the

first cluster of stars identified to have such a spiral structure. It did not become clear that M51

is a huge independent complex of stars far from our own Milky Way until Edwin Hubble first

established that distant galaxies existed. We now know that M51 is a spiral galaxy, also known

as the “Whirlpool” galaxy. It has some 100 billion stars, is about 60,000 light-years across, and is

about 30 million light-years away. Spiral galaxies have a spherical structure, called a bulge, at their

center. The bulge contains mostly older stars. The bulge of a spiral galaxy is surrounded by its disk,

The spiraling arms within the disk are lanes consisting of dust and gas. In these lanes, hydrogen

gas is compressed and clusters of new stars are formed. In Figure 1.31, the red represents infrared

Figure 1.31. This image of M51 captured by the Hubble Space Telescope—named in honor of Edwin Hubble—was
processed to sharpen details and to bring out the dust lanes and streams that cross in front of its small companion
galaxy. Image credits: NASA, ESA, S. Beckwith (STScI) and the Hubble Heritage Team (STScI/AURA).
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light as well as hydrogen within giant star-forming regions. In blue are regions of light from hot,

young stars. The yellow light, visible primarily in the bulge, comes from older stars. Figure 1.31

tells us that from Earth the view of M51 is “face-on.” An “edge-on” image of M51 would look very

much like the depiction of NGC 891 of Figure 1.30. (Incidentally, M51 and its companion are also

catalogued as NGC 5194 and NGC 5195, respectively.) It seems clear from Figure 1.31 that one of

the arms of M51 (and possibly both) has been distorted by the gravitational forces unleashed by

the companion galaxy. Hubble’s image shows NGC 5195 passing behind M51’s spiral arm and dust

lanes. This passing maneuver occurs in very slow motion. The small galaxy has been gliding past the

Whirlpool for hundreds of millions of years. Today’s powerful telescopes and the galaxy’s face-on

position have given astronomers a front seat view of its spiral structure and star-forming processes.

In addition to spiral galaxies, there are also elliptical galaxies and irregular galaxies in the

universe. As the name suggests, irregular galaxies are irregular in shape. They are among the

smallest galaxies. Full of gas and dust, lots of star formation goes on within them. This can make

1 billion ly

2 billion ly

Figure 1.32. This is a survey of galaxies seen from Earth’s northern hemisphere by the telescope of the Sloan Digital
Sky Survey. Each galaxy is represented by a dot projected onto a plane containing the Earth. The diagram extends
from Earth at the center to 2 billion light years at its circumference. The orange areas have higher densities of galaxy
clusters. The survey did not extend to the two black regions. Image credit: Sloan Digital Sky Survey.
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irregular galaxies very bright. Elliptical galaxies are like a spiral galaxies without the spiraling

arms. They are all bulge and consists of older stars. Little or no star formation takes place within

them. The light they emit is uniform. Elliptical galaxies range in shape from nearly spherical to

elongated spheres with elliptical cross-section. They range in size from tens of thousands light-years

in diameter to over a million light-years in diameter. An elliptical galaxy is brightest at the center

and its surface brightness decreases in the direction of its boundary. Of the galaxies that astronomers

have observed so far about 70 percent have been spiral galaxies. However, given that they consist

of older, dimmer stars, elliptical galaxies are generally less bright and more challenging to spot.

In large, in-depth surveys of patches of the sky, elliptical galaxies have predominated. The map of

galaxies of Figure 1.32 provides a sense of the fabric of the universe. The Sloan Digital Sky Survey

(SDSS) that produced it used a 2.5 meter wide-angle optical telescope that gathered not only visible

light but also electromagnetic radiation of other wavelengths.

It is important to note that the universe is not static. The light from the standard candles of the

galaxies that Hubble observed provided more than distance estimates. They also revealed that the

universe is expanding! The fact is that a rapidly moving light is perceived to change its frequency

when observed from a fixed location in the same way that a rapidly moving sound is perceived to

change its pitch. When a “red shift” was detected in the frequency of the infrared radiation that the

standard candles emitted, Hubble knew that the galaxies he studied were receding from our Milky

Way and that the velocities with which they did so could be estimated. He discovered that the

greater the distance of a galaxy from us, the greater the velocity with which it recedes. In 1929, he

realized for any of the galaxies he observed, that if v is its velocity and d its distance, then the ratio
v
d

is always the same constant. This fact is now expressed as the equality v
d

= H0 with the constant

H0 known as Hubble’s constant. (Notice that in this formula, velocity is a scalar quantity.) Imagine

a movie of the expanding universe and think of it as being played backward in time. It will show

the galaxies approaching each other. Play it back long enough to picture a moment when all the

galaxies are massed together. Reversing the movie again and playing it forward, you will see matter

exploding outward in all directions. This is the moment of the creation of the universe that is today

referred to as the Big Bang. Calculations using the refined estimates of Hubble’s constant that the

Hubble Space Telescope (named after the great astronomer) provided, tell us that the Big Bang

occurred from around 13 to 14 billion years ago. In the meantime—in 1915 to be exact—Einstein

had combined space and time into a new theoretical framework for the universe. His Theory of

Relativity gives the universe a four dimensional geometry which is curved by all of the masses that

float within it. Instead of being regarded as the consequence of the pull of gravity, the trajectory of

a body in space is interpreted to be the result of its response to the curves in this geometry. Think

of a rolling golfball responding to the curving surface of a green.

1K. Problems and Discussions. This problem set takes up a number of matters that, while

central to this chapter, are only taken up briefly or only in passing. They will now be considered in

detail.

1. Copernicus’s Measurement of Planetary Distances. Copernicus considered the orbit

of the planet Venus. In his study he regarded it to be a circle with the Sun at the center. In
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Figure 1.33, S represents the Sun, E designates the Earth in its orbit, and V, V ′, and V ′′ are

positions of Venus. Observing Venus over time, and measuring the angle α = ∠V ES again and

again, Copernicus found that the maximum value reached by the angle α is close to 46◦. A look at

the figure tells us that α is greatest when the line of sight to Venus is tangent to Venus’s circular

orbit around S. Let V be the position of Venus when α is a maximum. Since EV is tangent to

Venus’s orbit, the radius SV is perpendicular to EV . It follows that V S
ES

= sin α ≈ sin 46◦. Since

S

V
α

E
`̀

V

`̀

α`

V

`

α

Figure 1.33

Copernicus knows that sin 46◦ ≈ 0.72, he has determined that

V S ≈ 0.72 ES.

Problem 1.1. For the inner planet Mercury, Copernicus used the same argument to show that the

ratio of the distance from Mercury to the Sun to the distance of Earth to the Sun is close to 0.38.

Describe how he came to this conclusion.

Copernicus also had accurate estimates of the distances of the outer planets Mars, Jupiter, and

Saturn from the Sun in terms of the distance of the Earth from the Sun. Copernicus’s calculations

Table 1.1

Planet Copernicus Kepler Modern

Mercury 0.38 0.389 0.387

Venus 0.72 0.724 0.723

Earth 1.00 1.000 1.000

Mars 1.52 1.523 1.524

Jupiter 5.22 5.200 5.202

Saturn 9.17 9.510 9.539
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for the outer planets were more complicated, but here too he relied on elementary trigonometry

(the law of sines in particular). Within his Sun centered model, Copernicus knew how to express

the distance of any planet from the Sun in terms of the distance of the Earth from the Sun. See

Table 1.1.

As to the determination of the size of the solar system, the important remaining issue was

the difficult question of the distance of Earth from the Sun. Ptolemy’s value of around 8 million

kilometers for the distance from Earth to the Sun was accepted by Copernicus, and neither Kepler

nor Galileo had a much better grasp of it. In the latter part of the 17th century, two of the star

astronomers of the time set about the task of calculating the distance between Earth and the

Sun. The Italian Giovanni Cassini (1625–1712) was already famous for his observations of Jupiter

and Saturn when he was called by the French king to direct the new astronomical observatory in

Paris. John Flamsteed (1646–1719), a young astronomer working in central England, would soon

become the first Astronomer Royal of the observatory in Greenwich that the king of England was

establishing.

2. Earth, Sun, and Mars. The approaches of both Flamsteed and Cassini relied on parallax

measurements of the distance between Earth and Mars. They knew that in October of the year

1672 they would be provided with a great opportunity for such a calculation. For a week or two,

the Sun, Earth, and Mars would fall in a straight line as depicted in Figure 1.34 and Mars would

be near its perihelion position. Both Cassini and Flamsteed knew the eccentricity εE = 0.017 of

Earth’s orbit and with aE its semimajor axis, that the Earth’s distance from the Sun varies from

aE(1 − 0.017) = 0.983aE (at perihelion) to aE(1 + 0.017) = 1.017aE (at aphelion) or from about

98% of aE to about 102% of aE. This variation fell within their tolerance for error, so they assumed

SunEarth
a  Ed

Mars 

at perihelion

Figure 1.34

that the distance from the Earth to the Sun is equal to aE. With Mars they had to be more careful.

With aM the semimajor axis of its orbit and Kepler’s value εM = 0.0926 for its eccentricity, they

knew that the distance from Mars to the Sun varies from aM(1 − εM) = aM(0.9074) at perihelion

to aM(1 + εM) = aM(1.0926) at aphelion, or from about 90% of aM to about 110% of aM . However,

since Mars would be near its perihelion, they could assume that its distance from the Sun was

close to aM(1 − εM). Therefore they could let d be the distance between Earth and Mars, get the

approximation

aE + d ≈ aM(1 − εM)

from the diagram in Figure 1.34, and conclude that aM ≈ aE + d

1 − εM

. Letting TE and TM be the periods

of the orbits of Earth and Mars, Flamsteed and Cassini could apply Kepler’s third law to get

a3
E

T 2
E

=
a3

M

T 2
M

≈ (aE + d)3

(1 − εM)3T 2
M

,
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and hence
aE

T
2/3
E

≈ aE + d

(1 − εM)T
2/3
M

.

Since aE · (1 − εM)
(

TM

TE

)2/3 ≈ aE + d, they therefore got d ≈ [
(1 − εM)

(
TM

TE

)2/3 − 1
]
aE and

aE ≈ d

(1 − εM)
(

TM

TE

)2/3 − 1
.

Knowing that the periods of the orbits of Earth and Mars were TE ≈ 365.25 days and TM ≈ 686.95

days, Cassini and Flamsteed got (1 − εM)
(

TM

TE

)2/3

− 1 ≈ (0.9074)(1.5237) − 1 = 0.3826, and they

could conclude that

aE ≈ 2.61d.

It therefore remained for Cassini and Flamsteed to estimate the distance d.

Problem 1.2. Check the computations that allowed Flamsteed and Cassini to conclude that

aE ≈ 2.61d.

Both Flamsteed and Cassini went about using the method of parallax to make reasonably accu-

rate calculations of the distance d. With the distance d in hand, they could estimate aE, and hence all

the distances between the planets and the Sun. This would answer the central question in astronomy

of the time: What is the size of the solar system?

3. The Method of Parallax. The strategy of parallax—already seen to have been an impor-

tant observational tool of Tycho Brahe—can be used to estimate the distances of the bodies in the

solar system (and beyond it) from Earth. We’ll illustrate it in the current historical context by using
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M

M
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* M*

Figure 1.35
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it to estimate the distance between Earth and Mars. A lot had changed since Tycho Brahe pointed

his astronomical instruments skyward and noted that the new star that had suddenly appeared had

no parallax. The telescopes that astronomers of the latter part of the 17th century had available

were much more powerful and precise than those that Galileo first used to study the heavens. They

were equipped with micrometer eyepieces and telescopic sights that made it possible to measure

angular separations to within a small fraction of a degree.

From an observation point B on Earth, an astronomer sights Mars as a point of light in the night

sky at a location M∗ within a cluster of the fixed stars of a familiar constellation. The sighting of

Mars is repeated from a different location B′ far from B, with the result that the observed position

of M∗ within the same star cluster will have shifted slightly. See Figure 1.35. By measuring this shift,

an estimate of the angle θ can be obtained. This estimate proceeds as follows. Refer to Figure 1.36a.

From the vantage point B, the astronomer fixes a star A in the cluster and carefully measures the

B
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M
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angle α = ∠ABM∗. After the location of his observation post has changed to B′, he locates the star

A once more and measures the angle α′ = ∠AB′M∗. Because A is very far from Earth, the lines of

sight BA and B′A are essentially parallel.

Problem 1.3. Use Figure 1.36b to show that (α + β) + (α′ + β′) = π and hence that θ = α + α′.

The angle of parallax p(M) of M relative to the baseline BB′ is defined by p(M) = 1
2
θ. Notice

that p(M) = 1
2
θ = 1

2
(α + α′) is the average of the measured angles α and α′. Because the angles

involved are small, the angle of parallax p(M) and related angles are not measured in degrees, but

in seconds. Since 1 degree = 60 minutes and 1 minute = 60 seconds, 1◦ = 3600′′. Since 180◦ is equal

to π radians, the angle of parallax expressed in radians is
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p(M) × 1

3600
× π

180
= p(M) × π

648,000
≈ p(M) · 4.85 × 10−6 radians.

Since the distance from Earth to Mars is huge relative to the distance between the observation

points B and B′, we’ll take the distances from B to M and B′ to M to be equal and set this distance

equal to d(B,M). Note that the triangle ΔBMB′ is approximated by the circular sector BMB′ of

d(B,M) B

`

B

M
d(B,M)

= 2p(M)θ

Figure 1.37

Figure 1.37. Using the definition of radian measure of an angle, we get 2p(M)(4.85 × 10−6) ≈ BB′
d(B,M)

.

Therefore

d = d(B,M) ≈ BB′

9.7p(M)
× 106,

where p(M) is the angle of parallax of Mars in seconds. It follows that the angle p(M) together

with the distance BB′ provides the approximate distance between Earth and Mars at the time of

the measurements of the angles α and α′.

Problem 1.4. Check in all its details the argument that verified d = d(B,M) ≈ BB′
9.7p(M)

× 106.

4. The Parallax of Mars. Cassini and Flamsteed knew that measuring the parallax of Mars

would be a delicate task. The angles of parallax would be very small, and Mars would change its

observed position not only as a consequence of parallax, but also because of its continuing motion in

its orbit. But Cassini and Flamsteed pressed ahead. As was already pointed out, the conditions for

detecting and measuring the parallax of the planet in the fall months of 1672 were optimal. Because

Mars would be near its perihelion, it would be relatively close to Earth. Since Sun, Earth, and Mars

would be aligned, it follows from Figure 1.34 that Mars would be under full sunlight when viewed

at night. What Cassini and Flamsteed observed is depicted in Figure 1.38. It shows the dotted

sequence of the positions of Mars against the stars of the constellation Aquarius. When a planet is

viewed from Earth against a background of stars, it is seen to move in a prevailing direction, but

it loops back periodically before proceeding forward again. Figure 1.38 shows a loop in the orbit of

Mars in the fall of 1672.

Flamsteed made his measurements during the single night of October 6, 1672 from his observation

post in Derby, his hometown in central England. Figure 1.38 tells us that at that time, Mars

was at its turnaround from its loop. This meant that a shift in the observed position of Mars

between measurements was almost exclusively due to parallax rather than the motion of the planet.

Flamsteed first observed Mars late in the evening. The point B of Figure 1.39a marks his location on

the surface of our planet. Precisely 6 hours and 10 minutes later, he observed Mars again. The Earth

had turned by slightly more than a fourth of a complete rotation, and Flamsteed’s observation post
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Figure 1.38. Image reproduced with permission from Parker Moreland, who created it from a screenshot made
possible by TheSky Astronomy Software c© Software Bisque, Inc.

had rotated to the point B′ in the figure. Since Flamsteed knew the latitude of his location (the

angle between the segment OB from Earth’s center O and the equatorial plane) to be about 53◦ he

could estimate the length of his baseline BB′ to be about 3300 miles, or about 5300 kilometers. As

Figure 1.36a illustrates it, Flamsteed peered into the night sky and found M∗ near three bright stars

in the constellation Aquarius. Letting A be one of them, he measured the angle α = ∠ABM∗ and

later the angle α′ = ∠AB′M∗. He found the angle θ = α + α′ to be about 21 seconds and concluded

that the angle of parallax p(M) = 1
2
θ (with respect to the base line BB′) was about 10.5 seconds.

This gave Flamsteed the estimate

d = d(B,M) ≈ BB′

9.7p(M)
× 106 ≈ 5,300

(9.7)(10.5)
× 106 ≈ 52,000,000 kilometers.

for the distance d, and in turn the estimate aE ≈ 2.61d ≈ 136,000,000 kilometers for the semimajor

axis aE of the Earth’s orbit. (Refer to Problem 1.2.)

As the director of the Paris observatory, Domenico Cassini had considerable resources at his

disposal. It was his idea to approach the measurement of the parallax of Mars from two different

vantage points B and B′ on Earth at the same time! This would eliminate the difficulty of having to

quantify the motion of the planet during the time between measurements. While Cassini remained

in Paris, his colleague Jean Richer was sent on an expedition to Cayenne in French Guiana, a French

colony in South America just north of the equator (on the Atlantic coast near the northernmost

tip of Brazil). Knowing the latitude and longitude of Cayenne, Cassini could estimate the distance

between Paris and Cayenne to be the equivalent of about 6700 kilometers. In Figure 1.39b, B refers
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to Paris and B′ to Cayenne. In September and October of 1672, much as Flamsteed had done, both

men observed Mars at M∗ close to a star A in the constellation Aquarius. While Cassini and his

assistants measured the angle α = ∠ABM∗ in Paris, Richer measured the angle α′ = ∠AB′M∗ in

Cayenne. By comparing information about the Sun (such as the times the Sun reached its highest

position in the sky) at the two locations, they were able to make repeated pairs of measurements at

close to the same time. Cassini then waited nearly a year for his colleague to return to Paris with

his data! After evaluating their data carefully, they concluded that the angle θ = α + α′ was about

26 seconds. So the corresponding angle of parallax p(M) = 1
2
θ with respect to their baseline BB′

was approximately 13 seconds. This provided Cassini with the estimate

d = d(B,M) ≈ BB′

9.7 p(M)
× 106 ≈ 6,700

(9.7)(13)
× 106 ≈ 53,000,000 kilometers,

and therefore the value aE ≈ 2.61d ≈ 140,000,000 kilometers for the semimajor axis of Earth’s orbit.

This was slightly better than what Flamsteed had achieved and only about 7% less than today’s

value of 150,000,000 kilometers.

Problem 1.5. The baseline that Flamsteed used for his parallax measurements involved the two

positions B and B′ of his observatory in Derby, England with B′ obtained from B by the Earth’s

rotation. Figure 1.40a shows Earth with its center O along with its axis of rotation. The latitude

of Derby is given by the angle ϕ = 52.92◦. At this latitude, Earth’s radius is known to be equal

to rE = 6364.57 km. Figure 1.40b shows a “top view” of the circle given by the point B and a full

rotation of the Earth, along with the angle θ that the two positions B and B′ determine.

i. Show that the radius of the circle of Figure 1.40b is rE cos ϕ.

ii. Verify with the law of cosines that the distance from B to B′ is equal to (rE cos ϕ)
√

2(1− cos θ).

iii. Use the fact that the elapsed time between Flamsteed’s measurements was 6 hours and 10

minutes to show that θ = 92.5◦.
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Figure 1.40

iv. Conclude that Flamsteed’s baseline BB′ has a length of 5544 kilometers. (The estimate that

was used in the description of Flamsteed’s computation was 5300 km.)

5. The Moons of Jupiter and Saturn. In his study of the planet Jupiter in the Principia,

Newton lists

5.578, 8.876, 14.159, and 24.903

for the maximal distances of the four largest moons of Jupiter from Jupiter’s center. The unit of

distance is the radius of Jupiter. The corresponding periods of the orbits of these moons in days,

hours, minutes, and seconds are given as

1d 18h 28′ 36′′, 3d 13h 17′ 54′′, 7d 3h 59′ 36′′, and 16d 18h 5′ 13′′.

This corresponds to

42.48, 85.30, 171.99, and 402.09 hours, respectively.

This information was provided to Newton by the astronomer Flamsteed. These four moons were

discovered by Galileo in 1610. Their current names Io, Europa, Ganymede, and Callisto were given

to them in the 19th century.

Problem 1.6. Newton verified Kepler’s third law for the four moons of Jupiter. Carry out the

computations that Newton undertook.

The five largest moons of Saturn were discovered by Huygens and Cassini. The Dutch scientist

Huygens discovered Titan in 1655, and Cassini discovered Iapetus in 1671, Rhea in 1672, and

Tethys and Dione in 1684. They are discussed by Newton in later editions of the Principia. He

credits Cassini with the data that he uses. The respective distances from Saturn’s center are
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where the unit is the radius of Saturn’s outer ring. The periods of the orbits are listed in days,

hours, minutes, and seconds as

1d 21h 18′ 27′′, 2d 17h 41′ 22′′, 4d 12h 25′ 12′′, 15d 12h 41′ 14′′, and 79d 7h 48′ 0′′.

This corresponds to

45.31, 65.69, 108.42, 372.69, and 1903.8 hours, respectively.

Problem 1.7. Newton verified Kepler’s third law holds for these five moons of Saturn. Carry out

the computations that Newton made use of.

We will now turn to several matters that arise in or are directly related to concerns that Newton

considers in his Principia. We’ll begin by illustrating how Newton would have developed the equation

for the maximum speeds of the bodies in the solar system.

6.About Speeds of Objects in the Solar System. Consider a planet, comet, or asteroid P

in its elliptical orbit with the Sun S at a focal point of the ellipse. Let a be the semimajor axis, b

the semiminor axis, and let ε = c
a
, where c =

√
a2 − b2, be the eccentricity of the orbit. Let T be the

perihelion period of the orbit and κ its Kepler constant. Since the area of an ellipse with semimajor

axis a and semiminor axis b is abπ, it follows that κ = abπ
T

.

Figure 1.41 below shows P in five different locations of its orbit. (The ellipse is drawn much

flatter than that of any planetary orbit in order to add transparency to our discussion.) The five

locations are labeled from 1 to 5 in the figure. The numbers 1 and 5 denote the perihelion and

aphelion positions respectively. Let Δt be a short fixed interval of time and consider the five short

arcs starting from the five points that P traces out during this time. The five arcs and the thin

wedges that the segment SP sweeps out in the process are drawn in as well. Since they are all swept

out in the same time Δt, these wedges have the same area by Kepler’s second law. Since the wedges

get longer as P proceeds from perihelion to aphelion, the arcs get shorter and shorter. Since they

are all traced out over the same time, this means that the average speed of P over the arcs decreases

from one arc to the next. Pushing Δt to zero shortens the five arcs and pushes the average speed to

S
1

2

3

4

perihelion

5
aphelion

Figure 1.41
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the speed at the initial point of each arc. Since the distance from P to S is shortest at perihelion, P

achieves its greatest speed vmax at perihelion. Similarly, since the distance from P to S is longest

at aphelion, P attains its minimum speed vmin at aphelion.

Problem 1.8. Figure 1.42 shows a planet (comet, or asteroid) at its perihelion position P , a short

stretch of the orbit, and the position Q of the planet a short time Δt later. The segment through P

Δs

Q

S
P

R

Figure 1.42

is tangent to the orbit at P , and the point R is chosen so that RQ is parallel to SP . We’ll let Δs

be the length of the segment PR. Since P is the perihelion position, the length of SP is a − c.

i. Provide an expression for the precise value of the average velocity vav of the motion of the

planet from P to Q. Provide an approximation of vav by using Δs.

ii. Use both the exact value κ = abπ
T

for Kepler’s constant and an approximation for κ that

arises from the diagram to verify that the average velocity satisfies vav ≈ 2abπ
(a−c)T

.

iii. What two things happen in (ii) when Δt is pushed to zero that result in the conclusion

vmax = 2abπ
(a−c)T

?

iv. Use the equalities b =
√

a2 − c2 and c = εa to conclude that vmax = 2πa
T

√
1+ε
1−ε

.

Problem 1.9. Show that the speed at aphelion is equal to vmin = 2abπ
(a+c)T

= 2πa
T

√
1−ε
1+ε

.

The fact that 1 au = 149,597,870.7 kilometers and 1 year as unit of time is equal to 365.25 days,

or 365.25(86,400) = 31,557,600 seconds, tells us that

1 au/year ≈ 149,597,870.7 km

1 year
× 1 year

31,557,600 sec
≈ 4.74 km/sec.

Problem 1.10. Use the approximations a = 1 au for the semimajor axis, ε = 0.0167 for the eccen-

tricity, and T = 1 year for the perihelion period of Earth’s orbit to show that the maximum and

minimum speeds of Earth in its orbit are approximately 30.29 km/sec and 29.29 km/sec, respec-

tively.

Problem 1.11. The elliptical orbit of the comet Halley has semimajor axis a = 17.83 au, eccen-

tricity ε = 0.967, and period T = 75.32 years. Use this information to show that its maximum and

minimum orbital speeds are approximately 54.43 km/sec and 0.91 km/sec.
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Problem 1.12. To gain some familiarity with ellipses, consider the four drawn in Figure 1.43.

They are labeled 1 , 2 , 3 , and 4 . All have the same semimajor axis a. Their semiminor axes

are b1, b2, b3 and a, respectively, where b1 < b2 < b3 < a. Their right focal points are color coded to

correspond to the color of the ellipse. Explain how these focal points where placed and why the

ellipse labeled 4 is a circle. Notice that the closer the focal point is to the periapsis, the flatter

aO

1b

2b

3b

1

2

3

4
a

Figure 1.43

the ellipse. Why is this observation consistent with the interpretation of the ellipse as the orbit of

a moving object that is subject to the gravitational pull of a massive body at the focal point?

7.About the Earth–Moon System. The shape of the Earth is essentially spherical, but it is

a sphere that is flatter at the poles and bulges out at the equator. This shape was brought about by

the rotation of the Earth about its axis. Figure 1.44 provides an exaggerated look at this bulging

sphere. The Earth’s axis is tilted by about 29◦ relative to the plane of the Moon’s orbit about the

Earth and about 23.5◦ relative to Earth’s orbital plane. Note that the orbital planes of the Moon

and the Earth differed by about 5◦. The figure diagrams the Earth as well as the Sun or Moon

Earth
axis of
rotation Sun or Moon

orbital plane of Earth around the Sun 
or the Moon’s around Earth

Figure 1.44
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(but not to scale) and shows that the gravitational pulls of both the Moon and the Sun on Earth’s

bulge has a component that pulls Earth’s axis of rotation in a direction perpendicular to its orbital

plane. This component is substantial enough to produce the very slow gyration of the Earth’s axis

of rotation that was already discussed in section 1A.

An understanding of the magnitude of the Moon’s gravitational force on Earth as well as the

location of the barycenter of the Earth–Moon system, requires the determination of the mass of the

Moon. This proved to be an elusive task. Since the Moon’s density turns out to be much less than

that of Earth, this was not merely a matter of estimating the Moon’s volume.

8. The Mass of the Moon. The mass of the Moon was a concern that had interested

astronomers for a long time. By studying tides—known to be the result of the Moon’s gravity—

Newton came to the conclusion that the Moon is 20% denser than Earth, and that it’s mass is 1
40

of the Earth’s mass. It turned out that he was wrong on both counts. What follows is a study by

the astronomer Sir George Airy (1801–1892). Airy was director of the Royal Greenwich Observa-

tory and, like Newton before him, professor of mathematics at Cambridge. Airy set out to quantify

what goes on in Figure 1.19. Figure 1.45 depicts the Moon in its orbit around the Moon-Earth

barycenter B. The mass and the center of mass of Earth are denoted by ME and C and those

of the Moon by M and A, respectively. We’ll let d be the distance between C and A and x the

BC A

x d − x MME

Figure 1.45

corresponding distance between C and B. We’ll let F be the gravitational force of attraction between

Earth and Moon. By Newton’s law of universal gravitation, F = G MME

d2
. Now take the instant

when d − x is equal to the semimajor axis a of the Moon’s orbit around B. By applying Newton’s

Conclusion B of section 1D with rP = a = d − x and m = M , Airy finds that F = 4π2M
T 2 (d − x),

where T is the period of the Moon’s orbit. By Archimedes’s law of the lever, MEx = M(d − x). So

Md − (ME + M)x = 0. Therefore MEd + Md − (ME + M)x = MEd, so (ME + M)(d − x) = MEd,

and it follows that d − x = MEd
ME+M

. Airy has now shown that F = 4π2M
T 2

MEd
ME+M

.

Problem 1.13. Verify Airy’s formula

M

ME

=
4π2

GME

· d3

T 2
− 1.

The use of Airy’s formula requires an accurate value for d at the moment when d − x is equal

to the semimajor axis of the Moon’s orbit around B. When Airy developed this formula in 1849,

accurate values for d and d − x were impossible to come by. In fact his formula never provided a

precise value for the Moon-mass over Earth-mass ratio.
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By the 1900s, a number of astronomers arrived at values for the ratio M
ME

close to 1
80

(this is 1/2

the value that Newton had achieved) by using either tidal information or parallax measurements.

But the matter was resolved with precision only after the Apollo Moon missions of the late 1960s

and early 1970s sent back very accurate data about the orbits of their command-service modules

around the Moon. These orbital data allowed for the direct and accurate computation of the value

GM for the Moon’s mass M . Given that G is known, this meant that M was known, so that the

pursuit of the ratio M
ME

became irrelevant. Its precise value turned out to be 1
81.3006

.

Problem 1.14. Use the values GME = 3.98600 × 1014 m3

sec2
and GM = 4.90279 × 1012 m3

sec2
to com-

pute M
ME

. Then take the modern value ME = 5.9724 × 1024 kg for the Earth’s mass to show that the

mass of the Moon is M = 7.3461 × 1022 kg.

Problem 1.15. i. Take GME = 3.98600 × 1014 m3

sec2
and aM = 3.844 × 108 m for the semimajor axis

of the Moon’s orbit to estimate the gravitational force with which the Earth attracts the Moon.

ii. Let GMS = 1.32712 × 1020 m3

sec2
and take the semimajor axis aE = 1.49598 × 1011 m of Earth’s

orbit as an approximation for the distance between the Sun and the Moon. Estimate the

gravitational force with which the Sun attracts the Moon.

iii. Confirm that the gravitational force of the Sun on the Moon is greater than that of Earth

on the Moon. So why is the Moon orbiting Earth?

9.On the Orbit of the Moon around the Sun. The simulation described by Figure 1.19

suggests that as the barycenter of the Earth–Moon system revolves around the Sun, the Moon should

loop around this barycenter. But this is not the case. The Moon’s path around the Sun is in fact

E

S

E

M

M

Figure 1.46
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not “loopy.” The explanation is provided by the comparative speeds of the Earth and the Moon in

their respective orbits.

Problem 1.16. Recall the conclusions of Problems 1.8 and 1.9. Use the data a = 3.84748 × 105 km

for the semimajor axis, T = 2.36062 × 106 sec for the period, and ε = 0.0549 for the eccentricity of

the Moon’s orbit around Earth to show that the maximum and minimum orbital speeds of the

Moon in its orbit are 1.082 km/sec and 0.969 km/sec, respectively.

Consider Figure 1.46. Since the positions of the Earth and the Earth–Moon barycenter are very

close to each other, they are the same point E in the figure. The Moon is denoted by M . Compare

the maximum and minimum speeds of the Moon in its orbit around Earth with that of the Earth

around the Sun (refer back to Problem 1.10) and study the figure. Why does the path of the Moon

around the Sun not loop around the Earth? Since the Moon is sometimes closer to the Sun than

the Earth–Moon barycenter and sometimes farther away, it’s path around the Sun can be thought

of as a flat sine curve that is bent around the elliptical orbit of the Earth–Moon barycenter.

10.A Speculation of Newton. In the System of the World of the Principia Newton says

For the attraction of homogeneous spheres near their surfaces are as their diameters.

Whence a sphere of one foot in diameter, and of like nature to the Earth, would attract

a small body placed near its surface with a force of 20,000,000 less than the Earth would

do if placed near its surface. But so small a force could produce no sensible effect. If two

such spheres were distant but by 1
4

inch, they would not even in spaces void of resistance,

come together by the force of their mutual attraction in less than a month’s time.

Newton speculates about the possibility of estimating the constant G in some sort of experimental

setting. He suggests that this would be an impossible task. Is what Newton is saying here correct?

In our discussion, we’ll work in the units centimeters-grams-seconds (CGS). The unit of force in

this system is the dyne, defined as 1gr·cm
sec2

.

Problem 1.17. Convert the value G = 6.67384 × 10−11 m3

kg·sec2 as given in MKS to CGS.

In view of the assumption “of like nature to the Earth,” we’ll start by computing the Earth’s

density. Recall that the average density of an object is the ratio of the object’s mass over its volume.

Problem 1.18. Assume that the Earth is a sphere of radius 6371 km and mass 6 × 1024 kg and

estimate its average density in CGS.

Let’s turn to have a look at Newton’s spheres. Suppose that they are identical and of uniform

density equal to the average density of the Earth. This allows the assumption that the entire mass of

each sphere is located at its center. Figure 1.47 shows the circular cross sections of the two spheres

through their centers in an xy-coordinate plane that has the centimeter as its unit of length. Notice

that the centers of the circles are 2c cm apart and that the radius of each of the two circles is

(c − d) cm.
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Problem 1.19. What are c and d equal to for the spheres that Newton describes? What is the

mass in grams of each sphere?

−c          −d    d            c

Figure 1.47

Problem 1.20. Apply Newton’s law of universal gravitation to derive an expression for the mag-

nitude in dynes of the gravitational force with which the two spheres attract each other. What is

the maximum value of the magnitude of this force?

We’ll now use a little elementary calculus to examine the acceleration and speed of a moving

point. Suppose that a point-mass of mass m is driven along a number line in the positive direction

by a constant force F . We’ll suppose that the force starts acting at time t = 0 and that the point

is at rest at the origin at that time. See Figure 1.48. Newton’s formula F = ma tells us that the

0
t = 0 t

x

F

Figure 1.48

acceleration of the point-mass is constant and equal to a = F
m

. Let t ≥ 0 be any time into the motion.

Let x(t) be the distance of the point-mass from the origin at time t and let v(t) be the velocity of

the point-mass at time t. Since the acceleration is equal to the change in the velocity, the derivative

v′(t) is equal to a. Since v(0) = 0, it follows that v(t) = a · t. Since velocity is change in distance,

x′(t) = v(t) = a · t. Since x(0) = 0 it follows that x(t) = 1
2
at2 = 1

2
F
m

t2.

Problem 1.21. Suppose that the two spheres of Figure 1.47 start from rest in such a way that the

initial distance 2d between them is the CGS equivalent of 1
4

inch that Newton mentions. Suppose

that the spheres move frictionlessly as they are pulled toward each other by gravity. How long would

it take for the maximum gravitational force of attraction (as described in Problem 1.20) to move

the two spheres until they touch? Does your conclusion mesh with Newton’s assertions?

11. Parallax and Distances to Stars. Parallax measurements of the sort used by both

Flamsteed and Cassini are suitable for estimating the distances of objects within the solar system.

But what about the stars? All the stars are far from Earth—much, much farther than any object
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in our solar system—but they are not all the same distance away from us as the Greek astronomers

had thought. Within a given constellation, some are relatively near and others are unimaginably far.

Once the distance of Earth from the Sun was known, astronomers could use a baseline determined

E

`

E
S

A

p(A)

Figure 1.49

by the positions of Earth on opposing sides of its solar orbit. With parallax measurements relative

to this baseline, the distances of the nearer stars can be estimated.

Figure 1.49 depicts two such positions E and E ′ of Earth and the baseline that they determine.

A near star A is also shown along with the angle of stellar parallax p(A) = 1
2
∠EAE ′. The earlier

discussion about parallax extends to the current situation and shows that the distance of A from E

is approximated by d(A,E) ≈ EE′
9.7p(A)

× 106, where p(A) is given in seconds and EE ′ is the distance

between E and E ′. A standard measure of the distances to the stars is the light-year, abbreviated

by ly. This is the distance that light travels in one year. Since light travels about 300,000 km in one

second—refer to Chapter 1G—and one year has 365.25(86,400) ≈ 31,600, 000 seconds,

1 ly ≈ 300,000 · 31,600,000 ≈ 9,480,000,000,000 km.

In terms of the astronomical unit au ≈ 150,000,000 km that we use as yardstick to measure distances

within the solar system, we get

1 ly ≈ 9,480,000,000,000

150,000,000
= 63,200 au.

Problem 1.22. The first successful computations of stellar parallax were carried out for the stars

61 Cygni, Vega, and Alpha Centauri in the late 1830s by three different astronomers working inde-

pendently. History has credited Friedrich Bessel with his parallax measurement for 61 Cygni as

having done it first. The modern values of the angles of stellar parallax for 61 Cygni, Vega, and

Alpha Centauri are 0.29, 0.13, and 0.75 seconds, respectively. Take the Sun-Earth distance ES as

1 au and estimate the distances to these stars in light-years.
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12. The Start of the Space Race. The launch of the Earth-satellite Sputnik 1 by the Russians

on October 4, 1957 was a dramatic event that inaugurated both the Space Age and the Space Race.

Many short wave radio buffs heard its scratchy beeps as it circled the Earth. The response of the

United Sates to this challenge to its prestige was the launch of the Earth-satellite Explorer 1 four

months later, on January 31, 1958.

The next two problems study the orbits of Sputnik 1 and Explorer 1. As has already been

observed, the Earth is a sphere that is slightly flattened at the poles. So the distance from the

Earth’s center to its surface varies slightly. The average radius at the equator is 6,378 kilometers

and the radius at the poles is 6,357 kilometers. For the two problems that follow, use the average

radius of 6,371 kilometers and keep the units consistently within MKS.

Problem 1.23. Sputnik 1’s elliptical orbit varied in distance from the Earth’s surface from 230 km

to 942 km. The satellite circled the Earth once every 96.2 minutes and had a mass of 83.6 kg. It

remained in orbit until early in 1958, when it burned up in the Earth’s atmosphere.

i. Compute the semimajor axis in kilometers and eccentricity ε of Sputnik 1’s orbit as well as

the satellite’s maximum and minimum speeds in km/sec.

ii. Use information about Sputnik 1’s orbit to estimate the value GM for M the mass of the

Earth. (Today’s accepted value is GM = 3.986 × 1014 m3/sec2.)

Problem 1.24. The satellite Explorer 1, was launched from Cape Canaveral in Florida, The instru-

ments that it carried comprised about 60% of its total mass of 13.92 kg and included a cosmic-ray

detection package, temperature sensors, and micrometeorite erosion gauges. The data they collected

were transmitted back to Earth. The orbit of Explorer 1 took it from a distance of 360 km to a dis-

tance of 2,534 km above the Earth’s surface. Its orbital period was 114.9 minutes. Solve the previous

problem again using the orbital data for Explorer 1.
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In the last part of the 20th century, the American and Russian space programs began to concentrate

on studies of the planets. Many satellites were placed into Earth orbit and many unmanned missions

were sent to explore the inner and outer planets of the solar system. Earth satellites have included spy

satellites, satellites that monitor the atmosphere, assess climate and natural resources, and satellites

that study the Earth’s gravitational and magnetic fields. The exploration of the planets, for example

those of Venus by the Russian Venera program and Mars by the American Mariner program,

involved flybys, studies from orbit, and vehicles roaming on their surfaces. The American space

effort continues to be organized by the National Aeronautics and Space Administration (NASA)

with engineering and scientific expertise provided by the Jet Propulsion Laboratory (JPL) of the

California Institute of Technology and the Applied Physics Laboratory (APL) of the Johns Hopkins

University. The Russian Space Agency Roscosmos has been responsible for the Russian space science

and aerospace research programs. A significant development has been the fact that the exploration

of space is now no longer driven by the exclusive rivalry between American and Russian space

programs, but that it has become an international effort with substantial contributions from the

European Space Agency (ESA) and the emerging space programs of Japan, China, and India.

An important example of international cooperation has been the development of the Interna-

tional Space Station (ISS). It is a research laboratory in low Earth orbit that has been in operation

since its launch in 1998. The ISS is a structure consisting of an assembly of pressurized modular

components that has grown to the size of a football field. It serves as a multinational research labo-

ratory in which international crews conduct experiments in biology, physiology, physics, astronomy,

meteorology, and a number of other fields in an essentially weightless space environment. Circling

the Earth about 400 km above its surface, it is the largest man-made object in space. Five American

Space Shuttles have been important carriers of scientific equipment into Earth orbit. These reusable,

orbit-capable craft with a cargo capacity of around 23,000 kg moved Earth satellites into orbit and

lifted the modular components of the ISS into place until the termination of their mission in 2011.

They also provided supplies for the ISS and rotated crews. See Figure 2.1. These tasks have since

been taken on by Russian rockets and the Soyuz spacecraft and the rockets and Dragon spacecraft

developed by the private American aerospace company SpaceX.

The exploration of Mars and Venus has continued with orbiting spacecraft and surface rovers

that have gathered substantial information explaining essential aspects of their surfaces, their atmo-

sphere, and their geologic history. Mercury was the last of the inner planets to be studied. In 2011,
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the spacecraft MESSENGER was sent to orbit the planet and to make a careful and extensive

photographic record of its terrain. The study of more distant reaches of the solar system began in

the early 1970s with the flybys of Jupiter and Saturn by the Pioneer 10 and 11 missions. This was

followed by the journeys of Voyager 1 and Voyager 2. These two spacecraft investigated Jupiter and

Saturn in the late 1970s and early 1980s, sending back many incredible images of swirling storms

on Jupiter’s surface, active volcanoes on one of Jupiter’s moons, and intricate and surprising details

of Saturn and its rings and moons. Voyager 2 went on to Uranus and Neptune, and is still the only

spacecraft to have visited these planets. Having already traveled farther than any spacecraft—they

are now more than 18 billion kilometers from the Sun—the Voyagers are on route to escape the

solar system. The Galileo mission explored Jupiter and its moon system more closely. Launched

in 1989, Galileo went on a six year interplanetary cruise to Jupiter and studied several asteroids

along the way. The craft Cassini, named after the 17th century Italian–French astronomer Giovanni

Domenico Cassini, was launched in 1997 and reached Saturn in 2004. It spent 13 years in orbit,

gathering information about Saturn’s complex ring system and its moons. The data that Galileo

and Cassini gathered have provided evidence that some moons of Jupiter and Saturn have large

subsurface oceans of water with organic materials, raising the possibility that they might be able

to support some form of life. During the last decade, the spacecraft Dawn was sent to study the

asteroids Ceres and Vesta, New Horizons went off to investigate the distant Pluto, the Rosetta craft

came to a soft landing on a comet, and Juno followed Galileo to study Jupiter and its environment.

Figure 2.1. The space shuttle Endeavor docked at the International Space Station. Photo taken by an astronaut
returning to Earth on a Russian Soyuz capsule just after it undocked in May of 2011. Image credit: NASA/ESA.
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This chapter presents some of the many amazing images and a some of the incredible wealth

of data that these and other spacecraft have sent back to Earth. The chapter concludes with a

mathematical study of some basic aspects of the engines that drive these craft and considers the

basic strategies that underlie the design of their flight paths.

2A. Rockets, Spacecraft, and the Hubble. In 1990, a space shuttle carried the Hubble Space

Telescope into a nearly circular orbit about 550 km above Earth’s surface. The telescope was

named after the American astronomer Edwin Hubble who made the dramatic discovery in 1929

that the universe is expanding. This telescope is a 11,000 kilogram silver cylinder that is 13.2

meters long with a radius of 1.2 meters. See Figure 2.2. Its instruments detect not only visible

Figure 2.2. The cylindrical Hubble telescope attached to the cargo bay of a space shuttle. In this first shuttle mission
to the Hubble telescope, astronauts installed a set of specialized lenses to correct its initially defective main mirror.
Image credit: NASA/JPL-Caltech.
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light, but also light in the ultraviolet and infrared range. The Hubble has taken thousands of incred-

ible high resolution images, free from the disturbances of Earth’s atmosphere and interfering back-

ground light. It has provided not only remarkable close up images of objects in the solar system, but

has also looked deeply and probingly at distant galaxies. Its observations have resulted in significant

advances in astrophysics, including an accurate assessment of the rate of expansion of the universe

as well as its age. Between 1993 and 2002, four space shuttle trips repaired, upgraded, and replaced

systems of the telescope. A final service mission was completed in 2009 and the telescope will remain

in operation until the early 2020s.

The journey of a spacecraft to a planet, asteroid, or comet typically begins on the launch pad of a

multi-stage rocket with the craft perched on top within the upper stage. See Figure 2.3. The rocket’s

Figure 2.3 Launch of Dawn on a Delta II rocket. Image credit: NASA/JPL/ESA and the Kennedy Space Center.



2A. Rockets, Spacecraft, and the Hubble 65

engines fire, it lifts off, the lower stages are jettisoned after their fuel is spent, and the spacecraft is

placed into a low Earth parking orbit. After a final boost and the separation of the last stage, the

craft is sent speeding along on its near-Earth orbit around the Sun. This initial solar orbit is then

modified, usually by an intricate sequence of maneuvers that send the spacecraft on its mission.

The journey of the craft Juno is a recent example. Launched in August 2011 from Cape Canaveral

Air Force Station, Florida, Juno was sent to explore the planet Jupiter. See Figure 2.4. We will

Figure 2.4. An artist’s rendition depicts the spacecraft Juno with its main engine firing and the surface of Jupiter
in the background. Huge solar panels provide electrical power for the craft. Image credit: NASA/JPL-Caltech.

study some of the essential details of Juno’s flight in the last section of this chapter.

We now turn to have a look at some of the treasure trove of information that spacecraft have

gathered about the solar system. This includes amazing images and very precise measurements of

the sizes and masses of the planets, their moons, and some asteroids and comets, as well as the

semimajor axes, eccentricities, and periods of their orbits. The instrumentation and telecommuni-

cation systems of spacecraft in orbit around or in flyby near a planet, moon, asteroid, or comet

have been the primary source for this information. The radar signals that a spacecraft bounces off

an object can be studied. So can the radio signals that a craft sends back to Earth. Since these

signals travel with the same 299,792,458 meters per second as the speed of light, they can be timed

to provide the corresponding distances with precision. Data about the orbit of a craft around a

planet, moon, asteroid, or comet, or about the deflection of a craft’s flyby trajectory near them, can

be analyzed to give precise information about the masses of these bodies. Accurate measurements

can also be made directly from Earth. For instance, a radar pulse directed from Earth to Venus

bounces back as a detectable echo and can be used to give a sharp estimate of the distance between

the two planets at the time of the measurement. Important additional information is provided by
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observations made with today’s powerful, ground-based telescopes that are equipped with precision

optics that dynamically correct for atmospheric conditions and disturbances.

2B. The Inner Planets. This is a discussion about the rocky inner planets of the solar system and

their moons. The Earth and our Moon are considered first, then Mars and its two tiny moons, and

finally, Venus and Mercury (that have no moons). These planets are small, dense, and metal-rich.

Late in the year 1972, a few hours into the flight of Apollo 17, one of the crewmen looked

out the window. What he saw inspired him to grab a camera and snap a picture. After the craft

Figure 2.5. “Blue Marble”Earth. Image credit: NASA, NOAA/USAF/DSCOVR.
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returned safely ten days later, a technician processed the film and looked at a photograph of the

whole, fully illuminated, astonishingly beautiful Earth. This “blue marble” image of Earth was

the first photograph taken of the whole, round Earth. It created an immediate sensation and was

printed on the front page of nearly every newspaper world-wide. There are now many versions of the

blue marble image. The one of Figure 2.5 was taken by a camera on NASA’s Deep Space Climate

Observatory (DSCOVR) in 2015 from about one and a half million kilometers away. North and

Central America are visible near the center of the image. The shallow seas around the Caribbean

islands have a turquoise hue. The image shows the effects of sunlight scattered by air molecules

Figure 2.6. A supermoon in November of 2016 captured by the Lunar Reconnaissance Orbiter. Image credit:
NASA’s Goddard Space Flight Center/Clare Skelly.
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that give it its characteristic bluish tint. DISCOVR is a satellite in orbit around a gravitational

equilibrium point between Earth and Sun. From its vantage point it has a continuous view of the

sunlit half of Earth so that it can monitor the changing makeup of Earth’s atmosphere. It also

surveys the Sun and sends back information about solar emissions and solar flares.

The leading theory of the origin of our Moon is that a massive body several times its size collided

with Earth about 4.5 billion years ago. The resulting debris from both Earth and the impacting

body accumulated in a molten state to form the Moon. Within about 100 million years, this mass

had crystallized, eventually forming the lunar crust. Since the Moon’s atmosphere was too thin to

protect it, a steady rain of asteroids, meteoroids, and comets over hundreds of millions of years have

ground up its surface into a rubble pile of charcoal-gray dust and rocky debris. The Apollo missions

provided an extraordinary look at the dusty, rock-strewn, and desolate place our Moon is.

When the Moon is full at a time it when makes its closest pass to Earth, it appears to be up to

14% bigger and 30% brighter and is called a “supermoon.” Figure 2.6 is an image of a spectacular

Figure 2.7. The orbiting Moon as captured by a Chinese Chang’e spacecraft in October 2014. Compare the Earth’s
sparkling brilliance with the Moon’s dull glow. Image credit: Chinese National Space Administration, Xinhuanet.
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supermoon captured in November 2016. The Moon has a radius of 1,740 km. Its solid, iron-rich

inner core is 240 km in radius. It makes a complete orbit around Earth in about 27 Earth days

and spins around its axis of rotation exactly once during this time. So it is the same hemisphere

of the Moon that always faces Earth. The opposite hemisphere—never seen from Earth—is often

referred to as the “far side” of the Moon. The far side of the Moon was seen for the first time in

1959 when the Russian Luna 3 spacecraft returned the first images. The light and dark areas of the

Moon represent rocks of different composition and age. Figures 2.6 and 2.7 tell us that the large

dark plains of basalt—rock formed by ancient volcanic eruptions—are much more prevalent on the

Moon’s visible side. Since the Moon has no natural satellite whose orbits could be observed, its

mass was difficult to establish. Only after the command-service modules of several of the Apollo

missions that orbited the Moon in the late 1960s and early 1970s returned precise data about their

orbits was the Moon’s mass determined accurately.1 The Chinese National Space Administration

is currently embarking on an ambitious Moon exploration program with end goal to return lunar

rock samples to Earth. Named Chang’e after a mythological Chinese Moon goddess, the program

made history in the early days of January in 2019 with the first ever soft landing of a rover on the

far side of the Moon. An earlier craft had orbited the Moon and taken the image of Figure 2.7.

The “red” planet Mars has received a lot of attention. More than half-a-dozen rolling scientific

Figure 2.8. Curiosity takes a selfie on Mars. Image credit: NASA/JPL-Caltech/MSSS.

1See the paragraph The Mass of the Moon in the Problems and Discussions section of Chapter 1 for more about
the mass of the Moon and paragraph The Race to the Moon in the Problems and Discussions sections of the current
chapter for more information about the incredible Apollo Program.
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laboratories have been sent to study its surface and atmosphere and to look for preconditions and

possible signs of life.2 With regard to life, even primitive life, these explorations have thus far been

negative, but they have determined that beneath a region of one of Mars’s cracked and pitted

plains there is about as much water as in Lake Superior, the largest of the Great Lakes. The rover

Curiosity is one of the most recent and most scientifically advanced vehicles ever sent to another

planet. It has been crawling around Mars for several years now. Figure 2.8 shows a composite of

Figure 2.9. Hubble tracks Phobos around Mars in May of 2016. Image credit: NASA’s Goddard Space Flight Center.

dozens of images taken by one of Curiosity’s cameras in August of 2015. The camera is mounted at

the end of the rover’s robotic arm. As with any selfie, only a part of the arm holding the camera

is included in the photo (the upward pointing segment in the middle) but shadows of the rest

of the rover’s robotic arm are visible on the ground. The fact that the rover’s wheels are about

2It bears pointing out that life is incredibly adaptable. In the years 2011–2015, scientists made the surprising
discovery of never-before-seen multi-cellular life forms, including worms and crustaceans, in pockets of water 5,000
years old in South African goldmines that are 2 miles below Earth’s surface. They exist without sunlight in unbearable
heat. See https://www.cbsnews.com/news/looking-for-life-on-mars-at-the-bottom-of-a-south-africa-gold-mine/.

https://www.cbsnews.com/news/looking-for-life-on-mars-at-the-bottom-of-a-south-africa-gold-mine/.


2B. The Inner Planets 71

50 centimeters in diameter and 40 centimeters wide gives a sense of the size of things. Curiosity is

looking out from the crest of a rocky 6-meter hill that it climbed. A mountain is visible at some

distance behind it. The iron in the dusty soil paints Mars’s surface in its reddish color.

The dry lake and river beds that Curiosity roamed over give evidence that liquid water once

flowed on Mars’s surface. In one of the lake beds, the instrumentation that Curiosity carries identified

organic molecules in rocks billions of years old. They point to the possibility that some life forms

exist, or may have existed, on Mars. The thin atmosphere of Mars is composed mostly of carbon

dioxide. The recent detection of methane in the atmosphere and the fact that Mars exhibits seasonal

cycles indicates the planet is alive at least in a geologic sense. The fact that its thin atmosphere

caused the the planet’s climate to cool left most of its water locked up in ice. Recently, a radar

instrument on board the European Space Agency’s (ESA) orbiter Mars Express found evidence of

an existing body of liquid water. A lake about 20 km across is believed to be embedded under the

planet’s south polar ice cap.

Mars has two small moons, both discovered in 1877. Their names Phobos and Deimos come

from Greek mythology. They are the twins representing fear and terror who accompanied their

father Ares, the god of war, into battle. The Greek god Ares is the god Mars of the Roman pan-

theon. The Hubble Space Telescope took images of Mars—see Figure 2.9—that captured Phobos

during its orbital trek. Over the course of 22 minutes, Hubble took 13 separate exposures, allowing

astronomers to create a time-lapse video showing a part of the little moon’s orbit. Because the

moon is tiny, it appears star-like in Hubble’s picture sequence. Figure 2.10 provides images of the

Figure 2.10. The images of Phobos on the left and Deimos below were taken by the high resolution imaging camera
of the Mars Reconnaissance Orbiter in April 2008 and March 2009. Image credit: HiRISE, MRO, LPL (U. of Arizona),
NASA.
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two moons in roughly their relative sizes. Since they look like asteroids, Phobos and Deimos, were

long thought to have been asteroids that were captured by Mars’s gravitational pull. But more

recent observations of their compositions and orbits suggest that they may have formed from debris

generated by the impact of one or more larger bodies with Mars.

Venus is the second planet from the Sun. It is Earth’s closest planetary neighbor and is similar

to Earth in size. Unlike Earth, however, it has no moons. Since it is always covered by a thick,

unbroken veil of clouds, its surface could not be seen from Earth even with the most powerful

Figure 2.11. This high resolution image of the surface of Venus was computer generated using radar data from the
orbiting Magellan spacecraft. The colors are based on pictures from the surface of Venus transmitted by two Russian
Venera landers. Image credit: NASA/JPL-Caltech, Magellan Project.
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telescopes. But in the early 1990s, the imaging radar of the Magellan spacecraft and earlier color

pictures transmitted by Russian Venera landers combined to produce spectacular high resolution

computer generated images of the planet and its surface. Figure 2.11 is one of them. Venus’s surface

is covered with craters, volcanoes, mountains, and big lava plains. The bright area that extends

around the middle of the planet represents a large highland region. The atmosphere of Venus

consists mainly of carbon dioxide along with clouds of sulfuric acid droplets. It traps the heat of the

Sun and the heat that the planet releases and creates a greenhouse-like effect that makes Venus the

hottest planet in our solar system. Its surface temperatures—higher than 470◦ Celsius (880 degrees

Fahrenheit)—are hot enough to melt lead. The few spacecraft that have been sent to soft landings

on Venus were able to transmit valuable information about its surface. But having to operate in the

scorching heat, the instrumentation of these craft quickly failed, so that these transmissions were

brief.

The planet Mercury has been known since recorded history began, but until the spacecraft

MESSENGER (derived from the phrases MErcury Surface, Space ENvironment, GEochemistry

and Ranging that describe its mission) went to study it in 2011, it was the least understood of the

inner planets. The high resolution image of Figure 2.12 was recorded when MESSENGER looked

Figure 2.12. Mercury as captured by MESSENGER. Image credit: MESSENGER, NASA, JHUAPL, CIW.
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down on the planet from an altitude of about 27,000 km on one of its early flybys. In March of 2011,

MESSENGER’s main engine fired to slow it down and to enter it into orbit around Mercury. Once in

orbit, it became MESSENGER’s primary mission to gain a broad scientific perspective on the solar

system’s innermost planet. This included information about its core and its surface. Mercury with

its large metallic core—it has a radius of about 2,000 km or about 80% of the planet’s radius—is

the second densest planet in the solar system after Earth. Data from MESSENGER’s instruments

provided evidence that this core consists in part of liquid iron. In November 2012, MESSENGER

discovered both water ice and organic compounds in craters in the shadows near Mercury’s north

pole. In February 2013, NASA assembled a highly detailed 3D map of Mercury from the thousands

of images that the craft had captured. This photographic record revealed with great accuracy how

the planet’s surface was shaped and scarred by many collisions with meteoroids and comets and

by extensive volcanic activity in the past. Its surface has large areas of relatively smooth terrain,

but it also features large stretches of cliffs and escarpments, some of them hundreds of miles long

and up to a mile high. They were created after Mercury’s formation as the planet’s interior cooled

and contracted. In April of 2015, after having completed more than 4,000 orbits of the planet,

MESSENGER ran out of fuel and carried out a programmed crash onto Mercury’s surface.

There had been concerns about the feasibility of sending a spacecraft to Mercury and inserting

it into orbit around it. Since Mercury orbits the Sun closely, a spacecraft sent in the direction of

Mercury would move in the general direction of the Sun, and would therefore be accelerated by

the Sun’s strong gravitational field. The craft’s flight path from its initial solar orbit to Mercury

would therefore have to be carefully conceived. The thinking was that its execution would involve

the extensive use of its thrusters and consume appreciable amounts of propellant. Extra propellant

means an increase in the weight of the craft and a more powerful—and more costly—rocket at

launch. We will see in the Problems and Discussions section of this chapter how the ingenious

design of MESSENGER’s trajectory got around these potentially mission-preventing problems.

In addition to the spectacular images and geologic information that spacecraft have provided

about the planets and their moons, their telemetric systems have also sent back accurate quantitative

data about them and their orbits. Table 2.1 collects basic data about the orbits of the inner planets

and Table 2.2 does so for their moons. Recall that neither Venus nor Mercury have moons. Table 2.3

lists the sizes of the planets and their moons along with their masses. All this information is taken

from NASA/JPL websites. The values for GM are obtained by inserting orbital data of both natural

Table 2.1. Orbital data from NASA/JPL websites, e.g., https://solarsystem.nasa.gov/planet-compare/. The orbit
periods are the sidereal periods (defined in Chapter 1G) in Earth years of 365.25 days, and “angle of orbit plane to
Earth’s” refers to the angle between the orbit plane of the planet and the orbit plane of Earth (defined in Chapter 6N).

Planet
semimajor axis

in km in au
eccentricity orbit period

in years
average speed

in km/sec
angle of orbit

plane to Earth’s

Mercury 57,909,227 0.387 0.20563593 0.2408467 47.362 7.00◦

Venus 108,209,475 0.723 0.00677672 0.6151973 35.021 3.39◦

Earth 149,598,262 1.000 0.01671123 1.0000174 29.783 0.00◦

Mars 227,943,824 1.524 0.0933941 1.8808476 24.077 1.85◦

https://solarsystem.nasa.gov/planet-compare/
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and artificial satellites into Newton’s version of Kepler’s third law. The estimates for the masses of

the planets and moons are obtained by inserting a standard value for G. See Chapter 1H in this

regard. As the planetary systems move through the solar system and attract each other, their basic

Table 2.2. Orbital data for the moons from NASA/JPL websites, e.g., https://ssd.jpl.nasa.gov/?sat elem.

Planet moon
semimajor

axis in km
eccentricity orbit period

in Earth days

Earth Moon 384,400 0.549 27.322

Mars
Phobos

Deimos

9,378

23,459

0.0151

0.0005

0.31891

1.26244

quantitative characteristics change slightly—very slightly—over time. So the numerical parameters

listed in the tables are continually remeasured. The values that are presented for them often differ

Table 2.3. Size and mass data taken from NASA/JPL websites and W. M. Folkner, J. G. Williams, D. H. Boggs,
R. S. Park, and P. Kuchynka, The Planetary and Lunar Ephemerides DE430 and DE431, The Interplanetary Network
Progress Report, vol 42–196, February 15, 2014, https://ipnpr.jpl.nasa.gov/progress report/42-196/196C.pdf (see
Table 8). For the moons refer to https://ssd.jpl.nasa.gov/?sat phys par.

diameter

in km

precise:

GM in m3/sec2

estimate:

mass M in kg

Mercury 4879 2.20317800 × 1013 3.30 × 1023

Venus 12,104 3.24858592 × 1014 4.87 × 1024

Earth 12,756 3.98600435 × 1014 5.97 × 1024

Moon 3475 4.90280 × 1012 7.35 × 1022

Mars 3933 4.28283752 × 1013 6.42 × 1023

Phobos 23 7.127 × 105 1.07 × 1016

Deimos 12 1.01 × 105 1.48 × 1015

a little from one listing to the next.

2C. The Outer Planets. The outer planets Jupiter, Saturn, Uranus, and Neptune in order of

their increasing distances from the Sun are much larger and less dense than the inner planets. They

are rich in hydrogen and helium and are often referred to as gas giants.

A look at Figure 2.13 tells us that the planet Jupiter is a colorful ball of wind-driven bands of

clouds and swirling storms in hues of white, gray, orange, and brown. During an early investigation of

Jupiter’s upper atmosphere, astronomers studied Jupiter’s eclipse of the moon Ganymede depicted

in the figure. As Ganymede emerges from behind Jupiter, the sunlight that it reflects flows through

Jupiter’s atmosphere. The fact that some of this light is blocked provided information about the

density of Jupiter’s cloud cover. As Ganymede continues its emergence, this reflected light brightens

progressively and the study of the changes in the various colors informed scientists about the

composition of Jupiter’s upper atmosphere. Visible in the center of the figure is Jupiter’s great red

spot. This is a huge high pressure cyclone that is trapped between two atmospheric jet streams.

https://ssd.jpl.nasa.gov/?sat_elem
https://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf
https://ssd.jpl.nasa.gov/?sat_phys_par
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It has winds of close to 600 km per hour and it is twice as wide as the entire Earth. Telescopic

evidence over the years has confirmed that the great red spot has been churning in Jupiter’s skies

for hundreds of years. Up to 90% of Jupiter’s swirling atmosphere consists of hydrogen gas. Most

of the remaining 10% is helium with smaller amounts of ammonia. Hydrogen predominates in the

interior of the planet as well. Scientists think that the pressure is so great at depths of about halfway

to the planet’s center, that hydrogen assumes a metal-like state there. They believe that Jupiter’s

fast rotation turns this region into a dynamo that generates the electrical currents that drive the

planet’s powerful magnetic field.

The four moons that Galileo discovered early in the 17th century are Jupiter’s four largest. Soon

after their discovery, a German astronomer turned to Greek mythology to name them Ganymede,

Figure 2.13. The Hubble Space Telescope catches Jupiter as it eclipses its moon Ganymede. Ganymede is the largest
moon in the solar system. Image credit: NASA/ESA/LPL(U. of Arizona).

Europa, Io, and Callisto after the friends and lovers of Zeus (the Greek name of the Roman god

Jupiter). These names came into general use only much later.

The Galileo spacecraft was launched by NASA in 1989 with mission to explore Jupiter and its

moon system closely. It took the craft six years to reach the planet. Once in orbit, Galileo flew
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past Jupiter and its moons for eight years before it was sent into a programmed suicidal dive into

Jupiter’s atmosphere. Over sixty more moons—all tiny—have now been identified in orbit around

the planet. The four that Galileo had discovered contain in excess of 99% of the total mass of all

of Jupiter’s moons. The most exotic of Jupiter’s moons is Io. With its hundreds of active volcanoes

it is the most geologically alive object in the solar system. The probing cameras and instruments

of the Galileo spacecraft have provided much information about Io’s surface. Most of the surface

consists of extensive plains coated with sulfur and sulfur-dioxide frost. Volcanoes have created lava

Figure 2.14. Galileo’s high resolution image of Io from 1999. It is a mosaic made with the camera’s infrared, green,
and violet filters and approximates what the human eye would see. Image credit: NASA/JPL/LPL(U. of Arizona).
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flows that are hundreds of kilometers long. Several of the dark, flow-like features correspond to hot

spots on Io’s surface and may be active lava flows. Many rugged mountains, uplifted by the extensive

compression of Io’s crust—some of them taller than Earth’s tallest peaks—dot its sulfuric plains.

There are scores of plateaus of layered materials and many large bowl-shaped volcanic depressions.

Some of the volcanoes that rise from these plains spew plumes of sulfuric materials as high as

500 km into Io’s thin, patchy atmosphere. There are no visible pitted scars or craters of the sort

that meteorites or asteroids form on impact, suggesting that flows of volcanic materials covered

them with new deposits as they occurred. The craft’s high resolution camera painted an image of

Io that shows a sulfuric yellow surface with the splashes of black, brown, green, orange, and red

that Io’s active volcanoes have colored in. See Figure 2.14. Io looks like an abstract golden spherical

Christmas ornament as it draws its nearly circular orbits around Jupiter.

Even more interesting is Jupiter’s moon Europa, like Io roughly the size of Earth’s moon. Let’s

start with a very brief description of one of the leading hypotheses for the origin of life as it began

on Earth over three billion years ago. In places on the ocean floor the Earth’s crust was being pulled

apart, causing mountain ridges to rise. On some of these ridges, fields of vents formed from which

non-acidic, hot water burst through. Carbonate mineral deposits from this water grew over time into

steep, white “chimneys” that rose from the sea floor like organ pipes. The rocks of the vents were

porous and packed with tiny holes filled with water. These pockets contained essential chemicals

and minerals and were ideal places for metabolic processes to begin. They acted as “cells”. The

heat, the chemicals, and the water acting and interacting over long time spans could have produced

the molecules that are critical to life as we know it. Eventually these pockets created their own

membranes, became true cells, and escaped from the porous rock into the open water. In time,

these chimneys became home to dense communities of microorganisms that thrived in the water

of the vents. Now back to the moon Europa. The Galileo mission has uncovered strong evidence

that Europa has a deep ocean of liquid water beneath its icy shell. Scientists have long considered

it possible that there might also be volcanic activity on Europa and that there could be vents

through which mineral-laden hot water could emerge from the sea floor. Could something like the

chemical and biological dynamic that—hypothetically—led to life within Earth’s oceans be possible

on Europa? Given its abundant water, rocky sea floor, and the energy and chemistry of hot vents

and volcanic activity, might Europa have what it takes to support simple organisms?

Jupiter and its moons are again the objects of intense exploration. The craft Juno was launched

in 2011, reached Jupiter in July of 2016 and achieved orbit around the planet. Its camera began to

take high resolution images of its surface—see Figure 2.15—and its scientific instruments began to

peer below the dense cover of clouds to assess Jupiter’s gravitational force, magnetic field, radiation

belts, and atmospheric dynamics. In its flights over Jupiter’s wind-driven weather systems, Juno

measured the variations in Jupiter’s gravitational pull. These measurements gave the Juno science

team insight into the movement of the masses in Jupiter’s interior and in turn information about

its structure. Recent data has revealed that Jupiter’s colorful, wind-sculpted bands extend 3,000 km

deep into its interior. Even though this is much less than the 70,000 km of the planet’s radius,

this meant that the weather layer of Jupiter is significantly more massive and deep than had been

previously thought. It is estimated that it contains about one percent of Jupiter’s mass. By contrast,
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Figure 2.15. This image was taken taken in April of 2018 at periapsis of Juno’s 12th orbit. The spacecraft was
about 16,500 km from Jupiter’s surface at the time. The image extends from the great red spot to the dynamic bands
in the direction of the south pole. Image credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill.
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Earth’s atmosphere is less than one millionth of Earth’s total mass. The question as to whether

Jupiter has a rocky core remains open, but indications are that it does. Juno’s mission has been

extended until July 2021. The space agency NASA is planning to send another craft to Jupiter in

the 2020s on a mission to look for answers to the question about the possible existence of some form

of life on the moon Europa. During repeated close flybys, the craft’s sophisticated instruments are

to image Europa’s icy shell and investigate the interior of its ocean.

The Cassini mission to Saturn was an international collaboration of NASA with the European

and Italian Space Agencies. The spacecraft was launched in 1997 and achieved orbit around Saturn

in 2004. It remained in orbit for 13 years gathering information about the planet. The flight of

Cassini has informed all aspects of what we know about Saturn and has completely revised our

understanding of its ring system and its moons.

Saturn’s basic structural features are similar to those of Jupiter. Its low average density gives

evidence that it consists mostly of hydrogen. Its atmosphere consists of about 95% hydrogen gas

with the rest mostly helium. Ammonia crystals in its upper atmosphere give it its pale yellow hue.

Saturn’s atmosphere exhibits a banded pattern similar to Jupiter’s, but Saturn’s bands are much

fainter and calmer and lack the multicolored intensity of Jupiter’s bands. Wind speeds on Saturn

can reach 1,800 km per hour. Occasional large oval cyclones have been observed on Saturn for

some time and Cassini was witness to a huge storm that churned around and encircled the planet’s

northern hemisphere. Saturn’s north pole is dominated by a large bluish hexagon. See Figure 2.16.

This stable pattern, first observed in 1988 by scientists who analyzed the data provided by the

flybys of the Voyagers in 1980 and 1981, has a massive hurricane (many times larger than the

largest hurricanes on Earth) whirling inside it. The eye of the hurricane is located at the pole,

and the boundary of the hexagon is formed by a curving jet stream. The shape is influenced by

the turbulence of the flow that swirls between fluid masses rotating at different speeds. Saturn’s

gravitational field—information about it comes from a study of the way it pulls on its moons and

rings as well as the deflections it causes in the path of the orbiting Cassini—provided insight about

its interior. At a depth of about 1,000 km below the clouds and at a temperature of about 700◦

Celsius, the planet’s hydrogen behaves like a liquid rather than a gas. At a distance about halfway

between Saturn’s cloud tops and its center the hydrogen is believed to be in a fluid metallic state

at a temperature of about 5700◦ Celsius. Electrical currents within this metallic hydrogen layer are

believed to be the source of Saturn’s magnetic field. This magnetic field is only about 5% of the

strength of Jupiter’s. A metal and rock mixture of possibly 10 to 20 Earth masses is thought to

form the planet’s dense central core.

Saturn’s configuration of rings is one of the most stunning astronomical sights in the solar

system. This ring system is around 250,000 km wide but only a few tens of meters thick. Consult

Figures 2.16 and 2.17. The rings consist of billions of particles, ranging in size from grains of sand

to large boulders. They are largely ice-particles, but the rings also draw in rocky fragments from

their travels through the solar system. As Figure 2.16 illustrates, the ring system is divided into

seven distinct segments. The standard designation for the ring segments from the innermost to the

outermost are given by the letters D, C, B, followed by a gap, and then by the letters A, F, G, and E.

The fact that the rings have different densities is apparent from both Figure 2.16 (the denser rings



2C. The Outer Planets 81

are brighter) and Figure 2.17 (the denser rings cast darker shadows). The gap is visible as a black

ring known as the Cassini Division. It separates the B ring (the brightest and densest of the rings)

from the A ring. It is caused by the gravitational pull of Saturn’s moon Mimas. The moon Thetys

Figure 2.16. In November of 2012, Saturn’s north polar hexagon basked in the Sun’s light. Many smaller storms
dot the north polar region. Saturn’s signature rings—broken by the shadow that Saturn casts—surround the planet.
Image credit: NASA/JPL-Caltech/Space Science Institute, Cassini imaging team.

orbits at a distance of around 300,000 km from Saturn’s center, well outside Saturn’s main bright

rings near the middle of the very faint outer E ring.
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The Dutch scientist Christiaan Huygens discovered the first moon of Saturn in the year 1655. It

was later named Titan. Cassini (the astronomer, not the spacecraft) made the next four discoveries:

Iapetus in 1671, Rhea in 1672, Dione in 1684, and Tethys in 1684. Mimas and Enceladus were both

discovered by William Herschel in 1789. These seven major moons together comprise over 99% of

Figure 2.17. The rings of Saturn are accompanied by the moon Thetys. The shadows they cast give a sense of their
stratification. The figure also shows how thin the rings are. APOD: July 22, 2005. Image credit: NASA/JPL-
Caltech/Space Science Institute, Cassini imaging team.

the total mass of all of Saturn’s sixty-some moons. Titan is by far the largest of the moons. Slightly

larger than the planet Mercury, it alone contains more than 96% of the total mass of Saturn’s

moons. Its gravitational force affects the orbits of nearby moons. The Cassini craft used Titan’s

gravitational pull to perform fuel-free corrections of its orbit. The moons of Saturn took their names

from the Titans of Greek mythology. With the god Kronos—Saturn to the Romans—in the lead,

the Titans had battled the Olympian gods unsuccessfully for control of the Greek pantheon. The



2C. The Outer Planets 83

moons discovered later were named after other Roman and Greek mythological characters.

Titan and Enceladus are Saturn’s most interesting moons and have received much attention.

In 2005 Cassini, already in orbit around Saturn, released a probe named Huygens to study Titan.

The probe’s camera filmed its descent before it landed successfully and softly on the moon’s sur-

face. The descent of Huygens in combination with Cassini’s many close flybys provided substantial

information. It was discovered that Titan has Earth-like landscapes featuring dry river networks,

steep canyons, dune lands, and even lakes and seas, and that its hazy, nitrogen-rich atmosphere

with traces of methane rains complex organic chemicals to its surface. Images of Titan’s surface

taken by the Huygens probe show chunks of water ice and rounded pebbled shapes scattered over

a flat, sandy orange plain. Some of the largest lakes near the north pole consist primarily of liquid

ethane and methane, and are of the size of the American Great Lakes. Cassini and Huygens also

found clear evidence that a global ocean of water existed beneath Titan’s thick, frozen crust.

The fact that Saturn’s moon Enceladus is one of the whitest and brightest objects in the solar

system that reflects nearly 100 percent of the sunlight that strikes it, meant that its surface could

Figure 2.18. Image of Enceladus captured by Cassini in October 2008. The “tiger stripes” are color-enhanced in
greens and blues. Image credit: NASA/JPL-Caltech/Space Science Institute, Cassini imaging team.
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only be nearly pure, pristine water ice. See Figure 2.18. It was known from the reports of the Voyagers

that the surface of Enceladus had relatively few craters, but Cassini observed that near the south

pole its surface is nearly free of craters altogether. Scientists concluded that Enceladus’s southern

surface had to be geologically very young and that some ongoing activity was melting or covering

its icy outer layer. Cassini’s studies of Enceladus have begun to unravel the moon’s remarkable

mysteries. In its orbital motion around Saturn, Enceladus always faces the same side of the planet.

This means that it spins on its axis at the same rate that it orbits Saturn. By inspecting hundreds

of photos from more than seven years of Cassini’s mission researchers tracked the moon’s spin with

precision and detected a wobble. This wobble, very carefully measured, confirmed that there had

to be a liquid layer that separated the porous rocky core of Enceladus from its icy shell. No other

internal structural configuration could explain with the same precision the dynamics of the wobble

that was observed. The conclusion was that under its shell of ice, Enceladus was warm enough to

sustain a global ocean. The surface near the southern pole exhibited a pattern of deep crevasses,

later called “tiger stripes” and highlighted in blues and greens in the figure. This unexpectedly

relatively warm and cracked terrain, reaching across Enceladus’s active south pole was found to be

in motion. Moved by gravitational forces, it was stretched in some places and buckled in others. To

their amazement, scientists detected huge, soaring plumes of water vapor and ice particles over the

warm fractures in this part of the crust. The analysis of images provided conclusive evidence that

these plumes originated near the hottest spots of the tiger stripe fissures and that they sped out

at about at over 1000 km per hour. During a close flyby in 2008, Cassini’s instruments sampled a

plume directly and detected a surprising mix of volatile gases, water vapor, ice grains, hydrogen,

carbon dioxide, carbon monoxide, salts and silica, as well as organic materials.

Life as we know it is thought to be possible in stable environments that offer liquid water,

essential chemical elements (such as carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulphur),

and a source of energy (from sunlight or chemical reactions). It had been an open question as to

whether conditions that might have led to life on Earth billions of years ago could exist in the solar

system beyond Mars. The spacecraft Galileo had already shown that Jupiter’s moon Europa is a

place where this is the case. The discoveries by Cassini affirmed that such conditions also exist

on Saturn’s moons Titan and Enceladus. Cassini’s original mission was so successful that it was

extended for nine additional years. Finally, in September of 2017, when Cassini’s fuel was entirely

spent, it was sent on a programmed plunge down into Saturn’s atmosphere and disappeared. It was

one month shy of celebrating the 20th anniversary of its launch. While the spacecraft is no longer,

the analysis of the data that Cassini has transmitted continues. A recent significant discovery was

the detection of complex carbon-based molecules in the jets of water that emerge from the active

regions of Enceladus’s south pole. The study that announced the discovery asserts that “these huge

molecules contain a complex network often built from hundreds of atoms” and are “the first ever

detection of such complex organics coming from an extraterrestrial water-world.” The study goes

on to pose the important question: are these molecules the result of chemical processes only, or are

they—as they are on Earth—biologically created? On Earth, the technology to answer this question

already exists, so that “the next logical step is to go back to Enceladus soon with a dedicated

payload and see if there is extraterrestrial life.”
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The two outermost planets of the solar system are Uranus and Neptune. Uranus had been

observed as a moving point of light before, but it was William Herschel who identified it as a planet

in 1781. The axis of rotation of Uranus was later observed to lie in the plane of its orbit so that it

moves in its orbit as though it were a rolling ball. Neptune, predicted as a consequence of observed

irregularities in the orbit of Uranus, was discovered in 1846. (Some details about the discovery

of both Uranus and Neptune are provided in Chapter 1F.) So far, NASA’s Voyager 2 is the only

spacecraft to have visited Uranus and Neptune. Most of what we now know about the two planets

was gathered by its instruments during flybys that lasted only a few hours. Both of the planets

are cold, dark, and very windy. Each has an atmosphere consisting mostly of hydrogen and helium,

with trace amounts of methane, water, and ammonia, that gradually merge below the surface into

a soup of a dense, icy, liquid mix of these same chemicals that accounts for about two-thirds of the

planet’s mass. The methane gas in their atmospheres gives both Uranus and Neptune their bluish

color. See Figure 2.19. A solid hot core, thought to be about Earth-sized, forms each planet’s center.

Figure 2.19. Voyager 2 is the only spacecraft ever to cruise to Uranus and Neptune. It was near Uranus in January
of 1986 and near Neptune in August of 1989. Voyager 2’s image of Neptune (on the right) shows the great dark spot
and its companion bright smudge. Image credit: NASA/JPL-Caltech. But Voyager 2’s image of Uranus depicts a
completely featureless bluish-green sphere. The image of Uranus shown here (on the left) is grainier, but shows some
of the planet’s atmospheric bands and a faint dark spot. Taken by the Advanced Camera for Surveys of Hubble’s
space telescope in August of 2006, it is a composite of many separate exposures that use filters to capture some
near-infrared wavelengths. Image credit: NASA/JPL-Caltech, Space Telescope Science Institute, and ESA

Voyager 2 has informed us that Uranus is surrounded by over a dozen faint rings and that it has

more than two dozen moons swirling around it. The largest moons, Titania and Oberon (discovered

by William Herschel in 1787), Umbriel, Ariel, and Miranda, are far larger than the rest. Four of

these five moons (and almost all the others) are named after characters in Shakespeare’s plays.

Voyager 2 observed that Neptune is surrounded by half a dozen rings and over a dozen circulating

moons. Of Neptune’s moons, Triton is by far the largest. Discovered in 1846 (and later named after
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the son of Poseidon—the Neptune of the Greek pantheon), it makes up more than 99% of the mass

of Neptune’s moon system. Voyager 2 spotted a number of active geysers on Triton within the polar

cap. Heated by the Sun, they eject plumes to heights of up to 8 km. The fact that Voyager 2 detected

only a few impact craters on Triton’s surface confirmed the effects of its ongoing geological activity.

Some of the important quantitative information that the Voyager, Galileo, Juno, and Cassini

Table 2.4. Orbital data from NASA/JPL websites, e.g., https://solarsystem.nasa.gov/planet-compare/. The orbit
periods are the sidereal periods (defined in Chapter 1G) in Earth years of 365.25 days, and “angle of orbit plane to
Earth’s” refers to the angle between the orbit plane of the planet and the orbit plane of Earth (defined in Chapter 6N).

Planet
semimajor axis

in km in au
eccentricity orbit period

in years
average speed

in km/sec
angle of orbit

plane to Earth’s

Jupiter 778,340,821 5.203 0.04838624 11.862651 13.056 1.31◦

Saturn 1,426,666,422 9.537 0.05386179 29.447498 9.639 2.49◦

Uranus 2,870,658,186 19.189 0.04725744 84.016846 6.873 0.77◦

Neptune 4,498,396,441 30.070 0.00859048 164.79132 5.435 1.77◦

spacecraft have sent back about Jupiter, Saturn, Uranus, and Neptune and their many moons is col-

lected in Tables 2.4, 2.5, and 2.6. Table 2.4 provides the basic orbital data for the four outer planets.

Table 2.5. The table lists the sizes and orbital data for the largest moons of each of the outer planets as well as
Earth’s moon from JPL/NASA websites, e.g., https://ssd.jpl.nasa.gov/?sat elem.

Planet moon diameter
in km

semimajor

axis in km
eccentricity orbit period

in Earth days

Earth Moon 3,475 384,400 0.0554 27.322

Jupiter

Ganymede

Callisto

Io

Europa

5,262

4,820

3,643

3,122

1,070,400

1,882,700

421,800

671,100

0.0013

0.0074

0.0041

0.0094

7.155

16.689

1.769

3.551

Saturn

Titan

Rhea

Iapetus

Dione

Tethys

Enceladus

Mimas

5,151

1,527

1,469

1,123

1,062

504

396

1,221,930

527,108

3,560,820

377,396

294,619

238,020

185,539

0.0288

0.0013

0.0286

0.0022

0.0001

0.0045

0.0196

15.945

4.518

79.321

2.737

1.888

1.370

0.942

Uranus

Titania

Oberon

Umbriel

Ariel

Miranda

1,577

1,523

1,169

1,158

472

435,910

583,520

266,300

191,020

129,900

0.0011

0.0014

0.0039

0.0012

0.0013

8.076

13.463

4.144

2.520

1.413

Neptune Triton 2,705 354,759 0.00002 5.877

https://solarsystem.nasa.gov/planet-compare/
https://ssd.jpl.nasa.gov/?sat_elem
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The data in the column “angle of orbit plane to Earth’s” of Table 2.4 together with the data in

the same column of Table 2.1 tell us that all the planets orbit close to the ecliptic, the Earth’s

orbital plane. Mercury’s orbit deviates the most. Its plane is separated from Earth’s by 7 degrees.

Similarly, the “eccentricity” columns of these two tables tell us that all planetary orbits are very

nearly circles. Again, Mercury deviates the most. With its eccentricity of about 0.2, its orbit is the

most elliptical. Table 2.5 provides data for the sizes and orbits of the planets’ major moons. The

list includes all the moons in the solar system with a diameter of over 1000 km. Table 2.6 finally,

lists the sizes and masses of the four outer planets. Such accurate values for GM are obtained by

Table 2.6. These data come from NASA/JPL websites and W. M. Folkner, J. G. Williams, D. H. Boggs, R. S. Park,
and P. Kuchynka, The Planetary and Lunar Ephemerides DE430 and DE431, The Interplanetary Network Progress
Report, vol 42–196, February 15, 2014, https://ipnpr.jpl.nasa.gov/progress report/42-196/196C.pdf (see Table 8).

Planet
diameter

in km

precise:

GM in m3/sec2

estimate:

mass M in kg

Jupiter 142,984 1.26712765 × 1017 1.90 × 1027

Saturn 120,536 3.79405852 × 1016 5.68 × 1026

Uranus 51,118 5.79454860 × 1015 8.68 × 1025

Neptune 49,528 6.83652710 × 1015 1.02 × 1026

inserting orbital data as well as flyby data from spacecraft into Newton’s version of Kepler’s third

law. The corresponding estimates for the masses M are derived by inserting a standard value for G.

For these, see Chapter 1H.

As was already observed in the context of the inner planets, the outer planets and the moon

systems around them change their basic quantitative characteristics very slightly over time. So the

numerical parameters of the tables are continually remeasured. The values that are presented for

them in the literature often differ a little from one listing to the next.

We have seen that the inner planets Mercury, Venus, Earth, and Mars are small, dense, metal-

rich, and that they all orbit relatively near the Sun. They are the rocky or terrestrial planets. The

outer planets, Jupiter, Saturn, Uranus, and Neptune are large, less dense, hydrogen-rich, and they

orbit much farther from the Sun. They are the gas giants. While each of the outer planets have

dozens of moons in orbit around it, the inner planets have a total of only three (that of Earth and the

two small ones of Mars). All the moons listed had been discovered by the 1850s with the exception of

Uranus’s moon Miranda (discovered in 1948). The moons of all the planets—with one exception—

are much less massive than the planets that they orbit around. The exception is our Moon. The

ratio of its mass to Earth’s mass is close to 1 to 81 (as we learned in the paragraph The Mass of the

Moon in the Problems and Discussions section of Chapter 1). The fact that 1 au≈ 1.5 × 108 km tells

us that the planets Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and Neptune are, respectively,

about 0.39, 0.72, 1.5, 5.2, 9.5, 19.1, and 30 au from the Sun. This gives a better sense of the relative

distances of the orbits of the planets from each other. All planets circle the Sun in the same direction

as the Earth. If you were to imagine yourself high above Earth’s northern hemisphere, you would

see all the planets revolving counterclockwise around the Sun.

https://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf
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2D. About Asteroids. As already described in Chapter 1F, the solar system began as a hot cloud

of gas and dust. Over large spans of time, gravity bound these materials together into larger and

larger clumps to form the planets and their moons. Asteroids are the scattered debris of rocky

remnants left over from this process. Our solar system contains millions of asteroids, most of which

are in orbit within the Main Asteroid Belt between Mars and Jupiter. Over a time span of hundreds

of millions of years many main belt asteroids were thrown out of their orbits when they passed near

massive planets such as Jupiter and Saturn. Some were hurled in the direction of the Sun and others

away from it. As a consequence, there are asteroids all over the solar system. The sizes of asteroids

range from a few meters to hundreds of kilometers across. On rare occasions they impact Earth.

When they do, they can cause extensive damage. A crater off the coast of the Yucatan Peninsula

in Mexico is the record of a massive impact that led to the extinction of the dinosaurs 65 million

years ago. Meteor Crater in Arizona was made by an impact about 50,000 years ago. Studies of

Earth’s geologic history tell us that about once every few thousand years an object the size of a

football field smashes into Earth’s surface. In recent decades there has been an organized effort to

detect and track asteroids. The asteroids that have received much attention are the Near Earth

Asteroids (NEAs), those with an orbit that brings them within 0.3 au or 45 million km of Earth’s

orbit. Around a thousand NEAs with a diameter of at least 1 kilometer have been identified. The

Potentially Hazardous Asteroids (PHAs) have received even more scrutiny. The PHAs are those

whose paths bring them to within 0.05 au or 7.5 million kilometers of Earth’s orbit. This distance

corresponds to about 20 times the average distance of 384,000 km from Earth to the Moon.

A few asteroids have been studied up close by orbiting spacecraft. The spacecraft Dawn was

launched in 2007 to study Vesta and Ceres, two of the largest and most massive. It was the goal

of the mission to focus the craft’s sophisticated instrumentation on a study of these bodies in an

effort to better understand the early moments of the formation of the solar system. This included

an investigation of the question as to why their developments took such different paths. By July

of 2011, Dawn had reached Vesta and had begun its 14 months in orbit around it. One surprising

finding was that some of the materials found on Vesta’s surface did not originate there. There are

carbon-rich elements and minerals containing water molecules that were most likely delivered by

impacts with debris coming from farther out in the solar system. Another observation of Dawn was

that Vesta had developed a layered, onion-like structure—similar to that of the inner planets—

consisting of a rocky outer crust, a metal inner core, and a rocky mantel between them. During

the formation of such a layered structure, Vesta must have been in a hot and molten state. This

would have allowed gravity to pull heavier materials into the interior to form the core. Vesta is the

only known object from the early days of the solar system that has such a layered composition.

By late 2012, Dawn had left Vesta behind and was heading for Ceres. It entered orbit around

Ceres in March of 2015. The precise data gathered about Dawn’s orbits made it possible to make

accurate determinations of the mass of Ceres (and earlier about the mass of Vesta). Tracking the

slight deflections in Dawn’s flight path and measuring the variable gravitational field gave scientists

information about the evolution of the surface as well as the internal structure of Ceres. Dawn’s

camera made a careful record of its pockmarked surface. The evidence suggests that Ceres’s crust

is a mixture of ice, salts, and rock. Its surface reveals multiple features formed by flowing materials.



2D. About Asteroids 89

Figure 2.20. Dawn obtained this image of Vesta from a distance of 5,200 km in July of 2011 and that of Ceres from a
distance of 13,600 km in May of 2015. The much smaller asteroid Eros was visited by the spacecraft NEAR-Shoemaker
in February of 2000. Image credit: NASA/JPL-Caltech/UCLA/DLR(the German Aerospace Center).

This includes volcano-shaped mountains believed to have been created by the expulsion of molten

ice. Dawn’s instruments have also detected organic materials on Ceres and discovered evidence of

chemical activity. The widespread presence of minerals containing water and the emission of water

vapor from its surface tell scientists that Ceres may have had a vast ocean in the past. They think

that what remains of this former ocean is now mostly frozen and bound up within the crust. At

the end of its mission, Dawn is to be placed in a stable orbit around Ceres in order to prevent a

crash landing that would contaminate its surface. Figure 2.20 shows Ceres and Vesta as well as the

asteroid Eros correctly in terms of their relative sizes. Only the cameras of spacecraft in orbit or

in flyby have captured images of asteroids and other small bodies of the solar system with similar

accuracy and resolution.

Table 2.7 lists a few of the most significant asteroids. Since asteroids are named and numbered in

order of their discovery, those numbered 1 through 4 were the first four to be discovered. Chapter 1F

narrates some of the history of their discovery. Those numbered 1, 2, 4, and 10 are the four largest

and most massive. The asteroid 45 Eugenia was found to have two satellites. The 433rd asteroid

to be discovered was the peanut-shaped rock 433 Eros. See Figures 2.20 and 2.21. It has a length

of 33 km and is one of the largest of the NEAs. It was studied by the spacecraft NEAR (Near

Earth Asteroid Rendezvous) that orbited and then landed on the asteroid in the years 2000-01. The
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Table 2.7. From NASA’s Asteroid Fact Sheet https://nssdc.gsfc.nasa.gov/planetary/factsheet/asteroidfact.html and
more recent studies. Ceres is close to spherical, but the others are irregularly shaped and for them “diameter” refers
to the length of the longest axis. For the precise meaning of “angle of orbit plane to Earth’s” see Chapter 6N.

Asteroid
diameter
in km

mass
in kg

semimajor axis
of orbit in au

orbit period
in years

eccen-
tricity

angle of orbit
plane to Earth’s

1 Ceres 965 9.39 × 1020 2.768 4.60 0.0758 10.59◦

2 Pallas 582 2.05 × 1020 2.772 4.61 0.2310 34.84◦

3 Juno 234 2.00 × 1019 2.670 4.36 0.2563 12.99◦

4 Vesta 569 2.59 × 1020 2.362 3.63 0.0889 7.14◦

10 Hygeia 530 8.67 × 1019 3.142 5.57 0.1146 3.84◦

45 Eugenia 215 6.10 × 1018 2.721 4.49 0.0835 6.60◦

433 Eros 33 6.69 × 1015 1.458 1.76 0.2227 10.83◦

4179 Toutatis 4.5 1.73 × 1013 2.534 3.98 0.6294 0.45◦

99942 Apophis 0.33 6.1 × 1010 0.922 0.89 0.1911 3.33◦

101955 Bennu 0.50 7.8 × 1010 1.126 1.20 0.2037 6.03◦

162173 Ryugu 0.90 4.5 × 1011 1.190 1.30 0.1902 5.88◦

NEAR mission will be studied in detail in Chapter 6. The asteroid 4179 Toutatis is the largest of the

known Potentially Hazardous Asteroids (PHAs). It came to within 0.0104 au (or 1.5 million km) of

Earth in 2004. The orbit of Toutatis is well understood and the probability that its trajectory will

intersect the Earth’s orbit in the next six centuries is essentially zero. There is a PHA that poses

a much greater threat. Observations indicate that the asteroid 99942 Apophis is about 330 meters

wide with a mass of roughly 50 billion kilograms. Trajectory studies tell us that it will buzz Earth on

Figure 2.21. This view of 433 Eros is a mosaic of six images taken by the NEAR spacecraft from a distance of
about 200 km in February of 2000. Image credit: NEAR Project, NLR, JHU APL, Goddard SVS, NASA.

https://nssdc.gsfc.nasa.gov/planetary/factsheet/asteroidfact.html
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April 13, 2029 and come to within 30,000 km to 36,000 km of our planet. Since this corresponds to

about three Earth diameters this will be a very near miss! The Japanese Space Agency JAXA sent

the craft Hayabusa-2 (the name comes from the Japanese word for Peregrine falcon) into space in

December 2014 to explore and collect samples from the PHA 162173 Ryugu. The probe reached its

destination in June 2018. In April 2019 it blasted the asteroid with an explosive charge in order to

Figure 2.22. This diagram of the inner solar system viewed from above the Earth’s orbital plane shows the positions
of all numbered asteroids (almost all of them in the Main Asteroid Belt) and all numbered comets on January 1, 2018.
Asteroids are represented by yellow dots and comets by sunward-pointing wedges. The orbits of the inner planets and
Jupiter are also shown. Image credit: P. Chodas/NASA/JPL-Caltech. From https://ssd.jpl.nasa.gov/ go to SITE
MAP and then to Solar System Diagrams.

https://ssd.jpl.nasa.gov/
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loosen and expose materials from below its surface. Hayabusa-2 landed on Ryugu in July 2019 to

gather up some of the debris. The plan is to return these materials to Earth by December 2020.

The hope is that their analysis will shed light on the mysteries of the birth of the solar system.

The asteroid 101955 Bennu is a coal-black PHA. Every six years its orbit brings it to within about

300,000 km from Earth. It has a relatively high probability—a 1-in-2700 chance is a preliminary

estimate—of impacting Earth late in the 22nd century. Such an impact would blow out a crater

nearly 5 km wide and 400 meters deep and collapse buildings and level trees up to 50 km away. In

September of 2016 the spacecraft OSIRIS-REx—the name is derived from key words of its mission:

Origins, Spectral Interpretation, Resource Identification, Security - Regolith (the dusty surface layer

of an asteroid) Explorer—was launched to study Bennu’s physical and geologic characteristics. In

December 2018, the craft went into a tight circular orbit around the asteroid. Sharp images taken

since have led to the discovery that Bennu is ejecting streams of particles from its surface. OSIRIS-

REx is scheduled to approach the surface of the asteroid and scoop up a small sample of the asteroid’s

surface materials. These are to be returned to Earth for study in September 2023.

The fact that a number of asteroids have been found to contain precious metals and minerals

raises the prospect of mining operations in space by robotic and possibly manned spacecraft.

2E. About Comets. We now turn to the study of comets, another group of small travelers in

the solar system. Both asteroids and comets were formed early in the history of the solar system

about 4.5 billion years ago. Asteroids are made up of metals and rocky material like the inner

planets. Comets were formed in colder regions, farther from the Sun. They consist of a nucleus of

compactified ice, dust, and rocky materials and are often referred to as dirty snowballs. When a

comet’s path takes it to the inner solar system, the Sun warms this frozen composite. The gases

and particles that this releases bubble into a misty cloud that surrounds the nucleus with a fragile

atmosphere called the coma. The pressure from the solar wind, the Sun’s radiation, stretches a part

of this cloud of ejected particles into a tail of dust and gas. A comet’s nucleus is generally less than a

few tens of kilometers across, but its coma can extend for thousands and even millions of kilometers.

Figure 2.22 gives a sense of the location of the asteroids and comets within Jupiter’s orbit.

In August of 2014, the astronomer Terry Lovejoy discovered a comet from his observatory in

Brisbane, Australia. The comet was photographed in early February 2015 just a few days after it

passed perihelion at a distance of 1.29 au or 193,000,000 km from the Sun. When it was close to

perihelion the comet was seen in the night sky with its coma nearly the size of a full Moon (but less

bright) and its tail stretching faintly for eight Moon diameters. The chemical compounds vaporizing

from the comet gave its coma a striking green hue. The image of Figure 2.23 shows separate tails

of gases and dust, the shorter tail of gases below the longer tail of dust. The Sun’s radiation makes

the tail of gases glow and the Sun’s light illuminates the tail of dust. (Barely visible near the end of

the tail is the spiral galaxy NGC 891 depicted in Figure 1.30.) The comet has now begun its lonely

voyage back into the cold outer regions of the solar system. The analysis of its highly elliptical orbit

tells astronomers that it will not return to our skies for at least another 13,000 years.

The comet discovered by Robert McNaught in 2006 presented a spectacular scene over the skies

of the southern hemisphere near the time it reached perihelion. See Figure 2.24. It became the

brightest comet in 40 years. Its tail was seen dispersed over a huge swath of sky.
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Comets have been studied and tracked during their passage through the inner solar system for

some time now. A comet that is in an elliptical orbit around the Sun with a period of less than

200 years is known as a short-period comet. In their official designation such comets are catalogued

with a number and the letter P. The number records the order in which they have been identified.

Figure 2.23. This image of the comet that Terry Lovejoy discovered was taken with a telescope in February 2015
by astrophotographer Damian Peach from England’s south coast. Many thanks to him for permitting its use.

For example, the designation 1P/Halley for Halley’s comet (see Chapter 1B) tells us that it was the

first to be identified as a short-period comet and 2P/Encke names the second comet found to have

a predictable short-period orbit. Halley and Encke are the astronomers who calculated the orbits.

When a short-period comet can no longer be detected—comets can break up, disintegrate, and

disappear—the letter D replaces the P in its designation. The comet 3D/Biela was first recorded

in 1772 and identified as periodic in 1826 by the Austrian army officer von Biela. It has not been

seen since 1852 and is believed to have disintegrated. Comets that were determined to have periods

greater than 200 years are catalogued with the letter C along with the year they were first observed,

followed by a second letter and a number. The second letter identifies the first or second half of

the month in the year of the discovery, and the number (mostly 1, but also 2, or 3) tells us that

the comet was the first, second, or third such comet to be detected (in the given year and period

of the month). The designations of the comets depicted in Figures 2.23 and 2.24 as C/2014 Q2 and
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Figure 2.24. This striking picture of the comet discovered by Robert McNaught in 2006 was taken at sunset from
the Paranal Observatory in Chile in January 2007. The comet is setting over the Pacific Ocean, its majestic spreading
tail backlit by the Sun. Image credit: S. Deiries/European Space Observatory.

C/2006 P1 tell us that the were discovered in September and August, respectively, of the given year.

The label 67P/Churyumov-Gerasimenko refers to the 67th short-period comet to have been

identified and recognizes its two discoverers. It was the focus of study of the Rosetta mission of the

European Space Agency (ESA). Launched in March 2004, it took the Rosetta spacecraft ten years

to reach the comet and to join it on its journey around the Sun. The craft was inserted into orbit

around the comet in September 2014. The images that its cameras captured show a duck-shaped

nucleus consisting of two connected parts of about 4 km and 2.5 km in length. See Figure 2.25. The

robotic lander that Rosetta carried was ejected from the craft in November 2014 and became the

first probe to touch down on a comet’s nucleus. The high-resolution cameras of both the spacecraft

and the probe observed substantial changes on the comet’s surface, especially during the time the

comet was close to perihelion when the Sun’s gravitational force on it was greatest. A fracture in

the neck region was observed to grow in size; boulders tens of meters wide were seen to be displaced

by many tens of meters; and an outburst of dust and gas was observed that led to the collapse of a

cliff over 100 meters high exposing the comet’s icy interior. The crafts’ instruments detected over

a dozen solid organic compounds on the surface of the comet’s nucleus. They also detected gases

streaming away from the nucleus. Along with water vapor, these included carbon monoxide, carbon

dioxide and gases containing nitrogen and sulphur. The mission ended in September of 2016 with

Rosetta’s controlled crash-landing on the comet.

Table 2.8 is a listing of some of the brightest comets and a few of the most interesting. In some
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Figure 2.25. The comet 67P/Churyumov-Gerasimenko imaged by Rosetta’s narrow-angle camera in August 2014
from a distance of 285 km. Image credit: ESA/MPS/OSIRIS Team.

cases, the table provides the name of the discoverer or discoverers (below the identifying label) except

in the case of C/1680 V1 where Newton’s study of the comet is recognized. (See Chapter 1B). The

comets C/1577 V1, C/1618 W1, C/1664 W1, C/1680 V1, C/1843 D1, and C/1882 R1 were all

celebrated as “great comets of the year.” Some of the most spectacular comets ever observed have

been “sun-grazers,” meaning that they came very close to the Sun during their perihelion passage.

The first sun-grazing comet to receive a lot of attention was the comet that Newton tracked and

that his contemporary, the Dutchman Lieve Verschuier painted with its spectacular tail sweeping

across the sky. See Figure 1.8. A look at the perihelion distances that the table provides tells us

that the comets C/1843 D1, C/1882 R1, and C/1965 S1 were sun-grazers as well. They are, when at

perihelion, the fastest objects in the solar system. (See the discussion in the paragraph Sungrazing

Comets and their Speeds of the Problems and Discussions section of this chapter.) The comets

C/1975 V1, C/1995 O1, and C/1996 B2 were also “great comets” in the years 1976, 1997, and

1996 when they were at their brightest in the sky. The fact that the eccentricities of the comets

C/1980 E1 and C/2006 P1 are greater than one indicates that they were traveling through the inner

solar system along hyperbolic trajectories.

Table 2.8 requires some comments. The first concerns the angle between the plane of a comet’s

orbit and the plane of Earth’s orbit. Consider Encke’s comet for example. That the angle between

the orbital planes is given as 3.3◦ means that if the the plane of the comet’s orbit is revolved around

its line of intersection with Earth’s orbital plane by 3.3◦ so that the planes coincide, then Encke

and Earth would orbit in this common plane in the same direction. Turning to a case where the

angle is greater than 90◦, we’ll consider Halley’s comet where the angle between the two orbital

planes is listed as 162.3◦. Here the understanding is that after Halley’s orbital plane is revolved by

180◦ − 162.3◦ = 17.7◦ around its line of intersection with Earth’s orbital plane so that the planes
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coincide, then Halley’s motion in this common orbital plane is in the direction opposite to Earth’s.

The next comment about the data in Table 2.8 is the fact that a comet’s eccentricity together with

Table 2.8. Data taken from NASA/JPL websites, https://nssdc.gsfc.nasa.gov/planetary/factsheet/cometfact.html
and the JPL Small-Body Database Browser https://ssd.jpl.nasa.gov/sbdb.cgi. Note that the table omits the orbital
periods of the comets Newton and West, both specified as having elliptical orbits with eccentricities very close to 1.

Comet
data

from the
years

eccen-
tricity ε

perihelion
distance q

in au

semimajor
axis a
in au

aphelion
distance

in au

orbital
period T

in years4)

angle of
orbit plane
to Earth’s5)

C/1577 V11)

(Tycho Brahe)
1577-78 1.0 0.17750 − − − 104.9◦

1P/Halley 1835− 0.967143 0.585978 17.83 35.08 75.32 162.3◦

C/1618 W11) 1618-19 1.0 0.38954 − − − 37.2◦

C/1664 W11) 1664-65 1.0 1.02553 − − − 158.7◦

C/1680 V1
(Newton)

1680-81 0.999986 0.00622 444.43 888.85 − 60.7◦

2P/Encke 2009-17 0.848320 0.33599 2.22 4.09 3.30 11.8◦

3D/Biela 1832 0.751299 0.87907 3.53 6.19 6.65 13.2◦

C/1843 D1 1843 0.999914 0.00553 64.27 128.53 513.00 144.4◦

C/1882 R12) 1882-83 0.999899 0.00775 76.73 153.46 669.00 142.0◦

C/1965 S1

(Ikeya-Seki)3) 1965-66 0.999915 0.00779 91.60 183.19 880.00 141.9◦

67P/Churyumov-
Gerasimenko

1995− 0.640582 1.24529 3.46 5.68 6.45 7.0◦

73P/Schwassmann-
Wachmann

2016-17 0.685567 0.972190 3.09 5.21 5.44 11.2◦

C/1975 V1
(West)

1975-76 0.999971 0.19663 6780.21 13,560.22 − 43.1◦

C/1980 E1
(Bowell)

1980-86 1.057732 3.36394 58.27 − − 3.9◦

C/1995 O1
(Hale-Bopp)

2005-13 0.994961 0.91741 182.05 363.19 2456.41 89.2◦

C/1996 B2
(Hyakutake)

1996 0.999899 0.23023 2272.08 4543.93 108,303.74 124.9◦

C/2006 P1
(McNaught)

2006-07 1.000019 0.17074 8953.85 − − 77.8◦

C/2014 Q2
(Lovejoy)

2014-16 0.997773 1.29036 579.38 1157.46 13,946.02 80.3◦

1) The value 1 for the eccentricity of the (parabolic) orbit is based on the original observations and is thus speculative.
2) The comet C/1882 R1 broke into several fragments during its last perihelion. 3) The comet C/1965 S1 broke into
three smaller comets at its last perihelion. 4) The orbital period in the elliptical cases refers to the perihelion period.
5) The meaning of the angle between the comet’s and Earth’s orbital plane is given in the comments about this table.

https://nssdc.gsfc.nasa.gov/planetary/factsheet/cometfact.html
https://ssd.jpl.nasa.gov/sbdb.cgi
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the perihelion distance (of columns 3 and 4) determine its semimajor axis, and (if the orbit is

elliptical) its aphelion distance and its orbital period (columns 5, 6, and 7). This can be seen by

using facts from Chapter 1C. In the elliptical case, with the eccentricity ε < 1 and the perihelion

distance q given, the semimajor axis a satisfies the equality q = a(1 − ε). So a = q(1 − ε)−1 is

determined by ε and q. Since the aphelion distance is a(1 + ε) = q(1+ε
1−ε

), it too is determined by ε

and q. By applying Newton’s version GM = 4π2a3

T 2 of Kepler’s third law (with M the mass of the

Sun), we get that the period is T =
(

4π2a3

GM

) 1
2 . Since a is determined by ε and q and GM (with M

the mass of the Sun is known—see Chapter 1H), T is determined by a and hence also by ε and q.

In terms of the entries for columns 5, 6, and 7 in the hyperbolic case ε > 1, only the semimajor

axis is defined. Chapter 1C tells us that it is given by a = q(ε − 1)−1. The point is that the entries

in Table 2.8 are arrived at as follows: those in columns 3, 4, and 8 are the consequence of careful

observations during the passage of the comet through the inner solar system, and those in columns

5, 6, and 7 can be derived from the entries in columns 3 and 4.

Example 2.1. For the comet C/1843 D1, ε = 0.999914 and q = 0.00553 au, so that the semima-

jor axis is a = q(1 − ε)−1 = 0.00553(0.000086)−1 ≈ 64.30 au and the aphelion distance is q(1+ε
1−ε

) =

0.00553 1.999914
0.000086

≈ 128.60 au. Since 1 au = 149,597,870.7 km ≈ 1.49598 × 1011 m, and GM =

1.32712 × 1020 m3/sec2 (from Chapter 1H), we get that the period of the comet’s orbit is

T =
(

4π2a3

GM

) 1
2 ≈ 2π

( (6.43023 · 1.49598×1012)3

1.32712×1020

) 1
2 ≈ 2π

(
8.90137×1038

1.32712×1020

) 1
2 ≈ 1.62725 × 1010 sec.

Since 1 year has 365.25 days and hence 365.25(86,400) ≈ 3.15576 × 107 seconds (see Chapter 1G),

the period of the comet is equal to 1.62723
3.15576

× 103 ≈ 516 years. The small discrepancies between these

values and those of Table 2.8 are explained by the fact that the computations of the entries in the

table (provided by the JPL Small-Body Database Browser) rely on a more accurate value for q.

The fact is that the orbits of many comets are stable and predictable. The orbits of the short-

period comets that Halley and Encke observed are examples. But there are comets that have experi-

enced extreme changes in their trajectories after their encounters with the gravitational forces of the

Sun (near perihelion) or with one of the massive outer planets (on close approaches). There is little

doubt that this explains the disappearance of the comet 3D/Biela. The comet 73P/Schwassmann-

Figure 2.26. A Hubble Space Telescope image of the fragments or “string of pearls” of Shoemaker-Levy 9 taken in
May 1994 when the comet was a distance of approximately 660 million km from Earth. Image credit: NASA, Weaver
(JHU), T. Smith (Space Telescope Science Institute).
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Wachmann, its nucleus already separated into dozens of fragments, is another comet that faces

the prospect of complete disintegration. The most dramatic example is the comet D/1993 F2-

Shoemaker-Levy 9, the ninth comet discovered by the pair of comet hunters Shoemaker and Levy.

This comet was orbiting Jupiter when it was first observed in March 1993. The numerical analysis

of the comet’s motion backward in time made it possible to reconstruct its history. It had been in

a short-period orbit around the Sun when, in 1970, the gravitational force of Jupiter captured it

and pulled it into orbit. As the result of another too close encounter with Jupiter in July of 1992,

the comet broke up into at least 21 icy fragments of up to 2 km in diameter that stretched across

1.1 million km of space (3 times the distance between Earth and the Moon). See Figure 2.26. In

the summer of 1994 these fragments slammed spectacularly into Jupiter’s atmosphere at speeds of

about 60 km/sec. They created scars on Jupiter’s surface that were visible for many months. Never

before had anyone seen the impact of such large objects on a planet.

2F. Trans-Neptunian Objects. The term Trans-Neptunian object refers generically to any object

in the solar system beyond the orbit of Neptune. Our discussion has shown that a comet that loops

through the solar system in an orbit with a period of only a few years or tens of years faces

a challenge. As the comet swings past the Sun near perihelion in its relatively small and tight

elliptical orbit it is subjected to increased heat and heightened gravitational stresses. During each

of its relatively frequent passages a little of its ice melts and some of its rocky substance tears. The

occasional flyby of a larger planet add to the strain. Over long periods of time, say a few million

years, the fragmentation of the nucleus and the disintegration of the comet is likely. Given the

fact that the solar system is several billion years old, the implication is that short-period comets

should have disappeared altogether. Yet astronomers still track several hundred of them. This was

the puzzle that led the Dutch astronomer Gerard Kuiper to propose the existence of a swarm of

icy objects in orbits beyond the planet Neptune. These small remnants from the dawn of our solar

system continued to circle over vast stretches of time without clumping together into larger bodies.

Periodically, some of these objects from what is now known as the Kuiper belt would be deflected

by gravitational interactions toward the inner solar system and into orbits closer to the Sun. This,

according to Kuiper, is the dynamic that continues to replenish the supply of short period comets.

Beginning in the late 1980s astronomers began to scan the heavens in search of the dim and icy

objects beyond Neptune that Kuiper conjectured to exist. It was several years before their efforts

were rewarded. In 1992 a reddish-colored speck appeared in the sights of a telescope on Mauna Kea

in Hawaii to reveal a slowly moving, faint, icy body in a near circular orbit around the Sun. With a

radius of about 50 au it orbited far beyond Neptune. Since then over two thousand trans-Neptunian

objects have been identified. They receive a provisional designation (such as 2007 OR10) before

they are named—in recent years, after deities in Greek, Roman, Polynesian, American Indian, and

Inuit Eskimo mythologies—and numbered. The names Quaoar, the force of creation for a north

American Indian tribe; Orcus, a god of the underworld in Roman mythology; Haumea, a Hawaiian

goddess of fertility; and Makemake, the Polynesian god of creation, are examples.

Table 2.9 lists the trans-Neptunian objects of diameter of 900 km or greater discovered so far

along with their orbital data. The distance data of the table suggests that the Kuiper belt extends

from about 30 au to 55 au from the Sun. It is thought that there are over 100,000 such objects
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with a diameter of more that 100 km in addition to an estimated trillion or more comets. The

discovery of the object 2003 UB313 in 2005 presented a problem. Images from both the Hubble

Space Telescope and telescopes in Hawaii revealed that it was slightly smaller than Pluto but that

it was more massive. The new object was later named Eris for the Greek goddess of discord and

strife. This name turned out to be appropriate, given what happened next. With the discovery of

an object similar to Pluto and the prospect of the existence of many more such objects, Pluto’s

status as a major planet fell into question. Should the set of planets be expanded to include all

such distant rocky, icy shapes? In 2006, the International Astronomical Union defined a planet to

be an object in orbit around the Sun that is not only massive enough be rounded into a spherical

shape by its own gravitational force, but also massive enough to have cleared the neighborhood of

its orbital path of other objects (by collision or by attracting them as moons). In a decision that

continues to be controversial, Pluto was demoted to the new class of dwarf planet. Figure 2.20 tells

Table 2.9. Data taken from the JPL Small-Body Database Browser at https://ssd.jpl.nasa.gov/sbdb.cgi. See also
http://www.mikebrownsplanets.com/2015/01/ten-years-of-eris.html.

Trans-Neptunian

Object
diameter
in km

perihelion
distance

in au

aphelion
distance

in au

orbit period

in years
eccen-
tricity

angle of orbit

to Earth orbit

Pluto 1930 2380 29.66 49.31 247.74 0.2502 17.09◦

Quaoar 2002 LM60 1070 41.97 45.16 287.53 0.0366 7.99◦

2002 MS4 934 35.98 47.77 271.00 0.1408 17.67◦

Haumea 2003 EL61 1595 35.15 51.57 285.48 0.1894 28.20◦

Orcus 2004 DW 917 30.73 48.07 247.29 0.2201 20.58◦

Makemake 2005 FY9 1430 38.64 52.79 309.10 0.1547 28.99◦

Eris 2003 UB313 2326 37.77 97.53 556.41 0.4417 44.20◦

Sedna 2003 VB12 995 76.05 899.48 10,772.69 0.8441 11.93◦

2007 OR10 1535 33.18 101.10 550.18 0.5058 30.87◦

2013 FY27 1113 35.83 82.19 452.34 0.3919 33.00◦

tells us why the asteroid Ceres was promoted to the new category (but why the smaller asteroids

were not). The Kuiper belt objects Quaoar, Haumea, Makemake, and Eris joined Pluto and Ceres

in also receiving this classification. In November 2003, the team of astronomers that discovered

Haumea, Makemake, and Eris announced the detection of a “far-out” trans-Neptunian object. It

computed the perihelion and aphelion distances of its elliptical orbit around the Sun to be 76 au

and 900 au. Later named Sedna, for an Inuit goddess who lives at the bottom of the frigid Arctic

ocean, this object circles far beyond the outer radius of 55 au of the Kuiper belt and takes 10,000

years to complete a single orbit. Figure 2.27 shows how the objects listed in Table 2.9 fit into the

solar system relative to the orbits of the planets and the comets Halley and Hale-Bopp.

New Horizons was the first spacecraft sent by NASA to study Pluto and other Trans-Neptunian

objects. It was designed and engineered by the Johns Hopkins University Applied Physics Labora-

tory (APL). Its payload of scientific instruments was developed under the direction of the Southwest

https://ssd.jpl.nasa.gov/sbdb.cgi
http://www.mikebrownsplanets.com/2015/01/ten-years-of-eris.html
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Figure 2.27. This diagram of the solar system from above the Earth’s orbital plane shows the positions of significant
Trans-Neptunian objects as well as the comets Halley and Hale-Bopp on January 1, 2018. The orbits are drawn in
two slightly different colors. The brighter violet is used for the part of the orbit above the ecliptic plane and the
paler violet for the part below it. Some of the larger Trans-Neptunian objects are shown as white diamonds and
many smaller ones as yellow dots. Image credit: P. Chodas/NASA/JPL-Caltech. From https://ssd.jpl.nasa.gov/ go
to SITE MAP and then to Solar System Diagrams.

Research Institute (SwRI) with contributions from university laboratories and aerospace corpora-

tions. Fully fueled, the piano-sized probe weighed 478 kg at launch. The New Horizons spacecraft

is lightweight, but robust, and designed to withstand its demanding mission to some cold and dark

regions beyond our planetary system. Launched in January of 2006, the spacecraft went on a jour-

https://ssd.jpl.nasa.gov/


2F. Trans-Neptunian Objects 101

ney that would take over 9 years and cover a distance of over 5 billion kilometers before arriving to

study Pluto (at the time of the launch of New Horizons Pluto was still a planet) and its five moons.

Pluto turned out to be much more than just a frozen ball. Its surface was found to feature

remarkably diverse landforms and terrain types. The conspicuous heart-shaped region presents a

striking example. Its upper part, bright and smooth, is about 1000 km across. It is a great icy

plain, thought to be covered with nitrogen ice flows. The fact that it is free of impact craters means

that it is geologically young. The closeup images that New Horizons captured (from as near as

12,500 km from Pluto’s surface) show this icy plain to be bordered by a dark, heavily cratered area

so dense that the craters overlap each another. Glaciers, probably composed of nitrogen ice, flow

out from a mountainous area of the lower part of the heart-shaped terrain to the great, smooth

icy plain. Some back-lit images have shown that Pluto has a thin, but visible atmosphere. With a

Figure 2.28. This image of Pluto (on the left) and its moon Charon (on the right) was taken by New Horizons in
July of 2015 from a distance of about 250,000 km. Image credit: NASA / JHU APL / Southwest Research Institute.

diameter 1
2

of that of Pluto, Charon is by far the largest of the moons. It too was much more complex

than had been expected. Charon is moderately to heavily to cratered. Its surface is crossed by an

extensive system of rifts, faults, and depressions. Probably dominated by water ice, the moon has

a flat, grayish color, in marked contrast to the light reddish hue of Pluto.

The ratio of Charon’s mass to Pluto’s mass is large at about 1
8

(compared to the 1
81

for our Moon

and Earth). The average distance between them is small, at about 20,000 km and the barycenter

of the Pluto-Charon system lies about 1000 km above Pluto’s surface. This means that Pluto and

Charon are in a gravitational dance, always facing each other in the same way, both moving in

elliptical loops, while making a full turn around each other every 6.4 Earth days. Figure 2.28 is a

frozen snapshot of their waltz.
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With its study completed, New Horizons left Pluto and Charon behind. Its path is taking

it through a cluster of a dozen or so Kuiper belt objects discovered between 2011 and 2014. In

February of 2019 it took a picture of one of them, the very strange two-lobed 2014 MU69. The goal

of New Horizons is the observation of the surfaces and geologies of more of these icy objects.

Given how distant and faint Kuiper belt objects are, it is generally difficult to determine their

basic characteristics and in particular their sizes. What aids in their study is the fact that the

electromagnetic radiation that these cold objects emit is very strong in the infrared band. Infrared

radiation is not visible, but it is detected as heat. When it comes from a small, distant object,

the observed emitted infrared light is a better indicator of its size than the reflected visible light.

The amount of visible light that is reflected by a smaller, brighter object could be the same as

that reflected by a larger, but fainter one. If very small and distant, the two objects would appear

to be of the same size when viewed through an optical telescope. However, the amount of infrared

radiation emitted by an object depends on the size of the surface area that emits it. So the radiation

that an object emits in the infrared band can provide an accurate measure of the object’s size.

Since Earth’s atmosphere blocks much of it, infrared evidence is most effectively captured by space

based telescopes. The Spitzer Space Telescope, launched in 2003, has been invaluable in this regard.

Its highly sensitive infrared eyes have allowed astronomers to look into regions of space that are

hidden from optical telescopes. This has not only included the centers of galaxies and their newly

forming planetary systems but also cooler objects in deep space, and in particular the objects of

the Kuiper belt. Spitzer’s much more powerful successor—the James Webb Space Telescope—also

with an infrared focus, will soon be operating in its place.

Thousands of comets originate in the Kuiper belt, but many others come from much more distant

regions. At around the time that Gerard Kuiper thought deeply about the origin of comets, another

Dutch astronomer Jan Oort proposed the existence of another vast swarm of icy remnants from

the early history of the solar system. Now known as the Oort cloud, it is thought to occupy a huge

region of space and to contain as many as 2 trillion objects. In terms of its distance from the Sun

it is conjectured to extend from 5,000 au to 100,000 au. Recall from the paragraph Parallax and

Distances to Stars of the Problems and Discussions section for Chapter 1 that one light year—the

distance that light travels in one year—is equal to about 63,200 au. So the outer edge of the Oort

cloud is about 1.5 light years from the Sun and extends to the outer limit of its gravitational reach.

Note that the nearest star Proxima Centauri is about 4.2 light years from our Sun.

Comets originate in cold and distant reaches of the solar system. Occasionally, but over millions

of years, icy balls of dust and rocks are deflected by gravitational interactions and pushed into orbits

that bring them into the inner solar system as comets. The short-period comets, those with periods

less than 200 years, come from the Kuiper belt. Comets with periods from several hundreds to

many thousands of years have orbits with much longer semimajor axes and come from much farther

away. They are the evidence for the existence of the Oort cloud. The comets C/1975 V1, C/1996

B2, and C/2006 P1 listed in Table 2.8 are likely examples. Some of the orbits of these comets were

shortened by interfering gravitational forces of the planets since the time of their expulsion from the

Oort cloud. For example, in April 1996 the comet C/1995 O1 (Hale-Bopp) passed within 0.77 au of

Jupiter with the consequence that its orbit was shortened considerably. The possibility of similar
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gravitational interference on their exit from the inner solar system tells us that the long period

comets listed in the table, face the possibility of significant orbital change. For instance, the comet

C/1980 E1 approached the inner solar system along an orbit with a period of roughly 7 million years

but an encounter with Jupiter in 1980 accelerated the comet so that it is now on an hyperbolic

trajectory (with the largest known eccentricity 1.058). The possibility of gravitational interference

means that the comets C/1980 E1 and C/2006 P1 currently heading out of the inner solar system

on hyperbolic paths (note their eccentricities) may be destined to leave the solar system altogether.

Comets that originate in the Oort cloud can have periods of thousands or even millions of years

so that they spend most of their time far from our realm of the solar system. This and the fact

that the surrounding comas obscure their nuclei make them very difficult to study. The Wide-field

Infrared Survey Explorer (WISE) spacecraft scanned the skies’ infrared radiation during the years

2009 to 2011. The data that it gathered about comets has allowed scientists to “subtract” the

infrared glow of the comas to estimate the sizes of their nuclei. One conclusion from this study was

that there are about seven times as many long-period comets measuring at least 1 kilometer across

than had been predicted previously. Another is that comets with long periods are on average up to

twice as large as comets with periods of less than 20 years.

2G. The Rocket Equation.3 To understand how the engines that drive both rockets and space-

craft function, we need to turn to Newton’s laws of motion. Newton’s third law tells us that forces

act in pairs. It says that any force has a corresponding force of equal magnitude that acts in the

opposite direction. In the situation of a rocket engine, the force that pushes the craft forward is the

matching force to the explosive force that drives the hot gases and exhaust particles back through

the nozzle. To illustrate what is going on take a balloon, blow it up, and release it. For as long as it

contains air, it is in effect a rocket engine. The force that pushes air molecules (they have mass!) out

through the balloon’s opening is equal in magnitude to the force that propels the balloon forward.

The scientist who developed this basic idea into the first rocket engine was the American Robert

Goddard(1882–1945). Regarded to be the father of modern rocket propulsion, Goddard invented,

constructed, and successfully tested the first liquid fuel rockets.

For an engine to produce a steady stream of high velocity exhaust gases and particles, an ongoing

controlled explosion needs to occur. But the fuels that are used (such as gasoline or kerosene) do

not (and should not) combust spontaneously. In order to burn, fuels need to chemically interact

with oxygen. But this introduces a complication. Jet airplanes don’t need to carry their own oxi-

dizer, since they can suck it from Earth’s atmosphere. But a craft operating in the vacuum of space

needs to bring its oxygen supply along for the ride. The fuel and oxidizer together are the craft’s

propellant. Most rockets and spacecraft are driven by liquid propellant engines. Such an engine is

3The last two sections of this chapter are an early introduction to the study of the flight of a spacecraft, one of the
highlights—if not the highlight—of this text. They involve the calculus of derivatives, its meaning as rate of change,
its application to the motion of a body, including velocity, acceleration, mass, and momentum as functions of time,
and the law conservation of momentum. To pursue these two sections, a reader needs to come to an understanding
of Tsiolkovsky’s rocket equation but can skip its challenging derivation. In fact, a reader can skim through these two
sections, get a sense of the story they tell, and return to them before turning to the last chapter of the text (that
takes this story up in full).
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equipped with separate fuel and oxidizer tanks that operate together with pipes, valves, a com-

bustion chamber, a nozzle, and other plumbing. When the craft’s computer sends the command,

fuel and oxidizer, both highly cooled and under great pressure, are pumped into the combustion

chamber. The two liquids combust spontaneously when they come into contact with each other.

Together, they create the required sustained explosion that forces the residue of gases and particles

to escape at high velocity through the nozzle. The exit velocity of this discharge typically ranges

from 2 km to 5 km per second. Figure 2.29 is a highly simplified diagram of a liquid propellant

rocket engine that illustrates what has been described. Except for the very small amount of mass

that is converted by the explosion into radiated energy and resulting heat, the mass of the propellant

consumed is the same as that of the corresponding mass of gases and particles expelled. (The fact

nozzle neck

direction of motion
of the spacecraft

combustion chamber

nozzle

p    exhaust pressureex
area of nozzle exit Aex

fuel supplyoxidizer supply

momF

pressF

Figure 2.29. The diagram illustrates the essential elements of a liquid propellant engine but not its complexities.
Both the fuel and the oxidizer are super cold liquefied gases (such as liquid hydrogen and liquid oxygen). Before they
are driven into the combustion chamber, these liquids are pumped around the outside of the combustion chamber
to cool it. The pumps that drive these liquids operate at extremely high pressure to overcome the pressure of the
exploding propellant. With all the pipes that do the pumping and cooling, a typical liquid propellant engine looks a
lot like a plumbing project gone haywire.

is that the total mass lost in this way is less that one microgram per about 40,000 liters of propellant.)

So we will assume that each kilogram of rocket fuel and oxidizer comes out of the nozzle as one

kilogram of hot, high-velocity gas and particles.

We’ll now become technical and turn to the physics and mathematics that underly the discussion

above. The first thing we need is a new formulation of Newton’s second law. In the standard
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version of the equation F = ma, the magnitude F of the acting force on an object and the resulting

acceleration a are both functions of time t, and the mass m is the constant of proportionality that

relates them. (See Chapter 1B.) In the current situation, however, the fact that gases and particles

are expelled through the engine’s nozzle reduces the mass of the craft. In particular, the force that

the engine generate acts on a mass that decreases as a function of time.

For the reformulation of Newton’s second law, consider a body of mass m moving with velocity

v. In this discussion, the term velocity refers to a numerical quantity without direction, so that it

means speed. Suppose that both m and v are functions of time t, and that the motion is driven by a

single force (this can be the combined effect of several forces) of magnitude F that is also a function

of t. The product mv is the momentum of the body and Newton’s second law is the assertion that

F =
d

dt
(mv).

So the magnitude of the force on the body is equal to the derivative of its momentum. Notice that in

a situation where m is constant, F = d
dt

(mv) = mdv
dt

= ma is nothing but the conventional version

of Newton’s second law. If the force F—the net force on the body—is zero, then d
dt

(mv) = 0, so

that the momentum mv is constant. This is the law of conservation of momentum.

Consider a craft with a liquid propellant main engine in flight in space. We’ll let M be the

mass of the craft and m the mass of the liquid propellant. The mass of the craft’s “hardware” is

Mhard = M − m. Now turn to the schematic of the standard liquid propellant rocket engine depicted

in Figure 2.29. At a certain time in response to electronic signals from the craft’s computer, both fuel

and oxidizer are injected into the combustion chamber, where they ignite to produce a continuous,

controlled explosion. We’ll assume that it has reached steady state. The forces unleashed by this

explosion push against the walls of the combustion chamber in all directions. The momentum thrust

Fmom is the combined effect of the forces pushing against the top of the combustion chamber (shown

in green in the figure). The equal and opposite force given by Newton’s third law drives the mass of

burned propellant out through the nozzle’s neck. Let m(t) be the mass of the propellant at any time

t after the firing of the main engine has reached steady state. The derivative m′(t) is the rate at

which the propellant is consumed. This is also the rate at which the exhaust materials are expelled

at the nozzle exit. Since the engine is operating at steady state, m′(t) as well as the velocity vex

of the exhaust (relative to the engine) are constant. An application of the reformulated version of

Newton’s second law tells us that

Fmom = vex m′(t).

Let Aex be the area of the nozzle’s exit and let pex be the pressure of the exhaust there. Since

pressure times area is force, the pressure pex exerts a pressure thrust of

Fpress = pex Aex

at the nozzle’s exit. The thrust of the main engine is the sum

F = Fmom + Fpress = vex m′(t) + pex Aex



106 2 Exploring the Solar System

of the momentum and pressure thrusts. The forces described above are generated internally within

the craft and are not external forces on the craft.

Since space is a vacuum, the craft experiences no atmospheric drag. We’ll assume that the

gravitational forces on the craft are also negligible, so that there are no external forces acting on

the craft. Let M(t) be the mass of the craft at time t after the firing of the main engine reached

steady state and notice that M(t) = Mhard + m(t). Let’s observe the craft at time t and then again

at time t + Δt soon thereafter. The difference M(t) − M(t + Δt) = ΔM is both the mass of the

propellant that is burned during time Δt and also the mass of the exhaust materials that are

expelled as a result of this burn. Let v(t) be the velocity of the craft at time t and let vΔM be

the (constant) velocity of the expelled mass ΔM . The reference point for these velocities depends

on the mission of the craft and is typically the Earth, the Sun, any of the planets, the moon of

a planet, an asteroid, or a comet. Figure 2.30 represents what has been described. Notice that

M(t) = M(t + Δt) + ΔM . Since v(t + Δt) is the velocity of the craft at time t + Δt, the speed of

v(t)

 t + Δt

ΔM

t

v(t + 

ΔM

v
  Δ t)

M(t +    Δ t)

ΔM

timetime

Figure 2.30. The red square represents the propellant that burns during the time interval from t to t + Δt. The
beige square represents the matching exhaust materials that this propellant produces. Both have mass ΔM .

the expelled mass ΔM is equal to vΔM = v(t + Δt) ± vex, where vex is the speed of the exhaust

materials relative to the engine. Depending on the particular situation, this speed can be less or

greater than the speed of the rocket. In the situation of the figure, the craft is speeding up. In this

case, the mass ΔM is forced out in a direction opposite to the motion of the craft, so that the −
sign applies. So vΔM can be positive or negative. In order to slow the craft down, the craft must be

oriented so that the nozzle of the engine points in the direction of the craft’s motion. In this case,

an engine burn forces the mass ΔM out in the same direction. So the + sign applies and vΔM is

positive. At time t, the mass ΔM of the propellant is included within the mass of the craft. At time

t + Δt, the mass ΔM consists of the corresponding exhaust materials that has separated from the

craft. The momentum (velocity time mass) of the craft at time t is v(t)M(t). At time t + Δt the

momentum of the craft plus exhaust materials is v(t + Δt)M(t + Δt) + vΔMΔM . The assumption

that there are no outside forces acting on the craft means that momentum is conserved, so that

v(t + Δt)M(t + Δt) +
(
v(t + Δt) ± vex

)[
M(t) − M(t + Δt)

]
= v(t)M(t).

By multiplying the left side out and noticing that the terms v(t + Δt)M(t + Δt) subtract off, we

see that what remains on the left side is v(t + Δt)M(t) ± vex

(
M(t) − M(t + Δt)

)
. By setting this

expression equal to v(t)M(t), it follows that
(
v(t + Δt) − v(t)

)
M(t) = ±vex

(
(M(t + Δt) − M(t)

)
.

By dividing both sides by Δt and then by M(t), we see that

v(t + Δt) − v(t)

Δt
= ±vex

1

M(t)

M(t + Δt) − M(t)

Δt
.
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By pushing Δt to zero on both sides and using the definition of the derivative of a function, we get

v′(t) = ±vex
M ′(t)
M(t)

.

By applying a basic property of the natural logarithm function ln and then taking antiderivatives

of each side,

v(t) = ±vex ln M(t) + C,

where C is a constant. Let t1 and t2 with t2 > t1 be any two instants of time. After plugging both

into the equation just derived, we get v(t2) − v(t1) = ±vex

(
ln M(t2) − ln M(t1)

)
. Hence by two more

basic properties of the natural log, v(t2) − v(t1) = ±vex ln M(t2)
M(t1)

= ±vex

(−ln M(t1)
M(t2)

)
. Therefore

v(t2) − v(t1) = ±vex ln
M(t1)

M(t2)

This is the rocket equation first developed by the Russian Konstantin Tsiolkovsky (1857–1935), the

founding father of the theoretical aspects of rocketry and spaceflight. It establishes a connection

between the change in the craft’s velocity and the amount of fuel consumed. Since propellant was

burned, M(t2) < M(t1), so M(t1)
M(t2)

> 1 and hence ln
(

M(t1)
M(t2)

)
is positive. With the original understand-

ing about the ± now reversed, in Tsiolkovsky’s equation the + sign applies if the burn increases

the craft’s speed and the − sign applies if it decreases it.

Example 2.2. Suppose a spacecraft is in mid-flight to an outer planet. It has a mass of 4500 kg

including the propellant. The exhaust that its main engine generates has a velocity of 3000 m/sec.

In order to keep on the flight path that its mission calls for, the craft’s velocity needs to be increased

by 660 m/sec. After the craft is oriented correctly, its main engine begins its burn at time t1 and

reaches steady state immediately. It shuts off at time t2 when the required increase in the craft’s

velocity is achieved. Letting the craft’s mass at that time be M(t2) and applying Tsiolkovsky’s

rocket equation, we get

660 = v(t2) − v(t1) = 3000 ln
4500

M(t2)
.

Since ln( 4500
M(t2)

) = 660
3000

= 0.22, we get 4500
M(t2)

= e0.22. Therefore, M(t2) = 4500e−0.22 ≈ 3611 kg. It fol-

lows that the craft’s main engine burned close to 889 kg of propellant during this maneuver. Since
889
4500

≈ 0.20, this is 20% of the total mass that the rocket had when its main engine began to fire.

Example 2.3. A rocket has placed the spacecraft of the previous example into an initial near-Earth

solar orbit. The orbit is elliptical, has a semimajor axis close to 1 au, an eccentricity close to 0.02,

and a perihelion period close to 1 year. Since it is in a near-Earth elliptical orbit, the paragraph

About Speeds of Objects in the Solar System of the Problems and Discussion section of Chapter 1

informs us that the craft moves in this orbit at a speed of about 30 km/sec. The velocity increase

of 0.66 km/sec for the spacecraft is small in comparison, especially given the large quantity of 889

kg of propellant necessary to achieve it.
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The two examples raise a serious question. Suppose that it is the mission of a spacecraft to

explore one of the outer planets of the solar system. Its journey begins on the launch pad of a

three-stage rocket with the craft folded into the upper stage. The rocket’s engines fire, it lifts off,

the first and second stages are jettisoned after their fuel is spent, and the craft is placed into a

low-Earth parking orbit. With a burn of the last stage followed by the craft’s separation from it,

the craft’s speed can be increased to insert it into a near-Earth solar orbit or into a solar orbit that

can take it to Mars. So far so good, but the much longer distance that needs to be navigated to

reach an outer planet presents a problem. The fact is that a combination of technology and cost

limitations make it impossible to provide the craft with a post-launch speed high enough to allow

it to reach an outer planet. How then is it possible to impart to a spacecraft the kind of speed

increase it needs to break out of a near-Earth or near-Mars solar orbit and to send it on its way

to the more distant Jupiter, Saturn, Uranus, or Neptune? The obvious solution—to increase the

craft’s speed along the way by firing the spacecraft’s main engine—is a non-starter because, as the

two examples tell us, the amount of propellant required for such a speed increase is prohibitive.

How then—given the constraints on the weight of such crafts, the size of the rockets that launch

them, and the great amounts of propellant involved—can a spacecraft be sent to the outer reaches

of our planetary system and beyond? The astonishing answer is that it is possible only with a flight

path so designed that the spacecraft is brought into the tight vicinity of a planet (or several in

succession) in such a way that the gravitational pull of the planet drags the craft along to increase

its speed (and change its direction) so that it can be on its way to the destination that its mission

calls for.

The diagram of Figure 2.31 illustrates what is involved. After launch, the spacecraft (labeled

C in the figure) briefly orbits the Earth. By flying in the vicinity of Earth, the craft also orbits

the Sun. An injection burn increases the craft’s velocity and propels the craft into an expanded

elliptical orbit around the Sun. This orbit is carefully directed and timed to send the craft on a

course to meet another planet, labeled P in the figure. A flyby within the gravitational neighbor-

hood of the planet P pulls the craft in the general direction of the planet’s orbital path. This
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pulling action—called a gravity assist—changes the speed of the craft, bends its trajectory, and

sends it on a rendezvous with a more distant planet, the U in the figure. With the exception of the

injection burn and a few minor trajectory correction maneuvers along the way, not a single drop of

the spacecraft’s fuel has been burned.

The flight path of a spacecraft achieved by an engine burn with the craft in a near-Earth solar

orbit that results in an expanded solar orbit that brings the craft to the vicinity of another planet

(as represented by P in Figure 2.31, for instance) is an example of a Hohmann Transfer Orbit.

This important navigational strategy was conceived by Walter Hohmann (1880–1945), a German

engineer and an early pioneer of space travel. The book that he published in 1925 developed the

basic orbital dynamics for spacecraft more than 30 years before the Russians first sent the world’s

very first space probe Sputnik 1 into orbit around Earth.

2H. The Flight Path of Juno. The spacecraft Juno was launched from Kennedy Space Center

in August 2011 on an AtlasV rocket that propelled it into a solar orbit. The goal of Juno’s mission

was the study of the planet Jupiter. The preparation for an interplanetary flight to any distant

destination requires an understanding of the energy that the rocket provides to the craft at its launch.

Often referred to as characteristic energy, this is the energy required—after the spacecraft breaks

free of Earth’s gravity—to reshape its initial solar orbit to the desired trajectory. The characteristic

energy depends on the alignment of Earth, Sun, and a target planet and hence on the projected

dates of departure and arrival. The characteristic energy as calculated for Juno meant that the craft

would have enough initial energy to be able to cruise to Mars, but that it would need to be given

additional velocity along the way in order to reach Jupiter. Without it, the Sun’s gravity would

keep the craft bound to the inner solar system. Would Juno’s main engine be able to supply the

extra velocity that was required?

Juno’s mass at launch was 3625 kg. This included 1,280 kg of fuel and 752 kg of oxidizer for a

total of 2032 kg of propellant. So 56% of the craft’s mass was propellant. Juno’s main engine could

deliver 645 newtons of thrust. At full throttle in the vacuum of space, the main engine could eject

the exhaust materials through its nozzle with a velocity of vex = 3124 m/sec. Figure 2.4 shows an

artist’s depiction of the craft, its main engine ablaze. Surely, with the amount of fuel that it had on

board, this engine could provide Juno with the additional velocity it would need to reach Jupiter.

Not so! The fuel supply—though large—would not have been sufficient.

In the case of Juno, the gravity assist trajectory that made its flight to Jupiter possible was

both simple and surprising. After its launch, Juno emerged on a trajectory that brought it past

Mars. About a year after launch, its main engine fired in two carefully designed burns to slow

the craft down, trim its trajectory, and bring it back inside the orbit of Mars. This maneuver was

programmed in such a way that one more year later, Juno eased into a gravity assist flyby of Earth

that sped up the craft and sent it off to its rendezvous with Jupiter. Three years later, Juno was in

orbit around Jupiter as planned. Refer to Figure 2.32 for a diagram of Juno’s flight and to

https://www.youtube.com/watch?v=sYp5p2oL51g

for a simulation. We’ll now turn to the changes in the craft’s velocity in terms of numerical specifics.

To control its orientation—to rotate the craft, adjust its up/down and left/right attitudes—and to

https://www.youtube.com/watch?v=sYp5p2oL51g
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make minor trajectory corrections, Juno carries 12 small thrusters in addition to its single main

engine. In February 2012, a few months after its launch, the craft fired these thrusters and burned

3 kg of propellant to undertake a minor Trajectory Correction Maneuver (TCM). After this orbital

adjustment, Juno had a mass of 3625 − 3 = 3622 kg. The two critical Deep Space Maneuvers DSM-

1 and DSM-2 that slowed the craft followed. They occurred around the aphelion of Juno’s initial

orbit, the first 2 days before and the second 12 days thereafter. During each maneuver, after the

small thrusters pointed the craft’s main engine nozzle forward in the direction of Juno’s flight, the

main engine fired for about 30 minutes each time to reduce the craft’s speed by 344 m/sec and

388 m/sec, respectively. The rocket equation of the previous section tells us how much of the craft’s

propellant was consumed in the process. For DSM-1, let t1 be the instant that the engine began

to fire and let t2 be the instant it shut down. Let M(t1) and M(t2) be Juno’s mass at these two

Jupiter Orbital Insertion
July 5, 2016 

Earth Flyby
Oct 9, 2013

Launch
Aug 5, 2011

Deep Space Maneuvers 1 and 2
Aug 30, 2012  and Sep 3, 2012 

Jupiter Orbit Insertion
July 5, 2016 

Figure 2.32. The diagram shows Earth’s orbit in blue (and inside it, the orbits of Venus in gray and Mercury in
purple), the orbit of Mars in red, and that of Jupiter in orange. Juno appears in white and its trajectory in gray.
Image credit: NASA/JPL-Caltech.
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instances. Since M(t1) = 3622 kg, the rocket equation tells us that

−344 = −vex ln
(

3622
M(t2)

)
= −3124 ln

(
3622

M(t2)

)
,

hence that 3622
M(t2)

= e
344
3124 and therefore that M(t2) = 3622 e

−344
3124 = 3244. So DMS-1 consumed 3622 −

3244 = 378 kg of propellant. The same calculation for DMS-2 (with t1 and t2 now the start and

stop times of the firing of the craft’s engine for this second maneuver) shows that

−388 = −vex ln
(

3244
M(t2)

)
= −3124 ln

(
3244

M(t2)

)
,

so that 3244
M(t2)

= e
388
3124 and hence M(t2) = 3244 e

−388
3124 = 2865. So DMS-2 consumed 3244 − 2865 =

379 kg of propellant. Together, DSM-1 and DSM-2 used 757 kg of the 2032 kg of the propellant

that Juno had available. This was more than 37% of the total and the trip was only barely underway.

Several more TCMs, number 5 in October 2012 (a maneuver to “clean up” the earlier DSMs),

and numbers 6 and 7 in August and September of 2013 (TCM-8 was cancelled), moved Juno into

position for a fly-by of Earth in October of 2013. This was the Earth Gravity Assist (EGA) in which

Juno maneuvered to within 559 km of Earth’s surface to allow Earth’s gravitational pull to drag it

along and to increase its speed by 7,300 m/sec. This increase sent the craft off on its rendezvous

with Jupiter. Unlike the much smaller changes in the velocity that the two DSMs produced, this

substantial and critical increase was accomplished without firing Juno’s main engine. This velocity

increase (and one more TCM in November 2013 that fine-tuned the trajectory) placed Juno into a

solar orbit that put it on course to intercept Jupiter. On July 5th 2016 with its mass at 2825 kg,

Juno’s main engine—again pointing in Juno’s direction of flight—fired a third and final time for

about 35 minutes. Operating in Jupiter’s intense radiation environment, this burn slowed the craft

by 542 m/sec and put Juno into orbit around the planet. Jupiter Orbit Insertion (JOI) had been

achieved. By applying the rocket equation as before, we see that

−542 = −vex ln
(

2825
M(t2)

)
= −3124 ln

(
2825

M(t2)

)

and hence that 2825
M(t2)

= e
542
3124 and M(t2) = 2825 e

−542
3124 = 2375 kg. The JOI had burned 2825 − 2375 =

450 kg of the propellant.

Example 2.4. During DSM-1, Juno’s main engine fired for 30 minutes and burned 378 kg of

propellant. Estimate the rate at which Juno’s main engine expelled its exhaust mass during this

maneuver and use this information to show that the momentum thrust Fmom that the main engine

generated was about 656 newtons.

The initial orbit around Jupiter was highly elliptical with a period of 531
2

days. When problems

with the engine’s valves were detected, the Period Reduction Maneuver (PRM) designed to tighten

Juno’s orbit and to reduce its period to 14 days was canceled. Juno would remain in its 53-day orbit

for the remainder of its mission. Soaring over Jupiter’s swirling, bands of clouds as close as 4,100 km

(nearly 10 times closer than any previous mission) with its scientific instruments fully operational,

it gathered the amazing images and information already described in section 2C. The website

https://www.nasa.gov/mission pages/juno/main/index.html

https://www.nasa.gov/mission_pages/juno/main/index.html
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presents an ongoing, up-to-date account of Juno’s discoveries.

Table 2.10 tells us that the main engine burns of DMS-1 and DSM-2 lasted about 1
2

hour

each. We’ll assess the duration of Juno’s Earth flyby with a comparison of the magnitudes of the

gravitational forces of the Earth and Sun on the craft. Letting m be the mass of Juno, ME and MS

the masses of the Earth and Sun, and applying Newton’s law of universal gravitation, we get that

the ratio of these magnitudes is

mGME

d2
E

/mGMS

d2
S

=
GME

GMS

·
(dS

dE

)2

,

where dE and dS are the distances from Juno to the centers of the Earth and the Sun, respectively.

Data in Chapter 1H tells us that GME ≈ 3.986 × 1014 m3/sec2 and GMS ≈ 1.327 × 1020 m3/sec2.

Table 2.10

date event main engine
burn duration

Δv1)

m/sec

propellant

burned2) in kg
mass of craft in kg

before/after the event

30 Aug 2012 DSM-1 30 min -344 378 3622/3244

14 Sep 2012 DSM-2 30 min -388 379 3244/2865

9 Oct 2013 EGA − 7,300 0 2865

5 July 2016 JOI 35 min 542 450 2825/2375

1) Δv refers to the change in velocity in meters per second that the maneuver produced. The information in this
column comes from NASA/JPL websites via

http://spaceflight101.com/juno/juno-mission-trajectory-design/
http://spaceflight101.com/juno/juno-joi-data/
http://spaceflight101.com/juno/spacecraft-information/ and
http://spaceflight101.com/juno/mission-updates/

2) These entries were computed with the rocket equation. They correspond closely to those that the websites provide.

Since Juno was about as far from the Sun as Earth during the flyby, we’ll take dS = 1.496 × 108 km.

We know that Juno was 559 km above Earth’s surface at the time of closest approach to Earth,

8700 km above Earth’s surface 18 minutes later, and that it was 6.81 × 106 km from Earth 13 hours

and 39 minutes after its closest approach. Using rE = 6378 km for Earth’s radius and the values

d0 = 559 + 6378 = 6937 km, d1 = 8700 + 6378 = 15,078 km, and d2 = 6.81 × 106 km, respectively,

for the distance dE, we get the corresponding values

3.986×1014

1.327×1020

(
1.496×108

6937

)2 ≈ 1400, 3.986×1014

1.327×1020

(
1.496×108

15,078

)2 ≈ 300, and 3.986×1014

1.327×1020

(
1.496×108

6.81×106

)2 ≈ 0.0014

for the ratio of the gravitational force of the Earth on Juno to that of the Sun. Notice that while

the Earth’s gravitational pull on Juno was dominant during the initial minutes after the flyby, a

few hours later the pull of the Sun returned to dominance and the Earth’s pull became negligible.

It took Juno about 5 years to travel from its initial solar orbit to Jupiter and through its first

few orbits around the planet. During this entire time—with the exception of the launch, the few

hours that Juno’s thrusters and main engine fired (for orbit corrections and Juno’s orbit insertion

http://spaceflight101.com/juno/juno-mission-trajectory-design/
http://spaceflight101.com/juno/juno-joi-data/
http://spaceflight101.com/juno/spacecraft-information/
http://spaceflight101.com/juno/mission-updates/
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around Jupiter) and the few hours it took for Juno’s flyby of Earth—the space craft was subject

to a single, dominant centripetal force. This was the gravitational pull of the Sun and, after the

orbit insertion, the gravitational pull of Jupiter. Since evidence tells us that gravitational forces are

subject to inverse square laws, it follows from Conclusion C of Chapter 1D that with the exception

of just a few hours, Juno’s flight path was some conic section. Since parabolas and hyperbolas were

not involved (the craft was never on a trajectory to leave the solar system), this was always an

ellipse. The focal points were the center of the Sun until orbit insertion and the center of Jupiter

thereafter. After each of the trajectory changing maneuvers already described, the parameters of the

ellipses—its eccentricity, semimajor axis, its focal point, its plane, and its orientation—changed. In

sum, the flight path of Juno from the Sun, to Jupiter, to its orbits around it consisted of a sequence

of ellipses that were connected by the short, more complex stretches of flight during which Juno

was propelled by more than one significant force. (During the craft’s flyby of Earth when Earth’s

gravity was dominant, Juno’s path was a hyperbola that had the center of Earth as the focal point.)

The fact is that in almost all situations, missions of spacecraft take years to complete and

that, outside of just a few hours, spacecraft are driven in their flight paths by a single force—

a single, dominant gravitational force. Any segment of the path so determined falls into a single

plane. It lies on a conic section and can be studied with elementary one variable calculus. During

each brief intervening time period a craft is also propelled by its thrusters, main engine, or a second

gravitational force of a planet or moon. These short stretches connect the sequence of conic sections.

They are too complex to be informed by elementary analysis.

2I. Problems and Discussions. This section begins with problems that call for the application

of some results and conclusions of Chapter 1, for example Newton’s version of Kepler’s third law

and the speed formulas for an elliptical orbit. Take the value of the gravitational constant G to be

G = 6.67384 × 10−11 m3

kg·sec2 . (See Chapter 1D and Chapter 1H.)

1. The Race to the Moon. In the 1960s Russia—then the dominant country of the Soviet

Union of Communist states—and the United States became locked in an intense race to send humans

to the Moon. It was perceived to be a test of superiority between the Soviet totalitarian system

and the democratic system of the free world. More ominously, in terms of rocket development and

payload delivery, this race also had military implications.

The first man-made object to reach the Moon was the unmanned Russian probe Luna 2 with a

hard landing on its surface in September 1959. The far side of the Moon was first photographed in

October 1959 by the followup mission Luna 3. In these early years, Russian efforts to explore the

Moon met with several successes, but American attempts were mostly failures. In the race to the

Moon, America was clearly behind. In an effort to waken the competitive and patriotic spirits of his

country, President John F. Kennedy famously proclaimed to a Joint Session of Congress on May

25, 1961, “I believe that this nation should commit itself to achieving the goal, before this decade

is out, of landing a man on the Moon and returning him safely to the Earth.”

Russia would remain in the lead for some time, but the U.S. was catching up. The soft landing

in February 1963 of Russia’s Luna 9 and its transmission of photographs from the lunar surface,

was matched by the American Surveyor 1 probe four months later. The successful placement of the
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artificial satellite Luna 10 into orbit around the Moon by Russia in April 1966, was duplicated when

America sent Lunar Orbiter 1 into a lunar orbit a little over four months later.

Problem 2.1. The Russian spacecraft Luna 10 was the first probe to be placed into orbit around

the Moon. The craft was launched in March of 1966 into an orbit around Earth and injected on a

trajectory towards the Moon from its Earth-orbiting platform. At a distance of 8000 km from the

Moon, Luna 10 rotated to point its main engine forward for an engine burn that slowed the craft

by 0.64 km/s. This maneuver put Luna 10 into a lunar orbit on April 3, 1966. Its distance from the

Moon’s surface ranged from 350 km to 1017 km. The semimajor axis of the orbit was 2413 km and

its period was 178.05 minutes. Use this information to provide the estimate of 7.28 × 1022 kg for

the mass of the Moon. [Hint: Be aware that you are provided with some extraneous information.]

With their Luna 17 mission in November 1970 the Soviets sent the unmanned Lunokhod 1 rover

(the name is Russian for moonwalker) to a soft landing on the lunar surface. It was the first human-

made vehicle to move freely on a body of the solar system (other than Earth). Lunokhod 1 explored

the Moon for 321 days, traveling a total distance of 101
2
km. It returned thousands of television

pictures and over 200 high-resolution panoramic images. Along the way, it analyzed the Moon’s

soil. Several more Russian Luna missions followed. One of them sent the rover Lunokhod 2 to the

Moon in 1973. It rolled over 40 km of terrain, including hilly uplands and long depressions, returning

many more television pictures and panoramic images. Later, two more Luna probes collected samples

of lunar soil and to brought them back to Earth.

The United States was beginning to respond to President Kennedy’s call. The powerful SaturnV

rocket was designed and developed. The Apollo Program for sending men to the Moon was conceived

and planned. A SaturnV would carry an Apollo spacecraft, consisting of a cone-shaped Command

Module that carried a crew of three astronauts, and an attached cylindrical Service Module that

provided the electrical power and the propulsion, into orbit around Earth. From there, propelled by

its rocket motor, the Command/Service Module would travel to the Moon and go into orbit around

it. The Service Module was to carry a Lunar Excursion Module that would bring two astronauts to

the Moon’s surface, while the third would remain at the controls of the Command/Service Module.

Once the two astronauts would complete their tasks, the Lunar Excursion Module would return

them to the Command Module. The Lunar Excursion Module was then to be discarded and the

Command/Service Module would start its return to Earth. Just before Apollo’s reentry into Earth’s

atmosphere, the Service Module was to be disconnected from the Command Module and allowed

to burn up in the atmosphere. The Command Module with the three astronauts would descend by

parachute to a safe splashdown in the Pacific Ocean near one of the island chains east of Australia.

The hardware of this concept was tested successfully in 1968 and 1969. The flights of Apollo 8

and Apollo 10 tested the Command/Service Module in orbit around the Moon, and Apollo 9 tested

the Lunar Excursion Module while in orbit around Earth. Finally, on July 20, 1969, the Apollo 11

mission landed two astronauts for an exploration of the Moon and returned all three of its astronauts

safely to Earth. The BBC celebrated the 50 anniversary of this event on July 11, 2019 with the

story Apollo 11: ‘The greatest single broadcast in television history’. See

https://www.bbc.com/news/world-us-canada-48857752

https://www.bbc.com/news/world-us-canada-48857752
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Five more successful Apollo expeditions in the years from 1969 to 1972 sent 10 more astronauts

to the surface of the Moon. The last three missions carried lunar rovers that the astronauts drove

over the Moon’s dusty terrain. The Russians were unable to match this astonishing and historic

American effort and the race to the Moon was over.

Problem 2.2. While on its way to the Moon, Apollo 13 experienced an explosion of one of the

fuel tanks of its Service Module that incapacitated the module. The command center in Houston,

in a miraculous display of “seat-of-the pants” ingenuity, found a way to use the Lunar Excursion

Module as a lifeline to return the three crew members safely to Earth. The video

https://www.youtube.com/watch?v=sJ3Q3kL7jcA

entitled “Houston, we have a Problem” tells this dramatic story that gripped the world.

2. Exploring Venus and Mars. While the race to the Moon provided most of the drama,

Russia and the U.S. also competed in efforts to explore Earth’s planetary neighbors Venus and Mars.

With its Venera Program of missions in the 1960s, 70s, and early 80s, Russia concentrated

primarily on Venus. In August 1970, Venera 7 became the first spacecraft to execute a soft landing

on another planet. Seven more Venera spacecraft landed probes on Venus. They returned the first

photographs of its terrain, measured its surface temperature, and analyzed its soil and rocks. The last

two Venera probes orbited Venus, deployed penetrating radar to peer through Venus’s dense cloud

cover, and mapped a part of its northern hemisphere. The thick atmosphere of Venus, consisting

mainly of carbon dioxide with clouds of droplets of sulfuric acid, traps heat in a runaway greenhouse

effect. With surface temperatures hot enough to melt lead, Venus is the hottest planet in our solar

system. The extreme heat put the Venera landers and their instrumentation under great stress.

None of them survived for more than 2 hours.

The first missions of the American Mariner Program in the years 1962 to 1968 also focused

on Venus, but met with mixed success. In July 1965, after seven months of interplanetary flight,

Mariner 4 flew past Mars and returned high quality photographs and scientific data. Later Mariner

probes between 1969 and 1973 also performed flybys of Mars. The spacecraft Mariner 9 was launched

in May 1971, and was inserted into orbit around Mars in November 1971 (see Table 2.11). The first

Table 2.11. Orbital data for Mariner 9’s initial orbit around Mars and the two corrected orbits that followed. The
period—the duration from one periapsis to the next—is listed in Earth days.

Mariner 9 orbits

of Mars in 1971

semimajor axis

in km
eccentricity orbit period

in hours
angle of orbit plane

to Mars equator

initial orbit

Nov 14 to Nov 16
13055 0.63 12.62 64.6◦

post trim 1 orbit

Nov 16 to Dec 31
12631 0.62 11.97 64.8◦

post trim 2 orbit

Dec 31 to
12647 0.60 11.99 64.4◦

https://www.youtube.com/watch?v=sJ3Q3kL7jcA
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man-made object to orbit another planet, it photographed the moons of Mars, mapped 70 percent

of the planet’s surface, and returned data showing that Mars was geologically and meteorologically

active.

Problem 2.3. Compute the constant GM for M the mass of Mars for each of the three different

orbits.

Problem 2.4. Use information from the Problems and Discussions section of Chapter 1 to compute

the maximum and minimum speeds of Mariner 9 for each of its three different orbits.

The spacecraft of NASA’s two Viking missions continued the exploration of Mars from 1975 to

1982. Both carried an orbiter and a lander. After each craft entered into orbit around Mars, the

landers separated and descended to the planet’s surface. The orbiter of Viking 1 circled Mars for

four years, concluding its mission in August 1980. The lander of Viking 1 was the first probe to land

safely on the surface of Mars. It transmitted data and images of its terrain until November 1982.

The missions Pioneer 10 and 11 were the first spacecraft to fly through the asteroid belt to

the outer planets. Pioneer 10 arrived at Jupiter in December 1973 and studied its atmosphere and

satellites. Pioneer 11 reached Jupiter a year later. It provided the first observations of Jupiter’s

polar regions and sent back clear images of its Great Red Spot. Pioneer 11 continued on to Saturn,

reaching it in September 1979. It discovered a small moon, an additional ring, and traveled under its

ring plane to return striking pictures of Saturn’s rings. It also studied Saturn’s largest moon Titan.

The investigation of the solar system has not only increased in pace and reach ever since—

see the discussions in earlier sections of this chapter—it has also become international. Successful

missions undertaken by the European, Japanese, Chinese, and Indian space agencies have added

sophisticated studies—for instance those of asteroids and comets as described in this chapter—to

the ongoing explorations by the United States and Russia.

3.Videos and Images about the Exploration of the Solar System. The videos of the

websites below provide visual illustrations and important background information for a number of

the discussions in this chapter. In case the address of a website has become inactive, it should be

possible to use keywords from the context or from its URL address to search and find an updated

or related version of the site.

Problem 2.5. Two of the most amazing and productive missions into the solar system were the

flights of the Voyagers. The videos

https://www.jpl.nasa.gov/video/details.php?id=1514 and

https://www.youtube.com/watch?v=YAnxt1YPWbk

provide an overview of what they achieved.

Problem 2.6. The video https://www.youtube.com/watch?v=0vl0FXPBWnQ captures several

launches of the American Space Shuttle and https://www.youtube.com/watch?v=--X9zfgZtS0 tells

the story of the shuttle flight that sent astronauts on a repair mission to correct the flawed mirror

of the Hubble Space Telescope.

https://www.jpl.nasa.gov/video/details.php?id=1514
https://www.youtube.com/watch?v=YAnxt1YPWbk
https://www.youtube.com/watch?v=0vl0FXPBWnQ
https://www.youtube.com/watch?v=--X9zfgZtS0
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Problem 2.7. Use the orbital data of Table 2.2 for the moons Phobos and Deimos to compute the

mass of Mars in kilograms. (You should get 6.42409 × 1023 kg and 6.39988 × 1023 kg, respectively.)

A number of the videos in the listings below come from the website

https://www.jpl.nasa.gov/video/

that presents a large gallery of JPL-produced videos about the solar system and the spacecraft that

have been sent to explore it. To access one of the JPL videos go the particular URL and download

a suitable version (e.g., Webm Format) to play it.

Problem 2.8. The videos listed below are brief descriptions of space missions to the Inner Planets.

You are invited to explore them.

https://www.jpl.nasa.gov/video/details.php?id=1477 (Overview of the Mars Missions)

https://www.jpl.nasa.gov/video/details.php?id=1518 (Curiosity’s Mars Panorama)

https://www.youtube.com/watch?v=NXbCNAIIAxw (Amazing Mars)

https://www.youtube.com/watch?v=zqhK8dA7iO8 (5 years of Curiosity)

https://www.jpl.nasa.gov/video/details.php?id=1237 (Curiosity watches Phobos pass Deimos)

https://www.youtube.com/watch?v=yzqbN6z8ncc (A Look at Venus)

https://www.youtube.com/watch?v=POLvR56lKjU (MESSENGER’S Flight Path to Mercury)

https://www.youtube.com/watch?v=hDrSK3yrGM4 (MESSENGER Tells us about Mercury)

Problem 2.9. The videos listed below are brief descriptions of missions to the Outer Planets and

their moons. You are invited to fly along.

https://www.youtube.com/watch?v=NNHfoNIiZ8Y (About Jupiter and Juno)

https://www.youtube.com/watch?v=kZS4UsOHmLE (Juno’s flyby of Earth)

https://www.nasa.gov/mission pages/juno/earthflyby.html#. (Juno’s Flyby of Earth)

https://www.youtube.com/watch?v=ZCxZkf1aVUM (Jupiter by JunoCam in 2017 and 2018)

https://www.jpl.nasa.gov/video/details.php?id=1383 (About Jupiter’s Moon Europa)

https://www.missionjuno.swri.edu (About Jupiter and Juno)

https://www.nasa.gov/mission pages/cassini/main/index.html (Cassini at Saturn)

https://www.jpl.nasa.gov/video/details.php?id=1458 (Cassini and the Secrets of Enceladus)

https://www.jpl.nasa.gov/video/details.php?id=1451(Cassini Cruises Saturn’s Rings)

https://www.jpl.nasa.gov/video/details.php?id=1466 (About Cassini’s Grand Finale)

Problem 2.10. The videos listed are brief descriptions of some asteroids, comets, and the Kuiper

belt object Pluto. You are invited to explore them.

https://www.youtube.com/watch?v=mQHfGP5kpr8 (Ten Interesting Asteroids)

https://www.nasa.gov/osiris-rex (About the asteroid Bennu)

https://www.jpl.nasa.gov/video/
https://www.jpl.nasa.gov/video/details.php?id=1477
https://www.jpl.nasa.gov/video/details.php?id=1518
https://www.youtube.com/watch?v=NXbCNAIIAxw
https://www.youtube.com/watch?v=zqhK8dA7iO8
https://www.jpl.nasa.gov/video/details.php?id=1237
https://www.youtube.com/watch?v=yzqbN6z8ncc
https://www.youtube.com/watch?v=POLvR56lKjU
https://www.youtube.com/watch?v=hDrSK3yrGM4
https://www.youtube.com/watch?v=NNHfoNIiZ8Y
https://www.youtube.com/watch?v=kZS4UsOHmLE
https://www.nasa.gov/mission_pages/juno/earthflyby.html#.
https://www.youtube.com/watch?v=ZCxZkf1aVUM
https://www.jpl.nasa.gov/video/details.php?id=1383
https://www.missionjuno.swri.edu
https://www.nasa.gov/mission_pages/cassini/main/index.html
https://www.jpl.nasa.gov/video/details.php?id=1458
https://www.jpl.nasa.gov/video/details.php?id=1451
https://www.jpl.nasa.gov/video/details.php?id=1466
https://www.youtube.com/watch?v=mQHfGP5kpr8
https://www.nasa.gov/osiris-rex
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https://www.youtube.com/watch?v=F9ihB52Kr3A (About Comets, especially Halley)

https://www.nasa.gov/mission pages/newhorizons/main/index.html (TheNewHorizonsmission)

4. Sungrazing Comets and their Speeds. Recall from Chapter 1G that the semimajor axis

a of Earth’s orbit around the Sun is very nearly equal to 1 au and that the Earth’s orbital period T

is very nearly equal to 1 year. So for the Earth, the ratio a3

T 2 is approximately equal to 1 in the units

au and year. It follows from Kepler’s third law that for any body in orbit around the Sun (planets,

asteroids, and periodic comets) that a3

T 2 ≈ 1, where a is the semimajor axis in au and T the period

in years of the body under consideration.

The study of speed in the upcoming context is more meaningful in km/sec rather than au/year.

Since 1 au = 149,597,870.7 km and 1 year = 365.25 days = 31,557,600 sec,

1 au/year =
149,597,870.7 km

1 year
× 1 year

31,557,600 sec
≈ 4.74 km/sec.

Recall from the paragraph About Speeds of Objects in the Solar System of the Problems and Dis-

cussions section for Chapter 1 that the maximal speed of any body in an elliptical orbit occurs at

perihelion and is equal to vmax = 2πa
T

√
1+ε
1−ε

, where a and T are (as before) the semimajor axis and

period of the orbit and ε is the eccentricity.

Problem 2.11. Consider any object in an elliptical orbit around the Sun. Use the discussion above

to show that

vmax ≈ 2π

√
1 + ε

a(1 − ε)
<

2π · √
2

√
a(1 − ε)

,

where vmax is expressed in au/year, and a and a(1 − ε) are the semimajor axis and perihelion

distance in au, respectively.

One conclusion that can be drawn from this result is that the term 2π·√2√
a(1−ε)

with a(1 − ε) the

minimal possible perihelion distance in au, is the maximal speed limit in au/year for all objects

in an elliptical orbit around the Sun. Astronomers believe that a larger comet has a chance to

survive a close encounter with the Sun if its flyby brings it no closer to the Sun’s surface than about

25,000 km. Since the average radius of the Sun is about 695,000 km, this means that in order to

survive, a comet needs to have a perihelion distance of at least 695,000 + 25,000 = 720,000 km or

0.0048 au. (We will focus our discussion on comets, but we’ll assume that it applies to asteroids as

well.)

Problem 2.12. Show that the maximum speed of an object in an elliptical orbit around the Sun

cannot exceed 128.25 au/year or about 608 km/sec.

Turn to Chapter 1C and consider an ellipse with semimajor axis a and semiminor axis b.

Figure 1.9 tells us that b =
√

a2 − a2ε2 = a
√

1 − ε2, where ε is the eccentricity of the ellipse. An

ellipse is flat whenever b is small compared to a, and hence when ε is close to 1. The closer ε is

to 1, the smaller b is relative to a, and the flatter the ellipse. This implies, in view of the conclusion

of Problem 2.11, that the maximum speed of a comet with a very flat elliptical orbit is tightly

https://www.youtube.com/watch?v=F9ihB52Kr3A
https://www.nasa.gov/mission_pages/newhorizons/main/index.html
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approximated by 2π·√2√
a(1−ε)

. It follows that among such comets, those with the smallest perihelion

distances a(1 − ε) have the greatest maximum speeds. Table 2.8 confirms that the orbits of most

of the historic comets are very flat (see the eccentricity data) and that several of them have very

small perihelion distances. Comets that orbit the Sun tightly are known as “sungrazing” comets.

Since their orbits are generally very flat, they are—when at perihelion—the fastest-moving objects

in the solar system.

Some of the most spectacular comets ever observed have been sungrazers. The first sungrazing

comet to receive a lot of attention was the Great Comet of 1680. We saw in Chapter 1B that

Newton tracked it carefully. The painting by the Dutchman Lieve Verschuier (who was there to

observe it himself) of Figure 1.8 informs us that its tail swept across the sky in a spectacular arch.

It shows Newton’s Dutch contemporaries observing the comet with great interest. Some of them are

seen pointing cross-staffs—simple devices for measuring angles—skyward. The comet passed about

235,000 km above the Sun’s surface, so that its perihelion distance was close to 695,000 + 235,000 =

930,000 km or 0.0062 au. Unlike some other sungrazers, Newton’s comet survived its close encounter

with the Sun.

Problem 2.13. Use the information developed above to show that the maximum speed that the

Great Comet of 1680 attained was around 535 km/sec.

During its journey through the inner solar system the Great Comet of 1843 was widely seen

at daytime and described as “an elongated white cloud.” Observations provided a tight perihelion

distance of 820,000 km or 0.0055 au and an orbital eccentricity of ε = 0.999914. After perihelion,

the comet diminished in brightness but its tail grew enormously, eventually attaining a length of

320 million km or over 2 au. The next super comet to come along was the Great Comet of 1882.

First spotted by a group of Italian sailors in the Southern Hemisphere, it brightened dramatically

as it approached its rendezvous with the Sun and became visible in broad daylight. Orbital data

implied that its perihelion distance was 1,150,000 km or about 0.0077 au and its orbital eccentricity

0.999907. During its perihelion passage the nucleus broke into several parts, but the comet emerged

from behind the Sun and was described as a “blazing star.” In the days and weeks that followed,

its tail continued to shine brilliantly. The brightest comet of the 20th century was discovered in the

fall of 1965 only a little over a month before its perihelion passage by the two Japanese amateur

astronomers Ikeya and Seki. The comet was glowing in the sky “ten times brighter than the Full

Moon.” Before perihelion, its nucleus was observed to have broken up. The two new nuclei emerged

with slightly different orbits, both with eccentricity 0.999918 and perihelion distance 1,170,000 km

or 0.0078 au. After it passed the Sun, its 120 million km long tail dominated the morning sky.

Problem 2.14. Estimate the maximum speeds of the great comets of 1843, 1882, and 1965 in

km/sec.

Terry Lovejoy, the astronomer who discovered the comet C/2014 Q2 (see Figure 2.23), had

spotted another comet three years earlier in November 2011. The elliptical orbit of the comet (later

designated C/2011 W3) was observed to have a perihelion distance of 0.0055 au and an eccentricity
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of 0.99993. At perihelion on the 16th of December 2011, it passed close to the Sun’s surface and

was not expected to survive the severe conditions, such as extreme gravitational stresses and the

exposure to temperatures of more than one million degrees Celsius, that it would encounter during

its trip through the corona (the Sun’s atmosphere). However, the comet emerged from the corona

intact. The incredible video

https://phys.org/news/2012-03-comet-lovejoy-survive-sun.html

taken by NASA’s Solar Dynamics Observatory (see Figure 1.27) caught the comet scurrying through

the Sun’s corona. While it survived its perihelion passage, it emerged with a degraded nucleus.

Problem 2.15. Show that the speed of the comet C/2011 W3 at perihelion was approximately

120 au/year and hence about 568 km/sec.

The narrative of this paragraph has not considered the complicating factor that the ellipses of

all objects in orbit around the Sun do not have the center of the Sun but the barycenter of the solar

system as focal point (see Chapter 1H). A determination of the maximum speeds of the sungrazing

comets that takes this into account—see Figure 1.28 in this regard—would require a detour probably

not scenic enough for the aims of this fundamental text. Instead, we’ll make a comment about the

barycenters of the planetary systems.

5. The Barycenters of the Planetary Systems. We saw in Chapter 1E in reference to

the motion of the Earth and Moon that it is the center of mass of the Earth-Moon system—the

barycenter of the system—that sits at a focal point of the elliptical orbit of the Moon around the

Earth and also of the elliptical wobble that the Earth undergoes. Given that man-made Earth

satellites have relatively little mass, this barycenter is also a focal point of their elliptical orbits

around Earth. It is this barycenter that is in an elliptical orbit around the Sun. In the same way, it

is the barycenters of the other planet-moon systems that orbit the Sun along elliptical paths. And,

as pointed out in Chapter 1I, it is the barycenter of the entire solar system rather than the center

of mass of the Sun that is at a focal point of the elliptical solar orbits of these systems. Figure 1.28

gives a sense of the position of this barycenter relative to the center of mass of the Sun.

To continue this discussion, we’ll consider data about the planet-moon systems. Table 2.12

provides information about the sizes and masses of the planets and the mass of the most massive

moon for each system of moons. We see from the table that the Sun is over a 1000 times more

massive than Jupiter and that Jupiter is by far the most massive planet. The Sun is over 3000

times more massive than Saturn and almost 20,000 times more massive than Neptune, the second

and third most massive of the planets. The table also informs us that Mercury and Venus have no

moons and that the largest of the two moons of Mars is small. For any of the planet-moon systems,

let B be the barycenter and C the center of mass of the planet. The barycenter of the system

depends on the location of the moons of the planet at a given time. It follows that the barycenter

moves and that the distance between B and C varies over time. Let dBC be the maximum distance

between B and C over the time period from the year 2000 to the year 2050. The last two columns

of the table provide estimates for dBC both in terms of kilometers and the radius of the planet. The

https://phys.org/news/2012-03-comet-lovejoy-survive-sun.html
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Table 2.12. From NASA and NAIF fact sheets, 2013.

System
average radius of

central body in km

mass of central

body in kg

most massive

moon in kg

dBC

in km

dBC

in radii

Sun 695,508 1.9885 × 1030 − 1,378,196 1.98

Mercury 2,439.7 3.3010 × 1023 0 0 0

Venus 6,051.8 4.8676 × 1024 0 0 0

Earth 6,371.0 5.9726 × 1024 7.4 × 1022 4942 0.8

Mars 3,389.5 6.4174 × 1023 1.06 × 1016 0.002 ≈ 0

Jupiter 69,911 1.8983 × 1027 1.48 × 1023 220 0.003

Saturn 58,232 5.6836 × 1026 1.34 × 1023 312 0.005

Uranus 25,362 8.6816 × 1025 3.5 × 1021 43 0.00017

Neptune 24,622 1.0242 × 1026 2.14 × 1022 74 0.003

last column informs us that the location of the barycenters of all the planetary systems remain within

the body of the planet (at least for the fifty years in question). Figure 1.28 tells us by contrast,

that the barycenter of the solar system spent about 60% of the 50 years from 1945 to 1995 outside

the body of the Sun. We see from the last column of the table that the only planetary system for

which the distance between the barycenter and the center of mass of the planet is substantial is the

Earth-Moon system. For all other planets this distance is reasonably small, so that the distinction

between barycenter and center of the central body is of lesser relevance.

6.Dawn’s Ion Propulsion Engine. Recall from section 2D that in 2007 the spacecraft Dawn

was sent on a mission to study the large asteroids Vesta and Ceres. One unique aspect of Dawn is the

revolutionary propulsion system of its main engine. The basic principle behind it is still Newton’s

third law, namely that the force generated is the “equal and opposite” of the force with which the

engine expels particles in the opposite direction. However in Dawn’s engine, the expelled particles

are not the exhaust mass produced by the explosion of a propellant in a combustion chamber.

Instead, they are atoms of the gas xenon that are given a positive charge and turned into xenon

ions via the bombardment of xenon gas with high energy electrons. These positively charged xenon

ions are pulled into a grid that is negatively charged. They are accelerated and shot out in the form

of a streaming ion beam with a velocity of up to 150,000 km per hour. The exhaust velocity of the

ions in the beam is determined by the voltage applied. The required electric power is drawn from

the craft’s solar panels. Xenon gas is ideal for this use. It is easily ionized, chemically inert, and has

a high storage density.

Whereas a typical liquid propellant engine generates a thrust of 500 or more newtons, the

maximum thrust produced by Dawn’s ion engine is only 0.091 newtons. A stack of four pennies in the

palm of your hand pushes with a greater force. At full throttle, it would take the Dawn spacecraft four

days to accelerate from zero to 100 km per hour. But by firing for about 50,000 hours (over 5 years)

over the duration of its mission in the zero gravity, frictionless, environment of space, the small effect

of the thrust of its engine provided Dawn with the additional velocity it needed to reach orbit around
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Ceres arrival
Spring 2015

Vesta arrival
15 July 2011

Mars gravity assist
17 Feb 2009

Dawn launch
27 Sept 2007

Vesta departure
4 Sept 2012

Figure 2.33. The color coding shows the part of Dawn’s flight driven by its ion propulsion engine in blue (with
underlying black dots and streaks) and the gravity-driven part of the flight in black. Here too, gravity assist is an
important component of the flight path. Image credit: NASA/JPL-Caltech.

Vesta, to spiral to lower altitudes over Vesta, to cruise to Ceres, and to spiral to a low altitude orbit

around Ceres. Figure 2.33 depicts Dawn’s flight path. By firing over a long period of time, Dawn’s

small engine achieved trajectory changes equivalent to those produced by liquid propellant engines

that fired intermittently in short bursts of only minutes in duration. The video

https://vimeo.com/117835245

presents a simulation of Dawn’s orbit.

https://vimeo.com/117835245


3Calculus of Functions in Polar Coordinates

The importance of the rectangular, or Cartesian coordinate system to the disciplines of geometry,

trigonometry, and calculus cannot be overstated. These disciplines depend on the interplay between

geometry and algebra that the Cartesian coordinate system makes possible. However, this system

is not the only one that makes this connection. We will now discuss a coordinate system, the

Polar Coordinate System originally introduced by Isaac Newton, that provides a better framework

for some mathematical investigations. This is a system that identifies a location in a plane with

respect to a fixed reference point, rather than an intersecting pair of perpendicular lines. It is

therefore tailor-made for the analysis of the gravitational force produced by a central body and the

trajectories of objects that move in response to it. It is therefore ideal for the study of the orbits

of the planets, asteroids, and comets around the Sun, the moons around the planets, as well as the

flight of spacecraft.

This chapter presents the essential aspects of polar coordinates and its mathematics in detail.

It studies polar functions and their graphs with a special focus on the conic sections. Full details

are provided and the interplay between Cartesian and polar equations is explored. The derivative

of a polar function and its geometric meaning are developed in full. The definite integral of polar

functions is studied in the context of the lengths of polar graphs and the areas that they encircle.

The geometric interpretation of the derivative leads to the definition of the equiangular spiral. These

are discovered to play a role in the geometry of spiral galaxies in general and our Milky Way galaxy

in particular.

3A. The Unit Circle and Trigonometry. We’ll assume that the reader is familiar with the basics

of trigonometry, but we will recall some of the fundamental definitions and concepts. Let θ be any

real number. Assume first that θ ≥ 0 and consider a segment of length θ as depicted in Figure 3.1.

Let A be the right endpoint of the segment and label the left endpoint by Pθ. This notation tells

us that when distance is measured from A, the location of the left endpoint is determined by the

θ

APθ

Figure 3.1
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length θ. Now take a Cartesian xy-plane and consider the circle of radius 1 and center the origin O.

This circle is known as the unit circle. See Figure 3.2. Measure off the distance θ along the perimeter

of the unit circle: start at the point (1, 0) and proceed in a counterclockwise direction until the entire

distance θ is measured off and the left endpoint Pθ is placed on the circle. Think of the segment as

a string of length θ, place its right end A at the point (1, 0) and wind it counterclockwise (possibly

many times) around the circle until the left endpoint Pθ lands. This is illustrated in the figure.

What if θ is a negative real number? Then −θ is positive, and we’ll let the segment of Figure 3.1

have length −θ. To place the point Pθ on the circle in this case, measure off the length −θ on the

perimeter. As before, start at A = (1, 0), but this time go in the clockwise direction to measure off

the segment and to locate the point Pθ.

We can now interpret any real number θ as an angle. Consider the segment from O to (1, 0).

It is shown in green in Figure 3.2. Keep the end at O fixed, but let the segment be free to rotate

around it. The number θ interpreted as angle is the opening generated by letting the free end of the

segment follow around the perimeter of the circle, counterclockwise if θ ≥ 0 and clockwise if θ < 0,

possibly many times, until it reaches the point Pθ. This opening is the angle that corresponds to

O (1, 0) x

Pθ
end with P here

y

start: place A here

θ

Figure 3.2

the number θ. The number θ is known as the radian measure of the angle.

Let’s look at some basic examples of the concepts that were just introduced. Since the radius

of the unit circle is 1, its circumference is 2π. For the angle that corresponds to the real number

θ = π
2
, start at (1, 0), go around the perimeter of the first quarter of the circle counterclockwise, and

stop at the point Pπ
2

= (0, 1). For θ = π, go around (counterclockwise) the first two quarters of the

circle and stop at Pπ = (−1, 0). For θ = 3π
2

, go around the first three quarters to P 3π
2

= (0,−1). For

θ = 2π = 4π
2

, go around all four quarters to Pθ = P2π = A = (1, 0). For the angle that corresponds

to θ = −2π, start at (1, 0) and go around the perimeter of the circle clockwise for a distance of 2π
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to end up back at (1, 0). To measure off θ = −π, go around one-half the circle (clockwise) and stop

at P−π = (−1, 0), For θ = −π
2
, start at (1, 0), go around a quarter circle (clockwise) and stop at the

point P− π
2

= (0,−1), and so on.

What about degrees? The fact that the angle of π radians corresponds to 180◦ means that an

angle of 1 radian is equal to
(

180
π

)◦ ≈ 57.30◦. Therefore an angle of θ radians has θ · 180
π

degrees. So

for example, an angle of 100π radians is equal to 18,000◦, an angle of 10π radians is equal to 1800◦,
an angle of 0.1π radians has 18◦, and an angle of 0.01π radians has 1.8◦. In the other direction, an

angle of 1 degree is equal to π
180

in radians. So an angle of θ degrees is equal to θ · π
180

in radians. For

example, the angle 10◦ has 10 · π
180

≈ 0.175 radians and 100◦ is equal to 100 · π
180

≈ 1.745 radians.

We now turn to the definitions of the trigonometric quantities sin θ and cos θ for any real num-

ber θ. Continue to consider the unit circle of Figure 3.2. For any real number θ, locate the point Pθ.

Let the coordinates of Pθ be x and y and define

cos θ = x and sin θ = y

as illustrated in Figure 3.3. Since Pπ
2

= (0, 1), we see that cos π
2

= 0 and sin π
2

= 1. Since

(1, 0)
x

y

P = (θ θcos  , θsin )

x

y

Figure 3.3

Pπ = (−1, 0), we get cos π = −1 and sin π = 0. Finally, P 3π
2

= (0,−1) implies that cos 3π
2

= 0 and

sin 3π
2

= −1.

Let θ be an angle given in degrees. The sine and cosine of θ are equal to the sine and cosine of

the radian equivalent θ · π
180

of θ. So with θ in degrees, sin θ = sin
(
θ · π

180

)
and cos θ = cos

(
θ · π

180

)
.

Example 3.1. Consider a typical angle θ with 0 < θ < π
2
. Draw the point Pθ into a copy of

Figure 3.3 and drop a perpendicular from this point to the x-axis to form a right triangle that
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has hypotenuse equal to 1. Let a and b be the horizontal and vertical sides of this triangle and

conclude that cos θ = a and sin θ = b.

Example 3.2. Use an equilateral triangle of side 1 and an isosceles right triangle with hypotenuse 1

to show that

cos π
6

=
√

3
2

and sin π
6

= 1
2
, cos π

3
= 1

2
and sin π

3
=

√
3

2
, and cos π

4
= 1√

2
and sin π

4
= 1√

2
.

For any real number θ the point Pθ = (cos θ, sin θ) is on the unit circle. So it satisfies the equation

x2 + y2 = 1, and therefore

sin2 θ + cos2 θ = 1.

Refer to Figure 3.3 once more. By observing the moving point Pθ, notice that as θ varies from 0

to π
2
, sin θ varies from 0 to 1, and as θ moves from π

2
to π, sin θ varies from 1 to 0, and so on.

Plotting the various points (θ, sin θ) provides the graph of the sine function f(θ) = sin θ. Doing a

2π–π π   π– – 2
3π––2

π–2− 0
θ

−1

1

   π– – 4
3π––4−5π––4−7π––4− π–4

3π––4
3π––2

5π––4
7π––4

f ( ) = sin

–2π

θ θ

Figure 3.4

similar thing for the cosine, gives us the graph of the function g(θ) = cos θ. See Figures 3.4 and 3.5.

–2π 2π–π π   π– – 2
3π––2

π–2− 0 θ

−1

1

   π– – 4
3π––4−5π––4−7π––4− π–4

3π––4
3π––2

5π––4
7π––4

g( ) = cos θ   θ

Figure 3.5

Let θ be any real number and observe that Pθ and P(θ+2π) end up being the same point. Therefore

sin(θ + 2π) = sin θ and cos(θ + 2π) = cos θ.

Consider any θ as well as −θ. A comparison of the points Pθ and P−θ (see Figure 3.6a, for example)

tells us that they have the same x-coordinates, and that the y-coordinate of one is the negative of
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(1, 0) x

y

P    = (cos(    ), sin(    ))   −θ −θ −θ

P  = (θ θcos  , θsin )

(1, 0)

y

xx

P  = (θ θcos  , θsin )

P           θ  + π
2

  π
2

+ 2    θ +  π= (cos(       ), sin(       )) 
y

x

(a)          (b)

( )

   θ

Figure 3.6

the y-coordinate of the other. It follows that

cos(−θ) = cos θ and sin(−θ) = − sin θ.

Next, consider any θ and also θ + π
2

as well as the corresponding points Pθ and P(θ+ π
2
). Figure 3.6b

illustrates a typical situation. A careful study of the figure tells us that the triangle determined by

Pθ and its coordinates is similar to the triangle determined by P(θ+ π
2
) and its coordinates x and y.

It follows from this and the figure that cos(θ + π
2
) = x = − sin θ and that sin(θ + π

2
) = y = cos θ.

Thus the identities

cos(θ +
π

2
) = − sin θ and sin(θ +

π

2
) = cos θ

are consequence of the study of Figure 3.6b.

Example 3.3. Verify the identities cos(π − θ) = − cos θ and sin(π − θ) = sin θ in two ways. First

by applying identities already derived. Then again by making use of a diagram similar to those in

Figure 3.6. Why are these formulas valid with −π in place of π? (Consider applying the identities

sin(−θ) = − sin θ and cos(−θ) = cos θ.)

Let’s have a brief look at the tangent function

tan θ =
sin θ

cos θ
.

Suppose first that 0 ≤ θ ≤ π
2
. If θ = 0, then tan θ = 0. The graphs of the sine and cosine tell us that

as θ increases, the sine increases and the cosine decreases. Since both are positive, tan θ increases.

When θ is close to π
2
, the sine is close to 1 and the cosine is close to 0, so tan θ is very large. If

θ = π
2
, then cos θ = 0, so that tan θ is not defined. When −π

2
≤ θ ≤ 0, the situation is similar. Since
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the sine is negative and the cosine is positive, tan θ is now negative. The rest of the graph of the

tangent is simply a repetition of the pattern for −π
2

≤ θ ≤ π
2
. Use the information that you now

have to sketch the graph of h(θ) = tan θ. Compare what you drew with the graph in a standard

textbook. Let θ be any angle. Since sin(θ + π)= − sin θ and cos(θ + π) = − cos θ, it follows that

tan(θ + π) = tan θ. Similarly, tan(−θ) = − tan θ.

The trig functions that remain—the secant, cosecant, and cotangent—are defined by

sec θ =
1

cos θ
, csc θ =

1

sin θ
, and cot θ =

1

tan θ
.

The functions csc θ and cot θ will be of little relevance in the discussions of this text.

3B. Polar Coordinates. The Cartesian or rectangular coordinate system provides a way to rep-

resent points and curves in a plane in terms of numbers and equations. We’ll now describe an

alternative way for doing this, the polar coordinate system. Start with a plane, fix a point on it,

and call it the origin. Next, fix a straight line that starts at the origin. Take a unit of length,

mark off points on the line at distances one, two, three, and so on, from the origin, and label them

1, 2, 3, . . . . Complete this construction to a positive real number system with the number 0 at the

origin. This numbered line is the polar axis. The origin, also labeled O, is the polar origin. The

O             1         2       3                        

polar axis

Figure 3.7

polar axis is customarily drawn horizontally and directed from the origin O to the right. See

Figure 3.7.

Let P be any point in the plane and draw the segment OP . Let r be the length of this segment

and let θ be the angle in radians that it makes with the polar axis. See Figure 3.8. Following our

script, we regard θ to be positive if it is measured off counterclockwise and negative if it is measured

O

θ

P

r

O

θ

P

r

Figure 3.8

in the clockwise direction. Either way, the point P is determined by the ordered pair (r, θ) of real

numbers. In each case, the numbers r and θ are called polar coordinates of P . This procedure can

be reversed. Namely, to any pair of real numbers (r, θ) there corresponds a point in the plane. For
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a positive r, this is illustrated in Figures 3.9a, b, and c. If r is negative, then the understanding is

that the point that corresponds to a pair (r, θ) with a negative r is obtained by taking the arrow,

3–

O O

(4, 3 )

4(2,      )

(a)       (b)

π

π

   5–   3–
1–

O

O

(−3, )

42
– 3(   ,        )

(c)             (d)1–
3
π

ππ

Figure 3.9

or ray, that θ determines and marking off the distance |r| in the direction opposite to that of the

ray, in other words along the ray θ + π. Figure 3.9d provides an example. One difference between

the Cartesian coordinate system and the polar coordinate system as just described is the fact that

a point P can be represented in many (indeed infinitely many) ways as a pair (r, θ). Figure 3.10

3–

– –O

OO

O

(2,    + 2 )3–
4

(−2,     )

4

   5– –(2,        )
4

(2,      )
4
π ππ

π

π

– –
4
π

Figure 3.10

shows how four different pairs of polar coordinates all determine the same point.

3C. Polar Functions and their Graphs. We are given a plane equipped with a polar coordinate

system. The graph of an equation involving the variables r and θ is the set of all points (r, θ) in the

plane whose coordinates satisfy the equation.

Consider the polar equation r2 = θ for instance, and notice that the points (0, 0), (1, 1), (−1, 1),

(π
2
, π2

4
), (−π

2
, π2

4
) are all on its graph. The graph of the equation r = 5 is the set of all (r, θ) with
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O

6(5,   )

(5, 0)

π
(5,     )4

π3

(5,     )2
π3

2(5,   )π

Figure 3.11

r = 5. Its graph is the circle of radius 5 with center the origin. See Figure 3.11. The graph of the

equation θ = 5π
4

is the set of all (r, θ) with θ = 5π
4

. This set of points consists of the entire line

through the ray θ = 5π
4

. It is the combination of the rays θ = π
4

and θ = 5π
4

. Refer to Figure 3.12.

We will be studying functions of the form r = f(θ) that relate the polar coordinates r and θ.

O

(4,     )

(−1,     )

(2,     )4
π

(−3,     )

5

4
π5

4
π5

4
π5

4
π5

Figure 3.12

For a given θ in its domain, such a function f determines exactly one r. The constant function

r = f(θ) = 5 is a very simple example. When considering such polar functions as well as their

graphs, it will often be of advantage to make use of Cartesian information. To set the stage for

the transfer of such information, place an xy-coordinate system on top of the polar coordinate

system in such a way that the two origins coincide, the polar axis coincides with the positive x-axis,

the negative x-axis is obtained by extension to the other side of the origin O, and the y-axis is

perpendicular to the x-axis at O. Suppose that this has been done. Let P be any point in the plane

and let (r, θ) be any pair of polar coordinates for P . What are the x- and y-coordinates of P?

Consider Figure 3.13. The figure illustrates a situation where both θ and r are negative. It shows

the point P , the polar coordinate θ, and the unit circle. The distance OP is equal to −r. From

the definitions of cos θ and sin θ, we know that (cos θ, sin θ) is the point on the unit circle that θ

determines. The point P1 on the unit circle has x- and y-coordinates − cos θ and − sin θ. Because
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θ
x

P = (x, y)
y

1

(cos  , sin  )θ θ

− cos  θ
O

P1
− sin  θ

Figure 3.13

the triangles determined by P and P1, the vertical dashed lines, and the negative x-axis are similar,

we see that 1
−r

= cos θ
−x

, and in the same way, that 1
−r

= − sin θ
y

. Therefore,

x = r cos θ and y = r sin θ .

It follows from these equalities that

r2 = x2 + y2 and tan θ =
y

x
.

These relationships hold regardless of the location of the point P and regardless of the choice of its

polar coordinates. For instance, the fact that the polar coordinates (−r, θ + π) represent the same

point as (r, θ) means that the corresponding Cartesian coordinates of the point are also the same.

Therefore it must be the case that

x = r cos θ = −r cos(θ + π) and y = r sin θ = −r sin(θ + π).

But this follows directly from the basic trig identities sin(θ + π) = − sin θ and cos(θ + π) = − cos θ.

We have seen that if (r, θ) is any set of polar coordinates of P , then the corresponding Cartesian

coordinates for P can be computed directly from the equations x = r cos θ and y = r sin θ. What

if instead we are given Cartesian coordinates (x, y) for P and wish to determine a set of polar

coordinates? If P is on the y-axis, then P = (0, y) so that (y, π
2
) is a set of polar coordinates for P .

If P is not on the y-axis, then θ can be chosen to satisfy −π
2

< θ < π
2
. See Figure 3.13 for instance

(but check other cases as well). Because tan θ = y
x

(check this for P in each of the four quadrants)

and −π
2

< θ < π
2
, this θ is given by the definition of the inverse tangent function as

θ = tan−1 y

x
.
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The corresponding coordinate r satisfies r2 = x2 + y2. So either r =
√

x2 + y2 or r = −√
x2 + y2.

The location of P in the plane determines which of these two possibilities applies.

Example 3.4. Determine the Cartesian coordinates for the point with polar coordinates (3, 7).

Then determine polar coordinates for the Cartesian point (−4,−5). In each case, use a calculator

to find decimal approximations of the coordinates.

Let’s apply what we have learned by analyzing the polar function r = f(θ) = sin θ and its polar

graph. Study the Cartesian graph of sin θ from Figure 3.4 and observe: the graph of the sin function

is increasing and concave down over the interval 0 ≤ θ ≤ π
2
, decreasing and concave down over

π
2

≤ θ ≤ π, decreasing and concave up over π ≤ θ ≤ 3π
2

, and so on. So the essential properties of

the sin function have a uniform description over each of these intervals. The same is true for the

analogous intervals in the negative direction. In order to understand the polar graph of the polar

function r = sin θ, we will therefore consider θ over the interval 0 ≤ θ ≤ π
2
, then over π

2
≤ θ ≤ π,

then over π ≤ θ ≤ 3π
2

, and so forth. The information in Table 3.1 can be read off directly from the

Cartesian graph of Figure 3.4.

Now to the polar graph of f(θ) = sin θ. Notice that as the ray determined by θ rotates from

Table 3.1

1 2 3 4 5 6 7 8

0 ≤ θ ≤ π
2

π
2 ≤ θ ≤ π π ≤ θ ≤ 3π

2
3π
2 ≤ θ ≤ 2π 0 ≥ θ ≥ −π

2 −π
2≥θ≥−π −π≥θ≥− 3π

2 − 3π
2 ≥ θ−2π

0 sin θ−−−→ 1 1 sin θ−−−→ 0 0 sin θ−−−→ −1 −1 sin θ−→ 0 0 sin θ−−−→ −1 −1 sin θ−−−→ 0 0 sin θ−−−→ 1 1 sin θ−−−→ 0

θ = 0 to θ = π
2
, the corresponding r = sin θ stretches from r = 0 to r = 1. So the polar graph for

this range of θ is an arc that curves from the point (0, 0) to the point (1, π
2
). As the ray continues

its swing from θ = π
2

to θ = π, r moves from r = 1 to r = 0. The corresponding polar graph is an

1

3π––

5π––

π–

= 0

π–

π

2

θ = 

θ = 

θ = 

θ = 

θ
θ

= 

7π––θ = 

3π––θ = 

2

4
4

44

2

Figure 3.14
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arc from (1, π
2
) back down to (0, 0). It follows that as θ varies from 0 to π the polar graph loops

from (0, 0) back to (0, 0). As sketched in Figure 3.14, the loop is a circle. But is it a circle?

To answer, we place an xy-coordinate system over the polar coordinate system as already

described. Let P be a point in the plane. Let (x, y) be the Cartesian coordinates of P and (r, θ)

any set of polar coordinates of P . If P = (r, θ) satisfies r = sin θ, then r2 = r sin θ. In view of the

equalities r2 = x2 + y2 and y = r sin θ, we get x2 + y2 = y. So x2 + y2 − y = 0 is a Cartesian version

of the equation r = sin θ. After completing squares in y, x2 + y2 − y + (1
2
)2 − (1

2
)2 = 0 and hence

x2 + (y − 1
2
)2 = (1

2
)2. This confirms that the loop in Figure 3.14 is a circle with center (0, 1

2
) in the

Cartesian xy-coordinates or (1
2
, π

2
) in polar coordinates. The radius of the circle is 1

2
.

Example 3.5. Do we arrive at the complete graph of f(θ) = sin θ by considering only the θ in

the interval 0 ≤ θ ≤ π? Or is there more? Is the discussion that identifies the graph as the circle

x2 + (y − 1
2
)2 = (1

2
)2 relevant to this question? Where does the graph of the function f(θ) = sin θ

fall for θ in the intervals of columns 3 and 4 of Table 3.1. What about columns 5, 6, 7, and 8?

Example 3.6. Consider the polar function r = f(θ) = tan θ for −π
2

< θ < π
2
. Use a calculator to

plot the points corresponding to θ = 0, π
6
, π

4
, π

3
, 5π

12
, 11π

24
, 23π

48
, and finally π

2
.

Example 3.7. Consider the polar function r = f(θ) = tan θ. Let 0 ≤ θ < π
2

and convert r = tan θ

into an equation in the coordinates x and y. Use it to show that x =
y
x√

1+( y
x
)2

. Conclude that the

graph of r = tan θ for 0 < θ < π
2

lies between the vertical lines x = 0 and x = 1. Show that as θ → π
2
,

the graph of r = tan θ approaches the line x = 1. Do a similar analysis for −π
2

< θ ≤ 0. Then sketch

the polar graph of the equation r = tan θ for −π
2

< θ < π
2
.

The approach to the study of a polar function illustrated above is this: place a Cartesian xy-

coordinate system on top of the polar coordinate system, convert the equation in r and θ given by

the function into an equation in x and y, and make use of the information this equation provides.

The next section uses basic facts about the ellipse, parabola and hyperbola developed in

Chapter 1C. It also makes use of the following basic observation. Take an equation in x and y

x2 + y2 = 4

(0, 0)

(−7, −1)

(x + 7)2 + (y + 1)2 = 4

(6, 5)

(x − 6)2 + (y − 5)2 = 4

y = mx
y + 1 = m(x + 7)

y − 5 = m(x − 6)

x

y

Figure 3.15
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and consider its Cartesian graph. Suppose that the graph is shifted or translated in the xy-plane

vertically and/or horizontally in such a way that it is not rotated in the process. Can an equa-

tion for such a shifted graph be identified? The matter of shifting graphs is best illustrated by

observing what happens with circles and lines. Start with the circle x2 + y2 = 4 of radius 2 and

center the origin (0, 0). Replacing x by x − 6 and y by y − 5 in this equation gives the equation

(x − 6)2 + (y − 5)2 = 4. This circle also has radius 2, but its center has been shifted to the point

(6, 5). In the same way, if we replace x and y by x + 7 and y + 1, respectively, then the center of

the circle is shifted from (0, 0) to (−7,−1). See Figure 3.15. The point-slope form of the equation

of a line tells us that the equation of a line gotten by translating the line y = mx is obtained in the

same way. These considerations apply to any graph. For example, the graph of y − 2 = (x + 3)2 has

the same shape and orientation as the graph of y = x2. It is obtained by translating the graph of

y = x2 in such a way that the origin (0, 0) ends up at the point (−3, 2). These examples tell us that

if in an equation in x and y, x is replaced by x − c and y by y − d, then the graph is translated by

c units horizontally and d units vertically. The directions of the translations (up, down, left, right)

are determined by the signs (positive or negative) of the constants c and d.

3D. The Conic Sections in Polar Coordinates. A plane is provided with both a polar and a

Cartesian xy-coordinate system. The origins coincide, the positive x-axis is the polar axis, and the

y-axis is perpendicular to the x-axis at the origin O.

Let ε ≥ 0 and d > 0 be constants. This section will examine the graph of the polar function

(∗) r = f(θ) =
d

1 + ε cos θ
.

The strategy described in the previous section—namely study of Cartesian versions of this equation—

will play a decisive role.

We’ll begin with some general observations. Suppose that ε ≤ 1. Since −1 ≤ cos θ, we see that

−1 ≤ −ε ≤ ε cos θ, and therefore that 1 + ε cos θ ≥ 0. So if ε ≤ 1, then r > 0 whenever r is defined

(whenever 1 + ε cos θ > 0). If ε > 1, then both r > 0 and r < 0 are possible. Consider θ = 0 and

θ = π, for instance. Now return to equation (∗) for any ε ≥ 0, but write it in the form r + εr cos θ = d.

Because x = r cos θ, we get r + εx = d. Suppose that r > 0. Then r =
√

x2 + y2 ≥ x, and hence

d = r + εx ≥ x + εx. So x ≤ d
1+ε

. If r < 0 (in this case ε > 1), then r = −√
x2 + y2 ≤ −x. So

d = r + εx ≤ −x + εx, and hence d
ε−1

≤ x. These observations tell us the following about the graph

of equation (∗). If ε ≤ 1, then r > 0 and the entire graph lies to the left of the line x = d
1+ε

. If

ε > 1, then the graph has two separate components determined by the vertical line x = d
ε+1

and the

vertical line x = d
ε−1

to its right. All points (r, θ) with r > 0 lie to the left of the line x = d
ε+1

, and

all points (r, θ) with r < 0 lie to the right of the line x = d
ε−1

.

Let’s turn to the specifics of the graph of equation (∗). We will consider the equivalent equation

r + εr cos θ = d and study the cases ε = 1, ε < 1, and ε > 1 separately.

i. Start with the case ε = 1. We begin by plotting some of the points of the graph of

r =
d

1 + cos θ
.
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The values of 1 + cos θ for θ = 0, π
4
, π

2
, and 3π

4
are 1 + 1 = 2, 1 +

√
2

2
, 1 + 0 = 1, and 1 −

√
2

2
, respec-

tively. This implies, for the same sequence of θ, that r = d
2
, r ≈ 0.6d, r = d, and r ≈ 3.4d. The

fact that cos(−θ) = cos θ provides all the points of the graph of r = d
1+cos θ

that are plotted in

Figure 3.16a. This cluster of points and the fact that r = f(θ) is not defined for θ = ±π suggests

that we are dealing with a parabola that has a vertical directrix to the right of the point x = d
2
.

Could this be so? Since r > 0, we get that
√

x2 + y2 + x = d is the Cartesian version of the equation

r + r cos θ = d that we are studying. Now consider the parabola with focal point the origin O and

directrix the vertical line x = d, and refer to Figure 3.16b. A point P = (x, y) is on this parabola

precisely when its distance to the origin O is equal to its distance to the line x = d. Notice that this

is the case precisely when
√

(x − 0)2 + (y − 0)2 =
√

x2 + y2 is equal to −x + d. So the Cartesian

equation of this parabola is
√

x2 + y2 + x = d. Since this is also the Cartesian version of the equation

F = O

directrix

x = d

P = (x, y)

O

d

d
2

θ = π
4

θ = π
2

θ = π
4
3

θ = −π
4

θ = −π
2

d

polar axis 

(a)          (b)

θ =  −  π
4
3

x

y

Figure 3.16

r + r cos θ = d, it follows that the graph of equation (∗) with ε = 1 is the parabola with focal point

O and directrix x = d. It is sketched in red in Figure 3.16b.

We’ll take the cases ε < 1 and ε > 1 together, at least initially. Transform the Cartesian version

±√
x2 + y2 + εx = d of r + εr cos θ = d step by step (one of them completes a square) as follows:

x2 + y2 = d2 − 2εdx + ε2x2

(1 − ε2)x2 + 2εdx + y2 = d2

x2 + 2εd
1−ε2

x + y2

1−ε2
= d2

1−ε2

x2 + 2εd
1−ε2

x + ε2d2

(1−ε2)2
+ y2

1−ε2
= d2

1−ε2
+ ε2d2

(1−ε2)2

(
x + εd

1−ε2

)2
+ y2

1−ε2
= (1−ε2)d2+ε2d2

(1−ε2)2
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(
x + εd

1−ε2

)2
+ y2

1−ε2
=

(
d

1−ε2

)2
, and finally

(x +
εd

1−ε2
)2

(
d

1−ε2
)2

+ y2

d2

1−ε2

= 1.

ii. Suppose ε < 1. So 1 − ε2 > 0. Put a = d
1−ε2

, b = d√
1−ε2

, and let c =
√

a2 − b2. Since 1 − ε2 ≤ 1,

we see that
√

1 − ε2 ≥ 1 − ε2, and hence that a ≥ b. Since a2 − b2 = d2

(1−ε2)2
− d2

1−ε2
= d2−(1−ε2)d2

(1−ε2)2
=

ε2d2

(1−ε2)2
, it follows that c = εd

1−ε2
= εa. After a substitution, we get the equation (x+c)2

a2 + y2

b2
= 1. Now

turn to Chapter 1C. Recall that the equation x2

a2 + y2

b2
= 1 represents an ellipse with semimajor

axis a = d
1−ε2

, semiminor axis b = d√
1−ε2

, and center the origin O. It follows from the remarks that

conclude section 3C that the ellipse (x+c)2

a2 + y2

b2
= 1 is obtained by shifting this ellipse c =

√
a2 − b2

units to the left. Since c is the distance between the center C of the ellipse and its right focal point,

the ellipse has been shifted so that the right focal point is now at the polar origin O. This ellipse

polar axis

b

a OcC

Figure 3.17

is sketched in Figure 3.17. The description of the graph of equation (∗) in the situation ε < 1 is

complete. Since c = εa, it follows that the ε of equation (∗) is the eccentricity ε = a
c

of the ellipse.

The focal points are the origin O and (in either Cartesian or polar coordinates) the point (−2c, 0).

iii. Suppose ε > 1. So ε2 − 1 > 0. Let a = d
ε2−1

, b = d√
ε2−1

, and set c =
√

a2 + b2. Because

a2 + b2 = d2

(ε2−1)2
+ d2

ε2−1
= d2+(ε2−1)d2

(ε2−1)2
= ε2d2

(ε2−1)2
, we get c = εd

ε2−1
. This time, after substituting care-

fully, the earlier equation becomes (x−c)2

a2 − y2

b2
= 1. Return to Chapter 1C. Consider the hyperbola

x2

a2 − y2

b2
= 1 with semimajor axis a and semiminor axis b. We know that its asymptotes intersect

at the origin O and that its focal points are both c units from O. It follows from the discussion

that concludes section 3C that the graph of (x−c)2

a2 − y2

b2
= 1, and hence the graph of equation (∗), is

obtained by shifting this hyperbola c units to the right. This shifted hyperbola has its left focal point
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a

b
c

O polar axis

r > 0

r < 0

Figure 3.18

at the polar origin O. Its graph is sketched in Figure 3.18. It follows from the equalities defining

a, b, and c that the ε of equation (∗) is the eccentricity ε = c
a

of the hyperbola.

We conclude the hyperbolic case of the function r = f(θ) = d
1+ε cos θ

with a look at the way the

graph of Figure 3.18 is traced out as θ varies. Figure 3.19 shows the two asymptotes in green. The

two dashed green lines emanate from the polar origin O. Each is parallel to one of the asymptotes.

The angles between the asymptotes and the polar axis are denoted by ϕ. Figure 3.19 tells us that for

any θ satisfying either 0 ≤ θ< π − ϕ or −π + ϕ < θ < 0, the ray that θ determines intersects one

of the asymptotes on the left side and hence the left branch of the hyperbola. As θ varies over the

interval from −(π − ϕ) to π − ϕ, the point (r, θ) on the graph of the function traces out the entire

left branch of the hyperbola from bottom to top. Both the interval and this branch are depicted

θ

a

b
c

polar axis

r > 0

r < 0

O

Figure 3.19
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in red. For θ equal to π−ϕ or −(π−ϕ) = −π + ϕ, the ray that θ determines coincides with one of

the dashed green lines. In either case, the ray is parallel to an asymptote and does not intersect

the hyperbola. It follows that the function is not defined for θ equal to π − ϕ or −(π − ϕ). One

more look at Figure 3.19 tells us that r = f(θ) is negative over the interval of π − ϕ < θ < π + ϕ

and that as θ varies from π − ϕ to π + ϕ, the points (r, θ) on the graph of r = f(θ) = d
1+ε cos θ

trace

out the right branch of the hyperbola from bottom to top. Both the interval and this branch are

depicted in blue in the figure.

Example 3.8. Consider the functions r = 3
1+ 2

5
cos θ

, r = 4
1+cos θ

, and r = 5
1+3 cos θ

. In each case iden-

tify the graph as a parabola, an ellipse, or a hyperbola and determine the eccentricity. If it’s a

parabola, use the distance between the focal point and the directrix to sketch the graph. For an

ellipse or hyperbola, compute the semimajor and semiminor axes and then sketch the graph.

A plane with a polar coordinate system continues to be given. We saw that the polar graph of

any function of the form r = f(θ) = d
1+ε cos θ

, with d > 0 and ε ≥ 0 constants, is a parabola, ellipse,

or hyperbola. The constant ε is the eccentricity of the conic section. We’ll now see, conversely, that

any given conic section in the plane can be shifted and rotated so that it coincides with the graph

of such a function.

If the conic section is a parabola, let d be the distance between the focal point and the directrix.

Shift the given parabola so that the focal point is at the polar origin, and rotate it so that the

directrix is vertical and to the right of the focal point. The parabola now coincides with that in

Figure 3.16b. It is therefore the polar graph of the function r = d
1+cos θ

.

Let the given conic section be an ellipse with semimajor and semiminor axes a and b. Shift the

ellipse, so that one of its focal points is at the polar origin, and then rotate it so that it is positioned

like the ellipse in Figure 3.17. Refer to part (ii) of the discussion above and consider the equations

a = d
1−ε2

and b = d√
1−ε2

in the variables d > 0 and ε ≥ 0. They can be solved for d and ε as follows.

Since b2 = d2

1−ε2
, we get ad = b2 and hence d = b2

a
. Since 1 − ε2 = d

a
= b2

a2 , we get ε2 = 1 − b2

a2 = a2−b2

a2 ,

and hence that ε = 1
a

√
a2 − b2. Another look at part (ii) of the discussion above tells us that with

this d and ε, the graph of equation (∗) is an ellipse with semimajor axis a and semiminor axis b and

that this ellipse coincides with the given ellipse (after the shift and the rotation).

The argument just used for the ellipse applies with only minor modifications to show that a

hyperbola with semimajor axis a and semiminor axis b can be shifted and rotated so that it is the

graph of an equation (∗).

Example 3.9. In each of the three cases,

(a) a parabola with distance between focal point and directrix equal to 7,

(b) an ellipse with semimajor axis a = 6 and semiminor axis b = 4, and

(c) a hyperbola with semimajor axis a = 6 and semiminor axis b = 4,

determine the function (∗) that has a graph of the given shape.

With a view toward the upcoming application to the motion of the objects in the solar system,

we’ll conclude our study of the function

r = f(θ) =
d

1 + ε cos θ
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by highlighting relevant information about its graph and by specifying its domain of definition.

We’ll rely on our earlier discussion and in particular on the graphs of Figures 3.16b, 3.17, and 3.18.

The point on the graph closest to the focal point at the polar origin O is the periapsis. The

distance between it and O is the periapsis distance. A look at the graphs tells us that the periapsis

distance is r = f(0) = d
1+ε cos 0

= d
1+ε

. The length of the segment through the focal point, perpendic-

ular to the polar axis, and bounded on both sides by the graph is the latus rectum. See Figure 1.13b.

Another look at the graphs informs us that the latus rectum is equal to 2f(π
2
) = 2( d

1+ε cos π
2
) = 2d.

With regard to the domain of the function, we’ll deal with the elliptical, parabolic, and hyperbolic

cases separately.

A. The elliptical case ε < 1. Here 1 + ε cos θ > 0 and hence 1 + ε cos θ �= 0 for all θ. In this case,

we take the domain of the function r = f(θ) = r = d
1+ε cos θ

to be the full set of real numbers θ.

For any stretch of increasing θ, the ray from the origin that θ determines rotates counterclockwise,

so that the point (r, θ) moves counterclockwise on the ellipse of Figure 3.17. As θ varies over the

domain of the function, the point will trace out the ellipse again and again. Recall that

a = d
1−ε2

and b = d√
1−ε2

are the semimajor and semiminor axes, respectively, and that c = εd
1−ε2

= aε. The periapsis distance

is equal to a − c = a(1 − ε) = d(1−ε)
1−ε2

= d
1+ε

. Notice that the periapsis of the graph is reached at

θ = 0,±2π,±4π, . . . . Over any interval of the form 2kπ ≤ θ ≤ 2kπ + 2π = 2π(k+1) or −2π(k+1) =

−2kπ − 2π ≤ θ ≤ 2kπ with k ≥ 0 an integer, the point (r, θ) on the graph moves from one periapsis

to the next. Since d = d2

1−ε2
· 1−ε2

d
= b2

a
, the latus rectum in the elliptical case is equal to 2d = 2b2

a
.

B. The parabolic case ε = 1. Now 1 + cos θ ≥ 0 for all θ. The function is not defined when

cos θ = −1 and hence for θ = ±π,±3π,±5π, . . . . Let’s consider the interval −π<θ<π. Figure 3.5

tells us that as θ varies from 0 to π, cos θ varies from 1 to −1, so that the values r = f(θ) = d
1+cos θ

start at r = d
2

and become larger and larger without bound. In the process, the point (r, θ) traces

out the entire upper part of the parabola of Figure 3.16b. As θ varies from 0 to −π, cos θ also varies

from 1 to −1. Again, the values r = f(θ) = d
1+cos θ

start at r = d
2

and become larger and larger

without bound. As this occurs, the point (r, θ) traces out the entire lower part of the parabola. It

follows that as θ varies over −π < θ < π, the point (r, θ) traces out the entire parabola in a counter-

clockwise way. The function r = f(θ) = d
1+cos θ

behaves in a similar way over the intervals π<θ<3π,

−3π<θ<−π, 3π<θ<5π, −5π<θ<−3π, and so on. However, we will specify the domain of the

function r = f(θ) = d
1+ε cos θ

in the parabolic case to be restricted to −π<θ<π. Periapsis occurs

only at θ = 0. We have already see that the periapsis distance is f(0) = d
2

and that the latus rectum

is equal to 2f(π
2
) = 2d.

C. The hyperbolic case ε > 1. With regard to the graph of the function in Figure 3.18,

a = d
ε2−1

and b = d√
ε2−1
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are the semimajor and semiminor axes, respectively, and c = εd
ε2−1

= aε. The periapsis distance

is equal to c − a = a(ε − 1) = d(ε−1)
ε2−1

= d
ε+1

. Since d = d2

ε2−1
· ε2−1

d
= b2

a
, the latus rectum is equal

to 2 b2

a
in the hyperbolic case. The domain of the function r = f(θ) = d

1+ε cos θ
in the hyperbolic

situation is restricted to the interval −(π−ϕ)<θ<π−ϕ, where ϕ is given by ϕ = tan−1 b
a

=

tan−1
(

d√
ε2−1

· ε2−1
d

)
= tan−1

√
ε2 − 1. To see why, refer to Figure 3.19 and the discussion of the

figure. Recall in particular that when θ varies over this interval, the point (r, θ) traces out the entire

left branch of the hyperbola of the figure exactly once in a counterclockwise way. Periapsis occurs

at θ = 0.

For θ = ±(π−ϕ) the term d
1+ε cos θ

is not defined. To check this, note first that tan ϕ = b
a
. By

elementary properties of the sine and cosine,

√
1−cos2 ϕ

cos ϕ
= sin ϕ

cos ϕ
= tan ϕ = b

a
= ε2−1√

ε2−1
=

√
ε2 − 1. So

1−cos2 ϕ
cos2 ϕ

= ε2 − 1, and hence 1
cos2 ϕ

= ε2. It follows that cos ϕ = 1
ε
. Properties of the cosine tell us that

cos(π − ϕ) = cos(ϕ − π) = − cos ϕ = −1
ε
, confirming that 1 + ε cos(±(π − ϕ)) = 0.

Example 3.10. Determine the domains for the function r = f(θ) = d
1+ε cos θ

in each of the three

cases of Example 3.8. Find the periapsis distance and the latus rectum. In each case, compute

numerical approximations of the relevant constants.

3E. The Derivative of a Polar Function. In this section it is assumed that the reader is

familiar with the derivative of a function and its elementary properties, including the basic rules of

differentiation (the product, quotient, and chain rules).

We’ll start by recalling without proof, basic facts about the derivatives of the trig functions.

The derivative of f(θ) = sin θ is f ′(θ) = cos θ and the derivative of f(θ) = cos θ is f ′(θ) = − sin θ.

An application of the quotient rule to f(θ) = tan θ = sin θ
cos θ

tells us that

f ′(θ) = cos θ·cos θ−(sin θ)(− sin θ)
cos2 θ

= 1
cos2 θ

= sec2 θ,

and by applying the chain rule to f(θ) = sec θ = (cos θ)−1, we get

f ′(θ) = (−1)(cos θ)−2 · (− sin θ) = sin θ
cos θ

· 1
cos θ

= (tan θ)(sec θ).

Let r = f(θ) be a function in polar coordinates and let

f ′(θ) = lim
Δθ→0

f(θ+Δθ)−f(θ)
Δθ

be its derivative. We know that the derivative of a function in Cartesian coordinates measures the

slope of the tangent line to the graph of the function. We will now see that the derivative of a

function in polar coordinates is also related to the tangent of the polar graph. But the connection

is more complicated.

A portion of a graph of a typical function r = f(θ) is sketched in Figure 3.20. On occasion, we

will restrict the domain to an interval of angles θ1 ≤ θ ≤ θ2 as indicated in the figure. Suppose that

f ′(θ) > 0 over such an interval. We know that this means that the function r = f(θ) increases with

increasing θ over θ1 ≤ θ ≤ θ2. So r = f(θ) grows as the ray that θ determines rotates from θ1 to θ2.
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O

r = f(  )θ

1=  θ θ

2=  θ θ

Figure 3.20

In a similar way, if f ′(θ) < 0 over the interval, then r = f(θ) decreases as θ rotates from θ1 to θ2.

Let P = (f(θ), θ) be any point on the graph of f(θ). Assume that P is not the polar origin O,

so that f(θ) �= 0. Let γ be the angle measured in the counterclockwise direction from the tangent

at P = (f(θ), θ) to the segment from O to P = (f(θ), θ). See Figure 3.21. Observe that 0 ≤ γ < π.

O

r = f(  )θ

Pγ

θ

Figure 3.21

Since γ depends on the point P and hence on θ, γ is a function γ = γ(θ) of θ. For the function

r = f(θ) = 5 for instance, f ′(θ) = 0 for all θ and, because the graph of the function is a circle with

center the origin, γ(θ) = π
2

for all θ. For a function r = f(θ), the inequalities f ′(θ) > 0 and γ(θ) > π
2

both tell us that r = f(θ) is increasing at θ, and f ′(θ) < 0 and γ(θ) < π
2

both tell us that r = f(θ)

is decreasing at θ. This suggests that there might be an explicit connection between f ′(θ) and γ(θ).
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Let’s begin the exploration of such a connection with an analysis of the limit

f ′(θ) = lim
Δθ→0

f(θ + Δθ) − f(θ)

Δθ

that defines the derivative of the function f(θ). To facilitate our discussion, we’ll assume that

f(θ) ≥ 0 (but the conclusions hold without this assumption). Consider the point (f(θ + Δθ), θ + Δθ)

for a small Δθ and draw the segment from O to this point into Figure 3.21. Add into the figure—in

red—the circular arc with center O and radius f(θ) between the rays determined by θ and θ + Δθ.

These additions and the segment of length f(θ + Δθ) − f(θ) from the arc to the graph are shown

in Figure 3.22a. We’ll call the curving triangle with the red circular base the beak at P . Let the

length of the circular arc be Δs, and observe that the radian measure of Δθ is equal to Δθ = Δs
f(θ)

.

So 1
Δθ

= 1
Δs

· f(θ) and after a substitution,

f ′(θ) = lim
Δθ→0

f(θ + Δθ) − f(θ)

Δs
· f(θ).

In order to understand f ′(θ), we need to come to grips with lim
Δθ→0

f(θ+Δθ)−f(θ)
Δs

. Put in the tangent

line to the graph of r = f(θ) at P in green, and let A be the point of intersection of the tangent

with the ray determined by θ + Δθ. Also put in the tangent line to the circle at P again in green,

and let B be the point of intersection of this tangent and the same ray. The two tangent lines

and the segment connecting A and B form the triangle ΔAPB. We call it the triangle at P . It is

A

Δ Psf(   ) −Δ+   f(  )

O O

P

tangent to the 
graph at P

r = f(  )

tangent to the 
circle at PB

θ θ θ

θ

θ r = f(  )θ

(a)       (b)

Δ θ

Figure 3.22

shown in Figure 3.22b. The diagram of Figure 3.23 is a composite of the two diagrams of Figure 3.22.
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A

O

P

tangent to the 
graph at P

tangent to the 
circle at P

B

Δ θ

r = f(  )θ

θ

Figure 3.23

It shows both the beak at P and the triangle ΔAPB at P . We’ll now push Δθ to 0 and investigate

lim
Δθ→0

f(θ + Δθ) − f(θ)

Δs
.

What happens as Δθ shrinks to 0 is illustrated in Figure 3.24. It is a blowup of the central part

of Figure 3.23. As Δθ is pushed to 0, the segment OBA rotates toward the segment OP . Both the

A

P

B

r = f(  )θ

to O
to O

A

B

Figure 3.24
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beak at P and the triangle at P shrink in the direction of their tips at P . As Figure 3.24 illustrates,

the shrinking triangle approximates the shrinking beak better and better as the gap between OBA

and OP closes. In the process, Δs gets closer to BP and f(θ + Δθ) − f(θ) to AB. Therefore, as

Δθ is pushed to 0,
f(θ + Δθ) − f(θ)

Δs
closes in on the ratio

AB

BP
.

Because the tangent line to a circle at a point is perpendicular to the radius to that point, we

know that the angle at P between PO and PB is π
2
. So as Δθ shrinks to 0, the angle ∠PBA

approaches π
2
, and the triangle ΔAPB approaches a right triangle with right angle at B. It follows

that the ratio AB
BP

closes in on the tangent of the angle ∠APB. Refer to Figure 3.24 once more.

Because ∠APO = γ and ∠BPO = π
2
, the angle ∠APB = γ − π

2
. By putting together what has

been observed, we have demonstrated that as Δθ shrinks to 0,

f(θ + Δθ) − f(θ)

Δs
closes in on the ratio

AB

BP
and this in turn on tan(γ − π

2
).

So we have verified that lim
Δθ→0

f(θ + Δθ) − f(θ)

Δs
= lim

Δθ→0

AB

PB
= tan(γ − π

2
) and have arrived at

the geometric interpretation

f ′(θ) = f(θ) · tan(γ(θ) − π
2
)

of the derivative f ′(θ) of a function r = f(θ) for any θ with f(θ) �= 0.

Example 3.11. Let c > 0 be a constant, and investigate the equation f ′(θ) = f(θ) · tan(γ(θ) − π
2
)

for the circle r = f(θ) = c of radius c.

Example 3.12. Consider the function r = f(θ) = 1
cos θ

. Show that the corresponding Cartesian

equation is x = 1. For any point P = (f(θ), θ) on the graph, check that γ(θ) − π
2

= θ. Use this to

confirm that f ′(θ) = f(θ) · tan(γ(θ) − π
2
).

Example 3.13. Consider the function r = f(θ) = sin θ. Its graph is the circle of Figure 3.14. Let

P = (f(θ), θ) be any point on the circle. Show that γ(θ) − π
2

= π
2

− θ (by using a property of isosceles

triangles) and that sin(π
2

− θ) = cos θ and cos(π
2

− θ) = sin θ (by using trig formulas developed

earlier in this chapter). Confirm the identity f ′(θ) = f(θ) · tan(γ(θ) − π
2
).

3F. The Lengths of Polar Curves. In this section and the next, it will be assumed that the

reader has an understanding of the basic aspects of integral calculus, in particular the definition of

the definite integral, the fundamental theorem of calculus, as well as the substitution method.

We begin by extracting some more information from the analysis that verified the equality

f ′(θ) = f(θ) · tan(γ − π
2
). Let a and b be constants with a < b. Assume that the function r = f(θ)

is differentiable for all θ with a < θ < b (this means that the limit at the beginning of section 3E

exists for these θ) and that f(θ) and its derivative f ′(θ) are both continuous for all a ≤ θ ≤ b. The

focus will be on the length L of the graph of r = f(θ) between the points (f(a), a) and (f(b), b).

We’ll suppose that f(θ) ≥ 0 (but note that our conclusions hold without this assumption) and apply

the strategy of integral calculus.
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Let n be a large number and consider a set of numbers

a = θ0 < θ1 < θ2 < · · · < θi < θi+1 < · · · < θn−1 < θn = b

that divide the angle b − a into n angles of equal size b−a
n

= dθ. Each θi is an angle in radian measure

and the difference between consecutive angles is dθ. The rays determined by θ0, . . . , θn−1, θn divide

the graph of r = f(θ) between the points (f(a), a) and (f(b), b) into n pieces. Letting the lengths

of these pieces be L0, . . . Ln−1, we get that L = L0 + · · · + Ln−1. Turn to Figure 3.25. Let θ = θi be

any of the angles selected and note that θi+1 = θ + dθ. The point P = (f(θ), θ), the segment

of the graph of length Li, and the arc of a circle of radius f(θ) are all shown in red in the

figure. We will now derive an approximation of Li. Return to Figure 3.23 and its explanation

and add the tangents at P of both the graph of r = f(θ) and the circular arc to Figure 3.25

in green. The earlier Δθ and Δs are now written as dθ and ds. Suppose that dθ is extremely

small. A look at Figures 3.23 and 3.24 tells us that Li is essentially equal to the length of

the segment AP on the tangent to the graph at P . Recall from the earlier discussion that

ΔABP is essentially a right triangle with hypothenuse AP and hence that AP ≈ √
AB2 + BP 2.

Return to this earlier discussion once more and observe that BP ≈ ds and AB ≈ f(θ + dθ) − f(θ).

. . .

. . .

i

i+1

    = b

2
1

0

O

n A
B P

d

r = f( )
n-1θ

θ θ

θ a =    

θ 
θ 

θ 

θ 
θ 

θ

=

Figure 3.25

Because dθ = ds
f(θ)

, it follows that BP ≈ ds = f(θ)dθ. Because dθ is very small, f(θ+dθ)−f(θ)
dθ

≈ f ′(θ)
and hence

AB ≈ f(θ + dθ) − f(θ) ≈ f ′(θ) dθ.

Therefore, Li ≈ AP ≈ √
BP 2 + AB2 ≈ √

f(θ)2(dθ)2 + f ′(θ)2(dθ)2 =
√

f(θ)2 + f ′(θ)2 dθ. Because

L = L1 + · · · + Ln, it is a consequence of the definition of the definite integral that the length

L of the graph of r = f(θ) between the points (f(a), a) and (f(b), b) is

L =

∫ b

a

√
f(θ)2 + f ′(θ)2 dθ
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Example 3.14. Consider a circle of radius c and an arc of length s on the circle. Put the circle

into a plane with a polar coordinate system so that its center is at the polar origin O. Let the end

points of the arc be given by the rays θ = a and θ = b, where 0 < a < b. Express s as a definite

integral. Evaluate the integral to show that s = c(b − a).

Example 3.15. Use the arc length formula to determine the length of the graph of r = sin θ from

θ = π
4

to θ = 3π
4

, then from θ = 0 to θ = π, and finally from θ = 0 to θ = 2π. Check your answers

by referring to the graph of f(θ) = sin θ in Figure 3.14.

Example 3.16. Use the arc length formula and fact that the Cartesian equation of the polar

equation r = 1
sin θ

is the line y = 1 to evaluate the integral

∫ 3π
4

π
4

1

sin2 θ
dθ .

3G. Areas in Polar Coordinates. This section studies the area of a region determined by the

graph of a function in polar coordinates. The conclusions will play an important role in Chapter 4

in the analysis of the motion of a point-mass driven by a centripetal force. See Chapter 1D for the

context.

Let r = f(θ) be a continuous function defined on an interval a ≤ θ ≤ b. The graph of a typical

situation is shown in Figure 3.26. Our concern is the computation of the area A of the highlighted

region. It is the area that the segment from the origin O to the point (f(θ), θ) sweeps out as it

A

O

b r = f(  )θ=  θ

a=  θ

Figure 3.26

rotates from the ray θ = a to θ = b. In general, there can be an overlap of areas, possibly multiple

times, and each of these overlaps is counted. If b − a ≤ 2π, then there is no overlap. Once again

we’ll facilitate our argument by assuming that f(θ) ≥ 0 (but the conclusions hold without this

assumption).

As before, let n be a very large number and chop the angle b − a into n equal pieces. So

a = θ0 < θ1 < · · · < θi−1 < θi < · · · < θn−1 < θn = b

with θi+1 − θi = b−a
n

= dθ for 0 ≤ i ≤ n − 1. Observe that the rays determined by θ0, . . . , θn divide

the area A into n pie-shaped regions as illustrated in Figure 3.27. Let A0, . . . , Ai, . . . , An−1 denote

their respective areas and observe that A = A0 + · · · + Ai + · · · + An−1. Let θ = θi be any of the
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. . .
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angles selected and draw a circular arc with center the origin O and radius f(θ) from the ray

determined by θ to the ray given by θi+1 = θ + dθ. Consider the circular sector determined by this

arc and the two rays. Figure 3.28 shows the circular sector and the relevant part of the graph of

the function. Since f(θ) is the radius of the circular arc, the area of the circular sector is 1
2
f(θ)2dθ.

radius  f(  )

graph of f

O

Ai
( f( ), )

θ

dθ

θ

θ θ

circular arc

Figure 3.28

Because dθ is very small, the area Ai is essentially equal to the area of the sector. The fact that

A = A1 + · · · + An−1 in combination with the definition of the definite integral informs us that

A =

∫ b

a

1
2
f(θ)2 dθ
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Example 3.17. Apply the area formula to the function r = f(θ) = 5 to show that the area of a

quarter circle of radius 5 is 25
4
π.

The two examples that follow test the area formula in situations where its conclusion can be

determined by other means. Consider the function r = f(θ) = c for 0 ≤ θ ≤ 4π and c > 0 a constant.

Its graph is the circle of radius c traced out twice. So it must be the case that
∫ 4π

0

1
2
f(θ)2dθ =

∫ 4π

0

1
2
c2dθ = 2(πc2).

Because G(θ)=1
2
c2θ is an antiderivative of g(θ) = 1

2
c2, the fundamental theorem of calculus confirms

that ∫ 4π

0

1
2
f(θ)2dθ = 1

2
c2θ

∣
∣
∣
4π

0
= 2πc2.

Consider the area A of the region bounded by the graph of the function f(θ) = sin θ and the rays

θ = π
4

and θ = 3π
4

. Refer to Figure 3.14 and notice that this region consists of a half-circle of radius
1
2

plus a triangle of height 1
2

and base 1. So A is equal to 1
2
π(1

2
)2 + 1

4
= π

8
+ 1

4
. The area formula

applied to this situation tells us that

A =

∫ 3π
4

π
4

1
2
sin2 θ dθ .

Does this provide the same result? The half-angle formula sin2 θ = 1−cos 2θ
2

informs us that

A=

∫ 3π
4

π
4

1
2
sin2 θ dθ =

∫ 3π
4

π
4

1
4
(1 − cos 2θ)dθ = (1

4
θ − 1

8
sin 2θ)

∣
∣
∣
∣

3π
4

π
4

= (3π
16

+ 1
8
) − ( π

16
− 1

8
) = π

8
+ 1

4
.

Again, the result of the formula agrees with what the geometry provided.

Example 3.18. Study the graph of the polar function r = f(θ) = sin θ in Figure 3.14 over the

interval 0 ≤ θ ≤ π. Use your observations to evaluate the integral

∫ π

0

1
2
sin2 θ dθ . Then evaluate the

integral again by using the half-angle formula sin2 θ = 1−cos 2θ
2

.

Example 3.19. Use facts from the earlier analysis of the parabola in polar coordinates to verify

that the upper half of the parabola r = f(θ) = 2
1+cos θ

is the graph of the function

y =
√

4 − 4x in Cartesian coordinates. Apply this fact (and integration by substitution) to show

that

∫ π
2

0

2
(1+cos θ)2

dθ = 4
3
.

Example 3.20. The graph of the function r = f(θ) = 4
1+ 1

5
cos θ

is an ellipse. Use results from the

earlier analysis of the ellipse in polar coordinates to find its semimajor axis a and semiminor axis b.

Then use the fact that the area of this ellipse is abπ to show that

∫ π

0

8
(1+ 1

5
cos θ)2

dθ =
(

5√
6
)3π.

Return to Figure 3.26, and assume that the graph of r = f(θ) is traced out by a point P moving

counterclockwise around O. So the angle θ that determines the position (f(θ), θ) of the point is

an increasing function θ = θ(t) of time t. Suppose that P is at (f(a), a) at time t1 and that it
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is at (f(b), b) at time t2. So θ(t1) = a and θ(t2) = b. Figure 3.29 captures the added information.

Applying the method of integration by substitution with θ = θ(t) to the polar area formula shows

that the area that the segment OP traces out over the time interval [t1, t2] is equal to
∫ t2

t1

1
2
f(θ(t))2 θ′(t) dt =

∫ θ(t2)

θ(t1)

1
2
f(θ)2 dθ =

∫ b

a

1
2
f(θ)2 dθ = A.

Suppose that P moves along the circle f(θ) = sin θ of Figure 3.14. Confirm that as θ varies

from θ = 0 to θ = π, the entire area π(1
2
)2 = 1

4
π ≈ 0.7854 of the circle is traced out. Assume that

the point starts at O = (f(0), 0) at time t = 0 and moves counterclockwise around the circle at a

constant angular speed of θ′(t) = 1
2

radians per second. Since θ(0) = 0, it follows that θ(t) = 1
2
t

A

O

( f(  ),   )position at  t1

position at t0

 (t)θ

θP = θ

a=θ (   )t0

b=θ (   )t1

Figure 3.29

radians for any t ≥ 0. At time t = 4 seconds, P has reached the point (f(θ(4)), θ(4)) = (f(2), 2).

By the above formula, the area A traced out by the segment OP during the time from t = 0 to

t = 4 is

A =

∫ 4

0

1
2
(sin θ(t))2 θ′(t) dt =

∫ 2

0

1
2
sin2θ dθ.

Using sin2 θ = 1−cos 2θ
2

, we get A = 1
4

(
θ − 1

2
sin 2θ

) ∣
∣
∣
2

0
= 1

2
− 1

8
sin 4 ≈ 0.5000 + 0.0946 = 0.5946. Since

0.5946
0.7854

≈ 0.7571, the segment sweeps out about 76% of the area of the circle during the 4 seconds.

3H. Spiral Galaxies and Equiangular Spirals. We observed in Chapter 1J that the spiraling

arms of galaxy M51 consist of dust and pressurized hydrogen and that they are the galaxy’s factories

of new, hot stars. The Eagle Nebula, Messier designation M16, is such a new star factory in our own

spiral galaxy, the Milky Way. It is a huge collection of clouds of hydrogen gas and dust. Depicted in

Figure 3.30, the Eagle Nebula is approximately 70 light years by 55 light years across. Gravitational

interactions put the clouds under pressure and contract them. With enough gas contracting and

collapsing, nuclear reactions are ignited, and the compact clouds are transformed into bright stars.

This kind of process created our Sun about 5 billion years ago.

Surrounding the center of a spiral galaxy is the galaxy’s bulge, an enormous group of older,

yellow and red stars. There is strong evidence that a spiral galaxy has an incredibly dense, tightly

packed mass of matter at the center of its bulge. Such a mass exerts a gravitational force so strong
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that not even light can escape from it. Such masses are therefore invisible and are called black holes.

Until recently, the evidence for their existence has been indirect. The fact that some stars are seen

to be in rapid revolution around seemingly nothing at all, told us that there are massive invisible

objects that exert powerful gravitational forces. Incredibly, a global network of telescopes calibrated

to act together, has now captured an image of a black hole (more accurately, an image of the dark

spot defined by the visible matter surrounding it) in a distant galaxy. See

https://solarsystem.nasa.gov/resources/2319/first-image-of-a-black-hole/

Everything in the disk of a spiral galaxy, including the galaxy’s multitude of stars and its masses

of dust and gases, revolves in elliptical orbits around the galaxy’s center of mass as Kepler’s second

Figure 3.30. The Eagle Nebula, also known as M16, is a several million year old star cluster (this is very young by
astrophysical standards) surrounded by clouds of hydrogen dust and glowing gas. The image shows dusty columns
that are light-years in length. Under the force of gravity, they collapse and contract to form stars. Many thanks to
astrophotographer Russell Croman for capturing the image and permitting its use.

law predicts. As is the case in our solar system, objects closer to the center of mass move at greater

speeds in their orbits than those farther away. (Refer to Tables 2.1 and 2.4 for instance.) This fact

in combination with the gravitational interactions between the orbiting masses within the galaxy

causes the individual elliptical orbits to rotate, so that they change their orientations and align them-

selves as shown in Figure 3.31. Observe from Figure 3.31b that these rotations create spiral shaped

regions of matter of greater density. The hydrogen gas and dust in such regions are under gravita-

tional pressure and form the kind of star-creating clouds described earlier. Because new stars are

brightest, this accounts for the fact that in spiral galaxies there are prominent threads of bright stars

https://solarsystem.nasa.gov/resources/2319/first-image-of-a-black-hole/


3H. Spiral Galaxies and Equiangular Spirals 151

(a)          (b)

Figure 3.31

that wind their way through the galaxy’s spiral arms.

The spiral galaxy with Messier designation M106 is 23.5 million light years from our own Milky

Way and about 80,000 light years across. Figure 3.32 displays its dark dust lanes with their clusters

Figure 3.32. The spiral arms of galaxy M106 and the many young blue stars that course through them are captured
by this composite portrait that used both Hubble exposures and images from ground-based telescopes. Image credit:
NASA/ESA Hubble Space Telescope, and the Hubble Legacy Archive, a collaboration of the Space Telescope Science
Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian
Astronomy Data Centre (CADC/NRC/CSA).
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of young, blue stars and pinkish star-forming regions. They spiral toward the bright bulge of older

yellowish stars. A closer look also shows structures that are not aligned with the flow of these spirals.

Seen in red hues are sweeping filaments of glowing hydrogen gas that rise from the central bulge.

They are thought to be powered by the galaxy’s central black hole. The black hole of M106 is massive.

It is believed to be about 30 million times as massive as our Sun. (By contrast, the Milky Way’s

central black hole is about 4 million times more massive than the Sun.) The enormous gravitational

pull of the galaxy’s black hole arranges the surrounding galactic matter into an orbiting disk. The

matter near the inner rim of this disk are under great pressure and become very hot. Some of this

matter is sucked into the black hole, but some of it is flung back into the galaxy. These materials

along with streams of radiation slam into galactic material along the way and create the reddish

fibrous formations that are observed.

Observations have shown that for a majority of spiral galaxies the prominent curves of their

star-forming arms follow the geometry of an equiangular spiral. Such spirals have the property that

the angle γ = γ(θ) defined in Figure 3.21 is constant throughout the entire flow of the spiral. See

Figure 3.33. In spite of the fact that galaxies are places of constant turbulence, disruptions, and

γ

γ

γ

γ

γ

1

Figure 3.33

explosive events, the expanding arms of these galaxies follow such a geometry “in the large.”

The seventy-fourth entry in Messier’s catalogue is a formation of stars discovered in 1780 in

the constellation Pisces. Through the small telescope of an amateur observer M74 appears as a

faint patch of light. Today’s powerful advanced telescopes have informed us that M74 is a galaxy

about 32 million light-years away from Earth, that it is about 30,000 light-years across, and that

it contains about 100 billion stars. Figure 3.34 shows the galaxy face-on as it is seen from Earth.
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Figure 3.34. This Hubble image of M74 is a composite of exposures taken in 2003 and 2005 at visible and infrared
wavelengths. A small patch used data from the Canada-France-Hawaii Telescope and the Gemini Observatory to fill
in what Hubble did not observe. Image credits: NASA, ESA, and The Hubble Heritage Team (STScI/AURA).

The galaxy’s two spiral arms curve outward from its bulge. They feature dark lanes of cosmic dust

and are dotted with clusters of hot, young stars. Bright knots of reddish glowing gas light up the

spiral arms in environments rich in star formation. M74 is a classic example of what is known as a

“grand-design” spiral galaxy.

A pair of identical equiangular spirals is superimposed over the bluish lanes of the galaxy’s arms.

Their angle γ lies between 108◦ and 108.5◦. In spite of the turbulence that the galaxy experiences,

the galaxy’s expanding arms are in close alignment with the two smooth geometric spirals.

We now turn to the mathematical description of equiangular spirals. They are the graphs of

differentiable polar functions of the form r = f(θ) with the property that the angle γ = γ(θ) defined

in Figure 3.21 is constant. Let r = f(θ) be such a function. Since γ = γ(θ) is constant, c = tan(γ − π
2
)

is a constant as well. A basic property of the derivative of a polar function developed in section 3E

tells us that f ′(θ) = f(θ) · tan(γ(θ) − π
2
). Therefore, f(θ) satisfies
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f ′(θ) = cf(θ).

Because the equation involves a function and its derivative it is called a differential equation. The

fact that f(θ) satisfies this equation implies that

f(θ) = Aecθ,

where A is the constant A = f(0). This is easily verified. By the quotient rule,

d
dθ

f(θ)
ecθ = f ′(θ)ecθ−f(θ)·cecθ

e2cθ = 0.

So f(θ)
ecθ is a constant. Set it equal to A, to get f(θ) = Aecθ. Since e0 = 1, A = f(0), and

f(θ) = f(0)etan(γ− π
2
)θ.

If γ = π
2
, then f(θ) = f(0)e0. The graph is a circle of radius f(0). If γ > π

2
, then the graph is a

spiral that expands uniformly as it turns in a counterclockwise direction. If γ < π
2
, then f(θ) is a

decreasing function of θ, and the graph is a spiral that contracts uniformly in a counterclockwise

direction. Figure 3.33 shows the graph of the equiangular spiral

f(θ) = etan(γ− π
2
)θ

with γ = 99.65◦ and tan(γ − π
2
) = 0.170. For the spirals of M74, tan(γ − π

2
) ≈ tan 18◦ ≈ 0.33.

Because of the tight connection between the exponential function and logarithms, equiangular spi-

rals are also called logarithmic spirals.

Let’s turn to consider our own galaxy, the Milky Way. It goes without saying that, given the

distances involved, it is not possible to send a spacecraft to examine our galaxy from afar. So any

assessment of its structure must be carried out from within. Figure 3.35 tells us what our Milky Way

looks like when viewed from the souther hemisphere. A comparison of this image with that of galaxy

NGC 891 of Figure 1.30 suggests that the Milky Way is a spiral galaxy. Astronomers confirmed some

time ago that this is so. We know today that the Milky Way is a disk with a diameter of about

100,000 light-years. Current estimates put the thickness of the disk at around 1,000 light-years. If

we could look at the Milky Way at an angle, it would look similar to the galaxy M31 depicted in

Figure 1.29. If we could view the Milky Way from a distance edge-on, what we would see would

resemble the depiction of galaxy NGC 891 of Figure 1.30. Like NGC 891, our galaxy has an equator

and an equatorial plane. Our Sun is just one of more than two hundred billion stars that reside

in our galaxy. Positioned in one of the spiral arms, it is about 26,000 light-years from the galaxy’s

center and about 14 light years from the galaxy’s equatorial plane. So our solar system lies close to

the galaxy’s equatorial plane and about half-way between its center and the disk’s perimeter. Just

as the Earth-Moon system is in orbit around the Sun, our solar system is in orbit around the Milky

Way’s center of mass. It takes our solar system one “galactic year” or between 200 and 250 million

Earth years to complete one orbit.

The determination of the particulars of our galaxy’s structure has been a challenge. This is not

surprising, given that our solar system is tucked away in one of the galaxy’s arms and that the
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Figure 3.35. Our Milky Way rising skyward from the Salar de Atacama salt flat in northern Chile above the lights
of a nearby town. Image credit to and copyright held by Alex Tudorica of the University of Bonn. His permission to
use this image is gratefully acknowledged.

probing eyes of our instruments need to peer through or around huge clusters of dark interstellar

clouds along the galactic plane. Even basic questions have been difficult to answer. The study of

infrared images from NASA’s Spitzer Space Telescope has revealed that our galaxy has two major

spiraling arms instead of four, as was previously thought. In addition, there are two minor arms

that emanate from the ends of the bulge to rise between the two major arms.

In December 2013, the European Space Agency (ESA) sent the spacecraft Gaia into orbit around

the a gravitational equilibrium point of the Sun-Earth system. The craft has been studying our
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galaxy from this vantage point ever since. With its two powerful telescopes Gaia has been making

accurate measurements of the position, movement, and brightness of more than a billion stars of our

galaxy (about 1% of the total). During its lifetime, Gaia will have observed each of its one billion

stars about 70 times, providing a record of the position, velocity, and brightness of each of these

stars over time. The main goal of the mission is to use the information about these billion stars to

make the largest, most precise three-dimensional map of our galaxy. As an important step in this

direction, the ESA released its second “galactic census” of detailed, high-precision data about our

galaxy’s stellar objects in April of 2018. The image of Figure 3.36 is a result of the data that Gaia

Figure 3.36. This image of the Milky Way is not a photograph but the projection of a three dimensional graph of
the locations of the stars detected by the Gaia spacecraft onto a plane. Brighter regions indicate higher concentrations
of stars. Darker regions correspond to dense, interstellar clouds of gas and dust that absorb starlight along the line
of sight. The plane of the Milky Way, where most of the galaxys stars reside, runs horizontally across the center.
Image credit: ESA/Gaia − CC BY-SA 3.0 IGO https://creativecommons.org/licenses/by-sa/3.0/igo/.

captured. The two bright objects in the lower right of the image are the large and small Magellanic

Clouds, two dwarf galaxies orbiting the Milky Way.

Given that the data being accumulated by Gaia are unprecedented in terms of their accuracy and

breadth, it seems likely that the analysis of the complete record will revolutionize our understanding

of the formation, evolution, and structure of our galaxy. In particular, a combination of the distance

and brightness information of the stars of our galaxy should add clarity to our understanding of

its spiral structure. Another recent study, relying on a careful assessment of the location of certain

types of standard candles (a class of objects whose distances can be computed by comparing their

observed brightness with their known luminosity) has shown that the disk of the Milky way is

slightly curved. The glowing strip that Figure 3.36 depicts has the shape of a stretched ∼.

There is no question that we have learned many astonishing things about our planet, our solar

system, our galaxy, and the universe as a whole, since the Scientific Revolution. It is also clear

that the advances in technology have greatly speeded up the learning curve. Making this point is a

https://creativecommons.org/licenses/by-sa/3.0/igo/
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central purpose of the first three chapters of this text. On the other hand, we are also finding that

there are large areas of the jigsaw puzzle of the universe that we don’t understand at all.

Consider the galaxies depicted in Figures 3.32 and 3.34 for instance. While they are depicted

as static things, they are (of course) in motion. We saw in the explanation of Figure 3.31 that the

farther a star is from a galaxy’s center, the slower it will move in its orbit around the galactic center.

So the stars at the edges of a spiral galaxy should travel much more slowly than those in or near its

bulge. But recent observations have shown that stars seem to orbit at more or less the same speed

regardless of where they are in the galactic disk. How is one to explain this apparent contradiction?

The explanation is that the stars of a galaxy, especially those near the edge, are subject to the

gravitational effects of invisible masses of matter that permeate the galaxy. Even though they do

not have an answer to the question of what such dark matter actually is, astrophysicists do have a

sense of how much there is in the universe and how it is distributed. The amount of such dark matter

can be estimated by comparing a galaxy’s motion as observed, against the motion that is calculated

under the assumption that the matter of the galaxy that is seen is all there is. What makes this

possible is gravitational lensing. The fact is that the gravitational force exerted by matter in the

universe, especially a large clump of matter such as a galaxy, bends the electromagnetic radiation

that passes near it. This is so far all matter, including dark matter. When light from a very distant

source is bent by a galaxy that lies between an observer on Earth and the source, the light-bending

galaxy acts like a lens. The source appears highly distorted and multiple images of it can be observed

around the lensing galaxy. The analysis of this effect tells us about the total mass of the light-bending

galaxy. By subtracting the mass of its stars, dust, and gas, it is possible to estimate the properties

and the amount of its dark matter. A team of over 400 scientists using this approach in ongoing

studies have measured the shapes of 26 million galaxies to directly map the patterns of dark matter

over billions of light-years. One of the conclusions is that 27% of everything in the universe is dark

matter.

And the plot thickens. In the early 1990s, one thing was fairly certain about the expansion of the

universe. Since the universe is full of matter and the attractive force of gravity pulls matter together,

astrophysicists were assuming that the attractive force of gravity would slow down the expansion

of the universe over time. But then came the observations via the Hubble Space Telescope of very

distant supernovas that showed that the expansion was actually speeding up. One scientist likened

the finding to throwing a set of keys up in the air expecting them to fall back down—only to see

them fly straight up toward the ceiling. No one expected that the expansion of the universe would

be accelerating and no one as yet knows how to explain this phenomenon. However, the solution

has been given a name. It is called dark energy. We know how much dark energy there is because we

know how it affects the universe’s expansion. It turns out that roughly 68% of the universe is dark

energy and hence that dark matter and dark energy comprise 95% of the total matter and energy of

the universe. It follows that all ordinary matter and energy observed in the universe with all of our

sophisticated telescopes and space probes—detecting electromagnetic radiation of all frequencies,

ranging from gamma ray, ultraviolet, visible, infrared, radio waves, and beyond—adds up to about

5% of the total.
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3I. Problems and Discussions. It is the primary purpose of this section to provide the reader

with opportunities to think about the mathematics that this chapter sets out and to engage the

problem solving methods that it presents.

1. Points and Equations in Polar and Cartesian Coordinates. These problems list

points and equations in polar coordinates and consider their Cartesian equivalents. Conversely,

they list points and equations in Cartesian coordinates and ask about their polar versions. The

graphs of polar equations and functions in polar coordinates are considered as well.

Problem 3.1. For each of the points given in polar coordinates below, find the unique correspond-

ing Cartesian coordinates. Use a calculator to determine numerical versions of the coordinates.

i. (0, π
3
)

ii. (5, π
6
)

iii. (7, 5π
4

)

iv. (−6,−9π
4

)

v. (7, 10)

vi. (−3,−20)

Problem 3.2. For each of the given points in Cartesian coordinates, find the only corresponding

polar coordinates (r, θ) with −π
2

< θ ≤ π
2
. Use a calculator to do so. Then find two more sets of

polar coordinates for each point.

i. (4, 5)

ii. (−2, 10)

iii. (−7,−5)

iv. (6,−15)

Problem 3.3. Express each of the Cartesian equations below in polar coordinates. Write the answer

in the form r = f(θ) when possible.

i. 2x + 3y = 4

ii. x2 + y2 = 4y

iii. x2 + y2 = x(x2 − 3y2)

Problem 3.4. Write each of the polar equations as an equation in Cartesian coordinates.

i. r = 5

ii. r = 3 cos θ

iii. tan θ = 6

iv. r = 2 sin θ tan θ
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Problem 3.5. Sketch the graph of each equation. For a complete understanding of the graph, it

may be necessary to convert the equation to Cartesian coordinates.

i. r = −6

ii. θ = −8π
6

iii. r = 4 sin θ

iv. r(sin θ + cos θ) = 1

Problem 3.6. Produce a table for cos θ that is analogous to Table 3.1. Sketch a graph of r = cos θ.

Confirm that the graph is a circle with center (1
2
, 0) (in either polar and Cartesian coordinates) and

radius 1
2
.

Problem 3.7. Any line in the xy-plane has an equation of the form ax + by + c = 0, where a, b,

and c are constants. Find a polar function r = f(θ) that has this line as its graph.

Problem 3.8. Sketch the graphs of the equations below. Do so by making use of the Cartesian

versions of the equations.

i. r =
2

1 + cos θ
and r =

6

1 + cos θ
.

ii. r =
2

1 + 1
5
cos θ

and r =
5

1 + 1
2
cos θ

.

iii. r =
3

1 + 2 cos θ
and r =

1
2

1 + 5 cos θ
.

Problem 3.9. In each case determine the equation (∗) (refer to Section 3D) with the property that

its graph satisfies the listed condition.

i. a parabola with distance between focus and directrix equal to 10.

ii. an ellipse with semimajor axis a = 8 and semiminor axis b = 5.

iii. an hyperbola with semimajor axis a = 8 and semiminor axis b = 5.

2. Conic Sections in Polar Coordinates. Let C be any conic section. A part of C is shown

in Figure 3.37 below. Place a polar axis in such a way that O is at a focus, the polar axis lies on the

focal axis of the conic section, and the polar axis points outward as shown. Problems 3.10 to 3.14

have this figure as their starting point. All problems involve equation (∗) of Section 3D.

Problem 3.10. Let C be a parabola. In equation (∗) set ε = 1 and take d to be the distance

between the focus and the directrix of C. Why is the graph of (∗) identical to the parabola C?



160 3 Calculus of Functions in Polar Coordinates

Problem 3.11. Let C be the ellipse with semimajor axis 7 and semiminor axis 4. Determine ε and

d so that the graph of (∗) is identical to the ellipse C.

O

C

Figure 3.37

Problem 3.12. Let C be the hyperbola with semimajor axis a = 5 and semiminor axis b = 3.

Determine ε and d so that the left branch of the graph of (∗) is the hyperbola C.

Problem 3.13. Let a and b be positive constants with a ≥ b. Suppose that C is the ellipse with

semimajor axis a and semiminor axis b. For what d and ε is the graph of (∗) identical to the ellipse

C?

Problem 3.14. Let a and b be positive constants. Suppose that C is a hyperbola with semimajor

axis a and semiminor axis b. For what d and ε is the left branch of the graph of (∗) identical to the

hyperbola C?

Problem 3.15. Project: Let ε ≥ 0 and d > 0 be constants. Modify the study of r = d
1+ε cos θ

to

analyze the polar equation r = d
1+ε sin θ

and its graph. [Hint: In terms of the final results, the only

difference turns out to be the orientation of the conic section. To get a sense of the difference,

compare the graph of r = cos θ (see Problem 3.6) with that of r = sin θ.] The functions r = f(θ) =
d

1−ε cos θ
and r = f(θ) = d

1+ε sin θ
also represent all the conic sections that have the origin as a focal

point after they are shifted and rotated. Their study is also very similar to the study of equation (∗).

3.Derivatives of Polar Functions. The next set of problems deal with derivatives of polar

functions. We’ll start with the function

r = f(θ) =
d

1 + ε cos θ

with r > 0 and θ restricted to −π ≤ θ ≤ π.

Problem 3.16. Compute the derivative of the function r = f(θ). Show that r = f(θ) is decreasing

for θ ≤ 0 and increasing for θ ≥ 0, so that r = f(θ) reaches its minimum value d
1+ε

when θ = 0.

Discuss the question of the existence of the maximum value of r = f(θ).

Problem 3.17. Consider the function f(θ) = cos θ and its graph (from Problem3.6). Study the

graph of f over each of the intervals 0 ≤ θ ≤ π
2
, π

2
≤ θ ≤ π, π ≤ θ ≤ 3π

2
, and 3π

2
≤ θ ≤ 2π to confirm

that r = f(θ) respectively, decreases, decreases, increases, and increases over these intervals. Then

compare this to the behavior of f ′(θ) = − sin θ over each of the same intervals.
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Problem 3.18. Consider the polar function f(θ) = 1
sin θ

. Sketch its graph after converting it to

Cartesian coordinates. Show that γ(θ) = θ and then verify the equality f ′(θ) = f(θ) · tan(γ(θ) − π
2
).

[Hint: The equality f ′(θ) = f(θ) · tan(γ(θ) − π
2
) relies on the trig identities cos(θ − π

2
) = sin θ and

sin(θ − π
2
) = − cos θ. Check these identities first.]

Problem 3.19. Check the equality f ′(θ) = f(θ) · tan(γ(θ)−π
2
) for the polar function f(θ)= cos θ.

[Hint: By a property of isosceles triangles, γ(θ) = π
2

− θ.]

Problem 3.20. Consider the line r = f(θ) = 1
sin θ−cos θ

. Sketch the graph of this function and show

for any point (r, θ) on the graph that γ(θ) = θ − π
4
. It follows that tan(γ(θ) − π

2
) = tan(θ − 3π

4
). Use

the formulas for the sine and cosine of the sum of two angles, to show that tan(θ − 3π
4

) = sin θ+cos θ
cos θ−sin θ

.

Then verify the formula f ′(θ) = f(θ) · tan(γ − π
2
).

Problem 3.21. Consider Figure 3.22a. Suppose that P is a point on the graph such that the graph

of r = f(θ) lies below the red circular arc to the left of P . Sketch such a situation and go through

the derivation of the equality f ′(θ) = f(θ) · tan(γ − π
2
) to verify that it is valid in this case as well.

Consider a function r = f(θ) that is increasing and continuous. The fact that r increases with

increasing θ, tells us that as the ray determined by θ rotates counterclockwise, the corresponding

r = f(θ) increases. So the graph of r = f(θ) is a spiral that opens in a counterclockwise way. (The

spiral may “wobble” in the sense that the increase in r may vary from smaller to larger, back to

smaller, and so on.)

Problem 3.22. Let c > 0 and consider the function r = f(θ) = cθ. It’s graph is an Archimedean

spiral. Sketch it from θ = 0 to θ = 2π. Study the rate of expansion of this spiral by analyzing the

equality f ′(θ)
f(θ)

= tan(γ(θ) − π
2
). What can you say about γ for small positive θ? For large positive θ?

Problem 3.23. It was shown in the last part of the chapter that the graph of a function r = f(θ)

with the property that the angle γ(θ) = γ is constant is an equiangular spiral and that the function

has the form f(θ) = f(0)etan(γ− π
2
)θ. Verify the equality f ′(θ) = f(θ) · tan(γ − π

2
) for such a function.

4.Definite Integrals of Polar Functions. This segment considers the definite integrals of

polar functions that arise as the lengths of various polar curves and the areas bounded by them.

Problem 3.24. Use an integral formula for the length of a polar graph to determine the length

of the graph of r = f(θ) = sin θ from θ = 0 to θ = π, then from θ = 0 to θ = 2π, and finally from

θ = 0 to θ = 3π. Explain your answers by referring to the graph of r = sin θ in Figure 3.14.

Problem 3.25. Use the graph of the polar function r = f(θ) = sin θ (again refer to Figure 3.14)

to evaluate the integrals

∫ π

0

1
2
sin2 θ dθ and

∫ 2π

0

1
2
sin2 θ dθ . Then evaluate the integrals again, this

time directly, by using the half-angle formula sin2 θ = 1−cos 2θ
2

.
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Problem 3.26. Consider the graph of the function r = f(θ) = 1
sin θ

over the interval π
4

≤ θ ≤ 3π
4

.

Set up an integral that represents the length of the graph and another that represents the area

bounded by the graph and the lines θ = π
4

and θ = 3π
4

. Use the fact that the Cartesian equation of

the polar equation r = 1
sin θ

is the line y = 1 to compute these integrals.

Problem 3.27. Consider the circle (x − 1)2 + (y − 1)2 = 2. Find a polar function r = f(θ) that

has this circle as its graph. Use the graph of the circle to evaluate the integrals

∫ π
2

0

1
2
f(θ)2 dθ and

∫ π
2

0

√
f(θ)2 + f ′(θ)2 dθ .

Problem 3.28. Study the graph of the polar function r = f(θ) = 4
cos θ

over the interval 0 ≤ θ < π
2

by using Cartesian coordinates. Use your conclusions to evaluate the integral

∫ π
3

0

8
cos2 θ

dθ . Do so

by interpreting the integral as an area and then again by interpreting it as a length.

Problem 3.29. Study the graph of the function r = f(θ) = 3
sin θ+2 cos θ

by using Cartesian coordi-

nates. Use your study to evaluate the integrals

∫ π
2

0

1
2
f(θ)2 dθ and

∫ π
2

0

√
f(θ)2 + f ′(θ) dθ .

Problem 3.30. Consider the graph of the function r = f(θ) = 2
1+cos θ

. What does the integral
∫ π

2

0

2
(1+cos θ)2

dθ represent? Convert the function r = f(θ) to a function in Cartesian coordinates

and evaluate the integral.

Problem 3.31. Consider the graph of the function r = f(θ) = 4
1+ 1

3
cos θ

. Use the formula A = abπ

for the area of an ellipse with semimajor axis a and semiminor axis b to evaluate

∫ π

0

8
(1+ 1

3
cos θ)2

dθ .

Problem 3.32. Study the solutions of Problems 3.25, 3.28, 3.30, and 3.31 and then evaluate the

integrals

∫ π

0

sin2 x dx,

∫ π
3

0

1
cos2 x

dx,

∫ π
2

0

1
(1+cos x)2

dx, and

∫ 2π

0

1
(1+ 1

3
cos x)2

dx.

Problem 3.33. Consider the equiangular spiral f(θ) = 1
7
e

θ√
3 over the interval [0, 2π]. What is the

constant angle γ for this spiral? Determine the length of the spiral and the area that it encloses.

Problem 3.34. Consider the equiangular spiral given by the function r = f(θ) = 1
4
etan(γ− π

2
)θ with

γ = 3π
4

. Find the length of the spiral from θ = 0 to θ = 4π and also the area enclosed by this part

of the spiral. [The second part of the problem requires care.] To get a sense of what is involved,

use the millimeter as the unit of length, plot the points on the spiral corresponding to θ equal to

0, π
2
, π, 3π

2
, and 2π and sketch the spiral over 0 ≤ θ ≤ 2π. At this point abandon scale and draw in

a rough graph of the spiral over the interval 2π ≤ θ ≤ 4π.



3I. Problems and Discussions 163

Problem 3.35. Study Figure 3.25. Show that the length of the red circular arc from P to B is

|f(θ)| dθ. Since this approximates the length of the graph between the two rays, we see (as in the

discussion that resulted in the polar area formula) that the length L of the graph of r = f(θ) between

θ = a and θ = b is equal to

L =

∫ b

a

|f(θ)| dθ .

What about this argument and its conclusion? Why do we know that this formula is wrong? What is

the correct formula? Can you sketch a graph of a polar function where (in reference to Figure 3.25)

the difference between the length of the graph of the function and that of the corresponding

red circular arc (both between two rays from the origin that are close together) is substantial?

For example, consider the equiangular spiral r = f(θ) = 1
4
etan(γ− π

2
)θ with γ = 3π

4
over the interval

0 ≤ θ ≤ 2π. Using the millimeter as unit of length, plot the points of the spiral corresponding to

θ equal to 0, π
2
, π, 3π

2
, and 2π, and experiment. Compute the correct and incorrect integrals and

compare their values.

5. The Spiral and the Nautilus. By way of a very wide but beautiful digression, consider

the fact that spirals arise in the shell structure of a number of aquatic animals. The pearly nautilus

is an example of an ocean animal with a smoothly spiraling shell. The shell of a grown nautilus is

about 25 cm in diameter and has about 30 chambers. The animal lives in the successively developing

outermost chamber. The chambers are connected by a tube that lets the nautilus adjust the pressure

of the gases within the shell. This ability allows it to change the depth at which it is swimming. A

bottom feeder, it uses its tentacles (up to about 100 in number) for capturing prey. It lives at 300

meter depths and is most commonly observed in its natural habitat through the television cameras

of deep diving submersibles. The spiral of the nautilus is essentially equiangular. Figure 3.38 shows

the cross section of the shell of a nautilus together with an equiangular spiral that follows the

contours of the cross section rather closely. The constant angle γ of this spiral is γ ≈ 99.65◦.

Problem 3.36. Turn to the image of the shell of the nautilus in Figure 3.38 and place a polar

axis as shown. Let the rightmost point of intersection of the spiral and the polar axis correspond

to θ = 0. Let s be the distance from this point to the origin O at the eye of the spiral. Remarks

already made tell us that the spiral of the image of the shell is closely approximated by the graph

of the function f(θ) = f(0) e0.17θ = se0.17θ. What aspects of the geometry of the shell do the two

definite integrals ∫ π
3

− 13π
2

√
f(θ)2 + f ′(θ)2 dθ and

∫ π
3

− 3π
2

1

2
f(θ)2 dθ

represent at least approximately? Show that the values of these integrals are approximately equal

to 6.94s and 1.80s2, respectively. Do these values appear to be consistent with Figure 3.38?

The combination of biological and mathematical factors by which the nautilus constructs one

chamber of its shell after the other in such a way that an equiangular spiral emerges does not appear
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Figure 3.38. Image credit to Rutherford Platt, in Mathematics, Life Science Library, Time Inc., New York, 1963.
Permission of use granted by Time Inc.

to be fully understood. A question that a different forum might address is this: What is the mech-

anism that regulates the shell’s programmed sense to preserve its equiangular shape?
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Newton’s 1687 treatise Principia Mathematica—its central aspects have already been described in

Chapter 1D—had been a miracle. It was a miracle for the synthesizing and penetrating way in

which it combined basic physical laws and novel mathematical analyses to explain and confirm the

conclusions about the orbits of the planets that Kepler had reached by relying on observational

data alone. Newton provided a definitive solution to a problem that had occupied many of the

best scientific minds since the time the early Babylonian and Greek astronomers and philosophers

first began to think about the question of how the heavens worked over 3000 years ago. Whereas

Kepler discovered his three laws of planetary motion with painstaking observations, Newton came

to recognize the deeper underlying reality: all three of Kepler’s laws of planetary motion rest on a

combination of mathematical analysis, basic laws of motion, and the law of universal gravitation,

the assumption—for which there is broad and conclusive evidence—that the magnitude of the

gravitational force between two bodies in the universe is proportional to the product of the masses

involved and the inverse of the square of the distance between them.

The focus of Newton’s treatise is on the abstract study of a centripetal force acting on a point

mass. One of his basic assumptions and strategies is as surprising as it is novel. It interprets and

models such a force not as the continuous, smoothly pulling action that characterizes gravity, but as

a rapidly repetitive “machine-gun-style” sequence of deflecting “pops.” This approach triangularized

the geometry and simplified the analysis. By letting the time between successive pops go to zero,

Newton was able to draw out the correct relationships between a smoothly varying force and the

geometry of the orbit. The link that establishes the connection between the abstract study of a

centripetal force acting on a point-mass and the application to a gravitational force acting on a

spherical body, is Newton’s realization that his conclusions apply not only to a point-masses but

also to spheres (that have their matter distributed in a radially homogeneous way).

It is the purpose of this chapter to derive afresh and in complete detail the central conclusions

of Newton’s analysis about the connection between a gravitational force and the trajectory of the

object that it drives. Unlike Newton’s treatment with its reliance on novel uses of geometric methods

and its assumption that a centripetal force acts in intermittent bursts, the analysis of this chapter

applies the calculus of polar functions to a smoothly acting centripetal force.

4A. A Basic Study of Forces. In mathematics, a vector is a quantity that has both a magnitude

and a direction. A vector is represented by an arrow with the direction of the arrow indicating

the direction of the vector and the length of the arrow reflecting its magnitude. The examples

© Alexander J. Hahn 2020
A. J. Hahn (ed.), Basic Calculus of Planetary Orbits and Interplanetary Flight,
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that are relevant in this text are velocity, acceleration, and force. We will illustrate how vector

quantities behave with a look at forces. A completely analogous discussion applies to velocity and

acceleration. Suppose that a unit of length and a unit of force are given. (This could be the centimeter

and the newton, or the inch and the pound, and so on. See Chapter 1G.) Given a force, the

vector representing it points in the direction of the force and has length equal to the numerical

magnitude of the force. The most basic law of forces is the parallelogram law. It tells us that

if two forces F1 and F2 act at the same point P , then the combined effect, or resultant, of the

two forces—both direction and magnitude—is the force F determined by the vector given by the

diagonal of the parallelogram that the point P and the vectors of F1 and F2 provide. What is

involved is illustrated in Figure 4.1a. Figure 4.1b tells us that the resultant can also be obtained by

shifting the tail of one of the vectors to the tip of the other. In discussions of forces our notation

P
F

F

F

1

2

P
F

F
F

1
2

(a)       (b)

Figure 4.1

will play a dual role. In the statement “the forces F1 and F2 act at the same point” the symbols F1

and F2 are used simply to identify the forces. However, we will simultaneously use the symbols F1

and F2 to represent the magnitudes of these forces. An example of this practice follows.

Let’s look at the parallelogram law quantitatively. In Figure 4.2a, θ is the angle between the

two forces F1 and F2 and ϕ is the angle π − θ. It follows by applying the law of cosines to the

F

F
F

1
2F

F

1

2

θ

θ

(a)       (b)

Figure 4.2

triangle of Figure 4.2b and using Example 3.3, that the magnitude of the resultant of F1 and F2 is

F =
(
F 2

1 + F 2
2 − 2F1F2 cos(π − θ)

) 1
2 =

(
F 2

1 + F 2
2 + 2F1F2 cos θ

) 1
2 .

Example 4.1. Let F1 and F2 be two forces acting at a point. Suppose that their magnitudes are

3 and 4 newtons respectively and that the angle between them is 50◦. Show that the magnitude of

the resultant is F ≈ 6.36 newtons.
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The parallelogram law can also be used to separate a force into components. Let a force F be

given and choose any parallelogram that has the arrow representing F as a diagonal. See Figure 4.3a.

We’ll let ϕ1 and ϕ2 be the respective angles between the diagonal of the parallelogram and its two

sides. Refer to Figure 4.3b and observe that the parallelogram provides vectors F1 and F2 that have

F as their resultant. The vector F1 is the component of F in the direction of ϕ1 and the vector F2

is the component of F in the direction of ϕ2. By applying the law of sines to the upper triangle of

Figure 4.3b, we get

sin ϕ2

F1

=
sin ϕ1

F2

=
sin(π − (ϕ1 + ϕ2))

F
=

sin(ϕ1 + ϕ2)

F
.

The last equality makes use of Example 3.3. These equalities tell us that if F and the angles ϕ1

F2

F

F1

2
F

(a)       (b)

2

1 1

1

Figure 4.3

and ϕ2 are given, then the magnitudes of the two components F1 and F2 are

F1 = F
sin ϕ2

sin(ϕ1 + ϕ2)
and F2 = F

sin ϕ1

sin(ϕ1 + ϕ2)
.

Example 4.2. Let F1 and F2 be the components of a force F of 15 newtons in the directions of

the angles ϕ1 = 20◦ and ϕ2 = 40◦, respectively. Show that F1 ≈ 11.13 and F2 ≈ 5.92 newtons.

There are infinitely many parallelograms that fulfill the diagonal requirement of the diagram of

Figure 4.3a. The most important is the rectangle with horizontal and vertical sides. The components

it determines are the horizontal and vertical components of the force F . Let F1 act vertically and

F2 horizontally. Since ϕ1 + ϕ2 = π
2

in this case, we see that with the notation of Figure 4.3b, the

magnitudes of the vertical and horizontal components of F are equal to F1 = F cos ϕ1 and F2 =

F cos ϕ2, respectively, in terms of the angles ϕ1 and ϕ2 that they make with the resultant F .

Before we turn to a detailed mathematical study of centripetal force we’ll look at an example.

Take a string and tie an object P of weight W to one end. Hold the other end of the string fixed at

H and twirl the object P so that the angle that the segment HP makes with the vertical is constant.

It follows that P moves along a fixed circle in a horizontal plane. Figure 4.4a shows the vector FH

that represents the pull of the string on P as well as its horizontal and vertical components. Because

P does not move vertically, the vertical component F1 balances the downward pull of the weight W .

So F1 = W . It follows that the combined effect of FH and the weight W is the horizontal component
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F pointing in the direction of the center S of the circle. This force is therefore a centripetal force.

See Figure 4.4b.

Example 4.3. Suppose that the string PH has length 1.6 meters and that it pulls with a force of

9 newtons. Let the radius SP of the circle be 0.7 meters. Show that cos θ = 0.7
1.6

and sin θ =
√

2.07
1.6

.

Conclude that F = 0.7
1.6

· 9 ≈ 3.94 newtons and that W =
√

2.07
1.6

· 9 ≈ 8.09 newtons. Let m be the

mass of W . Take g = 9.8 m/sec2 and show that m =
√

2.07
1.6

· 9
9.8

≈ 0.83 kilograms.

4B. The Mathematics of a Moving Point. Consider a point moving in the Cartesian xy-plane.

Take a stopwatch and start observing the point at time t = 0. At any elapsed time t ≥ 0, the point

will be at some position in the plane. This position varies over time, so that its x-coordinate and

its y-coordinate vary with time. The two coordinates are therefore functions t that we’ll denote

by x(t) and y(t), respectively. Figure 4.5 shows a typical situation. Observe that if the functions

(x(t), y(t))

x(t)

y(t)

O x

y

Figure 4.5
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x(t) and y(t) are both understood, then the motion of the point is understood. Therefore the

mathematics of the motion of a point in the plane (and also in space) reduces to that of a point

moving along a coordinate line.

Suppose a point is moving on a coordinate axis. We’ll assume that it moves smoothly without

any sudden jumps, fits, and restarts. Begin to observe it at time t = 0. Let p(t) be the function that

specifies its coordinate at any time t ≥ 0. It is the position function of the point. See Figure 4.6.

The units of distance and time can be meters and seconds, kilometers and hours, and so forth, as

p(0) p(t)

Figure 4.6

a specific context would provide them.

Fix a time t and a time interval Δt. Our discussion assumes that Δt is positive, so that the

instant t + Δt follows t. (With only slight modifications, it is also valid for negative Δt and hence

with t + Δt preceding t.) In the term

p(t + Δt) − p(t)

Δt

p(t + Δt) − p(t) is the change in the position of the point and Δt is the time it takes for this change

to take place. The ratio p(t+Δt)−p(t)
Δt

is the average rate of change in the position, or the average

velocity, of the point during the time interval from t to t + Δt. By pushing Δt to zero we get the

derivative

p′(t) = lim
Δt→0

p(t + Δt) − p(t)

Δt

of p(t), namely the rate at which the point’s position p(t) changes at the instant t. It is the point’s

velocity at the instant t. The assumption that the point moves smoothly tells us that the function

p(t) is differentiable and hence that this limit exists. By allowing t to vary, we get the velocity

function v(t) = p′(t) of the moving point. Take a given time t and turn to Figure 4.6. Note that

if v(t) = p′(t) > 0, then p(t) is increasing at t, so that the point is moving to the right. If v(t) =

p′(t) < 0, then p′(t) is decreasing at t and the point is moving to the left. And if v(t) = p′(t) = 0,

the velocity at t is zero and the point has come to a stop.

The speed of the point at time t is the absolute value |v(t)| of the velocity. By telling us when a

point moves to the left and to the right, the velocity function v(t) = p′(t) incorporates information

about both the speed and the direction of its motion.

Example 4.4. Suppose that p(t) is given by p(t) = t2 − 4t + 3. Show that in this case, the point

moves to the left for t < 2, to the right for t > 2, and stops at t = 2.

Let v(t) be the velocity function of a point moving along a coordinate axis. Fix a time t and

a time interval Δt. Our discussion again assumes that Δt is positive, so that the instant t + Δt
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follows t. (With slight modifications, it is also valid for negative Δt and hence with t + Δt preced-

ing t.) The term

v(t + Δt) − v(t)

Δt

has the change v(t + Δt) − v(t) in the velocity of the point in its numerator and the time Δt that

it takes for this change to take place in its denominator. The ratio v(t+Δt)−v(t)
Δt

is the average rate of

change in the velocity, or the average acceleration, of the point during the time interval from t to

t + Δt. By pushing Δt to zero we get the derivative

v′(t) = lim
Δt→0

v(t + Δt) − v(t)

Δt

of v(t), namely the rate at which the point’s velocity v(t) changes at the instant t. It is the point’s

acceleration at the instant t. The assumption that the point moves smoothly and in particular that

its velocity varies smoothly tells us that the function v(t) is differentiable and hence that this limit

exists. By allowing t to vary, we get the acceleration function a(t) = v′(t) of the moving point. Notice

that a(t) = p′′(t) is the second derivative of the position function p(t). Another notation that we’ll

use for p′′(t) is d2p
dt2

and analogously for other second derivatives. What unit is acceleration measured

in? For example, if distance is in meters and time in seconds, then velocity is given in meters per

second, so that acceleration is expressed in the unit (meters per second) per second, or meters per

second squared.

Recall that in mathematical studies of physical objects, a point-mass is a point that has non-zero

mass. Assume that the moving point is a point-mass with mass m. Then by Newton’s second law

of motion, F (t) = ma(t) is the force that acts on the point at any time t. Consider a given time t.

Note that if a(t) = v′(t) > 0, then v(t) is increasing at time t. In this case, F (t) acts in the positive

direction and pushes the point to the right at time t. If a(t) = v′(t) < 0, then v(t) is decreasing

at time t. Now F (t) acts in the negative direction and pushes the point to the left at time t. If

v′(t) = 0, then the velocity does not change at time t. This means that the force F (t) is zero at that

time.

Example 4.5. Let the position function of a moving point be p(t) = 3
4
t4 − 13t3 + 75t2 − 168t − 5

for any time t ≥ 0. Show that its velocity is v(t) = p′(t) = 3(t3 − 13t2 + 50t − 56) and that the initial

position and initial velocity of the point are p(0) = −5 and v(0) = −168. A substitution tells us that

v(2) = 3(8 − 52 + 100 − 56) = 0. So the point stops at time t = 2. Since 2 is a root of the polynomial

v(t), we know that (t − 2) divides v(t). Check that v(t) = 3(t − 2)(t2 − 11t + 28) to confirm this.

Apply the quadratic formula to t2 − 11t + 28 = 0 to show that

t = 11±√
121−112
2

= 4 or 7,

and hence that v(4) = 0 and v(7) = 0. Show that v(t) = 3(t − 2)(t − 4)(t − 7) and that the point

moves as follows. For 0 ≤ t < 2, observe that v(t) < 0, so that the point moves to the left. After it

stops at t = 2, we see that v(t) > 0 for 2 < t < 4, so that the point moves to the right over this time
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interval. At t = 4 it stops again, and since v(t) < 0 for 4 < t < 7, it then moves to the left again.

After its final stop at t = 7, v(t) > 0 so that it moves to the right thereafter. Suppose next that the

point is a point-mass of mass m and show that the force acting on it is F (t) = ma(t) = mv′(t) =

3m(3t2 − 26t + 50). Use the quadratic formula again to show that F (t) = 0 for

t = 26±√
262−4·150

6
= 13±√

19
3

≈ 2.88 or 5.79.

Check that F (t) = 9m(t2 − 26
3
t + 50

3
) = 9m(t− 13−√

19
3

)(t − 13+
√

19
3

). Conclude that for 0 ≤ t <
13−√

19
3

, the force is positive and acts to the right; when 13−√
19

3
< t < 13+

√
19

3
, the force is nega-

tive and acts to the left; and when t > 13+
√

19
3

it acts to the right again. Is this consistent with the

earlier description of the motion of the point?

For a point moving along a coordinatized line, the functions p(t), v(t) = p′(t), and a(t) = v′(t)
for the position, velocity, and acceleration all have a directional aspect. When, for a given t, p(t),

v(t), or a(t) is positive, then the position of the point is on the positive side of the axis, the point

moves in the direction of the positive axis, or its positive acceleration implies an increase in the

velocity. Analogously, when p(t), or v(t), or a(t) is negative for a given t, then the point is positioned

on the negative axis, moves in the negative direction, or its negative acceleration implies a decrease

in its velocity. The speed |v(t)|, on the other hand, always satisfies |v(t)| ≥ 0 and does not have a

directional aspect.

Now that we understand the mathematics of a point moving on a coordinate line, we can return

to the motion of a point in the plane. Suppose that a point moves smoothly along a curve in the

xy-plane. Turn back to Figure 4.5 for instance. For any time t (as measured by a stopwatch for

example) we let x(t) and y(t) be the x- and y-coordinates of the position of the point. We will

assume the motion to be smooth, so that both x(t) and y(t) are differentiable functions of t. By

applying what we already learned, we know that x′(t) and y′(t) are the respective velocities of the

x- and y-coordinates of the point. Think of x(t) and y(t) as the positions of the shadows of the

point on the x-axis and y-axis that light sources parallel to the two axes produce. The derivatives

x′(t) and y′(t) are the respective velocities of these shadows.

For a fixed time t and a time interval Δt, the velocities of the x- and y-coordinates of the point

at time t are given by

x′(t) = lim
Δt→0

x(t + Δt) − x(t)

Δt
and y′(t) = lim

Δt→0

y(t + Δt) − y(t)

Δt
.

It should be possible to determine the velocity of the moving point in the plane in terms of the

velocities x′(t) and y′(t). And it is! Consider the point at the two times t and t + Δt. Figure 4.7a

shows the point at the two instances t and t + Δt. (In the figure, Δt is taken to be positive, but

this is not essential to the argument.) For a small elapsed time Δt, the two positions of the point

are near each other, so that by the distance formula of plane coordinate geometry (it relies on the

Pythagorean theorem), the distance traveled by the point is approximately equal to
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√[
x(t + Δt) − x(t)

]2
+

[
y(t + Δt) − y(t)

]2
.

The smaller the Δt, the closer the points are to each other, and the better this approximation is. It

follows that the average speed of the point during the time interval from t to t + Δt is approximately

equal to

√
[x(t + Δt) − x(t)]2 + [y(t + Δt) − y(t)]2

Δt
.

Since its numerator is necessarily positive (or zero) this expression provides no information about

the direction of the motion, so that it represents average speed rather than average velocity. After

some algebra (pull the Δt under the radical as (Δt)2, and distribute it over the two parts of the

sum), this is equal to
√ [

x(t + Δt) − x(t)

Δt

]2

+

[
y(t + Δt) − y(t)

Δt

]2

.

Taking the limit lim
Δt→0

of this term we obtain that the speed of the point at time t is equal to

v(t) =
√

x′(t)2 + y′(t)2.

In the last step of the derivation of this formula, the operation lim
Δt→0

needed to be moved past both

the square root and the square. This a legitimate maneuver that depends on the continuity of the

square root and the squaring functions. (But this is a technical point that we will not take up.)

We know that x′(t) is positive when the shadow on the x-axis moves to the right and negative

when it moves to the left. In the same way, the shadow on the y-axis moves up if y′(t) is positive

and down if y′(t) is negative. So both x′(t) and y′(t) contain information about the direction of
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the motion and both represent velocity. But the term
√

x′(t)2 + y′(t)2 is always positive (or zero),

includes no information about direction, and represents speed. Subsequent discussions will generally

distinguish between velocity and speed, but will often use the notation v or v(t) for both.

A look at Figure 4.7b confirms that the direction of the motion of the point at time t is determined

by the tangent line to the curve at the point (x(t), y(t)) and the sign of the terms x′(t) and y′(t)
(since they tell us about the left/right and up/down of the motion). Another look at Figure 4.7

shows that the slope of the dashed segment is y(t+Δt)−y(t)
x(t+Δt)−x(t)

. It follows that the slope of the tangent

to the path of the moving point at (x(t), y(t)) is

lim
Δt→0

y(t + Δt) − y(t)

x(t + Δt) − x(t)
= lim

Δt→0

y(t+Δt)−y(t)
Δt

x(t+Δt)−x(t)
Δt

=
lim

Δt→0

y(t+Δt)−y(t)
Δt

lim
Δt→0

x(t+Δt)−x(t)
Δt

=
y′(t)
x′(t)

.

So at any point (x(t), y(t)) the direction and speed of the motion of the point are both determined

by x′(t) and y′(t). The direction is tangential to the path and the speed is v(t) =
√

x′(t)2 + y′(t)2.

Let’s suppose that our moving point is a point-mass of mass m and that its velocities x′(t) and

y′(t) vary smoothly. So x′(t) and y′(t) are differentiable functions of t and the forces on the point

in the x- and y-directions are

mx′′(t) and my′′(t)

at any time t. Since force is a vector quantity, the resultant force F (t) on the point-mass is given

by the parallelogram law as shown in Figure 4.8a. Figure 4.8b shows the force F (t) resolved into

F(t)

(x(t), y(t))
mx  (t)

`̀

my  (t)`̀
(x(t), y(t))

F(t)
(a)                (b)

Figure 4.8

two significant components. One of them—tangential to the point’s path—accelerates the point

along its path. The other—perpendicular to the tangent—bends the path of the point.

Example 4.6. Consider a point-mass P of mass m = 1 moving in an xy-plane. Let its position

at any time t ≥ −2 be given by x(t) = t and y(t) = t2. Since y(t) = x(t)2, the point moves on the

parabola y = x2. Its initial position is (−2, 4). Discuss the motions of the x- and y-coordinates of P ,

show that it moves as illustrated in Figure 4.9a, and that its speed at any time t is v(t) =
√

1 + 4t2.

Deduce that the acceleration of the point P along its path is equal to 4t√
1+4t2

. Show that the magni-

tude of the force F (t) on P is constant and equal to 2. Consider Figure 4.8a and conclude that the

force acts vertically in the upward direction. Why is this force not centripetal? Figure 4.9b shows the

force F (t) resolved into its tangential component and the component perpendicular to the tangent



174 4 Centripetal Force and Resulting Trajectories

(t, t  )2

x– 2x– 2
(a)              (b)

y y

0

Figure 4.9

at five different instances. Why is the magnitude of the tangential component of the force equal to
|4t|√
1+4t2

? Study Figure 4.9b and show that the magnitude of the component of the force perpendicular

to the tangent is equal to 2√
1+4t2

. Discuss the role that the two components play in determining the

motion of the point as it moves from (−2, 4) to (0, 0) and beyond.

Example 4.7. Let the position of a point-mass P moving in an xy-plane be given by the equations

x(t) = d cos ωt and y(t) = d sin ωt, where t is time with t ≥ 0, and d and ω are positive constants.

Show that the point moves on the circle x2 + y2 = d2 of radius d. Compute the velocities of the x-

and y-coordinates of P . Show that P starts at the point (d, 0) and moves counterclockwise around

the circle at the constant speed v(t) = dω. So P covers a distance of (dω)t during time t and the

O

P

x(t)

y(t)

x

y

(a)               (b)

F (t)x

F(t)
O

P

x

y

F (t)y

Figure 4.10
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period—the time for one complete revolution—is T = 2π
ω

. Let m be the mass of P and let Fx(t) and

Fy(t) be the forces on P in the x- and y-directions. They are given by

Fx(t) = mx′′(t) = −mω2(d cos ωt) and Fy(t) = my′′(t) = −mω2(d sin ωt),

respectively. The magnitude of the resultant of these forces is

F (t) =
√

Fx(t)2 + Fy(t)2 = mdω2
√

cos2 ωt + sin2 ωt = mdω2.

Refer to Figure 4.10b and check that when x(t) > 0 the force Fx(t) acts to the left, and when

x(t) < 0 the force Fx(t) acts to the right. Is there a similar relationship between y(t) and Fy(t)?

Show that at any time t, the slope of the slanting segment in Figure 4.10a that connects the point

P and the origin O is the same as the slope of the segment in Figure 4.10b that determines the

direction of the resultant of the forces Fx(t) and Fy(t). Conclude that the resultant of the forces

Fx(t) and Fy(t) is a centripetal force acting on P in the direction of the origin O.

4C. Centripetal Force in Cartesian Coordinates. A point-mass P of mass m is in motion in

a plane. It is acted on by a single force, a centripetal force with center in the same plane. Place

an xy-coordinate system into the plane so that the center of force is at the origin O. Let x and y

be the coordinates of P . The magnitude F of the force depends on the location (x, y) of P . Click

your stopwatch at time t = 0, and suppose that P is in a typical position at an elapsed time t > 0

later. Both x and y vary with time t, so that both x = x(t) and y = y(t) are functions of time t.

P

F(t)

m

x

y

O x(t)

y(t)

Figure 4.11

The magnitude of the force is also a function F = F (t) of time t. Figure 4.11 captures what has

been described.

We will assume that F acts smoothly and consequently that P moves smoothly—P does not

zigzag sharply like a butterfly or a bat. In particular, we assume that F (t), x(t), and y(t) are

differentiable functions of t and that the derivatives dx
dt

= x′(t) and dy
dt

= y′(t) are differentiable as
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well. Let r be the distance from P to O. Let Fx and Fy be the components of F in the x- and y-

directions, respectively. The quantities r, Fx, and Fy are also differentiable functions of t. Figure 4.12

illustrates the relationship between F, Fx and Fy. By the parallelogram law of forces and similar

triangles,
|Fx|
F

=
|x|
r

and
|Fy|
F

=
|y|
r

.

Notice that when x is positive, the component Fx acts in the negative x-direction, and when y is

positive, Fy acts in the negative y-direction. In fact, the sign of Fx is always opposite that of the

x-coordinate of the position, and the same is true for Fy. This is why

Fx

F
=

−x

r
and

Fy

F
=

−y

r
.

So rFx = −xF and rFy = −yF . The derivatives dx
dt

and dy
dt

are the velocities of P in the x- and y-

directions, respectively, and the second derivatives d2x
dt2

and d2y
dt2

are the respective accelerations in

the x- and y-directions. As a consequence of Newton’s second law, we get

Fx = m
d2x

dt2
and Fy = m

d2y

dt2
.

The physics of the matter—it involved the application of Newton’s F = ma in both the x- and

y-directions—is now over. The rest is mathematics! By combining equations already derived, we get

mr
d2x

dt2
= −Fx and mr

d2y

dt2
= −Fy

and therefore that

mr
(
x
d2y

dt2
− y

d2x

dt2

)
= mr

d2y

dt2
x − mr

d2x

dt2
y = −Fyx + Fxy = 0.
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It follows that

y
d2x

dt2
= x

d2y

dt2
.

(Note that this also holds when r = 0, because then both x = 0 and y = 0.)

Consider the difference x · dy
dt

− y · dx
dt

. By the product rule, the derivative of this difference is

d

dt

(
x · dy

dt
− y · dx

dt

)
=

d

dt

(
x · dy

dt

)
− d

dt

(
y · dx

dt

)

=
(dx

dt
· dy

dt
+ x · d2y

dt2

)
−

(dy

dt
· dx

dt
+ y · d2x

dt2

)

=
dx

dt
· dy

dt
− dy

dt
· dx

dt
+ x · d2y

dt2
− y · d2x

dt2
.

In view of the equality y d2x
dt2

= x d2y
dt2

, it follows that d
dt

(y · dx
dt

− x · dy
dt

) = 0. We can therefore conclude

that

x · dy

dt
− y · dx

dt
= c,

where c is a constant. This fact contains essential information about the motion of P . To extract

it, we will now “go polar.”

Example 4.8. Turn to the centripetal force that Example 4.7 illustrates. Show that the constant

c above is equal to d2ω.

4D. Going Polar. The Cartesian part of our discussion is done. The task now will be to transfer

the results that were obtained—in particular, the equality x · dy
dt

− y · dx
dt

= c and the two force

equations—into the context of polar coordinates. So now regard the origin O and the positive

x-axis to be a polar coordinate system.

Let (r, θ), with r > 0 the distance from O to the point-mass P , be polar coordinates of P . The

assumption r > 0 ensures that P does not crash into the center of force O. Let r = f(θ) be a polar

P

O
(t)=

F(t)

r(t) = f (      )(t)

Figure 4.13
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function that has the orbit of the point P as its graph. Since θ = θ(t) is a function of the elapsed

time t, r = r(t) = f(θ(t)) is a function of t. The magnitude of the centripetal force is determined

by the location of P and hence by θ and r = f(θ). This magnitude is therefore also a function of θ.

Combining this function with θ = θ(t) provides its connection with the force function F (t). Refer to

Figure 4.13. Given our general smoothness assumptions, the function r = f(θ) of θ, as well as the

functions r(t) and θ(t) of t, all have first and second derivatives. (The fact that the polar coordinate

θ of the moving point P is a differentiable and hence a continuous function of t means that it does

not jump from θ to, say, θ + 2π from one instant to the next.)

Because we have P moving in a counterclockwise direction, it is now convenient to organize

things as follows: let t = 0 be an instant at which P crosses the polar axis. Then t > 0 is the elapsed

time thereafter, and t < 0 refers to the time before. (In televised launches of NASA space missions,

it is common to hear announcements such as “t equals minus 73 seconds and counting.”) We will

take θ(t) > 0 for t > 0, θ(t) = 0 for t = 0, and θ(t) < 0 for t < 0.

Recall the relationships

x = r cos θ and y = r sin θ

between the polar and Cartesian coordinates from Chapter 3C. We will use them to rewrite the

equality x · dy
dt

− y · dx
dt

= c in terms of r and θ. By the product rule,

dx

dt
=

dr

dt
cos θ + r

d

dt
(cos θ).

Since θ = θ(t), we get by the chain rule that d
dt

(cos θ) = − sin θ · θ′(t) and hence that

dx

dt
=

dr

dt
cos θ − r sin θ · dθ

dt
.

In exactly the same way,
dy

dt
=

dr

dt
sin θ + r cos θ · dθ

dt
.

By combining the equations x = r cos θ and y = r sin θ with those just derived, we get

x · dy

dt
− y · dx

dt
= (r cos θ)

(dr

dt
sin θ + r cos θ · dθ

dt

)
− (r sin θ)

(dr

dt
cos θ − r sin θ · dθ

dt

)

= (r2 cos2 θ)
dθ

dt
+ (r2 sin2 θ)

dθ

dt
= r2(sin2 θ + cos2 θ)

dθ

dt

= r2 dθ

dt
.

We have therefore verified that r(t)2 dθ
dt

= r(t)2θ′(t) = c.

Example 4.9. Think for a moment about the equation r(t)2θ′(t) = c. What is the meaning of

θ′(t)? Consider P at two different times t1 and t2 in its orbit, and suppose that the distance from P

to O is much greater at t1 than at t2. Use this assumption to compare θ′(t1) and θ′(t2) and describe

the implications for the motion of P .

Continue to consider P at two different times t1 and t2 in its orbit. Suppose that t1 ≤ t2, and let

A be the area that is swept out by the segment OP during the time interval [t1, t2]. Let θ(t1) = a

and θ(t2) = b. Figure 4.14 illustrates what has been described. Turn to Chapter 3G and note that
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A =

∫ b

a

1
2
f(θ)2 dθ .

Because r(t) = f(θ(t)), the substitutions θ = θ(t) and dθ = θ′(t)dt together with the discussion that

concludes Chapter 3G tell us that

A =

∫ b

a

1
2
f(θ)2 dθ =

∫ t2

t1

1
2
f(θ(t))2 θ′(t)dt =

∫ t2

t1

1
2
r(t)2θ′(t)dt =

∫ t2

t1

1
2
c dt = 1

2
ct

∣
∣
∣
t2

t1
= 1

2
c(t2 − t1).

Putting 1
2
c = κ, we see that the area A swept out by P is equal to κ times the time t2 − t1 that

P

O

A
a

position at t1

position at t0
(   ) = t0

b(   ) = t1

Figure 4.14

it takes to sweep it out. Taking t1 = 0 and t2 the elapsed time t, establishes the equality

A = κt

for the area A traced out by the segment PO from 0 to t. This is Kepler’s second law for the orbit of

a point-mass propelled by a centripetal force. Newton had proved it by completely different means.

(Refer to the discussion in Chapter 1D.) The constant κ is the Kepler constant of the orbit of P .

Inserting c = 2κ into the equality r(t)2 dθ
dt

= r(t)2θ′(t) = c, tells us that

r2 dθ

dt
= 2κ.

One more order of business is the conversion of the two Cartesian force equations

mr
d2x

dt2
= −Fx and mr

d2y

dt2
= −Fy

of the previous section into a single force equation in polar form. Because r(t)2 dθ
dt

is a constant,
d
dt

(r(t)2 dθ
dt

) = 0. By an application of the chain and product rules, 2r(t)r′(t) · dθ
dt

+ r(t)2 · d2θ
dt2

= 0,

and hence

2
dr

dt
· dθ

dt
+ r · d2θ

dt2
= 0.
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Recall from above that
dx

dt
=

dr

dt
cos θ − r sin θ · dθ

dt
.

By differentiating this equation (use the product and chain rules several times), we get that

d2x

dt2
=

(d2r

dt2
cos θ − dr

dt
sin θ · dθ

dt

)
− dr

dt
sin θ · dθ

dt
− r

(
cos θ · dθ

dt
· dθ

dt
+ sin θ · d2θ

dt2

)

=
d2r

dt2
cos θ − 2

dr

dt
sin θ · dθ

dt
− r cos θ ·

(dθ

dt

)2

− r sin θ · d2θ

dt2

=
d2r

dt2
cos θ − r cos θ ·

(dθ

dt

)2

− sin θ
(
2
dr

dt
· dθ

dt
+ r · d2θ

dt2

)
.

Since the last term is equal to 0,

d2x

dt2
= cos θ

[
d2r

dt2
− r ·

(dθ

dt

)2
]

.

Doing the same thing with
dy

dt
=

dr

dt
sin θ + r cos θ · dθ

dt
, gives us

d2y

dt2
= sin θ

[
d2r

dt2
− r ·

(dθ

dt

)2
]

.

From the two Cartesian force equations −mr d2x
dt2

= Fx = F (r cos θ) and −mr d2y
dt2

= Fy = F (r sin θ)

of section 4C, we get that

F cos θ = m cos θ

[
r ·

(dθ

dt

)2

− d2r

dt2

]
and F sin θ = m sin θ

[
r ·

(dθ

dt

)2

− d2r

dt2

]
.

A look at the graphs of Figures 3.4 and 3.5 in Chapter 3A tells us that the terms sin θ and cos θ

are never simultaneously equal to 0. Therefore by canceling and then inserting the equality dθ
dt

=
2κ
r2

, we get

F = m

[
r ·

(dθ

dt

)2

− d2r

dt2

]
= m

[
4κ2

r(t)3
− d2r

dt2

]
.

The initial important goals of our study of centripetal force have now been reached. They are

the two equations

r2(t)
dθ

dt
= 2κ and F (t) = m

[
4κ2

r(t)3
− d2r

dt2

]
,

a version of Kepler’s second law and the centripetal force equation, respectively.

It will be of advantage to recast this first form of the centripetal force equation. Let g(θ) = 1
f(θ)

.

So r(t) = f(θ(t)) = g(θ(t))−1. By the chain rule and the formula dθ
dt

= 2κ
r(t)2

,

dr

dt
= −g(θ(t))−2 · d

dt
g(θ(t)) = − 1

g(θ(t))2
g′(θ(t)) θ′(t)

= − 1

g(θ(t))2

2κ

r(t)2
g′(θ(t)) = −2κg′(θ(t)) .

By another application of the chain rule,

d2r

dt2
= −2κg′′(θ(t)) θ′(t) = −2κg′′(θ(t))

2κ

r(t)2
= −4κ2g′′(θ(t))

1

r(t)2
= −4κ2g′′(θ(t))g(θ(t))2 .
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By substituting d2r
dt2

= −4κ2g′′(θ(t))g(θ(t))2 and r(t)−3 = g(θ(t))3 into F (t) = m

[
4κ2

r(t)3
− d2r

dt2

]
, we

arrive at the second form

F (t) = 4mκ2g(θ(t))2
[
g(θ(t)) + g′′(θ(t))

]

of the centripetal force equation.

Let’s step back and summarize the results that were derived and the assumptions that were

made. A point-mass P of mass m is regarded to be propelled by a centripetal force and to move

smoothly in its orbit. A polar coordinate system is chosen in the plane of the orbit with the origin

O placed at the center of force. The polar function r = f(θ) expresses the distance r of P from O in

terms of the polar angle θ of the changing position of P . As a consequence, the polar graph of this

function describes the orbit of P . Let t be the elapsed time from some fixed instant. The fact that P

moves, means that both the positional angle θ = θ(t) and the distance r(t) = f(θ(t)) are functions

of time t. It was demonstrated above that the motion of P satisfies r2 dθ
dt

= 2κ, where κ is Kepler’s

constant of the orbit, and that the magnitude F (t) of the centripetal force acting on P is related

to the distance r(t) from P to O in the explicit way the centripetal force equation prescribes.

4E. From Conic Section to Inverse Square Law. We begin this section by assuming that the

orbit of P—note that as yet no assumptions have been made about the geometry of the orbit—is a

conic section, either an ellipse, a parabola, or a hyperbola, and that the center of force is at a focal

point. A review of the analysis of the equation

r =
d

1 + ε cos θ

in Chapter 3D tells us that the polar coordinate system with the origin O at the center of force—see

the summary above—can be placed in such a way that O is at a focal point of the conic section and

the orbit of P is the graph of the polar function

r = f(θ) =
d

1 + ε cos θ

where r > 0, ε ≥ 0 is the eccentricity of the conic section, and d > 0 is a constant. If the orbit is

an ellipse, then 0 ≤ ε < 1; if it is a parabola, then ε = 1; and if it is a hyperbola, then ε > 1.

Differentiate the equation

r(t) = d(1 + ε cos θ(t))−1

and use the fact that dθ
dt

= 2κ
r(t)2

to get

dr

dt
= −d(1 + ε cos θ(t))−2

(
− ε sin θ(t) · dθ

dt

)
= εd(1 + ε cos θ(t))−2(sin θ(t))2κr(t)−2.

After substituting (1 + ε cos θ(t))−2 = r(t)2

d2
, this becomes

dr

dt
=

2εκ

d
sin θ(t).

Differentiating once more, we get
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d2r

dt2
=

2εκ

d

(
cos θ(t) · dθ

dt

)
=

2εκ

d
(cos θ(t))

2κ

r(t)2
=

4κ2ε

d
cos θ(t)

1

r(t)2
.

Substituting this into the first form of the centripetal force equation of the previous section, we

obtain

F (t) = m

[
4κ2

r(t)3
− d2r

dt2

]
= m

[
4κ2

r(t)3
− 4κ2ε

d
cos θ(t)

1

r(t)2

]
= 4mκ2

[
1

r(t)
− ε

d
cos θ(t)

]
1

r(t)2
.

Because 1
r(t)

= 1+ε cos θ(t)
d

= 1
d

+ ε
d
cos θ(t), we see that F (t) = 4mκ2

d
1

r(t)2
. Since L = 2d is the latus

rectum of the conic section (this is pointed out in the latter part of Chapter 3D),

F (t) =
8mκ2

L
· 1

r(t)2
,

where m is the mass of the point-mass, κ and L are the Kepler constant and latus rectum of the

orbit, and r(t) is the distance from the object to the point of origin of the centripetal force.

The conclusion above was established by Newton with an argument that regards the centripetal

force as acting “machine-gun” style on the point-mass P . (See Chapter 1D.) The derivation detailed

here with its assumption of a smoothly acting centripetal force and its use of today’s calculus has

the advantage that it works for elliptical, parabolic, and hyperbolic orbits all at once.

It is a direct consequence of our discussion that if a point-mass P is propelled by a centripetal

force and if it has an orbit that is either an ellipse, a parabola, or a hyperbola, with the center of

force at a focal point, then the magnitude of the force is proportional to the inverse of the square of

the distance between P and this focal point.

Suppose that the orbit is an ellipse with semimajor and semiminor axes a and b. That the area

of this ellipse is abπ is a consequence of integral calculus. To see this, position the ellipse so that its

equation is x2

a2 + y2

b2
= 1. Solving for y2, we get y2 = b2(1 − x2

a2 ) = b2

a2 (a
2 − x2). So y = b

a

√
a2 − x2 is

a function that has the upper half of the ellipse as its graph. It follows that the area of the upper

half of the ellipse is equal to
∫ a

−a

b
a

√
a2 − x2 dx = b

a

∫ a

−a

√
a2 − x2 dx.

Taking b = a in the situation just discussed tells us that

∫ a

−a

√
a2 − x2 dx is the area of the upper

half of the circle of radius a. Since this area is 1
2
πa2, we can conclude that

∫ a

−a

b
a

√
a2 − x2 dx = b

a

∫ a

−a

√
a2 − x2 dx = b

a
1
2
πa2 = 1

2
abπ

is the area of the upper half of the ellipse with semimajor axis a and semiminor axis b. So the area

of the full ellipse is abπ. It follows that κ = abπ
T

where T is the period of the orbit. Since the latus

rectum is L = 2b2

a
(as pointed out in Chapter 3D), we get the elliptical version of the inverse square

law

F (t) =
8mκ2

L
· 1

r(t)2
= 8m

a2b2π2

T 2
· a

2b2
· 1

r(t)2
=

4π2a3m

T 2
· 1

r(t)2
.

Example 4.10. Let’s illustrate what has been developed in the context of Example 4.7, the point-

mass driven by a centripetal force around the circle of radius d. In this situation, r = f(θ) = d,
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θ(t) = ωt, and r(t) = f(θ(t)) = d. By Example 4.8, Kepler’s constant is κ = 1
2
d2ω. The basic equality

r2(t)dθ
dt

= 2κ translates to d2ω = 2κ and the centripetal force equation becomes

F (t) = m
[

4κ2

r(t)3
− d2r

dt2

]
= m

[4·1
4

d4ω2κ2

d3
− 0

]
= mdω2.

Since the orbit is a circle and the force is centripetal directed to its center (this is also the focal

point), we know from the result derived in this section that the force satisfies an inverse square law,

and in particular that the formula F (t) = 4π2a3m
T 2 · 1

r(t)2
applies. And it does. Since T = 2π

ω
and a and

r(t) are both equal to d, we get

F (t) = 4π2a3m
T 2 · 1

r(t)2
= 4π2d3m

(
2π
ω

)2
· 1

d2
= mdω2.

While F (t) = mdω2 does not look like an inverse square law, the equality above tells us that it is.

4F. From Inverse Square Law to Conic Section. We now go in the other direction and show

that the orbit of a point-mass P that is propelled by a centripetal force that satisfies an inverse

square law is an ellipse, a parabola, or a hyperbola, and that the center of force is at a focal point

of the orbit.

Let’s first clarify what it means for a centripetal force to satisfy an inverse square law. It means

that the magnitude F (t) of the force on the point-mass P at any time t is given by an equation of

the form
F (t) = C

m

r(t)2
,

where r(t) is the distance between P and the center of force, m is the mass of P , and C > 0 is a

constant. Letting g(θ) = 1
r(θ)

and combining F (t) = C m
r(t)2

= Cmg(θ(t))2 with the second form of

the centripetal force equation, we get

4mκ2g(θ(t))2
[
g(θ(t)) + g′′(θ(t))

]
= Cmg(θ(t))2.

Dividing through by 4mκ2 · g(θ(t))2, gives us

g(θ(t)) + g′′(θ(t)) =
C

4κ2
.

Because we are interested in the shape of the orbit, namely the precise form of the func-

tion r = f(θ) = 1
g(θ)

, we now ignore the fact that θ is a function of t, and consider the equation

g(θ) + g′′(θ) = C
4κ2 . This equation is an example of a second order differential equation. The fact

that all of its solutions can be found explicitly, determines g(θ) and shows that the orbit of P

has the required properties. Put h(θ) = g(θ) − C
4κ2 , and notice that the function h(θ) satisfies the

equation
h′′(θ) + h(θ) = 0.

We will see that this implies in turn that h(θ) has the form h(θ) = A sin θ + B cos θ for some

constants A and B. This can be verified with some trickery that is rather like pulling a mathematical

rabbit out of a hat. Let h(θ) be any function that satisfies the equation and define the two functions

A(θ) and B(θ) as follows:
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A(θ) = (cos θ)h(θ) − (sin θ)h′(θ) and B(θ) = (sin θ)h(θ) + (cos θ)h′(θ).

The fact that sin2 θ + cos2 θ = 1, quickly implies that h(θ) = A(θ)(cos θ) + B(θ)(sin θ). If we can

show that the functions A(θ) and B(θ) are both constant and set A = A(θ) and B = B(θ), then

h(θ) = A sin θ + B cos θ as required. Since h′′(θ) + h(θ) = 0,

A′(θ) = [(− sin θ)h(θ) + (cos θ)h′(θ)] − [(cos θ)h′(θ) + (sin θ)h′′(θ)] = 0

and hence A(θ) is a constant. A similar computation shows that B′(θ) = 0 and hence that B(θ) is

also constant. So we have verified that

h(θ) = A cos θ + B sin θ,

where A and B are constants. As a consequence,

g(θ) = A sin θ + B cos θ +
C

4κ2
.

We will now suppose that there is a point of “closest approach” for P , namely, an angle θ at which

the distance r = f(θ) from P to O has a local minimum. (This is always so in the case of an object

driven by a real centripetal force in a real orbit or flyby.) Rotate the polar axis, while keeping the

center of force at the origin O, so that this local minimum occurs at θ = 0. We next need to obtain

some information about the constants A and B. The effort to get it is clarified by the Cartesian graph

of g(θ) = A sin θ + B cos θ + C
4κ2 . (What is meant by Cartesian graph in this context is illustrated in

Figures 3.4 and 3.5 for sin θ and cos θ.) Because g(θ) = 1
f(θ)

, the function g(θ) has a local maximum

at θ = 0. So by a basic theorem of elementary calculus, g′(0) = 0. Since g′(θ) = A cos θ − B sin θ,

it follows that A = 0. So g′(θ) = −B sin θ and g′′(θ) = −B cos θ. Assume for a moment that B is

negative. Because g′′(0) = −B > 0, the second derivative test of elementary calculus would tell us

that g(θ) has a local minimum at θ = 0. But for a nonzero B, g(θ) = B cos θ + C
4κ2 cannot have

both a local maximum and a local minimum at θ = 0. Therefore B < 0 cannot be, and hence B ≥ 0.

In view of the fact that f(θ) = 1
g(θ)

= 1
B cos θ+ C

4κ2
, we now get

f(θ) =
1

C
4κ2 (1 + 4κ2B

C
cos θ)

=
4κ2

C

1 + 4κ2B
C

cos θ
.

Since this polar function has the form f(θ) = d
1+ε cos θ

with d = 4κ2

C
> 0 and ε = 4κ2B

C
≥ 0, we know

from the study in Chapter 3D that its graph is a conic section with eccentricity ε and focal point

the origin O. It is also shown at the end of Chapter 3D that 4κ2

C
= d = L

2
, where L is the latus

rectum of the orbit.

We have verified that if the magnitude of the centripetal force acting on P satisfies an inverse

square law, then the orbit of P is an ellipse, a parabola, or a hyperbola with the center of force at a

focal point.

From 4κ2

C
= L

2
, we get C = 8κ2

L
, so that the equality F (t) = C m

r(t)2
brings us back to the earlier

force formula

F (t) =
8mκ2

L
· 1

r(t)2
.
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4G. Summary of Newton’s Theory. This chapter considered the abstract situation of a cen-

tripetal force with center of force O that propels a point-mass P along a path—the orbit or trajectory

of P—that lies in a plane. Refer to Figure 4.15. The motion is timed starting at t = 0. The elapsed

O

orbit

mass mPF(t)

r(t)

or  tra
jectory

Figure 4.15

time thereafter is denoted by t. Our discussion established the following conclusions:

Conclusion A. The segment OP sweeps out equal areas in equal times. In particular, there is a

constant κ with the property that if A(t) is the area swept out by the segment OP during elapsed

time t, then A(t)
t

= κ. This property is Kepler’s second law and the constant κ is Kepler’s constant.

Conclusion B. If the orbit of P is either an ellipse, a parabola, or a hyperbola with the center of

force O at a focus, then the magnitude F (t) of the centripetal force is given by the equation

F (t) =
8κ2m

L
· 1

r(t)2
,

where m is the mass of the point-mass, L is the latus rectum of the orbit, and r(t) is the distance

between P and O. If the orbit is an ellipse with semimajor axis a and period T , then

F (t) =
4π2a3m

T 2
· 1

r(t)2
.

Conclusion C. If throughout the orbit of P , the magnitude F (t) of the centripetal force is given

by an inverse square law, in other words, by an equation of the form F (t) = Cm 1
r(t)2

, where m is

the mass of P and C > 0 is a constant, then the orbit of P is either an ellipse, a parabola, or a

hyperbola, the center of force O is at a focal point, and C = 8κ2

L
, where κ is Kepler’s constant and

L is the latus rectum of the orbit.

It has become tradition in the mathematical sciences to follow axiomatic approaches. Definitive

theories in these disciplines are often cast in the following form: certain basic underlying laws or

principles, often referred to as axioms or postulates, are taken as starting point, and all other relevant

propositions are deduced from these by the force of logic and mathematics alone. The paradigm of

such axiomatic approaches is the development of plane geometry in Euclid’s Elements.

Newton’s theory of planetary motion can be cast in this form. Start with Newton’s three basic

laws of motion (see Chapter 1B) and his Law of Universal Gravitation. Recall that the law of

universal gravitation is the assertion that any two point-masses in the universe attract each other
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with a force given by the formula F = G m1·m2

r2
, where m1 and m2 are their masses, r is the distance

between them, and G is a universal constant. Observations over many years, confirmed by trajectory

data of man-made satellites and spacecraft, have provided solid evidence that the law of universal

gravitation is valid anywhere in the solar system. Since the Sun is much more massive than any

of the planets (we saw in Chapter 1I that the Sun contains over 99% of the mass of the solar

system), it attracts each planet with what is essentially a centripetal force. Conclusion C tells us

that Kepler’s first law holds, namely that the orbit of a planet must be an ellipse with the Sun at

a focus. (The fact that the parabola and hyperbola have infinite extent rules such trajectories out.)

Kepler’s second law for planetary orbits is provided by Conclusion A. The derivation of Kepler’s

third law in Newton’s more explicit form a3

T 2 = GM
4π2 was carried out in Chapter 1D.

There are two important issues that require further discussion. The first is the fact that our

study has focused abstractly on a point-mass P moved along its orbit by a centripetal force. But

does this study really apply to our solar system? Does it apply to a planet in motion around the

Sun? Can it be assumed that the gravitational pull by the Sun on a planet is directed to the center

of mass of the planet? A planet, after all, is not a point-mass, but a composite of a myriad of

point-masses. The next section will answer these questions in the affirmative (after some reasonable

assumptions are made).

A second concern has to do with Conclusion C. We saw that the study of the orbit of P around O

rests on the determination of the polar function r = f(θ) that expresses the distance r of P from O

in terms of the angle θ. The graph of this function describes the geometry of the orbit as an ellipse,

parabola, or hyperbola, shaped in each case by orbital constants. But what about r as a function

of elapsed time t? Since r = r(t) is the composite of the two functions r = f(θ) and θ = θ(t), this

reduces to the determination of the angle θ = θ(t) as a function of t. Can the function that measures

the angle that the segment OP sweeps out be identified? This subtle question will be taken on in

Chapter 5 for elliptical orbits and in Chapter 6 for hyperbolic and parabolic orbits.

4H. Gravity and Geometry. Newton was aware that there was a fundamental unanswered prob-

lem that stood in the way of the application of his study of centripetal force for point-masses to

the situation of the gravitational attraction of bodies in the solar system and beyond. Given that

the gravitational attraction of any small particle of matter on any other satisfies the inverse square

law, why should it be that large massive bodies—namely, huge collectives of such particles—attract

each other in the same way? Is the net force exerted by all the particles of matter of a massive

sphere on all the particles of another massive sphere directed from the center of mass of one sphere

to the center of mass of the other? Is the magnitude of this resultant force inversely proportional

to the square of the distance between these centers of mass? Only if this is so does the study of

gravitational force reduce to the situation of point-masses. This question presented a formidable

challenge to Newton. Some scholars have in fact claimed that the matter was the cause (or at least

one of them) for the 20-year delay between Newton’s first thoughts about universal gravitation and

the composition of the Principia.

The problem facing Newton was subtle. Consider the gravitational force F that a body B of

mass M exerts on a point-mass m. (In the discussion of this section, the symbol m will refer to

both the point-mass and its mass.) Then it is not the case in general that the magnitude F of this
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force is given by Newton’s law of universal gravitation F = GmM
d2

, where d is the distance from the

point-mass to the center of mass of B. Both the shape of the body B and the distribution of the

mass within it play a critical role. Both need to be configured symmetrically for Newton’s law to

hold. Fortunately, the formula is correct in the important situation of a sphere that has its mass

distributed in a certain radially homogeneous way. (Since the Sun, Moon, Earth, and the planets

satisfy this property very nearly, Newton’s law of universal gravitation is on target in these cases.)

The proof of this assertion makes use (more than once) of the essential strategy of integral calculus.

Slice up the body B into a very large number of smaller pieces, and determine the force with which

each of the pieces acts on m. To understand how B acts on m is a matter of computing the resultant

of all the smaller forces. The summation strategy of integral calculus is the tool that makes this

computation possible.

Part 1. To start, take B to be a thin homogeneous circle of matter of mass M and radius r.

Think of a circular loop of a thin wire. Homogeneous means that the matter of the circle is evenly

distributed (in particular, there are no lumps). Suppose that the point-mass m lies on the perpen-

dicular to the circle through its center O, at a distance c from the center. Divide the circle into a

huge even number, say, 2k, of small equal segments. Each segment is 2πr
2k

= πr
k

units long and has

a mass of Mseg = M
2k

. Refer to Figure 4.16. By the Pythagorean theorem, the distance between m

c m

r

M

O

M

seg

seg

Figure 4.16

and each of the segments is equal to
√

c2 + r2. Since the segments are very small, Newton’s law of

universal gravitation for point-masses tells us that the magnitude of the gravitational force with

which each of them attracts m is equal to

GmMseg

(
√

c2 + r2)2
=

GmMseg

c2 + r2
.

Since the number of identical segments is even, the segments can be paired, as Figure 4.16

indicates, each with the one on the opposite side of the circle. Figure 4.17 depicts the vectors
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representing the forces of attraction that a matching pair of segments exerts on m as well as

M

F

GmM

c2 + r2

m
O

M

GmM

c2 + r2

seg

seg

seg

seg

seg

Figure 4.17

the relevant components of these forces. Notice that the two components along the line from m to

O (only one of them is shown in the figure) are both equal to Fseg = GmMseg

c2+r2
cos ϕ and that the two

components perpendicular to this line cancel each other out. By Figure 4.16, cos ϕ = c√
c2+r2

, so that

Fseg =
GmMseg

c2 + r2
· c√

c2 + r2
=

GmMseg c

(c2 + r2)
3
2

.

The magnitudes of the two components along the line from m to O add to 2Fseg = 2GmMsegc

(c2+r2)
3
2
. Consid-

ering the fact that the circular mass B is composed of k such opposite pairs, we see that the force of

attraction of B on m points in the direction of O with a magnitude of 2kFseg = Gm(2kMseg)c

(c2+r2)
3
2

= GmMc

(c2+r2)
3
2
.

The various equalities in this discussion are in fact approximations. But when k is pushed

to infinity (in the style of the definite integral) they become equalities. We have shown that the

gravitational force with which the thin circular mass B of radius r attracts the point-mass m is

directed to the center of the circle and has magnitude

F =
GmMc

(c2 + r2)
3
2

,

where M is the mass of B and c is the distance from the point-mass to the center of the circle. The

gravitational force of attraction does point to the center of mass of B. However, the fact that r is

not zero means that the magnitude of this force is not given by Newton’s law F = GmM
c2

.

Part 2. We now turn to consider a thin homogeneous spherical shell B of radius R and mass

M . Since only the surface of the sphere is included, think of B as the thin spherical skin of a ball.

Let O be the shell’s center. Suppose that the point-mass m lies at a distance c from O. We will

assume that c ≥ R, so that the point-mass is on or outside the shell, and analyze the gravitational

force that the shell exerts on m.

Begin by slicing up the spherical shell into a large number of very thin ring-like sections.

All cuts are perpendicular to the axis—placed horizontally—that connects the center O with m.
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A typical ring of the spherical shell is shown in blue in Figure 4.18. (It is not drawn “very thin”

in the diagram, but thick enough so that the relevant mathematics can be explained.) The angle

θ with 0 ≤ θ < π determines the point Q. The angle θ also determines the right boundary of the

ring, and the sliver of an angle dθ determines its thickness and (along with θ) its left boundary. The

points Q and Q′ lie at distances r = R sin θ and R sin(θ + dθ) from the horizontal axis, respectively.

Applying the definition of radian measure to the angle dθ, we see that the length of the arc QQ′ is

Rdθ. An application of the formula for the area of a truncated cone tells us that the surface area

of the blue ring is tightly approximated by π
(
R sin(θ + dθ) + R sin θ

)
Rdθ. Let Mring be the mass of

the ring. Since the surface area of the entire spherical shell is 4πR2, the fact that mass and surface

area are proportional (this is a consequence of the homogeneity) tells us that

Mring

M
≈ πR2

(
sin(θ + dθ) + sin θ

)
dθ

4πR2
= 1

4

(
sin(θ + dθ) + sin θ

)
dθ.

Therefore, Mring ≈ 1
4
M

(
sin(θ + dθ) + sin θ

)
dθ. Let s be the length of the segment connecting Q to

the mass m. Let x be the base of the triangle with hypotenuse s. Since the distance from O to m

is c, the remaining segment has length c − x. By applying Part 1 to the ring and the mass m, we

get that the force of attraction of the ring on m is directed to the center O of the sphere and has

R s

m
O

d

Rsin

xc−x

r =

Q
Q

`

Figure 4.18

approximate magnitude

Fring ≈ GmMring x

(x2 + r2)
3
2

≈
1
4
GmMx

(
sin(θ + dθ) + sin θ

)
dθ

(x2 + r2)
3
2

≈
1
2
GmMx sin θ

(x2 + r2)
3
2

dθ.
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(Use the fact that dθ is very small for the last approximation.) Adding this approximation over all

the ring-like sections that were cut (with θ varying from 0 to π) gives us an approximation of the

gravitational force Fshell with which the entire shell pulls on m. It is the message of integral calculus

that by slicing up the shell into sections that are thinner and thinner, these approximations of Fshell

get tighter and tighter, and that in the limit,

Fshell =

∫ π

0

1
2
GmMx sin θ

(x2 + r2)
3
2

dθ.

Given that r = R sin θ and x are both functions of θ, this would appear to be a complicated

integral. However, it turns out that it can be solved rather quickly by expressing the integrand in

the variable s =
√

x2 + r2. Since (x2 + r2)
3
2 = s3, it remains to express sin θ dθ and x in terms of s.

Applying the law of cosines to the angle θ and the triangle ΔQOm, we get s2 = R2 + c2 − 2Rc cos θ.

By differentiating, 2s ds
dθ

= −2Rc(− sin θ) = 2Rc sin θ. Therefore sin θ dθ = 1
Rc

s ds. To express x in

terms of s, use the law of cosines again to get R2 = s2 + c2 − 2sc cos ϕ. Since cos ϕ = x
s
, this

implies that R2 = s2 + c2 − 2cx, so that x = s2+c2−R2

2c
. Feeding everything back into the integrand

of the integral above, we get 1
2

GmMx sin θ

(x2+r2)
3
2

dθ = 1
2
GmM · s2+c2−R2

2c
· 1

s3
· 1

Rc
s ds. Notice that when θ = 0,

s = c − R, and when θ = π, s = c + R. Therefore

Fshell = 1
4Rc2

GmM

∫ c+R

c−R

s2+c2−R2

s2
ds = 1

4Rc2
GmM

∫ c+R

c−R

(
1 + c2−R2

s2

)
ds.

Since s − (c2 − R2)s−1 = s − (c2 − R2)1
s

is an antiderivative of 1 + c2−R2

s2
,

∫ c+R

c−R

(
1 + c2−R2

s2

)
ds = s − (c2 − R2)1

s

∣
∣
∣
c+R

c−R
= c + R − (c − R) − (

c − R − (c + R)
)

= 4R.

We have therefore shown that

Fshell =
GmM

c2
.

Since the spherical shell is homogeneous, O is its center of mass. The force of attraction of each

ring on m points in the direction of O, so the same is true for the sum of all these forces. Since c is

the distance between O and m, Newton’s law of universal gravitation applies both to the direction

and to the magnitude of the force of attraction of a thin homogeneous spherical shell of mass M on

a point-mass m.

Part 3. We have arrived at the important point of our discussion. Using what was already

established, we will now show that the gravitational force F that a sphere of mass M exerts on

a point-mass m a distance c from the center of the sphere is given by Newton’s law of universal

gravitation

F =
GmM

c2
,

provided that the matter within the sphere is distributed in a certain symmetric way. Some assump-

tion about the way that the matter within the sphere is distributed is surely necessary. Why?

Consider a sphere made of a light material that has embedded within it a small but dense and
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heavy kernel of matter. Since every particle attracts every other, surely the gravitational force that

the larger sphere exerts on a point-mass depends decisively on the location of the small, heavy

kernel within it.

Let’s turn to a sphere B of matter with radius R and center O. The assumption that we will

make is this: any two small bits of matter in B that are the same distance from the center of the

sphere have the same density. This assumption is met by a sphere that is composed of concentric

homogeneous layers, each in the shape of a spherical shell. Think of the way an onion is structured.

Since each shell is homogeneous, the discussion of Part 2 applies to it. So each shell pulls on the

point-mass m in accordance with Newton’s law. Our intuition should tell us therefore, that the

entire sphere should pull on m in this way. Intuition is great. But a detailed argument is better.

The first thing to do is to define a density function for the sphere B. Let P be any point inside

the sphere, and let S be a small sphere inside B with center P and radius s. Let mS be the mass

of S, VS the volume of S, and consider the ratio mS

VS
. This is the average density of the matter

comprising the small sphere S. The density ρ(P ) at P is the limit

ρ(P ) = lim
s→0

mS

VS

.

If the point P is on the sphere, a similar definition works (with only a part of the sphere around

P being relevant). The assumption that we will make about the matter within the sphere B is as

x
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follows.

If P and Q are any two points in B that are the same distance from O, then ρ(P ) = ρ(Q).

We can now define a density function ρ(x) for the sphere. For any x with 0 ≤ x ≤ R, choose a

point P in the sphere that is distance x from O, and set ρ(x) = ρ(P ). We will assume that ρ(x)

is a continuous function of x. Intuitively, a sphere that has such a density function is made up of

shells—again, think of an onion—that are homogeneous.

Let’s turn to our planet Earth for a moment. For Earth, the graph of the function ρ(x) is sketched

in Figure 4.19, with 1000 kg/m3 the unit of density. What it tells us is that Earth has a very dense

inner core with a radius of about 1250 km, a dense outer core about 2250 km thick, a less dense

mantle about 2000 km thick, and that the layer consisting of the crust, water, rock, and soil of

Earth’s surface is relatively light and thin. The density of the water of the oceans is approximately

1000 kg/m3.

We’ll now verify Newton’s law of universal gravitation for spheres with the density property that

we have described. Let B be a sphere of radius R and turn to Figure 4.20. Let n be a large positive

integer (large relative to R) and let dx = R
n
. Choose n − 1 points between 0 and R

0 = x0 < x1 < x2 < · · · < xi−1 < xi < · · · < xn−2 < xn−1 < xn = R

that divide the interval 0 ≤ x ≤ R into n equal subintervals of length dx. So xi+1 − xi = dx, for

i = 0, 1, . . . n − 1. Figure 4.20 depicts the sphere B in black and, in blue, the spherical shell of

thickness dx that the points xi and xi+1 determine. (For purposes of “visibility,” the segment

xi ≤ x ≤ xi+1 and the spherical shell are both much thicker in the figure than in our description.)

The volumes of the spheres of radii xi+1 and xi are 4
3
πx3

i+1 and 4
3
πx3

i respectively. Since dx is very

−R c
m

0=x x
0

x xi+1i x  =Rn

ci

B

Figure 4.20
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small, the volume of the blue spherical shell is

4
3
πx3

i+1 − 4
3
πx3

i = 4
3
π
(
(xi + dx)3 − x3

i

)
= 4

3
π
(
3x2

i dx + 3xi(dx)2 + (dx)3
) ≈ 4πx2

i dx.

Take c0 to be a point in the subinterval x0 ≤ x ≤ x1, c1 a point in x1 ≤ x ≤ x2, . . . , ci a point in

xi ≤ x ≤ xi+1, and so on. Given that the shell is thin, it follows that its density is nearly equal to

ρ(ci) throughout, so that the shell is nearly homogeneous. Since density is mass divided by volume,

mass is volume times density. It follows therefore that the mass Mi of the thin shell is approximately

Mi ≈ (4πc2
i dx)ρ(ci) = 4πc2

i ρ(ci)dx.

Since c is the distance of the point-mass m from the shell’s center O, Part 2 tells us that the

gravitational force Fi of this shell on the point-mass m is

Fi ≈ G
mMi

c2
≈ Gm

c2
4πc2

i ρ(ci)dx,

By doing this for each of the n shells, adding the results, and noticing that the sum
n−1∑

i=0

Mi of the

masses of the n shells is the mass M of the sphere, we get that the force F of the entire sphere on

m satisfies

F ≈ Gm

c2

n−1∑

i=0

4πc2
i ρ(ci) dx ≈ Gm

c2

n−1∑

i=0

Mi =
GmM

c2
.

Repeating this computation again and again and letting n go to infinity we see that the cor-

responding dx = R
n

goes to zero. The definition of the definite integral applied to the sums

F ≈ Gm

c2

n−1∑

i=0

4πc2
i ρ(ci) dx and M ≈

n−1∑

i=0

4πc2
i ρ(ci) dx tells us that

F = Gm
c2

∫ R

0

4πx2ρ(x) dx = GmM
c2

,

and we have established that if the density of a sphere of mass M satisfies the “onion property”

described above, then its force of attraction on a point-mass m that is a distance c from its center

satisfies Newton’s law of universal gravitation.

Suppose, finally, that two spheres A and B of matter both satisfy the onion property. We know

from Part 3 that every particle of A is attracted by B in accordance with Newton’s formula, where c

is the distance from the particle to the center of B. From the point of view of A, therefore, the entire

mass of B can be considered to be concentrated at its center. In other words, B can be considered

as a point-mass. But this point-mass is attracted by A in accordance with Newton’s gravitational

formula. Therefore Newton’s formula holds for the two spheres A and B. The gravitational force

with which they attract each other is equal to G times the product of their masses divided by the

square of the distance between their centers.
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We have verified that Newton’s law of universal gravitation is valid for spherical bodies in the

universe that are radially homogeneous (as defined by the onion property). However, we saw in

Chapter 2 that the smaller bodies in the solar system, in particular, the comets and asteroids (and

many of the moons of the planets), are highly irregular in shape. Newton’s law does not generally

apply to such bodies (the paragraph Where the Law of Universal Gravitation Fails in the Problems

and Discussions section of this chapter explores this question). The large bodies in the solar system,

the Sun, the planets, and the dwarf planets, are spheres and it seems probable that they, like the

Earth, satisfy the onion property. However, these bodies rotate around an axis and this has caused

them to bulge at their equators. But in reference to Newton’s universal gravitation, the impact of

this is minimal, at least in the case of the Earth.

A mathematical model for such deformed spheres can be obtained as follows. Let a be the radius

of the body at the equator and let b be the radius at a pole and note that a ≥ b. Take the ellipse

that has semimajor axis a and semiminor axis b and revolve it one complete revolution around the

a

b

O

Figure 4.21

line of the minor axis. The surface obtained is known as an ellipsoid. See Figure 4.21. Let’s com-

pute the volume of the ellipsoid just described. Consider an xy-coordinate system and the ellipse
x2

a2 + y2

b2
= 1, where a and b are the semimajor and semiminor axes. Solving for y, we get y =

± b
a

√
a2 − x2. The upper half of the volume of the ellipsoid is the volume of revolution obtained

by revolving the graph of f(x) = b
a

√
a2 − x2 one revolution around the y-axis as Figure 4.22a illus-

trates. The thin black strip in the figure revolves to generate a cylindrical shell of circumference

2πx, height y = b
a

√
a2 − x2, and thickness dx. Since the volume of this shell is 2πx b

a

√
a2 − x2 dx, the

summation strategy of integral calculus tells us that the volume of the upper half of the ellipsoid is
∫ a

0

2πx b
a

√
a2 − x2 dx .

Example 4.11. The substitution u = a2 − x2 shows that the volume of the ellipsoid is V = 4
3
a2bπ.
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Figure 4.22b shows the sphere of radius b placed inside the ellipsoid. The region outside the

sphere and inside the ellipsoid is the equatorial bulge. Its volume is 4
3
a2bπ − 4

3
b3π = 4

3
b(a2 − b2)π.

x

y

(a)        (b)

O x

y

b

a

at x with a thickness of dx

x

y = √a  − xb
a

2         2

Figure 4.22

In the case of Earth, a = 6378.1 km and b = 6356.8 km. So the Earth’s volume is

4
3
π(6378.1 × 103)2(6356.8 × 103) ≈ 1.0832 × 1021 m3.

Refer to Table 2.3 for the estimate 5.97 × 1024 kg for the Earth’s volume. It follows that the Earth’s

average density is

5.97 × 1024

1.0832 × 1021
≈ 5.51 × 103 kg/m3.

The volume of its equatorial bulge is

4
3
π(6356.8 × 103)(6378.12 − 6356.82) × 106 ≈ 7.22 × 1018 m3.

The density of the outermost 20 km of the Earth’s crust is about 2.8 × 103 kg/m3, so that the mass

of the bulge is about

(7.22 × 1018)(2.8 × 103) ≈ 2.02 × 1022 kg.

It follows that the mass of the bulge is about 1
3

of 1 per cent of the total mass of the Earth.

It follows that the bulge is of little consequence for the gravitational pull both by and on the

Earth. On the other hand, we saw in About the Earth-Moon System of the Problems and Discussion

section of Chapter 1, that the bulge causes small perturbations in Earth’s motion over time.

The fact that the Earth bulges out at the equator means that the tip of Mount Chimborazo

in Ecuador (163 kilometers south of the equator) is the point on the surface of the Earth that is

farthest from the Earth’s center. One could argue therefore that Mount Chimborazo (at 6,310 m

above sea level) is the highest peak on Earth and not Mount Everest (at 8,850 m above sea level).
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With regard to an assessment of the smoothness of the surface of the Earth, let’s consider the

relative height of Mount Everest if the Earth were shrunk to the size of a basketball. Let’s take

6,370 km or 6,370,000 m as the average radius of the Earth and 0.122 m as the radius of a basketball.

(The radius of an official basketball lies in the range of 0.120 m to 0.124 m.) This implies that Mount

Everest would be 0.122
6,370,000

· 8850 m ≈ 0.00017 m= 0.17 millimeters high on the surface of the ball. Is

this higher than one of the little mounds—officially called a pebble—on a basketball? These range

from a height of about 0.33 millimeters to about 0.64 millimeters. So on the basketball, the relative

height of Mount Everest is roughly half of that of a pebble.

4I. Problems and Discussions. This set of problems considers various aspects of the discussions

of this chapter.

1. Forces and the Motion of Points. These problems deal with the properties of vectors

and the motion of points in the plane.

Problem 4.1. Figure 4.23 represents two forces F1 and F2 and their resultant. The magnitude of

the resultant is 115 pounds and the angles between the two forces and the resultant are given in

30o

25o

F1

F2

Figure 4.23

the figure. Use the law of sines to determine the magnitudes of F1 and F2.

Problem 4.2. Use the law of cosines to determine the magnitude of the resultant of the two vectors

35

49

65o

Figure 4.24

in Figure 4.24. Then use the law of sines to find the angles between the resultant and these vectors.
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Problem 4.3. Consider Example 4.3 and the accompanying Figure 4.4. Given that the string has

a length of 1.6 meters and that θ = 60◦, find the radius of the circular path of the object P . If the

mass of P is 2 kg, determine the magnitudes of the forces FH and F .

Problem 4.4. Consider a point-mass P of mass m = 1 moving in an xy-plane. Let its position

be given by x(t) =
√

t and y(t) = t for t ≥ 0. Check that this point moves on the parabola y = x2

starting at (0, 0). Analyze the motion of the point-mass by following what was done in Example 4.6.

How does this motion compare with that of Example 4.6 for t ≥ 0? What are the chief differences?

Problem 4.5. Suppose that a point-mass P is driven by a centripetal force in such a way that the

angle θ(t) of Figure 4.13 increases at a constant rate. Show that r(t) as well as F (t) are constant

and that the trajectory is a circle.

Problem 4.6. Suppose that a point-mass P moves along a straight line L with constant speed.

Observe that P can be regarded as being subject to a centripetal force of zero magnitude centered

at some point S not on L. Draw a picture of what is going on and show that the segment SP sweeps

out equal areas during equal times. Let v be the speed of P and d the distance from S to L. Show

that Kepler’s constant is κ = 1
2
vd. Does this example contradict Newton’s Conclusion C?

Problem 4.7. Suppose that a centripetal force of magnitude F (t) propels a point-mass P on a

trajectory that is the graph of the function r = f(θ) = d
a sin θ+b cos θ

, where a, b, and d are constants

with d �= 0. Let g(θ) = 1
f(θ)

= 1
d
(a sin θ + b cos θ) and show that g(θ) + g′′(θ) = 0. Conclude from the

second form of the force equation that F (t) = 0. Review Chapter 3C and determine the graph of

r = f(θ).

Problem 4.8. Consider a point-mass P of mass m = 1 moving in an xy-plane with position

functions x(t) = t cos t and y(t) = t sin t with t ≥ 0. Find the coordinates of the point for t =

0, π
4
, π

2
, 3π

4
, π, 5π

4
, 3π

2
, 7π

4
, and 2π. Analyze the point’s motion by following Example 4.6. Show that the

speed of the point is v(t) =
√

t2 + 1. Verify that the magnitude of the force on P is
√

t2 + 4. Show

that the magnitudes of the tangential component of the force and the component perpendicular to

it are t√
t2+1

and t2+2√
t2+1

, respectively. Discuss these magnitudes for t increasing from small to large.

The motion of P is best understood by going polar. Consider the functions r = f(θ) = θ and

θ = θ(t) = t. So r(t) = f(θ(t)) = t. Use the connection between polar and Cartesian coordinates

to show that x(t) = r(t) cos θ(t) = t cos t and y(t) = r(t) sin θ(t) = t sin t. Therefore the two func-

tions r = f(θ) = θ and θ = θ(t) = t represent the motion of P . The graph of r = f(θ) = θ is an

Archimedean spiral (see Problem 3.22). Since the angle is given by θ(t) = t, this expanding spiral

is traced out at a constant angular speed of θ′(t) = 1 radian per unit time. Could the force that

propels P be a centripetal force? The term r(t)2θ′(t) provides the answer.

Problem 4.9. Let the position of a point-mass P of mass m moving in an xy-plane be given by

the equations x(t) = a cos ωt and y(t) = b sin ωt, where t is time with t ≥ 0, and a, b, and ω are

positive constants with a ≥ b. Show that the distance between P and O at any time t is r(t) =√
a2 cos2 ωt + b2 sin2 ωt. Show that the point starts at (a, 0) and that it moves counterclockwise
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Figure 4.25

on the ellipse x2

a2 + y2

b2
= 1 with semimajor axis a and semiminor axis b. Refer to Figure 4.25 and

analyze the motion of P by following what was done in Example 4.7. Conclude in particular that

the force on P is a centripetal force in the direction of the origin O and that it has magnitude

F (t) =
√

Fx(t)2 + Fy(t)2 = mω2
√

a2 cos2 ωt + b2 sin2 ωt = mω2r(t).

The fact that P starts at time t = 0 and completes its first revolution when t satisfies ωt = 2π

tells us that the Kepler constant of its orbit is κ = abωπ
2π

= abω
2

. Since the force on P is centripetal,

F (t) and r(t) satisfy the force equation F (t) = m
[

4κ2

r(t)3
− d2r

dt2

]
. (This can also be verified directly

with a labor-intensive calculus exercise.) If a > b, then r(t) varies. Use the equality F (t) = mω2r(t)

to show that F (t) cannot satisfy an inverse square law. The geometric reason for this is that the

center of force is the center of the ellipse and not a focal point of the ellipse. If a = b, then the

ellipse is a circle and the center is also the focal point. In this case, r(t) = a is a constant, and we

saw in Example 4.10 that the centripetal force F (t) does satisfy an inverse square law.

2. Projectile Motion on Earth. Let’s go from motion in the abstract to the motion of a

thrown object P near Earth’s surface. We’ll assume that air resistance is negligible. This is so if

the projectile has a low initial speed (it’s not a speeding bullet), a large enough weight (it’s not a

feather), and that its size is small (it’s not a car). A baseball that is lobbed or a basketball of a

jump shot are two examples. In such a situation, the trajectory of the projectile can be described

accurately and relatively easily in mathematical terms. The discussion of section 4H allows us to

suppose that the gravitational pull on P is directed to the Earth’s center of mass C and that this

pull satisfies an inverse square law. It follows from conclusion C of section 4H that the trajectory of

P is a conic section with C at a focus. See Figure 4.26. We’ll assume that the initial and terminal

points of the trajectory of the projectile are close relative to the distance from P to C (which exceeds

the 6356 km of Earth’s polar radius). This means that the trajectory of the projectile can be studied

by placing an xy-coordinate axis into the plane of the trajectory as shown in Figure 4.27 and by
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C

P

Figure 4.26

assuming that the pull of gravity on the projectile is parallel to the y-axis throughout its flight.

Let the projectile start its motion at time t = 0 with initial position the point (0, y0). It has

an initial velocity that is represented by the vector in the figure. The length of the vector is equal

to the initial speed v0 of the projectile. The angle of the vector with respect to the horizontal is

known as the angle of elevation or angle of departure. It is labeled by ϕ, where 0 ≤ ϕ ≤ π
2
. For

any time t ≥ 0, the x- and y coordinates of the position of P are x(t) and y(t), respectively. Note

that x(0) = 0 and y(0) = y0. For any t, the velocities of the projectile in the x- and y-directions

are x′(t) and y′(t), respectively, and the speed of the projectile is equal to v(t) =
√

x′(t)2 + y′(t)2.

y0

v0

t = 0

0

y(t)

x(t)

y

x

P

R

Figure 4.27
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So v0 =
√

x′(0)2 + y′(0)2 is the initial speed. Refer to Figure 4.27 again and observe that cos ϕ = x′(0)
v0

and sin ϕ = y′(0)
v0

. Therefore,

x′(0) = v0 cos ϕ and y′(0) = v0 sin ϕ .

The only force on the projectile during its flight is gravity acting in the negative y-direction. Since

the force in the x-direction is zero, the acceleration in the x-direction is also zero. Thus x′′(t) = 0

and x′(t) is constant. Since x′(0) = v0 cos ϕ and x(0) = 0, it follows that

x′(t) = v0 cos ϕ and x(t) = (v0 cos ϕ)t .

Because gravity produces an acceleration of −g in the y-direction, y′′(t) = −g. Since y′(0) = v0 sin ϕ

and y(0) = y0, we find that

y′(t) = −gt + v0 sin ϕ and y(t) = −g

2
t2 + (v0 sin ϕ)t + y0 .

From above, t = x(t)
v0 cos ϕ

. So t2 = (x(t))2

v2
0 cos2 ϕ

and by a substitution into the expression for y(t), we get

y(t) =
−g

2v2
0 cos2 ϕ

(x(t))2 + (tan ϕ)x(t) + y0 .

So the position (x(t), y(t)) of the projectile at any time t satisfies the equation

y =
( −g

2v2
0 cos2 ϕ

)
x2 + (tan ϕ)x + y0 .

This is the equation of a parabola. Therefore, the trajectory of the projectile is a parabola, the very

specific parabola that the constants v0, y0, and ϕ determine. For the rest of our discussion we’ll

assume that the terrain is flat and horizontal and that the x-axis lies along the ground.

Problem 4.10. Use some elementary calculus to show that the maximal height reached by the

projectile is 1
2g

v2
0 sin2 ϕ + y0.

Problem 4.11. At what time and how far downrange will the projectile hit the ground? Show that

the time timp of impact is

timp =
v0 sin ϕ +

√
v2

0 sin2 ϕ + 2gy0

g

and that impact occurs down range at

x = R = x(timp) = v0
g

cos ϕ
[
v0 sin ϕ +

√
v2

0 sin2 ϕ + 2gy0

]
.

Assume that y0 = 0. The trig formula sin 2ϕ = 2 sin ϕ cos ϕ provides the simplified expression

R =
v2

0

g
sin 2ϕ

for the range R. So when y0 = 0, the maximal range is achieved for ϕ = π
4

and is equal to
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Rmax =
v2

0

g
.

If y0 �= 0, then the question of the maximal range is more complicated. The value ϕ = π
4

does

not provide the greatest range R.

Problem 4.12. Show that the maximum value of the function

R(ϕ) = v0
g

cos ϕ
[
v0 sin ϕ +

√
v2

0 sin2 ϕ + 2gy0

]

occurs when sin ϕ = v0√
2v2

0+2gy0
. [The strategy is as expected: set R′(ϕ) = 0 and see what you get.

The algebra is a bit involved, but routine. Multiply through by the denominator
√

v2
0 sin2 ϕ + 2gy0

and then square both sides. Also show that sinϕ = v0√
2v2

0+2gy0
is equivalent to tan ϕ = v0√

v2
0+2gy0

.]

Problem 4.13. Show that the speed of the projectile at any time t is

v(t) =
√

v2
0 + g2t2 − 2g(v0 sin ϕ)t.

Determine the speed at impact as well as the angle of impact.

Problem 4.14. A baseball player throws a ball in the direction of a teammate. The gravitational

constant at the location is g = 9.8 m/sec2. The ball is released 1.5 meters from the ground with an

initial velocity of 21.7 meters/sec and an angle of elevation of 30◦. What is the maximum height that

the ball reaches? How long will the ball remain in the air before it strikes the ground? What will

be the ball’s speed when it impacts the ground in front of the outstretched glove of the teammate?

3. Tossing the Hammer. The hammer throw is an Olympic track and field event that appears

to have its origin in the Scottish/English sport of sledge hammer throwing. It has been an Olympic

event for men since the Paris Olympics in 1900. For women the hammer throw was first included

in the Sydney Olympics in 2000. A 16 pound, or equivalently a 7.257 kg metal ball is attached to

a 3 foot 113
4

inch, or 1.215 meter, piece of wire and the wire in turn is attached to a handle. The

thrower grasps the handle with both hands and swings the ball in a circular arc with extended arms.

As the ball moves in a circle the thrower’s body spins, both with successively increasing rotational

I

C
P

path of hammer

39.4o

Figure 4.28
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speed. The thrower attempts to achieve the longest possible throw with an optimal combination of

the speed and angle of inclination of the ball at the instant he releases the handle and the ball flies

off (along with the handle and the wire). For a throw to be valid, the thrower has to remain within

the designated throwing circle of 7 feet in diameter throughout and the ball has to land within

a specified wedge shaped sector. Both are depicted in Figure 4.28. The official distance of a valid

throw is the distance from the point of impact I of the ball to the point P on the throwing circle.

Again refer to Figure 4.28.

The world record for the men’s hammer throw is held by the Ukranian Yuriy Sedykh, who threw

86.74 m (284 ft 7 in) at the European Track and Field Championships in Stuttgart, West Germany,

on the 30th of August, 1986. Having stood for over 30 years, it is one of the oldest records in track

and field. Yuriy came into the championship meet as the world record holder with 86.66 m. The

four best throws in his sequence of six at this championship meet were: 85.28 m, 85.46 m, 86.74 m,

and 86.68 m. His remarkable performance is captured in the video

https://www.youtube.com/watch?v=4qAE2PrCVhY

The record setting throw was recorded with a camera at 200 frames per second and analyzed by

Ralph Otto and Gabriele Hommel, in their article, Hammer Throw World Record, Photo Sequence-

Yuriy Sedykh, 1992. See

http://www.hammerthrow.org/wp-content/uploads/photosequences/otto sedykh wr.pdf

The data that this study develops include:

The speed of the ball at release: v0 = 30.7 m/sec.

The height of the ball at release: y0 = 1.66 m.

The angle of elevation of the ball at release: ϕ = 39.9◦.
The final release phase of the throw: with a duration of 0.27 sec, it increased the

ball’s speed from 24.1 m/sec to 30.7 m/sec.

Given its latitude and elevation, the gravitational constant g for Stuttgart is

essentially the same as that of Paris. The latter is g = 9.81 m/sec2.

Use these data and the formula R = v0
g

cos ϕ
[
v0 sin ϕ +

√
v2

0 sin2 ϕ + 2gy0

]
derived in Prob-

lem 4.11 for the horizontal distance that a projectile achieves in a vacuum to check that R ≈ 96.56 m.

B

= 39.9o

1.8 m

= 30.7 m sec/v0

ϕ
B = 1.66 my0

Figure 4.29

https://www.youtube.com/watch?v=4qAE2PrCVhY
http://www.hammerthrow.org/wp-content/uploads/photosequences/otto_sedykh_wr.pdf
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This tells us that air resistance and the retarding effect of the wire and the handle reduced this

theoretical value of the record throw by 96.56 − 86.74 = 9.82 m.

Figure 4.29 depicts the instant of the release of Yuriy’s record throw. In terms of the physics

of what is happening, the matter is similar to the motion of the Moon around the Earth. See

Chapter 1E. In both situations, two bodies go around a common center of force, the barycenter of

the system. In this last phase of Yuriy’s throw both the hammer and (a part of) his torso are in

orbit around a barycenter B that lies along the segment determined by his extended arms and the

cable of the hammer. A study of the video and the fact that the wire is about 1.2 m long, suggests

that B lies about 1.8 m from the center of the ball.

To compute the force with which the hammer pulls on the thrower just before the moment of

release, we’ll assume that the hammer moves with a speed of 30.7 m/sec along the very last arc

of a circular orbit of radius r = 1.8 m. The period T of this assumed orbit satisfies 2πr
T

= 30.7. So

T = 3.6π
30.7

= 0.37 sec. The formula for the centripetal force

F =
4π2a3m

T 2
· 1

r2
P

applies to the current situation with rP = a = 1.8 and m = 7.257 kg, so that the force with which

the revolving ball pulls on the arms of the thrower just before release is

F =
4π2a3m

T 2
· 1

r2
P

=
4π2(1.8)m

T 2
≈ (71.06)(7.257)

0.372
≈ 3767 newtons.

This force is much greater than the weight of the thrower. Since Yuriy had a mass of 110 kg at

the time of the throw, his weight was 9.81 · 110 = 1079 newtons. Given this difference, why didn’t

Yuriy fly off with the ball before he released it?

The analysis just undertaken has ignored the downward pull of the weight 9.81 · 7.257 = 71.19

newtons of the hammer. The fact that this is much smaller than the force exerted by the moving

hammer makes this a reasonable assumption. It has also ignored the force of friction pushing against

the soles of the throwers athletic shoes. This is difficult to assess, but the angle of the body of the

thrower and the way the soles of the shoes touch the floor of the throwing circle both suggest that

this too is a lesser factor.

From 1980 onward, the world record in the hammer throw has evolved as follows:

80.64 m (Yuriy Sedykh, May 16, 1980); 81.66 m (Sergey Litvinov, May 24, 1980)

81.80 m (Yuriy Sedykh, July 31, 1980); 83.98 m (Sergey Litvinov, June 4, 1982)

84.14 m (Sergey Litvinov, June 21, 1983); 86.34 m (Yuriy Sedykh, July 3, 1984)

86.66 m (Yuriy Sedykh, June 22, 1986); 86.74 m (Yuriy Sedykh, August 30, 1986)

Yuriy Sedykh and the Russian Sergey Litvinov were the greatest hammer throwers of all time.

From 1976 until 1991, one or the other won the world championship as well as Olympic gold.

Litvinov still holds the Olympic record with his throw of 84.80 m at the Seoul Olympics in 1988.

4. Supersized Reflecting Telescopes. There are two types of telescopes: refracting and

reflecting. In a refracting telescope it is the objective lens that collects, bends, and brings to a

focus the parallel rays of light from a distant object. In a reflecting telescope it is a curving primary
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mirror that plays this role. The world’s most powerful telescopes are reflecting telescopes. The

structure of most of them goes back to a design by the Scotsman James Gregory, a mathematician

and astronomer working in the 17th century. The essential scheme of the Gregorian telescope is

shown in Figure 4.30. The primary mirror collects the light and brings it to a focus before a second

inward curving mirror reflects it back through a hole in the center of the primary mirror to form

focal point of
the primary mirror 

eyepiece 

primary
mirror

primary
mirrorsecondary

mirror

axis of 
symmetry

focal point of
the primary mirror 

Figure 4.30. Gregorian telescope. From https://en.wikipedia.org/wiki/Gregorian telescope#/media/File:
Gregorian telescope.svg

an image that is enlarged by the eyepiece. Reflecting telescopes have several important advantages

over refracting telescopes. In a lens, the volume of glass or plastic has to have a precise geometry,

be homogeneous, and be free of imperfections throughout. In an optical mirror, only the surface has

to be perfectly shaped and polished. A large objective lens is heavy and can be distorted by gravity.

In contrast, a large mirror can be supported by a lighter frame on the other side of its reflecting

face with no gravitational sag. In other words, in terms of the critical light-collecting ability of a

telescope, it is not feasible to build huge lenses, but it is feasible to build huge light-collecting mirrors.

All large telescopes built in the 20th and 21st centuries, as well as those still under construction,

are reflecting telescopes, and most of these are Gregorian telescopes (or modified versions of the

Gregorian design) with primary mirrors that have central holes. The largest are three super tele-

scopes, the Giant Magellan Telescope, the Thirty Meter Telescope, and the European Extremely

Large Telescope, all three scheduled to come on line in the decade of the 2020s.

The primary mirror of the Giant Magellan Telescope (GMT) will consist of a configuration of

seven circular mirrors all of the same diameter. One mirror at the center (with the hole that the

Gregorian design requires) is to be surrounded by six more mirrors aligned in such a way that their

combined surface will lie on a parabola of revolution. All of the mirrors are to be manufactured by

the Mirror Lab at the University of Arizona. We will focus on the mirror at the center to describe

the manufacturing process. A cylindrical form of about 8.4 m in diameter is placed with its base in

a horizontal position so that its central axis is vertical. A tight, tiled arrangement of hundreds of

hexagonal boxes made of heat-resistant material forms the supporting base of the mirror during its

manufacture. Chunks of the purest glass, about 20,000 kg in all, are placed into the cylinder on top

of this base. See Figure 4.31. The cylinder sits inside a tub that forms the bottom half of a furnace.

With the lid in place, the cylinder is enclosed in the furnace. Powerful heating elements melt the

glass in the cylinder at a temperature of 1160 ◦C (degrees Celsius). The furnace assembly is rotated

in the horizontal plane around the central axis of the cylinder at a constant rate of 5 revolutions per

https://en.wikipedia.org/wiki/Gregorian_telescope#/media/File:Gregorian_telescope.svg
https://en.wikipedia.org/wiki/Gregorian_telescope#/media/File:Gregorian_telescope.svg
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minute. This rotation pushes the liquid glass outward toward the rim of the cylinder. The molten

glass reaches steady state with its upper surface curving from the center of the cylinder up to its

edge. After the correct mirror geometry has been achieved, the cooling process begins. It takes about

three months to cool the glass to room temperature. The slowness of the process ensures that the

glass will not develop cracks. To preserve the geometry, the furnace assembly continues to rotate

during this time. The process that has been described is called spin casting.

The remarkable fact is that the spin-casting process provides the upper surface of the glass, and

hence the eventual mirror, with the parabolic geometry that it needs to have! A second remarkable

Figure 4.31. Casting the central mirror GMT4 for the Giant Magellan Telescope. Image credit: Ray Bertram,
Richard F. Caris Mirror Lab, University of Arizona.

fact is that the verification that this is so relies on Newton’s formula for the magnitude of a cen-

tripetal force.

Suppose that the glass surface has reached steady state. Take a plane through the vertical

axis of the rotation. Think of this vertical plane to be fixed, and consider the curve obtained

by intersecting the upper surface of the molten glass with this vertical plane. Figure 4.32 shows

this plane along with an xy-coordinate system. The coordinates 4.2 and 1.15 represent the

radii of the mirror and that of its central hole (both in meters). The y-axis is the axis of

rotation of the furnace assembly and that of the graph of the function y = f(x) that repre-

sents the surface of the molten glass. Consider a small particle of molten glass of mass m rid-

ing on this surface. Let α be the angle between the tangent line to the graph at the glass
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particle and the horizontal. Let Fb be the buoyant force with which the molten glass pushes

against the particle. It acts perpendicularly to the tangent line. Because steady state has been

reached, the vertical component V of the buoyant force is equal in magnitude to the force of

gravity Fg acting on the glass particle. Let Fc be the horizontal component of the buoyant force.

Extend the line of force of Fb, and draw in the angle β. Notice that α + β = 90◦. The angle

Fg

Fc

axis of rotation

Fb V

x

y

xO

y = f (x)

4.21.15

Figure 4.32

marked with the single stroke is equal to β so that the angle marked with the double stroke is equal

to α. Since the tangent of this angle is equal to Fc

V
= Fc

Fg
, it follows that

tan α =
Fc

Fg

.

Suppose that the cylindrical form turns at a constant rate of τ revolutions per unit time. Since

steady state has been reached, the particle moves at this rate on a fixed horizontal plane in a cir-

cle of constant radius x. The particle is kept in “orbit” on this horizontal plane by the horizontal

component of the buoyant force of magnitude Fc, which acts centripetally in the direction of the

axis of rotation. Since the mass m moves in a circle of radius x, we know by the circular case of the

centripetal force equation (with a = r(t) = x) that

Fc =
4π2xm

T 2
,

where T is the time of one complete revolution. If the glass particle takes the time T for 1 revolution,

it completes 1
T

revolutions in 1 unit of time. Therefore 1
T

= τ , and it follows that

Fc = 4π2τ 2mx.

Because f ′(x) is the slope of the tangent,

f ′(x) = tan α =
Fc

Fg

=
4π2τ 2mx

mg
= 4π2

g
τ 2x.
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Since the derivatives of y = f(x) and y = 2π2

g
τ 2x2 are the same and f(0) = 0, it follows, by taking

antiderivatives, that the upper surface of the molten glass is obtained by rotating the parabola

f(x) =
2π2

g
τ 2x2

one complete revolution around the y-axis. The focal point of the parabola has coordinates
(
0, g

8π2τ2

)
. This follows from the study of the parabola x2 = 4cy in Chapter 1C. Notice that the shape

of the parabola depends (in addition to π and g) only on the speed of the rotation τ and not on the

density of the molten glass. So the shape is the same regardless of the liquid that is being rotated.

The constant τ controls the geometry of the mirror. For the central mirror of the GMT, the rota-

tional speed was set at τ = 1
12

revolutions per second (the equivalent of 5 revolutions per minute).

Since g ≈ 9.80 m/s2 (at the location of the University of Arizona in Tucson, Arizona), it follows

that in meters,

f(x) ≈ 0.014x2.

The parabolic surface that has now been described only approximates the final shape of the mir-

ror. The precision requirements on the mirror are extraordinary. After the glass mass has cooled,

its parabolic surface is made smooth with diamond grinding wheels. This brings the accuracy of the

surface to within about 1
10

of 1 millimeter of what is needed. Finally, after polishing the glass, the

necessary tolerance of less that 1
10,000

of 1 millimeter is achieved. The final step—to be undertaken

for each of the mirrors on location of the GMT high in the Chilean Andes—is the application of

a thin, fragile, reflective aluminum coating to the glass surface. Only then will the manufacture of

the mirrors be complete. The telescope is scheduled to begin operation in the year 2029.

Problem 4.15. Consider the shape of the central mirror of the Giant Magellan Telescope as it

is described by Figure 4.32 and the function f(x) ≈ 0.014x2. Show that the depth of the mirror,

namely, the vertical distance between the horizontal plane at the mirror’s rim and its central hole is

f(4.2) − f(1.15) ≈ 0.014[(4.2)2 − (1.15)2] ≈ 0.23 m. Then show that the focal point of the central

mirror is

g

8π2τ 2
≈ (9.80)(122)

8(9.87)
≈ 17.87 m

above the origin O.

We have described the manufacture of the central primary mirror of the GMT. The six mirrors

surrounding the central mirror are constructed in the same way. But there is one important differ-

ence. The parabola of the central mirror determines the parabola of the entire configuration, and

its central axis coincides with the focal axis of this parabola. The surfaces of the other six mirrors

lie higher on the parabola. So they are off-axis and not rotationally symmetric. After the spin-cast

glass forms of the six non-central mirrors emerge from the furnace, they need to be ground and

polished with complex precision to receive the delicate geometry that they need to have. When
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complete, the seven-mirror configuration of the GMT will have a diameter of 25 m. The website

http://www.gmto.org/gallery/

provides up to date progress reports on the construction of the telescope.

There are plans to construct telescopes even larger than the GMT. One of them is the Thirty

Meter Telescope (TMT) with a primary mirror of 30 m in diameter to be built on Mauna Kea in

Hawaii. The design of this mirror is completely different from that of the GMT. It will be a composite

of 492 individual hexagonal mirror segments that measure 1.44 m from corner to opposite corner.

The hexagons, all slightly different in shape, will be carefully aligned to form the hyperbolic primary

mirror of the design. (The fact that the primary and secondary mirrors are both curved and work

in tandem means that the parabolic geometry is not the only option for the primary mirror.) The

advantage of this approach is that the smaller mirrors are more quickly manufactured and more

easily shipped to the construction site than the huge mirrors of the GMT. On the other hand, it

will be much easier to control the fewer moving parts of the GMT with the necessary accuracy. The

building of the TMT has faced delays. Native Hawaiians consider the proposed site of the telescope

sacred and have protested its construction. The European Extremely Large Telescope (E-ELT) to

be built in Chile, will have the same mirror design as the TMT. With its 798 hexagonal mirrors and

a diameter of 39 m, it will be the largest of the three new super telescopes. Its mirrors are already

being cast and it is scheduled to see “first light” in the year 2025.

The new large telescopes will look deeply into space to unravel the mysteries surrounding the

evolution and current state of the universe (its age, galaxy formation, dark matter and dark energy,

black holes, and planets that orbit distant stars). Earth-based telescopes need to compensate for

atmospheric interference, such as air currents and turbulence, as well as refraction. These distort

the information carried by the light from the object being observed. The powerful computers that

are integrated with the optics of high-tech telescopes can measure the distortions, and the many

actuators can continuously adjust the shape of the mirrors in response. Such systems are referred

to as adaptive optics. They transform twinkling stars into clear, steady points of light. In this way,

all three super telescopes will produce images that are 10 times sharper than those of the Hubble

Space Telescope. (The amazingly successful Hubble with its 2.4 m mirror orbits Earth and does not

have to deal with atmospheric conditions.)

5.Where the Law of Universal Gravitation Fails. The next two problems provide exam-

ples of bodies for which Newton’s law of universal gravitation does not hold. They tell us that this

law is the exception rather than the rule. For instance, it would not apply to the force with which

a potato-shaped asteroid attracts an orbiting spacecraft. Of course, the law of universal gravitation

along with the assumption that the spacecraft, or asteroid, or comet is a point-mass does provide

accurate information in most situations where the distances involved are large.

Problem 4.16. Consider a point-mass of mass m and a thin homogeneous circular disc D of radius

R and mass M . Figure 4.33 depicts D along with an x-axis that lies in the plane of the disc. The

origin O is the center of D. The point-mass lies on the axis perpendicular to D through its center

O at a distance c from O. The density of D is equal to ρ = M
πR2 . A typical circular ring of D is

http://www.gmto.org/gallery/
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shown in blue. It has radius x and thickness dx. The circumference of the ring is 2πx, so that it has

mass 2πρx dx. It follows from Part 1 of the section Gravity and Geometry that this circle attracts

c m

x

O

R

D

Figure 4.33

the point-mass with a force of G m(2πρx dx)c

(x2+c2)
3
2

directed to the center of the circle. Use the strategy of

integral calculus to show that the gravitational force of the disc on the point-mass is directed to the

center of the disc and has magnitude F = G 2mM
R2

[
1 − c√

R2+c2

]
.

The center of mass of the disc D is its center, so that an application of the law of universal

gravitation provides the incorrect magnitude of GmM
c2

for this attractive force.

Problem 4.17. Consider a point-mass of mass m and a homogeneous cylinder C (include the

interior of the cylinder as well as its surface) of radius R, height h, and mass M . Figure 4.34

depicts C along with its central axis. The cylinder extends from its circular base at x = 0 to its

0

R

c

m

hx

Figure 4.34
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other circular boundary at x = h. The point-mass lies on the central axis at a distance c ≥ h from the

base of the cylinder. The density of C is ρ = M
πR2h

. A typical circular disc of C is shown in the figure in

blue. It is parallel to the base, intersects the axis at x, and has a thickness of dx. The disc has a mass

of πR2dx · ρ. Use the result of Problem 4.16 to determine the gravitational force of the disc on m. Set

up an integral and then solve it to show that the force of the cylinder on the point-mass is directed

to the center of the cylinder and that its magnitude is G2mM
R2h

[
h − (R2 + c2)

1
2 + (R2 + (c − h)2)

1
2

]
.

Observe therefore that Newton’s law of universal gravitation does not hold for a cylinder and a

point-mass, even when the point-mass is symmetrically positioned on the cylinder’s central axis.

6. The Volume and Density of the Moon. The final two problems will estimate the average

density of the Moon and conclude that it is much less than Earth’s average density.

Problem 4.18. The Moon, like Earth, is a flattened ellipsoid. The Moon’s equatorial and polar

radii are 1738.1 and 1736.0 kilometers respectively. Use the conclusion of Example 4.11 to show that

the volume of the Moon is closely approximated by 2.1968 × 1019 m3. Show that the volume of the

Moon’s equatorial bulge is 4
3
π(1736.0)(1738.12 − 1736.02) × 109 = 5.3052 × 1916 m3. This amounts

to about 1
4

of 1% of the Moon’s total volume.

Problem 4.19. Refer to Table 2.3 of Chapter 2 for the estimate 7.35 × 1022 kg of the Moon’s

mass and use the result of Problem 4.18 to show that the average density of the Moon is 3.35 ×
103 kg/m3.

A study of Figure 4.19 tells us that the average density of the Moon is about the same as the

density of the lightest materials of the Earth’s crust. Analyses of the lunar rocks that the Apollo

missions brought back have informed us that the chemical composition of these rocks differs from

that of the crustal rocks of Earth. These two facts together give weight to the most widely supported

theory about the origin of the Moon. This is the “large impact theory” asserting that a massive

body (say, one-half the size of Earth) struck Earth. The impact threw a large amount of material,

both from Earth and the impacting body, into orbit around Earth. Much of it would have come

from Earth’s lighter outer mass. So the large impact theory is not inconsistent with the observed

differences between the densities and chemical compositions of the materials of Earth and Moon.
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It’s time to step back and recall some of the high points of the discussion of the previous chapters.

We learned in Chapter 1 that Kepler’s painstaking analysis of what Tycho Brahe had massively

observed and recorded, allowed him to conclude that the planets move in accordance with what

would later be called Kepler’s three laws of planetary motion. These laws assert that the planets

move in elliptical orbits with the Sun at a focal point, that the segment that joins each moving

planet to the fixed Sun sweeps out equal areas in equal times, and that the ratio a3

T 2 , where a is the

semimajor axis of an orbit and T its period, is the same for all the planets. The chapter went on

to Newton’s conclusions—obtained in the abstract by a combination of basic laws of motion with

the mathematics of calculus—about the connection between the geometry of the path taken by a

point-mass and the magnitude of the centripetal force that acts on it. Armed with these conclusions

and his law of universal gravitation, Newton was able to show that Kepler’s laws were logical

consequences of basic laws of motion and mathematics. Chapter 2 turned to the recent history

of the exploration of our solar system and the universe beyond by spacecraft and telescopes that

are ever increasing in number and sophistication. The chapter presented many of the incredible

images and some of the highly accurate data that they have sent back to us, with emphasis on

the planets, their moons, asteroids, and comets. Chapter 3 introduced the polar coordinate system,

studied polar functions, and developed their basic calculus. The primary purpose of Chapter 4 was

to elaborate in detail Newton’s theory of a centripetal force acting on a point-mass by relying on

the calculus of polar functions. Newton’s theory applies to a planet, asteroid, or comet pulled along

its orbit or trajectory—we will use these two terms interchangeably—by the gravitational force

of the Sun. It also applies to the orbit of a moon or man-made satellite around a planet, and to

a spacecraft on a trajectory around the Sun, a planet, a moon, an asteroid, or a comet (as long

as a single dominant gravitational force is involved). In all these cases, closed orbits are elliptical

and open-ended curving flybys are either parabolic or hyperbolic, and the source of the attracting

gravitational force is located at a focal point of the path.

What has been described provides a wealth of information about the objects in the solar system

and how they move, but there are several important concerns that remain to be pursued. Chapter 5

will explore the most basic of these with a focus on the situation of elliptical orbits. Knowing the

shape of the trajectory of a planet, moon, asteroid, comet, or spacecraft is fundamental, but the
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shape itself says nothing about the way the shape is traced out. Kepler’s equal areas in equal times

law does say something about the way this happens. But is it possible to compute the position of an

orbiting body in precise terms by knowing only the elapsed time of its motion from some moment

forward (in combination with basic orbital data)? We will see that it is. The final point on the

agenda of this chapter concerns the precession of perihelion already discussed in Chapter 1G. The

fact is that as a planet moves along its elliptical orbit, the orbit itself revolves very slowly around the

Sun. The cause of this revolution has two aspects. One is the cumulative effect of the gravitational

forces of the other planets. The second is that in any delicate, long term analysis of the motion

of a planet, Newton’s inverse square law of gravitational force needs to be adjusted by adding the

corrective term that Einstein’s theory of relativity provides. The development of a mathematical

theory that predicts these effects is the last item that this chapter considers.

5A. Setting the Stage. In keeping the range of applications in mind, the motion of an object in

orbit will be studied in the abstract situation of a point-mass P driven by a centripetal force in the

direction of a fixed point S. This first section sets the stage for both this chapter and the next. It

refers to earlier discussions for the basic notation and concepts, points to the relevant assumptions,

and recalls the important facts. The key assumption is that the centripetal force satisfies an inverse

square law. This implies—see Conclusion C of Chapter 4G—that the orbit of P is a conic section,

either an ellipse, parabola, or hyperbola, and that S is a focal point. The point of the orbit where

P is closest to S is known as periapsis in general, and perihelion if S represents the center of mass

of the Sun (or more accurately, see Chapter 1I, the barycenter of the solar system), P is the center

of mass of an object, and the force is the Sun’s gravity. If the orbit is an ellipse, the point in the

orbit where P is farthest from S is called apoapsis in general, and aphelion if S represents the Sun

and the force on P is gravity.

Consider P at the instant it is at periapsis—in the case of an elliptical orbit, this can be any time

at which P reaches the periapsis of its orbit—and click a stop watch. This is time t = 0. Beginning

at this moment, the time t flows forward. We know from Chapter 4D that the area A(t) that the

advancing segment from S to P sweeps out during time t is given by

A(t) = κt,

where κ is Kepler’s constant for the orbit. We’ll let m be the mass of P . At any time t, let

r(t) and F (t)

be the distance between P and S and the magnitude of the centripetal force acting on P . Any

coherent system of units, of time, distance, mass, and force, can be used, but in this text preference

will be given to the metric system MKS with its second, meter, kilogram, and newton.

Figure 5.1 captures what has been described. In the figure, Q is the periapsis position and L

is the latus rectum of the orbit. This is the length of the segment (depicted in green in the figure)

through S perpendicular to the focal axis. Newton’s inverse square law—refer to Conclusion B of
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focal axis

P

A(t)

t > 0

S

r(t)

L

t = 0

Q periapsis

Figure 5.1

Chapter 4G—provides the formula

F (t) =
8κ2m

L
· 1

r(t)2
.

Let’s turn to the situation of a body of mass M and center of mass S acting gravitationally on an

object of mass m and center of mass P . Let’s assume that the mass M of the body is much greater

than m and that its gravitational pull is the only effective force on the object. So by the discussion

of Chapter 1D, the position of the body is essentially fixed relative to the resulting motion of the

object. Assume that the body is close to being spherical and that its mass is very close to being

radially distributed. Suppose that this also holds for the object or else that the object is small

enough to be regarded as a point-mass. From the analysis of Chapter 4H, we can conclude that the

gravitational pull of the body on the object is essentially a centripetal force on the object’s center

of mass P in the direction of the center of mass S of the body, and that Newton’s law of universal

gravitation applies to it. Even though the law of universal gravitation holds only in approximation

in this gravitational situation, we’ll make the simplifying assumption that it holds exactly, so that

if F (t) is the magnitude of the gravitational pull and r(t) the distance between S and P , then

F (t) =
GmM

r(t)2
,

where G is the universal gravitational constant. (See Chapter 1H for information about G.) Since

this is an inverse square law, our introductory discussion and the earlier force equation applies to

this gravitational situation as well. By combining the two force equations, we get the connection

GM =
8κ2

L

between the parameters κ and L of the orbit of P and the mass M of the attracting body.

What has been described applies very tightly to a planet, asteroid, or comet in orbit around the

Sun, to a large moon or small object in orbit around a planet, and to a spacecraft in orbit around or
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hyperbolic flyby of a planet, dwarf planet, a large moon, or an asteroid. (At times the barycenters

of systems of masses need to be considered. See Chapter 1E, Chapter 1I, as well as the segment The

Barycenters of the Planetary Systems of the Problems and Discussion section of Chapter 2.)

Even though the situation involving gravity is the important and primary example, we’ll continue

to study the abstract situation of a point-mass P of mass m pulled in its orbit by a centripetal force

directed to a point S. Since the trajectory of P is known to be an ellipse, parabola, or hyperbola,

we can turn to the important related question: how exactly does P trace its trajectory out? Is it the

case that the position of P is determined by the elapsed time t together with the relevant orbital

constants (the mass m, the eccentricity ε, the latus rectum L, the semimajor axis a, and, in the

case of an elliptical orbit, the period T )? Let α(t) be the angle ∠PSQ of Figure 5.1 in radians and

notice that the distance r(t) and the angle α(t) are both functions of t that together determine the

position of P . Framed more precisely, the question is this: can the two functions

r(t) and α(t)

that provide the precise position of P in its orbit relative to S be determined explicitly in terms of

the elapsed time t (and the relevant constants)? The connection A(t) = κt that Kepler’s second law

provides between the area that the segment PS traces out and time t, suggests that this should be

possible. And it is possible! But the arguments—as we will see in this chapter for elliptical orbits

and in the next chapter for hyperbolic (and parabolic) trajectories—are complicated.

Since the concern of this entire chapter will be the special case of elliptical orbits, we now assume

that the orbit of the point-mass P is an ellipse and that S is one of its focal points. The basic steps

involved in the determination of the functions r(t) and α(t) go back to Kepler, but our presentation

of the specifics relies on today’s calculus of functions.

5B. Determining Distance and Angle. Let’s begin by recalling the basics about the ellipse

from Chapter 1C. In Figure 5.2, the semimajor and semiminor axis of the ellipse are a and b,

respectively. The distance between the center O of the ellipse and the focal point S is c =
√

a2 − b2,

so that the eccentricity is ε = c
a

=
√

a2−b2

a
< 1 and OS = aε. The distances of the periapsis and

apoapsis positions from S are a(1 − ε) and a(1 + ε), and the latus rectum is L = 2b2

a
. (See part A

in Chapter 3D for this last fact.) In the case of a circle, a = b,
√

a2 − b2 = 0, and ε = 0. Any point

apoapsis 
a

a − a

focal axis 
periapsisO S

b a

ε

c = aε

Figure 5.2
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on the circle can be selected as the periapsis. The point on the circle opposite to it is the corre-

sponding apoapsis.

The period T of the orbit of P is the time it takes for the point-mass P to move from one

periapsis to the next. Note that Kepler’s constant is κ = abπ
T

. After substituting κ2 = (abπ)2

T 2 and

L = 2b2

a
into the earlier force equation and the equation in the gravitational situation that relates

the mass M of the pulling body to the parameters of the orbit of P , we get

F (t) =
4π2a3m

T 2
· 1

r2(t)
and GM =

4π2a3

T 2
.

This section starts the determination of the functions r(t) and α(t). The first thing that

we’ll do is place an xy-coordinate system into the orbital plane of P so that the origin is at

the center of the ellipse and the focal axis coincides with the x-axis. In this xy-coordinate sys-

tem, the equation of the ellipse is x2

a2 + y2

b2
= 1. Figure 5.3 shows the orbiting point-mass P in

typical position at elapsed time t. As in Figure 5.1, P moves around the ellipse in a coun-

terclockwise way. The coordinates x and y of P vary with time and are therefore functions

r(t)

t = 0

A(t)

O

P at elapsed time t 

S

Q periapsis

x = x(t)

(x, y)

y

x
 (t)α

aε

Figure 5.3

x = x(t) and y = y(t) of t. We know that the shaded sector of the ellipse determined by the segments

SP and SQ has area A(t) = κt. As important facilitating construction, let’s surround the ellipse of

Figure 5.3 with a circle of radius a and center the origin O. See Figure 5.4. The equation of the circle

is x2 + y2 = a2. It is of historical interest to note that when Kepler first studied these matters, he

also surrounded the ellipse with such a circle. The point P0 in the figure is obtained by projecting

P vertically onto the circle. Its coordinates are x = x(t) and y0 = y0(t). Let β = β(t) be the angle

in radians determined by the points P0, O, and Q. The area function B(t) is defined by the shaded

region in Figure 5.4. The formula for the area of a circular sector tells us that B(t) = 1
2
a2β(t).

Observe that each completed orbit adds 2π to the angles α and β, and abπ and πa2, respectively,

to the areas A and B. When it is of interest to understand the motion of P before time t = 0, the

position of P is assigned a negative time t, where |t| is the time for P to reach the periapsis at

t = 0. The angles α(t) and β(t) are measured counterclockwise when t > 0 and clockwise when t < 0.
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So α(t) and β(t) are positive for t > 0 and negative for t < 0. (Refer to Chapter 3A in this regard.)

For t < 0, A(t) and B(t) are understood to be the negatives of the areas that the segments SP and

OP0 trace out during the motion of P from time t to t = 0.

We will assume that P moves smoothly along its orbit. There are no fits, stops, and starts. So

r = r(t), α = α(t), x = x(t), y = y(t), y0 = y0(t), and β = β(t) vary smoothly and are differentiable

functions of t.

The determination of the position of P and, in particular, the functions r(t) and α(t) proceeds

in three steps. Step one expresses the functions r(t) and α(t) in terms of β(t). Step two establishes

an equation that links β(t) and t. For a given elapsed time t, step three solves this equation for

β(t). Since t determines β(t), and β(t) in turn determines r(t) and α(t), this combination of steps

determines both r(t) and α(t) in terms of t. The angle β(t) is pivotal to the solution.

Steps one and two rely on a careful analysis of Figure 5.4. The initial focus of our discussion is

on the situation depicted in the figure where P is in its first orbit. This implies in particular that t

x

P

(x, y)

0= (x, y  )0

t = 0

periapsisapoapsis

P at elapsed

y

x = x(t) O S

Q

r(t)

B(t)

 (t)α (t)

time t

aε

Figure 5.4

is positive. However, with routine modifications this discussion also applies to later orbits and also

to the situation with negative time t.



5B. Determining Distance and Angle 217

Step one begins by relating the ellipse to the circle. Solving x2

a2 + y2

b2
= 1 for y, we get y2

b2
=

1 − x2

a2 = a2−x2

a2 . So y2 = b2

a2 (a
2 − x2) and hence y = ± b

a

√
a2 − x2. Since x2 + y2

0 = a2, we get

y0 = ±√
a2 − x2. A look at Figure 5.4 tells us that P and P0 are always on the same side of the

x-axis. In other words, y and the corresponding y0 always have the same sign. Therefore

y = b
a
y0.

It follows from observations about the sine and cosine in Chapter 3C that the x- and y-coordinates

of the point P0 are x(t) = a cos β(t) and y0(t) = a sin β(t), respectively. Thus

x(t) = a cos β(t) and y(t) = b sin β(t)

Return to Figure 5.4. Since x(t) is negative, the distance OS between the center and the focus of

the ellipse is equal to c = aε, and a2 = b2 + c2, we get by applying the Pythagorean theorem, that

r(t)2 = (aε − x(t))2 + y(t)2 = (aε)2 − 2aεx(t) + x(t)2 + y(t)2 = (aε)2 − 2aεx(t) + x(t)2 + b2

a2y0(t)
2

= (aε)2 − 2aεx(t) + x(t)2 + b2

a2 (a
2 − x(t)2) = (aε)2 + b2 − 2aεx(t) + x(t)2 − b2

a2x(t)2

= a2 − 2aεx(t) + x(t)2 − a2−(aε)2

a2 x(t)2 = a2 − 2aεx(t) + x(t)2 − x(t)2 + (aε)2

a2 x(t)2

= a2 − 2aεx(t) + ε2x(t)2 = (a − εx(t))2.

Because a ≥ x(t) ≥ εx(t), a − εx(t) ≥ 0. Since r(t) ≥ 0 and r(t)2 = (a − εx(t))2, it follows that

r(t) = a − εx(t). The substitution x(t) = a cos β(t) provides the equality

r(t) = a
(
1 − ε cos β(t)

)

As an aside, we point out that r(t) is also determined by α(t). To see this, refer to part A of

Chapter 3D for the fact that the polar equation r = d
1+ε cos θ

represents an ellipse with focal point

the polar origin, eccentricity ε, and semimajor axis a = d
(1−ε2)

. This tells us that r(t) = a(1−ε2)
1+ε cos α(t)

.

By Problem 5.6 this equality can also be derived quickly from within our current context.

The link between α(t) and β(t) relies on Figure 5.4 and basic properties of the cosine. Note that

cos α(t) = − cos(π − α(t)) = −aε−x(t)
r(t)

= x(t)−aε
r(t)

= a cos β(t)−aε
a(1−ε cos β(t))

= cos β(t)−ε
1−ε cos β(t)

.

By a double application of the standard trig identity

tan2 θ
2

=
1 − cos θ

1 + cos θ

(it is gotten by combining the half-angle formulas sin2 θ
2

= 1 − cos θ and cos2 θ
2

= 1 + cos θ), we get

tan2 α(t)
2

=
1 − cos α(t)

1 + cos α(t)
=

1 − cos β(t)−ε
1−ε cos β(t)

1 + cos β(t)−ε
1−ε cos β(t)

=

1−ε cos β(t)−cos β(t)+ε
1−ε cos β(t)

1−ε cos β(t)+cos β(t)−ε
1−ε cos β(t)

=
(1 + ε) − (1 + ε) cos β(t)

(1 − ε) + (1 − ε) cos β(t)
=

(1 + ε)(1 − cos β(t))

(1 − ε)(1 + cos β(t))
=

(
1+ε
1−ε

)
tan2 β(t)

2
.
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Starting at t = 0, follow the motion of P around the ellipse. When α(t) = 0, π, 2π, 3π, 4π, . . . , then

β(t) = 0, π, 2π, 3π, 4π, . . . , and when α(t) lies in one of the intervals (0, π), (π, 2π), (2π, 3π), . . . , then

β(t) lies in the same interval. So if α(t)
2

lies in one of the intervals (0, π
2
), (π

2
, 3π

2
), (3π

2
, 2π), (2π, 5π

2
), . . . ,

then β(t)
2

lies in this interval as well. It follows from the graph of the tangent that tan α(t)
2

and tan β(t)
2

are either both positive or both negative. Since tan2 α(t)
2

=
(

1+ε
1−ε

)
tan2 β(t)

2
, we can conclude that

tan α(t)
2

=
√

1+ε
1−ε

tan β(t)
2

When α(t) and β(t) are multiples of π, then neither tan α(t)
2

nor tan β(t)
2

is defined. But in

this case, α(t) and β(t) are the same multiple of π. So α(t) = β(t). The equation derived above

is Gauss’s equation. It is named after its discoverer, the great German mathematician-astronomer

Carl Friedrich Gauss (1777–1855) who had an exceptional influence on many fields of mathematics

and science and is often ranked along with Archimedes and Newton as one of history’s three most

brilliant mathematicians. We already encountered this genius in Chapter 1F in connection with the

discovery of the asteroid Ceres.

Recall that T is the period of the orbit of P . Since the elapsed times from t = 0 to t = T
2

and

from t = T
2

to t = T are the same, it follows that A(T
2
) + A(T

2
) = A(T ) = abπ, so that A(T

2
) = abπ

2
.

This means that P is at its apoapsis position when t = T
2
, and at times t = T

2
+ T, T

2
+ 2T, . . . as

well. Let kt be the number of complete orbits that P has traced out during elapsed time t ≥ 0

and observe that t = t1 + ktT , where 0 ≤ t1 < T . Suppose that 0 < t1 < T
2
. Observe that in this

case, α(t) = ϕ(t) + 2πkt for an angle ϕ(t) with 0 < ϕ(t) < π. Suppose that T
2

< t1 < T . In this

case, π < α(t) − 2πkt < 2π. So −π < α(t) − 2πkt − 2π < 0, and hence −π < α(t) − 2π(kt + 1) < 0.

With ϕ(t) = α(t) − 2π(kt + 1), we get that α(t) = ϕ(t) + 2π(kt + 1), where −π < ϕ(t) < 0. Now set

nt = kt when P is in motion from periapsis to apoapsis, and nt = kt + 1 when P moves from apoapsis

to periapsis. So α(t) = ϕ(t) + 2πnt in either case. From the graph of the tangent, tan α(t)
2

= tan ϕ(t)
2

.

Since −π
2

< ϕ(t)
2

< π
2
, we know from the definition of the inverse tangent that tan−1(tan α(t)

2
) = ϕ(t)

2
.

So α(t) = 2 tan−1(tan α(t)
2

) + 2πnt. Together with Gauss’s equation, this implies that

α(t) = 2 tan−1
(√

1+ε
1−ε

tan β(t)
2

)
+ 2πnt

As noted before, when β(t) is a multiple of π, then the term tan β(t)
2

is not defined. But as we have

already seen, in this case α(t) = β(t).

5C. Kepler’s Equation. Kepler’s equation provides the step that links t and β(t). Its derivation

uses Figure 5.4 to analyze the area A(t) of Figure 5.3 for any elapsed time t.

Assume that P is in the first half of its initial orbit, and refer back to Figure 5.4. We’ll start

by computing the area of the circular section determined by the segments x(t)Q and x(t)P0. This

circular section consists of the circular sector QOP0 and the triangle ΔOx(t)P0. Since the area of

B(t) is 1
2
β(t)a2, the area of this circular section is equal to

∫ a

x(t)

√
a2 − x2 dx = 1

2
β(t)a2 − 1

2
x(t)y0(t) .
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Notice that this holds for x(t) negative (as in Figure 5.4) or positive. By multiplying through by b
a
,

we get that ∫ a

x(t)

b
a

√
a2 − x2 dx = 1

2
β(t)ab − 1

2
x(t)y(t)

is the area of the elliptical section of Figure 5.3 determined by the segments x(t)Q and x(t)P . After

subtracting the area 1
2
(aε − x(t))y(t) of the triangle ΔSx(t)P from this elliptical section, we get

that A(t) = 1
2
β(t)ab − 1

2
x(t)y(t) − 1

2
(aε − x(t))y(t) = 1

2
β(t)ab − 1

2
aεy(t). Because y(t) = b sin β(t),

we can conclude that

A(t) = 1
2
abβ(t) − 1

2
εab sin β(t).

(Note that if x(t) ≥ aε, then 1
2
(aε − x(t))y(t) is negative, so that the subtraction adds the area of

ΔSx(t)P to the elliptical section. But this is exactly what needs to be done in this case.)

We’ll next verify this equality without the restriction on the position of P . Let’s suppose that

at time t, P is in the second half of its first orbit. Let t′ be the previous moment in the orbit for

which x(t′) = x(t). Figure 5.5 considers the positions of P at the two instants t and t′. Notice that

O

A(t )

P

(t)

(x, y)

0= (x, y  )0

t = 0
apoapsis

P at elapsed

y

O S Q periapsis

(t )

time   t

`

x(t) = x(t )

time t

P at elapsed

Figure 5.5
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A(t) + A(t′) = abπ and that β(t) + β(t′) = 2π. By applying the result already verified,

A(t′) = 1
2
abβ(t′) − 1

2
εab sin β(t′).

Since A(t′) = abπ − A(t) and β(t′) = 2π − β(t), we get by using basic properties of the sine, that

abπ − A(t) = 1
2
ab(2π − β(t)) − 1

2
εab sin(2π − β(t)) = abπ − 1

2
ab β(t) + 1

2
εab sin β(t).

Therefore as before, A(t) = 1
2
abβ(t) − 1

2
εab sin β(t).

Suppose next that P is in its second orbit. So the elapsed time is t = t1 + T with 0 < t1 ≤ T ,

the area swept out is A(t) = A(t1 + T ) = A(t1) + abπ, and β(t) = β(t1 + T ) = β(t1) + 2π. Since P

is in its first orbit at time t1,

A(t) = abπ + A(t1) = abπ + 1
2
ab β(t1) − 1

2
εab sin β(t1)

= 1
2
ab(β(t1) + 2π) − 1

2
εab sin(β(t1) + 2π)

= 1
2
ab(β(t) − 1

2
εab sin(β(t)).

Doing this for every additional orbit tells us that

A(t) = 1
2
abβ(t) − 1

2
εab sin β(t)

holds for any t ≥ 0. From the definition of Kepler’s constant, A(t)
t

= κ = abπ
T

. Therefore A(t) = abπ·t
T

,

and hence 1
2
abβ(t) − 1

2
εab sin β(t) = abπ·t

T
. So β(t) − ε sin β(t) = 2πt

T
. This is Kepler’s equation in

celebration of its discoverer. When the centripetal force on P is the gravitational force of attraction

by a body of mass M and center of mass S, then 4π2

T 2 = GM
a3 . So 2πt

T
=

√
GM
a3 t, and we have arrived

at the version of Kepler’s equation

β(t) − ε sin β(t) = 2πt
T

=
√

GM
a3 t

that includes this gravitational situation. Kepler referred to the quantities 2πt
T

=
√

GM
a3 t, β(t), and

α(t) as the mean anomaly, eccentric anomaly, and true anomaly (in their Latin or German equiva-

lents), respectively. We will see in Chapter 6N that these terms are still in use today.

Before tackling the solution of Kepler’s equation we consider the question of the speed and

direction of the motion of P at any time t in its orbit.

5D. Determining Speed and Direction. Let v(t) denote the speed of the point-mass P depicted

in Figure 5.3 at time t in its orbit. We will use the formula v(t) =
√

x′(t)2 + y′(t)2 that was derived

in Chapter 4B in combination with facts from the previous section to establish that

v(t) = 2πa
T

√
2a
r(t)

− 1 .

Recall that x(t) = a cos β(t), y(t) = b sin β(t), and r(t) = a(1 − ε cos β(t)). By the chain rule,

x′(t) = −(a sin β(t))β′(t) and y′(t) = (b cos β(t))β′(t),



5D. Determining Speed and Direction 221

so that

v(t)2 = x′(t)2 + y′(t)2 =
[
a2sin2β(t) + b2cos2β(t)

]
β′(t)2

=
[
a2sin2β(t) + (a2 − (aε)2)cos2β(t)

]
β′(t)2 (refer to Figure 5.2)

=
[
a2 − (aε)2cos2β(t)

]
β′(t)2 =

[
a2 − a2ε2cos2β(t)

]
β′(t)2

= a2
[
1 − ε2cos2β(t)

]
β′(t)2 = a2

[(
1 + ε cos β(t)

)(
1 − ε cos β(t)

)]
β′(t)2.

Differentiate Kepler’s equation β(t) − ε sin β(t) = 2πt
T

to get β′(t) − ε cos β(t) β′(t) = 2π
T

. So

β′(t) = 2π
T (1−ε cos β(t))

and hence β′(t)2 = 4π2

T 2(1−ε cos β(t))2)
. Substitute this into the expression for v(t)2

just derived and cancel the term 1 − ε cos β(t) to obtain

v(t)2 = 4π2a2

T 2 · 1+ε cos β(t)
1−ε cos β(t)

.

Because r(t) = a(1 − ε cos β(t)), we get 1 − ε cos β(t) = r(t)
a

and hence that ε cos β(t) = 1 − r(t)
a

.

After two more substitutions,

v(t)2 = 4π2a2

T 2 · 1+(1− r(t)
a

)
r(t)

a

= 4π2a2

T 2

(
2 − r(t)

a

)
a

r(t)
= 4π2a2

T 2

(
2a
r(t)

− 1
)
.

Taking square roots finishes the verification of the formula v(t) = 2πa
T

√
2a
r(t)

− 1. When the cen-

tripetal force on P is the gravitational force of attraction by a body of mass M (and center of

mass S), then 4π2a2

T 2 = GM
a

. So 2πa
T

=
√

GM
a

, and therefore v(t) =
√

GM
a

√
2a
r(t)

− 1 =
√

GM
√

2
r(t)

− 1
a
.

Therefore the speed v(t) of P at any time t in its orbit is equal to

v(t) = 2πa
T

√
2a
r(t)

− 1 =
√

GM
√

2
r(t)

− 1
a

Example 5.1. Show that vmax = 2πa
T

√
1+ε
1−ε

=
√

GM(1+ε)
a(1−ε)

and vmin = 2πa
T

√
1−ε
1+ε

=
√

GM(1−ε)
a(1+ε)

are the

maximum and minimum speeds of P in its orbit. The paragraph About Speeds of Objects in the

Solar System of the Problems and Discussions section of Chapter 1 gave an elementary verification

of these formulas.

It remains to study the direction of the motion of the point-mass P in its elliptical orbit.

Figure 5.6 shows P in two typical positions. Let γ(t) be the angle between the tangent to the

orbit at P and the segment from P to S. The angle γ(t) is measured counterclockwise from the

tangent in the direction of the motion to the segment. So γ(t) is always positive. Notice that at

periapsis and apoapsis, γ(t) = π
2
. We’ll now assume that P is neither at periapsis nor apoapsis and

focus on either of the two situations of the figure.

We’ll let h(t) be the length of the perpendicular segment from S to the tangent at P . Regard P

and t to be fixed and let an additional short time Δt elapse. Let the point-mass be in position P ′ at

time t + Δt. The area swept out by SP during the motion from P to P ′ is A(t + Δt) − A(t). This

area is shaded in the figure. The point P ′′ is the intersection of the continuation of the segment SP ′

with the tangent at P . Let d be the distance from P to P ′′. With t fixed, d is a function d = d(Δt)

of Δt. Since Δt is small, P ′ is close to P , so that
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d(Δt) ≈ arc PP ′ and A(t + Δt) − A(t) ≈ area ΔPP ′′S = 1
2
d(Δt) · h(t).

It is apparent from the figure that the smaller the Δt is, the closer the distances PP ′ and PP ′′ are

time t+Δt

P

h(t)

S

d(Δt)

r(t)

h(t)r(t)

P

P

periapsis

P

d(Δt) P
t+Δt

P'

time t

 (t)γ
P

time t

 (t)γ

apoapsis

Figure 5.6

to each other, and the tighter the above approximations are. The average speed of the point during

its motion from P to P ′ is arc PP ′
Δt

, so that the speed v(t) at P is

v(t) = lim
Δt→0

arc PP ′

Δt
= lim

Δt→0

d(Δt)

Δt
.

Since κ = A(t+Δt)−A(t)
Δt

for any Δt, we now get

κ = lim
Δt→0

A(t + Δt) − A(t)

Δt
≈ lim

Δt→0

1
2

d(Δt)

Δt
· h(t) = 1

2
v(t) h(t).

From the figure, the definition of γ(t), and the fact that sin(π − γ(t)) = sin γ(t), we see that

sin γ(t) = h(t)
r(t)

. Therefore κ = 1
2
v(t)r(t) sin γ(t) and sin γ(t) = 2κ

r(t)v(t)
. The equality v(t) =

2πa
T

√
2a
r(t)

− 1 implies that r(t)v(t) = 2πar(t)
T

√
2a
r(t)

− 1 = 2πa
T

√
r(t)(2a − r(t)). From Figure 5.2, b2 =

a2 − (aε)2 = a2(1 − ε2), and hence b = a
√

1 − ε2. Therefore 2κ = 2abπ
T

= (2aπ
T

)b = (2aπ
T

)(a
√

1 − ε2).

By substituting into sin γ(t) = 2κ
r(t)v(t)

, finally

sin γ(t) = a
√

1−ε2√
r(t)(2a−r(t))
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A study of Figure 5.6 tells us that during the motion of P from apoapsis to periapsis 0 < γ(t) ≤ π
2

and during the motion of P from periapsis to apoapsis, π
2

≤ γ(t) < π. Applying sin−1 to both sides

of the equation for sin γ(t) and recalling that the inverse sine of any number between −1 and 1

needs to lie between −π
2

and π
2
, we get the formulas

γ(t) = sin−1
(

a
√

1−ε2√
r(t)(2a−r(t))

)
or γ(t) = π − sin−1

(
a
√

1−ε2√
r(t)(2a−r(t))

)

where the first equality applies to the motion of P from apoapsis to periapsis and the second equality

to the motion of P from periapsis to apoapsis.

Example 5.2. Use the fact that sin−1(1) = π
2

to check that these formulas are also valid for P at

periapsis or apoapsis. Suppose next that the orbit is not a circle and that γ(t) = π
2
. Since sin π

2
= 1,

it follows that a
√

1−ε2√
r(t)(2a−r(t))

= 1. Use the quadratic formula to show that r(t) = a ± aε. Conclude

that γ(t) = π
2

occurs only at periapsis and apoapsis.

Example 5.3. Since the inverse sine is an increasing function, sin−1
(

a
√

1−ε2√
r(t)(2a−r(t))

)
reaches its

minimum value when a
√

1−ε2√
r(t)(2a−r(t))

is at its minimum, and hence when
√

r(t)(2a − r(t)) is at its

maximum. Study the parabola y = x(2a − x) = −x2 + 2ax and conclude that sin−1
(

a
√

1−ε2√
r(t)(2a−r(t))

)

reaches its minimum value when r(t) = a. Show that this minimum value is sin−1
√

1 − ε2. Conclude

that γ(t) attains its minimum value sin−1
√

1 − ε2 when P is on approach to periapsis at a distance

a from S and that γ(t) reaches its maximum value π − sin−1
√

1 − ε2 when P is on approach to

apoapsis at a distance of a from S.

5E. Solving Kepler’s Equation by Successive Approximations. Consider the function

f(x) = x − ε sin x. This function is continuous because both x and ε sin x are. The values of f(x)

can be made arbitrarily large both positively and negatively by choosing x appropriately large and

positive or large and negative, due to the fact that |ε sin x| ≤ ε < 1. Since f(x) is continuous, it

follows that for any real number y there is an x such that f(x) = y. Since f ′(x) = 1 − ε cos x > 0,

f(x) = x − ε sin x is an increasing function, and we can conclude that for any given t, Kepler’s

equation has a unique solution β(t). The trick is to find it, or at least to provide an estimate for it.

This is the goal of step three. It applies a method of successive approximations to tell us for any

given elapsed time t what the corresponding β(t) is that satisfies Kepler’s equation.

The successive approximations strategy that solves Kepler’s equation relies on the inequality

| sin x1 − sin x2| ≤ |x1 − x2| for any real numbers x1 and x2. To verify it we’ll show that

| sin x1 − sin x2| < |x1 − x2| whenever x1 �= x2.

Consider the functions g(x) = x − sin x and h(x) = x + sin x. Their derivatives are g′(x) = 1 − cos x

and h′(x) = 1 + cos x. Because 1 > cos x except for x = 0,±2π, ±4π, . . . when cos x = 1, it follows

that g′(x) > 0, except for the isolated points when g′(0) = 0. So y = g(x) is an increasing function of

x and hence g(x1) > g(x2) whenever x1 > x2. A similar argument shows that h(x1) > h(x2) whenever

x1 > x2. To verify that
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| sin x1 − sin x2| < |x1 − x2|
for any x1 and x2 with x1 �= x2, we may take x1 > x2 (or else we can work with x2 > x1). It follows

from what was established about g(x) and h(x) that

x1 − sin x1 > x2 − sin x2 and x1 + sin x1 > x2 + sin x2.

So

x1 − x2 > sin x1 − sin x2 and x1 − x2 > sin x2 − sin x1.

Since | sin x1 − sin x2| is equal to either sin x1 − sin x2 or sin x2 − sin x1, the verification is complete.

We now solve β(t) − ε sin β(t) = 2πt
T

=
√

GM
a3 t for β(t) by successive approximations. The appli-

cation of any such method to the solution of an equation starts with an educated guess, or an

informed initial stab, at a solution. This initial educated guess is then refined step by step to any

desired or required degree of accuracy.

1. The first stab at β(t) is β1 = 2πt
T

. By Kepler’s equation, | β(t) − β1| =
∣
∣ β(t) − 2πt

T

∣
∣ =

|ε sin β(t)| ≤ ε. Because ε < 1 for any ellipse (in fact ε is usually much smaller, see Table 5.1), β1

approximates β(t). Notice that the first approximation β1 is nothing but the mean anomaly 2πt
T

.

2. The approximation step: after the angle βi has been determined (in radians), the next angle βi+1

is given by βi+1 = 2πt
T

+ ε sin βi = β1 + ε sin βi (in radians).

Applying the approximation step (2) to β1 = 2πt
T

gives the new angle β2 = 2πt
T

+ ε sin β1. Repeating

this with β2, we get β3 = 2πt
T

+ ε sin β2. Doing this again and again, we get β4 = 2πt
T

+ ε sin β3,

β5 = 2πt
T

+ ε sin β4, . . . , and βi = 2πt
T

+ ε sin βi−1, . . . . Now the question is: does the sequence

β1, β2, β3, . . . , βi, . . .

close in on the solution β(t) of β(t) − ε sin β(t) = 2πt
T

? This is indeed the case. Since β(t) =
2πt
T

+ ε sin β(t) by Kepler’s equation, it follows that

β(t) − β2 =
(

2πt
T

+ ε sin β(t)
) − (

2πt
T

+ ε sin β1

)
= ε(sin β(t) − sin β1).

Therefore, using an inequality established earlier,

| β(t) − β2| = ε| sin β(t) − sin β1| ≤ ε| β(t) − β1| ≤ ε2.

In the same way,

β(t) − β3 =
(

2πt
T

+ ε sin β(t)
) − (

2πt
T

+ ε sin β2

)
= ε(sin β(t) − sin β2),

so that

| β(t) − β3| = ε| sin β(t) − sin β2| ≤ ε| β(t) − β2| ≤ ε3.

Repeating this computation again and again shows that
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| β(t) − β4| ≤ ε4, | β(t) − β5| ≤ ε5, . . . , | β(t) − βi| ≤ εi, . . . .

Since ε < 1, the powers ε2, ε3, ε4, . . . close in on zero. Therefore the distances | β(t) − β1|, | β(t) − β2|,
| β(t) − β3|, . . . between β1, β2, β3, . . . and β(t) close in on zero. So the numbers β1, β2, β3, . . . close

in on β(t) as required. Since 0 ≤ ε < 1 for any ellipse, this successive approximation process will

always converge to β(t).

The solution of the problem of determining the position of the point-mass P is complete: take

the given elapsed time t, and solve Kepler’s equation for β(t) by the method just described. The

closer the eccentricity ε is to 0, the more rapid the convergence of the sequence ε, ε2, ε3, ε4, . . . to

0, and hence the more rapid the convergence of the sequence of approximations β, β2, β3, β4, . . . to

β(t). Then substitute β(t) into the equations derived in section 5B to get the corresponding r(t)

and α(t). With this in hand, turn to section 5D to compute the speed and direction of the motion

of P . In this way, given the elapsed time t of the orbiting point-mass P from periapsis at t = 0,

it is possible to determine its orbital data in terms of t and the orbital constants. The reliance on

approximation methods for the computation of β(t) raises the question as to whether there is an

explicit function β = f(t) that provides the angle β for a given time t. Such a function was defined

in terms of power series by Friedrich Bessel, the astronomer who was first able to detect the stellar

parallax for some near stars. (See Parallax and Distances to Stars of the Problems and Discussions

section of Chapter 1.)

Table 5.1 provides data we need for the examples that follow next and later in the chapter. They

are taken from Tables 2.1 and 2.4 in Chapter 2, but also include data for Pluto and the comet Halley.

Table 5.1. Information from NASA and JPL websites. Each orbital period in this table is the perihelion period
with the year defined as 365.25 days. (See Chapter 1D.)

orbiting

body
semimajor
axis in km

eccentricity orbit period
in years

angle of orbit
plane to Earth’s

average speed
in km/sec

Mercury 57,909,227 0.20563593 0.2408489 7.00◦ 47.362

Venus 108,209,475 0.00677672 0.6152028 3.39◦ 35.021

Earth 149,598,262 0.01671123 1.0000264 0.00◦ 29.783

Mars 227,943,824 0.0933941 1.8808645 1.85◦ 24.077

Jupiter 778,340,821 0.04838624 11.862757 1.31◦ 13.056

Saturn 1,426,666,422 0.05386179 29.447762 2.49◦ 9.639

Uranus 2,870,658,186 0.04725744 84.017599 0.77◦ 6.873

Neptune 4,498,396,441 0.00859048 164.79280 1.77◦ 5.435

Pluto 5,906,440,628 0.2488273 247.92287 17.14◦ 4.669

Halley 2,667,950,000 0.9671429 75.32 162.26◦ ?
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Example 5.4. The eccentricities of all eight planets are small. Mercury’s eccentricity ε < 0.2057 is

the largest. But even in this case, the process described converges very quickly. Squaring ε ≈ 0.2057

four consecutive times, we get

ε2, ε4, ε8, ε16 < 1 × 10−11.

Since | β(t) − β16| < ε16, the sixteenth iteration of the approximation process provides an approxi-

mation of β(t) that is accurate to within a tiny fraction of a radian.

Example 5.5. For a relatively large ε < 1, achieving good accuracy for a particular t will usually

require many steps. For Halley’s comet, ε > 0.967. By repeatedly squaring 0.967 we get,

ε128 > 0.0136, ε256 > 0.00018, ε512 > 3 × 10−8 . . . .

So for tight accuracy, several hundred iterations might be necessary. But this is hardly a problem

for a computer.

It should not come as a surprise that the mathematics in steps one to three can be used to

construct a computer model of the solar system. This is done in Computer Model of Elliptical

Orbits Generated by Kepler’s Equations. Go to the website

http://learning.nd.edu/orbital/orbital-info.html

and experiment with the simulations for the inner and outer planets.

Example 5.6. We’ll illustrate Kepler’s equation with a look at Earth’s orbit. Figure 5.7 considers

Earth in position E at the “top” of its orbit, exactly halfway between its perihelion and aphelion

positions. How long after perihelion will the Earth arrive there? For Earth’s position at E, β(t) = π
2
.

Kepler’s equation β(t) − ε sin β(t) = 2πt
T

with ε = 0.0167 and T = 365.26 days (see Chapter 1G)

perihelion

r(t) = a

O S

E

b

 (t)α (t)

aε

Figure 5.7

tells us that the corresponding t satisfies t ≈ 365.26
2π

(
π
2

− (0.0167) · 1
) ≈ 90.34 days. So the Earth

takes about 90.34 days to complete the first quarter of its orbit. We now also know that Earth

http://learning.nd.edu/orbital/orbital-info.html
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takes 365.26
2

− 90.34 ≈ 92.29 days to complete the second quarter of its orbit. This is consistent with

a consequence of Kepler’s equal area law, namely that Earth moves faster in its orbit when it is

near perihelion than when it is farther away. We know from Figure 5.7 and Table 5.1 that the dis-

tance r(t) corresponding to β(t) = π
2

is r(t) = a ≈ 149,598,000 km. The angle α(t) corresponding to

β(t) = π
2

= 90◦ is given by α(t) = 2 tan−1
(√

1+ε
1−ε

tan β(t)
2

)
+ 2ntπ ≈ 2 tan−1

(√
1.0167
0.9833

· 1
)
+ 0 ≈ 90.96◦.

The outline of the procedure that provided for the elliptical orbit of a given planet the value

β(t) for any elapsed time t, and in turn the distance r(t) and the angle α(t), followed the analysis

that Kepler carried out over 400 years ago. But the details differ. For example, instead of an

approximation scheme of the sort described above, Kepler relied on his Rudolphine Tables. He

considered the equation β(t) − ε sin β(t) = 2πt
T

and computed t for lots of angles β(t) from 0◦ to

180◦ and recorded the results in the tables. To find an approximate β(t) for a given elapsed time t,

Kepler (and later astronomers) could go to the tables, locate a time close to t, and read off (and

extrapolate) to find the corresponding β(t). Example 5.6 gives a sense of the principle involved.

5F. Earth, Jupiter, and Halley. We will now illustrate the information that sections 5A through

5E provide. The examples consider the orbits of Earth, Jupiter, and Halley’s comet around the Sun.

We’ll take the necessary data from Table 5.1 and the value GM = 1.327124 × 1011 km3/s2 for the

Sun from Chapter 1H. Our computations carry an accuracy of six decimal places.

We’ll begin by studying the orbiting Earth. For Earth, a = 1.495983 × 108 km and ε = 0.016711.

Before evaluating the distance r(t), the velocity v(t), and the orbital angle γ(t) for specific times t,

let’s gain a sense of these values by examining their range from minimum to maximum.

From the formulas for the periapsis and apoapsis distances (see Figure 5.2), we know that

(1.495982 × 108)(1 − 0.016712) < a(1 − ε) ≤ r(t) ≤ a(1 + ε) < (1.495984 × 108)(1.016712)

in km and therefore that

1.470981 × 108 < r(t) < 1.520985 × 108

in km. By substituting the data we have into the formulas of Example 5.1 for the maximum and

minimum speeds, we get the bounds

29.29099 <
√

GM(1−ε)
a(1+ε)

= vmin ≤ v(t) ≤ vmax =
√

GM(1+ε)
a(1−ε)

< 30.28661

in km/sec on the speed v(t) of Earth in its orbit. Finally, turning to the orbital angle γ(t), we find

from Example 5.3 that

1.554084 < sin−1
√

1 − ε2 = γmin ≤ γ(t) ≤ γmax = π − sin−1
√

1 − ε2 < 1.587509

in radians for Earth in its orbit from apoapsis to periapsis and back. This is 89.04◦ < γ(t) < 90.96◦

in degrees. The Earth’s near-circular orbit is the reason why γ(t) is close to 90◦ throughout.

Data recorded by the U.S. Naval Observatory (USNO) on the website

https://www.usno.navy.mil/USNO

https://www.usno.navy.mil/USNO
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informs us that in 2013 perihelion occurred on Jan 01 at 11:38 pm, spring equinox on Mar 20 at

6:02 am, and summer solstice on Jun 21 at 12:04 am (all in Eastern Standard Time). It follows that

in 2013, it took Earth 77.497916 days to travel from perihelion to spring equinox and 170.000046

days to move from perihelion to summer solstice. Both spring equinox and summer solstice occurred

before aphelion of the year 2014 (since both times of travel are less that one-half Earth’s period).

We will compute Earth’s position and velocity on spring equinox of 2013 by determining r(t), v(t),

and γ(t) for t = 77.497916 days. As first step, we’ll calculate the angle β(t) by using the approxi-

mation method of section 5E. With six-decimal-place accuracy at each step we get

β1 = 2πt
T

≈ 2π(77.497916)
365.259636

≈ 1.333117 radians,

β2 = β1 + ε sin β1 ≈ 1.333117 + 0.016711(0.971887) ≈ 1.349358 radians,

β3 = β1 + ε sin β2 ≈ 1.333117 + 0.016711(0.975583) ≈ 1.349420 radians, and

β4 = β1 + ε sin β3 ≈ 1.333117 + 0.016711(0.975596) ≈ 1.349420 radians.

Since the process has terminated, β(t) ≈ β4 ≈ 1.349420 radians with the required six-decimal-place

accuracy. By substitution into the equations

r(t) = a(1 − ε cos β(t)) and α(t) = 2 tan−1
(√

1+ε
1−ε

tan β(t)
2

)

of section 5B (with regard to α(t), we’ll consider Earth to be on its way from perihelion to aphelion

in its initial orbit, so that nt = 0), we find that

r(t) ≈ (1.495983 × 108)(1 − 0.016711(cos 1.349420)) ≈ 1.490494 × 108 km and

α(t) = 2 tan−1
(
1.016853 tan(0.674710)

) ≈ 2(0.682877) ≈ 1.365754 radians.

So at spring equinox in 2013, r(t) and α(t) were close to 149 million kilometers and 78.25◦, respec-

tively. Substituting into the formula v(t) =
√

GM
a

√
2a
r(t)

− 1, we get

v(t) ≈
√

8.871137 × 102
√

2.007365 − 1 ≈ 29.8939 km/sec

for the Earth’s orbital speed. Finally, the formula γ(t) = sin−1
(

a
√

1−ε2√
r(t)(2a−r(t))

)
tells us that Earth’s

orbital angle γ(t) was

γ(t) ≈ π − sin−1
(

(1.495983×108)
√

0.999721√
(1.490494×108)(2(1.495983×108)−(1.490494×108))

)
≈ π − sin−1(0.999867) = 1.587092

radians or about 90.93◦. After studying Example 5.3 explain why the angle γ(t) is close to its

maximum.

We turn to compute Earth’s position and velocity on summer solstice of 2013 by determining

r(t), v(t), and γ(t) for t = 170.000046 days. By the approximation method of section 5E we get

β1 = 2πt
T

≈ 2π(170.000046)
365.259636

≈ 2.924336 radians,

β2 = β1 + ε sin β1 ≈ 2.924336 + 0.016711(0.215552) ≈ 2.927938 radians,

β3 = β1 + ε sin β2 ≈ 2.924336 + 0.016711(0.212033) ≈ 2.927879 radians,

β4 = β1 + ε sin β3 ≈ 2.924336 + 0.016711(0.212090) ≈ 2.927880 radians, and

β5 = β1 + ε sin β4 ≈ 2.924336 + 0.016711(0.212089) ≈ 2.927880 radians.
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So β(t) ≈ β5 ≈ 2.927880 radians on summer solstice in 2013. In terms of the position and velocity of

the Earth on summer solstice of 2013, check that r(t) ≈ 1.520414 × 108 km, α(t) ≈ 2.931396 radians

or 167.96◦, that v(t) ≈ 29.3019 km/sec, and γ(t) ≈ 1.574303 radians or very nearly 90.20◦. Why was

it that on summer solstice the Earth’s distance r(t) from the Sun was so close to its maximum, the

velocity v(t) so close to its minimum, and the angle γ(t) so close to 90◦? Example 5.2 provides a

hint.

Example 5.7. Use the data in Table 5.1 and follow the above computations for Earth to check

that Jupiter’s distance from the Sun varies from about 7.41 × 108 km to about 8.16 × 108 km, that

its smallest and greatest orbital speeds are vmin = 12.44 km/sec and vmax = 13.71 km/sec, and that

the smallest angle during Jupiter’s approach to the Sun is γ(t) = 87.23◦. Verify that when Jupiter

is 7.5 × 108 km from the Sun, it has a speed of about 13.5 km/sec. How far is Jupiter from the Sun

exactly 2 years after it passes perihelion? How fast is it moving at that time?

Example 5.8. Halley’s comet passed its perihelion position at t = 0. At the precise time t years

later, it completed the first quarter of its orbit. In addition to the information in Table 5.1, refer to

Figure 5.4 and use Kepler’s equation to show that t ≈ 7.24 years. Then show that Halley completed

the second quarter of its orbit in about 30.42 years.

5G. Orbital Questions and Definite Integrals.1 It is often asserted that the semimajor axis a

of the elliptical orbit of a planet is the average distance of the planet from the Sun. This conclusion is

usually justified by taking its maximum or aphelion distance a(1 + ε) and its minimum or perihelion

distance a(1 − ε) and noticing that the average value of these two numbers is

1

2

(
(a + aε) + (a − aε)

)
= a.

Let’s think about this for a moment. Suppose you’re driving along a highway from point A to

point B. You start with a speed of 40 miles per hour and, say two hours later, you finish your trip

with a speed of 70 miles per hour. Surely, your average speed is not necessarily 1
2

(
70 + 40) = 55

miles per hour. But this is the essence of the above argument that a is the average value of the

distance of a planet from the Sun. The problem is that the car’s speed as well as the distance

between the planet and the Sun are both functions that vary all along the path of travel. In both

cases, it is the average value of a function that needs to be considered.

The definite integral provides a definition for the average value of a function. Start by considering

a list of numbers, for example, 5, 3, 6, 4, 2, and 8. Their average is

5 + 3 + 6 + 4 + 2 + 8

6
=

28

6
=

14

3
= 42

3
.

A graphical interpretation of this average is provided by Figure 5.8. The area under the graph of

the function that the horizontal segments of length 1 with respective y-coordinates 5, 3, 6, 4, 2,

and 8 determine is 28. So the average 42
3

is this area divided by its extent, namely 6, along the x-axis.

1This and the remaining sections of this chapter make use of basic methods of solving definite integrals. One of
them relies on the Taylor series expression of a function, primarily the special case of the binomial series. The proofs
of all the facts that play a role can be found in most any standard calculus text.
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Figure 5.8

Next consider any continuous function y = f(x) defined over an interval a ≤ x ≤ b and turn to

Figure 5.9. The number c in the figure is chosen to be precisely that number such that the area

c(b − a) of the rectangle with base b − a and height c is equal to the area

∫ b

a

f(x) dx under the

graph of y = f(x). It makes sense to say that this c is the average value of the function y = f(x). So

in general, we’ll define the average value of a function y = f(x) that is continuous over an interval

a ≤ x ≤ b to be
1

b − a

∫ b

a

f(x) dx.

Let’s check this definition against ideas that we encountered in Chapter 4B. Consider a point

a b

y

x

y = f (x)

c

Figure 5.9
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moving along a coordinate axis starting at time t = 0. Let p(t) be its position at any time t ≥ 0.

We know that the velocity v(t) and acceleration a(t) of the point at any time t ≥ 0 are given by

v(t) = p′(t) and a(t) = v′(t).

We also know that for two instants of time t1 and t2 with 0 ≤ t1 < t2, the average velocity and the

average acceleration over the time period t1 ≤ t ≤ t2 are

p(t2) − p(t1)

t2 − t1
and

v(t2) − v(t1)

t2 − t1
,

respectively. How do these averages compare to the average values

1
t2−t1

∫ t2

t1

v(t) dt and 1
t2−t1

∫ t2

t1

a(t) dt

of the velocity and acceleration functions v(t) and a(t) over t1 ≤ t ≤ t2 as these were just defined?

Since p(t) and v(t) are antiderivatives of v(t) and a(t), respectively, the fundamental theorem of

calculus tells us that these average values are equal to

1
t2−t1

· (p(t2) − p(t1)) and 1
t2−t1

· (v(t2) − v(t1)).

Therefore the two definitions of average velocity and average acceleration are the same.

We’ll now turn to Figure 5.3 and the discussion in section 5B. The analysis of the varying

distance r between P and S applies in particular to the situation of a planet P in orbit around the

Sun S. What does the definition for the average value of a continuous function tell us about the

average value of r? One challenge that this question faces is that r can be expressed as a function

of several different variables. Another is that it requires a facility in dealing with definite integrals

(for example the substitution method, improper integrals, and solutions that rely on the binomial

series).

i.) The average value of the function r(β). Since r(β(t)) = a(1 − ε cos β(t)), it follows that

r(β) = a(1 − ε cos β) is a function of the angle β. Figure 5.4 illustrates how r(β) is determined for

a given β. As β varies from 0 to 2π, the segment SP of length r(β) traces out the entire ellipse.

The average value of r(β) over the interval 0 ≤ β ≤ 2π is

1
2π

∫ 2π

0

r(β) dβ = 1
2π

∫ 2π

0

a(1 − ε cos β) dβ = a
2π

[
β − ε sin β

]∣∣
∣
2π

0
= a

2π
· 2π = a.

This confirms the earlier average value of a. But the angle β does not appear to be the most

meaningful variable over which to average the distance r.

The equality r(t) = a(1−ε2)
1+ε cos α(t)

was established in section 5B. It follows that r is the function

r(α) = a(1−ε2)
1+ε cos α

of the angle α.

ii.) The average value of the function r(α). A look at Figure 5.3 tells us that the average values

of the function r(α) over 0 ≤ α ≤ 2π and over 0 ≤ α ≤ π are the same. So the average value of r(α)

over 0 ≤ α ≤ 2π is given by the definite integral
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1
π

∫ π

0

r(α) dα = a(1−ε2)
π

∫ π

0

1

1 + ε cos α
dα.

The verification that this integral is equal to b = a
√

1 − ε2 is tricky. It requires several steps.

a. Use the substitution u = tan α
2
. Consider the identities tan2 α

2
= 1−cos α

1+cos α
and tan α

2
= sin α

1+cos α

(both are standard trig identities) and solve them for cosα and sin α, respectively, to get cos α =
1−u2

1+u2 and sin α = 2u
1+u2 . Use these equalities to show that

∫
1

1 + ε cos α
dα =

∫
2

u2 + 1 + ε(1 − u2)
du = 1

1+ε

∫
2

1 +
(√

1−ε
1+ε

u
)2

du.

b. Substitute z =
√

1−ε
1+ε

u to show that the integral of step (a) is equal to

2√
1−ε2

∫
dz

1+z2
= 2√

1−ε2
tan−1z + C = 2√

1−ε2
tan−1

(√
1−ε
1+ε

tan α
2

)
+ C.

c. Note that the last term of (b) is not defined for α = π. But use the strategy of improper

integrals to conclude that with 0 ≤ ϕ < π.
∫ π

0

1
1+ε cos α

dα = lim
ϕ→π

∫ ϕ

0

1
1+ε cos α

dα = lim
ϕ→π

2√
1−ε2

tan−1
(√

1−ε
1+ε

tan ϕ
2

)
= 2√

1−ε2
· π

2
= π√

1−ε2
.

d. Finish the computation that shows that the average value of r(α) over 0 ≤ α ≤ 2π is the

semiminor axis b = a
√

1 − ε2.

Note, as an aside, that the substitution u = tan x
2

used above is widely applicable as a method

that transforms integrals involving trig functions into integrals involving polynomials.

We turn, finally, to the average of r as function of time t. The relevant interval of time is

0 ≤ t ≤ T , where T is the period of the orbit.

iii.) The average value of the function r(t). This average value is given by the integral 1
T

∫ T

0

r(t) dt.

a. Use the derivative of Kepler’s equation β(t) − ε sin β(t) = 2πt
T

as well as the equality r(t) =

a
(
1 − ε cos β(t)

)
to show that T

2aπ
β′(t)r(t) = 1.

b. Show that the average value of r(t) over the interval 0 ≤ t ≤ T is

1
T

∫ T

0

r(t) dt = 1
2aπ

∫ T

0

r(t)2β′(t) dt = a
2π

∫ T

0

(
1 − ε cos β(t)

)2
β′(t) dt.

c. Use the substitution u = β(t) and the formula cos2 u = 1
2
(1 + cos 2u) to check that this last

integral is equal to

a
2π

[ ∫ 2π

0

du − 2ε

∫ 2π

0

cos u du + ε2

∫ 2π

0

cos2 u du
]

= a
(
1 + 1

2
ε2

)
.

It follows that 1
T

∫ T

0

r(t) dt = a
(
1 + 1

2
ε2

)
.
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So the average value of r(t) as function of t over the time interval 0 ≤ t ≤ T is a
(
1 + 1

2
ε2

)
. This

largest of the three averages that were computed reflects the fact that the orbiting P moves more

quickly at periapsis and more slowly at apoapsis. Therefore the larger values of r(t) near apoapsis

have a greater impact on this average than the smaller values of r(t) near periapsis. Table 5.1

informs us that ε is small for the planets. So ε2 is much smaller and hence the average value of r(t)

over one planetary orbit is close to its semimajor axis a. The computation of the integrals above

involved substitutions that seemed to come out of the blue. Solving an integral is indeed often like

pulling a rabbit out of a hat.

Another question that is relevant in the context of elliptical orbits concerns the distance traveled

by a planet (asteroid or comet) during one complete revolution around the Sun. In more explicit

terms, what is the circumference of an ellipse with semimajor axis a and semiminor axis b? The

solution of this problem is also challenging. Here too we provide an outline of the important steps.

The ellipse shown in Figure 1.9 has semimajor axis a, semiminor axis b, and equation x2

a2 + y2

b2
= 1.

The graph of the function f(x) = b
a
(a2 − x2)

1
2 is the upper half of the ellipse. By the arc length

formula of integral calculus applied to the upper right quarter of the ellipse, the circumference of

the full ellipse is

4

∫ a

0

√
1 + f ′(x)2 dx.

Use of the trig substitution x = sin θ and simplifying algebra convert this definite integral to

4a

∫ π
2

0

√
1 − ε2 sin2 θ dθ,

where ε is the eccentricity. (Use the equality b2 = a2 − a2ε2 along the way.) This is an elliptic integral

(because it arises in the study of ellipses) that cannot be solved in closed form. This means that√
1 − ε2 sin2 θ does not have an antiderivative that is given by a standard function (a function that

can be expressed as a combination of algebraic, trig, logarithm, and exponential functions and the

inverse functions of such functions). However, it can be solved by using the binomial series

(1 + x)k = 1 + kx + k(k−1)
2!

x2 + k(k−1)(k−2)
3!

x3 + · · · + k(k−1)(k−2)···(k−(i−1))
i!

xi + · · ·
which is known to converge for all x with −1 < x < 1. The case k = 1

2
provides the power series

√
1 + x = 1 + 1

2
x +

∞∑

i=2

(−1)i−11·3·5···(2i−3)
2ii!

xi.

By setting x = −ε2 sin2 θ, we get the expression

√
1 − ε2 sin2 θ = 1 − ε2 sin2 θ

2
−

∞∑

i=2

1·3·5···(2i−3)ε2i sin2iθ
2ii!

.

for the integrand that we are dealing with. This series converges for all θ because 0 ≤ ε2 sin2 θ < 1

for all θ. After integrating term by term and using the formula

∫ π
2

0

sin2iθ dθ = 1
2

· 3
4

· 5
6
· · · 2i−1

2i
· π

2

(it can be verified by combining integration by parts with the principle of mathematical induction)

we obtain the formula
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4a

∫ π
2

0

√
1 − ε2 sin2 θ dθ

= 2πa
(
1 − (

1
2

)2 ε2

1
− (

1·3
2·4

)2 ε4

3
− (

1·3·5
2·4·6

)2 ε6

5
− (

1·3·5·7
2·4·6·8

)2 ε8

7
− (

1·3·5·7·9
2·4·6·8·10

)2 ε10

9
− · · · )

= 2πa
(
1 − 1

4
ε2 − 3

64
ε4 − 45

2304
ε6 − 1575

147456
ε8 − · · · )

for the circumference C of the ellipse with semimajor axis a and eccentricity ε. The infinite series

converges quickly for a small ε but slowly for ε close to 1. The formula confirms and Figure 5.4

illustrates that C is less than the circumference 2πa of a circle of radius a.

Example 5.9. Consider the Earth’s elliptical orbit around the Sun. A look at Table 5.1 tells us

that we can use the approximations a = 149,600,000 km and ε = 0.0167. Since ε2 ≈ 0.000279 and

ε4 ≈ 0.000000078, we can ignore the higher powers of ε to get the approximation of the circumference

of Earth’s ellipse

C ≈ 2π(1.496 × 108)
(
1 − 1

4
ε2 − 3

64
ε4 − 45

2304
ε6 − 1575

147456
ε8 − · · · )

≈ 9.3996(1 − 0.00006975 − 0.00000000366) × 108 ≈ 9.3990 × 108 km.

This is only a littles less that the circumference 9.3996 × 108 km of the surrounding circle. We

can test the accuracy of this estimate for C against the conclusion of section 5F that informs us

that the Earth’s maximum and minimum orbital speeds are 30.29 and 29.29 km/sec, respectively.

Since the Earth’s average speed is C
T

where T = 1.0000264 is its period in years. Since 1 year

has (365.25)(86,400) = 31557600 seconds, we get that C
T

≈ 9.3990×108

(1.0000264)(31557600)
= 29.78 km/sec (in

agreement with the value in Table 5.1).

Example 5.10. For Halley’s comet the formula for C converges much more slowly. With a =

2.668 × 109 km and ε = 0.967,

C ≈ 2π(2.668 × 109)
(
1 − 1

4
ε2 − 3

64
ε4 − 45

2304
ε6 − 1575

147456
ε8 − · · · )

≈ 16.764(1−0.23377−0.04099−0.01597−0.00817−0.00481− 0.00309−0.00211−0.00150) × 109

≈ 11.5603 × 109 km.

Notice that the convergence is relatively slow for the circumference of Halley’s orbit. Since

Halley’s orbital period is T = 75.32 years and 1 year = 31557600 seconds, the average orbital speed

of Halley is
C

T
≈ 11.5603 × 109

75.32(3.1558 × 107)
≈ 4.86 km/sec.

This result fills in the question mark in Table 5.1. An application of the speed formulas of Exam-

ple 5.1 tells us that Halley’s maximum and minimum orbital speeds are approximately 54.43 km/sec

and 0.91 km/sec, respectively.

When it comes to the orbit of a planet, it is the gravitational pull of the Sun that plays the

predominant role and gives the orbit its elliptical shape. The fact is that the Sun has an enormous

mass that consists of over 99% of the total mass of the solar system. However, the small gravitational

forces on a planet that the other planets of the solar system exert have an effect. We observed in
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Chapter 1G that the motion of a planet around the Sun S has two aspects. At the same time that

the planet moves around its elliptical orbit, the ellipse itself rotates. The Sun S remains fixed at

the focal point of the ellipse as the focal axis rotates in the plane of the ellipse taking the perihelion

and aphelion positions of the planet with it. In the process, the perihelion of the orbit advances

in the same direction as the motion of the planet. This advance is known as the precession of

perihelion. It is primarily the result of the gravitational tug of the other planets, but Einstein’s

relativistic modification of Newton’s theory of gravity also plays a role. The mathematical study of

these effects and the precession that they produce are the topics of the rest of this chapter.

5H. Perturbed Orbits and Precession. Let’s consider a planet P in orbit around the Sun S.

Let m be the mass of the planet and M0 the mass of the Sun. By regarding S to be fixed relative

to the motion of P and the masses of both S and P to be concentrated at their centers of mass,

we’ll assume that P is a point-mass and that the gravitational force of S on P is a centripetal force

in the direction of S. By Newton’s law of universal gravitation its magnitude is equal to

FS(r) =
GmM0

r2
.

where r is the variable distance between S and P .

We’ll now suppose that another, smaller centripetal force acts on P in the direction of S. We’ll

assume that its magnitude is a function F (r) of r that can be positive or negative. It is positive

if the force acts in the direction of S and negative if it acts in the direction opposite to S. The

magnitude of the resultant of the two forces is

Φ(r) = FS(r) + F (r) = GmM0

r2
+ F (r).

Since FS(r) is larger than F (r), Φ(r) is a centripetal force on P that acts in the direction of S.

Therefore the theory of Chapter 4D applies to the force Φ(r) and the resulting trajectory of P . We

will later apply our conclusions in two situations:

1. F (r) is the resultant of all the gravitational forces of the other planets on P , and

2. F (r) is the general relativistic correction of the Newtonian gravitational force GmM0

r2
on P .

Let’s return to the scene of Chapter 4D. Choose a polar coordinate system that has its pole O

at S. From the eccentricity data of Table 5.1, we know that the elliptical orbit of each of the eight

planets is close to being a circle (only Mercury is somewhat of an outlier in this regard). We will

assume that the additional force F (r) perturbs the orbit of the point-mass P so that it deviates

slightly from a circle with center S. Let s be the radius of this circle and specify the perturbed

orbit by taking it to be the graph of the function r = f(θ) = s + p(θ), where p(θ) is a differentiable

function with the property that for all θ, |p(θ)| is much smaller than s. Click a stopwatch at

time t = 0, and let time t flow. We’ll assume that the motion of P in its orbit is smooth, and in

particular that FS, F, and Φ are differentiable functions of r and that θ = θ(t) and p = p(t) = p(θ(t))

and r(t) = s + p(t) are differentiable functions of t. Since Φ(r) is centripetal in the direction of the

pole S = O, Chapter 4D provides the equations
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r(t)2 dθ

dt
= 2κ and Φ(r(t)) = m

[
4κ2

r(t)3
− d2r

dt2

]
,

where κ is the Kepler constant of the orbit of P .

Let’s focus on the magnitude Φ(r) of the combined force function. We’ll assume that this function

has derivatives of all orders at r = s (meaning that the first second, third, and so on, derivatives all

exist at r = s) and that its Taylor series expansion centered at s converges for all values r = s + p(t)

with t ≥ 0. It follows that

Φ(r) = Φ(s) + Φ′(s)(r − s) + Φ(2)(s)
2

(r − s)2 + Φ(3)(s)
3!

(r − s)3 + Φ(4)(s)
4!

(r − s)4 + . . .

for all r = s + p(t) and all t ≥ 0. The symbols Φ(2)(s), Φ(3)(s), Φ(4)(s), . . . denote the second,

third, . . . , derivatives of Φ(r) evaluated at r = s. It follows that

Φ(r(t)) = Φ(s) + Φ′(s)p(t) + Φ(2)(s)
2

p(t)2 + Φ(3)(s)
3!

p(t)3 + Φ(4)(s)
4!

p(t)4 + . . .

= Φ(s) + sΦ′(s) p(t)
s

+ s2Φ(2)(s)
2

(p(t)
s

)2 + s3Φ(3)(s)
3!

(p(t)
s

)3 + s4Φ(4)(s)
4!

(p(t)
s

)4 + . . . .

Since |p(t)| is much smaller than s, the term p(t)
s

is very close to zero, and we regard (p(t)
s

)i to be

negligible for all i ≥ 2. So

Φ(r(t)) = Φ(s) + sΦ′(s) p(t)
s

for all t ≥ 0. Since r(t) = s + p(t), we see that d2r
dt2

= d2p
dt2

. So the right side of the force equation

above is equal to m
[

4κ2

(s+p(t))3
− d2p

dt2

]
. Facts about the binomial series tell us that

(1 + x)k = 1 + kx + k(k−1)
2!

x2 + k(k−1)(k−2)
3!

x3 + k(k−1)(k−2)(k−3)
4!

x4 + · · ·
for all |x| < 1, and hence that for k = −3,

(1 + p(t)
s

)−3 = 1 − 3p(t)
s

+ 3·4
2!

(p(t)
s

)2 − 3·4·5
3!

(p(t)
s

)3 + 3·4·5·6
4!

(p(t)
s

)4 − . . . .

Again regarding the terms (p(t)
s

)i to be negligible for all i ≥ 2, we get (1 + p(t)
s

)−3 = 1 − 3p(t)
s

, in

turn 4κ2

(s+p(t))3
= 4κ2s−3(1 − 3p(t)

s
), and therefore m

[
4κ2

(s+p(t))3
− d2p

dt2

]
= m

[
4κ2s−3

(
1 − 3p(t)

s

) − d2p
dt2

]
.

By combining the equalities we have,

Φ(s) + Φ′(s)p(t) = m
[

4κ2

(s+p(t))3
− d2p

dt2

]
= m

[
4κ2s−3 − (4κ2s−3)3p(t)

s
− d2p(t)

dt2

]

= 4mκ2

s3
− 34mκ2

s3
p(t)
s

− md2p(t)
dt2

.

If the planet’s orbit were a circle of radius s, then r(t) = s implies that dr
dt

= 0 and d2r
dt2

= 0, so that

by the force formula, Φ(r(t)) = Φ(s) = 4mκ2

s3
. This fact is the reason for the choice of the initial

condition Φ(s) = 4mκ2

s3
. By inserting it above, we get Φ′(s)p(t) = −3Φ(s)p(t)

s
− md2p(t)

dt2
and

d2p(t)

dt2
+ 1

m

(
3
s
Φ(s) + Φ′(s)

)
p(t) = 0 .

Consider the differential equation Ay′′ + By′ + Cy = 0 and observe that the equation just derived

above has this form with y = p(t), A = 1, B = 0, and C = 1
m

(
3
s
Φ(s) + Φ′(s)

)
. We’ll refer to any

standard text on differential equations for the solutions of such equations and the basic fact that

the roots of the polynomial Ax2 + Bx + C = x2 + C govern the outcomes. The conclusions tell us

that in our current situation, there are constants D1 and D2 such that
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1. The case C < 0. The polynomial x2 + C has the two real roots
√−C and −√−C, and

p(t) = D1e
√−C t + D2e

−√−C t.

2. The case C = 0. The polynomial x2 + C = x2 has the single root 0, and

p(t) = D1t + D2.

3. The case C > 0. The polynomial x2 + C has the two complex roots
√

Ci and −√
Ci, and

p(t) = D1 cos
√

C t + D2 sin
√

C t.

If D1 �= 0 in either the solution p(t) = D1e
2
√−Ct + D2e

−2
√−Ct of Case 1 or p(t) = D1t + D2 in

Case 2, the term |p(t)| becomes larger and larger as t becomes larger and larger. If D1 = 0 in Case 1

then p(t) goes to zero for increasing t, and if D1 = 0 in Case 2, then p(t) is constant. So the orbit

of P is a circle or it converges to a circle over time. Given the basic assumption that the orbit of P

is a perturbed circle, it is the solution p(t) = D1 cos
√

Ct + D2 sin
√

Ct of Case 3 that applies.

As on earlier occasions, let’s assume that P is at perihelion at t = 0 and that the perihe-

lion distance is r(0) = q. Since this is a minimum value of r(t), we know that r′(0) = 0. The

fact that p(t) = r(t) − s, tells us that p(0) = q − s. Since p(t) = D1 cos
√

Ct + D2 sin
√

Ct, we get

p′(t) = −D1

√
C sin

√
Ct + D2

√
C cos

√
Ct. Since p′(0) = r′(0) = 0, it follows that D2 = 0, so that

p(t) = D1 cos
√

Ct. By taking t = 0, we get q − s = p(0) = D1. Therefore

p(t) = (q − s) cos(
√

Ct) and r(t) = s + (q − s) cos(
√

Ct).

From the graph of the cosine (see Figure 3.5) we know that as t flows from t = 0 to t = π
2
√

C
to

t = π√
C

to t = 2π√
C

, the value of cos(
√

Ct) goes from 1 to 0 to −1 and back to 1. Since cos π = −1

is the largest negative value of the cosine, P reaches aphelion at t = π√
C

. The aphelion distance is

r( π√
C

) = 2s − q. At t = 2π√
C

, P is back at perihelion. Since C = 1
m

(
3
s
Φ(s) + Φ′(s)

)
, it follows that

τ = 2π√
C

= 2π√
1
m

( 3
s
Φ(s)+Φ′(s))

= 2π
√

m√
3
s
Φ(s)+Φ′(s)

= 2π
√

m
(

3
s
Φ(s) + Φ′(s)

)− 1
2

is the time it takes for P to move from one perihelion to the next.

Now let ψ be the angle that the segment PS sweeps out in going from one perihelion to the

next. Recalling that r(t)2 dθ
dt

= 2κ and using the binomial series

(1 + x)k = 1 + kx + k(k−1)
2!

x2 + k(k−1)(k−2)
3!

x3 + · · ·
with k = −2 and x = p(t)

s
, we get

dθ
dt

= 2κ(s + p(t))−2 = 2κs−2(1 + p(t)
s

)−2 = 2κ
s2

(
1 − 2p(t)

s
+ 3(p(t)

s
)2 − · · · ).

Since the terms (p(t)
s

)i are negligible for i ≥ 2, we can take dθ
dt

= 2κ
s2

(1 − 2p(t)
s

). The term 2p(t)
s

, while

not negligible, is small. Because (as is shown in the paragraph Using Definite Integrals in the

Problems and Discussions section of this chapter) the average of this term over the time τ is zero,

we will take dθ
dt

= 2κ
s2

over τ . Since dθ
dt

is the angular velocity of the revolving segment PS, it follows

that ψ = τ 2κ
s2

. Since Φ(s) = 4mκ2

s3
and Φ(s)

ms
= 4κ2

s4
, we get 2κ

s2
=

√
Φ(s)
ms

, and therefore
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ψ = τ
√

Φ(s)
ms

= 2π
√

m
(

3
s
Φ(s) + Φ′(s)

)− 1
2

√
Φ(s)
ms

= 2π
(

3
s
Φ(s) + Φ′(s)

)− 1
2
(

s
Φ(s)

)− 1
2 = 2π

(
3 + s Φ′(s)

Φ(s)

)− 1
2 .

Notice that ψ − 2π measures the advance or slippage in radians of the perihelion over one orbit. If

T is the planet’s sidereal period in years (refer back to Chapter 1G), then

ψ − 2π

T
=

2π
((

3 + s Φ′(s)
Φ(s)

)− 1
2 − 1

)

T

is the advance or slippage of the perihelion of the orbit in radians per year.

Example 5.11. Suppose that the magnitude F (r) of the perturbing force is equal to zero, so that

Φ(r) = FS(r) = GmM0

r2
= GmM0r

−2. Show that

Φ′(r) = −2GmM0r
−3 = −2GmM0

r3
= −2

r
Φ(r)

and hence that rΦ′(r)
Φ(r)

= −2. Conclude that ψ = 2π and that there is no precession of the perihelion.

5I. The Gravitational Force of one Planet on Another. The primary cause of the precession

of the perihelion of a planet’s orbit is the cumulative effect of the gravitational forces that the other

planets exert on it. Table 5.2 tells us for each of the planets, that the rotation of its perihelion

through a single degree requires hundreds of years. So the collective impact of these forces on a

Table 5.2. The approximate number of years it takes for a 1◦ precession of a planet’s perihelion.

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

625 1756 314 222 550 183 1078 10,000

planet is extremely small, and this tells us that that the forces themselves are very weak. It will be

the delicate task of this section to compute the gravitational pull on a planet P that a single planet

Q in orbit beyond P exerts.2 By considering their masses to be concentrated at their centers of

P

S

Q

S S

P

Q

P

Q

Figure 5.10

2The primary goal is the derivation of a formula for the magnitude of this gravitational force—see the formula for
G(r) at the end of the section. The derivation consists of two steps. The first uses the strategy of integration to express
the force as a definite integral and the second evaluates the integral. Both steps are technical and computationally
lengthy.
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mass, we will assume that both P and Q are point-masses.

Newton’s law of universal gravitation tells us that the magnitude of the force of Q on P is

inversely proportional to the square of the distance between P and Q. The fact that this distance

varies considerably—see Figure 5.10—means that the magnitude of this weak force varies consider-

ably as well. Without some simplifying assumptions, the estimate of the gravitational force of the

planet Q on P as well as its long term effect on the orbit of P would hardly seem possible.

The values for the eccentricities of the planetary orbits in Table 5.1 supports the assumption

that the orbit of Q is a circle with center the Sun S. The data of Table 5.2 implies that Q needs to

revolve hundreds of times around this circle for its gravitational force on P to have an observable

effect. In so doing, the planet Q exerts its gravitational force on P from all locations around the

circle over many hundreds of years. This means that it makes sense to average this gravitational

force on P over time and to assume that the mass of Q is spread uniformly throughout its circular

orbit. The assumption that the circular orbit of Q is a ring with mass, will allow us to compute the

magnitude of this averaged force on P and to show that it is a centripetal force in the direction

away from the Sun. The case where Q orbits inside the orbit of P can be dealt with in a similar

way. See the paragraph The Perturbing Force of an Interior Planet in the Problems and Discussions

section of this chapter. In this situation the average force acts in the direction of the Sun.

Consider the force of the circular ring on P when P and S are aligned horizontally as shown

in Figure 5.11(a). Suppose that in this case, the magnitude of the force can be determined and

it can be shown that it acts in a direction opposite the direction from P to S. Then these same

conclusions hold with P in any position (see Figures 5.11(b) and 5.11(c) for instance). To see this,

PS

(a)      (b)                (c) 

Figure 5.11

simply rotate P into the position it has in Figure 5.11(a). Therefore our study of the gravitational

force on P starts with Figure 5.11(a).

i.) Setting up the Force as an Integral. Figure 5.12 shows a polar coordinate system with

polar origin O and angle coordinate φ. The planet P is represented by a point-mass of mass m

positioned at O. The point S is the center of mass of the Sun and the distance from O to S is r.

The circular ring centered at S represents the mass of the planet Q. The ring has radius R, mass

M , and a constant linear density of M
2πR

. Observe that 0 < r < R.
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Our first order of business will be to determine the polar function g(φ) with g(φ) > 0 that has

the circle as its graph. From the triangle on the right in Figure 5.12 and the law of cosines we

OS r
φ

R
g(  )

OS r

R φg(  )

φ

φ

Figure 5.12

get R2 = r2 + g(φ)2 − 2rg(φ) cos(π − φ). Since cos(π − φ) = − cos φ (see Figure 5.13), it follows

that R2 = r2 + g(φ)2 + 2rg(φ) cos φ. Since g(φ)2 + (2r cos φ)g(φ) + r2 − R2 = 0, we know by an

application of the quadratic formula, that g(φ) =
−2r cos φ ± √

4r2 cos2 φ + 4(R2 − r2)

2
. Since

 φ

   −φ

−φ

Figure 5.13

√
4r2 cos2 φ + 4(R2 − r2) >

√
4r2 cos2 φ ≥ 2r cos φ and g(φ) > 0, the + option applies. So

g(φ) =
√

r2 cos2 φ + R2 − r2 − r cos φ =
√

R2 − r2 sin2 φ − r cos φ.



5I. The Gravitational Force of one Planet on Another 241

Example 5.12. Figure 5.12 considers a situation with φ < π. Show that the formula g(φ) =√
R2 − r2 sin2 φ − r cos φ is also valid for φ ≥ π.

We now turn to the computation of the gravitational force that the circular ring of mass M

exerts on the point-mass P at O. Figure 5.14 considers the angles φ and φ + dφ for a thin sliver of

an angle dφ, and puts in the two wedges that they determine. The angle dφ is taken so small that

the two blue arcs—labeled 1 and 2—that it cuts from the ring can be regarded to be point-masses.

O

1

φr

( g(  ),   )  

φd

φ   φ 

(g(      ), )  φ−   φ− 

S

2

φd

Figure 5.14

Let the lengths of these arcs be ds1 and ds2, respectively. Given that the linear density of the

ring is M
2πR

, these blue arcs have masses M
2πR

ds1 and M
2πR

ds2, respectively. We will now recast the

expressions for these two masses.

Define the function h(φ) by h(φ) = g(φ − π) =
√

R2 − r2 sin2(φ − π) − r cos(φ − π). By making

use of Figure 5.13, we get

h(φ) =

√
R2 − r2 sin2 φ + r cos φ.

Consider the two black circular arcs of Figure 5.14 that emanate from the two blue points

(g(φ), φ) and (g(φ − π), φ − π) = (h(φ), φ − π)). Notice that the circles on which they lie have

radii g(φ) and h(φ) = g(φ − π), respectively. It follows from the definition of radian measure that

the lengths of the two black circular arcs are

g(φ)dφ and h(φ)dφ = g(φ − π)dφ,
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respectively. It follows from Figure 5.15(a) and the analysis of the arc length of a polar curve in

Chapter 1E (it is based on the Pythagorean theorem), that

ds1 ≈ √
(g(φ)dφ)2 + (g(φ + dφ) − g(φ))2 =

√
(g(φ)dφ)2 + (g(φ+dφ)−g(φ))2

(dφ)2
(dφ2)

≈
√

g(φ)2 + g′(φ)2 dφ .

Since dφ is very small, this approximation of ds1 is very tight. In a similar way, by referring to

O

φd

φd

2

O

1

φ

( g(  ),   )  φ   φ  

φ−

φ

g(          ) − g(  )φ + dφ φ

(a)                    (b)

 φ        φ −   φh(  ) − h(          )

g(  )  φdφ

h(  )  φ d d

Figure 5.15

Figure 5.15(b), we get the very tight approximation

ds2 ≈ √
(h(φ)dφ)2 + (h(φ) − h(φ − dφ))2 =

√
(h(φ)dφ)2 + (h(φ−dφ)−h(φ))2

(−dφ)2
(−dφ)2

≈
√

h(φ)2 + h′(φ)2 dφ

of ds2. These two approximations provide the approximations

M
2πR

ds1 ≈ M
2πR

√
g(φ)2 + g′(φ)2 dφ and M

2πR
ds2 ≈ M

2πR

√
h(φ)2 + h′(φ)2 dφ

of the masses of the blue arcs 1 and 2. By applying Newton’s law of universal gravitation twice, we

see that the magnitudes of the forces with which these two arcs pull on the point-mass P positioned

at O are approximately equal to

GmM
2πR

·
√

g(φ)2+g′(φ)2

g(φ)2
dφ and GmM

2πR
·
√

h(φ)2+h′(φ)2

h(φ)2
dφ,
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respectively. The two forces pull in opposite directions. So the magnitude of the resultant of the

two forces is

GmM
2πR

·
√

g(φ)2+g′(φ)2

g(φ)2
dφ − GmM

2πR
·
√

h(φ)2+h′(φ)2

h(φ)2
dφ = GmM

2πR

(√
g(φ)2+g′(φ)2

g(φ)2
−

√
h(φ)2+h′(φ)2

h(φ)2

)
dφ.

This difference turns out to be positive for −π
2

< φ < π
2
, so that the force with which arc 1 pulls on

P is greater than the force with which arc 2 pulls on P . (This is so because the distance of arc 1

from O is smaller than that of arc 2, but it is not obvious because arc 2 being longer has greater

mass.) The next step is the computation of
√

g(φ)2+g′(φ)2

g(φ)2
−

√
h(φ)2+h′(φ)2

h(φ)2
.

After some elementary algebraic moves,
√

g(φ)2+g′(φ)2

g(φ)2
−

√
h(φ)2+h′(φ)2

h(φ)2
=

h(φ)2
√

g(φ)2+g′(φ)2 − g(φ)2
√

h(φ)2+h′(φ)2

g(φ)2h(φ)2

=
h(φ)

√
h(φ)2g(φ)2+h(φ)2g′(φ)2 − g(φ)

√
g(φ)2h(φ)2+g(φ)2h′(φ)2

g(φ)2h(φ)2
.

We’ll focus on the terms
√

h(φ)2g(φ)2 + h(φ)2g′(φ)2 and
√

g(φ)2h(φ)2 + g(φ)2h′(φ)2. Given that

g(φ) = (R2 − r2 sin2 φ)
1
2 − r cos φ and h(φ) = (R2 − r2 sin2 φ)

1
2 + r cos φ,

we get g(φ) · h(φ) = (R2 − r2 sin2 φ) − r2 cos2 φ = R2 − r2. So

h(φ)2g(φ)2 = (g(φ)h(φ))2 = (R2 − r2)2.

By the chain rule,

g′(φ) = 1
2
(R2 − r2 sin2 φ)− 1

2 (−2r2 sin φ cos φ) + r sin φ

= −(R2 − r2 sin2 φ)− 1
2 (r2 sin φ cos φ) + r sin φ.

Therefore,

h(φ)g′(φ) = −r2 sin φ cos φ + r sin φ(R2 − r2 sin2 φ)
1
2

− (R2 − r2 sin2 φ)− 1
2 r3 sin φ cos2 φ + r2 cos φ sin φ

= r sin φ(R2 − r2 sin2 φ)
1
2

[
1 − r2 cos2 φ

R2−r2 sin2 φ

]
.

Since 1 − r2 cos2 φ
R2−r2 sin2 φ

= R2−r2

R2−r2 sin2 φ
, we finally get

h(φ)g′(φ) =
(R2 − r2)r sin φ

(R2 − r2 sin2 φ)
1
2

.

After putting together what has been derived,
√

h(φ)2g(φ)2 + h(φ)2g′(φ)2 =
(
(R2 − r2)2 + (R2−r2)2r2 sin2 φ

R2−r2 sin2 φ

) 1
2

= (R2 − r2)
[
1 + r2 sin2 φ

R2−r2 sin2 φ

] 1
2

= (R2 − r2)
[

R2−r2 sin2 φ+r2 sin2 φ
R2−r2 sin2 φ

] 1
2 .

It follows that
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√
h(φ)2g(φ)2 + h(φ)2g′(φ)2 =

R(R2 − r2)
√

R2 − r2 sin2 φ
,

so that the first part of our computation is complete. The equalities

h′(φ) = 1
2
(R2 − r2 sin2 φ)− 1

2 (−2r2 sin φ cos φ) − r sin φ

= −(R2 − r2 sin2 φ)− 1
2 (r2 sin φ cos φ) − r sin φ

and a calculation identical to the one just carried out (except for a minus sign that gets “squared

away”) show that
√

g(φ)2h(φ)2 + g(φ)2h′(φ)2 =
R(R2 − r2)

√
R2 − r2 sin2 φ

.

By inserting these equalities into the earlier expression for

√
g(φ)2+g′(φ)2

g(φ)2
−

√
h(φ)2+h′(φ)2

h(φ)2
, we get

√
g(φ)2+g′(φ)2

g(φ)2
−

√
h(φ)2+h′(φ)2

h(φ)2
=

h(φ)
R(R2−r2)√
R2−r2 sin2 φ

− g(φ)
R(R2−r2)√
R2−r2 sin2 φ

(R2−r2)2

=
h(φ) R√

R2−r2 sin2 φ
− g(φ) R√

R2−r2 sin2 φ

R2−r2

= h(φ)−g(φ)
R2−r2

R√
R2−r2 sin2 φ

= 2r cos φ
R2−r2

R√
R2−r2 sin2 φ

= 2r cos φ
R2−r2

R

R
√

1− r2

R2 sin2 φ
= 1

R2−r2
2r cos φ√

1− r2

R2 sin2 φ
.

Substituting this result into the earlier force equation, tells us that the resultant of the pull of

the two blue arcs in Figure 5.14 on the point-mass m located at O is equal to

GmM
2πR

1
R2−r2

2r cos φ√
1− r2

R2 sin2 φ
dφ = GmMr

πR(R2−r2)
cos φ√

1− r2

R2 sin2 φ
dφ.

By the parallelogram law of Chapter 4A, the magnitudes of the vertical and horizontal components

of this resultant are

(
GmMr

πR(R2−r2)
cos φ√

1− r2

R2 sin2 φ
dφ

)
sin φ and

(
GmMr

πR(R2−r2)
cos φ√

1− r2

R2 sin2 φ
dφ

)
cos φ,

respectively.

A careful look at the way the two blue arcs of Figure 5.14 are paired, tells us that they sweep out

the entire circle when φ varies from −π
2

≤ φ ≤ π
2
. Review the summation strategy that led to the

curve-length and area integrals of Chapters 3F and 3G. Applying it to the sum of all the vertical

components for φ ranging over π
2

≤ φ ≤ π
2

tells us that the vertical component of the force with

which the entire circular ring attracts the point-mass P at O is equal to the definite integral

GmMr
πR(R2−r2)

∫ π
2

− π
2

cos φ sin φ√
1− r2

R2 sin2 φ
dφ .

This integral is easy to solve. Let u = r
R

sin φ. By differentiating, du = r
R

cos φ dφ. So sin φ = R
r
u,

and cos φ dφ = R
r
du. With this substitution and use of the fact that −(1 − u2)

1
2 is an antiderivative

of u√
1−u2 , we get
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GmMr
πR(R2−r2)

∫ r
R

− r
R

R
r

· R
r

u√
1−u2 du = GmMR

πr(R2−r2)

∫ r
R

− r
R

u√
1−u2 du = GmMr

πR(R2−r2)

(− (1 − ( r
R
)2)

1
2 + (1 − (− r

R
)2)

1
2

)
= 0.

So the vertical component of the force of the circular ring on the point-mass P is zero.

Therefore the force of the entire ring acts horizontally on P in the direction opposite to S. See

Figure 5.12. And the magnitude of this force on P is obtained by summing up all the horizontal

components computed above. Applying the summation strategy of the definite integral once more,

we see that the magnitude of the force of the entire ring on the point-mass is

GmMr
πR(R2−r2)

∫ π
2

− π
2

cos2 φ√
1− r2

R2 sin2 φ
dφ .

Since

∫ π
2

− π
2

cos2 φ√
1− r2

R2 sin2 φ
dφ =

∫ π
2

0

cos2 φ√
1− r2

R2 sin2 φ
dφ +

∫ 0

− π
2

cos2 φ√
1− r2

R2 sin2 φ
dφ and the substitution φ → −φ

transforms the second integral into the first,

∫ π
2

− π
2

cos2 φ√
1− r2

R2 sin2 φ
dφ = 2

∫ π
2

0

cos2 φ√
1− r2

R2 sin2 φ
dφ. Therefore our

focus is on the computation

∫ π
2

0

cos2 φ√
1− r2

R2 sin2 φ
dφ.

ii.) Solving the Integral. The solution of this integral is challenging. The binomial series

(1 − x)− 1
2 = 1 + 1

2
x + 3

22·2!
x2 + 3·5

23·3!
x3 + 3·5·7

24·4!
x4 + · · · + 3·5···(2k−1)

2k·k!
xk + · · ·

is the key. As was already pointed out in section 5G, it converges to (1 − x)− 1
2 for all x with |x| < 1.

Since 0 ≤ r2

R2 sin2 φ ≤ r2

R2 < 1,

(1 − r2

R2 sin2 φ)− 1
2 = 1 + 1

2
r2

R2 sin2 φ + 3
22·2!

( r2

R2 sin2 φ)2

+ 3·5
23·3!

( r2

R2 sin2 φ)3 + 3·5·7
24·4!

( r2

R2 sin2 φ)4 + · · · + 3·5···(2k−1)
2k·k!

( r2

R2 sin2 φ)k + · · ·
Multiplying this equality through by cos2 φ = 1 − sin2 φ, gives us

cos2 φ

(1− r2

R2 sin2φ)
1
2

= (1 − sin2 φ) + 1
2

r2

R2 (sin
2 φ)(1 − sin2 φ) + 3

22·2!
( r2

R2 )
2(sin4 φ)(1 − sin2 φ)

+ 3·5
23·3!

( r2

R2 )
3(sin6 φ)(1 − sin2 φ) + 3·5·7

24·4!
( r2

R2 )
4(sin8 φ)(1 − sin2 φ) + · · ·

+ 3·5···(2(k−1)−1)

2(k−1)·(k−1)!
( r2

R2 )
k−1(sin2(k−1) φ)(1 − sin2 φ) + 3·5···(2k−1)

2k·k!
( r2

R2 )
k(sin2k φ)(1 − sin2 φ) + · · ·

= 1 − [
1 − 1

2
r2

R2

]
sin2 φ − [

1
2

r2

R2 − 3
22·2!

( r2

R2 )
2
]
sin4 φ − [

3
22·2!

( r2

R2 )
2 − 3·5

23·3!
( r2

R2 )
3
]
sin6 φ

− [
3·5

23·3!
( r2

R2 )
3 − 3·5·7

24·4!
( r2

R2 )
4
]
sin8 φ − [

3·5·7
24·4!

( r2

R2 )
4 − 3·5·7·9

25·5!
( r2

R2 )
5
]
sin10 φ − · · ·

− [
3·5···(2(k−1)−1)

2(k−1)·(k−1)!
( r2

R2 )
k−1 − 3·5···(2k−1)

2k·k!
( r2

R2 )
k
]
sin2k φ − · · ·

= 1 − [
1 − 1

2
r2

R2

]
sin2 φ − 1

2
r2

R2

[
1 − 3

2·2
r2

R2 ] sin
4 φ − 3

22·2!
( r2

R2 )
2
[
1 − 5

2·3
r2

R2

]
sin6 φ

− 3·5
23·3!

( r2

R2 )
3
[
1 − 7

2·4
r2

R2

]
sin8 φ − 3·5·7

24·4!
( r2

R2 )
4
[
1 − 9

2·5
r2

R2

]
sin10 φ − · · ·

− 3·5···(2k−3)

2(k−1)·(k−1)!
( r2

R2 )
k−1

[
1 − 2k−1

2·k
r2

R2

]
sin2k φ − · · · .
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It follows that

∫ π
2

0
cos2 φ√

1− r2

R2 sin2 φ
dφ

=

∫ π
2

0

1 dφ − [
1 − 1

2
r2

R2

]∫ π
2

0

sin2 φ dφ − 1
2

r2

R2

[
1 − 3

4
r2

R2 ]

∫ π
2

0

sin4 φ dφ − 3
22·2!

( r2

R2 )
2
[
1 − 5

6
r2

R2

]∫ π
2

0

sin6 φ dφ

− 3·5
23·3!

( r2

R2 )
3
[
1 − 7

8
r2

R2

]∫ π
2

0

sin8 φ dφ − 3·5·7
24·4!

( r2

R2 )
4
[
1 − 9

10
r2

R2

]∫ π
2

0

sin10 φ dφ

− · · · − 3·5···(2k−3)

2(k−1)(k−1)!
( r2

R2 )
k−1

[
1 − 2k−1

2k
r2

R2

]∫ π
2

0

sin2k φ dφ − · · · .

By applying the formula

∫ π
2

0

sin2kφ dφ = 1
2

· 3
4

· 5
6
· · · 2k−1

2k
· π

2
for any k ≥ 1 (see section 5G), we get

∫ π
2

0
cos2 φ√

1− r2

R2 sin2 φ
dφ

= π
2

− [
1 − 1

2
r2

R2

]
1
2

π
2

− 1
2

r2

R2

[
1 − 3

4
r2

R2 ]
1
2

3
4

π
2

− 3
22·2!

( r2

R2 )
2
[
1 − 5

6
r2

R2

]
1
2

3
4

5
6

π
2

− 3·5
23·3!

( r2

R2 )
3
[
1 − 7

8
r2

R2

]
1
2

3
4

5
6

7
8

π
2

− 3·5·7
24·4!

( r2

R2 )
4
[
1 − 9

10
r2

R2

]
1
2

3
4

5
6

7
8

9
10

π
2

− · · · − 3·5···(2k−3)

2(k−1)(k−1)!
( r2

R2 )
k−1

[
1 − 2k−1

2k
r2

R2

]
1
2

3
4

5
6
· · · 2k−1

2k
π
2

− · · ·
= 1

2
π − 1

2
1
2

[
1 − 1

2
r2

R2

]
π − 1

23
3
4

r2

R2

[
1 − 3

4
r2

R2 ]π − 32

25(2!)2
5
6
( r2

R2 )
2
[
1 − 5

6
r2

R2

]
π − 32·52

27(3!)2
7
8
( r2

R2 )
3
[
1 − 7

8
r2

R2

]
π

− 32·52·72
29(4!)2

9
10

( r2

R2 )
4
[
1 − 9

10
r2

R2

]
π − · · · − 32·52···(2k−3)2

22k−1((k−1)!)2
2k−1
2k

( r2

R2 )
k−1

[
1 − 2k−1

2k
r2

R2

]
π − · · · .

We can now conclude that

GmMr
πR(R2−r2)

∫ π
2

− π
2

cos2 φ√
1− r2

R2 sin2 φ
dφ

= GmM
R2−r2

r
R

[
1 − 1

2

[
1 − 1

2
r2

R2

] − 1
22

3
4

r2

R2

[
1 − 3

4
r2

R2 ] − 32

24(2!)2
5
6
( r2

R2 )
2
[
1 − 5

6
r2

R2

] − 32·52
26(3!)2

7
8
( r2

R2 )
3
[
1 − 7

8
r2

R2

]

− 32·52·72
28(4!)2

9
10

( r2

R2 )
4
[
1 − 9

10
r2

R2

] − · · · − 32·52···(2k−3)2

22(k−1)((k−1)!)2
2k−1
2k

( r2

R2 )
k−1

[
1 − 2k−1

2k
r2

R2

] − · · ·
]

= GmM
R2−r2

r
R

[
1
2

+ 1
22

1
4
( r

R
)2 + 32

24(2!)2
1
6
( r

R
)4 + 3252

26(3!)2
1
8
( r

R
)6 + 325272

28(4!)2
1
10

( r
R
)8

+ 32527292

210(5!)2
1
12

( r
R
)10 + · · · + 32·52···(2k−1)2

22k(k!)2
1

2(k+1)
( r

R
)2k + · · ·

]

= GmM
2(R2−r2)

r
R

[
1 + 1

22
1
2
( r

R
)2 + 32

(2·4)2
1
3
( r

R
)4 + (3·5)2

(2·4·6)2
1
4
( r

R
)6 + (3·5·7)2

(2·4·6·8)2
1
5
( r

R
)8

+ (3·5·7·9)2

(2·4·6·8·10)2
1
6
( r

R
)10 + · · · + (3·5···(2k−1))2

(2·4···2k)2
1

k+1
( r

R
)2k + · · ·

]
.

This last expression—we’ll denote it by G(r)—is the magnitude of the gravitational force with

which the ring of mass M and radius R attracts the point-mass P of mass m positioned at O at

a distance r < R from the ring’s center. The force acts along the line SP in the direction away

from S. In our applications, we’ll take r to be the semimajor axes of the planet P and R to be the

semimajor axis of the planet Q. With this understanding and the data of Table 5.1, the terms of

the sum containing ( r
R
)2k with k ≥ 6 are very small (and become smaller with increasing k). Given

that approximations are our goal, we’ll regard them to be negligible, so that
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G(r) = GmM
2(R2−r2)

r
R

[
1 + 1

23
( r

R
)2 + 3

26
( r

R
)4 + 52

210
( r

R
)6 + 5·72

214
( r

R
)8 + 33·72

217
( r

R
)10

]

Since any gravitational force in the direction of the Sun is taken to be positive, this perturbing force

on a planet by a planet exterior to its orbit is considered to be negative.

Example 5.12. Use the product rule to show that

G′(r) = GmM
(R2−r2)2

r2

R

[
1 + 1

23
( r

R
)2 + 3

26
( r

R
)4 + 52

210
( r

R
)6 + 5·72

214
( r

R
)8 + 33·72

217
( r

R
)10

]

+ GmM
2(R2−r2)

1
R

[
1 + 3

23
( r

R
)2 + 3·5

26
( r

R
)4 + 52·7

210
( r

R
)6 + 5·72·9

214
( r

R
)8 + 33·72·11

217
( r

R
)10

]
.

5J. Perihelion Precession for Mercury. The focus for the rest of the chapter will be on the

planet Mercury. We will see in section 5K that the study of the precession of the perihelion of

Mercury’s orbit, in particular the discrepancy between the observed precession and that predicted

by Newton’s theory of gravity, played an important role in the history of modern astronomy.

We’ll let m be the mass of Mercury and take the circle of its perturbed orbit to have radius equal

to the semimajor axis a of its elliptical orbit. We’ll also assume that the radii of the circular rings

that represent the masses of the seven planets that pull on Mercury as they orbit the Sun are also

equal to the semimajor axes of their elliptical orbits. These choices are consistent with the fact—

verified in section 5G—that the time-averaged distance of any planet from the Sun is a(1 + 1
2
ε2)

where a is its semimajor axis and ε its eccentricity. We’ll number the planets from Venus to Neptune

from 2 to 8, denote the radii of their circular rings by R2, . . . , R8, and their masses by M2, . . . ,M8.

The force with which any of these rings pulls Mercury in the direction of the Sun was studied in

the previous section. Accordingly, we will denote the forces of Venus, . . . , Neptune on Mercury by

G2(a), . . . , G8(a). We’ll take a = 57.909227 × 109 m for the semimajor axis of Mercury’s orbit from

Table 5.1. The mass of the Sun is denoted by M0. The value GM0 = 1.3271244042 × 1020 m3

sec2
as

well as the values GMi for the planets are taken from Table 8 of the JPL study listed as [5] in the

References for Chapter 2. See Tables 2.3 and 2.6 in this regard.

In order to apply the formula for the angular advance or slippage of a planet’s precession that

was derived in section 5H to Mercury’s orbit, we need to compute

aΦ′(a)

Φ(a)
,

where Φ(a) = FS(a) − F (a) = GmM0

a2 −
8∑

i=2

Gi(a) and Φ′(a) = F ′
S(a) − F ′(a) = −2GmM0

a3 −
8∑

i=2

G′
i(a).

The mass m appears in all terms of the formulas for G(r) and G′(r) at the end of the previous

section so that it can be factored out from the right sides of the two expressions above. This simplifies

our calculations and improves their accuracy. So we’ll compute

1
m

Φ(a) = GM0

a2 −
8∑

i=2

1
m

Gi(a) and 1
m

Φ′(a) = −2GM0

a3 −
8∑

i=2

1
m

G′
i(a)
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instead. The fact that the magnitudes of the forces Gi(a) are comparatively small means that the

computation of the terms 1
m

Gi(a) and 1
m

G′
i(a) is delicate. Since accurate data is available, we’ll

carry out our computations with 9 significant figure accuracy.

We’ll start by computing GM0

a2 . Its value is

GM0

a2 = 1.3271244042×1020

57.9092272×1018
= 0.0003957456043956 × 102 = 39574560.44 × 10−9 N/kg.

The conclusion of the study undertaken in section 5I tells us that for each of the planets from

Venus to Neptune, 1
m

Gi(a) is the product of GMi

2(R2
i −a2)

a
Ri

and 1 + 1
23

( a
Ri

)2 + · · · + 33·72
217

( a
Ri

)10. The results

of the computation3 of these products (obtained by using the the data of Tables 2.1, 2.3, 2.4, and

Table 5.3. The computation of the terms 1
mGi(a) for each of the seven planets orbiting outside Mercury’s orbit.

planet

GMi

2(R2
i −a2)

a
Ri

in 10−9 N/kg
1+ · · · + 33·72

217
( a

Ri
)10

1
m

Gi(a)

in 10−9 N/kg

Venus 10.40299008 1.04033766 10.82262236

Earth 4.05487822 1.01987359 4.13546321

Mars 0.11192869 1.00826980 0.11285432

Jupiter 7.82419068 1.00069338 7.82961582

Saturn 0.37894014 1.00020608 0.37901823

Uranus 0.00709528 1.00005088 0.00709564

Neptune 0.00217496 1.00002072 0.00217501

2.6) are collected in Table 5.3. By adding the entries of the last column, we get

8∑

i=2

1
m

Gi(a) = (10.82262236 + 4.13546321 + 0.11285432 + 7.82961582

+ 0.37901823 + 0.00709564 + 0.00217501) × 10−9

= 23.28884459 × 10−9 N/kg.

Therefore

1
m

Φ(a) = GM0

a2 −
8∑

i=2

1
m

Gi(a) = (39574560.44 − 23.28884459) × 10−9

= 39574537.15115541 × 10−9

= 3.95745372 × 10−2 N/kg.

3The computations that produced the data in Tables 5.3 and 5.4 are manageable when carried out with a calculator
such as the one provided by https://web2.0calc.com/.

https://web2.0calc.com/.
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We turn next to the computation of a 1
m

Φ′(a) = a
(−2GM0

a3 −
8∑

i=2

1
m

G′
i(a)

)
. Using the fact that

GM0 = 1.3271244042 × 1020 m3

sec2
, we get

a2GM0

a3 = 2GM0

a2 = 2(1.3271244042)
57.9092272

× 102 = 0.000791491209 × 102 = 7.91491209 × 10−2 N/kg.

By the formula of Example 5.12, for each of the planets 1
m

G′
i(a) is the sum of the products

GMi

(R2
i −a2)2

a2

Ri
by 1 + 1

23
( a

Ri
)2 + · · · + 33·72

217
( a

Ri
)10 and GMi

2(R2
i −a2)

1
Ri

by 1 + 3
23

( a
Ri

)2 + · · · + 33·72·11
217

( a
Ri

)10.

The results of the tedious arithmetic are presented in Table 5.4 (this arithmetic makes use of the

middle column of Table 5.3 as well) with the sum of the products listed in the last column. By

Table 5.4. The computation of the terms 1
mG′

i(a) for each of the seven planets orbiting outside Mercury’s orbit.

planet

GMi

(R2
i −a2)2

a2

Ri

in 10−20 N/kg·m
GM

2(R2
i −a2)

1
Ri

in 10−20 N/kg
1+ · · · + 33·72·11

217
( a

Ri
)10

1
m

G′(a)

in 10−20 N/kg·m

Venus 14.41940343 17.96430487 1.13175575
15.00104842

+ 20.33120533

Earth 2.46833671 7.00212803 1.06210568
2.51739142

+ 7.43699995

Mars 0.02667098 0.19328299 1.02522783
0.02689154

+ 0.19815910

Jupiter 0.15041401 13.51112955 1.00208302
0.15051830

+ 13.53927350

Saturn 0.00215983 0.65436919 1.00061849
0.00216028

+ 0.65477391

Uranus 0.00000998 0.01225242 1.00015264
0.00000998

+ 0.01225429

Neptune 0.00000125 0.00375582 1.00006215
0.00000125

+ 0.00375605

adding the numbers of the last column of Table 5.4 we get

8∑

i=2

1
m

G′
i(a) =

(
(15.00104842 + 20.33120533) + (2.51739142 + 7.43699995) + (0.02689154 + 0.1981591)

+ (0.15051830 + 13.53927350) + (0.00216028 + 0.65477391) + (0.00000998 + 0.01225429)

+ (0.00000125 + 0.00375605)
) × 10−20.

= 59.87444332 × 10−20.

Therefore,
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a 1
m

Φ′(a) = a
(− 2GM0

a3 −
8∑

i=2

1
m

G′
i(a)

)
= −2GM0

a2 − a

8∑

i=2

1
m

G′
i(a)

= −7.91491209 × 10−2 − (57.909227 × 109)(59.87444332 × 10−20)

= −7.91491209 × 10−2 − 3467.28272971651364 × 10−11

= −(7.91491209 + 0.000003467282729) × 10−2

= −7.91491556 × 10−2 N/kg.

By inserting the results of these computations and the fact (see Table 2.1) that the sidereal

period of Mercury’s orbit is T = 0.2408467 into the precession formula of section 5H, we get

ψ − 2π

T
≈

2π
((

3 + a Φ′(a)
Φ(a)

)− 1
2 − 1

)

T
≈

2π
((

3 + a
1
m

Φ′(a)
1
m

Φ(a)

)− 1
2 − 1

)

T

≈ 2π
((

3 + −7.91491556×10−2

3.95745372×10−2

)− 1
2 − 1

)

0.2408467

≈ 2π
((

3 − 2.00000205
)− 1

2 − 1
)

0.2408467

≈ 2π(0.00000102)

0.2408467
≈ 0.00002661.

So the perihelion of Mercury’s orbit advances at a rate of approximately 0.00002661 radians per

year. Converting this to degrees, minutes, and finally seconds of arc, we get that this precession is

approximately

0.00002661 × 180
π

× 60 × 60 ≈ 5.49

arc seconds per year and hence 549 arc seconds per century. This is in satisfactory agreement with

the 532 arc seconds per year that the literature reports.

We will see in the paragraph The Perturbing Force of an Interior Planet of the Problems and

Discussions section of this chapter that the gravitational perturbing force on a planet P by a planet

with orbit interior to the orbit of P is centripetal in the direction of the Sun S. The formula for its

magnitude is analogous to the formula for G(r) of section 5I. This formula (along with considerations

similar to those above) makes it possible—after a slog of calculations—to compute for each of the

planets the precession of the perihelion caused by the gravitational forces of the other planets.

5K. The Relativistic Component of Precession. Newton’s theory of gravity celebrated a

major triumph with the calculations that pointed to the existence of a planet beyond Uranus and

the subsequent discovery of Neptune. Ironically, the same calculations also exposed a failure: its

inability to account for the entire rotational precession of the perihelion of the orbit of Mercury.

Observations had shown that Mercury’s perihelion advances by about 575 arc seconds or 0.16 degrees

per century. In the 1850s the French astronomer Urbain Le Verrier, who had earlier predicted the

existence of Neptune, calculated that the collective gravitational forces of all the other planets
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could not account for this entire amount. By the 1880s, astronomers knew that Newton’s theory

could explain only 532 of the 575 arc seconds leaving the difference of 43 arc seconds per century

unaccounted for. Perhaps surprisingly (given that 43 arc seconds per century is an extraordinarily

small shift), scientists looked for explanations of the difference. They began with the assumption

that there must be some as yet unknown body circling the Sun—within the orbit of Mercury—that

causes the extra orbital rotation. When no such body was found, modifications to Newton’s gravity

were proposed—for instance, that the exponent of 2 in the inverse square law should be replaced

by a number slightly larger than 2. But such assumptions also failed to clarify the discrepancy.

Not until Einstein’s theory of relativity appeared was there a satisfactory explanation of the gap

between the observed and calculated precession of Mercury’s orbit.

Einstein—always guided by his powerful intuition and probing thought experiments—had final-

ized his theory of special relativity by 1905. The theory asserts that the laws of physics are the same

for any two non-accelerating observers, and that the speed of light c in a vacuum (c = 299,792,458

meters per second) never changes, even if the observer or the light source is moving. Special rela-

tivity unified space and time into a four-dimensional “space-time” geometric construct and laid out

the relationship between energy E and mass m in the famous equation E = mc2. General relativity

added gravity to the theory of special relativity, explaining that moving matter causes depressions

that ripple through space-time. The more massive the body, the deeper the flowing ripple. Lighter

bodies move through the changing depression in space that the massive ones formed like a golf ball

rolling on a green. Einstein’s theory predicts that even light will curve as it moves around a massive,

space-time bending object such as a galaxy cluster. This phenomenon has allowed astronomers to

study very distant galaxies through the gravitational lenses molded by nearer ones.

For over 100 years, general relativity has withstood the test of time. A revolution when Einstein

first proposed it in 1915, it is now accepted as the foundation on which our scientific understanding

of the origin and evolution of the universe rests. Careful studies of the motion of matter and light

throughout the universe have shown that ordinary matter (matter as we know it) cannot alone

account for the way things move through space-time. In fact, observations suggest that only 5

percent of the universe is familiar matter and energy, while 25 percent is transparent, invisible

“dark matter” that neither emits nor absorbs light and that reveals its existence only through its

gravitational effects. The gravitational redshift of light from receding exploding stars, known as

supernovas, is predicted by general relativity and tells us that the expansion of the universe is

accelerating. The energy thought to be responsible for this expansion—and known to make up the

remaining 70 percent of the universe—is a still mysterious “dark energy.”

In our current context, general relativity also provides small corrections to the orbits of planets

(as well as the spacecraft we send to all corners of our solar system). In particular, it explains the

gap of 43 seconds of arc between the observed precession of Mercury’s perihelion and the precession

attributed to the gravitational pull of the other planets. We will have a look at this relativistic

phenomenon from within the mathematical context that has already been developed.

Let P be any planet and S the Sun. Let m be the mass of the planet and M0 the mass of the

Sun. By concentrating their masses at their centers of mass, we’ll assume that both S and P are

point-masses. According to Newton’s law of universal gravitation, the magnitude FS(r) of the Sun’s
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attractive force on the planet is given by
GmM0

r2

where r is the variable distance between P and S.

General relativity corrects the magnitude of the gravitational force with which the Sun attracts

the planet with the addition of the force

F (r) =
3GM0

c2

(mr2 · dθ
dt

)2

mr4
,

where c is the speed of light and mr2 · dθ
dt

is the angular momentum of the moving planet (namely

the product of its moment of inertia mr2 with its angular velocity dθ
dt

). Since the corrected force

on P is centripetal, the discussion of Chapter 4D applies to tell us that r2 dθ
dt

= 2κ and hence that

mr2 · dθ
dt

= 2mκ, where κ is Kepler’s constant of the orbit. It follows that F (r) = 12GmM0κ2

c2r4
and hence

that the magnitude of the corrected force that general relativity provides for the Sun’s gravitational

force on the planet is equal to

GmM0

r2
+ F (r) =

GmM0

r2
+

12GmM0κ
2

c2r4
=

GmM0

r2
+

GmM0

r2
· 12κ2

c2r2
.

We’ll now analyze the impact of this correction on the precession of the perihelion of the planet

P by turning to the results of section 5H. Since

Φ(r) =
GmM0

r2
+ F (r) =

GmM0

r2
+

GmM0

r2
· 12κ2

c2r2
=

GmM0

r2

[
1 +

12κ2

c2r2

]
,

the product rule tells us that

Φ′(r) =
−2GmM0

r3

[
1 +

12κ2

c2r2

]
+

GmM0

r2

[(−2)12κ2

c2r3

]
.

After factoring out 2
r

from the first factor of the first term and the second factor of the second term,

Φ′(r) =
−GmM0

r2

2

r

[
1 +

12κ2

c2r2

]
− GmM0

r2

2

r

[12κ2

c2r2

]
= −GmM0

r2

2

r

(
1 + 2 · 12κ2

c2r2

)

and hence that
rΦ′(r)
Φ(r)

= −2
1 + 212κ2

c2r2

1 + 12κ2

c2r2

.

We’ll suppose that the relativistic force F (r) disrupts the Newtonian orbit of P into a perturbed

circle of radius s. An application of the conclusion of the discussion of section 5H, tells us that the

force Φ(r) results in an advance or slippage of the perihelion of the orbit of the planet P of

2π
((

3 + s Φ′(s)
Φ(s)

)− 1
2 − 1

)

T
=

2π
((

3 − 2
1+2 12κ2

c2s2

1+ 12κ2

c2s2

)− 1
2 − 1

)

T

radians per year, where T is the sidereal period in years of the orbit of the planet.
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Let’s return to the planet Mercury. By Table 5.1, the semimajor axis, eccentricity, and the

perihelion period of its orbit are a1 = 57.909227 × 106 km, ε1 = 0.20563593, and

T1 = 0.2408489 · 31,557,600 = 7600613.25 sec.

So the Kepler constant of Mercury’s orbit is

κ1 = a1b1π
T1

=
πa2

1

√
1−ε21

T1
= 13.56483955 × 108 km2/sec.

It follows that
12κ2

1

c2a2
1

= 12·13.564839552

299,792.4582·57.9092272
× 104 = 0.000000073261132.

Notice therefore, that Einstein’s relativistic correction is but a very small fraction of the value that

Newton’s law of universal gravitation provides for the Sun’s attractive force on Mercury.

We now get that

a1Φ
′(a1)

Φ(a1)
= −2

1 + 2
12κ2

1

c2a2
1

1 +
12κ2

1

c2a2
1

= −2
1 + 2 · 0.000000073261132

1 + 0.000000073261132
= −2.00000014652225.

Letting T1 = 0.2408467 in years be the sidereal period of Mercury’s orbit (from Table 2.1) we get

2π
((

3 + a1
Φ′(a1)
Φ(a1)

)− 1
2 − 1

)

T1

=
2π

((
3 − 2.00000014652225)

)− 1
2 − 1

)

0.2408467

= 0.000019112125 radians per year.

Converting this to degrees, minutes, and finally seconds of arc, we get that the relativistic component

of the precession of the perihelion of Mercury’s orbit is approximately

0.000019112125 × 180
π

× 60 × 60 ≈ 0.394

arc seconds per year and hence 39.4 arc seconds per century. This is close to the commonly accepted

value of 43 arc seconds per century for the relativistic component of Mercury’s precession.

Let P be any of the other seven planets. Let a, ε and T be the semimajor axis, eccentricity and

the perihelion period of the orbit of P . Since its Kepler constant is κ = abπ
T

where b = a
√

1 − ε2

is the semiminor axis of the orbit, a
T

= κ
πb

= κ
πa

√
1−ε2

. So a2

T
= κ

π
√

1−ε2
, and therefore a3

T 2 = κ2

π2a(1−ε2)
.

Kepler’s third law tells us that a3

T 2 is the same constant, say K, for all the planets. It follows

that κ2 = Kπ2a(1 − ε2), and hence that 12κ2

c2a2 = 12Kπ2a(1−ε2)
c2a2 = 12Kπ2

c2
1−ε2

a
. Consider the constant

12κ2
1

c2a2
1

= 12Kπ2

c2
1−ε21
a1

for Mercury, and notice that 12κ2

c2a2

/12κ2
1

c2a2
1

= 1−ε2

a
· a1

1−ε21
= a1

a
1−ε2

1−ε21
. Therefore

12κ2

c2a2
=

a1(1 − ε2)

a(1 − ε2
1)

12κ2
1

c2a2
1

.

Let’s consider Venus, for example. Inserting information from Table 5.1, we get

12κ2

c2a2 = (57.909227)(1−0.006776722)
(108.209475)(1−0.205635932)

0.000000073261132 = 0.000000040935527.
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So for Venus,

aΦ′(a)

Φ(a)
= −2

1 + 212κ2

c2a2

1 + 12κ2

c2a2

= −2
1 + 2 · 0.000000040935527

1 + 0.000000040935527
= −2.000000081871051.

Therefore with T = 0.6151973 years the sidereal period of Venus (taken from Table 2.1)

2π
((

3 + aΦ′(a)
Φ(a)

)− 1
2 − 1

)

T
=

2π
((

3 − 2.000000081871051)
)− 1

2 − 1
)

0.6151973

= 0.00000041808621 radians per year,

and hence 8.62 arc seconds per century. Unlike the case of Mercury for which the result derived

above deviates a little from the accepted value, the value 8.62 for Venus is equal to the accepted

value for the relativistic component of the orbital precession of its perihelion.

Example 5.13. Compute 12κ2

c2a2 for Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. Then

compute the relativistic correction to the precession for each. After checking entries three and

four of the third row of the Table 5.5, complete the third row. Provide estimates for the entries

Table 5.5. About the precession of the perihelion of the planetary orbits.

orbital precession

in arc seconds
per century

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

as provided

by observation
575 205 1145 1628 655 1950 3.34 0.36

due to the gravity

of the other planets
532

due to general

relativity
43 8.6 3.8 1.35

of the second row of the table under the assumption that the planetary and relativistic components

add up to the precession as it is observed.

We have undertaken a study of the precession of the perihelion of the elliptical orbits of the

planets. Over 90% of this phenomenon explained by the collective Newtonian gravitational pull

of the other planets. The remaining few percentage points are the result of Einstein’s relativistic

correction of the gravitational pull of the Sun on the planets. Both components of these precessions

are very small—a fraction of one degree per century. The components are small enough so that their

combined effect can be obtained by adding them. The fact that the two components are small also

means that their calculation is highly dependent on the accuracy of the planetary data as well as

the methods with which they are computed.

Consider a planet other than Mercury. The computation of the planet’s orbital precession

requires—in addition to the facts and strategies developed in sections 5H, 5I, and 5J—the numerical

study of the gravitational force exerted by a planet that moves inside the orbit of the given planet.

This study is carried out in the Problems and Discussions section that concludes this chapter.
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5L. Problems and Discussions. This problem set will explore issues that are related to the

discussions of this chapter.

1.Moving Around the Ellipse. This segment considers matters that arise in section 5B.

Problem 5.1. Consider a semicircle of radius 5 and inscribe into it one half of the ellipse with semi-

O5

3

3

Figure 5.16

major axis 5 and semiminor axis 3 as shown in Figure 5.16. After reviewing the the discussion of

Figure 5.4, compute the shaded area of the figure.

Problem 5.2. Figure 5.17 shows a coordinate system along with the upper half of a circle of

radius 5 and the inscribed upper half of an ellipse with semimajor axis 5. The point F = (2, 0) is a

focal point of the ellipse. The point P0 is on the circle, the point P is on the ellipse, and the dashed

Figure 5.17

segment P0PX is perpendicular to the x-axis.

i. Given that the y-coordinate of P0 is 4, show that X = (3, 0). Use your calculator to find the

angle β in radians.

ii. Compute the semiminor axis of the ellipse and write down an equation for the ellipse. Determine

the y-coordinate of the point P .

iii. Study the discussion of Figure 5.4 and compute the area of the elliptical sector PFQ.
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Problem 5.3. Figure 5.18 is a version of Figure 5.3 with P in the first and fourth quadrants,

P = (x, y)

t = 0
periapsis

apoapsis

at elapsed
t

y

xO S

Q

r(t)

x

r(t)

x

P = (x, y)
at elapsed
time   t

 (t)α

time 

Figure 5.18

respectively. Go through the derivations of the results of section 5B in each of these two situations.

Problem 5.4. The function r(t) = a
(
1 − ε cos β(t)

)
measures the distance of the planet from the

Sun. Consider it for one complete orbit, in other words, over the time interval [0, T ]. If ε = 0, then

r(t) = a throughout, so assume that ε > 0. Over which part of the interval [0, T ] is r(t) increasing

and over which part is it decreasing? Answer first by studying Figure 5.18. Then check your answer

by analyzing the derivative of r(t) over the interval 0 ≤ t ≤ T .

Problem 5.5. Solve cos α(t) = cos β(t)−ε
1−ε cos β(t)

(established in section 5B) for cos β(t) to show that

cos β(t) = ε+cos α(t)
1+ε cos α(t)

. Insert this into the equation r(t) = a(1 − ε cos β(t)) and conclude that

r(t) = a(1−ε2)
1+ε cos α(t)

. It follows that r is the function r(α) = a(1−ε2)
1+ε cos α

of α.

2.Using Kepler’s Equation. This segment explores some of the consequences of Kepler’s

equation and its solution.

Problem 5.6. Observe that when ε = 0 the orbit of P is a circle of radius a = b. Discuss Figures 5.3

and 5.4 as well as the functions r(t), α(t), and β(t) in this situation. What do Kepler’s equation

β(t) − ε sin β(t) = 2πt
T

and the definition of the angle β(t) imply about the speed of the orbiting

point-mass P?

Problem 5.7. Use Kepler’s equation β(t) − ε sin β(t) = 2πt
T

with β(t) = π to show that the point-

mass P takes exactly as long, namely T
2
, to go from periapsis to apoapsis as from apoapsis to

periapsis.

Problem 5.8. A look at Figure 5.4 tells us that starting from periapsis the point-mass P will

complete the first fourth of its orbit at the moment t for which β(t) = π
2
. It will take P the time

t =
T

4
− Tε

2π
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to complete this part of its orbit, where T is the period and ε the eccentricity.

i. Verify this formula in two different ways. First, by computing the area A(t) in Figure 5.3 and

using Kepler’s second law, and then again by using Kepler’s equation. How far is the point-mass

from S at this time?

ii. Suppose that P is the center of mass of Earth or Halley’s comet as each orbits the Sun. What

is t equal to in days for the Earth? Show that t = 7.3 years for Halley. [Use the data provided

by Table 5.1.]

iii. Show that the ratio of the time it takes for P to travel the first quarter of its orbit over the time

it takes for the first half of its orbit is equal to 1
2

− ε
π
. For ε close to 1, this is approximately

equal to 1
5
.

Problem 5.9. Table 5.1 tells us that with its eccentricity of ε ≈ 0.0068, the planet Venus is closer

to being a circle than any of the other planets. Turn to Figure 5.4 and focus on the angular position

α of Venus. How many days does it take for α to rotate from 0◦ to 60◦? From 60◦ to 120◦? And

finally from 120◦ to 180◦? [Hint: Combine the equations of Gauss and Kepler.]

Problem 5.10. Halley’s orbital plane is separated by 17.7◦ from that of the Earth, but it orbits in

the direction opposite to Earth’s. In what follows we’ll assume that the orbital planes of Halley and

Earth are the same. By combining information in Table 5.1 with the fact that 1 au ≈ 149, 598, 000 km

(see Chapter 1G), we’ll take Halley’s orbital data to be a = 17.8341 au, ε = 0.9671, and T = 75.32

years. It follows that the semiminor axis is b = a
√

1 − ε2 = 4.5368 au and the perihelion distance

is a(1 − ε) = 0.5867 au. Place an xy-coordinate system so that the center of Halley’s orbit is at

the origin O. Use the scale 1 au = 1 centimeter to draw the right half of the ellipse x2

a2 + y2

b2
= 1 of

H1

S

path of Halley

Earth s circular orbit
of radius 1au

x

H2

y

O

Figure 5.19

Halley’s orbit as shown in Figure 5.19. The Sun S is at the point (c, 0) where c = aε = 17.25 cm.

Finally draw Earth’s orbit as a circle with center S and radius 1 cm (corresponding to 1 au).

Assume that the comet moves counterclockwise around the Sun rather than clockwise. This puts

the discussion into the framework of Chapter 5.
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i. Determine an equation of Earth’s circular orbit. Show that the x-coordinate of the points of

intersection H1 and H2 of the two orbits is x = a−1
ε

. Determine the numerical values of the x-

and y-coordinates of H1 and H2. [Hints: In reference to the equation of the ellipse, it is better

to work with the parameters a, b, c, etc., rather than their numerical values. Use the identity

c2 = a2 − b2. Since a+1
ε

> a, note that x = a+1
ε

is not possible.]

ii. Consider section 5B and let P be Halley’s comet. Let t be the time Halley requires to travel from

perihelion to the point H1. Make use of Figure 5.4 and the equations in section 5B together

with the x- and y-coordinates computed in (i) to compute r(t) and β(t). Then use Kepler’s

Equation to determine t. For how many days will Halley be inside Earth’s orbit?

iii. Consider the successive approximation method of section 5E for computing the angle β(t) in

the context of Halley’s orbit. Give an estimate for the number of iterations necessary to do so

with an accuracy of 0.0002. [Hint: Keep squaring ε = 0.9672 with a calculator.]

iv. Use the data from Table 5.1 in combination with the fact that 1 au ≈ 149, 758, 000 km to draw

parts of the orbits of Mars, Jupiter, Saturn, Uranus, and Neptune into your copy of Figure 5.19.

(To be able do so for Neptune and Uranus, your Figure 5.19 has to be extended to the left.)

Problem 5.11. Consider Mercury in its orbit after an elapsed time of t from its perihelion position.

i. Consider the successive approximation of the angle β(t). How many steps will always be enough

to insure that β(t) has been computed with an accuracy of four decimal places? This is the

number of steps required to achieve βn+1 = βn after both are rounded off to 4 decimal places.

ii. Carry out the computation of β(t) with four decimal place accuracy when Mercury is in its

orbit exactly t = 20 days after perihelion. Has Mercury travelled more than one quarter of its

orbit by that time or less? [Use the equation that Problem 5.8 provides.]

iii. Compute the corresponding r and α.

Problem 5.12. Look up the dates and times for the Earth’s perihelion and aphelion for the current

year on the website https://www.usno.navy.mil/USNO of the U.S. Naval Observatory. (Note, for

example, that the entry Jan 03 01:11 refers to January 3, 1 hour and 11 minutes after midnight.

Similarly, July 03 23:10 refers to July 3, 10 minutes after 11 pm, and so on.) Use this information

and follow the approach of section 5F to estimate the distance r(t) and angle α(t) as well as the

speed v(t) and the angle γ(t) of the Earth in its orbit around the Sun right now.

Problem 5.13. Refer to the successive approximation approach of section 5E for the solution of

Kepler’s equation β(t) − ε sin β(t) = 2πt
T

for β(t). Review the mathematical principle of induction

and use it to prove that |β(t) − βi| ≤ εi for all i ≥ 1. Since ε < 1, this implies that the sequence

β1, β2, . . . , βi, . . . converges to the solution β(t) of the equation β(t) − ε sin β(t) = 2πt
T

.

Problem 5.14. Review the Newton-Raphson method for finding the zeros of a differentiable func-

tion. Consider the function f(x) = x − ε sin x − 2πt
T

, where t and T are constants. Kepler’s equation

tell us that f(β(t)) = 0. Let β1 = 2πt
T

. Then let

βi+1 = βi − f(βi)
f ′(βi)

= βi − βi−ε sin βi− 2πt
T

1−ε cos βi

https://www.usno.navy.mil/USNO
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and study the graph of y = f(x) to explore conditions for β1, β2, β3, . . . to converge to β(t).

Problem 5.15. Turn to section 5F and the computation of β(t) for Earth’s summer solstice position

in 2013. Check that the Newton-Raphson approximation with β1 = 2πt
T

= 2.924336 radians, provides

the correct result

β2 = β1 − f(β1)
f ′(β1)

= β1 − β1−ε sin β1− 2πt
T

1−ε cos β1
= 2.927880.

after a single step. This suggests that the Newton-Raphson approximation converges more quickly

in general than the successive approximation method of section 5E.

Problem 5.16. Section 5C derived the equality

∫ a

x(t)

√
a2 − x2 dx = 1

2
a2β(t) − 1

2
x(t)y0(t) for P in

the first half of its initial orbit. Review the topic of integration by trig substitution and then show

that the substitution x = a sin θ with −π
2

≤ θ ≤ π
2

can also be used to derive this equality. [Hints:

Use the formulas cos2 θ = 1
2
(1 + cos 2θ), sin 2θ = 2 sin θ cos θ, and cos θ =

√
1 − sin2 θ to show that∫ √

a2 − x2 dx = 1
2
a2 sin−1 x

a
+ 1

2
x
√

a2 − x2 + C . A look at Figure 5.4 shows that 0 ≤ β(t) ≤ π and
√

a2 − x(t)2 = y0(t), and basic trig formulas from Chapter 3A and another look at the figure show

that sin(π
2

− β(t)) = x(t)
a

. Use these facts to complete the derivation.]

3.About the Angles of Approach and Departure. This segment relies on the discussion

of section 5D and studies the angle γ(t). The case of a circle in the two problems that follow is

trivial, since r(t) = a and γ(t) = π
2

are both constant. So suppose that the orbit is not a circle.

Problem 5.17. Let a point-mass P be in an elliptical orbit with focal point S, semimajor axis a,

and eccentricity ε < 1. Consider P in its orbit at two different times t1 and t2. Suppose that the

distances r(t1) and r(t2) from P to S satisfy r(t1) + r(t2) = 2a and show that sin γ(t1) = sin γ(t2).

Show that if r(t1) + r(t2) = 2a and P is moving from apoapsis to periapsis on both occasions or from

periapsis to apoapsis on both occasions, then γ(t1) = γ(t2). Show conversely, that if γ(t1) = γ(t2),

then either r(t1) = r(t2) or r(t1) + r(t2) = 2a, and P is moving from apoapsis to periapsis on both

occasions or from periapsis to apoapsis on both occasions.

Problem 5.18. Let P be a point-mass in an elliptical orbit with focal point S. Let a be its semi-

major axis, b = a
√

1 − ε2 its semiminor axis, and ε < 1 its eccentricity. Let f(r) be the func-

tion defined by f(r) = b√
r(2a−r)

, where r is the distance from P to S. Show that the domain

of f(r) as abstract function is 0 < r < 2a and that f ′(r) = − b(a−r)

(r(2a−r))
3
2
. Why is the domain of

f(r) equal to a(1 − ε) ≤ r ≤ a(1 + ε) in the context of the orbital motion of P? Show that f(r)

is decreasing over a(1 − ε) ≤ r ≤ a and increasing over a ≤ r ≤ a(1 + ε) with maximum value

f(a(1 − ε)) = f(a(1 + ε)) = 1 and minimum value f(a) =
√

1 − ε2. Go to any standard calculus

text, study the function sin−1 x and note that it is defined and increasing over the interval [−1, 1].

It follows that the function sin−1
( −b√

r(2a−r)

)
is decreasing over a(1 − ε) ≤ r ≤ a and increasing over

a ≤ r ≤ a(1 + ε). Explore the implications of this for the angle γ(t).
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4.Using Definite Integrals. The next three problems consider definite integrals that are

relevant in sections 5G and 5H.

Problem 5.19. Refer back to section 5G and consider the function f(x) = b
a
(a2 − x2)

1
2 that has the

upper half of the ellipse x2

a2 + y2

b2
= 1 as graph. Use the trig substitution x = sin θ (and basic equalities

involving a, b and the eccentricity ε of the ellipse) to show that circumference 4

∫ a

0

√
1 + f ′(x)2 dx

of the ellipse is equal to 4a

∫ π
2

0

√
1 − ε2 sin2 θ dθ.

Problem 5.20. Consider a point-mass P in an elliptical orbit with focal point S and assume that

P is at perihelion at time t = 0. Let the semimajor axis, eccentricity, and period of the orbit be a, ε,

and T , respectively. For any t ≥ 0, let r(t) be the distance from P to S. Show that the average value

of the function r(t)−1 over the time interval 0 ≤ t ≤ T is a−1. [Hint: Differentiate Kepler’s equation

β(t) − ε sin β(t) = 2πt
T

and use the equality r(t) = a
(
1 − ε cos β(t)

)
to show that T

2aπ
β′(t)r(t) = 1.

That 1
T/2

∫ T/2

0

r(t)−1 dt = a−1 is a consequence of this equality.]

Problem 5.21. Refer to section 5H for the discussion of the function p(t)
s

= q−s
s

cos
√

Ct. Show

that the average value of p(t)
s

over the time 0 ≤ t ≤ 2π√
C

it takes for the planet P to move from one

perihelion to the next is 0.

5. Taylor’s Series and a Relativistic Term. The next problem considers the Taylor series

for the function g(x) = 1+2x
1+x

and the resulting approximation of the term rΦ′(r)
Φ(r)

≈ −2
1+2 12κ2

c2r2

1+ 12κ2

c2r2

involved in the computation of the relativistic component of the precession of a planet in section 5K.

Problem 5.22. Consider the function g(x) = 1+2x
1+x

. Check that g′(x) = 2(1+x)−(1+2x)
(1+x)2

= 1
(1+x)2

and

use mathematical induction to show that the higher derivatives of g(x) are given g(i)(x) =

(−1)i+1i!(1 + x)−(i+1) for i ≥ 1. It follows that the Taylor series of g(x) centered at x = 0 is

1 + 2x

1 + x
= g(x) = g(0) + g′(0)x + g(2)(0)

2
x2 + g(3)(0)

3!
x3 + g(4)(0)

4!
x4 + . . .

= 1 + x − x2 + x3 − x4 + . . . .

Show that for all x with |x| < 1, this Taylor series converges to the function g(x) that gives rise

to it. To see that this is so, we’ll start with the closely related power series

1 − x + x2 − x3 + . . . + (−1)kxk + . . . .

Let Sn = 1 − x + x2 − x3 + . . . + (−1)nxn be the sum of the first n + 1 terms of this series. Since

xSn = x − x2 + x3 + . . . + (−1)nxn+1, we get Sn + xSn = 1 + (−1)nxn+1 and hence Sn = 1+(−1)nxn+1

1+x
.

For |x| < 1, let n go to infinity to see that 1 − x + x2 − x3 + . . . + (−1)kxk + . . . converges to 1
1+x

.

Conclude that the Taylor series of g(x) centered at x = 0 converges to 2 − 1
1+x

= 2(1+x)−1
1+x

= 1+2x
1+x

.

Turn to section 5K. We saw there that x = 12κ2

c2r2
is very small. So for this x the higher terms of

the Taylor series are negligible and hence
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rΦ′(r)
Φ(r)

= −2
1 + 212κ2

c2r2

1 + 12κ2

c2r2

≈ −2
(
1 +

12κ2

c2r2

)

is a tight approximation of rΦ′(r)
Φ(r)

. Check the approximation for the planet Mercury with r = a1 the

semimajor axis of its orbit.

6. The Perturbing Force of an Interior Planet. In this closing segment we’ll study the

gravitational force exerted on a planet P by a planet Q that orbits the Sun S inside the orbit of P .

We’ll let m be the mass of P and M the mass of the planet Q. Let r be the distance from P to

S. As in section 5I we’ll assume that the orbit of Q is a circle of radius R centered at S and that

the mass of Q is spread uniformly throughout this circle. This time R < r. Under this “averaged”

assumption, we will compute the magnitude of the force of Q on P and show that it is centripetal

in the direction of S. With the masses of P and S regarded to be concentrated at their centers,

both P and S are point-masses. The linear density of the thin, homogeneous circular ring of radius

R with center S that represents the mass of Q is M
2πR

.

Place P at the origin O of a polar coordinate system with angle coordinate φ. Refer to Figure 5.20.

Let φ be any angle with the property that the ray it determines intersects the circular ring. The

angle φ is at its maximum when the ray it determines is tangent to the circle. It follows that

sin φmax = R
r

so that φmax = sin−1 R
r
. The smallest φ is negative and by the symmetry of things,

φmin = −φmax. Let Q1 be a typical point on the circle, let φ be its angle, and let Q2 be the second

O r

φ

RS

g(  )φ

h(  )φ
Q1

Q2

Figure 5.20

point on the circle that φ determines. Define the functions r = g(φ) and r = h(φ) by g(φ) = OQ1

and h(φ) = OQ2. Applying the law of cosines to the triangle ΔSOQ1 and then again to the triangle

ΔSOQ2, we get that

R2 = r2 + g(φ)2 − 2rg(φ) cos φ and R2 = r2 + h(φ)2 − 2rh(φ) cos φ.

Solve for g(φ) and h(φ) with the quadratic formula to get

g(φ) =
2r cos φ ± √

4r2 cos2 φ − 4(r2 − R2)

2
and h(φ) =

2r cos φ ± √
4r2 cos2 φ − 4(r2 − R2)

2
.
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Since g(θ) < h(θ),

g(φ) = r cos φ −
√

R2 − r2 sin2 φ and h(φ) = r cos φ +
√

R2 − r2 sin2 φ.

We turn to compute the force that the ring exerts on P . In Figure 5.21, dφ is a sliver of an angle.

The blue arcs that φ and φ + dφ cut out are labeled 1 and 2 in the figure. Let ds1 and ds2 be their

respective lengths. The geometry and the Pythagorean theorem provide the approximations

ds1 ≈ √
(g(φ)dφ)2 + (g(φ + dφ) − g(φ))2 =

√
g(φ)2 + (g(φ+dφ)−g(φ))2

(dφ)2
dφ ≈ √

g(φ)2 + g′(φ)2 dφ, and

ds2 ≈ √
(h(φ)dφ)2 + (h(φ + dφ) − h(φ))2 =

√
h(φ)2 + (h(φ)−h(φ+dφ))2

(dφ)2
dφ ≈ √

h(φ)2 + h′(φ)2 dφ .

Since dφ is a small sliver of an angle and ds1 and ds2 are very short, regard each of the blue arcs as

O r S

g(  )φ

h(  )φ

φ

φd

φdh(  )φ

1

( g(  ),   )  φ φ

( h(  ),   )  φ φ
2

φdg(  )φ

Figure 5.21

a point-mass. Their masses are

M
2πR

ds1 ≈ M
2πR

√
g(φ)2 + g′(φ)2 dφ and M

2πR
ds2 ≈ M

2πR

√
h(φ)2 + h′(φ)2 dφ,

respectively. By Newton’s law of universal gravitation, the magnitudes of the forces with which the

two arcs pull on P are

Gm
g(φ)2

(Mds1
2πR

) ≈ GmM
2πR

·
√

g(φ)2+g′(φ)2

g(φ)2
dφ and Gm

h(φ)2
(Mds2

2πR
) ≈ GmM

2πR
·
√

h(φ)2+h′(φ)2

h(φ)2
dφ,

So the magnitude of the combined pull of the two blue arcs on P is approximately

GmM
2πR

·
√

g(φ)2+g′(φ)2

g(φ)2
dφ + GmM

2πR
·
√

h(φ)2+h′(φ)2

h(φ)2
dφ = GmM

2πR

(√
g(φ)2+g′(φ)2

g(φ)2
+

√
h(φ)2+h′(φ)2

h(φ)2

)
dφ .
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What follows next is the computation of the sum

√
g(φ)2+g′(φ)2

g(φ)2
+

√
h(φ)2+h′(φ)2

h(φ)2
. After some algebra,

√
g(φ)2+g′(φ)2

g(φ)2
+

√
h(φ)2+h′(φ)2

h(φ)2
=

h(φ)2
√

g(φ)2+g′(φ)2 + g(φ)2
√

h(φ)2+h′(φ)2

g(φ)2h(φ)2

=
h(φ)

√
h(φ)2g(φ)2+h(φ)2g′(φ)2 + g(φ)

√
g(φ)2h(φ)2+g(φ)2h′(φ)2

g(φ)2h(φ)2
.

Computations identical to those in the analogous step of section 5I(i) show that
√

h(φ)2g(φ)2 + h(φ)2g′(φ)2 and
√

g(φ)2h(φ)2 + g(φ)2h′(φ)2

are both equal to R(r2−R2)√
R2−r2 sin2 φ

, so that

√
g(φ)2+g′(φ)2

g(φ)2
+

√
h(φ)2+h′(φ)2

h(φ)2
= h(φ)+g(φ)

g(φ)2h(φ)2
R(r2−R2)√
R2−r2 sin2 φ

= 2r cos φ
(r2−R2)2

R(r2−R2)√
R2−r2 sin2 φ

= R
r2−R2

2r cos φ√
R2−r2 sin2 φ

.

Conclude that the magnitude of the combined pull of the two blue arcs on the point-mass P is

approximately equal to

GmM
2πR

(
R

r2−R2
2r cos φ√

R2−r2 sin2 φ

)
dφ = GmMr

πR(r2−R2)
cos φ√

1− r2

R2 sin2 φ
dφ.

The smaller the sliver dφ, the tighter this approximation (and all the approximations along the

way). The magnitudes of the vertical and horizontal components of this pull (with regard to Figure

5.21) are
GmMr

πR(r2−R2)
sin φ cos φ√
1− r2

R2 sin2 φ
dφ and GmMr

πR(r2−R2)
cos2 φ√

1− r2

R2 sin2 φ
dφ,

respectively. By adding up these magnitudes over the entire circular ring of radius R using the

strategy of integral calculus, we see that the magnitudes of the vertical and horizontal components

of the gravitational force that this ring exerts on the point-mass P are equal “on the nose” to

GmMr
πR(r2−R2)

∫ φmax

−φmax

sin φ cos φ√
1− r2

R2 sin2 φ
dφ and GmMr

πR(r2−R2)

∫ φmax

−φmax

cos2 φ√
1− r2

R2 sin2 φ
dφ,

respectively. (Since φmax satisfies sin φmax = R
r
, r

R
sin φmax = 1 and hence r

R
sin(−φmax) = −1. Notice

therefore that these integrals are both improper integrals.) Surprisingly, these definite inte-

O r

φ
R

S

Q

Figure 5.22
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grals are—with the exception of the limits of integration—identical to those derived in section 5I(i).

A change of variables makes it possible to evaluate these integrals. Turn to Figure 5.22. By

applying the law of sines to the triangle ΔOQS, we see that sin φ
R

= sin(π−ϕ)
r

. Therefore by Figure 5.13,

sin φ = R
r

sin(π − ϕ) = R
r

sin ϕ. Since −π
2

< φ < π
2
, φ is the function φ = sin−1(R

r
sin ϕ) of ϕ. The fact

that r
R

sin φ = sin ϕ, tells us that 1 − r2

R2 sin2 φ = 1 − sin2 ϕ = cos2 ϕ, so that

√
1 − r2

R2 sin2 φ = cos ϕ.

In a similar way, cos2 φ = 1 − sin2 φ = 1 − R2

r2
sin2 ϕ and hence

cos φ =
√

1 − R2

r2
sin2 ϕ.

Differentiate the equation sin φ = R
r

sin ϕ implicitly with respect to ϕ, to get cos φ · dφ
dϕ

= R
r

cos ϕ

and hence

(cos φ) dφ = R
r
(cos ϕ) dϕ .

Notice from Figure 5.22 that as φ varies from −φmax to φmax, the angle ϕ varies from −π
2

to
π
2
. By substituting the above equalities into the earlier force integrals, we can conclude that the

magnitudes of the vertical and horizontal components of the gravitational force that the entire

circular ring of radius R exerts on the point-mass P are equal to the definite integrals

GmMr
πR(r2−R2)

∫ π
2

− π
2

R2

r2
sin ϕdϕ and GmMr

πR(r2−R2)

∫ π
2

− π
2

R
r

√
1 − R2

r2
sin2 ϕ dϕ,

respectively, in the variable ϕ. Show that the first integral—representing the vertical force that the

ring exerts on P—is equal to 0. So focus on the second. Note first that

∫ π
2

− π
2

√
1 − R2

r2
sin2 ϕ dϕ = 2

∫ π
2

0

√
1 − R2

r2
sin2 ϕdϕ.

To solve this definite integral turn to the solution of

∫ π
2

0

√
1 − ε2 sin2 θ dθ in section 5G. Use the

formula derived there to show that
∫ π

2

0

√
1 − R2

r2
sin2 ϕdϕ = π

2

[
1 − 1

22
(R

r
)2 − (1·3)2

(2·4)2
1
3
(R

r
)4 − (1·3·5)2

(2·4·6)2
1
5
(R

r
)6 − (

1·3·5·7
2·4·6·8

)2 1
7
(R

r
)8 − · · ·

]
.

It follows that the gravitational force G(r) with which the circular ring of mass M and radius R

attracts the point-mass P is equal to

G(r) = GmM
(r2−R2)

[
1 − 1

22
(R

r
)2 − (1·3)2

(2·4)2
1
3
(R

r
)4 − (1·3·5)2

(2·4·6)2
1
5
(R

r
)6 − (

1·3·5·7
2·4·6·8

)2 1
7
(R

r
)8 − · · ·

]

Since the vertical component of the force is zero, this force acts in the direction of the Sun S.

All the tools you need to compute the precession of the perihelia of the planets Venus, Earth,

Mars, Jupiter, Saturn, Uranus, and Neptune are now in place. Since these computations are laborious

and similar in spirit to those already undertaken in section 5I, you’ll get a pass.
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The missions that have explored the inner and outermost reaches of our solar system over the past

50 years have been one of the most remarkable success stories of modern times. Dozens of spacecraft

have journeyed far and wide to study the Sun, the planets, their moons, as well as some asteroids and

comets. In flybys and in orbits around them, they have gathered volumes of information and captured

thousands of images that could not have been imagined before. Since much of this has been described

in Chapter 2, we will now turn to a discussion of the basic mathematics and physics that underly

the design of the trajectories that send space probes to their targets. In so doing, this chapter will

build on the description of rocket engines and the analysis of the flight path of NASA’s Juno mission

to Jupiter that concludes Chapter 2. As the mission of Juno already illustrated, the flight path of

a spacecraft almost invariably consists of a carefully designed combination of elliptical segments

together with hyperbolic flybys of planets that provide the craft with the additional velocity it

needs. Accordingly, it is one of the primary concerns of this chapter to develop a mathematical

study of hyperbolic trajectories that parallels what was done in Chapter 5 for elliptical orbits.

This chapter includes the study of the essentials about rocket engines, gravitational spheres of

influence, Hohmann transfers, hyperbolic flybys, gravity assists, and orbit insertions. The NEAR-

Shoemaker, Voyager, and Cassini missions will provide concrete illustrations of the particulars. The

successes of the Voyager and Cassini missions have already been highlighted in Chapter 2. These

flights are examples of NASA’s large strategic missions, the most ambitious and costly (often in

excess of $1 billion) of NASA’s programs. The NEAR-Shoemaker mission was the first of NASA’s

program of smaller-scale projects that go from development to flight within an efficient three years

(at a cost of no more than $150 million). It is this program’s goal to explore the solar system with

the latest technologies and to include the research of universities and the industrial sector. The

Near Earth Asteroid Rendezvous (NEAR) craft was sent to investigate the asteroid 433 Eros. After

spending one year in orbit around Eros, it concluded its mission in 2004 by making a soft landing

on the asteroid. The MESSENGER mission to study Mercury and the Dawn mission to study the

asteroids Ceres and Vesta were also carried out under this program.

© Alexander J. Hahn 2020
A. J. Hahn (ed.), Basic Calculus of Planetary Orbits and Interplanetary Flight,
https://doi.org/10.1007/978-3-030-24868-0 6

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24868-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-24868-0_6


266 6 Mathematics of Interplanetary Flight

An installation that is critical for all the interplanetary missions that NASA and the Jet Propul-

sion Laboratory (JPL) operate is the Deep Space Network (DSN). This consists of an array of giant

radio antennas that provides the indispensable communications link between all spacecraft and

Earth. This largest and most sensitive scientific telecommunications system on our planet makes

it possible to track and command these craft and to record the images and scientific information

that they return from all parts of our solar system. The DSN operates the facilities at Goldstone,

near Barstow, California; near Madrid, Spain; and near Canberra, Australia. These sites—spaced

approximately 120 degrees apart in longitude around the 360◦ of Earth’s circumference—permit

constant communication with spacecraft as they move and our planet rotates. Before a distant

spacecraft sinks below the horizon at one DSN site, another site picks up the signal and continues

the contact.

An assumption that will be in effect whenever the focus is on a mathematical aspect of the

trajectory of a spacecraft is the following. The main rocket engine or thruster that fires to increase

or decrease the velocity of a craft during a trajectory correction maneuver can burn for as long as

an hour or two on a few (rare) occasions during its mission. In the context of flights that almost

always go on for several years, these are very short spans of time. In our study of the trajectory

of a spacecraft, we will assume that the craft’s engine is either not firing at all or that it fires in

an instantaneous burst. When Newton’s conclusions about gravity and trajectories—as these were

developed in Chapter 4—are applied to the flight of a spacecraft, it will always be assumed that

the craft’s thrusters are not firing and that a single dominant gravitational force drives the craft in

its flight. In this last regard we will assume that such a force on the spacecraft is a centripetal force

directed to the center of mass of the attracting body and that Newton’s law of universal gravitation

applies to it. This means that what was set out in Chapter 5A applies in the current context and

that the results of Chapters 5B to 5E apply in elliptical situations.

6A. NEAR-Shoemaker and Eros. The idea to send a spacecraft to explore an asteroid had been

proposed since the early 1960s. It was the NEAR craft’s mission to rendezvous with the asteroid

433 Eros, to go into orbit around it, and to study it for one year. The primary scientific objective of

NEAR was to study properties of Eros “in-the-large”, namely, its shape, composition, mineralogy,

internal mass distribution, and magnetic field. While Eros is a Near Earth Asteroid (it has come to

within 0.178 au or about 27 million km of Earth), it does not come close enough to pose a threat.

The NEAR spacecraft was launched with a Delta II rocket (see Figure 2.3) in February, 1996.

This rocket has a total mass of 220,000 kg, a height of 38.20 m, a diameter of 2.44 m, and a thrust

of 4 million N. (Recall that N is the abbreviation for newton). Its three stages fired in precisely

timed succession to send NEAR off on a flawless launch. In spite of its power, the Delta II is
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16:44 EST
Canberra 
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Figure 6.1. The flight of NEAR from launch to the acquisition of its signal in Canberra, Australia.

relatively small. The launch of NEAR was the first to use such a small rocket for an interplanetary

flight. Taking advantage of the Earth’s rotational speed, the Delta II moved into a low Earth parking

orbit after about 10 minutes. After another 12 minutes the upper stage fired, to give NEAR its final

boost. The craft separated from the upper stage 26 minutes after launch and was now on its way

on an elliptical trajectory that had the Sun as its focal point. See Figure 6.1.

For its flight, NEAR had a propulsion system that consisted of a main engine capable of gen-

erating 470 N of thrust, four 21 N thrusters, and seven 3.5 N thrusters. The main thruster provided

the large velocity adjustment—or LVA—maneuvers. A critical role of the smaller thrusters was to

carefully position and orient the craft so that the thrusts that effected the velocity adjustments

pointed in the intended direction with precision. The large thruster burned liquid hydrazine in

combination with a liquid oxidizer. All the smaller thrusters burned hydrazine only. Of the total

mass of 805 kg of the craft at launch, a full 40%, or 318 kg, was propellant (209 kg hydrazine and

109 kg oxidizer). In spite of the LVA maneuvers that the ample fuel supply made possible, JPL

engineers chose a “Delta V−Earth Gravity Assist” trajectory for NEAR, meaning that the changes

in velocity Δv included a velocity changing Earth flyby. (The flight path of the Juno spacecraft
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Table 6.1. The table lists data for the initial two years of NEAR’s propulsion maneuvers. The craft’s initial mass
was 805.07 kg and it entered orbit around Eros with a mass of 502.13 kg.

date event Δv in m/sec Isp in sec propellant mass in kg

17 Feb 1996 stabilization 0.16 228.48 0.06

24 Feb 1996 MCM-1 0.11 229.00 0.04

2 Mar 1996 TCM-1 9.74 234.98 3.39

13 Sep 1996 TCM-2A 2.13 234.98 0.74

13 Sep 1996 TCM-2B 0.16 228.48 0.06

6 Jan 1997 TCM-3 0.06 228.48 0.02

29 Jan 1997 TCM-4 0.11 228.48 0.04

18 Jun 1997 TCM-5 0.63 220.00 0.23

27 Jun 1997 TCM-6 cancelled − −
27 Jun 1997 Mathilde flyby 0.00 − 0.00

3 July 1997 settling burn 3.28 234.98 1.14

3 July 1997 DSM-1 (TCM-7) 261.01 313.55 65.05

3 July 1997 attitude/trim 4.23 234.98 1.47

23 July 1997 TCM-8 5.69 234.98 1.81

23 July 1997 attitude control 0.05 220.00 0.02

17 sep 1997 TCM 9 0.81 234.98 0.26

9 Jan 1998 TCM 10 0.08 220.00 0.03

to Jupiter was also a ΔVEGA trajectory. See Chapter 2H.)

Table 6.1 captures the initial sequence of NEAR’s propulsion maneuvers. The Δv column lists

the change in velocity in meters per second that the maneuver achieved. A stabilization maneuver

soon after launch was followed by a slight trajectory adjustment (the momentum control maneuver

MCM-1) one week later and the first larger trajectory correction maneuver TCM-1 two weeks

after launch. The specific impulse Isp referred to in column four is directly related to the speed

vex of the exhaust materials that the maneuver generates by the equation vex = Isp · g0, where

g0 = 9.80665 m/sec2 is the standard value for Earth’s gravitational constant. Let w(t) be the weight

of the propellant at time t after the engine begins to fire. The connection between force and mass

tells us that w(t) = m(t)g0 where m(t) is the mass of the propellant. It follows from the analysis of

Chapter 2G that the momentum thrust of the engine is

Fmom = vexm
′(t) = Ispw

′(t).
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The trajectory correction maneuvers TCM-2 through TCM-5 from September 1996 to June 1997

fine-tuned NEAR’s path for its flyby of the asteroid 253 Mathilde. The first major correction of

NEAR’s trajectory—the deep space maneuver DMS-1—occurred six days after the Mathilde flyby.

On July 3rd, 1997, the 21 N thrusters fired to force the liquid oxidizer against its tank outlets to

start the burn of the main engine. In a nearly perfect burn, NEAR’s LVA thruster fired for nearly

11 minutes to reduce the craft’s velocity by 261 m/sec, putting the craft on course for the important

January 1998 flyby of Earth. The maneuvers TCM 8, 9, and 10 fine-tuned the craft’s approach to

our planet (but TCM-11 was not needed and was cancelled). The flyby of Earth on January 23rd at

an altitude of 540 km above the Earth’s surface was critical. See Figure 6.2. It lowered the craft’s

su
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0815

0800

0715

0745
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0700 0645 0630altitude
at periapsis
539 km

inclination to Earth orbit           0.52                 10.04
perihelion (au)               0.95               0.98
aphelion (au)                             2.16                   1.77

time of flyby: 1 hour and 45 minutes (6:30 am − 8:15 am) 

NEAR’s solar trajectory before flyby     after flyby
o o

Figure 6.2. NEAR’s flyby of Earth on 23 January, 1998.

speed so that it would be close to that of Eros at the time of the planned rendezvous. But the

primary goal of the flyby was the alignment of NEAR’s orbital plane. The orbit planes of Eros and

Earth around the Sun are separated by an angle of 11◦. During the flyby, Earth’s gravitational force

pulled NEAR from its heliocentric orbit in Earth’s orbital plane into a heliocentric orbit in the

orbit plane of Eros. The flyby also decreased the aphelion distance of the craft’s orbit and rotated

its focal axis (the line joining perihelion and aphelion positions) to nearly match those of Eros.
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Table 6.1 presents all the adjustment maneuvers of NEAR’s trajectory from launch to the Earth

flyby. Other than the minor trajectory adjustments TCM-12 and TCM-15 of NEAR’s trajectory

(TCM-13 was never scheduled and TCM-14 was cancelled), nothing further would be needed until

the craft’s approach of Eros at the end of 1998.

From late December 1998 into January 1999, NEAR was scheduled to perform four rendezvous

maneuvers (RNDs). These were designed to slow NEAR by 949 m/sec, bring the craft to a velocity

of 5 m/sec relative to Eros, and, ultimately, to settle it into orbit around the asteroid. The first

and largest of these maneuvers called for a main thruster LVA burn to effect a velocity decrease of

650 m/sec. The burn began on schedule on Sunday, 20 December, at 22:00 hours (Greenwich Mean

Time). The main engine fired, but suddenly—within seconds—the burn stopped. Soon thereafter

the spacecraft’s signal was lost and a spacecraft emergency was declared. “Black Sunday” had

begun. After an agonizing wait of over 24 hours, communication with the craft was reestablished

and NEAR returned to operational status. The original approach of Eros and the scheduled orbit

insertion burn on 10 January 10th, 1999 had to be scrapped. (The reason for the engine shut down

was later determined to have been a lateral acceleration by the craft that was greater than the

limits set by the software.)

By December 23rd, 1998, NEAR had sailed past Eros by a distance of 3800 km. The information

that NEAR obtained about Eros (its mass, volume, and density) as it flew past, facilitated the

reconfiguration of NEAR’s trajectory that the misfire of its main engine had necessitated. The

revised flight plan called for NEAR to return to Eros in February 2000. An important first step

was the deep space maneuver DSM-2 on January 3rd, 1999 that provided the craft with a velocity

decrease of 932 m/sec to slow NEAR relative to Eros. The DSM-2 maneuver was the last time

NEAR’s LVA thruster was fired. The maneuvers DSM-1, DSM-2, and the failed rendezvous effort

RND-1 were the only three burns of NEAR’s main engine. The trajectory corrections TCM-18 and

TCM-19 (in January and August of 1999) fine tuned the velocity and orbit inclination changes of

the DSM-2 maneuver. Four more trajectory correction maneuvers returned the spacecraft to Eros

and set up NEAR’s final approach. One of them, TCM-22 in the beginning of February 2000 reduced

NEAR’s speed of approach to Eros from 20 m/sec to 10 m/sec. When NEAR reached the desired

orbit plane (perpendicular to the plane of Earth’s orbit) at a distance of 330 km from Eros, an orbit

insertion maneuver (OIM) reduced the craft’s speed further and eased it into orbit around Eros on

February 14th, 2000. Appropriately, it was Valentine’s Day! After all, the asteroid had taken its

name from the Greek god of love. The clear image of the large crater on Eros that NEAR sent back

confirmed that it had achieved orbit.

Figure 6.3 presents a sketch of NEAR’s reconfigured trajectory that brought the craft from the

aborted main engine burn to its first orbit around Eros. The plans for NEAR’s trajectory had
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Figure 6.3. A diagram of NEAR’s revised trajectory that brought the craft to its rendezvous with Eros.

included ample fuel margins and contingency options that made it possible for the craft to recover

from the aborted first attempt at a rendezvous with Eros and to complete its mission to the asteroid.

Figure 6.4 is a diagram of NEAR’s entire flight from launch to mission’s end.

NEAR’s first orbit around Eros had periapsis and apoapsis distances of 321 km and 366 km

respectively. Because the mass of Eros had initially been overestimated by 9%, this first orbit was

considerably smaller than originally planned. The gravitational field of Eros is weak, so that for

NEAR to stay in orbit its orbital speed needed to be low. The speed in its first orbit was only about

1 m/sec or 3.6 km/hour. Figure 2.21 is an image taken by NEAR soon after its insertion into orbit.

It tells us that Eros is a peanut-shaped rock covered with craters and that it has a large gouge in

the center. Eros measures about 34 kilometers in length with a diameter of about 12 kilometers at

its middle. The composite image of Figure 2.20 shows Eros dwarfed by Ceres and Vesta, two of the
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Figure 6.4. NEAR’s first orbit around the Sun from launch to the flyby of Earth is depicted in red with small red
arrows indicated the craft’s direction. The second orbit’s depiction starts in red with larger arrows indicating the
direction. From the time NEAR reached Eros until its landing on Eros ended the mission its orbit coincided with the
orbit of Eros depicted in orange.

largest asteroids. A month after its insertion into orbit around Eros, the craft was renamed NEAR-

Shoemaker in honor of the late Eugene Shoemaker, a pioneer in the study of asteroids and comets.

(See Chapter 2E and Figure 2.26 for information about one of the comets he discovered.)

Table 6.2 is a record of NEAR-Shoemaker’s maneuvers around Eros. The first eight orbit cor-

rection maneuvers (OCMs) that followed orbit insertion decreased the size of the orbit and tilted

the orbital plane. This was done in stages by first reducing the periapsis distance and then circu-

larizing the orbit. By mid-July 2000 the orbit was close to a circle with a 35 km radius at right

angles to the asteroid’s equator. Thereafter, more correction maneuvers expanded and contracted

NEAR-Shoemaker’s orbit several times. In the process, the orbital plane was aligned with the aster-

oid’s equatorial plane. Maneuvers in mid and late October 2000 flattened the ellipse of the orbit and

brought the craft to within 5.3 km of the surface of Eros. By mid-December 2000, NEAR-Shoemaker

was back in a low circular orbit with a 35 km radius where it would remain until the end of its
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Table 6.2. NEAR’s changing orbits around Eros—from farther away, to closer—made it possible to study various
aspects of the asteroid carefully. The axis of rotation of Eros is perpendicular to its long diameter. The asteroid’s
true equator (ATE) is determined by the plane perpendicular to its axis of rotation through its center of mass.

date maneuver

periapsis ×
apoapsis in km

of resulting orbit

orbit
period
in days

inclination
to ATE
in degs

time in the

given orbit
in days

Δv

m/sec

14 Feb 2000 OIM 321 × 366 21.8 35 10 10.00

24 Feb 2000 OCM-1 204 × 365 16.5 34 8 0.13

3 Mar 2000 OCM-2 203 × 206 10.1 37 30 0.22

2 Apr 2000 OCM-3 100 × 209 6.7 55 9 0.50

11 Apr 2000 OCM-4 99 × 101 3.5 59 11 0.37

22 Apr 2000 OCM-5 50 × 101 2.2 64 8 0.45

30 Apr 2000 OCM-6 49 × 52 1.2 90 68 1.92

7 Jul 2000 OCM-7 35 × 51 1.0 90 7 0.32

14 Jul 2000 OCM-8 35 × 39 0.8 90 10 0.24

24 Jul 2000 OCM-9 36 × 56 1.1 90 7 0.34

31 Jul 2000 OCM-10 49 × 52 1.2 90 8 0.50

8 Aug 2000 OCM-11 50 × 52 1.2 105 18 1.01

26 Aug 2000 OCM-12 49 × 102 2.3 113 10 1.40

5 Sep 2000 OCM-13 100 × 103 3.5 115 38 0.96

13 Oct 2000 OCM-14 50 × 98 2.2 130 7 1.31

20 Oct 2000 OCM-15 50 × 52 1.2 133 5 0.58

25 Oct 2000 OCM-16 19 × 51 0.7 133 0.8 0.76

26 Oct 2000 OCM-17 64 × 203 5.4 145 8 1.66

3 Nov 2000 OCM-18 194 × 196 9.4 147 34 0.54

7 Dec 2000 OCM-19 34 × 193 4.2 179 6 0.96

13 Dec 2000 OCM-20 34 × 38 0.8 179 43 1.23

24 Jan 2001 OCM-21 22 × 35 0.6 179 4 0.54

28 Jan 2001 OCM-22 19 × 37 0.6 179 0.7 0.56

29 Jan 2001 OCM-23 35 × 36 0.8 179 5 0.68

2 Feb 2001 OCM-24 36 × 36 0.8 179 4 0.02

6 Feb 2001 OCM-25 36 × 36 0.8 179 6 0.01

12 Feb 2001 de-orbit − − 135 − 2.54
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flight. This sequential configuration of NEAR-Shoemaker’s orbits around Eros had to be under-

taken with great care, so that the craft would not be thrown out of orbit or pulled into a crash

landing. Notice the delicate adjustments in the craft’s orbital speed. To conclude the mission, the

scientific team decided to attempt a controlled descent and landing on Eros, even though NEAR-

Shoemaker had not been designed for such a maneuver. The landing on the surface of Eros took

place on February 12th, 2001. A de-orbit burn of its smaller thrusters at an altitude of about 5 km

followed by several breaking burns moved the craft to a slow descent that took several hours. NEAR-

Shoemaker’s cameras obtained many high-resolution images along the way. The craft touched down

in the “saddle” region of Eros with a speed of about 1.5 m/sec. The successful soft landing of the

craft on the surface of Eros was the first by a spacecraft on an asteroid.

During the craft’s orbital progression, its cameras, laser radar, and various instruments provided

information about the physical characteristics of Eros with increasing accuracy. For the mass M of

Eros, it was found that GM = 4.4621 × 10−4 km3/sec2 and explicitly that M = 6.6904 × 1015 kg.

The average density of Eros is 2.67 grams/cm3 is about half of Earth’s 5.5 grams/cm3. Eros does not

spin around its long axis, instead it is the long axis of Eros that rotates with fixed point the asteroid’s

center of mass. The rotational speed is 4.5 revolutions per day. NEAR-Shoemaker’s instruments also

mapped Eros’s gravitational and magnetic fields. Its mission had met and exceeded all expectations.

Example 6.1. Consider NEAR-Shoemaker’s first orbit of Eros and let a and ε be its semimajor

axis and eccentricity. The data in Table 6.2 tells us that a(1 − ε) = 321 km and a(1 + ε) = 366 km,

respectively, so that a = 1
2
(366 + 321) = 343.5 km and ε = 1

2
366−321
343.5

≈ 0.066. By Newton’s version of

Kepler’s third law (refer to Chapter 1D), a3

T 2 = GM
4π2 , where M is the mass of Eros and T the period

of the first orbit. It follows that

T 2 = 4π2a3

GM
= 4π2343.53

4.4621×10−4 ≈ 358,592,100 sec2

and hence that T ≈ 18,937 seconds or 5.26 hours. An application of Example 5.1 tells us that the

maximum and minimum velocities of NEAR-Shoemaker in this initial orbit were
√

GM(1+ε)
a(1−ε)

≈
√

4.4621(1.066)×10−4

321
≈1.22 m/sec and

√
GM(1−ε)

a(1+ε)
≈

√
4.4621(0.934)×10−4

366
≈1.07 m/sec,

respectively. The elongated shape of Eros and the way Eros rotates means that Newton’s law of

universal gravitation and therefore his version of Kepler’s third law apply to NEAR-Shoemaker’s

orbit around Eros only as rough approximations. (Refer to Where the Law of Universal Gravitation

Fails in the Problems and Discussions section of Chapter 4.) So it is likely that these estimates for

the period of NEAR-Shoemaker’s orbit and its orbital speeds are not very tight.

6B. Escape Velocity from Earth. The flight of NEAR-Shoemaker from its launch to the target

of its mission points to a number of matters that call for further study. The same issues arise for

most any spacecraft on a trajectory that takes it to a near or distant planet, one of its moons, an

asteroid, or a comet. We’ll regard a spacecraft as a point-mass. Since we’ll assume that the bodies

of the solar system that are relevant to its trajectory have their masses concentrated at their centers

of mass, they too are regarded as point-masses.
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Figure 6.1 shows the initial path of the NEAR-Shoemaker spacecraft. By the time it was first

detected by the Deep Space Network facility in Canberra, it had left its parking orbit around

Earth behind and was on its own elliptical near-Earth solar orbit. For such a trajectory transfer

to be successful, a spacecraft needs to be provided with enough speed to allow it to escape from

Earth’s gravitational pull. Let’s suppose that a spacecraft is in an elliptical orbit around Earth with

semimajor axis a eccentricity ε. By Example 5.1, the maximum speed vmax of the craft in such an

orbit is given by the formula

vmax =
√

GME(1+ε)
a(1−ε)

<
√

2GME

a(1−ε)
,

where ME is the mass of the Earth. Since the term a(1 − ε) is the periapsis distance of the orbit,√
a(1 − ε) >

√
rE, where rE is the Earth’s radius. It follows that

vmax <
√

2GME

rE
.

Pure logic that tells us that if after its launch the spacecraft heads away from Earth with a speed

of at least
√

2GME

rE
then it cannot be in an elliptical orbit around the Earth, so that it will escape

Earth’s gravitational pull and be on its own near-Earth solar orbit. We’ll refer to vesc =
√

2GME

rE
as

the escape velocity from Earth. Taking rE to be equal to Earth’s smaller polar radius rE = 6,357 km

and GME = 398,600 km3/sec2 from Table 2.3, we get that

vesc =
√

2GME

rE
=

√
7.97200×105

6.357×103
≈ 11.2 km/sec.

Suppose that the spacecraft has mass m and that it is moving with a velocity v. Then its kinetic

energy is 1
2
mv2. If the craft is launched into its trajectory with velocity v > vesc, then

1
2
mv2 − 1

2
mv2

esc = 1
2
mv2 − GmME

rE

is the excess kinetic energy that the craft has available at the start of its initial trajectory around

the Sun. Dividing this difference by m, we get the craft’s specific orbital energy of 1
2
v2 − GME

rE
. Twice

this difference is the craft’s launch energy or characteristic energy

C3 = v2 − 2GME

rE
.

So the velocity with which the spacecraft proceeds into its initial orbit around the Sun is

v =
√

C3 + 2GME

rE
.

Since the Earth rotates from west to east, spacecraft are typically launched in the easterly

direction, so that the launch can take advantage of the additional speed that the Earth’s rotation

adds. Since the Earth’s equatorial radius is 6378 km, a point on Earth’s equator moves with a speed

of 2π(6378)
24

≈ 1670 km/hour, or 0.464 km/sec, due east. At the northern latitude of 28.5◦ at Cape

Canaveral, Florida—the primary launch site for NASA spacecraft—such a point will travel at the

slower speed of 2π(6378·cos 28.5◦)
24

≈ 1474 km/hour or 0.408 km/sec, again due east. So the additional

speed that the Earth’s rotation imparts to spacecraft at launch is marginal.
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Example 6.2. The characteristic energy of NEAR-Shoemaker was C3 = 26.0 km2/sec2. Since
2GME

rE
≈ 11.22 = 125.44 km2/sec2, it follows that the craft’s speed of

v =
√

C3 + 2GME

rE
≈ √

26.0 + 125.44 ≈ 12.31 km/sec

was enough to escape Earth’s gravitational well and to propel it into its first solar orbit.

Taking advantage of the speed of the Earth in its orbit (an average of 29.78 km/sec according

to Table 5.1), the upper stage of the Delta II rocket inserted NEAR-Shoemaker into its initial orbit

around the Sun with a velocity of about 35 km/sec relative to the Sun. That this is not simply the

sum of 12.31 km/sec and 29.78 km/sec is a consequence of the fact that the directions of the two

component velocities differ.

A glance at Table 6.1 tells us that the first large velocity adjustment (LVA) of NEAR-Shoemaker’s

flight path was the DSM-1 maneuver of July 3rd, 1997. This correction was the result of the firing of

the craft’s main engine. It was already established in Chapter 2G—as consequence of Tsiolkovsky’s

rocket equation—that any significant change in a spacecraft’s velocity achieved by firing the craft’s

main engine requires significant quantities of fuel. We will see that this is also the case for NEAR-

Shoemaker’s DSM-1 maneuver that decreased the spacecraft’s velocity by 261 m/sec.

Example 6.3. The total mass of NEAR-Shoemaker at the time it began its flight was 805 kg.

Table 6.1 provides the following information. The fuel the craft had consumed before the DSM-1

maneuver was 5.72 kilograms. So the craft’s mass just before DSM-1 was 805.07 − 5.72 = 799.35 kg.

The fuel consumption for DCM-1 was 65.05 kilograms. So the post DSM-1 mass of the craft was

799.35 − 65.05 = 734.30 kg. The speed of the expelled reaction mass v ex is determined by the

equality v ex = g0 · I sp, where g0 = 9.80665 m/sec2 and I sp = 313.55 sec is the specific impulse. This

provides a speed of v ex = 3074.88 m/sec. Let t1 be the instant that the DCM-1 maneuver began

and t2 the instant the maneuver was over. The rocket equation tells us that

v(t2) − v(t1) = ±3074.88
(
ln 799.35

734.30

) ≈ ±261.00 m/sec.

Since DSM-1 decreased the craft’s speed, the − option applies. This result is in agreement with the

value 261.01 m/sec listed in Table 6.1 (where the minus sign is omitted).

The corrective maneuver DSM-2 necessitated by the failed NEAR-Shoemaker rendezvous with

Eros produced a Δv of −932 m/sec. For this LVA, the primary thruster burned 54% of the craft’s

209 kg total supply of hydrazine fuel.

6C. Gravitational Sphere of Influence. We now turn to a question that is of direct relevance

to the story of NEAR-Shoemaker’s flight to Eros. For what distance from a massive body is it the

case that a spacecraft or satellite moving within this distance is influenced almost exclusively by

the gravitational force of this body without significant disruption from the gravitational pull of

other, possibly more massive bodies farther away? Or put more concretely, what is the radius of a

gravitational Sphere of Influence (SOI) around a planet (or moon, or asteroid) such that the force on

a satellite or spacecraft in orbit or flyby within it, is dominated by the gravitational pull of the planet
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(or moon, or asteroid) without being measurably affected by the more distant or massive Sun? An

early proposal for what such a radius should be came from the scientist Pierre-Simon Laplace (1749–

1827). Laplace’s five-volume Mécanique Céleste, a comprehensive mathematical account of the solar

system, established him as the “Newton of France.” Another version of such a radius was put forward

by the American astronomer–mathematician George William Hill (1838–1914). Hill based his study

on the work of Édouard Roche (1820–1883), so that his radius is also known as the Roche radius.

Suppose that a body P is in an orbit with semimajor axis a and period T around a much more

massive body S. Suppose in turn that P is orbited by an object C that is much less massive than

P . By taking the masses m,M , and m0 of P, S, and C to be concentrated at their respective centers

of mass, P , S, and C are regarded as point-masses. Our concern is to gain a sense of the largest R

such that if the orbit of C falls within a sphere with center P and radius R, then it is not greatly

perturbed by the gravitational pull of S. We’ll assume that C orbits at the outer limits of the

gravitational influence of P . So we’ll take the orbit of C to be a circle with center P and radius

R, and explore the constraints that apply to R. Let τ be the period of the orbit of C. Figure 6.5

T

m

a

R
m0

M

τ

Figure 6.5

captures what has been described with a focus on the masses involved.

Laplace proposed the radius

R = RL = a
( m

M

) 2
5

and Hill proposed the alternative

R = RH = a
( m

3M

) 1
3
.

Instead of going into the technical details, we’ll provide considerations that support the values

that Laplace and Hill put forward. Because G m0M
a2 and G m0m

R2 are the respective gravitational forces

with which S and P pull on C, our assumptions tells us that

G
m0M

a2
≈ G

m0m

R2
.
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So M
a2 ≈ m

R2 , hence R2 ≈ a2 m
M

, and therefore,

R ≈ a
( m

M

) 1
2
.

The fact that m0 moves has not as yet been considered. The example of our Moon tells us

that this is relevant. (Were the Moon not to move relative to the Earth, gravity would cause the

Moon and Earth to crash into each other.) The data in Table 5.1 tells us that the speed of a

planet’s (or Pluto’s or the comet Halley’s) revolution around the Sun reflects the impact of the

Sun’s gravitational force on it. The closer the body to the Sun, the greater the gravitational impact,

the shorter the orbital period T , the greater the angular speed 2π
T

of its motion around the Sun. We

will now insert this consideration into our discussion. Since our assumptions imply that R is much

smaller than a, we’ll suppose that the angular speed 2π
τ

of C around P is greater than the average

angular speed 2π
T

of P around S. From Newton’s version of Kepler’s third law,

4π2

T 2
=

GM

a3
and

4π2

τ 2
=

Gm

R3
,

so that
GM

a3
=

4π2

T 2
=

(2π

T

)2

<
(2π

τ

)2

=
4π2

τ 2
=

Gm

R3
.

Therefore, R3 < a3 m
M

and hence,

R < a
( m

M

) 1
3
.

Since m
M

is less than 1, a larger power of m
M

is smaller than a smaller power of m
M

. So Laplace’s

radius RL satisfies

a
( m

M

) 1
2

< RL = a
( m

M

) 2
5

< a
( m

M

) 1
3
.

From the assumption that m
M

is very small, we get m
M

< 1
243

=
(
1
3

)5
. So

(
m
M

) 1
15 <

(
1
3

) 1
3 and

a
(

m
M

) 2
5 = a

(
m
M

) 1
3 · (

m
M

) 1
15 < a

(
1
3

) 1
3 · (

m
M

) 1
3 = a

(
m
3M

) 1
3 .

It follows that the radii of Laplace and Hill fit into the chain of inequalities:

a
( m

M

) 1
2

< RL = a
( m

M

) 2
5

< RH = a
( m

3M

) 1
3

< a
( m

M

) 1
3
.

Let’s consider the Laplace and Hill radii for the Sun-Earth and the Sun-Eros systems.

Example 6.4. For S and P the Sun and Earth respectively, GM = 1.32712 × 1011 km3/sec2,

Gm = 3.98600 × 105 km3/sec2, and a = 149,598,262 km. (Refer to Chapter 1H and Tables 2.1 and

2.3 for these values.) So for the Sun-Earth system, the two radii are

RL = (1.49598 × 108)
(

3.98600×105

1.32712×1011

) 2
5 ≈ 920,000 km and

RH = (1.49598 × 108)
(

3.98600×105

3(1.32712×1011)

) 1
3 ≈ 1,497,000 km.
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Notice that the larger Hill radius RH is very close to 1% of the semimajor axis of Earth’s orbit. Since

the aphelion distance of the Moon’s orbit around Earth is a(1 + ε) ≈ 384,400(1.0554) ≈ 410,000 km,

the Moon’s orbit lies well within the radii of Laplace and Hill. This is consistent with what we have

observed for centuries: a Moon that seems to be in no danger of drifting off into its own independent

orbit around the Sun.

Example 6.5. For Eros, Gm = 4.4621 × 10−4 km3/sec2 and a = 218,155,000 km. So the radii for

the Sun-Eros system are

RL = (2.18155 × 108)
(
4.4621×10−4

1.32712×1011

) 2
5 ≈ 342 km and

RH = (2.18155 × 108)
(

4.4621×10−4

3(1.32712×1011)

) 1
3 ≈ 2,270 km.

Table 6.2 tells us that all orbits of NEAR-Shoemaker around Eros fit easily within the sphere that

Hill’s radius determines. The first two orbits are partly outside the sphere with Laplace’s radius,

but all the others fall inside it.

Since there are other factors at work, including gravitational fields of other planets as well as solar

radiation pressure, an orbit is not always stable throughout the sphere that Hill’s radius specifies.

The tighter Laplace radius RL is therefore a better measure of the extent of the gravitational Sphere

of Influence (SOI) that a pair of massive bodies determines.

Let’s continue by modifying the earlier discussion. We’ll let S be the center of mass of the

Sun, E Earth’s center of mass, and C a point-mass. Their masses are M,m, and m0, respectively.

We’ll let E and C be in circular orbits around the Sun centered at S. The orbit of E has radius

a, and C orbits with a tighter radius than a. At a certain time t = 0, click a stopwatch. Suppose

that at this time, C is on the segment SE at a distance R from E. Let time t ≥ 0 flow, consider

the revolving segment SE, and let θ = θ(t) be the angle that it traces out. Figure 6.6 illustrates

what has been described. As was already observed, the closer the orbit of an object to the Sun,

the stronger the Sun’s gravitational pull, the greater the angular speed of its revolution around

the Sun. So the angular speed of C around S is greater than that of the segment SE, with the

a

Rm0

θ

S

EC

Figure 6.6
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consequence that C will not maintain its position on the segment SE. However, if C is moved

sufficiently close to E, then the Earth’s gravitational force will in part counteract the Sun’s pull on

C. This in turn would lessen the angular speed of C. The question that arises is this: can the distance

R be chosen in such a way that the position of C on the revolving segment SE is maintained? We’ll

suppose that this is so and investigate the implications for R.

The resultant of the two forces on C is a centripetal force in the direction of S of magnitude

F = GMm0

(a−R)2
− Gmm0

R2 . An application of the centripetal force equation F (t) = m
[
r(dθ

dt
)2 − d2r

dt2

]
of

Chapter 4D with r = r(t) = a − R tells us that

GMm0

(a − R)2
− Gmm0

R2
= m0(a − R)

(dθ

dt

)2

.

The approximation of Earth’s orbit as a circle, tells us that its orbital speed is close to constant.

So its angular speed is close to constant and hence dθ
dt

≈ 2π
T

, where T is the Earth’s orbital period.

By Newton’s version of Kepler’s third law,
(
2π
T

)2
= 4π2

T 2 = GM
a3 , and therefore

GMm0

(a − R)2
− Gmm0

R2
≈ (a − R)

GMm0

a3
.

Hence M
(a−R)2

− m
R2 ≈ (a−R)M

a3 . Since (a − R) = a(1 − R
a
), we get 1

a2 (1 − R
a
)−2M − m

R2 ≈ (1−R
a
)M

a2 , and

hence (1 − R
a
)−2M − a2m

R2 ≈ (1 − R
a
)M . Since R

a
is small, the binomial series (see Chapter 5G)

with k = −2 and x = −R
a

tells us that (1 − R
a
)−2 ≈ 1 + 2R

a
. It follows that (1 + 2R

a
)M − a2

R2m ≈
(1 − R

a
)M , and hence that 3R

a
M ≈ a2

R2m. So R3 ≈ a3

3
m
M

and finally,

R ≈ a
( m

3M

) 1
3
.

So the equilibrium distance from C to E is approximated by the Hill radius RH ≈ 1,497,000 km of

the Sun-Earth system.

The point C in Figure 6.6 with R equal to the Hill radius RH is labeled L1 in Figure 6.7. The

gravitational forces of the Sun S and Earth E on any mass placed at L1 are balanced in such a

way that the mass moves in tandem with the Earth on the revolving segment SE. The point L2

moves in the same way outside Earth’s orbit. The sphere with center E that the points L1 and L2

determine is the Hill sphere of the Sun-Earth system. The Moon orbits Earth well within it. The

points L3, L4, and L5 are three more points that revolve with the same angular speed around S. This

revolving frame around the Sun was first identified by the Swiss Leonhard Euler (1707–1783) and

the Italian-born Frenchman Joseph-Louis Lagrange (1736–1813). Euler, who discovered equilibrium

points L1, L2, and L3, was the most accomplished and prolific mathematician of the 18th century.

He created a large body of mathematical tools that he applied to a broad set of problems, including

the study of the solar system and in particular the computation of the orbits of comets. Lagrange

added the points L4 and L5. He also established that the competing forces in any orbital situation

similar to the Sun-Earth system give rise to a rotating frame of the sort that Figure 6.7 illustrates.

The five equilibrium points of such a frame are called Lagrange points today.

Until recently, Lagrange points were of interest primarily for theoretical reasons. But they are

now playing an increasingly important role in the exploration of space. The Gaia spacecraft—
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Figure 6.7. The assumption that Earth’s orbit is a circle has simplified the development of this diagram. However,
the reality is that the rotating scheme that it depicts is a scheme of ellipses and not of circles. As some of the other
figures in this chapter, this diagram is not to scale.

its mission is described in Chapter 3H—is in an orbit centered at Lagrange point L2. Gaia curves

in nearly closed loops around this point of equilibrium. Like the tip of a pendulum, it swings out

a distance of about 150,000 km away from L2 in both directions with a period of about 180 days.

Each loop is slightly different from the previous one so that the craft’s path is a delicately shifting

and revolving curve in three-dimensions. The craft passes successively above and below the Earth’s

orbital plane, at times slightly ahead of the Earth and at times slightly behind it. Once a month,

one of Gaia’s small engines eases the craft into a small course-correcting maneuver that keeps its

orbit around L2 within the targeted limits. The fact that the gravitational forces in the gravitational

neighborhood of L2 are in balance means that these maneuvers require very little propellant. Gaia’s

L2 orbit is advantageous for other reasons as well. It made it possible to equip the craft with a

shield that faces both Sun and Earth and blocks the light and heat that both radiate. This is

critical, as Gaia’s optics are so sensitive to changes of temperature that a variation of less than one

thousandth of a degree over a few hours would disturb the alignment of the mirrors and degrade the

quality of the images that it snaps. Solar panels on the outside surface of the shield power Gaia’s

instruments. Gaia’s orbit was designed to keep it away from the shadow cast by the Earth. Were

the craft to pass through it, its solar panels would not receive enough sunlight to generate sufficient
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power. Since the Sun, Earth, and Moon are behind Gaia’s field of vision, its L2 orbit also offers an

unobstructed observational window. Finally, the fact that from the vantage point of Earth, Gaia is

always positioned opposite the Sun simplifies the communication with the craft.

By the year 2021, the James Webb Space Telescope will also roam in orbit around the point

L2. Aspects that make such an orbit ideal for Gaia are also critical for the telescope. The Webb

will peer into the universe by observing infrared light from distant stars and galaxies. To do so,

it will operate at a frigid 225 degrees Celsius below zero. Warmer, and the infrared radiation that

the telescope itself emits as heat will interfere with its observations. Understandably, the Webb’s

large heat shield will play an important role in this regard. As it orbits around L2, the heat shield

will protect it not only from the Sun’s radiation but also from Earth’s. The Webb telescope is the

most ambitious and complex astronomical project that NASA and its international partner space

agencies ever took on. At a cost of 8 billion dollars it is also the most expensive. The telescope is

expected to provide new insights into the still mysterious origin and structure of our universe.

It is the primary aim of this text to understand the gravitational force exerted by a single massive

body and the trajectory of an object of much lesser mass that it propels. We have already seen that

much of this understanding is a consequence of the application of the study of a centripetal force

on a point-mass. The Sun and a planet or a comet, a planet and one of its moons, and a planet

or asteroid and a spacecraft are all examples. This study is known as the two body problem. The

discussion concluded earlier involves two massive bodies S and E and the combined effect of their

gravitational forces on the motion of an object C of much lesser mass. The problem of analyzing

its dynamics is an example of a three body problem. Newton and the scientists that followed him

were stymied in their efforts to determine in general the mathematical functions that describe

the motions of three bodies driven by the gravitational forces that act on them. Finally, in the

1950s, mathematicians demonstrated that the explicit determination of such functions is impossible.

However, beginning in the 1960s, the use of high speed digital computers did make it possible to

achieve better and better numerical approximations of these motions in the case of the restricted

three body problem. The restriction is the assumption that two of the bodies are massive and that

the third is so small that its gravitational pull on the other two is negligible. It also assumes that

the two massive bodies are both in circular orbits about their common center of mass, and that the

orbits of all three lie in the same plane. This restricted three body problem provides a useful model

for the design of the trajectory of spacecraft in orbit around the Sun and in transit to a planet, or

a craft that is making its way from Earth to the Moon. The discussion above about the Hill radius

and the Lagrange points is a special case of the restricted three body problem.

6D. Modifying an Orbit. We have seen that the mission of NEAR-Shoemaker from launch to its

landing on Eros took several years. With the exception of about four dozen trajectory corrections,

most of them very minor, its flight path was determined by the gravitational attraction of a single

massive body. It follows from Newton’s theory of gravitation (see Chapter 4G) that between these

corrective maneuvers the path of the spacecraft was a segment of a conic section—of an ellipse, a

parabola, or a hyperbola—that had the center of mass of this massive body at a focal point.

After its launch, NEAR-Shoemaker was briefly in an elliptical parking orbit around Earth.

The injection burn that followed expanded this orbit into a hyperbolic trajectory with Earth as
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focal point that transitioned the craft into an elliptical orbit around the Sun. NEAR-Shoemaker’s

elliptical orbit around the Sun was punctuated and changed by several minor trajectory correction

maneuvers until the major DSM-1 correction contracted the orbit to send the craft to its impor-

tant flyby of Earth. This flyby was another hyperbolic segment that had Earth at a focal point.

It corrected the inclination of the craft’s orbit and contracted its aphelion distance, so that both

the inclination and aphelion would match those of the orbit of Eros. The corrections that followed

the aborted rendezvous maneuver paved the way for the injection of NEAR-Shoemaker into its

321 × 366 km elliptical orbit around Eros.

In the previous two sections we looked at basic mathematics that applied to the change of NEAR-

Shoemaker’s trajectory from its parking orbit around Earth to its injection into its initial solar orbit.

Thereafter, we studied concerns related to the transfer of the spacecraft from its third solar orbit

into the gravitational sphere of influence of Eros. We turn next to the mathematics behind the

correction maneuvers that sequentially adjusted NEAR-Shoemaker’s elliptical orbit around Eros.

Table 6.2 informs us that during the year 2000 this orbit was repeatedly contracted until it achieved

the nearly circular 35 × 39 km orbit of July 14th. For the remainder of its flight, NEAR-Shoemaker’s

orbit around Eros was expanded and contracted over a dozen times with maneuvers that also

changed the inclination of its orbital plane (relative to Eros’s equatorial plane). From its final circular

orbit of 36 km radius, the craft performed its slow descent to the surface of the asteroid. The study

of Eros by the craft’s instruments from so many different angles and distances provided accurate

information about its surface features, shape, mass, density, and gravitational and magnetic fields.

Return to Table 6.2 and consider the initial sequence of NEAR-Shoemaker’s orbits around Eros.

Notice that in consecutive, repeating steps, the orbit was made smaller and then circular (or nearly

circular). The data exhibits the pattern: a maneuver that decreased the periapsis distance of an orbit

while keeping the apoapsis distance the same was followed by a second maneuver that circularized

the orbit by decreasing the apoapsis distance and keeping the periapsis distance the same. Each

of this two-step tightening of the orbit was carried out with an engine burn that was directed

against the direction of the craft’s motion. For each, NEAR-Shoemaker’s smaller thrusters were

deployed. What we have said also pertains to the orbit contractions that began on October 13th

and December 7th. The expansions of NEAR-Shoemaker’s orbit—refer to the orbital data from July

14th to September 5th for instance—and the strategy for bringing them about also involved a two-

step approach analogous to what has just been described. (This expansion will be taken up by two

of the problems in the paragraph More About NEAR-Shoemaker of the Problems and Discussions

of this chapter.)

While NEAR-Shoemaker and Eros is the example of interest, we will study the mathemat-

ics behind this orbital contraction process more generally for any spacecraft C in orbit within

the gravitational sphere of influence of a single body of mass M and center of mass S. We’ll

assume that M is much greater than the mass of the craft. With their masses 6.69 × 1015 kg and

a few hundred kilograms, respectively, Eros and NEAR-Shoemaker meet this requirement. When

its thrusters are not firing, the craft is subject only to the gravitational force in the direction of S,

so that its trajectory is a conic section with S at a focal point. During the time the engine of the

craft fires, the craft is subject to the additional force of the engine’s thrust. However, as soon as
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the burn stops, only the single gravitational force in the direction of S remains and the trajectory

is once again a conic section with focal point S. Of course, this conic section will be different from

the one before. Since we are assuming that what we have described occurs within the sphere of

influence of the massive body, these conic sections are ellipses. It follows that the trajectory of the

spacecraft C consists of a sequence of ellipses or segments of ellipses. It is an example of a patched

conic trajectory.

Consider an elliptical orbit O1 of the craft C with focal point S and let P and A be the periapsis

and apoapsis of the orbit. Let a1 be the semimajor axis and ε1 the eccentricity of O1, and let q1
and d1 be the periapsis and apoapsis distances, respectively (the distances between P and S and A

and S). Refer to Figure 5.2 of Chapter 5B and observe that

a1(1 − ε1) = a1 − a1ε1 = q1 and a1(1 + ε1) = a1 + a1ε1 = d1.

Therefore d1 + q1 = 2a1, d1 − q1 = 2a1ε1, and hence a1 = d1+q1
2

and ε1 = d1−q1
d1+q1

. It follows that a1

and ε1 determine both q1 and d1, and conversely that q1 and d1 determine both a1 and ε1. By

Example 5.1 of Chapter 5D, the velocities of C at P and A are
√

GM
q1

√
1 + ε1 and

√
GM
d1

√
1 − ε1,

respectively. They are the maximum and minimum velocities of C in orbit O1. We’ll use analogous

notation for subsequent elliptical orbits O2 and O3 of the craft C (with focal point S). So the

semimajor axis, eccentricity, periapsis distance, and apoapsis distance of O2 are denoted by a2, ε2, q2,

and d2, respectively, and similarly for O3. What was asserted about the velocities of the craft in

orbit O1 also holds for orbits O2 and O3.

Suppose that the spacecraft C is in orbit O1. At the instant it reaches its apoapsis A, the craft’s

engine fires. The vector representing the force that is generated is tangential to the orbit and hence

lies within the plane of the orbit. The force acts against the direction of the craft’s motion, decreases

the speed of the craft at A, and alters the craft’s orbit. After the engine shut-off, the craft’s new

orbit O2 starting at A is again a conic section. What can be said about this new trajectory?

Turn to Figure 6.8a. The craft C travels in its orbit O1, depicted in blue, in a counterclockwise

direction. The velocity of C on arrival at apoapsis A is v1 =
√

GM
d1

√
1 − ε1. The craft’s engine fires

with a single burst at the instant the craft arrives at A with its thrust acting tangentially against

the motion of C. Let v2 with 0 < v2 < v1 be the velocity with which the craft begins its new orbit

O2 at A. At the instant the new orbit begins, its distance from S is d1. Since v2 < v1, the new orbit

O2 is a contraction of O1, so that d1 continues to be the maximum distance from C to S. So the

orbit O2 is an ellipse with apoapsis A and d2 = d1. Observe that the velocity of the craft at the

beginning of its new orbit at A is

v2 =

√
GM

d1

√
1 − ε2 .

The ratio v2
v1

is equal to

v2
v1

=

√
GM√
d1

√
1 − ε2 ·

√
d1√

GM

1√
1 − ε1

=

√
1 − ε2√
1 − ε1

.
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Given that O1 and hence d1, ε1, and v1 are understood, it follows that v2 determines the eccentricity

ε2 of the new orbit O2. Since the semimajor axis a2 of O2 satisfies a2(1 + ε2) = d1, v2 also determines

O2

v  < v 2           1

O1

S

C

P

O3

O2

S

C

C

P

thrust

thrust

C

(a)               (b)

A
A

at periapsis

at apoapsis

v  < v 3           2

d   = d1          2

Figure 6.8. In each of the two situations, the craft C orbits counterclockwise. Its thruster fires tangentially to the
orbit against the motion of the craft C. In case (a), it fires at apoapsis A thereby decreasing the periapsis distance.
In case (b) it fires at periapsis and decreases the apoapsis distance.

a2 and hence the orbit O2. Since v2 < v1, it follows that 1 − ε2 < 1 − ε1, so that ε2 > ε1. Since

a1(1 + ε1) = d1 = d2 = a2(1 + ε2), we get a2 < a1. Finally, from d1 + q1 = 2a1 and d2 + q2 = 2a2, it

follows that q2 < q1. So the maneuver has decreased the periapsis distance of the orbit while keeping

the apoapsis distance the same.

A question that remains is this. Let O be any ellipse with focus S and apoapsis A, hence apoapsis

distance d1, and periapsis distance q < q1. Can a velocity v2 be chosen so that the new orbit O2 of C

obtained by reducing the craft’s velocity at A in orbit O1 to v2 is equal to the preassigned orbit O?

We know that the semimajor axis and the eccentricity of O are a = d1+q
2

and ε = d1−q
d1+q

, respectively.

The fact that q < q1, tells us that d1 − q1 < d1 − q and d1 + q1 > d1 + q, so that

ε1 = d1−q1
d1+q1

< d1−q
d1+q

= ε and
√

GM
d1

√
1 − ε <

√
GM
d1

√
1 − ε1 = v1.

Let O2 be the orbit obtained by an engine burn that decreases the velocity of C at A to v2 =√
GM
d1

√
1 − ε. The equality v2

v1
=

√
1−ε2√
1−ε1

tells us that the eccentricity ε2 of the orbit O2 is equal to

the eccentricity ε of O. Since the apoapsis distances of O2 and O are also the same, it follows that

the two orbits are the same.

The following has been established. Suppose that the craft C is in an elliptical orbit O1 with

focal point S, apoapsis A, and apoapsis and periapsis distances d1 and q1. Let q2 satisfy 0 < q2 < q1.

By firing the craft’s engine tangentially to the orbit O1 at A against its motion and reducing its

velocity at A to v2 =
√

GM
d1

√
1 − ε where ε = d1−q2

d1+q2
, the craft is brought into the elliptical orbit O2

with focal point S, apoapsis A, and periapsis distance q2.
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Example 6.6. Turn to Table 6.2 and let O1 be the initial orbit of NEAR-Shoemaker around Eros on

February 14, 2000. This orbit had apoapsis distance d1 = 366 km and periapsis distance q1 = 321 km.

Since ε1 = d1−q1
d1+q1

= 45
687

= 0.0655 and GM for Eros is 4.4621 × 10−4 km3/sec2, NEAR-Shoemaker’s

velocity at apoapsis in orbit O1 was

v1 =
√

GM
d1

√
1 − ε1 =

√
4.4621×10−4√

366
·
√

0.9345 ≈ 2.112×10−2

19.131
(0.9667) ≈ 0.1067 × 10−2 km/sec

or 1.067 m/sec. Table 6.2 informs us that the maneuver OCM-1 of February 24, 2000 reduced the

craft’s velocity at apoapsis to v2 = v1 − 0.13 = 0.937 m/sec. Let O2 be NEAR-Shoemaker’s post

OCM-1 orbit. To align its apoapsis distance with that of orbit O1, we will take d2 = d1 = 366 km

(instead of the 365 km that the table provides). The analysis above informs us that for orbit O2,
√

1 − ε2√
1 − ε1

=
v2
v1

≈ 0.937

1.067
≈ 0.878.

So 1 − ε2 ≈ (0.878)2(1 − ε1) ≈ (0.771)(0.9345) ≈ 0.720, and hence ε2 ≈ 0.280. Since ε2 = d1−q2
d1+q2

, we

get 366 − q2 ≈ 0.280(366 + q2). So 1.280q2 ≈ 366(1 − 0.280) and hence q2 ≈ 205.875 ≈ 206 km. This

value is close to the 204 km that Table 6.2 lists for this distance. The assumption made about the

apoapsis distance of orbit O2 and the fact that the Δv listed in the last column of the table was

actually closer to 0.135 m/sec (than 0.13 m/sec) explain the discrepancy with the table.

We’ll continue to explore the differences between the orbits O1 and O2. For O2, we’ll now use the

data of Table 6.2 and take q2 = 204 and d2 = 365 km. So ε2 = d2−q2
d2+q2

≈ 161
569

= 0.2830. The velocity

of the craft at apoapsis of orbit O2 was

v2 =
√

GM
d2

√
1 − ε2 ≈

√
4.4621×10−4√

365
·
√

0.7170 ≈ 0.0936 × 10−2 km/sec

or 0.936 m/sec. The maximum velocity reached by NEAR-Shoemaker at periapsis of its first orbit

O1 was √
GM
q1

√
1 + ε1 ≈

√
4.4621×10−4√

321

√
1.0655 ≈ 0.1217 × 10−2 km/sec

or 1.217 m/sec, and the maximum velocity that the craft reached in its second orbit O2 was
√

GM
q2

√
1 + ε2 ≈

√
4.4621×10−4√

204

√
1.2830 ≈ 0.1675 × 10−2 km/sec

or 1.675 m/sec. Observe that the minimum speed of NEAR-Shoemaker was greater in orbit O1,

but that its maximum speed was greater in orbit O2. The orbit O2 is tighter than orbit O1. So the

planetary data of Table 5.1 suggests that NEAR-Shoemaker’s average velocity around O2 should

be greater than its average velocity around O1. This is in fact the case. To verify this, note first

that the semimajor axes a1 and a2 of the two orbits are equal to a1 = d1+q1
2

= 687
2

= 343.5 km and

a2 = d2+q2
2

= 569
2

= 284.5 km, respectively. The formula T 2 = 4π2a3

GM
tells us that the periods of the

two orbits around Eros are T1 = 1,893,653 and T2 = 1,427,360 seconds, respectively. The formula

C = 2πa
(
1 − 1

4
ε2 − 3

64
ε4 − 45

2304
ε6 − 1575

147456
ε8 − · · · )
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for the circumference of an ellipse with semimajor axis a and eccentricity ε (see Chapter 5G)

tells us that the circumferences of NEAR-Shoemaker’s two orbits are C1 ≈ 2155.96 km and C2 ≈
1751.22 km, respectively. As anticipated, the average velocity C2

T2
≈ 1.23 m/sec is greater than the

average velocity C1

T1
≈ 1.14 m/sec.

Let’s return to the craft C and its orbit O2. What changes to O2 are achieved by firing its engine

tangentially to this orbit against the direction of its motion, this time at its periapsis? Turn to

Figure 6.8b. By an earlier formula, the velocity of C at periapsis P in orbit O2 is v2 =
√

GM
q2

√
1 + ε2

(with q2 the periapsis distance of O2). The engine burn slows the craft at P , reducing its velocity to

v3 < v2 at the beginning of its new elliptical orbit O3 (depicted in green in the figure). Because the

angle of the velocity vector at P makes an angle of 90◦ with the focal axis of both orbits, we know

by Example 5.2 of Chapter 5D, that the point P is either the periapsis or apoapsis for orbit O3.

i.) Suppose that v3 ≥
√

GM√
q2

. Then P is the periapsis for O3. If not, it is the apoapsis of O3.

So d3 = q2 and v3 =
√

GM
d3

√
1 − ε3 =

√
GM
q2

√
1 − ε3. This contradicts v3 ≥

√
GM√
q2

. Hence P is the

periapsis of O3. Therefore q3 = q2 and v3 =
√

GM
q3

√
1 + ε3, where ε3 is the eccentricity of O3. So

v3
v2

=

√
GM√
q3

√
1 + ε3 ·

√
q2√

GM

1√
1 + ε2

=

√
1 + ε3√
1 + ε2

.

Since v3 < v2, it follows that ε3 < ε2. Since a3(1 − ε3) = q3 = q2 = a2(1 − ε2), we get a3 < a2. From

d2 + q2 = 2a2 and d3 + q3 = 2a3, it follows that d3 < d2. So the maneuver has decreased the apoapsis

distance of the orbit while keeping the periapsis distance the same.

ii.) Suppose that 0 < v3 <
√

GM√
q2

. If P were the periapsis of orbit O3, then q3 = q2 and

v3 =
√

GM
q2

√
1 + ε3. Since this cannot be so, P is the apoapsis of orbit O3. So q3 < d3 = q2 < d2. In

this case, the maneuver has decreased both the apoapsis and periapsis distances of the orbit.

Let O be any ellipse with focus S, periapsis P , and hence periapsis distance q2. Suppose that

its apoapsis distance d satisfies q2 ≤ d ≤ d2 (where d2 is the apoapsis distance of the orbit O2). Is

there a velocity v3 such that the orbit O3 depicted in Figure 6.8b is equal to O? This can be shown

to be the case by an argument similar to the one that established the analogous statement in the

earlier situation of periapsis decrease. See Figure 6.8a.

Example 6.7. We’ll now consider the maneuver OCM-2 of NEAR-Shoemaker and the transition

from its February 24, 2000 orbit to its March 3, 2000 orbit. This maneuver kept the periapsis

distance (essentially) the same and reduced the apoapsis distance in such a way that the resulting

orbit was nearly circular. The maneuver OCM-2 is therefore an example of what is depicted in

Figure 6.8b and described above. Let O2 be the orbit of NEAR-Shoemaker before OCM-2. We’ll

take the apoapsis and periapsis distances of O2 to be d2 = 365 km and q2 = 204 km, respectively,

as listed in Table 6.2. The eccentricity of O2 was equal to ε2 = d2−q2
d2+q2

= 161
569

= 0.2830 and NEAR-

Shoemaker’s periapsis velocity in orbit O2 was

v2 =
√

GM
q2

√
1 + ε2 ≈ 0.1675 × 10−2 km/sec
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or v2 ≈ 1.675 m/sec. Let O3 be the post OCM-2 orbit of March 3, 2000. Let its apoapsis distance be

d3 = 206 km and its periapsis distance q3 = 204 km (instead of the 203 km of the table to conform to

the earlier discussion). The eccentricity of O3 was ε3 = d3−q3
d3+q3

= 2
410

≈ 0.0049. By an earlier formula,

NEAR-Shoemaker’s periapsis velocity v3 for orbit O3 satisfies

v3
v2

=

√
1 + ε3√
1 + ε2

≈
√

1.0049√
1.2830

≈ 0.8850.

So v3 ≈ (0.8850)v2 ≈ 1.482 m/sec. Therefore, Δv = v2 − v3 ≈ 1.675 − 1.482 ≈ 0.193 m/sec. This is

in reasonable agreement with the entry 0.22 m/sec listed for OCM-2 in the last column of Table 6.2.

The difference 0.22 − 0.193 = 0.0207 m/sec was a factor in changing the inclination of the orbit

(relative to the equator of Eros) from 34◦ to 37◦.

The discussion about the velocity changes of a spacecraft at either periapsis or apoapsis of its

orbit assumed that these were achieved by instantaneous bursts of its thruster. The engine burns of

most trajectory correction maneuvers during the mission of a spacecraft last only a few seconds (but

some can take up an hour or two) so that this assumption is appropriate. The correction maneuvers

of NEAR-Shoemaker’s orbits around Eros achieved its small changes in the velocity of the craft

with engine burns of short duration, so that this assumption did lead to good approximations of

what actually happened (as Examples 6.6 and 6.7 confirm). Our discussion of these maneuvers

only touched on the fact that in addition to modifying an orbit’s size and shape, it was their

role to change the inclination of the plane of the orbit and/or the orientation of its focal axis.

For example, NEAR-Shoemaker’s OCM-11 on August 8, 2000 increased the periapsis distance of

NEAR-Shoemaker’s orbit around Eros by only 1 km (from 49 km to 50 km) and kept the apoapsis

fixed (at 52 km), but changed the inclination of its orbital plane by 15 degrees. Evidently, this was

a primary goal of the Δv of 1.01 m/sec of OCM-11.

The flight of NEAR-Shoemaker relied on all the important maneuvers that spacecraft undergo

during their missions. This includes the orbit expansion that occurred soon after its launch. The

injection burn that took place about 25 minutes after launch expanded the craft’s brief, near-Earth

orbit around the Sun (essentially a small section of the blue orbit depicted in Figure 6.4) into its

initial elliptical solar orbit (depicted in red in Figure 6.4). This expansion of NEAR-Shoemaker’s

trajectory, driven by maneuver TCM-1 (with later adjustments by TCM-2 and TCM-3), is an

example of a Hohmann Transfer Orbit discussed in Chapter 2G. The initial solar orbit of NEAR-

Shoemaker had a perihelion distance 0.99 au, aphelion distance 2.19 au, and an angle of inclination

0.78◦ with the plane of Earth’s solar orbit. The subsequent orbit contraction maneuver DSM-1

decreased this to 0.95 au, 2.16 au, and 0.52◦, respectively, and lined up the craft for its flyby

around Earth that changed these parameters to 0.98 au, 1.77 au, and 10.04◦, respectively (see

Figure 6.2), and brought NEAR-Shoemaker into an orbit close to that of Eros. This flyby was the

crucial maneuver that sent NEAR-Shoemaker to its rendezvous with the asteroid. The fact that

the Laplace radius for Earth is 920,000 km (refer to Example 6.4) tells us that NEAR-Shoemaker

was well within the sphere of Earth’s gravitational influence during this flyby. It follows that the

trajectory of NEAR-Shoemaker around Earth was (part of) a conic section with Earth’s center of
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mass at a focal point. But what conic section was it? Figure 6.2 tells us that it was hyperbolic. (In

Figure 6.4, the radius of the blue circle (the orbit of Earth) corresponds to 1 au. Since Laplace’s

radius is about 0.006 au, the hyperbolic segment of NEAR-Shoemaker’s flyby around the Earth was

too fine a detail to be captured by Figure 6.4).

The hyperbolic flyby of Juno around Earth (described in Chapter 2H) was also a critical aspect

of its flight to Jupiter. The fact is that hyperbolic flybys have been of central importance to the

navigation of all spacecraft with mission to explore the solar system. We will soon see this to be

the case for the two Voyager missions to the outer planets as well as the Cassini mission to Saturn.

It was noted in Chapter 2E that some comets approach the Sun, turn, and leave the solar system

along hyperbolic paths. Hyperbolic trajectories are therefore important within the aims of this text.

The next several sections of this chapter take up their study.

We start with the development of the mathematical tools that this study requires. First among

them are the functions that play exactly the same role for the analysis of the hyperbola that the

trigonometric functions play for the ellipse.

6E. Hyperbolic Functions. Let’s begin with a review of the basics about hyperbolic curves as

these were discussed in Chapters 1C and 3D. Turn to Figure 6.9 and observe that a hyperbola is a

curve that has two branches. The corresponding focal points are denoted by S and F in the figure.

The points S and F determine the focal axis of the hyperbola and the midpoint O of the segment

b

O F a Sfocal axis

L 
c

Q periapsis

c = aε

ϕ
latus rectum

x

y

Figure 6.9

SF is the center of the hyperbola. The distance from O to either one of the points of intersection

of the hyperbola with the focal axis is the semimajor axis a of the hyperbola. Let c be the length of

the segments SO and OF . The semiminor axis of the hyperbola is b =
√

c2 − a2 and its eccentricity

is ε = c
a
. Notice that ε > 1 and that c = aε. The rectangle with sides 2a and 2b determines the

two intersecting asymptotes of the hyperbola. The angle ϕ that the segment OF makes with the

asymptote satisfies tan ϕ = b
a
, so that ϕ = tan−1 b

a
. The length of the segment (in green in the



290 6 Mathematics of Interplanetary Flight

figure) that the hyperbola cuts from the perpendicular through either of the focal points F or S is

the latus rectum L of the hyperbola. We saw in Chapter 3D that L = 2b2

a
.

By adding an xy-coordinate system to the figure as shown, we see that the center O is the

origin, the focal axis is the x-axis, that S = (−c, 0), F = (c, 0), and that the points of intersection

of the hyperbola with the x-axis are (−a, 0) and (a, 0). The asymptotes are the two lines y = b
a
x

and y = − b
a
x and the equation of the hyperbola is

x2

a2
− y2

b2
= 1.

When it comes to the description of the hyperbolic trajectory of a spacecraft (or comet) only

one branch of the hyperbola is needed. Figure 6.9 singles one of them out in red. The intersection

of this branch with the x-axis is the periapsis for this branch and the distance aε − a = a(ε − 1)

is the periapsis distance. It is the minimum distance between S and this branch of the hyperbola.

Incidentally, much of the literature about aerodynamics takes the semimajor axis of the hyperbola

to be the negative number −a. (With this convention, the periapsis distance has the expression

a(1 − ε) = (−a)(ε − 1) for both the ellipse and the hyperbola.)

Suppose that it is our task to analyze the trajectory of a spacecraft (possibly also a comet)

that is in a hyperbolic flyby around a body of much larger mass. A look back to Chapters 5A to

5D tells us that the analysis of elliptical orbits made important use of the fact that the x- and

y-coordinates of a point-mass moving in such an orbit can be written as functions of time t in terms

of the trigonometry involved, as

x(t) = a cos β(t) and y(t) = b sin β(t)

The question that arises is whether this can also be done as part of a successful hyperbolic theory?

If so, what are the functions that play the roles of cosβ(t) and sin β(t)?

The answer is yes! And the hyperbolic functions are tailor-made for this purpose. They arise,

somewhat surprisingly, as simple combinations of the exponential functions ex and e−x. Again,

surprisingly, they behave very similarly to the trigonometric functions sinx and cos x in terms of

their derivatives and the formulas that connect them. Define

sinh x =
ex − e−x

2
and cosh x =

ex + e−x

2

for any real number x. These functions are the hyperbolic sine and hyperbolic cosine, respectively.

They get these names and the “suffix” h because they are related to the hyperbola x2 − y2 = 1 in

the same way that sin x and cos x are related to the circle x2 + y2 = 1. (See Chapter 3A in this

regard.) The graphs of sinh x and cosh x are depicted in Figure 6.10, both for small values of x.

For larger x, they continue their rapid rise (or fall). The most basic relationship between sinh x and

cosh x is

cosh2 x − sinh2 x = 1.

As in trigonometric situations, sinh2 x means (sinh x)2, cosh2 x means (cosh x)2 and similarly for

the other hyperbolic functions to follow. The verification of this identity is easy,

cosh2 x − sinh2 x = 1
4

[
(ex)2 + 2exe−x + (e−x)2)

] − 1
4

[
(ex)2 − 2exe−x + (e−x)2)

]
= exe−x = 1.
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1    2    3    4

−xe xe −x+ e1
2 (              )cosh x =xe1

2 (     −        )sinh x =

 −4  −3 −2  −1

1    2    3    4 −4  −3 −2  −1

Figure 6.10

Example 6.8. Show that the addition formulas

i. sinh(x + y) = (sinh x)(cosh y) + (cosh x)(sinh y)

ii. cosh(x + y) = (cosh x)(cosh y) + (sinh x)(sinh y)

are direct consequences of properties of the exponential function.

The striking similarities between the trigonometric sine and cosine and the hyperbolic sine and

cosine suggest that additional hyperbolic functions analogous to their trigonometric counterparts,

should be singled out and considered. We’ll only need the hyperbolic tangent and the hyperbolic

secant. Predictably, they are defined by

tanh x =
sinh x

cosh x
and sech x =

1

cosh x
.

Let’s turn to the study of the graph of y = tanh x. Observe that cosh x ≥ 1 for all x and that

sinh x ≥ 0 for x ≥ 0 and sinh x < 0 for x < 0. Observe also that

cosh x − sinh x = e−x > 0 and cosh x − (− sinh x) = cosh x + sinh x = ex > 0

for all x. In particular, cosh x > sinh x and cosh x > − sinh x for all x. Because | cosh x| = cosh x

and | sinh x| = ± sinh x, it follows that | cosh x| > | sinh x|. Therefore

| tanh x| < 1 for all x .

So the graph of y = tanh x lies between the lines y = 1 and y = −1. Since lim
x→+∞

e−x = lim
x→+∞

1
ex

= 0,

it follows that lim
x→+∞

tanh x = lim
x→+∞

ex−e−x

ex+e−x = 1. Similarly, lim
x→−∞

tanh x = −1. Therefore the lines
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y = tanh x

y = 1

y = −1

−2             −1                                  1               2

Figure 6.11

y = 1 and y = −1 are both horizontal asymptotes of the graph of y = tanh x. See Figure 6.11.

The derivatives of the hyperbolic functions are easy to compute. Since d
dx

ex = ex and d
dx

e−x =

−e−x, we get d
dx

(
ex−e−x

2

)
= ex+e−x

2
and d

dx

(
ex+e−x

2

)
= ex−e−x

2
. Therefore

d

dx
sinh x = cosh x and

d

dx
cosh x = sinh x

Example 6.9. Use the quotient and chain rules to show that

d

dx
tanh x = sech2x and

d

dx
sech x = −(sech x)(tanh x).

The fact that d
dx

tanh x is always positive tells us that y = tanh x is an increasing function. Check

that d2

dx2 tanh x = d
dx

sech2x = −2(tanh x)(sech2x). This confirms another feature of the graph of

y = tanh x. It is concave up for x < 0 and concave down for x > 0.

Example 6.10. Since the graph of the function y = sinh x is increasing, it has an inverse func-

tion y = sinh−1 x. Apply the chain rule and the identity cosh x =
√

sinh2 x + 1 to the equality

sinh(sinh−1 x) = x to show that d
dx

sinh−1 x = 1√
x2+1

.

6F. Moving along the Hyperbola. We’ll now consider a spacecraft (or comet) in a hyperbolic

flyby of a much more massive body. What is set out in Chapter 5A applies to our discussion. But

instead of applying it to the point-mass P , we’ll apply it to a spacecraft (or comet) C that we regard

as a point-mass. Consider Figure 5.1 and assume that the trajectory depicted there is given by the

left branch of the hyperbola x2

a2 − y2

b2
= 1 of Figure 6.9. The point Q = (−a, 0) is the periapsis. The

time t is assigned to a position of the craft as follows. When C is at Q, the time is t = 0. When C

is on approach to periapsis, t is negative. After C passes periapsis, t is positive. The craft’s time of

travel to or from periapsis is |t| in either case. The position of C on the left branch of the hyperbola

depends on t and we’ll let its x- and y-coordinates be given by the functions x(t) and y(t) of t. The

focal point S of the hyperbola is (−c, 0), where c =
√

a2 + b2. The distance from C to S is given by
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the function r(t), and α(t) is the angle in radians between the segments SC and SQ. The angle α(t)

is measured counterclockwise for t ≥ 0 and clockwise for t < 0. So α(t) ≥ 0 for t ≥ 0 and α(t) < 0

for t < 0.

A look at the graph of the function f(x) = sinh x in Figure 6.10 tells us that no matter what

the value of y(t)
b

is, there is some number that we’ll denote by β, such that sinh β = y(t)
b

. Since

f(x) = sinh x is an increasing function, there is only one such number β for a given y(t)
b

. Since y(t)
b

depends on t, the number β does also, so that β = β(t) is a function of t. It follows for any time t,

that sinh β(t) = y(t)
b

, and hence that y(t) = b sinh β(t). Because x(t)2

a2 − y(t)2

b2
= 1,

x(t)2

a2
=

y(t)2

b2
+ 1 = sinh2β(t) + 1 = cosh2β(t),

and we see that x(t)2 = (a cosh β(t))2. Since x(t) < 0 and cosh β(t) > 0, we get x(t) = −a cosh β(t).

From the graph of f(x) = sinh x we see that sinh x > 0 when x > 0 and sinh x < 0 when x < 0.

Since y(t) < 0 for t < 0 and y(t) > 0 for t > 0, it follows that β(t) < 0 for t < 0 and β(t) > 0 for

t > 0. At time t = 0, C is at periapsis, so that x(0) = −a, y(0) = 0, and β(0) = 0.

In contrast to the situation of the ellipse, where β(t) is an angle with a geometric meaning,

this hyperbolic β(t) is an abstractly defined function. Other than that, the functions β(t), x(t) =

−a cosh β(t), and y(t) = b sinh β(t) play the same role in the hyperbolic context that the functions

β(t), x(t) = a cos β(t), and y(t) = b sin β(t) played in the analysis of elliptical orbits in Chapter 5.

Figure 6.12 captures the geometry of the hyperbolic trajectory with the craft in a typical position

at (x(t), y(t)) = (−a cosh β(t), b sinh β(t)). The figure also sets out the relevant notation. Notice

y

x

r(t)

(x(t), y(t))

A(t)

O

at time t

periapsis 
S = (−c, 0) Q = (−a, 0)

B(t)

at time  t = 0

C in position

−a cosh x(t) =

b sinh    (t)y(t) =

(t)α

t < 0

t > 0

(t)β

β

Figure 6.12
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that x(t) ≤ −a for any t. For t ≥ 0, let A(t) be the area that the segment SC sweeps out from time

t = 0 to time t. Recall from Chapter 5A that

A(t) = κt,

where κ is Kepler’s constant of the trajectory. For a negative t, this equality holds also with the

understanding that A(t) is the negative of the area that the segment SC sweeps out from time t to

time t = 0. In the same way, B(t) is the area (or the negative of the area) of the curving triangle

that the points Q,C, and the origin O determine. Check that A(t) + B(t) = 1
2
cy(t) for any t. As t

moves through −∞ < t < ∞ the craft C, positioned at the point (x(t), y(t)) with

x(t) = −a cosh β(t) and y(t) = b sinh β(t),

traces out the entire branch of the hyperbola of Figure 6.12 from the bottom to the top. We will

assume that the motion of the spacecraft is completely smooth. This means that x = x(t), y = y(t),

and β = β(t) = sinh−1 y(t)
b

as well as r(t) and α(t) are all differentiable functions of t.

Let any elapsed time t be given. The position of C in its trajectory at time t is pinpointed by

the values r(t) and α(t). The problem of determining these values for the given t is solved in the

same way as in the elliptical case of Chapter 5. The first step expresses r(t) and α(t) in terms of

β(t). A second step develops a hyperbolic version of Kepler’s equation that links β(t) and t. With

t given, a final step solves this equation for β(t). After this β(t) is inserted into the equations for r

and α, the position of C at time t has been determined and the solution is complete.

We’ll show first that r(t) = a(ε cosh β(t) + 1). Refer to Figure 6.12 to see that

r(t)2 = (−x(t) − c)2 + y(t)2 = (c + x(t))2 + b2
(

x(t)2

a2 − 1
)

= c2 + 2cx(t) + x(t)2 + b2

a2x(t)2 − b2 =
(

a2+b2

a2

)
x(t)2 + 2cx(t) + a2

= c2

a2x(t)2 + 2cx(t) + a2 = ε2x(t)2 + 2aεx(t) + a2

= (εx(t) + a)2.

Another look at Figure 6.12 tells us that x(t) is negative and that x(t) ≤ −a. So εx(t) < −a, and

hence εx(t) + a < 0. Therefore, r(t) = −(εx(t) + a) = −(−εa cosh β(t) + a), so that

r(t) = a(ε cosh β(t) − 1)

The connection between α(t) and β(t) begins with a consequence of Figure 6.12. Notice that

cos(π − α(t)) =
−x(t) − c

r(t)
=

−(x(t) + c)

r(t)
=

−(−a cosh β(t) + aε)

a(ε cosh β(t) − 1)
=

cosh β(t) − ε

ε cosh β(t) − 1
.

Because cos α(t) = − cos(π − α(t)), it follows that cos α(t) = ε−cosh β(t)
ε coshβ(t)−1

. Using the identities

tan2 α
2

= 1−cosα
1+cosα

and tanh2 β
2

= coshβ−1
coshβ+1

(the first is a consequence of the two standard trig identities

cos2 θ = 1
2
(1 + cos 2θ) and sin2 θ = 1

2
(1 − cos 2θ) and the second follows quickly from the definitions

of sinh x, cosh x, and tanh x), we get that
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tan2 α(t)
2

=
1 − cos α(t)

1 + cos α(t)
=

1 − ε−coshβ(t)
ε cosh β(t)−1

1 + ε−cosh β(t)
ε coshβ(t)−1

=

ε cosh β(t)−1−ε+cosh β(t)
ε coshβ(t)−1

ε cosh β(t)−1+ε−coshβ(t)
ε coshβ(t)−1

=
(ε + 1) cosh β(t) − (ε + 1)

(ε − 1) cosh β(t) + (ε − 1)
=

(ε + 1)(cosh β(t) − 1)

(ε − 1)(cosh β(t) + 1)

=
(

ε+1
ε−1

)
tanh2 β(t)

2
.

Note that −π < α(t) < π and that α(t) and β(t) are either both positive together or negative

together. Since −π
2

< α(t)
2

< π
2
, it follows from a comparison of the graphs of the tangent and hyper-

bolic tangent functions (see Figure 6.11) that tan α(t)
2

and tanh β(t)
2

have the same sign for any t.

Therefore tan α(t)
2

=
√

ε+1
ε−1

tanh β(t)
2

. This last equation is the hyperbolic version of Gauss’s equation.

Since −π
2

< α(t)
2

< π
2
, we can conclude that

α(t) = 2 tan−1
(√

ε+1
ε−1

tanh β(t)
2

)

Turn to the angle ϕ = tan−1 b
a

of Figure 6.9. A review of the discussion about the hyperbola

in Chapter 3D and a comparison of Figures 3.19 and 6.12 tells us that when α(t) ≥ 0 then

α(t) < π − ϕ, and that when α(t) < 0 then α(t) > −(π − ϕ). So −(π − tan−1 b
a
) < α(t) <

π − tan−1 b
a
. It is a consequence of this comparison that as t varies over −∞ < t < ∞, the angle

α(t) assumes all values within these bounds.

6G. The Hyperbolic Kepler Equation. This step links t and β(t) with an equation that involves

both. Our computations will concentrate on the case t ≥ 0. The argument as well as the conclusion

is the same for t < 0 (if minus signs are carefully attended to). The two areas A(t) and B(t) of

Figure 6.12 play the key role. The area B(t) of the triangular region is bounded by the hyperbola

and the segments OC and OQ. Solving x2

a2 − y2

b2
= 1 for y tells us that the upper half of the hyperbola

is the graph of the function y = b
a

√
x2 − a2. Since B(t) is the difference between the area of the

triangle with base −x(t) and height y(t) and the area under the hyperbola y = b
a

√
x2 − a2 over the

interval x(t) ≤ x ≤ −a, it follows that

B(t) = 1
2
(a cosh β(t))(b sinh β(t)) −

∫ −a

−a coshβ(t)

b
a

√
x2 − a2 dx .

We’ll start the computation of B(t) by computing B′(t). Let D(x) be an antiderivative of the

function b
a

√
x2 − a2. By the fundamental theorem of calculus,

∫ −a

−a cosh β(t)

b
a

√
x2 − a2 dx = D(−a) − D(−a cosh β(t)).

By the chain rule, the derivative of the function of t on the right is
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0 − D′(−a cosh β(t)) · (−a sinh β(t)) · β′(t) = − b
a

√
(−a cosh β)2 − a2 · (−a sinh β(t)) · β′(t)

= b
a

√
a2(cosh2 β(t) − 1) · (a sinh β(t))β′(t)

= ab
√

sinh2 β(t) · sinh β(t) · β′(t)

= ab sinh2 β(t) · β′(t).

By making use of this equality and by applying the product and chain rules, we see that

B′(t) = 1
2

[
a sinh β(t) · β′(t) · b sinh β(t) + a cosh β(t) · b cosh β(t) · β′(t)

] − ab sinh2 β(t) · β′(t)

= 1
2
ab

[
sinh2 β(t) + cosh2 β(t)

]
β′(t) − ab sinh2 β(t) · β′(t)

= 1
2
ab

[
cosh2 β(t) − sinh2 β(t)

]
β′(t) = 1

2
abβ′(t).

Since B(0) = 0 and β(0) = 0, we can conclude that

B(t) = 1
2
abβ(t).

This equality provides the geometric interpretation β(t) = 2B(t)
ab

of the function β(t). It also says

that the area B(t) is analogous to the area B(t) of Figure 5.4 in the elliptical case of Chapter 5B.

Since the area A(t) + B(t) of Figure 6.12 is equal to that of a triangle with base c and height

y(t), we get A(t) + B(t) = 1
2
cb sinh β(t). Since c = aε, this implies that

A(t) = 1
2
cb sinh β(t) − 1

2
abβ(t) = 1

2
ab(ε sinh β(t) − β(t)).

Since the area A(t) is also equal to A(t) = κt, where κ is Kepler’s constant for the trajectory, it

follows that

ε sinh β(t) − β(t) = 2κt
ab

.

We’ll now recall some basic facts from Chapter 5A. Let m and M be the masses of the moving

craft C and the attracting body respectively, and let F (t) be the magnitude of the gravitational

force on C. Newton’s inverse square law and his law of universal gravitation assert that

F (t) =
8κ2m

L
· 1

r(t)2
and F (t) =

GmM

r(t)2
,

where κ and L are Kepler’s constant and the latus rectum of the hyperbolic trajectory of C, and G

is the universal gravitational constant. By setting Newton’s two force equations equal to each other,

we get 8κ2

L
= GM. So κ =

√
GML

8
. Refer to part C of Chapter 3D for the fact that L = 2b2

a
for the

hyperbola x2

a2 − y2

b2
= 1. So κ =

√
GLM

8
=

√
GM

a
b2

4
= b

2

√
GM

a
, so that 2κ

ab
=

√
GM
a3 .

This completes the derivation of the hyperbolic Kepler equation

ε sinh β(t) − β(t) = 2κt
ab

=
√

GM
a3 t
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As in the elliptical case, the quantities 2κt
ab

=
√

GM
a3 t, β(t), and α(t) are referred to by the historical

terms mean anomaly, eccentric anomaly, and true anomaly, respectively.

As might be suspected, the solution of the hyperbolic Kepler equation for β(t) with t given, is

similar to the solution of the elliptical version. Before we present it, we’ll use the equation to derive

formulas for the velocity of the craft.

For any time t, let v(t) be the speed of C in its hyperbolic trajectory and let γ(t) be the angle

between the segment SC and the tangent to the trajectory at C. See Figure 6.13. As in the elliptical

case, γ(t) is measured counterclockwise from the tangent to the segment SC, so that γ(t) > 0 for

any t. Notice that γ < π
2

during the craft’s approach to periapsis, that γ = π
2

at periapsis, and that

γ > π
2

after the craft’s departure from periapsis. Observe also that γ(t) is an increasing function of t.

S

 (t)γ

Q  periapsis

 (t)γ

C  at time t < 0

C  at time t > 0

Figure 6.13

Given all the parallels between the hyperbolic and elliptical situations, it should come as no

surprise that the formulas for v(t) and γ(t) as well as their derivations are analogous to those

in Chapter 5D in the elliptical case. Both depend only on the distance r(t) and constants of the

trajectory.

Using the fact that the derivatives of x(t) = −a cosh β(t) and y(t) = b sinh β(t) are x′(t) =

−a sinh β(t) · β′(t) and y′(t) = b cosh β(t) · β′(t), we get

v(t)2 = x′(t)2 + y′(t)2 =
[
a2 sinh2 β(t) + b2 cosh2 β(t)

]
β′(t)2

=
[
a2 sinh2 β(t) + (c2 − a2) cosh2 β(t)

]
β′(t)2

=
[
a2ε2 cosh2 β(t) − a2(cosh2 β(t) − sinh2 β(t))

]
β′(t)2

=
[
a2ε2 cosh2 β(t) − a2

]
β′(t)2 = a2

[
ε2 cosh2 β(t) − 1

]
β′(t)2

= a2
[
(ε cosh β(t) − 1)(ε cosh β(t) + 1)

]
β′(t)2
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By differentiating the hyperbolic Kepler equation

ε sinh β(t) − β(t) =
√

GM
a3 t

we get
√

GM
a3 = ε cosh β(t) · β′(t) − β′(t) =

(
ε cosh β(t) − 1

)
β′(t), so that

β′(t) =
√

GM
a3 · 1

ε cosh β(t) − 1
.

It follows that

v(t)2 = a2[(ε cosh β(t) − 1)(ε cosh β(t) + 1)
] · GM

a3 · 1

(ε cosh β(t) − 1)2

= GM
a

· ε cosh β(t) + 1

ε cosh β(t) − 1
.

From the formula r(t) = a(ε cosh β(t) − 1) of section 6F, we get ε cosh β(t) − 1 = r(t)
a

and therefore

ε cosh β(t) = r(t)
a

+ 1. So by simple substitutions and a little algebra,

v(t)2 = GM
a

·
r(t)
a

+2

r(t)
a

= GM
a

·
r(t)+2a

a
r(t)
a

= GM
a

r(t)+2a
r(t)

= GM
a

(
2a
r(t)

+ 1
)
.

We have completed the derivation of the hyperbolic speed formula

v(t) =
√

GM
a

√
2a
r(t)

+ 1 =
√

GM
√

2
r(t)

+ 1
a

Example 6.11. The craft attains its maximum speed

vmax =
√

GM
a

√
2a

a(ε−1)
+ 1 =

√
GM

a

√
ε+1
ε−1

=
√

GM
a(ε−1)

√
ε + 1

at periapsis when r(t) is at its minimum a(ε − 1). Observe that the craft’s speed is always greater

than its limiting speed v∞ =
√

GM
a

. Notice that this is the limit on the speed of the craft as the

distance r(t) gets larger and larger.

The derivation of the formula for γ(t) carried out in Chapter 5D in the elliptical case applies

step by step to the hyperbolic situation (at the very end the hyperbolic speed formula and the

hyperbolic equalities 2κ = b
√

GM
a

and b = a
√

ε2 − 1 have to be inserted) with the result that

sin γ(t) = a
√

ε2−1√
r(t)(2a+r(t))

By applying sin−1 to both sides of this equation and recalling that the inverse sine of any number

between −1 and 1 needs to lie between −π
2

and π
2
, we get the formulas

γ(t) = sin−1
(

a
√

ε2−1√
r(t)(2a+r(t))

)
and γ(t) = π − sin−1

(
a
√

ε2−1√
r(t)(2a+r(t))

)
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where the first equality applies when the craft is on approach to periapsis and the second after its

departure from periapsis. Check that γ = π
2

at periapsis. Observe that lim
t→±∞

a
√

ε2−1√
r(t)(2a+r(t))

= 0 and

conclude that 0 and π are optimal lower and upper bounds for the angle γ(t).

6H. Solving the Hyperbolic Kepler Equation. The task is to solve, for a given t, the hyperbolic

Kepler’s equation

ε sinh β(t) − β(t) =
√

GM
a3 t

for β(t). Consider the function f(x) = ε sinh x − x. Since f ′(x) = ε cosh x − 1 > cosh x − 1 ≥ 0, we

know that f(x) is an increasing function. The very rapid rise of the graph of the function implies

that lim
x→−∞

(sinh x − x) = −∞ and lim
x→∞

(sinh x − x) = ∞. Since f(x) = ε sinh x − x is continuous,

it follows from this that the hyperbolic Kepler equation has a unique solution β(t) for any given√
GM
a3 t. This is the β(t) that we need to find. Given that both r(t) and α(t) have already been

expressed in terms of β(t), this β(t) “closes the loop” in the sense that it completes, for a given t,

the determination of the corresponding r(t) and α(t).

The successive approximation approach that solved Kepler’s equation for β(t) in the elliptical

situation in Chapter 5E works here too, but not “as is.” The approximation step in the elliptical

case relied on the inequality | sin x1 − sin x2| ≤ |x1 − x2|. This inequality in turn depended on the

fact that both x − sin x and x + sin x are increasing functions of x. But in the current hyperbolic

situation the function x − sinh x is decreasing, so that this approach does not get off the ground.

However, the inverse hyperbolic sine saves the day. The fact that the derivative of sinh−1x is 1√
x2+1

(see Example 6.10) has the consequence that the derivatives of the functions g(x) = x − sinh−1 x

and h(x) = x + sinh−1 x are both positive for all x with the single exception g′(0) = 0. This implies

that y = g(x) and y = h(x) are both increasing functions of x. It follows, as in the analogous step

of the elliptical case, that | sinh−1 x1 − sinh−1 x2| ≤ |x1 − x2| for any x1 and x2.

From the graph of the hyperbolic sine in Figure 6.10 we know that if small positive and negative

x are excluded, then | sinh x| is much greater than |x|. Thus with the exception of small positive

and negative β(t), the term ε sinh β(t) dominates the left side of the hyperbolic Kepler equation,

so that ε sinh β(t) ≈
√

GM
a3 t. By applying sinh−1 to both sides of sinh β(t) ≈ 1

ε

(√
GM
a3 t

)
, we get

β(t) ≈ sinh−1 1
ε

(√
GM
a3 t

)
. It therefore makes sense, for a given elapsed time t, to take

β1 = sinh−1 1
ε

(√
GM
a3 t

)

as the first approximation for the solution β(t) of Kepler’s equation.

By rearranging things algebraically and then taking sinh−1 of both sides, the hyperbolic Kepler

equation can be rewritten as

β(t) = sinh−1 1
ε

(√
GM
a3 t + β(t)

)
.

The inequality | sinh−1 x1 − sinh−1 x2| ≤ |x1 − x2| implies that

|β(t) − β1| =
∣∣∣ sinh−1 1

ε

(√
GM
a3 t + β(t)

) − sinh−1 1
ε (

√
GM
a3 t)

∣∣∣ ≤
∣∣∣1ε

(√
GM
a3 t + β(t)

) − 1
ε

√
GM
a3 t

)∣∣∣ = 1
ε |β(t)|.
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Therefore |β(t) − β1| ≤ 1
ε
|β(t)|. For any i ≥ 1, define βi+1 inductively by

βi+1 = sinh−1 1
ε

(√
GM
a3 t + βi

)
.

Let’s use mathematical induction to show that |β(t) − βi| ≤ 1
εi

|β(t)| for all i ≥ 1. The case i = 1 was

just done. It remains to assume that |β(t) − βi| ≤ 1
εi

|β(t)| and to show that |β(t) − βi+1| ≤ 1
εi+1 |β(t)|.

Because β(t) = sinh−1 1
ε

(√
GM
a3 t + β(t)

)
and βi+1 = sinh−1 1

ε
(
√

GM
a3 t + βi), we get

|β(t) − βi+1| =
∣∣ sinh−1 1

ε

(√
GM
a3 t + β(t)

) − sinh−1 1
ε

(√
GM
a3 t + βi

)∣∣

≤ ∣∣1
ε

(√
GM
a3 t + β(t)

) − 1
ε

(√
GM
a3 t + βi

)∣∣ = |1
ε
β(t) − 1

ε
βi| ≤ 1

εi+1 |β(t)|

so that our verification of the inequality |β(t) − βi| ≤ 1
εi

|β(t)| for all i ≥ 1 is complete. Since ε > 1,

it follows that the sequence β1, . . . , βi, . . . , converges to the solution β(t) of the hyperbolic Kepler

equation ε sinh β(t) − β(t) =
√

GM
a3 t. The speed of the convergence depends on the rate at which

1
εi
|β(t)| goes to zero for increasing i. This depends on both ε and the magnitude of β(t). The larger

the |β(t)|, the longer it takes. On the other hand, it follows from a point made earlier that if β(t)

is large, then β1 is already a good approximation of β(t).

Let’s summarize what has been accomplished. For a given elapsed time t, the position of the

craft or comet C with respect to the center of mass S of the Sun, a planet, moon, or asteroid can

be determined by solving Kepler’s equation for β(t) and inserting this value into the equations

r(t) = a(ε cosh β(t) − 1) and α(t) = 2 tan−1
(√

ε+1
ε−1

tanh β(t)
2

)
.

Refer back to Figure 6.12. By substituting this r(t) in turn into the formulas for the speed v(t) and

the angle γ(t), the velocity of C at time t can be determined as well.

Let T be the time it takes for C to move through the part of its hyperbolic orbit that is cut

by the segment through S that defines the latus rectum. See Figure 6.9. Refer to Figure 6.12 and

notice that y(T
2
) = L

2
. It follows that b sinh β(T

2
) = b2

a
. Therefore

sinh β(T
2
) = b

a
=

√
c2−a2

a
=

√
a2(ε2−1)

a
=

√
ε2 − 1 .

The standard formula sinh−1 x = ln |x +
√

x2 + 1| implies that

β(T
2
) = sinh−1(

√
ε2 − 1) = ln(

√
ε2 − 1 + ε).

By inserting t = T
2

and the equalities above into the hyperbolic Kepler equation and solving for T ,

we get

T = 2

√
a3

GM

[
ε(

√
ε2 − 1) − ln(

√
ε2 − 1 + ε)

]
.

This equation is of important consequence for our understanding of the solar system. If T , a,

and ε are known for a hyperbolic flyby by a spacecraft of a planet, a moon, or asteroid of mass M ,

then GM and hence M can be estimated.
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We’ll illustrate the discussion above by applying it to NEAR-Shoemaker’s gravity assist flyby

of Earth. The relevant parameters of the craft’s hyperbolic trajectory were a = 8.500675 × 106 m,

ε = 1.813524 and with M the Earth’s mass, GM = 3.986004 × 1014 m3/sec2. Rotate the hyperbolic

arc of Figure 6.2 and move it into the position of the one in Figure 6.12 with S representing the

Earth’s center of mass.

Example 6.12. By inserting the data of NEAR-Shoemaker’s flyby into the formula for T ,

T = 2

√
a3

GM

[
ε(

√
ε2 − 1) − ln(

√
ε2 − 1 + ε)

]

= 2(8.500675×106)
3
2√

3.986004×1014

[
1.813524(

√
1.8135242 − 1) − ln(

√
1.8135242 − 1 + 1.813524)

] ≈ 3828 sec

or about 64 minutes. This is consistent with the timeline of the flyby that Figure 6.2 displays.

Example 6.13. How long after it passed periapsis did NEAR-Shoemaker reach the boundary of

the Sun-Earth Laplace radius of 920,000 km? We’ll set r(t) = 9.200000 × 108 m and determine t

in seconds. Consider the equation r(t) = a(ε cosh β(t) − 1) and check that r(t)+a
aε

= cosh β(t). Since
r(t)+a

aε
≥ 1, we get

β(t) = cosh−1(ε−1(a−1r(t) + 1))

= cosh−1
(
1.813524−1

(
(8.500675 × 106)−1(9.200000 × 108) + 1

)) ≈ 4.791232.

Solving Kepler’s equation for t, we see that t = a
√

a
GM

(
ε sinh β(t) − β(t)

)
. Feeding in the values

for the various terms, gives us

t = (8.500675 × 106)
√

8.500675×106

3.986004×1014

(
1.813524 sinh(4.791232) − 4.791232

) ≈ 129,627 sec,

or almost exactly 36 hours. The corresponding angle α(t) is

α(t) = 2 tan−1
(√

ε+1
ε−1

tanh β(t)
2

)
= 2 tan−1

(√
1.813524+1
1.813524−1

tanh 4.791232
2

) ≈ 2.119367 radians

or 121.43◦. The craft’s speed relative to Earth at the time was

v(t) =
√

GM
√

2
r(t)

+ 1
a

=
√

3.986004 × 1014
√

2
9.200000×108

+ 1
8.500675×106

≈ 6911 m/sec,

or 6.911 km/sec. It is not surprising, given the distances involved, that this is close to the craft’s

limiting speed

v∞ =
√

GM
a

=
√

3.986004×1014

8.500675×106
≈ 6848 m/sec = 6.848 km/sec.

Example 6.14. How far from Earth was NEAR-Shoemaker 12 hours after it passed the peri-

apsis of its flyby of Earth? The first step is to take t = 12 · 3600 = 43,200 seconds and to solve

ε sinh β(t) − β(t) = 2κt
ab

=
√

GM
a3 t for β(t). Taking

√
GM
a3 =

√
3.986004×1014

(8.500675×106)3
= 0.080554 × 10−2 = 8.0554 × 10−4

and applying the method of successive approximations, we get
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β1 = sinh−1 1
ε

(√
GM
a3 t

)
= sinh−1 1

1.813524

(
(8.0554 × 10−4) (4.3200 × 104)

)
= 3.648152

β2 = sinh−1 1
ε

(√
GM
a3 t + β1

)
= sinh−1 1

1.813524

(
(8.0554 × 10−4) (4.3200 × 104) + 3.648152

)

= 3.822006

β3 = sinh−1 1
ε

(√
GM
a3 t + β2

)
= sinh−1 1

1.813524

(
(8.0554 × 10−4) (4.3200 × 104) + 3.822006

)

= 3.829582

β4 = sinh−1 1
ε

(√
GM
a3 t + β3

)
= sinh−1 1

1.813524

(
(8.0554 × 10−4) (4.3200 × 104) + 3.829582

)

= 3.829911

β5 = sinh−1 1
ε

(√
GM
a3 t + β4

)
= sinh−1 1

1.813524

(
(8.0554 × 10−4) (4.3200 × 104) + 3.829911

)

= 3.829926

β6 = sinh−1 1
ε

(√
GM
a3 t + β5

)
= sinh−1 1

1.813524

(
(8.0554 × 10−4) (4.3200 × 104) + 3.829926

)

= 3.829926,

so that with an accuracy of 6 decimal places, β(t) = 3.829926 radians. Inserting this value into the

equation r(t) = a(ε cosh β(t) − 1), tells us that NEAR-Shoemaker was

r(43200) = (8.500675 × 106)(1.813524 cosh(3.829926) − 1) ≈ 346.694551 × 106 m ,

or 346,695 km from Earth’s center. The corresponding angle α(t) was

α(t) = 2 tan−1
(√

ε+1
ε−1

tanh β(t)
2

)
= 2 tan−1

(√
1.813524+1
1.813524−1

tanh 3.829926
2

) ≈ 2.118194 radians,

or 121.36◦. A comparison of this value for α(t) with the one computed in Example 6.13 tells us that

the convergence of α(t) to its upper bound π − tan−1 b
a

= 123.46◦ is slow.

The speed with which NEAR-Shoemaker moved away from Earth 12 hours after periapsis was

v(t) =
√

GM
√

2
r(t)

+ 1
a

=
√

3.986004 × 1014
√

2
346.694551×106

+ 1
8.500675×106

≈ 7014 m/sec,

or 7.014 km/sec, while the craft’s maximum speed, reached at periapsis, was

vmax =
√

GM
a

√
ε+1
ε−1

=
√

3.986004×1014

8.500675×106

√
1.813524+1
1.813524−1

≈ 1.273451 × 104 m/sec,

or 12.735 km/sec. And 12 hours after periapsis, the craft moved away from Earth at the angle

γ(t) = π − sin−1
(

a
√

ε2−1√
r(t)(2a+r(t))

)
= π − sin−1

(
(8.500675×106)

√
1.8135242−1√

(9.200000×108)(2(8.500675×106)+9.200000×108)

)
≈ 3.131753

radians, or 179.44◦.

We’ll now return to the analysis of the strategic problem of sending a spacecraft from its initial

parking orbit around Earth on to its first solar orbit, then on a transfer to an expanded solar orbit,

and, after the trajectory changes typically brought about by one or more hyperbolic flybys of nearer

planets, onward to its programmed rendezvous with one or more of the solar system’s more distant

objects.
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6I. Hohmann Transfer Orbits. The most critical aspects of the flights of both the Juno space-

craft to Jupiter and the NEAR-Shoemaker craft to the asteroid Eros were the following: the first

was the transfer from the craft’s brief near-Earth orbit around the Sun to an expanded elliptical

solar orbit that was carefully designed to move the craft into position for a course-changing hyper-

bolic flyby of a planet that then sent the craft to the target of its mission. In the case of both

Juno and NEAR-Shoemaker, the craft was on the return leg of its expanded elliptical orbit and the

flyby planet was Earth. The missions that have sent spacecraft to the outer planets and beyond, to

Jupiter and Saturn, to some asteroids and comets, to Pluto and a few Kuiper belt objects, have all

deployed such a strategy. Limited rocket thrust and constraints on budgets have required that one

or several hyperbolic flyby maneuvers needed to be programmed into the design of their trajectories.

Let C be a spacecraft flying in its own near-Earth solar orbit. In order to expand this initial

orbit, the craft’s main engine is fired in a burst tangential to the craft’s motion to increase the

craft’s speed. At the completion of this maneuver, the engine shuts down, and the gravitational

pull of the Sun is the only force on the craft. The craft is now in a wider transfer orbit that is

aphelion

C

S

1

2

P

1I

2I
0I

1P

0

2P

planet
of the

orbit

 ideal transfer
Hohmann

Figure 6.14. The figure depicts the ideal Hohmann transfer in green as well as two other variations of Hohmann
orbits in red and purple. All three are possible trajectories of a spacecraft for a flight from an initial near-Earth solar
orbit to a rendezvous with a distant planet.
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designed to bring it to the vicinity of a more distant planet. This new trajectory is elliptical and

has the center of mass of the Sun as focal point. Figure 6.14 depicts the Sun with its center of

mass S, the Earth’s orbit in blue, and in red, green, and purple, three different possible transfer

trajectories for the craft. The points I0, I1, and I2 designate the points on the craft’s near-Earth

orbit at which the main engine fires and the insertion into the transfer trajectory occurs. Their

colors in red, green, and purple, correspond to those of the three trajectories. The points P0, P1,

and P2 mark the targeted points of rendezvous with the distant planet. The ideal Hohmann transfer

orbit is depicted in green. The point of insertion I0 is the perihelion of the near-Earth orbit. Since

the transfer orbit expands the near-Earth orbit, the point I0 is also the perihelion of the transfer

orbit. The ideal Hohmann transfer has the point of rendezvous P0 at its aphelion. In variation 1 of

a Hohmann transfer, the point of insertion I1 occurs after the perihelion of the craft’s near-Earth

orbit, and in version 2, the point of insertion I2 occurs before perihelion. Note also that the points

of rendezvous P1 and P2 can be anywhere along these trajectories.

Our mathematical analysis of the trajectory correction maneuver of the flight of a spacecraft

will continue to assume that its main engine fires in a single instantaneous burst. The reality is that

during a mission the main thruster is fired only occasionally and for the most part only for at a

few minutes at a time. There are typically only a handful of major trajectory correction maneuvers

that require for the main engine to be fired for as long as an hour or two. Spacecraft usually travel

for millions of kilometers during missions that take years to complete, so that the assumption that

their main engines fire in single instantaneous bursts provides good approximations.

Let’s turn to the mathematics of the ideal Hohmann transfer orbit. We’ll suppose that it is

intended to bring the craft C from its near-Earth solar orbit to a rendezvous with the planet

Mars. Refer to Table 5.1, and let a ≈ 1.4960 × 108 km and ε ≈ 0.0167 be the semimajor axis and

eccentricity of the craft’s near-Earth solar orbit. From data in Chapter 1H, we know that for M the

mass of the Sun, GM ≈ 1.3271 × 1020 m3/sec2 = 1.3271 × 1011 km3/sec2. By one of the formulas of

Example 5.1, the craft’s speed at perihelion of its near-Earth orbit is

v =
√

GM(1+ε)
a(1−ε)

≈
√

(1.3271×1011)(1+0.0167)
(1.4960×108)(1−0.0167)

≈ 30.286 km/sec.

The semimajor axis and eccentricity of the orbit of Mars are aM ≈ 2.2794 × 108 km and εM ≈ 0.0934

(again by Table 5.1), so that its minimum and maximum distances from S are

aM(1 − εM) ≈ (2.2794 × 108)(1 − 0.0934) ≈ 2.0665 × 108 km and

aM(1 + εM) ≈ (2.2794 × 108)(1 + 0.0934) ≈ 2.4923 × 108 km,

respectively. Let a0 and ε0 be the semimajor axis and the eccentricity of the craft’s Hohmann transfer

orbit. Let’s assume that the craft’s point of rendezvous with Mars that its Hohmann transfer targets

is 2.0700 × 108 km from S. The requirements for the perihelion and aphelion of the ideal Hohmann

transfer tell us that

a0(1 − ε0) = a(1 − ε) ≈ (1.4960 × 108)(1 − 0.0167) ≈ 1.4710 × 108 km and

a0(1 + ε0) ≈ 2.0700 × 108 km.
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Since 2a0 ≈ (1.4710 + 2.0700) × 108 ≈ 3.5410 × 108 km and 2a0ε0 ≈ (2.0700 − 1.4710) × 108 ≈
0.599 × 108 km, we get

a0 ≈ 1.7705 × 108 km and ε0 ≈ 0.599
3.541

≈ 0.1692.

Applying the formula of Example 5.1 for the speed at perihelion again, we find that for the successful

placement of the craft into this Hohmann transfer orbit, it needs to be provided with a speed of

v0 =
√

GM(1+ε0)
a0(1−ε0)

≈
√

(1.3271×1011)(1+0.1692)
(1.7705×108)(1−0.1692)

≈ 31.986 km/sec

at the point of insertion into the orbit. It follows that the insertion of the craft into this Hohmann

transfer to Mars requires an increase of approximately 31.986 − 30.286 = 1.70 km/sec or 1700 m/sec

in the speed of the craft when it arrives at the perihelion of its near-Earth solar orbit.

In order to time a rendezvous of the craft with Mars, the duration of the transfer is an important

concern. In the case of the ideal Hohmann transfer this is T0

2
, where T0 is the full period of the

expanded orbit. The transfer orbit of the craft satisfies Newton’s version of Kepler’s second law,
a3
0

T 2
0

= GM
4π2 , so that

T 2
0

4π2 =
a3
0

GM
and (in MKS) that

T0

2
= π

√
a3
0

GM
≈ π

√
(1.7705×1011)3√
1.3271×1020

≈ 20,316,175 sec.

Since one day has 86,400 seconds (see Chapter 1G), it follows that this ideal Hohmann transfer to

Mars would take about 235 days. It turns out that a craft that is inserted into its transfer orbit

at perihelion of its near-Earth orbit—as is the case with the ideal Hohmann transfer—takes the

longest time to get to its destination, but the required speed increase that gets it there is least.

A look back at Example 2.2 and the discussion of the flight of Juno to Jupiter in Chapter 2H

makes it clear that the main engine of a smaller spacecraft (such as Juno with its 645 newton
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thruster) would not be capable of providing it with the speed increase of 1700 m/sec that the

successful injection into this Hohmann transfer orbit requires. The fact is that a flight to Mars is

possible only with either a speed increasing hyperbolic flyby of an interior planet (such as the one

that propelled Juno towards Jupiter), or a powerful engine (of the sort that sent the Voyagers on

their way to Jupiter. See the upcoming section 6L).

6J. Gravity Assist Flybys. Let’s assume that the continuing mission of a spacecraft C calls for

the exploration of an outer planet. To get there, the craft will need another boost in its velocity

relative to the Sun in order to break out of an earlier tighter, elliptical solar orbit. Refer Figure 6.15.

If things are timed and calibrated carefully, the craft can be brought into the gravitational neigh-

borhood of a planet P with the result that the gravitational pull of P will redirect the craft, increase

its speed, and bring it on a course to the targeted outer planet U .

We turn our attention to the craft’s hyperbolic flyby and the changes in the Sun-relative motion

of the craft that it brings about. Suppose that the craft has entered the gravitational sphere

y

x

r(t)

 t = 0

O

C at time t

P = (−a  , 0) Q = (−a, 0)

texit

SOI
radius = R (Laplace)

 (t)α

 ε

v(t)

v∞

v∞

 δ
focal axis

t entry

Figure 6.16
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of influence (SOI) of the planet P that the Laplace radius of the Sun-planet system determines.

Suppose also that the craft’s speed is great enough so that it is drawn into a hyperbolic flyby—

but not into orbit—around P . Figure 6.16 shows the part of the hyperbolic trajectory that falls

inside the planet-centered SOI indicated by the dashed circular arc. The coordinates of the point P

(understood to be the center of mass of the planet) and Q (the periapsis of the flyby) are determined

by the semimajor axis a of the hyperbola and its eccentricity ε. Given that the Laplace radius is

relatively large, the two slanting lines emanating from the origin O and tangent to the trajectory

are close approximations of the hyperbola’s asymptotes. A time t is assigned to the position of the

craft during its flyby by taking t < 0 on the craft’s approach to periapsis, t = 0 at periapsis, and

t > 0 thereafter, in such a way that |t| is the craft’s time of flight to or from its position to periapsis

(as in section 6F and Figure 6.12). The instants at which the craft enters and departs the SOI are

denoted by tentry and texit, respectively. The distance of C from P at any time t is denoted by r(t).

We’ll let MP be the mass of P and make use of the results of section 6G. The velocity of the

craft relative to P at time t in its flyby is given by the speed formula

v(t) =
√

GMP

a

√
2a
r(t)

+ 1 =
√

GMP

√
2

r(t)
+ 1

a

together with the angle γ(t) of Figure 6.13 and the formulas for γ(t) that conclude section 6G. At

the time tentry the craft enters the SOI and at the time texit that it departs from it, its distance r(t)

from P is large relative to a. So 2a
r(t)

is small and

v(tentry) ≈ v∞ =
√

GMP

a
≈ v(texit) .

We’ll now study the velocity vectors of the flyby both at the time of entry into and departure

C
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departure

v∞
entry

vin
vout

Pθ

δ
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Figure 6.17
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from the SOI and the effect of the flyby on the motion of the spacecraft C relative to the Sun. Our

study relies on the fact that P in its orbit around the Sun drags its SOI as well the hyperbolic flyby

of C with it.

Turn to Figure 6.17. The velocity of the planet P relative to S is represented by the vector vP

that has length the speed of P and direction given by the tangent to its orbital path. The figure

depicts the vector vP and the angle θP between it and the vector v∞ of the craft’s entry into the

planet’s SOI. Table 5.1 tells us that the eccentricities of the outer planets are all small. It follows

from a comparison of the formulas for vmax and vmin of Example 5.1 that the speed of the planet

does not vary much over time. Given that the planet P takes years to orbit the Sun but the craft’s

flyby only a few hours (see Example 6.13 for instance), we can assume that the velocity vector vP

of P relative to S is constant. Figure 6.17 also depicts the velocity vector v∞ at the point of the

craft’s departure from the planet’s SOI. The respective resultants of vP and the two vectors v∞,

each determined by the parallelogram law, are drawn into the figure as vin and vout in blue and

green, respectively. The vector vin represents the velocity of the craft C relative to the Sun at the

point of entry into the SOI and the vector vout the velocity of the craft relative to the Sun at the

point of departure from the SOI. The fact that vout is longer than vin tells us (in the particular

situation being considered) that the hyperbolic cruise around P has increased the speed of the craft

relative to the Sun. The angle δ is the angle of deflection. A careful look at Figure 6.9 tells us that

δ = π − 2ϕ. So δ
2

= π
2

− ϕ and sin δ
2

= a
c

= a
aε

= 1
ε
. Therefore δ

2
= sin−1

(
1
ε

)
and

δ = 2 sin−1
(
1
ε

)
.

The magnitudes of vin and vout as well as the angle between them can be computed by making

use of basic trigonometry. The computation relies on the Figure 6.18 extracted from Figure 6.17.

By the law of cosines applied to the triangle that the vectors vP and vin determine, we get (now also

using v∞, vP , vin, and vout for the magnitudes of these vectors) that v2
in = v2

∞ + v2
P − 2v∞vP cos θP

ϕ
1

C

vP

vin
vout

Pθ

δ

ϕ
2

Figure 6.18
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and hence that

vin =
√

v2∞ + v2
P − 2v∞vP cos θP .

By the law of cosines applied to the triangle formed by the vectors vP and vout, we get v2
out =

v2
∞ + v2

P − 2v∞vP cos(2π − (θP + δ)) = v2
∞ + v2

P − 2v∞vP cos(−(θP + δ)), so that,

vout =
√

v2∞ + v2
P − 2v∞vP cos(θP + δ) .

The angle ϕ1 + ϕ2 measures the change in the direction of the motion of the craft C relative to the

Sun that it undergoes as a result of the hyperbolic flyby. The angles ϕ1 and ϕ2 can be found by the

law of sines. Two applications of this law tell us that

sin ϕ1

v∞
=

sin θP

vin
and

sin ϕ2

v∞
=

sin(2π − (θP + δ))

vout
= −sin(θP + δ)

vout
.

Therefore the change in the direction in the craft’s trajectory relative to the Sun that the flyby

around P brings about is given by the angle

ϕ = ϕ1 + ϕ2 = sin−1
(

v∞
v in

sin θP

) − sin−1
(

v∞
v out

sin(θP + δ)
)
,

where v∞ =
√

GMP

a
and the magnitudes vin and vout are provided by the formulas above.

The derivations of the formulas derived above have relied on Figure 6.17 and the assumption

that the vector vP is positioned between the two vectors v∞ at the entry and exit of the SOI of the
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flyby. The same formulas (with similar derivations) also hold for the other locations of the vector

vP relative to the vectors vin and vout of the flyby. Refer to the paragraph Returning to the Voyagers

in the Problems and Discussions section of this chapter.

It is obvious that if a craft’s gravity assist flyby of planet P is to achieve its navigational goals,

then it needs to be tightly timed and carefully configured. An important tool in the execution of

such a maneuver is the construct of a target plane known as the B-plane (B for Body). Turn to

Figure 6.19. At the time of the craft’s arrival in the SOI of the planet, consider the asymptote of

its hyperbolic trajectory (this is essentially the line in Figure 6.16 determined by the vector v∞ at

time tin). The B-plane is the plane perpendicular to this asymptote and through the center of mass

of the planet P (the planet in brown, its center of mass in black). This is a plane in which the craft

can be tracked. The aim point is the point B of intersection of the asymptote with the B-plane.

The impact radius of P is the circular region (elliptical in perspective) in the B-plane that the craft

needs to steer clear of so as not to risk a collision with the planet. The vector X in the B-plane can

be the specified in different ways to lie, for example, in the orbital plane of P or the equatorial plane

of P . The vector Y in the B-plane is perpendicular to X. The pair X and Y provide a coordinate

system for the B-plane. The points designated by a + indicate projected positions of the craft or

targets of trajectory correction maneuvers and the white ellipses that surround them in the B-plane

give indication of the possible errors involved.

6K. The Voyagers and Cassini. In view of the considerable weight that the required quantities

of propellant add to any spacecraft, it had been thought—even by the expert scientists and engineers

who were engaged in the post-Sputnik space race—that the exploration of the more distant reaches

of the solar system would only be possible by building more powerful conventional rocket engines

or entirely new nuclear propulsion systems. That tight flybys of planets could boost the speed

of a spacecraft and propel it to the ends of our solar system was beyond their concept of what

was possible. But a graduate student in mathematics and physics working at the Jet Propulsion

Laboratory (JPL) in Pasadena came to a different conclusion in the summer of 1961. Working

with the most powerful computers available at the time, Michael Minovitch studied the seemingly

intractable three-body problem (e.g., the gravitational attractions and motions of a Sun-planet-

spacecraft system) and showed that such flybys were capable of generating vehicle velocities far

greater than those the most advanced propulsion systems could produce and that they would do so

independently of the spacecraft’s mass. But the 47 page technical paper that Minovitch presented

to JPL to make this case was ignored. How could a young graduate student in mathematics and

physics who never studied the problem of space propulsion, space travel, or astrodynamics before the

summer of 1961 conceive of a new approach to space travel far more effective than the “only possible”

traditional approach? The fact that in 1962 the JPL was preoccupied with the support of NASA’s

Apollo Moon Project meant that no attention was given to Michael Minovitch’s breakthrough.

In the summer of 1965, Gary Flandro, another graduate student working at JPL, began to con-

sider whether Minovitch’s solution of the Sun-planet-spacecraft problem could inform the challenge

of sending a spacecraft to the outer planets. He began to make a study of the locations of the outer

planets in the solar system for the coming years. His investigations revealed, much to his surprise,

that in the late 1970s, Jupiter, Saturn, Uranus, and Neptune would all be aligned on the same
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side of the Sun. His computations confirmed that Minovitch’s ideas implied that a single mission

launched from Earth in 1977, could sling a spacecraft past all four of these planets within 12 years.

Such an opportunity would not present itself again for another 176 years. Eventually, NASA and

JPL embraced both Minovitch’s gravity assist propulsion concept and Flandro’s idea for a “grand

tour” of the planets.

In the fall of 1977, two Voyager spacecraft were launched from Cape Canaveral, Florida on

exploratory cruises through the solar system. For over 40 years these craft gathered information

about the planets and their moons, sent back the data they collected, and captured thousands of

astonishing images. Voyager 1 was launched on September 5th, 1977 aboard a Titan III-E/Centaur

rocket. The spacecraft was attached to an Injection-Propulsion Unit (IPU) that was driven by a

powerful 76,500 N solid-propellant rocket engine and four smaller liquid fuel powered thrusters. The

combined mass of the craft and the IPU was 2,060 kg. The IUP had a mass of 1,235 kg, most of it

the 1120 kg solid fuel rocket engine. Three days after Voyager 1’s launch, the IPU’s rocket engine

fired for 43 seconds, burning its 1,040 kg of propellant in the process. During the burn, the smaller

thrusters pulsated on and off to stabilize the vehicle’s direction. After the fuel was spent and the

required speed increase achieved, the IPU was jettisoned and Voyager 1 was off on its own on a Sun-

focused trajectory that took it toward Jupiter. The identical craft Voyager 2 had been launched

in the same way two weeks before Voyager 1. But Voyager 1, placed on a more direct trajectory

through the solar system, soon caught up to its twin and overtook it.

Each of the Voyagers started its cruise to Jupiter with a mass of 825 kg that included 103 kg of

liquid propellant for its set of small thrusters. The thrusters provided each craft with the capability to

stabilize it in flight, to adjust its orientation, and to execute small trajectory correction maneuvers.

A burn of one of them generated a thrust of about 0.834 newtons. This is a very small push. A

single penny has a mass of 2.50 grams or 0.0025 kg and therefore a weight of 0.0025 × 9.80665 =

0.0245 newtons. It follows that 34 pennies in the palm of your hand exert the same push as one

of the thrusters. Consequently, only a few minor trajectory correction maneuvers were planned for

the Voyagers. The mission of Voyager 2, for example, called for only eight trajectory correction

maneuvers, the first two early in the cruise to Jupiter, three more prior to the encounter with

Jupiter, and another four between Jupiter and Saturn.

Example 6.15. Use the fact that the specific impulse of one of Voyager’s thrusters is Isp ≈ 200 sec

and the equation vex = Isp · g0 from section 6A, to show that the exhaust gases that it generates

have a velocity of approximately 2 km/sec. Use the rocket equation of Chapter 2G, to conclude that

the total change in velocity Δv that the thrusters could have generated by burning all available

fuel, would have been Δv = vex ln M1

M2
≈ 2 ln 825

722
≈ 0.27 km/sec.

Even if the Voyagers’ thrusters would have been deployed exclusively for increasing their speeds—

rather than to also stabilize or reorient them—these thrusters would have had essentially no impact

on the ability of these spacecraft to escape their initial orbits. Only the gravity assist flybys of the

outer planets made their exploration of the outer solar system possible.

The Voyager missions succeeded magnificently. They discovered that Jupiter has a complicated

atmosphere and that its great red storm rotates once every six days pulling in smaller eddies

as it does. They detected Jupiter’s rings and discovered that the moon Io has active volcanoes.
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They provided a detailed sense of the complexity of Saturn’s ring system. These feature braids,

kinks, and spokes. The Voyagers discovered new ‘shepherd’ moons that keep Saturn’s rings stable.

Their instruments detected the smoggy, mostly nitrogen-containing atmosphere of Saturn’s moon

Titan. Voyager 2’s investigations of Uranus and Neptune revealed that both had large and unusual

magnetic fields. It determined the chemical compositions of their atmospheres. Its cameras detected

ten previously unknown moons of Uranus, studied the planet’s ring system, discovered two new

rings and the fine detail of those previously known. Voyager 2 also discovered active, geyser-like

features on Neptune’s largest moon Triton.

Both Voyagers left the realm of the planets long ago. Voyager 1 is currently about 150 au from

the Sun moving away from it at a speed of about 3.6 au per year, and Voyager 2 is about 120 au

from the Sun speeding along at about 3.3 au per year. Voyager 1 left the plane of the orbits of the

planets after its flyby of Jupiter at an angle of about 35◦ with this plane and Voyager 2 left the

plane of the planets after its flyby of Neptune at an angle of 48◦. Now exiting the solar system, the

two craft continue to send data as they probe for the limits of the influence of the solar wind—the

stream of charged particles that is released from the upper atmosphere of the Sun.

The Cassini spacecraft was launched with a Titan IV-Centaur rocket in October 15th, 1997, on a

mission to investigate Saturn, its moons, and its ring system. With its equatorial radius of 60,268 km

and mass of 5.6851 × 1026 kg, Saturn is the solar system’s second largest planet (after Jupiter). The

spacecraft was named after Dominique Cassini, the French-Italian astronomer of the 17th century

whose parallax studies informed us about the true size of the solar system, who discovered four of

Saturn’s major moons, and who was first to observed gaps in Saturn’s ring system. At the time

of its launch the craft had a total mass to 5,630 kg, including 3,130 kg of liquid propellant for its

rocket engines. The challenge to provide the massive craft with the velocity necessary to bring it

to its gravity-assist flyby of Jupiter and then to Saturn was met very differently for Cassini than it

had been for the Voyagers. Instead of relying on a powerful injection-propulsion unit, the design of

Cassini’s flight plan called for several gravity assist maneuvers. Cassini’s path took it from Earth

to two flybys of Venus on to another flyby of Earth that directed it to a rendezvous with Jupiter.

The flyby of Jupiter finally gave Cassini the velocity needed to bring it to Saturn. Had the resulting

velocity increases been left to the craft’s main thruster, the amount of propellant required would

have exceeded in mass many times the total mass that the craft had at launch.

After taking 7 years to journey to Saturn, Cassini circled around the planet, its moons, and its

rings for 13 years. During one of its early orbits around Saturn, Cassini ejected the probe Huygens

toward the moon Titan. Huygens studied Titan’s atmosphere on its descent, and after landing softly

on its surface, took images of the flat, sandy, pebble-strewn plain nearby. After an orbit correction

maneuver in August of 2004, Cassini had used up much of its propellant. To chase down Saturn’s

moons and to analyze its rings, the spacecraft had to rely on the velocity changes that close flybys

of Titan provided. Cassini looped around Saturn almost 300 times in orbits that varied widely in

size, orientation, and inclination. With the information that its instruments gathered during the

years of its mission, initially scheduled to run until 2008 but extended until 2017, the scientific story

about Saturn, its moons, and its ring system was completely rewritten.
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After 20 years in space, Cassini’s fuel supply was exhausted. In its final bow on the stage

that Saturn provided, it was sent on two dozen daring, risky final orbits. In these final loops, the

spacecraft dove through the gap between Saturn and its icy, inner rings and skimmed through the

outer edges of the planet’s atmosphere. Along the way, Cassini’s particle detectors sampled icy ring

particles and observed how Saturn’s magnetic field funneled them into its atmosphere, while its

cameras took amazing, closeup images of the planet’s rings and clouds. On September 15, 2017,

Cassini was on its final approach to the giant planet. Sending data for as long as its small thrusters

could keep its antenna pointed at Earth, it burst through Saturn’s atmosphere and burned up like

a disintegrating meteor. This fiery end ensured that the craft would not collide with Enceladus and

Titan and contaminate environments that have given evidence of harboring some of the essential

ingredients of life.

We have seen that spacecraft perform a variety of tasks during a mission. They receive instruc-

tions from mission scientists and engineers and respond to them. This includes navigational aspects,

such as trajectory correction maneuvers where smaller thrusters orient the craft, and precisely

directed and quantified burns of the main engine that adjust its velocity. Spacecraft need to respond

to the commands involved with high degrees of accuracy. They send back to mission control what

their sensors and instruments collect, the data their computers record, and the images that their

cameras capture. The electronic and mechanical systems of spacecraft must be heated to be fully

operational, and backup systems must be on standby. All this requires a significant amount of elec-

trical power. Standard sources of power do not measure up to the demands. Conventional batteries

have limited lifetimes in the frigid conditions of space and cannot supply power for missions of years

in duration. Solar panels are effective for missions to the inner planets and for missions to Jupiter.

(See Figure 2.4 for instance.) But at distances beyond the orbit of Jupiter, solar radiation is too

weak—for example, Saturn is about 10 times farther from the Sun than Earth, so that the sunlight

it receives has only 1% of the intensity of the sunlight that strikes Earth—and current solar panels

not advanced enough to produce sufficient power. The technology that has been used to provide

power both for Cassini and the Voyagers is the radioisotope thermoelectric generator (RTG). This

highly reliable nuclear battery produces heat through slow radioactive decay, of plutonium-238 for

instance, which is in turn converted to electricity. These batteries have powered all spacecraft on

missions to the outer solar system throughout their long journeys.

The websites https://voyager.jpl.nasa.gov/ and https://saturn.jpl.nasa.gov/ provide much of the

information that the Voyager and Cassini missions have collected. Some of what they transmitted

was discussed in Chapter 2. We will now turn to illustrate much of the analysis of this chapter

by studying some of the navigational aspects of the trajectories of the two Voyagers and Cassini.

Throughout this study, we’ll let S be the center of mass of the Sun.

6L. The Cruise of Voyager 1. The essential information about the segments of Voyager 1’s trip

through the solar system is provided by NASA and collected in Table 6.3. The first row of the table

lists basic data about the craft’s elliptical, Sun-focused trajectory to Jupiter. The other rows pertain

to the hyperbolic flybys of Jupiter and Saturn, and the Sun-focused hyperbolic cruises to Saturn

and to the outer reaches of the solar system beyond Saturn. (Note that in each case the eccentricity

is greater than one.) The dates and times for the interplanetary flights are those of the start in the

https://voyager.jpl.nasa.gov/
https://saturn.jpl.nasa.gov/
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Table 6.3. Voyager 1’s cruise through the solar system. The segments Earth−Jupiter, Jupiter−Saturn, and post
Saturn are Sun-focused trajectories. The two flybys are planet-focused. The times listed refer to Eastern Standard
Time. The data are taken from https://voyager.jpl.nasa.gov/mission/science/hyperbolic-orbital-elements/.

Voyager 1

trajectory
date, time

semimajor

axis (km)

eccen-

tricity

inclination

(deg)

mean ano-

maly (deg)

Earth−Jupiter 9/8/77, 9:08:17 745,761,000 0.797783 1.032182 0.304932

flyby Jupiter 3/5/79, 12:05:26 1,092,356 1.318976 3.979134

Jupiter−Saturn 4/24/79, 7:33:03 593,237,000 2.302740 2.481580 19.156329

flyby Saturn 11/12/80, 23:46:30 166,152 2.107561 65.893904

post Saturn 1/1/91, 00:00 480,926,000 3.724716 35.762854 688.967795

given trajectory. Those for the hyperbolic flybys reference the closest approaches at periapsis. The

information about the inclination of the planes of Voyager 1’s trajectory together with information

in Table 5.1 tells us that the craft’s Sun-focused approaches to both Jupiter and Saturn were tightly

aligned with the orbital planes of these planets. The flyby of Saturn lifted the plane of Voyager 1’s

final trajectory away from the planets’ orbital plane by 36◦. Given the precision of the data of the

table, we’ll be computing with an accuracy of six significant figures.

We begin our study with the Earth−Jupiter leg of Voyager 1’s journey. The craft traversed only

a part of the elliptical orbit that the injection-propulsion unit (IPU) had put it on (because after

it arrived at Jupiter, it was redirected toward Saturn). Had it completed this solar orbit, Kepler’s

second law a3

T 2 = GM
4π2 and the fact that GM = 1.3271244 × 1011 km3/sec2 for the Sun would have

specified its period T to have been

T =

√
4π2a3

GM
=

√
4π2(754,761,000)3

1.3271244×1011
= 357,633,529 sec ≈ 11.3327 years.

Let’s consider the injection of Voyager 1 into its orbit. Let t1 be the elapsed time of the craft’s

orbit injection from perihelion (assuming that it had come from there on a previous orbit). Since

the mean anomaly at time t1 is 0.304932◦ and hence 0.304932 · π
180

= 0.0053144 radians, we get that
2πt1
T

= 0.0053144 (by a concluding remark of Chapter 5C). It follows that Voyager 1’s orbit insertion

occurred t1 = 0.0053144
2π

11.3327 = 0.009585 years or 0.009585 · 365.25 = 3.50 days after perihelion.

Turn next to Chapter 5E and the solution of Kepler’s equation β(t) − ε sin β(t) =
√

GM
a3 t in the

current situation of t = t1. The first approximation of the solution β(t1) is given by the mean

anomaly β1 =
√

GM
a3 t1 = 2πt1

T
= 0.0053144. By applying the approximation step βi+1 = β1 + ε sin βi

a total of 52 times (this is boring and laborious)1, we get

β1 = 0.0053144, β2 = 0.0095541, β3 = 0.0129364, . . . , β10 = 0.0235315, . . . ,

β20 = 0.0259838, . . . , β30 = 0.0262315, . . . , β40 = 0.0262649, . . . , β50 = 0.0262684,

β51 = 0.0262685, β52 = 0.0262686, β53 = 0.0262686.

1but manageable when carried out with a calculator such as the one provided by https://web2.0calc.com/.

https://voyager.jpl.nasa.gov/mission/science/hyperbolic-orbital-elements/
https://web2.0calc.com/.
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Since the sequence has stabilized, it follows that β(t1) = 0.0262686. (There is little doubt that

the Newton-Raphson method—see the paragraph Using Kepler’s Equation of the Problems and

Discussion section of Chapter 5—would have converged to this solution more quickly.)

By inserting the value β(t1) = 0.0262686 into the equations for r(t) and α(t) of Chapter 5B,

we find that the distance of Voyager 1 from S at the time of the insertion into its transfer orbit to

Jupiter was

r(t1) = a(1 − ε cos β(t1)) = 754,761,000(1 − 0.797783 cos(0.0262686)) = 152,833,242 km

with corresponding angle α(t1) (as in Figure 5.3) equal to

α(t1) = 2 tan−1
(√

1+ε
1−ε

tan β(t1)
2

)
= 2 tan−1

(√
1+0.797783
1−0.797783

tan(0.0262686
2

)
)

= 0.078324 radians ≈ 4.49◦.

The equations for v(t) and γ(t) of Chapter 5D inform us about the velocity of Voyager 1 relative to

the Sun at the instant of the insertion into its transfer orbit. It had a speed of

v(t1) =
√

GM
√

2
r(t1)

− 1
a

=
√

1.3271244 × 1011
√

2
152,833,242

− 1
754,761,000

≈ 39.51 km/sec

and was moving at the angle

γ(t1) = π − sin−1
(

a
√
1−ε2√

r(t1)(2a−r(t1))

)
= π − sin−1

(
754,761,000

√
1−0.7977832√

152,833,242(2·754,761,000−152,833,242)

)

= 1.605536 radians ≈ 91.99◦

relative to the Sun.

Having studied the insertion of Voyager 1 into its transfer orbit to Jupiter on September 8th,

1977, we turn to the spacecraft’s rendezvous with Jupiter on March 5th, 1979. The date and time

data of Table 6.3 tells us that this occurred 542 days and 3 hours or 542.125/365.25 = 1.4843 years

after the craft’s orbit insertion. So the craft’s travel time from periapsis to its Jupiter rendezvous

was t2 = 1.4843 + t1 = 1.4843 + 0.0096 = 1.4939 years. To determine the distance r(t2) of Voyager 1

from the Sun and the corresponding angle α(t2) at the time of the rendezvous, we need to compute

β(t2). Returning to Chapter 5E and taking β1 = 2πt2
T

= 2π1.4939
11.3327

= 0.828263, we get (much more

quickly than the last time)

β2 = 1.416036, β3 = 1.616511, β4 = 1.625213, β5 = 1.624865, β6 = 1.624880, β7 = 1.624880,

so that β(t2) = 1.624880. It follows that at the time of the rendezvous, Jupiter was

r(t2) = a(1 − ε cos β(t2)) = 754,761,000(1 − 0.797783 cos(1.624880)) = 787,310,826 km,

or about 787,000,000 km from the Sun. The angle α(t2) was

α(t2) = 2 tan−1
(√

1+ε
1−ε

tan β(t2)
2

)
= 2 tan−1

(√
1+0.797783
1−0.797783

tan(1.624880
2

)
)

= 2.526331 radians ≈ 144.75◦.
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In terms of the velocity relative to the Sun on its arrival at Jupiter, Voyager 1 had a speed of

v(t2) =
√

GM
√

2
r(t2)

− 1
a

=
√

1.3271244 × 1011
√

2
787,310,826

− 1
754,761,000

≈ 12.70 km/sec,

and was traveling away from the Sun at an angle of

γ(t2) = π − sin−1
(

a
√
1−ε2√

r(t2)(2a−r(t2))

)
= π − sin−1

(
754,761,000

√
1−0.7977832√

787,310,826(2·754,761,000−787,310,826)

)

= 2.493702 radians ≈ 142.88◦.

Figure 6.20 captures the information that has been developed about Voyager 1’s elliptical cruise

S
Q
I

v(t  ) = 1

39.51 km/sec

91.99

4.49

J

r(t   ) = 787,000,000 km2

Earth’s orbit

142.88

v(t  ) = 12.70 km/sec 2

Figure 6.20. The figure lists important numerical data of Voyager 1’s elliptical Hohmann transfer trajectory from
Earth orbit to Jupiter. The point of insertion into the trajectory is denoted by I and Q is the periapsis of the ellipse.
The location of Jupiter is denoted by J . The flyby at Jupiter is not (yet) taken into account.

from its beginning near Earth to its approach to Jupiter.

We turn next to Voyager 1’s flyby of Jupiter. We’ll let P be the planet Jupiter and refer to

the discussion of section 6J and Figure 6.17 in particular. The gravitational constant GMP =

1.26712765 × 108 km3/sec2 with MP the mass of Jupiter is taken from Table 6.4. The values

vP = 12.83 km/sec for the Sun-relative speed of Jupiter at the time of the flyby (Table 5.1 tells us

that Jupiter’s average orbital speed is 13.06 km/sec) and θP = 63.8◦ for the angle between Jupiter’s

Table 6.4 Data taken from Cesarone, A Gravity Assist Primer, of the References for Chapter 6.

Voyager 1

hyperbolic
flyby of

GMP in

km3/sec2
vP in

km/sec

θP in

degrees

inclination relative

to Earth’s orbit

Jupiter 126,712,765 12.83 63.8 1.03◦ → 3.98◦ → 2.48◦
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velocity and the direction of Voyager 1’s approach to Jupiter come from Table 6.4. Using data in

Table 6.3, we get that

v∞ =
√

GMP

a
=

√
126,712,765
1,092,356

≈ 10.77 km/sec

for Voyager 1’s flyby and a(ε − 1) = 1,092,356(1.318976 − 1) = 348435 km for the distance of

the craft from Jupiter’s center of mass at periapsis of the flyby. Since ε = 1.318976, we get

δ = 2 sin−1(1
ε
) = 2 sin−1( 1

1.318976
) = 98.61◦ for the angle of deflection. It follows that

vin =
√

v2∞ + v2
P − 2v∞vP cos θP

≈
√

10.772 + 12.832 − 2(10.77)(12.83) cos 63.8

≈ 12.59 km/sec (close to the 12.70 km/sec calculated earlier), and

vout =
√

v2∞ + v2
P − 2v∞vP cos(δ + θP )

≈
√

10.772 + 12.832 − 2(10.77)(12.83) cos(98.61 + 63.8)

≈ 23.32 km/sec.

The flyby resulted in a change of direction of

ϕ = ϕ1 + ϕ2 = sin−1
(

v∞
v in

sin θP

) − sin−1
(

v∞
v out

sin(δ + θP )
)

≈ 50.13◦ − 8.03◦ = 42.10◦

in the craft’s trajectory. With its direction changed and with 23.32 − 12.59 = 10.73 km/sec added

to its speed relative to the Sun, Voyager 1 was now on its way to the exploration of Saturn and its

ring system. A comparison of Voyager’s initial elliptical orbit with Saturn’s orbit tells that without

the boost that Jupiter gave it, Voyager 1 would have turned back in the direction of Earth, many

millions of kilometers short of a rendezvous with Saturn. (In case you’re wondering, the main engine

of the Voyagers was not nearly powerful enough and its fuel supply not nearly large enough to have

provided such a boost. Refer back to Example 6.15.)

Our final computations of Voyager 1’s trajectory deal with the segment from Jupiter to Saturn

after the flyby of Jupiter. Over a month and a half after Voyager 1 passed the periapsis of this flyby,

the gravitational impact of Jupiter had become negligible. Table 6.3 informs us of the date (the 24th

of April, 1979) and the exact time at which the craft had started on a new Sun-focused trajectory.

Since its eccentricity—listed as 2.302740—was greater than 1, this new trajectory was hyperbolic.

The table tells us that its semimajor axis was a = 593,237,000 km and that when Voyager 1 started

into this trajectory, the mean anomaly was 19.156329 degrees or 19.156329 π
180

= 0.334341 radians.

Therefore (see the definition of mean anomaly in section 6G)
√

GM
a3 t1 = 0.334341, where M is the

mass of the Sun and t1 is the time of the craft’s travel from the perihelion of its new hyperbolic

trajectory to its starting point in it. To clarify, t1 is the time it would have taken the craft to travel

from the perihelion to the starting point had it been inserted into this hyperbolic trajectory before

perihelion. As for the Earth−Jupiter segment of Voyager 1’s trip, the key to the analysis of the craft’s

motion at the start of its new trajectory is the value of β(t1), but this time in the hyperbolic context.
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To compute β(t1), turn to section 6H. Since β1 = sinh−1 1
ε

(√
GM
a3 t1

)
= sinh−1 1

2.302740
(0.334341), we

get β1 = 0.144673 by using a calculator. The iteration of the approximation step

βi+1 = sinh−1 1
ε

(√
GM
a3 t1 + βi

)
= sinh−1 1

2.302740

(
0.334341 + βi

)

and the continued use of the calculator, provide the sequence

β2 = 0.206547, β3 = 0.232781, . . . , β14 = 0.251918, β15 = 0.251919, β16 = 0.251919,

so that β(t1) = 0.251919. The substitution of β(t1) into the equations for r(t) and α(t) of section 6F

informs us that at the beginning of Voyager 1’s hyperbolic trajectory from Jupiter to Saturn, the

craft’s distance from the Sun was

r(t1) = a(ε cosh β(t1) − 1) = (593,237,000)
(
2.302740 cosh(0.251919) − 1

)
= 816,410,896 km

and the corresponding angle α(t1) was

α(t1) = 2 tan−1
(√

ε+1
ε−1

tanh β(t1)
2

)
= 2 tan−1

(√
2.302740+1
2.302740−1

tanh 0.251919
2

)

= 0.393837 radians ≈ 22.57◦.

After substituting r(t1) into the formulas for v(t) and γ(t) of section 6G, we get that the craft began

its new trajectory with a Sun-relative speed of

v(t1) =
√

GM
√

2
r(t1)

+ 1
a

=
√

1.3271244 × 1011
√

2
816,410,896

+ 1
593,237,000

≈ 23.43 km/sec,

traveling at an angle of

γ(t1) = π − sin−1
(

a
√

ε2−1√
r(t1)(2a+r(t1))

)
= π − sin−1

(
593,237,000

√
2.3027402−1√

816,410,896(2(593,237,000)+816,410,896))

)

= 1.846245 radians ≈ 105.78◦

away from the Sun.

Table 6.3 tells us that the cruise from Jupiter to Saturn took close to 568 days and 16 hours,

or 49133088 sec. Adding t1 to this time, let t2 = 49133088 + t1. So t2 is the time from perihelion of

the post-Jupiter hyperbolic trajectory to the rendezvous with Saturn. Since

t1 = (0.334341)

√
a3

GM
= (0.334341)

√
593,237,0003

1.3271244×1011
= 13260997 sec,

t2 = 49133088 + 13260997 = 62394085 seconds. As in similar situations before, our understanding

of Voyager 1’s motion on its approach to Saturn at time t2 depends on the value β(t2). Turning to

section 6G again, we get

β1 = sinh−1 1
ε

(√
GM
a3 t2

)
= sinh−1 1

2.302740

(√
1.3271244×1011

593,237,0003
62394085

)
= 0.638803.

Using the approximation step
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βi+1 = sinh−1 1
ε

(√
GM
a3 t2 + βi

)
= sinh−1 1

2.302740

(√
1.3271244×1011

593,237,0003
62394085 + βi

)

= sinh−1 1
2.302740

(
1.573102 + βi

)
,

we obtain

β2 = 0.853204, β3 = 0.918813, . . . , β10 = 0.946386, β11 = 0.946390,

β12 = 0.946391, β13 = 0.946391, β14 = 0.946391,

so that therefore, β(t2) = 0.946391. Applying earlier formulas once more, we get the following infor-

mation about Voyager 1’s approach to Saturn. Its distance from the Sun was

r(t2) = a(ε cosh β(t2) − 1) = (593,237,000)
(
2.302740 cosh(0.946391) − 1

)
= 1,431,644,288 km

and the corresponding angle α(t2) was

α(t2) = 2 tan−1
(√

ε+1
ε−1

tanh β(t2)
2

)
= 2 tan−1

(√
2.302740+1
2.302740−1

tanh 0.946391
2

)

= 1.223897 radians ≈ 70.12◦.

The craft’s Sun-relative speed and its angle of departure from the Sun were

v(t2) =
√

GM
√

2
r(t2)

+ 1
a

=
√

1.3271244 × 1011
√

2
1,431,644,288

+ 1
593,237,000

≈ 20.23 km/sec

and

γ(t2) = π − sin−1
(

a
√

ε2−1√
r(t2)(2a+r(t2))

)
= π − sin−1

(
593,237,000

√
2.3027402−1√

1,431,644,288(2(593,237,000)+1,431,644,288))

)

= 2.452811 radians ≈ 140.54◦.

The data of Tables 6.3 and 6.4 in combination with the mathematical tools developed in this and

the previous chapter have allowed us to reconstruct basic relevant numerical information about the

cruise of Voyager 1 from Earth to Jupiter to Saturn.

It was an underlying assumption of our study of gravitational assists undertaken in section 6J

that the plane of the flyby trajectory of the spacecraft and the orbital plane of the planet around

which the flyby maneuver occurs are nearly the same. The entry 1.03◦ → 3.98◦ → 2.48◦ of Table

6.4 together with the information about the inclinations of the orbit of Jupiter in Table 5.1 tells us

that the planes of Voyager 1’s trajectory before and during the flyby of Jupiter were closely aligned

with the orbital plane of the planet. The information about the inclination of Saturn’s orbital plane

tells us that this was also the case for Voyager 1’s approach of Saturn. But this was no longer so

for Voyager 1’s flyby of Saturn. The plane of the flyby was at an angle of 65.89◦ with the plane

of Jupiter’s orbit. After this maneuver Voyager 1 sped away from the orbital plane of the planets.

on a hyperbolic trajectory at an angle of 35.76◦ with their orbital plane. The mathematics of the

changes in Voyager 1’s velocity that the flyby of Saturn brought about is much more complex. The

three-dimensional vector calculus that is required is beyond the intention and scope of this text.
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6M.The Cruise of Voyager 2. The mission of Voyager 2 took advantage of a rare geometric

alignment of the outer planets (such an alignment occurs once every 175 years) and threaded four

successive needles to slide past Jupiter, Saturn, Uranus and, finally, Neptune. Voyager 2’s trajectory

depended exclusively on the increases in the craft’s velocity that each of the four flybys provided.

Voyager 2’s small thrusters oriented the craft and facilitated minor trajectory corrections, but played

Voyager 1

Voyager 2

launch
20 Aug 1977

Jupiter
5 Mar 1979

Jupiter
9 Jul 1979

launch
5 Sep 1977

Saturn
12 Nov 1980

Saturn
25 Aug 1981

Uranus
24 Jan 1986

Neptune
25 Aug 1989

Saturn

Jupiter

Uranus

Neptune

Figure 6.21. This diagram of the trajectories of the Voyagers and the planetary orbits is not to scale. Diagram
adapted from https://commons.wikimedia.org/wiki/File:Voyager Path.svg.

no role in boosting the craft’s velocity. Figure 6.21 shows the delicately executed flight path of

Voyager 2 and the simpler course of Voyager 1 side by side.

Table 6.5 provides essential details about the trajectory of Voyager 2. The dates and times for

the interplanetary segments are those of the insertion into the trajectory. Their eccentricities tell

us that with the exception of the flight segment to Jupiter, they are all hyperbolic. All have the

center of mass S of the Sun at a focal point. The dates and times for the hyperbolic flybys reference

the craft’s closest approaches at periapsis. The flight of Voyager 2 began on August 23, 1977, when

the Injection-Propulsion Unit injected it from its near-Earth orbit into a Hohmann transfer toward

Jupiter. The fact that its eccentricity was ε = 0.724429 tells us that this was an elliptical trajectory.

Its semimajor axis was a = 544,470,000 km. Since GM = 1.3271244 × 1011 km3/sec2 for the Sun,

the period of this orbit would have been (had Voyager 2 completed it)

T =

√
4π2a3

GM
=

√
4π2(544,470,000)3

1.3271244×1011
= 219,121,496 sec ≈ 6.9435 years.

https://commons.wikimedia.org/wiki/File:Voyager_Path.svg
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We see from the table that the mean anomaly at the point of the craft’s injection into the transfer

orbit was −0.888403◦ or −0.888403 · π
180

= −0.015506 radians. The expression 2πt1
T

=
√

GM
a3 t1 for the

Table 6.5. Voyager 2’s cruise through the solar system. The segments from one planet to the next are all Sun-focused
trajectories. The four flybys are planet-focused. The times listed refer to Eastern Standard Time. The data are taken
from https://voyager.jpl.nasa.gov/mission/science/hyperbolic-orbital-elements/.

Voyager 2

trajectory
date, time

semimajor

axis in km

eccen-

tricity

inclination

(deg)

mean ano-

maly (deg)

Earth−Jupiter 8/23/77, 11:29 544,470,000 0.724429 4.825717 −0.888403

flyby Jupiter 7/9/79, 22:30 2,184,140 1.330279 6.913454

Jupiter−Saturn 9/15/79, 11:07 2,220,315,000 1.338264 2.582320 4.798319

flyby Saturn 8/26/81, 03:25 332,965 1.482601 3.900931

Saturn−Uranus 10/17/81, 18:44 579,048,000 3.480231 2.665128 10.350850

flyby Uranus 1/24/86, 18:00 26,694 5.014153 11.263200

Uranus−Neptune 6/9/87, 00:00 448,160,000 5.806828 2.496223 315.018680

flyby Neptune 8/25/89, 03:57 24,480 2.194523 115.956093

post Neptune 1/1/91, 00:00 601,124,000 6.284578 78.810177 342.970736

mean anomaly (see Chapter 5C) tells us that t1 = −(0.015506)219,121,496
2π

= −540760 seconds. The

fact that this is negative means that Voyager 2 was injected into this trajectory t1 = 540760 seconds

(or about 6 days and 6 hours) before it reached its perihelion. To understand the specifics about

the insertion into this orbit, we need to compute β(t1).

Refer to the solution of Kepler’s equation in Chapter 5E and notice that the successive

approximation sequence for β(t1) begins with β1 = −0.015506. The subsequent steps are given

by βi+1 = 2πt1
T

+ ε sin βi = −0.015506 + (0.724429) sin βi. The repetitive use of this formula and a

slog with a calculator, provides the values (that a reader might check),

β2 = −0.026739, β3 = −0.034874, . . . , β10 = −0.053979, . . . , β20 = −0.056105, . . . ,

β30 = −0.056187, β31 = −0.056188, β32 = −0.056189, β33 = −0.056190, β34 = −0.056190,

so that β(t1) = −0.056190 radians.

Inserting this value into the equations for r(t) and α(t) of Chapter 5B, we find that the distance

of Voyager 2 from S at the time of the insertion into its transfer orbit to Jupiter was

r(t1) = a(1 − ε cos β(t1)) = 544,470,000(1 − 0.724429 cos(−0.056190)) = 150,662,648 km

and that the corresponding angle α(t1) was

α(t1) = 2 tan−1
(√

1+ε
1−ε

tan β(t1)
2

)
= 2 tan−1

(√
1+0.724429
1−0.724429

tan(−0.056190
2

)
)

= −0.266248 radians ≈ −15.25◦.

By applying the equations for v(t) and γ(t) from Chapter 5D, we get that the speed of Voyager 2

at the instant of its insertion into its transfer orbit was

https://voyager.jpl.nasa.gov/mission/science/hyperbolic-orbital-elements/
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v(t1) =
√

GM
√

2
r(t1)

− 1
a

=
√

1.3271244 × 1011
√

2
150,662,648

− 1
544,470,000

≈ 38.96 km/sec

and (since the craft was on approach to periapsis) that the direction of its velocity relative to the

Sun was

γ(t1) = sin−1
(

a
√
1−ε2√

r(t1)(2a−r(t1))

)
= sin−1

(
544,470,000

√
1−0.7244292√

150,662,648(2·544,470,000−150,662,648)

)

= 1.511846 radians ≈ 86.62◦.

We’ll leave the study of Voyager 2’s arrival at Jupiter for the Problems and Discussions section

of this chapter and turn instead to its flyby of Jupiter. Inserting data from Tables 6.5 and 6.6 tells

Table 6.6. The data of the second column is taken from Table 2.6 and that of the last column from Table 6.5. The
data from the middle columns comes from Cesarone, A Gravity Assist Primer, of the References for Chapter 6.

Voyager 2

hyperbolic
flyby of

GMP in

km3/sec2
vP in

km/sec

θP in

degs

inclination relative

to Earth’s orbit

Jupiter 126,712,765 12.69 48.3 4.83◦ → 6.91◦ → 2.58◦

Saturn 37,940,585 9.59 98.2 2.58◦ → 3.90◦ → 2.67◦

Uranus 5,794,549 6.71 106.0 2.67◦ → 11.26◦ → 2.50◦

us that when Voyager 2 entered Jupiter’s sphere of gravitational influence (SOI) as determined by

the Laplace radius, it had an speed of

v∞ =
√

GMP

a
=

√
1.26712765×108

2.184140×106
≈ 7.616754 km/sec

relative to Jupiter. Substituting the data of Table 6.6 into the formulas of section 6J tells us that

the speed of the craft relative to the Sun was

vin =
√

v2∞ + v2
P − 2v∞vP cos θP

≈
√

7.61682 + 12.692 − 2(7.6168)(12.69) cos(48.3)

≈ √
219.0517 − 193.3144 · 0.6652 =

√
219.0517 − 128.5927 ≈ 9.51 km/sec

at the beginning of the flyby and

vout =
√

v2∞ + v2
P − 2v∞vP cos(θP + δ)

≈
√

7.61682 + 12.692 − 2(7.6168)(12.69) cos(48.3 + 97.479)

≈
√

219.0517 − 193.3144 · (−0.8269) ≈ √
219.0517 + 159.8517 ≈ 19.47 km/sec

at its conclusion. So the hyperbolic flyby of Jupiter increased the speed of Voyager 2 relative to

the Sun by about 19.47 − 9.51 = 9.96 km/sec. After inserting the data into the angle formulas of

section 6J we get

ϕ1 ≈ sin−1
(

v∞
vin

sin θP

) ≈ sin−1
(
7.6168
9.51

sin 48.3
) ≈ 36.73◦ and

ϕ2 ≈ − sin−1
(

v∞
vout

sin(θP + δ)
) ≈ − sin−1

(
7.6168
19.47

sin(48.3 + 97.479)
) ≈ −12.72◦.
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Therefore the flyby bent the direction of the craft’s flight by 36.73◦ − 12.72◦ ≈ 24◦.
Voyager 2 was now on its way to Saturn, arriving there about 9 months after its faster twin.

Velocity boosting gravitational assist maneuvers around Saturn and Uranus followed. The data of

Tables 6.5 and 6.6 and a repetition of the calculations above show that the Saturn flyby increased

the spacecraft’s speed by 20.25 − 15.33 = 4.92 km/sec and changed its direction by 45.28◦ and that

the Uranus flyby increased the spacecraft’s speed by 19.66 − 17.79 = 1.87 km/sec and changed its

direction by 17.31◦. Figure 6.22 depicts the graphs of the speeds of the two Voyagers. The jumps

in the graphs record the speed changes that the hyperbolic flybys generated. The last column of
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Figure 6.22. The figure graphs the Sun-relative speeds of the Voyagers in terms of their distances from the Sun.
The jumps in the graph measure the changes in the speeds that the flybys of the planets provided. Notice that
each flyby increased the spacecrafts’ speed (except for Voyager 2’s flyby of Neptune which resulted in a decrease).
Recall that 1 au≈ 150 million km. Adapted from https://commons.wikimedia.org/wiki/File:Voyager 2 Heliocentric
Velocity.png.

Table 6.6 confirms that, as required, the plane of Voyager’s trajectory was close to those of the

orbits of the three planets that pulled the craft along. The last flyby around Neptune tilted the

plane of Voyager’s trajectory away from the plane of the planets by almost 80◦. As Figure 6.22

shows, this maneuver simultaneously decreased the speed of the craft by about 2 km/sec.

We’ll conclude our discussion of the mission of Voyager 2 with a quantitative look at the dis-

tances, speeds, and forces related to its flybys with a focus on that of Jupiter. The data of Table 6.7

gives a sense of the dimensions involved by comparing the equatorial radius of the planet, the

https://commons.wikimedia.org/wiki/File:Voyager_2_Heliocentric_Velocity.png
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Table 6.7. Distances are to the planet’s center of mass. For L the latus rectum, “distance at latus rectum” is L
2 .

Voyager 2

hyperbolic
flyby of

the planet’s

radius in km

distance at

periapsis in km

distance at

latus rectum in km

Laplace radius of

Sun-planet system

Jupiter 6.9911 × 104 7.2138 × 105 1.6810 × 106 4.8210 × 107

Saturn 5.8232 × 104 1.6069 × 105 0.3990 × 106 5.4551 × 107

Uranus 2.5362 × 104 1.0715 × 105 0.6445 × 106 5.1764 × 107

periapsis and latus rectum distances of the flyby, and the Laplace radius of the planet’s SOI.

Notice, that very roughly speaking, there is a tenfold increase from one distance to the next. The

information of the table is readily obtained from the planetary and orbital data pointed to in this

and earlier chapters. Let’s look at Voyager 2’s flyby of Jupiter and the craft’s speed relative to

Jupiter at the distances listed. We saw earlier that the limiting speed of the craft on its flyby was

v∞ =
√

GMJ

a
=

√
1.26712765×108

2.184140×106
≈ 7.616754 km/sec,

where MJ is the mass of Jupiter and a = 2,184,140 = 2.1841 × 106 km the semimajor axis of the

flyby. The formula

v(t) =
√

GMJ

a

√
2a
r(t)

+ 1 = v∞
√

2a
r(t)

+ 1 = 7.616754
√

2a
r(t)

+ 1 km/sec

in section 6G tells us that for the distances r(t) = 7.2138 × 105, r(t) = 1.6810 × 106, and r(t) =

4.8210 × 107 all in km, v(t) is equal to 20.23, 14.45, and 7.95 km/sec, respectively.

How long did it take for Voyager 2 to travel from periapsis to the latus rectum and to

the boundary of the SOI? By solving the equation r(t) = a(ε cosh β(t) − 1) of section 6F for

β(t), we get cosh β(t) = 1
ε

(
r(t)
a

+ 1
)

and hence β(t) = cosh−1 1
ε

(
r(t)
a

+ 1
)
. With ε = 1.330279, and

r(t) = 1.6810 × 106 and then r(t) = 4.8210 × 107, we get β(t) = 0.791903 and β(t) = 3.545597. The

hyperbolic Kepler equation ε sinh β(t) − β(t) =
√

GM
a3 t = v∞

a
t of section 6G tells us that

t = a
v∞

(
ε sinh β(t) − β(t)

)
.

It follows that Voyager 2 took t = 107578 seconds or about 1 day and 6 hours to get from the

periapsis of its flyby to the latus rectum point and t = 5588618 seconds or about 64 days and 16

hours to get from periapsis to the boundary of the SOI.

A repetition of the earlier analysis of Voyager 1’s approach to Jupiter shows that Voyager 2 was

about 791,483,000 km from the Sun at the time of its rendezvous with the planet. With M the mass

of the Sun and m = 800 kg the mass of Voyager 2 at that time, and computing in MKS, we get

that the Sun’s pull on the craft was GMm
r2

≈ (1.3271244×1020)(800)
(7.91483×1011)2

≈ 0.17 newtons. When the spacecraft

entered Jupiter’s SOI, it was about 48,210,000 km from the planet, so that the Jupiter’s pull on it

was GMJm
r2

≈ (1.26712765×1017)(800)
(4.8210×1010)2

≈ 0.044 newtons. Even though Voyager 2 was in Jupiter’s SOI, the

Sun’s force on the craft was 4 times greater than that of the planet. But as the craft sped towards

Jupiter, the planet’s force began to dominate. At the distances of 20 million km, 10 million km,
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5 million km, and 1 million km, Jupiter’s gravitational pull increased successively to 0.25, 1.01, 4.05,

and 101 newtons.

6N. The Cassini-Huygens Mission. As Figure 6.23 illustrates and as was already observed,

Cassini’s flightpath took it on successive flybys of Venus, Earth, and Venus again, the last of which

sent the craft on its way to Jupiter. The final flyby around Jupiter propelled Cassini to Saturn, the
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Figure 6.23. Cassini’s gravity assist cruise to Saturn. The diagram is adapted from https://solarsystem.nasa.gov/
news/13070/scenic-route-to-saturn/

target of its mission.

The “Cassini Cruise Event Summary” that follows informs us that by the middle of May, 2004,

Cassini was on a hyperbolic approach to Saturn, that it was injected into orbit around Saturn on

July 1, 2004, and that it released the probe Huygens toward a soft landing on Saturn’s moon Titan

on December 24, 2004. The probe was named after Christiaan Huygens, the 17th century Dutch

scientist who first discovered Saturn’s rings and its largest moon Titan. Notice that the hyperbolic

orbital parameters of Cassini’s path to Saturn varied slightly throughout its approach. The focal axis

of the hyperbola changed position as as well. These changes were due not only to the programmed

Trajectory Correction Maneuvers TCMs, but also (to a lesser extent) to the perturbing effects on the

trajectory caused by the gravitational pull of the Sun (and Jupiter). The adjustments to Cassini’s

initial orbit around Saturn were achieved by Orbit Trim Maneuvers OTMs. The abbreviation UTC

refers to Coordinated Universal Time.2 See Figure 6.24 for a diagrammatic overview of Cassini’s

flight from its hyperbolic approach of Saturn in June, 2004, to the descent of Huygens to the moon

Titan in January, 2005. The discussion about Cassini that follows uses information about Saturn

2Coordinated Universal Time is the primary time standard by which the world regulates clocks and the flow of
time. Adopted in 1970, its based on the time as measured by atomic clocks. The leap second that it makes use of is
occasionally subtracted to compensate for the fact that the Earth’s rotation is slowing and to keep UTC aligned to
the more familiar Greenwich Mean Time (GMT).

https://solarsystem.nasa.gov/news/13070/scenic-route-to-saturn/
https://solarsystem.nasa.gov/news/13070/scenic-route-to-saturn/
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from the sections that studied the Voyagers. Statements about its distance from Saturn refer to its

distance from Saturn’s center of mass. Any reference to its speed is speed relative to Saturn.

May 14. Cassini’s orbital data were a = 1.387719 × 106 km and ε = 1.045856.

May 27. TCM-20 occurred. This correction took place when Cassini was about

1.86 × 107 km from Saturn. It reduced the speed of the craft by 0.034

km/sec. After this maneuver the orbital data were a = 1.401380 × 106

km and ε = 1.055423. What we know about Saturn’s Laplace radius

tells us that TCM-20 occurred within Saturn’s gravitational sphere of

influence.
June 11. Cassini flyby of Saturn’s moon Phoebe.
June 16. TCM-21 occurred. This correction took place when Cassini was about

8.77 × 106 km from Saturn. It reduced Cassini’s speed by 0.004 km/sec.

Before TCM-21 the orbital data were a = 1.400853 × 106 km and ε =

1.056965. Thereafter they were a = 1.401824 × 106 km and ε = 1.058198.

A look at Figure 6.24 informs us that the diagram of Cassini’s flight that is depicted begins

right after the trajectory correction TCM-21 and that the critical insertion maneuver that put the

spacecraft into orbit around Saturn was next on the agenda of its mission.

July 1. Cassini crossed through a large gap between two of Saturn’s rings at a

distance of 158,500 km from Saturn’s center of mass. Its orbital para-

meters at the time were a = 1.388176× 106 km and ε = 1.058353. At 1:12

UTC the main engine burn began and generated 445 newtons of thrust

in the direction opposite to the motion of the craft. During this Saturn

Orbit Injection maneuver, Cassini reached its closest approach of

80,234 km from Saturn’s center. The injection burn was terminated

after 96 minutes at 2:48 UTC. It reduced Cassini’s speed by 0.626

km/sec. With the craft at a distance of 81,211 km from Saturn’s center,

Cassini was now in an elliptical orbit around Saturn with parameters

a = 4.600545 × 106 km and ε = 0.982487. After another 1 hour and 44

minutes, Cassini descended back through the gap in the rings near the

latus rectum position of its elliptical orbit.

Example 6.16. Use data from the May 14th entry of the cruise event summary to show that the

speed v∞ of Cassini’s hyperbolic approach to Saturn was approximately 5.229 km/sec. Show that

Cassini’s speed and angle of approach to Saturn after the trajectory correction of May 27th were

v ≈ 5.582 km/sec and γ ≈ 1.36◦, respectively. (See Figure 6.13.)

Example 6.17. Show that on its hyperbolic trajectory on July 1, Cassini zipped through Saturn’s

ring plane at a speed of 22.496 km/sec. Show that after the termination of the main engine burn,

the craft moved in its elliptical orbit with a speed of 30.432 km/sec. Conclude that the maximum

speed that Cassini reached just before the injection burn was 31.058 km/sec. Assume that at the
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Figure 6.24. Cassini’s approach to Saturn and its orbits through the descent of the Huygens probe. Image provided
by Jeremy Jones, leader of the navigation team of the Cassini mission to Saturn, NASA/JPL.

end of the injection burn with Cassini 81,211 km from Saturn’s center of mass, the craft’s speed

had been reduced by 0.500 km/sec (rather than 0.626 km/sec). Would this have been sufficient to

bring Cassini into an elliptical orbit around Saturn? If so, what would the semimajor axis of this

orbit have been? Discuss what would have happened with a speed reduction of 0.480 km/sec. [Hint:

look at both the elliptical and hyperbolic speed formulas. Then compare v(t) and
√

GM
√

2
r(t)

.]

Example 6.18. Compute the periapsis distance of Cassini’s initial elliptical orbit around Saturn.

Check your result against the information from the cruise event summary for July 1. Show that

without subsequent trajectory corrections Cassini’s initial elliptical orbit would have had a period

of about 1161
2

days and would have taken it as far as 9.12 million km away from Saturn.

The immediate goal after the orbit injection was to maneuver Cassini into position for the

release of the probe Huygens towards the moon Titan. To achieve this, Cassini’s initial elliptical

orbit needed to be trimmed and opened. This is what OTM-1 to OTM-10 and the flybys of Titan

were designed to do.3

July 2. Cassini’s first flyby of Titan. Since the distance of closest approach was

339,000 km, it had little impact on the orbit.

3For the most part, the data for Cassini’s trajectory were generated by JPL’s HORIZONS system. Refer to the
site https://ssd.jpl.nasa.gov/horizons.cgi?s body=1#top. Refer also to the upcoming last section of this chapter.
The author thanks Jeremy Jones, the chief of Cassini’s navigation team for most of its mission, for supplying him
with data for Cassini’s trajectory early on. The author is grateful to Duane Roth, who succeeded Jeremy Jones, for
providing data that cleared up issues related to OTM-2 and the October 26, 2004 flyby of Titan.

https://ssd.jpl.nasa.gov/horizons.cgi?s_body=1#top.
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July 3. The maneuver OTM-1 resulted in minor changes to Cassini’s orbit.
July 17. OTM-1A made more small corrections to the spacecraft’s orbit.
Aug 23. OTM-2 was a major orbit correction maneuver. Just before it, Cassini

was heading away from Saturn in a very flat elliptical orbit with para-

meters a = 4.585367 × 106 km and ε = 0.982347. OTM-2 took place

9,075,000 km from Saturn’s center of mass. The telemetry data showed

that OTM-2 was a burn of about 51 minutes. It increased Cassini’s

speed by 0.392 km/sec and widened the ellipse. After OTM-2 the craft

was in an elliptical orbit with parameters a = 4.789736 × 106 km and

ε = 0.895845. OTM-2 was the third longest engine burn of the craft’s

main engine. The Saturn injection burn had been 96 minutes long and

long and the targeting maneuver on 3 December 1998 (see Figure 6.23)

that aligned Cassini for its second gravity assist flyby of Venus had been

88 minutes long.
Sep 4. The maneuver OTM-3 made corrections to OTM-2. Both OTM-2 and

and OTM-3 increased the periapsis distances of Cassini’s orbit. The

designation PRM in Figure 6.24 is short for periapsis raise maneuver.
Oct 26. In this flyby of Titan, Cassini passed 1200 km from the moon. The im-

pact on Cassini’s orbit was considerable. The parameters changed

from a = 4.828958 × 106 km and ε = 0.896228 to a = 2.554039 × 106 km

and ε = 0.854052. This maneuver both opened and trimmed the ellipse

further. Two days later, Cassini reached periapsis (of the orbit depicted

in green in Figure 6.24) at a distance of 372,200 km from Saturn’s center.
Dec 13. Another close flyby of Titan opened the orbit slightly by decreasing the

eccentricity from 0.853929 to 0.852098, but it trimmed the orbit signifi-

cantly by decreasing the semimajor axis from 2.550182 × 106 km to

1.944093 × 106 km.
Dec 25. After several more minor OTMs, the Huygens Probe was ready for

release. It separated from the orbiting Cassini, entered Titan’s atmo-

sphere and descended to land on its surface on January 14, 2005. It was

the first landing undertaken in the outer solar system. Huygens returned

data and images of Titan’s surface successfully to Earth using Cassini

as a relay.

Example 6.19. Let S be the center of mass of Saturn and consider Cassini at a point C in its orbit

just before the orbit trim maneuver OTM-2. Show that Cassini had a speed of about 0.295 km/sec

and that it moved toward the apoapsis of its orbit at an angle of about γ = 1.97 radians ≈ 113◦

with the segment CS. Show that right after OTM-2, Cassini moved with a speed of 0.664 km/sec

at an angle of about γ = 1.67 radians ≈ 96◦.

Example 6.20. Use the data of Table 2.5 to show that the distance of the moon Titan from Saturn

is approximately 1,220,000 km. Verify that this information along with the data from Cassini’s
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October 26 flyby of Titan implies that the spacecraft’s speed relative to Saturn decreased from

about 7.372 km/sec before the flyby to about 6.881 km/sec thereafter. Show that it also implies

that the flyby tightened Cassini’s angle of approach to Saturn from about 41.9◦ to about 37.6◦.

We have described the first eight months of Cassini’s orbital dance around Saturn. As was

already discussed earlier, Cassini’s extraordinary pas de deux with Saturn would continue for over

12 more years.

6O. Orbits and their Ephemerides. Our discussions of the orbits of the planets and their

moons, comets and asteroids, and the spacecraft that explore them have considered their shapes

and sizes, and have shown that each orbit is a conic section determined by its semimajor axis a and

eccentricity ε. We have also analyzed exactly how they trace their orbits out by deriving formulas

for the distance r(t), velocity v(t), and angles α(t) and γ(t) as functions of the elapsed time t (from

periapsis). These functions tell us in quantitative terms how the motion along an orbit unfolds. But

this text has said next to nothing about the location of the plane of an orbit and how the orbit’s

position within it is specified. We’ll discuss the essentials of these matters now.

We’ll designate the moving planet, moon, comet, asteroid, or spacecraft by P and—as before—

refer to the path that P travels as its orbit or trajectory. Figure 6.25 presents the orbit as an ellipse,

but allows for the possibility that it is a parabola or a hyperbola. We’ll refer to the center of mass of

the body that is being orbited, or (depending on the context) the barycenter (center of mass) of the

surrounding system, as the central body . The central body—we’ll denote it by S—is at a focal point

of the orbit. The first basic aspect is the reference plane (in gray in the figure) through S. In the case

the central body is the Sun, the reference plane is typically the orbital plane of the Earth—known

as ecliptic since ancient times—and in the case of a planet and an orbiting moon, it is usually the

plane determined by the equator of the planet. The reference direction in the reference plane points

from S typically to a star or clusters of stars (or powerful sources of radiation) so distant that they

are essentially fixed relative to the orbital motion.

The plane of the orbit (in yellow in the figure) contains S and intersects the reference plane in

a line called the nodal line. The point on the nodal line at which the moving P rises through the

reference plane from south to north (north as determined for the ecliptic, for example, by Earth’s

north pole) is the ascending node and the descending node is the point of the descent of P through

the reference plane. The nodal line in the reference plane is determined by S and the positive angle

between the reference direction and the line to the ascending node. This angle is denoted by Ω and

referred to as the longitude of the ascending node. (In the case of Earth’s orbit, the reference plane

and Earth’s orbital plane coincide. So there is no nodal line for the Earth in its orbit as specified in

the figure. The line that takes its place is the line that the two equinox positions determine. (See

Chapter 1A.) The inclination is the angle i between the reference plane and the plane of the orbit.

For Earth’s orbit, i = 0◦. The example of Halley’s comet (See Table 5.1) informs us of the following

convention. The angles 17.7◦ and 162.3◦ both provide the same amount of separation between a

given orbital plane and the reference plane. So they determine the same orbital plane. The larger

angle i = 162.3◦ listed for Halley means that Halley circles the Sun in a direction opposite that of

Earth. (The alternative i = 17.7◦ would have meant that it moves in the same direction.) Observe
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Figure 6.25. Adapted from https://sco.wikipedia.org/wiki/File:Orbit1.svg, an image attributed to Lasunncty at
the English Wikipedia under the GNU Free Documentation License, Version 1.2.

that the point S, the reference plane, the reference direction, and the angle Ω together determine

the nodal line. In turn, the nodal line and the angle of inclination i determine the plane in which

the orbit of P lies.

The angle ω between the ascending side of the nodal line and the line from S to the periapsis

of the orbit is the argument of periapsis. Since S is a focal point of the orbit of P , the angle ω

determines the position of the periapsis, and hence the orientation of the orbit within its plane. The

orbital elements a, ε, Ω, i, and ω are called ephemerides of the orbit. They determine the shape, size,

location, and orientation of the orbit of P (and hence that of any planet, moon, asteroid, comet,

and spacecraft). Two more ephemerides tell us where in the orbit P starts and where it is at any

https://sco.wikipedia.org/wiki/File:Orbit1.svg
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time thereafter. Choose a unit of time, assign time t = 0 to the periapsis position, and let time

t > 0 flow (take t < 0 if the concern is the past). The mean anomaly is an angle that provides the

time—positive if after the periapsis, and negative if before—of the first observation of P in its orbit.

The true anomaly is the angle α(t) that provides the precise position of P in its orbit at any time.

A given listing of orbital ephemerides is a snapshot—at a particular time—of the orbit under

consideration. Since these orbital elements change (often by very small amounts, but sometimes

significantly), the time at which a snapshot is taken needs to be stated and the flow of time needs

to be carefully measured. These matters are technical. Briefly put, a starting time is specified as an

epoch. For example, “J2000 with respect to the mean ecliptic and equinox” (or 12 pm on January

1, 2000) refers to a standard epoch. Einstein’s theory of general relativity correctly asserts that

gravity warps space-time, and in particular that clocks that are far from massive bodies run more

quickly, and clocks close to massive bodies run more slowly. These effects are extremely small. For

example, over the time-span of the 4.6 billion years of the Earth’s existence, a clock set at the peak

of Mount Everest (farther from Earth’s center of mass) would have run about 39 hours ahead of a

clock set at sea level (closer to Earth’s center of mass). However, the accuracy of both atomic clocks

and modern observational methods are so exact that these small differences need to be considered

when orbits and astronomical ephemerides of planets, moon, asteroids, comets, and interplanetary

spacecraft are calculated. Barycentric Dynamical Time (TDB, from the French Temps Dynamique

Barycentrique) is a current time scale that takes these relativistic effects into account.

Consider a moving spacecraft at a fixed a moment in time. Analyze the gravitational forces on

the craft due to the Sun, planets, their moons, and major asteroids. When the craft is near a planet,

include the effects of atmospheric drag and mass distribution (such as mountain ranges). Consider

all other relevant forces acting on the spacecraft, both large and small, such as thruster burns,

attitude control jet firings, solar radiation pressure on its surfaces, heat radiation, and relativistic

bending of space-time due to motion and mass. Lots of very complex mathematics (such as second

order differential equations, vector calculus, spherical harmonic functions, probability theory, and

statistical methods) along with hundreds and even thousands of pages of computer code are required

to construct a dynamic model of all relevant forces operative on the craft at the given time. This

is done relative to a preferred fixed reference point such as the center of mass of the Sun, Jupiter,

Saturn, or the barycenter of the solar system. Once the position and the velocity at the given time

(and relative to the reference point) are inserted, this dynamical force model is used to predict

what future measurements should be. When these future measurements are obtained (via the Deep

Space Network), they are used to correct the parameters in the dynamical model. In this way, the

dynamical force model is iteratively improved and brought into tight agreement with the actual

measured reality. With the resultant of the forces that this dynamical force model delivers regarded

to have been rotated in the direction of the preferred reference point, this resultant is—at the given

instant—a centripetal force acting on the spacecraft. Therefore, by Newton’s theory (as summarized

in Chapter 1D or Chapter 4G), the position of the spacecraft at this instant lies on a conic section

that has the fixed reference point as a focal point. The shape of this conic section, the plane it

lies on, its orientation on this plane, and the craft’s position on it, determine and are determined
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Table 6.8. The table lists Voyager 1’s ephemerides chronologically on relevant dates from 9/9/1977 to 4/16/1979
(each at time 00:00:00 in TDB). The lower block of four ephemeris categories and its thirteen rows of data are
understood to be a continuation of the upper block with the same dates and times. The data was generated by JPL’s
HORIZONS at https://ssd.jpl.nasa.gov/horizons.cgi.

Voyager 1

ephemerides
date/time

semimajor axis a

in km
eccentricity ε

inclination i

in degrees

1 9/9/1977 7.448213729378 ×108 0.795276258678564 1.038338998067602

2 9/15/1977 7.454362080855 ×108 0.7977038078142186 1.036233172112535

3 10/29/1977 7.442743552332 ×108 0.7973864163644588 1.035944011210695

4 10/30/1977 7.442740595266 ×108 0.7973862771492531 1.035942937212381

5 1/29/1979 7.622177526760 ×108 0.8082043145984138 1.094399155248978

6 1/30/1979 7.626888952444 ×108 0.8085380133431345 1.096458434622106

7 2/20/1979 7.881927352477 ×108 0.8251284265944755 1.205102454375513

8 2/21/1979 7.915697046984 ×108 0.8270808927668779 1.218596759296712

9 3/4/1979 13.866068504325 ×108 0.9307976746986110 2.016299387050204

10 3/5/1979 17.195185203440 ×108 1.057138936447251 1.838178207476771

11 3/19/1979 5.410635313032 ×108 2.427264625174953 2.515232928416584

12 4/2/1979 5.804692046893 ×108 2.331231389384568 2.494371943539552

13 4/16/1979 5.880232277174 ×108 2.314183772973725 2.481095839236705

longitude of

ascending node Ω
in degrees

argument of periapsis ω

in degrees

mean anomaly

in degrees

true anomaly α(t)

in degrees

1 343.2092914732131 359.1562745993133 0.3604648640488028 5.297885334011201

2 343.1903064295933 359.1467166156721 0.8935101230088243 13.06542275194955

3 343.1824902296153 359.1534947967443 4.803757691248907 59.40756121732325

4 343.1823915312585 359.1536240329527 4.892575671980855 60.20081395065512

5 340.6092100828861 1.585149171019804 43.18339423970573 143.6183896482964

6 340.5345312912726 1.652774014051279 43.20693954289691 143.6765600182676

7 337.1167715395085 4.735653644448552 41.75602327003497 145.0471112205921

8 336.7482613708431 5.068132710538456 41.44049037146785 145.1302962281412

9 324.5898208446674 17.54826931022829 15.15029758770040 145.2951903107177

10 326.3063676308474 26.41193215557000 9.134612249193491 134.7549304002062

11 113.8116714980738 358.2961314890333 16.48175506308393 17.49928016638131

12 113.6687634184156 358.4905081971434 16.82392951475677 19.45220561937466

13 113.5636297070193 358.5830522533213 18.32638293453528 21.42159673607886

https://ssd.jpl.nasa.gov/horizons.cgi
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by—as Figure 6.25 illustrates—the ephemerides of the spacecraft at that time. The ephemerides are

a numerical snapshot of the position and motion of the spacecraft at the chosen instant.

We have described the process with which JPL’s HORIZONS program specifies the ephemerides

of the planets, moons, asteroids, comets, and spacecraft at any instant of time. By specifying a

sequence of instances of time, say noon for a sequence of days, and determining the ephemerides for

each instant, we get, frame by frame, a moving flow of snapshots of the spacecraft’s motion. If the

forces on the spacecraft change slowly over time, the conic sections that model the trajectory and

the corresponding ephemerides will change slowly over time. If the forces change more quickly, these

changes will be more rapid and more pronounced. In either case, the evolving sets of ephemerides

give a quantitative sense of the changing trajectory of the craft.

Let’s illustrate the discussion above by considering the cruise of Voyager 1 to Jupiter and the

thirteen rows of ephemerides data of Table 6.8. We’ll focus on the five ephemerides that determine

the shape and location of the orbit, namely the semimajor axis, the eccentricity, the inclination, the

longitude of the ascending node, and the argument of periapsis. (The mean and true anomaly specify

the location of the craft in the orbit.) The two rows of the table labeled 1 list the craft’s ephemerides

on September 9th, 1977, a day after it was inserted into its elliptical trajectory. On September 11th

and 13th, 1977, Voyager 1 underwent its first trajectory correction maneuver in two parts. The fact

that the ephemerides set out for September 15th in the two rows labeled 2 are close to those of

September 9th, 1977, tells us that these early trajectory corrections changed the orbit only very

slightly. The next correction on October 29th, 1977, cleaned up small flight path inaccuracies. The

third trajectory correction took place on January 29th, 1979, with a 22-minute 36-second thruster

burn that adjusted Voyager 1’s flight path and changed its speed by about 4 m/sec. Comparisons of

the ephemerides in rows 3 and 4, and then again in rows 5 and 6, tell us that these two maneuvers had

little impact on Voyager 1’s trajectory. We see, however, that smaller forces (most likely the pull of

planets) acting in the intervening 161
2

months did effect the ephemerides in a modest way. One final

pre-Jupiter burn on February 20th, 1979, fine-tuned the spacecraft’s approach. Its thrusters fired

for a little over 2 minutes, changing the velocity and direction to deliver the spacecraft to Jupiter’s

doorstep. A comparison of rows 7 and rows 8 shows the impact of the maneuver on the trajectory.

By January 17th, 1979, Voyager 1 had approached Jupiter to within the 4.8 × 107 km of the

planet’s Laplace radius with its cameras already capturing images of details of Jupiter’s moons

and of the turbulent atmosphere surrounding the Great Red Spot, that had never been seen before

(with Earth-based telescopes). On February 10th, the craft crossed the orbit of Sinope, one of

Jupiter’s smaller, outermost satellites at a distance of 2.3 × 107 km from Jupiter. All the while—as

the changes in the craft’s ephemerides from those in rows 6 of January 30th to those in rows 7 of

February 20th confirm—Jupiter’s gravitational pull began to have an impact Voyager 1’s trajectory.

The changes in the data from February 21st (rows 8), to March 4th (rows 9), to the time of the

craft’s closest approach to Jupiter on March 5th (rows 10), provide more dramatic evidence. Note

that from March 4th to March 5th, the trajectory changed from elliptical to hyperbolic. The table

shows that it took another 40 days for the gravitational force of Jupiter on Voyager 1 to dissipate

and for the hyperbolic trajectory that would take it to Saturn to become stable.

The study in section 6L of Voyager 1’s elliptical flight path from its near-Earth orbit to Jupiter—

its conclusions are summarized by Figure 6.20—was based on the craft’s September 8th, 1977
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ephemerides. The fact that the ephemeris data is changing throughout its trajectory implies that the

numerical specifics that were derived in this study can only be approximations. Notice, however, that

the ephemeris data changed did not change significantly over the first 161
2

months (from September

9th, 1977 to January 30th, 1979) of the 18 months of the craft’s flight, so that these approximations

are relatively accurate. (The mean anomaly and the true anomaly did change significantly, but this

reflects the obvious fact that Voyager 1 was on the move.)

Our study has focused on the changing ephemerides of the trajectory of the Voyager spacecraft.

The ephemerides of the orbits of the planets and their moons experience changes as well. The

stability of these orbits tells us that these changes are considerably more gradual than those of a

spacecraft. But just a few examples show that they are not insignificant. The discovery of Neptune

was the consequence of the distortions of its elliptical orbit by the slight gravitational pull of Uranus.

The precession of the perihelion of the orbit of one planet, caused primarily by the gravitational pull

of all the others, is a more general example. The fact that five orbital periods of Jupiter (adding to

59.31 years) are nearly equal to two orbital periods of Saturn (adding to 58.91 years) brings about

alignments that causes larger perturbations of both of their orbits in a cycle of some 900 years. The

orbit of the planet Venus currently has the smallest eccentricity and is therefore the most circular.

But in 25,000 years, Earth’s eccentricity will be smaller than that of Venus. We saw in Chapter 2E

that the gravitational forces of the Sun and Jupiter have caused severe orbital perturbations of the

orbits of a number of comets that have led to the fiery end of some of them.

6P. Problems and Discussions. This problem set explores many of the conceptual and compu-

tational issues that arise in this chapter. They also add to the scope of the discussions.

1.NEAR–Shoemaker’s Orbits of Eros. These problems deal with the elliptical orbits of

NEAR-Shoemaker around Eros and the analysis in section 6D of the orbital changes that the various

OCMs brought about. Their solutions tell us that the predictions of this analysis are not always

in line with the data of Table 6.2. To understand the reasons for the discrepancy, let’s consider

the velocity-changing firing of the craft’s engine at periapsis. It is the underlying assumption of the

analysis of section 6D that the force vector of the thrust is tangent to the orbit at periapsis and

that it therefore lies in the plane of the orbit. If this force vector does not lie in the plane of the

orbit, then it has a component perpendicular to the orbital plane. As a consequence, the craft moves

outside its original orbital plane so that the position of the orbital plane changes. If the force vector

lies in the plane of the orbit, but is not tangential to the orbit, then the position of the periapsis

changes and, along with it, the orientation of the ellipse (namely the direction of its focal axis).

Similar things apply to velocity changes at the apoapsis. The analysis of section 6D computed the

change in the speed (at periapsis or apoapsis) that was required to bring about the change in the

shape of the orbit attributed to a given OCM. The additional change in the speed necessary to

bring about the changes in the position of the orbital plane—both its inclination and the direction

of the nodal line (see Figure 6.25)—or the orientation of the orbit was not considered. The Δv in

the table does take the required additional change in the speed into account. This appears to be

primary reason why the speeds resulting from our analysis are usually somewhat less than those

listed in Table 6.2. The results of the problems below reflect the observations just made.
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Problem 6.1. Consider the post OCM-4 orbit of NEAR-Shoemaker on April 11th, 2000. It had

periapsis distance q1 = 99 km and apoapsis distance d1 = 101 km. Determine the eccentricity ε1 of

this orbit and compute the speed v1 of the spacecraft at apoapsis. Use the analysis of section 6D

to show that the burn OCM-5 at apoapsis that kept the apoapsis distance of NEAR-Shoemaker’s

orbit at d2 = 101 km while tightening the periapsis distance to q2 = 50 km, decreased the craft’s

speed at apoapsis from 2.09 m/sec to 1.71 m/sec. The difference of 0.38 m/sec is less than the

Δv = 0.45 m/sec of Table 6.2. Note that OCM-5 also changed the inclination of the orbital plane

by 5◦.

Problem 6.2. Assume that the maneuver OCM-6 brought NEAR-Shoemaker into a 50 × 52 km

orbit, rather than the 49 × 52 km orbit listed in Table 6.2. Show that a burn that decreased the

craft’s speed at periapsis from 3.46 m/sec to 3.02 m/sec could have resulted in the orbital change

that this maneuver effected. One reason why the difference of 0.44 m/sec is far off the Δv =

1.92 m/sec that Table 6.2 lists, is the fact that OCM-6 changed the inclination of the orbital plane

by a substantial 26◦.

Problem 6.3. Use a calculation to show that the burn OCM-8 at periapsis that kept the periapsis

distance of NEAR-Shoemaker’s orbit at 35 km while decreasing its apoapsis distance from 51 km

to 39 km, decreased the craft’s speed at periapsis from 3.89 m/sec to 3.67 m/sec. Note that the

difference of 0.22 m/sec is in close agreement with the Δv = 0.24 m/sec that Table 6.2 provides.

Note that this OCM did not change the inclination of the orbital plane.

Problem 6.4. The maneuver OCM-20 kept the periapsis distance of NEAR-Shoemaker’s orbit at

34 km, while decreasing its apoapsis distance from 193 km to 38 km. Show that the analysis of

section 6D predicts that the engine burn at periapsis that resulted in this change in the apoapsis

distance, decreased the craft’s speed at periapsis from 4.72 m/sec to 3.72 m/sec. The difference of

1.00 m/sec is reasonably close to the Δv = 1.23 m/sec that Table 6.2 lists. But note that this OCM

did not change the inclination of the orbital plane.

For the most part, we have studied the contraction of NEAR-Shoemaker’s early larger orbits of

Eros to later tighter ones. As the data of Table 6.2 shows, there were several occasions during its

orbital cruise around Eros in which the orbits were expanded. We’ll now turn to the study of the

expansion of the orbit of a spacecraft in the context of Hohmann transfers.

2.Hohmann Transfers to Mars. Figure 6.26 depicts the orbit of Mars and the near-Earth

elliptical orbit of a spacecraft. The point I is the perihelion of this orbit. It is also the point of

insertion into three possible elliptical Hohmann transfer orbits of the craft. They are depicted in

three shades of green in the figure. Each of the three Hohmann transfers is designed bring the

craft to a rendezvous with Mars. The near-Earth orbit has semimajor axis a = 1.4960 × 108 km and

eccentricity ε = 0.0167. The three targeted points of rendezvous with Mars are labeled P0, P1, and

P2. The trajectory from I to P0 is the ideal Hohmann transfer orbit. Turn to section 6I and review

the discussion of this transfer. Recall that at the perihelion of its near-Earth orbit the craft has an

orbital speed of 30.286 km/sec. The increase of this speed at perihelion to 31.986 km/sec inserted

the craft into the ideal Hohmann transfer that brought it to its rendezvous with Mars in 235 days.
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A look at Figure 6.26 tells us that the paths from the insertion point I to the rendezvous points

P0, P1 and P2 become successively shorter. So the times of travel are successively shorter as well.

But there is a tradeoff. The ellipses involved expand successively from one transfer to the next as

the paths they provide to the rendezvous points get shorter. This means that the speed that is

imparted to the craft at the point of the insertion is greater for a shorter transfer than a longer one.
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ars orbit

Earth orbit
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IP0
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near-

Figure 6.26

This in turn means that more propellant is required for a shorter transfer than a longer one. This

increases the mass of the craft for a shorter transfer and hence the cost at launch. We’ll now confirm

these conclusions with a quantitative study.

Consider the elliptical transfer orbit from the point of insertion I to the point P1. Let t1 be

the time it takes for the craft to make this trip. The angle α(t1) and the distance r(t1) from S

to P1 are known to be 130◦ = 13
18

π radians and 2.0700 × 108 km, respectively. The questions of

interest are these. What speed is required to insert the craft into this transfer orbit at its perihelion

I and what is t1 equal to? The answers rely on information developed in Chapters 5B, 5C, and

5D. Start by computing the semimajor axis a1 and the eccentricity ε1 of the transfer orbit. As

in the situation of the ideal Hohmann transfer, a1(1 − ε1) = 1.4710 × 108. Combine this with the

formula r(t1) =
a1(1−ε21)

1+ε1 cosα(t1)
from Chapter 5B to show that ε1 ≈ 0.2138 and a1 ≈ 1.8710 × 108 km.

The formula of Example 5.1 tells us that the speed that the craft needs to be given at its insertion

point I is about 33.092 km/sec. Next use Gauss’s formula to show that β(t1) ≈ 2.0913. Finally,

solving Kepler’s equation for t1 and converting the result to days, tells us that t1 ≈ 155 days.
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Problem 6.5. Repeat these computations for the Hohmann transfer from I to P2. Let t2 be the

time required and suppose that α(t2) = 100◦ and r(t2) = 2.0700 × 108 km.

The Mariner missions focused on the exploration of Mars. Mariner 4 was the first spacecraft

to go to Mars. Departing in July 1965, it arrived in its Hohmann transfer orbit 228 days later.

Mariner 6 and Mariner 7 took 155 days and 128 days, respectively, to get to Mars for their flybys

in 1969. The craft Mariner 9, sent to Mars in 1971, took 168 days in its Hohmann transfer to get

there. It was the first spacecraft to orbit Mars. The spacecraft Viking 1 and Viking 2 both landed

on Mars in 1975. Their Hohmann transfers took 304 days and 333 days, respectively. The various

Mars missions since have taken from 200 days to 308 days to get to the planet.

Since the missions of a spacecraft to Mars involve either an orbit insertion around Mars or a

velocity changing flyby of it, mission engineers have an interest in the Laplace and Hill radii of the

Sun-Mars system.

Problem 6.6. Let M be the mass of the Sun and m that of Mars. Recall that GM = 1.32712 × 1011

km3/sec2 and, from Table 2.3, that Gm = 4.28284 × 104 km3/sec2. A look at Table 2.1 tells us that

the semimajor axis of the orbit of Mars is a = 227,944,000 km. Use this information to show that

the Laplace radius RL and the Hill radius RH for the Sun-Mars system are RL ≈ 577,000 km and

RH ≈ 1,084,000 km, respectively.

Venus orbits the Sun inside Earth’s orbit. Therefore a Hohmann transfer of a spacecraft from a

near-Earth solar orbit to Venus involves a contraction of this solar orbit that can be achieved by

a speed reduction at its perihelion. Such maneuvers have already been discussed extensively in the

context of NEAR-Shoemaker’s orbits of the asteroid Eros.

Problem 6.7. Consider the mission of a spacecraft to Venus and draw a diagram analogous to that

of Figure 6.26. Include three different Hohmann transfer orbits that bring the craft to a rendezvous

with the planet.

3.With MESSENGER to Mercury. The Voyagers and Cassini are examples of missions to

the outer planets that would not have been possible without the velocity boosting hyperbolic flybys

of Jupiter (and other outer planets for the Voyagers) to counteract the persistent gravitational pull

of the Sun. When it comes to a spacecraft on a mission to a planet with an orbit inside that of

Earth, counteracting the gravitational pull of the Sun is not an issue since the target lies in the

general direction of the Sun’s pull on the craft. Getting to Venus is relatively unproblematic as

it can be accomplished by carefully trimming a craft’s near-Earth solar orbit. Mercury, however,

presents difficulties. Table 5.1 informs us that a craft in a near-Earth solar orbit moves at about

30 km/sec, but that Mercury’s average orbital speed is 47.4 km/sec. A successful Hohmann transfer

from a near-Earth orbit to Mercury needs to bring a spacecraft to its rendezvous with Mercury with

a speed that matches that of the planet. This requires a high velocity at the point of the insertion

of the craft into its Hohmann trajectory. Unless this flight is very carefully attended to, the Sun’s

gravity will accelerate the craft past Mercury to a fiery impact on the Sun. The strategy that made

missions to Mercury possible was the same as the one that enabled the Voyagers and Cassini to

reach the outer planets: the gravitational assist flyby.
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The first craft that negotiated its journey to Mercury successfully was Mariner 10. Launched in

November of 1973, it was sent to study Venus and Mercury and was the first ever mission for which

the strategy of gravity assist was deployed. A successfully timed flyby of Venus aligned the craft’s

trajectory with the orbit of Mercury. On its three passes of Mercury, the last bringing it to within

327 km of its north pole, Mariner 10’s cameras surveyed Mercury’s surface by snapping thousands

of images.

NASA’s second foray to Mercury was the MESSENGER mission launched in August of 2004.

The spacecraft was designed and built by the Applied Physics Laboratory (APL) of Johns Hopkins

University. The name MESSENGER is an acronym derived from a contraction of MErcury Surface,

Space ENvironment, GEochemistry, and Ranging, that is intended to suggest the scientific goals of

the mission. The mission to put MESSENGER into orbit around Mercury was complex. A combi-
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Figure 6.27. This diagram ofMESSENGER’s flight path to Mercury with its multiple gravity assist flybys is adapted
from https://commons.wikimedia.org/wiki/File:MESSENGER trajectory.svg. Image Credit: NASA, JHUAPL.

nation of multiple gravity assist flybys and many targeted trajectory corrections did the trick.

Figure 6.27 illustrates what was involved. MESSENGER’s journey to Mercury included one flyby of

Earth, two flybys of Venus, and three flybys of Mercury. A total of 35 minor Trajectory Correction

Maneuvers (TCMs) and 5 major Deep Space Maneuvers (DSMs) during its 51
2

year flight fine-tuned

the spacecraft’s approaches to the flybys, so that they could be executed with the required precision.

https://commons.wikimedia.org/wiki/File:MESSENGER_trajectory.svg
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Table 6.9 lists ephemerides data for MESSENGER’s solar orbits before and after each of its six

planetary flyby maneuvers and related TCMs (as measured at the midpoint of each orbit segment).

As before, a, ε, i, and ω, denote the semimajor axis, eccentricity, inclination of the orbit plane relative

Table 6.9. Data from http://messenger.jhuapl.edu/About/mission-design/details-propulsion-activity/MOE.html,
except for Mercury’s orbit in the last row that were provided by JPL’s HORIZONS. Many thanks to James McAdams,
MESSENGER’s Mission Design Lead Engineer, for generously and unfailingly responding to many issues, both small
and large, involving the MESSENGER mission.

Initial Event Final Event

date/time
a in au ε i in degrees ω in degrees

MESSENGER’s initial orbit

on Aug 3 and 4, 2004
1.00124769 0.076000037 6.37291 255.64018

TCM-6 Earth flyby

21 July 2005 2 Aug 2005
1.00073173 0.077559813 6.40539 255.29239

Earth flyby TCM-9

2 Aug 2005 12 Dec 2005
0.80890445 0.254969749 2.53035 2.08998

TCM-12 Venus flyby 1

5 Oct 2006 24 Oct 2006
0.82948991 0.273427405 2.57977 1.78382

Venus flyby 1 TCM-13

24 Oct 2006 2 Dec 2006
0.72262040 0.244658760 8.17246 57.84991

TCM-16 Venus flyby 2

25 May 2007 5 June 2007
0.72340047 0.244271182 8.16396 58.13654

Venus flyby 2 TCM-18

5 June 2007 17 Oct 2007
0.53857757 0.383581489 6.77134 356.38575

TCM-19 Merc flyby 1

19 Dec 2007 14 Jan 2008
0.53442413 0.391714040 6.79802 356.64574

Merc flyby 1 TCM-23

14 Jan 2008 19 Mar 2008
0.50663630 0.381599938 6.92133 6.49836

TCM-23 Merc flyby 2

19 Mar 2008 6 Oct 2008
0.50775313 0.378597781 6.88791 6.56324

Merc flyby 2 TCM-29

6 Oct 2008 6 Dec 2008
0.46626923 0.351628516 7.00307 19.44225

TCM-29 Merc flyby 3

6 Dec 2008 29 Sep 2009
0.46998082 0.341312317 6.99426 19.86922

Merc flyby 3 TCM-35

29 Sep 2009 24 Nov 2009
0.43502378 0.303835103 7.00838 32.48547

TCM-35 MOI

24 Nov 2009 18 Mar 2011
0.43753386 0.296341326 7.02855 32.44229

Mercury’s orbit

on 18 Mar 2011
0.38709827 0.205624606 7.00432 29.15565

http://messenger.jhuapl.edu/About/mission-design/details-propulsion-activity/MOE.html
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to Earth’s orbit plane, and the argument of periapsis, respectively. The data of the table is listed

in paired rows with each row of pre-flyby orbital data followed by a row of post-flyby orbital data.

A comparison of the data of each of these rows with the data of the preceding row confirms that

the impact of each flyby was substantial. By contracting and reorienting MESSENGER’s orbit in

successive steps, they brought the spacecraft from its initial orbit close to Mercury. In March 2011,

after a 7.9 billion km journey, MESSENGER arrived at at Mercury’s doorstep with a velocity low

enough and fuel supply ample enough for its insertion into orbit around the planet.

4.Hyperbolas and Hyperbolic Flybys. The first problem gives a sense of how the shape of

a hyperbola relates to its numerical parameters. The paragraph then turns to some matters about

hyperbolic flybys and trajectory calculations for Voyager 2.

Problem 6.8. Figure 6.28 depicts four hyperbolas. They are labeled 1 , 2 , 3 , and 4 . All have

the x-axis as the focal axis and all have the same semimajor axis a. Their semiminor axes, b1, b2, b3,

and b4 satisfy b1 < b2 < b3 < b4 with b3 = a. For each i, the coordinates of the focal point are (ci, 0),

where ci =
√

a2 + b2i . The focal points are color coded to correspond to the color of the hyperbola.

y

y = xy = −x

xO a
 

a√2
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Figure 6.28



6P. Problems and Discussions 341

Show that their eccentricities are given by εi =

√
1 +

b2i
a2 . Notice that 1 < ε1 < ε2 < ε3 < ε4 with

ε3 =
√

2. The equations of the hyperbolas are x2

a2 − y2

b2i
= 1. Notice that the closer εi is to 1, the

closer the focal point is to the line x = a, the tighter the hyperbola is. Why is this observation

consistent with the interpretation of the hyperbola as the trajectory of a moving object that is

subject to the gravitational pull of a massive body located at the focal point?

Suppose that a = 5 and b1 = 2, b2 = 3, b3 = 5 and b4 = 6. Show that εi ≈ 1.077, 1.166, 1.281,

1.414, and 1.562, respectively. For each hyperbola compute the coordinates of the two focal points

and the latus rectum. Write down an equation for each of the hyperbolas, and for each hyperbola

write down equations for its two asymptotes.

Let’s return to section 6J and the derivations of the equations for vin, vout, and ϕ = ϕ1 + ϕ2 that

govern hyperbolic gravity assist flybys.

Problem 6.9. Verify the formulas for vin and vout in the situation of Figure 6.29.
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Problem 6.10. Verify the formula for ϕ = ϕ1 + ϕ2 in the situation of Figure 6.30.
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Problem 6.11. Follow the study in section 6L of the hyperbolic flyby of Jupiter by Voyager 1

to analyze the hyperbolic flybys of Saturn as well as Uranus by Voyager 2. Show that the flyby of

Saturn increased the speed of Voyager 2 relative to the Sun from 15.33 to 20.25 km/sec and changed

its direction by 45.28◦, and that the flyby of Uranus increased its speed from 17.79 to 19.66 km/sec

and changed its direction by 17.31◦.

Problem 6.12. The analysis in section 6L of the elliptical trajectory of Voyager 1 from Earth to

Jupiter and its depiction in Figure 6.20 used the Earth−Jupiter data of Table 6.3. Use the same

strategy to show that Voyager 2 was 791,483,000 km from the Sun when it rendezvoused with Jupiter

and that it moved toward it with a Sun-relative speed of 9.57 km/sec.
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5.Dealing with the Hyperbolic Kepler Equation. This segment explores a number of

issues having to do with the hyperbolic Kepler equation and the discussion in section 6G.

Problem 6.13. Show that f(x) = b
a

√
x2 − a2 is a function that has the upper part of the hyperbola

x2

a2 − y2

b2
= 1 as its graph. Go to a standard calculus text or an online source for the formula

∫ √
x2 − a2 dx = x

2

√
x2 − a2 − a2

2
ln(x +

√
x2 − a2) + C, where x ≥ a.

Turn to Figure 6.12 and focus on the area B(t). As in the figure, consider the situation with t ≥ 0

and hence y(t) ≥ 0. Use the symmetry of the hyperbola about the y-axis to explain that

B(t) = −1
2
x(t)y(t) −

∫ a coshβ(t)

a

b
a

√
x2 − a2 dx.

The formula cosh−1 u = ln(u +
√

u2 − 1) for u ≥ 1 expresses a connection between the hyperbolic

cosine and the natural log. It can be found in basic calculus texts. Let u = x
a

with x ≥ a in the for-

mula and use some basic properties of logarithms to show that cosh−1 x
a

= ln 1
a

+ ln(x +
√

x2 − a2).

Notice that therefore ∫ √
x2 − a2 dx = x

2

√
x2 − a2 − a2

2
cosh−1 x

a
+ C.

Show that cosh−1(1) = 0 and conclude that B(t) = 1
2
abβ(t) (as was already demonstrated in a

different way in section 6G).

Problem 6.14. Turn to section 6G and repeat the derivation of the hyperbolic Kepler equation in

the case of a negative t (for a craft on approach to periapsis) and negative B(t) and A(t).

Problem 6.15. Turn to Figure 6.31. Let P be a point on the circle x2 + y2 = a2 and let β be the
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indicated angle. Show that the point P has coordinates P = (a cos β, a sin β) for some positive real

number β. (Review the trigonometry in Chapter 3C if needed.) Go polar with the circle to show

that the area B of the highlighted sector is equal to 1
2
a2β.

Problem 6.16. We’ll consider a hyperbolic version of the conclusion of the previous problem. In

Figure 6.32, P = (x, y) is any point on the right branch of the hyperbola x2 − y2 = a2. Consider the

graphs of the hyperbolic functions sinh and cosh and show that x = a cosh β and y = a sinh β for

some real number β. Let B be the area of the highlighted hyperbolic wedge. Use facts and strategies

O a

P = (acosh , a sinh )

y

x      y2

a2

2

a2 = 1

ββ

B =    a1 2
2 β

x   − y   = a2 2 2

x

Figure 6.32

deployed in the solution of Problem 6.13 to verify that B = 1
2
a2β.

Problem 6.17. Let y = f(x) be a differentiable function with f(0) = 0. Suppose that f ′(x) > 0

for x �= 0 and that the graph of y = f(x) is concave up for x ≥ 0 and concave down for x ≤ 0. Now

consider y = f(x) − c with c a constant and suppose that f(x0) − c = 0. Turn to the case c ≥ 0.

Since f(x0) = c ≥ 0, it follows that x0 ≥ 0. Review the Newton-Raphson method for finding the

zeros of a differentiable function. Show by making use of a generic graph of y = f(x) − c, that if x1

with x1 > x0 is a stab at an approximation of x0, then x2 = x1 − f(x1)−c
f ′(x1)

is a better approximation of

x0, and that the sequence x1, x2, x3, . . . xi, . . . given by xi+1 = xi − f(xi)−c
f ′(xi)

converges to x0. Consider

the hyperbolic Kepler equation ε sinh x − x =
√

GM
a3 t, where t ≥ 0 is a constant. Show that what

was just set out applies with y = f(x) = ε sinh x − x, c =
√

GM
a3 t, and x0 = β(t). Check that with

β1 = sinh−1 1
ε

(√
GM
a3 t

)
as a first stab at β(t), the sequence βi+1 = βi − (ε sinhβi−βi)−

√
GM
a3

t

ε coshβi−1
converges

to the solution β(t) of the hyperbolic Kepler equation.
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Problem 6.18. Return to the discussion of the hyperbolic trajectory of Voyager 1’s flight from

Jupiter to Saturn in section 6L. The eccentricity of the trajectory was ε = 2.302740 and
√

GM
a3 t1 =

0.334341, where M is the mass of the Sun, a the semimajor axis of the hyperbola, and t1 the

time between perihelion and the craft’s insertion into its hyperbolic trajectory. The first approx-

imation β1 of the solution β(t1) of the hyperbolic Kepler equation ε sinh x − x −
√

GM
a3 t1 = 0 is

β1 = sinh−1 1
ε

(√
GM
a3 t1

)
= 0.144687 (with six decimal place accuracy). Show that the sequence that

the method of Newton-Raphson provides for the solution of β(t1) is β2 = 0.253730, β3 = 0.251920,

β4 = 0.251919, and β5 = 0.251919. So the Newton-Raphson method arrives at the solution

β(t1) = 0.251919 of Kepler’s equation after four steps. It took the simpler method of section 6H

a total of 15 steps to get there.

Problem 6.19. Use the graph of y = sinh x of Figure 6.10 to sketch the graph of the function

f(x) = sinh−1 x. Let x1 and x2 be positive numbers with x1 < x2. Let P1 = (x1, y1) = (x1, sinh−1 x1).

Let L be the tangent to the graph at P1. Because d
dx

sinh−1 x = 1√
x2+1

(by Example 6.10), the slope

of L is 1√
x2
1+1

. It follows that the equation of the tangent is y = 1√
x2
1+1

(x − x1) + sinh−1 x1. Let y2

be the y-coordinate of the point on L that corresponds to x2. Show that the graph of f(x) = sinh−1 x

y

xO xx1 2

L

y = x

f(x) = sinh   x−1

P1

y2

Figure 6.33

is concave down for x ≥ 0 and conclude from Figure 6.33 that

| sinh−1 x2 − sinh−1 x1| < |y2 − y1| =
∣∣ 1√

x2
1+1

(x2 − x1) + sinh−1 x1 − sinh−1 x1| = 1√
x2
1+1

|x2 − x1|.

Refer to the solution of the hyperbolic Kepler equation of section 6H and note that the inequality

above is stronger than the inequality | sinh−1 x2 − sinh−1 x1| < |x2 − x1| (when x1 �= 0). This means
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that the sequence β1, β2, β3, . . . converges to the solution β(t) of Kepler’s equation more quickly

than the inequality |β(t) − βi| ≤ 1
εi

|β(t)| suggests.

6. Cassini and HORIZONS . Figure 6.24 tells us that three of the critical maneuvers that

placed Cassini into orbit around Saturn were the Saturn Orbit Insertion (SOI) on July 1st, 2004,

the Orbit Trim Maneuver OTM-2 of August 23rd, 2004, and the Titan flyby of October 26th, 2004.

The three problems that follow are invitations to explore these three maneuvers with the HORI-

ZONS system and to compare the numerical data that is generated with the geometric information

of Figure 6.24.

Go to the website https://ssd.jpl.nasa.gov/horizons.cgi and consider Current Settings. Under

Ephemeris Type[change], click on change, Select Orbital Elements, and click on Use Selection Above. Under Target

Body[change], click on change and type Cassini into the box Lookup the specified body, then Search, and

Select MB: Cassini (spacecraft), and click on Select Indicated Body. Under Center[change] click on change and

type @Saturn into the box Specify Center, then Search, Select Saturn (body center), and click Use Selected

Location. Relevant Time Span settings follow in the problems below. For Table Settings and Display/Output

use the defaults.

Problem 6.20. To study the SOI, return to Current Settings. Under Time Span[change], click

on change. Under Start Time insert 2004-July-01 01:12, under Stop Time insert 2004-July-01 02:48,

and under Step Size insert 1 and minutes. Then click Use Specified Time. Finally click Generate Ephemeris.

The data that HORIZONS generates provides a minute by minute picture of Cassini’s changing

trajectory during the SOI.

Problem 6.21. To study the OTM-2, insert 2004-August-23 15:56 under Start Time and 2004-

August-23 16:45 under Stop Time and use 1 and minutes for the Step Size. The ephemerides that

HORIZONS sets out give a minute by minute snapshot of Cassini’s changing elliptical orbit.

Problem 6.22. For the Titan flyby of October 26, 2004, insert 2004-October-26 14:30 under Start

Time and 2004-October-26 16:00 under Stop Time and use 1 minute for the Step Size. As a consequence

of the flyby, the orbit’s eccentricity increased, but the periapsis distance and the semimajor axis

both became smaller. So the orbit became less circular, but smaller.

7. Parabolic Trajectories. While there is no such thing as a perfect circular orbit, circles do

serve as close approximations to the orbits of many planets and their moons. This is confirmed

by the data in Tables 2.1, 2.2, 2.4, and 2.5. They tell us that the eccentricities of many planets

and moons are very close to zero. Parabolas play a similar role for the comets. While there is no

such thing as a perfect parabolic trajectory, a number of comets have trajectories that are close to

parabolic. This is confirmed by the eccentricity data of Table 2.8. It tells us that a number of comets

have eccentricities close to one. This segment turns to a discussion of parabolic trajectories. Basic

facts about parabolas are discussed in Chapter 1C. More basic facts are developed in the problems

that follow.

Problem 6.23. Figure 6.34 depicts a parabola in an xy-coordinate plane with focal axis the x-axis,

focal point (d, 0) where d > 0 and directrix the line x = −d. Use the definition of a parabola as the

https://ssd.jpl.nasa.gov/horizons.cgi
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set of points in the plane whose distance from the focal point is equal to its (perpendicular) distance

from the directrix to show that y2 = 4dx is an equation of the parabola. Let P = (x, y) be any point

on the parabola with y ≥ 0 and let B be the area of the region shown in the figure. Use integral

O d

P = (x, y)

y

x

y   = 4dx2

B

−d

Figure 6.34

calculus to verify that

B = 4
3

√
dx

3
2 − 1

2
xy = 4

3

√
dx

3
2 −

√
dx

3
2 = 1

3

√
dx

3
2 .

Now let C be a point-mass representing a comet or a spacecraft in parabolic flyby of the Sun or

a planet. Let S be the center of mass of the Sun or planet. Assume that the gravitational force of

S is the only force on C and that the trajectory of C is a parabola that has S at its focal point.

Place a coordinate system into the plane of the trajectory in such a way that the focal axis of

the parabola lies on the x-axis, the parabola crosses the x-axis at x = 0, and the parabola opens

in the direction of the negative x-axis. With q the periapsis distance of the trajectory of C, the

focal point is positioned at (0,−q). See Figure 6.35. The directrix is the line x = q and (referring to

Problem 6.23) the equation of the parabola is

y2 = −4qx.

Check that y = ±2
√

q(−x)
1
2 with + in effect for the upper half of the parabola, and − for the lower

half. With x = −q, we get L = 4q
1
2 q

1
2 = 4q for the latus rectum.
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We’ll continue in a way that is analogous to the hyperbolic discussion of section 6F and

Figure 6.12. So we suppose that the craft approaches periapsis along the lower part of the parabola

and that it departs along the upper part. A time t is assigned to a position C of the craft as follows.

At periapsis, t = 0. For C on approach to periapsis t is negative, and for C on departure t is positive.

The craft’s time of travel from C to O on approach and from O to C on departure is |t|. Again

turn to Figure 6.35. Let α(t) be the angle between the segment SO and the segment SC. We take

α(t) ≥ 0 when t ≥ 0, and α(t) < 0 when t < 0. As t progresses through −∞ < t < ∞, the angle

α(t) satisfies −π < α(t) < π. For t ≥ 0, let A(t) be the area swept out by the segment SC from

x

r(t)

y

C = (x(t), y(t))

Ox(t)

at time t

periapsis

A(t)

at time t = 0

S = (−q, 0)

x = q
directrix

q

 (t)α

Figure 6.35

t = 0 to t. For a negative t, A(t) is minus the area swept out from t to t = 0.

Let the coordinates of the position C of the craft at time t be x(t) and y(t) so that C =

(x(t), y(t)). Let r(t) be the distance from S to C. Since this distance is equal to the distance from

C to the directrix,

r(t) = −x(t) + q .

Using the trig identity cos α(t) = − cos(π − α(t)), we get cos α(t) = −(−x(t)−q
r(t)

)
= x(t)+q

r(t)
. So

1 − cos α(t) = 1 − x(t)+q
r(t)

= r(t)−x(t)−q
r(t)

= −2x(t)
r(t)

and 1 + cos α(t) = 1 + x(t)+q
r(t)

= r(t)+x(t)+q
r(t)

= 2q
r(t)

.

It follows from the trig formula tan2 α(t)
2

= 1−cosα(t)
1+cosα(t)

that tan2 α(t)
2

= −x(t)
q

. Therefore,
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tan α(t)
2

= ± (−x(t))
1
2√

q
,

with + for t ≥ 0 and − for t < 0. Now define β(t) by

β(t) = tan α(t)
2

= ± (−x(t))
1
2√

q

Because −x(t) = qβ(t)2 and y(t) = ±2
√

q (−x(t))
1
2 , it follows that

x(t) = −qβ(t)2 and y(t) = 2qβ(t).

Expressed in terms of β(t),

r(t) = q(β(t)2 + 1) and α(t) = 2 tan−1β(t)

We will assume that the craft moves smoothly along its path, so that x = x(t) and y = y(t) are

differentiable functions of t. It follows that r(t), α(t), and β(t) are differentiable as well.

Problem 6.24. Use formulas developed above to show that r(t) = 2q
1+cosα(t)

.

As in the earlier situations of the ellipse and hyperbola, we are interested in solving the following

problem: For any time t determine the position of C by computing r(t) and α(t). Since both r(t)

and α(t) have been expressed in terms of β(t), we’ll proceed by finding β(t) in terms of t. As before,

area is the key.

Suppose first that t ≥ 0. Figure 6.35 and routine computations show that

A(t)=

∫ 0

x(t)

2
√

q(−x)
1
2 dx − 1

2
(−x(t) − q)y(t)

= 4
3

√
q(−x(t))

3
2 − (−x(t) − q)

√
q (−x(t))

1
2

= 1
3

√
q(−x(t))

3
2 + q

√
q (−x(t))

1
2 .

For t ≤ 0 and y(t) ≤ 0, and this computation shows that A(t) = −(
1
3

√
q(−x(t))

3
2 + q

√
q (−x(t))

1
2

)
.

By results of Chapter 5A, we know that A(t) = κt, where the Kepler constant of the orbit of

C. We also know that κ =
√

GLM
8

=
√

GMq
2

, where M is the mass of the attracting body S. After

dividing the equation

±(
q
√

q(−x(t))
1
2 + 1

3

√
q(−x(t))

3
2

)
= A(t) = κt

through by q2 and substituting β(t) for ± (−x(t))
1
2√

q
, we get the parabolic version of Kepler’s equation

β(t) + 1
3
β(t)3 = κt

q2
=

√
GM
2q3

t
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In contrast to the elliptical situation (in Chapter 5E) and the hyperbolic situation (in section 6H),

where successive approximation methods were used to solve Kepler’s equation for β(t) in terms of

a given t, the parabolic Kepler equation can be solved for β(t) in terms of t in an explicit form.

After multiplying Kepler’s equation through by 3q2, we get qβ(t)
(
3q + qβ(t)2

)
= 3κt. After

squaring both sides, q2β(t)2
(
3q + qβ(t)2

)2
= 9

2
GMqt2, so that

qβ(t)2
(
3q + qβ(t)2

)2
= 9

2
GMt2.

We’ll solve this equation for qβ(t)2.

Problem 6.25. Consider the function y = f(x) = x(x + 3q)2 − 9
2
GMt2. Show that

f ′(x) = 3(x + 3q)(x + q) = 3(x2 + 4qx + 3q2) and f ′′(x) = 6(x + 2q).

Use the second derivative test to conclude that y = f(x) has a local maximum at x = −3q, a

local minimum at x = −q, and a point of inflection for x = −2q. Check that f(−3q) = −9
2
GMt2

and f(−q) = −4q3 − 9
2
GMt2 and that y = f(x) is increasing and concave up for x > −q. Since

f(0) = −9
2
GMt2, it follows that y = f(x) has a unique positive real root.

Since qβ(t)2 is a positive real root of f(x) = x(x + 3q)2 − 9
2
GMt2, it is the unique positive real

root. As first step in the solution for qβ(t)2, we use the substitution x = X − 2q to transform

x(x + 3q)2 − 9
2
GMt2 into the cubic polynomial

X3 − 3q2X − (2q3 + 9
2
GMt2).

The study of polynomial equations of the form X3 − uX − v = 0 has a rich history. Two math-

ematicians of the Italian Renaissance, Scipio del Ferro of Bologna and Gerolamo Cardano of Pavia

are credited with the solution. Del Ferro discovered it and Cardano, giving due recognition to Del

Ferro, published it in his Artis Magnae (The Great Art) in 1545. The proof—a fairly involved but

elementary algebra exercise—can be found in the literature. The fact we use asserts that if u and v

are positive real numbers with (v
2
)2 ≥ (u

3
)3, then (v

2
+ z)

1
3 + (v

2
− z)

1
3 where z =

√
(v
2
)2 − (u

3
)3, is a

real root of X3 − uX − v = 0.

Let u = 3q2 and v = (2q3 + 9
2
GMt2). Since (v

2
)2 =

(
q3 + 9

4
GMt2

)2 ≥ q6 = (q2)3 = (u
3
)3,

this result applies to tell us that
(
9
4
GMt2 + q3 + z(t)

) 1
3 +

(
9
4
GMt2 + q3 − z(t)

) 1
3 , where z(t) =√

(9
4
GMt2 + q3)2 − q6, is a real root of the transformed cubic. It follows that

(
9
4
GMt2 + q3 + z(t)

)1
3 +

(
9
4
GMt2 + q3 − z(t)

)1
3 − 2q,

is the unique positive real root of x(x + 3q)2 − 9
2
GMt2. It is therefore equal to qβ(t)2. Solving for

β(t), we get

β(t) = ±
√

1
q

(
9
4
GMt2 + z(t) + q3

)1
3 + 1

q

(
9
4
GMt2 − z(t) + q3

) 1
3 − 2
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where the + applies if t ≥ 0, and the − if t < 0. By substituting this formula for β(t) into earlier

equations, we get both r(t) and α(t) expressed as functions of t.

The formulas for the speed and direction of the motion of C follow next. After differentiating

x(t) = −qβ(t)2 and y(t) = 2qβ(t), we get

v(t)2 = x′(t)2 + y′(t)2 = 4q2β(t)2 · β′(t)2 + 4q2β′(t)2 = 4q2
(
β(t)2 + 1

)
β′(t)2.

By differentiating Kepler’s equation, β′(t) + β(t)2β′(t) = κ
q2

, and hence β′(t) = κ
q2

· 1
β(t)2+1

. Since

r(t) = q(β(t)2 + 1), we get β′(t) = κ
q

1
r(t)

, and therefore

v(t)2 = 4qr(t)
(

κ
q

· 1
r(t)

)2
= 4κ2

q
1

r(t)
.

Finally, since 4κ2 = 2GMq,

v(t) =
√

GM
√

2
r(t)

This formula extends the speed formulas v(t) =
√

GM
√

2
r(t)

− 1
a

and v(t) =
√

GM
√

2
r(t)

+ 1
a

of the

elliptical and hyperbolic cases (where a is the semimajor axis in both) to the parabolic situation.

As before, we’ll take the direction of the motion of the craft to be defined by the angle γ(t) of

Figure 6.13. The derivation of the formula sin γ(t) = 2κ
r(t)v(t)

undertaken in Chapter 5D applies in

the elliptical, the hyperbolic, as well as the parabolic situation. It is more useful in rewritten form.

We know from Chapter 5A, that κ =
√

L
8

· GM , where M is the mass of the attracting body S.

Paragraphs A and C of Chapter 3D, tell us both for the ellipse and the hyperbola that the latus

rectum L is equal to L = 2b2

a
, where a and b are the semimajor and semiminor axes. A look at

Figures 5.2 and 6.9 tells us that for the ellipse, L = 2b2

a
= 2(a2−a2ε2)

a
= 2(a−aε)(a+aε)

a
= 2q(1 + ε), and

for the hyperbola, L = 2b2

a
= 2(a2ε2−a2)

a
= 2(aε−a)(aε+a)

a
= 2q(1 + ε), where q is the periapsis distance

in both cases. For the parabola, ε = 1 so that L = 2q(1 + ε) also holds in the parabolic case. It

follows that κ =
√

L
8

· GM = 1
2

√
GMq(1 + ε) and therefore that

sin γ(t) =

√
GMq(1 + ε)

r(t)v(t)

in all three situations. The fact that the inverse sine of any number between −1 and 1 needs to lie

between −π
2

and π
2

and a look back at Figure 6.13 tells us that on approach to periapsis and on

departure from periapsis

γ(t) = sin−1

√
GMq(1 + ε)

r(t)v(t)
and γ(t) = π − sin−1

√
GMq(1 + ε)

r(t)v(t)
,

respectively.

The paragraph Sungrazing Comets and their Speeds of the Problems and Discussion section

of Chapter 2 briefly described the Sun-grazing comet C/2011 W3 as one of the fastest to ever

speed around the Sun. More definitive data about its most recent passage through the solar system
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(than listed earlier) specifies its orbital eccentricity to have been ε = 0.99992942 with a perihelion

distance of 0.00555381 au. Since ε is very close to 1, the comet’s trajectory is nearly parabolic,

so that the discussion above can be applied to it. Since 1 au = 149597870.7 km, we’ll take q =

8.3083815 × 105 km.

Problem 6.26. The parabolic speed formula tells us that the maximum speed of a comet on

a parabolic or nearly parabolic trajectory around the Sun occurs at perihelion and is given by

vmax ≈ √
GM

√
2
q

with GM = 1.3271244 × 1011 km3/sec2 (for the Sun). Use this formula to show

that the maximum speed of comet C/2011 W3 was 565.21 km/sec. The formula of the Problems

and Discussion section of Chapter 2 provided a maximum speed of 568 km/sec. (See Problem 2.15.)

Discuss the basic difference between the two calculations. Why is it that in the current situation,

the parabolic formula probably provides the more accurate result?

Problem 6.27. The last perihelion for C/2011 W3 occurred on December 16th, 2011 (with the

previous one on January 4th of the year 1329 in the Julian calendar). Show that exactly one week

after perihelion, the comet was r(t) = 59,359,828 km from the Sun, that it had slowed to v(t) = 66.87

km/sec, and that it was moving away from the Sun at an angle γ(t) = 3.023 radians or 173.21◦.
Incredibly, one short week after perihelion the comet was about as far away from the Sun as Mercury.

(Table 5.1 tells us that the semimajor axis of Mercury’s orbit is 57,909,227 km.) [Suggestions: use

the fact that 1 day has 86,000 seconds and take t = 7(86,000) = 6.04800 × 105 sec. Show that

β(t) = 8.39319475. Along the way check that z(t) = 10.92244830 × 1022,
(
9
4
GMt2 + z(t) + q3

) 1
3 =

6.02259045 × 107, and that
(
9
4
GMt2 − z(t) + q3

) 1
3 = −0.00352381 × 107].

On August 30th, 2019, the amateur astronomer Gennady Borisov discovered a comet from an

observatory on the Crimean peninsula. Initially, there was nothing about the comet, now desig-

nated C/2019 Q4, that seemed remarkable. But when it was observed again a few days later on

September 10th and 12th, it was estimated to have been about 420 million kilometers from the Sun

traveling toward the inner solar system with a speed of about 150 thousand kilometers per hour.

This information caused a stir. But why?

Problem 6.28. Turn to the parabolic speed formula and compare the left side v(t) against the right

side
√

GM
√

2
r(t)

at the time of the observation. The two values are v(t) ≈ 150×103

3.60×103
≈ 41.67 km/sec

and
√

GM
√

2
r(t)

≈
√

(1.327 × 1011) 2
4.20×108

≈ 25.14 km/sec. Why does a comparison of these two

numbers tells us that the comet’s trajectory is a hyperbola? Use the hyperbolic speed formula to

derive the estimate of 120,000,000 km for the semimajor axis of its hyperbola. The comet was at

perihelion on December 8th, 2019, with a perihelion distance of about 300 million kilometers. Let

ε be the eccentricity of the hyperbola and show that ε ≈ 3.50. (The Minor Planet Center of the

International Astronomical Union lists the comet’s eccentricity as 3.3565551.)

The wide, open hyperbola of its trajectory (a look at Problem 6.8 gives a sense of the flatness of

this hyperbola) is strong indication that Borisov’s comet is an interstellar comet, one that originated

from outside the solar system. Since C/2019 Q4 is traveling in the inner solar system, it will be

possible to observe and study the comet for several months. The analysis of the light that it reflects



352 6 Mathematics of Interplanetary Flight

will provide information about its chemical composition. It might provide insights into the evolution

and composition of other star systems and exoplanets in them. One scientist put it this way: “We’ve

got an object out there that’s throwing out material that formed around another star in another

part of our galaxy. So this will be our first real chance to do a detailed analysis of those molecules

and those compounds, compare it with what we see in our solar system, compare it with what

we see in interstellar space and hopefully . . . start coming up with an overall picture of how the

environments where planets and - potentially - life form vary throughout the galaxy.”

8.Orbit Insertion. The thought process that identified the orbit of comet Borisov as hyper-

bolic, has other applications as well. Let’s consider a spacecraft in flight within the gravitational

sphere of influence of a planet. Let M be the mass of the planet and let P be its center of mass.

Tables 2.3 and 2.6 provide accurate values of the gravitational term GM . We’ll assume that the

gravitational pull of P is the dominant force on the craft and hence that its trajectory is a conic

section that has P at a focal point. Any position C of the craft has a time t attached to it in the

same way as before. At periapsis t = 0, at any position after periapsis t is the time for the craft

to get there from periapsis, and for any position of the craft before periapsis t < 0 where |t| = −t

is the time it takes for the craft to get to periapsis. For any position C and corresponding time t,

we’ll let r(t) be the distance from C to P and v(t) the speed of C relative to P . Conclusions of the

previous segment inform us that for any t,

v(t) =
√

GM
√

2
r(t)

− 1
a
, v(t) =

√
GM

√
2

r(t)
, or v(t) =

√
GM

√
2

r(t)
+ 1

a

in the elliptical, parabolic, and hyperbolic cases, respectively (where a > 0 is the semimajor axis in

the elliptical and hyperbolic cases).

Fix any instant instant t0 during the craft’s approach and assume that telemetry readings provide

the values of r(t0) and v(t0). Clearly, v(t0) is either less than, equal to, or greater than
√

GM
√

2
r(t0)

.

The equations above tell us that the craft’s trajectory is an ellipse in the first case, a parabola in

the second, and a hyperbola in the third. It follows that the data point (r(t0), v(t0)) tells us whether

the craft is in an elliptical, parabolic, or hyperbolic orbit. In fact, more can be deduced from this

single data point.

Problem 6.29. Use Figure 6.36 to show the following. If v(t0) <
√

GM
√

2
r(t0)

, then v(t0) =
√

GM
√

2
r(t0)

− D and if v(t0) >
√

GM
√

2
r(t0)

, then v(t0) =
√

GM
√

2
r(t0)

+ D, where in each case,

D is some positive constant. What facts about the function f(x) =
√

x are relevant?

Put D = 1
a

for some a in the elliptical and hyperbolic cases. From the speed equations above we

know that a is the semimajor axis of the craft’s orbit in either case. Since r(t0) and v(t0) together

determine D, they determine the semimajor axis.

The direction of the motion of the craft is given by the angle γ(t) as described in Figure 6.13.

We know that

sin γ(t) =

√
GMq(1+ε)

r(t)v(t)
,
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where q is the periapsis distance and ε the eccentricity of the craft’s trajectory. If the craft’s

telemetry also provides the angle γ(t0), then it provides the value of the term

√
GMq(1+ε)

r(t0)v(t0)
and

therefore, the value of q(1 + ε). In the parabolic case, ε = 1, so that the periapsis distance q

is deterimed and hence also the shape of the parabola. (See Figure 6.34.) In the elliptical case

q(1 + ε) = a(1 − ε)(1 + ε). Since a is already determined so is 1 − ε2. Letting 1 − ε2 = δ, we get

ε2 = 1 − δ, and hence ε =
√

1 − δ. It follows that the data point (r(t0), v(t0)), γ(t0)) determines

both a and ε and hence the shape of the elliptical trajectory. A similar computation shows that this

is also true in the hyperbolic case.

Since t0 is given, the appropriate Kepler equation (elliptical, parabolic, or hyperbolic) can be

solved for β(t0) so that α(t0) can be found as well. This in turn specifies the focal axis and hence

the orientation of the conic section relative to the location of the focal point P . Therefore the single

measurement (r(t0), v(t0)), γ(t0)) determines both the shape and the position of the trajectory of

the craft within its orbital plane relative to the location of P .

Suppose now that the spacecraft is on a hyperbolic approach to the planet or on hyperbolic

departure from it. The mission calls for the craft to be inserted into an elliptical orbit around the

planet. It is clear that the craft’s thrusters need to be fired to change its trajectory. Intuitively, the

craft needs to be slowed down and redirected. The smaller thrusters orient the craft and the main

thruster will decrease its speed. We will now explore in basic terms how such a trajectory correction

maneuver can be executed. The important fact to keep in mind is this: At any time that the thrusters

are firing, the resultant thrust is a second force on the craft. So the fundamental assumption—that

the spacecraft is subject to a single centripetal force—is no longer operative. However, at any time

the thrusters have stopped firing, this assumption is back in force and the craft’s trajectory will

once again be a conic section with P at a focal point. Of course, this conic section will invariably

be different from the one the craft was on before.
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To begin, let t0 be the instant at which the craft’s main thruster begins its burn. Note that t0 is

negative, zero, or positive depending on whether the craft is on approach to periapsis, at periapsis,

or on departure from it. At the initial moment t0 the thrust is still zero. Since the hyperbolic version

of the velocity formula applies to the craft,

v(t0) =
√

GM
√

2
r(t0)

+ 1
a0

,

where a0 is the semimajor axis of the hyperbola. Let τ be the time that elapses from t0 onward

and monitor both the distance r(t0 + τ) of the craft from P and the velocity v(t0 + τ) of the craft

relative to P during the time the thruster is fired. If a1 is the semimajor axis of the desired elliptical

orbit, fire the thrusters (with the main thruster generally directed opposite to the craft’s motion)

to slow the craft until

v(t0 + τ) =
√

GM
√

2
r(t0+τ)

− 1
a1

.

At this instant, with τ = τ0, the thruster is shut off. At time t1 = t0 + τ0 from the time of the

original periapsis (with t0 negative or positive) relative to its new orbit, v(t1) =
√

GM
√

2
r(t1)

− 1
a1

so that the new orbit is elliptical with a1 its semimajor axis. Our earlier discussion tells us that the

data point (r(t1), v(t1)), γ(t1)) determines both the shape and the orientation of this elliptical orbit.

What has been described are the principles behind the insertion of the Cassini spacecraft into

its initial elliptical orbit around Saturn. Refer back to section 6N, especially to Figure 6.24 and the

July 1st entry of the Cassini Cruise Event Summary.

9. The Three Body Problem and Low Δv Trajectories. The patched conic strategy relies

on the solution of the two body problem, and, in particular, the fact that the trajectory a craft that

is subject to the gravitational attraction of a single celestial body is a conic section with the center

of mass of the body at a focal point. When a third object or body is taken into consideration, then,

with three gravitational forces involved, the problem of analyzing each of the motions is known as

the three body problem. If a fourth body is considered, the problem is the four body problem. Newton

and the powerful mathematicians in the centuries that followed were stymied in their efforts to

determine the mathematical functions that describe the motions of the three (or four) bodies for

any given set of initial conditions (the positions and velocities of the bodies). Finally, in the 1950s,

mathematicians demonstrated that the explicit determination of such functions was impossible.

However, beginning in the 1960s the use of high speed digital computers did make it possible (as

already described in section 6K) to achieve better and better numerical approximations of the

motions in the case of the restricted three-body problem. The restriction consists of the assumptions

that two of the bodies are massive and that the third is so small that its gravitational pull on the

other two is negligible. It also assumes that the two massive bodies are both in circular orbits about

their common center of mass, and that the orbits of all three lie in the same plane. This restricted

three body problem provides a useful model for the design of the trajectories of spacecraft in orbit

around the Sun and in transit to a planet, or a craft that is making its way from Earth to the

Moon. To a less accurate extent, the restricted three body problem also models the Earth-Moon-

Sun system. (The restricted four body problem plays a role as well. This models the motion of a craft
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and two massive bodies—Earth and Moon, for instance—that are both moving in circular orbits

around their common center of mass with this center of mass in turn in a circular orbit around a

third massive object such as the Sun.)

The figure eight, depicted in Figure 6.37, illustrates what is involved. If the craft C is given

the correct position and velocity on departure from a parking orbit around Earth, it can achieve a

stable orbit around the Earth-Moon system of the sort shown in the figure. Such figure eight orbits

Moon
Earth

C

Figure 6.37

were deployed in some of the missions that brought Apollo spacecraft to the Moon. Notice that each

of the two loops is almost a closed orbit around each of the two bodies. So if the goal is to put the

craft into orbit around the Moon, the additional maneuvers needed are minor. While a Hohmann

transfer from an Earth orbit to the Moon blasts a spacecraft through Earth’s gravitational pull, the

figure eight trajectory relies on the more subtle, interactive gravitational currents of the Earth-Moon

system.

In the 1980s, Edward Belbruno, then a mathematician at the JPL, began research on trajectories

that would bring a spacecraft from a parking orbit around Earth to the Moon with minimal amounts

of propellant. He discovered that it was possible to insert a craft into orbit around the Moon with

minimal reliance on the thrust from its engines. The delicate interplay between the gravitational

tugs of Earth and Moon on a spacecraft and a subtle balance between the speed and the direction

of the motion of the craft can draw it into a region called weak stability boundary within which such

a ballistic capture can occur. The restricted three-body problem described in section 6C applies not

only to the Sun and Earth, but also to the Earth and Moon. A rotating frame exactly like the

one in Figure 6.7 with the Sun at the origin, Earth as fixed point, also exists with the Earth-Moon

barycenter at the origin and the Moon as fixed point. The weak stability boundary is a complex shape

in the Earth-Moon rotating frame, but Belbruno was able to provide a mathematical description

of its geometry. The second difficult problem he faced was the determination of the trajectory that

would transfer the craft from its parking orbit around Earth to the weak stability boundary at the

desired distance from the Moon with the required velocity. Here too, the subtle interaction between

the gravitational forces of Earth and Moon sets out a path that uses minimal amounts of propellant.



356 6 Mathematics of Interplanetary Flight

The path follows a natural channel or tube that exists as a mathematical construct called a manifold

within position-velocity space.

The Japanese spacecraft Hiten (Japanese for “celestial maiden”), while in Earth orbit, had

ejected a probe that was designed to go into orbit around the Moon. Unfortunately, the commu-

nications system failed and the probe was lost. In order to be able to declare its first mission to

the Moon a success, the Japanese wanted to place the much larger Hiten into a lunar orbit instead.

However, since this was not the original intention, the larger craft did not have sufficient fuel to

reach the Moon with a conventional Hohmann transfer. Belbruno proposed a ballistic capture tra-

jectory for Hiten. The route that Hiten traveled from Earth took it 1 million kilometers beyond

the Moon (about four times the Earth-Moon distance), before it floated back into ballistic capture

around the Moon. It was a journey of three months, but the little fuel that was available to the

craft was sufficient.

The restricted three-body problem described in section 6C applies not only to Sun-Earth and

Earth-Moon, but to any pair of orbiting bodies and each such pair has its own rotating frame and

corresponding channels and tubes. In each case, the Lagrange points L1, L2, and L3 are not stable,

but L4 and L5 are. A craft precisely positioned at any of these five points will stay there. But even

the slightest thrust from its engine firing for the shortest possible time (and then shut off) will set

the craft adrift. In the case of the points L4 and L5, the craft will return to the point. But in the

case of the points L1, L2, and L3, the craft will gently drift farther and farther away, potentially to

an entirely different part of the solar system. Understanding the kind of gentle gravitational drifts

that a craft experiences near an unstable Lagrange point of the Earth-Moon system lies at the heart

of Belbruno’s weak stability trajectories. The various tubes spiral in the solar system towards and

away from the unstable Lagrange points. The remarkable fact is that many of these tubes link to

form a network that crisscrosses the solar system in ever changing patters. A craft floating in one

of these tubes is swept along by gravitational tugs to or away from the Lagrange points. With a

tiny thrust near a Lagrange point, a spacecraft can switch to a tube that spins off in a completely

different destination. In this way, a craft can travel vast distances on minimal amounts of propellant.

The network of tubular manifolds just described has been referred to as the “interplanetary

superhighway.” This label seems somewhat of a misnomer given that the vehicles that use it travel at

a snail’s pace. The interplanetary superhighway is not static and the interchanges keep shifting. Each

set of Lagrange points and tubes is stationary only within its rotating frame. Computers are used

to chart these moving highways and their rotating interchanges. The drawbacks of interplanetary

trajectories that use the system of tubes are related to the long transfer time and their sensitivity

to subtle gravitational changes. A long transfer time increases the risk of failure as well as the

operational costs. Finally, these trajectories are very sensitive to perturbations. A trajectory of

consecutive tubes requires robust algorithms to correct for interfering perturbations. A patched

conic trajectory, on the other hand, requires only occasional corrections. Belbruno’s trajectories

are very sensitive to the initial conditions. Think of two leaves that fall side by side into a lively

descending brook. They land very close to each other. Their initial conditions are almost identical

as they are carried by the current side by side. The brook widens, gains volume, and becomes a

stream. It widens more, absorbs tributaries, its waters slow, and it becomes a mighty river. Would
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you expect the two leaves to float along in the river side by side? Hardly. This means that two

spacecraft in trajectories of the sort just described, can start out in nearly the same place with nearly

the same velocities but spiral off into completely different regions of space. It means that Belbruno’s

trajectories have to be computed with much greater accuracy than conventional trajectories and

trajectory correction maneuvers needed to be very carefully attended to. New numerical methods

using ideas from chaos theory and dynamical systems theory, and computer-executed numerical

algorithms needed to be developed.

A technological development that was described in the paragraph Dawn’s Ion Propulsion Engine

of the Problems and Discussions section of Chapter 2 goes hand in glove with what has just been

described. This is the ion-engine that generates a very small thrust that it sustains over periods of

months or even years. SMART-1 was the inaugural mission of the European Space Agency’s (ESA)

Small Missions for Advanced Research in Technology (SMART) program. With its washing machine

size and its mass of 367 kg, SMART-1 was indeed small. Launched late in 2003, the primary goal

of the mission was to test its ion engine. The ESA’s first Moon probe and the second spacecraft

Figure 6.38. A SMART-1 was a spacecraft of the European Space Agency of Swedish design. Its ion-engine accel-
erated the craft by a mere 0.7 m/sec per hour. Unlike conventional thrusters that operate in short bursts, the ion
engine of SMART-1 fired for one third to one half of every orbit to drive the craft on the spiraling trajectory that
took it from the Earth to the Moon. Image credit: ESA 2002, CC BY-SA 3.0 IGO https://creativecommons.org/
licenses/by-sa/3.0/igo/.

https://creativecommons.org/licenses/by-sa/3.0/igo/
https://creativecommons.org/licenses/by-sa/3.0/igo/
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to use ion propulsion, SMART-1 was launched into a low Earth orbit. Its small engine generated a

thrust of 0.068 newtons. (The fact that one penny has a weight of 0.0245 newtons, means that the

thrust that the engine generated was less than the weight of three pennies.) Month after month, first

imperceptibly slowly and then faster, with its engine firing about half of the time, the craft spiraled

away from Earth in ever expanding loops. This part of the craft’s trip to the Moon did not follow a

Belbruno trajectory. See Figure 6.38. However, over 14 months after its launch, SMART-1 drifted

through a position 310,000 km from the Earth and 90,000 km from the Moon in and was captured

by the Moon’s gravitational field. It’s entry into orbit around the Moon relied on Belbruno’s ballistic

capture strategy. The route that SMART-1 had taken was lengthy. Most of the craft’s journey was

a winding spiral of over 80 million kilometers in length. But for the entire, extraordinary trip, it

used only 82 kg of the Xenon gas (22% of its total mass) that fueled its engine.
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Chapter 4

Chapter 4 applies the calculus of polar coordinates of the previous chapter in a self-contained way

to derive Kepler’s three laws of planetary orbits from Newton’s fundamental laws of motion and his

law of universal gravitation. Following Newton’s original theory in the Principia, this is done in the

abstract context of a centripetal force acting on a point-mass. The assumption that the Sun and the

planets are nearly spherical with the Sun much more massive than the planets, allows Newton to

show that his theory applies to the orbits of the planets of the solar system. This chapter confines

itself strictly to the mathematics, in fact only to its most essential “first order” aspects. The more

subtle “second order” mathematical matters are not considered, nor are related philosophical issues.

In this regard, see the article

1. George E. Smith, Closing the Loop: Testing Newtonian Gravity, Then and Now, in Newton

and Empiricism, ed. Zvi Beiner and Eric Schliesser, Oxford University Press, 2014, 262–351.

http://strangebeautiful.com/other-texts/smith-closing-the-loop.pdf and http://web.stanford.

edu/dept/cisst/visitors.html.

The discussion of Chapter 4 relies on very basic laws of physics, but it does not explore the

underlying principles of physics (such as the conservation of momentum and conservation of energy)

in any detail. For such an exploration we refer to The Feynman Lectures on Physics. Richard

Feynman was one of the most famous physicists of the second half of the 20th century. He was

not only superb theoretician whose research was awarded the Nobel Prize in 1965, he was also a

legendary teacher. In the early 1960s, he responded to a request to “spruce up” the teaching of

undergraduates at the California Institute of Technology. After devoting three years to the task, he

produced a series of lectures that would become The Feynman Lectures on Physics, perhaps the

most popular physics book ever written. A 2013 review described the book as having “simplicity,

beauty, unity ... presented with enthusiasm and insight”. More than 1.5 million English-language

copies have been sold, and many more in a dozen foreign-language editions. In 2013, Caltech made

the book available in the new online edition

2. The Feynman Lectures on Physics, New Millennium Edition,

http://www.feynmanlectures.caltech.edu/info/

In November 1964, Feynman gave the Messenger Lectures on “The Character of Physical Law” at

Cornell University. Offering an overview of selected physical laws, he drew on his Caltech lectures

to gather the common features of the laws of physics into one broad principle of invariance. In

January 2016, Bill Gates (the founder of Microsoft Corporation and the world’s most generous

philanthropist) referred to Feynman’s talents as a teacher as the inspiration for his acquisition of

the rights to the original videos of Feynman’s Cornell lectures and for making them available online.

They are a bit grainy, but they also show “The Great Explainer” in action.

3. Richard Feynman, Messenger Lectures (1964),

http://www.cornell.edu/video/playlist/richard-feynman-messenger-lectures

http://strangebeautiful.com/other-texts/smith-closing-the-loop.pdf
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Chapter 5

One of the key considerations of Chapter 5 is the Kepler Equation for elliptical orbits. Its solution,

the angle β(t), provides the angle α(t) and the distance r(t) as functions of the elapsed time t that

pinpoint the position of the point-mass P in its orbit around the center of force S. In turn, the

distance r(t) together with the orbital constants determines the functions v(t) and γ(t) that specify

the velocity of the point-mass in its orbit around S.
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Mécanique Céleste, 277

radius, 277–279, 288

latus rectum, 15, 16, 139, 140, 212, 214

launch or characteristic energy, 275

Le Verrier, 27, 250

and Neptune, 27

and the precession of Mercury, 250

length

of a polar curve, 145

light year, 38

LVA maneuvers, 267

M

Main Asteroid Belt, 88

Mariner missions

to Mars, 115, 116, 337

to Mercury, 338

Mars, 70, 71, 115, 116

Curiosity rover, 70

essential data, 74, 75

moons, 70, 71

parallax of, 48

mass and weight, 33

mean anomaly, 220, 331

hyperbolic case, 297

Mercury, 73, 74

essential data, 74, 75

MESSENGER mission, 33, 62, 73, 74, 338, 339

Messier, 38

catalogue of star clusters, 38

metric system, 29

kilogram, 29

kilometer, 30

meter, 29

MKS, 29

newton, 30

second, 29

mile, 24

Minovitch, 310

and the theory of flybys, 310

momentum, 105

law of conservation of, 105

Moon, 67–69

and the Principia, 19

about its mass, 55

about its orbit, 21, 22, 57

race to, 113

volume and density, 210

moons of planets

data, 74, 86

moving points, 169

acceleration at time t, 170

average acceleration of, 170

average velocity of, 169

forces on, 173

in the plane, 171–175

mathematics of, 168–171, 173, 174, 197

position function of, 169

speed of, 169, 172



372 Index

velocity at time t, 169, 173

N

NASA, 61

APL-Johns Hopkins, 61

JPL-Caltech, 61

NEAR-Shoemaker mission, 266–274

aborted Eros rendezvous, 270

Earth flyby, 269, 301, 302

Eros orbit insertion, 270

flight history, 272

launch, 267, 273

orbit modifications, 272

thrusters, 267

trajectory corrections, 268

Neptune, 27, 85

essential data, 86, 87

New Horizons mission, 99

Pluto and Charon, 101, 102

Newton, 9, 11, 186

Principia, 9, 11, 14–16, 18, 19, 186

summary of conclusions, 15, 185

and G, 34, 57

and comets, 11

formula for centripetal force, 15

inverse square law of force, 16

law of universal gravitation, 19

planetary theory

and Kepler’s laws, 19

summary, 15

size of the solar system, 28

Sun-Earth mass comparison, 32

testing the theory of gravitation

with the orbit of the Moon, 19

three laws of motion, 9

version of Kepler’s third law, 19

O

Oort, 28

Oort cloud, 28, 102, 103

orbit contraction

at apoapsis, 284, 285

at periapsis, 287

orbit expansion, 288

orbit insertion

in theory, 352

of Cassini, 326, 327

of Juno, 111

of NEAR-Shoemaker, 270

orbit of a point-mass, 15

angle α(t), 214, 217, 218, 295, 348

angle γ(t), 220, 221, 223, 297, 298, 350

distance r(t), 214, 217, 293, 294, 348

function β(t), 215, 217, 218, 220, 293, 295,

297, 348

speed v(t), 220, 221, 297, 298, 350

orbital elements, 329

ascending node, 329

descending node, 329

nodal line, 329

reference direction for, 329

reference plane, 329

orbital period

perihelion, 31

sidereal, 32

OSIRIS-REx mission, 92

P

parabola, 13

directrix, 13

eccentricity, 13

focal axis, 13

focal point, 13

periapsis, 13

polar equation, 135

standard equation, 13

parabolic Kepler equation, 349

solution of, 350

parabolic trajectory, 345

motion in, 347

periapsis, 212

perihelion, 212



Index 373

velocity in, 350

parallax

and Bessel, 59

and Cassini, 46

and Flamsteed, 46

and Tycho Brahe, 6

method of, 46

of Mars, 48

stellar, 59

parallelogram law, 166

and the law of cosines, 166

Paris foot, 20

patched conic, 284, 354, 356

periapsis, 12, 13, 139, 212

periapsis distance, 139, 290

perihelion, 212

period, 31

precession of, 31, 235, 238

precession of Mercury, 247–250

period of an orbit, 8

perihelion, 31

sidereal, 32

perturbed orbits, 235

and precession, 235, 237, 238

perturbing force

on a planet, 239, 241, 244, 261

planets, 1, 66, 75

inner, 66, 87

data, 74, 75

Earth, 67

Mars, 69

Mercury, 73, 74

Venus, 72, 73

moons

data, 75, 86

outer, 75, 87

data, 86, 87

Jupiter, 75, 76, 78, 79

Neptune, 27, 85

Saturn, 80–82

Uranus, 25, 85

Pluto, 28, 99, 101

and Charon, 101

point-mass, 14, 170, 173–175, 177, 181

acceleration of, 171

and centripetal force, 175–177, 181

force on, 170

moving, 170

velocity of, 171

polar

axis, 128

origin, 128

polar coordinate system, 128

polar curves

area enclosed by, 147, 148

larea enclosed by, 148

lengths of, 144, 146

polar functions

definite integral of, 145, 147, 148

derivative of, 140, 142–144

graph of, 132, 134–137

precession of equinoxes, 5, 55

precession of perihelion, 31, 235, 238

of Mercury’s orbit, 247–251

of planetary orbits, 235

relativistic component of, 250

projectile motion, 199, 200

the hammer throw, 201–203

Ptolemaic universe, 1

Ptolemy, 2

R

restricted three body problem, 282, 354

and weak stability trajectories, 356

Roche, 277

radius, 277

rocket engine, 103, 107

and conservation of momentum, 105

diagram, 104

equation, 107

ion propulsion, 121

nozzle, 104
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propellant, 103

thrust, 106

Rosetta mission, 94

S

Saturn, 80–82

essential data, 86, 87

moons, 52, 82

Enceladus, 83, 84

Thetys, 81

Titan, 83, 325

rings, 80–82, 312

Scientific Revolution, 3

SMART-1 mission, 357

SOI, Sphere of Influence, 276, 279

solar system

images and videos, 116

Space Age, 60

space missions

to inner planets, 117

to outer planets, 117

Space Race, 60

Space Shuttle, 61, 62, 116

speed, 9, 52, 53, 58, 118, 169, 221

of a planet in orbit, 220, 221

of comet Halley in orbit, 53

of Earth in orbit, 53

of moving point, 172

of objects in the solar system, 52

of sungrazing comets, 119

speed and velocity, 9, 53, 58, 105, 169, 171–

173, 199

spin casting of mirrors, 205

spiral

Archimedean, 161, 197

equiangular, 152, 153, 163

constant angle of, 153

spiral galaxy, 41, 149, 150, 152

arms of, 41, 149, 151, 153

black holes in, 150

bulge of, 41, 149

disk of, 41, 150

Milky Way, 154, 155

Spitzer Space Telescope, 102, 155

spring, 4

spring equinox, 4

Sputnik 1, 60

standard candle, 39, 156

summer, 4

summer solstice, 4

Sun, 36, 37

supernova, 6, 157, 251

T

Taylor series, 236, 260

and perturbed orbits, 236

telescopes

Hubble Space Telescope, 63

James Webb Space Telescope, 282

latest generation of, 208

Spitzer Space Telescope, 102, 155

thrust equation, 106

Titius and Bode, 25

and the discovery of Ceres, 26

their law, 25

Tombaugh, 28

and Pluto, 28

trajectory of a point-mass, 15

Trans-Neptunian objects, 98, 100

data, 99

trigonometric functions

cosine, 126

secant, 128

sine, 126, 127

tangent, 127, 128

trigonometric identities, 126, 127

trigonometry, 126, 127

tropical year, 6

true anomaly, 220

true anomaly α(t), 331

hyperbolic case, 297

Tsiolovsky’s rocket equation, 107
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two-body problem, 282

Tycho Brahe, 6, 8

U

unit circle

and radian measure of an angle, 124

and trigonometric functions, 125

and trigonometric identities, 127

units of measurement, 29

distance

astronomical unit, 30

light year, 38

meter, 30

force

newton, 30

mass

kilogram, 30

time

day, 30

second, 30

year, 32

universal gravitation

and geometry, 208

for homogeneous spherical bodies, 186, 190,

193

universe

Copernican, 3, 5, 6

Greek, 1, 7

Newtonian, 185, 186

Ptolemaic, 2

Uranus, 25, 27, 85

essential data, 86, 87

V

vectors, 9, 165

velocity, 9, 58, 105–107, 169, 171, 173

at an instant, 169

average, 169, 231

velocity and speed, 9, 53, 58, 105, 169, 171–

173, 199

Venus, 72, 73, 115

essential data, 74, 75

Voyager missions, 62, 116, 310, 311, 320, 323

Voyager 1, 311

ephemerides, 332–334

from Earth to Jupiter, 313, 314, 316

from Jupiter flyby to Saturn, 316

Voyager 2, 85, 311

flyby of Jupiter, 322

flybys of Saturn and Uranus, 341

from Saturn to Neptune and beyond, 323

transfer orbit to Jupiter, 321

W

weight and mass, 33

Whitson

chart of the solar system, 24

winter, 4

winter solstice, 4

WISE spacecraft, 103

Y

year

as unit of time, 32

tropical, 30
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