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Abstract. We develop a general framework for designing polynomial-
time approximation schemes (PTASs) for various vehicle routing prob-
lems in trees. In these problems, the goal is to optimally route a fleet of
vehicles, originating at a depot, to serve a set of clients, subject to vari-
ous constraints. For example, in Minimum Makespan Vehicle Rout-
ing, the number of vehicles is fixed, and the objective is to minimize
the longest distance traveled by a single vehicle. Our main insight is
that we can often greatly restrict the set of potential solutions with-
out adding too much to the optimal solution cost. This simplification
relies on partitioning the tree into clusters such that there exists a near-
optimal solution in which every vehicle that visits a given cluster takes
on one of a few forms. In particular, only a small number of vehicles
serve clients in any given cluster. By using these coarser building blocks,
a dynamic programming algorithm can find a near-optimal solution in
polynomial time. We show that the framework is flexible enough to give
PTASs for many problems, including Minimum Makespan Vehicle
Routing, Distance-Constrained Vehicle Routing, Capacitated
Vehicle Routing, and School Bus Routing, and can be extended
to the multiple depot setting.

Keywords: Approximation algorithms · Vehicle routing ·
Rooted tree cover

1 Introduction

Vehicle routing problems address the fundamental problem of routing a fleet of
vehicles from a common depot to visit a set of clients. These problems arise
naturally in many real world settings, and are well-studied across computer
science and operations research. We generalize a class of vehicle routing problems
by introducing the notions of vehicle load, the problem-specific vehicle constraint
(e.g. vehicle capacity, distance traveled by the vehicle, client regret, etc.), and
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fleet budget, the problem-specific fleet constraint (e.g. number of vehicles, sum
of distances traveled, etc.).

Most vehicle routing problems can then be framed as either Min-Max Vehi-

cle Load: minimize the maximum vehicle load, given a bound k on fleet bud-
get (e.g. Minimum Makespan Vehicle Routing) or Minimum Fleet Bud-

get: minimize the required fleet budget, given a bound D on vehicle load (e.g.
Distance-Constrained Vehicle Routing). In fact, these are two optimiza-
tion perspectives of the same decision problem: does there exist a solution with
maximum vehicle load D and fleet budget k?

1.1 Main Contributions

We present a framework for designing polynomial time approximation schemes
(PTASs) for Min-Max Vehicle Load and Minimum Fleet Budget in trees.
Tree (and treelike) transportation networks occur in building and warehouse lay-
outs, mining and logging industries, and along rivers and coastlines [11,12]. Our
framework applies directly to Min-Max Vehicle Load problems and generates
results of the following form.

Theorem 1. For every ε > 0, there is a polynomial-time algorithm that, given
an instance of Min-Max Vehicle Load on a tree, finds a feasible solution
whose maximum vehicle load is at most 1 + ε times optimum.

An immediate corollary of Theorem 1 is the following result for the associated
Minimum Fleet Budget problem.

Theorem 2. Given an instance of Minimum Fleet Budget on a tree, if there
exists a solution with fleet budget k and vehicle load D, then for any ε > 0, there
is a polynomial-time algorithm that finds a solution with fleet budget k and vehicle
load at most (1 + ε)D.

The input to the framework is a rooted tree T = (V,E) with root r ∈ V and
edge lengths �(u, v) ≥ 0 for all (u, v) ∈ E. Without loss of generality, the root r
represents the depot at which all vehicles start and the set of clients corresponds
to the set of leaves in the tree (we can add zero cost edges to ensure that every
client is a leaf and any subtree without a client can be safely removed from the
instance). Since every edge must then be traversed by at least one vehicle, the
problems are equivalent to corresponding tree-cover problems.

As stated, the framework can be customized to a wide range of problems. In
Sect. 4, we illustrate in detail how to customize the framework to give a PTAS
for the Minimum Makespan Vehicle Routing problem of finding k tours
each starting and ending at a depot r that serve all clients in T such that the
makespan, the maximum length of any tour, is minimized. Here, vehicle load is
the tour length, and fleet budget is the number of vehicles. A bicriteria PTAS for
the associated Minimum Fleet Budget problem, Distance-Constrained

Vehicle Routing, follows as a corollary.
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Our framework can be applied to give similar results for other vehicle-routing
variants, including Capacitated Vehicle Routing and School Bus Rout-

ing, and can also be generalized to the multiple-depot setting. We state these
results in Sect. 5 and refer the reader to the full version of our paper for details.
The breadth of the problems listed highlights the real flexibility and convenience
of the presented framework.

At a high level, the framework partitions the tree into clusters such that there
exists a near-optimal solution that within each cluster has a very simple form,
effectively coarsening the solution space. Then, given this simplified structure, a
dynamic program can be designed to find such a near-optimal solution.

The clusters are designed to be small enough so that simplifying vehicle
routes at the cluster level does not increase the optimal load by too much, but
also large enough that the (coarsened) solutions can be enumerated efficiently. To
bound the error introduced by this simplification we design a load-reassignment
tool that makes cluster coverage adjustments globally in the tree.

Finally, standard dynamic programming techniques can result in a large accu-
mulation of rounding error. To limit the number of times that the load of any
single route is rounded, we introduce a route projection technique that essentially
pays in advance for load that the vehicle anticipates accumulating, allowing the
dynamic program to round only once instead of many times for this projected
load.

1.2 Related Work

For trees, Minimum Makespan Vehicle Routing is equivalent to Minimum

Makespan Rooted Tree Cover: the minimum makespan for rooted tree
cover is exactly half the minimum makespan for vehicle routing, since tours
traverse edges twice. Minimum Makespan Rooted Tree Cover is NP-hard
even on star instances but admits an FPTAS if the number, k, of subtrees is
constant [15] and a PTAS for general k [10]. For covering a general graph with
rooted subtrees, [6] provides a 4-approximation; this bound was later improved
to a 3-approximation by [13]. For tree metrics, an FPTAS is known for constant
k [16], and a (2 + ε)-approximation is known for general k [13]. In this paper,
we improve this to a PTAS. Although a recent paper [4] also claimed to present
a PTAS, in the full version of our paper we show that their result is incorrect
and cannot be salvaged using the authors’ proposed techniques. Additionally, we
compare their approach to our own and describe how we successfully overcome
the challenges where their approach fell short.

The associated Distance-Constrained Vehicle Routing problem is to
minimize the number of tours of length at most D required to cover all client
demand. Even restricted to star instances, this problem is NP-hard, and for
tree instances it is hard to approximate to better than a factor of 3/2 [14].
A 2-approximation is known for tree instances, and O(logD) and O(log |S|)-
approximations are known for general metrics, where S is the set of clients [14].
Allowing a multiplicative stretch in the distance constraint, a (O(log 1/ε), 1 +
ε) bicriteria approximation is also known, which finds a solution of at most



A Framework for Vehicle Routing Approximation Schemes in Trees 115

O(log 1/ε)OPTD tours each of length at most (1+ ε)D [14], where OPTD is the
minimum number of tours of length at most D required to cover all clients. We
give a (1, 1+ ε) bicriteria PTAS for trees, and note that the hardness results for
trees described above [14] imply that without allowing this (1 + ε) stretch in D,
a PTAS is unlikely to exist.

In the classic Capacitated Vehicle Routing each vehicle can cover at
most Q clients, and the objective is to minimize the sum of tour lengths.
This problem is also NP-hard, even in star instances [12]. For tree metrics, a
4/3-approximation is known [2], which improves upon the previous best-known
approximation ratio of (

√
41 − 1)/4 by [1] and is tight with respect to the best

known lower bound. In this paper, we give a (1, 1+ ε) bicriteria PTAS for trees.
For general metrics, a (2.5 − 1.5

Q )-approximation is known [9](using [5]).
The regret of a path is the difference between the path length and the distance

between the path endpoints. The Min-Max Regret Routing problem is to
cover all clients with k paths starting from the depot, such that the maximum
regret is minimized. For trees, there is a known 13.5-approximation algorithm [3],
which we improve to a PTAS in this paper. For general graphs there is a O(k2)-
approximation algorithm [7].

In the related School Bus Routing problem, there is a bound R on the
regret of each path and the goal is to find the minimum number of paths
required to cover all client demand. For general graphs, [8] provides an LP-
based 15-approximation algorithm, improving upon the authors’ previous 28.86-
approximation algorithm [7]. In trees, there exists a 3-approximation algorithm
for the uncapacitated version of this problem and a 4-approximation algorithm
for the capacitated version [3]. Additionally, there is a (3/2) inapproximability
bound [3]. A PTAS is therefore unlikely to exist for trees. Instead, we give a
(1, 1 + ε) bicriteria PTAS that allows a (1 + ε) stretch in the regret constraint.

2 Preliminaries

Let OPT denote the value of an optimum solution. For a minimization problem, a
polynomial-time α-approximation algorithm is an algorithm that finds a solution
of value at most α · OPT and runs in time that is polynomial in the size of the
input. A polynomial-time approximation scheme (PTAS) is a family of (1 + ε)-
approximation algorithms indexed by ε > 0 such that for each ε, the algorithm
runs in time polynomial in the input size, but may depend arbitrarily on ε.

In a rooted tree, the parent of a vertex v, denoted p(v), is the vertex adjacent
to v in the shortest path from v to r (the parent of r is undefined). If u = p(v)
then v is a child of u. The parent edge of a vertex v is the edge (p(v), v) (undefined
for v = r). The ancestors of vertex v are all vertices (including v and r) in the
shortest v-to-r path and the descendants of v are all vertices u such that v is an
ancestor of u. We assume every vertex has at most two children. If vertex v has
l > 2 children v1, ..., vl, add vertex v′ and edge (v, v′) of length zero and replace
edges (v, v1), (v, v2) with edges (v′, v1), (v′, v2) of the same lengths.

Further, the subtree rooted at v is the subgraph induced by the descendants
of v and is denoted Tv. If u = p(v), the v-branch at u consists of the subtree
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rooted at v together with the edge (u, v). We define the length of a subgraph
A ⊆ E to be �(A) =

∑
(u,v)∈A �(u, v). For vertices u, v, we use dT (u, v) to denote

the shortest-path distance in T between u and v.
Our framework applies to vehicle routing problems that can be framed as

Min-Max Vehicle Load problems, in which the objective is to minimize the
maximum vehicle load, subject to a fleet budget. Given a Min-Max Vehicle

Load problem, a trivial n-approximation can be used to obtain an upper bound
Dhigh for OPT . An overarching algorithm takes as input a load value D ≥ 0 and
provides the following guarantee: if there exists a solution with max load D, the
algorithm will find a solution with max load at most (1 + ε)D. A PTAS follows
from using binary search between Dhigh

n and Dhigh for the smallest value Dlow

such that the algorithm returns a solution of max load at most (1+ ε)Dlow. This
implies Dlow ≤ OPT . For the rest of the paper, we assume D is fixed.

3 Framework Overview

Optimization problems on trees are often well suited for dynamic programming
algorithms. In fact, the following dynamic programming strategy can solve Min-

Max Vehicle Load problems on trees exactly: at each vertex v, for each value
0 ≤ i ≤ D, guess the number of solution route segments of load exactly i in the
subtree rooted at v. Such an algorithm would be exponential in D. Instead of
considering every possible load value, route segment loads can be rounded up to
the nearest θD, for some value θ ∈ (0, 1] that depends only on ε, so that only
O(θ−1) segment load values need to be considered. In order to achieve a PTAS,
we must show that this rounding does not incur too much error. Rounding the
load of a route at every vertex accumulates too much error, but if the number
of times that any given route is rounded is at most ε/θ, then at most εD error
accumulates, as desired.

One main insight underlying our algorithm is that a route only needs to incur
rounding error when it branches. The challenge in bounding the rounding error
then becomes bounding the number of times a route branches. While a route in
the optimal solution may have an arbitrary amount of branching, we show that
we can greatly limit the scope of candidate solutions to those with a specific
structure while only incurring an εD error in the maximum load. Rather than
having to make decisions for covering every leaf in the tree (of which there may
be arbitrarily many−each with arbitrarily small load), we partition the tree into
clusters and then address covering the clusters.

By reassigning small portions of routes within a cluster, we show that there
exists a near-optimal solution in which all clients (leaves) within a given cluster
are covered by only one or two vehicles. These clusters are chosen to be small
enough that the error incurred by the reassignment is small, but large enough
that any given route covers clients in a bounded number of clusters. This coarsens
the solutions considered by the algorithm, as vehicles must commit to covering
larger fractions of load at a time. A dynamic program then finds the optimal
such coarse solution using these simple building blocks within each cluster.
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3.1 Simplifying the Solution Structure

Let ε̂ and δ be problem-specific values that depend only on ε. Let HT denote the
set of all subgraphs of T , and let g : H → Z

≥0 be a problem-specific load function.
We require g to be monotonic and subadditive. Intuitively, for all H ∈ HT , g(H)
is the load accumulated by a vehicle for covering H.

Condensing the Input Tree. The first step in the framework is to condense

all small branches into leaf edges. Specifically, let B be the set of all maximal
branches of load at most δD. That is, for every v-branch b ∈ B, g(b) ≤ δD and
for b’s parent p(v)-branch, bp, g(bp) > δD. For convenience, if b1 ∈ B is a v1
branch at u and b2 ∈ B is a sibling v2 branch at u such that g(b1)+ g(b2) ≤ δD,
we add a vertex u′ and an edge (u, u′) of length zero and replace (u, vi) with
edge (u′, vi) of length �(u, vi) for i ∈ {1, 2}. The u′ branch at u then replaces the
two branches b1 and b2 in B. This ensures that any two branches in B with the
same parent cannot be combined into a subtree of load ≤ δD.

Then, for every b ∈ B, we condense b by replacing it with a leaf edge of
length �(b) and load g(b). All clients in b are now assumed to be co-located at
the leaf. Though it is easier to think of these condensed branches as leaf edges,
the algorithm need not actually modify the input tree; condensing a branch is
equivalent to requiring a single vehicle to cover the entire branch.

Clustering the Condensed Tree. After condensing all small branches, we
partition the condensed tree into clusters and define every leaf edge whose load
is at least δ

2D to be a leaf cluster. The leaf-cluster-to-root paths define what we
call the backbone of T . By construction, every edge that is not on this backbone
is either a leaf cluster (of load ≥ δ

2D) or a leaf edge (of load < δ
2D). That is,

every vertex is at most one edge away from the backbone (see Fig. 1a).
We can think of the condensed tree as a binary tree whose root is the depot,

whose leaves are the leaf clusters, and whose internal vertices are the branching
points of the backbone. Each edge of this binary tree corresponds to a maximal
path of the backbone between these vertices, together with the small leaf edges
off of this path (see Fig. 1a). To avoid confusion with tree edges, we call these
path and leaf subgraphs woolly edges. A woolly subedge of a woolly edge consists
of a subpath of the backbone and all incident leaf edges.

A woolly edge e whose load g(e) is less than ε̂δ
2 D is called a small cluster. The

remaining woolly edges have load at least ε̂δ
2 D. We partition each such woolly

edge into one or more woolly subedges, which we call edge clusters, each with
load in [ ε̂δ2 D, δ

2D]. Backbone edges do not contain clients and can be subdivided
as needed to ensure enough granularity in the tree edge lengths so that such a
partition is always possible (see Fig. 1b).

For convenience, we label the components of edge clusters. Let C be the set
of edge clusters. For any edge cluster C ∈ C, let PC denote the backbone path in
C and let LC denote the leaf edges in C. We order the backbone edges along PC

as pC,1, pC,2, ..., pC,m in increasing distance from the depot and similarly label
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(a) Woolly edges (b) Clusters (c) T ∗

Fig. 1. (a) Leaf clusters in yellow and woolly edges in red; (b) The tree partitioned
into leaf clusters (yellow triangles), small clusters (blue ovals), and edge clusters (green
rectangles); (c) The corresponding T ∗ for clustering from (b). (Color figure online)

the leaf edges eC,1, eC,2, ..., eC,m−1 such that eC,i is the leaf incident to pC,i and
pC,i+1 for all 1 ≤ i < m (see Fig. 2). If no such incident leaf exists for some i, we
can add a leaf of length zero. Likewise PC can be padded with edges of length
zero to ensure that each edge cluster ‘starts’ and ‘ends’ with a backbone edge.

Solution Structure. Consider the intersection of a solution with an edge clus-
ter C. There are three different types of routes that visit C (see Fig. 2). A C-
passing route traverses C without covering any clients, and thus includes all of
PC but no leaf edges in LC . A C-collecting route traverses and covers clients in
C, and thus includes all of PC and some edges in LC . Last, a C-ending route
covers clients in, but does not traverse C, and thus includes backbone edges
pC,1, pC,2, ..., pC,i for some i < m and some leaves in LC , but does not include
all of PC . Note that any C-ending route can be assumed to cover some leaves
in LC because otherwise, removing any such redundancy would only improve a
solution.

r
. . . . . .

pC,1 pC,2 pC,3 pC,4 pC,5

eC,1 eC,2 eC,3 eC,4

Fig. 2. Three types of route within an edge cluster C; the red tour is a C-passing route,
the green tour is a C-collecting route, and the blue tour is a C-ending route. (Color
figure online)

We say that a cluster C has single coverage if a single vehicle covers all
clients in C. We say that an edge cluster C has split coverage if there is one C-
ending route that covers leaf edges eC,1, eC,2, ..., eC,i for some i < m− 1 and one
C-collecting route that covers leaf edges eC,i+1, eC,i+2, ..., eC,m−1 (see Fig. 2).
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Finally, we say that a feasible solution has a simple structure if:

– Leaf clusters and small clusters have single coverage,
– Edge clusters have single or split coverage, and
– Each vehicle covers clients in O( 1

ε̂2δ ) clusters

Customization of the framework requires proving a structure theorem stating
that there exists a near-optimal solution (i.e. a feasible solution with maximum
load at most (1 + ε)D) with simple structure. Such a theorem proves that it is
safe to reduce the set of potential solutions to those with simple structure.

3.2 Dynamic Program

After proving a structure theorem, the framework uses a dynamic programming
algorithm (DP) to actually find a near-optimal solution with simple structure.
We define the cluster tree T ∗ to be the tree that results from contracting each
cluster of T to a single vertex. That is, the cluster tree has a vertex for each
cluster and each branching point of the backbone (See Fig. 1c). The DP traverses
T ∗ starting at the leaves and moving rootward, and enumerates the possible route
structures within each cluster. Namely, the DP considers all ways edge cluster
coverage can be split and how routes are merged at branching points.

At each vertex in this tree the algorithm stores a set of configurations. A
configuration is interpreted as a set of routes in T that cover all clusters in
the subtree of T ∗ rooted at v. Let θ ∈ (0, 1] be a problem-specific value that
depends only on ε. A configuration at a vertex v specifies, for each multiple i of
θD between 0 and (1+ ε)D the number of routes whose rounded load is i at the
time they reach v. Because θ depends only on ε, the number of configurations and
runtime of the DP is polynomially bounded. After traversing the entire cluster
tree, the solution is found at the root. If there exists a configuration at the root
such that all of the rounded route loads are at most (1 + ε)D, the algorithm
returns this solution.

To ensure that the DP actually finds a near-optimal solution, we must bound
the number of times that a given route is rounded to ε/θ, which gives a rounding
error of at most εD. In particular, we design the DP so that the number of times
that any one route is rounded is proportional to the number of clusters that it
covers clients in. Then, using the structure theorem, there exists a near-optimal
solution that covers clients in O( 1

ε̂2δ ) clusters and gets rounded by the DP O( 1
ε̂2δ )

many times. Finally, θ is set to cθεε̂
2δ for some constant cθ.

For loads involving distance, C-passing routes pose a particular challenge
for bounding rounding error. These routes may accumulate load while passing
through clusters without covering any clients, yet the DP cannot afford to update
the load at every such cluster. Instead, the DP projects routes to predetermined
destinations up the tree, so that they accumulate rounding error only once while
passing many clusters. The configuration then stores the (rounded) loads of the
projected routes, and the DP need not update these load values for clusters
passed through along the projection.
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3.3 Reassignment Lemma

We now present a lemma that will serve as a general-purpose tool for our
framework. This tool is used to reassign small route segments. That is, if some
subgraph H is covered by several small route segments from distinct vehicles
h1, h2, ..., hm, then for some 1 ≤ i ≤ m, the entire subgraph H is assigned to be
covered by hi. This increases load on hi so as to cover all of H, and decreases
load on hj for all j �= i which are no longer required to cover H (see Fig. 3). We
show that this assignment process can be performed simultaneously for many
such subgraphs such that the net load increase of any one route is small.

Let G = (A,B,E) be an edge-weighted bipartite graph where A is a set of
facilities, B is a set of clients, and w(a, b) ≥ 0 is the weight of edge (a, b) ∈ E.
For any vertex v, we use N(v) to denote the neighborhood of v, namely the
set of vertices u such that there is an edge (u, v) ∈ E. Each facility a ∈ A
has capacity q(a) =

∑
b∈N(a) w(a, b) and each client b ∈ B has weight w(b) ≤

∑
a∈N(b) w(a, b). A feasible assignment is a function f : B → A, such that

each client b is assigned to an adjacent facility f(b) ∈ N(b). We can think of
the weights w(a, b) representing fractional assignment costs while weight w(b)
corresponds to a “discounted” cost of wholly serving client b. Ideally, the total
weight of clients assigned to any facility a would not exceed the capacity q(a);
however, this is not always possible. We define the overload hf (a) of a facility a
to be w(f−1(a))− q(a) =

∑
b|f(b)=a w(b)− ∑

b∈N(a) w(a, b) and the overload hf

of an assignment to be maxa∈A hf (a). The Bipartite Weight-Capacitated

Assignment problem is to find an assignment with minimum overload.

Lemma 1. Given an instance of the Bipartite Weight-Capacitated

Assignment problem, an assignment with overload at most maxb∈B w(b) can
be found efficiently.

In our application of Lemma 1, facilities represent tours and clients represent
subgraphs of T . Assignment of a client b to a facility a represents assigning
subgraph b to be covered by tour a (see the proof of Lemma 2 for an example).

4 Customizing the Framework: Minimum Makespan
Vehicle Routing

In this section, we demonstrate how to apply the general framework to a specific
problem, Minimum Makespan Vehicle Routing. In particular, we use the
framework to achieve the following:

Theorem 3. For every ε > 0, there is a polynomial-time algorithm that, given
an instance of Minimum Makespan Vehicle Routing on a tree, finds a solu-
tion whose makespan is at most 1 + ε times optimum.

Recall that the problem is to find k tours that serve all clients in T such
that the maximum length of any tour is minimized. The vehicle routes are tours,
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and the vehicle load is tour length, so the load g(H) of subgraph H is twice the
length of edges in the subgraph. The condense operation is then applied to the
input tree, with δ = ε̂ = ε/c for some constant c we will define later. Leaf clusters
therefore correspond to branches of length at least ε̂

4D (load at least ε̂
2D), small

clusters have total length less than ε̂2

4 D, and edge clusters have total length in
[ ε̂

2

4 D, ε̂
4D]. As described in Sect. 3, the two steps in applying the framework are

proving a structure theorem and designing a dynamic program.

4.1 Minimum Makespan Vehicle Routing Structure Theorem

We prove the following for Minimum Makespan Vehicle Routing.

Theorem 4. If there exists a solution with makespan D, then there exists a
solution with makespan at most 1 + O(ε̂)D that has simple structure.

We prove the above by starting with some optimal solution of makespan at
most D and show that after a series of steps that transforms the solution into
one with simple structure, the makespan is still near-optimal.

To ensure that each step maintains solution feasibility, we introduce the fol-
lowing notion of independence. Let T ′ be a connected subgraph of T containing
the depot r, and let X be a set of subgraphs of T . We say that X is a tour-
independent set with respect to T ′ if T ′ ∪ X ′ is connected for all X ′ ⊆ X.
In particular, if T ′ is the subgraph covered by a single tour then adding any
subgraphs in X ′ creates a new feasible tour.

Lemma 2. The condense operation adds at most ε̂D to the optimal makespan.

Proof. The condense operation is equivalent to requiring every branch in B to
be covered by a single tour. We show that there is such a solution of makespan
at most OPT + ε̂D. Fix an optimal solution, and let A be the set of tours in
the optimal solution that (at least partially) cover branches in B. We define
an edge-weighted bipartite graph G = (A,B, E) where there is an edge (a, b) if
and only if tour a contains edges of branch b, and w(a, b) is the length of the
tour segment of a in branch b, namely twice the length of the edges covered by
tour a. Note that ∀a ∈ A, b ∈ B, w(a, b) ≤ ε̂D. For each b ∈ B, we define the
weight w(b) to be 2�(b), and for each a ∈ A, we define the capacity q(a) to be
the sum

∑
b:a∩b�=∅ w(a, b) of all tour segments of a in branches of B. Clearly,

w(b) ≤ ∑
a:a∩b�=∅ w(a, b), since these tour segments collectively cover b.

Essentially, q(a) represents tour a’s budget for buying whole branches and is
defined by the length of its tour segments in the branches that it partially covers.
Further, we will only assign a branch to a tour that already covers some edges
in the branch so there is no additional cost to connect the tour to the branch.

Applying Lemma 1 to G, we can achieve an assignment of branches to tours
such that each branch is assigned to one tour and the capacity of each tour
is exceeded by at most maxb∈B w(b) ≤ ε̂D. Further, for any tour a ∈ A, let
T ′

a be the corresponding subgraph visited by a excluding any branches in B.
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T ′
a contains r and is connected, so NG(a) ⊆ B is a tour-independent set with

respect to T ′
a. Thus, the reassignment of branches creates a feasible solution in

which the extra distance traveled by each tour is at most ε̂D.

Fig. 3. (a) depicts a branch b ∈ B covered by several small tour segments; (b) shows
the entire branch b being assigned to the blue tour; (c) shows the result of the condense
operation. (Color figure online)

Lemma 3. Requiring all leaf clusters and small clusters to have single coverage
increases the makespan by at most 4ε̂D.

Proof. After condensing the tree, all leaf clusters have single coverage, and the
effect on makespan was covered in Lemma 2. Because of the binary tree structure,
we can assign each small cluster to a descendant leaf cluster in such a way that
each leaf cluster is assigned at most two small clusters. Since each leaf cluster
is covered by a single tour, we can require this tour to also cover the clients
of the small cluster(s) assigned to that leaf cluster. This is feasible since small
clusters are only assigned to descendant leaf clusters. Furthermore, since leaf
clusters have length at least ε̂

4D, we can charge this error to the length of the
leaf clusters. In particular, since any given tour covers at most D/(2 · ε̂

4D) = 2
ε̂

leaf clusters, this assignment adds at most 2 · 2ε̂ ·(2 · ε̂2

2 D) = 4ε̂D to the makespan.

Lemma 4. Requiring every edge cluster to have single or split coverage adds at
most 3ε̂D to the optimal makespan.

After proving Lemma 4, all that remains in proving Theorem 4 is to bound
the number of clusters that a single vehicle covers clients in. See the full version
of our paper for proofs.

4.2 Minimum Makespan Vehicle Routing Dynamic Program

Having proven a structure theorem, we now present a dynamic programming
algorithm (DP) that actually finds a near-optimal solution with simple structure.

Recall, the DP traverses cluster tree T ∗ starting at the leaves and moving
rootward. A configuration is a vector in {0, 1, 2, ..., k}2ε̂−4

. A configuration x
at a vertex v is interpreted as a set of tours projected up to r in T that cover
all clusters in the subtree of T ∗ rooted at v. For i ∈ {1, 2, ..., 2ε̂−4}, x[i] is the
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number of tours in the set that have rounded length iε̂4D. That is, the actual
tours that correspond to the x[i] tours represented in the vector each have length
that may be less than iε̂4D.

The algorithm categorizes the vertices into three different cases and handles
them separately. The base cases are the leaves of T ∗. Let v ∈ T ∗ be such a leaf,
let Lv be the corresponding leaf cluster in T , and let u be the vertex at which Lv

meets the backbone. When the algorithm determines the configuration for v it
addresses covering both Lv as well as covering any small clusters C1, ..., Ch that
are assigned to Lv. Let �small be the length of all of the leaves of these small
clusters, namely �small = �(

⋃
1≤i≤h Ci \ backbone). Let �0 be 2(�(Lv) + �small +

dT (u, r)) rounded up to the nearest ε̂4D. The only configuration stored at v is
x such that x[�0] = 1 and x[j] = 0,∀j �= �0. All cluster lengths and distances to
the depot can be precomputed in linear time, after which each base case can be
computed in constant time.

The grow cases are the vertices in T ∗ that correspond to edge clusters in T .
Let v ∈ T ∗ be such a vertex, and let Cv be the corresponding edge cluster in T .
Let u be the root-most vertex in Cv, and let v′ ∈ T ∗ be the lone child vertex of
v. Note that v′ may correspond to a branching backbone vertex, a leaf cluster or
another edge cluster, but by construction, v has exactly one child. Since Cv has
single or split coverage, at most two tours in any configuration at v are involved
in covering the leaves of Cv: all other tours in the configuration are Cv-passing
tours, and their representation in the configuration remains unchanged. The
algorithm considers all possible rounded tour lengths �1 for a Cv-ending tour
t1 for the configuration (including not having such a tour) and for each such
t1, the algorithm considers all possible (rounded) lengths �2 for an incoming
Cv-collecting tour t2, before the remaining length from covering leaves in Cv

is added to the tour. Given �1 and �2, the algorithm can easily compute the
resulting rounded length �3 of t2 after covering its share of Cv leaves. For each
configuration x′ for child vertex v′, the algorithm determines configuration x
for v such that x[�1] = x′[�1] + 1, x[�2] = x′[�2] − 1, x[�3] = x′[�3] + 1, and
x[i] = x′[i] otherwise. If the resulting x is feasible, it is stored at v. Since there
are at most 2ε̂−4 options for �1 and �2 and at most k2ε̂−4

configurations at v′,
the runtime for each grow case is kO(ε̂−4).

Finally, the merge cases are the vertices in T ∗ that correspond to branching
backbone vertices in T as well as the depot. Let v ∈ T ∗ be such a vertex, and let
u be the corresponding vertex in T . Let v1, v2 ∈ T ∗ be the two children of v in
T ∗. Every tour t in a configuration at v will either be a directly inherited tour ti
of rounded length �i from a configuration at vi for i ∈ {1, 2}, or will be a merging
of some tour t1 from v1 and some t2 from v2 with resulting length �1+�2−2�(u, r)
rounded up to the nearest ε̂4D (recall that t1 and t2 are tours from the depot
so the subtracted amount addresses over-counting the path to the depot). For
every possible (�1, �2) (including lengths of zero to account for tours inherited
by children), the algorithm considers how many tours at v could have resulted
from merging a tour of length �1 from v1 with a tour of length �2 from v2. Each
of these possibilities corresponds to a configuration xi at vi for i ∈ {1, 2} and
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to a merged configuration x at v. If x1 and x2 are valid configurations stored
at v1 and v2, respectively, then the algorithm stores x at v. There are k4ε̂−8

such possibilities, so the runtime of each merge case is kO(ε̂−8). Note that the
dynamic program only considers storing feasible configurations x at vertex v so
the algorithm maintains that there are at most k tours total.

Since for any ε > 0 the DP has a polynomial runtime, the following lemma,
which we prove in the full version of our paper, completes the proof of Theorem 3.

Lemma 5. The dynamic program described above finds a tour with maximum
makespan at most (1 + ε)D.

4.3 Distance-Constrained Vehicle Routing

Recall that the Distance-Constrained Vehicle Routing problem is to min-
imize the number of tours of length at most D required to cover all clients. Since it
is the Minimum Fleet Budget problem associated with Minimum Makespan

Vehicle Routing, the following bicriteria PTAS follows as a corollary to The-
orem 3.

Theorem 5. Given an instance of Distance-Constrained Vehicle Rout-

ing on a tree, if there exists a solution with k tours of length at most D, then
for any ε > 0, there is a polynomial-time algorithm that finds a solution with k
tours of length at most (1 + ε)D.

5 Framework Applications

In this section we give theorem statements for several other problems and exten-
sions that can be solved using our framework. See the full version of our paper
for details and proofs.

Theorem 6. Given an instance of Capacitated Vehicle Routing on a tree,
if there exists a solution of total length k and capacity Q, then for any ε > 0,
there is a polynomial-time algorithm that finds a solution of total length k and
capacity at most (1 + ε)Q.

Theorem 7. Given an instance of the School Bus Routing problem on a
tree, if there exists a solution consisting of k paths of regret at most R, then for
any ε > 0, there is polynomial-time algorithm that finds a solution consisting of
k paths of regret at most (1 + ε)R.

Theorem 8. There is a polynomial-time 2-approximation for the School Bus

Routing problem in trees.

Theorem 9. For every ε > 0 and ρ > 0, there is a polynomial-time algorithm
that, given an instance of ρ-Depot Minimum Makespan Vehicle Routing

on a tree, finds a solution whose makespan is at most 1 + ε times optimum.
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