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Abstract. In this paper we study planar morphs between straight-line
planar grid drawings of trees. A morph consists of a sequence of mor-
phing steps, where in a morphing step vertices move along straight-line
trajectories at constant speed. We show how to construct planar morphs
that simultaneously achieve a reduced number of morphing steps and a
polynomially-bounded resolution. We assume that both the initial and
final drawings lie on the grid and we ensure that each morphing step
produces a grid drawing; further, we consider both upward drawings of
rooted trees and drawings of arbitrary trees.

1 Introduction

The problem of morphing combinatorial structures is a consolidated research
topic with important applications in several areas of Computer Science such as
Computational Geometry, Computer Graphics, Modeling, and Animation. The
structures of interest typically are drawings of graphs; a morph between two
drawings Γ0 and Γ1 of the same graph G is defined as a continuously changing
family of drawings {Γt} of G indexed by time t ∈ [0, 1], such that the drawing
at time t = 0 is Γ0 and the drawing at time t = 1 is Γ1. A morph is usually
required to preserve a certain drawing standard and pursues certain qualities.

The drawing standard is the set of the geometric properties that are main-
tained at any time during the morph. For example, if both Γ0 and Γ1 are planar
drawings, then the drawing standard might require that all the drawings of
the morph are planar. Other properties that might be required to be preserved
are the convexity of the faces, or the fact that the edges are straight-line seg-
ments, etc.

Regarding the qualities of the morph, the research up to now mainly focused
on limiting the number of morphing steps, where in a morphing step vertices
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move along straight-line trajectories at constant speed. A morph M can then
be described as a sequence of drawings M = 〈Γ0 = Δ0,Δ1, . . . , Δk = Γ1〉
where the morph 〈Δi−1,Δi〉, for i = 1, . . . , k, is a morphing step. Following the
pioneeristic works of Cairns and Thomassen [8,13], most of the literature focused
on the straight-line planar drawing standard. A sequence of recent results in [1–
5] proved that a linear number of morphing steps suffices, and is sometimes
necessary, to construct a morph between any two straight-line planar drawings
of a graph.

Although the results mentioned in the previous paragraph establish strong
theoretical foundations for the topic of morphing graph drawings, they pro-
duce morphs that are not appealing from a visualization perspective. Namely,
such algorithms produce drawings that have poor resolution, i.e., they may have
an exponential ratio of the distances between the farthest and closest pairs of
geometric objects (points representing vertices or segments representing edges),
even if the same ratio is polynomially bounded in the initial and final drawings.
Indeed, most of the above cited papers mention the problem of constructing
morphs with bounded resolution as the main challenge in this research area.

The only paper we are aware of where the resolution problem has been
successfully addressed is the one by Barrera-Cruz et al. [6], who showed
how to construct a morph with polynomially-bounded resolution between two
Schnyder drawings Γ0 and Γ1 of the same planar triangulation. The model
they use in order to ensure a bound on the resolution requires that Γ0 =
Δ0,Δ1, . . . , Δk = Γ1 are grid drawings, i.e., vertices have integer coordinates,
and the resolution is measured by comparing the area of Γ0 and Γ1 with the
area of the Δi’s. We remark that morphs between planar orthogonal drawings
of maximum-degree-4 planar graphs, like those in [7,12], inherently have poly-
nomial resolution.

In this paper we show how to construct morphs of tree drawings that simul-
taneously achieve a reduced number of morphing steps and a polynomially-
bounded resolution. Adopting the setting of [6], we assume that Γ0 and Γ1 are
grid drawings and we ensure that each morphing step produces a grid drawing.

We present three algorithms. The first two algorithms construct morphs
between any two strictly-upward straight-line planar grid drawings Γ0 and Γ1 of
n-node rooted trees; strictly-upward drawings are such that each node lies above
its children. Both algorithms construct morphs in which each intermediate grid
drawing has linear width and height, where the input size is measured by n and
by the width and the height of Γ0 and Γ1. The first algorithm employs Θ(n)
morphing steps. The second algorithm employs Θ(1) morphing steps, however it
only applies to binary trees. The third algorithm allows us to achieve our main
result, namely that for any two straight-line planar grid drawings Γ0 and Γ1 of
an n-node tree, there is a planar morph with Θ(n) morphing steps between Γ0

and Γ1 such that each intermediate grid drawing has polynomial area, where the
input size is again measured by n and by the width and the height of Γ0 and Γ1.

The first algorithm uses recursion; namely, it eliminates a leaf in the tree, it
recursively morphs the drawings of the remaining tree and it then reintroduces
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the removed leaf in suitable positions during the morph. The second algorithm
morphs the given drawings by independently changing their x- and y-coordinates;
this technique is reminiscent of a recent paper by Da Lozzo et al. [10]. Finally, the
third algorithm scales the given drawings up in order to make room for a bottom-
up modification of each drawing into a “canonical” drawing of the tree.

Missing proofs can be found in the full version of the paper.

2 Preliminaries

In this section we introduce some definitions and preliminaries; see also [11].

Trees. The node and edge sets of a tree T are denoted by V (T ) and E(T ),
respectively. The degree deg(v) of a node v of T is the number of its neighbors.
In an ordered tree, a counter-clockwise order of the edges incident to each node
is specified.

A rooted tree T is a tree with one distinguished node, which is called root and
is denoted by r(T ). For any node u ∈ V (T ) with u �= r(T ), the parent p(u) of u
is the neighbor of u in the unique path from u to r(T ). For any node u ∈ V (T )
with u �= r(T ), the children of u are the neighbors of u different from p(u); the
children of r(T ) are all its neighbors. The nodes that have children are called
internal; a non-internal node is a leaf. For any node u ∈ V (T ) with u �= r(T ),
the subtree Tu of T rooted at u is defined as follows: remove from T the edge
(u, p(u)), thus separating T in two trees; the one containing u is the subtree of T
rooted at u. If each node of T has at most two children, then T is a binary tree.

An ordered rooted tree is a tree that is rooted and ordered. In an ordered
rooted tree T , for each node u ∈ V (T ), a left-to-right (linear) order u1, . . . , uk of
the children of u is specified. If T is binary then the first (second) child in the
left-to-right order of the children of any node u is the left (right) child of u, and
the subtree rooted at the left (right) child of u is the left (right) subtree of u.

Tree Drawings. In a straight-line drawing Γ of a tree T each node u is rep-
resented by a point of the plane (whose coordinates are denoted by xΓ (u) and
yΓ (u)) and each edge is represented by a straight-line segment between its end-
points. All the drawings considered in this paper are straight-line, even when not
specified. In a planar drawing no two edges intersect except, possibly, at com-
mon end-points. For a rooted tree T , a strictly-upward drawing Γ is such that
each edge (u, p(u)) ∈ E(T ) is represented by a curve monotonically increasing in
the y-direction from u to p(u); if Γ is a straight-line drawing, this is equivalent
to requiring that yΓ (u) < yΓ (p(u)). For an ordered tree T , an order-preserving
drawing Γ is such that, for each node u ∈ V (T ), the counter-clockwise order of
the edges incident to u in Γ is the same as the order associated with u in T .

The bounding box of a drawing Γ is the smallest axis-parallel rectangle enclos-
ing Γ . In a grid drawing Γ each node has integer coordinates; then the width
and the height of Γ , denoted by w(Γ ) and h(Γ ), respectively, are the number of
grid columns and rows intersecting the bounding box of Γ , while the area of Γ
is its width times its height. For a node v in a drawing Γ , an �-box centered at
v is the convex hull of the square whose corners are (xΓ (v) ± �

2 , yΓ (v) ± �
2 ).
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Morphs. A morph is planar if all its intermediate drawings are planar. A morph
between two strictly-upward drawings of a rooted tree is upward if all its interme-
diate drawings are strictly-upward. A morph is linear if each node moves along a
straight-line trajectory at constant speed. Whenever the linear morph between
two straight-line planar drawings Γ0 and Γ1 of a graph G is not planar, one
is usually interested in the construction of a piecewise-linear morph with small
complexity between Γ0 and Γ1. This is formalized by defining a morph between
Γ0 and Γ1 as a sequence 〈Γ0 = Δ0,Δ1, . . . , Δk = Γ1〉 of drawings of G such
that the linear morph 〈Δi−1,Δi〉 is planar, for i = 1, . . . , k; each linear morph
〈Δi−1,Δi〉 is called a morphing step or simply a step.

The width w(M) of a morph M = 〈Δ0,Δ1, . . . , Δk〉, where Δi is a grid
drawing, for i = 0, 1, . . . , k, is equal to max{w(Δ0), w(Δ1), . . . , w(Δk)}. The
height h(M) of M is defined analogously. The area of a morph M is defined as
w(M) × h(M).

The algorithms we design in this paper receive in input two order-preserving
straight-line planar grid drawings Γ0 and Γ1 of an ordered tree and construct
morphs 〈Γ0 = Δ0,Δ1, . . . , Δk = Γ1〉 with few steps and small area.

Remark 1. A necessary and sufficient condition for the existence of a planar
morph between two straight-line planar drawings Γ0 and Γ1 of a tree T is that
they are “topologically-equivalent”, i.e., the counter-clockwise order of the edges
incident to each node u ∈ V (T ) is the same in Γ0 and Γ1. In order to better
exploit standard terminology about tree drawings, we ensure that Γ0 and Γ1

are topologically-equivalent by assuming that T is ordered and that Γ0 and Γ1

are order-preserving drawings; hence, dealing with ordered trees and with order-
preserving drawings is not a loss of generality.

Remark 2. The width and height of the morphs we construct are expressed not
only in terms of the number of nodes of the input tree T , but also in terms of
the width and height of the input drawings Γ0 and Γ1 of T ; this is necessary,
given that max{w(Γ0), w(Γ1)} and max{h(Γ0), h(Γ1)} are obvious lower bounds
for the width and height of any morph between Γ0 and Γ1, respectively.

Remark 3. The morphs 〈Δ0,Δ1, . . . , Δk〉 we construct in this paper are such
that Δ0,Δ1, . . . , Δk are grid drawings, even when not explicitly specified.

3 Upward Planar Morphs of Rooted-Tree Drawings

In this section we study small-area morphs between order-preserving strictly-
upward straight-line planar grid drawings of rooted ordered trees.

Our first result shows that such morphs can always be constructed consist-
ing of a linear number of steps. This is obtained via an inductive algorithm
which is described in the following. Let T be an n-node rooted ordered tree. The
rightmost path of T is the maximal path (s0, . . . , sm) such that s0 = r(T ) and
si is the rightmost child of si−1, for i = 1, . . . , m. Note that sm is a leaf, which
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Γ0 Γ1Γ1Γ0

Fig. 1. The 3-step morph 〈Γ0, Γ
′
0, Γ

′
1, Γ1〉.

is called the rightmost leaf l→T of T . For a straight-line grid drawing Γ , denote
by �Γ the rightmost vertical line intersecting Γ ; note that �Γ is a grid column.

Let Γ0 and Γ1 be two order-preserving strictly-upward straight-line planar
grid drawings of T . We inductively construct a morph M from Γ0 to Γ1 as follows.

In the base case n = 1; then M is the linear morph 〈Γ0, Γ1〉.
In the inductive case n > 1. Let l = l→T be the rightmost leaf of T . Let π = p(l)

be the parent of l. Let T ′ be the (n− 1)-node tree obtained from T by removing
the node l and the edge (π, l). Let Γ ′

0 and Γ ′
1 be the drawings of T ′ obtained from

Γ0 and Γ1, respectively, by removing the node l and the edge (π, l). Inductively
compute a k-step upward planar morph M′ = 〈Γ ′

0 = Δ′
1,Δ

′
2, . . . , Δ

′
k = Γ ′

1〉.
We now construct a morph M = 〈Γ0,Δ1,Δ2, . . . , Δk, Γ1〉. For each i =

2, 3, . . . , k − 1, we define Δi as the drawing obtained from Δ′
i by placing l one

unit below π and one unit to the right of �Δ′
i
. Further, we define Δ1 (Δk) as

the drawing obtained from Δ′
1 (resp. from Δ′

k) by placing l one unit below π
and one unit to the right of �Γ0 (resp. �Γ1). Note that the point at which l is
placed in Δ1 (in Δk) is one unit to the right of �Δ′

1
(resp. �Δ′

k
), similarly as in

Δ2,Δ3, . . . , Δk−1, except if l is to the right of every other node of Γ0 (of Γ1); in
that case l might be several units to the right of �Δ′

1
(resp. �Δ′

k
). This completes

the construction of M. We get the following.

Theorem 1. Let T be an n-node rooted ordered tree, and let Γ0 and Γ1 be two
order-preserving strictly-upward straight-line planar grid drawings of T . There
exists a (2n − 1)-step upward planar morph M from Γ0 to Γ1 with h(M) =
max{h(Γ0), h(Γ1)} and w(M) = max{w(Γ0), w(Γ1)} + n − 1.

In view of Theorem 1, it is natural to ask whether a sub-linear number of
steps suffices to construct a small-area morph between any two order-preserving
strictly-upward straight-line planar grid drawings of a rooted ordered tree. In
the following we prove that this is indeed the case for binary trees, for which
just three morphing steps are sufficient.

Our algorithm borrows ideas from a recent paper by Da Lozzo et al. [10],
which deals with upward planar morphs of upward plane graphs.

Consider any two order-preserving strictly-upward straight-line planar grid
drawings Γ0 and Γ1 of an n-node rooted ordered binary tree T . We define two
order-preserving strictly-upward straight-line planar grid drawings Γ ′

0 and Γ ′
1 of

T such that the 3-step morph 〈Γ0, Γ
′
0, Γ

′
1, Γ1〉 is upward and planar.
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upwardrightward

downward leftward

r(T )

Fig. 2. Four canonical drawings of a tree T (each shown in a differently colored
quadrant).

For i = 0, 1, we define Γ ′
i recursively as follows; see Fig. 1. Let xΓ ′

i
(r(T )) = 0

and let yΓ ′
i
(r(T )) = yΓi

(r(T )). If the left subtree L of r(T ) is non-empty, then
recursively construct a drawing of it. Let xM be the maximum x-coordinate of
a node in the constructed drawing of L; horizontally translate such a drawing
by subtracting xM + 1 from the x-coordinate of every node in L, so that the
maximum x-coordinate of any node in L is now −1. Symmetrically, if the right
subtree R of r(T ) is non-empty, then recursively construct a drawing of it. Let
xm be the minimum x-coordinate of a node in the constructed drawing of R;
horizontally translate such a drawing by subtracting xm−1 from the x-coordinate
of every node in R, so that the minimum x-coordinate of any node in R is now 1.

Theorem 2. Let T be an n-node rooted ordered binary tree, and let Γ0 and Γ1

be two order-preserving strictly-upward straight-line planar grid drawings of T .
There exists a 3-step upward planar morph M from Γ0 to Γ1 with h(M) =
max{h(Γ0), h(Γ1)} and w(M) = max{w(Γ0), w(Γ1), n}.

The algorithm presented before Theorem 2 can be easily generalized to rooted
ordered trees with unbounded degree. Thus, there exists a 3-step upward planar
morph between any two order-preserving strictly-upward straight-line planar
grid drawings of an n-node rooted ordered tree. However, the generalized version
of the algorithm does not guarantee polynomial bounds on the width of the
morph.

4 Planar Morphs of Tree Drawings

In this section we show how to construct small-area morphs between straight-line
planar grid drawings of trees. In particular, we prove the following result.

Theorem 3. Let T be an n-node ordered tree and let Γ0 and Γ1 be two order-
preserving straight-line planar grid drawings of T . There exists an O(n)-step pla-
nar morph M from Γ0 to Γ1 with h(M) ∈ O(D3n ·H) and w(M) ∈ O(D3n ·W ),
where H = max{h(Γ0), h(Γ1)}, W = max{w(Γ0), w(Γ1)}, and D = max{H,W}.
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The rest of this section is devoted to the proof of Theorem 3. We are going
to use the following definition (see Fig. 2).

Definition 1. An upward canonical drawing of a rooted ordered tree T is an
order-preserving strictly-upward straight-line planar grid drawing Γ of T satis-
fying the following properties:

– if |V (T )| = 1, then Γ is a grid point in the plane, representing r(T );
– otherwise, let Γ1, . . . , Γk be upward canonical drawings of the subtrees

T1, . . . , Tk of r(T ) (in their left-to-right order), respectively; then Γ is such
that:

• r(T ) is one unit to the left and one unit above the top-left corner of the
bounding box of Γ1;

• the top sides of the bounding boxes of Γ1, . . . , Γk have the same y-
coordinate; and

• the right side of the bounding box of Γi is one unit to the left of the left
side of the bounding box of Γi+1, for i = 1, . . . , k − 1.

By counter-clockwise rotating an upward canonical drawing of T by π
2 , π, and

3π
2 radians, we obtain a leftward, a downward, and a rightward canonical drawing

of T , respectively. A canonical drawing of T is an upward, leftward, downward,
or rightward canonical drawing of T . In an upward, leftward, downward, or
rightward canonical drawing Γ of T , r(T ) is placed at the top-left, bottom-left,
bottom-right, and top-right corner of the bounding box of Γ , respectively.

Remark 4. If T has n nodes, then a canonical drawing of T lies in the 2n-box
centered at r(T ).

The following lemma allows us to morph one canonical drawing into another
in a constant number of morphing steps.

Lemma 1 (Pinwheel). Let Γ and Γ ′ be two canonical drawings of a rooted
ordered tree T , where r(T ) is at the same point in Γ and Γ ′. If Γ and Γ ′ are
upward and leftward, or leftward and downward, or downward and rightward, or
rightward and upward, then the morph 〈Γ, Γ ′〉 is planar and lies in the interior
of the right, top, left, or bottom half of the 2n-box centered at r(T ), respectively.

We now describe the proof of Theorem 3. Let T be an n-node ordered tree
and let Γ0 and Γ1 be two order-preserving straight-line planar grid drawings of T .
In order to compute a morph M from Γ0 to Γ1, we root T at any leaf r(T ). Since
T is ordered, this determines a left-to-right order of the children of each node.

We construct three morphs: a morph M0 from Γ0 to a canonical drawing
Γ ∗
0 of T , a morph M1 from Γ1 to a canonical drawing Γ ∗

1 of T , and a morph
M0,1 from Γ ∗

0 to Γ ∗
1 . Then M is composed of M0, of M0,1, and of the reverse

of M1. The morph M0,1 consists of O(1) steps and can be constructed by
applying Lemma 1. We describe how to construct M0; the construction of M1

is analogous.
Let T [0] be the tree T together with a labeling of each of the k internal nodes

of T as unvisited and of each leaf as visited. We perform a bottom-up visit of
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Fig. 3. (a) A partially-canonical drawing Δi−1 of tree T [i − 1]; the subtree T ∗ lies in
the gray region, visited and unvisited nodes are represented as squares and circles,
respectively. (b) Drawing Δ′ of the morph 〈Δi−1, Δ

′〉 of Claim 3.1.

T , labeling one-by-one the internal nodes of T as visited. We label a node v as
visited only after all of its children have been labeled as visited. We denote
by T [i] the tree T once i of its internal nodes have been labeled as visited.

Let D0 = max{w(Γ0), h(Γ0)}. Let Γ be a drawing of T and let v be a node
of T . We denote by Large(v), Med(v), and Small(v) the (�0 + 4n)-box, the
�0-box, and the 2n-box centered at v in Γ , respectively, where �0 = k0D

2
0n for

some constant k0 > 1 to be determined later. We have the following definition.

Definition 2. An order-preserving straight-line planar grid drawing Γ of T
is a partially-canonical drawing of T [i] if it satisfies the following properties
(Fig. 3a):

(a) for each visited node u of T , the drawing Γu of Tu in Γ is upward
canonical or downward canonical; further, if u �= r(T ), then Γu is upward
canonical, if yΓ (u) ≤ yΓ (p(u)), or downward canonical, if yΓ (u) >
yΓ (p(u));

(b) for each edge e = (v, u) of T , where v is the parent of u and v is
unvisited, there exists a sector Se of a circumference centered at v such
that:

(b.i) Se encloses Small(u);
(b.ii) Se contains no node with the exception of v and of, possibly, the nodes

of Tu, and no edge with the exception of (u, v) and of, possibly, the edges
of Tu;

(b.iii) the intersection between Se and Med(v) contains a 2n-box Bu whose cor-
ners have integer coordinates and whose center cu is such that yΓ (cu) ≤
yΓ (v) if and only if yΓ (u) ≤ yΓ (v); and

(b.iv) for any edge e′ �= e incident to v, the sectors Se and Se′ are internally
disjoint;

(c) for any two unvisited nodes v and w, it holds Large(v)∩Large(w) = ∅;
and
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(d) for each unvisited node v of T , Large(v) contains no node different
from v, and any edge e or any sector Se intersecting Large(v) is such
that e is incident to v.

Note that, by Property (a), a partially-canonical drawing of T [k] is a canon-
ical drawing.

The algorithm to construct M0 is as follows. First, we scale Γ0 up by a factor
in O(D3

0n) so that the resulting drawing Δ0 is a partially-canonical drawing of
T [0] (see Lemma 2). Clearly, the morph M0 = 〈Γ0,Δ0〉 is planar, w(M0) =
w(Δ0), and h(M0) = h(Δ0).

For i = 1, . . . , k, let vi be the node that is labeled as visited at the i-th step
of the bottom-up visit of T . Starting from a partially-canonical drawing Δi−1

of T [i − 1], we construct a partially-canonical drawing Δi of T [i] and a morph
Mi−1,i from Δi−1 to Δi with O(deg(vi)) steps, with w(Mi−1,i) = w(Δi−1) and
h(Mi−1,i) = h(Δi−1) (see Lemma 3).

Composing M0,M0,1,M1,2, . . . ,Mk−1,k yields the desired morph M0

from Γ0 to a canonical drawing Δk = Γ ∗
0 of T . The morph has

∑
i deg(vi) ∈ O(n)

steps (by Lemma 3). Further, w(M0) = w(Δ0) and h(M0) = h(Δ0) (by
Lemma 3), hence w(M0) ∈ O(D3

0n · w(Γ0)) and h(M0) ∈ O(D3
0n · h(Γ0)) (by

Lemma 2).

Lemma 2. There is an integer B0 ∈ O(D3
0n) such that the drawing Δ0 obtained

by scaling the drawing Γ0 of T up by B0 is a partially-canonical drawing of T [0].

Lemma 3. For any i ∈ {1, . . . , k}, let Δi−1 be a partially-canonical drawing of
T [i−1]. There exists a partially-canonical drawing Δi of T [i] and an O(deg(vi))-
step planar morph Mi−1,i from Δi−1 to Δi such that w(Mi−1,i) ≤ w(Δ0)+�0+
4n and h(Mi−1,i) ≤ h(Δ0) + �0 + 4n.

The rest of the section is devoted to the proof of Lemma 3. We denote by T ∗

the tree obtained by removing from T the nodes of Tvi
and their incident edges.

Let Δi be the straight-line drawing of T obtained from Δi−1 by redrawing Tvi
so

that it is upward canonical, if yΔi−1(vi) ≤ yΔi−1(p(vi)), or downward canonical,
otherwise, while keeping the placement of vi and of every node of T ∗ unchanged.

Lemma 4. The drawing Δi is a partially-canonical drawing of T [i].

We show how to construct a morph Mi−1,i from Δi−1 to Δi satisfying the
properties of the statement of the lemma. This is done in several stages as follows.

First, consider the drawing Δ′ of T obtained as described next; refer to
Fig. 3b. Initialize Δ′ = Δi−1. Then, for each child u of vi, translate the drawing
of Tu so that u is at the center of a 2n-box Bu that lies in the intersection
between Se and Med(vi), whose corners have integer coordinates, and whose
center cu is such that yΔi−1(cu) ≤ yΔi−1(vi) if and only if yΔi−1(u) ≤ yΔi−1(vi);
such a box exists by Property (b.iii) of Δi−1. Also, redraw the edge (vi, u) as a
straight-line segment in Δ′.
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Claim 3.1 The morph 〈Δi−1,Δ
′〉 is planar.

vi

p(vi)

R2

R3

R4

R1

Med(vi)
Large(vi)

SL SR

Fig. 4. Regions for vi.

Second, we show how to move the subtrees rooted
at the children of vi in the interior of Large(vi), so
that they land in the position they have in Δi. The
way we deal with such subtrees depends on their
placement with respect to vi and to the drawing
of edge (vi, p(vi)). We consider the case in which
y(p(vi)) ≥ y(vi) and x(p(vi)) ≥ x(vi); the other cases
can be treated similarly. In particular, we distinguish
four regions R1, R2, R3, and R4 defined as follows;
refer to Fig. 4. Let h→(v) and h←(v) be the horizontal
rays originating at a node v and directed rightward
and leftward, respectively. Further, let h↑(v) be the
horizontal ray originating at a node v and directed upward.

u3 u2

vi

u1
R2

SR

Large(vi)Med(vi)

(a) Δ

R2

SR

Large(vi)Med(vi)

u3 u2

u1

vi

(b) Ψ1

SR

Large(vi)Med(vi)

R2

vi

(c) Ψ3

Large(vi)Med(vi)

R2 SR

vi

(d) Δ+

Fig. 5. Illustrations for Lemma 3, focused on the children of vi that lie in R2.

Region R1 is defined as the intersection of Med(vi) with the wedge centered
at vi obtained by counter-clockwise rotating h→(vi) until it passes through
p(vi); note that, if (vi, p(vi)) is a horizontal segment, then R1 = ∅.

Region R2 is the rectangular region that is the lower half of Med(vi);
Region R3 is defined as the intersection of Med(vi) with the wedge centered

at vi obtained by clockwise rotating h←(vi) until it coincides with h↑(vi); and
Region R4 is defined as the intersection of Med(vi) with the wedge centered

at vi obtained by clockwise rotating h↑(vi) until it passes through p(vi); note
that, if (vi, p(vi)) is a vertical segment, then R4 = ∅.

Note that Med(vi) = R1 ∪ R2 ∪ R3 ∪ R4.
We define two more regions (see Fig. 4), which will be exploited as “buffers”

that allow us to rotate subtrees via Lemma 1 without introducing crossings.
Let SL and SR be the rectangular regions in Δ′ containing all the points in
Large(vi) − Med(vi) to the left of the left side of Med(vi) and to the right
of the right side of Med(vi), respectively. Observe that, since Δi−1 satisfies
Property (d) of a partially-canonical drawing and by the construction of Δ′,
the region SL is empty, while the region SR may only be traversed by the edge
(vi, p(vi)).
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Fig. 6. Illustrations for Lemma 3, focused on the children of vi that lie in R1.

We start by dealing with the children uj of vi that lie in the interior of R2; refer
to Fig. 5. Consider the edges (vi, uj) in the order (vi, u1), (vi, u2), . . . , (vi, um) in
which such edges are encountered while clockwise rotating h→(vi); see Fig. 5a. Let
Ψ1 be the drawing obtained from Δ′ by translating the drawing of the tree Tu1 so
that u1 lies in the interior of SR and one unit below vi and so that the right side of
the bounding box of the drawing of Tu1 lies upon the right side of Large(vi), and
by redrawing the edge (vi, u1) as a straight-line segment.

Claim 3.2 The morph 〈Δ′, Ψ1〉 is planar.

For j = 2, . . . , m, let Ψj be the drawing obtained from Ψj−1 by translating
the drawing of the tree Tuj

so that uj lies in the interior of SR and one unit
below vi and so that the right side of the bounding box of the drawing of Tuj

lies
one unit to the left of uj−1, and by redrawing the edge (vi, uj) as a straight-line
segment.

Claim 3.3 For j = 2, . . . , m, the morph 〈Ψj−1, Ψj〉 is planar.

Let Δ+ be the drawing obtained from Ψm by horizontally translating Tuj
so

that uj lands at its final position in Δi, and by redrawing the edge (vi, uj) as a
straight-line segment, for j = 1, 2, . . . ,m; see Fig. 5c and d.

Claim 3.4 The morph 〈Ψm,Δ+〉 is planar.

Next, we deal with the children uj of vi that lie in the interior of R1. Consider
the edges (vi, uj) in the order (vi, u1), (vi, u2), . . . , (vi, u�) in which such edges are
encountered while counter-clockwise rotating h→(vi) around vi; refer to Fig. 6.
We are going to move the subtrees rooted at the children of vi in R1, one by one in
the order Tu1 , Tu2 , . . . , Tu�

, so that they land in the position that they have in Δi.
Such a movement consists of four linear morphs. First, we rotate the drawing of
Tuj

so that it becomes leftward canonical (see Fig. 6b). Second, we translate the
drawing of Tuj

so that uj lies in the interior of SR and one unit below vi (see Fig.
6c). Third, we rotate the drawing of Tuj

so that it becomes upward canonical (see
Fig. 6d). Finally, we horizontally translate the drawing of Tuj

to its final position
in Δi (see Fig. 6e).
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We now provide the details of the above four linear morphs. For j = 1, . . . , �,
let ξ4j−1 be a drawing of T with the following properties, where ξ40 = Δ+ (refer
to Fig. 6a and e): (P1) the drawing of T ∗ is the same as in Δi; (P2) vi lies at
the same point as in Δi; (P3) the drawing of the subtrees of the children of vi

belonging to R2 (in Δ′), and the drawing of the subtrees Tu1 , Tu2 , . . . , Tuj−1 is
the same as in Δi; (P4) the drawing of the subtrees Tuj

, Tuj+1 , . . . , Tu�
is the

same as in Δ+; and (P5) the drawing of the subtrees rooted at the children of
vi that lie in the interior of R3 and R4 is the same as in Δ+.

For j = 1, . . . , �, we construct a drawing ξ1j from ξ4j−1 by rotating tree Tuj
so

that it is leftward canonical in ξ1j , and by leaving the position of the nodes not in
Tuj

unaltered. This rotation can be accomplished via a linear morph 〈ξ4j−1, ξ
1
j 〉

by Lemma 1; see Fig. 6b.

Claim 3.5 For j = 1, . . . , �, the morph 〈ξ4j−1, ξ
1
j 〉 is planar.

For j = 1, . . . , �, let ξ2j be the drawing obtained from ξ1j by translating the
drawing of Tuj

so that Small(uj) lies in the interior of SR and so that uj lies
one unit below vi, and by redrawing the edge (vi, uj) as a straight-line segment;
see Fig. 6c.

Claim 3.6 For j = 1, . . . , �, the morph 〈ξ1j , ξ2j 〉 is planar.

For j = 1, . . . , �, let ξ3j be the drawing obtained from ξ2j by rotating tree Tuj

so that it is upward canonical in ξ3j , and by leaving the position of the nodes not
in Tuj

unaltered. This rotation can be accomplished via a linear morph 〈ξ2j , ξ3j 〉,
by Lemma 1; see Fig. 6d.

Claim 3.7 For j = 1, . . . , �, the morph 〈ξ2j , ξ3j 〉 is planar.

Finally, for j = 1, . . . , �, let ξ4j be the drawing obtained from ξ3j by horizon-
tally translating Tuj

so that uj lies at its final position in Δi, and by leaving the
position of the nodes not in Tuj

unaltered; see Fig. 6e.

Claim 3.8 For j = 1, . . . , �, the morph 〈ξ3j , ξ4j 〉 is planar.

Note that the drawing ξ4� coincides with Δi, except for the drawing of the
subtrees lying in the interior of R3 and R4.

Subtrees in R3 are treated symmetrically to the ones in R1. In particular,
the subtrees of the children of vi that lie in R3 are processed according to the
clockwise order of the edges from vi to their roots, while the role played by SR

is now assumed by SL.
The treatment of the subtrees in R4 is similar to the one of the subtrees in

R3. However, when a subtree is considered, it is first horizontally translated in
the interior of R3 and then processed according to the rules for such a region.

Altogether, we have described a morph Mi−1,i from the partially-canonical
drawing Δi−1 of T [i− 1] to Δi, which is a partially-canonical drawing of T [i] by
Lemma 4. Next, we argue about the properties of Mi−1,i.
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We deal with the area requirements of Mi−1,i. Consider the drawing Δ0

and place the boxes Large(v) around the nodes v of T ; the bounding box of the
arrangement of such boxes has width w(Δ0)+�0+4n and height h(Δ0)+�0+4n.
We claim that the drawings of Mi−1,i lie inside such a bounding box. Assume
this is true for Δi−1 (this is indeed the case when i = 1); all subsequent drawings
of Mi−1,i coincide with Δi−1, except for the placement of the subtrees rooted at
the children of vi, which however lie inside Large(vi) in each of such drawings.
Since vi has the same position in Δi as in Δ0 and since Large(vi) has width and
height equal to �0 + 4n, the claim follows.

Finally, we deal with the number of linear morphs composing Mi−1,i. The
morph Mi−1,i consists of the morph 〈Δi−1,Δ

′〉, followed by the morphs needed
to drive the subtrees rooted at the children of vi to their final positions in Δi.
Since the number of morphing steps needed to deal with each of such subtrees is
constant, we conclude that Mi−1,i consists of O(deg(vi)) linear morphing steps.
This concludes the proof of Lemma 3.

5 Conclusions and Open Problems

We presented an algorithm that, given any two order-preserving straight-line
planar grid drawings Γ0 and Γ1 of an n-node ordered tree T , constructs a morph
〈Γ0 = Δ0,Δ1, . . . , Δk = Γ1〉 such that k is in O(n) and such that the area of each
intermediate drawing Δi is polynomial in n and in the area of Γ0 and Γ1. Better
bounds can be achieved if T is rooted and Γ0 and Γ1 are also strictly-upward
drawings, especially in the case in which T is a binary tree.

We make a remark about the generality of the model that we adopted. At a
first glance, our assumption that Γ0 and Γ1 are grid drawings seems restrictive,
and it seems more general to consider drawings that have bounded resolution.
However, by using an observation from [9], one can argue that two morphing
steps suffice to transform a drawing with resolution r in a grid drawing whose
area is polynomial in r. Namely, it suffices to scale each input drawing so that
the smallest distance between any pair of geometric objects (points representing
vertices or segments representing edges) is 2; this is a single morphing step which
does not change the resolution of the drawing, hence the largest distance between
any pair of geometric objects is in O(r). Then each node can be moved to the
nearest grid point; this is another morphing step, which is ensured to be planar
by the fact that each node moves by at most

√
2/2, hence this motion only brings

any two geometric objects closer by
√

2, while their distance is at least 2. Thus,
this results in a grid drawing on an O(r) × O(r) grid.

Several problems are left open. Is it possible to generalize our results to graph
classes richer than trees? Is it possible to improve our area bounds for morphs
of straight-line planar grid drawings of trees or even just of paths? Is there a
trade-off between the number of steps and the area required by a morph? Are
there other relevant tree drawing standards for which it makes sense to consider
the morphing problem?



70 F. Barrera-Cruz et al.

References

1. Alamdari, S., et al.: How to morph planar graph drawings. SIAM J. Comput.
46(2), 824–852 (2017). https://doi.org/10.1137/16M1069171

2. Alamdari, S., et al.: Morphing planar graph drawings with a polynomial number
of steps. In: Khanna, S. (ed.) Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana,
USA, 6–8 January 2013, pp. 1656–1667. SIAM (2013). https://doi.org/10.1137/1.
9781611973105.119

3. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli,
V.: Morphing planar graph drawings optimally. In: Esparza, J., Fraigniaud, P.,
Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 126–137.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7 11

4. Angelini, P., Da Lozzo, G., Frati, F., Lubiw, A., Patrignani, M., Roselli, V.: Opti-
mal morphs of convex drawings. In: Symposium on Computational Geometry.
LIPIcs, vol. 34, pp. 126–140. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2015)

5. Angelini, P., Frati, F., Patrignani, M., Roselli, V.: Morphing planar graph drawings
efficiently. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 49–60.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03841-4 5

6. Barrera-Cruz, F., Haxell, P., Lubiw, A.: Morphing schnyder drawings of planar
triangulations. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp.
294–305. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-
7 25

7. Biedl, T.C., Lubiw, A., Petrick, M., Spriggs, M.J.: Morphing orthogonal planar
graph drawings. ACM Trans. Algorithms 9(4), 29:1–29:24 (2013)

8. Cairns, S.S.: Deformations of plane rectilinear complexes. Am. Math. Monthly
51(5), 247–252 (1944)

9. Chambers, E.W., Eppstein, D., Goodrich, M.T., Löffler, M.: Drawing graphs in
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