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Abstract. In this paper we study the computational complexity of
the Upward Planarity Extension problem, which takes as input an
upward planar drawing ΓH of a subgraph H of a directed graph G and
asks whether ΓH can be extended to an upward planar drawing of G.

We show that the Upward Planarity Extension problem is NP-
complete, even if G has a prescribed upward embedding, the vertex set of
H coincides with the one of G, and H contains no edge. Conversely, we
show that the Upward Planarity Extension problem can be solved
in O(n log n) time if G is an n-vertex upward planar st-graph. This result
improves upon a known O(n2)-time algorithm, which however applies to
all n-vertex single-source upward planar graphs. We also show how to
solve in polynomial time a surprisingly difficult version of the Upward

Planarity Extension problem, in which the underlying graph of G is
a path or a cycle, G has a prescribed upward embedding, H contains no
edges, and no two vertices share the same y-coordinate in ΓH .

1 Introduction

The study of the extensibility of partial representations of graphs has recently
become a mainstream in the graph drawing community; see, e.g., [5,12,14–16,23–
27,29]. Major contributions in this scenario are the result of Angelini et al. [5],
which states that the existence of a planar drawing of a graph G extending a
given planar drawing of a subgraph of G can be tested in linear time, and the
result of Brückner and Rutter [12], which states that the problem of testing the
extensibility of a given partial level planar drawing of a level graph (where each
vertex has a prescribed y-coordinate, called level) is NP-complete.

Upward planarity is the natural counterpart of planarity for directed graphs.
In an upward planar drawing of a directed graph no two edges cross and an edge
directed from a vertex u to a vertex v is represented by a curve monotonically
increasing in the y-direction from u to v. The study of upward planar drawings
is a most prolific topic in the theory of graph visualization [2–4,6–11,13,18,19,
21,22,30]. Garg and Tamassia showed that deciding the existence of an upward
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planar drawing is an NP-complete problem [22]. On the other hand, Bertolazzi
et al. [7] showed that testing for the existence of an upward planar drawing
belonging to a fixed isotopy class of planar embeddings can be done in polynomial
time. Further, Di Battista et al. [19] proved that any upward planar graph is
a subgraph of an upward planar st-graph and as such it admits a straight-line
upward planar drawing.

In this paper, we consider the extensibility of upward planar drawings of
directed graphs. Namely, we introduce and study the complexity of the Upward

Planarity Extension (for short, UPE) problem, which is defined as follows.
The input is a triple 〈G,H, ΓH〉, where ΓH is an upward planar drawing of a sub-
graph H of a directed graph G; we call H and ΓH the partial graph and the partial
drawing, respectively. The UPE problem asks whether ΓH can be extended to an
upward planar drawing of G; or, equivalently, whether an upward planar draw-
ing of G exists which coincides with ΓH when restricted to the vertices and edges
of H. We also study the Upward Planarity Extension with Fixed Upward

Embedding (for short,UPE-FUE) problem, which is theUPE problem with the
additional requirement that the drawing of G we seek has to respect a given upward
embedding, i.e., a left-to-right order of the edges entering and exiting each vertex.

The NP-hardness of the Upward Planarity Testing problem [22] directly
implies the NP-hardness of the UPE problem, as the former coincides with the
special case of the latter in which the partial graph is the empty graph. In the full
version of the paper [17], we prove two stronger NP-hardness results. First, we
show that the UPE problem is NP-hard even if the partial graph contains all the
vertices and no edges, and no three vertices share the same y-coordinate in the
partial drawing. This result is established by means of a simple reduction from
the Ordered Level Planarity (OLP) problem, introduced and proved to be
NP-complete by Klemz and Rote [28]. The input of the OLP problem is a partial
drawing of a level graph containing all the vertices and no edges; the problem asks
for the existence of a level planar drawing of the graph extending the partial one.
Second, we show that the UPE-FUE problem is NP-hard even for connected
instances whose partial graph contains all the vertices and no edges. This result
is established by means of a non-trivial reduction from the already mentioned
Partial Level Planarity (PLP) problem by Brückner and Rutter [12]. Our
result is in contrast with several constrained embedding problems that are NP-
hard when the graph has a variable embedding and efficiently solvable in the fixed
embedding setting. Some examples are the Upward Planarity Testing prob-
lem [7,22], the Windrose Planarity Testing problem [1], and the notorious
Bend Minimization in Planar Orthogonal Drawings problem [22,31].

We now present an overview of our algorithmic results. First, we identify
two main factors that contribute to the complexity of the UPE and UPE-FUE

problems: (i) The presence of edges in the partial graph and (ii) the existence of
vertices with the same y-coordinate in the partial drawing. These two proper-
ties are strictly tied together. Namely, any instance of the UPE or UPE-FUE

problems can be efficiently transformed into an equivalent instance 〈G,H, ΓH〉
of the same problem in which H contains no edges or no two vertices share the
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same y-coordinate in ΓH (see Sect. 2). Hence, the NP-hardness results for the
UPE and UPE-FUE problems discussed above carry over to such instances,
even when V (G) = V (H). When the partial graph contains no edges and no
two vertices share the same y-coordinate in the partial drawing, then the UPE

and UPE-FUE problems appear to be more tractable. Indeed, while we could
not establish their computational complexity in general, we could solve them for
instances 〈G,H, ΓH〉 such that the underlying graph of G is a path or a cycle
(see Sect. 4). In particular, in order to solve the UPE-FUE problem for paths,
we employ a sophisticated dynamic programming approach.

Second, we look at the UPE and UPE-FUE problems for instances
〈G,H, ΓH〉 such that G is an upward planar st-graph (see Sect. 3), i.e., it has
a unique source s and a unique sink t. The upward planarity of an n-vertex
st-graph is known to be decidable in O(n) time [19,21]. We observe that a result
of Brückner and Rutter [12] implies the existence of an O(n2)-time algorithm to
solve the UPE problem for upward planar st-graphs; their algorithm works more
in general for upward planar single-source graphs. We present O(n log n)-time
algorithms for the UPE and UPE-FUE problems for upward planar st-graphs.
Notably, these results assume neither that the edge set of H is empty, nor that
any two vertices have distinct y-coordinates in ΓH , nor that V (G) = V (H).

Due to space limitations some theorems and proofs are omitted or sketched
and can be found in the full version of the paper [17].

2 Preliminaries

In this section we give some preliminaries and definitions.
Let G be a directed graph. We denote by (u, v) an edge from a vertex u to a

vertex v. A path (u1, . . . , un) in G is directed if it consists of the edges (ui, ui+1),
for i = 1, . . . , n − 1. A vertex v is a successor (predecessor) of a vertex u if G
contains a directed path from u to v (from v to u). We denote by SG(u) (by
PG(u)) the set of successors (predecessors) of a vertex u in G.

A drawing of a directed graph G is upward if each edge (u, v) is represented
by a curve monotonically increasing in the y-direction from u to v. A graph
is upward planar if it admits an upward planar drawing. Consider an upward
planar drawing and a vertex v. The list S(v) = [w1, . . . , wk] contains the adjacent
successors of v in “left-to-right order”. That is, consider a half-line � starting at
v and directed leftwards; rotate � around v in clockwise direction and append a
vertex wi to S(v) when � overlaps the tangent to the edge (v, wi) at v. The list
P(v) = [z1, . . . , zl] of the adjacent predecessors of v is defined similarly. Then
two upward planar drawings of a connected directed graph are equivalent if they
have the same lists S(v) and P(v) for each vertex v. An upward embedding is
an equivalence class of upward planar drawings. Given an upward planar graph
G with a fixed upward embedding, and given a subgraph G′ of G, we always
implicitly assume that G′ inherits the upward embedding from G.

We assume that any instance 〈G,H, ΓH〉 of the UPE and UPE-FUE prob-
lems is such that ΓH is a drawing in which the edges are represented as polygonal
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Fig. 1. The drawings ΓH (a) and ΓH′ (b) in the proximity of �∗
i . The vertices that are

inserted on �∗
i are gray; those inserted on �∗

i−1 and �∗
i+1 are not shown.

lines. Then the size of 〈G,H, ΓH〉 is |〈G,H, ΓH〉| = |V (G)| + |E(G)| + s, where
s is the number of segments of the polygonal lines representing the edges in ΓH .

Consider an upward planar st-graph G with a fixed upward embedding. In
any upward planar drawing of G, every face f is delimited by two directed
paths (u1, . . . , uk) and (v1, . . . , vl) connecting the same two vertices u1 = v1
and uk = vl. Assuming that S(u1) = [. . . , u2, v2, . . . ], we call (u1, . . . , uk) the
left boundary of f and (v1, . . . , vl) the right boundary of f . For a vertex v �=
t, the leftmost outgoing path L+

G(v) = (w1, . . . , wm) of v is the directed path
such that w1 = v, wm = t, and S(wi) = [wi+1, . . . ], for each i = 1, . . . , m −
1. The rightmost outgoing path R+

G(v), the leftmost incoming path L−
G(v) and

the rightmost incoming path R−
G(v) are defined similarly. The paths L+

G(s) and
R+

G(s) are also called leftmost and rightmost path of G, respectively. Note that
these paths delimit the outer face of G. Consider a directed path Q from s to t.
Let Q∗ be obtained by extending Q with a y-monotone curve directed upwards
from t to infinity and with a y-monotone curve directed downwards from s to
infinity. Then a vertex u is to the left (to the right) of Q if it lies in the region to
the left (resp. to the right) of Q∗. In particular, u is to the left of a vertex v if it
lies to the left of the directed path composed of L+

G(v) and L−
G(v). Similarly, u

is to the right of v if it lies to the right of R+
G(v) ∪ R−

G(v). We denote by LG(v)
(RG(v)) the set of vertices that are to the left (resp. right) of a vertex v in G.

2.1 Simplifications

In this section we prove that it is not a loss of generality to restrict our atten-
tion to instances 〈G,H, ΓH〉 of the UPE and UPE-FUE problems in which H
contains no edges or no two vertices share the same y-coordinate in ΓH .

Lemma 1. Let 〈G,H, ΓH〉 be an instance of the UPE or UPE-FUE problem
and let n = |〈G,H, ΓH〉|. There exists an equivalent instance 〈G′,H ′, ΓH′〉 of
the UPE or UPE-FUE problem, respectively, such that: (i) E(H ′) = ∅, (ii)
if V (H) = V (G), then V (H ′) = V (G′), and (iii) if G is an st-graph, then
G′ is an st-graph. Further, the instance 〈G′,H ′, ΓH′〉 has O(n) size and can be
constructed in O(n log n) time. The drawing ΓH′ may contain vertices with the
same y-coordinate even if ΓH does not.
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Fig. 2. The strip S∗
i in the construction of 〈G′, H ′, ΓH′〉.

Proof sketch. The graph G′ is obtained from G by replacing the edges of H by
directed paths, as described below. Property (iii) is then satisfied. The graph H ′

is composed of all the vertices of H plus all the internal vertices of the directed
paths that are inserted in G′ to replace the edges of H. Property (ii) is hence
satisfied. Further, H ′ contains no edge, hence Property (i) is also satisfied. The
drawing ΓH′ coincides with ΓH when restricted to the vertices in H. It remains
to specify the lengths of the directed paths that are inserted in G′ to replace the
edges of H and to describe how to place their internal vertices in ΓH′ . This is
done in the following.

We compute the increasing order y∗
1 , . . . , y

∗
m of the y-coordinates of the ver-

tices of H in ΓH . Let �∗
i be the line with equation y = y∗

i . Refer to Fig. 1. We
look at the left-to-right order X∗

i in which the vertices of H lying on �∗
i and the

edges of H crossing �∗
i appear in ΓH . We place a vertex v in ΓH′ at the point in

which an edge e of H crosses �∗
i if: (i) e is preceded or followed by a vertex of

H in X∗
i ; or (ii) e has an end-vertex whose y-coordinate in ΓH is y∗

i−1 or y∗
i+1;

in both such cases v is also a vertex that is internal to the directed path that
is inserted in G′ to replace e. This concludes the construction of 〈G′,H ′, ΓH′〉.
The proof is completed by showing that 〈G,H, ΓH〉 is a positive instance of the
UPE or UPE-FUE problem if and only if 〈G′,H ′, ΓH′〉 is. ��

Lemma 2. Let 〈G,H, ΓH〉 be an instance of the UPE or UPE-FUE problem
and let n = |〈G,H, ΓH〉|. There exists an equivalent instance 〈G′,H ′, ΓH′〉 of the
UPE or UPE-FUE problem, respectively, such that: (i) no two vertices of H ′

share the same y-coordinate in ΓH′ and (ii) if V (H) = V (G), then V (H ′) =
V (G′). Further, the instance 〈G′,H ′, ΓH′〉 has O(n) size and can be constructed
in O(n log n) time. The graph H ′ may contain edges even if H does not.

Proof sketch. By Lemma 1 we can assume that H contains no edges. Let
y∗
1 , . . . , y

∗
m be the y-coordinates of the vertices of H in ΓH in increasing order.

Let �∗
i be the line with equation y = y∗

i . Let S∗
1 , . . . ,S∗

m be disjoint horizontal
strips, where �∗

i is in the interior of S∗
i , for i = 1, . . . , m. Refer to Fig. 2. We define

〈G′,H ′, ΓH′〉 by initializing G′ = G and by replacing each vertex v ∈ V (H) with
an edge (u,w), where u gets all the incoming edges of v, while w gets all the
outgoing edges of v. The edge (u,w) belongs to H ′ and is represented in ΓH′ by
a vertical segment with its midpoint at v. Vertical segments corresponding to
distinct vertices of H lying on �∗

i have different lengths and lie inside S∗
i . ��
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3 Upward Planar st-Graphs

In this section we study the UPE and UPE-FUE problems for upward planar
st-graphs. The following lemma will be useful for our algorithms.

Lemma 3. Let G be an n-vertex upward planar st-graph with a given upward
embedding. There exists a data structure to test in O(1) time, for any two vertices
u and v of G, whether v ∈ SG(u), v ∈ PG(u), v ∈ LG(u), or v ∈ RG(u). Further,
such a data structure can be constructed in O(n) time.

Proof sketch. First, we construct the transitive reduction G∗ of G, that is, the
upward planar st-graph obtained from G by removing all its transitive edges.
This can be done in O(n) time. We then exploit the fact that, for each vertex v of
G (and of G∗), it holds SG∗(v) = SG(v), PG∗(v) = PG(v), LG∗(v) = LG(v), and
RG∗(v) = RG(v). We use the O(n)-time algorithm by Di Battista et al. [21] to
construct a dominance drawing Γ ∗ of G∗ such that: (i) x(v) < x(u) if and only if
v ∈ PG(u)∪LG(u); and (ii) y(v) < y(u) if and only if v ∈ PG(u)∪RG(u). Hence,
for a query v ∈ PG(u), we check whether x(v) < x(u) and y(v) < y(u) in Γ ∗.
The other queries can be similarly answered in O(1) time. ��

We now present one of our main tools to deal with the UPE and UPE-FUE

problems for upward planar st-graphs.

Lemma 4. An instance 〈G,H, ΓH〉 of the UPE-FUE problem such that G is an
upward planar st-graph with a given upward embedding and such that H contains
no edges is a positive instance if and only if:

Condition 1: For each vertex v of H, all its successors (predecessors) in G that
belong to H have a y-coordinate in ΓH that is larger (smaller) than y(v); and

Condition 2: For each vertex v of H, all the vertices of H whose y-coordinate
is the same as y(v) and whose x-coordinate is larger (smaller) than x(v) in
ΓH are to the right (to the left) of v in G.

Proof sketch. Condition 1 is obviously necessary for the existence of an upward
drawing of G extending ΓH . Suppose that two vertices u, v exist in H such that
(i) u is to the left and on the same horizontal line as v in ΓH and (ii) u is to
the right of v in G. Then any two minimal directed paths Quw and Qvw from
u and v to a common vertex w determine, in any upward planar drawing of G
extending ΓH , a list P(w) of adjacent predecessors of w that does not respect
the upward embedding of G. This proves the necessity of Condition 2.

For the sufficiency, we construct an upward planar drawing ΓG of G that
extends ΓH . First we draw every vertex of G not in H at an exclusive y-
coordinate larger than those of its predecessors and smaller than those of its
successors; then the instance still satisfies Conditions 1 and 2. Now we draw the
edges of G “one face at a time”. After each step we maintain the invariants that:
(i) the subgraph of G currently drawn consists of an upward planar st-graph G′

plus a set of isolated vertices; (ii) the current drawing of G′ in ΓG is upward
planar; and (iii) the rightmost path of G′ is represented by a y-monotone curve
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Fig. 3. (a) Drawing the leftmost path L+
G(s) of G. (b) Drawing the right boundary

(u1, . . . , ul) of a face f .

that has all the isolated vertices to its right. We first draw L+
G(s) so to keep all

the vertices not in it to its right; see Fig. 3a. Then, repeatedly, we consider a
face f whose left boundary belongs to G′ and whose right boundary (u1, . . . , ul)
consists of edges not in G′; see Fig. 3b. Such a right boundary is a directed path
which is drawn upward (this is possible by Condition 1), to the right of the left
boundary of f and so close to it that no vertex which is still isolated in the
drawing lies to the left of it (this is possible by Condition 2). ��

We can now prove the following algorithmic theorem.

Theorem 1. The UPE-FUE problem can be solved in O(n log n) time for
instances 〈G,H, ΓH〉 with size n = |〈G,H, ΓH〉| such that G is an upward planar
st-graph with a given upward embedding.

Proof sketch. We apply Lemma 1 in O(n log n) time to modify 〈G,H, ΓH〉 so that
H contains no edges while G remains an upward planar st-graph. Next, we test
whether 〈G,H, ΓH〉 satisfies Conditions 1 and 2 of Lemma 4 in O(n log n) time.

In order to test Condition 1, we construct an auxiliary graph A, which we
initialize to G. We construct in O(n log n) time a sequence S in which the vertices
of H are ordered by increasing y-coordinates and, secondarily, by increasing x-
coordinates in ΓH . We partition S into maximal subsequences S1, . . . ,Sk such
that all the vertices in Si have the same y-coordinate. For every pair Si,Si+1 we
add to A a vertex vi and directed edges from every vertex in Si to vi and from vi

to every vertex in Si+1. Then 〈G,H, ΓH〉 satisfies Condition 1 if and only if A is
acyclic. The graph A can be constructed in O(n log n) time; further, it has O(n)
vertices and edges, hence it can be tested in O(n) time whether it is acyclic.

In order to test Condition 2, we look at every pair u, v of consecutive vertices
in each sequence Si and test whether u ∈ LG(v). By Lemma 3, this can be done
in O(1) time per query, after an O(n)-time preprocessing. ��

Next, we deal with the UPE problem. Notice that an instance 〈G,H, ΓH〉
of the UPE problem such that G is an upward planar st-graph can be easily
transformed into an equivalent instance of the PLP problem. This is due to the
fact that Condition 1 of Lemma 4 does not depend on the upward embedding
of G and that we can assume: (i) the edge set of H to be empty, by Lemma 1;
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Fig. 4. (left) A biconnected upward planar st-graph G and (right) the SPQR-tree T
of G. The skeletons of all the non-leaf nodes of T are depicted. The allocation nodes
of a vertex v are in the yellow-shaded region.

and (ii) the partial drawing to contain all the vertices of G, by drawing each
vertex in V (G) \ V (H) as in the proof of Lemma 4 without violating neither
Condition 1 nor Condition 2 of the lemma. Hence, the UPE problem for upward
planar st-graphs can be solved in quadratic time, due to the results of Brückner
and Rutter about the PLP problem for single-source graphs [12]. However, in
the following theorem we show how to reduce the time bound to almost linear.

Theorem 2. The UPE problem can be solved in O(n log n) time for instances
〈G,H, ΓH〉 with size n = |〈G,H, ΓH〉| such that G is an upward planar st-graph.

Proof sketch. First, we test in O(n log n) time whether G satisfies Condition 1
of Lemma 4; this is done as in the proof of Theorem 1. If the test fails, we reject
the instance, otherwise we apply Lemma 1 in order to modify 〈G,H, ΓH〉 so that
H contains no edges while G remains an upward planar st-graph.

In order to test whether G admits an upward embedding satisfying Condi-
tion 2 of Lemma 4 we proceed as follows. First, we add the edge (s, t) to G, so
to ensure the biconnectivity of G. Second, we compute in O(n log n) time the
order O = v1, v2, . . . , vh of the vertices in H by increasing y-coordinates and,
secondarily, by increasing x-coordinates in ΓH . Third, we compute in O(n) time
the SPQR-tree T of G (see [20] and Fig. 4). The tree T represents the recur-
sive arrangement of the triconnected components of G. Roughly speaking, these
components might be arranged in a cycle (this corresponds to an S-node in T ),
or might share two vertices and be arranged in parallel (this corresponds to a
P-node in T ), or might be arranged as in a triconnected graph (this corresponds
to an R-node in T ). An auxiliary graph, called skeleton and denoted by sk(ν), is
associated to each node ν of T and represents the corresponding arrangement.
Each edge of sk(ν) corresponds to a subgraph of G, called pertinent graph.

Any upward embedding of G can be obtained by choosing a left-to-right order
for the edges of the skeleton of each P-node of T and an upward embedding for
the skeleton of each R-node of T . We outline the approach for performing these
choices so to satisfy Condition 2. First, we consider each R-node ν of T and
we arbitrarily choose one of the two upward embeddings of sk(ν); we associate



Extending Upward Planar Graph Drawings 347

to ν two boolean variables preserve(ν) and flip(ν), that we both initially set
to false, respectively indicating whether the arbitrarily chosen embedding of
sk(ν) has to be maintained or changed; finally, we set up in O(|sk(ν)|) time a
data structure that, for a pair (x, y) of vertices or edges of sk(ν), determines in
O(1) time whether x ∈ Lsk(ν)(y), x ∈ Rsk(ν)(y), or none of the previous, in the
chosen upward embedding of sk(ν); this can be done by Lemma 3.

We now consider any two vertices u = vi and v = vi+1 with the same y-
coordinate in ΓH . Note that x(u) < x(v) in ΓH . Then u ∈ LG(v) in the upward
embedding of G we look for. This imposes a constraint on the skeleton sk(ν)
of the lowest common ancestor ν of the proper allocation nodes of u and v in
T . Specifically: (1) If ν is an S-node, then we reject the instance. (2) If ν is
a P-node, then we constrain the edge of sk(ν) whose pertinent graph contains
u to precede the edge of sk(ν) whose pertinent graph contains v. (3) If ν is
an R-node, then let xu be the representative of u in sk(ν), that is, if u is a
vertex of sk(ν) then xu = u, otherwise xu is the edge of sk(ν) whose pertinent
graph contains u. The representative xv of v in sk(ν) is defined in the same way.
We query in O(1) time the data structure associated to sk(ν) to test whether
xu ∈ Lsk(ν)(xv) (then we set preserve(ν) = true), or xu ∈ Rsk(ν)(xv) (then we
set flip(ν) = true), or xu /∈ Lsk(ν)(xv) and xu /∈ Rsk(ν)(xv) (then we reject the
instance).

Finally, for each P-node ν of T , we test whether the precedence constraints
imposed on the edges of sk(ν) induce an acyclic relationship. In case of a neg-
ative answer, we reject the instance. For each R-node ν of T , we test whether
preserve(ν) = false or flip(ν) = false. In case of a negative answer, we reject
the instance. Finally, if we did not reject the instance, then we accept it. ��

4 Paths and Cycles

In this section we deal with the UPE and UPE-FUE problems for instances
〈G,H, ΓH〉 such that the underlying graph of G is a path or a cycle, H contains
no edges, and no two vertices share the same y-coordinate in ΓH . For the sake
of readability, in the following we often just say “path” or “cycle” to address a
directed graph whose underlying graph is a path or cycle, respectively.

It turns out that paths and cycles are easy to handle if they do not come
with a prescribed upward embedding. Namely, as long as obvious conditions on
the y-coordinates of the vertices in the partial drawing are satisfied, an upward
planar drawing can be constructed one directed path at a time, so that every
new directed path leaves to its left the already drawn directed paths. Hence, we
immediately get the following.

Theorem 3. The UPE problem can be solved in O(n) time for instances
〈G,H, ΓH〉 such that G is an n-vertex directed graph whose underlying graph
is a path or a cycle, H contains no edges, and no two vertices share the same
y-coordinate in ΓH .

Conversely, solving the UPE-FUE problem for paths and cycles, despite the
simplicity of their structure, has proved to be challenging.
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Fig. 5. (a)–(c) Three cases for the computation of the value of t(ui, uj , um, uM ). (d)
Illustration for the necessity of Condition (6).

Theorem 4. The UPE-FUE problem can be solved in O(n4) time for instances
〈G,H, ΓH〉 such that G is an n-vertex directed graph whose underlying graph is
a path with a given upward embedding, H contains no edges, and no two vertices
share the same y-coordinate in ΓH .

Proof sketch. Let G = (u1, . . . , un). We show a decision algorithm for the
UPE-FUE problem employing dynamic programming. Namely, we fill a table
with entries t(ui, uj , um, uM ), for all the indices i, j,m,M ∈ {1, . . . , n} with
i ≤ m ≤ j, i ≤ M ≤ j, i �= j, and m �= M . Let Gi,j = (ui, . . . , uj) and let
ΓH,i,j be the restriction of ΓH to the vertices of Gi,j . Then t(ui, uj , um, uM ) =
true if and only if there is an upward planar drawing ΓG,i,j of Gi,j that
extends ΓH,i,j in which um and uM are the vertices with the smallest and
largest y-coordinate, respectively. If such a drawing ΓG,i,j exists, then we say
it is valid for t(ui, uj , um, uM ). The UPE-FUE problem is positive if and only
if t(u1, un, um, uM ) = true, for some 1 ≤ m ≤ n and 1 ≤ M ≤ n with m �= M .

We start by computing the entries t(ui, uj , um, uM ) such that Gi,j is a
directed path. Assume that the edge between ui and ui+1 is outgoing ui, the
other case is symmetric. Then t(ui, uj , um, uM ) = true if and only if the follow-
ing conditions are satisfied: (1) m = i; (2) M = j; and (3) for any two indices i′

and j′ such that i′ < j′ and such that ui′ , uj′ ∈ V (Hi,j), we have y(ui′) < y(uj′)
in ΓH,i,j .

Assume now that Gi,j is not a directed path and that the values of all the
entries t(ui, uj , um, uM ) such that 1 ≤ j − i ≤ x have been computed, for some
x ∈ {1, 2, . . . }. After the computation of the entries t(ui, uj , um, uM ) such that
Gi,j is a directed path, this is indeed the case with x = 1. We compute the
values of the entries t(ui, uj , um, uM ) such that j − i = x + 1. We distinguish
three cases, based on how many of the equalities i = m, i = M , j = m, and
j = M are satisfied, that is, based on how many vertices among um and uM are
end-vertices of Gi,j . Refer to Figs. 5a to c.

In each case we characterize whether t(ui, uj , um, uM ) = true based on
the values of already computed entries of the table and on the possibility of
um and uM to be the lowest and highest vertex in an upward planar drawing
of Gi,j extending ΓH,i,j , respectively. In this proof sketch, we present such a
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characterization only for the (most difficult) case in which um and uM are both
end-vertices of Gi,j . We have that t(ui, uj , ui, uj) = true if and only if there
exist indices M ′ ∈ {i + 1, . . . , j − 2} and m′ ∈ {M ′ + 1, . . . , j − 1} such that:

(1) t(ui, uM ′ , ui, uM ′) = true;
(2) t(uM ′ , um′ , um′ , uM ′) = true;
(3) t(um′ , uj , um′ , uj) = true;
(4) either ui does not belong to H or ui has the smallest y-coordinate among

the vertices of Gi,j in ΓH ;
(5) either uj does not belong to H or uj has the largest y-coordinate among

the vertices of Gi,j in ΓH ; and
(6) either P(uM ′) = [uM ′−1, uM ′+1] and S(um′) = [um′−1, um′+1], or P(uM ′) =

[uM ′+1, uM ′−1] and S(um′) = [um′+1, um′−1].

For the necessity, consider a valid drawing ΓG,i,j for t(ui, uj , ui, uj). Then
define uM ′ as the internal sink of Gi,j with the largest y-coordinate in ΓG,i,j

and um′ as the internal source of GM ′,j with the smallest y-coordinate in
ΓG,i,j . Restricting ΓG,i,j to the vertices and edges of Gi,M ′ , GM ′,m′ , and
Gm′,j yields valid drawings for t(ui, uM ′ , ui, uM ′), t(uM ′ , um′ , um′ , uM ′), and
t(um′ , uj , um′ , uj), respectively, which proves the necessity of Conditions (1)–(3).
Conditions (4)–(5) hold true since ui and uj are the vertices with the smallest
and largest y-coordinate in ΓG,i,j , respectively. Finally, the necessity of Con-
dition (6) is proved by observing that if, say, P(uM ′) = [uM ′−1, uM ′+1] and
S(um′) = [um′+1, um′−1], then ΓG,i,j contains a crossing, as in Fig. 5d.

For the sufficiency, we start from valid drawings ΓG,i,M ′ , ΓG,M ′,m′ , and
ΓG,m′,j for t(ui, uM ′ , ui, uM ′), t(uM ′ , um′ , um′ , uM ′), and t(um′ , uj , um′ , uj). We
modify ΓG,i,M ′ , ΓG,M ′,m′ , and ΓG,m′,j so that uM ′ is at the same point in ΓG,i,M ′

and ΓG,M ′,m′ , um′ is at the same point in ΓG,M ′,m′ and ΓG,m′,j , and ui (uj)
has the smallest (resp. largest) y-coordinate among all the vertices in ΓG,i,M ′ ,
ΓG,M ′,m′ , and ΓG,m′,j . Satisfying these properties might require modifying the
placement of ui, uM ′ , um′ , and uj , and scaling parts of ΓG,i,M ′ , ΓG,M ′,m′ , and
ΓG,m′,j . Gluing together these drawings results in an upward drawing ΓG,i,j of
Gi,j that extends ΓH,i,j and in which ui and uj are the vertices with the smallest
and largest y-coordinate, respectively. However, ΓG,i,j might contain crossings
and the left-to-right order of the edges incoming at uM ′ (outgoing from um′)
in ΓG,i,j might not correspond to P(uM ′) (resp. to S(um′)). We overcome these
issues by redrawing the curves representing the edges of Gi,M ′ , GM ′,m′ , and
Gm′,j in internally-disjoint regions of the plane, without changing the position
of any vertex.

The quartic running time comes from the number of entries of the dynamic
programming table, which is in fact Θ(n4). ��

By exploiting arguments analogous to those in the proof of Theorem 4 we
can extend our quartic-time algorithm to cycles.

Theorem 5. The UPE-FUE problem can be solved in O(n4) time for instances
〈G,H, ΓH〉 such that G is an n-vertex cycle with given upward embedding, H
contains no edges, and no two vertices share the same y-coordinate in ΓH .
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Proof. Suppose that an upward planar drawing ΓG of G = (u1, . . . , un) extending
ΓH exists. Since no two vertices share the same y-coordinate in ΓH , we can
assume w.l.o.g. that no two vertices share the same y-coordinate in ΓG either.
Our strategy is to test, for every possible pair of vertices (um, uM ) with m,M ∈
{1, . . . , n} and with m �= M , whether there is an upward planar drawing ΓG of
G extending ΓH in which the vertices with the smallest and largest y-coordinate
are um and uM , respectively. For any pair (um, uM ), the cycle G consists of
two paths connecting um and uM , call them Gm,M = (um, um+1, . . . , uM ) and
GM,m = (uM , uM+1, . . . , um), where indices are modulo n. Let ΓH,m,M and
ΓH,M,m be the restrictions of ΓH to the vertices that belong to Gm,M and GM,m,
respectively. Then, G has an upward planar drawing extending ΓH in which the
vertices with the smallest and largest y-coordinate are um and uM , respectively,
if and only if: (1) Gm,M has an upward planar drawing extending ΓH,m,M in
which the vertices with the smallest and largest y-coordinate are um and uM ,
respectively; (2) GM,m has an upward planar drawing extending ΓH,M,m in
which the vertices with the smallest and largest y-coordinate are um and uM ,
respectively; and (3) either P(uM ) = [uM−1, uM+1] and S(um) = [um+1, um−1],
or P(uM ) = [uM+1, uM−1] and S(um) = [um−1, um+1].

From a computational point of view, we act as follows. First we compute,
for every possible pair of vertices (um, uM ) with m,M ∈ {1, . . . , n} and with
m �= M , whether there are upward planar drawings of Gm,M and GM,m extend-
ing ΓH,m,M and ΓH,M,m, respectively, in which the vertex with the small-
est y-coordinate is um and the vertex with the largest y-coordinate is uM .
This can be done by considering the 2n-vertex path (u1, u2, . . . , un, un+1 =
u1, un+2 = u2, . . . , u2n = un) and by setting up a dynamic programming table
with entries t(ui, uj , um′ , uM ′), for all the indices i, j,m′,M ′ ∈ {1, . . . , 2n} such
that i ≤ m′ ≤ j and i ≤ M ′ ≤ j, with i �= j, m′ �= M ′, and j − i ≤ n. The values
of the entries of this table can be computed in total O(n4) time as in the proof
of Theorem 4.

Then, for each of the O(n2) pairs of vertices (um, uM ) with m,M ∈ {1, . . . , n}
and with m �= M , we query the table constructed in the step above to
check whether G has an upward planar drawing extending ΓH in which the
vertices with the smallest and largest y-coordinate are um and uM , respec-
tively. Concerning Conditions (1) and (2), we check in O(1) time whether
t(um, uM , um, uM ) = true and t(uM , un+m, un+m, uM ) = true (if m < M)
or whether t(uM , um, um, uM ) = true and t(um, un+M , um, un+M ) = true (if
m > M). Condition (3) can also be trivially checked in O(1) time. ��

5 Conclusions and Open Problems

In this paper we introduced and studied the Upward Planarity Extension

(UPE) problem, which takes as input an upward planar drawing ΓH of a subgraph
H of a directed graph G and asks whether an upward planar drawing of G exists
which coincides with ΓH when restricted to the vertices and edges of H.
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We proved that the UPE problem is NP-complete, even if G has a prescribed
upward embedding and H contains all the vertices and no edges. Conversely, the
problem can be solved efficiently for upward planar st-graphs.

Several questions are left open by our research. We cite our favorite two. First,
is it possible to solve the UPE-FUE problem in polynomial time for instances
〈G,H, ΓH〉 such that H contains no edges and no two vertices have the same
y-coordinate in ΓH? We proved that if any of the two conditions is dropped,
then the UPE-FUE problem is NP-hard, however we can positively answer the
above question only if G is a directed path or cycle. Second, are the UPE and
UPE-FUE problems polynomial-time solvable for directed paths and cycles?
Even when H contains no edges and no two vertices have the same y-coordinate
in ΓH , answering the above question in the affirmative was not a trivial task.

Acknowledgments. Lemma 4 comes from a research session the third author had
with Ignaz Rutter, to which our thanks go.
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