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Abstract. Range closest-pair (RCP) search is a range-search variant of
the classical closest-pair problem, which aims to store a given set S of
points into some space-efficient data structure such that when a query
range Q is specified, the closest pair in S ∩ Q can be reported quickly.
RCP search has received attention over years, but the primary focus was
only on R

2. In this paper, we study RCP search in higher dimensions.
We give the first nontrivial RCP data structures for orthogonal, simplex,
halfspace, and ball queries in R

d for any constant d. Furthermore, we
prove a conditional lower bound for orthogonal RCP search for d ≥ 3.

1 Introduction

The closest-pair problem is one of the most fundamental problems in compu-
tational geometry and finds numerous applications in various areas, such as
collision detection, traffic control, etc. In many scenarios, instead of finding
the global closest-pair, people want to know the closest pair contained in some
specified ranges. This results in the notion of range closest-pair (RCP) search.
RCP search is a range-search variant of the classical closest-pair problem, which
aims to store a given set S of points into some space-efficient data structure
such that when a query range Q is specified, the closest pair in S ∩ Q can be
reported quickly. RCP search has received considerable attention over the years
[1,4,10,11,17,18,20–23].

Unlike most traditional range-search problems, RCP search is non-
decomposable. That is, if we partition the dataset S into S1 and S2, given a
query range Q, the closest pair in S ∩ Q cannot be obtained efficiently from the
closest pairs in S1 ∩ Q and S2 ∩ Q. Due to the non-decomposability, many tra-
ditional range-search techniques are inapplicable to RCP search, which makes
the problem quite challenging. As such, despite of much effort made on this
topic, most known results are restricted to the plane case, i.e., RCP search in
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R
2. Beyond R

2, only very specific query types have been studied, such as 2-sided
box queries.

In this paper, we investigate RCP search in higher dimensions. We consider
four widely-studied query types: orthogonal queries, simplex queries, halfspace
queries, and ball queries. We are interested in designing efficient RCP data struc-
tures (in terms of space cost, query time, and preprocessing time) for these kinds
of query ranges, and proving conditional lower bounds for these problems.

Related Work. The closest-pair problem and range search are both well-studied
problems in computational geometry; see [2,19] for surveys of these two topics.

RCP search was for the first time introduced by Shan et al. [17] and subse-
quently studied in [1,4,10,11,18,20–23]. In R

2, the query types studied include
quadrants, strips, rectangles, and halfplanes. RCP search with these query ranges
can be solved using near-linear space with poly-logarithmic query time. The
best known data structures were given by Xue et al. [22], and we summarize
the bounds in Table 1. For fat rectangles queries (i.e., rectangles of constant
aspect ratio), Bae and Smid [4] showed an improved RCP data structure using
O(n log n) space and O(log n) query time. In a recent work [20], Xue considered
a colored version of RCP search in which the goal is to report the bichromatic
closest pair contained in a query range, and proposed efficient data structures
for orthogonal colored approximate RCP search (mainly in R

2).

Table 1. Best known results in R
2

Query type Space cost Query time Preprocessing time

Quadrant O(n) O(log n) O(n log2 n)

Strip O(n log n) O(log n) O(n log2 n)

Rectangle O(n log2 n) O(log2 n) O(n log7 n)

Halfplane O(n) O(log n) O(n log2 n)

Beyond R
2, the problem is quite open. To our best knowledge, the only known

results are the orthogonal RCP data structure given by Gupta et al. [10] which
only has guaranteed average-case performance and the approximate colored RCP
data structures given by Xue [20] which can only handle restricted query types
(dominance query in R

3 and 2-sided box query in R
d).

A key ingredient in existing solutions for RCP search in R
2 is the candidate-

pair method. Roughly speaking, this method tries to show that among the Ω(n2)
point pairs, only a few (called candidate pairs) can be the answer of some query.
If this can be shown, then it suffices to store the candidate pairs and search
the answer among them. Unfortunately, it is quite difficult to generalize this
method to higher dimensions, as the previous approaches for proving the number
of candidate pairs heavily rely on the fact that the data points are given in the
plane. This might be the main reason why RCP search can be efficiently solved
in R

2, while remaining open in higher dimensions.
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Our Contributions. In this paper, we give the first non-trivial RCP data struc-
tures for orthogonal, simplex, halfspace, and ball queries in R

d, for any constant
d. The performances of our new data structures are summarized in Table 2, where
the notation Õ(·) hides log n factors. All these data structures have near-linear
space cost, sub-linear query time, and sub-quadratic preprocessing time. For
example, we obtain Õ(n7/8) query time for two-dimensional triangular ranges,
and Õ(n2/3) query time for three-dimensional halfspaces and two-dimensional
balls (i.e., disks).1

Furthermore, we complement these results by establishing a conditional lower
bound, implying that our Õ(

√
n) query time bound for orthogonal RCP search

in R
d for any d ≥ 3 is likely the best possible (and in particular explaining why

polylogarithmic solution seems not possible beyond two dimensions). Specifi-
cally, we show that orthogonal RCP search in R

3 is at least as hard as the set
intersection query problem, which is conjectured to require Ω̃(

√
n) query time

for linear-space structures.

Table 2. Performances of our new RCP data structures in R
d

Query type Source Space cost Query time Preprocessing time

Orthogonal Theorem 1 Õ(n) Õ(
√

n) Õ(n
√

n)

Simplex Theorem 3 Õ(n) Õ(n1−1/(2d2)) Õ(n(3d2+1)/(2d2+1))

Halfspace Theorem 4 Õ(n) Õ(n1−1/(d�d/2�)) Õ(n2−1/(2d2))

Ball Full version [6] Õ(n) Õ(n1−1/((d+1)�d/2�)) Õ(n2−1/(2(d+1)2))

Overview of Our Techniques. Our approach for designing these new data
structures is quite different from those in the previous work. We avoid using the
aforementioned candidate-pair method. Instead, our RCP data structures solve
the problems as follows (roughly). For a given query range Q, the data structure
first partitions the points in S ∩ Q into two subsets, say K and L. The size
of L is guaranteed to be small, while K may have a large size. Then the data
structure computes the closest pair φ in K using some pre-stored information
and computes the closest pair φ′ in L using the standard closest-pair algorithm
(which can be done efficiently as L is small). If the two points of the closest pair
φ∗ in S ∩ Q are both in K or both in L, we are done. The only remaining case
is that one point of φ∗ is in K while the other point is in L. The data structure
handles this case by finding the nearest neighbor of a in Q for every a ∈ L via
reporting all the points in Q that are “near” a. Using a packing argument, we
can show that one only needs to report a constant number of points for each
a ∈ L, and hence this procedure can be completed efficiently (since L is small).

To implement this strategy, we incorporate a number of existing geometric
data structuring techniques. For orthogonal RCP, we use range trees and adapt
1 Gupta et al. [10] obtained Õ(

√
n) query time for two-dimensional disks, but only for

uniformly distributed point sets; the general problem was left open in their paper.
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an idea from Gupta et al. [10] of classifying nodes as “heavy” and “light” (origi-
nally for solving a different problem, two-dimensional orthogonal range diameter,
in near-linear space and Õ(

√
n) query time). For simplex RCP, we use simplicial

partitions instead of range trees. For halfspace RCP, we switch to dual space
and use cuttings, similar to an idea from Chan et al. [7] (for solving a differ-
ent problem, halfspace range mode, in near-linear space and Õ(n1−1/d2

) time).
Overall, the combination of existing and new ideas is nontrivial (and interest-
ing, in our opinion). Our conditional lower bound proof for three-dimensional
orthogonal RCP is similar to some previous work (for example, Davoodi et al.’s
conditional lower bound for two-dimensional range diameter [9]), and along the
way, we introduce a new variant of colored range searching, color uniqueness
query, which may be of independent interest.

2 Preliminaries

The first two results we need are the well-known partition lemma and cutting
lemma, both of which are extensively used for solving range-search problems.

Lemma 1 (Partition lemma [13]). Given a set S of n points in R
d and a

parameter 1 ≤ r ≤ n1−δ for an arbitrarily small constant δ > 0, one can compute
in O(n log n) time a partition {S1, . . . , Sr} of S and r simplices Δ1, . . . ,Δr in
R

d such that (1) Si ⊆ Δi for all i ∈ {1, . . . , r}, (2) |Si| = O(n/r) for all
i ∈ {1, . . . , r}, and (3) any hyperplane in R

d crosses O(r1−1/d) simplices among
Δ1, . . . ,Δr.

Lemma 2 (Cutting lemma [8]). Given a set H of n hyperplanes in R
d and

a parameter 1 ≤ r ≤ n, one can compute in O(nrd−1) time a cutting of R
d into

O(rd) cells each of which is a constant-complexity polytope intersecting O(n/r)
hyperplanes in H. In addition, the algorithm for computing the cutting stores the
cells into an O(rd)-space data structure which can report in O(log r) time, for a
specified point in x ∈ R

d, the cell containing x.

We shall also use the standard range-reporting data structures for orthogonal,
simplex, and halfspace queries, stated in the following lemma:

Lemma 3. Given a set S of n points in R
d, one can build in O(n logO(1) n)

time an O(n logO(1) n)-space data structure which can

(a) (Orthogonal range reporting [5]) report, for a specified orthogonal box
B in R

d, the points in S ∩ B in O(logO(1) n + k) time where k = |S ∩ B|;
(b) (Simplex range reporting [13]) report, for a specified simplex Δ in R

d,
the points in S ∩ Δ in O(n1−1/d logO(1) n + k) time where k = |S ∩ Δ|;

(c) (Halfspace range reporting [14]) report, for a specified halfspace H in R
d,

the points inS ∩ H inO(n1−1/�d/2� logO(1) n+k) query timewherek = |S ∩ H|.
Using a multi-level data structure that combines range trees with the above
structures, we can obtain range-reporting structures for query ranges that are
the intersections of an orthogonal box and a simplex/halfspace (see the full
version [6] for a detailed proof).



Range Closest-Pair Search in Higher Dimensions 273

Lemma 4. Given a set S of n points in R
d, one can build in O(n logO(1) n)

time an O(n logO(1) n)-space data structure which can

(a) (Box-simplex range reporting) report, for a specified orthogonal box
B and simplex Δ in R

d, the points in S ∩ B ∩ Δ in O(logO(1) n +
m1−1/d logO(1) n + k) time where m = |S ∩ B| and k = |S ∩ B ∩ Δ|;

(b) (Box-halfspace range reporting) report, for a specified orthogonal box
B and halfspace H in R

d, the points in S ∩ B ∩ H in O(logO(1) n +
m1−1/�d/2� logO(1) n + k) time where m = |S ∩ B| and k = |S ∩ B ∩ H|.

3 Orthogonal RCP Queries

3.1 Data Structure

Let S be a set of n points in R
d. In this section, we show how to build a RCP data

structure on S for orthogonal queries. First, we build a (standard) d-dimensional
range tree T on S. Each node u of T corresponds to a canonical subset of S,
which we denote by S(u). We say u is a heavy node if |S(u)| ≥ √

n. For every pair
(u,v) of heavy nodes, we compute the closest pair φu,v in S(u) ∪ S(v); denote
by Φ the set of all these pairs. Then we build an orthogonal range-reporting data
structure D(S) on S (Lemma 3(a)). Our orthogonal RCP data structure consists
of the range tree T , the data structure D(S), and the pair set Φ.

Query Procedure. Consider a query box B in R
d. Our goal is to find the closest

pair in S∩B using the data structure described above. By searching in the range
tree T , we can find t = O(logO(1) n) canonical nodes c1, . . . , ct corresponding
to B. We have S ∩ B =

⋃t
i=1 S(ci). Let I = {i : ci is a heavy node} and I ′ =

{1, . . . , t}\I. (See Fig. 1(left).) For all i, j ∈ I, we obtain the pair φci,cj
from Φ

and take the closest one φ ∈ {φci,cj
: i, j ∈ I}. On the other hand, we compute

L =
⋃

i∈I′ S(ci). We take the closest pair φ′ in L. Let δ = min{|φ|, |φ′|}. For each
a ∈ L, let �a be the hypercube centered at a with side-length 2δ. We query,
for each a ∈ L, the box range-reporting data structure D(S) with �a ∩ B to
obtain the set Pa = S ∩�a ∩B. After this, for each a ∈ L, we compute a pair ψa

consisting of a and the nearest neighbor of a in Pa\{a}. We then take the closest
one ψ ∈ {ψa : a ∈ L}. Finally, if |ψ| < |φ|, then we return ψ as the answer;
otherwise, we return φ as the answer.

We now verify the correctness of the above query procedure. Let φ∗ = (a, b)
be the closest pair in S ∩ B. It suffices to show that |φ| ≤ |φ∗| or |ψ| ≤ |φ∗|.
Suppose a ∈ S(ci) and b ∈ S(cj). If i, j ∈ I, then |φ| ≤ |φci,cj

| ≤ |φ∗| and we are
done. Otherwise, either i ∈ I ′ or j ∈ I ′; assume i ∈ I ′ without loss of generality.
It follows that a ∈ L. Since φ∗ is the closest pair in S ∩ B, we have |φ∗| ≤ |φ|
and |φ∗| ≤ |φ′|, which implies that the distance between a and b is at most δ.
Therefore, b ∈ Pa. Now we have |ψ| ≤ |ψa| ≤ |φ∗|, which completes the proof of
the correctness.

Analysis. We analyze the performance (space, query time, and preprocessing
time) of our orthogonal RCP data structure. To this end, we first bound the
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Fig. 1. (Left) The canonical nodes in the range tree T break the query box B into
thirteen disjoint regions. The green regions correspond to set I (the heavy nodes). The
orange points form the set L. For one of the points in L (denoted by a), the box �a is
shown in blue. The crucial property is that the number of points which lie in B ∩�a is
O(1). (Right) Reduction from the set intersection query to the color uniqueness query.
The set intersection query is to test if S4 and S3 are disjoint, and the query rectangle q
for the color uniqueness query exactly contains points p4 and p′

3. (Color figure online)

number of the heavy nodes. The lemma below follows immediately from the
well-known fact that the sum of sizes of the canonical subsets in a range tree is
O(n logd n).

Lemma 5. There are O(
√

n logO(1) n) heavy nodes in T .

By the above lemma, the space of the data structure is O(n logO(1) n). Indeed,
the range tree T and the data structure D(S) both occupy O(n logd−1 n) space,
and the pair-set Φ takes O(n log2d−2 n) space as there are O(

√
n logO(1) n) heavy

nodes. The preprocessing time is O(n
√

n logO(1) n). Indeed, building the range
tree T and the data structure D(S) takes O(n logO(1) n) time. We claim that the
pair-set Φ can be computed in O(n

√
n logO(1) n) time. We first find the set H of

heavy nodes, which can be done in O(n logO(1) n) time by simply checking every
node of T . For two pairs (u,v) and (u′,v′) of nodes in H, we write (u,v) 	
(u′,v′) if |S(u)|+|S(v)| ≤ |S(u′)|+|S(v′)|. Then “	” is a partial order on H×H.
We consider the pairs of heavy nodes in this partial order from the smallest to
the greatest. For each pair (u,v), we compute φu,v as follows. If |S(u)| < 2

√
n

and |S(v)| < 2
√

n, we explicitly compute S(u) ∪ S(v) and then compute φu,v

using the standard closest-pair algorithm in O(
√

n log n) time. Otherwise, either
|S(u)| ≥ 2

√
n or |S(v)| ≥ 2

√
n. Without loss of generality, assume |S(u)| ≥

2
√

n. Then the two children u1 and u2 of u) are both heavy. Note that φu,v

is the closest one among φu1,v, φu2,v, φu1,u2 by construction. Also note that
(u1,v) 	 (u,v), (u2,v) 	 (u,v), (u1,u2) 	 (u,v), thus φu1,v, φu2,v, φu1,u2

have already been computed when considering (u,v). With φu1,v, φu2,v, φu1,u2

in hand, we can compute φu,v in O(1) time. In sum, φu,v can be computed in
O(

√
n log n) time in any case. Since |H × H| = O(n logO(1) n), we can compute

Φ in O(n
√

n logO(1) n) time. This completes the discussion of the preprocessing
time. Next, we analyze the query time. Finding the canonical nodes c1, . . . , ct

takes O(logO(1) n) time, so does computing the index sets I and I ′. Obtaining
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the set {φci,cj
: i, j ∈ I} and computing φ takes O(logO(1) n) time since |I| ≤

t and t = O(logO(1) n). Computing φ′ requires O(
√

n logO(1) n) time, because
|L| = O(t

√
n) = O(

√
n logO(1) n). For a point a ∈ L, reporting the points in Pa

takes O(logO(1) n + |Pa|) time. Therefore, computing all the Pa’s can be done
in O(|L| logO(1) n +

∑
a∈L |Pa|) time. To bound this quantity, we observe the

following fact.

Lemma 6. |Pa| = O(1) for all a ∈ L.

Proof. We have S∩B = (
⋃

i∈I S(ui))∪L. It suffices to show that |(
⋃

i∈I S(ui))∩
�a| = O(1) and |L ∩ �| = O(1). Both facts follow from the pigeonhole principle
readily. Indeed, we have |(

⋃
i∈I S(ui))∩�a| = O(1) because φ is the closest pair

in
⋃

i∈I S(ui) and |φ| ≥ δ. We have |L ∩ �| = O(1) because φ′ is the closest pair
in L and |φ′| ≥ δ. This completes the proof. 
�

By the above lemma and the fact |L| = O(
√

n logO(1) n), we can compute all the
Pa’s in O(

√
n logO(1) n) time. The pair ψ can be directly obtained after knowing

all the Pa’s, hence the total query time is O(
√

n logO(1) n). We conclude the
following.

Theorem 1. Given a set S of n points in R
d, one can construct in Õ(n

√
n)

time an orthogonal RCP data structure on S with Õ(n) space and Õ(
√

n) query
time.

3.2 Conditional Hardness

In this subsection, we prove a conditional lower-bound for the orthogonal RCP
query, which shows that the upper bound given in Theorem 1 is tight, ignoring
log n factors. First, we define the following problem [15].

Problem 1 (Set intersection query). The input is a collection of sets
S1, S2, . . . , Sm of positive reals such that

∑m
i=1 |Si| = n. Given query indices

i and j, report if Si and Sj are disjoint, or not?

This problem can be viewed as a query version of Boolean matrix multipli-
cation, and is conjectured to be hard: in the cell-probe model without the floor
function and where the cardinality of each set Si is upper-bounded by logO(1) m,
any data structure to answer the set intersection problem in Õ(α) time requires
Ω̃((n/α)2) space, for 1 ≤ α ≤ n [9,15]. In particular, any linear-space structure
is believed to require Ω̃(

√
n) time.

Next we introduce an intermediate geometric problem, which may be of inde-
pendent interest:

Problem 2 (Color uniqueness query). The input is a set S of n colored points
in R

2. Specifically, let C be a collection of distinct colors, and each point p ∈ S
is associated with some color from C. Given a query rectangle q, report if all the
colors are unique in S ∩ q? In other words, is there a color which has at least
two points in S ∩ q?
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We will perform a two-step reduction: first, reduce the set intersection query
to the color uniqueness query, and then reduce the two-dimensional color unique-
ness query to the three-dimensional orthogonal RCP query.

Reduction from Set Intersection to Color Uniqueness in R
2. Given an

instance of the set intersection query, we will construct an instance of the color
uniqueness query. Let p1 = (1, 1), p2 = (2, 2), . . . , pm = (m,m), and p′

1 = (m +
1, 1), p′

2 = (m + 2, 2), . . . , p′
m = (2m,m). Next, assign a unique color to each

distinct element in S1 ∪ S2 ∪ . . . ∪ Sm. Now replace each point pi with |Si| new
points such that (a) the new points are within a distance of ε � 1 from pi, and
(b) each new point picks a distinct color from the colors assigned to the elements
in Si. Perform a similar operation for points p′

i. Let P be the collection of these
2n new points.

To answer if Si and Sj are disjoint (j < i), we ask a color uniqueness query
on P with an axis-aligned rectangle q = [i − ε,m + j + ε] × [j − ε, i + ε] (see
Fig. 1(right)). If there is a color which contains two points, then we report that
Si and Sj are not disjoint; otherwise, we report that Si and Sj are disjoint.
The correctness is easy to see: the key observation is that q exactly contains the
points of Si and Sj . Therefore, Si and Sj are disjoint iff all the colors are unique
in P ∩ q. Reductions of this flavor have been performed before [3,9,12,16].

Reduction from Color Uniqueness in R
2 to Orthogonal RCP in R

3.
Given an instance of the color uniqueness query, we will now construct an
instance of the orthogonal RCP query in R

3. Let dmax be the maximum Euclidean
distance between any two points in S, and let c1, c2, . . . , c|C| be the |C| colors in
the dataset. Then each point p = (px, py) ∈ S with color ci is mapped to a 3-d
point p′ = (px, py, 2 · i · dmax). Let P be the collection of these n newly mapped
points.

To answer the color uniqueness query for a rectangle q, we will ask an orthog-
onal RCP query on P with the query box q×(−∞,∞). If the closest-pair distance
is less than or equal to dmax, then we report that there is a color which contains
at least two points inside q; otherwise, we report that all the colors are unique
inside q. Once again, the correctness is easy to see: the key observation is that
the distance between points of different colors in P is at least 2 · dmax.

The above two reductions together implies our conditional lower bound,
which is presented in the following theorem.

Theorem 2. The orthogonal RCP query is at least as hard as the set intersec-
tion query.

4 Simplex RCP Queries

Let S be a set of n points in R
d, and r be a parameter to be specified shortly.

In this section, we show how to build a RCP data structure on S for simplex
queries. First, we use Lemma 1 to compute a partition {S1, . . . , Sr} of S and
r simplices Δ1, . . . ,Δr in R

d satisfying the conditions in the lemma. For every
i, j ∈ {1, . . . , r}, we compute the closest pair φi,j in Si ∪ Sj ; denote by Φ the set
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of all these pairs. Then we build a box-simplex range-reporting data structure
D′(S) on S (Lemma 4(a)). Our simplex RCP data structure consists of the
partition {S1, . . . , Sr}, the simplices Δ1, . . . ,Δr, the data structure D′(S), and
the pair set Φ.

Query Procedure. Consider a query simplex Δ in R
d. Our goal is to find the

closest pair in S ∩Δ using the data structure described above. We first compute
two index sets I = {i : Δi ⊆ Δ}, I ′ = {i : Δi � Δ and Δi ∩ Δ �= ∅}. (See
Fig. 2.) These index sets are computed by explicitly considering the r simplices
Δ1, . . . ,Δr. For all i, j ∈ I, we obtain the pair φi,j from Φ and take the closest
one φ ∈ {φi,j : i, j ∈ I}. On the other hand, we compute a set L = (

⋃
i∈I′ Si)∩Δ

by simply checking, for every i ∈ I ′ and every a ∈ Si, whether a ∈ Δ. We take
the closest pair φ′ in L. Let δ = min{|φ|, |φ′|}. For each a ∈ L, let �a be
the hypercube centered at a with side length 2δ. We query, for each a ∈ L,
the box-simplex range-reporting data structure D′(S) with �a and Δ to obtain
the set Pa = S ∩ �a ∩ Δ. After this, for each a ∈ L, we compute a pair ψa

consisting of a and the nearest neighbor of a in Pa\{a}. We then take the closest
one ψ ∈ {ψa : a ∈ L}. Finally, if |ψ| < |φ|, then we return ψ as the answer;
otherwise, we return φ as the answer.

We now verify the correctness of the above query procedure. Let φ∗ = (a, b)
be the closest pair in S ∩ Δ. It suffices to show that |φ| ≤ |φ∗| or |ψ| ≤ |φ∗|.
Suppose a ∈ Si and b ∈ Sj . We first notice that i, j ∈ I ∪ I ′. Indeed, if i /∈ I ∪ I ′

(resp., j /∈ I ∪ I ′), then Δi ∩ Δ = ∅ (resp., Δj ∩ Δ = ∅) and hence Si ∩ Δ = ∅
(resp., Sj ∩Δ = ∅), which contradicts the fact that a ∈ Si ∩Δ (resp., b ∈ Si ∩Δ).
If i, j ∈ I, then |φ| ≤ |φi,j | ≤ |φ∗| and we are done. Otherwise, either i ∈ I ′ or
j ∈ I ′; assume i ∈ I ′ without loss of generality. It follows that a ∈ L. Since φ∗

is the closest pair in S ∩ Δ, we have |φ∗| ≤ |φ| and |φ∗| ≤ |φ′|, which implies
that the distance between a and b is at most δ. Therefore, b ∈ Pa. Now we have
|ψ| ≤ |ψa| ≤ |φ∗|, which completes the proof of the correctness.

a

2δ

Δ

Δ1 Δ2

Δ3

Δ4

Δ5

Δ6

Fig. 2. I = {Δ1, Δ2} and I ′ = {Δ3, Δ4, Δ5, Δ6}.

Analysis. We analyze the performance (space, query time, and preprocessing
time) of our simplex RCP data structure. The space of the data structure is
O(n logO(1) n + r2), because D′(S) occupies O(n logO(1) n) space and Φ occu-
pies O(r2) space. The preprocessing time is O(nr logO(1) n). Indeed, computing
the partition {S1, . . . , Sr} and the simplices Δ1, . . . ,Δr takes O(n log n) time
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by Lemma 1. Computing φi,j for some fixed i, j ∈ {1, . . . , r} can be done
in O((n/r) log(n/r)) time using the standard closest-pair algorithm, because
|Si ∪ Sj | = O(n/r). It follows that computing Φ takes O(nr log n) time. Finally,
building the data structure D′(S) requires O(n logO(1) n) time. As such, our
simplex RCP data structure can be constructed in O(nr logO(1) n) time. Next,
we analyze the query time. The index sets I and I ′ are computed in O(r)
time. Obtaining the set {φi,j : i, j ∈ I} and computing φ requires O(r2) time.
The set L is computed by explicitly considering all the points in

⋃
i∈I′ Si in

O(
∑

i∈I′ |Si|) time. We notice that |I ′| = O(r1−1/d), since each facet of Δ only
intersects O(r1−1/d) simplices among Δ1, . . . ,Δr by Lemma 1. It follows that∑

i∈I′ |Si| = O(n/r1/d), because |Si| = O(n/r). That says, L can be computed
in O(n/r1/d) time and in particular, |L| = O(n/r1/d). Once L is obtained, φ′

can be computed in O((n/r1/d) log(n/r1/d)) time using the standard closest-
pair algorithm. For a point a ∈ L, reporting the points in Pa takes O(logO(1) n+
m

1−1/d
a logO(1) ma + |Pa|) time where ma = |S ∩�a|, by Lemma 4(a). Therefore,

computing all the Pa’s can be done in O(
∑

a∈L m
1−1/d
a logO(1) n +

∑
a∈L |Pa|)

time. To bound this quantity, we observe the following fact.

Lemma 7.
∑

a∈L ma = O(n) and |Pa| = O(1) for all a ∈ L.

Proof. We first prove
∑

a∈L ma = O(n). Consider a point p ∈ S. Let �p be the
hypercube centered at p with side-length 2δ. Note that p ∈ Pa only if a ∈ �p for
all a ∈ L. Since φ′ is the closest pair in L and |φ′| ≥ δ, we have L ∩ �p = O(1)
by the pigeonhole principle. Therefore, only a constant number of points in L
is contained in p. In other words, any point p ∈ S is contained in Pa for only a
constant number of a ∈ L, which implies

∑
a∈L ma = O(n). Next, we prove that

|Pa| = O(1) for all a ∈ L. Clearly, S ∩ Δ = (
⋃

i∈I Si) ∪ L. So it suffices to show
that |(

⋃
i∈I Si) ∩ �a| = O(1) and |L ∩ �a| = O(1). Both facts follow from the

pigeonhole principle readily. Indeed, we have |(
⋃

i∈I Si) ∩ �a| = O(1) because φ
is the closest pair in

⋃
i∈I Si and |φ| ≥ δ. We have |L ∩ �a| = O(1) because φ′

is the closest pair in L and |φ′| ≥ δ. This completes the proof of |Pa| = O(1). 
�

By the above lemma and Hölder’s inequality, we have
∑

a∈L

m1−1/d
a ≤ O(n1−1/d|L|1/d) = O

( n

r1/d2

)
,

which implies that computing all the Pa’s takes O((n logO(1) n)/r1/d2
) time. The

pair ψ can be directly obtained after knowing all the Pa’s. Hence, the total query
time is O(r2 + (n logO(1) n)/r1/d2

). Setting r = nd2/(2d2+1) gives:

Theorem 3. Given a set S of n points in R
d, one can construct in

Õ(n(3d2+1)/(2d2+1)) time a simplex RCP data structure on S with Õ(n) space
and Õ(n1−1/(2d2)) query time.

Note that our data structure above can also handle constant-complexity poly-
tope RCP queries (with the same query procedure and query time). In other
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words, the data structure can be used to report, for specified O(1) halfspaces
H1, . . . ,Hc in R

d, the closest pair in S ∩ (
⋂c

i=1 Hi) in Õ(n1−1/(2d2)) time.

5 Halfspace RCP Queries

Let S be a set of n points in R
d, and r be a parameter to be specified shortly.

In this section, we show how to build an RCP data structure on S for halfspace
queries. The same method can also result in an RCP data structure for ball
queries, using the standard lifting argument. Since halfspace query is a special
case of simplex query, the simplex RCP data structure in the last section can be
directly used to answer halfspace RCP queries. But in fact, for halfspace RCP
queries, we can achieve better bounds.

It suffices to consider the halfspaces which are regions below non-vertical
hyperplanes, namely, halfspaces of the form xd ≤ a1x1 + · · · + ad−1xd−1. By
duality, a point a ∈ S maps to a hyperplane a∗ in the dual space (which is
also a copy of R

d). Also, a non-vertical hyperplane h in the primal R
d maps

to a point h∗ in the dual space. The property of duality guarantees that a is
above (resp., below) h iff h∗ is above (resp., below) a∗ for all a ∈ S and all
hyperplanes h (see Fig. 3). Define H = {a∗ : a ∈ S}. We use Lemma 2 to cut R

d

(the dual space) into R = O(rd) cells Ξ1, . . . , ΞR each of which is a constant-
complexity polytope intersecting O(n/r) hyperplanes in H. For i ∈ {1, . . . , R},
let Si = {a : a∗ is below Ξi}. We associate to the cell Ξi the closest pair φi in
Si. Furthermore, we build a simplex range-reporting data structure D(S) on S
(Lemma 3(b)) and a box-halfspace range-reporting data structure D′(S) in S
(Lemma 4(b)). Our halfspace RCP data structure consists of the cells Ξ1, . . . , ΞR

(with the associated pairs φ1, . . . , φr) and the data structures D(S) and D′(S).
The cells Ξ1, . . . , ΞR are stored in the way mentioned in Lemma 2 (so that we
can do point location efficiently).

Si

h h∗

v

v∗

H ∩ Hv

(a) Primal plane (b) Dual plane

Fig. 3. The dataset shown in (a) consists of seven points. The dual h∗ of the query
hyperplane h lies inside the cell Ξi shown in pink in (b). The closest pair among the
black points, φi, is computed in the preprocessing phase itself (since the dual of the
black points is the set Si). The red points belong to set L and are explicitly reported
during the query procedure. (Color figure online)
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Query Procedure. Consider a query halfspace H that is the region below a
non-vertical hyperplane h. Our goal is to find the closest pair in S ∩H using the
data structure described above. To this end, we first find the cell Ξi such that
h∗ ∈ Ξi. Let V be the set of the vertices of Ξi. We have V = O(1) by Lemma 2.
For every v ∈ V , let Hv be the halfspace above the non-vertical hyperplane v∗

in the primal R
d. Using D(S), we find the points in S ∩ (H ∩ Hv) for all v ∈ V

and obtain the set L =
⋃

v∈V S ∩ (H ∩Hv). We take the closest pair φ′ in L. Let
δ = min{|φi|, |φ′|} (recall that φi is the pair associated to Ξi). For each a ∈ L,
let �a be the hypercube centered at a with side-length 2δ. We query, for each
a ∈ L, the box-halfspace range-reporting data structure D′(S) with �a and H
to obtain the set Pa = S ∩ �a ∩ H. After this, for each a ∈ L, we compute a
pair ψa consisting of a and the nearest neighbor of a in Pa\{a}. We then take
the closest one ψ ∈ {ψa : a ∈ L}. Finally, if |ψ| < |φi|, then we return ψ as the
answer; otherwise, we return φi as the answer.

We now verify the correctness of the above query procedure. First of all,
we claim that S ∩ H = Si ∪ L. Indeed, we have L ⊆ S ∩ H by definition and
Si ⊆ S ∩ H because a∗ is below Ξi (and hence below h∗) for all a ∈ Si; this
implies Si ∪ L ⊆ S ∩ H. To see S ∩ H ⊆ Si ∪ L, let a ∈ S ∩ H be a point.
If a∗ is below Ξi, then a ∈ Si. Otherwise, there exists v ∈ V such that a∗ is
above v. It follows that a ∈ S ∩ (H ∩ Hv) ⊆ L. Therefore, S ∩ H ⊆ Si ∪ L and
S ∩ H = Si ∪ L. With this observation in hand, we first show that the returned
answer is a pair in S ∩ H. It suffices to show that both φi and ψ are pairs in
S ∩ H. The two points of φi are both in Si and hence in S ∩ H. To see ψ is a
pair in S ∩ H, suppose ψ = ψa for a ∈ L. By definition, ψa consists of a and the
nearest neighbor of a in Pa\{a}. We have a ∈ L ⊆ S ∩ H and Pa ⊆ L ⊆ S ∩ H,
hence ψ is a pair in S ∩H. Next, we show that the returned answer is the closest
pair in S ∩ H. Let φ∗ = (a, b) be the closest-pair in S ∩ H. It suffices to show
that |φi| ≤ |φ∗| or |ψ| ≤ |φ∗|. If a, b ∈ Si, then |φi| ≤ |φ∗| and we are done.
Otherwise, assume a /∈ Si and thus a ∈ L, without loss of generality. Since φ∗ is
the closest pair in S ∩ H, we have |φ∗| ≤ |φi|, which implies that the distance
between a and b is at most δ. Therefore, b ∈ Pa. Now we have |ψ| ≤ |ψa| ≤ |φ∗|,
which completes the proof of the correctness.

Analysis. We analyze the performance (space, query time, and preprocess-
ing time) of our halfspace RCP data structure. The space of the data struc-
ture is O(n logO(1) n + R), because D(S) occupies O(n) space, D′(S) occu-
pies O(n logO(1) n) space, and storing Ξ1, . . . , ΞR (with the associated pairs
φ1, . . . , φR) requires O(R) space. Next, we analyze the query time. Determining
the cell Ξi takes O(log r) time by Lemma 2. For each v ∈ V , reporting the points
in S ∩ (H ∩ Hv) takes O(n1−1/d logO(1) n + kv) time where kv = |S ∩ (H ∩ Hv)|.
We claim that a∗ intersects Ξi for any a ∈ S ∩ (H ∩ Hv). Indeed, a∗ is below
h because a ∈ H and is above v because a ∈ Hv. Thus, a∗ intersects the
segment connecting h∗ and v. Since h∗, v ∈ Ξi, a∗ intersects Ξi. It follows
that kv = O(n/r) by Lemma 2. Furthermore, because V = O(1), L can be
computed in O(n1−1/d logO(1) n +

∑
v∈V kv) = O(n1−1/d logO(1) n + n/r) time

and |L| = O(
∑

v∈V kv) = O(n/r). Once L is obtained, φ′ can be computed
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in O((n/r) log(n/r)) time using the standard closest-pair algorithm. For a point
a ∈ L, reporting the points in Pa takes O(logO(1) n+m

1−1/�d/2�
a logO(1) ma+|Pa|)

time where ma = |S ∩ �a|, by Lemma 4(b). By exactly the same argument in
the proof of Lemma 7, we have the following observation:

Lemma 8.
∑

a∈L ma = O(n) and |Pa| = O(1) for all a ∈ L.

By the above lemma and Hölder’s inequality, we have
∑

a∈L

m1−1/�d/2�
a ≤ O(n1−1/�d/2�|L|1/�d/2�) = O

( n

r1/�d/2�

)
,

which implies that computing all the Pa’s takes O(n logO(1) n/r1/�d/2�) time.
The pair ψ can be directly obtained after knowing all the Pa’s. Hence, the
total query time is O(log r + n logO(1) n/r1/�d/2�). Finally, we analyze the pre-
processing time. The data structures D(S) and D′(S) can both be constructed
in O(n logO(1) n) time by Lemmas 3(b) and 4(b). The cells Ξ1, . . . , ΞR can be
computed in O(nrd−1) time by Lemma 2. So it suffices to show how to com-
pute the pairs φ1, . . . , φR efficiently. To this end, we build a simplex RCP data
structure on S as described in Theorem 3, which takes Õ(n(3d2+1)/(2d2+1)) time.
Fix i ∈ {1, . . . , R} and let V be the set of the O(1) vertices of Ξi. For v ∈ V ,
let H ′

v be the halfspace below the hyperplane v∗ in the primal space. We claim
that Si = S ∩ (

⋂
v∈V H ′

v). To see this, consider a point a ∈ S. We have a ∈ Si

iff a∗ is below Ξi iff v is below a∗ for all v ∈ V , or equivalently, a ∈ H ′
v for

all v ∈ V . Thus, Si = S ∩ (
⋂

v∈V H ′
v). We can then compute the closest pair

φi in Si using the simplex RCP data structure with the query range
⋂

v∈V H ′
v

(as mentioned at the end of Sect. 4, our simplex RCP data structure can handle
queries which are intersections of constant number of halfspaces). Computing
φi takes O(n1−1/(2d2) logO(1) n) time, and hence computing all pairs φ1, . . . , φR

takes O(Rn1−1/(2d2) logO(1) n) time. In sum, the preprocessing time of our halfs-
pace RCP data structure is O((nrd−1+n(3d2+1)/(2d2+1)+Rn1−1/(2d2)) logO(1) n).
Setting r = n1/d gives:

Theorem 4. Given a set S of n points in R
d, one can construct in Õ(n2−1/(2d2))

time a halfspace RCP data structure on S with Õ(n) space and Õ(n1−1/(d�d/2�))
query time.
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