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Preface

This proceeding volume contains the papers presented at the 16th International
Algorithms and Data Structures Symposium (WADS 2019), which was held during
August 5–7, 2019, in Edmonton, Alberta, Canada. WADS, which alternates with the
Scandinavian Symposium and Workshops on Algorithm Theory, SWAT, is a veune for
researchers in the area of design and analysis of algorithms and data structures to
present their works. In response to the call for papers, 89 papers were submitted to
WADS this year. From these, the Program Committee selected 42 papers for
presentation.

In addition, three invited lectures were given by David Eppstein (University of
California, Irvine), Rasmus Pagh (IT University of Copenhagen), and Robert E. Tarjan
(Princeton University). Special issues of papers selected from WADS 2019 are planned
for two journals, Algorithmica and Computational Geometry: Theory and Applications.

The 2017 Alejandro López-Ortiz Best Paper Award for WADS 2017 was awarded
to the paper “Universal Hinge Patterns for Folding Strips Efficiently into Any Grid
Polyhedron” by Nadia Benbernou, Erik D. Demaine, Martin L. Demaine, and Anna
Lubiw, and the best student paper award went to Sebastian Brandt for the paper
“Approximating Small Balanced Vertex Separators in Almost Linear Time,” which
was coauthored with Roger Wattenhofer.

We appreciate all the work done by the Program Committee and also gratefully
acknowledge the support of the WADS 2019 sponsors: University of Alberta, PIMS
Institute, Elsevier, and Springer.

May 2019 Zachary Friggstad
Jörg-Rüdiger Sack

Mohammad Salavatipour
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Abstracts



Graphs in Nature

David Eppstein

Computer Science Department, University of California, Irvine, CA 92697, USA
eppstein@uci.edu.

Many natural processes produce planar structures that can be modeled mathematically
as graphs. These include cracking of sheets of glass or mud [1], the growth of
needle-like crystals [2], foams of soap bubbles [3, 4], and the folding patterns of
crumpled paper [5, 6]. We survey graph-theoretic models for these phenomena, the
properties of the graphs arising from them, and algorithms for recognizing these graphs
and reconstructing their geometry.

References
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Set Similarity – A Survey

Rasmus Pagh1,2

1IT University of Copenhagen and BARC
https://itu.dk/people/pagh/

pagh@itu.dk
2Google Research

Abstract. Many types of data can be represented as a sets of elements from
some universe such that the size of the intersection of two sets has semantic
meaning. More generally, notions of set similarity are important in fields such as
databases, information retrieval, and machine learning. Algorithmic problems
involving set similarity tend to be hard in the sense that brute-force algorithms
are essentially the best known. This has given rise to the study of approximate
versions of these problems that are more tractable. The talk will survey algo-
rithmic techniques that have been proposed in recent years addressing: (1) the
problem of estimating set similarity, and (2) the problem of searching a col-
lection of sets for members similar to a given query set.
Towards the end of the talk we discuss approaches to understanding algo-

rithmic limitations by showing fine-grained, conditional lower bounds. Finally,
we present some open problems on closing the gap between upper and lower
bounds.

Keywords: Sets � Similarity � Approximation � Search

This work has received funding from the European Research Council under the European Union’s 7th
Framework Programme (FP7/2007-2013)/ERC grant agreement no. 614331. It is also supported
by Villum Foundation grant 16582 to Basic Algorithms Research Copenhagen (BARC). Part of this
work was done as a visiting faculty researcher at Google Research.
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Concurrent Connected Components
Algorithms: Recent Results and Open

Problems

Robert E. Tarjan1,2

1Princeton University, Princeton, NJ, USA
2Intertrust Technologies, Sunnyvale, CA, USA

ret@cs.princeton.edu

Abstract. The problem of finding the connected components of an undirected
graph is one of the most basic in graph algorithms. It can be solved sequentially
in linear time using graph search or in almost-linear time using a disjoint-set data
structure. The latter solves the incremental version of the problem, in which
edges are added singly or in batches on-line.
With the growth of the internet, computing connected components on huge

graphs has become important, and both experimentalists and theoreticians have
explored the use of concurrency in speeding up the computation. We shall
survey recent work. Even simple concurrent algorithms are hard to analyze, as
we discuss. This work is joint with Sixue Liu of Princeton.

Research at Princeton University partially supported by an innovation research grant from Princeton
and a gift from Microsoft.
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Succinct Data Structures for Families
of Interval Graphs

Hüseyin Acan1 , Sankardeep Chakraborty2, Seungbum Jo3(B) ,
and Srinivasa Rao Satti4

1 Drexel University, Philadelphia, USA
huseyin.acan@drexel.edu

2 RIKEN Center for Advanced Intelligence Project, Chūō, Japan
sankar.chakraborty@riken.jp

3 University of Siegen, Siegen, Germany
Seungbum.Jo@uni-siegen.de

4 Seoul National University, Seoul, South Korea
ssrao@cse.snu.ac.kr

Abstract. We consider the problem of designing succinct data struc-
tures for interval graphs with n vertices while supporting degree, adja-
cency, neighborhood and shortest path queries in optimal time. Towards
showing succinctness, we first show that at least n log2 n−2n log2 log2 n−
O(n) bits. are necessary to represent any unlabeled interval graph G
with n vertices, answering an open problem of Yang and Pippenger
[Proc. Amer. Math. Soc. 2017]. This is augmented by a data struc-
ture of size n log2 n + O(n) bits while supporting not only the above
queries optimally but also capable of executing various combinatorial
algorithms (like proper coloring, maximum independent set etc.) on inter-
val graphs efficiently. Finally, we extend our ideas to other variants of
interval graphs, for example, proper/unit, k-improper interval graphs,
and circular-arc graphs, and design succinct data structures for these
graph classes as well along with supporting queries on them efficiently.

Keywords: Space efficient data structures · Succinct encoding ·
Interval graphs

1 Introduction

A simple undirected graph G is called an interval graph if its vertices can be
assigned to intervals on the real line so that two vertices are adjacent in G if
and only if their assigned intervals intersect. The set of intervals assigned to the
vertices of G is called a realization of G. These graphs were first introduced by
Hajós [20] who also asked for the characterization of them. The same problem was
also asked, independently, by [3] while studying the structure of genes. Interval
graphs naturally appear in a variety of contexts, for example, operations research
and scheduling theory [2], biology especially in physical mapping of DNA [28],

c© Springer Nature Switzerland AG 2019
Z. Friggstad et al. (Eds.): WADS 2019, LNCS 11646, pp. 1–13, 2019.
https://doi.org/10.1007/978-3-030-24766-9_1
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temporal reasoning [17] and many more. We refer the reader to [15,16] for a thor-
ough treatment of interval graphs and its applications. Eventually answering the
question of Hajós [20], several researchers came up with different characteriza-
tions of interval graphs, including linear time algorithms for recognizing them;
see, for example, [16, Chap. 8] for characterizations, and [4] and [19] for linear
time algorithms. Moreover, by exploiting the special structure of interval graphs,
many otherwise NP-hard problems in general graphs are also shown to have
polynomial time algorithms for interval graphs [15]. These include computing
maximum independent set, reporting a proper coloring, returning a maximum
clique etc. In spite of having many applications in practically motivated prob-
lems, we are not aware of any study of interval graphs from the point of view
of succinct data structures where the goal is to store a set Z of objects using
the information theoretic minimum log(|Z|) + o(log(|Z|)) bits of space1 while
still being able to support the relevant set of queries efficiently, which we focus
on in this paper. We also assume the usual model of computation, namely a
Θ(log n)-bit word RAM model where n is the size of the input.

1.1 Related Work

There already exists a large body of work on representing various classes of
graphs succinctly. This is partly motivated by theoretical curiosity and partly
by the practical needs as these combinatorial structures do arise quite often
in various applications. A partial list of such special graph classes would be
trees [23], planar graphs [1], chordal graphs [24], partial k-tree [11] among oth-
ers, while succinct encoding for arbitrary graphs is also considered [12] in the
literature. For interval graphs, other than the algorithmic works mentioned ear-
lier, there are plenty of attempts in exactly counting the number of unlabeled
interval graphs [21,22], and the state-of-the-art result is due to [27], which is
what we improve in this work. For the variants of the interval graphs that we
study in this paper, there exists also a fairly large number of algorithmic results
on them as well as structural results. See [15,16] for details.

1.2 Our Results and Paper Organization

Given an unlabeled interval graph G with n vertices, in Sect. 3 we first show that
at least n log n − 2n log log n − O(n) bits are necessary to represent G, answer-
ing an open problem of Yang and Pippenger [27]. More specifically, Yang and
Pippenger [27] showed a lower bound of (n log n)/3 + O(n)-bit for representing
any unlabeled interval graph and asked whether this lower bound can be further
improved. Augmenting this lower bound, in Sect. 4 we also propose a succinct
representation of G using n log n + O(n) bits while still being able to support
the relevant queries optimally, where the queries are defined as follows. For any
two vertices u, v ∈ G,

1 Throughout the paper, we use log to denote the logarithm to the base 2.
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– degree(v): returns the number of vertices that are adjacent to v in G,
– adjacent(u, v): returns true if u and v are adjacent in G, and false otherwise,
– neighborhood(v): returns all the vertices that are adjacent to v in G, and
– spath(u, v): returns the shortest path between u and v in G.

We show that all these queries can be supported optimally using our succinct
data structure for interval graphs. More precisely, for any two vertices v, u ∈ G,
we can answer degree(v) and adjacent(u, v) queries in O(1) time, neighborhood(v)
queries in O(degree(v)) time, and spath(u, v) queries in O(|spath(u, v)|) time.
Furthermore, we also show how one can implement various fundamental graph
algorithms in interval graphs, for example depth-first search (DFS), breadth-first
search (BFS), computing a maximum independent set, determining a maximum
clique, both time and space efficiently using our succinct representation for inter-
val graphs. In Sect. 5, we extend our ideas to other variants of interval graphs, for
example, proper/unit interval graphs, k-proper and k-improper interval graphs,
and circular-arc graphs, and design succinct data structures for these graph
classes as well along with supporting queries on them efficiently. For definitions
of these graphs, see Sect. 5. Finally we conclude in Sect. 6 with some remarks on
possible future directions for exploring. We list all the preliminary data struc-
tures and graph theoretic terminologies that will be used throughout this paper,
in Sect. 2.

2 Preliminaries

We will use the following data structures in the rest of this paper.

Rank and Select Queries: Let S = s1, . . . , sn be a sequence of size n over an
alphabet Σ = {0, 1, . . . , σ − 1}. Then for 1 ≤ i ≤ n, and α ∈ Σ, one can define
rank and select queries as follows.

– rankα(S, i) = the number of occurrences of α in s1 . . . si.
– selectα(S, i) = the position j where sj is the i-th α in S.

The following lemma shows that these operations can be supported efficiently
using optimal space.

Lemma 1 ([8,18]). Given a sequence S = s1, . . . , sn of size n over an alpha-
bet Σ = {0, 1, . . . , σ − 1} for any σ > 1, for any α ∈ Σ, there exists an
n log σ + o(n log σ)-bit data structure which answers rankα queries on S in
O(log (1 + log (σ))) time and selectα queries on S in O(1) time.

Note that one can access any element of the input sequence (at a given index)
in O(1) (resp. O(log log σ)) time with the n+ o(n) (resp. n log σ + o(n log σ))-bit
data structure of Lemma 1.

Range Maximum Queries: Given a sequence S = s1, . . . , sn of size n, for
1 ≤ i, j ≤ n, the Range Maximum Query on range [i, j] (denoted by RMaxS(i, j))



4 H. Acan et al.

returns the position i ≤ k ≤ j such that sk is a maximum value in si . . . sj (if
there is a tie, we return the leftmost such position). One can define the Range
Minimum Queries on range [i, j] (RMinS(i, j)) analogously. The following lemma
shows that there exist data structures which can answer these queries efficiently
using optimal space.

Lemma 2 ([6,14]). Given a sequence S of size n and for any 1 ≤ c ≤ n,

1. there exists a data structure of size O(n/c) bits, in addition to storing the
sequence S, which supports RMaxS and RMinS queries in O(c) time while
supporting access on S in O(1) time.

2. there exists a data structure of size 2n + o(n) bits (that does not store the
sequence S) which supports RMaxS or RMinS queries in O(1) time.

Graph Terminology and Input Representation: We will assume the knowl-
edge of basic graph theoretic terminology as given in [10] and basic graph algo-
rithms as given in [9]. Throughout this paper, G = (V,E) will denote a simple
undirected graph with the vertex set V of cardinality n and the edge set E
having cardinality m. We call G an interval graph if (a) with every vertex we
can associate a closed interval on the real line, and (b) two vertices share an
edge if and only if the corresponding intervals are not disjoint (see Fig. 1 for
an example). It is well known that given an interval graph with n vertices, one
can assign intervals to vertices such that every end point is a distinct integer
from 1 to 2n using O(n log n) time [21], and in the rest of this paper, we deal
exclusively with such representations. Moreover, for vertex v ∈ V , we refer to Iv

as the interval corresponding to v.

3 Counting the Number of Unlabeled Interval Graphs

This section deals with counting unlabeled interval graphs. Let In denote the
number of unlabeled graphs on n vertices. This is the sequence with id A005975
in the On–Line Encyclopedia of Integer Sequences [26]. Initial values of this
sequence are given by Hanlon [21] but he did not prove an asymptotic form for
enumerating the sequence. Answering a question posed by Hanlon [21], Yang and
Pippenger [27] proved that the generating function I(x) =

∑
n≥1 Inxn diverges

for any x �= 0 and they established the bounds

n log n

3
+ O(n) ≤ log In ≤ n log n + O(n). (1)

The upper bound in (1) follows from In ≤ (2n − 1)!! =
∏n

j=1(2j − 1), where
the right hand side is the number of matchings on 2n points on a line. For the
lower bound, the authors showed I3k ≥ k!/33k by finding an injection from Sk,
the set of permutations of length k, to three-colored interval graphs of size 3k.
Furthermore, they left it open whether the leading terms of the lower and upper
bounds in (1) can be matched, which is what show in affirmative by improving
the lower bound. In other words, we find the asymptotic value of log In. In what
follows, for a set S, we denote by

(
S
k

)
the set of k-subsets of S.
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Theorem 1. Let In be the number of unlabeled interval graphs with n vertices.
As n → ∞, we have

log In ≥ n log n − 2n log log n − O(n). (2)

Proof. We consider certain interval graphs on n vertices with colored vertices.
Let k be a positive integer smaller than n/2 such that k2 ≥ n − 2k, and ε a
positive constant smaller than 1/2. For 1 ≤ j ≤ k, let Bj and Rj denote the
intervals [−j−ε,−j+ε] and [j−ε, j+ε], respectively. These 2k pairwise-disjoint
intervals will make up 2k vertices in the graphs we consider. Now let W denote
the set of k2 closed intervals with one endpoint in {−k, . . . ,−1} and the other
in {1, . . . , k}. We color B1, . . . , Bk with blue, R1, . . . , Rk with red, and the k2

intervals in W with white.
Together with S := {B1, . . . , Bk, R1, . . . , Rk}, each {J1, . . . , Jn−2k} ∈ ( W

n−2k

)

gives an n-vertex, three-colored interval graph. For a given J = {J1, . . . , Jn−2k},
let GJ denote the colored interval graph whose vertices correspond to n intervals
in S ∪ J , and let G denote the set of all GJ .

Now let G ∈ G. For a white vertex w ∈ G, the pair (dB(w), dR(w)), which
represents the numbers of blue and red neighbors of w, uniquely determine the
interval corresponding to w; this is the interval [−dB(w), dR(w)]. In other words,
J can be recovered from GJ uniquely. Thus |G| =

(
k2

n−2k

)
. Since there are at

most 3n ways to color the vertices of an interval graph with blue, red, and white,
we have

In · 3n ≥ |G| =
(

k2

n − 2k

)

≥
(

k2

n − 2k

)n−2k

≥
(

k2

n

)n−2k

for any k < n/2. Setting k = 	n/ log n
 and taking the logarithms, we get

log In ≥ (n − 2k) log(k2/n) − O(n) = n log n − 2n log log n − O(n).

Remark 1. Yang and Pippenger [27] also posed the question whether log In =
Cn log n + O(n) for some C or not. According to Theorem 1, this boils down
to getting rid of the 2n log log n term in (2). Such a result would imply that
the exponential generating function J(x) =

∑
n≥1 Inxn/n! has a finite radius of

convergence. (As noted in [27], the bound In ≤ (2n−1)!! implies that the radius
of convergence of J(x) is at least 1/2).

4 Succinct Representation of Interval Graphs

In this section, we introduce a succinct n log n+(3+ε)n+o(n)-bit representation
of unlabeled interval graph G on n vertices with constant ε > 0, and show
that the navigational queries (degree, adjacent, neighborhood, and spath queries)
and some basic graph algorithms (BFS, DFS, PEO traversals, proper coloring,
computing the size of a maximum clique and maximum independent set) on G
can be answered/executed efficiently using our representation of G.
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4.1 Succinct Representation of G

We first label the vertices of G using the integers from 1 to n, as described in the
following. By the assumption in Sect. 2, the vertices in G can be represented by n
intervals I = {I1 = [l1, r1], I2 = [l2, r2], . . . , In = [ln, rn]} where all the endpoints
in I are distinct integers in the range [1, 2n]. Since there are 2n distinct endpoints
for the n intervals in I, every integer in [1, 2n] corresponds to a unique li or ri

for some 1 ≤ i ≤ n. We assign the labels to the vertices in G based on the sorted
order of left endpoints of their corresponding intervals, i.e., for any two vertices
a, b ∈ G, a < b if and only if la < lb.

Fig. 1. Example of the interval graph and its representation.

Now we describe the representation of G. Let S = s1 . . . s2n be the binary
sequence of length 2n such that for 1 ≤ i ≤ 2n, si = 0 if i ∈ {l1, l2, . . . , ln} (i.e.,
if i corresponds to the left end point of an interval in I), and si = 1 otherwise.
If i = lk or i = rk, we say that si corresponds to the interval Ik. We represent
the sequence S using the data structure of Lemma 1, using a 2n + o(n) bits to
support rank and select queries on S in O(1) time. Next, we store the sequence
r = r1 . . . rn using n log 2n = n log n + n bits, and for some fixed constant ε > 0,
we also store an εn-bit data structure of Lemma 2(1) (with c = 1/ε) to support
RMax and RMin queries on r in O(1) time. Using the representations of S and
r, it is easy to show that for any vertex v ∈ G, we can return its corresponding
interval Iv = [lv, rv] in O(1) time by computing lv = select0(S, v), and rv can be
accessed from the sequence r. Thus, the total space usage of our representation
is n log n + (3 + ε)n + o(n) bits. See Fig. 1 for an example.
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4.2 Supporting Navigational Queries

In this section, we show that degree, adjacent, neighborhood, and spath queries
on G can be answered in asymptotically optimal time using the representation
described in the Sect. 4.1.

degree(v)(v)(v) Query: We count the number of vertices in G which are not adjacent
to v, which is a disjoint union of the two sets: (i) the set of intervals that end
before the starting point lv, and (ii) the set of intervals that start after the
end point rv. Using our representation the cardinalities of these two sets can
be computed as follows. The number of intervals u with ru < lv is given by
rank1(S, lv). Similarly, the number of intervals u with rv < lu is given by n −
rank0(S, rv). Therefore, we can answer degree(v) query in O(1) time by returning
n − rank1(S, lv) − (n − rank0(S, rv)) = rank0(S, rv) − rank1(S, lv).

adjacent(u, v)(u, v)(u, v) Query: Since we can compute the intervals Iu and Iv in O(1)
time, adjacent(u, v)(u, v)(u, v) query can be answered in O(1) by checking ru < lv or rv < lu
(u and v are not adjacent if and only if one of these conditions is satisfied).

neighborhood(vvv) Query: The set of all neighbors of a vertex v can be reported
by considering all the intervals Iu whose left end points are within the range
[1, . . . , rv] and returning all such u’s with ru > lv (i.e., which start to the left
of rv and end after lv). With our data structure, this query can be supported
by returning the set {u | 1 ≤ u ≤ rank0(S, rv) and ru > lv}. Using the RMax
structure stored on r, this can be supported in O(degree(v)) time. Note that
given a threshold value lv and a query range [a, b] of the sequence r, the range
max data structure can be used to report all the elements ru within the range
[a, b] such that ru > t, in O(1) time per element, using the following recursive
procedure. Compute the position c = RMaxr(a, b). If rc > lv, then return rc, and
recurse on the subintervals [a, c − 1] and [c + 1, b]; else stop.

spath(u,v) Query: We first define the SUCC query as described in [7]. For an
interval Iu, SUCC(Iu) returns the interval Iu′ such that Iu ∩ Iu′ �= ∅ and there is
no Iu′′ with Iu ∩ Iu′′ �= ∅ and ru′ < ru′′ . (For example in Fig. 1, SUCC(I2) = I3
and SUCC(I5) = I6). To answer the spath(u, v) query, let Puv be the shortest
path from u to v initialized with ∅ (without loss of generality, we assume that
u ≤ v). If u and v are identical, we simply add u to Puv and return Puv. If not,
we first add u to Puv and consider two cases as follows [7].

– If u is adjacent to v, add v to Puv and return Puv.
– If Iu is not adjacent to Iv, we perform spath(SUCC(u), v) query recursively.

Since we can answer adjacent queries in O(1) time, it is enough to show how to
answer the SUCC queries in O(1) time. Let k be the number of vertices v which
satisfies lv < ru, which can be answered in O(1) time by k = rank0(S, ru)).
Then by the definition of SUCC query, Ii with i = RMaxr(1, k) gives an answer
of SUCC(Iu) if ri > lu (if not, there is no vertex in G adjacent to u). Therefore
we can answer the SUCC query in O(1) time, which implies spath(u, v) query
can be answered in O(|spath(u, v)|) time. Thus, we obtain a following theorem.
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Theorem 2. Given an interval graph G with n vertices, there exists an
n log n + (3 + ε)n + o(n)-bit representation of G which answers degree(v) and
adjacent(u, v) queries in O(1) time, neighborhood(v) queries in O(degree(v))
time, and spath(u, v) queries in O(|spath(u, v)|) time, for any vertices u, v ∈ G.

In the extended version, we discuss how to support some basic graph algo-
rithms (BFS, DFS, PEO traversals, proper coloring, computing the size of max-
imum clique, maximum independent set and minimum vertex cover) efficiently
on G with the above set of operations along with the representation of Sect. 4.1.

5 Representation of Some Related Families of Interval
Graphs

In this section, we propose space-efficient representations for proper interval
graphs, k-proper and k-improper interval graphs, and circular arc graphs. Since
these graphs are restrictions or extensions (i.e., sub/super-classes) of interval
graphs, we can represent them by modifying the representation in Sect. 4.1 (to
make the representation asymptotically optimal in terms of space). We also show
that navigation queries on these graph classes can be answered efficiently with
the modified representation.

5.1 Proper Interval Graphs

An interval graph G is proper if there exists an interval representation of G
such that for any two vertices u, v ∈ G, Iu �⊂ Iv and Iv �⊂ Iu (let such interval
representation of G be proper representation of G). Also it is known that proper
interval graphs are equivalent to the unit interval graphs, which have an interval
representation such that every interval has the same length [25].

Now we consider how to represent a proper interval graph G with n vertices
while supporting navigational queries efficiently on G. We first obtain an interval
representation of the graph G where the intervals satisfy the property of proper
interval graph. We then assign labels to vertices of G based on the sorted order
left end points of their corresponding intervals, as described in Sect. 4.1. Let S be
the bit sequence obtained from this representation, as defined in Sect. 4.1. Then
by the definition of G, there are no two vertices u, v ∈ G with lu < lv and ru > rv

(if so, Iv ⊂ Iu). Thus by the Lemma 1, for any vertex i ∈ G we can compute li
and ri in O(1) time by select0(S, i) and select1(S, i) respectively using 2n + o(n)
bits. Also note that r is strictly increasing sequence when G is a proper interval
graph, and hence one can support the RMax queries on r = r1 . . . rn in O(1)
time without maintaining any data structure, by simply returning the rightmost
position of the query range. Thus, we obtain the following theorem.

Theorem 3. Given a proper interval graph or unit interval graph G with n
vertices, there exists a 2n+o(n)-bit representation of G which answers degree(v)
and adjacent(u, v) queries in O(1) time, neighborhood(v) queries in O(degree(v))
time, and spath(u, v) queries in O(|spath(u, v)|) time, for any vertices u, v ∈ G.
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It is known that there are asymptotically 1
8κ

√
π
n−3/24n non-isomorphic unla-

beled unit interval graphs with n vertices, for some constant κ > 0 [13], and hence
2n − O(log n) bits is an information-theoretic lower bound on representing an
arbitrary proper interval graph. Thus our representation in Theorem 3 gives a
succinct representation for proper interval graphs.

5.2 k-proper and k-improper Interval Graphs

One can generalize the proper interval graph to the following two sub-classes of
interval graphs. An interval graph G with n vertices, G is a k-proper interval
graph (resp. k-improper interval graph) if there exists an interval representation
of G such that for any vertex v ∈ G, Iv is contained by (resp., contains) at most
k ≤ n intervals in G other than Iv. We call such an interval representation of
G as the k-proper representation (resp. k-improper representation) of G. Note
that every proper interval graph is both a 0-proper and a 0-improper graph. The
graph in Fig. 1 is a 2-proper, and a 3-improper graph. Now we consider how to
represent a k-proper interval graph G with n vertices and support navigation
queries efficiently on G. We first represent G k-properly into n intervals, and
assign the labels to vertices of G based on the sorted order of their left end
points, as described in Sect. 4.1. Same as the representation in Sect. 4.1, we first
maintain the data structure for supporting rank and select queries on S in O(1)
time, using 2n + o(n) bits in total. Also we maintain the 2n + o(n)-bit data
structure of Lemma 2 on r = r1, . . . , rn for supporting RMax queries on r in
O(1) time. Next, to access r without using n log n bits, we define the sequence
T = t1 . . . t2n of size 2n over the alphabet {0, . . . , 2k+1} such that ti = 2k′ (resp.
ti = 2k′+1) if si = 0 (resp. si = 1) and its corresponding interval is contained by
k′ ≤ k intervals in I = {I1 . . . In}. Now for any 0 ≤ i ≤ k, let Ri ⊂ I be the set
of all intervals such that for any [a, b] ∈ Ri, ta = 2i and tb = 2i + 1. It is easy to
show that each Ri corresponds to a proper interval graph. For example the graph
in Fig. 1 is a 2-proper interval graph, and T = 0 2 0 2 3 1 0 3 1 0 2 1 2 4 3 5 3 1,
R0 = {I1, I3, I5, I6}, R1 = {I2, I4, I7, I8}, and R2 = {I9}. By Lemma 1, we can
maintain T using 2n log (2k + 2)+o(n log k) = 2n log k+2n+o(n log k) bits with
supporting rank and select queries in O(log log k) and O(1) time respectively.
Then for any vertex v ∈ G, we can answer its corresponding interval Iv = [lv, rv]
in O(log log k) time by lv = select0(S, v) and rv = select(tlv+1)(T, ranktlv

(T, lv)).
Thus, we obtain the following theorem.

Theorem 4. Given a k-proper interval graph G with n vertices, there exists
a (2n log k + 6n + o(n log k))-bit representation of G which answers degree(v)
and adjacent(u, v) queries in O(log log k) time, neighborhood(v) queries in
O(log log k · degree(v)) time, and spath(u, v) queries in O(log log k · |spath(u, v)|)
time, for any vertices u, v ∈ G.

Note that we can represent k-improper interval graphs in same space with
same query time as in Theorem 4 by changing the definition of T to be ti = 2k′

(resp. ti = 2k′ +1) if si = 0 (resp. si = 1) and its corresponding interval contains
k′ ≤ k intervals in {I1 . . . In}.
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5.3 Circular-Arc Graphs

In this section, we propose a succinct representation for circular-arc graphs,
and show how to support navigation queries efficiently on the representation.
A circular-arc graph G is a graph whose vertices can be assigned to arcs on a
circle so that two vertices are adjacent in G if and only if their assigned arcs
intersect. It is easy to see that every interval graph is a circular-arc graph. Thus,
by the Lemma 3, we need at least n log n − 2n log log n − O(n) bits to represent
an arbitrary circular-arc graph G.

Suppose that G is represented by the circle C together with n arcs of C.
For an arc, we define its start point to be the unique point on it such that the
arc continues from that point in the clock-wise direction but stops in the anti-
clockwise direction; and similarly define its end point to be the unique point on
it such that the arc stops in the clockwise direction but continues in the anti-
clockwise direction. As in the case of interval graphs, we assume, without loss
of generality, that all the start and end points of all the arcs are distinct. We
label the vertices of G with the integers form 1 to n as described below. We first
select an arbitrary arc, and label the vertex (and the arc) corresponding to this
arc by 1. We then traverse the circle from the starting point of that arc in the
clockwise direction, and label the remaining vertices and arcs in the order in
which their starting points are encountered during the traversal, and finish the
traversal when we return to the starting point of the first arc. We also map all
the start and end points of all arcs, in the order in which they are encountered
in the above traversal, into the range [1, . . . , 2n] (since the start and end points
of all the n arcs are distinct). With the above defined labeling of the arcs, and
the numbering of their start and end points, let li and ri start and end points of
the arc labeled i, for 1 ≤ i ≤ n. Now the arcs can be thought of as two types of
intervals in the range [1, . . . , 2n]; we call an interval i as normal if li < ri (i.e., we
traverse li prior to ri), and reversed otherwise. A normal interval i corresponds to
the interval [li, ri], while a reversed interval i actually corresponds to the union
of the two intervals [1, . . . , ri] and [li, . . . , 2n]. See Fig. 2 for an example; intervals
numbered 4 and 7 are reversed, while the others are normal. Our representation
of G consists of the following substructures.

1. Define a binary sequence S = s1, . . . , s2n of length 2n such that for 1 ≤ i ≤ 2n,
si = 0 (resp. si = 1) if i-th end point encountered during the traversal of C is
in {l1, . . . , ln} (resp. {r1, . . . , rn}). Now, construct a sequence S′ = s′

1, . . . , s
′
2n

of size 2n over an alphabet {0, 1, 2, 3} such that for all 1 ≤ i ≤ 2n, s′
i = si+2 if

the position si corresponds to the start or end point of a reversed interval, and
s′

i = si otherwise (i.e., if si corresponds to a normal interval). We represent S′

using the structure of Lemma 1, using 4n + o(n) bits, so that we can answer
rank and select queries on S′ in O(1) time. In addition, we also store auxiliary
structures (of o(n) bits) on top of S′ to support rank and select queries on S
(without explicitly storing S – note that one can efficiently reconstruct any
subsequence of S from S′).

2. To store the interval end points efficiently, we introduce two 2-dimensional
grids of points, R1 and R2, defined as follows. Suppose there are q ≤ n vertices
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Fig. 2. Example of the circular graph and its representation. (Color figure online)

in G which correspond to normal intervals (and n − q vertices correspond to
reversed intervals). Then let R1 be a set of q points on the 2-dimensional grid
[1, q] × [1, q] which consist of (rank0(S′, li), rank1(S′, ri)), for all 1 ≤ i ≤ n
with li < ri. Similarly let R2 be a set of n − q points on the 2-dimensional
grid [1, n − q] × [1, n − q] which consist of (rank2(S′, li), rank3(S′, ri)), for all
1 ≤ i ≤ n with ri < li. Given a set of points R on 2-dimensional grid, we
define the following queries (for any rectangular range A):

– Y (R, x): returns y with (x, y) ∈ R.
– count(R,A): returns the number of points in R within the range A.

We represent R1 and R2 using n log n + o(n log n) bits in total, such that Y
and count queries can be supported in O(log n/ log log n) time [5].

Using these data structures, when the vertex 1 ≤ i ≤ n is given, we can
answer li and ri in O(log n/ log log n) time by li = select0(S, i), and ri =
select1(S′, Y (R1, rank0(S′, li))) if S′

li
= 0 (i.e., if li is the left end point of a

normal interval), and r′
i = select3(Y (R2, rank2(S′, l′i))) otherwise (i.e., if if li

is the left end point of a reversed interval). Finally, let r′ = r′
1, . . . , r

′
q be a

sequence such that for 1 ≤ i ≤ q, r′
i = rji with ji = select0(S′, i). Similarly,

let r′′ = r′′
1 , . . . , r′′

n−q be a sequence such that for 1 ≤ i ≤ n − q, r′′
i = rji with

ji = select2(S′, i). Then we maintain the data structure of Lemma 2 on r′ and
r′′, using a total of 2n + o(n) bits, to support RMax queries on each of them.
Thus, the overall representation takes n log n + o(n log n) bits in total. One can
show that this representation supports the degree, adjacent, neighborhood and
spath queries efficiently, to prove the following theorem (proof omitted).

Theorem 5. Given a circular arc graph G with n vertices, there exists a
(n log n + o(n log n))-bit representation of G which answers degree(v) and
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adjacent(u, v) queries in O(log n/ log log n) time, neighborhood(v) queries in
O(log n/ log log n · degree(v)) time, and spath(u, v) queries in O(|spath(u,
v)| log n/ log log n) time for any two vertices u, v ∈ G.

6 Conclusion and Final Remarks

We considered the problem of succinctly encoding an unlabeled interval graph
with n vertices so as to support adjacency, degree, neighborhood and shortest
path queries. To this end, we designed a succinct data structure that can sup-
port these queries optimally. We also showed how one can implement various
combinatorial algorithms in interval graphs using our succinct data structure
in both time and space efficient manner. Extending these ideas, finally, we also
showed succinct/compact data structures for multiple other variants of interval
graphs. For some of these variants, the query times of our data structures are
super constant, hence non-optimal and we leave them as open problems whether
we can design data structures for supporting these queries in constant time.
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Abstract. Given a graph G = (V, E) with two distinguished vertices
s, t ∈ V and an integer L, an L-bounded flow is a flow between s and t
that can be decomposed into paths of length at most L. In the maximum
L-bounded flow problem the task is to find a maximum L-bounded flow
between a given pair of vertices in the input graph.

The problem can be solved in polynomial time using linear program-
ming. However, as far as we know, no polynomial-time combinatorial
algorithm for the L-bounded flow is known. The only attempt, that we
are aware of, to describe a combinatorial algorithm for the maximum
L-bounded flow problem was done by Koubek and Ř́ıha in 1981. Unfor-
tunately, their paper contains substantional flaws and the algorithm does
not work; in the first part of this paper, we describe these problems.

In the second part of this paper we describe a combinatorial algorithm
based on the exponential length method that finds a (1+ε)-approximation
of the maximum L-bounded flow in time O(ε−2m2L log L) where m is the
number of edges in the graph. Moreover, we show that this approach works
even for theNP-hard generalization of themaximum L-bounded flowprob-
lem in which each edge has a length.

1 Introduction

Given a graph G = (V,E) with two distinguished vertices s, t ∈ V and an integer
L, an L-bounded flow is a flow between s and t that can be decomposed into
paths of length at most L. In the maximum L-bounded flow problem the task
is to find a maximum L-bounded flow between a given pair of vertices in the
input graph. The L-bounded flow was first studied, as far as we know, in 1971
by Adámek and Koubek [1]. In connection with telecommunication networks,
L-bounded flows in networks with unit edge lengths have been widely studied
and are known as hop-constrained flows [7].

For networks with unit edge lengths (or, more generally, with polynomially
bounded edge lengths, with respect to the number of vertices), the problem can
be solved in polynomial time using linear programming. Linear programming is
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a very general tool that does not make use of special properties of the problem
at hand. This often leaves space for superior combinatorial algorithms that do
exploit the structure of the problem. For example, maximum flow, matching,
minimum spanning tree or shortest path problems can all be described as linear
programs but there are many algorithms that outperform general linear program-
ming approaches. However, as far as we know, no polynomial-time combinatorial
algorithm1 for the L-bounded flow is known.

1.1 Related Results

For clarity we review the definitions of a few more terms that are used in this
paper. A network is a quintuple G = (X,R, c, s, t), where G = (X,R) is a directed
graph, X denotes the set of vertices, R the set of edges, c is the edge capacity
function c : R → R

+, s and t are two distinguished vertices called the source
and the sink. We use m and n to denote the number of edges and the number of
vertices, respectively, in the network G, that is, m = |R| and n = |X|. Given an
L-bounded flow f , we denote by |f | the size of the flow, and for an edge e ∈ R,
we denote by f(e) the total amount of flow f through the edge e.

An L-bounded flow problem with edge lengths is a generalization of the
L-bounded flow problem: each edge has also an integer length and the length
of a path is computed not with respect to the number of edges on it but with
respect the sum of lengths of edges on it.

Given a network G and an integer parameter L, an L-bounded cut is a subset
C of edges R in G such that there is no path from s to t of length at most L
in the network G = (X,R \ C, c, s, t). The objective is to find an L-bounded cut
of minimum size. We sometimes abbreviate the phrase L-bounded cut to L-cut
and, similarly, we abbreviate the phrase L-bounded flow to L-flow.

Although the problems of finding an L-flow and an L-cut are easy to define
and they have been studied since the 1970’s, still some fundamental open prob-
lems remain unsolved. Here we briefly survey the main known results.

L-Bounded Flows. As far as we know, the L-bounded flow was first considered
in 1971 by Adámek and Koubek [1]. They published a paper introducing the
L-bounded flows and cuts and describing some interesting properties of them.
Among other results, they show that, in contrast to the ordinary flows and cuts,
the duality between the maximum L-flow and the minimum L-cut does not hold.

The maximum L-flow can be computed in polynomial time using linear pro-
gramming [4,17,21]. The only attempt, that we are aware of, to describe a combi-
natorial algorithm for the maximum L-bounded flow problem was done by Koubek
and Ř́ıha in 1981 [18]. The authors say the algorithm finds a maximum L-flow in
time O(m · |I|2 · S/ψ(G)), where I denotes the set of paths in the constructed
L-flow, S is the size of the maximum L-flow, and ψ(G) = min(|c(e) − c(g)| :
c(e) �= c(g), e, g ∈ R ∪ {e′}), where c(e′) = 0. Unfortunately, their paper contains
substantional flaws and the algorithm does not work as we show in the first part of

1 Combinatorial in the sense that it does not explicitly use linear programming
methods or methods from linear algebra or convex geometry.
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this paper. Thus, it is a challenging problem to find a polynomial time combina-
torial algorithm for the maximum L-bounded flow.

Surprisingly, the maximum L-bounded flow problem with edge lengths is
NP-hard [4] even in outer-planar graphs. Baier [3] describes a FPTAS for the
maximum L-bounded flow with edge lengths that is based on the ellipsoid algo-
rithm. He also shows that the problem of finding a decomposition of a given
L-bounded flow into paths of length at most L is NP-hard, again even if the
graph is outer-planar.

A related problem is that of L-bounded disjoint paths: the task is to find
the maximum number of vertex or edge disjoint paths, between a given pair of
vertices, each of length at most L. The vertex version of the problem is known
to be solvable in polynomial time for L ≤ 4 and NP-hard for L ≥ 5 [15], and the
edge version is solvable in polynomial time for L ≤ 5 and NP-hard for L ≥ 6 [6].

L-Bounded Cuts. The L-bounded cut problem is NP-hard [22]. Baier et al. [4]
show that it is NP-hard to approximate it by a factor of 1.377 for L ≥ 5 in the
case of the vertex L-cut, and for L ≥ 4 in the case of the edge L-cut. Assuming the
Unique Games Conjecture, Lee et al. [19] proved that the minimum L-bounded
cut problem is NP-hard to approximate within any constant factor. For planar
graphs, the problem is known to be NP-hard [10,24], too.

The best approximations that we are aware of are by Baier et al. [4]: they
describe an algorithm with an O(min{L, n/L}) ⊆ O(

√
n)-approximation for the

vertex L-cut, and O(min{L, n2/L2,
√

m}) ⊆ O(n2/3)-approximation for the edge
L-cut. The approximation factors are closely related with the cut-flow gaps: there
are instances where the minimum edge L-cut (vertex L-cut) is Θ(n2/3)-times
(Θ(

√
n)-times) bigger than the maximum L-flow [4]. For the vertex version of

the problem, there is a τ -approximation algorithm for graphs of treewidth τ [16].
The L-bounded cut was also studied from the perspective of parameter-

ized complexity. It is fixed parameter tractable (FPT) with respect to the
treewidth of the underlying graph [8,16]. Golovach and Thilikos [12] consider
several parameterizations and show FPT-algorithms for many variants of the
problem (directed/undirected graphs, edge/vertex cuts). On planar graphs, it is
FPT with respect to the length bound L [16].

The L-bounded cut appears in the literature also as the short paths inter-
diction problem [5,16,19] or as the most vital edges for shortest paths [5].

1.2 Our Contributions

In the first part of the paper, we show that the combinatorial algorithm by
Koubek and Ř́ıha [18] for the maximum L-bounded flow is not correct.

In the second part of the paper we describe an iterative combinatorial algo-
rithm, based on the exponential length method, that finds a (1+ε)-approximation
of the maximum L-bounded flow in time O(ε−2m2L log L); that is, we describe a
fully polynomial approximation scheme (FPTAS) for the problem.
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Moreover, we show that this approach works even for the NP-hard gener-
alization of the maximum L-bounded flow problem in which each edge has a
length. This approach is more efficient than the FPTAS based on the ellipsoid
method [3].

Our result is not surprising (e.g., Baier [3] mentions the possibility, without
giving the details, to use the exponential length method to obtain a FPTAS
for the problem); however, considering the absence of other polynomial time
algorithms for the problem that are not based on the general LP algorithms,
despite of the effort to find some, we regard it as a meaningful contribution. The
paper is based on the results in the bachelor’s thesis of Kateřina Altmanová [2]
and in the master’s thesis of Jan Voborńık [23].

2 The Algorithm of Koubek And Řı́ha

2.1 Increasing an L-bounded Flow

Before describing the problem with the algorithm by Koubek and Ř́ıha [18],
we informally describe the purpose and the main attributes of an increasing
L-system, a key structure used in the algorithm.

Consider a network G = (X,R, c, s, t) and an arbitrary L-bounded flow f
from s to t in G, together with its decomposition into paths of length at most L
(say paths p1, p2, . . . carrying r1, r2, . . . units of flow, resp.) that is not a maximum
L-bounded flow. Given G and f , Koubek and Ř́ıha [18] build a labeled oriented
tree T = (V,E, v0, LABV,LABE) where V is the set of nodes, E is the set of
edges, v0 is the root, LABV is a vertex labelling and LABE is an edge labeling.
The tree is called an increasing L system with respect to f .

There are four types of the nodes of the tree T ; to explain the error in
the paper, it is sufficient to deal with three of them: 1-son, 3-son, 4-son. With
(almost) each node u in T , are associated two consecutive paths in G: the first
one, denoted by q(u), contains only edges that are not used by the current L-flow
f , and the second one, denoted by q̄(u), coincides with a subpath of some path
from the current L-flow f . The tree T encodes a combination of these paths with
paths in f and this combination is supposed to yield a larger L-flow than the
L-flow f .

The label of a vertex v in the tree T , denoted by LABV in the original paper,
and the label of the edge e connecting v to its immediate ancestor, if there is
one, denoted by LABE, are of the following form:

LABV LABE

1-son (q(v), i(v), a(v), b(v)) none

3-son or 4-son (q(v), i(v), a(v), b(v)) (h(e), j(e), d(e), o(e))
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where

– q(v) is a path in G that is edge disjoint with every path in the L-flow f ,
– i(v), j(v) are indices of paths in the L-flow f ,
– a(v), b(v), d(e) are positive integers (distances),
– o(e) is a positive integer, if v is a 3-son, and o(v) is a pointer to a 3-son, if v

is a 4-son,
– h(e) is a subset of edges in G.

As for every node v in the tree (except for the root) there is a unique edge
e connecting it to its parent, Koubek and Ř́ıha often refer to the label of the
edge e, and to its attributes, by the name of the vertex v, e.g., they write h(v)
instead of h(e); we shall use the same convention.

The tree T is supposed to describe an L-flow f ′ derived from f . In particular,
each path q(v) and q̄(v) is a subpath of a new path between s and t of length at
most L. Very roughly speaking, the attributes a(v) and d(v) store information
about the distance of the path segments q(v) and q̄(v) from s along the paths
used in the new L-flow f ′, the attribute i(v) specifies the index of a path from
f s.t. q̄(v) is a subpath of pi(v), and the attributes b(v) and o(v), resp., specify
the number of edges along which the paths pi(v) and pj(v) are being followed by
some of the new paths.

Consider a node w in the tree T such that at least one edge in q̄(w), say an
edge e, is saturated in the L-flow f (i.e., f(e) = c(e)). In this case, the properties
of the tree T enforce that the node w has at least one 3-son u whose responsibility
is to desaturate the edge e by diverting one of the paths that use e in f along a
new route; the attribute j(u) specifies the index of the path from f that is being
diverted by the 3-son u of w (Fig. 1), and h(w) specifies which saturated edges
from q̄(v) are desaturated by the son u of w.

s

t

f(e) = c(e)

q(w)

q(w)

pi(w)

pj(u)

d(u)
q(u) q(u)

e

Fig. 1. Desaturation of a saturated edge e in a q̄(w) by a 3-son u.

As the definition of the tree T does not pose any requirements on the dis-
jointness of the q̄-paths corresponding to different nodes of T , it may happen
that the paths q̄(w) and q̄(w′) for two different nodes w and w′ of the tree T
overlap in a saturated edge e. In this case, Koubek and Ř́ıha allow an exception
(our terminology) to the rule described in previous paragraph: if one of the nodes
w and w′, say the node w, has a 3-son u that desaturates e, the other node, the
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node w′, need not have a 3-son but it may have a 4-son instead. The purpose of
this 4-son is just to provide a pointer to the 3-son u of w that takes care about
the desaturation of the edge e.

2.2 The Main Error

We start by recalling a few definitions and lemmas from the original paper [18];
for space reasons, for the definition of the increasing system we refer to [18].
In this section we view an L-bounded flow f as a collection of paths p1, p2, . . .
together with positive numbers r1, r2, . . . specifying the amount of flow carried
by the respective paths.

Definition 1 (Definition 4.2 in [18]). Let T be an increasing L-system with
respect to an L-flow f = {(pi, ri) : i ∈ I} in a network G = (X,R, c, s, t). Given
an edge u ∈ R, we define:

– T1(u) is the number of vertices x in the tree T such that u ∈ q(x) and if
there is a saturated edge v ∈ q(x) then there is a 3-son y of x with v ∈ h(y),
u /∈ pj(y).

– T2(u) is the number of vertices x in the tree T such that u ∈ q(x).
– T3(u) is the number of vertices x which are 3-sons or 4-sons with u ∈ h(x).

For i ∈ I we denote mi = sup{T3(u) : u ∈ pi}, |T | = min{ c(u)
T2(u)

: u ∈ R, f(u) =

0}∪{ c(u)−f(u)
T1(u)

: u ∈ R}∪{ ri

mi
: i ∈ I}, where the expressions that are not defined

are omitted.

Lemma 1 (Lemma 4.2 in [18]). If there is an increasing L-system with respect
to an L-flow f , then there is an L-flow g with |g| = |f | + |T |.
Definition 2 (Definition 4.3 in [18]). Let R = R ∪ {u′}, where u′ /∈ R and
c(u′) = 0. We put ψ(G) = min(|c(u) − c(v)| : c(u) �= c(v), u, v ∈ R).

flow/capacity

1/1

1/1

1/∞

1/∞
s t

a

b

Fig. 2. A network G with a 2-bounded flow f .

1/1 1/∞
s t

ap1
r1 = 1

1/1 1/∞
s t

b

p2
r2 = 1

Fig. 3. A decomposition of the 2-bounded flow f into paths p1, p2.
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Lemma 2 (Lemma 4.4 in [18]). For each increasing L-system T (with respect
to an L-flow f = {(pi, ri) : i ∈ I}) constructed by the above procedure it holds
|T | ≥ ψ(G)/|I|.

The above procedure in Lemma 2 refers to a construction of an increasing
L-system that is outlined in the original paper. As Definition 2 implies ψ(G) > 0,
we also know by Lemma 2 that for every increasing L-system T , |T | > 0.

Now we are ready to describe the counter example. Take k = 2 and consider
the following network G with a 2-bounded flow f of size 2 (Figs. 2 and 3); clearly,
this is a maximum 2-bounded flow.

We are going to show that there exists an increasing system T for f . Accord-
ing to Lemmas 1 and 2 this implies the existence of a 2-bounded flow g of size
|f | + |T | > |f |. As the flow f is a maximum 2-bounded flow in G, this is a
contradiction.

The increasing system T is depicted in Fig. 4; for the sake of simplicity, we
list only the most relevant attributes. It is just a matter of a mechanical effort
to check that it meets Definition 4.1 of the increasing system from the original
paper.

In words, the essence of the counter example is the following. The purpose
of the root of the tree, the node u0, is to increase the flow from s to t along the
path q(u0)q̄(u0) which is (accidently) the path p1. As there is a saturated edge
on this path, namely the edge sa, there is a 3-son of the node u0, the node u1,
whose purpose is to desaturate the edge sa by diverting one of the paths that
use the edge sa along an alternative route; in particular, the node u1 is diverting
the path p1 and it is diverting it from the very beginning, from s, along the path
q(u1)q̄(u1) which is (accidently) the path p2.

As there is a saturated edge on this path, namely the edge sb, there is a
3-son of the node u1, the node u2, whose purpose is to desaturate the edge sb
by diverting one of the paths that use the edge sb along an alternative route; in
particular, the node u2 is diverting the path p2 and it is diverting it from the
very beginning, from s, along the path q(u2)q̄(u2) which is (accidently) again
the path p1.

u0 : 1 − son
q(u0) = ∅

q(u0) = {s, a, t}
saturated edge = {sa}

u1 : 3 − son
q(u1) = ∅
q(u1) = {s, b, t}

saturated edge = {sb}

u2 : 3 − son
q(u2) = ∅
q(u0) = {s, a, t}

saturated edge = {sa}

u3 : 4 − son

h(u1) = {sa}

h(u2) = {sb}

h(u3) = {sa}
o(u3) = u1

j(u1) = 1

j(u2) = 2

Fig. 4. Increasing 2-system T .
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As there is a saturated edge on this path, namely the edge sa, and as there is
already another node in the tree that is desaturating sa, namely the node u1, the
node u2 does not have a 3-son but it has a 4-son u3 instead, which is a pointer
to the 3-son u1. This way, there is a kind of a deadlock cycle in the increasing
system: u1 is desaturating the edge sa for the node u0 but it itself needs u2 to
desaturate the edge sb in it and u2 in turn needs u3 to desaturate the edge sa,
but u3 delegates this task back to u1.

At this point, we know that Lemma 1 or Lemma 2 is not correct. By Def-
inition 1, one can check that |T | = 1/2 which implies, as we started with a
maximum flow, that it is Lemma 1 that does not hold.

3 FPTAS for Maximum L-bounded Flow

We first describe a fully polynomial approximation scheme for maximum
L-bounded flow on networks with unit edge length. The algorithm is based on the
algorithm for the maximum multicommodity flow by Garg and Könemann [11].

Then we describe a FPTAS for the L-bounded flow problem with general
edge lengths. Our approximation schemas for the maximum L-bounded flow
on unit edge lengths and the maximum L-bounded flow with edge lengths are
almost identical, the only difference is in using an approximate subroutine for
resource constrained shortest path in the general case which slightly complicates
the analysis.

3.1 FPTAS for Unit Edge Lengths

Let us consider the path based linear programming (LP) formulation of the
maximum L-bounded flow, Ppath, and its dual, Dpath. We assume that G =
(V,E, c, s, t) is a given network and L is a given length bound. Let PL denote
the set of all s-t paths of length at most L in G. There is a primal variable x(p)
for each path p ∈ PL, and a dual variable y(e) for each edge e ∈ E. Note that the
dual LP is a relaxation of an integer LP formulation of the minimum L-bounded
cut problem.

max
∑

P∈PL

x(P )

s.t.
∑

P∈PL:
e∈P

x(P ) ≤ c(e) ∀e ∈ E

x ≥ 0

min
∑

e∈E

c(e)y(e)

s.t.
∑

e∈P

y(e) ≥ 1 ∀P ∈ PL

y ≥ 0

The algorithm simultaneously constructs solutions for the maximum
L-bounded flow and the minimum fractional L-bounded cut. It iteratively routes
flow over shortest paths with respect to properly chosen dual edge lengths and at
the same time increases these dual lengths; dual edge length of the edge e after i
iterations will be denoted by yi(e). The progress of the algorithm depends on two
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positive parameters, ε < 1, δ < 1. During the runtime of the algorithm, the con-
structed flow need not respect the edge capacities, however, with the right choice
of the parameters ε, δ the resulting flow can be scaled down to a feasible (i.e.,
respecting the edge capacities) flow (Lemma 3) that is a (1 + ε)-approximation
of the maximum L-bounded flow (Theorem 1).

For a vector y of dual variables, let dL
y (s, t) denote the length of the y-shortest

s−t path from the set of paths PL and let αL(i) = dL
yi

(s, t). Note that a shortest
s − t path with respect to edge lengths y that uses at most a given number of
edges can be computed in polynomial time by a modification of the Dijkstra’s
shortest path algorithm.

Algorithm 1. Approx(ε, δ)
1: i ← 0, y0(e) ← δ ∀e ∈ E, x0(P ) ← 0 ∀P ∈ PL

2: while αL(i) < 1 do
3: i ← i + 1
4: xi ← xi−1, yi ← yi−1

5: P ← yi-shortest s-t path with at most L edges
6: c ← min

e∈P
c(e)

7: xi(P ) ← xi(P ) + c
8: yi(e) ← yi(e)(1 + εc/c(e)) ∀e ∈ P
9: end while

10: return xi

Let fi denote the size of the flow after i iterations, fi =
∑

P∈PL
xi(P ), and

let τ denote the total number of iterations performed by Approx; then xτ is
the output of the algorithm and fτ its size.

Lemma 3. The flow xτ scaled down by a factor of log1+ε
1+ε

δ is a feasible
L-bounded flow.

Proof. By construction, for every i, xi is an L-bounded flow. Thus, we only have
to care about the feasibility of the flow

xτ

log1+ε
1+ε

δ

. (1)

For every iteration i and every edge e ∈ E, as αL(i − 1) < 1, we also have
yi−1(e) < 1 and so yi(e) < 1 + ε. It follows that

yτ (e) < 1 + ε. (2)

Consider an arbitrary edge e ∈ E and suppose that the flow fτ (e) along e has
been routed in iterations i1, i2, . . . , ir and the amount of flow routed in iteration
ij is cj . Then fτ (e) =

∑r
j=1 cj and yτ (e) = δ

∏r
j=1(1 + εcj/c(e)). Because

each cj was chosen such that cj ≤ c(e), we have by Bernoulli’s inequality that
1 + εcj/c(e) ≥ (1 + ε)cj/c(e) and
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yτ (e) ≥ δ

r∏

j=1

(1 + ε)cj/c(e) = δ(1 + ε)fτ (e)/c(e). (3)

Combining inequalities (2) and (3) gives

fτ (e)
c(e)

≤ log1+ε

1 + ε

δ

which completes the proof.

Claim. For i = 1, . . . , τ ,

αL(i) ≤ δLeεfi/β . (4)

Proof. For a vector y of dual variables, let D(y) =
∑

e c(e)y(e) and let β =
miny D(y)/dL

y (s, t). Note that β is equal to the optimal value of the dual linear
program. For notational simplicity we abbreviate D(yi) as D(i).

Let Pi be the path chosen in iteration i and ci be the value of c in iteration
i. For every i ≥ 1 we have

D(i) =
∑

e∈E

yi(e)c(e)

=
∑

e∈E

yi−1(e)c(e) + ε
∑

e∈Pi

yi−1(e)ci

= D(i − 1) + ε(fi − fi−1)αL(i − 1)

which implies that

D(i) = D(0) + ε

i∑

j=1

(fj − fj−1)αL(j − 1). (5)

Now consider the length function yi −y0. Note that D(yi −y0) = D(i)−D(0)
and dL

yi−y0
(s, t) ≥ αL(i) − δL. Hence,

β ≤ D(yi − y0)
dL

yi−y0
(s, t)

≤ D(i) − D(0)
αL(i) − δL

. (6)

By combining relations (5) and (6) we get

αL(i) ≤ δL +
ε

β

i∑

j=1

(fj − fj−1)αL(j − 1).

Now we define z(0) = αL(0) and for i = 1, . . . , τ , z(i) = δL + ε
β

∑i
j=1(fj −

fj−1)z(j − 1). Note that for each i, αL(i) ≤ z(i). Furthermore,

z(i) = δL +
ε

β

i∑

j=1

(fj − fj−1)z(j − 1)

=

⎛

⎝δL +
ε

β

i−1∑

j=1

(fj − fj−1)z(j − 1)

⎞

⎠ +
ε

β
(fi − fi−1)z(i − 1)
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= z(i − 1)(1 + ε(fi − fi−1)/β)

≤ z(i − 1)eε(fi−fi−1)/β .

Since z(0) ≤ δL, we have z(i) ≤ δLeεfi/β , and thus also, for i = 1, . . . , τ ,
αL(i) ≤ δLeεfi/β .

Theorem 1. For every 0 < ε < 1 there is an algorithm that computes an
(1 + ε)-approximation to the maximum L-bounded flow in a network with unit
edge lengths in time O(ε−2m2L log L).

Proof. We start by showing that for every ε < 1
3 there is a constant δ = δ(ε) such

that xτ , the output of Approx(ε, δ), scaled down by log1+ε
1+ε

δ as in Lemma 3,
is a (1 + 3ε)-approximation.

Let γ denote the approximation ratio of such an algorithm, that is, let γ
denote the ratio of the optimal dual solution (β) to the appropriately scaled
output of Approx(ε, δ),

γ =
β log1+ε

1+ε
δ

fτ
, (7)

where the constant δ will be specified later.
By Claim 3.1 and the stopping condition of the while cycle we have

1 ≤ αL(τ) ≤ δLeεfτ /β

and hence
β

fτ
≤ ε

log 1
δL

.

Plugging this bound in the equality for the approximation ratio γ, we obtain

γ ≤ ε log1+ε
1+ε

δ

log 1
δL

=
ε

log(1 + ε)
log 1+ε

δ

log 1
δL

.

Setting δ = 1+ε
((1+ε)L)1/ε yields

log 1+ε
δ

log 1
δL

=
1
ε log((1 + ε)L)(

1
ε − 1

)
log((1 + ε)L)

=
1

1 − ε
.

Taylor expansion of log(1 + ε) gives a bound log(1 + ε) ≥ ε − ε2

2 for ε < 1 and
it follows for ε < 1

3 that

γ ≤ ε

(1 − ε) log(1 + ε)
≤ ε

(1 − ε)(ε − ε2/2)
≤ 1

1 − 3
2ε

≤ 1 + 3ε.

To complete the proof, we just put ε′ = ε/3 and run Approx(ε′, δ(ε′)).
It remains to prove the time complexity of the algorithm. In every iteration i
of Approx, the length yi(e) of an edge e with the smallest capacity on the
chosen path P is increased by a factor of 1 + ε′. Because P was chosen such
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that yi(P ) < 1 also yi(e) < 1 for every edge e ∈ P . Lengths of other edges
get increased by a factor of at most 1 + ε′, therefore yτ (e) < 1 + ε′ for every
edge e ∈ E. Every edge has the minimum capacity on the chosen path in
at most

⌈
log1+ε′

1+ε′
δ

⌉
= O( 1ε log1+ε L) iterations, so Approx makes at most

O(m
ε log1+ε L) = O( m

ε2 log L) iterations.
Each iteration takes time O(Lm) so the total time taken by Approx is

O(ε−2m2L log L).

3.2 FPTAS for General Edge Lengths

Now we extend the approximation algorithm to networks with general edge
lengths that are given by a length function 
 : E → N. The dynamic program-
ming algorithm for computing shortest paths that have a restricted length with
respect to another length function, does not work in this case. In fact, the prob-
lem of finding shortest path with respect to a given edge length function while
restricting to paths of bounded length with respect to another length function is
NP-hard in general [13]. On the other hand, there exists a FPTAS for it [14,20].

We assume that we are given as a black-box an algorithm that for a given
graph G, two edge length functions y and 
, two distinguished vertices s and
t from G, a length bound L and an error parameter w > 0, computes a (1 +
w)-approximation of the y-shortest path of 
-length at most L; we denote by
dL

y,�(s, t;w) the length of such a path and we also introduce an abbreviation
ᾱL(i) = dL

yi,�
(s, t;w). Note that for every i, ᾱL(i) ≤ (1 + w)αL(i). We can use

the FPTAS of Lorenz and Raz [20] for this task.
The algorithm of Garg and Könemann [11] for approximating maximal mul-

ticommodity flow has been improved by Fleischer [9]. The original algorithm
computes the shortest path between every terminal pairs in every iteration.
Fleischer divided the algorithm to phases where she worked with commodities
one by one. This way her algorithm effectively works with approximations of
shortest paths while eliminates the dependency on the number of commodities
and still gets a good approximation ratio. Using a similar analysis we show that
we can work with an approximation shortest path algorithm to get an FPTAS
to otherwise intractable maximum L-bounded flow problem with general edge
lengths.

The structure of the L-bounded flow algorithm with general edge lengths
stays the same as in the unit edge lengths case. The only difference is that
instead of y-shortest L-bounded paths, approximations of y-shortest L-bounded
paths are used: in step 2, the new condition is while ᾱL(i) < 1 + w, and in step
5, we set P ← (1 + w)-approximation of the yi-shortest L-bounded path. The
analysis of the algorithm follows the same steps as the analysis of Algorithm 1
but one has to be more careful when dealing with the lengths. For the lack of
space we omit the proofs.

Lemma 4. The flow xτ scaled down by a factor of log1+ε
(1+ε)(1+w)

δ is a feasible
L-bounded flow.
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Theorem 2. There is an algorithm that computes an (1 + ε)-approximation
to the maximum L-bounded flow in a graph with general edge lengths in time
O(m2n

ε2 log L(log log n + 1
ε )).

We note that the exponential length method can be used for many fractional
packing problems and using the same technique we could get an approximation
algorithm for maximum multicommodity L-bounded flow.
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Abstract. We study two fundamental problems dealing with curves in
the plane, namely, the nearest-neighbor problem and the center problem.
Let C be a set of n polygonal curves, each of size m. In the nearest-
neighbor problem, the goal is to construct a compact data structure over
C, such that, given a query curve Q, one can efficiently find the curve
in C closest to Q. In the center problem, the goal is to find a curve Q,
such that the maximum distance between Q and the curves in C is min-
imized. We use the well-known discrete Fréchet distance function, both
under L∞ and under L2, to measure the distance between two curves.

For the nearest-neighbor problem, despite discouraging previous
results, we identify two important cases for which it is possible to obtain
practical bounds, even when m and n are large. In these cases, either Q
is a line segment or C consists of line segments, and the bounds on the
size of the data structure and query time are nearly linear in the size of
the input and query curve, respectively. The returned answer is either
exact under L∞, or approximated to within a factor of 1 + ε under L2.
We also consider the variants in which the location of the input curves
is only fixed up to translation, and obtain similar bounds, under L∞.

As for the center problem, we study the case where the center is a line
segment, i.e., we seek the line segment that represents the given set as
well as possible. We present near-linear time exact algorithms under L∞,
even when the location of the input curves is only fixed up to translation.
Under L2, we present a roughly O(n2m3)-time exact algorithm.

Keywords: Polygonal curves · Nearest-neighbor queries · Clustering ·
Fréchet distance · Data structures · (Approximation) algorithms

1 Introduction

We consider efficient algorithms for two fundamental data-mining problems for
sets of polygonal curves in the plane: nearest-neighbor query and clustering. Both
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of these problems have been studied extensively and bounds on the running time
and storage consumption have been obtained. In general, these bounds suggest
that the existence of algorithms that can efficiently process large datasets of
curves of high complexity is unlikely. Therefore we study special cases of the
problems where some curves are assumed to be directed line segments (hence-
forth referred to as segments), and the distance metric is the discrete Fréchet
distance.

Such analysis of curves has many practical applications, where the position
of an object as it changes over time is recorded as a sequence of readings from
a sensor to generate a trajectory. For example, the location readings from GPS
devices attached to migrating animals [5], the traces of players during a football
match captured by a computer vision system [22], or stock market prices [27].
In each case, the output is an ordered sequence C of m vertices (i.e., the sensor
readings), and by interpolating the location between each pair of vertices as a
segment, a polygonal chain is obtained.

Given a collection C of n curves, a natural question to ask is whether it is
possible to preprocess C into a data structure so that the nearest curve in the
collection to a query curve Q can be determined efficiently. This is the nearest-
neighbor problem for curves (NNC).

Indyk [25] gave a near-neighbor data structure for polygonal curves under the
discrete Fréchet distance. The data structure achieves an approximation factor
of O(log m + log log n), where n is the number of curves and m is the maximum
size of a curve. Its space consumption is very high, O(|X|

√
m(m

√
mn)2), where

|X| is the size of the domain on which the curves are defined, and the query time
is O(mO(1) log n).

Later, Driemel and Silvestri [17] presented a locality-sensitive-hashing scheme
for curves under the discrete Fréchet distance, improving the result of Indyk
for short curves. They also provide a trade-off between approximation qual-
ity and computational performance: for a parameter k ∈ [m], a data struc-
ture using O(22kmk−1n log n+mn) space is constructed that answers queries in
O(22kmk log n) time with an approximation factor of O(m/k).

Recently, Emiris and Psarros [19] presented near-neighbor data structures for
curves under both discrete Fréchet and dynamic time warping distance. Their
algorithm achieves approximation factor of 1 + ε, at the expense of increasing
space usage and preprocessing time. For curves in the plane, the space used
by their data structure is Õ(n) · (2 + 1

log m )O(m1/ε·log(1/ε)) for discrete Fréchet
distance and Õ(n) · O( 1ε )m for dynamic time warping distance, while the query
time in both cases is O(22m log n).

De Berg et al. [9] described a dynamic data structure for approximate nearest
neighbor for curves (which can also be used for other types of queries such as
approximate range searching), under the (continuous) Fréchet distance. Their
data structure uses n · O

(
1
ε

)2m space and has O(1) query time (for a segment
query), but with an additive error of ε · reach(Q), where reach(Q) is the max-
imum distance between the start vertex of the query curve Q and any other
vertex of Q. Furthermore, when the distance from Q to its nearest neighbor is
relatively large, the query procedure might fail.
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Afshani and Driemel [2] studied range searching under both the discrete and
continuous Fréchet distance. In this problem, the goal is to preprocess C such
that, given a query curve Q of length mq and a radius r, all curves in C that are
within distance r of Q can be found efficiently. For the discrete Fréchet distance
in the plane, their data structure uses space in O(n(log log n)m−1) and has query
time in O(

√
n · logO(m) n ·mO(1)

q ), assuming mq = logO(1) n. They also show that
any data structure in the pointer model that achieves Q(n) + O(k) query time,
where k is the output size, has to use roughly Ω(n/Q(n))2) space in the worst
case, even if queries are just points, for discrete Fréchet distance!

De Berg, Cook, and Gudmundsson [8] considered range counting queries for
curves under the continuous Fréchet distance. Given a single polygonal curve
C with m vertices, they show how to preprocess it into a data structure in
O(k polylog m) time and space, so that, given a query segment s, one can return a
constant approximation of the number of subcurves of C that lie within distance
r of s in O( n√

k
polylog m) time, where k is a parameter between m and m2.

Driemel and Har-Peled [15] preprocess a curve C into a data structure of
linear size, which, given a query segment s and a subcurve of C, returns a (1+ε)-
approximation of the distance between s and the subcurve in logarithmic time.

Clustering is another fundamental problem in data analysis that aims to
partition an input collection of curves into clusters where the curves within
each cluster are similar in some sense, and a variety of formulations have been
proposed [1,14,16]. The k-Center problem [3,21,24] is a classical problem in
which a point set in a metric space is clustered. The problem is defined as follows:
given a set P of n points, find a set G of k center points, such that the maximum
distance from a point in P to a nearest point in G is minimized.

Given an appropriate metric for curves, such as the discrete Fréchet distance,
one can define a metric space on the space of curves and then use a known algo-
rithm for point clustering. The clustering obtained by the k-Center problem
is useful in that it groups similar curves together, thus uncovering a structure
in the collection, and furthermore the center curves are of value as each can be
viewed as a representative or exemplar of its cluster, and so the center curves are
a compact summary of the collection. However, an issue with this formulation,
when applied to curves, is that the optimal center curves may be noisy, i.e., the
size of such a curve may be linear in the total number of vertices in its cluster,
see [16] for a detailed description. This can significantly reduce the utility of the
centers as a method of summarizing the collection, as the centers should ideally
be of low complexity. To address this issue, Driemel et al. [16] introduced the
(k, �)-Center problem, where the k desired center curves are limited to at most
� vertices each.

Inherent in both problems is a notion of similarity between pairs of curves,
which is expressed as a distance function. Several such functions have been pro-
posed to compare curves, including the continuous [6,20] and discrete [18] Fréchet
distance, the Hausdorff distance [23], and dynamic time warping [10]. We con-
sider the problems under the discrete Fréchet distance, which is often informally
described by two frogs, each hopping from vertex to vertex along a polygonal
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curve. At each step, one or both of the frogs may advance to the next vertex on
its curve, and then the distance between them is measured using some point met-
ric. The discrete Fréchet distance is defined as the smallest maximum distance
between the frogs that can be achieved in such a joint sequence of hops of the
frogs. The point metrics that we consider are the L∞ and L2 metrics. The prob-
lem of computing the Fréchet distance has been widely investigated [4,11,12],
and in particular Bringmann and Mulzer [11] showed that strongly subquadratic
algorithms for the discrete Fréchet distance are unlikely to exist.

Several hardness of approximation results for both the NNC and (k, �)-
Center problems are known. For the NNC problem under the discrete Fréchet
distance, no data structure exists requiring O(n2−ε polylog m) preprocessing and
O(n1−ε polylog m) query time for ε > 0, and achieving an approximation fac-
tor of c < 3, unless the strong exponential time hypothesis fails [16,26]. In the
case of the (k, �)-Center problem under the discrete Fréchet distance, Driemel
et al. showed that the problem is NP-hard to approximate within a factor of
2 − ε when k is part of the input, even if � = 2 and d = 1. Furthermore, the
problem is NP-hard to approximate within a factor 2 − ε when � is part of the
input, even if k = 2 and d = 1, and when d = 2 the inapproximability bound is
3 sin π/3 ≈ 2.598 [13].

However, we are interested in algorithms that can process large inputs, i.e.,
where n and/or m are large, which suggests that the processing time ought to be
near-linear in nm and the query time for NNC queries should be near-linear in m
only. The above results imply that algorithms for the NNC and (k, �)-Center
problems that achieve such running times are not realistic. Moreover, given that
strongly subquadratic algorithms for computing the discrete Fréchet distance are
unlikely to exist, an algorithm that must compute pairwise distances explicitly
will incur a roughly O(m2) running time. To circumvent these constraints, we
focus on specific important settings: for the NNC problem, either the query
curve is assumed to be a segment or the input curves are segments; and for
the (k, �)-Center problem the center is a segment and k = 1, i.e., we focus on
the (1, 2)-Center problem.

While these restricted settings are of theoretical interest, they also have a
practical motivation when the inputs are trajectories of objects moving through
space, such as migrating birds. A segment ab can be considered a trip from a
starting point a to a destination b. Given a set of trajectories that travel from
point to point in a noisy manner, we may wish to find the trajectory that most
closely follows a direct path from a to b, which is the NNC problem with a
segment query. Conversely, given an input of (directed) segments and a query
trajectory, the NNC problem would identify the segment (the simplest possible
trajectory, in a sense) that the query trajectory most closely resembles. In the
case of the (1, 2)-Center problem, the obtained segment center for an input of
trajectories would similarly represent the summary direction of the input, and
the radius r∗ of the solution would be a measure of the maximum deviation from
that direction for the collection.



32 B. Aronov et al.

Our Results. We present algorithms for a variety of settings (summarized in
the table below) that achieve the desired running time and storage bounds.
Under the L∞ metric, we give exact algorithms for the NNC and (1, 2)-Center
problems, including under translation, that achieve the roughly linear bounds.
For the L2 metric, (1 + ε)-approximation algorithms with near-linear running
times are given for the NNC problem, and for the (1, 2)-Center problem, an
exact algorithm is given whose running time is roughly O(n2m3) and whose
space requirement is quadratic. (An asterisk marks results under translation,
presented in [7].)

Input/query:
m-curves/segment

Input/query:
segments/m-curve

Input: (1,2)-center

L∞ Sect. 3.1 (∗) Sect. 3.2 (∗) Sect. 5.1 (∗)

L2 See [7] See [7] See [7]

2 Preliminaries

The discrete Fréchet distance is a measure of similarity between two curves,
defined as follows. Consider the curves C = (p1, . . . , pm) and C ′ = (q1, . . . , qm′),
viewed as sequences of vertices. A (monotone) alignment of the two curves is a
sequence τ := 〈(pi1 , qj1), . . . , (piv

, qjv
)〉 of pairs of vertices, one from each curve,

with (i1, j1) = (1, 1) and (iv, jv) = (m,m′). Moreover, for each pair (iu, ju),
1 < u ≤ v, one of the following holds: (i) iu = iu−1 and ju = ju−1 + 1, (ii) iu =
iu−1 + 1 and ju = ju−1, or (iii) iu = iu−1 + 1 and ju = ju−1 + 1. The discrete
Fréchet distance is defined as

dd
dF (C,C ′) = min

τ∈T
max
(i,j)∈τ

d(pi, qj),

with the minimum taken over the set T of all such alignments τ , and where d
denotes the metric used for measuring interpoint distances.

We now give two alternative, equivalent definitions of the discrete Fréchet
distance between a segment s = ab and a polygonal curve C = (p1, . . . , pm) (we
will drop the point metric d from the notation, where it is clear from the context).
Let C[i, j] := {pi, . . . , pj}. Denote by B(p, r) the ball of radius r centered at p,
in metric d. The discrete Fréchet distance between s and C is at most r, if and
only if there exists a partition of C into a prefix C[1, i] and a suffix C[i + 1,m],
such that B(a, r) contains C[1, i] and B(b, r) contains C[i + 1,m].

A second equivalent definition is as follows. Consider the intersections of
balls around the points of C. Set Ii(r) = B(p1, r) ∩ · · · ∩ B(pi, r) and Ii(r) =
B(pi+1, r)∩· · ·∩B(pm, r), for i = 1, . . . ,m−1. Then, the discrete Fréchet distance
between s and C is at most r, if and only if there exists an index 1 ≤ i ≤ m − 1
such that a ∈ Ii(r) and b ∈ Ii(r).
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Given a set C = {C1, . . . , Cn} of n polygonal curves in the plane, the nearest-
neighbor problem for curves is formulated as follows:

Problem 1 (NNC). Preprocess C into a data structure, which, given a query
curve Q, returns a curve C ∈ C with ddF (Q,C) = minCi∈C ddF (Q,Ci).

We consider two variants of Problem 1: (i) when the query curve Q is a
segment, and (ii) when the input C is a set of segments.

Secondly, we consider a particular case of the (k, �)-Center problem for
curves [16].

Problem 2 ((1, 2)-Center). Find a segment s∗ that minimizes maxCi∈C
ddF (s, Ci), over all segments s.

3 NNC and L∞ Metric

When d is the L∞ metric, each ball B(pi, r) is a square. Denote by S(p, d) the
axis-parallel square of radius d centered at p.

Given a curve C = (p1, . . . , pm), let di, for i = 1, . . . , m − 1, be the smallest
radius such that S(p1, di) ∩ · · · ∩ S(pi, di) 	= ∅. In other words, di is the radius
of the smallest enclosing square of C[1, i]. Similarly, let di, for i = 1, . . . ,m − 1,
be the smallest radius such that S(pi+1, di) ∩ · · · ∩ S(pm, di) 	= ∅.

For any d > di, S(p1, d) ∩ · · · ∩ S(pi, d) is a rectangle, Ri = Ri(d), defined
by four sides of the squares S(p1, d), . . . , S(pi, d), see Fig. 1. These sides are
fixed and do not depend on the specific value of d. Furthermore, the left, right,
bottom and top sides of Ri(d) are provided by the sides corresponding to the
right-, left-, top- and bottom-most vertices in C[1, i], respectively, i.e., the sides
corresponding to the vertices defining the bounding box of C[1, i].

pib

pit
pi

pir

Ri

a

Fig. 1. The rectangle Ri = Ri(d)
and the vertices of the ith prefix
of C that define it.

Denote by pi
� the vertex in the ith prefix

of C that contributes the left side to Ri(d),
i.e., the left side of S(pi

�, d) defines the left
side of Ri(d). Furthermore, denote by pi

r, pi
b,

and pi
t the vertices of the ith prefix of C that

contribute the right, bottom, and top sides
to Ri(d), respectively. Similarly, for any d >
di, we denote the four vertices of the ith suf-
fix of C that contribute the four sides of the
rectangle Ri(d) = S(pi+1, d) ∩ · · · ∩ S(pm, d)
by pi

�, pi
r, pi

b, and pi
t, respectively.

Finally, we use the notation Rj
i = Rj

i (d) (R
j

i = R
j

i (d)) to refer to the rectangle
Ri = Ri(d) (Ri = Ri(d)) of curve Cj .

Observation 1. Let s = ab be a segment, C be a curve, and let d > 0. Then,
ddF (s, C) ≤ d if and only if there exists i, 1 ≤ i ≤ m − 1, such that a ∈ Ri(d)
and b ∈ Ri(d).
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3.1 Query Is a Segment

Let C = {C1, . . . , Cn} be the input curves, each of size m. Given a query
segment s = ab, the task is to find a curve C ∈ C such that ddF (s, C) =
minC′∈C ddF (s, C ′).

The Data Structure. The data structure is an eight-level search tree. The first
level of the data structure is a search tree for the x-coordinates of the vertices
pi

�, over all curves C ∈ C, corresponding to the nm left sides of the nm rectan-
gles Ri(d). The second level corresponds to the nm right sides of the rectangles
Ri(d), over all curves C ∈ C. That is, for each node u in the first level, we
construct a search tree for the subset of x-coordinates of vertices pi

r which cor-
responds to the canonical set of u. Levels three and four of the data structure
correspond to the bottom and top sides, respectively, of the rectangles Ri(d),
over all curves C ∈ C, and they are constructed using the y-coordinates of the
vertices pi

b and the y-coordinates of the vertices pi
t, respectively. The fifth level

is constructed as follows. For each node u in the fourth level, we construct a
search tree for the subset of x-coordinates of vertices pi

� which corresponds to
the canonical set of u; that is, if the y-coordinate of pj

t is in u’s canonical sub-
set, then the x-coordinate of pj

� is in the subset corresponding to u’s canonical
set. The bottom four levels correspond to the four sides of the rectangles Ri(d)
and are built using the x-coordinates of the vertices pi

�, the x-coordinates of the
vertices pi

r, the y-coordinates of the vertices pi
b, and the y-coordinates of the

vertices pi
t, respectively.

The Query Algorithm. Given a segment s = ab and a distance d > 0, we can use
our data structure to determine whether there exists a curve C ∈ C, such that
ddF (s, C) ≤ d. The search in the first and second levels of the data structure
is done with a.x, the x-coordinate of a, in the third and fourth levels with a.y,
in the fifth and sixth levels with b.x and in the last two levels with b.y. When
searching in the first level, instead of performing a comparison between a.x and
the value v that is stored in the current node (which is an x-coordinate of some
vertex pi

�), we determine whether a.x ≥ v − d. Similarly, when searching in the
second level, at each node that we visit we determine whether a.x ≤ v+d, where
v is the value that is stored in the node, etc.

Notice that if we store the list of curves that are represented in the canonical
subset of each node in the bottom (i.e., eighth) level of the structure, then
curves whose distance from s is at most d may also be reported in additional
time roughly linear in their number.

Finding the Closest Curve. Let s = ab be a segment, let C be the curve in C
that is closest to s and set d∗ = ddF (s, C). Then, there exists 1 ≤ i ≤ m − 1,
such that a ∈ Ri(d∗) and b ∈ Ri(d∗). Moreover, one of the endpoints a or b lies
on the boundary of its rectangle, since, otherwise, we could shrink the rectangles
without ‘losing’ the endpoints. Assume without loss of generality that a lies on
the left side of Ri(d∗). Then, the difference between the x-coordinate of the
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vertex pi
� and a.x is exactly d∗. This implies that we can find d∗ by performing a

binary search in the set of all x-coordinates of vertices of curves in C. In each step
of the binary search, we need to determine whether d ≥ d∗, where d = v − a.x
and v is the current x-coordinate, and our goal is to find the smallest such d
for which the answer is still yes. We resolve a comparison by calling our data
structure with the appropriate distance d. Since we do not know which of the two
endpoints, a or b, lies on the boundary of its rectangle and on which of its sides,
we perform 8 binary searches, where each search returns a candidate distance.
Finally, the smallest among these 8 candidate distances is the desired d∗.

In other words, we perform 4 binary searches in the set of all x-coordinates of
vertices of curves in C. In the first we search for the smallest distance among the
distances d� = v−a.x for which there exists a curve at distance at most d� from s;
in the second we search for the smallest distance dr = a.x − v for which there
exists a curve at distance at most dr from s; in the third we search for the smallest
distance d� = v−b.x for which there exists a curve at distance at most d� from s;
and in the fourth we search for the smallest distance dr = b.x−v for which there
exists a curve at distance at most dr from s. We also perform 4 binary searches in
the set of all y-coordinates of vertices of curves in C, obtaining the candidates db,
dt, db, and dt. We then return the distance d∗ = min{d�, dr, d�, dr, db, du, db, du}.

Theorem 2. Given a set C of n curves, each of size m, one can construct
a search structure of size O(nm log7(nm)) for segment nearest-curve queries.
Given a query segment s, one can find in O(log8(nm)) time the curve C ∈ C
and distance d∗ such that ddF (s, C) = d∗ and d∗ ≤ ddF (s, C ′) for all C ′ ∈ C,
under the L∞ metric.

3.2 Input Is a Set of Segments

Let S = {s1, . . . , sn} be the input set of segments. Given a query curve Q =
(p1, . . . , pm), the task is to find a segment s = ab ∈ S such that ddF (Q, s) =
mins′∈S ddF (Q, s′), after suitably preprocessing S. We use an overall approach
similar to that used in Sect. 3.1, however the details of the implementation of
the data structure and algorithm differ.

The Data Structure. Preprocess the input S into a four-level search structure T
consisting of a two-dimensional range tree containing the endpoints a, and where
the associated structure for each node in the second level of the tree is another
two-dimensional range tree containing the endpoints b corresponding to the
points in the canonical subset of the node.

This structure answers queries consisting of a pair of two-dimensional ranges
(i.e., rectangles) (R,R) and returns all segments s = ab such that a ∈ R and
b ∈ R. The preprocessing time for the structure is O(n log4 n), and the storage is
O(n log3 n). Querying the structure with two rectangles requires O(log3 n) time,
by applying fractional cascading [28].
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The Query Algorithm. Consider the decision version of the problem where, given
a query curve Q and a distance d, the objective is to determine if there exists
a segment s ∈ S with ddF (s,Q) ≤ d. Observation 1 implies that it is sufficient
to query the search structure T with the pair of rectangles (Ri(d), Ri(d)) of the
curve Q, for all 1 ≤ i ≤ m − 1. If T returns at least one segment for any of the
partitions, then this segment is within distance d of Q.

As we traverse the curve Q left-to-right, the bounding box of Q[1, i] can be
computed at constant incremental cost. For a fixed d > 0, each rectangle Ri(d)
can be constructed from the corresponding bounding box in constant time. Rect-
angle Ri(d) can be handled similarly by a reverse traversal. Hence all the rect-
angles can be computed in time O(m), for a fixed d. Each pair of rectangles
requires a query in T , and thus the time required to answer the decision prob-
lem is O(m log3 n).

Finding the Closest Segment. In order to determine the nearest segment s to Q,
we claim, using an argument similar to that in Sect. 3.1, for a segment s = ab
of distance d∗ from Q that either a lies on the boundary of Ri(d∗) or b lies on
the boundary of Ri(d∗) for some 1 ≤ i < m. Thus, in order to determine the
value of d∗ it suffices to search over all 8m pairs of rectangles where either a or b
lies on one of the eight sides of the obtained query rectangles. The sorted list of
candidate values of d for each side can be computed in O(n) time from a sorted
list of the corresponding x- or y-coordinates of a or b. The smallest value of d
for each side is then obtained by a binary search of the sorted list of candidate
values. For each of the O(log n) evaluated values d, a call to T decides on the
existence of a segment within d of Q.

Theorem 3. Given an input S of n segments, a search structure can be pre-
processed in O(n log4 n) time and requiring O(n log3 n) storage that can answer
the following. For a query curve Q of m vertices, find the segment s∗ ∈ S and
distance d∗ such that ddF (Q, s∗) = d∗ and ddF (Q, s) ≥ d∗ for all s ∈ S under
the L∞ metric. The time to answer the query is O(m log4 n).

3.3 NNC Under Translation and L∞ Metric

An analogous approach yields algorithms with similar running times for the
problems under translation. The algorithms are presented in [7], and are sum-
marized in the following two theorems. Let st and Ct be the images of segment s
and curve C, respectively, under the translation t. When the query is a segment,
we have:

Theorem 4. Given a set C of n curves, each of size m, one can construct a
search structure of size O(nm log4(nm)), such that, given a query segment s, one
can find in O(log6(nm)) time the curve C ∈ C nearest to s under translation,
that is the curve minimizing mint ddF (st, C

′), where the discrete Fréchet distance
is computed using the L∞ metric.
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When the input is a set of segments, we have the following theorem.

Theorem 5. Given a set S of n segments, one can construct a search struc-
ture of size O(n log2 n), so that, given a query curve Q of size m, one can find
in O(m log2 n) time the segment s ∈ S nearest to Q under translation, that is
the segment minimizing mint ddF (Q, s′

t), where the discrete Fréchet distance is
computed using the L∞ metric.

4 NNC and L2 Metric

In this section, we present algorithms for approximate nearest-neighbor search
under the discrete Fréchet distance using L2. Notice that the algorithms from
Sect. 3 for the L∞ version of the problem, already give

√
2-approximation algo-

rithms for the L2 version. Next, we provide (1 + ε)-approximation algorithms.
The details can be found in [7].

Theorem 6. Given a set C of n curves, each of size m, and 0 < ε ≤ 1, one
can construct a search structure of size O( n

ε4 log4(n
ε )) for approximate segment

nearest-neighbor queries. Given a query segment s, one can find in O(log5(n
ε ))

time a curve C ′ ∈ C such that ddF (s, C ′) ≤ (1+ε)ddF (s, C), under the L2 metric,
where C is the curve in C closest to s.

Theorem 7. Given an input S of n segments, and 0 < ε ≤ 1, one can
construct a search structure of size O(n logO( 1√

ε
)
n) for approximate segment

nearest-neighbor queries. Given a query curve Q of size m, one can find in
O(m logO( 1√

ε
)
n) time a segment s′ ∈ S such that ddF (s′, Q) ≤ (1 + ε)ddF (s,Q),

under the L2 metric, where s is the segment in S closest to Q.

5 (1, 2)-Center

The objective of the (1, 2)-Center problem is to find a segment s such that
maxCi∈C ddF (s, Ci) is minimized. This can be reformulated equivalenly as: Find
a pair of balls (B,B), such that (i) for each curve C ∈ C, there exists a partition
at 1 ≤ i < m of C into prefix C[1, i] and suffix C[i + 1,m], with C[1, i] ⊆ B and
C[i + 1,m] ⊆ B, and (ii) the radius of the larger ball is minimized.

5.1 (1, 2)-Center and L∞ Metric

An optimal solution to the (1, 2)-Center problem under the L∞ metric is a pair
of squares (S, S), where S contains all the prefix vertices and S contains all the
suffix vertices. Assume that the optimal radius is r∗, and that it is determined
by S, i.e., the radius of S is r∗ and the radius of S is at most r∗. Then, there must
exist two determining vertices p, p′, belonging to the prefixes of their respective
curves, such that p and p′ lie on opposite sides of the boundary of S. Clearly,
||p−p′||∞ = 2r∗. Let the positive normal direction of the sides be the determining
direction of the solution.
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The proofs for Lemmas 1 and 2, below, are given in [7]. Let R be the axis-
aligned bounding rectangle of C1 ∪ · · · ∪ Cn, and denote by e�, er, et, and eb the
left, right, top, and bottom edges of R, respectively.

Lemma 1. At least one of p, p′ must lie on the boundary of R.

We say that a corner of S (or S) coincides with a corner of R when the
corner points are incident, and they are both of the same type, i.e., top-left,
bottom-right, etc.

Lemma 2. There exists an optimal solution (S, S) where at least one corner
of S or S coincides with a corner of R.

Lemma 2 implies that for a given input C where the determining vertices are
in S, there must exist an optimal solution where S is positioned so that one of
its corners coincides with a corner of the bounding rectangle, and that one of
the determining vertices is on the boundary of R. The optimal solution can thus
be found by testing all possible candidate squares that satisfy these properties
and returning the valid solution that yields the smallest radius. The algorithm
presented in the sequel will compute the radius r∗ of an optimal solution (S∗, S∗)
such that r∗ is determined by the prefix square S∗, see Fig. 2. The solution where
r∗ is determined by S∗ can be computed in a symmetric manner.

R

S *

S *

p

p

Fig. 2. The optimal solution is characterized by a pair of points p, p′ lying on the
boundary of S∗, and a corner of S∗ coincides with a corner of R.

For each corner v of the bounding rectangle R, we sort the (m− 2)n vertices
in C1 ∪ · · · ∪ Cn that are not endpoints—the initial vertex of each curve must
always be contained in the prefix, and the final vertex in the suffix—by their L∞
distance from v. Each vertex p in this ordering is associated with a square S of
radius ||v − p||∞/2, coinciding with R at corner v.

A sequential pass is made over the vertices, and their respective squares S,
and for each S we compute the radius of S and S using the following data
structures. We maintain a balanced binary tree TC for each curve C ∈ C, where
the leaves of TC correspond to the vertices of C, in order. Each node of the tree
contains a single bit: The bit at a leaf node corresponding to vertex pj indicates
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whether pj ∈ S, where S is the current square. The value of the bit at a leaf
of TC can be updated in O(log m) time. The bit of an internal node is 1 if and
only if all the bits in the leaves of its subtree are 1, and thus the longest prefix
of C can be determined in O(log m) time. At each step in the pass, the radius
of S must also be computed, and this is obtained by determining the bounding
box of the suffix vertices. Thus, two balanced binary trees are maintained: T x

contains a leaf for each of the suffix vertices ordered by their x-coordinate; and
T y where the leaves are ordered by the y-coordinate. The extremal vertices that
determine the bounding box can be determined in O(log mn) time. Finally, the
current optimal squares S∗ and S∗, and the radius r∗ of S∗ are persisted.

The trees TC1 , . . . , TCn
are constructed with all bits initialized to 0, except

for the bit corresponding to the initial vertex in each tree which is set to 1, taking
O(nm) time in total. T x and T y are initialized to contain all non-initial vertices
in O(mn log mn) time. The optimal square S∗ containing all the initial vertices is
computed, and S∗ is set to contain the remaining vertices. The optimal radius r∗

is the larger of the radii induced by S∗ and S∗.
At the step in the pass for vertex p of curve Cj whose associated square

is S, the leaf of TC corresponding to p is updated from 0 to 1 in O(log m) time.
The index i of the longest prefix covered by S can then be determined, also in
O(log m) time. The vertices from Cj that are now in the prefix must be deleted
from T x and T y, and although there may be O(m) of them in any iteration,
each will be deleted exactly once, and so the total update time over the entire
sequential pass is O(mn log mn). The radius of the square S is ‖v − p‖∞/2, and
the radius of S can be computed in O(log mn) time as half the larger of x- and
y-extent of the suffix bounding box. The optimal squares S∗, S∗, and the cost
r∗ are updated if the radius of S determines the cost, and the radius of S is less
than the existing value of r∗.

Finally, we return the optimal pair of squares (S∗, S∗) with the minimal
cost r∗.

Theorem 8. Given a set of curves C as input, an optimal solution to the (1, 2)-
Center problem using the discrete Fréchet distance under the L∞ metric can
be computed in time O(mn log mn) using O(mn) storage.

5.2 (1, 2)-Center Under Translation and L∞ Metric

The (1, 2)-Center problem under translation and the L∞ metric can be solved
using a similar approach. The solution is presented in [7], leading to the following
theorem.

Theorem 9. Given a set of curves C as input, an optimal solution to the (1, 2)-
Center problem under translation using the discrete Fréchet distance under the
L∞ metric can be computed in O(nm) time and O(nm) space.
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5.3 (1, 2)-Center and L2 metric

For the (1, 2)-Center problem and L2 we need some more sophisticated argu-
ments, but again we use a similar basic approach. The solution is presented in
[7], yielding the following theorem.

Theorem 10. Given a set of curves C as input, an optimal solution to the (1, 2)-
Center problem using the discrete Fréchet distance under the L2 metric can be
computed in O(n2m3 log3(nm)) time and O(n2m2) space.
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Fréchet distance in subquadratic time. SIAM J. Comput. 43(2), 429–449 (2014).
https://doi.org/10.1137/130920526

5. Alewijnse, S.P.A., Buchin, K., Buchin, M., Kölzsch, A., Kruckenberg, H.,
Westenberg, M.A.: A framework for trajectory segmentation by stable criteria. In:
Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems. ACM Press, Dallas, November 2014. https://
doi.org/10.1145/2666310.2666415
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with shortcuts. In: Proceedings of the 23rd ACM-SIAM Symposium on Discrete
Algorithms, pp. 318–355. Society for Industrial and Applied Mathematics, Kyoto,
January 2012. https://doi.org/10.1137/1.9781611973099.30
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Abstract. Research on the similarity of a graph to being a tree – called
the treewidth of the graph – has seen an enormous rise within the last
decade, but a practically fast algorithm for this task has been discovered
only recently by Tamaki (ESA 2017). It is based on dynamic program-
ming and makes use of the fact that the number of positive subinstances
is typically substantially smaller than the number of all subinstances.
Algorithms producing only such subinstances are called positive-instance
driven (PID). We give an alternative and intuitive view on this algorithm
from the perspective of the corresponding configuration graphs in cer-
tain two-player games. This allows us to develop PID-algorithms for a
wide range of important graph parameters such as treewidth, pathwidth,
and treedepth. We analyse the worst case behaviour of the approach on
some well-known graph classes and perform an experimental evaluation
on real world and random graphs.

Keywords: Treewidth · Pathwidth · Treedepth · Graph searching

1 Introduction

Treewidth, a concept to measure the similarity of a graph to being a tree, is
arguably one of the most used tools in modern combinatorial optimization. It
is a cornerstone of parameterized algorithms [14] and its success has led to its
integration into many different fields: For instance, treewidth and its close rela-
tives treedepth and pathwidth have been theoretically studied in the context of
machine learning [5,15,20], model-checking [3,32], SAT-solving [7,21,27], QBF-
solving [12,18], CSP-solving [31,33], or ILPs [19,24,25,34,40]. Some of these
results (e. g. [3,7,12,21,27,31–33]) show quite promising experimental results
giving hope that the theoretical results lead to actual practical improvements.

To utilize the treewidth for this task, we have to be able to compute it
quickly. More crucially, most algorithms also need a witness for this fact in form
of a tree-decomposition. In theory we have a beautiful algorithm for this task [8],
which is unfortunately known to not work in practice due to huge constants [38].
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We may argue that, instead, a heuristic is sufficient, as the attached solver will
work correctly independently of the actual treewidth – and the heuristic may
produce a decomposition of “small enough” width. However, even a small error,
something as “off by 5”, may put the parameter to a computationally intractable
range, as the dependency on the treewidth is usually at least exponential. It is
therefore a very natural and important task to build practical fast algorithms to
determine parameters as the treewidth or treedepth exactly.

To tackle this problem, the fpt-community came up with an implementation
challenge: the PACE [16,17]. Besides many, one very important result of the
challenge was a new combinatorial algorithm due to Hisao Tamaki, which com-
putes the treewidth of an input graph exactly and astonishingly fast on a wide
range of instances. An implementation of this algorithm by Tamaki himself [41]
won the corresponding track in the PACE challenge in 2016 [16] and an alter-
native implementation due to Larisch and Salfelder [36] won in 2017 [17]. The
algorithm is based on a dynamic program by Arnborg et al. [1] for computing
tree decompositions. This algorithm has a game theoretic characterisation that
we will utilities in order to apply Tamaki’s approach to a broader range of prob-
lems. It should be noted, however, that Tamaki has improved his algorithm for
the second iteration of the PACE by applying his framework to the algorithm
by Bouchitté and Todinca [11,42]. This algorithm has a game theoretic charac-
terisation as well [23], but it is unclear how this algorithm can be generalized
to other parameters. Therefore, we focus on Tamaki’s first algorithm and ana-
lyze it both, from a theoretical and a practical perspective. Furthermore, we will
extend the algorithm to further graph parameters, which is surprisingly easy
due to the new game-theoretic representation. In detail, our contributions are
the following, but due to space constraints some of the proofs are only included
in the technical report version.

Contribution I: A simple description of Tamaki’s first algorithm. We
describe Tamaki’s algorithm based on a well-known graph searching game for
treewidth. This provides a nice link to known theory and allows us to analyze
the algorithm in depth.

Contribution II: Extending Tamaki’s algorithm to other parameters.
The game theoretic point-of-view allows us to extend the algorithm to various
other parameters that can be defined in terms of similar games – including
pathwidth, treedepth, and more.

Contribution III: Experimental and theoretical analysis. We provide, for
the first time, theoretical bounds on the runtime of the algorithm on certain
graph classes. Furthermore, we count the number of subinstances generated
by the algorithm on various random and named graphs.

2 Graph Searching

A tree decomposition of a graph G = (V,E) is a tuple (T, ι) consisting of a rooted
tree T and a mapping ι from nodes of T to sets of vertices of G (called bags)
such that (1) for all v ∈ V the set {x | v ∈ ι(x) } is nonempty and connected in
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T , and (2) for every edge {v, w} ∈ E there is a node m in T with {v, w} ⊆ ι(m).
The width of a tree decomposition is the maximum size of one of its bags minus
one, its depth is the maximum of the width and the depth of T . The treewidth
of G, denoted by tw(G), is the minimum width any tree decomposition of G
must have. If T is a path we call (T, ι) a path decomposition; if for all nodes x, y
of T we have ι(x) � ι(y) whenever y is a descendent of x we call (T, ι) a treedepth
decomposition; and if on any path from the root to a leaf there are at most q
nodes with more then one children we call (T, ι) a q-branched tree decomposition.
Analogous to the treewidth, we define the pathwidth and q-branched-treewidth
of G, denoted by pw(G) and twq(G), respectively. The treedepth td(G) is the
minimum depth any treedepth decomposition must have. Another important
variant of this parameter is dependency-treewidth, which is used primarily in the
context of quantified Boolean formulas [18]. For a graph G = (V,E) and a partial
order � of V the dependency-treewidth dtw(G) is the minimum width any tree-
decomposition (T, ι) with the following property must have: Consider the natural
partial order ≤T that T induces on its nodes, where the root is the smallest
elements and the leaves form the maximal elements; define for any v ∈ V the
node Fv(T ) that is the ≤T -minimal node t with v ∈ ι(t) (which is well defined);
then define a partial order <T on V such that u <T v ⇐⇒ Fu(T ) ≤T Fv(T );
finally for all u, v ∈ V it must hold that Fu(T ) <T Fv(T ) implies that that u�v
does not hold.

We study classical graph searching in a general setting proposed by Fomin,
Fraigniaud, and Nisse [22]. The input is an undirected graph G = (V,E) and a
number k ∈ N, and the question is whether a team of k searchers can catch an
invisible fugitive on G by the following set of rules: At the beginning, the fugitive
is placed at a vertex of her choice and at any time, she knows the position of
the searchers. In every turn she may move with unlimited speed along edges of
the graph, but may never cross a vertex occupied by a searcher. This implies
that the fugitive does not occupy a single vertex but rather a subgraph, which
is separated from the rest of the graph by the searchers. The vertices of this
subgraph are called contaminated and at the start of the game all vertices are
contaminated. The searchers, trying to catch the fugitive, can perform one of
the following operations during their turn:

1. place a searcher on a contaminated vertex;
2. remove a searcher from a vertex;
3. reveal the current position of the fugitive.

When a searcher is placed on a contaminated vertex it becomes clean. When a
searcher is removed from a vertex v, the vertex may become recontaminated if
there is a contaminated vertex adjacent to v. The searchers win the game if they
manage to clean all vertices, i. e., if they catch the fugitive; the fugitive wins if,
at any point, a recontamination occurs, or if she can escape infinitely long. Note
that this implies that the searchers have to catch the fugitive in a monotone way.
A priori one could assume that the later condition gives the fugitive an advantage
(recontamination could be necessary for the cleaning strategy), however, a crucial
result in graph searching is that “recontamination does not help” in all variants
of the game that we consider [6,26,35,37,39].
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2.1 Entering the Arena and the Colosseum

Our primary goal is to determine whether the searchers have a winning strat-
egy. A folklore algorithm for this task is to construct an alternating graph
arena(G, k) = ((Vs ∪ Vf ), Ear) that contains for each position of the searchers
(S ⊆ V with |S| ≤ k) and each position of the fugitive (f ∈ V ) two copies of
the vertex (S, f), one in Vs and one in Vf (see e. g. Sect. 7.4 in [14]). Vertices in
Vs correspond to a configuration in which the searchers do the next move (they
are existential) and vertices in Vf correspond to fugitive moves (they are univer-
sal). The edges Ear are constructed according to the possible moves. Clearly, our
task is now reduced to the question whether there is an alternating path from a
start configuration to some configuration in which the fugitive is caught. Since
alternating paths can be computed in linear time (see e. g., Sect. 3.4 in [28]), we
immediately obtain an O(nk+1) algorithm.

Modeling a configuration of the game as tuple (S, f) comes, however, with
a major drawback: The size of the arena does directly depend on n and k and
does not depend on some further structure of the input. For instance, the arena
of a path of length n and any other graph on n vertices will have the same
size for any fixed value k. As the major goal of parameterized complexity is the
understanding of structural parameters beyond the input size n, such a fixed-
size approach is usually not practically feasible. In contrast, we will define the
configuration graph colosseum(G, k), which might be larger then arena(G, k) in
general, but is also “prettier” in the sense that it adapts to the input structure
of the graph. Moreover, the resulting algorithms are self-adapting in the sense
that it needs no knowledge about this special structure to make use of it (in
constrast to other parameterized algorithms, where the parameter describing
this structure needs to be given explicitly).

2.2 Simplifying the Game

Our definition is based upon a similar formulation by Fomin et al. [22], but
we simplify the game to make it more accessible to our techniques. First of
all, we restrict the fugitive in the following sense. Since she is invisible to the
searchers and travels with unlimited speed, there is no need for her to take
regular actions. Instead, the only moment when she is actually active is when
the searchers perform a reveal. If C is the set of contaminated vertices, consisting
of the induced components C1, . . . , C�, a reveal will uncover the component in
which the fugitive hides and, as a result, reduce C to Ci for some 1 ≤ i ≤ �. The
only task of the fugitive is, thus, to answer a reveal with such a number i. We
call the whole process of the searcher performing a reveal, the fugitive answering
it, and finally of reducing C to Ci a reveal-move.

We will also restrict the searchers by the concept of implicit searcher removal.
Let S ⊆ V (G) be the vertices currently occupied by the searchers, and let
C ⊆ V (G) be the set of contaminated vertices. We call a vertex v ∈ S covered if
every path between v and C contains a vertex w ∈ S with w �= v.
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Lemma 1. A covered searcher can be removed safely.

Proof. As we have N(v)∩C = ∅, the removal of v will not increase the contami-
nated area. Furthermore, at no later point of the game v can be recontaminated,
unless a neighbor of v gets recontaminated as well (in which case the game would
already be lost for the searchers). ��
Lemma 2. Only covered searchers can be removed safely.

Proof. Since for any other vertex w ∈ S we have N(w) ∩ C �= ∅, the removal
of w would recontaminate w and, hence, would result in a defeat of the
searchers. ��
Both lemmas together imply that the searchers never have to decide to remove
a searcher, but rather do it implicitly. We thus restrict the possible moves of the
searchers to a combined move of placing a searcher and immediately removing
the searchers from all covered vertices. We call this a fly-move. Observe that
the sequence of original moves mimicked by a fly-move does not contain a reveal
and, thus, may be performed independently of any action of the fugitive.

We are now ready to define the colosseum. We could, as for the arena, define
it as an alternating graph. However, as the searcher is the only player that
performs actions in our simplified game, we find it more natural to express
this game as edge-alternating graph – a generalization of alternating graphs. An
edge-alternating graph is a triple H = (V,E,A) consisting of a vertex set V , an
existential edge relation E ⊆ V × V , and an universal edge relation A ⊆ V × V .
We define the neighborhood of a vertex v as N∃(v) = {w | (v, w) ∈ E }, N∀(v) =
{w | (v, w) ∈ A }, and NH(v) = N∃(v) ∪ N∀(v). An edge-alternating s-t-path is
a set P ⊆ V such that (1) s, t ∈ P and (2) for all v ∈ P with v �= t we have
either N∃(v) ∩ P �= ∅ or ∅ �= N∀(v) ⊆ P or both. We write s ≺ t if such a path
exists and define B(Q) = { v | v ∈ Q∨ (∃w ∈ Q : v ≺ w) } for Q ⊆ V as the set of
vertices on edge-alternating paths leading to Q. We say that an edge-alternating
s-t-path P is q-branched, if (i) H is acyclic and (ii) every (classical) directed
path π from s to t in H with π ⊆ P uses at most q universal edges.

For an undirected graph G = (V,E) and a number k ∈ N we now define
the colosseum(G, k) to be the edge-alternating graph H with vertex set V (H) =
{C | ∅ �= C ⊆ V and |NG(C)| ≤ k } and the following edge sets: for all pairs
C,C ′ ∈ V (H) there is an edge e = (C,C ′) ∈ E(H) if, and only if, C \ {v} = C ′

for some v ∈ C and |NG(C)| < k; furthermore, for all C ∈ V (H) with at least two
components C1, . . . , C� we have edges (C,Ci) ∈ A(H). The start configuration of
the game is the vertex C = V , that is, all vertices are contaminated. We define
Q = { {v} ⊆ V : |NG({v})| < k } to be the set of winning configurations, as at
least one searcher is available to catch the fugitive. Therefore, the searchers have
a winning strategy if, and only if, V ∈ B(Q) and we will therefore refer to B(Q)
as the winning region. Observe that the colosseum is acyclic (that is, the digraph
(V,E∪A) is acyclic) as we have for every edge (C,C ′) that |C| > |C ′|, and observe
further that Q is a subset of the sinks of H. Hence, we can test if V ∈ B(Q) in
time O(|colosseum(G, k))|). Finally, note that the size of colosseum(G, k) may
be of order 2n rather than nk+1, giving us a slightly worse overall runtime.
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The reader that is familiar with graph searching or with exact algorithms
for treewidth will probably notice the similarity of the colosseum and an exact
“Robertson–Seymour fashioned” algorithm for that task. In fact, the colosseum
is essentially the configuration graph of such a procedure if it is used with
memoization.

2.3 Fighting in the Pit

Both algorithms introduced in the previous section run asymptotically in the size
of the generated configuration graph |arena(G, k)| or |colosseum(G, k)|. Both of
these graphs might be very large, as the arena has fixed size of order O(nk+1),
while the colosseum may even have size O(2n). Additionally, both graphs contain
many unnecessary configurations, that is, configurations that are not contained
in the winning region of the searchers. In the light of dynamic programming this
is the same as listing all possible configurations; and in the light of positive-
instance driven dynamic programming we would like to list only the positive
instances – which is exactly the winning region in this context.

To realize this idea, we consider the pit inside the colosseum, which is the
area where only true champions can survive – formally we define pit(G, k) as the
subgraph of colosseum(G, k) induced by B(Q), that is, as the induced subgraph
on the winning region. The key-insight is that |pit(G, k)| may be smaller than
|colosseum(G, k)| or even |arena(G, k)| on various graph classes. Our primary
goal for the next section will therefore be the development of an algorithm that
computes the pit in time O(|pit(G, k)|2).

3 Computing the Pit

Our aim for this section is to develop an algorithm that computes pit(G, k). Of
course, a simple way to do this is to compute the whole colosseum and to extract
the pit afterwards. However, this will cost time O(2n) and is surely not what
we aim for. Our algorithm traverses the colosseum “backwards” by starting at
the set Q of winning configurations and by uncovering B(Q) layer by layer. In
order to achieve this, we need to compute the predecessors of a configuration C.
This is easy if C was reached by a fly-move as we can simply enumerate the
n possible predecessors. Reversing a reveal-move, that is, finding the universal
predecessors, is significantly more involved. A simple approach is to test for every
subset of already explored configurations if we can “glue” them together – but
this would result in an even worse runtime of 2|pit(G,k)|. Fortunately, we can avoid
this exponential blow-up as the colosseum has the following useful property:

Definition 1 (Universal Consistent). We say that an edge-alternating graph
H = (V,E,A) is universal consistent with respect to a set Q ⊆ V if for all
v ∈ V \ Q with v ∈ B(Q) and N∀(v) = {w1, . . . , wr} we have (1) N∀(v) ⊆ B(Q)
and (2) for every I ⊆ {w1, . . . , wr} with |I| ≥ 2 there is a vertex v′ ∈ V with
N∀(v′) = I and v′ ∈ B(Q).
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Intuitively, this definition implies that for every vertex with high universal-
degree there is a set of vertices that we can arrange in a tree-like fashion to realize
the same adjacency relation. This allows us to glue only two configurations at a
time and, thus, removes the exponential dependency.

Lemma 3. For every graph G = (V,E) and number k ∈ N, the edge-alternating
graph colosseum(G, k) is universal consistent.

Proof. For the first property just observe that “reveals do not harm” in the
sense that if the searchers can catch the fugitive without knowing where she
hides, they certainly can do if they do know.

For the second property consider any configuration C ∈ V (H) that has uni-
versal edges to C1, . . . , C�. By definition we have |N(C)| ≤ k and N(Ci) ⊆ N(C)
for all 1 ≤ i ≤ �. Therefore we have for every I ⊆ {1, . . . , �} and C ′ = ∪i∈ICi

that N(C ′) ⊆ N(C) and |N(C ′)| ≤ k and, thus, C ′ ∈ V (H). ��
We are now ready to formulate the algorithm for computing the pit shown in
Listing 1.1. In essence, the algorithm runs in three phases: first it computes
the set Q of winning configurations; then the winning region B(Q) (that is, the
vertices of pit(G, k)); and finally, it computes the edges of pit(G, k).

Theorem 1. The algorithm Discover(G, k) finishes in at most O
(|B(Q)|2 · |V |2)

steps and correctly outputs pit(G, k).

Proof. The algorithm is supposed to compute Q in phase I, B(Q) in phase II,
and the edges of colosseum(G, k)[B(Q)] in phase III. First observe that Q is
correctly computed in phase I by the definition of Q.

To show the correctness of the second phase we argue that the computed
set V (pit(G, k)) equals B(Q). Let us refer to the set V (pit(G, k)) during the
computation as K and observe that this is exactly the set of vertices inserted
into the queue. We first show K ⊆ B(Q) by induction over the ith inserted
vertex. The first vertex C1 is in B(Q) as C1 ∈ Q. Now consider Ci. As Ci ∈ K, it
was either added in Line 14 or Line 18. In the first case there was a vertex C̃i ∈ K
such that Ci = C̃i ∪ {v} for some v ∈ N(C̃i). By the induction hypothesis we
have C̃i ∈ B(Q) and by the definition of the colosseum we have (Ci, C̃i) ∈ E(H)
and, thus, Ci ∈ B(Q). In the second case there where vertices C̃i and Ĉi with
C̃i, Ĉi ∈ K and Ci = C̃i ∪ Ĉi. By the induction hypothesis we have again
C̃i, Ĉi ∈ B(Q). Let t1, . . . , t� be the connected components of C̃i and Ĉi. Since
the colosseum H is universal consistent with respect to Q by Lemma 3, we have
t1, . . . , t� ∈ B(Q). By the definition of the colosseum we have N∀(Ci) = t1, . . . , t�
and, thus, Ci ∈ B(Q).

To see B(Q) ⊆ K consider for a contradiction the vertices of B(Q) in reversed
topological order (recall that H is acyclic) and let C be the first vertex in this
order with C ∈ B(Q) and C �∈ K. If C ∈ Q we have C ∈ K by phase I and are
done, so assume otherwise. Since C ∈ B(Q) we have either N∃(C)∩B(Q) �= ∅ or
∅ �= N∀(C) ⊆ B(Q). In the first case there is a C̃ ∈ B(Q) with (C, C̃) ∈ E(H).
Therefore, C̃ precedes C in the reversed topological order and, by the choice of
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C, we have C̃ ∈ K. Therefore, at some point of the algorithm C̃ gets extracted
from the queue and, in Line 14, would add C to K, a contradiction.

In the second case there are vertices t1, . . . , t� with N∀(C) = {t1, . . . , t�}
and t1, . . . , t� ∈ B(Q). By the choice of C, we have again t1, . . . , t� ∈ K. Since
H is universal consistent with respect to Q, we have for every I ⊆ {1, . . . , �}
that

⋃
i∈I ti is contained in B(Q). In particular, the vertices t1 ∪ t2, t3 ∪ t4, . . . ,

t�−1 ∪ t� are contained in B(Q), and these elements are added to K whenever
the ti are processed (for simplicity assume here that � is a power of 2). Once
these elements are processed, Line 18 will also add their union, that is, vertices
of the form (t1 ∪ t2) ∪ (t3 ∪ t4). In this way, the process will add vertices that
correspond to increasing subgraphs of G to K, resulting ultimately in adding⋃�

i=1 ti = C into K, which is the contradiction we have been looking for.
Finally, once the set B(Q) is known, it is easy to compute the subgraph

colosseum(G, k)[B(Q)], that is, to compute the edges of the subgraph induced
by B(Q). Phase III essentially iterates over all vertices and adds edges according
to the definition of the colosseum.

For the runtime, observe that the queue will contain exactly the set B(Q) and,
for every element extracted, we search through the current K ′ ⊆ B(Q), which
leads to the quadratic timebound of |B(Q)|2. Furthermore, we have to compute
the neighborhood of every extracted element, and we have to test whether two
such configurations intersect – both can easily be achieved in time O(|V |2).
Finally, in phase III we have to compute connected components of the elements
in B(Q), but since this is possible in time O(|V | + |E|) per element, it is clearly
possible in time |B(Q)| · |V |2 for the whole graph. ��

Listing 1.1. Discover(G, k)
1 V (pit(G, k)) := ∅
2 E(pit(G, k)) := ∅
3 A(pit(G, k)) := ∅
4 initialize empty queue

5 // Phase I: compute Q

6 for v ∈ V (G) do

7 insert({v}, k − 1)

8 end

9 // Phase II: compute B(Q) = V (pit(G, k))

10 while queue not empty do

11 extract C from queue

12 // reverse fly−moves

13 for v ∈ N(C) do

14 insert(C ∪ {v}, k − 1)

15 end

16 // reverse reveal−moves

17 for C′ ∈ V (pit(G, k)) with C ∩ C′ = ∅ do

18 insert(C ∪ C′, k)

19 end

20 end

21 // Phase III: compute E and A

22 discoverEdges()

23 return
(
V (pit(G, k)), E(pit(G, k)), A(pit(G, k))

)

Listing 1.2. insert(C, t)
1if C �∈ V (pit(G, k)) and |NG(C)| ≤ t then

2add C to V (pit(G, k))

3insert C into queue

4end

Listing 1.3. discoverEdges()
1for C ∈ V (pit(G, k)) do

2// add fly−move edges

3for v ∈ C do

4if C \ {v} ∈ V (pit(G, k)) then

5add (C, C \ {v}) to E(pit(G, k))

6end

7end

8// add reveal−move edges

9let C1, . . . , C� be

10the connected components of G[C]

11if C1, . . . , C� ∈ K then

12for i = 1 to � do

13add (C, Ci) to A(pit(G, k))

14end

15end

16end
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4 Distance Queries in Edge-Alternating Graphs

In the previous section we have discussed how to compute the pit for a given
graph and a given value k. The computation of treewidth now boils down to a
reachability problem within this pit. But, intuitively, the pit should be able to
give us much more information. In the present section we formalize this claim:
We will show that we can compute shortest edge-alternating paths. To get an
intuition of “distance” in edge-alternating graphs think about such a graph as
in our game and consider some vertex v. There is always one active player that
may decide to take one existential edge (a fly-move in our game), or the player
may decide to ask the opponent to make a move and, thus, has to handle all
universal edges (a reveal-move in our game). From the point of view of the active
player, the distance is thus the minimum over the minimum of the distances of
the existential edges and the maximum of the universal edges.

Definition 2 (Edge-Alternating Distance). Let H = (V,E,A) be an edge-
alternating graph with v ∈ V and Q ⊆ V , let further c0 ∈ N be a constant and
ωE : E → N and ωA : A → N be weight functions. The distance d(v,Q) from v
to Q is inductively defined as d(v,Q) = c0 for v ∈ Q and otherwise:

d(v,Q) = min
(

min
w∈N∃(v)

(d(w,Q) + ωE(v, w)), max
w∈N∀(v)

(d(w,Q) + ωA(v, w))
)
.

Lemma 4. Given an acyclic edge-alternating graph H = (V,E,A), weight func-
tions ωE : E → N and ωA : A → N, a source vertex s ∈ V , a subset of the
sinks Q, and a constant c0 ∈ N. The value d(s,Q) can be computed in time
O(|V |+ |E|+ |A|) and a corresponding edge-alternating path can be computed in
the same time.

Proof. Since H is acyclic we can compute a topological order of V using the
algorithm from [30]. We iterate over the vertices v in reversed order and compute
the distance as follows: if v is a sink we either set d(v,Q) = c0 or d(v,Q) = ∞,
depending on whether we have v ∈ Q. If v is not a sink we have already computed
d(w,Q) for all w ∈ N(v) and, hence, can compute d(v,Q) by the formula of
the definition. Since this algorithm has to consider every edge once, the whole
algorithm runs in time O(|V | + |E| + |A|). A path from s to Q of length d(s,Q)
can be found by backtracking the labels starting at s. ��
Theorem 2. Given a graph G = (V,E) and a number k ∈ N, we can decide in
time O(|pit(G, k + 1)|2 · |V |2) whether G has { treewidth, pathwidth, treedepth,
q-branched-treewidth, dependency-treewidth } at most k.

Sketch of Proof. All five problems have game theoretic characterizations in terms
of the same search game with the same configuration set [6,22,26]. More pre-
cisely, they condense to various distance questions within the colosseum by
assigning appropriate weights to the edges.

treewidth: To solve treewidth, it is sufficient to find any edge-alternating path
from the vertex Cs = V (G) to a vertex in Q. We can find a path by choosing
ωE and ωA as (x, y) �→ 0, and by setting c0 = 0.
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pathwidth: In the pathwidth game, the searchers are not allowed to perform any
reveal [6]. Hence, universal edges cannot be used and we set ωA to (x, y) �→ ∞.
By setting ωE to (x, y) �→ 0 and c0 = 0, we again only need to find some path
from V (G) to Q with weight less than ∞.

treedepth: In the game for treedepth, the searchers are not allowed to remove
a placed searcher again [26]. Hence, the searchers can only use k existential
edges. Choosing ωE as (x, y) �→ 1, ωA as (x, y) �→ 0, and c0 = 1 is sufficient.
We have to search a path of weight at most k.

q-branched-treewidth: For q-branched-treewidth we wish to use at most q
reveals [22]. By choosing ωE as (x, y) �→ 0, ωA as (x, y) �→ 1, and c0 = 0, we
have to search for a path of weight at most q.

dependency-treewidth: This parameter is in essence defined via graph search-
ing game that is equal to the game we study with some fly- and reveal-moves
forbidden. Forbidding a move can be archived by setting the weight of the
corresponding edge to ∞ and by searching for an edge-alternating path of
weight less then ∞. ��

5 Theoretical Bounds for Certain Graph Classes

In general, it is hard to compare the size of the arena, the colosseum, and the
pit. For instance, already simple graph classes as paths (Pn) and stars (Sn)
reveal that the colosseum may be smaller or larger than the arena (the arena
has size O(n3) on both, but the colosseum has size O(n) on Pn and O(2n) on
Sn, both with regard to their optimal treewidth 1). However, experimental data
of the PACE challenge [16,17] shows that the pit is very small in practice. In the
following, we are thus interested in graph classes where we can give theoretical
guarantees on the size of the pit. We will first show that the colosseum is indeed
often smaller than the arena (Lemma 5) and furthermore, that the pit might be
much smaller than the colosseum (Lemma 7).

Lemma 5. For every connected claw-free graph G = (V,E) and integer k ∈ N,
it holds that |colosseum(G, k)| ≤ ∑k

i=1

(
n
i

) · 22i ∈ O(
(
n
k

) · 4k).

Proof. Observe that in a claw-free graph every X ⊆ V separates G in at most
2 · |X| components, as every component is connected to a vertex in X (since G is
connected), but every vertex in X may be connected to at most two components
(otherwise it forms a claw). In the colosseum, every configuration C corresponds
to a separator N(C) of size at most k, and there are at most

∑k
i=1

(
n
i

)
such

separators. For each separator we may combine its associated components in an
arbitrary fashion to build configurations of the colosseum, but since there are at
most 2 · i components, we can build at most 22·i configurations. ��
We remark that the result of Lemma 5 can easily be extended to K1,t-free graphs
for every fixed t, and that this result is rather tight:

Lemma 6. Let G = (V,E) be a graph and k ∈ N be an integer. It holds that
|colosseum(G, k)| ≥ ∑k

i=1

(|Vi|
i

)
, where Vi = {v ∈ V : |N(v)| ≥ i}.
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Proof. Let X be any subset of at most i vertices from Vi with i ≤ k. As |X| ≤ i,
every vertex in X has a neighbour in V \ X. Hence, N(V \ X) = X and thus
|N(V \ X)| ≤ k and V \ X ∈ V (colosseum(G, k)). ��
We now show that the pit, on the other hand, can be substantially smaller than
the colosseum even for graphs with many high-degree vertices. For n, k ∈ N with
n ≥ 2k, we define the graph Pn,k on vertices V (Pn,k) = {v0, v1, . . . , vn·k, vn·k+1}.
For i = 1, . . . , n, let Xi = {v(i−1)·k+1, v(i−1)·k+2, . . . , v(i−1)·k+k}, X0 = {v0}, and
Xn+1 = {vn·k+1}. The edges E(Pn,k) are defined as

E(Pn,k) =
n⋃

i=1

{{u, v} | u, v ∈ Xi} ∪
n⋃

i=0

{{u, v} | u ∈ Xi, v ∈ Xi+1}.

Informally, Pn,k is constructed by taking a path of length n+2 and replacing the
inner vertices by cliques of size k that are completely connected to each other.

Lemma 7. It holds:
(i) tw(Pn,k) = pw(Pn,k) = 2k − 1; (ii) |arena(Pn,k, 2k)| = 2 · (

n·k+2
2k+1

)
;

(iii) |colosseum(Pn,k, 2k)| ≥ ∑2k
i=1

(
n·k
i

)
; (iv) |pit(Pn,k, 2k)| ∈ O(n2 + n · 26k).

6 Experimental Estimation of the Pit Size

A heavily optimized version of the treewidth algorithm described above has
been implemented in the Java library Jdrasil [2,4]. To show the usefulness of
our general approach, we experimentally compared the size of the pit, the arena,
and the colosseum for various named graphs known from the DIMACS Coloring
Challenge [29] or the PACE [16,17]. For each graph the values are taken for the
minimal k such that k searchers can win. Note that |arena(G, k)| ≤ |pit(G, k)|
holds only in 6 of 24 cases, emphasized by underlining.

Graph |V | |E| k Pit Arena Col.

Grotzsch 11 20 6 1,235 660 1,853
Heawood 14 21 6 5,601 6,864 9,984
Chvatal 12 24 7 3,170 990 3,895
Goldner Harary 11 27 4 103 924 639
Sierpinski Gasket 15 27 4 488 6,006 2,494
Blanusa 2. Snark 18 27 5 861 37,128 15,413
Icosahedral 12 30 7 2,380 990 3,575
Pappus 18 27 7 54,004 87,516 97,970
Desargues 20 30 7 85,146 251,940 202,661
Dodecahedral 20 30 7 112,924 251,940 207,165
Flower Snark 20 30 7 79,842 251,940 203,473
Gen. Petersen 20 30 7 78,384 251,940 202,685

Graph |V | |E| k Pit Arena Col.

Hoffman 16 32 7 5,851 25,740 30,270
Friendship 10 21 30 3 57,554 11,970 58,695
Poussin 15 39 7 3,745 12,870 17,358
Markstroem 24 36 5 13,846 269,192 71,604
McGee 24 36 8 487,883 2,615,008 1,905,241
Naru 24 36 7 41,623 1,470,942 708,044
Clebsch 16 40 9 20,035 16,016 55,040
Folkman 20 40 7 21,661 251,940 151,791
Errera 17 45 7 3,527 48,620 42,418
Shrikhande 16 48 10 50,627 8,736 61,456
Paley 17 68 12 114,479 4,760 129,474
Goethals Seidel 16 72 12 54,833 1,120 65296

We have performed the same experiment on various random graph models.
For each model we picked 25 graphs at random and build the mean over all
instances, where each instance contributed values for its minimal k. We used all
3 models with N = 25 and, for the first two with p = 0.33; and for the later two
with K = 5. For a detailed description of the models see for instance [10].

Finally, we observe the growth of the pit, the arena, and the colosseum for a
fixed graph if we raise k from 2 to the optimal value. While the arena shows its
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Model |pit(G,OPT)| |arena(G,OPT)| |colosseum(G,OPT)|
Erdős–Rényi 66,320 342,918 503,767

Watts Strogats 15,323 192,185 108,074

Barabási Albert 61,147 352,716 551,661

binomial behavior, the colosseum is in many early stages actually smaller then
the arena. This effect is even more extreme for the pit, which is very small for
k that are smaller then the optimum. This makes the technique especially well
suited to establish lower bounds, an observation also made by Tamaki [42].
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7 Conclusion and Outlook

Treewidth is one of the most useful graph parameters that is successfully used in
many different areas. The Positive-Instance Driven algorithm of Tamaki has led
to the first practically relevant algorithm for this parameter. We have formalized
Tamaki’s algorithm in the more general setting of graph searching, which has
allowed us to (i) provide a clean and simple formulation; and (ii) extend the algo-
rithm to many natural graph parameters. With a few further modification of the
colosseum, our approach can also be used for the notion of special-treewidth [13].
We assume that a similar modification may also be possible for other parameters
such as spaghetti-treewidth [9].

Acknowledgements. The authors would like to thank Jan Arne Telle and Fedor
Fomin for helpful discussions about the topic and its presentation.



Positive-Instance Driven Dynamic Programming for Graph Searching 55

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)

2. Bannach, M., Berndt, S., , T.E.: Jdrasil (2017). https://github.com/maxbannach/
Jdrasil. Accessed 09 Feb 2019

3. Bannach, M., Berndt, S.: Practical access to dynamic programming on tree decom-
positions. In: ESA, pp. 6:1–6:13 (2018)

4. Bannach, M., Berndt, S., Ehlers, T.: Jdrasil: a modular library for computing tree
decompositions. In: SEA, pp. 28:1–28:21 (2017)

5. Berg, J., Järvisalo, M., Malone, B.: Learning optimal bounded treewidth bayesian
networks via maximum satisfiability. In: Artificial Intelligence and Statistics, pp.
86–95 (2014)

6. Bienstock, D., Seymour, P.D.: Monotonicity in graph searching. J. Algorithms
12(2), 239–245 (1991)

7. Bjesse, P., Kukula, J., Damiano, R., Stanion, T., Zhu, Y.: Guiding SAT diagnosis
with tree decompositions. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS,
vol. 2919, pp. 315–329. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24605-3 24

8. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

9. Bodlaender, H.L., Kratsch, S., Kreuzen, V.J.C., Kwon, O., Ok, S.: Characterizing
width two for variants of treewidth. Discrete Appl. Math. 216, 29–46 (2017)

10. Bollobás, B.: Random graphs. In: Bollobás, B. (ed.) Modern Graph Theory, pp.
215–252. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-0619-4 7
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Abstract. In this paper we study planar morphs between straight-line
planar grid drawings of trees. A morph consists of a sequence of mor-
phing steps, where in a morphing step vertices move along straight-line
trajectories at constant speed. We show how to construct planar morphs
that simultaneously achieve a reduced number of morphing steps and a
polynomially-bounded resolution. We assume that both the initial and
final drawings lie on the grid and we ensure that each morphing step
produces a grid drawing; further, we consider both upward drawings of
rooted trees and drawings of arbitrary trees.

1 Introduction

The problem of morphing combinatorial structures is a consolidated research
topic with important applications in several areas of Computer Science such as
Computational Geometry, Computer Graphics, Modeling, and Animation. The
structures of interest typically are drawings of graphs; a morph between two
drawings Γ0 and Γ1 of the same graph G is defined as a continuously changing
family of drawings {Γt} of G indexed by time t ∈ [0, 1], such that the drawing
at time t = 0 is Γ0 and the drawing at time t = 1 is Γ1. A morph is usually
required to preserve a certain drawing standard and pursues certain qualities.

The drawing standard is the set of the geometric properties that are main-
tained at any time during the morph. For example, if both Γ0 and Γ1 are planar
drawings, then the drawing standard might require that all the drawings of
the morph are planar. Other properties that might be required to be preserved
are the convexity of the faces, or the fact that the edges are straight-line seg-
ments, etc.

Regarding the qualities of the morph, the research up to now mainly focused
on limiting the number of morphing steps, where in a morphing step vertices
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move along straight-line trajectories at constant speed. A morph M can then
be described as a sequence of drawings M = 〈Γ0 = Δ0,Δ1, . . . , Δk = Γ1〉
where the morph 〈Δi−1,Δi〉, for i = 1, . . . , k, is a morphing step. Following the
pioneeristic works of Cairns and Thomassen [8,13], most of the literature focused
on the straight-line planar drawing standard. A sequence of recent results in [1–
5] proved that a linear number of morphing steps suffices, and is sometimes
necessary, to construct a morph between any two straight-line planar drawings
of a graph.

Although the results mentioned in the previous paragraph establish strong
theoretical foundations for the topic of morphing graph drawings, they pro-
duce morphs that are not appealing from a visualization perspective. Namely,
such algorithms produce drawings that have poor resolution, i.e., they may have
an exponential ratio of the distances between the farthest and closest pairs of
geometric objects (points representing vertices or segments representing edges),
even if the same ratio is polynomially bounded in the initial and final drawings.
Indeed, most of the above cited papers mention the problem of constructing
morphs with bounded resolution as the main challenge in this research area.

The only paper we are aware of where the resolution problem has been
successfully addressed is the one by Barrera-Cruz et al. [6], who showed
how to construct a morph with polynomially-bounded resolution between two
Schnyder drawings Γ0 and Γ1 of the same planar triangulation. The model
they use in order to ensure a bound on the resolution requires that Γ0 =
Δ0,Δ1, . . . , Δk = Γ1 are grid drawings, i.e., vertices have integer coordinates,
and the resolution is measured by comparing the area of Γ0 and Γ1 with the
area of the Δi’s. We remark that morphs between planar orthogonal drawings
of maximum-degree-4 planar graphs, like those in [7,12], inherently have poly-
nomial resolution.

In this paper we show how to construct morphs of tree drawings that simul-
taneously achieve a reduced number of morphing steps and a polynomially-
bounded resolution. Adopting the setting of [6], we assume that Γ0 and Γ1 are
grid drawings and we ensure that each morphing step produces a grid drawing.

We present three algorithms. The first two algorithms construct morphs
between any two strictly-upward straight-line planar grid drawings Γ0 and Γ1 of
n-node rooted trees; strictly-upward drawings are such that each node lies above
its children. Both algorithms construct morphs in which each intermediate grid
drawing has linear width and height, where the input size is measured by n and
by the width and the height of Γ0 and Γ1. The first algorithm employs Θ(n)
morphing steps. The second algorithm employs Θ(1) morphing steps, however it
only applies to binary trees. The third algorithm allows us to achieve our main
result, namely that for any two straight-line planar grid drawings Γ0 and Γ1 of
an n-node tree, there is a planar morph with Θ(n) morphing steps between Γ0

and Γ1 such that each intermediate grid drawing has polynomial area, where the
input size is again measured by n and by the width and the height of Γ0 and Γ1.

The first algorithm uses recursion; namely, it eliminates a leaf in the tree, it
recursively morphs the drawings of the remaining tree and it then reintroduces



How to Morph a Tree on a Small Grid 59

the removed leaf in suitable positions during the morph. The second algorithm
morphs the given drawings by independently changing their x- and y-coordinates;
this technique is reminiscent of a recent paper by Da Lozzo et al. [10]. Finally, the
third algorithm scales the given drawings up in order to make room for a bottom-
up modification of each drawing into a “canonical” drawing of the tree.

Missing proofs can be found in the full version of the paper.

2 Preliminaries

In this section we introduce some definitions and preliminaries; see also [11].

Trees. The node and edge sets of a tree T are denoted by V (T ) and E(T ),
respectively. The degree deg(v) of a node v of T is the number of its neighbors.
In an ordered tree, a counter-clockwise order of the edges incident to each node
is specified.

A rooted tree T is a tree with one distinguished node, which is called root and
is denoted by r(T ). For any node u ∈ V (T ) with u �= r(T ), the parent p(u) of u
is the neighbor of u in the unique path from u to r(T ). For any node u ∈ V (T )
with u �= r(T ), the children of u are the neighbors of u different from p(u); the
children of r(T ) are all its neighbors. The nodes that have children are called
internal; a non-internal node is a leaf. For any node u ∈ V (T ) with u �= r(T ),
the subtree Tu of T rooted at u is defined as follows: remove from T the edge
(u, p(u)), thus separating T in two trees; the one containing u is the subtree of T
rooted at u. If each node of T has at most two children, then T is a binary tree.

An ordered rooted tree is a tree that is rooted and ordered. In an ordered
rooted tree T , for each node u ∈ V (T ), a left-to-right (linear) order u1, . . . , uk of
the children of u is specified. If T is binary then the first (second) child in the
left-to-right order of the children of any node u is the left (right) child of u, and
the subtree rooted at the left (right) child of u is the left (right) subtree of u.

Tree Drawings. In a straight-line drawing Γ of a tree T each node u is rep-
resented by a point of the plane (whose coordinates are denoted by xΓ (u) and
yΓ (u)) and each edge is represented by a straight-line segment between its end-
points. All the drawings considered in this paper are straight-line, even when not
specified. In a planar drawing no two edges intersect except, possibly, at com-
mon end-points. For a rooted tree T , a strictly-upward drawing Γ is such that
each edge (u, p(u)) ∈ E(T ) is represented by a curve monotonically increasing in
the y-direction from u to p(u); if Γ is a straight-line drawing, this is equivalent
to requiring that yΓ (u) < yΓ (p(u)). For an ordered tree T , an order-preserving
drawing Γ is such that, for each node u ∈ V (T ), the counter-clockwise order of
the edges incident to u in Γ is the same as the order associated with u in T .

The bounding box of a drawing Γ is the smallest axis-parallel rectangle enclos-
ing Γ . In a grid drawing Γ each node has integer coordinates; then the width
and the height of Γ , denoted by w(Γ ) and h(Γ ), respectively, are the number of
grid columns and rows intersecting the bounding box of Γ , while the area of Γ
is its width times its height. For a node v in a drawing Γ , an �-box centered at
v is the convex hull of the square whose corners are (xΓ (v) ± �

2 , yΓ (v) ± �
2 ).
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Morphs. A morph is planar if all its intermediate drawings are planar. A morph
between two strictly-upward drawings of a rooted tree is upward if all its interme-
diate drawings are strictly-upward. A morph is linear if each node moves along a
straight-line trajectory at constant speed. Whenever the linear morph between
two straight-line planar drawings Γ0 and Γ1 of a graph G is not planar, one
is usually interested in the construction of a piecewise-linear morph with small
complexity between Γ0 and Γ1. This is formalized by defining a morph between
Γ0 and Γ1 as a sequence 〈Γ0 = Δ0,Δ1, . . . , Δk = Γ1〉 of drawings of G such
that the linear morph 〈Δi−1,Δi〉 is planar, for i = 1, . . . , k; each linear morph
〈Δi−1,Δi〉 is called a morphing step or simply a step.

The width w(M) of a morph M = 〈Δ0,Δ1, . . . , Δk〉, where Δi is a grid
drawing, for i = 0, 1, . . . , k, is equal to max{w(Δ0), w(Δ1), . . . , w(Δk)}. The
height h(M) of M is defined analogously. The area of a morph M is defined as
w(M) × h(M).

The algorithms we design in this paper receive in input two order-preserving
straight-line planar grid drawings Γ0 and Γ1 of an ordered tree and construct
morphs 〈Γ0 = Δ0,Δ1, . . . , Δk = Γ1〉 with few steps and small area.

Remark 1. A necessary and sufficient condition for the existence of a planar
morph between two straight-line planar drawings Γ0 and Γ1 of a tree T is that
they are “topologically-equivalent”, i.e., the counter-clockwise order of the edges
incident to each node u ∈ V (T ) is the same in Γ0 and Γ1. In order to better
exploit standard terminology about tree drawings, we ensure that Γ0 and Γ1

are topologically-equivalent by assuming that T is ordered and that Γ0 and Γ1

are order-preserving drawings; hence, dealing with ordered trees and with order-
preserving drawings is not a loss of generality.

Remark 2. The width and height of the morphs we construct are expressed not
only in terms of the number of nodes of the input tree T , but also in terms of
the width and height of the input drawings Γ0 and Γ1 of T ; this is necessary,
given that max{w(Γ0), w(Γ1)} and max{h(Γ0), h(Γ1)} are obvious lower bounds
for the width and height of any morph between Γ0 and Γ1, respectively.

Remark 3. The morphs 〈Δ0,Δ1, . . . , Δk〉 we construct in this paper are such
that Δ0,Δ1, . . . , Δk are grid drawings, even when not explicitly specified.

3 Upward Planar Morphs of Rooted-Tree Drawings

In this section we study small-area morphs between order-preserving strictly-
upward straight-line planar grid drawings of rooted ordered trees.

Our first result shows that such morphs can always be constructed consist-
ing of a linear number of steps. This is obtained via an inductive algorithm
which is described in the following. Let T be an n-node rooted ordered tree. The
rightmost path of T is the maximal path (s0, . . . , sm) such that s0 = r(T ) and
si is the rightmost child of si−1, for i = 1, . . . , m. Note that sm is a leaf, which
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Γ0 Γ1Γ1Γ0

Fig. 1. The 3-step morph 〈Γ0, Γ
′
0, Γ

′
1, Γ1〉.

is called the rightmost leaf l→T of T . For a straight-line grid drawing Γ , denote
by �Γ the rightmost vertical line intersecting Γ ; note that �Γ is a grid column.

Let Γ0 and Γ1 be two order-preserving strictly-upward straight-line planar
grid drawings of T . We inductively construct a morph M from Γ0 to Γ1 as follows.

In the base case n = 1; then M is the linear morph 〈Γ0, Γ1〉.
In the inductive case n > 1. Let l = l→T be the rightmost leaf of T . Let π = p(l)

be the parent of l. Let T ′ be the (n− 1)-node tree obtained from T by removing
the node l and the edge (π, l). Let Γ ′

0 and Γ ′
1 be the drawings of T ′ obtained from

Γ0 and Γ1, respectively, by removing the node l and the edge (π, l). Inductively
compute a k-step upward planar morph M′ = 〈Γ ′

0 = Δ′
1,Δ

′
2, . . . , Δ

′
k = Γ ′

1〉.
We now construct a morph M = 〈Γ0,Δ1,Δ2, . . . , Δk, Γ1〉. For each i =

2, 3, . . . , k − 1, we define Δi as the drawing obtained from Δ′
i by placing l one

unit below π and one unit to the right of �Δ′
i
. Further, we define Δ1 (Δk) as

the drawing obtained from Δ′
1 (resp. from Δ′

k) by placing l one unit below π
and one unit to the right of �Γ0 (resp. �Γ1). Note that the point at which l is
placed in Δ1 (in Δk) is one unit to the right of �Δ′

1
(resp. �Δ′

k
), similarly as in

Δ2,Δ3, . . . , Δk−1, except if l is to the right of every other node of Γ0 (of Γ1); in
that case l might be several units to the right of �Δ′

1
(resp. �Δ′

k
). This completes

the construction of M. We get the following.

Theorem 1. Let T be an n-node rooted ordered tree, and let Γ0 and Γ1 be two
order-preserving strictly-upward straight-line planar grid drawings of T . There
exists a (2n − 1)-step upward planar morph M from Γ0 to Γ1 with h(M) =
max{h(Γ0), h(Γ1)} and w(M) = max{w(Γ0), w(Γ1)} + n − 1.

In view of Theorem 1, it is natural to ask whether a sub-linear number of
steps suffices to construct a small-area morph between any two order-preserving
strictly-upward straight-line planar grid drawings of a rooted ordered tree. In
the following we prove that this is indeed the case for binary trees, for which
just three morphing steps are sufficient.

Our algorithm borrows ideas from a recent paper by Da Lozzo et al. [10],
which deals with upward planar morphs of upward plane graphs.

Consider any two order-preserving strictly-upward straight-line planar grid
drawings Γ0 and Γ1 of an n-node rooted ordered binary tree T . We define two
order-preserving strictly-upward straight-line planar grid drawings Γ ′

0 and Γ ′
1 of

T such that the 3-step morph 〈Γ0, Γ
′
0, Γ

′
1, Γ1〉 is upward and planar.
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upwardrightward

downward leftward

r(T )

Fig. 2. Four canonical drawings of a tree T (each shown in a differently colored
quadrant).

For i = 0, 1, we define Γ ′
i recursively as follows; see Fig. 1. Let xΓ ′

i
(r(T )) = 0

and let yΓ ′
i
(r(T )) = yΓi

(r(T )). If the left subtree L of r(T ) is non-empty, then
recursively construct a drawing of it. Let xM be the maximum x-coordinate of
a node in the constructed drawing of L; horizontally translate such a drawing
by subtracting xM + 1 from the x-coordinate of every node in L, so that the
maximum x-coordinate of any node in L is now −1. Symmetrically, if the right
subtree R of r(T ) is non-empty, then recursively construct a drawing of it. Let
xm be the minimum x-coordinate of a node in the constructed drawing of R;
horizontally translate such a drawing by subtracting xm−1 from the x-coordinate
of every node in R, so that the minimum x-coordinate of any node in R is now 1.

Theorem 2. Let T be an n-node rooted ordered binary tree, and let Γ0 and Γ1

be two order-preserving strictly-upward straight-line planar grid drawings of T .
There exists a 3-step upward planar morph M from Γ0 to Γ1 with h(M) =
max{h(Γ0), h(Γ1)} and w(M) = max{w(Γ0), w(Γ1), n}.

The algorithm presented before Theorem 2 can be easily generalized to rooted
ordered trees with unbounded degree. Thus, there exists a 3-step upward planar
morph between any two order-preserving strictly-upward straight-line planar
grid drawings of an n-node rooted ordered tree. However, the generalized version
of the algorithm does not guarantee polynomial bounds on the width of the
morph.

4 Planar Morphs of Tree Drawings

In this section we show how to construct small-area morphs between straight-line
planar grid drawings of trees. In particular, we prove the following result.

Theorem 3. Let T be an n-node ordered tree and let Γ0 and Γ1 be two order-
preserving straight-line planar grid drawings of T . There exists an O(n)-step pla-
nar morph M from Γ0 to Γ1 with h(M) ∈ O(D3n ·H) and w(M) ∈ O(D3n ·W ),
where H = max{h(Γ0), h(Γ1)}, W = max{w(Γ0), w(Γ1)}, and D = max{H,W}.
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The rest of this section is devoted to the proof of Theorem 3. We are going
to use the following definition (see Fig. 2).

Definition 1. An upward canonical drawing of a rooted ordered tree T is an
order-preserving strictly-upward straight-line planar grid drawing Γ of T satis-
fying the following properties:

– if |V (T )| = 1, then Γ is a grid point in the plane, representing r(T );
– otherwise, let Γ1, . . . , Γk be upward canonical drawings of the subtrees

T1, . . . , Tk of r(T ) (in their left-to-right order), respectively; then Γ is such
that:

• r(T ) is one unit to the left and one unit above the top-left corner of the
bounding box of Γ1;

• the top sides of the bounding boxes of Γ1, . . . , Γk have the same y-
coordinate; and

• the right side of the bounding box of Γi is one unit to the left of the left
side of the bounding box of Γi+1, for i = 1, . . . , k − 1.

By counter-clockwise rotating an upward canonical drawing of T by π
2 , π, and

3π
2 radians, we obtain a leftward, a downward, and a rightward canonical drawing

of T , respectively. A canonical drawing of T is an upward, leftward, downward,
or rightward canonical drawing of T . In an upward, leftward, downward, or
rightward canonical drawing Γ of T , r(T ) is placed at the top-left, bottom-left,
bottom-right, and top-right corner of the bounding box of Γ , respectively.

Remark 4. If T has n nodes, then a canonical drawing of T lies in the 2n-box
centered at r(T ).

The following lemma allows us to morph one canonical drawing into another
in a constant number of morphing steps.

Lemma 1 (Pinwheel). Let Γ and Γ ′ be two canonical drawings of a rooted
ordered tree T , where r(T ) is at the same point in Γ and Γ ′. If Γ and Γ ′ are
upward and leftward, or leftward and downward, or downward and rightward, or
rightward and upward, then the morph 〈Γ, Γ ′〉 is planar and lies in the interior
of the right, top, left, or bottom half of the 2n-box centered at r(T ), respectively.

We now describe the proof of Theorem 3. Let T be an n-node ordered tree
and let Γ0 and Γ1 be two order-preserving straight-line planar grid drawings of T .
In order to compute a morph M from Γ0 to Γ1, we root T at any leaf r(T ). Since
T is ordered, this determines a left-to-right order of the children of each node.

We construct three morphs: a morph M0 from Γ0 to a canonical drawing
Γ ∗
0 of T , a morph M1 from Γ1 to a canonical drawing Γ ∗

1 of T , and a morph
M0,1 from Γ ∗

0 to Γ ∗
1 . Then M is composed of M0, of M0,1, and of the reverse

of M1. The morph M0,1 consists of O(1) steps and can be constructed by
applying Lemma 1. We describe how to construct M0; the construction of M1

is analogous.
Let T [0] be the tree T together with a labeling of each of the k internal nodes

of T as unvisited and of each leaf as visited. We perform a bottom-up visit of
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Fig. 3. (a) A partially-canonical drawing Δi−1 of tree T [i − 1]; the subtree T ∗ lies in
the gray region, visited and unvisited nodes are represented as squares and circles,
respectively. (b) Drawing Δ′ of the morph 〈Δi−1, Δ

′〉 of Claim 3.1.

T , labeling one-by-one the internal nodes of T as visited. We label a node v as
visited only after all of its children have been labeled as visited. We denote
by T [i] the tree T once i of its internal nodes have been labeled as visited.

Let D0 = max{w(Γ0), h(Γ0)}. Let Γ be a drawing of T and let v be a node
of T . We denote by Large(v), Med(v), and Small(v) the (�0 + 4n)-box, the
�0-box, and the 2n-box centered at v in Γ , respectively, where �0 = k0D

2
0n for

some constant k0 > 1 to be determined later. We have the following definition.

Definition 2. An order-preserving straight-line planar grid drawing Γ of T
is a partially-canonical drawing of T [i] if it satisfies the following properties
(Fig. 3a):

(a) for each visited node u of T , the drawing Γu of Tu in Γ is upward
canonical or downward canonical; further, if u �= r(T ), then Γu is upward
canonical, if yΓ (u) ≤ yΓ (p(u)), or downward canonical, if yΓ (u) >
yΓ (p(u));

(b) for each edge e = (v, u) of T , where v is the parent of u and v is
unvisited, there exists a sector Se of a circumference centered at v such
that:

(b.i) Se encloses Small(u);
(b.ii) Se contains no node with the exception of v and of, possibly, the nodes

of Tu, and no edge with the exception of (u, v) and of, possibly, the edges
of Tu;

(b.iii) the intersection between Se and Med(v) contains a 2n-box Bu whose cor-
ners have integer coordinates and whose center cu is such that yΓ (cu) ≤
yΓ (v) if and only if yΓ (u) ≤ yΓ (v); and

(b.iv) for any edge e′ �= e incident to v, the sectors Se and Se′ are internally
disjoint;

(c) for any two unvisited nodes v and w, it holds Large(v)∩Large(w) = ∅;
and
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(d) for each unvisited node v of T , Large(v) contains no node different
from v, and any edge e or any sector Se intersecting Large(v) is such
that e is incident to v.

Note that, by Property (a), a partially-canonical drawing of T [k] is a canon-
ical drawing.

The algorithm to construct M0 is as follows. First, we scale Γ0 up by a factor
in O(D3

0n) so that the resulting drawing Δ0 is a partially-canonical drawing of
T [0] (see Lemma 2). Clearly, the morph M0 = 〈Γ0,Δ0〉 is planar, w(M0) =
w(Δ0), and h(M0) = h(Δ0).

For i = 1, . . . , k, let vi be the node that is labeled as visited at the i-th step
of the bottom-up visit of T . Starting from a partially-canonical drawing Δi−1

of T [i − 1], we construct a partially-canonical drawing Δi of T [i] and a morph
Mi−1,i from Δi−1 to Δi with O(deg(vi)) steps, with w(Mi−1,i) = w(Δi−1) and
h(Mi−1,i) = h(Δi−1) (see Lemma 3).

Composing M0,M0,1,M1,2, . . . ,Mk−1,k yields the desired morph M0

from Γ0 to a canonical drawing Δk = Γ ∗
0 of T . The morph has

∑
i deg(vi) ∈ O(n)

steps (by Lemma 3). Further, w(M0) = w(Δ0) and h(M0) = h(Δ0) (by
Lemma 3), hence w(M0) ∈ O(D3

0n · w(Γ0)) and h(M0) ∈ O(D3
0n · h(Γ0)) (by

Lemma 2).

Lemma 2. There is an integer B0 ∈ O(D3
0n) such that the drawing Δ0 obtained

by scaling the drawing Γ0 of T up by B0 is a partially-canonical drawing of T [0].

Lemma 3. For any i ∈ {1, . . . , k}, let Δi−1 be a partially-canonical drawing of
T [i−1]. There exists a partially-canonical drawing Δi of T [i] and an O(deg(vi))-
step planar morph Mi−1,i from Δi−1 to Δi such that w(Mi−1,i) ≤ w(Δ0)+�0+
4n and h(Mi−1,i) ≤ h(Δ0) + �0 + 4n.

The rest of the section is devoted to the proof of Lemma 3. We denote by T ∗

the tree obtained by removing from T the nodes of Tvi
and their incident edges.

Let Δi be the straight-line drawing of T obtained from Δi−1 by redrawing Tvi
so

that it is upward canonical, if yΔi−1(vi) ≤ yΔi−1(p(vi)), or downward canonical,
otherwise, while keeping the placement of vi and of every node of T ∗ unchanged.

Lemma 4. The drawing Δi is a partially-canonical drawing of T [i].

We show how to construct a morph Mi−1,i from Δi−1 to Δi satisfying the
properties of the statement of the lemma. This is done in several stages as follows.

First, consider the drawing Δ′ of T obtained as described next; refer to
Fig. 3b. Initialize Δ′ = Δi−1. Then, for each child u of vi, translate the drawing
of Tu so that u is at the center of a 2n-box Bu that lies in the intersection
between Se and Med(vi), whose corners have integer coordinates, and whose
center cu is such that yΔi−1(cu) ≤ yΔi−1(vi) if and only if yΔi−1(u) ≤ yΔi−1(vi);
such a box exists by Property (b.iii) of Δi−1. Also, redraw the edge (vi, u) as a
straight-line segment in Δ′.
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Claim 3.1 The morph 〈Δi−1,Δ
′〉 is planar.

vi

p(vi)

R2

R3

R4

R1

Med(vi)
Large(vi)

SL SR

Fig. 4. Regions for vi.

Second, we show how to move the subtrees rooted
at the children of vi in the interior of Large(vi), so
that they land in the position they have in Δi. The
way we deal with such subtrees depends on their
placement with respect to vi and to the drawing
of edge (vi, p(vi)). We consider the case in which
y(p(vi)) ≥ y(vi) and x(p(vi)) ≥ x(vi); the other cases
can be treated similarly. In particular, we distinguish
four regions R1, R2, R3, and R4 defined as follows;
refer to Fig. 4. Let h→(v) and h←(v) be the horizontal
rays originating at a node v and directed rightward
and leftward, respectively. Further, let h↑(v) be the
horizontal ray originating at a node v and directed upward.

u3 u2

vi

u1
R2

SR

Large(vi)Med(vi)

(a) Δ

R2

SR

Large(vi)Med(vi)

u3 u2

u1

vi

(b) Ψ1

SR

Large(vi)Med(vi)

R2

vi

(c) Ψ3

Large(vi)Med(vi)

R2 SR

vi

(d) Δ+

Fig. 5. Illustrations for Lemma 3, focused on the children of vi that lie in R2.

Region R1 is defined as the intersection of Med(vi) with the wedge centered
at vi obtained by counter-clockwise rotating h→(vi) until it passes through
p(vi); note that, if (vi, p(vi)) is a horizontal segment, then R1 = ∅.

Region R2 is the rectangular region that is the lower half of Med(vi);
Region R3 is defined as the intersection of Med(vi) with the wedge centered

at vi obtained by clockwise rotating h←(vi) until it coincides with h↑(vi); and
Region R4 is defined as the intersection of Med(vi) with the wedge centered

at vi obtained by clockwise rotating h↑(vi) until it passes through p(vi); note
that, if (vi, p(vi)) is a vertical segment, then R4 = ∅.

Note that Med(vi) = R1 ∪ R2 ∪ R3 ∪ R4.
We define two more regions (see Fig. 4), which will be exploited as “buffers”

that allow us to rotate subtrees via Lemma 1 without introducing crossings.
Let SL and SR be the rectangular regions in Δ′ containing all the points in
Large(vi) − Med(vi) to the left of the left side of Med(vi) and to the right
of the right side of Med(vi), respectively. Observe that, since Δi−1 satisfies
Property (d) of a partially-canonical drawing and by the construction of Δ′,
the region SL is empty, while the region SR may only be traversed by the edge
(vi, p(vi)).
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Fig. 6. Illustrations for Lemma 3, focused on the children of vi that lie in R1.

We start by dealing with the children uj of vi that lie in the interior of R2; refer
to Fig. 5. Consider the edges (vi, uj) in the order (vi, u1), (vi, u2), . . . , (vi, um) in
which such edges are encountered while clockwise rotating h→(vi); see Fig. 5a. Let
Ψ1 be the drawing obtained from Δ′ by translating the drawing of the tree Tu1 so
that u1 lies in the interior of SR and one unit below vi and so that the right side of
the bounding box of the drawing of Tu1 lies upon the right side of Large(vi), and
by redrawing the edge (vi, u1) as a straight-line segment.

Claim 3.2 The morph 〈Δ′, Ψ1〉 is planar.

For j = 2, . . . , m, let Ψj be the drawing obtained from Ψj−1 by translating
the drawing of the tree Tuj

so that uj lies in the interior of SR and one unit
below vi and so that the right side of the bounding box of the drawing of Tuj

lies
one unit to the left of uj−1, and by redrawing the edge (vi, uj) as a straight-line
segment.

Claim 3.3 For j = 2, . . . , m, the morph 〈Ψj−1, Ψj〉 is planar.

Let Δ+ be the drawing obtained from Ψm by horizontally translating Tuj
so

that uj lands at its final position in Δi, and by redrawing the edge (vi, uj) as a
straight-line segment, for j = 1, 2, . . . ,m; see Fig. 5c and d.

Claim 3.4 The morph 〈Ψm,Δ+〉 is planar.

Next, we deal with the children uj of vi that lie in the interior of R1. Consider
the edges (vi, uj) in the order (vi, u1), (vi, u2), . . . , (vi, u�) in which such edges are
encountered while counter-clockwise rotating h→(vi) around vi; refer to Fig. 6.
We are going to move the subtrees rooted at the children of vi in R1, one by one in
the order Tu1 , Tu2 , . . . , Tu�

, so that they land in the position that they have in Δi.
Such a movement consists of four linear morphs. First, we rotate the drawing of
Tuj

so that it becomes leftward canonical (see Fig. 6b). Second, we translate the
drawing of Tuj

so that uj lies in the interior of SR and one unit below vi (see Fig.
6c). Third, we rotate the drawing of Tuj

so that it becomes upward canonical (see
Fig. 6d). Finally, we horizontally translate the drawing of Tuj

to its final position
in Δi (see Fig. 6e).
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We now provide the details of the above four linear morphs. For j = 1, . . . , �,
let ξ4j−1 be a drawing of T with the following properties, where ξ40 = Δ+ (refer
to Fig. 6a and e): (P1) the drawing of T ∗ is the same as in Δi; (P2) vi lies at
the same point as in Δi; (P3) the drawing of the subtrees of the children of vi

belonging to R2 (in Δ′), and the drawing of the subtrees Tu1 , Tu2 , . . . , Tuj−1 is
the same as in Δi; (P4) the drawing of the subtrees Tuj

, Tuj+1 , . . . , Tu�
is the

same as in Δ+; and (P5) the drawing of the subtrees rooted at the children of
vi that lie in the interior of R3 and R4 is the same as in Δ+.

For j = 1, . . . , �, we construct a drawing ξ1j from ξ4j−1 by rotating tree Tuj
so

that it is leftward canonical in ξ1j , and by leaving the position of the nodes not in
Tuj

unaltered. This rotation can be accomplished via a linear morph 〈ξ4j−1, ξ
1
j 〉

by Lemma 1; see Fig. 6b.

Claim 3.5 For j = 1, . . . , �, the morph 〈ξ4j−1, ξ
1
j 〉 is planar.

For j = 1, . . . , �, let ξ2j be the drawing obtained from ξ1j by translating the
drawing of Tuj

so that Small(uj) lies in the interior of SR and so that uj lies
one unit below vi, and by redrawing the edge (vi, uj) as a straight-line segment;
see Fig. 6c.

Claim 3.6 For j = 1, . . . , �, the morph 〈ξ1j , ξ2j 〉 is planar.

For j = 1, . . . , �, let ξ3j be the drawing obtained from ξ2j by rotating tree Tuj

so that it is upward canonical in ξ3j , and by leaving the position of the nodes not
in Tuj

unaltered. This rotation can be accomplished via a linear morph 〈ξ2j , ξ3j 〉,
by Lemma 1; see Fig. 6d.

Claim 3.7 For j = 1, . . . , �, the morph 〈ξ2j , ξ3j 〉 is planar.

Finally, for j = 1, . . . , �, let ξ4j be the drawing obtained from ξ3j by horizon-
tally translating Tuj

so that uj lies at its final position in Δi, and by leaving the
position of the nodes not in Tuj

unaltered; see Fig. 6e.

Claim 3.8 For j = 1, . . . , �, the morph 〈ξ3j , ξ4j 〉 is planar.

Note that the drawing ξ4� coincides with Δi, except for the drawing of the
subtrees lying in the interior of R3 and R4.

Subtrees in R3 are treated symmetrically to the ones in R1. In particular,
the subtrees of the children of vi that lie in R3 are processed according to the
clockwise order of the edges from vi to their roots, while the role played by SR

is now assumed by SL.
The treatment of the subtrees in R4 is similar to the one of the subtrees in

R3. However, when a subtree is considered, it is first horizontally translated in
the interior of R3 and then processed according to the rules for such a region.

Altogether, we have described a morph Mi−1,i from the partially-canonical
drawing Δi−1 of T [i− 1] to Δi, which is a partially-canonical drawing of T [i] by
Lemma 4. Next, we argue about the properties of Mi−1,i.
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We deal with the area requirements of Mi−1,i. Consider the drawing Δ0

and place the boxes Large(v) around the nodes v of T ; the bounding box of the
arrangement of such boxes has width w(Δ0)+�0+4n and height h(Δ0)+�0+4n.
We claim that the drawings of Mi−1,i lie inside such a bounding box. Assume
this is true for Δi−1 (this is indeed the case when i = 1); all subsequent drawings
of Mi−1,i coincide with Δi−1, except for the placement of the subtrees rooted at
the children of vi, which however lie inside Large(vi) in each of such drawings.
Since vi has the same position in Δi as in Δ0 and since Large(vi) has width and
height equal to �0 + 4n, the claim follows.

Finally, we deal with the number of linear morphs composing Mi−1,i. The
morph Mi−1,i consists of the morph 〈Δi−1,Δ

′〉, followed by the morphs needed
to drive the subtrees rooted at the children of vi to their final positions in Δi.
Since the number of morphing steps needed to deal with each of such subtrees is
constant, we conclude that Mi−1,i consists of O(deg(vi)) linear morphing steps.
This concludes the proof of Lemma 3.

5 Conclusions and Open Problems

We presented an algorithm that, given any two order-preserving straight-line
planar grid drawings Γ0 and Γ1 of an n-node ordered tree T , constructs a morph
〈Γ0 = Δ0,Δ1, . . . , Δk = Γ1〉 such that k is in O(n) and such that the area of each
intermediate drawing Δi is polynomial in n and in the area of Γ0 and Γ1. Better
bounds can be achieved if T is rooted and Γ0 and Γ1 are also strictly-upward
drawings, especially in the case in which T is a binary tree.

We make a remark about the generality of the model that we adopted. At a
first glance, our assumption that Γ0 and Γ1 are grid drawings seems restrictive,
and it seems more general to consider drawings that have bounded resolution.
However, by using an observation from [9], one can argue that two morphing
steps suffice to transform a drawing with resolution r in a grid drawing whose
area is polynomial in r. Namely, it suffices to scale each input drawing so that
the smallest distance between any pair of geometric objects (points representing
vertices or segments representing edges) is 2; this is a single morphing step which
does not change the resolution of the drawing, hence the largest distance between
any pair of geometric objects is in O(r). Then each node can be moved to the
nearest grid point; this is another morphing step, which is ensured to be planar
by the fact that each node moves by at most

√
2/2, hence this motion only brings

any two geometric objects closer by
√

2, while their distance is at least 2. Thus,
this results in a grid drawing on an O(r) × O(r) grid.

Several problems are left open. Is it possible to generalize our results to graph
classes richer than trees? Is it possible to improve our area bounds for morphs
of straight-line planar grid drawings of trees or even just of paths? Is there a
trade-off between the number of steps and the area required by a morph? Are
there other relevant tree drawing standards for which it makes sense to consider
the morphing problem?
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Abstract. We consider robust variants of the bin-packing problem
where the sizes of the items can take any value in a given uncertainty
set U ⊆ ×n

i=1[ai, ai + âi], where a ∈ [0, 1]n represents the nominal sizes
of the items and â ∈ [0, 1]n their possible deviations. We consider more
specifically two uncertainty sets previously studied in the literature. The
first set, denoted UΓ , contains scenarios in which at most Γ ∈ N items
deviate, each of them reaching its peak value ai + âi, while each other
item has its nominal value ai. The second set, denoted UΩ , bounds by
Ω ∈ [0, 1] the total amount of deviation in each scenario. We show that
a variant of the next-fit algorithm provides a 2-approximation for model
UΩ , and a 2(Γ +1) approximation for model UΓ (which can be improved
to 2 approximation for Γ = 1). This motivates the question of the exis-
tence of a constant ratio approximation algorithm for the UΓ model. Our
main result is to answer positively to this question by providing a 4.5
approximation for UΓ model based on dynamic programming.

Keywords: Bin-packing · Robust optimization ·
Approximation algorithm · Next-fit · Dynamic programming

1 Introduction

Bin packing is the problem of assigning a given set of n items, each item of a
specified size, to the smallest number of unit capacity bins. The problem has
been the subject of study in an extensive body of research initiated by several
publications in the 1970s including the work of Johnson et al. [11]. The problem
is NP-hard and in fact a straightforward reduction from the partition decision
problem implies that it is NP-hard to determine whether a bin-packing instance
has a solution using only two bins. This also shows that the problem cannot be
approximated within a factor less than 3/2. An approximation factor guarantee
of 3/2 has been proven for the first-fit decreasing algorithm by Simchi-Levi [16].
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Much of the research has concentrated on the asymptotic setting where n tends
to infinity, and in the online setting where the instance is not given in advance
but each item is revealed and packed one at a time. A fully polynomial-time
approximation scheme for the offline asymptotic problem is due to Karmarkar
and Karp [12]. The best asymptotic and absolute online competitive ratios of
1.578 and 5/3, respectively, are due to Balogh et al. in [4] and [3], respectively.

In many applications, the sizes of the items to be packed are not fully known
at the time that the packing is carried out. In cargo shipping, for example,
the actual weight of a container may deviate from its declared weight or its
measurements may be inaccurate. Bin packing has also been used to model the
assignment of elective surgeries to operating room in hospitals [8]. Here a bin
is a shift of a properly equipped and staffed operating room for performing
a certain type of elective surgeries. The room scheduler has to fit in the bins
as many cases (patients) as possible. In this setting clearly the length of time
of performing each surgery is subject to uncertainty for example in the event of
complications. One way to model the uncertainty that falls into the framework of
robust optimization is to assume that the sizes are uncertain parameters taking
any value in a given set U ⊂ R

n, where each a ∈ U represents a possible scenario.
This leads to the following problem (where the description of U is sometimes
not explicit to avoid exponential length in n)

RBP (Robust bin-packing)
Input: U ⊂ R

n

Output: A solution is a partition of [n] into k bins b1, . . . , bk such that
maxa∈U

∑
i∈bj

ai ≤ 1 for each j ∈ [k]
Minimize: k

Classically, robust combinatorial optimization has dealt with uncertain objec-
tive, meaning that the cost vector c can take any value in set U , unlike RBP
where the uncertainty affects the feasibility of the solutions. In that context, it
is well-known that arbitrary uncertainty sets U lead to robust counterparts that
are hardly approximable. For instance, the robust knapsack is not approximable
at all [1], while the shortest path, the spanning tree, the minimum cut, and the
assignment problem do not admit constant-ratios approximation algorithms, e.g.
[13,14]. Furthermore, describing U by an explicit list of scenarios runs the risk
of over-fitting so the optimal solutions may become infeasible for small varia-
tions outside U . These two drawbacks are usually tackled by using more specific
uncertainty sets, defined by simple budget constraints. One of these widely used
uncertainty sets, UΓ , supposes that the size of each item is either its given nomi-
nal size āi, or its peak value āi + âi. Furthermore, in any scenario, at most Γ ∈ N

of the items may assume their peak value simultaneously. Formally, UΓ can be
defined as UΓ = {a|∀i ∈ [n], ai ∈ {āi, āi + âi} and

∑
i∈[n](ai − āi)/âi ≤ Γ}.1 Set

UΓ has been widely used in robust combinatorial optimization with a constant
1 UΓ is often defined alternatively in the literature, as the polytope {a ∈ ×i∈[n][āi, āi+

âi] | ∑
i∈[n](ai − āi)/âi ≤ Γ}. For the bin-packing problem, one readily verifies using

classical arguments that the two definitions lead to the same optimization problem.
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number of constraints because the set essentially preserves the complexity and
approximability properties of the nominal problem. The result was initially pro-
posed for min-max problems in [6], and was independently extended to uncertain
constraints in [2,9], contrasting with the aformentionned uncertain objective. We
also consider a second uncertainty set (used in [10,18], among others), charac-
terized again by ā and â, as well as the number Ω ∈ [0, 1] stating how much
deviation can be spread among all sizes, formally UΩ = {a ∈ ×i∈[n][āi, āi + âi] |
∑

i∈[n](ai − āi) ≤ Ω}. From the approximability viewpoint, set UΩ benefits from
similar positive results as UΓ , see [15].

The above positive complexity results (e.g. [9,15]) imply, for instance, that
there exists a fully-polynomial time approximation scheme (FPTAS) for the
robust knapsack problem with uncertain profits and uncertain weights belong-
ing to UΩ and/or UΓ . Interestingly, these positive results do not extend to
most scheduling problems (because they involve non-linearities) and to the bin-
packing problem (because it involves a non-constant numbers of robust con-
straints). While in a previous paper [7] (with authors in common) we provided
approximability results on robust scheduling, no such results have yet been pro-
posed for the bin-packing problem, the only previous work focusing on numerical
algorithms [17]. The purpose of this paper is to fill these gaps, as we present
constant-ratio approximation algorithms the bin-packing problem, both for UΩ

and UΓ .

Notations, Problems Definitions, and Next-Fit Algorithm. In this paper
we consider two special cases of RBP. In the first one, ΓRBP, the input is
I = (n, a, â, Γ ) where n ∈ N, and we assume that U = UΓ . In the second one,
ΩRBP, the input is I = (n, a, â, Ω) where n ∈ N, a ∈ [0, 1]n, â ∈ [0, 1]n, and
Ω ∈ [0, 1], and we assume that U = UΩ.

Let us now provide some important notations that will allow us to restate
ΓRBP and ΩRBP in a more convenient way. Given n ∈ N, sets {0, 1, . . . , n}
and {1, . . . , n} are respectively denoted [n]0 and [n]. Set {i, . . . , j} is denoted by
�i, j�. Given a vector v ∈ [0, 1]n and a subset X ⊆ [n], we define v(X) =

∑
i∈X vi.

Given two vectors a ∈ [0, 1]n, â ∈ [0, 1]n and a subset of items X ⊆ [n], we define
âΩ(X) = min{â(X), Ω}, Γ (X) as the set of Γ items in X with largest â values
(ties broken by taking smallest indices), or Γ (X) = X if |X| < Γ , and âΓ (X) =
â(Γ (X)). Accordingly, we define the fill of a bin b ⊆ [n] as fΓ (b) = a(b) + âΓ (b)
for set UΓ , and fΩ(b) = ā(b) + âΩ(b) for set UΩ . The fill of a bin for a general
uncertainty set U is denoted as fU (b) = maxa∈U a(b).

Consider the following example. We are given an ordered set of pairs (āi, âi),
X = {(0.3, 0.2), (0.4, 0.2), (0.3, 0.1), (0.2, 0.5)} with Γ = 2 and Ω = 0.3. Thus,
Γ (X) = {(0.3, 0.2), (0.2, 0.5)}, ā(X) = 1.2, âΓ (X) = 0.7, and fΓ (X) = 1.9.
Similarly, âΩ(X) = 0.3 and fΩ(X) = 1.0.

Now, observe that maxa∈U

∑
i∈bj

ai ≤ 1 (the constraint required in RBP) is
equivalent to fU (b) ≤ 1, and thus to fΓ (bj) ≤ 1 for ΓRBP and fΩ(bj) ≤ 1 for
ΩRBP. For example in ΓRBP, fΓ (bj) ≤ 1 simply means that the total nominal
(a) size of the items plus the deviating size (â) of the Γ largest (in â values)
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items must not exceed one. Thus, the two optimization problems studied in this
paper can be equivalently formulated in the following way.

ΓRBP (Γ -robust bin-packing)
Input: I = (n, a, â, Γ ) where n ∈ N, a ∈ [0, 1]n, â ∈ [0, 1]n, and Γ ∈ N.
Output: A solution is a partition of [n] into k bins b1, . . . , bk such that
fΓ (bj) ≤ 1 for each j ∈ [k]
Minimize: k

ΩRBP (Ω-robust bin-packing)
Input: I = (n, a, â, Ω) where n ∈ N, a ∈ [0, 1]n, â ∈ [0, 1]n, and Ω ∈ [0, 1].
Output: A solution is a partition of [n] into k bins b1, . . . , bk such that
fΩ(bj) ≤ 1 for each j ∈ [k]
Minimize: k

The optimal solution value or cost of either problem is denoted by OPT(I) = k∗

(I may be omitted when the instance is clear from the context) and a corre-
sponding optimal solution is denoted by s∗ = {b∗

1, b
∗
2, . . . , b

∗
k∗}. We introduce in

Algorithm 1 a variant of the standard next fit algorithm.

initialization: j = 1
1 Pack items (with smaller index first) in bj until fU (bj) > 1 or n ∈ bj . If n /∈ bj

then j ← j + 1 and repeat Step 1. Otherwise, k′ ← j proceed to Step 2.
2 Pack the last item of each bin in a new bin: for any j, let i = max(bj),

b1j = bj \ {i}, and b2j = {i}
return :

⋃k′
j=1{b1j , b

2
j}

Algorithm 1. Next-Fit(I)

Structure of the Paper. In Sects. 2 and 3, we analyze the ratio provided by
Next-Fit for ΩRBP and ΓRBP, respectively. For ΩRBP, using ordering (1)
(non-increasing ordering on âi

āi
) the ratio is equal to 2. For ΓRBP, using order-

ing (2) (non-increasing ordering on âi), the ratio is bounded by 2(Γ + 1) (and
can be improved to 2 for Γ = 1). As Theorem 4 shows that neither ordering (1)
or (2) leads to a constant ratio using Next-Fit, this raises the question the
existence of a constant approximation for ΓRBP. In Sect. 4 we first review some
basic ideas and explain why they are not sufficient. Then, we introduce the
key elements necessary to develop our dynamic programming algorithm (DP) in
Sect. 5. The latter gives a ratio of 4.5 for ΓRBP and any Γ ∈ N, which is our
main result. The complete proofs of Theorems and Lemmas with a (�) symbol
can be found in the full version of this paper [5].
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2 Next-Fit for ΩRBP

Unlike the classical bin-packing problem, executing Next-Fit on arbitrarily
ordered items can lead to arbitrarily bad solutions. For example, given ε with
0 < ε ≤ 1

2n , consider an instance with Ω = 1 − ε, and items ((2ε, 0), (0, 1 − ε),
. . . , (2ε, 0), (0, 1 − ε)), where item i ∈ [n] is denoted by the pair (āi, âi). Using
this ordering, Next-Fit will create n/2 bins bj with fΩ(bj) > 1 for any j ∈ [n]
(which will be turned into n bins {b1j , b

2
j}), whereas the optimal solution uses

2 bins. This example also illustrates that, unlike in the standard bin-packing,
the total size argument no longer apply to the robust counterpart as having
fΩ(bj) > 1 for any j ∈ [n] does not imply a large (depending on n) lower bound
on the optimal.

Next, we consider an ordering of the items such that

â1/ā1 ≥ · · · ≥ ân/ān. (1)

Lemma 1. Suppose that the items are ordered according to (1). Then k′ ≤ k∗.

Proof. Consider an optimal solution b∗
1, . . . , b

∗
k∗ and the subset of optimal bins

given by G∗ = {j ∈ [k∗] | â(b∗
j ) > Ω}. Let

A =
∑

i∈[n]

(āi + âi) =
k′

∑

j=1

(ā(bj) + â(bj)) =
k∗
∑

j=1

(
ā(b∗

j ) + â(b∗
j )

)
.

Let G denote the first |G∗| bins opened in Step 1 of Next-Fit. If k′ ∈ G then
clearly k′ ≤ k∗. Otherwise, it can be observed that for each l ∈ G, ā(bl) > 1 − Ω
(as ā(b�)+ âΩ(b�) > 1 and âΩ(b�) ≤ Ω) and 1−Ω ≥ maxj∈G∗ ā(b∗

j ) (as fΩ(bj) ≤
1). Thus,

∑
j∈G ā(bj) >

∑
j∈G∗ ā(b∗

j ) and so by the assumed ordering (1) of
the items, following a standard knapsack argument,

∑
j∈G â(bj) >

∑
j∈G∗ â(b∗

j ).
Letting Ḡ = [k′] \ G and Ḡ∗ = [k∗] \ G∗, it follows that

∑

j∈Ḡ

(ā(bj) + â(bj)) = A −
∑

j∈G

(ā(bj) + â(bj)) ≤

A −
∑

j∈G∗

(
a(b∗

j ) + â(b∗
j )

)
=

∑

j∈Ḡ∗

(
ā(b∗

j ) + â(b∗
j )

)

(equality may hold throughout if G∗ = ∅). Further, for each j ∈ Ḡ \ {k′},
ā(bj) + â(bj) ≥ f(bj) > 1 and for each j ∈ Ḡ∗, ā(b∗

j ) + â(b∗
j ) ≤ 1. Therefore,

|Ḡ| ≤
⌈∑

j∈Ḡ (ā(bj) + â(bj))
⌉

≤
⌈∑

j∈Ḡ∗
(
ā(b∗

j ) + â(b∗
j )

)⌉ ≤ |Ḡ∗| and k′ ≤ k∗ as
claimed. 	

The lemma combined with Step 2 of Next-Fit immediately imply the following
theorem.

Theorem 1. If the items are ordered according to (1) then Next-Fit is a 2-
approximation algorithm for ΩRBP.
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3 Next-Fit for ΓRBP

From now on, we focus on problem ΓRBP. Remark first that using an arbitrary
ordering leads to arbitrarily bad solutions, considering Γ = 1 and the same
items ((2ε, 0), (0, 1 − ε), . . . , (2ε, 0), (0, 1 − ε)) as in the previous section. Thus,
we consider here an ordering of the items such that

â1 ≥ · · · ≥ ân. (2)

The main result of this Section is the following.

Theorem 2 (�). If the items are ordered according to (2) then Next-Fit is
a 2(Γ + 1)-approximation algorithm for ΓRBP.

The proof of Theorem 2 can be found in the full version of this paper [5].
We show here a simplified analysis showing that for Γ = 1, Next-Fit with

ordering (2) is a 2-approximation.
The deviating item of bin j in a fixed optimal solution s∗ and in the solution

of Next-Fit are denoted by singleton sets {i∗j} = Γ (b∗
j ) and {ij} = Γ (bj),

respectively. We order the bins of s∗ such that i∗j ≥ i∗j+1. Notice that by definition
of Next-Fit and ordering (2) we also have ij ≥ ij+1.

Lemma 2. Suppose that the items are ordered according to (2) and that Γ = 1.
Then k′ ≤ k∗.

Proof. Suppose by contradiction that k′ > k∗. Let b1, . . . , bk′ be the bins opened
at Step 1 of Next-Fit and notice that fΓ (bj) = a(bj) + âΓ (bj) > 1 for each
j ∈ [k′−1], while a(b∗

j )+âΓ (b∗
j ) ≤ 1 for each j ∈ [k∗]. We prove next by induction

on � ∈ [k∗] that
�∑

j=1

a(bj) >
�∑

j=1

a(b∗
j ). (3)

For � = 1, we have i1 = i∗1 = 1 and (3) follows immediately from âΓ (b1) = âΓ (b∗
1).

Suppose now that induction hypothesis is true for � − 1. By definition of i∗� and
i�, we know that [i∗� − 1] ⊆ ⋃�−1

j=1 b∗
j and [i� − 1] =

⋃�−1
j=1 bj . Using induction

hypothesis, we get that i� ≥ i∗� , and accordingly âΓ (b�) ≤ âΓ (b∗
� ). As l ≤ k∗ < l,

we have fΓ (bl) > 1, leading to a(b�) > a(b∗
� ).

Thus, for l = k∗ we get
∑k∗

j=1 a(bj) >
∑k∗

j=1 a(b∗
j ) =

∑
i∈[n] ai, which is

impossible. 	

As in the previous section, we obtain the following theorem.

Theorem 3. If the items are ordered according to (2) and Γ = 1 then Next-
Fit is a 2-approximation algorithm for ΓRBP.

To complete the analysis, we establish the following lower bound on the ratio
of Next-Fit.
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Theorem 4 (�). If the items are ordered according to (2) or (1), then the
approximation ratio of Next-Fit for ΓRBP is at least 2Γ

3 .

Proof. Let us define an instance where the ordering (2) can lead to Step 1 of
Next-Fit using k′ = Γ bins while OPT = 3. Every row of the Γ × Γ matrix
below corresponds to the set of items in a bin (after the Step 1) of Next-Fit
algorithm

(ε, 1/Γ − δ1) (0, 1/Γ − δ1) . . . (0, 1/Γ − δ1)
...

...
. . .

...
(ε, 1/Γ − δΓ ) (0, 1/Γ − δΓ ) . . . (0, 1/Γ − δΓ )

(4)

where ε ≤ 1/Γ and δ1 ≤ · · · ≤ δΓ < ε/Γ . On the one hand, ε+Γ · (1/Γ − δl) > 1
for each l ∈ [Γ ], so step 1 of Next-Fit outputs Γ bins. On the other hand, an
optimal solution can pack all the items above except the ones in the first column
into a single bin because Γ ·1/Γ −δ1 ≤ 1. Further, the total weight of the first Γ/2
items of the first column sums up to Γ/2 ·(1/Γ +ε)−∑Γ/2

l=1 δl ≤ 1−∑Γ/2
l=1 δl ≤ 1,

and similarly for the last Γ/2 items, so an optimal solution may pack the first
column using two bins. Finally, instance (4) shows that Next-Fit produces a
solution 2Γ/3 times worse than the optimal one.

This instance can be adapted to establish a lower bound for the approxima-
tion ratio of Next-Fit when items are ordered according to (1); see [5]. 	


4 First Ideas to Get a Constant Ratio for ΓRBP

We maintain the assumption that the items are ordered according to (2).

4.1 Attempts to Get a Constant Ratio

We discuss below some natural arguments to get constant ratios.

Attempt 1: Using a Classical Size Argument. Next-Fit without a par-
ticular ordering applied to instance of Sect. 3 leads to a solution with k′ = n/2
bins (at the end of Step 1) where fΓ (bj) > 1 for each bin, while OPT = 2.
This example shows that even if all bins are “full” (relatively to fΓ ), it does not
provide a lower bound on the optimal number of bins. Moreover, as shown in
Theorem 4, none of the two orders considered in the previous section leads to a
constant ratio using Next-Fit.

Attempt 2: Using the Duality with Makespan Minimization. Given
input I, we could guess k∗ = OPT(I), and then consider the input (I, k∗) as
an input of robust makespan minimzation (which was studied in [7]). Using any
ρ-approximation for the later problem (for example ρ = 3 in [7]), we could get in
polynomial time a solution with k∗ bins an such that fΓ (bj) ≤ ρ. The last step
would be to convert this solution into a solution of ΓRBP by unpacking each
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bin (with fΓ (bj) ≤ 3) into several bins bl
j with fΓ (bl

j) ≤ 1. However, even if ρ
were arbitrarily close to 1, it is not possible to bound (for a fixed j) the number
of bins bl

j by a constant as showed in the instance containing n items ( ε
n , 1 − ε

n )
and Γ = 1. While all items fit into a single bin with capacity lower than 1 + ε,
they require n bins of capacity 1 to be packed.

Attempt 3: Guessing the Profile of an Optimal Solution. Let I be
a input of ΓRBP. Given a solution s = {bj , j ∈ [k]} for this input, we define
P (s) = {Γ (bj), j ∈ [k]} as the profile of s and P̃j(s) = {i | i ∈ Γ (b�) for some � ∈
[j]} as all deviating items in the first j bins. Let s∗ = {b∗

j , j ∈ [k∗]} be an
optimal solution. To get some insight on the problem, let us assume that we
know P (s∗) (even if this cannot be guessed in polynomial time). We show how
we can use P (s∗) to get a 2-approximation algorithm. Without loss of generality,
we can always assume that |Γ (b∗

j )| = Γ for any j, as otherwise we can add
Γ − |Γ (b∗

j )| dummy items of size (0, 0) to b∗
j . Remember that the items are

sorted in non-increasing order of their deviating values (âi ≥ âi+1). For any
j ∈ [k∗], let i∗j = max(Γ (b∗

j )) be the smallest (in term of â value) deviating item
of bin j (when Γ = 1, {i∗j} = Γ (b∗

j ) as in the previous section). Without loss of
generality, let us assume that bins are sorted such that i∗j ≥ i∗j+1. Now, given
P (s∗), in the first phase we construct a solution s by packing items of P (s∗)
as they were packed in s∗, meaning that we define bj = Γ (b∗

j ) for j ∈ [k∗]. Let
X = [n] \ ⋃

j∈[k∗] Γ (b∗
j ) be the set of remaining items. We now pack X in the

following second phase, starting with j = 1. Notice that in the description of
the algorithm below, we consider that for j ∈ [k∗], bj already contains Γ (b∗

j ),
whereas for any j > k∗, bj is initially empty.

Step 1 pack items of X (by decreasing â values) in bj until fΓ (bj) > 1 or X = ∅
Step 2 if X �= ∅, j = j + 1, and go to step 1.

Let j be the bin such that X is empty after filling bj . Let k′ be the number of
bins used by this algorithm. Notice that if j ≤ k∗ then k′ = k∗ (because of the
pre-packing of item of P (s∗)), and otherwise k′ = j.

Lemma 3. k′ ≤ k∗, implying a 2-approximation as we can convert the solution
of Next-Fit into a feasible solution of 2k′ bins by repacking the last added item
in each bin in a separate bin.

Proof. Assume by contradiction that k′ > k∗. Informally, as an item i ∈ [n] \
P̃k∗(s∗) does not deviate in s∗, we need to ensure that this is also the case in s.
Let us prove by induction on j that the items packed greedily in Step 1 satisfy

âi ≤ âi∗
j
,∀i ∈ bj \ P̃k∗(s∗), j ∈ [k∗]. (5)

Let j = 1, and suppose there is i ∈ b1 \ P̃k∗(s∗) such that âi > âi∗
1
. Then,

because âi∗
1

≥ âi∗
j

for j > 1, âi > âi∗
j

for each j so i ∈ P̃k∗(s∗), a contradiction.
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Now, consider bin bj+1. By induction, we have that
∑

�∈[j] a(b�) + â(P̃j(s)) >

j ≥ ∑
�∈[j] a(b∗

� ) + â(P̃j(s∗)), so P̃j(s) = P̃j(s∗) implies

∑

�∈[j]

a(b�) >
∑

�∈[j]

a(b∗
� ). (6)

Let Xj be the set of items of X left after packing bin bj by the above procedure
and X∗

j be the the set of items of X left after the optimal solution packs bin
b∗
j . Inequality (6) and the ordering used in Step 1 imply that λ ≥ λ∗, where

λ = min(Xj) and λ∗ = min(X∗
j ). Therefore, if there exists i ∈ bj+1 \ P̃k∗(s∗)

such that âi > âi∗
j+1

, then âλ∗ ≥ âλ ≥ âi > âi∗
j+1

, and thus âλ∗ > âi∗
�

for any
l ∈ �j + 1, k∗�, which is a contradiction as item λ∗ is in X and thus does not
deviate in the considered optimal.

Now that Property (5) is proved, let us get our contradiction from k′ > k∗.
Indeed, if k′ > k∗ then

∑
i∈[n] ai > k∗ − â(P̃k∗(s∗)) ≥ ∑

j∈[k∗] a(b∗
j ) where

the first inequality follows from fΓ (bj) > 1 for j ∈ [k∗] and Property (5), and
the second one follows from

∑
j∈[k∗] a(b∗

j ) + â(P̃k∗(s∗)) ≤ k∗. This implies a
contradiction. 	


Even if the above procedure relies on a guessing step which is not polynomial,
its core idea has similarities with both the analysis of Next-Fit in the proof of
Theorem 2 (see [5]) and with the DP algorithm detailed later in this paper,
where we only guess the deviating item with the smallest deviation of each bin
(one at a time), and we pack Γ −1 items “better” than the one packed in P (s∗),
at the expense of a few extra bins.

4.2 Restricting Our Attention to Small Items

We define ΓRBP with small values as the ΓRBP problem restricted to inputs
where for any i ∈ [n], âi ≤ 1

Γ and âi ≤ 1
Γ . Below we give a justification for

restricting our attention to ΓRBP with small values.

Lemma 4. Any polynomial ρ-approximation for ΓRBP with small values
implies a polynomial (ρ + ρbp)-approximation for ΓRBP, where ρbp is the best
known ratio of a polynomial time approximation for classical bin-packing.2

Proof. Given an instance I of ΓRBP, we define the small items S = {i ∈ [n] :
ai ≤ 1/Γ and âi ≤ 1/Γ} and the large item as B = [n] \ S. We use our ρ-
approximation algorithm to pack S into kS bins, implying kS ≤ ρOPT(S) ≤
ρOPT(I). Then, we observe that in any packing of B, each bin contains no
more than Γ items, so that all items deviate in these bins. Hence, ΓRBP for
instance (B, Γ ) is equivalent to the classical bin-packing problem for items B′

2 In general, if we have a polynomial time additive approximation algorithm using
OPT + f(OPT ) bins and polynomial time ρ-approximation algorithm for ΓRBP
with small values then our algorithm uses OPT (ρ + 1) + f(OPT ) bins for ΓRBP in
polynomial time.



80 A. Basu Roy et al.

where the weight of each item i ∈ B′ is given by ai + âi. This implies that
OPTbp(B′) = OPT(B) (where OPTbp denotes the optimal value in classical bin-
packing), and that any solution for B′ is a solution of B. Thus, we use a ρbp-
approximation algorithm for classical bin-packing to pack B′ in kB bins, and use
the same packing for items in B. Note that kB ≤ ρbpOPTbp(B) = ρbpOPT(B) ≤
ρbpOPT(I). We obtain a packing of I with cost kS + kB ≤ (ρ + ρbp)OPT(I). 	

Observation 1. Given an instance I to the ΓRBP with small values, any sub-
set X ⊆ [n] can be packed in � |X|

Γ/2 bins.

Notice that instances with small items are not easier to approximate by Next-
Fit because instance (4) from Sect. 3 uses small items.

4.3 Guessing of the Full Profile and Considering Only Small Items

Let us now explain why mixing the two previous ideas is promising. As in
attempt 3 where we know the full profile, we want to construct for any j bins
{b1, . . . , bj} such that their total a is larger than the total value of a packed
by the first j bins of s∗ (the considered optimal solution), as in inequality (6).
Instead of guessing the full profile P (s∗), we want to design a DP algorithm
(that guesses ij∗ one at the time) with the following intuitive outline. Start with
j = 1.

– guess item i∗j , the smallest (in â value) deviating item of b∗
j , and pack it in bj

– then, as the Γ − 1 other deviating items in b∗
j are unknown and we want to

pack more of the nominal size a, packs separately Γ − 1 items with larger
a values (among items with â values greater than âi∗

j
). Consider that these

Γ − 1 items are put in the “trash” (at the very end we will pack all items of
the trash in a few additional bins)

– keep filling bin bj greedily (by non-increasing â values) until exceeding 1
– make a recursive call with j + 1

If s∗ uses k∗ bins, we wish to output a solution s with k∗ bins exceeding one,
and (Γ − 1)k∗ items in the trash. This almost feasible solution can be converted
into a regular one with 3k∗ bins by removing one item from each bin and adding
them to the trash, and packing the Γk∗ items of the trash into 2k∗ bins, which
is possible according to Observation 1. This sketches the core ideas of the DP.
However, the actual DP presented below needs to be more involved for the
following reasons. Consider j = 1 for convenience and let B = �1, i∗1 − 1�.

First, notice that items of B could be packed (as deviating items) in a bin
other than b∗

1 in s∗, and we may have |B| > Γ − 1. Thus, instead of trashing
only Γ − 1 items of B, we have to trash all of them, and count the number of
trashed items to ensure that at the end at most (Γ − 1)k∗ items are trashed. To
summarize, the trash will represent the union of the (Γ − 1) larger (in â values)
deviating items of each bin. Moreover, we want to maintain that the accumulated
nominal (a) size of trashed items in s is larger than the accumulated nominal
size of deviating items in s∗.
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Second, notice that in s∗, items of �i∗1 + 1, i∗2 − 1� are either in b∗
1 as non-

deviating items or in a b∗
j , j ≥ 2 as deviating items (meaning that they are

trashed items in s). Thus, if we incorrectly pack some of these items in b1 instead
of trashing them, these items will not be available when considering b2, and we
may not be able to ensure then that trashed items in s have a larger a value
than the deviating items in s∗.

In the next section we describe the full version of the DP. To that end, we
first need to introduce formally the notion of trash.

5 Approximating ΓRBP with Small Values

Bin-Packing with Trash. For any X ⊆ [n], we define ãΓ (X) = Γ â1(X)
(ãΓ (X) is Γ times the largest deviating value of an item in X) and f̃(X) =
a(X)+ãΓ (X). We introduce next a decision problem ΓRBP-T related to ΓRBP.

ΓRBP-T (Robust bin-packing with trash)
Input: (I, k, t) where I is an input of ΓRBP (where each item (ai, âi)
satisfies âi ≤ 1/Γ and ai ≤ 1/Γ ), and k, t are two integers.
Output: Decide if a solution exists, where a solution is a partition of the set
of items into k + 1 sets b1, . . . , bk and T (called the trash) such that:
– f̃(bj) ≤ 1 for each j = 1, . . . , k
– |T | ≤ t

Notice that although each item is small in ΓRBP-T, it is possible to have
an item i such that f̃({i}) > 1, implying that i must be put in the trash. We
show below how deciding ΓRBP-T is enough to approximate ΓRBP.

Lemma 5. For any input I of ΓRBP and k∗ = OPT(I), (I, k∗, (Γ − 1)k∗) is
a yes input of ΓRBP-T.

Proof. Given an optimal solution of size k∗ of ΓRBP problem we create a
solution to ΓRBP-T problem as follows. Let b∗

j be a bin of the considered
optimum. Let Nj be the non-deviating items of b∗

j , i.e., b∗
j = Nj ∪ Γ (b∗

j ). Let
X = max(Γ (b∗

j )) (the smallest deviating item of b∗
j ) if |Γ (b∗

j )| = Γ and X = ∅
otherwise. We define b′

j = Nj ∪ X, and add items of Y = b∗
j \ b′

j into the trash.
Notice Y is either the set of Γ − 1 largest deviating object of b∗

j , or is equal
to Γ (b∗

j ) when |Γ (b∗
j )| < Γ . This is a feasible solution for ΓRBP-T problem as

f̃(b′
j) = a(b′

j) + ãΓ (b′
j), where a(b′

j) ≤ a(b∗
j ) and ãΓ (b′

j) = ãΓ (X) ≤ âΓ (b∗
j ), and

as there are at most (Γ − 1)k∗ items in the trash. 	

Lemma 6. For any input I of ΓRBP and integer k, given a solution of
(I, k, Γk) of ΓRBP-T, we can compute in polynomial time a solution of 3k
bins for I.

Proof. Given a solution b1, . . . , bk, T for (I, k, Γk) of ΓRBP-T the bins remain
feasible in ΓRBP as fΓ (bj) = a(bj) + âΓ (bj) ≤ a(bj) + ã(bj) = f̃(bj). Then,
Observation 1 implies that the trash T can be packed into �kΓ/(Γ/2) ≤ 2k
additional bins. 	
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A DP Algorithm for ΓRBP-T. The objective of this section is to define
a DP algorithm that will be used to decide the ΓRBP-T problem. To this
aim, we define G-ΓRBP-T (generalized robust bin-packing with trash), an opti-
mization problem that the DP algorithm will solve in a relaxed way. To define
G-ΓRBP-T, we consider a fixed instance I of ΓRBP with items ordered accord-
ing to (2) and an integer k.

G-ΓRBP-T (generalized robust bin-packing with trash)
Input: I = (q, t, �), where q ∈ [n]0, t ∈ [(Γ − 1)k]0, and � ∈ [k + 1].
Output: A feasible solution s is a partition of �q, n� into k − � + 3 sets (bj

for j ∈ ��, k�, b0 and T ), such that
– for any j ∈ ��, k�, f̃(bj) ≤ 1 (the k − � + 1 regular bins must respect the

constraint of ΓRBP-T)
– |T | ≤ t (we only allow t items in the trash)
– min(b�) = q (meaning that the deviating item of b� is q as items are

sorted in non-increasing order of â values)
Minimize: c(s) = a(b0) (in bin b0 we only count a values)

The objective of G-ΓRBP-T is to pack a part (defined by �q, k�) of an
ΓRBP-T instance given a fixed budget of resources (the number of bins and the
size of the trash) while minimizing the total nominal size of items in the dummy
bin b0. The last constraint (the deviating item of b� is q) may appear artificial at
first sight, but comes from the fact that the DP will guess at each new bin the
largest items that should be packed in it, and therefore this constraint ensures
that every optimal solution must pack q in b� as well.

Definition 1 (almost feasible solution). We say that a bin b exceeds by at
most one item iff f̃(b) > 1 and f̃(b \ {i}) ≤ 1 where i = max(b). Given an
input (q, t, �) of G-ΓRBP-T, we say that a solution is almost feasible iff all
the above constraints of G-ΓRBP-T are respected, except that for any j ∈ ��, k�,
we allow that bj exceeds by at most one item instead of f̃(bj) ≤ 1.

The relation between G-ΓRBP-T and ΓRBP-T is characterized in the two
following lemmas whose proofs can be found in [5].

Lemma 7 (�). For any I input of ΓRBP and k such that (I, k, (Γ − 1)k) is
a yes input of ΓRBP-T, there exists q and t such that OPT(q, t, 1) = 0.

Lemma 8 (�). Let us fix I an input of ΓRBP and k an integer. For any
q ∈ [(Γ − 1)k], t = (Γ − 1)k − (q − 1), given an almost feasible solution of
I ′ = (q, t, 1) of cost 0 for G-ΓRBP-T, we can compute in polynomial time a
solution of (I, k, Γk) of ΓRBP-T.

Thus, Lemmas 6 and 8 show that providing an almost feasible solution for
(q, t, 1) of cost 0 for G-ΓRBP-T implies a solution of size 3k for ΓRBP.

Let us now define a DP algorithm DP (I) (I is an input of G-ΓRBP-T) that
provides an almost feasible solution s with c(s) ≤ OPT(I) (where OPT(I) is
by definition the optimal cost of a feasible solution). We provide below a gentle
description of the DP. Given an instance I = (q, t, �), the DP starts by guessing
(q∗, t∗), where
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– q∗ = min(b∗
l′) for a bin b∗

l′ with l′ ∈ �l + 1, k∗� of an optimal solution s∗

– t∗ is the number of items trashed from X∗ in s∗, where X∗ = �q, q∗ − 1�
– Notice that in s∗ items of X∗ must by placed in b∗

l , b∗
0 or T ∗. We mimic the

optimal in the current call of the DP by packing X∗ in bl, b0 and T .
– To that end, the DP:

• packs q in bl (as required by the corresponding constraint of G-ΓRBP-T),
• packs the t∗ largest (in terms of a) remaining items of X∗ to the trash
• packs the remaining items of X∗ into b� until f̃(b�) > 1 or X∗ = ∅
• packs the remaining items of X∗ into b0 until X∗ = ∅

We discuss next where the other items (of �q∗, n�) are packed. Notice that in s∗,
bin b∗

l may contain items of �q∗, n�, and thus the DP may also have to pack items
of �q∗, n� into bl. The key is that the decision of which items of �q∗, n� to pack
into bl is not taken at this step of the algorithm but only later (to avoid packing
in bl items of large a value that are in the trash in s∗). To allow this decision to
be taken later, let Δb be the size of the empty space in bl after packing X∗ as
described above, and let bX∗

0 = b0 ∩ X∗. After the previous steps, the DP makes
a recursive call to get a solution s̃ that packs �q∗, n� into regular bins, the trash,
and a dummy bin b̃0. So far solution s̃ has not used any of the empty space Δb.
However, we can unpack items from b̃0 to b� while ensuring that these items do
not deviate in b� (as all these items have index greater than q).

The formal description of DP (q, t, �) and its correctness, stated formally in
the following two results, are provided in [5].

Lemma 9 (�). For any I input of G-ΓRBP-T, DP (I) provides an almost
feasible solution of cost at most OPT(I).

Lemma 10 (�). There is a 3-approximation for ΓRBP with small values run-
ning in O(n6log(n)).

By Lemma 4, the following theorem is now immediate using a 3
2 -

approximation for classical bin-packing (see for example in [16]) as a black box.

Theorem 5. There is a 4.5-approximation for ΓRBP running in O(n6log(n)).
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13. Kasperski, A., Zieliński, P.: On the approximability of minmax (regret) network
optimization problems. Inform. Process. Lett. 109(5), 262–266 (2009)

14. Kasperski, A., Zielinski, P.: On the approximability of robust spanning tree prob-
lems. Theor. Comput. Sci. 412(4–5), 365–374 (2011). https://doi.org/10.1016/j.
tcs.2010.10.006

15. Poss, M.: Robust combinatorial optimization with knapsack uncertainty. Discrete
Optim. 27, 88–102 (2018). https://doi.org/10.1016/j.disopt.2017.09.004

16. Simchi-Levi, D.: New worst-case results for the bin-packing problem. Naval Res.
Logist. 41, 579–585 (1994)

17. Song, G., Kowalczyk, D., Leus, R.: The robust machine availability problem–bin
packing under uncertainty. IISE Trans. 50(11), 997–1012 (2018). https://doi.org/
10.1080/24725854.2018.1468122

18. Tadayon, B., Smith, J.C.: Algorithms and complexity analysis for robust single-
machine scheduling problems. J. Sched. 18(6), 575–592 (2015)

https://hal.archives-ouvertes.fr/hal-02119351
https://hal.archives-ouvertes.fr/hal-02119351
https://doi.org/10.1007/978-3-642-29116-6_8
https://doi.org/10.1007/978-3-642-29116-6_8
https://doi.org/10.1016/j.tcs.2010.10.006
https://doi.org/10.1016/j.tcs.2010.10.006
https://doi.org/10.1016/j.disopt.2017.09.004
https://doi.org/10.1080/24725854.2018.1468122
https://doi.org/10.1080/24725854.2018.1468122


Rank-Select Indices Without Tears

Tim Baumann1 and Torben Hagerup2(B)

1 TNG Technology Consulting GmbH, 85774 Unterföhring, Germany
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Abstract. A rank-select index for a sequence B = (b1, . . . , bn) of n
bits, where n ∈ N = {1, 2, . . .}, is a data structure that, if provided
with a constant-time operation to access (the integer whose binary rep-
resentation is) the subsequence of B in Θ(log n) specified consecutive
positions (thus B is stored outside of the data structure), can com-
pute rankB(j) =

∑j
i=1 bi for given j ∈ {0, . . . , n} and selectB(k) =

min{j ∈ N | rankB(j) ≥ k} for given k ∈ {1, . . . ,
∑n

i=1 bi}. We describe
a new rank-select index that, like previous rank-select indices, occupies
O(n log log n/log n) bits and executes rank and select queries in constant
time. Its derivation is intended to be largely free of tedious low-level
detail, its operations are given by straight-line code, and it can be con-
structed in O(n/log n) time if B can be accessed as above.

1 Introduction

When S is a finite multiset of integers and j ∈ Z = {. . . ,−1, 0, 1, . . .}, we write
rankS(j) for the rank of j in S, i.e., rankS(j) = |{i ∈ S : i ≤ j}|. Moreover, for
each k ∈ {1, . . . , |S|}, selectS(k) = min{j ∈ Z | rankS(j) ≥ k}. If the elements
of S are arranged in nondecreasing order in positions 1, . . . , |S|, then rankS(j) is
the largest position of an element ≤ j (0 if there is no such element), for j ∈ Z,
and selectS(k) is the element in position k, for k ∈ {1, . . . , |S|}.

The operations rank and select are defined also for bit sequences. If B =
(b1, . . . , bn) is a sequence of n bits, for some n ∈ N = {1, 2, . . .}, then rankB(j) =
∑j

i=1 bi for j ∈ {0, . . . , n} and, again, selectB(k) = min{j ∈ N | rankB(j) ≥ k}
for k ∈ {1, . . . ,

∑n
i=1 bi}. The connection between the two definitions is close:

If a simple set S is a subset of {a, . . . , a + n − 1} for some known a ∈ Z and
n ∈ N, S can be represented via the bit sequence B = (b1, . . . , bn) with bi =
1 ⇔ a − 1 + i ∈ S, for i = 1, . . . , n. In this case we say that S is given by its
bit-vector representation over the universe {a, . . . , a+n−1} or with offset a and
span n. Clearly rankS(j) = rankB(j − (a− 1)) for j ∈ {a− 1, . . . , a− 1+n} and
selectS(k) = a − 1 + selectB(k) for k ∈ {1, . . . , |S|}. Answering rank and select
queries about a simple set of integers therefore reduces to answering rank and
select queries about its bit-vector representation with some known offset and
span.

A (static) rank-select structure for a sequence B = (b1, . . . , bn) of n bits,
for some n ∈ N, is a data structure capable of returning rankB(j) for arbitrary
c© Springer Nature Switzerland AG 2019
Z. Friggstad et al. (Eds.): WADS 2019, LNCS 11646, pp. 85–98, 2019.
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given j ∈ {0, . . . , n} and selectB(k) for arbitrary given k ∈ {1, . . . ,
∑n

i=1 bi}.
A data structure that can answer the same queries, but only if provided with
a constant-time operation to access (the integer whose binary representation
is) the subsequence of B in Θ(log n) specified consecutive positions (thus B is
stored outside of the data structure), is known as a rank-select index for B.
We call B the client sequence of a rank-select structure or index for B. Rank-
select structures and indices are of fundamental importance in space-efficient
computing, have been studied extensively since the 1970s, and have many and
diverse applications. Elias [3] considered the representation of multisets of inte-
gers in the context of data retrieval. For a multiset S, his direct or table-lookup
question corresponds to selectS , and his inverse question is closely related to
rankS . Jacobson, who introduced the terms rank and select [9,10], used rank-
select structures to represent trees and graphs in little space while still permitting
their efficient traversal. Along the way, he solved the problem of finding matching
parentheses in a balanced sequence of parentheses, again with rank-select struc-
tures as crucial components of the overall data structure. Rank-select structures
and indices have also found applications in areas such as string processing [6],
computational geometry [11] and graph algorithms [8].

Jacobson designed a rank-select index for bit sequences of length n ∈ N that
occupies O(n log log n/log n) bits and answers rank queries in constant time.
While he was unable to obtain a constant-time select operation, this was reme-
died by Clark [2] at the price of a somewhat higher space bound. From now
on we will be interested only in rank-select structures and indices that answer
all queries in constant time; for ease of discussion, consider this property to
be part of their definition. A rank-select index that uses O(n log log n/log n)
bits was described by Raman, Raman and Satti [13, Lemma 4.1]. A matching
lower bound of Ω(n log log n/log n) on the number of bits needed by a rank-
select index that accesses only O(log n) bits of its client sequence during the
processing of a query was proved by Golynski [5]. Thus a rank-select structure
for a sequence B of n bits that consists of B plus a suitable index must occupy
n + Ω(n log log n/log n) bits. While this is a natural way of organizing a rank-
select structure, Pǎtraşcu [12] showed the interesting fact that there are smaller
rank-select structures that do not store B in its “raw” form.

In this paper we describe another O(n log log n/log n)-bit rank-select index.
While previous descriptions of rank-select structures and indices abound with
ad-hoc and rather tedious low-level detail, we aim for a more systematic, modular
and high-level approach based largely on pictures that leads to the optimal result
with comparatively little effort on the part of the reader. Our rank-select index
offers the first select operation that can be formulated as a piece of straight-line
code, i.e., its implementation is free of tests and branching (in one place, fulfilling
this promise involves a small amount of “cheating”, as will be explained later).
We also consider the problem of efficient construction of rank-select indices,
an aspect that was ignored in much previous research but is essential to many
applications. Our main result is the following:
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Theorem 1. For every n ∈ N and for every sequence B of n bits, given in
the form of a stream of O(n/log n) chunks of O(n log log n/log n) consecutive
bits each, a rank-select index for B that executes rankB and selectB in constant
time and occupies O(n log log n/log n) bits can be constructed in O(n/log n) time
using O(n log log n/log n) bits of working memory.

The theorem insists that the client sequence B be provided in several chunks
because the available working space does not allow us to store B in its entirety.
Typically B would be provided in Θ(n/log n) chunks of O(log n) bits each. If B
is stored in random-access read-only memory, of course, it is trivial to produce
the necessary chunks, but the theorem implies that the construction of the rank-
select index does not require random access to B and can make do with a single
pass over B. In some applications, e.g., to the subgraph stack of [8], it is essential
that the construction time of the rank-select index is O(n/log n) and not just
O(n).

Our model of computation is the standard word RAM [1,7] with a word
length of w = Ω(log n) bits, where w is assumed large enough to allow all memory
words in use to be addressed. The word RAM has constant-time operations for
addition, subtraction and multiplication modulo 2w, division with truncation
((x, y) �→ �x/y	 for y > 0), left shift modulo 2w ((x, y) �→ (x 
 y) mod 2w,
where x 
 y = x · 2y), right shift ((x, y) �→ x � y = �x/2y	), and bitwise
Boolean operations (and, or and xor (exclusive or)).

2 Ingredients of the New Rank-Select Index

Our overall approach, shared with earlier solutions, is to break down a given
instance of the rank-select problem, i.e., the problem of answering rank and
select queries for a given bit sequence or multiset, into still smaller instances,
eventually arriving at instances so tiny that they can be solved by brute force,
i.e., table lookup. We provide a bottom-up description, proceeding from table
lookup via basic reductions of instances of the rank-select problem to simpler
instances and ending with the complete rank-select index that reduces rank and
select queries about the client sequence all the way to table lookup. We prefer to
phrase much of the discussion in terms of (multi)sets rather than bit sequences.
The tables needed by the rank-select index and their computation are discussed
in the next subsection.

2.1 Table Lookup

This subsection describes three different variants, denoted T1–T3, of the table-
lookup method, as applied to the rank-select problem. In our applications, the
parameters N and M for variants T2 and T3 will be so small as to render
negligible the space occupied by the tables and the time needed to compute
them.
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T1. In order to answer rankS and selectS queries about one particular subset S
of {1, . . . , N}, where N ∈ N is known, we can simply store a table of rankS(j) for
j = 0, . . . , N and selectS(k) for k = 1, . . . , |S| and answer a query by returning
the appropriate table entry. The number of bits needed is O(N log N), and the
table can be computed in O(N) time from a bit-vector representation of S.

T2. If the goal is to answer rankS and selectS queries, where S now is also
specified in the query and can be an arbitrary subset of {1, . . . , N}, we can create
a subtable as for variant T1 for each of the 2N possible subsets S and store the
2N subtables, each indexed by the bit-vector representation over {1, . . . , N} of
the corresponding set S, in a table of O(2NN log N) bits whose computation
takes O(2NN) time.

T3. If S is a variable subset of {1, . . . , N} but known to be of size at most M
for some given M ∈ N, S can be represented as an M -tuple of integers in
{1, . . . , N} by first listing the elements of S and then, if |S| < M , repeating the
last element. Each of the M integers can in turn be represented in �log2 N bits.
Since 2�log2 N� ≤ 2N , this gives us an alternative to variant T2 with a table of
O((2N)M+1 log N) bits that can be computed in O((2N)M+1) time.

2.2 Three Basic Reductions

Let g be a nondecreasing function from Z to Z (informally, the grouping function)
with the property that g−1(q) = {i ∈ Z | g(i) = q} is finite for all q ∈ Z and let
S be a finite multiset of integers. For q ∈ Z, we write S ∩ g−1(q) for the multiset
{i ∈ S | g(i) = q} of those elements of S that are mapped to q by g. E.g., if
g(j) = �j/10	 for all j ∈ Z,

{47, 47, 63, 68, 72, 76, 76, 79, 85} ∩ g−1(7) = {72, 76, 76, 79}.

While denoting by g(S) the simple set {q ∈ Z | ∃i ∈ S : g(i) = q} = {q ∈ Z | S ∩
g−1(q) �= ∅}, we write g((S)) for the multiset {g(i) | i ∈ S}, in which each q ∈ Z

occurs with multiplicity |S∩g−1(q)|. E.g., if S = {47, 47, 63, 68, 72, 76, 76, 79, 85}
and g(j) = �j/10	 for all j ∈ Z as above, then g(S) = {4, 6, 7, 8} and g((S)) =
{4, 4, 6, 6, 7, 7, 7, 7, 8}. We will argue that if j ∈ Z and q = g(j), then

rankS(j) = rankg((S))(q − 1) + rankS∩g−1(q)(j). (1)

E.g, with S and g as above, j = 76 and q = g(j) = 7,

rankS(76) = rank{4,4,6,6,7,7,7,7,8}(7 − 1) + rank{72,76,76,79}(76) ( = 4 + 3 = 7 ).

The validity of (1) is easy to see: The terms rankg((S))(q−1) and rankS∩g−1(q)(j)
count the elements i of {i ∈ S | i ≤ j} with g(i) < q and with g(i) = q, respec-
tively. Let k ∈ {1, . . . , |S|}. If we think of S as a sorted list, then g(selectS(k))
is the value under g of the kth element of S, whereas selectg((S))(k) is the kth
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element of the list obtained from S by applying g to each of its elements. Thus
g(selectS(k)) = selectg((S))(k). Now, with q = selectg((S))(k),

selectS(k) = selectS∩g−1(q)(k − rankg((S))(q − 1)), (2)

since rankg((S))(q − 1) again is the number of elements i ∈ S with g(i) < q, so
that, if S is presented in sorted order in |S| positions, selectS(k) is the element
in position k − rankg((S))(q − 1) among the elements with the same value under
g as itself, i.e., within S ∩ g−1(q). As an example, if S and g are as above, k = 6
and q = selectg((S))(k) = select{4,4,6,6,7,7,7,7,8}(6) = 7,

select{47,47,63,68,72,76,76,79,85}(6) = select{72,76,76,79}(6 − rank{4,4,6,6,7,7,7,7,8}(6))
( = select{72,76,76,79}(6 − 4) = 76 ).

Let us use (S|g) as a convenient notation for the function (g|S)−1 that maps
each q ∈ Z to S ∩ g−1(q). E.g., with our usual S and g, (S|g)(4) = {47, 47} and
(S|g)(2) = (S|g)(5) = ∅. Then, by Eqs. (1) and (2) above, answering rank and
select queries about S in constant time reduces to answering rank and select
queries about g((S)) and about values of (S|g) in constant time. For brevity, we
express this by saying that S reduces to g((S)) and (S|g). We will use this only
with g = gλ for some λ ∈ N, where gλ(j) = �j/λ	 for all j ∈ Z, and call λ the
parameter of the reduction. Variations of this reduction have been used since the
early days of rank-select indices [9,10]. We call it BR1 (“basic reduction 1”) and
denote it symbolically with a triangular shape, as shown in the left subfigure of
Fig. 1: S, at the apex of the triangle, reduces to gλ((S)) and (S|gλ) at its base.
The double line serves as a reminder that gλ((S)) in general is a multiset even if
S is not. We refrain from connecting S to the triangle with a double line because
we will use the reduction only for simple sets S. A bar through the line to (S|gλ)
indicates that (S|gλ) is a set-valued function rather than just a set.

Fig. 1. The three basic reductions BR1–BR3.

Denote by supp(S) the support of the multiset S, i.e., the simple set that
contains exactly the same values as S, but each value only once, and let rankS(Z)
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be the image of the rankS function. For example, with S = {1, 1, 1, 5, 7, 7} we
have supp(S) = {1, 5, 7} and rankS(Z) = {0, 3, 4, 6}. A second reduction is given
by the formulas

rankS(j) = selectrankS(Z)(rank supp(S)(j) + 1) and (3)
selectS(k) = selectsupp(S)(rank rankS(Z)(k − 1)), (4)

for j ∈ Z and k ∈ {1, . . . , |S|}. E.g.,

rank{1,1,1,5,7,7}(6) = select{0,3,4,6}(rank{1,5,7}(6) + 1)
( = select{0,3,4,6}(2 + 1) = 4 ) and

select{1,1,1,5,7,7}(4) = select{1,5,7}(rank{0,3,4,6}(4 − 1))
( = select{1,5,7}(2) = 5 ).

To see the validity of Eq. (3), whose origins can be traced back to Fano [4, Step 2],
note that the (q + 1)st smallest element of rankS(Z), for q = 0, . . . , |supp(S)|, is
the total number of occurrences in S of the q smallest distinct values in S. With
q = rank supp(S)(j), this is precisely rankS(j). Equation (4) is implied by the
following observation: If S, presented in sorted order in |S| positions, is thought
of as partitioned into maximal ranges of occurrences of the same value, then
rank rankS(Z)(k − 1) is one more than the number of ranges that end strictly
before the kth position, i.e., is the number of the range that contains the kth
position. We may conclude that S also reduces to rankS(Z) and supp(S). We
call this reduction BR2 and depict it as shown in the middle subfigure of Fig. 1.

When S is a subset of Z and λ ∈ N, we denote by λ + S the set {λ + i |
i ∈ S} and by S mod λ the set {i mod λ | i ∈ S} of remainders modulo λ of
elements of S. Let (S|gλ)∗ be the function defined on {1, . . . , |gλ(S)|} that maps
q to (S|gλ)(selectgλ(S)(q)) mod λ, for q = 1, . . . , |gλ(S)|. Informally, if (S|gλ) is
thought of as a list of subsets of S, then (S|gλ)∗ is the sublist that contains only
the nonempty subsets, but each normalized to lie in {0, . . . , λ − 1}. E.g., with
S = {47, 63, 68, 72, 76, 79, 85}, (S|g10)∗(1) = {7} and (S|g10)∗(2) = {3, 8}. For
q ∈ Z and λ ∈ N,

(S|gλ)(q) =

{
qλ + (S|gλ)∗(rankgλ(S)(q)), if q ∈ gλ(S),
∅, otherwise.

(5)

Since we can test whether q ∈ gλ(S) by evaluating rankgλ(S)(q) − rankgλ(S)(q −
1), which is 1 if q ∈ gλ(S) and 0 otherwise, (S|gλ) (i.e., (S|gλ)(q) for each
q ∈ Z) reduces to gλ(S) and (S|gλ)∗. This third and last basic reduction, BR3,
is depicted in the right subfigure of Fig. 1.

2.3 Two Combined Reductions

We can combine BR1 and BR2 as illustrated in Fig. 2. This yields a reduction,
CR1, of S to rankgλ((S))(Z), supp(gλ((S))) = gλ(S), and (S|gλ). Incorporating
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Fig. 2. The first combined reduction CR1. Left: internal structure. Right: pictorial
representation.

Fig. 3. The reduction CR2. Left: internal structure. Right: pictorial representation.

also BR3, we obtain a second combined reduction, CR2, shown in Fig. 3. CR1
and CR2 are very similar. Both reduce S to rankgλ((S))(Z), gλ(S) and a third
quantity, which is (S|gλ) in the case of CR1 and (S|gλ)∗ in the case of CR2.

In the concrete rank-select index, sets of integers are represented as bit vec-
tors with convenient offsets and spans. The offsets and spans can be calculated
in parallel with the application of reductions according to the following rules:
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The client sequence B, prefixed by a 0, is viewed as representing a set with
offset 0 and span |B| + 1, where |B| denotes the length of B. Recursively, if a
set S is represented with offset a and span n and m = |S|, then

– rankgλ((S))(Z) is represented with offset 0 and span m + 1 and is of size at
most �n/λ + 1.

– gλ(S) is represented with offset gλ(a) and span �n/λ + 1 and is of size at
most m.

– (S|gλ)(q) is represented with offset qλ and span λ for all q ∈ Z.
– (S|gλ)∗(q) is represented with offset 0 and span λ for all q ∈ {1, . . . , |gλ(S)|}.

Using the rules to keep track of offsets enables us, at the bottom of a recursive
application of reductions, to translate queries about sets correctly to queries
about their bit-vector representations with the given offsets. So as not to clutter
the description, this simple translation will not be formulated explicitly.

The effect of each type of combined reduction on spans and sizes is depicted
in Fig. 4. A pair of the form 〈n,m〉 indicates that a set has span n and size at
most m, except that the rounding to integer values and the occasional + 1 were
ignored. When we refrain from bounding the size of a set by anything better than
its span, 〈n〉 is used as an abbreviation for 〈n, n〉. If S has offset a and span n,
(S|gλ)(q) can be nonempty only if q belongs to the set {gλ(a), . . . , gλ(a+n−1)}
of size at most �n

λ+1, which motivates the label n
λ · 〈λ〉 in the left subfigure. In

terms of the concrete data structure, the expression n
λ · 〈λ〉 should be thought of

as indicating an array with index set {gλ(a), . . . , gλ(a+n−1)} of (approximately)
n
λ subordinate data structures, each of which is for a set of span λ. (S|gλ)∗(q) is
defined only for 1 ≤ q ≤ |gλ(S)| ≤ |S|, which motivates the label m · 〈λ〉 in the
right subfigure; the corresponding array has index set {1, . . . , |gλ(S)|}.

Fig. 4. The approximate effect of the two combined reductions CR1 and CR2 on
〈span, size〉.

The new optimal rank-select index can be pieced together with little effort
from a constant number of instances of the combined reductions CR1 and CR2.
As a warm-up and to familiarize the reader with the approach and the notation,
we first develop a simpler rank-select structure that occupies Θ(n) bits for client
sequences of n bits.
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3 A Simplified O(n)-Bit Rank-Select Structure

The simplified rank-select structure is best thought of as the tree TS shown in
Fig. 5 annotated with 〈span, size〉 pairs suitable for a client sequence of n bits.
Each inner node in TS corresponds to an instance of the composite reduction
CR1 (for brevity: is a CR1-node) and is drawn with the characteristic shape
of that reduction. Each leaf in TS corresponds to an instance or an array of
instances of one of the variants of the table-lookup method and is drawn as a
rectangle labeled with the name of the relevant variant. During the execution
of a query, each inner node in TS applies its associated reduction and each leaf
answers queries using its table-lookup variant.

Fig. 5. A simplified rank-select structure that occupies O(n) bits.

The reductions in TS both use a parameter � ∈ N. Here and in the following
we choose � = Θ(log n) such that the cost, in terms of time and space, of the table
needed by table-lookup variant T2 with N = � is negligible. In concrete terms,
we take this to mean that 2�� log � = O(n/ log n), which is certainly satisfied if
� ≤ (1/2) log2 n.

By construction, the simplified rank-select structure is correct and executes
queries in constant time. Let us analyze its storage requirements, for the time
being ignoring rounding issues and pretending that the expressions for spans
and sizes in Fig. 4 are exact. The first step is to verify that the 〈span, size〉 pairs
in Fig. 5 have indeed be calculated in accordance with Fig. 4. Each leaf that
uses table-lookup variant T1 (is a T1-leaf, say) stores a table of rank and select
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for a sequence of n
� bits, which needs O(n

� log n) = O(n) bits. Similarly, each
T2-leaf stores an array of n

� sequences, each of � bits, again for a total of O(n)
bits. Adding the O(n/ log n) bits occupied by a global table for variant T2 and
O(log n) bits for storing �, links between the nodes in TS and various other bits
and pieces, we arrive at a grand total of O(n) bits. It is easy to see that the
error incurred by the approximation involved in Fig. 4 amounts to less than a
constant factor—this is because additive error terms bounded by constants affect
only quantities that are Ω(log n)—so that the true number of bits used by the
simplified rank-select structure is also O(n).

4 The New Optimal Rank-Select Index

The new optimal rank-select index has much in common with the simplified
rank-select structure of the previous section. In order to achieve a better space
bound, however, the optimal index must comprise a few additional reductions.
Its structure is given by the tree T shown in Fig. 6. While most reductions use
the parameter � with � = Θ(log n) introduced in Sect. 3, the reduction at the root
of T employs a larger parameter L ∈ N. We choose L = Θ((log n)2/log log n) as
a multiple of � such that the cost of the table needed by table-lookup variant
T3 with N = L + 1 and M = L/� + 1 is negligible. In concrete terms, we
take this to mean that (2(L + 1))L/�+2 log L = O(n/ log n), which is ensured if
L/� ≤ (1/4)log2 n/log2 log2 n.

4.1 Analysis of the Space Requirements

As in the case of the simplified rank-select structure, by construction the optimal
rank-select index is correct and executes queries in constant time. Because we
now aim for a space bound of o(n) bits, we must pay special attention to the
rightmost leaf in the tree T with its 2-dimensional array A of (approximately)
n
L · L

� = n
� sequences, each of (at most) � bits. As is not difficult to see, each of

the relevant bit sequences is a subsequence of the client sequence B. Moreover,
the position of the first bit of the relevant subsequence within B is a simple
function of the two integers used to index into A. Therefore there is no need to
store any data in the rightmost leaf—it suffices to provide it with constant-time
access to arbitrary subsequences of at most � = Θ(log n) consecutive bits in B,
which is precisely what the rank-select index is allowed to rely on.

The remaining part of the analysis of the space requirements parallels what
was done in Sect. 3 for the simplified rank-select structure, and again we can
pretend that the expressions given in Fig. 4 are exact—as a minor exception,
one should observe that table-lookup variant T3 is indeed used with N = L + 1
and M = L/� + 1. Again, the first step is to verify that the 〈span, size〉 pairs in
Fig. 6 have been calculated in accordance with Fig. 4.

Each T1-leaf holds tables of rank and select for a bit sequence of length n
L

or n
�2 . The number of bits needed for the tables is therefore O(( n

L + n
�2 ) log n) =

O(n log log n/ log n). The total length of the bit sequences stored in T2-leaves is
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Fig. 6. The new optimal rank-select index.

O(( n
L + n

�2 )(� + L
� )) = O( n

L · �) = O(n log log n/log n) (recall that the rightmost
leaf in T has already been considered). Finally, the single T3-leaf needs space
for n

L bit sequences, each of which represents a tuple of L
� integers of O(log L)

bits each, for a total of O( n
L · L

� · log L) = O(n log log n/log n) bits. In summary,
the number of bits occupied by the rank-select index is O(n log log n/log n).

4.2 The Execution of Queries

A combination of Eqs. (1)–(4) in Subsect. 2.2 yields the two formulas below,
which closely mirror the derivation of the combined reduction CR1 from BR1
and BR2. S is a finite subset of Z, and in the first formula j ∈ Z and q = g(j).

rankS(j)
(1)
= rankg((S))(q − 1) + rankS∩g−1(q)(j)
(3)
= selectrankg((S))(Z)(rank supp(g((S)))(q − 1) + 1) + rankS∩g−1(q)(j)

= selectrankg((S))(Z)(rankg(S)(q − 1) + 1) + rank (S|g)(q)(j).
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In the second formula k ∈ {1, . . . , |S|} and q = selectg((S))(k), and we can rewrite
rankg((S))(q − 1) as above.

selectS(k)
(2)
= selectS∩g−1(q)(k − rankg((S))(q − 1))

= select (S|g)(q)(k − selectrankg((S))(Z)(rankg(S)(q − 1) + 1)).

Moreover, q = selectg((S))(k)
(4)
= selectg(S)(rank rankg((S))(Z)(k − 1)).

In a concrete implementation of the rank-select index, it is natural to repre-
sent each node in T by an instance of a suitable class that supports the operations
rank and select . Assume that U is such an instance that corresponds to an inner
node u in T and that X, Y and Z are the class instances that correspond to the
children of u, in the order from left to right. If u is a CR1-node with parameter
λ and U corresponds to a set S (i.e., realizes rankS and selectS), then X, Y and
Z correspond to rankgλ((S))(Z), gλ(S) and (S|gλ), respectively, so the formulas
above show that U ’s operations can be realized as follows:

U.rank(j) = let q = gλ(j) in X.select(Y.rank(q − 1) + 1) + Z[q].rank(j) and

U.select(k) = let q = Y.select(X.rank(k − 1)) in
Z[q].select(k − X.select(Y.rank(q − 1) + 1)).

Computing r = X.rank(k − 1) and using the identity Y.rank(Y.select(r) − 1) =
r − 1, we can streamline the implementation of U.select :

U.select(k) = let r = X.rank(k − 1) in Z[Y.select(r)].select(k − X.select(r)).

If u is a CR2-node, Z corresponds to (S|gλ)∗ rather than to (S|gλ), so the for-
mulas must be modified. By Eq. (5), the discussion following it and the identity
Y.rank(Y.select(r)) = r, we obtain:

U.rank(j) = let q = gλ(j), r = Y.rank(q − 1), s = Y.rank(q) in
X.select(r + 1) + Z[s].rank(j mod λ) · (s − r) and

U.select(k) = let r = X.rank(k − 1) in
Y.select(r) · λ + Z[r].select(k − X.select(r)).

The formulas can clearly be expressed as straight-line code. In the case of
rank for a CR2-node it could be argued that it would be more natural to replace
the multiplication by a zero test followed by a branch. This is why claiming
that our rank and select operations are straight-line involves a small amount
of “cheating”. Class instances that correspond to leaves in T , of course, realize
their rank and select operations by a single access to a 1- or 2-dimensional table,
handled in accordance with the relevant offset.

4.3 The Construction of the Index

In order to construct the optimal rank-select index for a client sequence B of
n bits, we interpret each node in the tree T of Fig. 6 as a process whose task
is to communicate with adjacent nodes and, in the case of leaves, to compute
and store a table or an array for use in subsequent queries. Each inner node in
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T receives a stream of bits from its parent and sends streams of bits or integers
derived from its input stream to its children. An exception concerns the root
of T , which receives the client sequence B in the stream that feeds the overall
construction and prepends a single 0 to B before processing B, which is now
considered to represent the same set as before, but with offset 0 and span n + 1.

In a preprocessing phase that proceeds top-down in the tree and takes con-
stant time, each node uses the rules formulated in Subsect. 2.3 to compute the
offsets and spans of the sets that it will handle. This enables each leaf to acquire
the space needed to hold its table or array.

Consider an inner node u in T with parameter λ and assume that u’s input
stream is a bit-vector representation of a set S whose offset a is a multiple of
λ—by the 0 prepended to the client sequence as described above, this assump-
tion, which we call the alignment assumption, is satisfied for the root of T . If
u receives a sequence of bit-vector representations, the assumption as well as
the following arguments should be applied independently to each element in the
sequence. The task of u is to send either a stream of the elements of rankgλ((S))(Z)
(if u’s left child is a T3-leaf) or a bit-vector representation of this set with offset 0
(otherwise) to its left child, a bit-vector representation of gλ(S) with offset gλ(a)
to its middle child, and bit-vector representations of either (S|gλ)(q) with offset
qλ for q = gλ(a), gλ(a) + 1, . . . or (S|gλ)∗(q) with offset 0 for q = 1, . . . , |gλ(S)|
to its right child.

The node u processes its input stream in batches of λ consecutive bits each,
except that the last batch may be smaller, in which case it is filled up to size
λ with 0s. Note that by the alignment assumption, a batch corresponds exactly
to g−1

λ (q) for some q ∈ Z. Before the processing of the first batch, u initializes a
variable s to 0 and sends the integer 0 (if u’s left child is a T3-leaf) or a single 1
(otherwise) to its left child. The processing of a batch begins by determining the
number k of 1s in the batch. If λ = �, this is done in constant time by lookup
in a table whose construction time (O(2�)) and space requirements (O(2� log �)
bits) are negligible. If λ = L, k is instead found by consulting the table L/�
times and summing the values found there. If k > 0, u adds k to s and proceeds
to send the current value of s (if u’s left child is a T3-leaf) or k − 1 0s followed
by a 1 (otherwise) to its left child, a 1 to its middle child and the whole batch
to its right child as the next sequence element. If k = 0, u instead sends nothing
to its left child, a 0 to its middle child and, only if u is a CR1-node, the whole
batch to its right child, again as the next sequence element.

Each T1-leaf in T constructs and stores a table of rank and select for the bit
stream that it receives, and each T2-leaf, except for the rightmost leaf, receives
a sequence of bit streams and simply stores these in successive cells of an array.
Finally, the single T3-leaf, for each of the (approximately) n

L sets that it receives,
stores the concatenation of the �log2(L + 1)-bit binary representations of the
at most L/� + 1 elements of the set in the next cell of an array. It is not difficult
to see that the index is constructed correctly.

If we introduce a buffer of L + � bits between each pair of adjacent nodes in
T (except between the single T3-leaf and its parent, where a buffer of L/� + 1
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integers of �log2(L + 1) bits each is suitable), we can repeatedly execute a top-
down sweep over T in which the root processes the next batch of L bits of the
client sequence in O(L/�) time, thereby adding bits to its outbuffers, and every
other node in T processes as many integers or complete batches of � bits, each
in constant time, as available in its inbuffer, again adding integers or bits to its
outbuffers, if any. It is easy to see that each sweep can be executed in O(L/�)
time. Then the whole process finishes in O((n/L)·(L/�)) = O(n/�) = O(n/log n)
time, and it uses a total of O(n log log n/log n) bits. This concludes the proof of
Theorem 1.
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11. Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theor. Comput.
Sci. 387(3), 332–347 (2007). https://doi.org/10.1016/j.tcs.2007.07.013
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Abstract. The Capacitated Vehicle Routing problem is to find a
minimum-cost set of tours that collectively cover clients in a graph, such
that each tour starts and ends at a specified depot and is subject to a
capacity bound on the number of clients it can serve. In this paper, we
present a polynomial-time approximation scheme (PTAS) for instances in
which the input graph is planar and the capacity is bounded. Previously,
only a quasipolynomial-time approximation scheme was known for these
instances. To obtain this result, we show how to embed planar graphs into
bounded-treewidth graphs while preserving, in expectation, the client-
to-client distances up to a small additive error proportional to client
distances to the depot.

Keywords: Capacitated Vehicle Routing ·
Approximation algorithms · Metric embeddings

1 Introduction

The Capacitated Vehicle Routing problem with capacity Q > 0 for a graph
G with client set S and depot r is to find a minimum-cost set of tours that
collectively visit every client, such that each tour visits the depot and at most
Q clients. This problem arises very naturally in both public and commercial
settings including planning school bus routes and package delivery. In general
metrics, Capacitated Vehicle Routing is APX-hard, even when Q is a fixed
capacity as small as three [1]. In this paper, we show that this hardness result
does not extend to planar graphs. Specifically, we give the first polynomial-time
approximation scheme (PTAS) for Capacitated Vehicle Routing with fixed
capacities in planar graphs.

An embedding of a guest graph G in a host graph H is a mapping φ :
V (G) −→ V (H). One seeks embeddings in which, for each pair u, v of vertices of
G, the u-to-v distance in G is in some sense approximated by the φ(u)-to-φ(v)
distance in H. One algorithmic strategy for addressing a metric problem is as
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follows: find an embedding φ from the input graph G to a graph H with simple
structure; find a good solution in H; lift the solution to a solution in G. The
success of this strategy depends on how easy it is to find a good solution in H
and how well distances in H approximate corresponding distances in G.

In this paper, we give a randomized method for embedding a planar graph
G into a bounded-treewidth host graph H so as to achieve a certain expected
distance approximation guarantee. There is a polynomial-time algorithm to find
an optimal solution to Bounded-Capacity Vehicle Routing in bounded-
treewidth graphs. This algorithm is used to find an optimal solution to the
problem induced in H. This solution in the host graph is then lifted to obtain a
near-optimal solution in G.

1.1 Related Work

Capacitated Vehicle Routing. There is a substantial body of work on
approximation algorithms for Capacitated Vehicle Routing. As the prob-
lem generalizes the Traveling Salesman Problem (TSP), for general met-
rics and values of Q, Capacitated Vehicle Routing is also APX-hard [16].
Haimovich and Rinnoy Kan [14] observe the following lower bound.

2
Q

∑

v∈S

d(v, r) ≤ cost(OPT ) (1)

which they use to give a 1 + (1 − 1
Q )α-approximation, where α denotes the

approximation ratio of TSP. Using Christofides 1.5-approximation for TSP [9],
this gives a 2.5− 1

Q approximation ratio. For general metrics and values of Q this
result has not been substantially improved upon. Even for tree metrics, the best
known approximation ratio for arbitrary values of Q is 4/3, due to Becker [3].
While no polynomial-time approximation schemes are known for arbitrary Q for
any nontrivial metric, recently Becker and Paul [7] gave a bicriteria (1, 1 + ε)
approximation scheme for tree metrics. It returns a solution of at most the
optimal cost, but in which each tour is responsible for at most (1 + ε)Q clients.

One reasonable relaxation is to consider restricted values of Q. Even for Q as
small as 3, Capacitated Vehicle Routing is APX-hard in general metrics [1].
On the other hand, for fixed values of Q, the problem can be solved in polynomial
time on trees and bounded-treewidth graphs.

Much attention has been given to approximation schemes for Euclidean met-
rics. In the Euclidean plane R

2, PTASs are known for instances in which the
value of Q is constant [14], O(log n/ log log n) [1], and Ω(n) [1]. For R3, a PTAS
is known for Q = O(log n) and for higher dimensions R

d, a PTAS is known for
Q = O(log1/d n) [15]. For arbitrary values of Q, Mathieu and Das designed a
quasi-polynomial time approximation scheme (QPTAS) for instances in R

2 [10].
No PTAS is known for arbitrary values of Q.

Because algorithms for Capacitated Vehicle Routing could be applied
to logistics problems in road maps, it is particularly interesting to consider the
complexity of approximating the problem in metrics that model road networks.



A PTAS for Bounded-Capacity Vehicle Routing in Planar Graphs 101

Becker, Klein, and Saulpic [5] gave a QPTAS for bounded-capacity instances in
planar and bounded-genus graphs. The same authors gave a PTAS for graphs of
bounded highway dimension [6].

Metric Embeddings. There has been much work on metric embeddings. In
particular, Bartal [2] gave a randomized algorithm for selecting an embedding
φ of the input graph into a tree so that, for any vertices u and v of G, the
expected φ(u)-to-φ(v) distance in the tree approximates the u-to-v distance in
G to within a polylogarithmic factor. Fakcharoenphol, Rao, and Talwar [11]
improved the factor to O(log n).

Talwar [17] gave a randomized algorithm for selecting an embedding of a
metric space of bounded doubling dimension and aspect ratio Δ into a graph
whose treewidth is bounded by a function that is polylogarithmic in Δ; the
distances are approximated to within a factor of 1+ε. Feldman, Fung, Könemann,
and Post [12] built on this result to obtain a similar embedding theorem for
graphs of bounded highway dimension.

What about planar graphs? Chakrabarti et al. [8] showed a result that implies
that unit-weight planar graphs cannot be embedded into distributions over
o(

√
n)-treewidth graphs so as to achieve approximation to within an o(log n)

factor.
Let us consider distance approximation guarantees with absolute (rather than

relative) error. Becker, Klein, and Saulpic [6] gave a deterministic algorithm
that, given a constant ε > 0, finds an embedding from a graph G of bounded
highway dimension to a bounded-treewith graph H such that, for each pair u, v
of vertices of G, the φ(u)-to-φ(v) distance in H is at least the u-to-v distance
in G and exceeds that distance by at most ε times the u-to-r distance plus the
v-to-r distance, where r is a given vertex of G. This embedding was used to
obtain the previously mentioned PTAS for Capacitated Vehicle Routing

with bounded capacity on graphs of bounded highway dimension.
Recently, Fox-Epstein, Klein, and Schild [13] showed how to embed planar

graphs into graphs of bounded treewidth, such that distances are preserved up to
a small additive error of εD, where D is the diameter of the graph. They show
how such an embedding can be used to achieve efficient bicriteria approximation
schemes for k-Center and d-Independent Set.

1.2 Main Contributions

In this paper we present the first known PTAS for Capacitated Vehicle

Routing on planar graphs. We formally state the result as follows.

Theorem 1. For any ε > 0 and capacity Q, there is a polynomial-time algo-
rithm for Capacitated Vehicle Routing on planar graphs that returns a
solution whose cost is at most 1 + ε times optimal.

Prior to this work, only a QPTAS was known [5] for planar graphs. As
described in Sect. 1.1, PTASs for Capacitated Vehicle Routing are known
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only for very few metrics. Our result expands this small list to include planar
graphs—a graph class that is quite relevant to vehicle-routing problems as road
networks tend to be nearly planar.

The basis for our new PTAS is a new metric-embedding theorem. For a graph
G and vertices u and v, let dG(u, v) denote the u-to-v distance in G.

Theorem 2. There is a constant c and a randomized polynomial-time algorithm
that, given a planar graph G with specified root vertex r and given 0 < ε < 1,
computes a graph H with treewidth at most (1

ε )cε−1
and an embedding φ of G

into H, such that, for every pair of vertices u, v of G, dG(u, v) ≤ dH(φ(u), φ(v))
with probability 1, and

E[dH(φ(u), φ(v))] ≤ dG(u, v) + ε[dG(u, r) + dG(v, r)] (2)

The expectation E[·] is over the random choices of the algorithm.
Why does this metric-embedding result give rise to an approximation scheme

for Capacitated Vehicle Routing? We draw on the following observation,
which was also used in previous approximation schemes [5,6]: tours with clients
far from the depot can accommodate a larger error. In particular, each client can
be charged error that is proportional to its distance to the depot. In designing
an appropriate embedding, we can afford a larger error allowance for the clients
farther from the depot.

Our new embedding result builds on that of Fox-Epstein et al. [13]. The
challenge in directly applying their embedding result is that it gives an additive
error bound, proportional to the diameter of the graph. This error is too large for
those clients close to the depot. Instead, we divide the graph into annuli (bands)
defined by distance ranges from the depot and apply the embedding result to
each induced subgraph independently, with an increasingly large error tolerance
for the annuli farthest from the depot. In this way, each client can afford an
error proportional to the diameter of the subgraph it belongs to.

How can these subgraph embeddings be combined into a global embedding
with the desired properties? In particular, clients that are close to each other
in the input graph may be separated into different annuli. How can we ensure
that the embedding approximately preserves these distances while still achieving
bounded treewidth?

We draw on a technique that has often been used, e.g. in metric embeddings.
We show that by randomizing the choice of where to define the annuli boundaries,
and connecting all vertices of all subgraph embeddings to a new, global depot,
client distances are approximately preserved (to within their error allowance)
in expectation by the overall embedding, without substantially increasing the
treewidth. To do so we must ensure that the annuli are wide enough that the
probability of nearby clients being separated (and thus generating large error)
is small. Simultaneously, the annuli must be narrow enough that, within a given
annulus, the clients closest to the depot can afford an error proportional to the
distance of the farthest clients from the depot.
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A dynamic-programming algorithm can then be used to find an optimal
solution to Capacitated Vehicle Routing in the bounded-treewidth host
graph, and the solution can be lifted to obtain a solution in the input graph that
in expectation is near-optimal.

Finally we describe how this result can be derandomized by trying all possible
(relevant) choices for defining annuli and noting that for some such choice, the
resulting solution cost must be near-optimal.

1.3 Outline

In Sect. 2 we describe preliminary notation and definitions. Section 3 describes
the details of the embedding and provides an analysis of the desired properties.
In Sect. 4 we outline our algorithm and prove Theorem 1. We conclude with some
remarks in Sect. 5.

2 Preliminaries

2.1 Basics

Let G = (V,E) denote a graph with vertex set V and edge set E, and let n = |V |.
As mentioned earlier, for any two vertices u, v ∈ V , we use dG(u, v) to denote
the length of the shortest u-to-v path in G. We might omit the subscript when
the choice of graph is unambiguous. The diameter of a graph G is the maximum
distance dG(u, v) over all choices of u and v.

We say that a graph is planar if it can be drawn in the plane without any
edge crossings.

We use OPT to denote an optimal solution. For a minimization problem,
an α-approximation algorithm is one that returns a solution whose cost is at
most α times the cost of OPT . An approximation scheme is a family of (1 + ε)-
approximation algorithms, indexed by ε > 0. A polynomial-time approximation
scheme (PTAS) is an approximation scheme such that, for each ε > 0, the corre-
sponding algorithm runs in O(nc) time, where c is a constant independent of n
but may depend on ε. A quasi-polynomial-time approximation scheme (QPTAS)
is an approximation scheme such that, for each ε > 0, the corresponding algo-
rithm runs in O(nlogc n) time, where c is a constant independent of n but may
depend on ε.

An embedding of a guest graph G into a host graph H is a mapping φ : VG →
VH of the vertices of G to the vertices of H.

A tree decomposition of a graph G is a tree T whose nodes (called bags)
correspond to subsets of V with the following properties:

1. For each v ∈ V , v appears in some bag in T
2. For each (u, v) ∈ E, u and v appear together in some bag in T
3. For each v ∈ V , the subtree induced by the bags of T containing v is connected

The width of a tree decomposition is the size of the largest bag minus one, and
the treewidth of a graph G is the minimum width over all tree decompositions
of G.
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2.2 Problem Statement

A tour in a graph G is a closed path v0, v1, v2, ..., vL such that v0 = vL and for
all i ∈ {1, 2, ..., L}, (vi−1, vi) is an edge in G.

Given a capacity Q > 0 and a graph G = (V,E) with specified client set
S ⊆ V and depot vertex r ∈ V , the Capacitated Vehicle Routing problem
is to find a set of tours Π = {π1, π2, ...π|Π|} that collectively cover all clients
and such that each tour includes r and covers at most Q clients. The cost of
a solution is the sum of the tour lengths, and the objective is to minimize this
sum.

If a client s is covered by a tour π, we say that π visits s. Note that π may
pass many other vertices (including other clients) that it does not cover.

As stated, the problem assumes that each client has unit demand. In fact, the
more general case, where clients have integral demand (assumed to be polyno-
mially bounded) that is allowed to be covered across multiple tours (demand is
divisible) reduces to the unit-demand case as follows: For each client s ∈ S with
demand dem(s) = k, add k new vertices {v1, v2, ..., vk} each with unit demand
and edges (s, vi) of length zero, and set dem(s) to zero. Note that this modi-
fication does not affect planarity. Additionally, since demand is assumed to be
polynomially-bounded, the increase in graph size is negligible for the purpose of
a PTAS.

For Capacitated Vehicle Routing with indivisible demands, each client’s
demand must be covered by a single tour, and a tour can cover at most Q units
of client demand.

We assume all non-zero distances in G are at least one. If not, the graph
can be rescaled. We also assume values of ε are less than one. If not, any ε ≥ 1
can be replaced with a number ε′ slightly less than one. This only helps the
approximation guarantee and does not significantly increase runtime. Of course
for very large values of ε, an efficient constant-factor approximation can be used
instead (see Sect. 1.1).

3 Embedding

In this section, we prove Theorem 2, which we restate for convenience:

Theorem 2. There is a constant c and a randomized polynomial-time algorithm
that, given a planar graph G with specified root vertex r and given 0 < ε < 1,
computes a graph H with treewidth at most (1

ε )cε−1
and an embedding φ of G

into H, such that, for every pair of vertices u, v of G, dG(u, v) ≤ dH(φ(u), φ(v))
with probability 1, and

E[dH(φ(u), φ(v))] ≤ dG(u, v) + ε[dG(u, r) + dG(v, r)] (3)

The proof uses as a black box the following result from [13]:



A PTAS for Bounded-Capacity Vehicle Routing in Planar Graphs 105

Lemma 1 ([13]). There is a number c and a polynomial-time algorithm that,
given a planar graph G with specified root vertex r and diameter D, computes a
graph H of treewidth at most ( 1

ε )c and an embedding φ of G into H such that,
for all vertices u and v,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + εD

For notational convenience, instead of Inequality 3 of Theorem 2, we prove

E[dH(φ(u), φ(v))] ≤ dG(u, v) + 3ε[dG(u, r) + dG(v, r)] (4)

from which Theorem 2 can be proved by taking ε′ = ε/3.
Our embedding partitions vertices of G into bands of vertices defined by

distances from r. Choose x ∈ [0, 1] uniformly at random. Let B0 be the set of

vertices v such that dG(r, v) < 1
ε

(x) 1
ε , and for i ∈ {1, 2, 3, ...} let Bi be the set of

vertices v such that 1
ε

(i+x−1) 1
ε ≤ dG(r, v) < 1

ε

(i+x) 1
ε (see Fig. 1). Let Gi be the

subgraph induced by Bi, together with all u-to-v and v-to-r shortest paths for
all u, v ∈ Bi. Note that although the Bi partition V , the Gi do not partition G.
Note also that the diameter of Gi is at most 4 1

ε

(i+x) 1
ε . The factor of 4 addresses

the fact that for u, v ∈ Bi, the u-to-v shortest path is included in Gi and may
contain a vertex w /∈ Bi. But for any such w, it must be that dG(r, w) ≤ 2 1

ε

(i+x) 1
ε .

For each Gi, let Hi be the host graph resulting from applying Lemma 1
using ε′ = ε

1
ε +1 and let φi be the corresponding embedding. Let H be the graph

resulting from adding a new vertex r′ and for all i and all v ∈ Bi adding an edge
(φi(v), r′) of length dG(v, r). That is, H is formed by connecting (all vertices of)
all the Hi to r′ (see Fig. 2). Finally, set φ(v) = φi(v) for all v ∈ Bi − {r} and set
φ(r) = r′.

Fig. 1. G is divided into bands B0, B1, ..., Bfinal based on distance from r.
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Fig. 2. Each subgraph Gi of G is embedded into a host graph Hi. These graphs are
joined via edges to a new depot r′ to form a host graph for G.

We can assume that there are at most n bands, since empty bands would not
contribute to the embedding. The runtime for constructing H is dominated by
the construction of the Hi, which by Lemma [13] is polynomial.

Let H− be the graph obtained from H by deleting r′. The connected compo-
nents of H− are {Hi}i. By Lemma 1, the treewidth of each host graph Hi is at
most ( 1

ε′ )c0 = (1
ε )c0(ε

−1+1) for some constant c0. This also bounds the treewidth
of H−. Adding a single vertex to a graph increases the treewidth by at most
one, so after adding r′ back, the treewidth of H is ( 1

ε )c0(ε
−1+1) + 1 = (1

ε )c1ε−1

for some constant c1.
As for the metric approximation, it is clear that dG(u, v) ≤ dH(φ(u), φ(v))

with probability 1. We use the following lemma to prove Inequality 4.

Lemma 2. If εdG(v, r) ≤ dG(u, r) ≤ dG(v, r), then the probability that u and v
are in different bands is at most ε.

Proof. Let i be the nonnegative integer such that dG(u, r) = 1
ε

(i+a) 1
ε for some

a ∈ [0, 1]. Let b be the number such that dG(v, r) = 1
ε

(i+b) 1
ε .

1
ε

≥ dG(v, r)
dG(u, r)

=
1
ε

(i+b) 1
ε

1
ε

(i+a) 1
ε

=
1
ε

(b−a) 1
ε

Therefore
b − a ≤ ε

Consider two cases. If b ≤ 1, then the probability that u and v are in different
bands is Pr[a ≤ x < b] ≤ ε.

If b > 1 then the probability that u and v are in different bands is Pr[x ≥
a or x ≤ b − 1] ≤ 1 − a + b − 1 = b − a ≤ ε.
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We now prove Inequality 4. Let u and v be vertices in G. Without loss
of generality, assume dG(u, r) ≤ dG(v, r). First we address the case where
dG(u, r) ≤ εdG(v, r). Since φ(u) and φ(v) are both adjacent to r′ in H,
dH(φ(u), φ(v)) ≤ dH(φ(u), r′)+ dH(φ(v), r′) = dG(u, r)+ dG(v, r) ≤ 2dG(u, r)+
dG(u, v) ≤ dG(u, v) + 2εdG(v, r). Therefore E[dH(φ(u), φ(v))] ≤ dG(u, v) +
3ε[dG(u, r) + dG(v, r)]

Now, suppose dG(u, r) > εdG(v, r). If u and v are in the same band Bi, then
by Lemma 1,

dH(φ(u), φ(v)) ≤ dHi
(φ(u), φ(v)) ≤ dG(u, v) + ε′diam(Gi)

≤ dG(u, v) + ε′4
1
ε

(i+x) 1
ε

= dG(u, v) + ε
1
ε +14

1
ε

(i+x) 1
ε

= dG(u, v) + ε4
1
ε

(i+x−1) 1
ε ≤ dG(u, v) + 2ε(dG(u, r) + dG(v, r))

In the final inequality, when i = 0, we use the fact that all nonzero distances are
at least one to give a lower bound on dG(u, r) and dG(v, r).

If u and v are in different bands, then since φ(u) and φ(v) are both adjacent
to r′ in H, dH(φ(u), φ(v)) ≤ dH(φ(u), r′) + dH(φ(v), r′) = dG(u, r) + dG(v, r).
By Lemma 2, this case occurs with probability at most ε.

Therefore E[dH(φ(u), φ(v))] ≤ (dG(u, v) + 2ε(dG(u, r) + dG(v, r))) + ε[dG(u,
r) + dG(v, r)] ≤ dG(u, v) + 3ε[dG(u, r) + dG(v, r)], which proves Inequality 4 and
completes the proof of Theorem 2.

The construction depends on planarity only via Lemma 1. For the sake of
future uses of the construction with other graph classes, we state a lemma.

Lemma 3. Let F be a family of graphs closed under vertex-induced subgraphs.
Suppose that there is a function f and a polynomial-time algorithm that, for any
graph G in F , computes a graph H of treewidth at most f(ε) and an embedding
φ of G into H such that, for all vertices u and v,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + εD

Then there is a function g and a randomized polynomial-time algorithm that,
for any graph G in F , computes a graph H with treewidth at most g(ε) and an
embedding φ of G into H, such that, for every pair of vertices u, v of G, with
probability 1 dG(u, v) ≤ dH(φ(u), φ(v)), and

E[dH(φ(u), φ(v))] ≤ dG(u, v) + ε [(dG(u, r) + dG(v, r)]

4 PTAS for Capacitated Vehicle Routing

In this section, we show how to use the embedding of Sect. 3 to give a PTAS for
Capacitated Vehicle Routing, proving Theorem 1.
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4.1 Randomized Algorithm

We first prove a slight relaxation of Theorem 1 in which the algorithm is ran-
domized, and the solution value is near-optimal in expectation. We then show in
Sect. 4.2 how to derandomize the result.

Theorem 3. For any ε > 0 and capacity Q, there is a randomized algorithm
for Capacitated Vehicle Routing on planar graphs that in polynomial time
returns a solution whose expected value is at most 1 + ε times optimal.

Our result depends on the following lemma, which is proved in the full ver-
sion [4] of [6].

Lemma 4 (Lemma 20 in [6], Lemma 15 in [4]). Given an instance of
Capacitated Vehicle Routing with capacity Q on a graph G with treewidth
w, there is a dynamic-programming algorithm that finds an optimal solution in
nO(wQ) time.

Given the dynamic program of Lemma 4 and the embedding of Theorem 2
as black boxes, the algorithm is as follows. First, the graph G is embedded as in
Theorem 2 using ε̂ = ε/Q into a host graph H with treewidth (1

ε̂ )cε̂−1
for some

constant c, and dG(u, v) ≤ E[dH(φ(u), φ(v))] ≤ dG(u, v) + ε̂(dG(u, r) + dG(v, r))
for all vertices u and v. The dynamic program of Lemma 4 is then applied to H.
The resulting solution SOLH in H is then mapped back to a solution SOLG in
G which is returned by the algorithm.

Note that the tours in any vehicle-routing solution can be defined by specifying
the order in which clients are visited. In particular, we use (u, v) ∈ SOL to denote
that u and v are consecutive elements of {clients} ∪ {depot} visited by the solution.
In this way, a solution in H is easily mapped back to a corresponding solution in G,
as (u, v) ∈ SOLG if and only if (φ(u), φ(v)) ∈ SOLH . We use costG(SOL) (resp.
costH(SOL)) to denote the cost of a solution SOL in G (resp. H).

We now prove Theorem 3 by analyzing this algorithm.

Lemma 5. For any ε > 0 the algorithm described above finds a solution whose
expected value is at most 1 + ε times optimal.

Proof. Let OPT be the optimal solution in G and let OPTH be the correspond-
ing induced solution in H. Since the dynamic program finds an optimal solution
in H, we have costH(SOLH) ≤ costH(OPTH). Additionally, since distances in
H are no shorter than distances in G, costG(SOLG) ≤ costH(SOLH). Putting
these pieces together, we have,

E[costG(SOLG)] ≤ E[costH(SOLH)] ≤ E[costH(OPTH)]

= E[
∑

(u,v)∈OPT

dH(φ(u), φ(v))] =
∑

(u,v)∈OPT

E[dH(φ(u), φ(v))]

≤
∑

(u,v)∈OPT

dG(u, v) + ε̂(dG(u, r) + dG(v, r)) =
∑

(u,v)∈OPT

dG(u, v) + 2ε̂
∑

v∈S

dG(v, r)

≤ costG(OPT ) + 2ε̂
Q

2
costG(OPT ) = (1 + ε)costG(OPT )

where the final inequality comes from Lower Bound 1 (see Sect. 1.1).



A PTAS for Bounded-Capacity Vehicle Routing in Planar Graphs 109

The following lemma completes the proof of Theorem 3.

Lemma 6. For any Q, ε > 0, the algorithm described above runs in polynomial
time.

Proof. By Lemma 1, computing H and the embedding of G into H takes poly-
nomial time. By Lemma 4, the dynamic program runs in |VH |O(wQ) time, where
w is the treewidth of H. By Theorem 2, w = (1

ε̂ )cε̂−1
= (Q

ε )c′Qε−1
, where c and

c′ are constants independent of |VH |.
The algorithm therefore runs in |VH |(Qε−1)O(Qε−1)

time. Finally, since |VH | is
polynomial in the size of G, for fixed Q and ε, the running time is polynomial.

4.2 Derandomization

The algorithm can be derandomized using a standard technique. The embedding
of Theorem 2 partitions the vertices of the input graph into rings depending
on a value x chosen uniformly at random from [0, 1]. However, the partition
depends on the distances of vertices from the root r. It follows that the number
of partitions that can arise from different choices of x is at most the number of
vertices. The deterministic algorithm tries each of these partitions, finding the
corresponding solution, and returns the least costly of these solutions.

In particular, consider the optimum solution OPT . As shown in Sect. 4.1,

E[
∑

(u,v)∈OPT

dH(φ(u), φ(v))]

=
∑

(u,v)∈OPT

E[dH(φ(u), φ(v))]

≤ (1 + ε)costG(OPT ).

So for some choice of x, the induced cost of OPT in H is nearly optimal,
and the dynamic program will find a solution that costs at most as much. This
completes the proof of Theorem 1.

5 Conclusion

In this paper, we present the first PTAS for Capacitated Vehicle Routing

in planar graphs. Although the approximation scheme takes polynomial time, it
is not an efficient PTAS (one whose running time is bounded by a polynomial
whose degree is independent of the value of ε). It is an open question as to
whether an efficient PTAS exists. It is also open whether a PTAS exists when
the capacity Q is unbounded.
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Abstract. We develop a general framework for designing polynomial-
time approximation schemes (PTASs) for various vehicle routing prob-
lems in trees. In these problems, the goal is to optimally route a fleet of
vehicles, originating at a depot, to serve a set of clients, subject to vari-
ous constraints. For example, in Minimum Makespan Vehicle Rout-
ing, the number of vehicles is fixed, and the objective is to minimize
the longest distance traveled by a single vehicle. Our main insight is
that we can often greatly restrict the set of potential solutions with-
out adding too much to the optimal solution cost. This simplification
relies on partitioning the tree into clusters such that there exists a near-
optimal solution in which every vehicle that visits a given cluster takes
on one of a few forms. In particular, only a small number of vehicles
serve clients in any given cluster. By using these coarser building blocks,
a dynamic programming algorithm can find a near-optimal solution in
polynomial time. We show that the framework is flexible enough to give
PTASs for many problems, including Minimum Makespan Vehicle
Routing, Distance-Constrained Vehicle Routing, Capacitated
Vehicle Routing, and School Bus Routing, and can be extended
to the multiple depot setting.

Keywords: Approximation algorithms · Vehicle routing ·
Rooted tree cover

1 Introduction

Vehicle routing problems address the fundamental problem of routing a fleet of
vehicles from a common depot to visit a set of clients. These problems arise
naturally in many real world settings, and are well-studied across computer
science and operations research. We generalize a class of vehicle routing problems
by introducing the notions of vehicle load, the problem-specific vehicle constraint
(e.g. vehicle capacity, distance traveled by the vehicle, client regret, etc.), and
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fleet budget, the problem-specific fleet constraint (e.g. number of vehicles, sum
of distances traveled, etc.).

Most vehicle routing problems can then be framed as either Min-Max Vehi-

cle Load: minimize the maximum vehicle load, given a bound k on fleet bud-
get (e.g. Minimum Makespan Vehicle Routing) or Minimum Fleet Bud-

get: minimize the required fleet budget, given a bound D on vehicle load (e.g.
Distance-Constrained Vehicle Routing). In fact, these are two optimiza-
tion perspectives of the same decision problem: does there exist a solution with
maximum vehicle load D and fleet budget k?

1.1 Main Contributions

We present a framework for designing polynomial time approximation schemes
(PTASs) for Min-Max Vehicle Load and Minimum Fleet Budget in trees.
Tree (and treelike) transportation networks occur in building and warehouse lay-
outs, mining and logging industries, and along rivers and coastlines [11,12]. Our
framework applies directly to Min-Max Vehicle Load problems and generates
results of the following form.

Theorem 1. For every ε > 0, there is a polynomial-time algorithm that, given
an instance of Min-Max Vehicle Load on a tree, finds a feasible solution
whose maximum vehicle load is at most 1 + ε times optimum.

An immediate corollary of Theorem 1 is the following result for the associated
Minimum Fleet Budget problem.

Theorem 2. Given an instance of Minimum Fleet Budget on a tree, if there
exists a solution with fleet budget k and vehicle load D, then for any ε > 0, there
is a polynomial-time algorithm that finds a solution with fleet budget k and vehicle
load at most (1 + ε)D.

The input to the framework is a rooted tree T = (V,E) with root r ∈ V and
edge lengths �(u, v) ≥ 0 for all (u, v) ∈ E. Without loss of generality, the root r
represents the depot at which all vehicles start and the set of clients corresponds
to the set of leaves in the tree (we can add zero cost edges to ensure that every
client is a leaf and any subtree without a client can be safely removed from the
instance). Since every edge must then be traversed by at least one vehicle, the
problems are equivalent to corresponding tree-cover problems.

As stated, the framework can be customized to a wide range of problems. In
Sect. 4, we illustrate in detail how to customize the framework to give a PTAS
for the Minimum Makespan Vehicle Routing problem of finding k tours
each starting and ending at a depot r that serve all clients in T such that the
makespan, the maximum length of any tour, is minimized. Here, vehicle load is
the tour length, and fleet budget is the number of vehicles. A bicriteria PTAS for
the associated Minimum Fleet Budget problem, Distance-Constrained

Vehicle Routing, follows as a corollary.
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Our framework can be applied to give similar results for other vehicle-routing
variants, including Capacitated Vehicle Routing and School Bus Rout-

ing, and can also be generalized to the multiple-depot setting. We state these
results in Sect. 5 and refer the reader to the full version of our paper for details.
The breadth of the problems listed highlights the real flexibility and convenience
of the presented framework.

At a high level, the framework partitions the tree into clusters such that there
exists a near-optimal solution that within each cluster has a very simple form,
effectively coarsening the solution space. Then, given this simplified structure, a
dynamic program can be designed to find such a near-optimal solution.

The clusters are designed to be small enough so that simplifying vehicle
routes at the cluster level does not increase the optimal load by too much, but
also large enough that the (coarsened) solutions can be enumerated efficiently. To
bound the error introduced by this simplification we design a load-reassignment
tool that makes cluster coverage adjustments globally in the tree.

Finally, standard dynamic programming techniques can result in a large accu-
mulation of rounding error. To limit the number of times that the load of any
single route is rounded, we introduce a route projection technique that essentially
pays in advance for load that the vehicle anticipates accumulating, allowing the
dynamic program to round only once instead of many times for this projected
load.

1.2 Related Work

For trees, Minimum Makespan Vehicle Routing is equivalent to Minimum

Makespan Rooted Tree Cover: the minimum makespan for rooted tree
cover is exactly half the minimum makespan for vehicle routing, since tours
traverse edges twice. Minimum Makespan Rooted Tree Cover is NP-hard
even on star instances but admits an FPTAS if the number, k, of subtrees is
constant [15] and a PTAS for general k [10]. For covering a general graph with
rooted subtrees, [6] provides a 4-approximation; this bound was later improved
to a 3-approximation by [13]. For tree metrics, an FPTAS is known for constant
k [16], and a (2 + ε)-approximation is known for general k [13]. In this paper,
we improve this to a PTAS. Although a recent paper [4] also claimed to present
a PTAS, in the full version of our paper we show that their result is incorrect
and cannot be salvaged using the authors’ proposed techniques. Additionally, we
compare their approach to our own and describe how we successfully overcome
the challenges where their approach fell short.

The associated Distance-Constrained Vehicle Routing problem is to
minimize the number of tours of length at most D required to cover all client
demand. Even restricted to star instances, this problem is NP-hard, and for
tree instances it is hard to approximate to better than a factor of 3/2 [14].
A 2-approximation is known for tree instances, and O(logD) and O(log |S|)-
approximations are known for general metrics, where S is the set of clients [14].
Allowing a multiplicative stretch in the distance constraint, a (O(log 1/ε), 1 +
ε) bicriteria approximation is also known, which finds a solution of at most
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O(log 1/ε)OPTD tours each of length at most (1+ ε)D [14], where OPTD is the
minimum number of tours of length at most D required to cover all clients. We
give a (1, 1+ ε) bicriteria PTAS for trees, and note that the hardness results for
trees described above [14] imply that without allowing this (1 + ε) stretch in D,
a PTAS is unlikely to exist.

In the classic Capacitated Vehicle Routing each vehicle can cover at
most Q clients, and the objective is to minimize the sum of tour lengths.
This problem is also NP-hard, even in star instances [12]. For tree metrics, a
4/3-approximation is known [2], which improves upon the previous best-known
approximation ratio of (

√
41 − 1)/4 by [1] and is tight with respect to the best

known lower bound. In this paper, we give a (1, 1+ ε) bicriteria PTAS for trees.
For general metrics, a (2.5 − 1.5

Q )-approximation is known [9](using [5]).
The regret of a path is the difference between the path length and the distance

between the path endpoints. The Min-Max Regret Routing problem is to
cover all clients with k paths starting from the depot, such that the maximum
regret is minimized. For trees, there is a known 13.5-approximation algorithm [3],
which we improve to a PTAS in this paper. For general graphs there is a O(k2)-
approximation algorithm [7].

In the related School Bus Routing problem, there is a bound R on the
regret of each path and the goal is to find the minimum number of paths
required to cover all client demand. For general graphs, [8] provides an LP-
based 15-approximation algorithm, improving upon the authors’ previous 28.86-
approximation algorithm [7]. In trees, there exists a 3-approximation algorithm
for the uncapacitated version of this problem and a 4-approximation algorithm
for the capacitated version [3]. Additionally, there is a (3/2) inapproximability
bound [3]. A PTAS is therefore unlikely to exist for trees. Instead, we give a
(1, 1 + ε) bicriteria PTAS that allows a (1 + ε) stretch in the regret constraint.

2 Preliminaries

Let OPT denote the value of an optimum solution. For a minimization problem, a
polynomial-time α-approximation algorithm is an algorithm that finds a solution
of value at most α · OPT and runs in time that is polynomial in the size of the
input. A polynomial-time approximation scheme (PTAS) is a family of (1 + ε)-
approximation algorithms indexed by ε > 0 such that for each ε, the algorithm
runs in time polynomial in the input size, but may depend arbitrarily on ε.

In a rooted tree, the parent of a vertex v, denoted p(v), is the vertex adjacent
to v in the shortest path from v to r (the parent of r is undefined). If u = p(v)
then v is a child of u. The parent edge of a vertex v is the edge (p(v), v) (undefined
for v = r). The ancestors of vertex v are all vertices (including v and r) in the
shortest v-to-r path and the descendants of v are all vertices u such that v is an
ancestor of u. We assume every vertex has at most two children. If vertex v has
l > 2 children v1, ..., vl, add vertex v′ and edge (v, v′) of length zero and replace
edges (v, v1), (v, v2) with edges (v′, v1), (v′, v2) of the same lengths.

Further, the subtree rooted at v is the subgraph induced by the descendants
of v and is denoted Tv. If u = p(v), the v-branch at u consists of the subtree
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rooted at v together with the edge (u, v). We define the length of a subgraph
A ⊆ E to be �(A) =

∑
(u,v)∈A �(u, v). For vertices u, v, we use dT (u, v) to denote

the shortest-path distance in T between u and v.
Our framework applies to vehicle routing problems that can be framed as

Min-Max Vehicle Load problems, in which the objective is to minimize the
maximum vehicle load, subject to a fleet budget. Given a Min-Max Vehicle

Load problem, a trivial n-approximation can be used to obtain an upper bound
Dhigh for OPT . An overarching algorithm takes as input a load value D ≥ 0 and
provides the following guarantee: if there exists a solution with max load D, the
algorithm will find a solution with max load at most (1 + ε)D. A PTAS follows
from using binary search between Dhigh

n and Dhigh for the smallest value Dlow

such that the algorithm returns a solution of max load at most (1+ ε)Dlow. This
implies Dlow ≤ OPT . For the rest of the paper, we assume D is fixed.

3 Framework Overview

Optimization problems on trees are often well suited for dynamic programming
algorithms. In fact, the following dynamic programming strategy can solve Min-

Max Vehicle Load problems on trees exactly: at each vertex v, for each value
0 ≤ i ≤ D, guess the number of solution route segments of load exactly i in the
subtree rooted at v. Such an algorithm would be exponential in D. Instead of
considering every possible load value, route segment loads can be rounded up to
the nearest θD, for some value θ ∈ (0, 1] that depends only on ε, so that only
O(θ−1) segment load values need to be considered. In order to achieve a PTAS,
we must show that this rounding does not incur too much error. Rounding the
load of a route at every vertex accumulates too much error, but if the number
of times that any given route is rounded is at most ε/θ, then at most εD error
accumulates, as desired.

One main insight underlying our algorithm is that a route only needs to incur
rounding error when it branches. The challenge in bounding the rounding error
then becomes bounding the number of times a route branches. While a route in
the optimal solution may have an arbitrary amount of branching, we show that
we can greatly limit the scope of candidate solutions to those with a specific
structure while only incurring an εD error in the maximum load. Rather than
having to make decisions for covering every leaf in the tree (of which there may
be arbitrarily many−each with arbitrarily small load), we partition the tree into
clusters and then address covering the clusters.

By reassigning small portions of routes within a cluster, we show that there
exists a near-optimal solution in which all clients (leaves) within a given cluster
are covered by only one or two vehicles. These clusters are chosen to be small
enough that the error incurred by the reassignment is small, but large enough
that any given route covers clients in a bounded number of clusters. This coarsens
the solutions considered by the algorithm, as vehicles must commit to covering
larger fractions of load at a time. A dynamic program then finds the optimal
such coarse solution using these simple building blocks within each cluster.
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3.1 Simplifying the Solution Structure

Let ε̂ and δ be problem-specific values that depend only on ε. Let HT denote the
set of all subgraphs of T , and let g : H → Z

≥0 be a problem-specific load function.
We require g to be monotonic and subadditive. Intuitively, for all H ∈ HT , g(H)
is the load accumulated by a vehicle for covering H.

Condensing the Input Tree. The first step in the framework is to condense

all small branches into leaf edges. Specifically, let B be the set of all maximal
branches of load at most δD. That is, for every v-branch b ∈ B, g(b) ≤ δD and
for b’s parent p(v)-branch, bp, g(bp) > δD. For convenience, if b1 ∈ B is a v1
branch at u and b2 ∈ B is a sibling v2 branch at u such that g(b1)+ g(b2) ≤ δD,
we add a vertex u′ and an edge (u, u′) of length zero and replace (u, vi) with
edge (u′, vi) of length �(u, vi) for i ∈ {1, 2}. The u′ branch at u then replaces the
two branches b1 and b2 in B. This ensures that any two branches in B with the
same parent cannot be combined into a subtree of load ≤ δD.

Then, for every b ∈ B, we condense b by replacing it with a leaf edge of
length �(b) and load g(b). All clients in b are now assumed to be co-located at
the leaf. Though it is easier to think of these condensed branches as leaf edges,
the algorithm need not actually modify the input tree; condensing a branch is
equivalent to requiring a single vehicle to cover the entire branch.

Clustering the Condensed Tree. After condensing all small branches, we
partition the condensed tree into clusters and define every leaf edge whose load
is at least δ

2D to be a leaf cluster. The leaf-cluster-to-root paths define what we
call the backbone of T . By construction, every edge that is not on this backbone
is either a leaf cluster (of load ≥ δ

2D) or a leaf edge (of load < δ
2D). That is,

every vertex is at most one edge away from the backbone (see Fig. 1a).
We can think of the condensed tree as a binary tree whose root is the depot,

whose leaves are the leaf clusters, and whose internal vertices are the branching
points of the backbone. Each edge of this binary tree corresponds to a maximal
path of the backbone between these vertices, together with the small leaf edges
off of this path (see Fig. 1a). To avoid confusion with tree edges, we call these
path and leaf subgraphs woolly edges. A woolly subedge of a woolly edge consists
of a subpath of the backbone and all incident leaf edges.

A woolly edge e whose load g(e) is less than ε̂δ
2 D is called a small cluster. The

remaining woolly edges have load at least ε̂δ
2 D. We partition each such woolly

edge into one or more woolly subedges, which we call edge clusters, each with
load in [ ε̂δ2 D, δ

2D]. Backbone edges do not contain clients and can be subdivided
as needed to ensure enough granularity in the tree edge lengths so that such a
partition is always possible (see Fig. 1b).

For convenience, we label the components of edge clusters. Let C be the set
of edge clusters. For any edge cluster C ∈ C, let PC denote the backbone path in
C and let LC denote the leaf edges in C. We order the backbone edges along PC

as pC,1, pC,2, ..., pC,m in increasing distance from the depot and similarly label
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(a) Woolly edges (b) Clusters (c) T ∗

Fig. 1. (a) Leaf clusters in yellow and woolly edges in red; (b) The tree partitioned
into leaf clusters (yellow triangles), small clusters (blue ovals), and edge clusters (green
rectangles); (c) The corresponding T ∗ for clustering from (b). (Color figure online)

the leaf edges eC,1, eC,2, ..., eC,m−1 such that eC,i is the leaf incident to pC,i and
pC,i+1 for all 1 ≤ i < m (see Fig. 2). If no such incident leaf exists for some i, we
can add a leaf of length zero. Likewise PC can be padded with edges of length
zero to ensure that each edge cluster ‘starts’ and ‘ends’ with a backbone edge.

Solution Structure. Consider the intersection of a solution with an edge clus-
ter C. There are three different types of routes that visit C (see Fig. 2). A C-
passing route traverses C without covering any clients, and thus includes all of
PC but no leaf edges in LC . A C-collecting route traverses and covers clients in
C, and thus includes all of PC and some edges in LC . Last, a C-ending route
covers clients in, but does not traverse C, and thus includes backbone edges
pC,1, pC,2, ..., pC,i for some i < m and some leaves in LC , but does not include
all of PC . Note that any C-ending route can be assumed to cover some leaves
in LC because otherwise, removing any such redundancy would only improve a
solution.

r
. . . . . .

pC,1 pC,2 pC,3 pC,4 pC,5

eC,1 eC,2 eC,3 eC,4

Fig. 2. Three types of route within an edge cluster C; the red tour is a C-passing route,
the green tour is a C-collecting route, and the blue tour is a C-ending route. (Color
figure online)

We say that a cluster C has single coverage if a single vehicle covers all
clients in C. We say that an edge cluster C has split coverage if there is one C-
ending route that covers leaf edges eC,1, eC,2, ..., eC,i for some i < m− 1 and one
C-collecting route that covers leaf edges eC,i+1, eC,i+2, ..., eC,m−1 (see Fig. 2).
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Finally, we say that a feasible solution has a simple structure if:

– Leaf clusters and small clusters have single coverage,
– Edge clusters have single or split coverage, and
– Each vehicle covers clients in O( 1

ε̂2δ ) clusters

Customization of the framework requires proving a structure theorem stating
that there exists a near-optimal solution (i.e. a feasible solution with maximum
load at most (1 + ε)D) with simple structure. Such a theorem proves that it is
safe to reduce the set of potential solutions to those with simple structure.

3.2 Dynamic Program

After proving a structure theorem, the framework uses a dynamic programming
algorithm (DP) to actually find a near-optimal solution with simple structure.
We define the cluster tree T ∗ to be the tree that results from contracting each
cluster of T to a single vertex. That is, the cluster tree has a vertex for each
cluster and each branching point of the backbone (See Fig. 1c). The DP traverses
T ∗ starting at the leaves and moving rootward, and enumerates the possible route
structures within each cluster. Namely, the DP considers all ways edge cluster
coverage can be split and how routes are merged at branching points.

At each vertex in this tree the algorithm stores a set of configurations. A
configuration is interpreted as a set of routes in T that cover all clusters in
the subtree of T ∗ rooted at v. Let θ ∈ (0, 1] be a problem-specific value that
depends only on ε. A configuration at a vertex v specifies, for each multiple i of
θD between 0 and (1+ ε)D the number of routes whose rounded load is i at the
time they reach v. Because θ depends only on ε, the number of configurations and
runtime of the DP is polynomially bounded. After traversing the entire cluster
tree, the solution is found at the root. If there exists a configuration at the root
such that all of the rounded route loads are at most (1 + ε)D, the algorithm
returns this solution.

To ensure that the DP actually finds a near-optimal solution, we must bound
the number of times that a given route is rounded to ε/θ, which gives a rounding
error of at most εD. In particular, we design the DP so that the number of times
that any one route is rounded is proportional to the number of clusters that it
covers clients in. Then, using the structure theorem, there exists a near-optimal
solution that covers clients in O( 1

ε̂2δ ) clusters and gets rounded by the DP O( 1
ε̂2δ )

many times. Finally, θ is set to cθεε̂
2δ for some constant cθ.

For loads involving distance, C-passing routes pose a particular challenge
for bounding rounding error. These routes may accumulate load while passing
through clusters without covering any clients, yet the DP cannot afford to update
the load at every such cluster. Instead, the DP projects routes to predetermined
destinations up the tree, so that they accumulate rounding error only once while
passing many clusters. The configuration then stores the (rounded) loads of the
projected routes, and the DP need not update these load values for clusters
passed through along the projection.
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3.3 Reassignment Lemma

We now present a lemma that will serve as a general-purpose tool for our
framework. This tool is used to reassign small route segments. That is, if some
subgraph H is covered by several small route segments from distinct vehicles
h1, h2, ..., hm, then for some 1 ≤ i ≤ m, the entire subgraph H is assigned to be
covered by hi. This increases load on hi so as to cover all of H, and decreases
load on hj for all j �= i which are no longer required to cover H (see Fig. 3). We
show that this assignment process can be performed simultaneously for many
such subgraphs such that the net load increase of any one route is small.

Let G = (A,B,E) be an edge-weighted bipartite graph where A is a set of
facilities, B is a set of clients, and w(a, b) ≥ 0 is the weight of edge (a, b) ∈ E.
For any vertex v, we use N(v) to denote the neighborhood of v, namely the
set of vertices u such that there is an edge (u, v) ∈ E. Each facility a ∈ A
has capacity q(a) =

∑
b∈N(a) w(a, b) and each client b ∈ B has weight w(b) ≤

∑
a∈N(b) w(a, b). A feasible assignment is a function f : B → A, such that

each client b is assigned to an adjacent facility f(b) ∈ N(b). We can think of
the weights w(a, b) representing fractional assignment costs while weight w(b)
corresponds to a “discounted” cost of wholly serving client b. Ideally, the total
weight of clients assigned to any facility a would not exceed the capacity q(a);
however, this is not always possible. We define the overload hf (a) of a facility a
to be w(f−1(a))− q(a) =

∑
b|f(b)=a w(b)− ∑

b∈N(a) w(a, b) and the overload hf

of an assignment to be maxa∈A hf (a). The Bipartite Weight-Capacitated

Assignment problem is to find an assignment with minimum overload.

Lemma 1. Given an instance of the Bipartite Weight-Capacitated

Assignment problem, an assignment with overload at most maxb∈B w(b) can
be found efficiently.

In our application of Lemma 1, facilities represent tours and clients represent
subgraphs of T . Assignment of a client b to a facility a represents assigning
subgraph b to be covered by tour a (see the proof of Lemma 2 for an example).

4 Customizing the Framework: Minimum Makespan
Vehicle Routing

In this section, we demonstrate how to apply the general framework to a specific
problem, Minimum Makespan Vehicle Routing. In particular, we use the
framework to achieve the following:

Theorem 3. For every ε > 0, there is a polynomial-time algorithm that, given
an instance of Minimum Makespan Vehicle Routing on a tree, finds a solu-
tion whose makespan is at most 1 + ε times optimum.

Recall that the problem is to find k tours that serve all clients in T such
that the maximum length of any tour is minimized. The vehicle routes are tours,
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and the vehicle load is tour length, so the load g(H) of subgraph H is twice the
length of edges in the subgraph. The condense operation is then applied to the
input tree, with δ = ε̂ = ε/c for some constant c we will define later. Leaf clusters
therefore correspond to branches of length at least ε̂

4D (load at least ε̂
2D), small

clusters have total length less than ε̂2

4 D, and edge clusters have total length in
[ ε̂

2

4 D, ε̂
4D]. As described in Sect. 3, the two steps in applying the framework are

proving a structure theorem and designing a dynamic program.

4.1 Minimum Makespan Vehicle Routing Structure Theorem

We prove the following for Minimum Makespan Vehicle Routing.

Theorem 4. If there exists a solution with makespan D, then there exists a
solution with makespan at most 1 + O(ε̂)D that has simple structure.

We prove the above by starting with some optimal solution of makespan at
most D and show that after a series of steps that transforms the solution into
one with simple structure, the makespan is still near-optimal.

To ensure that each step maintains solution feasibility, we introduce the fol-
lowing notion of independence. Let T ′ be a connected subgraph of T containing
the depot r, and let X be a set of subgraphs of T . We say that X is a tour-
independent set with respect to T ′ if T ′ ∪ X ′ is connected for all X ′ ⊆ X.
In particular, if T ′ is the subgraph covered by a single tour then adding any
subgraphs in X ′ creates a new feasible tour.

Lemma 2. The condense operation adds at most ε̂D to the optimal makespan.

Proof. The condense operation is equivalent to requiring every branch in B to
be covered by a single tour. We show that there is such a solution of makespan
at most OPT + ε̂D. Fix an optimal solution, and let A be the set of tours in
the optimal solution that (at least partially) cover branches in B. We define
an edge-weighted bipartite graph G = (A,B, E) where there is an edge (a, b) if
and only if tour a contains edges of branch b, and w(a, b) is the length of the
tour segment of a in branch b, namely twice the length of the edges covered by
tour a. Note that ∀a ∈ A, b ∈ B, w(a, b) ≤ ε̂D. For each b ∈ B, we define the
weight w(b) to be 2�(b), and for each a ∈ A, we define the capacity q(a) to be
the sum

∑
b:a∩b�=∅ w(a, b) of all tour segments of a in branches of B. Clearly,

w(b) ≤ ∑
a:a∩b�=∅ w(a, b), since these tour segments collectively cover b.

Essentially, q(a) represents tour a’s budget for buying whole branches and is
defined by the length of its tour segments in the branches that it partially covers.
Further, we will only assign a branch to a tour that already covers some edges
in the branch so there is no additional cost to connect the tour to the branch.

Applying Lemma 1 to G, we can achieve an assignment of branches to tours
such that each branch is assigned to one tour and the capacity of each tour
is exceeded by at most maxb∈B w(b) ≤ ε̂D. Further, for any tour a ∈ A, let
T ′

a be the corresponding subgraph visited by a excluding any branches in B.
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T ′
a contains r and is connected, so NG(a) ⊆ B is a tour-independent set with

respect to T ′
a. Thus, the reassignment of branches creates a feasible solution in

which the extra distance traveled by each tour is at most ε̂D.

Fig. 3. (a) depicts a branch b ∈ B covered by several small tour segments; (b) shows
the entire branch b being assigned to the blue tour; (c) shows the result of the condense
operation. (Color figure online)

Lemma 3. Requiring all leaf clusters and small clusters to have single coverage
increases the makespan by at most 4ε̂D.

Proof. After condensing the tree, all leaf clusters have single coverage, and the
effect on makespan was covered in Lemma 2. Because of the binary tree structure,
we can assign each small cluster to a descendant leaf cluster in such a way that
each leaf cluster is assigned at most two small clusters. Since each leaf cluster
is covered by a single tour, we can require this tour to also cover the clients
of the small cluster(s) assigned to that leaf cluster. This is feasible since small
clusters are only assigned to descendant leaf clusters. Furthermore, since leaf
clusters have length at least ε̂

4D, we can charge this error to the length of the
leaf clusters. In particular, since any given tour covers at most D/(2 · ε̂

4D) = 2
ε̂

leaf clusters, this assignment adds at most 2 · 2ε̂ ·(2 · ε̂2

2 D) = 4ε̂D to the makespan.

Lemma 4. Requiring every edge cluster to have single or split coverage adds at
most 3ε̂D to the optimal makespan.

After proving Lemma 4, all that remains in proving Theorem 4 is to bound
the number of clusters that a single vehicle covers clients in. See the full version
of our paper for proofs.

4.2 Minimum Makespan Vehicle Routing Dynamic Program

Having proven a structure theorem, we now present a dynamic programming
algorithm (DP) that actually finds a near-optimal solution with simple structure.

Recall, the DP traverses cluster tree T ∗ starting at the leaves and moving
rootward. A configuration is a vector in {0, 1, 2, ..., k}2ε̂−4

. A configuration x
at a vertex v is interpreted as a set of tours projected up to r in T that cover
all clusters in the subtree of T ∗ rooted at v. For i ∈ {1, 2, ..., 2ε̂−4}, x[i] is the
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number of tours in the set that have rounded length iε̂4D. That is, the actual
tours that correspond to the x[i] tours represented in the vector each have length
that may be less than iε̂4D.

The algorithm categorizes the vertices into three different cases and handles
them separately. The base cases are the leaves of T ∗. Let v ∈ T ∗ be such a leaf,
let Lv be the corresponding leaf cluster in T , and let u be the vertex at which Lv

meets the backbone. When the algorithm determines the configuration for v it
addresses covering both Lv as well as covering any small clusters C1, ..., Ch that
are assigned to Lv. Let �small be the length of all of the leaves of these small
clusters, namely �small = �(

⋃
1≤i≤h Ci \ backbone). Let �0 be 2(�(Lv) + �small +

dT (u, r)) rounded up to the nearest ε̂4D. The only configuration stored at v is
x such that x[�0] = 1 and x[j] = 0,∀j �= �0. All cluster lengths and distances to
the depot can be precomputed in linear time, after which each base case can be
computed in constant time.

The grow cases are the vertices in T ∗ that correspond to edge clusters in T .
Let v ∈ T ∗ be such a vertex, and let Cv be the corresponding edge cluster in T .
Let u be the root-most vertex in Cv, and let v′ ∈ T ∗ be the lone child vertex of
v. Note that v′ may correspond to a branching backbone vertex, a leaf cluster or
another edge cluster, but by construction, v has exactly one child. Since Cv has
single or split coverage, at most two tours in any configuration at v are involved
in covering the leaves of Cv: all other tours in the configuration are Cv-passing
tours, and their representation in the configuration remains unchanged. The
algorithm considers all possible rounded tour lengths �1 for a Cv-ending tour
t1 for the configuration (including not having such a tour) and for each such
t1, the algorithm considers all possible (rounded) lengths �2 for an incoming
Cv-collecting tour t2, before the remaining length from covering leaves in Cv

is added to the tour. Given �1 and �2, the algorithm can easily compute the
resulting rounded length �3 of t2 after covering its share of Cv leaves. For each
configuration x′ for child vertex v′, the algorithm determines configuration x
for v such that x[�1] = x′[�1] + 1, x[�2] = x′[�2] − 1, x[�3] = x′[�3] + 1, and
x[i] = x′[i] otherwise. If the resulting x is feasible, it is stored at v. Since there
are at most 2ε̂−4 options for �1 and �2 and at most k2ε̂−4

configurations at v′,
the runtime for each grow case is kO(ε̂−4).

Finally, the merge cases are the vertices in T ∗ that correspond to branching
backbone vertices in T as well as the depot. Let v ∈ T ∗ be such a vertex, and let
u be the corresponding vertex in T . Let v1, v2 ∈ T ∗ be the two children of v in
T ∗. Every tour t in a configuration at v will either be a directly inherited tour ti
of rounded length �i from a configuration at vi for i ∈ {1, 2}, or will be a merging
of some tour t1 from v1 and some t2 from v2 with resulting length �1+�2−2�(u, r)
rounded up to the nearest ε̂4D (recall that t1 and t2 are tours from the depot
so the subtracted amount addresses over-counting the path to the depot). For
every possible (�1, �2) (including lengths of zero to account for tours inherited
by children), the algorithm considers how many tours at v could have resulted
from merging a tour of length �1 from v1 with a tour of length �2 from v2. Each
of these possibilities corresponds to a configuration xi at vi for i ∈ {1, 2} and
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to a merged configuration x at v. If x1 and x2 are valid configurations stored
at v1 and v2, respectively, then the algorithm stores x at v. There are k4ε̂−8

such possibilities, so the runtime of each merge case is kO(ε̂−8). Note that the
dynamic program only considers storing feasible configurations x at vertex v so
the algorithm maintains that there are at most k tours total.

Since for any ε > 0 the DP has a polynomial runtime, the following lemma,
which we prove in the full version of our paper, completes the proof of Theorem 3.

Lemma 5. The dynamic program described above finds a tour with maximum
makespan at most (1 + ε)D.

4.3 Distance-Constrained Vehicle Routing

Recall that the Distance-Constrained Vehicle Routing problem is to min-
imize the number of tours of length at most D required to cover all clients. Since it
is the Minimum Fleet Budget problem associated with Minimum Makespan

Vehicle Routing, the following bicriteria PTAS follows as a corollary to The-
orem 3.

Theorem 5. Given an instance of Distance-Constrained Vehicle Rout-

ing on a tree, if there exists a solution with k tours of length at most D, then
for any ε > 0, there is a polynomial-time algorithm that finds a solution with k
tours of length at most (1 + ε)D.

5 Framework Applications

In this section we give theorem statements for several other problems and exten-
sions that can be solved using our framework. See the full version of our paper
for details and proofs.

Theorem 6. Given an instance of Capacitated Vehicle Routing on a tree,
if there exists a solution of total length k and capacity Q, then for any ε > 0,
there is a polynomial-time algorithm that finds a solution of total length k and
capacity at most (1 + ε)Q.

Theorem 7. Given an instance of the School Bus Routing problem on a
tree, if there exists a solution consisting of k paths of regret at most R, then for
any ε > 0, there is polynomial-time algorithm that finds a solution consisting of
k paths of regret at most (1 + ε)R.

Theorem 8. There is a polynomial-time 2-approximation for the School Bus

Routing problem in trees.

Theorem 9. For every ε > 0 and ρ > 0, there is a polynomial-time algorithm
that, given an instance of ρ-Depot Minimum Makespan Vehicle Routing

on a tree, finds a solution whose makespan is at most 1 + ε times optimum.
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Abstract. A vertex v in a graph G is said to be avoidable if every
induced two-edge path with midpoint v is contained in an induced cycle.
Generalizing Dirac’s theorem on the existence of simplicial vertices in
chordal graphs, Ohtsuki et al. proved in 1976 that every graph has an
avoidable vertex. In a different generalization, Chvátal et al. gave in
2002 a characterization of graphs without long induced cycles based on
the concept of simplicial paths. We introduce the concept of avoidable
induced paths as a common generalization of avoidable vertices and sim-
plicial paths. We propose a conjecture that would unify the results of
Ohtsuki et al. and of Chvátal et al. The conjecture states that every
graph that has an induced k-vertex path also has an avoidable k-vertex
path. We prove that every graph with an edge has an avoidable edge, thus
establishing the case k = 2 of the conjecture. Furthermore, we point out
a close relationship between avoidable vertices in a graph and its min-
imal triangulations and identify new algorithmic uses of avoidable ver-
tices. More specifically, applying Lexicographic Breadth First Search and
bisimplicial elimination orderings, we derive a polynomial-time algorithm
for the maximum weight clique problem in a class of graphs generaliz-
ing the class of 1-perfectly orientable graphs and its subclasses chordal
graphs and circular-arc graphs.
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1 Introduction

A graph G is chordal if every cycle in G of length at least four has a chord.
Chordal graphs are well-known to possess many good structural and algorithmic
properties. The main goal of this paper is to study certain concepts related to
chordal graphs in the framework of more general graph classes. The starting
point for our research is a result due to Dirac [12] stating that every minimal
cutset in a chordal graph is a clique, which implies that every chordal graph
has a simplicial vertex, that is, a vertex whose neighborhood is a clique [14].
Denoting by Pk the k-vertex path, this result can be formulated as follows.

Theorem 1.1. Every chordal graph has a vertex that is not the midpoint of any
induced P3.

This theorem was generalized in the literature in various ways. Two particular
ways of generalizing Theorem 1.1 include:

(i) proving a property of general graphs that, when specialized to chordal
graphs, results in the existence of a simplicial vertex, and

(ii) generalizing the ‘simpliciality’ property from vertices, which are paths of
length 0, to longer induced paths, and proving the existence of such paths
for graphs excluding suitably longer cycles.

Let us explain the corresponding results in more detail.

1.1 First Generalization – From Chordal Graphs to All Graphs

A generalization of the first kind is given by the following theorem, which follows
from [21, Theorem 3] as well as from [7, Main Theorem 4.1] and [1, Lemma 2.3].

Theorem 1.2. Every graph G has a vertex v such that every induced P3 having
v as its midpoint is contained in an induced cycle in G.

We formalize this property as follows.

Definition 1.1. A vertex v in a graph G is said to be avoidable if between any
pair x and y of neighbors of v there exists an x, y-path all the internal vertices
of which avoid v and all neighbors of v. Equivalently, a vertex v is avoidable if
every induced P3 with midpoint v closes to an induced cycle.

This terminology is motivated by considering a setting where G represents
a symmetric acquaintance relation on a group of people. In this setting, the
property of person (equivalently, vertex) a being avoidable can be interpreted as
follows: whenever two acquaintances of a need to share some information that
they would not like to share with a, they can do so by passing the information
along a path completely avoiding both a and all her other acquaintances. Thus,
a is in a sense avoidable, as information can be passed around in her immediate
proximity without her knowledge.
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Note that every simplicial vertex in a graph is avoidable. If we analyze avoid-
able vertices in graph classes, rather than in general graphs, we see that this
definition is a generalization of many well known concepts. For example, in a
tree a vertex is avoidable if and only if it is a leaf, while in a chordal graph a ver-
tex is avoidable if and only if it is simplicial. With this terminology, Theorem 1.2
can be equivalently stated as follows.

Theorem 1.3. Every graph has an avoidable vertex.

The notion of avoidable vertices has appeared in the literature (with different
terminology) in a variety of settings. To our knowledge, the earliest appearance
was in the paper from 1976 by Ohtsuki et al. [21], where avoidable vertices
were characterized as exactly the vertices from which a minimal elimination
ordering can start. Here, a minimal elimination ordering of a graph G = (V,E)
is a procedure of eliminating vertices one at a time so that before each vertex is
removed, its neighborhood is turned into a clique, and the resulting set F of edges
added throughout the procedure is an inclusion-minimal set of non-edges of G
such that (V,E ∪ F ) is a chordal graph (in other words, (V,E ∪ F ) is a minimal
triangulation of G). Given a graph G, an avoidable vertex in G can be found in
linear time using graph search algorithms such as Lexicographic Breadth First
Search (LBFS) [25] (see also [16]) or Maximum Cardinality Search (MCS) [6].
The presentation closest to our setting is the one used by Ohtsuki et al. [21]. In
fact, Berry et al. [5,6] named avoidable vertices OCF-vertices, after the initials
of the three authors of [21].

1.2 Second Generalization – From Vertices to Longer Paths

In order to generalize the notion of simplicial vertices to longer paths, the next
definition, partially following Chvátal et al. [11], will be useful.

Definition 1.2. Given an induced path P in a graph G, an extension of P is
any induced path in G obtained by adding to P one edge at each end. An induced
path is said to be simplicial if it has no extension.

In this terminology, Theorem 1.1 can be stated as follows: every graph con-
taining at least one vertex without induced cycles of length more than 3 has
a simplicial induced P1. In 2002, Chvátal et al. [11] generalized this result as
follows.

Theorem 1.4. For each k ≥ 1, every {Ck+3, Ck+4, . . .}-free graph that contains
an induced Pk also contains a simplicial induced Pk.

1.3 A Common Generalization?

Theorems 1.3 and 1.4 suggest that a further common generalization might be
possible, based on the following generalization of Definition 1.1 (definition of
avoidable vertices) to longer paths.
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Definition 1.3. An induced path P in a graph G is said to be avoidable if every
extension of P is contained in an induced cycle.

Thus, in particular, a vertex v in a graph G is avoidable if and only if the
corresponding one-vertex path is avoidable. Moreover, every simplicial induced
path is (vacuously) avoidable. We conjecture that the following common gener-
alization of Theorems 1.3 and 1.4 holds.

Conjecture 1.1. For every k ≥ 1, every graph that contains an induced Pk also
contains an avoidable induced Pk.

Theorem 1.3 implies the conjecture for k = 1, while Theorem 1.4 implies it for
every positive integer k provided we restrict ourselves to the class of graphs with-
out induced cycles of length more than k+2. Indeed, if G is a {Ck+3, Ck+4, . . .}-
free graph that contains an induced Pk, then by Theorem 1.4 graph G contains
a simplicial induced Pk, and every simplicial induced path is avoidable.

1.4 Our Results

The results of this paper can be summarized as follows.

1. Characterization, existence, and computation of avoidable vertices.
Following the work of Ohtsuki et al. [21], we revisit the connection between
avoidable vertices and minimal triangulations of graphs by characterizing avoid-
able vertices in a graph G as exactly the simplicial vertices in some minimal
triangulation of G (Theorem 3.1). Using properties of LBFS that follow from
works of Berry and Bordat [7] and Aboulker et al. [1], we show that every graph
with at least two vertices contains a diametral pair of avoidable vertices (The-
orem 4.1). The same approach shows that a pair of distinct avoidable vertices
(though not necessarily a diametral pair) in a given graph G with at least two
vertices can be computed in linear time (Theorem 4.2).

2. New polynomially solvable cases of the maximum weight clique
problem. A graph is 1-perfectly orientable if its edges can be oriented so that
the out-neighborhood of every vertex induces a tournament, and hole-cyclically
orientable if its edges can be oriented so that each induced cycle of length at
least four is oriented cyclically. We connect the structural and algorithmic prop-
erties of avoidable vertices with the concept of bisimplicial vertices to develop
an efficient algorithm for the maximum weight clique problem in the class of
1-perfectly orientable graphs and more generally in the class of hole-cyclically
orientable graphs (Theorem 5.3). This result generalizes the well-known fact
of polynomial-time solvability of the maximum weight clique problem for the
classes of chordal graphs and circular-arc graphs.

3. Existence of avoidable edges. We show that for every graph G and every
non-universal vertex v ∈ V (G) there exists an avoidable vertex in the non-
neighborhood of v (Theorem 3.2). We then adapt this approach to prove the
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existence of two avoidable edges in any graph with at least two edges (Theo-
rem 6.1). This settles in the affirmative the case k = 2 of Conjecture 1.1 and
generalizes the case k = 2 of Theorem 1.4.

Structure of the Paper. In Sect. 2 we summarize the main notations and def-
initions of some of the most frequently used notions in the paper. In Sect. 3 we
discuss structural aspects of avoidable vertices in graphs, including a character-
ization of avoidable vertices as simplicial vertices in some minimal triangulation
of the graph and a new proof of the existence result. Section 4 is devoted to
algorithmic issues regarding the problem of efficient computation of avoidable
vertices in a given graph. In Sect. 5 we present an algorithmic application of this
concept to the maximum weight clique problem, by identifying a rather general
class of graphs in which every avoidable vertex is bisimplicial, which leads to
a polynomial-time algorithm for the maximum weight clique problem in this
class of graphs. In Sect. 6, we settle in the affirmative the case k = 2 of The-
orem 1.3. We conclude the paper in Sect. 7 with some open problems. Due to
space restrictions, most proofs are omitted.

2 Preliminaries

All graphs in this paper will be finite but may be either undirected or directed,
and will contain at least one vertex. We will refer to an undirected graph simply
as a graph and denote it as G = (V,E) where V is the vertex set and E the
edge set. For a graph G = (V,E), we also write V (G) for V and E(G) for E.
A directed graph will be called a digraph and denoted as D = (V,A) where V
is again the set of vertices and A the set of arcs. Graphs and digraphs in this
paper will always be simple, that is, without loops or multiple edges (but pairs
of oppositely oriented arcs in digraphs are allowed). Unless stated otherwise we
use standard graph and digraph terminology and notation. The set of all vertices
adjacent to a vertex v in G, i.e., its neighborhood, is denoted by NG(v) (or simply
N(v) if the graph is clear from the context). The cardinality of NG(v) is the
degree of v, denoted by dG(v). Similarly, the closed neighborhood NG(v) ∪ {v} is
written as NG[v] (or simply N [v] if the graph is clear from the context). Given a
digraph D = (V,A), the in-neighborhood of a vertex v in D, denoted by N−

D (v),
is the set of all vertices w such that (w, v) ∈ A. Similarly, the out-neighborhood
of v in D, denoted by N+

D (v), is the set of all vertices w such that (v, w) ∈ A.
An orientation of a graph G = (V,E) is a digraph obtained by assigning to each
edge of G a direction. A tournament is an orientation of the complete graph.
The distance between two vertices s and t in a graph G is the length of a shortest
path between these two vertices and will be denoted by distG(s, t). A vertex x
with largest distance from s is called eccentric to s and its distance to s is the
eccentricity eccG(s) of s. The diameter of G, denoted diam(G), is the largest
such value among all vertices.

A permutation σ = (v1, . . . , vn) of the vertices of G will be called a vertex
ordering. For a vertex ordering σ = (v1, . . . , vn), we write vi ≺σ vj if i < j.
Following Heggernes [19], a graph H = (V,E ∪ F ) is called a triangulation
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of G = (V,E) if H is chordal and we say that it is a minimal triangulation
if for every proper subset F ′ of F , the graph (V,E ∪ F ′) is not chordal. An
elimination ordering σ of the vertices of G is a vertex ordering given as input
of the Elimination Procedure, as defined in Algorithm 1, to compute greedily a
triangulation of G called G+

σ . If G+
σ is a minimal triangulation we call σ a minimal

elimination ordering. If G+
σ is equal to G, then σ is a perfect elimination ordering

and G is chordal by definition. The deficiency of a vertex v is defined as the set
DG(v) = {uw /∈ E | u,w ∈ NG(v)}.

Input: A graph G = (V,E) and an ordering σ = (v1, . . . , vn).
Output: The filled graph G+

σ .

G0 = G;
for i = 1 to n do

Let F i = DGi−1(v);
Obtain Gi by adding the edges in F i to Gi−1 and removing vi;

G+
σ = (V,E ∪ ⋃n

i=1 F i)

Algorithm 1. Elimination Procedure

By Pn, Cn, and Kn we denote the path, cycle, and the complete graph with
n vertices, respectively. By 2K2 we denote the graph consisting of two disjoint
copies of K2. A graph is bipartite if its vertex set can be partitioned into two
independent sets, which are then said to form a bipartition of the graph. By
Km,n we denote the complete bipartite graph with m vertices in one part of the
bipartition and n in the other one. Given a family of graphs F , we say that a
graph is F-free if no induced subgraph of G is isomorphic to a graph in F . A
graph is cobipartite if its complement is bipartite and circular arc if it is the
intersection graph of arcs on a circle. For undefined notation and terms related
to graphs and graph classes, we refer to [9,15,27,30].

3 Characterization and Existence of Avoidable Vertices

The proof of Theorem 3 in the paper [21] by Ohtsuki, Cheung, and Fujisawa
(which itself relied on earlier works of Rose [22–24]) leads to the characterization
of avoidable vertices given by the following theorem. Since we are not aware
of any explicit statement of this result in the literature, we state it here and
give a short self-contained proof that does not rely on the concept of minimal
elimination orderings.

Theorem 3.1. Let G = (V,E) be a graph and let v ∈ V . Then v is avoidable
in G if and only if v is a simplicial vertex in some minimal triangulation of G.

Proof sketch. Suppose that v ∈ V is a simplicial vertex in some minimal tri-
angulation G′ = (V,E ∪ F ) of G such that v is not avoidable in G. Let
S = NG[v] \ {x, y}, let F ∗ be the set of all pairs {u,w} ∈ F such that u and
w are in different connected components of the graph G − S, and let G∗ be the
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graph (V,E ∪ (F \ F ∗)). Since v is not avoidable in G, the set F ∗ is non-empty.
It can be shown that G∗ is a triangulation of G, contradicting the minimality
of G′. For the converse direction, assume that |V | ≥ 2, let v be an avoidable
vertex in G, let S = NG(v), and let G′ = (V ′, E′) be the graph obtained from
G − v by turning S into a clique. Moreover, let G′

1 = (V ′, E′ ∪ F ′) be a minimal
triangulation of G′ and let G1 = (V,E ∪ E′ ∪ F ′). Then v is a simplicial vertex
in G1 and it can be shown that G1 is a minimal triangulation of G. ��

Theorem 3.1 reveals a close connection with potential maximal cliques, sets of
vertices of a graph G that are maximal cliques in some minimal triangulation of
G [8]. The theorem states that given a vertex v ∈ V (G), its closed neighborhood
NG[v] is a potential maximal clique in G if and only if v is avoidable.

Since every graph has a minimal triangulation, Theorems 1.1 and 3.1 imply
Theorem 1.3, which coincides with the statement of Conjecture 1.1 for the case
k = 1. The following slightly stronger form of the same result can be proved
using a direct approach, which can be adapted to prove the case k = 2 of the
conjecture (cf. Sect. 6). A vertex in a graph is said to be universal if it is adjacent
to every other vertex, and non-universal otherwise.

Theorem 3.2. For every graph G and every non-universal vertex v ∈ V (G)
there exists an avoidable vertex a ∈ V (G) \ N [v].

4 Computing Avoidable Vertices

Knowing that every graph has an avoidable vertex, the next question is how
to compute one efficiently. The obvious polynomial-time method would be to
decide for each vertex v of the graph G whether it is avoidable. For this we
have to check for each pair of nonadjacent neighbors x and y of v, if they are
in the same connected component of (G − N [v]) ∪ {x, y}. If we use breadth- or
depth-first search to compute the connected components, this gives a running
time of O(|V (G)||E(G)|(|V (G)| + |E(G)|)). The same method can be used to
compute the set of all avoidable vertices. However, if we are only interested in
computing one or two avoidable vertices, we show next that this can be done in
linear time.

We have already seen that in chordal graphs the avoidable vertices are exactly
the same as the simplicial vertices. Therefore, any graph search algorithm that
can compute simplicial vertices in a chordal graph is a good candidate for com-
puting avoidable vertices. In 1976, Rose et al. [25] defined a linear-time algorithm
(Lex-P), which computes a perfect elimination ordering if there is one, and is
thus a recognition algorithm for chordal graphs. This is a recognition algorithm
for chordal graphs. This algorithm, since named Lexicographic Breadth First
Search (LBFS), exhibits many interesting structural properties and has been
used as an ingredient in many other recognition and optimization algorithms on
graphs. Any vertex ordering of G that can be produced by LBFS is called an
LBFS ordering (of G).
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Input: A connected n-vertex graph G = (V, E) and a distinguished vertex
s ∈ V .

Output: A vertex ordering σ.

label(s) ← n;
foreach each vertex v ∈ V \ {s} do label(v) ← ∅;
for i ← 1, . . . , n do

pick an unnumbered vertex v with lexicographically largest label;
σ(i) ← v;
foreach unnumbered vertex u ∈ N(v) do append (n − i) to label(w);

Algorithm 2. Lexicographic Breadth First Search

The pseudocode of Lexicographic Breadth First Search given above is pre-
sented for connected graphs. However, the method can be generalized to work
for arbitrary graphs, by executing the search component after component (in an
arbitrary order) and concatenating the resulting vertex orderings.

In this context we will be mainly interested in the properties of the vertices
of a given graph G visited last by some execution of LBFS (and for a suitable
choice of s), also called end vertices. The essential claim of the following lemma
due to Aboulker et al. [1] can also be found in [7].

Lemma 4.1. Let G = (V,E) be a graph and let σ = (v1, . . . , vn) be an LBFS
ordering of G. Then for all triples of vertices a, b, c ∈ V such that a ≺σ b ≺σ c
and ac ∈ E, there exists a path from a to b whose internal vertices are disjoint
from N [vn].

Corollary 4.1. Let G = (V,E) be a graph and let σ = (v1, . . . , vn) be an LBFS
ordering of G. Then vn is avoidable in G. In fact, for any i ∈ {1, . . . , n}, the
vertex vi is avoidable in G[v1, . . . , vi].

Note that Lexicographic Breadth First Search is a breadth-first search, that
is, when LBFS runs from a vertex s, it orders the vertices of G according to
their distance from the starting vertex s. In particular, this implies the following
strengthening of Theorem 3.2.

Corollary 4.2. For every graph G = (V,E) and every vertex v ∈ V there is an
avoidable vertex a ∈ V is eccentric to v.

This corollary generalizes the fact that for every vertex v in a chordal graph
G, there is a simplicial vertex in G that is eccentric to v [13,29]. Moreover,
with Corollary 4.2 at hand we can strengthen Theorem 1.3 to the following
generalization of Dirac’s theorem on chordal graphs (Theorem 1.1).

Theorem 4.1. Every graph G with at least two vertices contains two avoidable
vertices whose distance to each other is the diameter of G.
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Proof. Let s ∈ V be a vertex of maximum eccentricity in G and let σ = (s =
v1, . . . , vn = a) be the ordering given by an LBFS starting in s. By Corollary 4.1,
vertex a is avoidable. On the other hand, if τ = (a = w1, . . . , wn = b) is an LBFS
of G starting in a, then b is avoidable due to Corollary 4.1. Moreover, a �= b and
distG(a, b) = eccG(a) = eccG(s) = diam(G). ��

Since LBFS can be implemented to run in linear time (see, e.g., [15]), employ-
ing the same approach as in the proof of Theorem 4.1, except that vertex s is
chosen arbitrarily, we obtain the announced consequence for the computation of
avoidable vertices.

Theorem 4.2. Given a graph G with at least two vertices, two distinct avoidable
vertices in G can be computed in linear time.

5 Implications for the Maximum Weight Clique Problem

In this section, we present an application of the concept of avoidable vertices to
the maximum weight clique problem: given a graph G = (V,E) with a vertex
weight function w : V → R+, find a clique in G of maximum total weight, where
the weight of a set S ⊆ V is defined as w(S) :=

∑
x∈S w(x). We will show

that this problem, which is generally NP-hard, is solvable in polynomial time in
the class of 1-perfectly orientable graphs, and even more generally in the class
of hole-cyclically orientable graphs. The importance of these two graph classes,
the definitions of which will be given shortly, is due to the fact that they form
a common generalization of two well studied graph classes, the chordal graphs
and the circular-arc graphs.

The link between avoidable vertices and the classes of 1-perfectly orientable
or hole-cyclically orientable graphs will be given by considering particular ori-
entations of the input graph. Barot et al. [4] introduced the class of cyclically
orientable graphs as the class of graphs that admit an orientation such that
every chordless cycle is oriented cyclically. If we allow triangles to be oriented
arbitrarily, while all other chordless cycles must be oriented cyclically, we obtain
the class of hole-cyclically orientable graphs. More formally, we say that a hole
in a graph is a chordless cycle of length at least four, that an orientation D of a
graph G is hole-cyclic if all holes of G are oriented cyclically in D, and that a
graph is hole-cyclically orientable if it admits a hole-cyclic orientation.

While the class of hole-cyclically orientable graphs does not seem to have been
studied in the literature, it generalizes the previously studied class of 1-perfectly
orientable graphs, defined as follows. We say that an orientation of a graph is
an out-tournament, or 1-perfect [20], if the out-neighborhood of every vertex
induces a tournament. A graph is said to be 1-perfectly orientable if it admits a
1-perfect orientation. The class of 1-perfectly orientable graphs forms a common
generalization of the classes of chordal graphs and of circular-arc graphs [26,28].
While 1-perfectly orientable graphs can be recognized in polynomial time via
a reduction to a 2-SAT [3], their structure is not understood (except for some
special cases, see [3,10,17,18]) and the complexity of many classical optimization



Avoidable Vertices and Edges in Graphs 135

problems such as maximum clique, maximum independent set, or k-coloring for
fixed k ≥ 3 is still open for this class of graphs.

In this section, we show that the maximum weight clique problem is solvable
in polynomial time in the class of 1-perfectly orientable graphs. Moreover, we
do this even in the more general setting of hole-cyclically orientable graphs.
The fact that every 1-perfectly orientable graph is hole-cyclically orientable is a
consequence of the following simple lemma (see, e.g., [17]).

Lemma 5.1. Every 1-perfect orientation of a graph G is hole-cyclic.

Our algorithm for the maximum weight clique problem in the class of hole-
cyclically orientable graphs will be based on the fact that the classes of 1-
perfectly orientable and hole-cyclically orientable graphs coincide within the
class of cobipartite graphs, where they also coincide with circular-arc graphs.
The equivalence between properties 1, 3 and 4 in the lemma below was already
observed in [17]. Due to Lemma 5.1, the list can be trivially extended with the
hole-cyclically orientable property.

Lemma 5.2. For every cobipartite graph G, the following properties are equiv-
alent:
1. G is 1-perfectly orientable.
2. G is hole-cyclically orientable.
3. G has an orientation in which every induced 4-cycle is oriented cyclically.
4. G is a circular-arc graph.

Another important notion for the algorithm is that of bisimplicial elimination
orderings. A vertex v in a graph G is bisimplicial if its neighborhood is the union
of two cliques in G (or, equivalently, if the graph G[N(v)] is cobipartite). Let
G = (V,E) be a graph and let σ = (v1, . . . , vn) be a vertex ordering of G. We
say that σ is a bisimplicial elimination ordering of G if vi is bisimplicial in the
graph G[{v1, . . . , vi}] for every i ∈ {1, . . . , n}. Ye and Borodin [31] proved the
following.

Theorem 5.1. The maximum weight clique problem is solvable in polynomial
time in the class of graphs having a bisimplicial elimination ordering.

The algorithm can be summarized as follows.

Input: A graph G = (V,E), a weight function w : V → R+, and a
bisimplicial elimination ordering σ = (v1, . . . , vn)

Output: A maximum weight clique C∗ of G

C∗ := ∅;
for i = 0 to n − 1 do

v := σ(n − i);
Compute a maximum weight clique Cv of G[N(v)];
if w(Cv) > w(C∗) then C∗ := Cv;
G := G − v;

Algorithm 3. Solving the maximum weight clique problem in graphs with a
bisimplicial elimination ordering
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As shown by Addario-Berry et al. [2], every graph containing at least one
vertex without even holes has a bisimplicial vertex. It turns out that this property
also holds for hole-cyclically orientable graphs. This fact, instrumental to the
polynomial-time solvability of the maximum weight clique problem in this class
of graphs, is based on a simple argument involving avoidable vertices.

Lemma 5.3. Every avoidable vertex in a hole-cyclically orientable graph is
bisimplicial.

Lemma 5.3 and Corollary 4.1 lead to the following.

Theorem 5.2. Every hole-cyclically orientable graph has a bisimplicial vertex.
Moreover, a bisimplicial elimination ordering of a hole-cyclically orientable graph
can be computed in linear time.

Theorems 5.1 and 5.2 imply that the maximum weight clique problem is
solvable in polynomial time in the class of hole-cyclically orientable graphs. The
degree of the polynomial involved in the running time of the algorithm given
in [31] was not estimated; it was based on polynomial-time solvability of the
maximum weight clique problem in the class of perfect graphs. It is not difficult
to show that the algorithm can be implemented to run in time O(|V (G)|4). For
the class of hole-cyclically orientable graphs, we can improve the running time
further using the structure of cobipartite graphs in this class given by Lemma 5.2.

Theorem 5.3. The maximum weight clique problem is solvable in time
O(n(n log n + m log log n)) in the class of hole-cyclically orientable graphs (and,
in particular, in the class of 1-perfectly orientable graphs) with n vertices and m
edges.

6 Avoidable Edges in Graphs

We will call an edge e in a graph G avoidable (resp., simplicial) if the path
P2 induced by its endpoints is avoidable (resp., simplicial). The case k = 2
of Conjecture 1.1 states that every graph with an edge has an avoidable edge.
Theorem 1.4 settles this case of the conjecture for {C5, C6, . . .}-free graphs; in
fact, it asserts that every {C5, C6, . . .}-free graph with an edge has a simplicial
edge. We prove the case k = 2 of Conjecture 1.1 for all graphs. Given a graph G,
two edges will be called independent in G if their endpoints form an induced 2K2

in G. We first consider the case when the graph contains no two independent
edges.

Lemma 6.1. Let G be a graph with at least two edges but with no two indepen-
dent edges. Then G contains at least two avoidable edges.

Corollary 6.1. Every graph with at least one edge but with no two independent
edges contains an avoidable edge.
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Two distinct edges will be called weakly adjacent if they are not independent.
An edge e ∈ E(G) will be called universal in G if every edge of G other than e
is weakly adjacent to e. The case not considered by Lemma 6.1 is settled in the
next lemma.

Lemma 6.2. For every graph G and every non-universal edge e ∈ E(G) there
is an edge f ∈ E(G) independent of e which is avoidable.

Lemmas 6.1 and 6.2 imply the following.

Theorem 6.1. Every graph with an edge has an avoidable edge. Every graph
with at least two edges has two avoidable edges.

7 Conclusion

We introduced the notion of avoidability in graphs, a concept that has been
implicitly used in a variety of contexts in algorithmic graph theory. We dis-
cussed both structural and algorithmic aspects of avoidable vertices, including
a characterization of avoidable vertices as simplicial vertices in some minimal
triangulation of the graph and the fact that one or two avoidable vertices in a
graph can be found in linear time using a simple application of LBFS. This app-
roach was then used to construct a polynomial-time algorithm for the maximum
weight clique problem in the class of graphs admitting an orientation in which
every hole is oriented cyclically. We suggested a generalization of the concept of
avoidability from vertices to nontrivial induced paths and proposed a conjecture
about their existence (Conjecture 1.1). We proved the conjectures for edges, that
is, two-vertex paths.

Many interesting questions remain. The main open question related to this
work is to resolve the status of Conjecture 1.1. Theorems 1.3 and 6.1 imply that
the conjecture is true for k ∈ {1, 2}. In turn, this fact and Theorem 1.4 imply that
the conjecture is true for the class of {C6, C7, . . .}-free graphs, which includes
several well studied graph classes such as weakly chordal graphs, cocomparability
graphs, and AT-free graphs. While we gave a linear-time algorithm to compute
two distinct avoidable vertices in any nontrivial graph (Theorem 4.2), it would
also be of interest to devise an algorithm to compute all avoidable vertices that
is more efficient than the näıve approach. Finally, having introduced the class
of hole-cyclically orientable graphs as a generalization of 1-perfectly orientable
graphs, we can ask for structural properties of these graphs. In particular, it is
not known whether they can be recognized in polynomial time. The complexity
of the maximum independent set and k-coloring problems (for fixed k ≥ 3) is also
open both for 1-perfectly orientable and for hole-cyclically orientable graphs.

Acknowledgement. The authors are grateful to Ekkehard Köhler, Matjaž Krnc,
Irena Penev, and Robert Scheffler for interest in their work and helpful remarks.
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8. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal
separators. SIAM J. Comput. 31(1), 212–232 (2001)
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Abstract. The unit disk graph (UDG) is a widely employed model for
the study of wireless networks. In this model, wireless nodes are repre-
sented by points in the plane and there is an edge between two points if
and only if their Euclidean distance is at most one. A hop spanner for
the UDG is a spanning subgraph H such that for every edge (p, q) in the
UDG the topological shortest path between p and q in H has a constant
number of edges. The hop stretch factor of H is the maximum number
of edges of these paths. A hop spanner is plane (i.e. embedded planar) if
its edges do not cross each other.

The problem of constructing hop spanners for the UDG has received
considerable attention in both computational geometry and wireless ad
hoc networks. Despite this attention, there has not been significant
progress on getting hop spanners that (i) are plane, and (ii) have low
hop stretch factor. Previous constructions either do not ensure the pla-
narity or have high hop stretch factor. The only construction that satisfies
both conditions is due to Catusse, Chepoi, and Vaxès [5]; their plane hop
spanner has hop stretch factor at most 449.

Our main result is a simple algorithm that constructs a plane hop
spanner for the UDG. In addition to the simplicity, the hop stretch fac-
tor of the constructed spanner is at most 341. Even though the algorithm
itself is simple, its analysis is rather involved. Several results on the plane
geometry are established in the course of the proof. These results are of
independent interest.

Keywords: Unit disk graph · Plane graph · Hop spanner ·
Hop stretch factor · Delaunay triangulation · Square grid

1 Introduction

Computational geometry techniques are widely used to solve problems, such as
topology construction, routing, and broadcasting, in wireless ad hoc networks. A
wireless ad hoc network is usually modeled as a unit disk graph (UDG). In this
model wireless devices are represented by points in the plane and assumed to
have identical unit transmission radii. There exists an edge between two points
if their Euclidean distance is at most one unit; this edge indicates that the cor-
responding devices are in each other’s transmission range and can communicate.
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A geometric graph is a graph whose vertices are points in the plane and whose
edges are straight-line segments between the points. A geometric graph is plane
if its edges do not cross each other. Let G be a geometric graph. A topological
shortest path between any two vertices u and v in G is a path that connects u
and v and has the minimum number of edges. The hop distance hG(u, v) between
u and v is the number of edges of a topological shortest path between them.

For a point set P in the plane, the unit disk graph UDG(P ) is a geometric
graph with vertex set P that has an edge between two points p and q if and
only if their Euclidean distance |pq| is at most 1. A hop spanner for UDG(P ) is
a spanning subgraph H such that for any edge (p, q) ∈ UDG(P ) it holds that
hH(p, q) � t, where t is some positive constant. The constant t is called the
hop stretch factor of H. This definition of hop spanner H implies that for any
two points p and q in P (not necessarily connected by an edge of UDG(P )) it
holds that hH(p, q) � t · hUDG(P )(p, q). In this paper we study the problem of
constructing UDG hop spanners that are plane and have low hop stretch factor.

For general graphs we cannot hope to always get a planar hop spanner. For
example take a complete graph with five vertices, which is not planar, and replace
each of its edges by an arbitrary long path. The resulting graph—which is not
planar—does not have any planar hop spanner (with constant stretch factor).

The Euclidean spanner and Euclidean stretch factor are defined in a simi-
lar way, but for the distance measure they use the total Euclidean length of
path edges. Both hop spanners and Euclidean spanners have received consid-
erable attention in computational geometry and wireless ad hoc networks; see
e.g. the surveys by Eppstein [8], Bose and Smid [4], Li [13], and the book by
Narasimhan and Smid [16]. Unit disk graph spanners have been used to reduce
the size of a network and the amount of routing information. They are also used
in topology control for maintaining network connectivity, improving through-
put, and optimizing network lifetime; see the surveys by Li [13] and Rajaraman
[17]. Constructions of UDG spanners, both centralized and distributed, also with
additional properties like planarity and power saving have been widely studied
[10,12,14,15]. Researchers also studied the construction of spanners for general
disk graphs [9] and for quasi unit disk graphs [6].

1.1 Related Work

Gao et al. [10] proposed a randomized algorithm for constructing a UDG spanner.
First they create several clusters of points each containing one point as the
clusterhead. Then they connect the clusters by a restricted Delaunay graph,
and then connect the remaining points to clusterheads. The restricted Delaunay
graph can be maintained in a distributed manner when points move around.
Although the underlying restricted Delaunay graph is plane, the entire spanner
is not. This spanner has constant Euclidean stretch factor in expectation, and
constant hop stretch factor for some unspecified constant.

Alzoubi et al. [1] proposed a distributed algorithm for the construction of a
hop spanner for the UDG. Their algorithm integrates the connected dominating
set and the local Delaunay graph of [14] to form a backbone for the spanner.
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Although the backbone is plane, the entire spanner is not. The hop stretch factor
of this spanner is at most 15716 (around 15000 as estimated in [5]).

Yan, Xiang, and Dragan [18] showed how to obtain for any n-vertex unit disk
graph G, a system of O(log n) spanning trees such that for any two vertices p and
q there exists a tree T with hT (p, q) � 3 ·hG(p, q)+12. This immediately gives a
hop spanner with O(n log n) edges for G. Although this spanner is not planar, it
has some interesting properties, e.g., has small hop stretch factor (which is 15)
and gives a compact routing scheme with guaranteed delivery for G.

To the best of our knowledge, the only construction that guarantees the
planarity of the entire hop spanner is due to Catusse, Chepoi, and Vaxès [5].
First they use a regular square-grid to partition input points into clusters. Then
they add edges between points in different clusters, and also between points in
the same cluster to obtain a hop spanner, which is not necessarily plane. Then
they go through several steps and in each step they remove some edges to ensure
planarity, and add some new edges to maintain constant hop stretch factor. At
the end they obtain a plane hop spanner with hop stretch factor at most 449.
This spanner can be obtained by a localized distributed algorithm.

1.2 Our Contribution

Our main contribution in this paper is a polynomial-time simple algorithm that
constructs a plane hop spanner, with hop stretch factor at most 341, for unit disk
graphs. Our algorithm works as follows: Given a set P of points in the plane,
we first select a subset S of P (in a clever way), then compute a plane graph
DT1(S) (which is the Delaunay triangulation of S minus edges of length more
than 1), and then connect every remaining point of P to its closest visible vertex
of DT1(S). In addition to improving the hop stretch factor, this algorithm is
straightforward and the planarity proof is simple, in contrast to that of Catusse
et al. [5]. Our analysis of hop stretch factor is still rather involved. Towards
the correctness proof of our algorithm, we prove several results on the plane
geometry, which are of independent interest. Our construction uses only local
information and can be implemented as a localized distributed algorithm.

Catusse et al. [5] also showed a construction of a hop spanner, with stretch
factor 5 and at most 10n edges, for any n-vertex UDG. By a simple modification
to their construction we obtain such a spanner with at most 9n edges.

2 Preliminaries and Some Geometric Results

We say that a set of points in the plane is in general position if no three points
lie on a straight line and no four points lie on a circle. Throughout this paper,
every given point set is assumed to be in general position. For a set P of points
in the plane, we denote by DT (P ) the Delaunay triangulation of P . Let p and
q be any two points in the plane. We denote by pq the straight-line segment
between p and q, and by −→pq the ray that emanates from p and passes through q.
The diametral disk D(p, q) between p and q is the disk with diameter |pq| that
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has p and q on its boundary. Every disk considered in this paper is closed, i.e.,
the disk contains its boundary circle.

Consider the Delaunay triangulation of a point set P . In their seminal work,
Dobkin, Friedman, and Supowit [7] proved that for any two points p, q ∈ P there
exists a path, between p and q in DT (P ), that lies in the diametral disk between
p and q. Their proof makes use of Voronoi cells (of the Voronoi diagram of P )
that intersect the line segment pq. In the following theorem we give a simple
inductive proof for a more general claim that shows the existence of such a path
in any disk (not only the diametral disk) between p and q.

Theorem 1. Let P be a set of points in the plane in general position and let
DT (P ) be the Delaunay triangulation of P . Let p and q be any two points of P
and let D be any disk in the plane that has p and q on its boundary. There exists
a path, between p and q in DT (P ), that lies in D.

Proof. We prove this theorem by induction on the
number of points in D. If D does not contain any
point of P \ {p, q} in its interior then (p, q) is an edge
of DT (P ), and thus (p, q) is a desired path. Assume
that D contains a point r ∈ P \ {p, q} in its interior.
Let c be the center of D. Consider the ray −→pc. Fix
D at p and shrink it along −→pc until r becomes on its
boundary circle; see the figure to the right. Denote the
resulting disk by Dpr; this disk lies fully in D. Com-

D

Dqr

Dpr

p

q

c

r

pute the disk Dqr in a similar fashion by shrinking D along −→qc. Since r is in the
interior of D, the disk Dpr does not contain q and the disk Dqr does not contain
p. Thus, the number of points in each of Dpr and Dqr is smaller than that of
D. Therefore, by induction hypothesis there exists a path, between p and r in
DT (P ), that lies in Dpr, and similarly there exists a path, between q and r in
DT (P ), that lies in Dqr. The union of these two paths contains a path, between
p and q in DT (P ), that lies in D. ��

Let G be a plane geometric graph and let p /∈ G be any point in the plane.
We say that a vertex q ∈ G is visible from p if the straight-line segment pq does
not cross any edge of G. One can simply verify that for every p such a vertex q
exists. Among all vertices of G that are visible from p, we refer to the one that
is closest to p by the closest visible vertex of G from p.

The following theorem (though simple) turns out to be crucial in the planarity
proof of our hop spanner; this theorem is of independent interest. Although it
answers a basic question, we were unable to find such a result in the literature;
there exist however related results, see e.g. [3,11].

Theorem 2. Let G be a plane geometric graph, and let Q be a set of points in
the plane that is disjoint from G. The graph, that is obtained by connecting every
point of Q to its closest visible vertex of G, is plane.

Proof. Let E be the set of edges that connect every point of Q to its closest
visible vertex of G. To prove the theorem, it suffices to show that the edges of
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G ∪ E do not cross each other. The edges of G do not cross each other because
G is plane. It is implied from the definition of visibility that the edges of E do
not cross the edges of G.

v
a

r

b

p
q

c

s

We prove by contradiction that the edges of E do
not cross each other. To that end consider two crossing
edges (p, s) and (q, r) of E where p, q are two points
of Q and s, r are two vertices of G. Let c be their
intersection point of (p, s) and (q, r). By the triangle
inequality we have |pr| < |ps| or |qs| < |qr|. After a
suitable relabeling assume that |pr| < |ps|, and thus
p is closer to r than to s. The reason that p was not
connected to r, is that r is not visible from p. Therefore there are edges of G
that block the visibility of r from p. Take any such edge (a, b). The edge (a, b)
does not intersect any of (p, s) and (q, r) because otherwise (a, b) blocks the
visibility of s from p or the visibility of r from q, and as such we wouldn’t have
these edges in E; see the figure to the right. Therefore, exactly one endpoint
of (a, b), say b, lies in the triangle �pcr. Rotate the ray −→ps towards b and stop
as soon as hitting a vertex of G in �pcr. This vertex is visible from p. Denote
this vertex by v (it might be that v = b). Since v lies in �pcr, it turns out that
|pv| � max{|pr|, |pc|} < |ps|. Thus, v is a closer visible vertex of G from p. This
contradicts the fact that s is a closest visible vertex from p. ��

We refer to a hop spanner with hop stretch factor t as a t-hop spanner.
Catusse et al. [5] showed a simple construction of a sparse 5-hop spanner with
at most 10n edges, for any n-vertex unit disk graph. With a simple modification
to their construction we obtain a 5-hop spanner with at most 9n edges. See the
full version of this paper [2] for proofs of Theorem 3 and Lemma 1.

Theorem 3. Every n-vertex UDG has a 5-hop spanner with at most 9n edges.

Lemma 1. Let C be a convex shape of diameter d in the plane, and let pq be
a straight-line segment that intersects C. Then for any points r ∈ C, we have
min{|rp|, |rq|} �

√
d2 + |pq|2/4.

3 Plane Hop Spanner Algorithm

This section presents our main contribution which is a polynomial-time algo-
rithm for construction of plane hop spanners for unit disk graphs.

Let P be a set of points in the plane in general position, and let UDG(P )
be the unit disk graph of P . Our algorithm first partitions P into some clusters
by using a regular square-grid; this is a standard initial step in many UDG
algorithms, see e.g. [5,6]. We use this partition to select a subset S of P that
satisfies some properties, which we will describe later. Then we compute the
Delaunay triangulation of S and remove every edge that has length more than 1.
We denote the resulting graph by DT1(S). Then we connect every point of P \S
to its closest visible vertex of DT1(S). Let H denote the final resulting graph.
We claim that H is a plane hop spanner, with hop stretch factor at most 341, for
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UDG(P ). In Sect. 3.1 we show how to compute S. The points of S are distributed
with constant density, i.e., there are O(1) points of S in any unit disk in the
plane. Based on this and the fact that DT1(S) has only edges of length at most
1, DT1(S) can be computed by a localized distributed algorithm. In Sect. 3.2 we
prove the correctness of the algorithm that H is plane and H is a subgraph of
UDG(P ). In Sect. 3.3 we analyze the stretch factor of H. The following theorem
summarizes our result in this section.

Theorem 4. There exists a plane 341-hop spanner for the unit disk graph of any
set of points in the plane in general position. Such a spanner can be computed
in polynomial time.

3.1 Computation of S

In this section, we compute the subset S; we will see properties of S at the
end of this section. Let Γ be a regular square-grid on the plane with squares of
diameter 1. The side-length of these squares is 1/

√
2. Without loss of generality

we assume that no point of P lies on a grid line (this can be achieved by moving
the grid by a small amount horizontally and vertically). Let E be the edge set
containing the shortest edge of UDG(P ) that runs between any two nonempty
cells of Γ if such an edge exists. Since every edge of UDG(P ) has length at most
1, for every cell π there are at most 20 edges in E going from π to other cells
π1, . . . , π20 as depicted in Fig. 1. Let V (E) be the set of endpoints of E, i.e.,
endpoints of the edges of E. The set V (E) has the following two properties:

– Every cell of Γ contains at most 20 points of V (E).
– For every cell π ∈ Γ and every i ∈ {1, . . . , 20} if there is an edge in UDG(P )

between π and πi, then there are two points si, ti ∈ V (E) such that si ∈ π,
ti ∈ πi, and (si, ti) is the shortestedge of UDG(P ) that runs betweenπandπi.

ππ12

π19

π9 π1

π3

π4

π5 π6 π7

π8 π10 π11

π13

π14 π15 π16 π17

π18 π20

π2

π

πNW πNE

πSW πSE

t5

t1

s5s1

π5

π1

π

Fig. 1. Illustration of the computation of S.

We want to modify the edge set E and also compute a point set T such
that V (E) ∪ T satisfies some more properties that we will see later. To that
end we partition every cell π of Γ into four sub-cells of diameter 1/2, namely
πNW , πNE , πSW , πSE as in Fig. 1. For each cell π, consider four triplets (πNW ,
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π1, π5), (πNE , π2, π11), (πSW , π3, π14), and (πSE , π4, π20); these triplets are col-
ored in Fig. 1. Let T be the empty set. We perform the following three-step
process on each of the four triplets of every cell π. We describe the process only
for (πNW , π1, π5); the processes of other triplets are analogous. In our description
“a point of πNW ” refers to a point of P that lies in πNW .

1. If πNW is empty (has no point of P ) then do nothing and stop the process.
Assume that πNW contains some points of P . If it contains an endpoint of
E, i.e. an endpoint of some edge of E, then do nothing and stop the process.

2. Assume now that πNW contains some points of P but does not contain any
endpoint of E. If there is no edge in E that runs between π and π1 or between
π and π5 then we take a point of πNW arbitrary and add it to T , and then
stop the process.

3. Assume that E contains an edge between π and π1, and an edge between π
and π5. We are now in the case where πNW contains some points of P but not
any endpoint of E, and both s1 and s5 exist. If s1 = s5, then we add a point
of πNW to T , and then stop the process. Assume that s1 	= s5. Since πNW

does not contain any endpoint of E, the points s1 and s5 do not lie in πNW . In
particular, s5 must be in sub-cell πNE because the distance between π5 and
each of πSE and πSW is more than 1; however s1 can lie in other sub-cells.
In this setting the disk with center s5 and radius |s5t5| contains the entire π1

(see Fig. 1), and thus the distance between s5 and any point in π1 is at most
1. We replace the edge (s1, t1) of E by the edge (s5, t1), which has length at
most one; see Fig. 1. Then we add a point of πNW to T , and then stop the
process. (We note that in the future steps when we process triplets of the cell
π1, the edge (s5, t1) might be replaced by another edge that runs between π1

and π. This is okay for the purpose of Lemma 2 because we replace an edge
between two cells by another edge between the same two cells).

This is the end of process for triplet (πNW , π1, π5). After performing this
process on all triplets of all cells, we obtain an edge set E and a point set T .
We define the subset S to be union of T and the endpoints of edges of E, i.e.,
S = V (E) ∪ T . In the full paper [2] we prove the following lemma. We will use
properties of this lemma in correctness proof and analysis of hop stretch factor.

Lemma 2. The set S satisfies the following four properties:

(P1) Every cell of Γ contains at most 20 points of S.
(P2) For every cell π and every i ∈ {1, 2, 3, 4}, if there is an edge in UDG(P )

between π and πi, then there are two points si, ti ∈ S such that si ∈ π,
ti ∈ πi, and |siti| � 1.

(P3) For every cell π and every i ∈ {5, . . . , 20}, if there is an edge in UDG(P )
between π and πi, then there are two points si, ti ∈ S such that si ∈ π,
ti ∈ πi, |siti| � 1, and (si, ti) is the shortest edge of UDG(P ) that runs
between π and πi.

(P4) The set S contains at least one point from every nonempty sub-cell πNW ,
πNE, πSW , πSE of each cell π.



Plane Hop Spanners for Unit Disk Graphs 147

3.2 Correctness Proof

In this section we prove the correctness of our algorithm. Recall the grid Γ ,
and the subset S of P that is computed in Sect. 3.1. Recall that our algorithm
computes the Delaunay triangulation DT (S) and removes every edge of length
more than 1 to obtain DT1(S), and then connects every point of P \ S to its
closest visible vertex of DT1(S). Let H denotes the resulting graph. One can
simply verify that this algorithm takes polynomial time. Since DT (S) is plane,
its subgraph DT1(S) is also plane. It is implied from Theorem 2 (where DT1(S)
and P \S play the roles of G and Q) that H is plane. As we stated at the outset,
except for the computation of S which is a little more involved, the algorithm
and the planarity proof are straightforward.

To finish the correctness proof it remains to show that every edge of H has
length at most 1. Consider any edge e of H. By our construction, either the
two endpoints of e belong to S, or one endpoint of e belongs to S and its other
endpoint belongs to P \ S. If both endpoints of e are in S, then e belongs to
DT1(S) and hence has length at most 1. If one endpoint of e is in S and its other
endpoint is in P \ S, then by following lemma the length of e is at most 1/

√
2.

Lemma 3. The length of every edge of H, that has an endpoint in S and an
endpoint in P \ S, is at most 1/

√
2.

Proof. Consider any edge (p, s) ∈ H with p ∈ P \ S and s ∈ S. By our construc-
tion, s is the closest visible vertex of DT1(S) from p. Thus, to prove the lemma,
it suffices to show the existence of a vertex v ∈ DT1(S) that is visible from p
and for which |pv| � 1/

√
2; this would imply that the distance between p and

s, which is the closest visible vertex from p, is at most 1/
√

2. In the rest of the
proof we show the existence of such vertex v.

a

b

πNW
b

pv

π

Fig. 2. Proof of Lemma 3.
The red points belong
to S. (Color figure online)

Let π be the cell that contains p (the dashed cell
in Fig. 2). After a suitable rotation we assume that
p lies in sub-cell πNW . Since πNW is nonempty, by
property (P4) in Lemma 2 the set S contains at least
one point from πNW . Let S′ be the set of points of
πNW that are in S. Notice that S′ ⊆ S and S′ 	= ∅. If
any point of S′ is visible from p, then this point is a
desired vertex v with |pv| � 1/2 because the diameter
of πNW is 1/2.

Assume that no point of S′ is visible from p. The
visibility of (points of) S′ from p is blocked by some
edges of DT1(S); these edges properly cross πNW and separate p from points
of S′ (the red edges in Fig. 2). Among these edges take one whose intersection
points with the boundary of πNW are visible from p (observe that such an edge
always exists). Denote this edge by (a, b). Since the diameter of πNW is 1/2 and
|ab| � 1, it is implied from Lemma 1 that the distance from p to a or to b is
at most 1/

√
2; after a suitable relabeling assume that |pb| � 1/

√
2. Of the two

intersection points of (a, b) with the boundary of πNW , denote by b′ the one that
is closer to b. By our choice of (a, b), b′ is visible from p. We rotate the ray

−→
pb′
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towards b and stop as soon as hitting a vertex v ∈ S in triangle �pbb′ (it might
be that v = b). The vertex v is visible from p. Since v is in triangle �pbb′ it
holds that |pv| � max{|pb|, |pb′|}. Since |pb| � 1/

√
2 and |pb′| � 1/2 it turns out

that |pv| � 1/
√

2. ��

3.3 Hop Stretch Factor

In this section we prove that the hop stretch factor of H is at most 341. We
show that for any edge (u, v) ∈ UDG(P ) there exists a path of length at most
341 between u and v in H.

In this section a “cell” refers to the interior of a square of Γ , a “grid point”
refers to the intersection point of a vertical and a horizontal grid line, and a
“corner of π” refers to a grid point on the boundary of a cell π. We define
neighbors of a cell π to be the set of eight cells that share sides or corners with
π. We partition the neighbors of π into +-neighbors and ×-neighbors, where +-
neighbors are the four cells that share sides with π, and ×-neighbors are the four
cells each sharing exactly one grid point with π. In Fig. 1 the cells π1, π2, π3, π4

are the +-neighbors of π, and the cells π9, π10, π15, π16 are the ×-neighbors of π.
Consider any two points p, q ∈ S. If |pq| � 1 then every edge of DT (S),

that lies in D(p, q), has length at most 1, and thus all these edges are present in
DT1(S). Combining this with Theorem 1 we get the following corollary.

Corollary 1. For any two points p, q ∈ S, with |pq| � 1, there exists a path,
between p and q in DT1(S), that lies in D(p, q).

p q

πp πq
πp

q
πq

p

BnoitarugfinoC)b(AnoitarugfinoC)a(

πqπp
qp

πq

πp

q

p

DnoitarugfinoC)d(CnoitarugfinoC)c(

Fig. 3. Relative positions of the cells πp and πq where |pq| � 1.
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Consider any two points p and q in the plane that lie in different cells, say
πp and πq. If |pq| � 1 then the relative positions of πp and πq is among four
configurations A, B, C, and D that are shown in Fig. 3. In the rest of this
section we consider different configurations of a disk intersecting some cells of
Γ . Although mentioned before, we emphasis that a “cell” refers to the interior
of a square of grid (and hence a cell is open and does not contain its boundary)
while a “disk” is closed (and hence contains its boundary).

3.3.1 Disk-Cell Intersections
To cope with the number of cases that appear in the analysis of hop stretch
factor we use Lemmas 4, 5, and 6 about disk-cell intersections. These lemmas
enable us to reduce the number of cases in our analysis. See the full paper [2] for
the proofs of these lemmas; in the proofs of Lemmas 5 and 6 we look at relative
positions of two cells, as in Fig. 3. We say that an element x is “outside” a set
X if x /∈ X.

Lemma 4. Let p and q be any two points in the plane with |pq| � 1.

1. If p and q are in different cells, then D(p, q) intersects at most 7 cells.
2. If p and q are in the same cell π, then D(p, q) can intersect only π and its

four +-neighbors.

Lemma 5. Let p and q be any two points in the plane that are in different cells
πp and πq. Let X be the set containing the cells πp and πq and their +-neighbors.

1. If |pq| � 1, then D(p, q) does not intersect any cell outside the neighborhoods
of πp and πq.

2. If |pq| � 1, then D(p, q) intersects at most two cells outside X.
3. If |pq| � 1/

√
2, then D(p, q) does not intersect any cell outside X.

Lemma 6. Consider two cells π and π′. Let p1 and p2 be any two points in
π′, and let p3 and p4 be any two points in π. Let D be the union of three disks
D(p1, p2), D(p2, p3), and D(p3, p4). Then the following statements hold:

1. If |p2p3|�1/
√

2 then D intersects at most 8 cells.
2. If |p2p3|�1, and π and π′ are +-neighbors, then D intersects at most 8 cells.
3. If |p2p3|�1, and π and π′ are ×-neighbors, then D intersects at most 10 cells.
4. If |p2p3|�1, and π and π′ are not neighbors, then D intersects at most 11 cells.

3.3.2 Analysis of Hop Stretch Factor
With lemmas in the previous section, we have all tools for proving the hop stretch
factor of H. Recall that no point of P lies on a grid line of Γ , and thus every point
of P is in the interior of some square of Γ . Consider any edge (u, v) ∈ UDG(P ),
and notice that |uv| � 1. In this section we prove the existence of a path, of
length at most 341, between u and v in H. Depending on whether u or v belong
to S, we have three cases: (1) u /∈ S and v /∈ S, (2) u ∈ S and v ∈ S, and (3)
u /∈ S and v ∈ S, or vice versa. These cases are treated using similar arguments.
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We give a detailed description of case (1) which gives rise to the worst stretch
factor for our algorithm. We give a brief description of other cases at the end
of this section. We denote by “(p, q)-path” a simple path between two points p
and q.

Case (1): In this case u, v ∈ P \ S. Recall that, in H, u and v are connected
to their closest visible vertices of DT1(S); let u1 and v1 denote these vertices
respectively. Therefore, in H, there is a (u, v)-path that consists of the edge
(u, u1), a (u1, v1)-path in DT1(S), and the edge (v1, v); see Fig. 4-top. In the
following description we prove the existence of a (u1, v1)-path in DT1(S) of
desired length. By Lemma 3 we have |uu1| � 1/

√
2 and |vv1| � 1/

√
2; we will

use these inequalities in our description.
Let πu, πv, π′

u and π′
v denote the cells containing u, v, u1 and v1 respectively.

Depending on the identicality of these cells we can have—up to symmetry—the
following five sub-cases: (i) πu = πv or (ii) π′

u = πu or (iii) π′
u = πv or (iv)

π′
u = π′

v or (v) all four cells are pairwise distinct. These sub-cases are treated
using similar arguments. We give a detailed description of sub-case (v) which
gives rise to the worst stretch factor for our algorithm. We give a brief description
of other sub-cases at the end of this section.

Assume that πu, πv, π′
u and π′

v are pairwise distinct. Since |uu1| � 1/
√

2, πu

and π′
u are neighbors; similarly πv and π′

v are neighbors. Since (u, u1) ∈ UDG(P ),
by properties (P2) and (P3) in Lemma 2 there exist two points u2, u3 ∈ S such
that u2 ∈ π′

u, u3 ∈ πu, and |u2u3| � 1. Similarly, there exist two points v2, v3 ∈ S
such that v2 ∈ π′

v, v3 ∈ πv, and |v2v3| � 1. Moreover, since (u, v) ∈ UDG(P ),
there exist two points u4, v4 ∈ S such that u4 ∈ πu, v4 ∈ πv, and |u4v4| � 1.
See Fig. 4. It might be the case that u1 = u2, u3 = u4, v3 = v4, or v1 = v2.
Since u1 and u2 are in the same cell, |u1u2| � 1; similarly |u3u4| � 1, |v1v2| � 1,
and |v3v4| � 1. Having these distance constraints, Corollary 1 implies that in
DT1(S) there exists a walk between u1 and v1 that consists of a (u1, u2)-path in
D(u1, u2), a (u2, u3)-path in D(u2, u3), a (u3, u4)-path in D(u3, u4), a (u4, v4)-
path in D(u4, v4), a (v4, v3)-path in D(v4, v3), a (v3, v2)-path in D(v3, v2), and
a (v2, v1)-path in D(v2, v1). Thus, there is a (u1, v1)-path in DT1(S) that lies in
the union of these seven disks; see Fig. 4.

Let D denote the union of the seven disks. We want to obtain an upper bound
on the number of cells intersected by D. To that end, set Du = D(u1, u2) ∪
D(u2, u3) ∪ D(u3, u4), and Dv = D(v4, v3) ∪ D(v3, v2) ∪ D(v2, v1). Define Xu as
the set containing the cells πu and π′

u and their +-neighbors. Since πu and π′
u

are neighbors, their relative positions is among configurations A and B (Fig. 3(a)
and (b)); in these configurations Xu contains 8 cells. Analogously, define Xv with
respect to πv and π′

v, and notice that Xv also contains 8 cells.

Claim. Each of Du and Dv intersects at most 8 cells. Moreover, the cells that
are intersected by Du and Dv belong to Xu and Xv, respectively.

Proof. Because of symmetry, we prove this claim only for Du. Recall that πu

and π′
u are neighbors. If πu and π′

u are +-neighbors, then Du intersects at most
8 cells by statement 2 in Lemma 6. The proof of statement 2 also implies that
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these (at most 8) cells belong to Xu. If πu and π′
u are ×-neighbors, then by

property (P3) in Lemma 2, (u2, u3) is the shortest edge of UDG(P ) that runs
between π′

u and πu. Since (u1, u) is also an edge between π′
u and πu, we have

|u2u3| � |u1u| � 1/
√

2. In this case Du intersects at most 8 cells by statement 1
in Lemma 6. The proof of statement 1 implies that these cells belong to Xu. ��

Notice that D = Du ∪ Dv ∪ D(u4, v4). Based on this and the above claim, in
order to obtain an upper bound on the number of cells that are intersected by
D it suffices to obtain an upper bound on the number of cells, outside Xu ∪ Xv,
that are intersected by D(u4, v4). To that end, define X as the set containing
the cells πu and πv and their +-neighbors, and notice that X ⊆ Xu ∪ Xv. By
statement 2 of Lemma 5, the disk D(u4, v4) intersects at most 2 cells outside
X, and hence at most 2 cells outside Xu ∪ Xv. Therefore, the number of cells
intersected by D is at most |Xu ∪ Xv| + 2 � 8 + 8 + 2 = 18. Since by property
(P1) in Lemma 2 each cell contains at most 20 points of S, the set D contains
at most 360 points of S. Therefore, the (u1, v1)-path in DT1(S) has at most 360
vertices, and hence at most 359 edges. Thus, the (u, v)-path in H has at most
361 edges (including (u, u1) and (v1, v)).

With a closer look at relative positions of πu and πv we show that D in fact
intersects at most 17 cells. This would imply that the (u, v)-path has at most
341 edges as claimed. To that end we consider four configurations A, B, C, and
D for πu and πv, which we refer to them as sub-cases (v)-A, (v)-B, (v)-C, and
(v)-D, respectively.

– (v)-A. In this case Xu and Xv share πu and πv and thus |Xu ∪ Xv| � 14.
Moreover, by the proof of Lemma 5 the disk D(u4, v4) does not intersect any
cell outside Xu ∪ Xv; see Fig. 3(a). Thus D intersects at most 14 cells.

– (v)-B. In this case Xu and Xv share at least two cells (two +-neighbors of
πu and πv) and thus |Xu ∪ Xv| � 14. Moreover, by the proof of Lemma 5
the disk D(u4, v4) intersects at most two cells outside Xu ∪ Xv; see Fig. 3(b).
Thus D intersects at most 16 cells.

– (v)-C. In this case Xu and Xv share at least one cell (one +-neighbor of πu

and πv), and by the proof of Lemma 5 the disk D(u4, v4) intersects at most
two cells outside Xu ∪ Xv; see Fig. 3(c). Thus D intersects at most 17 cells
(the shaded cells in Fig. 4-top).

– (v)-D. In this case Xu and Xv may not share any cell, but by the proof of
Lemma 5 the disk D(u4, v4) intersects at most one cell outside Xu ∪ Xv; see
Fig. 3(d). Thus D intersects at most 17 cells (shaded in Fig. 4-bottom).

Even though D may intersect exactly 17 cells, in the full version of this
paper [2] we show a possibility of decreasing the upper bound on the length of
(u, v)-path even further.

Other Cases and Sub-cases: We gave a detailed analysis for sub-case (v) (of
case (1)) where u, v, u1, v1 lie in distinct cells πu, πv, π′

u, π′
v. Our analysis shows

the existence of a (u1, u4)-path in Du which intersects at most 8 cells (which
belong to Xu), and the existence of a (v1, v4)-path in Dv which intersects at
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Fig. 4. Points u, v, u1, v1 belong to distinct cells. The cells πu, πv are in configurations
C (top) and D (bottom). The red path corresponds to a (u1, v1)-path in DT1(S). (Color
figure online)

most 8 cells (which belong to Xv). In the sequel we give short descriptions of
case (2), case (3), and remaining sub-cases of case (1).

Recall case (1) where u, v ∈ P \ S. In sub-case (i) where πu = πv, the sets
Xu and Xv share at least 5 cells (πu and its four +-neighbors). Therefore, D
intersects at most |Xu ∪ Xv| + 2 � 8 + 8 − 5 + 2 = 13 cells. Similarly, in each of
sub-cases (iii) where π′

u = πv and (iv) where π′
u = π′

v, the sets Xu and Xv share
at least 5 cells, and thus D intersects at most 13 cells. In sub-case (ii) where
π′
u = πu, the set Xu contains 5 cells (πu and its four +-neighbors), and thus D

intersects at most 5 + 8 + 2 = 15 cells. Thus, in all these remaining sub-cases,
the (u, v)-path has at most 301 edges (including (u, u1) and (v1, v)).

Now consider case (3) where v ∈ S or u ∈ S but not both. By symmetry we
assume that v ∈ S, and thus u ∈ P \ S. In this case we do not have the point
v1 nor the cell π′

v; one may assume that v4 = v3 = v2. Thus, Xv contains at
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most 5 cells (πv and its +-neighbors). By an argument similar to that of case
(1), there exists a (u1, v)-path in DT1(S) that lies in D which intersects at most
|Xu ∪ Xv| + 2 � 8 + 5 + 2 = 15 cells. Therefore, there is a (u, v)-path in H that
has at most 300 edges (including the edge (u, u1)).

Consider case (2) where u, v ∈ S. Since |uv| � 1, by Corollary 1 there is
a (u, v)-path in DT1(S) that lies in D(u, v). By Lemma 4, D(u, v) intersects
at most seven cells, and thus contains at most 140 points of S. Therefore, the
(u, v)-path has at most 139 edges.
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Abstract. Let P be a set of n colored points in the plane. Introduced
by Hart [7], a consistent subset of P , is a set S ⊆ P such that for every
point p in P \ S, the closest point of p in S has the same color as p.
The consistent subset problem is to find a consistent subset of P with
minimum cardinality. This problem is known to be NP-complete even
for two-colored point sets. Since the initial presentation of this problem,
aside from the hardness results, there has not been significant progress
from the algorithmic point of view. In this paper we present the following
algorithmic results:
1. The first subexponential-time algorithm for the consistent subset

problem.
2. An O(n log n)-time algorithm that finds a consistent subset of size

two in two-colored point sets (if such a subset exists). Towards our
proof of this running time we present a deterministic O(n log n)-time
algorithm for computing a variant of the compact Voronoi diagram;
this improves the previously claimed expected running time.

3. An O(n log2 n)-time algorithm that finds a minimum consistent sub-
set in two-colored point sets where one color class contains exactly
one point; this improves the previous best known O(n2) running
time which is due to Wilfong (SoCG 1991).

4. An O(n)-time algorithm for the consistent subset problem on
collinear points that are given from left to right; this improves the
previous best known O(n2) running time.

5. A non-trivial O(n6)-time dynamic programming algorithm for the
consistent subset problem on points arranged on two parallel lines.

To obtain these results, we combine tools from paraboloid lifting, planar
separators, additively-weighted Voronoi diagrams with respect to convex
distance functions, point location in farthest-point Voronoi diagrams,
range trees, minimum covering of a circle with arcs, and several geometric
transformations.
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1 Introduction

One of the important problems in pattern recognition is to classify new objects
according to the current objects using the nearest neighbor rule. Motivated by
this problem, in 1968, Hart [7] introduced the notion of consistent subset as
follows. For a set P of colored points1 in the plane, a set S ⊆ P is a consistent
subset if for every point p ∈ P \S, the closest point of p in S has the same color
as p. The consistent subset problem asks for a consistent subset with minimum
cardinality. Formally, we are given a set P of n points in the plane that is
partitioned into P1, . . . , Pk, with k � 2, and the goal is to find a smallest set
S ⊆ P such that for every i ∈ {1, . . . , k} it holds that if p ∈ Pi then the nearest
neighbor of p in S belongs to Pi. It is implied by the definition that S should
contain at least one point from every Pi. To keep the terminology consistent with
some recent works on this problem we will be dealing with colored points instead
of partitions, that is, we assume that the points of Pi are colored i. Following
this terminology, the consistent subset problem asks for a smallest subset S of
P such that the color of every point p ∈ P \ S is the same as the color of
its closest point in S. The notion of consistent subset has a close relation with
Voronoi diagrams, a well-known structure in computational geometry. Consider
the Voronoi diagram of a subset S of P . Then, S is a consistent subset of P if
and only if for every point s ∈ S it holds that the points of P , that lie in the
Voronoi cell of s, have the same color as s.

Since the initial presentation of this problem in 1968, there has not been
significant progress from the algorithmic point of view. Although there were
several attempts for developing algorithms, they either did not guarantee the
optimality [5,7,13] or had exponential running time [12]. In SoCG 1991, Wilfong
[13] proved that the consistent subset problem is NP-complete if the input points
are colored by at least three colors—the proof is based on the NP completeness
of the disc cover problem [11]. He further presented a technically-involved O(n2)-
time algorithm for a special case of two-colored input points where one point is
red and all other points are blue; his elegant algorithm transforms the consistent
subset problem to the problem of covering points with disks which in turn is
transformed to the problem of covering a circle with arcs. It has been recently
proved, by Khodamoradi et al. [9], that the consistent subset problem with
two colors is also NP-complete—the proof is by a reduction from the planar
rectilinear monotone 3-SAT [2]. Observe that the one color version of the problem
is trivial because every single point is a consistent subset. More recently, Banerjee
et al. [1] showed that the consistent subset problem on collinear points, i.e., points
that lie on a straight line, can be solved optimally in O(n2) time.

Recently, Gottlieb et al. [6] studied a two-colored version of the consistent
subset problem—referred to as the nearest neighbor condensing problem—where
1 In some previous works the points have labels, as opposed to colors.
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the points come from a metric space. They prove a lower bound for the hard-
ness of approximating a minimum consistent subset; this lower bound includes
two parameters: the doubling dimension of the space and the ratio of the mini-
mum distance between points of opposite colors to the diameter of the point set.
Moreover, for this two-colored version of the problem, they give an approxima-
tion algorithm whose ratio almost matches the lower bound.

In a related problem, called the selective subset problem, the goal is to find
the smallest subset S of P such that for every p ∈ Pi the nearest neighbor of p in
S ∪(P \Pi) belongs to Pi. Wilfong [13] showed that this problem is NP-complete
even with two colors. See [1] for some recent progress on this problem.

In this paper we study the consistent subset problem. We improve some pre-
vious results and present some new results. To obtain these results, we combine
tools from planar separators, additively-weighted Voronoi diagrams with respect
to a convex distance function, point location in farthest-point Voronoi diagrams,
range trees, paraboloid lifting, minimum covering of a circle with arcs, and sev-
eral geometric transformations. In the full version of this paper [4] we present
the first subexponential-time algorithm for the consistent subset problem. We
use a recursive separator-based technique that was introduced in 1993 by Hwang
et al. [8], and then extended by Marx and Pilipczuk [10]. The application of this
technique in our setting is not straightforward and requires technical details.
The following theorem summarizes this result.

Theorem 1. A minimum consistent subset of n colored points in the plane can
be computed in nO(

√
k) time, where k is the size of the minimum consistent subset.

In Sect. 2 we present an O(n log n)-time algorithm that finds a consistent
subset of size two in two-colored point sets (if such a subset exists); this is
obtained by transforming the problem into a point-cone incidence problem in
dimension three. Towards our proof of this running time, we present a determin-
istic O(n log n)-time algorithm for computing a variant of the compact Voronoi
diagram (see the full paper [4]); this improves the O(n log n) expected running
time of the randomized algorithm of Bhattacharya et al. [3]. In particular, we
prove the following theorem.

Theorem 2. Let C be a cone in R
3 with non-empty interior that is given as the

intersection of n halfspaces. Given n translations of C and a set of n points in R
3,

we can decide in O(n log n) time whether or not there is a point-cone incidence.

In Sect. 3 we revisit the case where one point is red and all other points are
blue. We give an O(n log2 n)-time algorithm for this case, thereby improving the
previous O(n2) running time of [13]. In Sect. 4 we present an O(n)-time algorithm
for collinear points; this improves the previous running time by a factor of Θ(n).
We also present a non-trivial O(n6)-time dynamic programming algorithm for
points arranged on two parallel lines.
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2 Consistent Subset of Size Two

In this section we investigate the existence of a consistent subset of size two
in a set of bichromatic points where every point is colored by one of the two
colors, say red and blue. Before stating the problem formally we introduce some
terminology. For a set P of points in the plane, we denote the convex hull of
P by CH(P ). For two points p and q in the plane, we denote the straight-line
segment between p and q by pq, and the perpendicular bisector of pq by β(p, q).

Let R and B be two disjoint sets of total n points in the plane such that
the points of R are colored red and the points of B are colored blue. We want
to decide whether or not R ∪ B has a consistent subset of size two. Moreover,
if the answer is positive, then we want to find such points, i.e., a red point
r ∈ R and a blue point b ∈ B such that all red points are closer to r than to
b, and all blue points are closer to b than to r. Alternatively, we want to find
a pair of points (r, b) ∈ R × B such that β(r, b) separates CH(R) and CH(B).
This problem can be solved in O(n2 log n) time by trying all the O(n2) pairs
(r, b) ∈ R×B; for each pair (r, b) we can verify, in O(log n) time, whether or not
β(r, b) separates CH(R) and CH(B). In this section we show how to solve this
problem in time O(n log n). To that end, we assume that CH(R) and CH(B)
are disjoint, because otherwise there is no such pair (r, b).

r

b

β(r, b)

Fig. 1. The set {r, b}
is the minimum con-
sistent subset of the
given eight points.
(Color figure online)

It might be tempting to believe that a solution of
this problem contains points only from the boundaries of
CH(R) and CH(B). However, this is not necessarily the
case; in Fig. 1, the only minimum consistent subset con-
tains r and b which are in the interiors of CH(R) and
CH(B). Also, due to the close relation between Voronoi
diagrams and Delaunay triangulations, one may believe
that a solution is defined by the two endpoints of an edge
in the Delaunay triangulation of R ∪ B. This is not nec-
essarily the case either; the endpoints of green edges in
Fig. 1, which are the Delaunay edges between R and B, do
not introduce any solution.

Let R′ and B′ be the subsets of R and B on the boundaries of CH(R) and
CH(B), respectively; see Fig. 2. For two points p and q in the plane, let D(p, q)
be the closed disk that is centered at p and has q on its boundary.

Lemma 1. For every two points r ∈ R and b ∈ B, the bisector β(r, b) separates
R and B if and only if

(i) ∀r′ ∈ R′ : b /∈ D(r′, r), and
(ii) ∀b′ ∈ B′ : b ∈ D(b′, r).

Proof. For the direct implication since β(r, b) separates R and B, every red point
r′ (and in particular every point in R′) is closer to r than to b; this implies that
D(r′, r) does not contain b and thus (i) holds. Also, every blue point b′ (and in
particular every point in B′) is closer to b than to r; this implies that D(b′, r)
contains b and thus (ii) holds. See Fig. 2.



On the Minimum Consistent Subset Problem 159

r

r1

r2

r3

b1

b2

b3

b4

D(r1, r) D(b1, r)D(b2, r)

D(b4, r)D(b3, r)
D(r3, r)

Fr

r4

r5

r6

b4

b6

b7

Fig. 2. R′ = {r′
1, . . . , r

′
6} and B′ = {b′

1, . . . , b
′
7} are the points of R and B on boundaries

of CH(R) and CH(B). The feasible region Fr for point r is shaded. (Color figure online)

Now we prove the converse implication by contradiction. Assume that both
(i) and (ii) hold for some r ∈ R and some b ∈ B, but the bisector β(r, b) does
not separate R and B. After a suitable rotation we may assume that β(r, b) is
vertical, r is to the left side of β(r, b) and b is to the right side of β(r, b). Since
β(r, b) does not separate R and B, there exists either a point of R to the right
side of β(r, b), or a point of B to the left side of β(r, b). If there is a point of R
to the right side of β(r, b) then there is also a point r′ ∈ R′ to the right side of
β(r, b). In this case r′ is closer to b than to r, and thus the disk D(r′, r) contains
b which contradicts (i). If there is a point of B to the left side of β(r, b) then
there is also a point b′ ∈ B′ to the left side of β(r, b). In this case b′ is closer to
r than to b and thus D(b′, r) does not contain b which contradicts (ii). ��

Lemma 1 implies that a pair (r, b) ∈ R × B is a consistent subset of R ∪ B
if and only if every point of R′ is closer to r than to b, and every point of B′ is
closer to b than to r. This lemma does not imply that r and b are necessarily in
R′ and B′. By symmetry, Lemma 1 holds even if we swap the roles of r, r′, R′

with b, b′, B′ in (i) and (ii), however we do not use this in the rest of our proof.
For every red point r ∈ R we define a feasible region Fr as follows:

Fr =

( ⋂
b′∈B′

D(b′, r)

)
\

( ⋃
r′∈R′

D(r′, r)

)
.

See Fig. 2 for an illustration of a feasible region. Lemma 1, together with this
definition, imply the following corollary.

Corollary 1. For every two points r ∈ R and b ∈ B, the bisector β(r, b) sepa-
rates R and B if and only if b ∈ Fr.

This corollary reduces our original decision problem to the following question.

Question 1. Is there a blue point b ∈ B such that b lies in the feasible region Fr

of some red point r ∈ R?
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If the answer to Question 1 is positive then {r, b} is a consistent subset for
R ∪ B, and if the answer is negative then R ∪ B does not have a consistent subset
with two points. In the rest of this section we show how to answer Question 1.
To that end, we lift the plane onto the paraboloid z = x2 + y2 by projecting
every point s = (x, y) in R

2 onto the point ŝ = (x, y, x2 + y2) in R
3. This lift

projects a circle in R
2 onto a plane in R

3. Consider a disk D(p, q) in R
2 and let

π(p, q) be the plane in R
3 that contains the projection of the boundary circle of

D(p, q). Let H−(p, q) be the lower closed halfspace defined by π(p, q), and let
H+(p, q) be the upper open halfspace defined by π(p, q). For every point s ∈ R

2,
its projection ŝ lies in H−(p, q) if and only if s ∈ D(p, q), and lies in H+(p, q)
otherwise. Moreover, ŝ lies in π(p, q) if and only if s is on the boundary circle of
D(p, q). For every point r ∈ R we define a polytope Cr in R

3 as follows:

Cr =

( ⋂
b′∈B′

H−(b′, r)

)
∩

( ⋂
r′∈R′

H+(r′, r)

)
.

By the above discussion, Corollary 1 can be translated to the following corollary.

Corollary 2. For every two points r ∈ R and b ∈ B, the bisector β(r, b) sepa-
rates R and B if and only if b̂ ∈ Cr.

This corollary, in turn, translates Question 1 to the following question.

Question 2. Is there a blue point b ∈ B such that its projection b̂ lies in the
polytope Cr for some red point r ∈ R?

Now, we are going to answer Question 2. The polytope Cr is the intersection
of some halfspaces, each of which has r̂ on its boundary plane. Therefore, Cr is
a cone in R

3 with apex r̂; see Fig. 4. Recall that |R ∪ B| = n, however, for the
purposes of worst-case running-time analysis and to simplify indexing, we will
index the red points, and also the blue points, from 1 to n. Let r1, r2, , . . . , rn be
the points of R. For every point ri ∈ R, let τi be the translation that brings r̂1
to r̂i. Notice that τ1 is the identity transformation. In the rest of this section we
will write Ci for Cri .

Lemma 2. For every point ri ∈ R, the cone Ci is the translation of C1 with
respect to τi.

x

y

z

C1
Ci

r1
ri

r̂1

r̂i
τi

πCi

πC1

Fig. 3. Parallel planes πC1 and
πCi in R

3 for two concentric cir-
cles C1 and Ci in R

2.

Proof. For a circle C in R
2, let πC denote the

plane in R
3 that C translates onto. For every two

concentric circles C1 and Ci in R
2 it holds that

πC1 and πCi
are parallel; see Fig. 3. It follows

that, if C1 passes through the point r1, and Ci

passes through the point ri, then πCi
is obtained

from πC1 by the translation τi that brings r̂1 to
r̂i, that is τi(πC1) = πCi

. A similar argument
holds also for the halfspaces defined by πC1 and
πCi

. Since for every a ∈ R′∪B′ the disks D(a, r1)
and D(a, ri) are concentric and the boundary of
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D(a, r1) passes through r1 and the boundary of D(a, ri) passes through ri, it
follows that τi(H+(a, r1)) = H+(a, ri) and τi(H−(a, r1)) = H−(a, ri). Since
a translation of a polytope is obtained by translating each of the halfspaces
defining it, we have τi(C1) = Ci as depicted in Fig. 4. ��

r̂1

r̂2

r̂3

b̂
τ2

τ3

C1
C2 C3

Where am I?

Fig. 4. The cones C2 and C3 are the translations of C1 with respect to τ2 and τ3. (Color
figure online)

Based on Lemma 2, to answer Question 2 it suffices to solve the following
problem: Given a cone C1 that is defined by n halfspaces, n translations of C1,
and a set of n points, we want to decide whether or not there is a point in some
cone (see Fig. 4). This can be verified in O(n log n) time by Theorem 2. This is
the end of our constructive proof. The following theorem summarizes our result
in this section.

Theorem 3. Given a set of n bichromatic points in the plane, in O(n log n)
time, we can compute a consistent subset of size two (if such a set exists).

3 One Red Point

In this section we revisit the consistent subset problem for the case where one
input point is red and all other points are blue. Let P be a set of n points in
the plane consisting of a red point and n − 1 blue points. Observe that any
consistent subset of P contains the only red point and some blue points. In his
seminal work in SoCG 1991, Wilfong [13] showed that P has a consistent subset
of size at most seven (including the red point); this implies an O(n6)-time brute
force algorithm for this problem. Wilfong showed how to solve this problem in
O(n2)-time; his elegant algorithm transforms the consistent subset problem to
the problem of covering points with disks which in turn is transformed to the
problem of covering a circle with arcs. The running time of his algorithm is
dominated by the transformation to the circle covering problem which involves
computation of n−1 arcs in O(n2) time; all other transformations together with
the solution of the circle covering problem take O(n log n) time ([13, Lemma 19
and Theorem 9]).
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We first introduce the circle covering problem, then we give a summary of
Wilfong’s transformation to this problem, and then we show how to perform
this transformation in O(n log2 n) time which implies the same running time for
the entire algorithm. We emphasis that the most involved part of the algorithm,
which is the correctness proof of this transformation, is due to Wilfong.

cc(bi)

A(bi)

D(bi)

C

bi

c(bi)
bi+1

r

ν

ν(R)

bi c(bi)

ν∗

b1 bn−1

)b()a(

Fig. 5. (a) Transformation to the circle covering problem. (b) The range tree T . (Color
figure online)

Let C be a circle and let A be a set of arcs covering the entire C. The circle
covering problem asks for a subset of A, with minimum cardinality, that covers
the entire C.

Wilfong’s algorithm starts by mapping input points to the projective plane,
and then transforming (in two stages) the consistent subset problem to the circle
covering problem. Let P denote the set of points after the mapping, and let r
denote the only red point of P . The transformation, which is depicted in Fig. 5(a),
proceeds as follows. Let C be a circle centered at r that does not contain any blue
point. Let b1, b2, . . . , bn−1 be the blue points in clockwise circular order around r
(b1 is the first clockwise point after bn−1, and bn−1 is the first counterclockwise
point after b1). For each point bi, let D(bi) be the disk of radius |rbi| centered at
bi. Define cc(bi) to be the first counterclockwise point (measured from bi) that is
not in D(bi), and similarly define c(bi) to be the first clockwise point that is not
in D(bi). Denote by A(bi) the open arc of C that is contained in the wedge with
counterclockwise boundary ray from r to cc(bi) and the clockwise boundary ray
from r to c(bi).2 Let A be the set of all arcs A(bi); since blue points are assumed
to be in circular order, A covers the entire C. Wilfong proved that our instance
of the consistent subset problem is equivalent to the problem of covering C with

2 Wilfong shrinks the endpoint of A(bi) that corresponds to cc(bi) by half the clockwise
angle from cc(bi) to the next point, and shrinks the other endpoint of A(bi) by half
the counterclockwise angle from c(bi) to the previous point.



On the Minimum Consistent Subset Problem 163

A. The running time of his algorithm is dominated by the computation of A in
O(n2) time. We show how to compute A in O(n log2 n) time.

In order to find each arc A(bi) it suffices to find the points cc(bi) and c(bi).
Having the clockwise ordering of points around r, one can find these points in
O(n) time for each bi, and consequently in O(n2) time for all bi’s. In the rest of
this section we show how to find c(bi) for all bi’s in O(n log2 n) time; the points
cc(bi) can be found in a similar fashion.

By the definition of c(bi) all points of the sequence bi+1, . . . , c(bi), except
c(bi), lie inside D(bi). Therefore among all points bi+1, . . . , c(bi), the point c(bi)
is the farthest from bi. This implies that in the farthest-point Voronoi diagram
of bi+1, . . . , c(bi), the point bi lies in the cell of c(bi). To exploit this property of
c(bi), we construct a 1-dimensional range tree T on all blue points based on their
clockwise order around r; blue points are stored at the leaves of T as in Fig. 5(b).
At every internal node ν of T we store the farthest-point Voronoi diagram of the
blue points that are stored at the leaves of the subtree rooted at ν; we refer to
this diagram by FVD(ν). This data structure can be computed in O(n log2 n)
time because T has O(log n) levels and in each level we compute farthest-point
Voronoi diagrams of total n − 1 points. To simplify our following description,
at the moment we assume that b1, . . . , bn−1 is a linear order. At the end of this
section, in Remark 1, we show how to deal with the circular order.

We use the above data structure to find each point c(bi) in O(log2 n) time.
To that end, we walk up the tree from the leaf containing bi (first phase), and
then walk down the tree (second phase) as described below; also see Fig. 5(b).
For every internal node ν, let ν(L) and ν(R) denote its left and right children,
respectively. In the first phase, for every internal node ν in the walk, we locate
the point bi in FVD(ν(R)) and find the point bf that is farthest from bi. If bf lies
in D(bi) then also does every point stored at the subtree of ν(R). In this case we
continue walking up the tree and repeat the above point location process until
we find, for the first time, the node ν∗ for which bf does not lie in D(bi). To this
end we know that c(bi) is among the points stored at ν∗(R). Now we start the
second phase and walk down the tree from ν∗(R). For every internal node ν in
this walk, we locate bi in FVD(ν(L)) and find the point bf that is farthest from
bi. If bf lies in D(bi), then also does every point stored at ν(L), and hence we go
to ν(R), otherwise we go to ν(L). At the end of this phase we land up in a leaf
of T , which stores c(bi). The entire walk has O(log n) nodes and at every node
we spend O(log n) time for locating bi. Thus the time to find c(bi) is O(log2 n).
Therefore, we can find all c(bi)’s in O(n log2 n) total time.

Theorem 4. A minimum consistent subset of n points in the plane, where one
point is red and all other points are blue, can be computed in O(n log2 n) time.

Remark 1. To deal with the circular order b1, . . . , bn−1, we build the range tree
T with 2(n − 1) leaves b1, . . . , bn−1, b1, . . . , bn−1. For a given bi, the point c(bi)
can be any of the points bi+1, . . . , bn−1, b1, . . . , bi−1. To find c(bi), we first follow
the path from the root of T to the leftmost leaf that stores bi, and then from
that leaf we start looking for c(bi) as described above.
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4 Restricted Point Sets

In this section we present polynomial-time algorithms for the consistent subset
problem on collinear points and on points that are placed on two parallel lines.

4.1 Collinear Points

Let P be a set of n colored points on the x-axis, and let p1, . . . , pn be the sequence
of these points from left to right. We present a dynamic programming algorithm
that solves the consistent subset problem on P in O(n)-time; this improves
the previous quadratic-time algorithm of Banerjee et al. [1]. To simplify the
description of our algorithm we add a point pn+1 very far (at distance at least
|p1pn|) to the right of pn. We set the color of pn+1 to be different from that
of pn. Observe that every solution for P ∪ {pn+1} contains pn+1. Moreover, by
removing pn+1 from any optimal solution of P ∪ {pn+1} we obtain an optimal
solution for P . Therefore, to compute an optimal solution for P , we first compute
an optimal solution for P ∪ {pn+1} and then remove pn+1.

Our algorithm maintains a table T with n+1 entries T (1), . . . , T (n+1). Each
table entry T (k) represents the number of points in a minimum consistent subset
of Pk = {p1, . . . , pk} provided that pk is in this subset. The number of points in
an optimal solution for P will be T (n+1)− 1; the optimal solution itself can be
recovered from T . In the rest of this section we show how to solve a subproblem
with input Pk provided that pk should be in the solution (thereby in the rest of
this section the phrase “solution of Pk” refers to a solution that contains pk).
In fact, we show how to compute T (k), by a bottom-up dynamic programming
algorithm that scans the points from left to right. If Pk is monochromatic, then
the optimal solution contains only pk, and thus, we set T (k) = 1. Hereafter
assume that Pk is not monochromatic. Consider the partition of Pk into maximal
blocks of consecutive points such that the points in each block have the same
color. Let B1, B2, . . . , Bm−1, Bm denote these blocks from left to right, and notice
that pk is in Bm. Assume that the points in Bm are red and the points in Bm−1

are blue. Let py be the leftmost point in Bm−1; see Fig. 6(a). Any optimal solution
for Pk contains at least one point from {py, . . . , pk−1}; let pi be the rightmost
such point (pi can be either red or blue). Then, T (k) = T (i) + 1. Since we do
not know the index i, we try all possible values in {y, . . . , k − 1} and select one
that produces a valid solution, and that minimizes T (k):

T (k) = min{T (i) + 1 | i ∈ {y, . . . , k − 1} and i produces a valid solution}.

The index i produces a valid solution (or pi is valid) if one of the following
conditions hold:

(i) pi is red, or
(ii) pi is blue, and for every j ∈{i+1, . . . , k−1} it holds that if pj is blue then pj

is closer to pi than to pk, and if pj is red then pj is closer to pk than to pi.
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If (i) holds then pi and pk have the same color. In this case the validity of
our solution for Pk is ensured by the validity of the solution of Pi. If (ii) holds
then pi and pk have distinct colors. In this case the validity of our solution for
Pk depends on the colors of points pi+1, . . . , pk−1. To verify the validity in this
case, it suffices to check the colors of only two points that are to the left and to
the right of the mid-point of the segment pipk. This can be done in O(|Bm−1|)
time for all blue points in Bm−1 while scanning them from left to right. Thus,
T (k) can be computed in O(k) time because |Bm−1| = O(k). Therefore, the total
running time of the above algorithm is O(n2).

pkpy pi

T (i)
T (k)

BmBm−1

pkpa

d1

d2

pb
d1

r

d2

l

pi

)b()a(

Fig. 6. (a) Illustration of the computation of T (k) from T (i). (b) Any blue point in
the range [l, r] is valid. (Color figure online)

We are now going to show how to compute T (k) in constant time, which in
turn improves the total running time to O(n). To that end we first prove the
following lemma.

Lemma 3. Let s ∈ {1, . . . ,m} be an integer, pi, pi+1, . . . , pj be a sequence of
points in Bs, and x ∈ {i, . . . , j} be an index for which T (x) is minimum. Then,
T (j) � T (x) + 1.

Proof. To verify this inequality, observe that by adding pj to the optimal solution
of Px we obtain a valid solution (of size T (x)+1) for Pj . Therefore, any optimal
solution of Pj has at most T (x) + 1 points, and thus T (j) � T (x) + 1. ��

At every point pj , in every block Bs, we store the index i of the first point
pi to the left of pj where pi ∈ Bs and T (i) is strictly smaller than T (j); if there
is no such point pi then we store j at pj . These indices can be maintained in
linear time while scanning the points from left to right. We use these indices to
compute T (k) in constant time as described below.

Notice that if the minimum, in the above calculation of T (k), is obtained by
a red point in Bm then it always produces a valid solution, but if the minimum
is obtained by a blue point then we need to verify its validity. In the former case,
it follows from Lemma 3 that the smallest T (·) for red points in Bm \ {pk} is
obtained either by pk−1 or by the point whose index is stored at pk−1. Therefore
we can find the smallest T (·) in constant time. Now consider the latter case
where the minimum is obtained by a blue point in Bm−1. Let pa be the rightmost
point of Bm−1, and let pb be the leftmost endpoint of Bm. Set d1 = |pbpk| and
d2 = |papk| as depicted in Fig. 6(b). Set l = x(pa)−d2 and r = x(pb)−d1, where
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x(pa) and x(pb) are the x-coordinates of pa and pb. Any point pi ∈ Bm−1 that is
to the right of r is invalid because otherwise pb would be closer to pi than to pk.
Any point pi ∈ Bm−1 that is to the left of l is also invalid because otherwise pa
would be closer to pk than to pi. However, every point pi ∈ Bm−1, that is in the
range [l, r], is valid because it satisfies condition (ii) above. Thus, to compute
T (k) it suffices to find a point of Bm−1 in range [l, r] with the smallest T (·).
By slightly abusing notation, let pr be the rightmost point of Bm−1 in range
[l, r]. It follows from Lemma 3 that the smallest T (·) is obtained either by pr or
by the point whose index is stored at pr. Thus, in this case also, we can find the
smallest T (·) in constant time.

It remains to identify, in constant time, the index that we should store at pk
(to be used in next iterations). If pk is the leftmost point in Bm, then we store
k at pk. Assume that pk is not the leftmost point in Bm, and let x be the index
stored at pk−1. In this case, if T (x) is smaller than T (k) then we store x at pk,
otherwise we store k. This assignment ensures that pk stores a correct index.

Based on the above discussion we can compute T (k) and identify the index
at pk in constant time. Therefore, our algorithm computes all values of T (·) in
O(n) total time. The following theorem summarizes our result in this section.

Theorem 5. A minimum consistent subset of n collinear colored points can be
computed in O(n) time, provided that the points are given from left to right.

4.2 Points on Two Parallel Lines

Given a set of n colored points on two parallel lines, in the full version of this
paper [4] we present an algorithm that finds a minimum consistent subset in
O(n6) time. Our algorithm uses a top-down dynamic programming technique.
Although the technique is standard, its application to our problem is non-trivial
and rather involved. In several places, our algorithm produces collinear instances
of the problem that have been discussed in Sect. 4.1. The following theorem
summarizes this result.

Theorem 6. A minimum consistent subset of n colored points on two parallel
lines can be computed in O(n6) time.

In this setting (points on two parallel lines), we also study the bichromatic
version of the problem where each of the n points is colored either red or blue,
and where all red points lie on one line and all blue points lie on the other
line. We give another involved dynamic programming algorithm that finds a
minimum consistent subset, for this version of the problem, in O(n4) time (see
the full paper [4]).

Theorem 7. Let P be a set of n bichromatic points on two parallel lines, such
that all points on the same line have the same color. Then, a minimum consistent
subset of P can be computed in O(n4) time.
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Abstract. Given a graph G, a q-open neighborhood conflict-free color-
ing or q-ONCF-coloring is a vertex coloring c : V (G) → {1, 2, . . . , q} such
that for each vertex v ∈ V (G) there is a vertex in N(v) that is uniquely
colored from the rest of the vertices in N(v). When we replace N(v) by
the closed neighborhood N [v], then we call such a coloring a q-closed
neighborhood conflict-free coloring or simply q-CNCF-coloring. In this
paper, we study the NP-hard decision questions of whether for a constant
q an input graph has a q-ONCF-coloring or a q-CNCF-coloring. We will
study these two problems in the parameterized setting. First of all, we
study running time bounds on FPT-algorithms for these problems, when
parameterized by treewidth. We improve the existing upper bounds, and
also provide lower bounds on the running time under ETH and SETH.
Secondly, we study the kernelization complexity of both problems, using
vertex cover as the parameter. We show that both (q ≥ 2)-ONCF-
coloring and (q ≥ 3)-CNCF-coloring cannot have polynomial kernels
when parameterized by the size of a vertex cover unless NP ⊆ coNP/poly.
On the other hand, we obtain a polynomial kernel for 2-CNCF-coloring
parameterized by vertex cover. We conclude the study with some combi-
natorial results. Denote χON (G) and χCN (G) to be the minimum number
of colors required to ONCF-color and CNCF-color G, respectively. Upper
bounds on χCN (G) with respect to structural parameters like minimum
vertex cover size, minimum feedback vertex set size and treewidth are
known. To the best of our knowledge only an upper bound on χON (G)
with respect to minimum vertex cover size was known. We provide tight
bounds for χON (G) with respect to minimum vertex cover size. Also,
we provide the first upper bounds on χON (G) with respect to minimum
feedback vertex set size and treewidth.
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1 Introduction

Often, in frequency allocation problems for cellular networks, it is important
to allot a unique frequency for each client, so that at least one frequency is
unaffected by cancellation. Such problems can be theoretically formulated as a
coloring problem on a set system, better known as conflict-free coloring [5].
Formally, given a set system H = (U,F), a q-conflict-free coloring c : U →
{1, 2, . . . , q} is a function where for each set f ∈ F , there is an element v ∈ f
such that for all w �= v ∈ f , c(v) �= c(w). In other words, each set f has at
least one element that is uniquely colored in the set. This variant of coloring
has also been extensively studied for set systems induced by various geometric
regions [1,8,14].

A natural step to study most coloring problems is to study them in graphs.
Given a graph G, V (G) denotes the set of n vertices of G while E(G)
denotes the set of m edges in G. A q-coloring of G, for q ∈ N is a function
c : V (G) → {1, 2, . . . , q}. The most well-studied coloring problem on graphs
is proper-coloring. A q-coloring c is called a proper-coloring if for each edge
{u, v} ∈ E(G), c(u) �= c(v). In this paper, we study two specialized variants
of q-conflict-free coloring on graphs, known as q-ONCF-coloring and q-CNCF-
coloring, which are defined as follows.

Definition 1. Given a graph G, a q-coloring c : V (G) → {1, 2, . . . , q} is called
a q-ONCF-coloring, if for every vertex v ∈ V (G), there is a vertex u in the open
neighborhood N(v) such that c(u) �= c(w) for all w �= u ∈ N(v). In other words,
every open neighborhood in G has a uniquely colored vertex.

Definition 2. Given a graph G, a q-coloring c : V (G) → {1, 2, . . . , q} is called
a q-CNCF-coloring, if for for every vertex v ∈ V (G), there is a vertex u in the
closed neighborhood N [v] such that c(u) �= c(w) for all w �= u ∈ N [v]. In other
words, every closed neighborhood in G has a uniquely colored vertex.

Observe that by the above definitions, the q-ONCF-coloring (or q-CNCF-
coloring) problem is a special case of the conflict-free coloring of set systems.
Given a graph G, we can associate it with the set system H = (V (G),F), where
F consists of the sets given by open neighborhoods N(v) (respectively, closed
neighborhoods N [v]) for v ∈ V (G). A q-ONCF-coloring (or q-CNCF-coloring)
of G then corresponds to a q-conflict-free coloring of the associated set system.

Notationally, let χCF (H) denote the minimum number of colors required for
a conflict-free coloring of a set system H. Similarly, we denote by χON (G) and
χCN (G) the minimum number of colors required for an ONCF-coloring and a
CNCF-coloring of a graph G, respectively. The study of conflict-free coloring
was initially restricted to combinatorial studies. This was first explored in [5]
and [13]. Pach and Tardos [12] gave an upper bound of O(

√
m) on χCF (H) for
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a set system H = (U,F) when the size of F is m. In [12], it was also shown that
for a graph G with n vertices χCN (G) = O(log2 n). This bound was shown to
be tight in [7]. Similarly, [3] showed that χON (G) = Θ(

√
n).

However, computing χON (G) or χCN (G) is NP-hard. This is because deciding
whether a 2-ONCF-coloring or a 2-CNCF-coloring of G exists is NP-hard [6].
This motivates the study of the following decision problems under the lens of
parameterized complexity.

q-ONCF-Coloring

Input: A graph G.
Question: Is there a q-ONCF-coloring of G?

The q-CNCF-Coloring problem is defined analogously.
Note that because of the NP-hardness for q-ONCF-Coloring or q-CNCF-

Coloring even when q = 2, the two problems are para-NP-hard under the
natural parameter q. Thus, the problems were studied under structural param-
eters. Gargano and Rescigno [6] showed that both q-ONCF-Coloring and
q-CNCF-Coloring have FPT algorithms when parameterized by (i) the size
of a vertex cover of the input graph G, (ii) and the neighborhood diversity of
the input graph. Gargano and Rescigno also mention that due to Courcelle’s
theorem, for a non-negative constant q, the two decision problems are FPT with
the treewidth of the input graph as the parameter.

Our Results and Contributions. In this paper, we extend the parameterized
study of the above two problems with respect to structural parameters. Our
first objective is to provide both upper and lower bounds for FPT algorithms
when using treewidth as the parameter (Sect. 3). We show that both q-ONCF-

Coloring and q-CNCF-Coloring parameterized by treewidth t can be solved
in time (2q2)tnO(1). On the other hand, for q ≥ 3, both problems cannot be solved
in time (q − ε)tnO(1) under Strong Exponential Time Hypothesis (SETH). For
q = 2, both problems cannot be solved in time 2o(t)nO(1) under Exponential
Time Hypothesis (ETH).

We also study the polynomial kernelization question (Sect. 4). Observe that
both q-ONCF-Coloring and q-CNCF-Coloring cannot have polynomial
kernels under treewidth as the parameter, as there are straightforward and-
cross-compositions from each problem to itself.1 Therefore, we will study the
kernelization question by a larger parameter, namely the size of a vertex cover in
the input graph. The kernelization complexity of the q-Coloring problem (ask-
ing for a proper-coloring of the input graph) is very well-studied for this param-
eter, the problem admits a kernel of size ˜O(kq−1) [10] which is known to be tight
unless NP ⊆ coNP/poly [9]. From this perspective however, q-CNCF-Coloring

and q-ONCF-Coloring turn out to be much harder: q-CNCF-Coloring for
q ≥ 3 and q-ONCF-Coloring for q ≥ 2 do not have polynomial kernels under

1 This is true for a number of graph problems when parameterized by treewidth. For
more information, see [4, Theorem 15.12] and the example given for Treewidth

(parameterized by solution size) in [4, p. 534].
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the standard complexity assumptions, when parameterized by the size of a ver-
tex cover. Interestingly, 2-CNCF-Coloring parameterized by vertex cover size
does have a polynomial kernel and we obtain an explicit polynomial compression
for the problem. Although this does not lead to a polynomial kernel of reasonable
size, we study a restricted version called 2-CNCF-Coloring-VC-Extension

(Sect. 4.1) and show that this problem has a O(k2 log k) kernel where k is the ver-
tex cover size. Therefore, 2-CNCF-Coloring behaves significantly differently
from the other problems.

Finally, we obtain a number of combinatorial results regarding ONCF-
colorings of graphs. Denote by χ(G) the minimum q for which a q-proper-
coloring for G exists. While χCN (G) ≤ χ(G), the same upper bound does
not hold for χON (G) [6]. For a graph G, let vc(G), fvs(G) and tw(G) denote
the size of a minimum vertex cover, the size of a minimum feedback ver-
tex set and the treewidth of G, respectively. From the known result that
χ(G) ≤ tw(G) + 1 ≤ fvs(G) + 1 ≤ vc(G) + 1, we could immediately obtain the
fact that the same behavior holds for χCN (G). However, to show that χON (G)
behaves similarly more work needs to be done. To the best of our knowledge no
upper bounds on χON (G) with respect to fvs(G) and tw(G) were known, while
a loose upper bound was provided with respect to vc(G) in [6]. We give a tight
upper bound on χON (G) with respect to vc(G) and also provide the first upper
bounds on χON (G) with respect to fvs(G) and tw(G) (Sect. 5).

Our main contributions in this work are structural results for the conflict-free
coloring problem, which we believe gives more insight into the decision problems
on graphs. Firstly, the gadgets we build for the ETH-based lower bounds could
be useful for future lower bounds, but are also useful to understand difficult
examples for conflict-free coloring which have not been known in abundance so
far. We are able to reuse these gadgets in the constructions needed to prove
the kernelization lower bounds. Secondly, our combinatorial results also give
constructible conflict-free colorings of graphs and therefore provide more insight
into conflict-free colored graphs. Finally, the kernelization dichotomy we obtain
for q-ONCF-Coloring and q-CNCF-Coloring under vertex cover size as a
parameter is a very surprising one.

2 Preliminaries

For a positive integer n, we denote the set {1, 2, . . . , n} in short with [n]. For a
graph G, given a q-coloring c : V (G) → [q] and a subset S ⊆ V (G), we denote by
c|S the restriction of c to the subset S. For a graph G that is q-ONCF-colored by
a coloring c, for a vertex v ∈ V (G), suppose w ∈ N(v) is such that c(w) �= c(w′)
for each w′ �= w ∈ N(v); then c(w) is referred to as the ONCF-color of v.
Similarly, for a graph G that is q-CNCF-colored by a coloring c, for a vertex
v ∈ V (G), a unique color in N [v] is referred to as the CNCF-color of v.

An edge-star graph is a generalization of a star graph where there is a central
edge {u, v} and all other vertices w have N(w) = {u, v}. A triangle is an example
of an edge-star graph.
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For statements marked with a star (�), the (complete) proof can be found in
the full version of the paper [2].

2.1 Parameterized Complexity

Let Σ be a finite alphabet. A parameterized problem Q is a subset of Σ∗ ×N.

Definition 3 (Kernelization). Let Q,Q′ be two parameterized problems and
let h : N → N be some computable function. A generalized kernel from Q to Q′

of size h(k) is an algorithm that given an instance (x, k) ∈ Σ∗ × N, outputs
(x′, k′) ∈ Σ∗ × N in time poly(|x| + k) such that (i) (x, k) ∈ Q if and only if
(x′, k′) ∈ Q′, and (ii) |x′| ≤ h(k) and k′ ≤ h(k).

The algorithm is a kernel if Q = Q′. It is a polynomial (generalized) kernel
if h(k) is a polynomial in k.

3 Algorithmic Results Parameterized by Treewidth

In this section, we state the algorithmic results obtained for the ONCF-

Coloring and CNCF-Coloring problems parameterized by treewidth. On
the algorithmic side, we have the following theorem.

Theorem 1 (�). q-ONCF-Coloring and q-CNCF-Coloring parameterized
by treewidth t admits a (2q2)tnO(1) time algorithm.

We also obtain algorithmic lower bounds for the problems under standard
assumptions.

Theorem 2 (�). The following algorithmic lower bounds can be obtained:

1. For q ≥ 3, q-ONCF-Coloring or q-CNCF-Coloring parameterized by
treewidth t cannot be solved in (q − ε)tnO(1) time, under SETH.

2. 2-ONCF-Coloring or 2-CNCF-Coloring parameterized by treewidth t
cannot be solved in 2o(t)nO(1) time, under ETH.

Due to paucity of space, the full proofs of the Theorems above have been
omitted from this extended abstract. As a brief overview of our lower bound
techniques, in the remainder of section we will show the running time lower
bound on 2-ONCF-Coloring under ETH claimed in Theorem 2. The bound
will be obtained by giving a reduction from 3-SAT, to give the reduction we will
need the following type of gadget.

Definition 4. An ONCF-gadget is a gadget on ten vertices, as depicted in
Fig. 1.

The objective of this gadget is the following. The vertices {g1, g2, g3, g10} in
Fig. 1 will be the interaction points of the ONCF-gadget with the outside world.
As will be proved in the following two lemmas, the gadget is designed so as to
(i) disallow certain 2-ONCF-colorings and (ii) allow certain 2-ONCF-colorings
on its interaction points.
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Fig. 1. The ONCF-gadget (left). Observe that if g1, g2, and g3 are all red, then g9 must
also be red (middle), and if one of g1, g2, or g3 is blue, then g9 may be blue (right).
(Color figure online)

Lemma 1 (�). Let G be a ONCF-gadget with a coloring c : V (G) → {red,blue}
such that for all 4 ≤ i ≤ 9 the neighborhood of gi is ONCF-colored by c. If
c(g1) = c(g2) = c(g3) = red, then c(g9) = red.

Lemma 2 (�). Let G be a ONCF-gadget. Let c′ : {g1, g2, g3} → {red,blue} be
a partial 2-ONCF-coloring of G. If there exists i ∈ [3] such that c′(gi) = blue,
then c′ can be extended to a coloring c satisfying

1. For every 4 ≤ i ≤ 9, the neighborhood of vertex gi is ONCF-colored by c
(contains at most one red, or at most one blue vertex), and

2. c(g9) = blue, c(g8) = red, c(g4) = c(g5) = blue, and c(g10) = blue.

Now that we have introduced the necessary gadgets, we can prove the running
time lower bound for 2-ONCF-Coloring.

Lemma 3 (�). 2-ONCF-Coloring parameterized by treewidth t cannot be
solved in 2o(t)nO(1) time, under ETH.

Proof (Proof sketch). We show this by giving a reduction from 3-SAT. Given
an instance of 3-SAT with variables x1, . . . , xn and clauses C1, . . . , Cm, create
a graph G as follows. Start by creating palette vertices R,R′, and B, and edges
{R,R′} and {R′, B}. For each variable i ∈ [n], create vertices ui, vi, wi and
add edges {ui, vi} and {vi, wi}. For each j ∈ [m], add an ONCF-gadget Gj

and connect g10 of this gadget to R. Add vertices s1j , s
2
j , and s3j and connect

sbj to gb in Gj for b ∈ [3]. Let clause Cj := (�1, �2, �3). Now if �b = xi for
some i ∈ [n], b ∈ [3], connect sbj to ui. Similarly, if �b = ¬xi, connect sbj to wi.
This concludes the construction of G. The main idea towards showing that ϕ is
satisfiable if and only if G is 2-ONCF-colorable is to let the situation where ui

is red and wi is blue mean that the corresponding variable is set to true. A more
detailed explanation can be found in the full version of this paper [2].

Note that the graph induced by V (G)\ ({R,R′, B}∪{ui, vi, wi | i ∈ [n]}) is a
disjoint union of ONCF-gadgets for which every gb for b ∈ [3] has an additional
degree-1 vertex attached to it. It is easy to see that every connected component of
this graph has treewidth two. Thus, G has treewidth at most 3n + 5. This implies
that a 3-SAT formula φ on n variables and m clauses is reduced to a graph G
with treewidth at most 3n + 5. Since 3-SAT cannot be solved in 2o(n)nO(1)
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time under ETH, this also implies that 2-CNCF-Coloring parameterized by
treewidth t cannot be solved in 2o(t)nO(1) time, under ETH. 
�

Note that a reduction from 3-SAT to 2-ONCF-Coloring was given in The-
orem 2 of [6]. However, that reduction led to a quadratic blow-up in the input
size. Hence, the need for the alternative reduction given above.

4 Kernelization

In this section, we will study the kernelizability of the ONCF- and CNCF-
coloring problems, when parameterized by the size of a vertex cover. We prove
the following two theorems to obtain a dichotomy on the kernelization question.

Theorem 3 (�). q-ONCF-Coloring for q ≥ 2 and q-CNCF-Coloring for
q ≥ 3, parameterized by vertex cover size do not have polynomial kernels, unless
NP ⊆ coNP/poly.

Theorem 4. 2-CNCF-Coloring parameterized by vertex cover size k has a
generalized kernel of size O(k10).

Note that by using an NP-completeness reduction, this results in a polyno-
mial kernel for 2-CNCF-Coloring parameterized by vertex cover size. We also
obtain an O(k2 log k) kernel for an extension problem of 2-CNCF-Coloring

and this is described in Sect. 4.1.
In the remainder of this section we will prove Theorem 4, by obtaining a

polynomial generalized kernel for 2-CNCF-Coloring parameterized by vertex
cover size. This result is in contrast to the kernelization results we obtain for
q-CNCF-Coloring for q ≥ 3 as well as q-ONCF-Coloring for q ≥ 2. We
will start by transforming an instance of 2-CNCF-Coloring to an equivalent
instance of another problem, namely d-Polynomial root CSP. We will then
carefully rephrase the d-Polynomial root CSP instance such that it uses only
a limited number of variables, such that we can use a known kernelization result
for d-Polynomial root CSP to obtain our desired compression. We start by
introducing the relevant definitions.

Define d-Polynomial root CSP over a field F as follows [11].

d-Polynomial root CSP

Input: A list L of polynomial equalities over variables V = {x1, . . . , xn}. An
equality is of the form f(x1, . . . , xn) = 0, where f is a multivariate polynomial
over F of degree at most d.
Question: Does there exist an assignment of the variables τ : V → {0, 1}
satisfying all equalities (over F ) in L?

A field F is said to be efficient if both the field operations and Gaussian
elimination can be done in polynomial time in the size of a reasonable input
encoding. In particular, Q is an efficient field by this definition. The following
theorem was shown by Jansen and Pieterse.
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Theorem 5 ([11, Theorem 5]). There is a polynomial-time algorithm that, given
an instance (L, V ) of d-Polynomial root CSP over an efficient field F , out-
puts an equivalent instance (L′, V ) with at most nd + 1 constraints such that
L′ ⊆ L.

Using the theorem introduced above, we can now prove Theorem 4.

Proof (Proof of Theorem 4). Given an input instance G with vertex cover S of
size k, we start by preprocessing G. For each set X ⊆ S with |X| ≤ 2, mark
3 vertices in v ∈ G \ S with N(v) = X (if there do not exist 3 such vertices,
simply mark all). Let S′ ⊆ V (G) \ S be the set of all marked vertices. Remove
all w ∈ V (G) \ (S ∪ S′) with deg(w) ≤ 2 from G. Let the resulting graph be G′.

Claim 1. G′ is 2-CNCF-colorable if and only if G is 2-CNCF-colorable.

Proof. In one direction, suppose G′ has a 2-CNCF coloring c using colors {r, b}.
Consider a vertex w ∈ V (G) \ V (G′). Let Xw ⊆ S be the neighborhood of w.
Note that |Xw| is at most 2. Consider N(Xw) ∩ S′. Since w was deleted, there
are 3 vertices in N(Xw) ∩ S′. Consider the color from {r, b} that appears in
majority on the vertices of N(Xw) ∩ S′. If we color w with the same color, it is
easy to verify that this extension of c to G is a 2-CNCF coloring of G.

In the reverse direction, suppose G has a 2-CNCF coloring c using colors
{r, b}. We describe a new coloring c′ for G as follows. Consider a subset X ⊆ S
of size at most 2 and let N be the set of vertices in G \ S that have X as their
neighborhood. If |N | > 3 and N \S′ has a vertex w that is uniquely colored in the
set N , then we arbitrarily choose a vertex w′ ∈ N ∩ S′. We define c′(w′) = c(w)
and c′(w) = c(w′). All other vertices have the same color in c and c′. It is easy
to verify that c′ is also a 2-CNCF coloring of G and the restriction of c′ to G′ is
a 2-CNCF coloring of G′. �

We continue by creating an instance of 2-Polynomial root CSP that is
satisfiable if and only if G′ is 2-CNCF-colorable. Let V := {rv, bv | v ∈ V (G)}
be the variable set. We create L over Q as follows.

1. For each v ∈ V (G′), add the constraint rv + bv − 1 = 0 to L.
2. For all v ∈ V (G′), add the constraint (−1+

∑

u∈N [v] rv) ·(−1+
∑

u∈N [v] bv) =
0.

3. For each v ∈ V (G′) \ (S ∪ S′) of degree dv = |N(v)| add the constraint

(
∑

u∈N(v)

ru)(−1 +
∑

u∈N(v)

ru)(−(dv − 1) +
∑

u∈N(v)

ru)(−dv +
∑

u∈N(v)

ru) = 0.

Note that such a constraint is a quadratic polynomial.

Intuitively, the first constraint ensures that every vertex is either red or blue.
The second constraint ensures that in the closed neighborhood of every vertex,
exactly one vertex is red or exactly one is blue. The third constraint is seemingly
redundant, saying that the open neighborhood of every vertex outside the vertex
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cover does not have two red or two blue vertices, which is clearly forbidden. The
requirement for these last constraints is made clear in the proof of Claim 4.

We show that this results in an instance that is equivalent to the original
input instance, in the following sense.

Claim 2 (�). (L, V ) is a yes-instance of 2-Polynomial root CSP if and only
if G′ is 2-CNCF-colorable.

Clearly, |V | = 2n if n is the number of vertices of G′. We will now show
how to modify L, such that it uses only variables for the vertices in S ∪ S′. To
this end, we introduce the following function. For v /∈ (S ∪ S′), let fv(V ) :=
g
(
∑

u∈N(v) ru, |N(v)|), where

g(x,N) = − (N − x)(x − 1)(N − 2(x + 1))
N(N − 2)

.

Note that for any fixed N > 2, g(x,N) describes a degree-3 polynomial in x over
Q. The following is easy to verify.

Observation 1. g(0, N) = g(N − 1, N) = 1, and g(N,N) = g(1, N) = 0 for all
N ∈ Z \ {0, 2}.
Observe that fv only uses variables defined for vertices that are in S. As such,
let V ′ := {rv, bv | v ∈ S} ∪ {rv, bv | v ∈ S′}, and let L′ be equal to L with every
occurrence of rv for v /∈ (S ∪ S′) substituted by fv and every occurrence of bv
for v /∈ (S ∪ S′) substituted by (1 − fv(V )).

Claim 3 (�). If τ : V → {0, 1} is a satisfying assignment for (L, V ), then τ |V ′

is a satisfying assignment for (L′, V ′).

The next claim shows the equivalence between (L′, V ′) and (L, V ).

Claim 4 (�). If τ : V ′ → {0, 1} is a satisfying assignment for (L′, V ′), then
there exists a satisfying assignment τ ′ : V → {0, 1} for (L, V ) such that τ ′|V ′ = τ .

Using the method described above, we obtain an instance (L, V ) of 2-
Polynomial root CSP such that (L, V ) has a satisfying assignment if and
only if G is 2-CNCF-colorable by Claims 1 and 2. Then we obtain an instance
(L′, V ′) such that (L′, V ′) is satisfiable if and only if (L, V ) is satisfiable by
Claims 3 and 4. As such, (L′, V ′) is a yes-instance if and only if G is 2-CNCF-
colorable and it suffices to give a kernel for (L′, V ′). Observe that |V ′| = O(k2).

We start by partitioning L′ into three sets L′
S , L′

1 and L′
2. Let L′

S contain all
equalities created for a vertex v ∈ S. Let L′

1 contain all equations that contain
at least one of the variables in {rv, bv | v ∈ S′} and let L2 contain the remaining
equalities. Observe that |L′

S | = k by definition. Furthermore, the polynomials in
L′
1 have degree at most 2, as they were created for vertices in V (G′) \ S, and

these are not connected. As such, we use Theorem 5 to obtain L′′
1 ⊆ L′

1 such that
|L′′

1 | = O((k2)2) = O(k4) and any boolean assignment satisfying all equalities in
L′′
1 satisfies all equalities in L′

1.
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Similarly, we observe that L′
2 by definition contains none of the variables

in {rv, bv | v ∈ S′}, implying that the equations in L′
2 are equations over only

k variables. Since the polynomials in L′
2 have degree at most 6, we can apply

Theorem 5 to obtain L′′
2 ⊆ L′

2 such that |L′′
2 | ≤ O(k6) and any assignment

satisfying all equations in L′′
2 satisfies all equalities in L′

2.
We now define L′′ := L′′

1 ∪ L′′
2 ∪ L′

S , and the output of our polynomial gener-
alized kernel will be (L′′, V ′). The correctness of the procedure is proven above,
it remains to bound the number of bits needed to store instance (L′′, V ′).

By this definition, |L′′| ≤ O(k6). To represent a single constraint, it is suffi-
cient to store the coefficients for each variable in V ′. The storage space needed
for a single coefficient is O(log(n)), as the coefficients are bounded by a polyno-
mial in n. Thereby, (L′′, V ′) can be stored in O(k6 · k2 log n) bits. To bound this
in terms of k, we observe that it is easy to solve 2-CNCF-Coloring in time
O(2k

2 ·poly(n)). This is done by guessing the coloring of S, extending this color-
ing to the entire graph (observe G \ S has no vertices of degree less than three)
and verifying whether this results in a CNCF-coloring. Therefore, we can assume
that log(n) ≤ k2, as otherwise we can solve the 2-CNCF-Coloring problem in
O(2k

2
poly(n)) time, which is then polynomial in n. Thereby we conclude that

(L′′, V ′) can be stored in O(k10) bits. 
�

4.1 Kernelization Bounds for Conflict-Free Coloring Extension

Wefurthermore provide kernelizationbounds for the following extensionproblems.

q-CNCF-Coloring-VC-Extension

Input: A graph G with vertex cover S and partial q-coloring c : S → [q].
Question: Does there exist a q-CNCF-coloring of G that extends c?

We define q-ONCF-Coloring-VC-Extension analogously.
We obtain the following kernelization results when parameterized by vertex

cover size, thereby classifying the situations where the extension problem has
a polynomial kernel. The extension problem turns out to have a polynomial
kernel in the same case as the normal problem. However, we manage to give a
significantly smaller kernel. Observe that the kernelization result is non-trivial,
since 2-CNCF-Coloring-VC-Extension is NP-hard (�).

Theorem 6 (�). The following results hold.

1. 2-CNCF-Coloring-VC-Extension has a kernel with O(k2) vertices and
edges that can be stored in O(k2 log k) bits. Here k is the size of the input
vertex cover S.

2. q-CNCF-Coloring-VC-Extension for any q ≥ 3, and 2-ONCF-

Coloring-VC-Extension parameterized by the size of a vertex cover do
not have a polynomial kernel, unless NP ⊆ coNP/poly.
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5 Combinatorial Bounds

Given a graph G, it is easy to prove that χCN(G) ≤ χ(G). However, there are
examples that negate the existence of such bounds with respect to χON [6]. In
this section, we prove combinatorial bounds for χON with respect to common
graph parameters like treewidth, feedback vertex set and vertex cover.

First, note that if G is a graph with isolated vertices then the graph can have
no ONCF-coloring. Therefore, in all the arguments below we assume that G does
not have any isolated vertices. We obtain the following result. Recall that for a
graph G, vc(G), fvs(G) and tw(G) denote the size of a minimum vertex cover,
the size of a minimum feedback vertex set and the treewidth of G, respectively.

Theorem 7 (�). Given a connected graph G,

1. χON(G) ≤ 2tw(G) + 1,
2. χON(G) ≤ fvs(G) + 3,
3. χON(G) ≤ vc(G) + 1. Furthermore, if G is not a star graph or an edge-star

graph, then χON(G) ≤ vc(G).

Here, we only give a proof sketch of the result with respect to vc(G) and
relegate the other two combinatorial results to the full version of the paper. The
next lemma bounds the value of χON(G) for graphs with a vertex cover of size k.
In particular, we improve the bound given by Gargano and Rescigno [6, Lemma
4], who showed that χON(G) ≤ 2k + 1.

Lemma 4 (�). Let G be a connected graph with vc(G) = k. Then χON(G) ≤ k+
1. Furthermore, if G is not a star graph or an edge-star graph, then χON(G) ≤ k.

Proof (Proof sketch). See Fig. 2 for a sketch of the colorings described in the
proof. We start by proving the bounds for the case where G is not a star and
not an edge-star. Let S be a minimum vertex cover of G and let k be the size of
S. We do a case distinction on the size and connectedness of S.

u* v* w*

x

u* v* w*u* w*

v

Fig. 2. (left) A coloring of the graph when all vertices in G[S] are isolated. (middle)
The case where G[S] contains an edge and the endpoints have a common neighbor.
(right) The case where G[S] contains an edge and the endpoints have no common
neighbors.

(k = 2 and S connected) First, we prove the bounds for k = 2 and G[S] is
an edge {u∗, v∗}. Note that G is not an edge-star graph. Therefore at least one
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of u∗ or v∗ have neighbors with degree exactly 1 in G \ S. As shown in the full
proof, it is possible to ONCF-color such a graph with 2 colors, namely r and b.

(G[S] disconnected or k ≥ 3) We now prove the bounds for k = 2 and
G[S] is disconnected, and k ≥ 3. We consider a number of cases.

(Suppose G[S] contains a connected component C of size at least three.) Let
v∗ ∈ C be a vertex such that G[C \{v}] remains connected. We color the vertices
in G as follows. For every vertex u ∈ S, let c(u) := cu. For every vertex u ∈ S
that is isolated in G[S], pick an arbitrary neighbor v /∈ S and (re)color v such
that c(v) := cu. Notice that a vertex v in G \ S may be picked multiple times as
the candidate for an arbitrary neighbor for an isolated vertex in S, and in this
case the color of this vertex v is set to the last color it is assigned. For every
vertex v that is not yet colored, let c(v) := cv∗ . It can be shown that c is the
required coloring.

(Suppose G[S] only contains connected components of size one.) Note that
|S| > 1. Start by letting c(v) := cv for every vertex v ∈ S. Since G is connected,
there exists v /∈ S such that |N(v)| ≥ 2. Pick two vertices u∗, w∗ ∈ N(v) with
u∗ �= w∗. Let c(v) := cu∗ . For every vertex u ∈ S \ {u∗, w∗} pick an arbitrary
neighbor v /∈ S and recolor v to cu. Color the vertices that remained uncolored
by this procedure with cw∗ . It can be shown that c is the required coloring.

(Otherwise.) In this case G[S] has size at least 3, contains multiple connected
components, and at least one such component has size two. This leads to two
further cases, that have been analyzed in the complete proof in the full version
of this paper.

If G is not a star and not an edge-star, we are in one of the cases above.
Otherwise, it is easy to observe that stars have a vertex cover of size one and
can always be colored with two colors, and edge-stars can be colored with three
colors while having a minimum vertex cover size of two. 
�

Observe that the bounds of Lemma 4 are tight. First, a star graph requires 2
colors and has vertex cover size 1 while an edge-star graph requires 3 colors and
has vertex cover size 2. On the other hand, given an q ≥ 3, taking the complete
graph Kq and subdividing each edge once results in a graph that requires q
colors [6] for an ONCF-coloring and has a vertex cover of size q.

6 Open Problems

The study in this paper leads to some interesting open questions. In this paper
we only exhibit a generalized kernel of size O(k10) for 2-CNCF-Coloring and
it remains to resolve the size of tight polynomial kernels for the problem. On
the combinatorial side, with respect to minimum vertex cover, we obtain tight
upper bounds on χON (G). It would be interesting to obtain corresponding tight
bounds for χON (G) with respect to feedback vertex set and treewidth.
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Abstract. We almost completely resolve the computational complex-
ity of Graph Isomorphism for classes of graphs characterized by two
forbidden induced subgraphs H1 and H2. Schweitzer settled the com-
plexity of this problem restricted to (H1, H2)-free graphs for all but a
finite number of pairs (H1, H2), but without explicitly giving the number
of open cases. Grohe and Schweitzer proved that Graph Isomorphism
is polynomial-time solvable on graph classes of bounded clique-width.
By combining known results with a number of new results, we reduce
the number of open cases to seven. By exploiting the strong relation-
ship between Graph Isomorphism and clique-width, we simultaneously
reduce the number of open cases for boundedness of clique-width for
(H1, H2)-free graphs to five.

Keywords: Hereditary graph class · Induced subgraph ·
Clique-width · Graph Isomorphism

1 Introduction

The Graph Isomorphism problem, which is that of deciding whether two given
graphs are isomorphic, is a central problem in Computer Science. It is not known
if this problem is polynomial-time solvable, but it is not NP-complete unless the
polynomial hierarchy collapses [24]. Analogous to the use of the notion of NP-
completeness, we can say that a problem is Graph Isomorphism-complete
(abbreviated to GI-complete). Babai [1] proved that Graph Isomorphism can
be solved in quasi-polynomial time.

In order to increase understanding of the computational complexity of
Graph Isomorphism, it is natural to place restrictions on the input. This
approach has yielded many graph classes on which Graph Isomorphism is
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polynomial-time solvable, and many other graph classes on which the problem
remains GI-complete. We refer to [23] for a survey, but some recent examples
include a polynomial-time algorithm for unit square graphs [20] and a complex-
ity dichotomy for H-induced-minor-free graphs [2] for every graph H.

In this paper we consider the Graph Isomorphism problem for hereditary
graph classes, which are the classes of graphs that are closed under vertex dele-
tion. It is readily seen that a graph class G is hereditary if and only if there exists
a family of graphs FG , such that the following holds: a graph G belongs to G if
and only if G does not contain any graph from FG as an induced subgraph. We
implicitly assume that FG is a family of minimal forbidden induced subgraphs,
in which case FG is unique. We note that FG may have infinite size. For instance,
if G is the class of bipartite graphs, then FG consists of all odd cycles.

A natural direction for a systematic study of the computational complexity
of Graph Isomorphism is to consider graph classes G, for which FG is small,
starting with the case where FG has size 1. A graph is H-free if it does not
contain H as induced subgraph; conversely, we write H ⊆i G to denote that H
is an induced subgraph of G. The classification for H-free graphs [4] is due to
an unpublished manuscript of Colbourn and Colbourn (see [16] for a proof).

Theorem 1 (see [4,16]). Let H be a graph. Then Graph Isomorphism on
H-free graphs is polynomial-time solvable if H ⊆i P4 and GI-complete otherwise.

Later, it was shown that Graph Isomorphism is polynomial-time solvable even
for the class of permutation graphs [7], which form a superclass of the class of
P4-free graphs. Classifying the case where FG has size 2 is much more difficult
than the size-1 case. Kratsch and Schweitzer [16] initiated this classification.
Schweitzer [25] extended the results of [16] and proved that only a finite number
of cases remain open. A graph is (H1,H2)-free if it has no induced subgraph
isomorphic to H1 or H2. This leads to our research question:

Is it possible to determine the computational complexity of Graph Iso-
morphism for (H1,H2)-free graphs for all pairs H1,H2?

We recall that the analogous research question for H-induced-minor-free
graphs was fully answered by Belmonte, Otachi and Schweitzer [2], who also
determined all graphs H for which the class of H-induced-minor-free graphs has
bounded clique-width. Similar classifications for Graph Isomorphism [22] and
boundedness of clique-width [12] are also known for H-free minor graphs.

Lokshtanov et al. [17] recently gave an FPT algorithm for Graph Isomor-
phism with parameter k on graph classes of treewidth at most k, and this has
since been improved by Grohe et al. [13]. Whether an FPT algorithm exists when
parameterized by clique-width is still open. Grohe and Schweitzer [14] proved
membership of XP.

Theorem 2 ([14]). For every c, Graph Isomorphism is polynomial-time solv-
able on graphs of clique-width at most c.
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Our Results. Combining known results [16,25] with Theorem 2, we narrow the
list of open cases for Graph Isomorphism on (H1,H2)-free graphs to 14. Of
these 14 cases, we prove that two are polynomial-time solvable (Sect. 3) and five
others are GI-complete (Sect. 4). Thus we reduce the number of open cases to
seven. In Sect. 5 we provide an explicit list of all known and open cases.

Besides Theorem 2, there is another reason why results for clique-width are
of importance for Graph Isomorphism. Namely, Schweitzer [25] pointed out
great similarities between proving unboundedness of clique-width of some graph
class G and proving that Graph Isomorphism stays GI-complete for G. We will
illustrate these similarities by noting that our construction demonstrating that
Graph Isomorphism is GI-complete for (gem, P1 + 2P2)-free graphs can also
be used to show that this class has unbounded clique-width. This reduces the
number of pairs (H1,H2) for which we do not know if the class of (H1,H2)-free
graphs has bounded clique-width from six [11] to five. As such, our paper also
continues a project [3,6,8,9,11,12] aiming to classify the boundedness of clique-
width of (H1,H2)-free graphs for all pairs (H1,H2) (see [10] for a summary).

2 Preliminaries

We consider only finite, undirected graphs without multiple edges or self-loops.
The disjoint union (V (G)∪V (H), E(G)∪E(H)) of two vertex-disjoint graphs G
and H is denoted by G + H and the disjoint union of r copies of a graph G is
denoted by rG. For a subset S ⊆ V (G), we let G[S] denote the subgraph of G
induced by S, which has vertex set S and edge set {uv | u, v ∈ S, uv ∈ E(G)}.
If S = {s1, . . . , sr}, then we may write G[s1, . . . , sr] instead of G[{s1, . . . , sr}].
Recall that for two graphs G and G′ we write G′ ⊆i G to denote that G′

is an induced subgraph of G. For a set of graphs {H1, . . . , Hp}, a graph G
is (H1, . . . , Hp)-free if it has no induced subgraph isomorphic to a graph in
{H1, . . . , Hp}; recall that if p = 1, we may write H1-free instead of (H1)-free. For
a graph G, the set N(u) = {v ∈ V | uv ∈ E} denotes the (open) neighbourhood
of u ∈ V (G) and N [u] = N(u) ∪ {u} denotes the closed neighbourhood of u. The
degree dG(v) of a vertex v in a graph G is the number of vertices in G that are
adjacent to v.

A (connected) component of a graph G is a maximal subset of vertices that
induces a connected subgraph of G; it is non-trivial if it has at least two vertices,
otherwise it is trivial. The complement G of a graph G has vertex set V (G) =
V (G) such that two vertices are adjacent in G if and only if they are not adjacent
in G.

The graphs Cr, Kr, K1,r−1 and Pr denote the cycle, complete graph, star
and path on r vertices, respectively. Let K+

1,n and K++
1,n be the graphs obtained

from K1,n by subdividing one edge once or twice, respectively. The graphs K1,3,
2P1 + P2, P1 + P3, P1 + P4 and 2P1 + P3 are also called the claw, diamond, paw,
gem and crossed house, respectively. We need the following result.

Lemma 1 ([25]). For every fixed t, Graph Isomorphism is polynomial-time
solvable on (2K1,t,Kt)-free graphs.
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The graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, denotes the subdivided claw, that is, the
tree that has only one vertex x of degree 3 and exactly three leaves, which
are at distance h, i and j from x, respectively. Observe that S1,1,1 = K1,3.
A subdivided star is a graph obtained from a star by subdividing its edges an
arbitrary number of times. A graph is a path star forest if all of its connected
components are subdivided stars.

Let G be a graph and let X,Y ⊆ V (G) be disjoint sets. The edges between X
and Y form a perfect matching if every vertex in X is adjacent to exactly one ver-
tex in Y and vice versa. A vertex x ∈ V (G) \Y is complete (resp. anti-complete)
to Y if it is adjacent (resp. non-adjacent) to every vertex in Y . Similarly, X
is complete (resp. anti-complete) to Y if every vertex in X is complete (resp.
anti-complete) to Y . A graph is split if its vertex set can be partitioned into
a clique and an independent set. A graph is complete multipartite if its vertex
set can be partitioned into independent sets V1, . . . , Vk such that Vi is complete
to Vj whenever i �= j.

Lemma 2 ([21]). Every connected (P1 + P3)-free graph is either complete mul-
tipartite or K3-free.

Given two graphs G and H, an isomorphism from G to H is a bijection
f : V (G) → V (H) such that vw ∈ E(G) if and only if f(v)f(w) ∈ E(H). For a
function f : X → Y , if X ′ ⊆ X, we define f(X ′) := {f(x) ∈ Y | x ∈ X ′}. The
Graph Isomorphism problem is defined as follows.

Graph Isomorphism
Instance: Graphs G and H.
Question: Is there an isomorphism from G to H?

The clique-width of a graph G, denoted by cw(G), is the minimum number
of labels needed to construct G using the following four operations:

(i) create a new graph consisting of a single vertex v with label i;
(ii) take the disjoint union of two labelled graphs G1 and G2;
(iii) join each vertex with label i to each vertex with label j (i �= j);
(iv) rename label i to j.

A class of graphs G has bounded clique-width if there is a constant c such that
the clique-width of every graph in G is at most c; otherwise the clique-width of G
is unbounded.

Let G be a graph. For an induced subgraph G′ ⊆i G, the subgraph comple-
mentation operation (acting on G with respect to G′) replaces every edge present
in G′ by a non-edge, and vice versa, that is, the resulting graph has vertex
set V (G) and edge set (E(G) \ E(G′)) ∪ {xy | x, y ∈ V (G′), x �= y, xy /∈ E(G′)}.
Similarly, for two disjoint vertex subsets S and T in G, the bipartite complemen-
tation operation with respect to S and T acts on G by replacing every edge with
one end-vertex in S and the other in T by a non-edge and vice versa.

Let k ≥ 0 be a constant and let γ be some graph operation. We say that
a graph class G′ is (k, γ)-obtained from a graph class G if the following two
conditions hold:
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(i) every graph in G′ is obtained from a graph in G by performing γ at most k
times, and

(ii) for every G ∈ G there exists at least one graph in G′ obtained from G by
performing γ at most k times.

We say that γ preserves boundedness of clique-width if for any finite constant k
and any graph class G, any graph class G′ that is (k, γ)-obtained from G has
bounded clique-width if and only if G has bounded clique-width.

Fact 1. Vertex deletion preserves boundedness of clique-width [19].
Fact 2. Subgraph complementation preserves boundedness of clique-width [15].
Fact 3. Bipartite complementation preserves boundedness of clique-width [15].

We need the following lemmas on clique-width.

Lemma 3 ([5]). The class of 2P1 + P3-free split graphs has bounded clique-
width.

Lemma 4 ([18]). The class of (P2+P3)-free bipartite graphs has bounded clique-
width.

We also need the special case of [12, Theorem 3] when V0,i = Vi,0 = ∅ for
i ∈ {1, . . . , n}.

Lemma 5 ([12]). For m ≥ 1 and n > m + 1 the clique-width of a graph G is at
least 
 n−1

m+1� + 1 if V (G) has a partition into sets Vi,j (i, j ∈ {1, . . . , n}) with the
following properties:

1. |Vi,j | ≥ 1 for all i, j ≥ 1.
2. G[∪n

j=1Vi,j ] is connected for all i ≥ 1.
3. G[∪n

i=1Vi,j ] is connected for all j ≥ 1.
4. For i, j, k, � ≥ 1, if a vertex of Vi,j is adjacent to a vertex of Vk,�, then |k−i| ≤

m and |� − j| ≤ m.

3 New Polynomial-Time Results

In this section we prove Theorem 3, which states that Graph Isomor-
phism is polynomial-time solvable on (2P1 + P3, P2 + P3)-free graphs (see also
Fig. 1). The complexity of Graph Isomorphism on (2P1 + P3, 2P2)-free graphs
was previously unknown, but since this class is contained in the class of
(2P1 + P3, P2 + P3)-free graphs, Theorem 3 implies that Graph Isomorphism
is also polynomial-time solvable on this class. Before proving Theorem 3, we first
prove a useful lemma.

Lemma 6. Let G be a 2P1 + P3-free graph containing an induced K5 with vertex
set KG. Then V (G) can be partitioned into sets AG

1 , . . . , AG
p , NG

1 , . . . , NG
p , BG

for some p ≥ 5 such that:

(i) KG ⊆ ⋃
AG

i ;
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(ii) G[
⋃

AG
i ] is a complete multipartite graph, with partition AG

1 , . . . , AG
p ;

(iii) For every i ∈ {1, . . . , p}, every vertex of NG
i has a neighbour in AG

i , but is
anti-complete to AG

j for every j ∈ {1, . . . , p} \ {i}; and
(iv) BG is anti-complete to

⋃
AG

i .

Furthermore, given KG, this partition is unique (up to permuting the indices on
the AG

i s and corresponding NG
i s) and can be found in polynomial time.

Proof. Let G be a 2P1 + P3-free graph containing an induced K5 with vertex
set KG. If a vertex v ∈ V (G) \ KG has two neighbours x, x′ ∈ KG and two
non-neighbours y, y′ ∈ KG, then G[x, x′, y, v, y′] is a 2P1 + P3, a contradiction.
Therefore every vertex in V (G)\KG has either at most one non-neighbour in KG

or at most one neighbour in KG. Let LG denote the set of vertices that are either
in KG or have at most one non-neighbour in KG and note that LG is uniquely
defined by the choice of KG.

We claim that G[LG] is a complete multipartite graph. Suppose, for con-
tradiction, that G[LG] is not complete multipartite. Then G[LG] contains an
induced P1 + P2 = P3, say on vertices v, v′, v′′ (note that some of these vertices
may be in KG). Now each of v, v′, v′′ has at most one non-neighbour in KG and if
a vertex w ∈ {v, v′, v′′} is in KG, then it is adjacent to every vertex in KG \{w}.
Therefore, since |KG| = 5, there must be vertices u, u′ ∈ KG\{v, v′, v′′} that are
complete to {v, v′, v′′}. Now G[u, u′, v′, v, v′′] is a 2P1 + P3. This contradiction
completes the proof that G[LG] is complete multipartite.

We let AG
1 , . . . , AG

p be the partition classes of the complete multipartite
graph G[LG]. Note that p ≥ 5, since each AG

i contains at most one vertex
of KG. We claim that each vertex not in LG has neighbours in at most one
set AG

i . Suppose, for contradiction, that there is a vertex v ∈ V (G) \ LG with
neighbours in two distinct sets AG

i , say v is adjacent to u ∈ AG
1 and u′ ∈ AG

2 .
Since v /∈ LG, the vertex v has at most one neighbour in KG. Since |KG| = 5,
there must be two vertices y, y′ ∈ KG \ (AG

1 ∪ AG
2 ) that are non-adjacent to v.

Now G[u, u′, y, v, y′] is a 2P1 + P3, a contradiction. Therefore every vertex not
in LG has neighbours in at most one set AG

i . Let NG
i be the set of vertices

in V (G) \ LG that have neighbours in AG
i and let BG be the set of vertices in

V (G)\LG that are anti-complete to LG. Finally, note that the partition of V (G)
into sets AG

1 , . . . , AG
p , NG

1 , . . . , NG
p , BG can be found in polynomial time and is

unique (up to permuting the indices on the AG
i s and corresponding NG

i s). �

Theorem 3. Graph Isomorphism is polynomial-time solvable on (2P1 + P3,
P2 + P3)-free graphs.

Proof. As Graph Isomorphism can be solved component-wise, we need only
consider connected graphs. Therefore, as Graph Isomorphism is polynomial-
time solvable on (K5, P2+P3)-free graphs by Lemma 1, and we can test whether
a graph is K5-free in polynomial time, it only remains to consider the class of
connected (2P1 + P3, P2+P3)-free graphs G that contain an induced K5. Let KG
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2P1 + P3 P2 + P3

Fig. 1. Forbidden induced subgraphs from Theorem 3.

be the vertices of such a K5 in G (note that such a set KG can be found in poly-
nomial time, but it is not necessarily unique). Let AG

1 , . . . , AG
p , NG

1 , . . . , NG
p , BG

be defined as in Lemma 6 and let LG =
⋃

AG
i and DG = V (G) \ LG.

Suppose G and H are connected (2P1 + P3, P2 + P3)-free graphs that each
contain an induced K5. If G and H have bounded clique-width (which happens
in Case 1 below), then by Theorem 2 we are done. Otherwise, note that if KG

and KH are vertex sets that induce a K5 in G and H, respectively, then Lemma 6
implies that LG,DG, LH and DH are uniquely defined. Therefore, we fix one
choice of KG and, for each choice of KH , test whether there is an isomorphism
f : G → H such that f(LG) = LH (we use this approach in Cases 2 and 3
below). Clearly, we may assume that the vertex partitions given by Lemma 6
for G and H have the same value of p and that |AG

i | = |AH
i | and |NG

i | = |NH
i |

for all i ∈ {1, . . . , p} and |BG| = |BH |. Furthermore, for any claims we prove
about G and its vertex sets, we may assume that the same claims hold for H
(otherwise such an isomorphism f does not exist). We start by proving the
following four claims.

Claim 1. G[DG] is P3-free

Indeed, suppose, for contradiction, that G[DG] contains an induced P3, say
on vertices u, u′, u′′. Since |KG| = 5 and each vertex in DG has at most one
neighbour in KG, there must be vertices v, v′ ∈ KG that are anti-complete to
{u, u′, u′′}. Then G[v, v′, u, u′, u′′] is a P2 + P3, a contradiction. �
Claim 2. If v ∈ NG

j for some j ∈ {1, . . . , p} and there are two adjacent vertices
u, u′ ∈ DG \ NG

j , then v is complete to {u, u′}.
Since G[DG] is P3-free by Claim 1, the vertex v must be either complete or anti-
complete to {u, u′}. Suppose, for contradiction, that v is anti-complete to {u, u′}.
Since v ∈ NG

j , v has a neighbour v′ ∈ AG
j . Since |KG \ AG

j | ≥ 4 and each vertex
in DG has at most one neighbour in KG, there is a vertex v′′ ∈ KG \ AG

j that is
non-adjacent to both u and u′. Since v′′ /∈ AG

j , v′′ is also non-adjacent to v, but
is adjacent to v′. Now G[u, u′, v, v′, v′′] is a P2 + P3, a contradiction. �
Claim 3. If G[DG] has at least two components and one of these components C
has at least three vertices, then there is an i ∈ {1, . . . , p} such that DG \ C ⊂
NG

i ∪ BG and all but at most one vertex of C belongs to NG
i .
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By Claim 1, G[DG] is a disjoint union of cliques. As G is connected, DG \ C
cannot be a subset of BG. Hence, for some i ∈ {1, . . . , p}, there must be a vertex
x ∈ NG

i \C. Therefore, by Claim 2, at most one vertex of C can lie outside of NG
i .

As |C| ≥ 3, it follows that C ∩NG
i contains at least two vertices. As the vertices

in C are pairwise adjacent, by Claim 2 it follows that DG \ C ⊂ NG
i ∪ BG. �

Claim 4. Let i ∈ {1, . . . , p}. If G[DG] contains at least two non-trivial com-
ponents and there is a vertex v in AG

i with two non-neighbours in the same
component of G[DG], then v is anti-complete to DG. Furthermore, there is at
most one vertex in AG

i with this property.

Suppose v ∈ AG
i has two non-neighbours x, x′ in some component C of G[DG].

By Claim 1, G[DG] is a disjoint union of cliques, so x must be adjacent to x′. We
claim that v is anti-complete to DG \ C. Suppose, for contradiction, that v has
a neighbour y ∈ DG \ C. Since every vertex of DG has at most one neighbour
in KG, there must be a vertex z ∈ KG\AG

i that is non-adjacent to x, x′ and y and
so G[x, x′, y, v, z] is a P2 + P3. This contradiction implies that v is indeed anti-
complete to DG \C. Now G[DG \C] contains another non-trivial component C ′

and we have shown that v is anti-complete to C ′. Repeating the same argument
with C ′ taking the place of C, we find that v is anti-complete to DG \ C ′,
and therefore v is anti-complete to DG. Finally, suppose, for contradiction, that
there are two vertices v, v′ ∈ AG

i that are both anti-complete to DG. Let x, x′

be adjacent vertices in DG and let z ∈ KG \ AG
i be a vertex non-adjacent to x

and x′. Then G[x, x′, v, z, v′] is a P2 + P3, a contradiction. �
We now start a case distinction and first consider the following case.

Case 1. G[DG] contains at most one non-trivial component.

In this case we will show that G has bounded clique-width, and so we will be done
by Theorem 2. By Claim 1, every component of G[DG] is a clique. Since G[DG]
contains at most one non-trivial component, we may partition DG into a clique C
and an independent set I (note that C or I may be empty). If |C| ≥ 3 and |I| ≥ 1,
then by Claim 3 there is an i ∈ {1, . . . , p} such that at most one vertex of C ∪ I
is outside NG

i ; if such a vertex exists, then by Fact 1 we may delete it. Now if
|C| ≤ 3, then by Fact 1 we may delete the vertices of C. Thus we may assume
that either C = ∅ or |C| ≥ 4 and furthermore, if |C| ≥ 4 and |I| ≥ 1, then
C ∪ I ⊆ NG

i for some i ∈ {1, . . . , p}. Note that I ∩ BG = ∅ since G is connected,
so BG ⊂ C. Hence G[BG] is a complete graph, so it has clique-width at most 2.
Applying a bipartite complementation between BG and C\BG removes all edges
between BG and V (G) \ BG. By Fact 3, we may thus assume that BG = ∅.

Let M be the set of vertices in LG that have neighbours in I. We claim that M
is complete to all but at most one vertex of C. We may assume that |C| ≥ 4
and |I| ≥ 1, otherwise the claim follows trivially. Therefore, as noted above,
C ∪ I ⊆ NG

i for some i ∈ {1, . . . , p}. Suppose u ∈ M has a neighbour u′ ∈ I
and note that this implies u ∈ AG

i , u′ ∈ NG
i . Suppose, for contradiction, that u

has two non-neighbours v, v′ ∈ C and let w ∈ KG \ AG
i . Then G[v, v′, u′, u, w]
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is a P2 + P3, a contradiction. Therefore if u ∈ M , then u has at most one non-
neighbour in C. Now suppose that there are two vertices u, u′ ∈ M . It follows
that u, u′ ∈ AG

i , so these vertices must be non-adjacent. Furthermore, each of
these vertices has at most one non-neighbour in C. If u and u′ have different
neighbourhoods in C, then without loss of generality we may assume that there
are vertices x, y, y′ ∈ C such that u is adjacent to x, y and y′ and u′ is adjacent
to y and y′, but not to x. Now G[y, y′, u, u′, x] is a 2P1 + P3, a contradiction.
Hence every vertex in M has the same neighbourhood in C, which consists of
all but at most one vertex of C and the claim holds. If the vertices of M are not
complete to C, then we delete one vertex of C (we may do so by Fact 1), after
which M will be complete to C. Hence we may assume that M is complete to C.

Now note that for all i ∈ {1, . . . , p}, the graph Gi = G[(AG
i \M)∪ (NG

i ∩C)]
is a 2P1 + P3-free split graph, so it has bounded clique-width by Lemma 3.
Furthermore G′

i = G[(AG
i ∩ M) ∪ (NG

i ∩ I)] is a (P2 + P3)-free bipartite graph,
so it has bounded clique-width by Lemma 4. Let G′′

i be the graph obtained from
the disjoint union Gi + G′

i by complementing AG
i and (NG

i ∩ C). By Fact 2, G′′
i

also has bounded clique-width. Therefore the disjoint union G∗ of all the G′′
i s has

bounded clique-width. Now G can be constructed from G∗ by complementing LG,
complementing C and applying a bipartite complementation between C and M .
Hence, by Facts 2 and 3, G has bounded clique-width. This completes Case 1.

We may now assume that Case 1 does not apply, that is, G[DG] has at least two
non-trivial components. This leads us to our second and third cases.

Case 2. G[DG] contains at least two non-trivial components, but is K4-free.

Recall that G[DG] is P3-free by Claim 1, so every component of G[DG] is a
clique. Let C be a non-trivial component of G[DG] and let x, y ∈ C. Then x
is adjacent to y and x, y ∈ NG

i ∪ NG
j ∪ BG for some (not necessarily distinct)

i, j ∈ {1, . . . , p}. By Claim 2, every vertex z in a component of G[DG] other
than C must also be in NG

i ∪ NG
j ∪ BG. As G[DG] contains at least two non-

trivial components, repeating this argument with another non-trivial component
implies that every vertex of DG lies in NG

i ∪NG
j ∪BG. Without loss of generality,

we may therefore assume that NG
k = ∅ for k ≥ 3.

Since G[DG] is K4-free, for each i ∈ {1, . . . , p} the graph G[DG ∪ AG
i ] is

K5-free. This means that every K5 in G is entirely contained in LG. By Claim 4,
for i ≥ 3, |AG

i | = 1 and so LG \ (AG
1 ∪ AG

2 ) must be a clique. The vertices
of LG \ (AG

1 ∪ AG
2 ) have no neighbours outside LG and are adjacent to every

other vertex of LG, so these vertices are in some sense interchangeable. Indeed,
N [v] = LG for every v ∈ LG \ (AG

1 ∪ AG
2 ), and so every bijection that permutes

the vertices of LG \ (AG
1 ∪ AG

2 ) and leaves the other vertices of G unchanged
is an isomorphism from G to itself. Let G′ be the graph obtained from G by
deleting all vertices in AG

i for i ≥ 6 (if any such vertices are present). Now G′ is
K6-free and thus (K6, P2 +P3)-free. We can test isomorphism of such graphs G′

in polynomial time by Lemma 1. If there is an isomorphism between two such
graphs G′ and H ′, then, as the vertices of LG \ (AG

1 ∪ AG
2 ) are interchangeable,
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we can extend it to a full isomorphism of G and H by mapping the remaining
vertices of LG \(AG

1 ∪AG
2 ) to LH \(AH

1 ∪AH
2 ) arbitrarily. This completes Case 2.

Case 3. G[DG] contains at least two non-trivial components and contains an
induced K4.

Recall that G[DG] is P3-free by Claim 1, so every component of G[DG] is a clique.
We claim that DG ⊆ NG

i ∪ BG for some i ∈ {1, . . . , p}. Let C be a component
of G[DG] that contains at least four vertices, and let C ′ be a component of G[DG]
other than C, and note that such components exist by assumption. By Claim 3,
there is an i ∈ {1, . . . , p} such that DG \ C ⊂ NG

i ∪ BG and all but at most one
vertex of C belongs to NG

i . In particular, this implies that C ′ ⊂ NG
i ∪ BG. By

Claim 2, it follows that C cannot have a vertex in NG
j for some j ∈ {1, . . . , p}\{i},

and so C ⊂ NG
i ∪ BG. Without loss of generality, we may therefore assume that

NG
j = ∅ for j ∈ {2, . . . , p} and so DG = NG

1 ∪ BG. Now if j ∈ {2, . . . , p}, then
the vertices of AG

j are anti-complete to DG, so Claim 4 implies that |AG
j | = 1.

This implies that LG \ AG
1 is a clique.

By Claim 4 there is at most one vertex xG ∈ AG
1 that has two non-neighbours

in the same non-trivial component C of G[DG] and if such a vertex exists, then
it must be anti-complete to DG. Let A∗G

1 = AG
1 \ {xG} if such a vertex xG

exists and A∗G
1 = AG

1 otherwise. Then every vertex in A∗G
1 has at most one non-

neighbour in each component of G[DG]. Note that A∗G is non-empty, since DG

is non-empty and G is connected.
Suppose C is a component of G[DG] on at least four vertices. Now suppose,

for contradiction, that there are two vertices y, y′ ∈ A∗G
1 with different neigh-

bourhoods in C. Then without loss of generality there is a vertex x ∈ C that is
adjacent to y, but not to y′. Since |C| ≥ 4 and every vertex in A∗G

1 has at most
one non-neighbour in C, there must be two vertices z, z′ ∈ C that are adjacent to
both y and y′. Now G[z, z′, x, y′, y] is a 2P1 + P3, a contradiction. We conclude
that every vertex in A∗G

1 has the same neighbourhood in C. This implies that
every vertex of C is either complete or anti-complete to A∗G

1 . If a vertex of C is
anti-complete to A∗G

1 , then it is anti-complete to AG
1 , and so it lies in BG.

Let D∗G be the set of vertices in DG that are in components of G[DG] that
have at most three vertices. Then every vertex of DG \ D∗G is complete or
anti-complete to A∗G

1 and anti-complete to AG
1 \ A∗G

1 .
Now let G′ = G[D∗G ∪LG \ (AG

1 \A∗G
1 )] and note that this graph is uniquely

defined by G and KG. Then G′[D∗G] is K4-free, so G′[D∗G ∪A∗G
1 ] is K5-free, so

every induced K5 in G′ is entirely contained in LG \ (AG
1 \ A∗G

1 ). Furthermore,
since p ≥ 5, every vertex in LG \ (AG

1 \A∗G
1 ) is contained in an induced K5 in G′.

Therefore every isomorphism q from G′ to H ′ satisfies q(LG \ (AG
1 \ A∗G

1 )) =
LH \ (AH

1 \ A∗H
1 ). Therefore a bijection f : V (G) → V (H) is an isomorphism

from G to H such that f(LG) = LH if and only if all of the following hold:

1. The restriction of f to V (G′) is an isomorphism from G′ to H ′ such that
f(A∗G

1 ) = A∗H
1 .

2. f(AG
1 \ A∗G

1 ) = AH
1 \ A∗H

1 .



Graph Isomorphism for (H1, H2)-Free Graphs 191

3. For every component C of G[DG] with at least four vertices, f(C) is a compo-
nent of H[DH ] on the same number of vertices and |C ∩ BG| = |f(C) ∩ BH |.
It is therefore sufficient to test whether there is a bijection from G to H

with the above properties. Note that these properties are defined on pairwise
disjoint vertex sets, and the edges in G and H between these sets are completely
determined by the definition of the sets. Thus it is sufficient to independently test
whether there are bijections satisfying each of these properties. If D∗G is empty,
then G′ is a complete multipartite graph, so we can easily test if Property 1 holds
in this case. Otherwise, since AG

j has no neighbours outside LG for j ∈ {2, . . . , p},
every isomorphism from G′ to H ′ satisfies f(A∗G

1 ) = A∗H
1 , so it is sufficient to

test if G′ and H ′ are isomorphic, and we can do this by applying Case 1 or
Case 2. The sets AG

1 \ A∗G
1 and AH

1 \ A∗H
1 consist of at most one vertex, so we

can test if Property 2 can be satisfied in polynomial time. To satisfy Property 3,
we only need to check whether there is a bijection q from the components of
G[D∗G \ DG] to the components of H[D∗H \ DH ] such that |q(C)| = |C| and
|q(C)∩BH | = |C ∩BG| for every component of G[D∗G \DG] and this can clearly
be done in polynomial time. This completes the proof of Case 3. �

4 New GI-Complete Results

We state Theorems 4, 5 and 6, which establish that Graph Isomor-
phism is GI-complete on (diamond, 2P3)-free, (diamond, P6)-free and (gem, P1 +
2P2)-free graphs, respectively. The complexity of Graph Isomorphism on
(2P1 + P3, 2P3)-free graphs and (gem, P6)-free graphs was previously unknown,
but as these classes contain the classes of (diamond, 2P3)-free graphs and
(diamond, P6)-free graphs, respectively, Theorems 4 and 5, respectively, imply
that Graph Isomorphism is also GI-complete on these classes. In Theorems 4
and 5, GI-completeness follows from the fact that the constructions used in our
proofs (which we omit) fall into the framework of so-called simple path encod-
ings (see [25]). The construction used in the proof of Theorem 6 does not fall
into this framework and we give a direct proof of GI-completeness in this case.

Theorem 4. Graph Isomorphism is GI-complete on (diamond, 2P3)-free
graphs.

Theorem 5. Graph Isomorphism is GI-complete on (diamond, P6)-free
graphs.

Theorem 6. Graph Isomorphism is GI-complete on (gem, P1 + 2P2)-free
graphs. Furthermore, (gem, P1 + 2P2)-free graphs have unbounded clique-width.

Proof Sketch. Let G be a graph. Let vG
1 , . . . , vG

n be the vertices of G and let
eG
1 , . . . , eG

m be the edges of G. We construct a graph q(G) from G as follows:

1. Create a complete multipartite graph with partition (AG
1 , . . . , AG

n ), where
|AG

i | = dG(vG
i ) for i ∈ {1, . . . , n} and let AG =

⋃
AG

i .
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2. Create a complete multipartite graph with partition (BG
1 , . . . , BG

m), where
|BG

i | = 2 for i ∈ {1, . . . , m} and let BG =
⋃

BG
i .

3. Take the disjoint union of the two graphs above, then for each edge eG
i = vG

i1
vG

i2

in G in turn, add an edge from one vertex of BG
i to a vertex of AG

i1
and an

edge from the other vertex of BG
i to a vertex of AG

i2
. Do this in such a way

that the edges added between AG and BG form a perfect matching.

It can be checked that q(G) is (gem, P1 + 2P2)-free for every graph G. Let G
and H be graphs. Let G∗ and H∗ be the graphs obtained from G and H, respec-
tively, by adding four pairwise adjacent vertices that are adjacent to every vertex
of G and H, respectively. Note that every vertex of G∗ and H∗ has degree at
least 3. We claim that G is isomorphic to H if and only if q(G∗) is isomorphic
to q(H∗). As the latter two graphs are (gem, P1 + 2P2)-free, this proves the first
result.

Let Hn be the n×n grid. We use Lemma 5 with m = 1 combined with Fact 2
to prove that the set of graphs {q(Hn) | n ∈ N}, which are (gem, P1 + 2P2)-free
as stated above, has unbounded clique-width. �

5 Classifying the Complexity of Graph Isomorphism
for (H1,H2)-Free Graphs

Given four graphs H1,H2,H3,H4, the classes of (H1,H2)-free graphs and
(H3,H4)-free graphs are equivalent if the unordered pair H3,H4 can be obtained
from the unordered pair H1,H2 by some combination of the operations:

(i) complementing both graphs in the pair, and
(ii) if one of the graphs in the pair is K3, replacing it with the paw or vice

versa.

Note that two graphs G and H are isomorphic if and only if their complements G
and H are isomorphic. Therefore, for every pair of graphs H1,H2, the Graph
Isomorphism problem is polynomial-time solvable or GI-complete for (H1,H2)-
free graphs if and only if the same is true for (H1,H2)-free graphs. Since Graph
Isomorphism can be solved component-wise, and it can easily be solved on
complete multipartite graphs in polynomial time, Lemma 2 implies that for every
graph H1, the Graph Isomorphism problem is polynomial-time solvable or GI-
complete for (H1,K3)-free graphs if and only if the same is true for (H1,paw)-
free graphs. Thus if two classes are equivalent, then the complexity of Graph
Isomorphism is the same on both of them. Here is the summary of known
results for the complexity of Graph Isomorphism on (H1,H2)-free graphs (see
Sect. 2 for notation; we omit the proof).

Theorem 7. For a class G of graphs defined by two forbidden induced subgraphs,
the following holds:

1. Graph Isomorphism is solvable in polynomial time on G if G is equivalent
to a class of (H1,H2)-free graphs such that one of the following holds:
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(i) H1 or H2 ⊆i P4

(ii) H1 and H2 ⊆i K1,t + P1 for some t ≥ 1
(iii) H1 and H2 ⊆i tP1 + P3 for some t ≥ 1
(iv) H1 ⊆i Kt and H2 ⊆i 2K1,t,K

+
1,t or P5 for some t ≥ 1

(v) H1 ⊆i paw and H2 ⊆i P2 + P4, P6, S1,2,2 or K++
1,t + P1 for some t ≥ 1

(vi) H1 ⊆i diamond and H2 ⊆i P1 + 2P2

(vii) H1 ⊆i gem and H2 ⊆i P1 + P4 or P5

(viii) H1 ⊆i 2P1 + P3 and H2 ⊆i P2 + P3.
2. Graph Isomorphism is GI-complete on G if G is equivalent to a class of

(H1,H2)-free graphs such that one of the following holds:
(i) neither H1 nor H2 is a path star forest
(ii) neither H1 nor H2 is a path star forest
(iii) H1 ⊇i K3 and H2 ⊇i 2P1 + 2P2, P1 + 2P3, 2P1 + P4 or 3P2

(iv) H1 ⊇i K4 and H2 ⊇i K++
1,4 , P1 + 2P2 or P1 + P4

(v) H1 ⊇i K5 and H2 ⊇i K++
1,3

(vi) H1 ⊇i C4 and H2 ⊇i K1,3, 3P1 + P2 or 2P2

(vii) H1 ⊇i diamond and H2 ⊇i K1,3, P2 + P4, 2P3 or P6

(viii) H1 ⊇i gem and H2 ⊇i P1 + 2P2.

Open Problem 1. What is the complexity of Graph Isomorphism on
(H1,H2)-free graphs in the following cases?

(i) H1 = K3 and H2 ∈ {P7, S1,2,3}
(ii) H1 = K4 and H2 = S1,1,3

(iii) H1 = diamond and H2 ∈ {P1 + P2 + P3, P1 + P5}
(iv) H1 = gem and H2 = P2 + P3

(v) H1 = 2P1 + P3 and H2 = P5

Note that all of the classes of (H1,H2)-free graphs in Open Problem 1 are
incomparable. We omit the proof of the next theorem.

Theorem 8. Let G be a class of graphs defined by two forbidden induced sub-
graphs. Then G is not equivalent to any of the classes listed in Theorem 7 if and
only if it is equivalent to one of the seven cases listed in Open Problem 1.

6 Conclusions

By combining known and new results we determined the complexity of Graph
Isomorphism in terms of polynomial-time solvability and GI-completeness for
(H1,H2)-free graphs for all but seven pairs (H1,H2). This also led to a new
class of (H1,H2)-free graphs whose clique-width is unbounded. In particular, we
developed a technique for showing polynomial-time solvability for (2P1 + P3,H)-
free graphs, which we illustrated for the case H = P2 + P3. For future work we
have some preliminary results for the case where H = P5.
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Abstract. We study Hamiltonicity for some of the most general vari-
ants of Delaunay and Gabriel graphs. Instead of defining these proximity
graphs using circles, we use an arbitrary convex shape C. Let S be a point
set in the plane. The k-order Delaunay graph of S, denoted k-DGC(S),
has vertex set S and edge pq provided that there exists some homo-
thet of C with p and q on its boundary and containing at most k points
of S different from p and q. The k-order Gabriel graph k-GGC(S) is
defined analogously, except for the fact that the homothets considered
are restricted to be smallest homothets of C with p and q on its boundary.
We provide upper bounds on the minimum value of k for which k-GGC(S)
is Hamiltonian. Since k-GGC(S) ⊆ k-DGC(S), all results carry over to
k-DGC(S). In particular, we give upper bounds of 24 for every C and 15
for every point-symmetric C. We also improve the bound to 7 for squares,
11 for regular hexagons, 12 for regular octagons, and 11 for even-sided
regular t-gons (for t ≥ 10). These constitute the first general results on
Hamiltonicity for convex shape Delaunay and Gabriel graphs.

1 Introduction

The study of the combinatorial properties of geometric graphs has played an
important role in the area of Discrete and Computational Geometry. One of the
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fundamental structures that has been studied intensely is the Delaunay trian-
gulation of a planar point set and some of its spanning subgraphs, such as the
Gabriel Graph, the Relative Neighborhood Graph and the Minimum Spanning
Tree. Delaunay triangulations possess many interesting properties. For example,
among all triangulations of a given planar point set, the Delaunay triangulation
maximizes the minimum angle. It is also a 1.99-spanner [19] (i.e., for any pair of
vertices x, y, the shortest path between x and y in the Delaunay triangulation
has length that is at most 1.99 times |xy|). See [16] for an encyclopedic treatment
of this structure and its many properties.

Shamos [18] conjectured that the Delaunay triangulation contains a Hamilto-
nian cycle. This conjecture sparked a flurry of research activity. Although Dillen-
court [11] disproved this conjecture, he showed that Delaunay triangulations are
almost Hamiltonian [12], in the sense that they are 1-tough.1 Focus then shifted
on determining how much the definition of the Delaunay triangulation has to be
loosened to achieve Hamiltonicity. One such direction is to relax the empty disk
requirement. Given a planar point set S and two points p, q ∈ S, the k-Delaunay
graph (k-DG) with vertex set S has an edge pq provided that there exists a disk
with p and q on the boundary containing at most k points of S different from p and
q.2 If the disk with p and q on its boundary is restricted to disks with pq as diameter,
then the graph is called the k-Gabriel graph (k-GG). For the k-Relative Neighor-
hood graph (k-RNG), pq is an edge provided that there are at most k points of S
whose distance to both p and q is less than |pq|. Note that k-RNG ⊆ k-GG ⊆ k-
DG. Chang et al. [9] showed that 19-RNG is Hamiltonian.3 Abellanas et al. [1]
lowered this bound to 15-GG. Currently, the lowest known bound is by Kaiser et
al. [15] who showed that 10-GG is Hamiltonian. All of these results are obtained
by studying properties of bottleneck Hamiltonian cycles. Given a planar point set,
a bottleneck Hamiltonian cycle is a cycle whose maximum edge length is mini-
mum among all Hamiltonian cycles of the point set. Biniaz et al. [6] showed that
there exist point sets such that its 7-GG does not contain a bottleneck Hamilto-
nian cycle, implying that this approach cannot yield an upper bound lower than
8. Despite this, it is conjectured that 1-DG is Hamiltonian [1].

Another avenue that has been explored is through the relaxation of the
shape defining the Delaunay triangulation. Delaunay graphs where the disks
have been replaced by various convex shapes have been studied in the litera-
ture. For instance, Chew [10] showed that the �-Delaunay graph (i.e., where
the shape is an equilateral triangle), denoted DG�, is a 2-spanner and that the
�-Delaunay graph (i.e., where the shape is a square), denoted DG�, is a

√
10-

spanner. Bose et al. [8] proved that the convex-Delaunay graph (i.e., where the
shape is an arbitrary convex shape) is a c-spanner where the constant c depends
only on the perimeter and width of the convex shape.

As for Hamiltonicity in convex shape Delaunay graphs, not much is known.
Bonichon et al. [7] proved that every plane triangulation is Delaunay-realizable

1 A graph is 1-tough if removing k vertices from it results in ≤ k connected components.
2 Note that this implies that the standard Delaunay triangulation is the 0-DG.
3 According to the definition of k-RNG in [9], they showed Hamiltonicity for 20-RNG.



198 P. Bose et al.

Table 1. Bounds on the minimum k for which k-DGC(S) is Hamiltonian and for which
k-GGC(S) contains a dC−bottleneck Hamiltonian cycle.

Type of shape C k ≤ k ≥ Bottleneck-k ≥
Circles 10 [15] 1 [11] 8 [6]

Equilateral triangles 7 [5] 1 [5] 6 [5]

Squares 7 [Theorem 10] 1 [17] 3 [Lemma 5]

Regular hexagons 11 [Theorem 11] 1 [Lemma 4] 6 [Lemma 6]

Regular octagons 12 [Theorem 13] 1 [Lemma 4] -

Regular t-gons (t even, t ≥ 10) 11 [Theorem 12] - -

Point-symmetric convex 15 [Theorem 8] - -

Convex 24 [Theorem 5] - -

where homothets of a triangle act as the empty convex shape. This implies that
there exist such triangulations that do not contain Hamiltonian paths or cycles.
For the special case of �-Delaunay graph, Biniaz et al. [5] showed that 7-DG�
contains a bottleneck Hamiltonian cycle and that there exist points sets where 5-
DG� does not contain a bottleneck Hamiltonian cycle. Ábrego et al. [2] showed
that the DG� admits a Hamiltonian path, while Saumell [17] showed that the
DG� is not necessarily 1-tough, and therefore does not necessarily contain a
Hamiltonian cycle.

Results. In this article, we generalize the above results by replacing the disk with
an arbitrary convex shape. We show that the k-Gabriel graph, and hence also the k-
Delaunay graph, isHamiltonian for any convex shape C when k ≥ 24. Furthermore,
we give improved bounds for point-symmetric shapes, as well as for even-sided reg-
ular polygons. Table 1 summarizes the bounds obtained. Together with the results
of Bose et al. [8], our results are the first results on graph-theoretic properties of
generalized Delaunay graphs that apply to any convex shape.

The beauty of our results relies on the use of normed metrics and packing
lemmas. In fact, in contrast to previous work on Hamiltonicity for generalized
Delaunay graphs, our results are the first to use properties of normed metrics to
obtain simple proofs for general and specific convex shape Delaunay graphs.

Due to space limitations, some proofs are omitted.

2 Convex Distances and the C-Gabriel Graph

p

q

q

Fig. 1. Convex dis-
tance from p to q.

Let p and q be two points in the plane. Let C be a com-
pact convex set that contains the origin, denoted ō, in its
interior. We denote the boundary of C by ∂C. The con-
vex distance dC(p, q) is defined as follows: If p = q, then
dC(p, q) = 0. Otherwise, let Cp be the convex C trans-
lated by the vector −→p and let q′ be the intersection of the
ray from p through q and ∂Cp. Then, dC(p, q) = d(p,q)

d(p,q′)
(see Fig. 1) where d denotes the Euclidean distance.
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Ĉ
C

Ĉ

C

(a) (b) (c)

Fig. 2. (a) A triangle is a non-symmetric shape C. (b) Ĉ for this triangle is a hexagon.
(c) The shape Ĉ with radius 1

2
does not contain C.

The convex set C is the unit C-disk of dC with center ō, i.e., every point p in C
satisfies that dC(ō, p) ≤ 1. The C-disk with center c and radius r is defined as the
homothet of C centered at c and with scaling factor r. The triangle inequality
holds: dC(p, q) ≤ dC(p, z) + dC(z, q),∀p, q, z ∈ R

2. However, this distance may
not define a metric when C is not point-symmetric about the origin,4 since there
may be points p, q for which dC(p, q) 
= dC(q, p). When C is point-symmetric with
respect to the origin, dC is called a symmetric convex distance function. We will
refer to such distance functions as symmetric convex. Such a distance defines
a metric; moreover, dC(ō, p) defines a norm5 of a metric space. In addition, if
a point p is on the line segment ab, then dC(a, b) = dC(a, p) + dC(p, b) (see [3,
Chapter 7]).

Let S be a set of points in the plane satisfying the following general position
assumption: For each pair p, q ∈ S, any minimum homothet of C having p and
q on its boundary does not contain any other point of S on its boundary. The
k-order C-Delaunay graph of S, denoted k-DGC(S), is the graph with vertex set
S such that, for each pair of points p, q ∈ S, the edge pq is in k-DGC(S) if there
exists a C-disk that has p and q on its boundary and contains at most k points
of S different from p and q. When k = 0 and C is a circle, k-DGC(S) is the
standard Delaunay triangulation.

Unlike the definition of Delaunay graphs, the one for Gabriel graphs requires
a distance function. To circumvent the problem that dC might not be symmetric,
Aurenhammer and Paulini [4] showed how to define, from any convex shape
C, another distance function that is always symmetric: The distance from p
to q is given by the scaling factor of a smallest homothet containing p and
q on its boundary, which is equivalent to minv∈C dC−v

(p, q) = dĈ(p, q) where
Ĉ =

⋃
v∈C C−v. The set Ĉ is a symmetric convex set that is the Minkowski sum6

4 A shape C is point-symmetric with respect to a point x ∈ C provided that for every
point p ∈ C there is a corresponding point q ∈ C such that pq ∈ C and x is the
midpoint of pq.

5 A function ρ(x) is a norm if: (a) ρ(x) = 0 if and only if x = ō, (b) ρ(λx) = |λ|ρ(x)
where λ ∈ R, and (c) ρ(x + y) ≤ ρ(x) + ρ(y).

6 The Minkowski sum of two sets A and B is defined as A⊕B = {a+b : a ∈ A, b ∈ B}.
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p q

a

b

(a) (b)

Fig. 3. (a) C is a regular hexagon. Edge pq is in 2-DGC(S) but it is not in 2-GGC(S).
(b) Many C-disks C(a, b) may exist for a and b.

of C and its shape reflected about its center. For an example, see Fig. 2. The
diameter and width of Ĉ is twice the diameter and width of C, respectively.
Moreover, if C is point-symmetric, dĈ(p, q) = dC(p,q)

2 .
We define the k-order C-Gabriel graph of S, denoted k-GGC(S), as the graph

with vertex set S such that, for every pair of points p, q ∈ S, the edge pq is in
k-GGC(S) if and only if there exists a C-disk with radius dĈ(p, q) that has p and q
on its boundary and contains at most k points of S different from p and q. From
the definition of k-GGC(S) and k-DGC(S) we note that k-GGC(S) ⊆ k-DGC(S),
and it can be a proper subgraph. See Fig. 3a for an example. Further, Ĉ always
contains C in its interior. However, for some non point-symmetric convex C it
is not true that the Ĉ-disk with radius 1

2 contains C (refer to Fig. 2c). Thus, for
non point-symmetric shapes C, in general GGĈ � GGC .

3 Hamiltonicity for General Convex Shapes

Define H to be the set of all Hamiltoninan cycles of the point set S. Define the
dĈ-length sequence of h ∈ H, denoted dsC(h), as an edge sequence sorted in
decreasing order with respect to the length of the edges in dĈ-metric. Sort the
elements of H in lexicographic order with respect to their dĈ-length sequence,
breaking ties arbitrarily. This order is strict. For h1, h2 ∈ H, if h1 is smaller than
h2 in this order, we write h1 ≺ h2.

For simplicity, denote by Cr(a, b) a C-disk with radius r containing the points
a and b on its boundary. For the special case of a diametral disk, i.e., when the
radius of Cr(a, b) is dĈ(a, b), we denote it as C(a, b). Note that C(a, b) may not
be unique, see Fig. 3b. In addition, we denote by DC(c, r) the C-disk centered at
point c with radius r.

Claim 1. Let C be a point-symmetric convex shape. Let u be a point in the plane
different from the origin ō. Let r < dC(u, ō). Let p be the intersection point of
∂DC(u, r) and line segment ōu. Let u′ = λu, with λ > 1 ∈ R, be a point defined by
vector u scaled by a factor of λ. Then DC(u, r) ⊂ DC(u′, dC(u′, p)). (See Fig. 4a).
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ō

u

u

p

DC(u , dC(u , p))

DC(u, r)

(a) (b)

a

b

C(a, b)

s1u1

s2

u2

u3

s3

Fig. 4. (a) DC(u, r) is contained in DC(u′, dC(u′, p)) where u′ = λu with λ > 1. (b)
Example of U in C(a, b).

Proof. Let q ∈ DC(u, r); then dC(u, q) ≤ dC(u, p). Since u is on the line segment
u′p, we have that dC(u′, p) = dC(u′, u) + dC(u, p). Hence dC(u′, q) ≤ dC(u′, u) +
dC(u, q) ≤ dC(u′, u) + dC(u, p) = dC(u′, p). Therefore, DC(u, r) is contained in
DC(u′, dC(u′, p)). �

Let h be the minimum element in H, often called bottleneck Hamiltonian
cycle. The approach we follow to prove our bounds, which is similar to the
approach in [1,9,15], is to show that h is contained in k-GGC(S) for a small
value of k. The strategy for proving that h is contained in 24-GGC(S) is by
showing that for every edge ab ∈ h there are at most 24 points in any C(a, b).
In order to do this, we associate each point in the interior of an arbitrary fixed
C(a, b) with another point. Later, we show that the dĈ-distances between such
associated points and a is at least dĈ(a, b). Finally, we use a packing lemma for
showing that there are at most 24 associated points, which leads to 24 points
contained in C(a, b).

Let ab ∈ h; we can assume without loss of generality that dĈ(a, b) = 1. Let
U = {u1, u2, . . . , uk} be the set of points in S different from a and b that are
in the interior of an arbitrary fixed C(a, b).7 We assume that, when traversing h
from b to a, we visit the points of U in order u1, . . . , uk. For each point ui, we
define si to be the point preceding ui in h. See Fig. 4b.

Note that if a point p is in the interior of C(a, b), then for any q on the
boundary of C(a, b) there exists a C-disk (not necessarily diametral) through p
and q contained in C(a, b), and any diametral disk through p and q is smaller
than or equal (in size) to this disk. Therefore, dĈ(a, ui) < 1 and dĈ(b, ui) < 1 for
any i ∈ {1, . . . , k}. Furthermore, we have the following:

7 Since S is in general position, only a and b can lie on the boundary of C(a, b).
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Claim 2. Let 1 ≤ i ≤ k. Then dĈ(a, si) ≥ max{dĈ(si, ui), 1}
Proof. If s1 = b, then dĈ(a, s1) = 1 and dĈ(s1, u1) < 1. Otherwise, we define
h′ = (h \ {ab, siui}) ∪ {asi, uib}. For the sake of a contradiction, assume that
dĈ(a, si) < max{dĈ(si, ui), 1}. Since dĈ(a, b) = 1, this implies that dĈ(a, si) <
max{dĈ(si, ui), dĈ(a, b)}. Moreover, since ui ∈ C(a, b), we have dĈ(ui, b) < 1.
Thus, max{dĈ(a, si), dĈ(ui, b)} < max{dĈ(si, ui), dĈ(a, b)}. Therefore h′ ≺ h,
which contradicts the definition of h. �

Claim 2 implies that, for each i ∈ {1, . . . , k}, si is not in the interior of C(a, b).

Claim 3. Let 1 ≤ i < j ≤ k. Then dĈ(si, sj) ≥ max{dĈ(si, ui), dĈ(sj , uj), 1}.
Proof. For the sake of contradiction, we assume that dĈ(si, sj) < max{dĈ(si,
ui), dĈ(sj , uj), 1}. Consider the Hamiltonian cycle h′ = h \ {(a, b), (si, ui),
(sj , uj)} ∪ {(si, sj), (ui, a), (uj , b)}. Similarly as in Claim 2 we have that
dĈ(ui, a) < 1 and dĈ(uj , b) < 1. So, max{dĈ(si, sj), dĈ(ui, a), dĈ(uj , b)} < max
{dĈ(si, ui), dĈ(sj , uj), dĈ(a, b)}. Therefore, h′ ≺ h which contradicts the mini-
mality of h. �

Without loss of generality we assume that a is the origin ō. Then, by the
definition of Ĉ, we have that DĈ(ō, 1) contains C(a, b). Also, from Claim 2, we
have that si is not in the interior of DĈ(ō, 1) for all i ∈ {1, . . . , k}. Let DĈ(ō, 2)
be the Ĉ-disk centered at a with radius 2. For each si /∈ DĈ(ō, 2), define s′

i as
the intersection of ∂DĈ(ō, 2) with the ray −→asi. We let s′

i = si when si is inside
DĈ(ō, 2). See Fig. 5. The distance from a point v to a C-disk C is given by the
minimum C-distance from v to any point u in C. Notice that if v /∈ C, then the
distance from v to C is defined by a point on ∂C. This can be seen by taking
an ε ∈ R

+ small enough such that DC(v, ε) does not intersect C and by making
ε grow until DC(v, ε) hits C.

Observation 4. Let p be the intersection point of ∂DĈ(ō, 1) and ōsj. If sj /∈
DĈ(ō, 2) (with 1 ≤ j ≤ k), the dĈ-distance from s′

j to DĈ(ō, 1) is 1. Moreover,
dĈ(s′

j , p) = 1.

Lemma 1. For any pair si and sj with i 
= j, we have that dĈ(s′
i, s

′
j) ≥ 1.

Proof. If both si and sj are in DĈ(ō, 2), then from Claim 3 we have that
dĈ(s′

i, s
′
j) = dĈ(si, sj) ≥ 1. In the following, we assume, without loss of gen-

erality, that dĈ(ō, sj) ≥ dĈ(ō, si). Since s′
j is on the line segment ōsj , we have

sj = λs′
j for some λ > 1 ∈ R. Let p be the intersection point of ∂DĈ(ō, 1) and

ōsj . Since dĈ defines a norm, we have dĈ(λs′
j , ō) = λdĈ(s′

j , ō). By Observation 4
we have that dĈ(sj , p) = dĈ(sj , ō) − dĈ(p, ō) = λdĈ(s′

j , ō) − 1 = 2λ − 1, which is
the distance from sj to DĈ(ō, 1). Otherwise, there exists a point v ∈ ∂DĈ(ō, 1)
such that dĈ(sj , v) < dĈ(sj , p). Thus, 2λ = dĈ(ō, sj) ≤ dĈ(ō, v) + dĈ(v, sj) <
dĈ(ō, v) + dĈ(p, sj) = 1 + 2λ − 1 = 2λ, which is a contradiction. Further,
dĈ(sj , s

′
j) = dĈ(sj , ō) − dĈ(s′

j , ō) = 2λ − 2. Let us prove that dĈ(s′
i, s

′
j) ≥ 1.

For the sake of a contradiction, assume that dĈ(s′
i, s

′
j) ≤ 1. Let Ds′

j
= DĈ(s′

j , 1).
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ō=a

b

C(a, b)

si

sj = λsj

si

sjDĈ(ō, 2)

DĈ(ō, 1)

p

Fig. 5. The points s′
i and s′

j are projections of si and sj on ∂DĈ(ō, 2), respectively.

By Observation 4, dĈ(s′
j , p) = 1. Therefore, p is on ∂Ds′

j
. Now, we consider two

cases:

Case (1) si ∈ DĈ(ō, 2). Then dĈ(ō, si) ≤ 2. Since dĈ(s′
i, s

′
j) ≤ 1, we have si ∈

Ds′
j
. From Claim 1 it follows that Ds′

j
is contained in DĈ(sj , dĈ(sj , p)). Thus,

s′
i ∈ DĈ(sj , dĈ(sj , p)). Hence, dĈ(sj , s

′
i) = dĈ(sj , si) ≤ dĈ(sj , p). Since S is in

general position, uj is in the interior of DĈ(ō, 1). Hence, dĈ(sj , si) ≤ dĈ(sj , p) <
dĈ(sj , uj), which contradicts Claim 3.

Case (2) si /∈ DĈ(ō, 2). Then dĈ(ō, si) > 2. Thus, si = δs′
i for some δ > 1 ∈ R.

Moreover, since dĈ(ō, sj) ≥ dĈ(ō, si) and s′
i, s

′
j are on ∂DĈ(ō, 2), δ ≤ λ. Hence,

si is on the line segment s′
i(λs′

i). Let Dsj
= DĈ(sj , 2λ − 1). Note that λ <

2λ − 1 because λ > 1. Since dĈ defines a norm, dĈ(sj , λs′
i) = dĈ(λs′

j , λs′
i) =

λdĈ(s′
j , s

′
i) ≤ λ < 2λ − 1. Hence, λs′

i ∈ Dsj
. In addition, from Claim 1 it follows

that Ds′
j

⊆ Dsj
. Therefore, s′

i ∈ Dsj
. Thus, the line segment s′

i(λs′
i) is contained

in Dsj
. Hence, si ∈ Dsj

. Then, dĈ(sj , si) ≤ 2λ−1 = dĈ(sj , p) < dĈ(sj , uj) which
contradicts Claim 3. �
Theorem 5. For any set S of points in general position and convex shape C,
the graph 24-GGC(S) is Hamiltonian.

Proof. For each si we define the Ĉ-disk Di = DĈ(s′
i,

1
2 ). We also set D0 :=

DĈ(a, 1
2 ). By Lemma 1, each pair of Ĉ-disks Di and Dj (0 < i < j ≤ k) are

internally disjoint. Note that if s′
i is on ∂DĈ(ō, 2) then D0 and Di are internally

disjoint. On the other hand, If s′
i is in the interior of DĈ(ō, 2), then by definition

s′
i = si. Thus, by Claim 2 D0 is internally disjoint from Di. See Fig. 6. Since

s′
i ∈ DĈ(ō, 2) for all i, each disk Di is inside DĈ(a, 5

2 ). There can be at most
Area(DĈ(ō, 52 ))

Area(D0)
= ( 5

2 )
2Area(Ĉ)

( 1
2 )

2Area(Ĉ) = 25 disjoint disks in DĈ(ō, 2). Thus, there are at

most 24 points s′
i in DĈ(ō, 1), since D0 is centered at a. Hence, there are at most

24 points in the interior of C(a, b). �
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4 Hamiltonicity for Point-Symmetric Convex Shapes

Using the fact that dC defines a metric when C is point-symmetric, we can
improve the upper bound for point-symmetric convex shapes. Indeed, given that
dC = 2dĈ we can prove the following.

a

b

C(a, b)
si

sj

DĈ(ō, 2)

DĈ(ō, 1)

DĈ(ō,
5
2
)

Dj

Di

st
Dt

D0

Fig. 6. The Ĉ-disks Di, Dj and Dt are contained in DĈ(a, 5
2
).

Claim 6. dC(si, a) ≥ max{dC(si, ui), 2}.
Claim 7. Let 1 ≤ i < j ≤ k, then dC(si, sj) ≥ max{dC(si, ui), dC(sj , uj), 2}.

By using C(a, b) instead of DĈ(ō, 1), DC(ō, 3) instead of DĈ(ō, 2), and DC(ō, 4)
instead of DĈ(ō, 5

2 ), in combination with Claims 6 and 7, and with arguments
similar to those in the previous section, we obtain the following results.

Lemma 2. For any pair si and sj with i 
= j, we have that dC(s′
i, s

′
j) ≥ 2.

Moreover, if at least one of si and sj is not in DC(ō, 3), then dC(s′
i, s

′
j) > 2.

Theorem 8. For any set S of points in general position and point-symmetric
convex shape C, the graph 15-GGC(S) is Hamiltonian.

4.1 Hamiltonicity for Regular Polygons

An important family of point-symmetric convex shapes is that of regular even-
sided polygons. When C is a regular polygon with t sides Pt, for t even, we can
improve the previous bound by analyzing the geometry for different values of t.

First, we consider the case when the polygon is a square. In this case, we
divide D�(ō, 3) into 9 disjoint squares of radius 1 and show that there can be at
most one point of {a, s′

1, . . . , s
′
k} in each such square. We use lines x = −1, x =

1, y = −1, and y = 1 to split D�(3, ō) into 9 squares of radius 1. Refer to Fig. 7.
Let D0,D1, . . . , D7 be the squares of radius 1 in D�(ō, 3) different from C(a, b),
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D1

D2D3D4

D5

D6 D7 D0

C(a, b)

a

b

Fig. 7. Lines x = −1, x = 1, y = −1, and y = 1 split D�(3, ō) into nine unit squares:
C(a, b), D0, . . . , D7.

D0 D0

sj

sm

sm

sj

C(a, b) C(a, b)

D7sm
sj

(a) (b)

D7

sj

sm
C(a, b) C(a, b)

Fig. 8. (a) Points sj and sm can be either on the horizontal sides of D0 or on the
vertical sides of D0. In both cases, the distance from sj to C(a, b) is 2. (b) Either sj
and sm belong to different squares or the distance from sj to C(a, b) is 2.

ordered clockwise where D0 is the top-right corner square. In the following lemma
we prove that there is at most one point in each Di. Note that each Di shares
a side with Di−1, i modulo 8 and for each odd i, Di shares a side with C(a, b).
Moreover, there exists a Di that contains a on its boundary. We will associate
a point p in D�(ō, 3) to a unique square Di in the following fashion. Let indices
be taken modulo 8. Let p be a point in Di. If p is on Di ∩ Di−1, we say that p is
associated to Di−1. If i is odd and p is the intersection point Di ∩ Di−1 ∩ Di−2,
then p is associated to Di−2. Otherwise, p is associated to Di.

Observation 9. If there are two points at d�-distance 2 in a unit square, then
such points are in opposite sides of the square.

Lemma 3. There is at most one s′
j associated to each Di. Moreover, the Di

containing a on its boundary has no s′
j associated to it.

Proof. Assume there are two points s′
j and s′

m in Di. From Lemma 2 we have
that d�(s′

j , s
′
m) ≥ 2. Also, since Di is a unit square, d�(s′

j , s
′
m) ≤ 2. Therefore,
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D1

D2

D3

D4

D5

D0

Q1 Q2

Q3

Q4Q5

Q0
P6(a, b)

ōa
b

Fig. 9. The bold hexagon is the boundary of DP6(ō, 3). Such hexagon is divided into 13
interior-disjoint regions: 6 quadrangles—a third of a unit P6-disk—and 7 unit P6-disks.

d�(s′
j , s

′
m) = 2. Then Lemma 2 implies that sj and sm must be inside DC(ō, 3).

In addition, by Observation 9, the points si and sj are on ∂Di. For simplicity
we will assume that d�(ō, sj) ≥ d�(ō, sm). By Observation 9, the points sj and
sm are on opposite sides of Di.

If i is even, then the d�-distance of sj to C(a, b) is exactly 2. We refer to
Fig. 8a. Recall that by our definition of points in general position, uj is in the
interior of C(a, b). Thus, the distance from sj to C(a, b) is less than d�(uj , sj); i.e.,
d�(uj , sj) > 2. Hence, d�(sj , sm) = 2 < d�(sj , uj) which contradicts Claim 7.
Therefore, if i is even, there is at most one point in Di which is associated to it.

If i is odd, then sj is either on Di ∩ Di−1 or Di ∩ Di+1, or on Di ∩ DC(ō, 3)
(indices are taken modulo 8). We refer to Fig. 8b. If sj is on Di ∩ Di−1 or
Di∩Di+1, then only one of sj and sm is associated to Di. If sj is on Di∩DC(ō, 3),
then by Observation 9, sm is on C(a, b), which contradicts our general position
assumption. Therefore, there is only one point associated to Di.

Finally, if Di contains a, then there is no point s′
j in Di. Indeed, assume

for the sake of contradiction that s′
j ∈ Di. Then, sj is not in Di, otherwise,

d�(a, sj) < d�(sj , uj), contradicting Claim 6. Thus, s′
j is on Di ∩ D�(ō, 3) and

sj = λs′
j for some λ > 1. Hence, d�(s′

j , a) = 2, which means that a ∈ D�(s′
j , 2).

Let p be the point ōs′
j ∩∂C(a, b). By Claim 1, D�(s′

j , 2) ⊂ D�(sj , d�(sj , p)). So,
a ∈ D�(sj , d�(sj , p)). Thus, d�(sj , a) < d�(sj , uj), contradicting Claim 6. �
Theorem 10. For any set S of points in general position, the graph 7-GG�(S)
is Hamiltonian.

Proof. From Lemma 3 we have that for each 0 ≤ i ≤ 7 there is at most one point
associated to Di, and any square containing a has no s′

i associated to it. Since
there is at least one Di containing a, there are at most 7 points in D�(ō, 3).
Therefore, there are at most 7 points of S in the interior of C(a, b). �

The analysis for the case of hexagons is similar to the previous one. First
we divide the hexagon DP6(ō, 3) into 13 different regions C(a, b),D0, . . . , D5,
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Q0, . . . , Q5, shown in Fig. 9. Then, we show that there is at most one point s′
j

associated to each region Di and Qi with i modulo 6. Moreover, there is no point
s′

j in the hexagon Di that contains a for some i modulo 6. The hexagon DP6(ō, 3)
contains at most 11 points s′

1, . . . , s
′
k. Consequently, the following theorem holds.

Theorem 11. The graph 11-GGP6 is Hamiltonian.

Finally, for the remaining regular polygons with even sides we use the ex-
circle of DPt

(ō, 3) in order to give an upper bound on the number of points in
DPt

(ō, 3) at pairwise Euclidean distance at least 2. Without loss of generality
we assume that the incircle of the unit Pt-disk has Euclidean radius 1.

Theorem 12. For any set S of points in general position and regular polygon
Pt with even t ≥ 10, the graph 11-GGPt

(S) is Hamiltonian.

Proof. Let Pt be a polygon with t ≥ 10 sides and t even. Then DPt
(ō, 3) is

inscribed in a circle of radius r = 3
cos(π

t )
. Since the function cos(π

t ) is an increas-

ing function for t ≥ 2 we have that r ≤ 3
cos( π

10 )
. Therefore, DPt

(ō, 3) is inside
the excircle of a decagon with incircle of radius 3. In addition, from Lemma 2
we know that for any pair of points s′

i, s
′
j in DPt

(ō, 3), dPt
(s′

i, s
′
j) ≥ 2. Since the

incircle of the 2-unit Pt-disk has Euclidean radius 2, we have that d(s′
i, s

′
j) ≥ 2.

So, it suffices to show that there are at most 12 points in DPt
(ō, 3) at pairwise

Euclidean distance at least 2. Fodor [13] proved that the minimum radius R of
a circle having 13 points at pairwise Euclidean distance at least 2 is R ≈ 3.236,
which is greater than 3

cos( π
10 )

≈ 3.154. Thus, DPt
(ō, 3) contains at most 12 points

at pairwise distance at least 2. Since a is also at distance at least 2 from all s′
i’s,

there are at most 11 points inside Pt(a, b). �
In the case of octagons, the ex-circle of DP8(ō, 3) is greater than 3.236. Thus

we cannot use the result of Fodor that we apply for Theorem 12. However, we can
use another result from Fodor [14] to show that DP8(ō, 3) contains at most 13
points at pairwise Euclidean distance at least 2, leading to the following result.

Theorem 13. The graph 12-GGP8(S) is Hamiltonian.

5 Non-Hamiltonicity for Regular Polygonal Shapes

Until now we have discussed upper bounds for k, so that k-GGC is Hamiltonian.
As mentioned in Sect. 2, k-GGC ⊆ k-DGC , thus all upper bounds given in the
previous sections hold for k-order C-Delaunay graphs as well. In this section we
present point sets for which DGPt

is not Hamiltonian, for t = 5, 6, . . . 11 (we
note that these point sets can be generalized to larger values of t inductively,
considering separately the cases of even and odd k). See Fig. 10. For the case of
squares, Saumell [17] showed that for any n ≥ 9 there exists a point set S such
that DG�(S) is non-Hamiltonian.

In order to prove the following lemma we need to recall that a graph is 1-tough
if removing any k vertices from it results in at most k connected components.
As mentioned in the introduction, every Hamiltonian graph is 1-tough.
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Fig. 10. For each t ∈ {5, 6, 7, 8, 9, 10, 11} the graph DGPt(S) is non-Hamiltonian.

Lemma 4. For any n ≥ 7, there exists an n-point set S such that DGPt
(S) is

a non-Hamiltonian graph for any t ∈ {5, 6, . . . , 11}.
Proof. Let t ∈ {5, 6, . . . , 11}. Consider the graph DGPt

(S) in Fig. 10 for such t.
Note that such graph is indeed a Pt-Delaunay graph, since for each edge there
exists a Pt-disk that contains its vertices and at most 3 points of S are on
its boundary. Also, note that some edges from the convex hull of S do not
appear in such graphs. This is because any Pt-disk that contains the vertices
of such edge contains one point pi in its interior with i ∈ {1, 2, 3}. Now, let
G′ = DGPt

(S) \ {p1, p2, p3}. The graph G′ consists of 4 connected components.
Thus, DGPt

(S) is not 1-tough. Hence, it is non-Hamiltonian. Finally, notice that
there exists an area r which can have any number of points in its interior. �

The proofs of the following results are very similar to those in [5,6,15], but
adapted to squares and hexagons.

Lemma 5. There exists a point set S with n ≥ 17 points such that 2-GG� does
not contain any d�-bottleneck Hamiltonian cycle of S.

Lemma 6. There exist a point set S with n ≥ 22 points such that 5-GGP6 does
not contain any dP6-bottleneck Hamiltonian cycle of S.

6 Conclusions

In this paper we have presented the first general results on Hamiltonicity for
higher-order convex-shape Delaunay and Gabriel graphs. By combining proper-
ties of metrics and packings, we have achieved general bounds for any convex
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shape, and improved bounds for point-symmetric shapes, as well as for even-sided
regular polygons. For future research, we point out that our results are based
on bottleneck Hamiltonian cycles, in the same way as all previously obtained
bounds [1,9,15]. However, in several cases this technique is reaching its limit.
Therefore a major challenge to effectively close the existing gaps will be to devise
a different approach to prove Hamiltonicity of Delaunay graphs.
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Abstract. A graph G with n vertices is called an outerstring graph if it
has an intersection representation of a set of n curves inside a disk such
that one endpoint of every curve is attached to the boundary of the disk.
Given an outerstring graph representation, the Maximum Independent
Set (MIS) problem of the underlying graph can be solved in O(s3) time,
where s is the number of segments in the representation (Keil et al.,
Comput. Geom., 60:19–25, 2017). If the strings are of constant size (e.g.,
line segments, L-shapes, etc.), then the algorithm takes O(n3) time.

In this paper, we examine the fine-grained complexity of the MIS
problem on some well-known outerstring representations. We show that
solving the MIS problem on grounded segment and grounded square-L
representations is at least as hard as solving MIS on circle graph repre-
sentations. Note that no O(n2−δ)-time algorithm, δ > 0, is known for the
MIS problem on circle graphs. For the grounded string representations
where the strings are y-monotone simple polygonal paths of constant
length with segments at integral coordinates, we solve MIS in O(n2)
time and show this to be the best possible under the strong exponen-
tial time hypothesis (SETH). For the intersection graph of n L-shapes
in the plane, we give a (4 · logOPT)-approximation algorithm for MIS
(where OPT denotes the size of an optimal solution), improving the previ-
ously best-known (4 · log n)-approximation algorithm of Biedl and Derka
(WADS 2017).

1 Introduction

Let G = (V,E) be an undirected graph with |V (G)| = n; graph G is weighted
if each edge in E(G) is associated with a non-negative value, called its weight.
A set S ⊆ V (G) is an independent set if no two vertices in S are adjacent.
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The objective of the Maximum Independent Set (MIS) problem is to compute
a maximum-cardinality independent set of G. The MIS problem is NP-complete
and it is known that no approximation algorithm with approximation factor
within |V (G)|1−ε is possible for any ε > 0, unless P = NP [20]. The inapprox-
imability of the MIS problem has motivated a rich body of research to study the
MIS problem on the intersection graph of geometric objects. Let O be a set of n
geometric objects in the plane. Then, the intersection graph of O has the objects
in O as its vertices and two vertices oi, oj ∈ O are adjacent in the graph if and
only if oi ∩ oj �= ∅. If O is a set of curves in the plane (resp., a set of chords of
a circle), then the intersection graph of O is called a string graph (resp., circle
graph); see Fig. 1(b–c) for an example.

Ehrlich et al. [13] showed in 1976 that every planar graph has a string rep-
resentation. Moreover, the longstanding Scheinerman’s conjecture [30], stating
that all planar graphs can be represented as intersection graphs of line segments
was proved affirmatively only in 2009 by Chalopin and Gonçalves [10]. For the
MIS problem, Fox and Pach [16] gave an algorithm with an approximation factor
of nε when the input consists of a set of curves, any two intersecting at most a
constant number of times. The MIS problem has been studied on the intersection
graph of other geometric objects such as line segments [1], disks and squares [14],
rectangles [9] and pseudo-disks [11].

We study the MIS problem on outerstring graphs and their relatives with
respect to the time-complexity of solving MIS in circle graph representations.

Definition 1 (Outerstring Graph [24]). Graph G is called an outerstring
graph if it is the intersection graph of a set of curves that lie inside a disk such
that each curve intersects the boundary of the disk in one of its endpoints.

Figure 1(d) shows an example of an outerstring graph. A string representation
of a graph is called grounded, if one endpoint of each string is attached to a
grounding line � and all strings lie on one side of �. For example, a graph G
is called a grounded segment graph, if it is the intersection graph of a set of
segments such that each segment is attached to a grounding line � at one of its
endpoints and all segments lie on one side of �; see Fig. 1(e).

Gavril [18] presented an O(n3) algorithm for solving the MIS problem on
circle graphs. Subsequent improvement reduced the complexity to O(n2) [3,31].
Several algorithms exist with running time sensitive to various graph parameters,
e.g., O(nd) time [2,32], or O(nmin{d, α}) time [29]. Here d is a parameter known
as the density of the circle graph, and α is the independence number of the circle
graph. However, no truly subquadratic-time algorithm (i.e., an O(n2−δ)-time
algorithm where δ > 0) is known for the MIS problem on circle graphs.

Although recognizing an intersection graph may require Θ(n2) time (since
there could be Θ(n2) edges), the MIS problem can be solved faster if an intersec-
tion representation is given. For example, MIS in an interval graph representation
can be solved in O(n) time [17]. Moreover, recognizing grounded segment graphs
is ∃R-complete [8], but given an outerstring representation, one can solve the
weighted MIS problem in O(s3) time, where s is the number of segments in the
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Fig. 1. (a) A graph G with six vertices. (b) A string graph, (c) a circle graph, (d) an
outerstring graph, (e) a segment graph, (f) a grounded L, and (g) a grounded square-L
representation of G.

representation [23]. For grounded segment graphs, this yields a time complexity
of O(n3), where n is the number of vertices in the grounded segment graph.
Although the strings in a grounded segment graph are straight line segments,
no faster algorithm is known for this case. Thus a natural question is to ask
whether one can prove non-trivial lower bounds on the time complexity of the
MIS problem for outerstring graphs or simpler variants of such graphs.

An L-shape is the union of a vertical segment and a horizontal segment that
share an endpoint; hence, there are four possible types of L-shapes: {�, �, �, �}.
A graph is called a B1-VPG graph if it is the intersection graph of a set of L-
shapes in the plane. This class of string graphs belongs to a larger class called
the Vertex intersection of Paths on a Grid (VPG) and denoted by Bk-VPG,
where k indicates the maximum number of bends each path can have in the grid
representation [4]. These graphs and their relatives have been studied extensively
in terms of recognition problems (e.g., see [4,12,15,19]). Recently, there has
been an increasing attention on studying optimization problems on these graphs;
see [5,6,26,27] and the references therein. For the MIS problem, it is known that
the problem is NP-complete on Bk-VPG graphs even when k = 1 [25], and
the previously best-known approximation algorithms have factor 4 · log n [6,27].
Combining B1-VPG and grounded string graphs, we consider the MIS problem
on grounded L and grounded square-L graphs.

Definition 2 (Grounded L and Grounded Square-L Graphs). Graph G is
called a grounded L graph if G is the intersection of a set of L-shapes such that
each L-shape is of type � and the lower endpoint of the vertical segment of each
L-shape is attached to a grounding line �. If the vertical and horizontal segments
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of every L-shape in a grounded L representation of G have the same length, then
we call G a grounded square-L graph.

See Fig. 1(f–g) for examples of these graphs. Finally, for the MIS prob-
lem on a set of n rectangles, Chalermsook and Chuzhoy [9] gave an
(log logn)-approximation algorithm for the unweighted version of the prob-
lem. For the weighted version of the problem, the best approximation factor
is O(log n/loglogn) due to Chan and Har-Peled [11].

We now summarize our contribution in C1–C3.

C1. (Section 2): We first examine the time-complexity of the MIS problem
on the grounded segment graphs with respect to its relation to the MIS prob-
lem in circle graphs. Middendorf and Pfeiffer [28] showed that every intersection
graph of L-shapes of types � and � (not necessarily grounded) can be trans-
formed into a segment representation. If the L-shapes are grounded, then the
transformation yields a grounded segment graph. Since every circle graph is a
grounded L graph [22], they are also grounded segment graphs. However, the
transformation [28] into the grounded segment representation is by an inductive
proof, and it is unclear whether the constructed representation can be encoded
in a subquadratic number of bits. We show that the MIS problem in a cir-
cle graph representation is O(n log n)-time reducible to the MIS problem in an
implicit representation of a grounded segment graph, where the representation
takes O(n log n) bits. This indicates that solving MIS in such grounded segment
representations is as hard as solving MIS in circle graph representations.

C2. (Sections 3, 4): Since grounded L graphs include circle graphs, we examined
a simpler variant: grounded square-L graphs. We show that there exist grounded
square-L graphs (resp., grounded L graphs) that are not circle graphs (resp.,
grounded square-L graphs). Although grounded square-L is a simpler variant,
we prove that it includes the circle graphs. In fact, we give an O(n log n)-time
reduction, showing that MIS in grounded square-L representations is at least as
hard as MIS in circle graph representations. In contrast, for the grounded string
representations where the strings are y-monotone simple polygonal paths of con-
stant length with segments at integral coordinates, we can solve MIS in O(n2)
time. Assuming the strong exponential time hypothesis (SETH) [21], we show
that an O(s2−δ)-time algorithm, where δ > 0, for computing MIS in outerstring
representations of size O(s) is unlikely, even when each string has one bend.

C3. (Section 5): We give a (4 · max{1, logOPT})-approximation algorithm for
the weighted MIS problem on the intersection graph of a set of n L-shapes in
the plane. This improves the previously best-known algorithm, which has an
approximation factor of 4 · log n [6,27]. Moreover, our algorithm can be used to
obtain a simple (4 ·max{1, logOPT})-approximation algorithm for the weighted
MIS problem on a set of n axis-parallel rectangles in the plane.

Throughout the paper, the complete proofs of lemmas and theorems marked
with (∗) appear in the full version of the paper [7] due to space constraints.
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2 MIS on Grounded Segment Representations

In this section, we show that the MIS problem in a circle graph representation is
O(n log n)-time reducible to the MIS problem in a representation of a grounded
segment graph, where the representation takes O(n log n) bits. This indicates
that solving MIS on grounded segment representations could be as hard as solving
MIS on circle graph representations.

An overlap graph is an intersection graph of intervals, where two vertices
are adjacent if and only if their corresponding intervals properly intersects (i.e.,
the intersection is non-empty but neither contains the other). Gavril [18] showed
that a graph is a circle graph if and only if it is an overlap graph. Given the circle
graph representation, one can find an overlap representation in linear time by
computing the shadow of each chord on a horizontal line below the circle, assum-
ing the point light source is at the apex of the circle as illustrated in Fig. 2(a–c).
It now suffices to show that the overlap representation can be transformed into
a grounded segment representation in linear time.

a

b

d

a b d

a

c

b

d

(c)(a) (b)

c

c

(j, 2j)

(i, 0) (k, 0)(j, 0) a db c
(d) (e)

( , 2 )

Fig. 2. (a) A circle graph G. (b) A circle graph representation of G. (c) Transformation
into an overlap graph. (d)-(e) Transformation into a grounded segment graph. We only
show a schematic representation for space constraints.

We assume that the circle graph representation is non-degenerate, i.e., no
two chords share a common endpoint. Consequently, the overlap representation
is also non-degenerate. We now sort the endpoints of the intervals and relabel
them with integral coordinates. For each interval [i, j] in the overlap graph, we
define a line segment with coordinates (i, 0), (j, 2j). Note that all the segments are
grounded at the line y = 0; i.e., line � in Fig. 2(d). Moreover, it is straightforward
to encode the representation implicitly in O(n log n) bits (note that an explicit
representation would require O(n2) bits). Let the resulting representation be R.
In the proof of the following theorem we show that R is the required grounded
segment representation.

Theorem 1 (∗). Given a circle graph representation with n chords, in
O(n log n) time one can transform it into an implicit grounded segment represen-
tation, which uses O(n log n) bits. Thus, the MIS problem on grounded segment
representations is at least as hard as the MIS problem on circle graph represen-
tations.
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3 MIS on Grounded Square-L Representations

In this section, we show that solving MIS in a circle graph representation is
O(n log n)-time reducible to solving MIS in a grounded square-L representation.

Given a circle graph representation, we first compute the corresponding over-
lap graph in the same way as we did in Sect. 2, and relabel the endpoints with
integral coordinates from 0 to 2n. We now transform this into a grounded square-
L representation. The idea is to process the intervals in the order of their end-
points, and sometimes shifting the endpoints by a certain offset γ to avoid unnec-
essary crossings. We now give formal description of the steps of the construction
by S1–S3.

S1. Initialize an empty list Q, and then process the intervals in the increasing
order of the x-coordinates of their left endpoints. While processing an interval
I = [I�, Ir], we first find the closest non-intersecting interval J = [J�, Jr] to the
left of I. If no such interval exists, then we continue processing the next interval.
Otherwise, let (X, γ) be the tuple at the end of the list Q (assume a dummy
tuple (Φ, 0) if the list is empty). If J �= X, then append a new tuple (J, J� + γ)
to Q.

S2. For each pair of consecutive tuples (A,α) and (B, β) in Q, update the x-
coordinates of the endpoints originally lying in [Ar +1, B�] by adding the integer
α. Finally, for the last tuple (X, γ), update the x-coordinates of the endpoints
originally lying in [Xr +1,+∞], by adding the integer γ. Figure 3(a–b) illustrate
this step.

S3. For each interval [I�, Ir] in the increasing order of their left endpoints, con-
struct a square-L shape with endpoints ( I�

2 ,− I�

2 ) and (Ir + I�

2 ,− I�

2 ), and create
the bend point at (I� + Ir−I�

2 , Ir−I�

2 ). See Fig. 3(c).
By S3, it is straightforward to see that all the shapes are grounded on the

line x + y = 0. Let Γ be the resulting grounded square-L representation. The
following lemma claims the correctness of the representation.

Lemma 1. The graph represented by Γ is the same as the graph represented by
the overlap representation.

Proof. Let G be the graph corresponding to the input overlap representation.
While processing the kth interval B in S3, it suffices to verify the invariant that
the subgraph Hk of G induced by B and the intervals with left endpoints smaller
than B� has been correctly represented with a grounded square-L representation.

The invariant is trivial for the first interval, and assume that it holds for
H1, . . . , Hk−1, where k > 1. Consider now the kth interval B. Let b be the vertex
corresponding to interval B, and let a be another vertex in Hk, and denote by A,
the interval of a. Let A′, B′ be the modified intervals (computed in S2). For any
interval I, let L(I) be the square-L shape constructed as in S3. We now consider
the following cases.

Case 1 (a and b are adjacent in Hk): In this case A and B properly intersect;
i.e., neither contains the other. Let J ′ be the closest non-overlapping interval
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Fig. 3. (a) An overlap representation. (b) Modification after step S2. (c) The grounded
square-L representation constructed at S3; A is grounded at (0, 0).

to the left of B′. Any interval having an endpoint between [J ′
r + 1, B′

�] will be
shifted together with B. Thus all these intersections remain valid, along with
all the other intervals who were intersecting B but did not have an endpoint in
[J ′

r +1, B′
�]. We now show that the shift in S2 keeps the ordering of the intervals

in Hk−1 intact.
Consider a pair of vertices in p, q in Hk−1, and let P and Q be their corre-

sponding intervals. Let P ′ and Q′ be the modified intervals in S2. If p and q are
adjacent, then P and Q must properly intersect. Since the endpoints of P and
Q can only get extended to the right (i.e., the intervals don’t shrink), L(P ′) and
L(Q′) must intersect. Now consider the case when p and q are not adjacent. If
one of P and Q contains the other, then the same argument holds. If neither
contains the other, then the offset may only increase their distance. Therefore,
if L(P ) and L(Q) do not intersect, then L(P ′) and L(Q′) cannot intersect.

Case 2 (a and b are non-adjacent in Hk): In this case either A and B do not
intersect, or A contains B (note that B cannot contain A). If A contains B, then
by the same argument as in Case 1, we can see that L(A′) and L(B′) will not
intersect.

Assume now that A and B do not intersect. Recall that B has been processed
after A. While we processed B in S1, we first computed the closest interval J to
the left of B. Hence Ar ≤ Jr. In S2, we ensured that the endpoints of B are shifted
to the right by at least an amount of J� + γ. Here, γ corresponds to the overall
shift for J to accommodate the segments that were processed before J , and the
term J� is to avoid the crossing between L(J ′) and L(B′). Since Ar ≤ Jr, the
shapes L(A′) and L(B′) cannot intersect. Using the argument of Case 1, observe
that such shifting still maintains a valid representation for Hk−1. ��
Theorem 2. Given a circle graph representation with n chords, in O(n log n)
time one can transform it into a grounded square-L representation. Thus, the
MIS problem on grounded square-L representations is at least as hard as the MIS
problem on circle graph representations.
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Proof. By Lemma 1, one can construct the required grounded square-L repre-
sentation by following S1–S3. We compute two sorted arrays, one for the left
endpoints and the other for the right endpoints of the intervals in the overlap
representation. The sorting takes O(n log n) time. We use these arrays to answer
each query in steps S1–S3 in O(log n) time by performing a binary search. We
need only O(n) queries, and hence O(n log n) time in total. Steps S2–S3 take
O(n) time. Hence the running time of the overall transformation can be bounded
by O(n log n). ��
Remark. Our reduction shows that every circle graph is a grounded square-L
graph. However, the reverse is not true. Even, there are grounded L graphs that
are not grounded square-L graphs.

Theorem 3 (∗). There are grounded square-L graphs that are not circle graphs.
Moreover, there are grounded L graphs that are not grounded square-L graphs.

The strong exponential time hypothesis (SETH), introduced by Impagliazzo,
Paturi, and Zane [21], has been used to analyze fine-grained time-complexity of
problems that lie in P. Under SETH, CNF-SAT on n variables cannot be solved
in O(2n(1−ε)poly(n)) time for any ε > 0. The following theorem sates that under
SETH, finding MIS in outerstring graphs requires Ω(n2−ε) time.
Theorem 4 (∗). Assuming the strong exponential time hypothesis (SETH),
computing an MIS in an outerstring representation with n strings requires
Ω(n2−ε) time, even when each string contains O(1) bends.

c4
c3
c2
c1

r1r2

y = α

y = 0

x = 0

Fig. 4. Illustration for the proof of Theorem 4.

Proof. Given an instance of CNF-SAT, the idea is to partition its n variables
into two sets A,B. For each of the 2n/2 truth assignments for the variables in
A, we construct a set of α outerstrings that correspond to the α clauses that
it satisfies. For example, an interval ri, 1 ≤ i ≤ 2n/2, in Fig. 4, corresponds to
a truth assignment of the variables of the variables in A, and the strings (solid
lines) grounded in ri correspond to the clauses that the assignment satisfies. We
construct the strings for the set B symmetrically. We show that an MIS of size m,
where m is the number of clauses, would correspond to an affirmative solution
to the CNF-SAT instance, and vice versa. See the full version of the paper [7]
for more details. ��
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4 Representations with Bounded-Length Integral Shapes

In this section, we consider string representations where the strings are y-
monotone (not necessarily strict) polygonal paths, the length of each string is
bounded by a constant κ, and all the bends and endpoints are on integral coor-
dinates. We show that the MIS problem on such representations can be solved
in O(n2) time. For simplicity, we first examine the case when each string is
an L-shape of type �. Denote by Mp, an axis-aligned simple y-monotone (not
necessarily strictly monotone) polygonal path that satisfies the following three
constraints: (a) Mp starts at point p, and ends at a point on the line y = κ.
(b) Mp contains at most 2κ bends, and (c) the length of each line segment in
Mp is bounded by κ. Then the number of such distinct strings can be at most
f(κ) ∈ O(1) (since κ is a constant). Denote the set of such strings by Mp.

We employ a dynamic programming technique, where we express a subprob-
lem with two points a, b on the grounding line and two monotone paths Ma

and Mb. Figure 5(a) illustrates a subproblem MIS(a, b,Ma,Mb). The subprob-
lem contains all the L-shapes of the given representation that are in the region
between Ma and Mb. The left side of the region is open and the right side is
closed, hence the L-shape that starts at a must be excluded. While constructing
subproblems, we will ensure that a and b belong to the set of grounding points
on the grounding line. The initial problem can be expressed as MIS(i, j,Mi,Mj),
where i is a grounding point of a dummy L-shape I lying to the left of all the
L-shapes, and j is the grounding point of the rightmost L-shape. Mi and Mj are
two strings that bound all the L-shapes in between.

Given a problem of the form MIS(a, b,Ma,Mb), we first find a grounding
point q at the median position among the distinct grounding points between a
and b, as illustrated in Fig. 5(b). Note that L-shapes can share grounding points,
and we only consider the distinct points while considering the median point. If
q coincides with b, then we have the base case where all the L-shapes starts at b.
We thus return 1 or 0 depending on whether there exists a L-shape in the region
between Ma and Mb (this takes O(n) time). Otherwise, we compute the solution
using the following recurrence relation.

MIS(a, b,Ma,Mb) = max
M∈Mq

MIS(a, q,Ma,M) + MIS(q, b,M,Mb).

To verify the correctness of the recurrence relation, observe that any inde-
pendent set of MIS(a, b,Ma,Mb) can be partitioned by a string in Mq. The size
of the dynamic programming table is bounded by O(n2) × O(1), where the first
term comes from the choices for a and b, and the O(1) term corresponds to the
possible choices for Ma and Mb. Computing a base case requires O(n) time. In
the base case, a and b are consecutive on the ground line, and hence there can
be at most O(n)×f(κ)×f(κ) distinct base cases, requiring O(n2) time in total.
Computing an entry in the general case requires f(κ) ∈ O(1) time (using con-
stant time table look-up). Hence the running time for the general case is also
bounded by O(n2) in total.
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(b) (c)
a b

(a)

MbMa

q q
(d)

Fig. 5. Illustration for the dynamic programming. (a) A subproblem. (b) Splitting into
subproblems. (c)–(d) General y-monotone strings.

Although we described the algorithm for L-shapes, it is straightforward to
generalize the algorithm for y-monotone strings, as illustrated in Fig. 5(c)–(d).
The only difference is that we need to define Mp as a simple y-monotone path.
The following theorem summarizes the results of this section.

Theorem 5. Let R be a string representation such that the strings are y-
monotone (not necessarily strict), the length of each string is bounded by a con-
stant, and all the bends and endpoints are on integral coordinates. Then, the MIS
problem in R can be solved in O(n2) time.

5 A (4 · logOPT)-Approximation Algorithm

In this section, we give a (4 · max{1, logOPT})-approximation algorithm for the
MIS problem on the intersection graph of a set of n L-shapes. To this end, we
first give a (max{1, logOPT})-approximation algorithm for the problem when
the input consist of only L-shapes of type �. We discuss the generalization of our
algorithm to the weighted version of the MIS problem and for approximating the
MIS problem on rectangles at the end of this section.

Consider the input L-shapes from left to right in the increasing order of the
x-coordinate of their vertical segment; we denote the ith L-shape in this ordering
by Li. For any 1 ≤ i < j ≤ n, we define I[i, j] as the set of L-shapes Lx such
that (i) i ≤ x ≤ j, and (ii) Lx does not intersect the line through the vertical
segment of Lj+1. We add a dummy L-shape Ln+1 far to the right such that no
input L-shape intersects the line through the vertical segment of Ln+1; thus,
I[1, n] is the set of all input L-shapes. Moreover, let OPT[i, j] denote the size
of an optimal solution for the MIS problem on the set of L-shapes in I[i, j]; we
denote OPT[1, n] simply by OPT. For any such i, j and some i < k < j, let Ik

denote the set of L-shapes Ly such that (i) i ≤ y ≤ j and (ii) Ly intersects the
line through the vertical segment of Lk. Moreover, let OPT(Ik) be the size of an
optimal solution for the MIS problem on the intersection graph induced by the
L-shapes in Ik.

We define S[i, j] as the solution returned by our algorithm on the L-shapes in
I[i, j], for all 1 ≤ i < j ≤ n. Initially, for every pair 1 ≤ i < j ≤ n, if I[i, j] = ∅,
then we set S[i, j] = 0. Then, for every pair 1 ≤ i < j ≤ n, we check to see
if OPT[i, j] ≤ 4; if so, then we directly store OPT[i, j] in S[i, j]. Otherwise, we
compute S[i, j] as follows.

S[i, j] = max{ max
i<k<j

S[i, k − 1] + S[k + 1, j],OPT(Ik)}.
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The algorithm returns S[1, n] as the solution. Computing the actual solution can
be done in the standard manner; to this end, we also store the corresponding
value of k in S[i, j].

Approximation Factor. To show the approximation factor, let SOPT[i, j] be the
set of L-shapes in OPT[i, j]. If OPT[i, j] ≤ 4, then we have S[i, j] = OPT[i, j].
We now prove by induction that for all 1 ≤ i < j ≤ n, if OPT[i, j] > 4, then
S[i, j] ≥ OPT[i, j]/ logOPT[i, j]. Suppose that S[i, j] ≥ OPT[i, j]/ logOPT[i, j]
for all 1 ≤ i < j ≤ n for which 4 < OPT[i, j] < m. Take any pair 1 ≤ i < j ≤ n
for which OPT[i, j] = m, and let ki

j be the index such that Lki
j

is the median of
the L-shapes in SOPT[i, j] (i.e., each SOPT[i, ki

j − 1] and SOPT[ki
j + 1, j] contains

at most OPT[i, j]/2 L-shapes). Notice that

OPT(Iki
j
) ≥ |SOPT[i, j] ∩ Iki

j
|. (1)

Now, if OPT[i, ki
j − 1] ≤ 4, then we know that S[i, ki

j − 1] = OPT[i, ki
j − 1].

Otherwise, by the induction hypothesis, we have

S[i, ki
j − 1] ≥ OPT[i, ki

j − 1]
logOPT[i, j]/2

≥ |SOPT[i, j] ∩ I[i, ki
j − 1]|

logOPT[i, j] − 1
. (2)

Similarly, if OPT[ki
j + 1, j] ≤ 4, then we know that S[ki

j + 1, j] = OPT[ki
j + 1, j].

Otherwise, by the induction hypothesis, we have

S[ki
j + 1, j] ≥ OPT[ki

j + 1, j]
logOPT[i, j]/2

≥ |SOPT[i, j] ∩ I[ki
j + 1, j]|

logOPT[i, j] − 1
. (3)

Therefore,

S[i, j] = max{ max
i<k<j

S[i, k − 1] + S[k + 1, j],OPT(Ik)}

≥ max{S[i, ki
j − 1] + S[ki

j + 1, j],OPT(Iki
j
)}

≥ max{ |SOPT[i, j] ∩ I[i, ki
j − 1]| + |SOPT[i, j] ∩ I[ki

j + 1, j]|
logOPT[i, j] − 1

, |SOPT[i, j] ∩ Iki
j
|}

≥ max{
OPT[i, j] − |SOPT[i, j] ∩ Iki

j
|

logOPT[i, j] − 1
, |OPT[i, j] ∩ Iki

j
|}.

The first inequality is because our algorithm tries all values of i < k < j,
which includes ki

j . Moreover, the second inequality is because of (3), (2) and (1).
Now, if |SOPT[i, j] ∩ Iki

j
| ≥ OPT[i, j]/ logOPT[i, j], then we are done. Otherwise,

OPT[i, j] − |SOPT[i, j] ∩ Iki
j
|

logOPT[i, j] − 1
≥ OPT[i, j] − OPT[i, j]/ logOPT[i, j]

logOPT[i, j] − 1

=
OPT[i, j]

logOPT[i, j]
.

This completes the proof of the induction step. By setting i = 1 and j = n, we
have S[1, n] ≥ OPT/ logOPT.
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Running Time. For a fixed triple i, j and k, we can compute OPT(Ik) in O(n3)
time because the corresponding graph is an outerstring graph for which MIS can
be solved in O(n3) time [23]. Since there are O(n) choices for k for a fixed pair
of i and j, and O(n2) entries in the table for i and j, the overall running time
of the algorithm is O(n6). We show in the full version of the paper [7] how to
improve the running time to O(n5) time, and so we have the following lemma.

Lemma 2 (∗). There exists an O(n5)-time (max{1, logOPT})-approximation
algorithm for the MIS problem on a set of n L-shapes of type �, where OPT
denotes the size of an optimal solution.

When the input consists of all four types of L-shapes, we run the algorithm of
Lemma 2 four times (once for each type of the input L-shapes), and then return
the largest solution as the final answer. Clearly, this gives us a (4 · logOPT)-
approximation algorithm for the original problem and so we have the main result
of this section.

Theorem 6. There exists an O(n5)-time (4 · max{1, logOPT})-approximation
algorithm for the MIS problem on any set of n L-shapes, where OPT denotes the
size of an optimal solution.

Generalizations. Our algorithm can be generalized in two ways: for the weighted
version of the MIS problem on L-shapes, and for the weighted MIS problem on
axis-parallel rectangles.

Theorem 7 (∗). There exists an O(n5)-time (4 · max{1, logOPT})-approxi-
mation algorithm (resp., an O(n3)-time (max{1, logOPT})-approximation algo-
rithm) for the weighted MIS problem on any set of n L-shapes (resp., a set of
n axis-parallel rectangles in the plane), where OPT is the size of an optimal
solution.

We note that for the case of rectangles, our (max{1, logOPT})-approximation
algorithm provides a somewhat simpler algorithm than the one that can be
obtained (with the same approximation factor) from the O(log n/ log log n)-
approximation algorithm of Chan and Har-Peled [11].

6 Conclusion

In this paper, we studied the time-complexity and approximability of the MIS
problem on outerstring graphs and their relatives. Our work gives rise to some
natural open questions:

1. Does there exist a quadratic-time algorithm that can solve the MIS problem
on grounded segment or grounded square-L graphs?

2. Can we improve the approximation factor of the algorithm of Theorem 6?
3. Can we find an Ω(n2−ε)-time lower bound under SETH for finding MIS in

grounded segment representations?
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tion graphs: sausages, noodles, and waffles on a grill. In: Golumbic, M.C., Stern,
M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 274–285.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34611-8 28

13. Ehrlich, G., Even, S., Tarjan, R.E.: Intersection graphs of curves in the plane. J.
Comb. Theory, Ser. B 21(1), 8–20 (1976)

14. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for
geometric intersection graphs. SIAM J. Comput. 34(6), 1302–1323 (2005)

15. Felsner, S., Knauer, K.B., Mertzios, G.B., Ueckerdt, T.: Intersection graphs of
L-shapes and segments in the plane. Discrete Appl. Math. 206, 48–55 (2016)

16. Fox, J., Pach, J.: Computing the independence number of intersection graphs. In:
Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2011), San Francisco, CA, USA, pp. 1161–1165 (2011)

17. Frank, A.: Some polynomial algorithms for certain graphs and hypergraphs. In:
Proceedings of the 5th British Combinatorial Conference (1975)

18. Gavril, F.: Algorithms for a maximum clique and a maximum independent set of
a circle graph. Networks 3, 261–273 (1973)

https://doi.org/10.1007/978-3-319-62127-2_14
http://arxiv.org/abs/1903.07024
https://doi.org/10.1007/978-3-642-34611-8_28


224 P. Bose et al.
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Abstract. The bin covering problem asks for covering a maximum num-
ber of bins with an online sequence of n items of different sizes in the
range (0, 1]; a bin is said to be covered if it receives items of total size
at least 1. We study this problem in the advice setting and provide
tight bounds for the size of advice required to achieve optimal solutions.
Moreover, we show that any algorithm with advice of size o(log log n)
has a competitive ratio of at most 0.5. In other words, advice of size
o(log log n) is useless for improving the competitive ratio of 0.5, attain-
able by an online algorithm without advice. This result highlights a dif-
ference between the bin covering and the bin packing problems in the
advice model: for the bin packing problem, there are several algorithms
with advice of constant size that outperform online algorithms without
advice. Furthermore, we show that advice of size O(log log n) is suffi-
cient to achieve a competitive ratio that is arbitrarily close to 0.533̄ and
hence strictly better than the best ratio 0.5 attainable by purely online
algorithms. The technicalities involved in introducing and analyzing this
algorithm are quite different from the existing results for the bin packing
problem and confirm the different nature of these two problems. Finally,
we show that a linear number of bits of advice is necessary to achieve any
competitive ratio better than 15/16 for the online bin covering problem.

1 Introduction

In the bin covering problem [3], the input is a multi-set of items of different sizes
in the range (0, 1] which need to be placed into a set of bins. A bin is said to be
covered if the total size of items in it is at least 1. The goal of the bin covering
problem is to place items into bins so that a maximum number of bins is covered.
In the online setting, items form a sequence which is revealed in a piece-by-piece
manner; that is, at each given time, one item of the sequence is revealed and an
online algorithm has to place the item into a bin without any information about
the forthcoming items. The decisions of the algorithm are irrevocable.
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Bin covering is closely related to the classic bin packing problem and is
sometimes called the dual bin packing problem1. The input to both problems is
the same. In the bin packing problem, however, the goal is to place items into a
minimum number of bins so that the total size of items in each bin is at most
1. Online algorithms for bin packing can naturally be extended to bin covering.
For example, Next-Fit is a bin packing algorithm which keeps one “open” bin
at any time: To place an incoming item x, if the size of x is smaller than the
remaining capacity of the open bin, x is placed in the open bin; otherwise, the
bin is closed (never used again) and a new bin is opened. Dual-Next-Fit [3] is a
bin covering algorithm that behaves similarly, except that it closes the bin when
the total size of items in it becomes at least 1.

In the offline setting, the bin packing and bin covering problems are NP-hard.
There is an asymptotic fully polynomial-time approximation scheme (AFPTAS)
for bin covering [17]. There are also bin packing algorithms which open Opt(σ)+
o(Opt(σ)) bins [16,18,23], where Opt(σ) is the number of bins in the optimal
packing. The additive term was improved in [23] and further, to O(logOpt(σ)),
in [16].

Online algorithms are often compared under the framework of competi-
tive analysis. An algorithm, A, for bin covering (respectively, bin packing) is
c-competitive, if there exists a constant b such that, for any input sequence, σ,
A(σ) ≥ c·Opt−b (respectively, A(σ) ≤ c·Opt+b). The competitive ratio of a bin
covering (respectively, bin packing) algorithm, A, is sup{c | A is c-competitive}
(respectively, inf{c | A is c-competitive}).

Despite similarities between bin covering and bin packing, the status of these
problems are different in the online setting. In the case of bin covering, it is
known that no online algorithm can achieve a competitive ratio better than
1/2 [13], while bin covering algorithms such as Dual-Next-Fit [3] have the best
possible competitive ratio of 1/2. Hence, we have a clear picture of the complex-
ity of deterministic bin covering under competitive analysis. The situation is
more complicated for the bin packing problem. It is known that no deterministic
algorithm can achieve a competitive ratio of 1.54278 [5] while the best existing
deterministic algorithm has a competitive ratio of 1.5783 [4]. Note there is a gap
between the best known upper and lower bounds.

Advice complexity is a formalized way of measuring how much knowledge
of the future is required for an online algorithm to obtain a certain level of
performance, as measured by the competitive ratio. When such advice is avail-
able, algorithms with advice could lead to semi-online algorithms. Unlike related
approaches such as “lookahead” [15] (in which some forthcoming items are
revealed to the algorithm) and “closed bin packing” [2] (where the length of
the input is revealed), any information can be encoded and sent to the algo-
rithm under the advice setting. This generality means that lower bound results
under the advice model also imply strong lower bound results on semi-online

1 There is another problem, also sometimes referred to as “dual bin packing”, which
asks for maximizing the number of items packed into a fixed number of bins; for the
advice complexity of that dual bin packing problem, see [9,21].
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algorithms, where one can infer impossibility results simply from the length
of an encoding of the information a semi-online algorithm is provided with.
Advice complexity is also closely related to randomization; complexity bounds
from advice complexity can be transferred to the randomization case and vice
versa [6,8,14,20].

The advice is generated by a benevolent oracle with unlimited computational
power. The advice is written on a tape and the algorithm knows its meaning.
This general approach has been studied for many problems (we refer the reader
to a recent survey on advice complexity of online problems [11]). In particular,
bin packing has been studied under the advice complexity [1,12,22].

Contributions

In this article, we provide the first results with respect to the advice complexity
of the bin covering problem. To obtain an optimal result, advice essentially
corresponding to an encoding of an entire optimal solution is necessary and
sufficient. Not surprisingly, this follows from a similar proof for bin packing, since
for both problems, bins filled to size one in an optimal solution are at the core
of the proof. However, unlike the bin packing problem, advice of constant size
cannot help improve the competitive ratio of algorithms. We establish this result
by showing that any algorithm with advice of size o(log log n) has a competitive
ratio of at most 0.5, which is the competitive ratio of online algorithms without
advice. We prove a tight result that advice of size O(log log n) suffices to achieve
a competitive ratio arbitrarily close to 0.533̄. Finally, using a reduction from the
binary string guessing problem [7], we show that advice of linear size is necessary
to achieve any competitive ratio larger than 15/16. This is similar to, but more
intricate, than the corresponding result for bin packing.

2 Optimal Covering and Advice

It is not hard to see that advice of size O(n log(Opt(σ))) is sufficient to achieve
an optimal covering for an input σ of length n; note that Opt(σ) denotes the
number of bins in an optimal covering of σ. Provided with O(log(Opt(σ))) bits
of advice for each item, the offline oracle can indicate in which bin the item is
placed in the optimal packing. Provided with this advice, the online algorithm
just needs to pack each item in the bin indicated by the advice. Clearly, the
size of the advice is O(n log(Opt(σ))) and the outcome is an optimal packing.
Note that it is always assumed that the oracle that generates the advice has
unbounded computational power. However, if the time complexity of the oracle is
a concern, we can use the AFPTAS of [17] to generate an almost-optimal packing
and encode it in the advice. Similarly, if the input is assumed to have only m
distinct known sizes, one can encode the entire request sequence, specifying for
each distinct size how many of that size occur in the sequence. This only requires
O(m log(n)) bits of advice. The following theorem shows that the above naive
solutions are asymptotically tight.
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Theorem 1. For online bin covering on sequences σ of length n, advice of size
Θ(n logOpt(σ)) is required and sufficient to achieve an optimal solution, assum-
ing 2Opt(σ) ≤ (1 − ε)n for some positive value of ε. When the input is formed
by n items with m ∈ o(n) distinct, known item sizes, advice of size Θ(m log n)
is required and sufficient to achieve an optimal solution.

Proof. The lower bounds follow immediately from the corresponding results for
bin packing [12, Theorems 1, 3]. Since the optimal result in those proofs have all
bins filled to size 1, any non-optimal bin packing would also lead to a non-optimal
bin covering. ��

3 Advice of Size o(log logn) Is Not Helpful

In this section, we show that advice of size o(log log n) does not help for improv-
ing the competitive ratio of bin covering algorithms. This result is in contrast
to bin packing where advice of constant size can improve the competitive ratio.
Our lower bound sequence is similar to the one in [13], where the authors proved
a lower bound on the competitive ratio of purely online algorithms.

Theorem 2. There is no algorithm with advice of size o(log log n) and compet-
itive ratio better than 1/2.

Proof. Consider a family of sequences formed as follows:

σj = 〈ε, ε, . . . ε
︸ ︷︷ ︸

n items

, 1 − jε, 1 − jε, . . . , 1 − jε
︸ ︷︷ ︸

n/j items

〉

Here, j takes a value between 1 and n and hence there are n sequences in the
family. All sequences start with the same prefix of n items of size ε. We assume
that ε < 1

2n to ensure that, even if all these items are placed in the same bin,
the level of that bin is still less than 1/2. Note that the suffix, formed by items
of size 1 − jε has length O(n), and hence the length of all sequences is Θ(n).

Clearly, for packing σj , an optimal algorithm places j items of size ε in each
bin and covers n/j bins. So we have Opt(σj) = n/j.

The proof is by contradiction, so assume there is an algorithm, A, using
o(log log n) advice bits and having competitive ratio 1/2 + μ for some constant
μ > 0. Thus, there exists a fixed constant d such that for any sequence σj we
have

A(σj) ≥ (1/2 + μ)Opt(σj) − d =
n

2j
+

μn

j
− d (1)

We say two sequences belong to the same sub-family if they receive the
same advice string. Since the advice has size o(log log n), there are o(log n) sub-
families. Let σa1 , . . . , σaw

be the sequences in one sub-family. Since the advice
and the first n items (of size ε) are the same for any two members of this sub-
family, A will place these n items identically. Let mi denote the number of bins
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receiving at least i items in such a placement. So, we have
∑n

i=1 mi = n (a bin
with exactly x items is counted x times). Moreover, for any σj , we have

A(σj) ≤ mj + (n/j − mj)/2 =
n

2j
+

mj

2
(2)

This follows since any bin with at least j items of size ε can be covered using
only one item of size 1 − jε, while the other bins require two such items.
From Eqs. 1 and 2, we get μn

j ≤ mj

2 + d. Summing over j ∈ {a1, . . . , aw}, we get
that

μn

(

1
a1

+
1
a2

+ . . . +
1

aw

)

≤ 1
2
(ma1 + ma2 + . . . + maw

) + wd

Since 1
2 (ma1 + ma2 + . . . + maw

) + dw ≤ 1
2 ·

n
∑

i=1

mi + dn = (d + 1
2 )n, we have

1
a1

+
1
a2

+ . . . +
1

aw
∈ O(1)

Summing the left-hand side over all families, we include every sequence once
and obtain Σn

i=1
1
i . Since there are o(log n) sub-families, it follows that Σn

i=1
1
i ∈

o(log n). This is a contradiction since the Harmonic number Σn
i=1

1
i ∈ Θ(log n).

Thus, our initial assumption is wrong and with advice of size o(log log n), no
algorithm with competitive ratio strictly better than 1/2 can exist. ��

4 An Algorithm with Advice of Size O(log logn)

In this section, we show that advice of size O(log log n) is sufficient to achieve a
competitive ratio arbitrarily close to 0.533̄. Throughout this section, we call an
item small if it has size less than 1/2 and large otherwise.

Consider a packing of the input sequence σ. We partition the bins in this
packing into three groups. A large-small (LS) bin includes one large item and
some small items, a large-large (LL) bin includes only two large items, and a
small (S) bin includes only small items. We assume there is no small item in
the LL bins of Opt (such small items can be moved to another bin without
decreasing the number of covered bins). We also assume that, in Opt’s packing,
large items in LS bins are larger than those in LL bins (otherwise, we can move
them around and LL bins will be still covered while the level of LS bins will
increase). We use m and m′, respectively, to denote the number of LS and LL
bins in the optimal packing. For m ≥ 1, we let β ≥ 1 satisfy m + m′ = βm. See
Table 1 for a summary of notation used in this section.

In the following lemma and later, we use the algorithm Dual-Worst-Fit,
which, given a fixed number of bins, places an item in a least full bin.

Lemma 1. Given an integer q, assume we apply Dual-Worst-Fit to cover q bins.
Let S denote the total size of packed items and d denote the maximum size of any
item in the sequence. The level of any bin is at least S/q − d.
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Table 1. Notation used in Sect. 4

Notation Meaning

n The length of the input

m The number of LS bins in the optimal packing

m′ The number of LL bins in the optimal packing

Sl An integer representing the total size of small items in the LS bins of the
optimal packing (rounded down)

Ss An integer representing the total size of small items in the S bins of the
optimal packing (rounded down)

β The value of m+m′
m

. The algorithm behaves differently when β ≥ 15/14
compared to when β < 15/14

α A parameter of the algorithm when β < 15/14. Approximately �αm� of
covered bins include exactly one large item. We assume α < 7−6β

15
< 4

105

k An integer representing the precision of approximate encodings in
O(log log n) bits. We assume k is a large constant and we have k ≥ 6

Proof. The level of any two bins cannot differ by more than d; otherwise the
last item placed in the bin with the larger level had to be placed in the bin with
the smaller level. Let Bmin and Bmax be the two bins with minimum and max-
imum levels, respectively. From the above observation, we have level(Bmin) ≥
level(Bmax) − d. The maximum level of any bin is no less than the average level
of all bins. That is, level(Bmax) ≥ S/q which gives level(Bmin) ≥ S/q − d. ��

The following lemma shows that sequences with relatively few LS bins in
an optimal packing are “easy” instances. The lemma is used in the case where
β ≥ 15/14, i.e., when there are at most 14 times as many LS bins as LL bins in
the optimal packing. Note that, in this case, (2β − 1)/(2β) ≥ 8/15.

Lemma 2. There is an online bin covering algorithm with competitive ratio at
least min{2/3, 2β−1

2β }.
Proof. Consider a simple algorithm, A, that places large and small items sepa-
rately. Each pair of large items cover one bin and small items are placed using
the Dual-Next-Fit strategy, that is, they are placed in the same bin until the
bin is covered (and then a new bin is started). Let S denote the total size of
small items. Note that the number of large items is m+2m′. The number of bins
covered by A is at least 	(m + 2m′)/2
 + 	2S/3
. The number of bins covered
by Opt is at most m + m′ + 	S
. Thus, for any input sequence, σ,

A(σ) ≥ 	(m + 2m′)/2
 + 	2S/3

m + m′ + 	S
 · Opt(σ)

=
(m + 2m′)/2 + 2S/3

m + m′ + S
· Opt(σ) − O(1).
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This proves a competitive ratio of at least min{2/3, 2β−1
2β }, since

(m + 2m′)/2
m + m′ =

2m + 2m′ − m

2m + 2m′ =
2m+m′

m − 1
2m+m′

m

=
2β − 1

2β
.

��
Recall that among the large items, we assume that the largest m items form

LS bins in the optimal packing. Let Sl and Ss be two integers that denote the
floor of the total size of small items placed in respectively the LS and SS bins. So,
the number of bins covered by Opt is at most βm+Ss. In what follows, we define
(α, k)-desirable packings, which act as reference packings for our algorithm. Here
α and k are two parameters of the algorithm that we will introduce later.

For the following definition, it may be helpful to confer with Fig. 1.

Definition 1. A covering is (α, k)-desirable, where α is a real number in the
range (0, 1] and k is a positive integer, if and only if all the following hold:

I The covering has at least 	αm
 LS bins. All LS bins, except possibly a con-
stant number of them, are covered.

II The large items not in LS bins appear in pairs, with each pair covering one
bin (except one item when there are an odd number of such large items).

III The small items not in LS bins cover at least 	(1 − 1
2k

) 2Ss

3 
 − 1 bins.

Lemma 3. For any input sequence, σ, the number of bins covered in an (α, k)-
desirable packing is at least min{α+2β−1

2β , (1 − 1
2k

) 23} · Opt(σ) − O(1).

Proof. The number of bins covered in the optimal packing is at most m′ + m +
Ss = βm + Ss. The number of bins covered by an (α, k)-desirable packing is at
least 	αm
− c (for covered LS bins; c is a constant) plus 	(2β − 1−α)m/2
 (for
bins covered by pairs of large items) plus at least 	(1− 1

2k
) 2Ss

3 
−1 bins (covered
by small items). So, the number, d, of bins covered in the (α, k)-desirable packing
of σ will be

d ≥ αm/2 + (2β − 1)m/2 + (1 − 1
2k

)2Ss/3
βm + Ss

· Opt(σ) − O(1)

≥ min
{

α + 2β − 1
2β

,

(

1 − 1
2k

)

2
3

}

· Opt(σ) − O(1).

��
In the remainder of this section, we describe an algorithm that achieves an

(α, k)-desirable covering for certain values of α and k. Here, k is used as a param-
eter to encode approximate values of a few numbers passed to the algorithm.
Before describing these numbers, we explain how the approximate encodings
work. Given a positive integer x, we can write the length of the binary encoding
of x in O(log log x) bits, using self-delimited encoding as in [19]. The approxi-
mate value of x will be represented by the binary encoding of the length of x,
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Fig. 1. (left) an optimal packing with m = 4, m′ = 2, Sl = �1.18� and Ss = �3.08�
(right) an (α, k)-desirable packing with α = 1/2 and k = 6.

plus the k most significant bits of x after the high-order 1. Setting the unknown
lower order bits to zero gives an approximation to x which we denote by x̄. We
can bound x̄ as follows: If x̄ = y · 2� for some y represented by k + 1 bits, where
the high-order bit is a one, then 2k ≤ y < 2k+1. Given x̄, the largest x could be
is y · 2� + (2� − 1). Thus, (1 − 1

2k
)x < x̄ ≤ x.

In the remaining more technical part of the section, it may be beneficial to
consider that if we had O(log n) bits of advice instead of O(log log n), many
arguments would be simplified, and it could be helpful on a first reading to
ignore multiplicative terms such as 1 − 1

2k
that are there because we know only

approximate as opposed to exact values of the parameters we receive information
about in the advice.

First, we describe how the algorithm treats the small items and then discuss
the large items. The algorithm receives S̄s and m̄, i.e., the approximate values
of Ss and m, in O(log log n + k) bits of advice. It places small items using the
Dual-Next-Fit strategy until a point at which the sum of small items observed
so far becomes larger than S̄s. Let p be the small item that causes the sum
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to exceed S̄s. The algorithm places p and any other small item that follows it
using the Dual-Worst-Fit strategy in �m̄/3� bins, ignoring any large items when
calculating the levels of the bins. In what follows, we refer to these �m̄/3� bins
as reserved bins. The items before p have a total size of more than S̄s − 1 and
hence cover at least 	(2/3)(S̄s − 1)
 ≥ 	2S̄s/3 − 1
 ≥ 	(2/3)(1 − 1/2k)Ss
 − 1.
So, Property III of an (α, k)-desirable covering holds.

Next, we describe how the algorithm places large items so that properties I
and II also hold. For that, the algorithm will need the approximate value of m
(which was also required for small items) and m′. As before, these values can
be encoded in O(log log n + k) bits of advice. We call the largest �m/3� items in
the input sequence good items. The algorithm aims at placing 	αm
 of the good
items in the reserved bins. Before describing how the algorithm detects good
items, we prove the following lemma, showing that the reserved bins with one
good item will be covered.

Lemma 4. A reserved bin that includes any good item will be covered in the
final solution (covering) of the algorithm.

Proof. Define the desired level to be d = 1− size(x) where x is the smallest good
item. Consider an LS-bin B in the optimal packing that does not include a good
item (that is, it has one large item smaller than any good item). The total size
of small items in B will be at least d. As there are at least �2m/3� such bins,
we have that Sl ≥ (2m/3) · d, so d ≤ 3Sl

2m . On the other hand, the total size of
small items placed in the reserved bins is at least Ss + Sl − S̄s ≥ Sl. Since we
use the Dual-Worst-Fit strategy to place these items into m/3 reserved bins, by
Lemma 1, the total size of small items in any reserved bin is at least Sl

m/3 − y

where y is the largest small item in those bins. Now, if a reserved bin includes
a small item of size at least d, its level is already at least d; otherwise, Sl

m/3 − x

will be at least 3Sl/m− d and since d ≤ 3Sl

2m , the level of the bins is at least d. ��
So, in order to achieve an (α, k)-desirable packing, our algorithm needs to

select 	αm
 good items and place them in the reserved bins; the above lemma
indicates that these bins will be covered (Property I holds). Meanwhile, the
algorithm ensures that other large items are paired and hence each pair of them
covers a bin (Property II holds). In order to provide the above guarantees, the
algorithm considers three cases depending on the location of good items (advice
will be used to select the correct case).

Lemma 5. When β < 15/14, there exists an (α, k)-desirable packing for α ≤
7−6β
15 − 176−18β

75·2k+120
and k sufficiently large.

Proof. Throughout the proof, 1 ≤ β < 15/14 and α < 7−6β
15 − 176−18β

75·2k+120
< 7−6β

15 <
1
15 . Note that under the description of the algorithm, we established Property III,
and just prior to the statement of the lemma, we established Property I. The
proof to establish Property II is a case analysis on where good items appear in
the request sequence.
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Case 1: Assume there are 	αm̄/(1 − 1/2k)
 good items among the first
A = 	m̄/3
 large items in the sequence. In this case, the algorithm places the
first A large items into the reserved bins. After seeing all these A items, the
algorithm chooses the largest 	αm̄/(1 − 1/2k)
 ≥ 	αm
 of them and declares
them to be good items, which by Lemma 4 are guaranteed to be covered. The
remaining A−	αm/(1−1/2k)
 large items in the reserved bins will be paired with
forthcoming large items. Since there are at least m−A ≥ 2m/3 forthcoming large
items and fewer than m/3 large items in the reserved bins waiting to be paired,
all these large items (except possibly one) can be paired (Property II holds). In
summary, in the final covering, there are 	αm̄/(1 − 1/2k)
 ≥ 	αm
 bins covered
by a large item (and some small items) while the remaining large items are paired
(except possibly one). Hence, the result will be an (α, k)-desirable packing.

Case 2: Assume there are fewer than 	αm̄/(1 − 1/2k)
 good items among
the first A large items in the sequence (Case 1 does not apply). Furthermore,
assume there are 	αm̄/(1−1/2k)
 good items among the A = 	m̄/3
 large items
that follow the first A large items. In this case, the algorithm places the first A
large items pairwise in �A/2� bins. The A large items that follow are placed in
the reserved bins. After placing the last of these items in the reserved bins, the
algorithm considers these A items and declares the 	αm̄/(1 − 1/2k)
 ≥ 	αm

largest to be good items, which by Lemma 4 are guaranteed to be covered. The
remaining A − 	αm̄
 reserved bins (with large items) will need to be covered by
forthcoming large items. We know there are at least m−2A ≥ 	m/3
 forthcoming
large items and fewer than 	m/3
 large items in reserved bins waiting to be
paired, so all these large items (except possibly one) can be paired (Property II
holds). Thus, the result is an (α, k)-desirable packing.

Case 3: Assume there are fewer than 	αm̄/(1 − 1/2k)
 good items among
the first A = 	m̄/3
 large items and also fewer than 	αm̄/(1−1/2k)
 good items
among the following A items (Cases 1 and 2 do not apply). In what follows,
we assume β < 15/14 and let α be some positive value such that α ≤ 7−6β

15 −
176−18β
75·2k+120

. We will later choose k sufficiently large; here k ≥ 6 will ensure that α

is positive. Note also that we have α < 7−6β
15 . In this case, the algorithm places

the first 2A large items in pairs. There are C = 2m′+m−2A = 2m′+m−2	m̄/3

remaining large items. The algorithm places the first F = m̄′ +	m̄/6
+	αm̄

2 
−1
of the last C large items in the reserved bins (note that this is roughly half of
the last C large items when α is small). For this to be possible, we show that
the number of reserved bins is at least F , and that at least αm − 6 of the F
items placed in the reserved bins are good items (see the full paper [10] for the
calculations). After placing these F items, the algorithm declares the largest
	αm
 − 6 among them to be good items. By Lemma 4, these items (along with
small items in the reserved bins) will cover their respective bins. There are
F −	αm
+6 (positive for k ≥ 1 and α ≤ 1

15 ) large items in reserved bins which
have not been declared good, and the C−F large items which have not arrived at
this point will be paired with them. Calculations show that the number of large
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items in the reserved bins which are not paired will be at most 6 (see the full
paper [10]). The bins in which these items are placed, along with the 	αm
 − 6
bins that include good items, will be the LS bins in the final (α, k)-desirable
packing. Note that the number of these bins is 	αm
 minus an additive constant
which is allowed in desirable packings. All large items placed in bins other than
LS bins are paired and hence, Property II also holds. ��
Theorem 3. There is an algorithm that, provided with O(log log n) bits of
advice, achieves a competitive ratio of at least 12β−4

15 − 88−9β
75β2k+120β

, where k is
a large but constant parameter of the algorithm. Since β ≥ 1, for any ε > 0,
there exists an algorithm using a sufficiently large k with competitive ratio at
least 8

15 − ε.

Proof. The advice indicates the values of m̄, m̄′, and S̄s. These values can all be
encoded in O(log log n) bits of advice. Note that one cannot calculate β exactly,
since m and m′ are not known exactly. Thus, the advice also includes 1 bit to
indicate if Lemma 2 should be used because β is larger than 15/14. If not, the
advice also indicates one of the three cases described above; this requires two
more bits. Thus, the size of advice is O(log log n).

If Lemma 2 is used, the competitive ratio is at least min{2/3, 2β−1
2β }, which for

β ≥ 15/14 is at least 8/15. Otherwise, provided with this advice and a sufficiently
large integer parameter k, the algorithm can create an (α, k)-packing of the input
sequence for any α ≤ 7−6β

15 − 176−18β
75·2k+120

. By Lemma 3, the resulting packing has
a competitive ratio of at least α+2β−1

2β . Choosing α = 7−6β
15 − 176−18β

75·2k+120
gives

a scheme with competitive ratio at least 12β−4
15β − 88−9β

75β2k+120β
. Since this is an

increasing function of β and β ≥ 1, the competitive ratio approaches 8
15 for

large values of k. ��

5 Impossibility Result for Advice of Sub-linear Size

This section uses what is normally referred to as lower bound techniques, but
since our ratios are smaller than 1, an upper bound is a negative result, and
we refer to such results as negative or impossibility results. In what follows, we
show that, in order to achieve any competitive ratio larger than 15/16, advice of
linear size is necessary. We use a reduction from the binary separation problem:

Definition 2. The Binary Separation Problem is the following online problem.
The input I = (n1, σ = 〈y1, y2, . . . , yn〉) consists of n = n1 + n2 positive values
which are revealed one by one. There is a fixed partitioning of the set of items into
a subset of n1 large items and a subset of n2 small items, so that all large items
are larger than all small items. Upon receiving an item yi, an online algorithm
must guess if y belongs to the set of small or large items. After the algorithm
has made a guess, it is revealed to the algorithm which class yi belongs to.
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A reduction from a closely related problem named “binary string guessing
with known history” shows that, in order to guess more than half of the items
correctly, advice of linear size is required:

Lemma 6. [12] For any fixed β > 0, any deterministic algorithm for the Binary
Separation Problem that is guaranteed to guess correctly on more than (1/2+β)n
input items on an input of length n needs at least Ω(n) bits of advice.

The following lemma provides the actual reduction from the Binary Sepa-
ration Problem to bin covering. The complete proof can be found in the full
paper [10].

Lemma 7. Consider the bin covering problem on sequences of length 2n for
which Opt covers n bins. Assume that there is an online algorithm A that
solves the problem on these instances using b(n) bits of advice and covers at least
n−r(n)/8 bins. Then there is also an algorithm Bsa that solves the Binary Sep-
aration Problem on sequences of length n using b(n) bits of advice and guessing
incorrectly at most r(n) times.

Proof. (sketch) Given an instance of the Binary Separation Problem formed by
n = n1 + n2 values, we create an instance of the bin covering problem that
starts with n1 “huge” items of size 1 − ε for some ε < 1

2n . Any “reasonable”
bin covering algorithm has to place these items in separate bins. The next n
items are created in an online manner, and each is associated with a value x in
the Binary Separation Problem. The size of the item created for x will be an
increasing function of x in the range (ε, 2ε). We call the item associated with x
“small” if x is small and “large” otherwise. If the bin covering algorithm places
the item associated with x in a bin with a huge item, we guess that x is “small”;
otherwise, we guess that x is “large”. The last n2 items of the bin covering
instance are defined as complements of the large items. An optimal algorithm
places small items in the bins opened for huge items and covers one bin with each
large item and its complement. So, the number of covered bins in an optimal
solution is n. We say an algorithm “makes a mistake” when it places a large
item in a bin with a huge item or places a small item in a bin without a huge
item. A detailed analysis shows that, for each 8 mistakes, the algorithm covers
at least 1 bin fewer. Hence, if the number of covered bins is at least n − r(n)/8,
then the number of binary separation errors must be at most r(n). ��

It turns out that reducing the Binary Separation Problem to bin covering
(the above lemma) is more involved than a similar reduction to the bin packing
problem [12]. The difference roots in the fact that there are more ways to place
items into bins in the bin covering problem compared to bin packing; this is
because many arrangements of items are not allowed in bin packing due to the
capacity constraint.

Theorem 4. Consider the bin covering problem on sequences of length n. To
achieve a competitive ratio of 15/16 + δ, in which δ is a small, but fixed positive
constant, an online algorithm needs to receive Ω(n) bits of advice.
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Proof. Suppose for the sake of contradiction that there is a bin covering algo-
rithm A with competitive ratio 15/16 + δ using o(n) bits of advice. Consider
sequences of length 2n for which Opt covers n bins. A covers (15/16 + δ)n =
n − r(n)/8 bins for r(n) = (1/2 − 8δ)n. Applying Lemma 7, we conclude that
there is an algorithm that solves the Binary Separation Problem on sequences
of length n using o(n) bits of advice, while making at most (1/2 − 8δ)n errors.
By Lemma 6, we know that such an algorithm requires Ω(n) bits of advice. So,
our initial assumption that A required only o(n) bits of advice is wrong. ��

6 Concluding Remarks

We have established that Θ(log log n) bits of advice are necessary and sufficient
to improve the competitive ratio obtainable by purely online algorithms.

Obvious questions are: How much better than our bound of 8/15 = 0.533̄ can
one do with O(log log n) bits of advice? Can one do better with O(log n) bits of
advice?
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Abstract. In a Stackelberg pricing game a distinguished player, the
leader, chooses prices for a set of items, and the other player, the fol-
lower, seeks to buy a minimal cost feasible subset of the items. The goal
of the leader is to maximize her revenue, which is determined by the sold
items and their prices. Typically, the follower’s feasible subsets are given
by a combinatorial covering problem. In the Stackelberg shortest path
game, for example, the items are edges in a network graph and the fol-
lower’s feasible subsets are s-t-paths. This game has been used to model
road-toll setting problems by Labbé et al. [14].

We initiate the study of pricing problems where the follower’s feasible
subsets are given by a packing problem, e.g., a matching or an indepen-
dent set problem. We introduce a model that naturally extends packing
problems to Stackelberg pricing games. The resulting pricing games have
applications related to scheduling.

Our interest is the complexity of computing leader-optimal prices
depending on different types of followers. As the main result, we show
that the Stackelberg pricing game where the follower is given by the well-
known interval scheduling problem is solvable in polynomial time. The
interval scheduling problem is equivalent to the independent set problem
on interval graphs.

As a complementary result, we prove APX-hardness when the fol-
lower is given by the bipartite matching problem. This result also shows
APX-hardness for the case where the follower is given by the indepen-
dent set problem on perfect graphs. On a more general note, we prove
Σp

2 -completeness if the follower is given by a particular packing problem
that is NP-complete. In this case, the leader’s pricing problem is hard
even if she has an NP-oracle at hand.
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1 Introduction

Assume an agent seeks to complete a set of jobs. If job i is completed, the agent
receives a fixed benefit b(i), i.e., the selling value of a good that is produced.
However, the agent is not able to complete the jobs by himself but relies on a
manufacturer to complete them for him. The agent offers a payment (or price)
p(i) to the manufacturer to execute job i and if the manufacturer finishes a job,
the agent pays the price. The agent’s objective is to maximize his revenue which
is the sum of the margins b(i) − p(i) over those jobs i that are finished by the
manufacturer. Higher prices are more appealing to the manufacturer but yield
less revenue for the agent.

Whether it is profitable to complete a job or not, depends on the price for
which the manufacturer is willing to execute it. In our model, this price depends
on payments that competitors offer to the manufacturer to carry out their jobs.
Additionally, the manufacturer’s schedule has to obey a number of constraints.
For instance, two jobs might not be scheduled together because they have to be
executed in the same time window, and there is only one machine available. The
manufacturer selects a feasible schedule that maximizes his income. The agent’s
task is to decide which jobs should be offered and for what price. This can be
seen as a make or buy decision.

As a special case, we introduce a so-called Stackelberg pricing game that is
based on the well-known interval scheduling problem. In this problem, there is
one machine and a set of weighted jobs I. Each job i has a fixed starting time
si ∈ R and terminating time ti ∈ R. Hence, a job can be represented by an
interval [si, ti] on the line. We say that two intervals overlap if their intersection
is non-empty. The objective is to find a subset of non-overlapping intervals of
maximum total weight. On the left-hand side of Fig. 1, we have an instance of
an interval scheduling problem if we only consider the solid intervals a, b, c, d.
An optimal solution is the set {a, b} with a total weight of 7. Such an optimal
set of jobs can be computed in polynomial time.

To fall in line with the terminology of Stackelberg pricing games, we call
the agent leader and the manufacturer follower. In our game, the solid intervals
a, b, c, d represent the jobs of the competitors. The dashed lines x, z, y are the
jobs of the leader with their respective benefits 4, 3 and 5. In the first step of our
game, the leader sets the prices px, py and pz. On the right hand side of Fig. 1,
prices px = 3, py = 0, pz = 4 are set. For this price vector, the follower selects
the jobs c, x, z with total (maximum) weight 9. Note that the prices px and pz
are optimal in the following sense: if either of px or pz is decreased by some
ε > 0, the intervals x or z are not selected by the follower. The leader obtains
revenue 2 under these prices.

The optimal prices px = 1, py = 2, pz = 0 yield revenue 4. Under these prices
the solutions {b, c, x, y} and {a, b} are optimal for the follower; both have a weight
of 7. A common assumption for Stackelberg pricing games is that the follower is
cooperative: he always chooses the optimal solution which is most profitable for
the leader. This assumption is made to avoid technicalities with ε-values. When
setting the prices, the leader is aware of the competitors’ jobs, the constraints they
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imply and the offered payments. After prices are set, the follower selects a feasi-
ble subset of jobs–offered by the leader and her competitors–that maximizes his
income, i.e, the follower solves an interval scheduling instance. Computing leader-
optimal prices is a special case of revenue maximization in combinatorial auctions
where it is common to assume knowledge of the customers’ preference. In our case,
the customers’ preferences correspond to the follower’s offer situation.

2
5

4

pz|5
py|3

px|4

2
2

5
4

4|5
0|3

3|4

2a b
c d

x
y

z

a
c d

b

z
y

x

Fig. 1. An instance of the Stackelberg interval scheduling game.

In the literature, such problems are captured by a game-theoretic model called
Stackelberg pricing games (cf. [17]). Originally, in a Stackelberg pricing game the
leader chooses prices for a number of items. After that, one or several followers are
interested in buying these items. The goal of the leader is to maximize her revenue
while followers want to minimize their costs. Depending on the followers’ prefer-
ences, computing optimal prices can be a highly non-trivial problem.

A major line of research studies Stackelberg pricing games where the fol-
lower’s preferences are given by a combinatorial optimization problem. Labbé
et al. [14] model road-toll setting problems by a Stackelberg pricing game based
on the shortest path problem. In this game, the leader sets prices for a subset of
priceable edges of a network graph while the remaining edges have fixed costs.
Each follower has a pair of vertices (s, t) and buys a minimum cost path from s
to t. The costs of a path depend on both the fixed costs and the prices set by
the leader. Roche et al. [16] show that the problem is NP-hard, even if there is
only one follower. More recently, other combinatorial optimization problems were
studied in their Stackelberg pricing game version. Cardinal et al. [10,11] inves-
tigate the Stackelberg minimum spanning tree game. They show APX-hardness
and give a logarithmic approximation algorithm.

1.1 Our Results

The Stackelberg pricing games which were previously studied are based on cover-
ing problems. The scenario above gives us a framework to formulate Stackelberg
pricing games that are based on packing problems. We are interested in the com-
plexity of computing leader-optimal prices depending on a single follower that
is given by different packing problems.

Our main result is a polynomial time algorithm that solves the Stackelberg
interval scheduling game. Since it will be more handy later on, we state this
game in terms of an independent set problem on an interval graph. Associated
with an instance of the interval scheduling problem I, there is a corresponding
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interval graph G = (V,E) with vertex weights. For each interval i ∈ I there is
a corresponding vertex vi ∈ V with weight w(vi) = w(i). If two intervals i, j
overlap, there is an edge (vi, vj) ∈ E. Recall that an independent set in a graph
is a subset of mutually non-adjacent vertices. The interval scheduling problem
on I is equivalent to finding a maximum weight independent set of G.

Stackelberg Interval Scheduling (SIS)

Input: An interval graph G = (V,E) with priceable vertices P ⊆ V and
|P | = k. For every v ∈ P there is a benefit b(v) ∈ R, and for every
u ∈ F = V \ P there is a fixed weight w(u) ∈ R.
Objective: Find a price function p : P → R≥0 maximizing

maxS{b(S ∩ P ) − p(S ∩ P ) | S is a maximum weight independent set},

where the weight of an independent set S is defined as w(S∩F )+p(S∩P ).

The objective reflects the follower’s cooperative behavior: From his optimal
solutions he chooses a solution which maximizes the leader’s revenue. This is a
common assumption for such pricing games and is made to avoid technicalities
with small ε-values (cf. [15]).

Theorem 1. Given a SIS instance (G,P,w, b) with |P | = k, optimal leader
prices can be computed in time O(k3 (|V (G)| + |E(G)|)).

We present a sketch of the proof in Sect. 2. It builds on the analysis of a
special case where priceable vertices are not allowed to be adjacent. For this
special case, we formulate a combinatorial algorithm. Its analysis relies on a
linear program, and the computed price vectors have a special structure which
is important for the general case.

For the general case, this combinatorial algorithm allows us to compute opti-
mal leader-prices for any subset of non-adjacent, priceable vertices. However,
enumerating all subsets is not efficient. An ordering-property that is inherent
to interval graphs allows us to show that we only need to look at O(k2) many
subsets. We express this property as a recursion and formulate a dynamic pro-
gramming algorithm. We remark that our theorem is one of the few cases in
which one can solve a Stackelberg pricing game based on a non-trivial optimiza-
tion problem to optimality.

As a complementary result, we show that the Stackelberg matching game is
hard to approximate. Analogously, we formulate the pricing problem as follows.

Stackelberg Matching

Input: A graph G = (V,E) with priceable edges P ⊆ E where k = |P |.
For every e ∈ P there is a benefit b(e) ∈ R, and for every e ∈ F = E \ P
there are fixed weights w(e) ∈ R.
Objective: Find a price function p : P → R≥0 maximizing

maxM{b(M ∩ P ) − p(M ∩ P ) | M is a maximum weight matching},

where the weight of a matching M is defined as w(M ∩ F ) + p(M ∩ P ).
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Theorem 2. Stackelberg Matching is APX-hard even when the graph G
is bipartite, w(f) ∈ {1, 2} for all f ∈ F , and b(e) = 4 for all e ∈ P .

In Sect. 3, we sketch the theorem’s proof. The theorem rules out that Stack-
elberg Matching is fixed-parameter tractable when parameterized by the
number of fixed weight values. Moreover, the theorem shows that Stackel-

berg Interval Scheduling on perfect graphs–instead of interval graphs–is
APX-hard. The matching problem on a graph is equivalent to the independent
set problem on its line graph. And it is known that the line graph of a bipartite
graph is a perfect graph. This complements Theorem 1 since perfect graphs are
a super-class of interval graphs.

Corollary 1. Stackelberg Independent Set on Perfect Graphs is
APX-hard even if w(f) ∈ {1, 2} for all f ∈ F and b(e) = 4 for all e ∈ P .

In the full version of the paper, we show that the Stackelberg maximum spanning
tree game is APX-hard. This follows readily with the proof by Cardinal et al. [10]
for the minimization version. Yet, it shows that a Stackelberg pricing game based
on a packing problem is hard if the follower optimizes over a matroid.

Additionally, we take a step back from our example problems and study the
complexity of the Stackelberg pricing game in its own right. It turns out that
there are combinatorial optimization problems in NP such that the correspond-
ing Stackelberg pricing game is Σp

2 -complete. In other words, such a pricing
problem is computationally difficult even if an NP oracle is provided, unless the
polynomial hierarchy collapses to the second level.

Theorem 3. There is a linear combinatorial maximization problem Π in NP
such that the Stackelberg Π is Σp

2 -complete.

We present the proof in the full version of the paper.

1.2 Related Work

As mentioned above, Labbé et al. [14] use the Stackelberg shortest path game to
model road-toll problems. They establish NP-hardness and use LP bi-level for-
mulations to solve smaller instances. Roche et al. [16] formulate a combinatorial
approximation algorithm with logarithmic approximation guarantee. The best
lower bound is due to Briest et al. [6]: they show that the problem is NP-hard
to approximate within a factor of less than 2. This is an improvement above
previous results by Joret [13] showing APX-hardness. For a survey on the Stack-
elberg shortest path game and bi-level programming see Hoesel [12] or Labbé
and Violin [15].

Bilo et al. [4] show that the Stackelberg shortest path tree game is NP-hard,
and give an efficient algorithm in case the number of priceable edges is constant;
their algorithm was improved by Cabello [9]. Briest et al. [8] develop an efficient
algorithm for a special case of the Stackelberg bipartite vertex cover game. Their
algorithm is based on max-flow computations. An improved algorithm, building
on the preflow-push algorithm, was later given by Bäıou and Barahona [1].
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Cardinal et al. [10,11] investigate the Stackelberg minimum spanning tree
game. They show APX-hardness and prove several positive approximation
results. The game remains NP-hard if the instances are planar graphs, and it
becomes polynomial-time solvable on graphs of bounded treewidth. Bilo et al. [3]
consider further variations.

Briest et al. [8] analyze general Stackelberg network pricing games, and give a
logarithmic approximation algorithm. This algorithm uses a single price strategy.
Independently, a slightly more general result was obtained by Balcan et al. [2].
Böhnlein et al. [5] study the single price strategy in a non-discrete setting as well
as the parameterized complexity of such pricing problems.

Briest et al. [7] study Stackelberg pricing games based on the knapsack and
vertex cover problem. Here, the follower runs a known approximation algorithm.

2 Stackelberg Interval Scheduling Games

Recall that an instance of the interval scheduling problem is given by a set I of
intervals. Each interval is specified by a tuple (si, ti) ∈ R

2 with si < ti and a
weight w(i) ∈ R. As mentioned in the introduction, associated to I there is an
interval graph G = (V,E). It is well-known that the interval representation of
an interval graph is not unique. We say that (v1, . . . , vk) is an interval order of
{v1, . . . , vk} ⊆ V if there exists an interval representation such that sv1 ≤ . . . ≤
svk

.
Before we can turn to the general problem, we need to analyze a special case

of Stackelberg Interval Scheduling. In this case, we set aside the benefits
on the priceable vertices P . Instead, we require that P ⊆ S where S is the
follower’s solution. The goal of the leader is to minimize the total price under
which all her vertices are bought. If all priceable vertices have to be part of S, P
itself has to be an independent set, i.e., in terms of interval scheduling priceable
intervals are non-overlapping.

2.1 Stackelberg Interval Scheduling with Non-overlapping Intervals

Stackelberg Interval Scheduling with non-overlapping inter-

vals (NOSIS)

Input: An interval graph G = (V,E) with priceable vertices P ⊆ V and
fixed weights w(u) for u ∈ F = V \ P . The set P is an independent set of
G and |P | = k.
Objective: Find a price function p : P → R≥0 such that there is a max-
imum weight independent set S with P ⊆ S and p(P ) is minimum. The
weight of an independent set S is defined as w(S ∩ F ) + p(S ∩ P ).

Briest et al. [8] formulate a linear program for so-called Stackelberg Network
Pricing Games which generalize NOSIS. Their linear program has exponentially
many constraints but it can be solved in polynomial time using a separation
oracle. We formulate a linear program for NOSIS where the number of constraints
is of order O(k2). More importantly, this linear program is crucial for results we
give later.
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A Linear Program for NOSIS. Given a NOSIS instance (G,P,w) and a
price function p, we say G under p when we take the weights of vertices in P
determined by p. A price function p is feasible if there exists a maximum weight
independent set S in G under p such that P ⊆ S.

To set up the linear program, several independent sets of subsets of F have
to be computed. For a subset U ′ ⊆ F , let opt(U ′) be the weight of a maximum
weight independent set of the induced graph G[U ′].

If a price function p is feasible, the weight of maximum weight independent
set that contains all priceable vertices must be at least opt(F )–the maximum
weight of an independent without priceable vertices. Let U := {u ∈ F | (u, v) �∈
E,∀v ∈ P} be the set of vertices with fixed weights that are not adjacent to any
priceable vertex. Hence, opt(F )− opt(U) is a lower bound on the total price of a
feasible price function. This lower bound yields the first constraint of our linear
program: every feasible price function p necessarily satisfies

p(P ) ≥ opt(F ) − opt(U).

However, this constraint is not sufficient to ensure that p is feasible. For example,
the price vector p′ = (opt(F ) − opt(U), 0, . . . , 0) satisfies the constraint but it
is unlikely feasible. Analogous constraints for subset of priceable vertices are
necessary. With Proposition 1, we show that it is sufficient to consider constraints
for subsets of vertices that are consecutive in an interval order.

Let I = (v1, v2, . . . , vk) be an interval order of the priceable vertices P .1 For
a consecutive sub-series vi, . . . , vj of I, we derive a lower bound on p(vi) + . . . +
p(vj). The constraint is set up under the condition that the vertices v1, . . . , vi−1

and vj+1, . . . , vk are included in every optimal solution of the follower. Hence,
we want to consider only the vertices of F that interfere with vi, . . . , vj but not
with the remaining priceable vertices. The relevant subset of F is denoted by
G[i, j]. A formal definitions is given in the full version. To define Ḡ[i, j], we also
remove the vertices of F that are adjacent to vi, . . . , vj . The weights of maximum
weight independent sets are denoted as opt(G[i, j]) and opt(Ḡ[i, j]), respectively.
In terms of interval scheduling, think of the instance that is between the intervals
corresponding to vi−1 and vj+1. It holds that opt(G[1, k]) = opt(F ) and that
opt(Ḡ[1, k]) = opt(U). With this notation, the NOSIS-LP has constraints

p(vi) + . . . + p(vj) ≥ opt(G[i, j]) − opt(Ḡ[i, j])

for all 1 ≤ i ≤ j ≤ k and the objective is to minimize p(P ). Note that these are
O(k2) constraints in total.

Proposition 1. Given a NOSIS instance (G,P,w) with the interval order I =
(v1, . . . , vk) of P , a price vector p ∈ R

k
≥0 is feasible if and only if it satisfies the

constraints of the corresponding NOSIS-LP.

1 Any interval representation is suitable for our purpose, but we need to fix one.
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Proposition 1 implies that an optimal price vector can be computed using
the NOSIS-LP. Its proof is contained in the full version of the paper.

A Combinatorial Algorithm for NOSIS. In this section, we introduce a
combinatorial algorithm for NOSIS. It computes a price vector based on an
interval order (v1, . . . , vk) of P in k iterations. In iteration i ∈ [k] the price for
vi is computed based on one modified constraint of the NOSIS-LP. We use the
subset G[1, i] of F in iteration i where we add the priceable vertices v1, . . . , vi−1

with the previously computed prices. We denote this by G[1, i](p) and the weight
of a maximum weight independent set as opt(G[1, i](p)) where p is a price vector
for v1, . . . , vi−1.

Algorithm 1. Stackelberg Interval Scheduling with non-overlapping

intervals

1: Input: a NOSIS instance (G, P, w) and an interval order (v1, . . . , vk) of P
2: for i := 1, . . . , k do
3: p(vi) = opt(G[1, i](p(v1), . . . , p(vi−1))) − opt(Ḡ[1, i]) − ∑i−1

l=1 p(vl)

4: return (p(v1), . . . , p(vk))

Proposition 2. Given a NOSIS instance (G,P,w) and an interval order I =
(v1, . . . , vk) of P , if p ∈ R

k
≥0 is a price vector computed by Algorithm 1, then p

is feasible.

In the proof, we show that the computed price vector satisfies all constraints of
the NOSIS-LP.

Proposition 3. Given a NOSIS instance (G,P,w) and an interval order I =
(v1, . . . , vk) of P , Algorithm 1 computes a feasible price vector p with minimum
total weight p(P ) in time of order O(k (|V | + |E|)).
To prove the proposition, we consider the set O of feasible price vectors with
minimum total weight. We compare p to a price vector q = arg maxo∈O{ l |
p(v′

l) = o(v′
l) for l′ < l }. That is, q is the optimal price vector which agrees

with p on as many positions as possible, starting at position 1. It is possible to
turn q into p by ’shifting weight’ to higher indices while keeping the total weight
constant. Hence, we show that p has minimum total weight.

Moreover, the proof hints that the first entry of p is special. The following
lemma shows that p without the first entry is feasible for the remaining priceable
vertices. This property is essential for the next section.

Lemma 1. Given a NOSIS instance (G,P,w) and an interval order I =
(v1, . . . , vk) of P , if p ∈ R

k
≥0 is a price vector computed by Algorithm 1, then

there exists an maximum weight independent set S under (0, p(v2), . . . , p(vk))
such that {v2, . . . , vk} ⊆ S.
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2.2 Stackelberg Interval Scheduling

In this section, we formulate a polynomial time algorithm that solves Stack-

elberg Interval Scheduling (SIS). Here, priceable vertices can be adjacent.
The input of the algorithm is a SIS instance (G,P,w, b) and an interval order
I = (v1, . . . , vk) of P . Two techniques characterize the algorithm.

The first ingredient uses the NOSIS machinery to compute optimal prices for
an independent set P ′ of G where P ′ ⊆ P . For this, we compute the induced
subgraph G′ = G[F ∪P ′]. Now (G′, P ′, w) is an instance of NOSIS. Algorithm 1
allows us to compute an optimal price vector p′. In turn, the price vector p′ can
be extended to a price vector p for the original SIS instance by setting the price
of vertices in the set P \P ′ to zero. For the fixed set P ′, the benefits are constant,
and p has a minus sign in the leader’s objective function of the SIS instance.
Consequently, the price vector p yields maximum revenue under the assumption
that P ′ is contained in the follower’s solution. We denote this maximum revenue
by

revG(P ′).

On this account, the SIS algorithm selects several independent sets of P and
determines their maximum revenue. However, it cannot explicitly enumerate all
independent sets of P since it is supposed to run in polynomial time.

The second ingredient is dynamic programming: the algorithm solves a
SIS instance from a series of sub-instances. The first sub-instance contains only
the priceable vertex v1. In each iteration, one priceable vertex is added accord-
ing to the interval order I. Define Pi := {v1, v2, . . . , vi} and Gi := G[F ∪ Pi]
for i ∈ [k]. Note that in each induced subgraph all vertices with fixed weights
are present. The sub-instance of iteration i is (Gi, Pi, w, b|Pi

). In iteration i our
algorithm computes an independent set Si ⊆ {v1, v2, . . . , vi} with vi ∈ Si. The
set Si is the optimal selection to form an independent set of Pi−1 and vi. For-
mally, for any independent set Q ⊆ Pi−1 we have revGi

(Q ∪ vi) ≤ revGi
(Si). In

Proposition 4, we show that the optimal solution in iteration i can be computed
with the following recursion:

Si = arg max
j<i, (vi,vj) �∈E

revGi
(Sj ∪ {vi})

Note that Sj ∪ {vi} is an independent set since we require that (vi, vj) �∈ E. To
allow our algorithm to test sets where Sj = ∅, a priceable vertex v0 with S0 = ∅
is added. The vertex v0 is isolated in G and b(v0) = 0. The interval order I is
extended to (v0, v1, . . . , vk) and we put Pi = Pi ∪ {v0} for all i ∈ [k].

The vertex v0 together with S0 = ∅ is the base case for the recursion. After
computing optimal independent sets for v0, v1, v2, . . . , vk we can select the glob-
ally optimal set and thus solve the instance to optimality. The SIS algorithm is
formulated around the recursion above. The full version contains a formulation
in pseudo-code. The algorithm has a running time of order O(k3 (|V | + |E|)).
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Proposition 4. Given a SIS instance (G,P,w, b) and an interval order I =
(v0, v1, . . . , vk) of P ∪ {v0}, the SIS algorithm computes an optimal price vector.

Proof. To prove the proposition, we show that it is not necessary to explicitly
enumerate all independent sets to determine an optimal selection of priceable ver-
tices. If a new priceable vertex is considered, it suffices to test the pre-computed
independent sets. We show that a different selection of vertices cannot yield more
revenue. Let i, j ∈ [k] such that j < i and (vi, vj) �∈ E.

Suppose that we are in the i-th iteration. Let us compare the set Sj to
a different selection of vertices. For this, let Q ⊆ {v1, v2, . . . vj} be another
independent set with vj ∈ Q. Furthermore, let p and q be optimal price vectors
for the NOSIS instances (G[F ∪ Sj ], Sj , w) and (G[F ∪ Q], Q,w), respectively.
By induction we may assume that

b(Sj) − p(Sj) ≥ b(Q) − q(Q). (1)

Now, we show that Sj is an optimal selection of an independent set if vj and vi
are fixed. For ease of notation, let GS = G[F∪Sj∪{vi}] and GQ = G[F∪Q∪{vi}].
Let p̂ and q̂ be optimal price vectors for the NOSIS instances (GS , Sj ∪ {vi}, w)
and (GQ, Q ∪ {vi}, w), respectively. Suppose that

b(Sj) − p̂(Sj) + b(vi) − p̂(vi) < b(Q) − q̂(Q) + b(vi) − q̂(vi). (2)

From (1) and (2) we derive a contradiction. More precisely, we show that q̂
(without q̂(vi)) yields more revenue than q for (G[F ∪ Q], Q,w).

Let Ī = (vk, vk−1, . . . , v1) be the reversed interval order of I. This interval
order induces interval orders ĪS = Ī[Sj ∪ {vi}] and ĪQ = Ī[Q ∪ {vi}] for the
priceable vertices of Sj ∪ {vi} and Q ∪ {vi}, respectively. We choose the two
price vectors p̂ and q̂ as computed by Algorithm 1 for the interval orders ĪS and
ĪQ, respectively. Due to the special structure of price vectors computed by the
combinatorial algorithm, the following claim holds.

Claim. p̂(vi) = q̂(vi)

This allows us to mix up the price vectors. Consider the NOSIS instance (GS , Sj∪
{vi}, w). With p and q̂(vi) we form the price vector p′ = (p(v1), . . . , p(vj), q̂(vi)).

Claim. The price vector p′ is feasible for (GS , Sj ∪ {vi}, w).

This claim holds because q̂(vi) was computed together with vj (recall that vj ∈
Q). Vertex vj is also contained in Sj . Any vertex v ∈ F that is adjacent to vi an
some priceable vertex in either Q or Sj (that is not vj) must also be adjacent to
vj ; this is due to the ordering-property of interval graphs. Intuitively, vertex vj
cancels influences that a different selection Q can have on the price of vi.

Since p̂ is an optimal price vector for (GS , Sj ∪ vi, w),

b(Sj) − p̂(Sj) + b(vi) − p̂(vi) ≥ b(Sj) − p(Sj) + b(vi) − q̂(vi).
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With (2) it follows that

b(Q) − q̂(Q) + b(vi) − q̂(vi) > b(Sj) − p(Sj) + b(vi) − q̂(vi)

which simplifies to
b(Q) − q̂(Q) > b(Sj) − p(Sj)

With (1) it follows that

b(Q) − q̂(Q) > b(Q) − q(Q). (3)

Claim. Price vector q̂ (without p̂(vi)) is feasible for (G[F ∪ Q], Q,w).

Proof. As q̂ was computed with ĪQ, the claim follows from Lemma 1.

Equation 3 states that vector q̂ (without p̂(vi)) yields more revenue than q
for (G[F ∪ Q], Q,w). This contradicts that q is an optimal price vector. As a
consequence, there can be no independent set like Q that yields strictly more
revenue than Sj when vj and vi are fixed. Therefore, it is valid to test only the
pre-computed independent sets. After the computation, our algorithm chooses
the optimal selection of priceable vertices and the corresponding price vector is
returned.

3 Stackelberg Matching Games

One of the most common scheduling problems involves n jobs and m machines;
each machine can execute at most one job, and the task is to decide which
machine executes which job. This situation can be modeled by a bipartite graph
G = (U ∪ V,E). The two blocks U and V correspond to the jobs and machines,
respectively. To set up a Stackelberg pricing game, we say that the follower
receives a payment to execute job i on machine j which is represented by an
weighted edge connecting the corresponding vertices. Hence, he solves a maxi-
mum weight matching problem to maximize his income. Let a subset of jobs or
vertices belong to the leader. An edge e which is incident to such a vertex is a
priceable edge and has a benefit b(e). The leader’s objective is to set prices p(e)
that maximize her revenue b(e) − p(e) over the priceable edges that are part of
the follower’s matching.

In Sect. 1, we formalized this scenario as the Stackelberg matching game. In
this section, we sketch the proof of the following theorem.

Theorem 4. The Stackelberg Matching is NP-hard even when the graph
G is bipartite, w(f) ∈ {1, 2} for all f ∈ F , and b(e) = 4 for all e ∈ P .

As we will see in the proof, the graph used for the reduction covers the model
of the scheduling problem just described. Moreover, the reduction implies the
stronger statement of Theorem 2. This extension is similar to the APX-hardness
proof for the Stackelberg minimum spanning tree game by Cardinal et al. [10].
We do not present it in this extended abstract.
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Proof (Sketch of Theorem 4’s proof). We provide a reduction from the NP-
complete Set Cover problem. Shorthand, we write

⋃
C for

⋃
c∈C c where C is

a family of subsets.

Set Cover

Input: A ground set B = {û1, . . . , ûn} and a family S = {S1, . . . , Sm} of
subsets of B where

⋃ S = B.
Objective: Find a subfamily C ⊆ S with minimum cardinality such that⋃

C = B.

Given a Set Cover instance (B,S) with n = |B| and m = |S|, we construct a
Stackelberg Matching instance (G,P, b, w). The graph G = (V,E = P ∪ F )
is set up as follows.

– There is the set B ⊆ V that contains a vertex uj ∈ B for each ûj ∈ B.

A subset-gadget is constructed for each subset of S. The set of priceable edges
consists of two disjoint subsets P = Psub ∪ Pcov.
Let Si ∈ S and ûj ∈ Si, then

– there is a vertex ui,j ∈ V \B and a priceable edge σi,j = (ui,j , uj) ∈ Pcov with
benefit b(σi,j) = 4. An edge σi,j is called a covering-edge of uj . The subset
Pcov ⊂ P contains all covering-edges.

– there are two vertices vi, wi ∈ V \ B as well as the priceable edge si =
(vi, wi) ∈ Psub with benefit b(si) = 4. The edge si is called the subset-edge of
Si. The subset Psub ⊂ P contains all subset-edges.

– there are paths of length two connecting vi to each ui,j . Such a path consists
of a vertex ūi,j ∈ V \ B as well as the edge (ui,j , ūi,j) ∈ F with weight
w((ui,j , ūi,j)) = 1 and the edge (ūi,j , vi) ∈ F with weight w((ūi,j , vi)) = 2.

Given a price function p there can be several maximum weight matchings.
We call the maximum weight matchings that yield maximum revenue for the
leader maximum revenue matchings under p. The idea of the construction is
to enforce certain matchings as maximum revenue matchings by having large
enough benefits on all priceable edges.

Claim. A maximum revenue matching contains m subset-edges and n covering-
edges.

Our proof relies on establishing bounds on the prices of edges. We show that
under an optimal price function all covering-edges in a maximum revenue match-
ing have price 1. If a subset-gadget has a covering-edge with price 1, then its
subset-edge has to have price 2. Without such a covering-edge it suffices to set
price 1 for the subset-edge. Consequently, a subset-gadget is more “expensive” if
it is covering some ground elements and finding a minimum set cover coincides
with computing an optimal price function. More formally, we show the following
claim.

Claim. If p is an optimal price function, p(s) ∈ {1, 2} for all s ∈ Psub.
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To prove the theorem, we have to show that a minimum set cover corresponds
to an optimal price function. With the following two claims, we can convert a
price function to a cover and vice-versa.

Claim. Given a set cover C ⊆ S where t = |C|. Consider a price function pC set
up as follows.

(i) For Si ∈ C set pC(si) = 2 and for σ ∈ σi set pC(σ) = 1, and
(ii) for Si �∈ C set pC(si) = 1 and for σ ∈ σi set pC(σ) = 0.

Then a maximum revenue matching of G under pC yields n(4 − 1) + t(4 − 2) +
(m − t)(4 − 1) revenue for the leader.

Claim. Let p be an optimal price function. Then the family of subsets D = {Si ∈
S | p(si) = 2} is a set cover of B i.e.

⋃
D = B.

Given an optimal price function or minimum cover, we convert it to a corre-
sponding cover or price function, respectively. If we suppose that these corre-
sponding objects are not optimal, a contradiction can be reached by using the
transformations again.

Note that, there is a subset U ⊆ V (G) of the vertices that all belong to the
same block of G, and all priceable edges are incident to some vertex in U . Hence,
the pricing problem based on the scheduling problem from the beginning of this
section is APX-hard.

4 Conclusion and Future Work

We aim to advance the study of Stackelberg pricing games where the follower
solves a combinatorial optimization problem. We contributed a model to handle
packing problems whereas up to now only covering problems were studied. Given
this model, we studied the complexity of such pricing games depending on the
complexity of the underlying follower problem. We showed that Stackelberg

Interval Scheduling can be solved in polynomial time. This stands in contrast
to the fact that most previously studied Stackelberg pricing games are NP-hard
even if the follower’s problem is solvable in polynomial time. This turned out
to be the case for Stackelberg Matching and Stackelberg Maximum

Spanning Tree. In addition, we showed that Stackelberg pricing games can be
Σp

2 -complete even if the underlying problem is in NP.

Pricing Independent Sets. Recall that for Stackelberg Interval

Scheduling the follower computes a maximum independent set in an inter-
val graph. It is natural to ask for the complexity of this pricing problem on
more general graph classes. Corollary 1 says that pricing independent sets on
perfect graphs is APX-hard. It might be intriguing to study the complexity of
the Stackelberg pricing game where the follower computes a maximum weight
independent set in a chordal graph since these graphs generalize interval graphs
and are perfect.
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Σp
2 -Hardness. Theorem 3 states that there is a problem in NP whose Stack-

elberg pricing problem is Σp
2 -complete. However, the problem we use is rather

artificial and not covered by any well-known problem to the best of our knowl-
edge. In the context of this paper, the question arises whether Stackelberg

Π is Σp
2 -complete if Π is some classical NP-complete maximization problem. To

stimulate further research on this matter, we formulate the following conjecture.

Conjecture 1. Stackelberg Π is Σp
2 -complete if Π is the general independent

set problem or if Π is the knapsack problem.
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3. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Specializations and generalizations of
the stackelberg minimum spanning tree game. Theoret. Comput. Sci. 562, 643–657
(2015)
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Abstract. This paper studies the r-range search problem for curves
under the continuous Fréchet distance: given a dataset S of n polygonal
curves and a threshold r > 0, construct a data structure that, for any
query curve q, efficiently returns all entries in S with distance at most r
from q. We propose FRESH, an approximate and randomized approach
for r-range search, that leverages on a locality sensitive hashing scheme
for detecting candidate near neighbors of the query curve, and on a
subsequent pruning step based on a cascade of curve simplifications. We
experimentally compare FRESH to exact and deterministic solutions,
and we show that high performance can be reached by suitably relaxing
precision and recall.

Keywords: Similarity search · Range reporting ·
Locality Sensitive Hashing · Fréchet distance · Algorithm engineering

1 Introduction

The target of this paper is similarity search for time series and trajectories or,
more generally, for curves: indeed, time series and trajectories can be envisioned
as polygonal curves with vertices from IRd, for a suitable dimension d ≥ 1.1 Sim-
ilarity search of curves frequently arises in several applications, like ridesharing
recommendation [27], frequent routes [25], players performance [21], and seismol-
ogy [26]. In the paper, we address the r-range search problem: given a dataset S
of n curves from a domain X and a threshold r > 0, construct a data structure
that, for any query curve q ∈ X , efficiently returns all entries in S with distance
at most r from q. Range reporting is a primitive widely used for solving the
similarity join and k-nearest neighbor problems.

There is no common agreement on the best distance measure for curves, for
it depends on the application domain, quality of input data, and performance
requirements. There are several functions to measure the distance between two
curves, such as continuous Fréchet distance, Dynamic Time Warping (DTW),
1 Usually, we have d = 1 for time series and d > 1 for trajectories.
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Euclidean distance, and Hausdorff distance. We focus on the continuous Fréchet
distance, that was introduced in computer science by Alt and Godau in the
’90s [3]. The continuous Fréchet distance and its discrete variant, named dis-
crete Fréchet distance [19], have been widely studied in theory (e.g. [1,9,22]) and
used in different applications, like handwriting recognition [28], protein struc-
ture alignment [31] and, in particular, trajectories of moving objects (e.g., [24]).
Recently, the Fréchet distance has been addressed by the ACM SIGSPATIAL
Cup 2017, drawing attention to this measure from a practical domain.

The Fréchet distance2 between two curves is traditionally explained with this
metaphor: a man is walking on a curve and his dog on another curve; the man
and dog follow their curves from start to end and can vary their speeds, but
they cannot go backward; the minimum length of the leash necessary to connect
man and dog during the walk is the continuous Fréchet distance. The Fréchet
distance does not require a one-to-one mapping between points of two curves,
and it is hence invariant under differences in speed: this allows, for instance, to
detect the trajectories of two cars following the same street but with different
speeds due to traffic conditions.

Range search is known to be computational demanding in high dimensions
under different distances, including the Fréchet distance: from a worst-case point
of view, there is indeed evidence that it is not possible to obtain a truly sublinear
algorithm unless with a breakthrough for the Satisfiability problem [9,16]. Local-
ity Sensitive Hashing (LSH), introduced in [23], is the most common technique
for developing approximate and randomized algorithms for similarity search
problems. LSH is a hashing scheme where near points have a higher collision
probability than far points. Recently, [16] has introduced a family of LSH schemes
for curves under the discrete Fréchet and Dynamic Time Warping distances.

1.1 Our Results

The goal of this paper is to describe and experimentally evaluate FRESH, an
approximate and randomized approach for r-range search under the continuous
Fréchet distance. FRESH builds on the theoretical ideas in [16] and extends it by
providing a solid and efficient framework for trading precision and performance.

Algorithm Design. The core component of FRESH is a filter based on the LSH
scheme for the discrete Fréchet distance in [16], which is boosted with multiply-
shift hashing [15] and tensoring [4,14] for better performance. For a given input
set S with n curves and a query curve q, the filter selects as candidate near
neighbors all curves colliding with q under at least one of L hash functions
randomly selected from the LSH scheme. This filters out a significant number of
curves, without even reading them. All candidates are associated with a score,
representing the fraction of collisions under the L hash functions. If FRESH is
seen as a classifier for detecting near and far curves for a given query q, the score
of a curve p represents the probability that p and q are near.

2 If not differently stated, “Fréchet distance” refers to the continuous definition.
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The second component of FRESH is a candidate pruning step for reducing
false positives (i.e., far curves marked as near). The pruning consists in verifying
that the fraction 0 ≤ τ ≤ 1 of candidates with smaller scores have continuous
Fréchet distance from the query not larger than r. As verifying the Fréchet
distance is a costly operation, we propose a procedure exploiting a cascade of
curve simplifications from [17] and verification heuristics from [6,11]: each step
can successfully show that the distance is larger or not than r, or it can fail and do
not provide an answer; the procedure applies the aforementioned simplifications
and heuristics until one of them succeeds.

Performance/Quality Trade-Off. FRESH trades the quality of the results
with the overall performance by suitably settings the aforementioned L and τ
parameters.3: We measure the quality of the results in terms of: (1) recall, that
is the fraction of true positives reported by the algorithm over all the positives
in the ground truth; (2) precision, that is the fraction of true positives over
the predicted positives (i.e. the sum of true positives and false positives). By
increasing the number L of hash functions used in FRESH, it is possible to
increase the recall of our algorithm by increasing the query time (linear in L)
and of the space requirements (equal to L ·n+I, where I is the input size). Once
the recall has been fixed, it is possible to improve the precision by increasing the
τ parameter at the cost of a higher query time. The recall is not affected by this
step and a perfect precision is reached by setting τ = 1.

Practical and Theoretical Guarantees. We have carried out an extensive
experimental evaluation of the FRESH algorithm over several datasets. To eval-
uate FRESH, we use it as a primitive for solving a self-similarity join on each
dataset D: specifically, for every curve in D, we perform an r-range search query
over D. The experiments show that the scores computed under a query q pro-
vide a good indicator of the distance from q, and thus filtering points according
with scores is a sound approach. From a performance point of view, we compare
FRESH with the exact solutions that won the ACM SIGSPATIAL 2017 chal-
lenge [6,11,18]. When the recall is approximately 70–80% and the precision is
approximately 50%, FRESH exhibits better running times with speedups above
5x for some inputs. Although the precision is low, the returned points are never
too far from the query (up to a constant factor from r) by the property of the
LSH scheme. With higher precision, the heuristics adopted in the exact solu-
tions, in particular the bounding box approach in [18], are very effective with
the 1-dimensional datasets (i.e., time series) considered in the experiments and
highlight the limitations of FRESH in this setting. FRESH is also supported by
the theoretical foundations of the LSH scheme in [16].

The FRESH algorithm is described in Sect. 3 and the experimental results in
Sect. 4. The code of FRESH is available at https://github.com/Cecca/FRESH.
3 In addition to parameters τ and L, the FRESH algorithm has other second order

parameters that are introduced in Sect. 3, which marginally affect performance and
quality. However, from an application point of view, the trade-off is mainly captured
by L and τ , and the remaining parameters can be left to the default value in the
implementation.

https://github.com/Cecca/FRESH
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We refer to the full version [12] for a more detailed coverage of our results,
including the theoretical analysis bounding the collision probability and further
experiments.

1.2 Related Works

Similarity Search for Curves. Data structures for searching among curves
under the Fréchet distance have been studied under different angles. One of the
earlier theoretical works is [22] that proposes a nearest neighbor data structure
for Fréchet distance. In 2011, [7] revived the topic motivated by the availability
of high-resolution trajectories of soccer players in the emerging area of sports
analytics. A comprehensive study of the complexity of range searching under
the Fréchet distance appeared in [1], that also gives lower bounds on the space-
query-time trade-off of range searching under the Fréchet distance. Recently,
the annual data competition within the ACM SIGSPATIAL conference on geo-
graphic information science has drawn attention to the timeliness of this prob-
lem [30]. The focus of the challenge was on exact solutions and hence none of
the awarded submissions [6,11,18] propose approximate solutions. An LSH for
the discrete Fréchet distance is described in [16]. A follow-up paper [20] provides
better theoretical approximation bounds using a slightly different approach, but
their results do not apply to the setting that we focus on in this paper. Sketches
for the Hausdorff and discrete Fréchet distances are proposed in [5], which gives
an LSH scheme with similar properties of [16].

Verifying the Fréchet Distance. In order to improve the precision of the
proposed LSH scheme, we suggest to filter the query results by verifying the
distances for selected curves. However, verifying the distance is a non-trivial
and expensive operation. It is known that the (discrete or continuous) Fréchet
distance between two fixed curves cannot be decided in strictly subquadratic
time in the number of vertices of the curves, unless the Strong Exponential
Time Hypothesis is false [8]. The fastest algorithms for computing the continuous
and discrete Fréchet distance are described in [10] and [2]. Both algorithms
take roughly quadratic time. However, [17] shows that one can approximate the
distance in near-linear time under certain realistic assumptions on the shape of
the input curves. We use this algorithm to filter the query results, in order to
improve the precision of our method.

2 Preliminaries

Continuous and Discrete Fréchet Distances. A time series (or trajectory) is
a series (p1, t1), . . . , (pm, tm) of measurements pi ∈ IRd of a signal taken at times
ti, where 0 = t1 < t2 < . . . < tm = 1 and m is finite. A time series denotes a
polygonal curve p of length m and defined by the sequence of vertices p1, . . . , pm.
A polygonal curve p may be viewed as a continuous function p : [0, n] → IRd

by linearly interpolating p1, . . . , pm in order of ti, i = 1, . . . , m. Each segment
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between pi and pi+1 is called edge pipi+1 = {xpi +(1−x)pi+1|x ∈ [0, 1]}. We let
|p| denote the length of curve p, that is the number of vertices in p. The space
of all polygonal curves in IRd is denoted by Δd. As all our curves are polygonal,
we omit the term “polygonal” for the sake of simplicity.

For two vertices in p, q ∈ IRd, we let dE(p, q) = ‖p−q‖2 denote their Euclidean
distance. Let Φn be the set of all continuous and non-decreasing functions φ from
[0, 1] into [1, n]. The continuous Fréchet distance of two curves p and q, denoted
by dF (p, q), is defined as

dF (p, q) = inf
φ1∈Φ|p|
φ2∈Φ|q|

max
t∈[0,1]

∥
∥pφ1(t) − qφ2(t)

∥
∥
2
. (1)

Each pair (φ1, φ2) ∈ Φ|p| × Φ|q| is called continuous traversal, and it can been
seen as a schedule for simultaneously traversing the two curves, starting on the
first vertices of both curves at time 0 and ending on the last vertices at time 1.

The problem of verifying that the Fréchet distance between two curves is
less than or equal to a threshold r is usually done with the so-called free space
diagram [3], which has quadratic cost in the worst case. However, it was shown
in [17] that if the algorithm operates on simplified copies of the curves, then the
complexity reduces to near-linear under certain assumptions on the shape of the
curves. The simplification introduces an approximation error to the verification
algorithm, but as shown in [17], the error can be bounded if the simplification
parameters are wisely chosen. By exploiting the bounded error, it is possible to
use the simplification for confirming or denying that two curves have distance
at most r.

Range Search and LSH. Given a set S ⊆ X of n points in a domain X ,
a distance function d : X × X → [0,+∞), and a radius r > 0, the r-range
search (also known as range reporting) problem requires to construct a data
structure that, for any given query point q ∈ X , returns all points p ∈ S such
that d(q, p) ≤ r. We say that a point p is a r-near or r-far point of q if d(p, q) ≤ r
or d(p, q) > r, respectively; if r is clear in the context, we will just say that p is
a near or far point of q.

Locality Sensitive Hashing (LSH) [23] is a common tool for r-range search
in high dimensions. For a given radius r > 0 and approximation factor c > 1,
an LSH is an hash scheme H where for a random selected map h ∈ H and
two points x and y, we have that Prh∈H[h(x) = h(y)] ≥ p1 if d(x, y) ≤ r, and
Prh[h(x) = h(y)] ≤ p2 if d(x, y) > c · r. Probabilities p1 and p2 depend on the
LSH scheme and the quality of an LSH scheme is given by ρ = ρ(H) = log 1/p1

log 1/p2

(values of ρ closer to 0 are better). Concatenation is a technique for building an
LSH scheme with a small collision probability p2 of far points: by concatenating
k ≥ 1 hash functions randomly and uniformly selected from H, we get an LSH
scheme with collision probability pk

1 for near points and pk
2 for far points.

The standard data structure based on LSH for solving the r-range search
problem is the following [23]. Assume that, after concatenation, we have p2 ≤
1/n. Let �1, . . . , �L be L functions randomly and uniformly chosen from H. The
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data structure consists of L hash tables H1, . . . HL: each hash table Hi stores the
input set S, partitioned by the hash function �i. For each query q, we compute the
set Sq = ∪L

i=1Hi(�i(q)), where Hi(�i(q)) denotes the set of points in S colliding
with q under the hash function �i. Then, we scan Sq and remove all points
with distance larger than r from q; the remaining points are returned as r-near
points of q. If L = Θ

(

p−1
1

)

= Θ (nρ), then the above data structure returns in
expectation a constant fraction of all near points of q.

3 FRESH Algorithm

We let S denote our input set with n curves of maximum length m, and let q be
a query curve. For each query q, FRESH returns a set Oq of pairs (t, st) where
t ∈ S is a curve and 0 ≤ st ≤ 1 is its score. Each score st denotes the likelihood
of t to be close to the query q: a large value of st implies a high probability that
t is a r-near curve of q; further, if two curves t and t′ have scores st ≤ st′ , then
it is more likely that t′ is closer to q than t. Curves with scores equal to 0 are
not reported since they are considered far from q.

The above approach can generate both false negatives and false positives. As
we will later see, false negatives (i.e., near curves that are not reported in Oq)
can be reduced by increasing the number of LSH functions (i.e., the parameter
L) used in the score computations. On the other hand, false positives (i.e., far
curves that are reported in Oq) can be reduced by verifying the distance from
q of a subset of curves in Oq with small scores. Verifying that two curves have
continuous Fréchet distance at most r is however an expensive operation, we thus
propose a heuristic based on a cascade of curve simplifications that efficiently
rules out or confirms the distance between the curves.

The section is organized as follows: Sect. 3.1 explains how scores are com-
puted; Sect. 3.2 describes how to reduce false positives; Sect. 3.3 shows how to
verify if two curves have continuous Fréchet distance at most r.

3.1 Score Computations with LSH

At a high level, the score sp of a curve p ∈ S with query q is given by the
normalized number of collisions with q under L ≥ 1 hash functions from the
LSH scheme Gk

δ described below, where δ and k are suitable parameters.

LSH Scheme Gk
δ . Our starting point is the LSH scheme Ĝδ in [16], which

maps each curve into a smaller curve with vertices from a random shifted grid
Gδ,t =

{

(x1, . . . , xd) ∈ IRd | ∀ i ∈ [d] ∃ j ∈ IN : xi = j · δ + t
}

where δ > 0 is
the side of the grid and t = (t1, . . . td) is a random variable uniformly distributed
in [0, δ)d. For a curve p with vertices p1, . . . , pm, the function gδ,t(p) returns the
curve obtained by: (1) replacing each vertex pi with its closest grid vertex in
Gδ,t; (2) removing consecutive duplicates in the new curve. The LSH family Ĝδ is
defined as Ĝδ = {gδ,t,∀t ∈ [0, δ)d}. We also define Ĝk

δ as the LSH family obtained
by concatenating k ≥ 1 copies of hash functions uniformly and independently
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selected in Ĝδ. We have that Prgk∈Ĝk
δ
[gk(q) = gk(p)] = Prg∈Ĝδ

[g(q) = g(p)]k: the
lower collision probability of far curves allows to decrease false positives.

FRESH requires the computation of a large number of hash values in Ĝk
δ :

indeed, k·L·n hash values are computed at construction time and k·L hash values
for each query. We speed up the hash computation with the tensoring approach.
Tensoring was initially proposed in [4] and then further studied in [14]; to the
best of our knowledge, it has only been used in practice in [29]. The tensoring
approach generates L hash functions building on two collections of

√
L hash

functions, reducing the actual number of hash computations by a
√

L factor.
Specifically, let Λ1 = {g1, . . . , gL′} and Λ2 = {g′

1, . . . , g
′
L′} be two groups of

L′ =
√

L random hash functions from Ĝk/2
δ . Then, it is possible to construct

L′ · L′ = L LSH hash functions from Gk
δ by concatenating the pair (gi, g

′
j) for

all possible values of i and j in {1, . . . L′}. This technique reduces the number of
hash value computations for the initial data structure construction from k ·L ·n
to k · √

L · n, and for the query procedure from k · L to k · √L.
Finally, as storing and searching signatures is quite inefficient, we map all sig-

natures on integers with the multiply-shift hashing scheme H in [15]. We denote
with Gk

δ the LSH hash family obtained by first using the tensoring approach to
construct (a subset of) Ĝk

δ , and then by applying the multiply-shift hashing H
on the signature. We observe that the signature of a curve does not need to be
generated and stored: while we scan a curve p to compute its signature, the hash
value h(g(p)) is built on the fly.

Data Structure. The data structure of FRESH for efficiently computing the
scores leverages on the traditional approach for solving range search with LSH.
L ≥ 1 hash functions g1, . . . , gL are randomly chosen from the above LSH family
Gk

δ , for suitable values of δ and k; then for each gi, a hash table Hi is created for
storing the n input curves partitioned by gi. For each query q, we compute the
multiset Tq = ∪L

i=1Hi(gi(q)), where Hi(gi(q)) denotes the set of curves colliding
with q under gi. If t ∈ Tq and its multiplicity in Tq is ŝt, then its score st is ŝt/L.
Note that the hash tables do not need to store the complete curves but just their
identifiers: thus, the space required by the data structure is I + Θ (Ln) memory
words, where I is the number of words to store S.

3.2 Filtering False Positives

All curves with non-zero score are not too far from the query: indeed, if the hash
function uses a grid of side length δ, then all colliding curves have maximum
distance δ. However, as in general δ > r (in our experiments δ = 4dr, where d
is the point dimension), we may report some curves with distance in (r, δ]. To
improve the precision, a simple approach is to set a threshold Δ and verify all
curves with scores less than Δ. However, the limitations of this approach are:
(1) it is not clear how to select the best Δ as it might be query dependent; (2)
Δ does not directly allow to trade precision and running time. The approach
used in FRESH is to verify a fraction τ , with 0 ≤ τ ≤ 1, of the curves in
Oq with smaller scores. The parameter τ can be used for trading performance
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(with τ = 0 no curve in Oq is verified) with precision (with τ = 1, all curves in
Oq are verified which implies a 100% precision).

3.3 Verifying the Fréchet Distance

Verifying that two curves p and q are within Fréchet distance r is an expensive
operation [8]: to speed up this operation, we introduce the procedure Verify

for checking if two curves p and q have continuous Fréchet distance less than
or equal to r. Verify consists of two procedures, named VerifySimpl and
VerifyHeur, that exploit strategies from [6,11,17]: each procedure can suc-
cessfully show that dF (p, q) ≤ r or dF (p, q) > r, or it can fail and do not provide
an answer. Procedure VerifyHeur exploits the heuristics Equal-time align-
ment [11], Greedy algorithm [6] and Negative filter [6], and it stops as soon as
one of them succeeds. On the other hand, procedure VerifySimpl is a decision
procedure based on the concept of simplification in [17]: p and q are mapped
on suitable smaller trajectories p′ and q′ through a transformation based on a
parameter ε ≥ 0 (ε = 0 gives the original curves). Evaluating distance predicates
on p′ and q′ allows to answer distance predicates on p and q, by suitable setting
the parameter ε. We refer to the full version of this paper [12] for a more detailed
description of VerifySimpl and VerifyHeur. Procedure Verify is then the
following:

1. In the first stage, we only consider the first (p1 and q1) and last vertices (p|p|
and q|q|) of p and q. If ||p1 − q1||2 > r or ||p|P | − q|Q|||2 > r, then the two
curves cannot be r-near by the definition of continuous traversal. We call this
heuristic Endpoints.

2. In the second stage, we look at the bounding boxes of the two curves. If the �1
distance of corresponding corners of the bounding boxes is larger than r, then
the two curves cannot be r-near [18]. We call this heuristic BoundingBox.

3. In the third stage, we use VerifySimpl with decreasing values of ε (which
will be fixed in the experimental analysis), corresponding to simplifications
becoming less aggressive. For a given ε, if VerifySimpl can give an answer,
then we return it, otherwise we move to the next ε.

4. The fourth stage runs if none of the calls to VerifySimpl could return an
answer: in this case we return the result of the invocation of VerifyHeur

on the original curve.

4 Experimental Evaluation

In this section, we present our experimental evaluation of FRESH. Section 4.1
describes the setup of our experiments, including the benchmarks and the
exact baseline algorithm used as reference. Section 4.2 analyzes the performance
and quality of the LSH scheme in FRESH, without the partial verification to
reduce false positives: in particular, we investigate how the number of LSH
repetitions (L) and of LSH concatenations (k) affect performance and quality
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(recall/precision). Section 4.3 examines how the partial verification affects the
performance and precision under different values of the fraction τ of verified
candidate curves, and it analyses the effectiveness of the various heuristics used
in FRESH to prune false positives.

4.1 Experimental Setup

We implement our algorithm in C++ with OpenMP, using the gcc compiler
version 4.9.2. We run the experiments on a Debian GNU/Linux machine (kernel
version 3.16.0) equipped with 24 GB of RAM, and an Intel I7 Nehalem processor
(clock frequency 3.07 GHz).

As benchmarks we use datasets from the UCR collection [13], which is com-
prised of 85 datasets of trajectories in one dimension. For brevity, we report on
2 of these datasets: the results for the other datasets can be found in the full
version of this paper [12]. We also include in our benchmark a dataset of road
trips in San Francisco that was used in the SIGSPATIAL 2017 challenge [30],
along with the TDrive dataset [32]. Both are datasets of trajectories in 2 dimen-
sions. We refer to full version of the paper [12] for some statistics about these
datasets.

For each dataset, we perform a self-similarity join using a set of fixed Fréchet
distance thresholds, by solving the r-range search problem for each curve of the
dataset. The thresholds are set to the first and fifth percentiles of the pairwise
distances for any given dataset, so that the output size is 1% and 5% of the
number of possible pairs, respectively. Given the large number of possible pairs,
these percentiles are computed on the pairwise distances of a sample of 1000
points of each dataset. Figure 1 gives the distribution of pairwise distances in
the datasets we are considering. Each result is the average over at least 5 runs.

To establish a baseline, we ran the code provided by the three winners of the
SIGSPATIAL 2017 challenge [6,11,18], compiled with all optimizations enabled
and ran with the default parameters. Table 1 reports these results.

4.2 Evaluating the LSH Scheme

We analyze how the LSH scheme affects the performance and quality of FRESH
without the partial verification. In other words, each pair colliding in at least one
of the L repetitions (i.e., with a non-zero score) is reported as a positive match,
without further verification. We test this setup using hash values obtained as
the concatenation of k = 1, 2, 4 hash functions and with L = 128, 256, 512, 1024
repetitions, setting the grid size to δ = 4dr. Figure 2 reports, for each dataset
and combination of parameters, the performance in the precision-recall space.
The recall is the fraction of true positives reported by the algorithm over all
the positives in the ground truth, whereas the precision is the fraction of true
positives over the predicted positives (i.e., the sum of true positives and false
positives). Both scores range from 0 to 1, with 1 being the best, hence in the plots
of Fig. 2 we have that the closer the top right corner, the better the performance.
Note that we use the precision instead of the false positive rate due to the large
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Fig. 1. Distribution of pairwise dis-
tances for all the datasets considered.
The green line highlights the first per-
centile, the red one highlights the fifth
percentile. (Color figure online)

Table 1. Baseline times (in seconds) for
the two different radii, which are defined,
respectively, as the first and fifth percentile
of all pairwise distances. Results marked
with ‡ were obtained using the code by
Baldus et al. [6], the ones marked with �
were obtained using the code by Dutsch
et al. [18].

Dataset Range Best time

FordA 1.07 (first) 299 �

1.20 (fifth) 1190 �

Yoga 0.14 (first) 23 �

0.33 (fifth) 87 �

SanFrancisco 5213.21 (first) 413 �

9205.43 (fifth) 417 ‡
TDrive 0.17 (first) 3913 �

0.23 (fifth) 20372 �

Fig. 2. Performance in terms of precision and recall of FRESH on all the datasets
considered. The color of a point denotes the number of repetitions L, while the shape
of a point represents the number of concatenations k.

number of negatives in the ground truth, which makes very easy to attain a
small false positive rate.

In general, we have that increasing the number of repetitions L improves the
recall, lowering the precision, as expected. Symmetrically, increasing k makes
the LSH more selective, hence it increases the precision, at the expense of the
recall. Note that on some datasets our LSH technique is more effective than on
others. In general, using sufficiently many repetitions we can get good recall,
while getting a good precision is harder, and may be very costly in terms of
recall. We will address this problem in the next subsection.

On the SanFrancisco and TDrive datasets we get perfect recall and low pre-
cision, almost irrespective of the configuration of parameters. This is due to the
distance distribution of these datasets: by setting the query range to the first and
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Fig. 3. The distribution of scores assigned to colliding pairs for k = 2 and L = 1024,
with query radius equals to the first percentile of distances, shows that the majority
of false positive pairs (fp, in orange) have lower scores than the true positive colliding
pairs (tp, in blue), with some overlapping of the two distributions. The results for other
configurations of parameters are similar. (Color figure online)

fifth percentiles of distances, the algorithm constructs grids with a resolution so
large that almost all curves collide with the queries.

4.3 Improving the Precision by Partial Verification

In this section we verify the trade-off between precision and running time pro-
posed in Sect. 3.2. From the previous experiments we selected a configuration
of parameters striking a good balance of recall and precision on most datasets:
k = 2 and L = 1024. For τ ∈ {0, 0.1, 0.2, 0.5, 1} we run the algorithm evaluating
the τm pairs with lowest non-zero scores, where m is the number of pairs with
non-zero scores. When τ = 0, the algorithm runs in the same configuration used
in the previous subsection, when τ = 1 the algorithm verifies all the colliding
pairs. We apply 3 simplifications in the verification pipeline, using ε = 10, 1, 0.1,
from coarsest to finest.

First, we consider the distribution of scores before any verification happens,
to assert that verifying the lowest-score pairs is actually sound (Fig. 3). We
have that the false positive pairs (colored in orange) have lower scores than
the true positive colliding pairs (in blue), with some overlapping of the two
distributions. Therefore, verifying pairs starting from the low-score ones seems
like a sensible choice, since we are likely to get rid of many false positives,
which we expect to improve the recall. Note that verifying some pairs does
not remove true positives (neither it can introduce them), therefore the recall
remains unchanged, irrespective to the fraction of pairs τ that we verify.

We now move to assess the influence of the fraction of verified pairs τ on
the precision and the runtime performance (Fig. 4). For measuring the latter, we
focus on the speedup, defined as the ratio between the time of the baseline and
LSH based algorithm. As we expect, increasing τ increases the precision, with
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Fig. 4. Precision and speedup per pair given for varying τ , for k = 2, L = 1024.
The black line on the speedup plots marks speedup 1, i.e. the performance of the best
baseline algorithm.

perfect precision when τ = 1, when all the pairs are verified and the algorithm
reports no false positives. The speedup decreases with the increase of τ : this
is because we evaluate more and more pairs, which is a costly operation. We
observe that on two-dimensional trajectories, the speedup that can be obtained
is larger than on one-dimensional datasets, even at higher precision values.

Fig. 5. Breakdown of the effect of the various heuristics used to decide whether a pair is
a positive match or not. The hue of the colors increases with the cost of the heuristic,
so full-negative is more expensive to compute than endpoints-negative. (Color figure
online)

Finally, we analyze the contribution to the decision process of the LSH and
the various heuristics employed (Fig. 5). We concentrate on a single run, for
each dataset, with k = 2, L = 1024 and the radius set to the first percentile
of distances, evaluating all pairs with nonzero score. The parts shaded in gray
denote pairs for which the algorithm was not able to reach a decision and needed
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to move to the next stage. Then, parts in shades of green (resp. red) denote
pairs for which a positive (resp. negative) decision was reached using one of the
heuristics. The pairs excluded by the LSH scheme are shaded in blue rather than
red, to remark that even if they are rejected as negatives they may contain some
false negatives: the larger the blue bar, the more effective the filtering power of
the LSH scheme. Some datasets are more amenable to be processed with the
LSH strategy, and this is in line with the precision results reported in Fig. 2.
Of the pairs surviving this first filtering, several can be discarded by looking
at the endpoints, as shown by the endpoint-filtering column in the plot. The
simplifications have varying degrees of effectiveness, depending on the dataset:
on some datasets coarser simplifications are effective, whereas on some others
we have to use finer simplifications (i.e., with a smaller ε).

5 Conclusion

As future work, it would be interesting to develop a general approach that merges
the techniques in FRESH with the ones used in the exact solutions of the ACM
SIGSPATIAL competition; more generally, a challenge is understanding which
input features make a solution more efficient than others. The filtering approach
used in FRESH can be enriched by using techniques for classifier assessment that
consider the different costs that false positives and false negatives can have on the
final application. Finally, we observe that the LSH scheme for the discrete Fréchet
distance in [16] also holds under the DTW distance: an interesting direction is
to extend and analyze FRESH to report near curves under the DTW distance
and other distance measures.
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Geom. Theory Appl. 46(6), 747–755 (2013)

8. Bringmann, K.: Why walking the dog takes time: Fréchet distance has no strongly
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Abstract. Range closest-pair (RCP) search is a range-search variant of
the classical closest-pair problem, which aims to store a given set S of
points into some space-efficient data structure such that when a query
range Q is specified, the closest pair in S ∩ Q can be reported quickly.
RCP search has received attention over years, but the primary focus was
only on R

2. In this paper, we study RCP search in higher dimensions.
We give the first nontrivial RCP data structures for orthogonal, simplex,
halfspace, and ball queries in R

d for any constant d. Furthermore, we
prove a conditional lower bound for orthogonal RCP search for d ≥ 3.

1 Introduction

The closest-pair problem is one of the most fundamental problems in compu-
tational geometry and finds numerous applications in various areas, such as
collision detection, traffic control, etc. In many scenarios, instead of finding
the global closest-pair, people want to know the closest pair contained in some
specified ranges. This results in the notion of range closest-pair (RCP) search.
RCP search is a range-search variant of the classical closest-pair problem, which
aims to store a given set S of points into some space-efficient data structure
such that when a query range Q is specified, the closest pair in S ∩ Q can be
reported quickly. RCP search has received considerable attention over the years
[1,4,10,11,17,18,20–23].

Unlike most traditional range-search problems, RCP search is non-
decomposable. That is, if we partition the dataset S into S1 and S2, given a
query range Q, the closest pair in S ∩ Q cannot be obtained efficiently from the
closest pairs in S1 ∩ Q and S2 ∩ Q. Due to the non-decomposability, many tra-
ditional range-search techniques are inapplicable to RCP search, which makes
the problem quite challenging. As such, despite of much effort made on this
topic, most known results are restricted to the plane case, i.e., RCP search in
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R
2. Beyond R

2, only very specific query types have been studied, such as 2-sided
box queries.

In this paper, we investigate RCP search in higher dimensions. We consider
four widely-studied query types: orthogonal queries, simplex queries, halfspace
queries, and ball queries. We are interested in designing efficient RCP data struc-
tures (in terms of space cost, query time, and preprocessing time) for these kinds
of query ranges, and proving conditional lower bounds for these problems.

Related Work. The closest-pair problem and range search are both well-studied
problems in computational geometry; see [2,19] for surveys of these two topics.

RCP search was for the first time introduced by Shan et al. [17] and subse-
quently studied in [1,4,10,11,18,20–23]. In R

2, the query types studied include
quadrants, strips, rectangles, and halfplanes. RCP search with these query ranges
can be solved using near-linear space with poly-logarithmic query time. The
best known data structures were given by Xue et al. [22], and we summarize
the bounds in Table 1. For fat rectangles queries (i.e., rectangles of constant
aspect ratio), Bae and Smid [4] showed an improved RCP data structure using
O(n log n) space and O(log n) query time. In a recent work [20], Xue considered
a colored version of RCP search in which the goal is to report the bichromatic
closest pair contained in a query range, and proposed efficient data structures
for orthogonal colored approximate RCP search (mainly in R

2).

Table 1. Best known results in R
2

Query type Space cost Query time Preprocessing time

Quadrant O(n) O(log n) O(n log2 n)

Strip O(n log n) O(log n) O(n log2 n)

Rectangle O(n log2 n) O(log2 n) O(n log7 n)

Halfplane O(n) O(log n) O(n log2 n)

Beyond R
2, the problem is quite open. To our best knowledge, the only known

results are the orthogonal RCP data structure given by Gupta et al. [10] which
only has guaranteed average-case performance and the approximate colored RCP
data structures given by Xue [20] which can only handle restricted query types
(dominance query in R

3 and 2-sided box query in R
d).

A key ingredient in existing solutions for RCP search in R
2 is the candidate-

pair method. Roughly speaking, this method tries to show that among the Ω(n2)
point pairs, only a few (called candidate pairs) can be the answer of some query.
If this can be shown, then it suffices to store the candidate pairs and search
the answer among them. Unfortunately, it is quite difficult to generalize this
method to higher dimensions, as the previous approaches for proving the number
of candidate pairs heavily rely on the fact that the data points are given in the
plane. This might be the main reason why RCP search can be efficiently solved
in R

2, while remaining open in higher dimensions.
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Our Contributions. In this paper, we give the first non-trivial RCP data struc-
tures for orthogonal, simplex, halfspace, and ball queries in R

d, for any constant
d. The performances of our new data structures are summarized in Table 2, where
the notation Õ(·) hides log n factors. All these data structures have near-linear
space cost, sub-linear query time, and sub-quadratic preprocessing time. For
example, we obtain Õ(n7/8) query time for two-dimensional triangular ranges,
and Õ(n2/3) query time for three-dimensional halfspaces and two-dimensional
balls (i.e., disks).1

Furthermore, we complement these results by establishing a conditional lower
bound, implying that our Õ(

√
n) query time bound for orthogonal RCP search

in R
d for any d ≥ 3 is likely the best possible (and in particular explaining why

polylogarithmic solution seems not possible beyond two dimensions). Specifi-
cally, we show that orthogonal RCP search in R

3 is at least as hard as the set
intersection query problem, which is conjectured to require Ω̃(

√
n) query time

for linear-space structures.

Table 2. Performances of our new RCP data structures in R
d

Query type Source Space cost Query time Preprocessing time

Orthogonal Theorem 1 Õ(n) Õ(
√

n) Õ(n
√

n)

Simplex Theorem 3 Õ(n) Õ(n1−1/(2d2)) Õ(n(3d2+1)/(2d2+1))

Halfspace Theorem 4 Õ(n) Õ(n1−1/(d�d/2�)) Õ(n2−1/(2d2))

Ball Full version [6] Õ(n) Õ(n1−1/((d+1)�d/2�)) Õ(n2−1/(2(d+1)2))

Overview of Our Techniques. Our approach for designing these new data
structures is quite different from those in the previous work. We avoid using the
aforementioned candidate-pair method. Instead, our RCP data structures solve
the problems as follows (roughly). For a given query range Q, the data structure
first partitions the points in S ∩ Q into two subsets, say K and L. The size
of L is guaranteed to be small, while K may have a large size. Then the data
structure computes the closest pair φ in K using some pre-stored information
and computes the closest pair φ′ in L using the standard closest-pair algorithm
(which can be done efficiently as L is small). If the two points of the closest pair
φ∗ in S ∩ Q are both in K or both in L, we are done. The only remaining case
is that one point of φ∗ is in K while the other point is in L. The data structure
handles this case by finding the nearest neighbor of a in Q for every a ∈ L via
reporting all the points in Q that are “near” a. Using a packing argument, we
can show that one only needs to report a constant number of points for each
a ∈ L, and hence this procedure can be completed efficiently (since L is small).

To implement this strategy, we incorporate a number of existing geometric
data structuring techniques. For orthogonal RCP, we use range trees and adapt
1 Gupta et al. [10] obtained Õ(

√
n) query time for two-dimensional disks, but only for

uniformly distributed point sets; the general problem was left open in their paper.
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an idea from Gupta et al. [10] of classifying nodes as “heavy” and “light” (origi-
nally for solving a different problem, two-dimensional orthogonal range diameter,
in near-linear space and Õ(

√
n) query time). For simplex RCP, we use simplicial

partitions instead of range trees. For halfspace RCP, we switch to dual space
and use cuttings, similar to an idea from Chan et al. [7] (for solving a differ-
ent problem, halfspace range mode, in near-linear space and Õ(n1−1/d2

) time).
Overall, the combination of existing and new ideas is nontrivial (and interest-
ing, in our opinion). Our conditional lower bound proof for three-dimensional
orthogonal RCP is similar to some previous work (for example, Davoodi et al.’s
conditional lower bound for two-dimensional range diameter [9]), and along the
way, we introduce a new variant of colored range searching, color uniqueness
query, which may be of independent interest.

2 Preliminaries

The first two results we need are the well-known partition lemma and cutting
lemma, both of which are extensively used for solving range-search problems.

Lemma 1 (Partition lemma [13]). Given a set S of n points in R
d and a

parameter 1 ≤ r ≤ n1−δ for an arbitrarily small constant δ > 0, one can compute
in O(n log n) time a partition {S1, . . . , Sr} of S and r simplices Δ1, . . . ,Δr in
R

d such that (1) Si ⊆ Δi for all i ∈ {1, . . . , r}, (2) |Si| = O(n/r) for all
i ∈ {1, . . . , r}, and (3) any hyperplane in R

d crosses O(r1−1/d) simplices among
Δ1, . . . ,Δr.

Lemma 2 (Cutting lemma [8]). Given a set H of n hyperplanes in R
d and

a parameter 1 ≤ r ≤ n, one can compute in O(nrd−1) time a cutting of R
d into

O(rd) cells each of which is a constant-complexity polytope intersecting O(n/r)
hyperplanes in H. In addition, the algorithm for computing the cutting stores the
cells into an O(rd)-space data structure which can report in O(log r) time, for a
specified point in x ∈ R

d, the cell containing x.

We shall also use the standard range-reporting data structures for orthogonal,
simplex, and halfspace queries, stated in the following lemma:

Lemma 3. Given a set S of n points in R
d, one can build in O(n logO(1) n)

time an O(n logO(1) n)-space data structure which can

(a) (Orthogonal range reporting [5]) report, for a specified orthogonal box
B in R

d, the points in S ∩ B in O(logO(1) n + k) time where k = |S ∩ B|;
(b) (Simplex range reporting [13]) report, for a specified simplex Δ in R

d,
the points in S ∩ Δ in O(n1−1/d logO(1) n + k) time where k = |S ∩ Δ|;

(c) (Halfspace range reporting [14]) report, for a specified halfspace H in R
d,

the points inS ∩ H inO(n1−1/�d/2� logO(1) n+k) query timewherek = |S ∩ H|.
Using a multi-level data structure that combines range trees with the above
structures, we can obtain range-reporting structures for query ranges that are
the intersections of an orthogonal box and a simplex/halfspace (see the full
version [6] for a detailed proof).



Range Closest-Pair Search in Higher Dimensions 273

Lemma 4. Given a set S of n points in R
d, one can build in O(n logO(1) n)

time an O(n logO(1) n)-space data structure which can

(a) (Box-simplex range reporting) report, for a specified orthogonal box
B and simplex Δ in R

d, the points in S ∩ B ∩ Δ in O(logO(1) n +
m1−1/d logO(1) n + k) time where m = |S ∩ B| and k = |S ∩ B ∩ Δ|;

(b) (Box-halfspace range reporting) report, for a specified orthogonal box
B and halfspace H in R

d, the points in S ∩ B ∩ H in O(logO(1) n +
m1−1/�d/2� logO(1) n + k) time where m = |S ∩ B| and k = |S ∩ B ∩ H|.

3 Orthogonal RCP Queries

3.1 Data Structure

Let S be a set of n points in R
d. In this section, we show how to build a RCP data

structure on S for orthogonal queries. First, we build a (standard) d-dimensional
range tree T on S. Each node u of T corresponds to a canonical subset of S,
which we denote by S(u). We say u is a heavy node if |S(u)| ≥ √

n. For every pair
(u,v) of heavy nodes, we compute the closest pair φu,v in S(u) ∪ S(v); denote
by Φ the set of all these pairs. Then we build an orthogonal range-reporting data
structure D(S) on S (Lemma 3(a)). Our orthogonal RCP data structure consists
of the range tree T , the data structure D(S), and the pair set Φ.

Query Procedure. Consider a query box B in R
d. Our goal is to find the closest

pair in S∩B using the data structure described above. By searching in the range
tree T , we can find t = O(logO(1) n) canonical nodes c1, . . . , ct corresponding
to B. We have S ∩ B =

⋃t
i=1 S(ci). Let I = {i : ci is a heavy node} and I ′ =

{1, . . . , t}\I. (See Fig. 1(left).) For all i, j ∈ I, we obtain the pair φci,cj
from Φ

and take the closest one φ ∈ {φci,cj
: i, j ∈ I}. On the other hand, we compute

L =
⋃

i∈I′ S(ci). We take the closest pair φ′ in L. Let δ = min{|φ|, |φ′|}. For each
a ∈ L, let �a be the hypercube centered at a with side-length 2δ. We query,
for each a ∈ L, the box range-reporting data structure D(S) with �a ∩ B to
obtain the set Pa = S ∩�a ∩B. After this, for each a ∈ L, we compute a pair ψa

consisting of a and the nearest neighbor of a in Pa\{a}. We then take the closest
one ψ ∈ {ψa : a ∈ L}. Finally, if |ψ| < |φ|, then we return ψ as the answer;
otherwise, we return φ as the answer.

We now verify the correctness of the above query procedure. Let φ∗ = (a, b)
be the closest pair in S ∩ B. It suffices to show that |φ| ≤ |φ∗| or |ψ| ≤ |φ∗|.
Suppose a ∈ S(ci) and b ∈ S(cj). If i, j ∈ I, then |φ| ≤ |φci,cj

| ≤ |φ∗| and we are
done. Otherwise, either i ∈ I ′ or j ∈ I ′; assume i ∈ I ′ without loss of generality.
It follows that a ∈ L. Since φ∗ is the closest pair in S ∩ B, we have |φ∗| ≤ |φ|
and |φ∗| ≤ |φ′|, which implies that the distance between a and b is at most δ.
Therefore, b ∈ Pa. Now we have |ψ| ≤ |ψa| ≤ |φ∗|, which completes the proof of
the correctness.

Analysis. We analyze the performance (space, query time, and preprocessing
time) of our orthogonal RCP data structure. To this end, we first bound the
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Fig. 1. (Left) The canonical nodes in the range tree T break the query box B into
thirteen disjoint regions. The green regions correspond to set I (the heavy nodes). The
orange points form the set L. For one of the points in L (denoted by a), the box �a is
shown in blue. The crucial property is that the number of points which lie in B ∩�a is
O(1). (Right) Reduction from the set intersection query to the color uniqueness query.
The set intersection query is to test if S4 and S3 are disjoint, and the query rectangle q
for the color uniqueness query exactly contains points p4 and p′

3. (Color figure online)

number of the heavy nodes. The lemma below follows immediately from the
well-known fact that the sum of sizes of the canonical subsets in a range tree is
O(n logd n).

Lemma 5. There are O(
√

n logO(1) n) heavy nodes in T .

By the above lemma, the space of the data structure is O(n logO(1) n). Indeed,
the range tree T and the data structure D(S) both occupy O(n logd−1 n) space,
and the pair-set Φ takes O(n log2d−2 n) space as there are O(

√
n logO(1) n) heavy

nodes. The preprocessing time is O(n
√

n logO(1) n). Indeed, building the range
tree T and the data structure D(S) takes O(n logO(1) n) time. We claim that the
pair-set Φ can be computed in O(n

√
n logO(1) n) time. We first find the set H of

heavy nodes, which can be done in O(n logO(1) n) time by simply checking every
node of T . For two pairs (u,v) and (u′,v′) of nodes in H, we write (u,v) 	
(u′,v′) if |S(u)|+|S(v)| ≤ |S(u′)|+|S(v′)|. Then “	” is a partial order on H×H.
We consider the pairs of heavy nodes in this partial order from the smallest to
the greatest. For each pair (u,v), we compute φu,v as follows. If |S(u)| < 2

√
n

and |S(v)| < 2
√

n, we explicitly compute S(u) ∪ S(v) and then compute φu,v

using the standard closest-pair algorithm in O(
√

n log n) time. Otherwise, either
|S(u)| ≥ 2

√
n or |S(v)| ≥ 2

√
n. Without loss of generality, assume |S(u)| ≥

2
√

n. Then the two children u1 and u2 of u) are both heavy. Note that φu,v

is the closest one among φu1,v, φu2,v, φu1,u2 by construction. Also note that
(u1,v) 	 (u,v), (u2,v) 	 (u,v), (u1,u2) 	 (u,v), thus φu1,v, φu2,v, φu1,u2

have already been computed when considering (u,v). With φu1,v, φu2,v, φu1,u2

in hand, we can compute φu,v in O(1) time. In sum, φu,v can be computed in
O(

√
n log n) time in any case. Since |H × H| = O(n logO(1) n), we can compute

Φ in O(n
√

n logO(1) n) time. This completes the discussion of the preprocessing
time. Next, we analyze the query time. Finding the canonical nodes c1, . . . , ct

takes O(logO(1) n) time, so does computing the index sets I and I ′. Obtaining
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the set {φci,cj
: i, j ∈ I} and computing φ takes O(logO(1) n) time since |I| ≤

t and t = O(logO(1) n). Computing φ′ requires O(
√

n logO(1) n) time, because
|L| = O(t

√
n) = O(

√
n logO(1) n). For a point a ∈ L, reporting the points in Pa

takes O(logO(1) n + |Pa|) time. Therefore, computing all the Pa’s can be done
in O(|L| logO(1) n +

∑
a∈L |Pa|) time. To bound this quantity, we observe the

following fact.

Lemma 6. |Pa| = O(1) for all a ∈ L.

Proof. We have S∩B = (
⋃

i∈I S(ui))∪L. It suffices to show that |(
⋃

i∈I S(ui))∩
�a| = O(1) and |L ∩ �| = O(1). Both facts follow from the pigeonhole principle
readily. Indeed, we have |(

⋃
i∈I S(ui))∩�a| = O(1) because φ is the closest pair

in
⋃

i∈I S(ui) and |φ| ≥ δ. We have |L ∩ �| = O(1) because φ′ is the closest pair
in L and |φ′| ≥ δ. This completes the proof. 
�

By the above lemma and the fact |L| = O(
√

n logO(1) n), we can compute all the
Pa’s in O(

√
n logO(1) n) time. The pair ψ can be directly obtained after knowing

all the Pa’s, hence the total query time is O(
√

n logO(1) n). We conclude the
following.

Theorem 1. Given a set S of n points in R
d, one can construct in Õ(n

√
n)

time an orthogonal RCP data structure on S with Õ(n) space and Õ(
√

n) query
time.

3.2 Conditional Hardness

In this subsection, we prove a conditional lower-bound for the orthogonal RCP
query, which shows that the upper bound given in Theorem 1 is tight, ignoring
log n factors. First, we define the following problem [15].

Problem 1 (Set intersection query). The input is a collection of sets
S1, S2, . . . , Sm of positive reals such that

∑m
i=1 |Si| = n. Given query indices

i and j, report if Si and Sj are disjoint, or not?

This problem can be viewed as a query version of Boolean matrix multipli-
cation, and is conjectured to be hard: in the cell-probe model without the floor
function and where the cardinality of each set Si is upper-bounded by logO(1) m,
any data structure to answer the set intersection problem in Õ(α) time requires
Ω̃((n/α)2) space, for 1 ≤ α ≤ n [9,15]. In particular, any linear-space structure
is believed to require Ω̃(

√
n) time.

Next we introduce an intermediate geometric problem, which may be of inde-
pendent interest:

Problem 2 (Color uniqueness query). The input is a set S of n colored points
in R

2. Specifically, let C be a collection of distinct colors, and each point p ∈ S
is associated with some color from C. Given a query rectangle q, report if all the
colors are unique in S ∩ q? In other words, is there a color which has at least
two points in S ∩ q?
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We will perform a two-step reduction: first, reduce the set intersection query
to the color uniqueness query, and then reduce the two-dimensional color unique-
ness query to the three-dimensional orthogonal RCP query.

Reduction from Set Intersection to Color Uniqueness in R
2. Given an

instance of the set intersection query, we will construct an instance of the color
uniqueness query. Let p1 = (1, 1), p2 = (2, 2), . . . , pm = (m,m), and p′

1 = (m +
1, 1), p′

2 = (m + 2, 2), . . . , p′
m = (2m,m). Next, assign a unique color to each

distinct element in S1 ∪ S2 ∪ . . . ∪ Sm. Now replace each point pi with |Si| new
points such that (a) the new points are within a distance of ε � 1 from pi, and
(b) each new point picks a distinct color from the colors assigned to the elements
in Si. Perform a similar operation for points p′

i. Let P be the collection of these
2n new points.

To answer if Si and Sj are disjoint (j < i), we ask a color uniqueness query
on P with an axis-aligned rectangle q = [i − ε,m + j + ε] × [j − ε, i + ε] (see
Fig. 1(right)). If there is a color which contains two points, then we report that
Si and Sj are not disjoint; otherwise, we report that Si and Sj are disjoint.
The correctness is easy to see: the key observation is that q exactly contains the
points of Si and Sj . Therefore, Si and Sj are disjoint iff all the colors are unique
in P ∩ q. Reductions of this flavor have been performed before [3,9,12,16].

Reduction from Color Uniqueness in R
2 to Orthogonal RCP in R

3.
Given an instance of the color uniqueness query, we will now construct an
instance of the orthogonal RCP query in R

3. Let dmax be the maximum Euclidean
distance between any two points in S, and let c1, c2, . . . , c|C| be the |C| colors in
the dataset. Then each point p = (px, py) ∈ S with color ci is mapped to a 3-d
point p′ = (px, py, 2 · i · dmax). Let P be the collection of these n newly mapped
points.

To answer the color uniqueness query for a rectangle q, we will ask an orthog-
onal RCP query on P with the query box q×(−∞,∞). If the closest-pair distance
is less than or equal to dmax, then we report that there is a color which contains
at least two points inside q; otherwise, we report that all the colors are unique
inside q. Once again, the correctness is easy to see: the key observation is that
the distance between points of different colors in P is at least 2 · dmax.

The above two reductions together implies our conditional lower bound,
which is presented in the following theorem.

Theorem 2. The orthogonal RCP query is at least as hard as the set intersec-
tion query.

4 Simplex RCP Queries

Let S be a set of n points in R
d, and r be a parameter to be specified shortly.

In this section, we show how to build a RCP data structure on S for simplex
queries. First, we use Lemma 1 to compute a partition {S1, . . . , Sr} of S and
r simplices Δ1, . . . ,Δr in R

d satisfying the conditions in the lemma. For every
i, j ∈ {1, . . . , r}, we compute the closest pair φi,j in Si ∪ Sj ; denote by Φ the set
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of all these pairs. Then we build a box-simplex range-reporting data structure
D′(S) on S (Lemma 4(a)). Our simplex RCP data structure consists of the
partition {S1, . . . , Sr}, the simplices Δ1, . . . ,Δr, the data structure D′(S), and
the pair set Φ.

Query Procedure. Consider a query simplex Δ in R
d. Our goal is to find the

closest pair in S ∩Δ using the data structure described above. We first compute
two index sets I = {i : Δi ⊆ Δ}, I ′ = {i : Δi � Δ and Δi ∩ Δ �= ∅}. (See
Fig. 2.) These index sets are computed by explicitly considering the r simplices
Δ1, . . . ,Δr. For all i, j ∈ I, we obtain the pair φi,j from Φ and take the closest
one φ ∈ {φi,j : i, j ∈ I}. On the other hand, we compute a set L = (

⋃
i∈I′ Si)∩Δ

by simply checking, for every i ∈ I ′ and every a ∈ Si, whether a ∈ Δ. We take
the closest pair φ′ in L. Let δ = min{|φ|, |φ′|}. For each a ∈ L, let �a be
the hypercube centered at a with side length 2δ. We query, for each a ∈ L,
the box-simplex range-reporting data structure D′(S) with �a and Δ to obtain
the set Pa = S ∩ �a ∩ Δ. After this, for each a ∈ L, we compute a pair ψa

consisting of a and the nearest neighbor of a in Pa\{a}. We then take the closest
one ψ ∈ {ψa : a ∈ L}. Finally, if |ψ| < |φ|, then we return ψ as the answer;
otherwise, we return φ as the answer.

We now verify the correctness of the above query procedure. Let φ∗ = (a, b)
be the closest pair in S ∩ Δ. It suffices to show that |φ| ≤ |φ∗| or |ψ| ≤ |φ∗|.
Suppose a ∈ Si and b ∈ Sj . We first notice that i, j ∈ I ∪ I ′. Indeed, if i /∈ I ∪ I ′

(resp., j /∈ I ∪ I ′), then Δi ∩ Δ = ∅ (resp., Δj ∩ Δ = ∅) and hence Si ∩ Δ = ∅
(resp., Sj ∩Δ = ∅), which contradicts the fact that a ∈ Si ∩Δ (resp., b ∈ Si ∩Δ).
If i, j ∈ I, then |φ| ≤ |φi,j | ≤ |φ∗| and we are done. Otherwise, either i ∈ I ′ or
j ∈ I ′; assume i ∈ I ′ without loss of generality. It follows that a ∈ L. Since φ∗

is the closest pair in S ∩ Δ, we have |φ∗| ≤ |φ| and |φ∗| ≤ |φ′|, which implies
that the distance between a and b is at most δ. Therefore, b ∈ Pa. Now we have
|ψ| ≤ |ψa| ≤ |φ∗|, which completes the proof of the correctness.

a

2δ

Δ

Δ1 Δ2

Δ3

Δ4

Δ5

Δ6

Fig. 2. I = {Δ1, Δ2} and I ′ = {Δ3, Δ4, Δ5, Δ6}.

Analysis. We analyze the performance (space, query time, and preprocessing
time) of our simplex RCP data structure. The space of the data structure is
O(n logO(1) n + r2), because D′(S) occupies O(n logO(1) n) space and Φ occu-
pies O(r2) space. The preprocessing time is O(nr logO(1) n). Indeed, computing
the partition {S1, . . . , Sr} and the simplices Δ1, . . . ,Δr takes O(n log n) time
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by Lemma 1. Computing φi,j for some fixed i, j ∈ {1, . . . , r} can be done
in O((n/r) log(n/r)) time using the standard closest-pair algorithm, because
|Si ∪ Sj | = O(n/r). It follows that computing Φ takes O(nr log n) time. Finally,
building the data structure D′(S) requires O(n logO(1) n) time. As such, our
simplex RCP data structure can be constructed in O(nr logO(1) n) time. Next,
we analyze the query time. The index sets I and I ′ are computed in O(r)
time. Obtaining the set {φi,j : i, j ∈ I} and computing φ requires O(r2) time.
The set L is computed by explicitly considering all the points in

⋃
i∈I′ Si in

O(
∑

i∈I′ |Si|) time. We notice that |I ′| = O(r1−1/d), since each facet of Δ only
intersects O(r1−1/d) simplices among Δ1, . . . ,Δr by Lemma 1. It follows that∑

i∈I′ |Si| = O(n/r1/d), because |Si| = O(n/r). That says, L can be computed
in O(n/r1/d) time and in particular, |L| = O(n/r1/d). Once L is obtained, φ′

can be computed in O((n/r1/d) log(n/r1/d)) time using the standard closest-
pair algorithm. For a point a ∈ L, reporting the points in Pa takes O(logO(1) n+
m

1−1/d
a logO(1) ma + |Pa|) time where ma = |S ∩�a|, by Lemma 4(a). Therefore,

computing all the Pa’s can be done in O(
∑

a∈L m
1−1/d
a logO(1) n +

∑
a∈L |Pa|)

time. To bound this quantity, we observe the following fact.

Lemma 7.
∑

a∈L ma = O(n) and |Pa| = O(1) for all a ∈ L.

Proof. We first prove
∑

a∈L ma = O(n). Consider a point p ∈ S. Let �p be the
hypercube centered at p with side-length 2δ. Note that p ∈ Pa only if a ∈ �p for
all a ∈ L. Since φ′ is the closest pair in L and |φ′| ≥ δ, we have L ∩ �p = O(1)
by the pigeonhole principle. Therefore, only a constant number of points in L
is contained in p. In other words, any point p ∈ S is contained in Pa for only a
constant number of a ∈ L, which implies

∑
a∈L ma = O(n). Next, we prove that

|Pa| = O(1) for all a ∈ L. Clearly, S ∩ Δ = (
⋃

i∈I Si) ∪ L. So it suffices to show
that |(

⋃
i∈I Si) ∩ �a| = O(1) and |L ∩ �a| = O(1). Both facts follow from the

pigeonhole principle readily. Indeed, we have |(
⋃

i∈I Si) ∩ �a| = O(1) because φ
is the closest pair in

⋃
i∈I Si and |φ| ≥ δ. We have |L ∩ �a| = O(1) because φ′

is the closest pair in L and |φ′| ≥ δ. This completes the proof of |Pa| = O(1). 
�

By the above lemma and Hölder’s inequality, we have
∑

a∈L

m1−1/d
a ≤ O(n1−1/d|L|1/d) = O

( n

r1/d2

)
,

which implies that computing all the Pa’s takes O((n logO(1) n)/r1/d2
) time. The

pair ψ can be directly obtained after knowing all the Pa’s. Hence, the total query
time is O(r2 + (n logO(1) n)/r1/d2

). Setting r = nd2/(2d2+1) gives:

Theorem 3. Given a set S of n points in R
d, one can construct in

Õ(n(3d2+1)/(2d2+1)) time a simplex RCP data structure on S with Õ(n) space
and Õ(n1−1/(2d2)) query time.

Note that our data structure above can also handle constant-complexity poly-
tope RCP queries (with the same query procedure and query time). In other
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words, the data structure can be used to report, for specified O(1) halfspaces
H1, . . . ,Hc in R

d, the closest pair in S ∩ (
⋂c

i=1 Hi) in Õ(n1−1/(2d2)) time.

5 Halfspace RCP Queries

Let S be a set of n points in R
d, and r be a parameter to be specified shortly.

In this section, we show how to build an RCP data structure on S for halfspace
queries. The same method can also result in an RCP data structure for ball
queries, using the standard lifting argument. Since halfspace query is a special
case of simplex query, the simplex RCP data structure in the last section can be
directly used to answer halfspace RCP queries. But in fact, for halfspace RCP
queries, we can achieve better bounds.

It suffices to consider the halfspaces which are regions below non-vertical
hyperplanes, namely, halfspaces of the form xd ≤ a1x1 + · · · + ad−1xd−1. By
duality, a point a ∈ S maps to a hyperplane a∗ in the dual space (which is
also a copy of R

d). Also, a non-vertical hyperplane h in the primal R
d maps

to a point h∗ in the dual space. The property of duality guarantees that a is
above (resp., below) h iff h∗ is above (resp., below) a∗ for all a ∈ S and all
hyperplanes h (see Fig. 3). Define H = {a∗ : a ∈ S}. We use Lemma 2 to cut R

d

(the dual space) into R = O(rd) cells Ξ1, . . . , ΞR each of which is a constant-
complexity polytope intersecting O(n/r) hyperplanes in H. For i ∈ {1, . . . , R},
let Si = {a : a∗ is below Ξi}. We associate to the cell Ξi the closest pair φi in
Si. Furthermore, we build a simplex range-reporting data structure D(S) on S
(Lemma 3(b)) and a box-halfspace range-reporting data structure D′(S) in S
(Lemma 4(b)). Our halfspace RCP data structure consists of the cells Ξ1, . . . , ΞR

(with the associated pairs φ1, . . . , φr) and the data structures D(S) and D′(S).
The cells Ξ1, . . . , ΞR are stored in the way mentioned in Lemma 2 (so that we
can do point location efficiently).

Si

h h∗

v

v∗

H ∩ Hv

(a) Primal plane (b) Dual plane

Fig. 3. The dataset shown in (a) consists of seven points. The dual h∗ of the query
hyperplane h lies inside the cell Ξi shown in pink in (b). The closest pair among the
black points, φi, is computed in the preprocessing phase itself (since the dual of the
black points is the set Si). The red points belong to set L and are explicitly reported
during the query procedure. (Color figure online)
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Query Procedure. Consider a query halfspace H that is the region below a
non-vertical hyperplane h. Our goal is to find the closest pair in S ∩H using the
data structure described above. To this end, we first find the cell Ξi such that
h∗ ∈ Ξi. Let V be the set of the vertices of Ξi. We have V = O(1) by Lemma 2.
For every v ∈ V , let Hv be the halfspace above the non-vertical hyperplane v∗

in the primal R
d. Using D(S), we find the points in S ∩ (H ∩ Hv) for all v ∈ V

and obtain the set L =
⋃

v∈V S ∩ (H ∩Hv). We take the closest pair φ′ in L. Let
δ = min{|φi|, |φ′|} (recall that φi is the pair associated to Ξi). For each a ∈ L,
let �a be the hypercube centered at a with side-length 2δ. We query, for each
a ∈ L, the box-halfspace range-reporting data structure D′(S) with �a and H
to obtain the set Pa = S ∩ �a ∩ H. After this, for each a ∈ L, we compute a
pair ψa consisting of a and the nearest neighbor of a in Pa\{a}. We then take
the closest one ψ ∈ {ψa : a ∈ L}. Finally, if |ψ| < |φi|, then we return ψ as the
answer; otherwise, we return φi as the answer.

We now verify the correctness of the above query procedure. First of all,
we claim that S ∩ H = Si ∪ L. Indeed, we have L ⊆ S ∩ H by definition and
Si ⊆ S ∩ H because a∗ is below Ξi (and hence below h∗) for all a ∈ Si; this
implies Si ∪ L ⊆ S ∩ H. To see S ∩ H ⊆ Si ∪ L, let a ∈ S ∩ H be a point.
If a∗ is below Ξi, then a ∈ Si. Otherwise, there exists v ∈ V such that a∗ is
above v. It follows that a ∈ S ∩ (H ∩ Hv) ⊆ L. Therefore, S ∩ H ⊆ Si ∪ L and
S ∩ H = Si ∪ L. With this observation in hand, we first show that the returned
answer is a pair in S ∩ H. It suffices to show that both φi and ψ are pairs in
S ∩ H. The two points of φi are both in Si and hence in S ∩ H. To see ψ is a
pair in S ∩ H, suppose ψ = ψa for a ∈ L. By definition, ψa consists of a and the
nearest neighbor of a in Pa\{a}. We have a ∈ L ⊆ S ∩ H and Pa ⊆ L ⊆ S ∩ H,
hence ψ is a pair in S ∩H. Next, we show that the returned answer is the closest
pair in S ∩ H. Let φ∗ = (a, b) be the closest-pair in S ∩ H. It suffices to show
that |φi| ≤ |φ∗| or |ψ| ≤ |φ∗|. If a, b ∈ Si, then |φi| ≤ |φ∗| and we are done.
Otherwise, assume a /∈ Si and thus a ∈ L, without loss of generality. Since φ∗ is
the closest pair in S ∩ H, we have |φ∗| ≤ |φi|, which implies that the distance
between a and b is at most δ. Therefore, b ∈ Pa. Now we have |ψ| ≤ |ψa| ≤ |φ∗|,
which completes the proof of the correctness.

Analysis. We analyze the performance (space, query time, and preprocess-
ing time) of our halfspace RCP data structure. The space of the data struc-
ture is O(n logO(1) n + R), because D(S) occupies O(n) space, D′(S) occu-
pies O(n logO(1) n) space, and storing Ξ1, . . . , ΞR (with the associated pairs
φ1, . . . , φR) requires O(R) space. Next, we analyze the query time. Determining
the cell Ξi takes O(log r) time by Lemma 2. For each v ∈ V , reporting the points
in S ∩ (H ∩ Hv) takes O(n1−1/d logO(1) n + kv) time where kv = |S ∩ (H ∩ Hv)|.
We claim that a∗ intersects Ξi for any a ∈ S ∩ (H ∩ Hv). Indeed, a∗ is below
h because a ∈ H and is above v because a ∈ Hv. Thus, a∗ intersects the
segment connecting h∗ and v. Since h∗, v ∈ Ξi, a∗ intersects Ξi. It follows
that kv = O(n/r) by Lemma 2. Furthermore, because V = O(1), L can be
computed in O(n1−1/d logO(1) n +

∑
v∈V kv) = O(n1−1/d logO(1) n + n/r) time

and |L| = O(
∑

v∈V kv) = O(n/r). Once L is obtained, φ′ can be computed
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in O((n/r) log(n/r)) time using the standard closest-pair algorithm. For a point
a ∈ L, reporting the points in Pa takes O(logO(1) n+m

1−1/�d/2�
a logO(1) ma+|Pa|)

time where ma = |S ∩ �a|, by Lemma 4(b). By exactly the same argument in
the proof of Lemma 7, we have the following observation:

Lemma 8.
∑

a∈L ma = O(n) and |Pa| = O(1) for all a ∈ L.

By the above lemma and Hölder’s inequality, we have
∑

a∈L

m1−1/�d/2�
a ≤ O(n1−1/�d/2�|L|1/�d/2�) = O

( n

r1/�d/2�

)
,

which implies that computing all the Pa’s takes O(n logO(1) n/r1/�d/2�) time.
The pair ψ can be directly obtained after knowing all the Pa’s. Hence, the
total query time is O(log r + n logO(1) n/r1/�d/2�). Finally, we analyze the pre-
processing time. The data structures D(S) and D′(S) can both be constructed
in O(n logO(1) n) time by Lemmas 3(b) and 4(b). The cells Ξ1, . . . , ΞR can be
computed in O(nrd−1) time by Lemma 2. So it suffices to show how to com-
pute the pairs φ1, . . . , φR efficiently. To this end, we build a simplex RCP data
structure on S as described in Theorem 3, which takes Õ(n(3d2+1)/(2d2+1)) time.
Fix i ∈ {1, . . . , R} and let V be the set of the O(1) vertices of Ξi. For v ∈ V ,
let H ′

v be the halfspace below the hyperplane v∗ in the primal space. We claim
that Si = S ∩ (

⋂
v∈V H ′

v). To see this, consider a point a ∈ S. We have a ∈ Si

iff a∗ is below Ξi iff v is below a∗ for all v ∈ V , or equivalently, a ∈ H ′
v for

all v ∈ V . Thus, Si = S ∩ (
⋂

v∈V H ′
v). We can then compute the closest pair

φi in Si using the simplex RCP data structure with the query range
⋂

v∈V H ′
v

(as mentioned at the end of Sect. 4, our simplex RCP data structure can handle
queries which are intersections of constant number of halfspaces). Computing
φi takes O(n1−1/(2d2) logO(1) n) time, and hence computing all pairs φ1, . . . , φR

takes O(Rn1−1/(2d2) logO(1) n) time. In sum, the preprocessing time of our halfs-
pace RCP data structure is O((nrd−1+n(3d2+1)/(2d2+1)+Rn1−1/(2d2)) logO(1) n).
Setting r = n1/d gives:

Theorem 4. Given a set S of n points in R
d, one can construct in Õ(n2−1/(2d2))

time a halfspace RCP data structure on S with Õ(n) space and Õ(n1−1/(d�d/2�))
query time.
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Abstract. In this paper we study two geometric data structure prob-
lems in the special case when input objects or queries are fat rectangles.
We show that in this case a significant improvement compared to the
general case can be achieved.

We describe data structures that answer two- and three-dimensional
orthogonal range reporting queries in the case when the query range is
a fat rectangle. Our two-dimensional data structure uses O(n) words
and supports queries in O(log logU + k) time, where n is the num-
ber of points in the data structure, U is the size of the universe and
k is the number of points in the query range. Our three-dimensional
data structure needs O(n logε U) words of space and answers queries in
O(log logU+k) time. We also consider the rectangle stabbing problem on
a set of three-dimensional fat rectangles. Our data structure uses O(n)
space and answers stabbing queries in O(logU log logU + k) time.

1 Introduction

Orthogonal range reporting and rectangle stabbing are two fundamental prob-
lems in computational geometry. In the orthogonal range reporting problem we
keep a set of points in a data structure; for any axis-parallel query rectangle Q
we must report all points in Q. Rectangle stabbing is, in a sense, a dual prob-
lem. We keep a set of axis-parallel rectangles in a data structure. For a query
point q we must report all rectangles that are stabbed by q, i.e., all rectangles
that contain q. A rectangle is fat if its aspect ratio (the ratio of its longest and
shortest edges) is bounded by a constant. In this paper we consider the range
reporting problem in scenario when query rectangles are fat. We show that sig-
nificant improvements can be achieved for this special case. We also describe a
data structure that supports three-dimensional stabbing queries on a set of fat
three-dimensional rectangles.

The range reporting problem and its variants have been studied extensively
over the last four decades; see for example, [1–3,6,7,9,10,14,16,22,23,26]. We
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refer to [18,24] for extensive surveys of previous results. The best known data
structure for two-dimensional point reporting uses O(n logε n) words of space
and supports queries in O(log log U + k) time [7]. Henceforth n is the total
number of geometric objects (points or rectangles) in the data structure, k is
the number of reported objects, and ε is an arbitrarily small positive constant; we
assume that all point coordinates are positive integers bounded by a parameter
U . The space usage can be reduced to linear or almost-linear at the cost of
paying a non-constant penalty for every reported point. Thus there is an O(n)-
word data structure that supports queries in O(log log U + (k + 1) logε n) time
and O(n log log n)-word data structure that answers queries in O(log log U +
k log log n) time. If we want to use linear space and spend constant time for every
reported point, then the overall query cost is increased to polynomial: the fastest
linear-space data structure requires O(nε +k) time to answer a query [5]. Better
results are known only in the special case when the query range is bounded on
three sides [2,20]; there is a linear-space data structure that answers three-sided
queries in O(log log U + k) time (or even in O(1 + k) time if U = O(n)) [2].

In this paper we show that two-dimensional orthogonal range reporting
queries can be answered in O(log log U + k) time using an O(n)-space data
structure under assumption that query rectangles are fat. We also demonstrate
that the fatness assumption is profitable for three-dimensional orthogonal range
reporting. We show in this paper how to report all points in a three-dimensional
axis-parallel fat rectangle in O(log log U + k) time using a O(n logε U)-word
data structure. This is comparable to the current best results of Chan et al. [7]
for general two-dimensional orthogonal range searching and three-dimensional
4-sided orthogonal range searching, which had the same O(log log U + k) query
time with O(n log1+ε n) words of space. In fact, we observe (see the remark after
Theorem 2) that the latter problem reduces to three-dimensional (6-sided) fat
rectangles, so our result for three-dimensional fat rectangles cannot be improved
unless there is a breakthrough for the latter problem. The third problem con-
sidered in this paper is the three-dimensional stabbing problem on a set of fat
rectangles. For a query point q we must report all rectangles that are stabbed
by q. We describe a data structure that uses O(n) words of space and supports
queries in O(log U log log U+k) time. For comparison, the best known data struc-
tures for general rectangles use O(n log∗ n) words of space and support queries
in O(log2 n) time [25] (Table 1).

Our data structure for two-dimensional range reporting, described in Sects. 2
and 3, is based on quadtrees. Using a marking scheme on nodes of a quadtree, we
divide the plane into O(n/d) canonical rectangles, so that each rectangle contains
O(d) points for d = log n. For any fat query rectangle Q, we can quickly find all
canonical rectangles R satisfying Q∩R �= ∅ and report all points in Q∩R for all
such R. In Sect. 4 we describe a data structure that supports three-dimensional
range reporting for fat query ranges. It is based on an interesting new variant of
the recursive grid approaches by Alstrup, Brodal, and Rauhe [2] (also adapted by
Chan, Larsen, and Patrascu [7] and Karpinski and Nekrich [16]); these previous
approaches use nonuniform grid cells, but in our scheme, grid cells are cubes.
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Table 1. Space-time trade-offs for two-dimensional range reporting. Result in line 7 is
a corollary from [11], but it is not stated there.

Reference Space Time Query type

[7] O(n) O(log logU + (k + 1) logε n) General

[7] O(n log log n) O(log logU + k log log n) General

[7] O(n logε n) O(log logU + k) General

[5] O(n) O(nε + k) General

[20] O(n O(log n + k) Three-sided

[2] O(n O(log logU + k) Three-sided

[11] O(n) O(log n + k) Fat

New O(n) O(log logU + k) Fat

Our data structure employs a “lopsided” van Emde Boas recursion, in which each
node of the tree stores a known data structure for 5-sided range searching [7]. We
will describe a data structure for stabbing queries on a set of three-dimensional
fat rectangles in the full version [8]. This result is based on reducing a stabbing
query to O(log U) three-dimensional dominance queries. The results of this paper
are valid in the word RAM model of computation.

Related Work. A result about range reporting in two-dimensional fat rect-
angles is implicitly contained in the paper of Chazelle and Edelsbrunner [11].
In [11] the authors describe a linear-space data structure for triangular range
reporting. Their data structure can report all points in an arbitrary query tri-
angle, provided that the sides of the triangle parallel to three fixed directions;
queries are supported in O(log n + k) time where k is the number of reported
points. We can represent a square as a union of two such triangles and we can
represent an arbitrary fat rectangle as a union of O(1) squares. Hence we can
answer two-dimensional range reporting queries for fat rectangles in O(log n+k)
time and O(n) space.

Data structures for fat convex objects are studied in e.g., [4,12,13,17]. Iacono
and Langerman [15] describe a data structure that supports point location
queries in a set of axis-parallel fat d-dimensional rectangles. This data struc-
ture answers queries in O(log log U) time and uses O(n log log U) space for any
fixed dimension d.

Another related problem is k-nearest-neighbor search under the L∞ metric.
The decision version of the problem, reporting all k points of L∞ distance smaller
than a given query radius from a query point, is equivalent to range reporting
for a hypercube, which is fat. We are not aware of any previous sublogarithmic
results for the exact decision problem in three dimensions.
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2 Quadtree-Based Rectangular Subdivision

In this section we describe a planar rectangular subdivision that is used by our
two-dimensional data structure. To make the description self-contained, we start
with the definition of a compressed quadtree.

A quadtree TQ is a hierarchical data structure that divides the plane into
regions. Let U denote the maximum of x- and y-coordinates of all points. We
associate a square (also called a cell) square(v) to every quadtree node v. The
root of a quadtree is associated to the square [0, U ]× [0, U ]. W. l. o. g. we assume
that U is a power of 2. If a square square(v) of a node v contains more than one
point, then the node v has four children. We divide square(v) into four squares
of equal size and associate them to four child nodes of v. A compressed quadtree
T is a subtree of TQ obtained by keeping only those internal nodes of TQ that
have more than one non-empty child (Fig. 1).

Marking Nodes in a Quadtree. Let T denote a compressed quadtree on a
set of n points. Let d = log n. We mark selected nodes in T by employing the
following marking scheme: (i) every d-th leaf is marked and (ii) if an internal
node u has at least two children with marked descendants, then u is marked. We
can mark nodes of a given quadtree T in linear time using the following method.
We will say that a node u is a special node if exactly one child of u has marked
descendants. First we traverse the leaves of T in the left-to-right order and mark
every d-th leaf, starting with the leftmost one. Then we visit all internal nodes
of T in post-order. If a visited node u has exactly one child ui such that ui is
either marked or special, then we declare that the node u is special. If u has two
or more children that are either special or marked, then the node u is marked.
Marked nodes induce a subtree T ′ of T . T ′ has n/d leaves. Since every internal
node of T ′ has at least two children, T ′ has at most n/d−1 internal nodes. Hence
the total number of marked nodes is O(n/d). Similar methods for selecting nodes
were previously used in other tree-based data structures, see e.g., [19,21].

Rectangular Subdivision. When nodes are marked, we traverse T from the
top to the bottom and divide it into O(n/d) rectangles so that each rectangle
contains O(d) points. The subdivision is produced as follows. A direct marked
descendant of a node u is a descendant u′ of u such that u′ is marked and there
are no marked nodes between u and u′. Suppose that a node u is a marked node
and let u1, . . ., uf denote its direct marked descendants. A marked node has at
most 4 direct marked descendants, therefore f ≤ 4. Let square(u) denote the
cell of a node u. We can represent square(u) \ (∪f

i=1square(ui)) as a union of
a constant number of rectangles Rj(u). We will say that Rj(u) are rectangles
associated to the node u. See Fig. 2. There are O(n/d) marked nodes in the
quadtree. Our subdivision consists of rectangles Ri(u) for all marked internal
nodes of T and cells square(v) for all marked leaves v of T . By dividing every
marked node with marked descendants into rectangles as described above, we
obtain a sub-division of the plane into O(n/d) rectangles. Rectangles of this
subdivision will be further called canonical rectangles.
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Fig. 1. Marking nodes in a compressed quadtree for d = 8. Leaves are shown with
squares and internal nodes are shown with circles. Marked leaves and internal nodes are
depicted with filled circles and filled squares respectively. Only a part of the quadtree
is shown.

R1

R2

R3

R4

R5

R6

R7

R8
R9

Fig. 2. Subdivision of a marked cell into rectangles. Cells corresponding to direct
marked descendants are shown in black.

Lemma 1. Every canonical rectangle contains O(d) points.

Proof: Consider a rectangle R(u) associated to a node u. Let u1, . . ., uf denote
the direct marked descendants of u. We can show that the set P0 = square(u) \
(∪f

i=1square(ui)) contains O(d) points. Let L0 denote the set of leaves in which
points from P0 are stored. There are at most d leaf nodes from L0 between ui

and ui+1 for 1 ≤ i < f ; there are at most d leaf descendants of u to the left
of u1 and at most d leaf descendants of u to the right of uf . Hence the total
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number of leaves in L0 does not exceed (f + 2)d. Since R(u) ⊆ L0 and f ≤ 4,
R(u) contains O(d) points. �	

3 Orthogonal Range Reporting for Fat Boxes in 2-D

Data Structure. We divide the plane into canonical rectangles as described
in Sect. 2. For every rectangle R in this subdivision we keep the list Lx(R) of
points in R sorted by their x-coordinates and the list Ly(R) of points in R sorted
by their y-coordinates. We also keep a data structure D(R) that supports two-
dimensional range reporting queries on points of R. Since R contains O(log n)
points, we can implement D(R) in O(log n) space so that queries are supported
in O(k) time. The data structure D(R) will be described in Sect. 5. We will
denote by P the set of points stored in our data structure.

Orthogonal Range Queries. For simplicity we will consider the case when
the query range is a square. Any fat rectangle can be represented as a union
of O(1) squares. Consider a query Q = [a, b] × [c, d]. All canonical rectangles
that intersect Q can be divided into three categories: (i) corner rectangles that
contain a corner of Q (ii) rectangles that cut one side of Q or are completely
contained in Q; such rectangles will be called internal rectangles (iii) rectangles
that cross two opposite sides of Q, but do not contain corners of Q; we say that
such rectangles are spanning rectangles or that type (iv) rectangles span Q. See
Fig. 3.

1
2

3

4
5

6

7 Q

Fig. 3. Examples of different rectangles with respect to a query Q. Rectangles 1 and
2 are corner rectangles, rectangles 3, 4, 5, 6 are internal rectangles, and rectangle 7
spans Q.

Lemma 2. If a rectangle Q = [a, b] × [c, d] is a square, then Q is spanned by
O(1) canonical rectangles.

Proof: Suppose that a canonical rectangle R(u), associated to a node u, spans
Q. Then either (i) square(u) contains two corners of Q and Q is not contained
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in square(u′) for any descendant u′ of u, or (ii) square(u) contains Q but Q is
not contained in square(u′) for any descendant u′ of u.

If Q is contained in square(u) and at least one rectangle R(u) spans Q, then
Q is not contained in square(u′) for any descendant u′ of u. Hence there is at
most one cell that satisfies condition (i).

Suppose that square(u) contains two corners of Q and some rectangle R(u)
spans Q. Let us assume w.l.o.g. that Q crosses the left side � of square(u). Let u′

be some descendant of u. If square(u′) for a descendant u′ of u does not touch
the left side of square(u), then the distance from � to square(u′) is greater
than or equal to the size of square(u′). Hence square(u′) does not contain two
corners of Q. If square(u′) touches � and contains two corners of Q, then there
is no canonical rectangle R(u) that spans Q. Thus there is at most one cell that
satisfies condition (ii).

Since there is only one cell satisfying condition (i) and only one cell satisfying
condition (ii), the total number of canonical rectangles that span Q is bounded
by a constant. �	

A query range can overlap with a large number of internal rectangles. But we
can find all internal rectangles R, such that R∩Q∩P �= ∅ by answering a range
reporting query on a set P ′ (defined below) that contains O(n/d) representative
points for d = log n. It was shown in Lemma 2 that a square is intersected by O(1)
spanning rectangles. There are at most four corner rectangles for any query range
Q. Since there is a constant number of corner rectangles and spanning rectangles,
we can process all of them in constant time. A more detailed description follows.

We can identify all internal rectangles (type (ii) rectangles) that contain at
least one point from P ∩ Q as follows. For every canonical rectangle, we keep its
topmost point, its lowermost point, its leftmost point, and its rightmost point in
the set P ′. P ′ contains O(n/d) points. We keep P ′ in the data structure D′ that
supports orthogonal range reporting queries in O(log log U +k) time [7]. D′ uses
space O(n′ logε n′), where n′ is the number of points in P ′. Since n′ = O(n/d),
D′ uses space O(n). If rect(u) is an internal rectangle and rect(u) ∩ Q ∩ P �= ∅,
then at least one of its extreme points is in Q. We can find all such rectangles
by answering the same query Q on the set P ′. For every reported point p, we
examine the canonical rectangle Rp that contains p.

There are at most four corner rectangles. We can find corner rectangles by
keeping all canonical rectangles in the point location data structure of Chan [6].
For each corner point q of Q, we identify the rectangle Rq that contains q in
O(log log U) time.

Rectangles that span Q are the most difficult to deal with. All points of
a spanning rectangle can be outside of Q. It is not clear how we can find
spanning rectangles R such that R ∩ Q ∩ P �= ∅. Existence of these rectan-
gles is the reason why our method cannot be extended to the general case of
the orthogonal range reporting. However, by Lemma 2, a square query range
Q is spanned by O(1) canonical rectangles from our subdivision. All rectangles
that span Q can be found as follows. For a rectangle R we denote by left(R),
right(R), bot(R), and top(R) the lower and upper bounds of its horizontal
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and vertical projections; that is, R = [left(R), right(R)] × [bot(R), top(R)].
If a rectangle R spans Q, then at least one side of R spans Q. That is, R
satisfies one of the following conditions: (i) left(R) ≤ a, right(R) ≥ b, and
c ≤ top(R) ≤ d; (ii) left(R) ≤ a, right(R) ≥ b, and c ≤ bot(R) ≤ d; (iii)
a ≤ left(R) ≤ b, bot(R) ≤ c, and top(R) ≥ d; (iv) a ≤ right(R) ≤ b,
bot(R) ≤ c, and top(R) ≥ d. We keep information about every rectangle in
four three-dimensional data structures. The data structure R1 contains a tuple
(left(R), right(R), top(R)) for every canonical rectangle R. R1 can find all R
that satisfy left(R) ≤ a, right(R) ≥ b, and c ≤ top(R) ≤ d. The data structure
R2 contains a tuple (left(R), right(R), bot(R)) for every canonical rectangle
R. R2 can find all R that satisfy left(R) ≤ a, right(R) ≥ b, and c ≤ bot(R) ≤
d. Data structures R3 and R4 contain tuples (left(R), bot(R), top(R)) and
(right(R), bot(R), top(R)) respectively for every canonical rectangle R. R3

supports queries a ≤ left(R) ≤ b, bot(R) ≤ c, and top(R) ≥ d; R4 sup-
ports queries a ≤ right(R) ≤ b, bot(R) ≤ c, and top(R) ≥ d. Queries sup-
ported by data structures Ri are a special case of three-dimensional orthogonal
range reporting queries, called 4-sided queries (the query range is bounded on
four sides). Using the result of Chan et al. [7], we can answer such queries in
O(log log U + k) time using O(n′ logε n) space where n′ = O(n/d) is the number
of tuples in Ri. If a rectangle R is returned by a query to Ri, then R spans
Q or R contains two corners of Q. If Q is a square, then we can answer all
queries on Ri described above and identify all canonical rectangles that span
Q in O(log log U + f) = O(log log U) time, where f = O(1) is the number of
canonical rectangles that span Q.

For every corner or spanning rectangle R, we find all points in R∩Q using the
data structure D(R). Since the total number of corner and spanning rectangles is
bounded by O(1), we can find all relevant points in O(k) time. Using data structure
D′ we can find all internal rectangles in O(log log U + nI) time where nI is the
number of internal rectangles. For every internal rectangle RI we traverse the list
of points in Lx(RI) or Ly(RI) and report all points in RI ∩Q in time O(kI) where
kI = |RI ∩ Q|. The result of this section can be summed up as follows.

Theorem 1. There is a linear-space data structure that answers orthogonal range
reporting queries inO(log log U +k) time provided the query rangeQ = [a, b]×[c, d]
is a fat rectangle.

4 Orthogonal Range Reporting for Fat Boxes in 3-D

In this section, we describe a data structure for 3-d orthogonal range reporting
for fat query boxes, by adopting a recursive grid approach. Nonuniform grids
have been used in previous range searching data structures by Alstrup, Brodal,
and Rauhe [2] and Chan, Larsen, and Patrascu [7], but we use uniform grids
instead. Also, the way we use recursion is a little different, and more closely
resembles the recursion from van Emde Boas trees. Each node in our recursive
structure is augmented with a general 5-sided range reporting structure; thus,
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our solution can be viewed as a reduction from fat 6-sided range searching to
5-sided range searching.

The Data Structure. Let P be a given set of n points in [U ]3, where [U ]
denotes {0, 1, . . . , U − 1}. Let r be a parameter (a function of U) to be chosen
later. Divide [U ]3 into r3 grid cells, each a cube of the form {(x, y, z) : (U/r)i ≤
x < (U/r)(i + 1), (U/r)j ≤ y < (U/r)(j + 1), (U/r)k ≤ z < (U/r)(k + 1)} for
some i, j, k ∈ [r]. We call (i, j, k) the label of such a grid cell. A grid slab refers to
a region of the form {(x, y, z) : (U/r)i ≤ x < (U/r)(i + 1)}, {(x, y, z) : (U/r)j ≤
y < (U/r)(j + 1)}, or {(x, y, z) : (U/r)k ≤ z < (U/r)(k + 1)}. A grid-aligned
box refers to a box whose x-, y-, and z-coordinates are all multiples of U/r. We
construct our data structure as follows:

A. For each nonempty grid cell γ, recursively build a data structure for P ∩ γ;
also store P ∩ γ as a linked list.

B. Let Γ be the set of all nonempty grid cells. Recursively build a data structure
for the labels of Γ .

C. For each grid slab σ, build Chan, Larsen, and Patrascu’s data structure [7]
for P ∩ σ for 3-d 5-sided queries, which requires O(n logε n) words of space
and O(log log U) query time1.

Analysis of Space. Since we use a uniform grid, we will represent the space usage
and query time as functions of the universe size U . Let s(U) be the amortized
space complexity of our data structure in bits, i.e., the total space complexity in
bits divided by the number of points n. Item A of the data structure requires at
most s(U/r) bits per point, since after translation, each grid cell becomes [U/r]3.
This ignores the space for the linked lists, which require a total of O(n log U) bits.
Item B requires at most s(r) bits per point, since the labels lie in [r]3. Item C
requires a total of O(n logε n log U) ≤ O(n log1+ε U) bits (since n ≤ U3). Thus,

s(U) ≤ s(U/r) + s(r) + O(log1+ε U).

Query Algorithm. We consider the case when the query range is an (axis-
parallel) cube; any fat query box can be expressed as a union of O(1) cubes.
Given a query cube Q, we report all points of P in Q as follows:

1. If Q is completely contained in a grid cell γ, then recursively report all points
of P ∩ γ in Q. Otherwise:

2. Decompose Q into (at most) one grid-aligned cube Q′ and (at most) six other
boxes Q1, . . . , Q6, where each Qi is a 5-sided box in a grid slab σi. (See Fig. 4
for an analogous 2-d depiction).

3. Recursively report all grid cells of Γ in Q′. For each reported grid cell γ ∈ Γ ,
report all points in the linked list P ∩ γ.

4. For each i ∈ {1, . . . , 6}, report all points of P ∩ σi in Qi.

1 For simplicity, we ignore the time needed to output points in this section.
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q

q

Fig. 4. In 2-d, if a query square Q is not completely contained in any grid cell, it can be
decomposed into one grid-aligned square and four 3-sided rectangles in four grid slabs
(shown in the left), or just two 3-sided rectangles (shown in the right). Similarly, in 3-d,
if a query cube Q is not completely contained in any grid cell, it can be decomposed into
one grid-aligned cube and six 5-sided rectangles in six grid slabs, or just two 5-sided
rectangles.

Analysis of Query Time. Let t(U) denote the running time of the query
algorithm, excluding the outputting cost (which is O(k) for k output points).
Step 1 takes t(U/r) time. The recursive call in step 3 takes t(r) time. Step 2
takes O(log log U) time. Thus,

t(U) ≤ max {t(U/r) + O(1), t(r) + O(log log U)} .

We can eliminate the O(1) in the first term of the max by the following idea:
Consider the tree formed by expanding the recursion due to item A (treating
the recursive structures from item B as secondary structures at the nodes of the
main tree). Then we can jump to the first node of the tree at which Q is not
completely contained in a grid cell, in O(1) time by an LCA operation in the tree
(actually, because the tree is perfectly balanced, for our choice of r (see below),
the LCA operation can be simulated by standard arithmetic and bitwise-logical
operations on the coordinates of Q).

Conclusion. Setting r = U1/b for a fixed parameter b gives

s(U) ≤ s(U1−1/b) + s(U1/b) + O(log1+ε U)

t(U) ≤ max
{

t(U1−1/b), t(U1/b) + O(log log U)
}

,

which solves to s(U) = O(b log1+ε U) and t(U) = O(logb log U · log log U). The
outputting cost goes up to O(k logb log U), since each point may be reported
O(logb log U) times.

Setting b = logε U gives O(log1+2ε U) amortized space in bits and
O(log log U + k) query time. Readjusting ε by a half, we conclude:

Theorem 2. We can store n points in [U ]3 in a data structure with O(n logε U)
words of space so that we can report all k points in any query fat box in
O(log log U + k) time.
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Remark. The above theorem can’t be improved with current state of the art,
because 3-d 4-sided range reporting reduces to our problem and the current best
data structure for the former requires O(n logε n) space and O(log log U + k)
query time. To see the reduction, note that a 4-sided box [x1, x2) × (−∞, y) ×
(−∞, z) contains the same points as the cube [x1, x2) × [y − (x2 − x1), y) × [z −
(x2−x1), z), assuming that x2−x1 > U . The assumption can be guaranteed after
stretching the x-axis by a factor of U (so that the universe is now [U2]×[U ]×[U ]).

5 Orthogonal Range Reporting on a Small Set of Points

In this section we show how two-dimensional orthogonal range reporting on a set
of d = O(log n) points can be supported in O(k) time. Our data structure uses
space O(d), but needs an additional universal look-up table of size o(n). That
is, we can keep many instances of our data structure for different point sets and
all instances can use the same look-up table.

Lemma 3. If a set P contains d = O(log n) points, then we can keep P in a
linear-space data structure D(P ) that answers two-dimensional range reporting
queries in O(k) time. This data structure relies on a universal look-up table of
size o(n).

Proof: First we observe that we can answer a query on a set P ′ that contains
at most d′ = (1/4) log n/ log log n points using a look-up table of size o(n).
Suppose that all points in P ′ have positive integer coordinates bounded by d′.
There are 2d′ log d′

combinatorially different sets P ′. For every instance of P ′, we
can ask (d′)4 different queries and the answer to each query consists of O(d′)
points. Hence the total space needed to keep answers to all possible queries on
all instances of P ′ is O(2(log d′)d′

(d′)5) = o(n) points. The general case (when
point coordinates are arbitrary integers) can be reduced to the case when point
coordinates are bounded by d′ using reduction to rank space [2,14].

A query on P can be reduced to O(1) queries on sets that contain O(d′)
points using the grid approach [2,7]. The set of points P is divided into 4 log d
columns Ci and 4 log d rows Rj so that every row and every column contains
(1/4)d/ log d points. Hence we can support range reporting queries on points in
a row/column using the look-up table approach described above. The top set Pt

contains a meta-point (i, j) iff the intersection of the i-th column and the j-th
row is not empty, Rj ∩ Ci �= ∅. Since Pt contains O(log2 d) = o(d′) points, we
can also support queries on Pt in O(k) time. For each meta-point (i, j) in Pt we
store the list of points Lij contained in the intersection of the i-th column and
the j-th row, Lij = Ci ∩ Rj ∩ P .

Consider a query Q = [a, b]×[c, d]. If Q is contained in one column or one row,
we answer the query using the data structure for that column/row. Otherwise we
identify the rows Rl and Rt that contain c and d respectively (i.e., the line y = c
is contained in Rb and the line y = d is contained in Rt). We also identify the
columns Cf and Cr containing a and b. We report all points in Q ∩ Cl, Q ∩ Cr,
Q ∩ Rb and Q ∩ Rt. We find all meta-points (i, j) in Pt such that f < i < r and
l < j < t; for every found (i, j) we report all points in Lij . �	
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Abstract. We obtain new polynomial kernels and compression algo-
rithms for Path Cover and Cycle Cover, the well-known general-
izations of the classical Hamiltonian Path and Hamiltonian Cycle

problems. Our choice of parameterization is strongly influenced by the
work of Biró, Hujter, and Tuza, who in 1992 introduced H-graphs, inter-
section graphs of connected subgraphs of a subdivision of a fixed (multi)
graph H. In this work, we turn to proper H-graphs, where the contain-
ment relationship between the representations of the vertices is forbid-
den. As the treewidth of a graph measures how similar the graph is to
a tree, the size of graph H is the parameter measuring the closeness of
the graph to a proper interval graph. We prove the following results.

– Path Cover admits a kernel of size O(‖H‖8), that is, we design
an algorithm that for an n-vertex graph G and an integer k ≥ 1, in
time polynomial in n and ‖H‖, outputs a graph G′ of size O(‖H‖8)
and k′ ≤ |V (G′)| such that the vertex set of G is coverable by k
vertex-disjoint paths if and only if the vertex set of G′ is coverable
by k′ vertex-disjoint paths.

– Cycle Cover admits a compression of size O(‖H‖10) into another
problem, called Prize Collecting Cycle Cover, that is, we
design an algorithm that, in time polynomial in n and ‖H‖, out-
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In all our algorithms we assume that a proper H-decomposition is given
as a part of the input.

Keywords: Cycle Cover · Path Cover · Proper H-graphs ·
Kernelization

1 Introduction

Hamiltonian Cycle is one of the oldest mathematical puzzles, whose study
can be traced back to the 9th century, and it is still actively studied. Our
results about the Hamiltonian Cycle problem are in the intersection of two
research areas: kernelization and algorithms on special graph classes. In both
areas Hamiltonian Cycle has been intensively investigated.

Parameterized Algorithms and Kernelization. The most popular gener-
alization of the Hamiltonian Cycle problem studied in parameterized com-
plexity is known under the name Longest Cycle. This problem is to decide
whether a graph contains a cycle of length at least k, where k is an integer
parameter. Longest Cycle and its close relative Longest Path are impor-
tant representatives of the so-called family of “non-local” problems and this is
why these problems served as testbeds in the development of various fundamen-
tal techniques in the area such as color coding [1], algebraic methods [4,28,34], or
Cut & Count [15] to name a few. We refer to the book of Cygan et al. [14] for an
overview of these techniques. From the perspective of kernelization, the frame-
work developed by Bodlaender et al. [5] excludes the existence of a polynomial
kernel (up to some reasonable assumption from complexity theory) for Longest
Cycle with the natural parameter k. This lower bound initiated the develop-
ment of kernelization algorithms for Hamiltonian Cycle with “structural ker-
nelization”. Fellows et al. [19] proved that Hamiltonian Cycle parameterized
by the max leaf number of the input graph G, that is the maximum number of
leaves in a spanning tree of G, admits a kernel of polynomial size. A system-
atic approach in the study of structural kernelization of Hamiltonian Cycle

(and other related problems) was taken by Bodlaender et al. [6] who consid-
ered kernelization of Hamiltonian Cycle parameterized by the size of the
modulator to some nice graph property. More precisely, for a graph G the mod-
ulator to a graph property Π is a set of vertices or edges such that after remov-
ing this set from graph G, the resulting graph has property Π. In particular,
Bodlaender et al. [6] have shown that Hamiltonian Cycle admits a polynomial
kernel when parameterized by the size of a minimum vertex cover (a minimum
modulator to an independent set) or by the size of a minimum modulator to
the cluster graph, that is, the disjoint union of complete graphs. They also pro-
vided a number of lower bounds on the structural kernelization of the problem
by showing, for example, that the problem does not admit a polynomial kernel
when the parameter is the minimum size of a modulator to an outerplanar graph.

Graph Classes. There is a large research area in graph algorithms, where the
structural properties of graphs, like being interval or chordal, are exploited for
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developing of efficient algorithms problems intractable on general graphs. We
refer to the books [8,24] for the introduction and survey of the known results.
Without a doubt, the oldest and the most studied class of intersection graphs is
the class of interval graphs and there is a long history of research on the Hamil-

tonian Cycle and Hamiltonian Path problems on interval, circular-arc and
related graph classes. It was shown by Keil [27] in 1985 that Hamiltonian

Cycle can be solved in linear time for interval graphs (see also [9,10,16,30]).
The problem for circular-arc graphs proved to be much more involved and the
first polynomial algorithm for Hamiltonian Cycle on circular-arc graphs was
given by Shih et al. [33] in 1992 (see also [25]). On the other hand, for proper
interval graphs, it was already shown by Bertossi [2] that every connected proper
interval graph has a Hamiltonian path, and a proper interval graph has a Hamil-
tonian cycle if and only if it is 2-connected graph with at least three vertices (see
also [13,26]). This immediately implies a linear-time algorithm for the problem.
It follows from the results of Brandstädt et al. [7] that Hamiltonian Cycle

can be solved in linear time for circular-arc graphs. Thus, Hamiltonian Cycle

can be solved in linear time for (proper) interval and circular graphs. For chordal
graphs, Hamiltonian Cycle is well-known to be NP-complete and is even NP-
complete for strongly chordal split graphs [31].

Our Results. In this paper we follow the main question of structural
kernelization—if a computational problem can be solved in polynomial time
on instances with some structural properties, does it admit a polynomial ker-
nel parameterized by some “distance” to this nice structural property? In our
setting the nice structural property is to be a proper interval graph. However,
the “distance” we use is quite different from the commonly used the size of a
modulator.

Our measure of similarity with proper interval graphs is based on the beauti-
ful concept of H-graph introduced by Biró et al. [3] in the context of the precol-
oring extension problem. An intersection representation of a graph G assigns a
set Sv to every vertex v ∈ V (G) such that Su ∩ Sv �= ∅ if and only if uv ∈ E(G).
When the sets Su are intervals of the real line, this defines an interval graph.
From a different perspective, every interval graph can be viewed as an intersec-
tion graph of subpaths of some (sufficiently long) path. Similarly, circular-arc
graphs, a natural generalization of interval graphs, are the intersection graphs of
subpaths of some cycle. It is also a well-known fact that a graph is chordal if and
only if it is an intersection graph of subtrees of some tree. A natural generaliza-
tion of these classes are intersection graphs of subgraphs of some subdivision of
an arbitrary underlying graph H. For a fixed graph H, we say that a graph G is
an H-graph, if it is an intersection graph of connected subgraphs of a subdivision
of H. In this language, interval graphs are K2-graphs, circular-arc graphs are
K3-graphs, and every chordal graph is a T -graph for some tree T .

An intersection representation {Sv}v∈V (G) of a graph G is a proper represen-
tation, if Su ⊆ Sv implies u = v. Then a graph G is a proper H-graph, if it admits
a proper intersection representation by connected subgraphs of a subdivision of
H. For example, proper K2-graphs are proper interval graphs, that is the graphs
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admitting a proper representation by intervals of the real line. Various aspects
of proper interval and proper circular-arc representations are well-studied, and
our goal is again to study how these carry to general proper H-graphs. Clearly,
all positive algorithmic results obtained for H-graphs in [11,12,20] are valid for
proper H-graphs, but since we consider a more restricted graph class, we can
hope that the tractability area could be expanded.

We consider the following fundamental generalizations of Hamiltonian

Cycle and Hamiltonian Path problems.

Input: A graph G and a positive integer k.
Task: Decide whether G has a cycle (path) cover C with at most k

cycles (paths).

Cycle Cover (Path Cover)

The main results of this paper are the following theorems about kernelization
of Cycle Cover and Path Cover. In both theorems we assume that a proper
H-representation of input graph G is given.

Theorem 1. Path Cover admits a kernel of size O(h8), where h is the size
of the graph H in a proper H-representation of the input graph G.

For Cycle Cover we only construct a polynomial compression of the explic-
itly stated size. (Roughly speaking, the difference between kernelization and
compression is that kernelization algorithm outputs an equivalent instance of the
same parameterized problem, while a compression algorithm maps an instance of
a parameterized problem to an equivalent instance of another non-parameterized
problem. We refer to Sect. 2 with preliminaries, where we define kernelization
and compressing algorithms.) Let us note that since we compress into an NP-
complete problem, the standard trick involving the Cook-Levin theorem, see
e.g. [21], implies the existence of a polynomial in h kernel for Cycle Cover

but we are unable to give the exact size of such a kernel.

Theorem 2. Cycle Cover admits a compression of size O(h10), where h is
the size of the graph H in a proper H-representation of the input graph G.

However for the special case of Cycle Cover with k = 1, namely Hamil-

tonian Cycle, we also are able to obtain a kernel of size O(h8).
Note that, the requirement that a proper H-representation is given in the

input of the considered problems on proper H-graphs is likely unavoidable.
Namely, the hardness result of Chaplick et al. [11] can be adapted to show that
the recognition problem for proper H-graphs is NP-hard even for small fixed
graphs H.

Organization of the Paper. Section 2 provides the notions used in the paper.
Due to space constraints, we are unable to explain all the details in this extended
abstract. Instead, in Sect. 3, we give an informal description of our kernelization
and compression algorithms.
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2 Preliminaries

Graphs. All graphs considered in this paper assumed to be simple, that is, finite
undirected graphs without loops or multiple edges, unless it is said explicitly
that we consider a multigraph. For each of the graph problems considered in
this paper, we let n = |V (G)| and m = |E(G)| denote the number of vertices
and edges, respectively, of the input graph G if it does not create confusion;
‖G‖ = |E(G)| is the size of G. A path P (a cycle C) in G is Hamiltonian if
V (P ) = V (G) (V (C) = V (G) respectively). A family of paths P = {P1, . . . , Pk}
(cycles C = {C1, . . . , Ck}) is a path cover (cycle cover) if the paths (cycles) are
pairwise disjoint and the union of their vertices is V (G). The size of a path or
cycle cover is the number of paths or cycles in it. A family Q = {Q1, . . . , Qs}
of cliques is said to be a (vertex) clique cover if the cliques are pairwise disjoint
and

⋃s
i=1 Qi = V (G). Note that we consider only vertex clique covers.

Let S be a collection of sets. The intersection graph G of S has S as its vertex
set and two distinct vertices X,Y ∈ S are adjacent if and only if X ∩Y �= ∅. For
an intersection graph G, S is called an (intersection) model of G. The intersection
graph of a family of intervals of the real line is called an interval graph; it is also
said that G is an interval graph if there is a family of intervals (called interval
model or representation) such that G is isomorphic to the intersection graph of
this family. Throughout the paper we assume that the intervals of an interval
model are closed. An interval graph is proper if it has an interval model such
that no interval is a subinterval of another one.

Let H be a multigraph. We say that H ′ is obtained from H by the subdivision
of an edge e = xy if to construct H ′, we delete e and add a new vertex z along
with two new edges zx and zy. Similarly, H ′ is a subdivision of H if H ′ is
obtained from H by iteratively subdividing its edges.

For a multigraph H, a simple graph G is an H-graph if G is an intersection
graph of connected subgraphs of some subdivision H ′ of H or, equivalently, G
is an intersection graph of connected subsets of vertices of H ′. Throughout the
paper we only allow the H’s in H-graphs to be multigraphs and all other graphs
are assumed to be simple. To distinguish the vertices of H and H ′ from the
vertices of G, we refer to the vertices of H and H ′ as nodes. We also say the
nodes of H are branching nodes of H ′ and the other nodes are subdivision nodes.
A pair (H ′,M), where M = {Mv}v∈V (G) is a collection of connected vertex sets
of H ′ such that G is the intersection graph of M, is called an H-representation
of G. A representation (H ′,M) is proper if for every two distinct u, v ∈ V (G),
neither Mu ⊆ Mv nor Mv ⊆ Mu. In this sense, G is a proper H-graph if it has
a proper H-representation. It is straightforward to see that every interval graph
G is a K2-graph and every proper interval graph is a proper K2-graph.

Note that every graph has the following trivial model. For a graph G, let
I(G) be the incidence graph of G, that is, the result of subdividing each edge of
G exactly once.

Observation 1. Every graph G is a proper G-graph. Its trivial proper
G-representation is (I(G), {NI(G)[v]}v∈V (G)).
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Parameterized Complexity and Kernelization. We refer to the books [14,
17,21] for a detailed introduction to the field.

Parameterized Complexity is a two dimensional framework for studying the
computational complexity of a problem. One dimension is the input size n and
the other is a parameter k associated with the input. The main goal is to confine
the combinatorial explosion in the running time of an algorithm, for an NP-hard
problem, to depend only on k. In this sense, a parameterized problem is said to
be fixed parameter tractable (or FPT) if it can be solved in time f(k) · nO(1) for
some computable function f .

A compression of a parameterized problem Π1 into a (non-parameterized)
problem Π2 is a polynomial algorithm that maps each instance (I, k) of Π1 with
the input I and the parameter k to an instance I ′ of Π2 such that (i) (I, k)
is a yes-instance of Π1 if and only if I ′ is a yes-instance of Π2, and (ii) |I ′|
is bounded by f(k) for a computable function f . The output I ′ is also called
a compression. The function f is said to be the size of the compression. A
compression is polynomial if f is polynomial. A kernelization algorithm for a
parameterized problem Π is a polynomial algorithm that maps each instance
(I, k) of Π to an instance (I ′, k′) of Π such that (i) (I, k) is a yes-instance of Π
if and only if (I ′, k′) is a yes-instance of Π, and (ii) |I ′| + k′ is bounded by f(k)
for a computable function f . Respectively, (I ′, k′) is a kernel and f is its size.
A kernel is polynomial if f is polynomial. While it can be shown that every
decidable parameterized problem is FPT if and only if it admits a kernel, it is
unlikely that every problem in FPT has a polynomial kernel (see, e.g., [14,21]
for the details).

For Cycle Cover, we show that it admits a polynomial compression into a
special problem called Prize Collecting Cycle Cover, defined next.

Let G be a graph and let ω : E(G) → N0 be a weight function; note that
we allow zero weights. For a cycle C, ω(C) is the sum of the weights of its
edges. Let α : N → N be a non-decreasing penalty function. For a cycle cover
C = {C1, . . . , Ck} of G, the weight of C is ω(C) =

∑k
i=1 ω(Ci) and the cost of C

is cα,ω(C) = ω(C) − α(|C|). Observe that the cost may be negative.

Input: A graph G with a weight function ω : E(G) → N0, a non-
decreasing penalty function α : {1, . . . , |V (G)|} → N, and an
integer r.

Task: Decide whether G has a cycle cover C of cost cα,ω(C) ≥ r.

Prize Collecting Cycle Cover

Notice that if G is a graph with zero edge-weights and the penalty function
α(x) = x for x ∈ N, then G has a cycle cover with at most k cycles if and
only if G has a cycle cover of cost at least r = −k, that is, Prize Collecting

Cycle Cover generalizes Cycle Cover. We prove that Cycle Cover admits
a polynomial compression to Prize Collecting Cycle Cover of size O(h10)
when parameterized by the size h of H if a proper H-representation is given on
the input.
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3 Description of Algorithms

In this section, we give an informal high-level description of our kernelization
and compression algorithms as to outline how they work. Our first step towards
the kernelization of Path Cover and compression of Cycle Cover is a ker-
nelization algorithm for Cycle Cover, Path Cover, and Prize Collecting

Cycle Cover being parameterized by the size of a (vertex) clique cover of the
input graph. In the second step, we describe how having a proper H-model leads
to kernels with small clique covers.

From small Clique Covers to Kernels. These results are of independent
interest. The parameterization of Hamiltonian Cycle by the clique cover size
was considered by Lampis et al. [29] who proved that the problem is FPT for
this parameterization. We extend their result by showing the following theorem.

Theorem 3. Cycle Cover, Path Cover, and Hamiltonian Cycle admit
kernels of size O(s8), where s is the size of a clique cover. Prize Collecting

Cycle Cover admits a kernel of size O((s+�)10), where s is the size of a clique
cover and � is the number of edges of the input graph with non-zero weights. In
all kernels we assume that a clique cover of size s is given in the input.

We sketch the main ideas of the kernelization for Cycle Cover, which is
the easiest among these problems, and then explain how to modify it for the
other problems under consideration.

Recall that a clique cover is a collection Q = {Q1, . . . , Qs} of disjoint cliques
such that V (G) =

⋃s
i=1 Qi. First we show that there is always an optimal solution

to Cycle Cover with very specific properties. We call a cycle cover regular (for
the clique cover Q = {Q1, . . . , Qs}) if it satisfies the following properties for each
i, j ∈ {1, . . . , s}, i �= j,

(i) at most one cycle of the cover has an edge between cliques Qi and Qj ,
(ii) every cycle of the cover has at most two edges between Qi and Qj .

It is possible to prove that every cycle cover can be transformed into a regular one
without increasing its size. Informally, if two distinct cycles have edges between
two cliques Qi and Qj , we can “glue” them together as it is shown in Fig. 1(left),
and if a cycle has at least three edges between the cliques, then we can pick two
of them that are in the “same direction” according an arbitrary orientation of
the cycle and reroute the cycle, see Fig. 1(right).

Because the cycles of a regular cycle cover have a limited number of edges
that are between the cliques of Q, it is possible to modify and/or reroute them
using the fact that the vertices of the same clique are pairwise adjacent. The
regularity of a cycle cover allows us to apply the following reduction rules.

– If there is a clique Qi ∈ Q and v ∈ Qi such that NG[v] = Qi and |Qi| ≥ s+3,
then set G = G − v and Qi = Qi \ {v}.
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Fig. 1. Rerouting cycles; the
deleted edges are shown by dashed
lines and the added edges are
shown by thick lines.
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Fig. 2. The types of covering (up to sym-
metry) of Ge by a tamed path cover.

– If there are i, j ∈ {1, . . . , s}, i �= j, such that the bipartite graph Gij , with
vertex set Qi ∪ Qj and whose edges are the edges of G between Qi and Qj ,
has a matching M of size at least 4s − 3, then select (arbitrarily) an edge
e ∈ M , set G = G − e.

– If there is a clique Qi ∈ Q and v ∈ V (G)\Qi such that |NG(v)∩Qi| ≥ 2s+1,
then for an arbitrary edge e = uv with u ∈ Qi, set G = G − e.

The first item asserts that if a sufficiently large clique of the clique cover
has a simplicial vertex, this vertex is irrelevant. Similarly, if there is a large
matching between two cliques, then one edge of this matching can be deleted
safely. Finally, if there is a vertex outside a clique which is adjacent to many
vertices of the clique, any edge between such a vertex and the clique can be
removed. We apply the rules exhaustively. We prove that any irreducible instance
has O(s4) vertices, that is, the size of the obtained instance of Cycle Cover

is O(s8) and this implies the claim of Theorem 3 for the problem.
As Hamiltonian Cycle is the special case of Cycle Cover when k = 1

and the reduction rules do not modify k, the kernelization algorithm for Hamil-

tonian Cycle is the same. For Path Cover, we need a tiny adjustment to
reroute the paths of a path cover in a slightly different way. However, Prize
Collecting Cycle Cover requires additional work.

Let (G,ω, α, r) be an instance of Prize Collecting Cycle Cover and
let S be the set of edges of G with non-zero weights, � = |S|. First, we modify
the clique cover Q of G by making the end-vertices of the edges of S trivial
cliques of size one. Thus, we obtain the clique cover Q̂ of size t ≤ s + 2�. Then
we observe that the modifications of the cycles of a cycle cover that were used for
Cycle Cover never affect edges of G with both end-vertices in trivial cliques.
In particular, if the cycles of a cycle cover contain e ∈ S, one of the cycles of the
cycle cover obtained by the reroutings still contains e. Also, we do not increase
the number of cycles in cycle covers by such reroutings. This implies that we still
can use our reduction rules. It is possible to show that an irreducible instance
of Prize Collecting Cycle Cover obtained by the exhaustive application
of the rules has O(t4) vertices.

Note that this is not a polynomial kernel yet because we still have to compress
the edge weights as well as the values of the penalty function α and r. For this,
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we apply the approach proposed by Etscheid et al. [18] for constructing kernels
for weighted problems. These techniques are based on the classical algorithm for
compressing numbers given by Frank and Tardos [22]. This allows us to encode
the value of the weight function for each e ∈ S and the value of the penalty
function for each of the O(t4) vertices by a binary string of length O((s + �)6).
Summarizing, we obtain an instance of Prize Collecting Cycle Cover of
size O((s + �)10). This completes the sketch of the kernelization algorithm.

Note that Theorem 3 requires that a clique cover of the input graph is given.
This may be unavoidable as it is already NP-complete to decide whether a graph
has a clique cover of size 3 [23] (this is the same as 3-Coloring in the graph
complement).

From Proper H-Representations to Small Clique Covers. Now we use
Theorem 3 to construct kernelization and compression algorithms for Path

Cover and Cycle Cover on proper H-graphs, i.e., we build kernels with
small clique covers.

Suppose that G is a proper H-graph given together with its proper H-
representation (H ′,M). Notice that for every branching node x ∈ V (H), the
set Kx = {v ∈ V (G) | x ∈ Mv} is a clique of G. Observe also that the graph
G−⋃

x∈V (H) Kx can be seen as a union of proper interval graphs Ge correspond-
ing to the edges e ∈ E(H). More formally, let e = xy ∈ E(H) and consider the
(x, y)-path Pe in H ′ obtained from e by the subdivisions. We denote by Ge the
subgraph of G induced by Ve = {v ∈ V (G) | Mv ⊆ V (Pe) \ {x, y}}. Clearly, Ge

is a proper interval graph and the sets Mv for v ∈ Ve form a proper interval
representation of it. This representation defines a corresponding total ordering
of its vertices (see [32]). We assume that these orderings are fixed for every Ge.
In particular, whenever we speak about leftmost and rightmost vertices of Ge,
we mean the leftmost and the rightmost vertices with respect to this ordering.
Notice that for e = xy, NG(Ve) ⊆ Kx ∪ Ky, that is, paths or cycles that cover
the vertices in Ge are either completely in Ge or enter Ge via the vertices of Kx

or Ky that we call the left and right cliques respectively.
The graphs Ge could be huge but, since they are proper interval graphs, they

have a relatively simple structure. We exploit this structure in order to replace
them by small gadget graphs while maintaining the equivalence of the instances
of the considered problems. Since the vertices of

⋃
x∈V (H) Kx can be covered by

at most |V (H)| cliques and the set of vertices of each gadget replacing Ge can
be covered by a constant number of cliques, we obtain a graph that has a clique
cover of size O(|V (H)| + |E(H)|).

To formalize the proof idea sketched above, we show that we can assume
that the considered H-representation (H ′,M) of G has no redundancies, that
is, for every node x ∈ V (H ′), there is a vertex v ∈ V (G) with x ∈ Mv and,
moreover, for every edge xy ∈ E(H ′), there is v ∈ V (G) with x, y ∈ Mv. We
call such a representation nice. To achieve this, we first observe that if the input
graph G has a component F that is a proper interval graph, we can find the
minimum number of paths or cycles that cover F depending on the considered
problem, and then delete F and modify the parameter k of Path Cover or
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Cycle Cover respectively. Somehow surprisingly, to the best of our knowledge
Cycle Cover was not studied on proper interval graph. Therefore, we design
a linear time algorithm for the problem. Note that it may happen that we solve
the problem by applying the reduction rules. Otherwise, we obtain an induced
subgraph G′ of G such that every component of G′ has a vertex v with Mv

containing a branching node of H ′. Then we modify H ′ by removing irrelevant
nodes and edges. This procedure can create new nodes of degree one from some
subdivision nodes of H ′ but the number of such vertices is at most 2|E(H)|. From
this, we derive that G′ is an Ĥ-graph for some Ĥ with at most 3|E(H)| nodes
and at most 2|E(H)| edges, and we construct the corresponding nice proper
Ĥ-representation.

From now on we can concentrate only on nice representations. In particular,
we assume that every graph Ge for e = xy ∈ E(H) is connected and that the
leftmost and the rightmost vertices of Ge have neighbors in the left and the right
cliques respectively.

Recall that for Path Cover, we prove the following theorem.

Theorem 1. Path Cover admits a kernel of size O(h8), where h is the size of
the graph H in a proper H-representation of the input graph G.

Let G be a proper H-graph and (H ′,M) be a nice proper representation
of it. Let P be a path cover of G. For e ∈ E(H), let Pe denote the family of
inclusion-maximal subpaths of the paths P ∈ P with all their vertices in Ve. We
say that Pe is the projection of P on Ge. Since P is a path cover of G, Pe is
a path cover of Ge. It is possible to show that if G has a path cover of size at
most k, then G has a path cover of size at most k such that the paths in each
projection Pe have a very special structure in the case when the vertices of the
graph Ge cannot be covered by two cliques. We call such a cover tamed (this is
a slightly simplified definition which we use only for the high-level description of
the algorithm). One possibility is that Pe consists of a single Hamiltonian path
of Ge with its end-vertices being the leftmost and the rightmost vertices of Ge.
In all other cases, Pe consists of at most two paths that are proper subpaths of
some paths of P and, moreover, every path of Pe extends in two directions in
the path of P. We prove the following properties of Pe.

– If Ge is 2-connected, then
• either Pe consists of one Hamiltonian path of Ge such that its end-vertices

are the two leftmost vertices of Ge (symmetrically, the two rightmost
vertices),

• or Pe consists of two paths such that each of them has one of its end-
vertices among the two leftmost vertices of Ge and the second end-vertex
is among the two rightmost vertices of Ge, and these paths are proper
subpaths of the same path P of P that occur in P in the “opposite
directions” for an arbitrary orientation of P .

– If Ge has a cut-vertex, then Pe consists of two paths such that one of them has
its end-vertices in the two leftmost vertices or just in the leftmost vertex if the
path is a trivial one-vertex path, and the second path behaves symmetrically.
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The structure of paths in the projection of a tamed path cover is shown in Fig. 2,
the vertices of Ge are denoted by ve

1, . . . , v
e
p(e) in the figure according to their

proper interval ordering. Note that every path of P that enters Ge uses the (one
or two) leftmost and rightmost vertices as entry-points.

We use this structural result for our kernelization. For each Ge that cannot
be covered by two cliques, we analyse the possible structure of paths in Pe for
a tamed path cover Pe. It appears that the types of paths in Pe are defined by
cut-vertices of Ge and that the adjacencies of the second leftmost and the second
rightmost vertices of Ge to the corresponding left and right cliques (if, say, the
second leftmost vertex is not adjacent to the left clique, then the leftmost vertex
“cuts” in a special sense this clique from the remaining part of Ge). Then we
replace Ge by a gadget from Fig. 3 which has the same structure with respect
to how they can be covered by a tamed path cover. Since each of these gadgets
can be covered by at most two cliques, in the end we obtain an equivalent
instance of Path Cover such that the input graph can be covered by at most
|V (H)| + 2|E(H)| cliques.

vep(e)

e e

e e

e

ve1

ve2 vep(e)−1

vep(e)

ve1 vep(e)ue

ve1 vep(e)ue

ve2 vep(e)−1
vep(e)ve1 ve2 vep(e)−1

ve1 vep(e)−1

Fig. 3. Replacement gadgets
(up to symmetry) and their
H-representations.

ve1

vep(e)

Ge Ge

ve1

ve2
ve2

ve1

Ge

Le Re

vep(e)

ve1
ve2

Ge

vep(e)−1

Ge

vep(e)

ve1

vep(e)

Ge

Ge

ve1

Ge

vep(e)
Ge

ve1

ve2

vep(e)

ve2

Fig. 4. The types of covering (up to sym-
metry) of Ge by a tamed cycle cover.

Then we can apply Theorem 3 where h ≤ |V (H)| + 2|E(H)|. Note that the
kernelization from Theorem 3 can destroy the proper H-representation. Thus
we have to be a bit careful here to specify the value of the parameter. We do it
by using Observation 1 and output the trivial proper Ĝ-representation for the
obtained graph Ĝ.

Cycle Cover is more complicated. While the general idea follows the one
for Path Cover, there are several non-trivial differences which we underline
below. We first recall the statement of the main result for Cycle Cover.
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Theorem 2 Cycle Cover admits a compression of size O(h10), where h is
the size of the graph H in a proper H-representation of the input graph G.

Let G be a proper H-graph and (H ′,M) be a nice proper representation of
it. Let C be a cycle cover of G. As for path covers, for each e ∈ E(H), we define
the projection Ce of C on Ge that is now a family of paths and cycles of Ge. We
show that it suffices to only consider special structured cycle covers that again
are called tamed ; the structure of paths and cycles in the projection of a tamed
cycle cover can be seen in Fig. 4. The crucial difference between projections of
tamed path and cycle covers is that the number of elements of the projection of
a tamed cycle cover is not bounded by any constant. Namely, if G has at least
three blocks, then either Ce contains a Hamiltonian path with its end-vertices
in the leftmost and the rightmost vertices of Ge or each middle block with at
least three vertices should contain a cycle of Ce. This implies that we cannot
replace Ge by a gadget which both has the same number of cycles as the original
projection, and can be covered by cliques whose number is any function of the
size of H.

To deal with this situation we introduce weights that encode the number of
cycles that we need to cover Ge if we do not use a Hamiltonian path between
the leftmost and the rightmost vertices. For each Ge, we construct a gadget with
at most three edges of positive weight. The remaining edges of the considered
graph receive zero weights. To give a rough idea how this works, we observe that
the non-zero weights are assigned to the edges of a gadget in such a way that
(i) there is a Hamiltonian path between the leftmost and rightmost vertices that
contains all these edges and (ii) for any cycle cover whose projection has no such
path, the cycles of the cover miss some edges of non-zero weights. The simplest
way to achieve this property is to use bridges in the replacement gadgets for
the assignment of non-zero weights but it is not always possible and we have
to use also more complicated gadgets. We replace the leftmost (the rightmost)
block by a copy of K5 if it has size at least 6 and leave it intact otherwise. The
replacement gadgets are attached to the graph by the two leftmost (rightmost)
vertices of Ge and the unique cut-vertices of the corresponding blocks. The same
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Fig. 5. The construction of F1–F11 and their proper interval representations; the edges
of non-zero weights are shown by thick lines.
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replacement is done for the middle part if Ge has a unique middle block. If Ge

has at least two middle blocks, we replace them by one of the graphs F1–F11

shown in Fig. 5, the non-zero weight edges are shown by thick lines and the
gadgets are attached via the vertices s and t.

This way we construct an instance of Prize Collecting Cycle Cover,
where at most 3|E(H)| edges have non-zero weights. Then we apply Theorem 3.

Notice that for Hamiltonian Cycle, we have no such difficulties, because
we are looking for a single cycle. This allows us to construct a kernel of size O(h8).

4 Conclusion and Open Questions

We obtained compression and kernelization results for Hamiltonian Path and
Hamiltonian Cycle and their generalizations for some classes of intersection
graphs. We proved that Hamiltonian Cycle and Path Cover on proper
H-graphs admit a polynomial kernel of size O(h8) when parameterized by the
size h of H if a proper H-representation is given in the input. For Cycle Cover,
it was shown that it admits a polynomial compression into Prize Collecting

Cycle Cover. As a byproduct, we also established that Hamiltonian Cycle,
Cycle Cover, Path Cover, and Prize Collecting Cycle Cover admit
polynomial kernels when parameterized by the clique cover size if a clique cover
is given in the input.

It is natural to ask whether our results for proper H-graphs could be gen-
eralized to (not necessarily proper) H-graphs. While Hamilonian Cycle is
NP-complete on strongly chordal split graphs [31], this question is open even
for special families of graphs H, like trees or stars. It could be also interesting
to consider other (covering) problems on (proper) H-graphs. For example, what
can be said about Clique Cover?
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7. Brandstädt, A., Dragan, F.F., Köhler, E.: Linear time algorithms for hamiltonian

problems on (claw, net)-free graphs. SIAM J. Comput. 30(5), 1662–1677 (2000)



Kernelization of Graph Hamiltonicity: Proper H-Graphs 309
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Abstract. The scheduling problem with calibrations was introduced by
Bender et al. (SPAA 2013). In sensitive applications, machines need to
be periodically calibrated to ensure that they run correctly. Formally,
we are given a set of n jobs with release times, deadlines and weights.
Calibrating a machine requires a cost and remains calibrated for a period
of T time units, after which it must be recalibrated before it can resume
running jobs. Moreover, we are given a budget of K calibrations. The
objective is to schedule a set of jobs such that the total weight is maxi-
mized on m identical machines with at most K calibrations.

In this paper, we present a (1/3)-approximation polynomial time algo-
rithm when jobs have unit processing time. For the arbitrary processing
time case, we give a ((1 − ε)/3)-approximation pseudo-polynomial time
algorithm and a ((1 − ε)/18)-approximation polynomial time algorithm.

1 Introduction

The scheduling problem of minimizing the number of calibrations has been
recently introduced by Bender et al. [5]. It is motivated by the Integrated Stock-
pile Evaluation (ISE) program at Sandia National Laboratories for testing in
contexts where safety mistakes may have serious consequences. More generally,
this problem concerns the manufacture of modern industrial products according
to their exact standards like digital cameras or processors. The machines that
make these products are precise and execute dedicated tasks. Therefore, they
need to be calibrated carefully before they can perform any job. The products
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can be considered reliable only if the machines have been well calibrated before-
hand. These calibrations can be very expensive and can be much more expensive
than the running cost of the machines.

This motivation can extend to any context where machines performing jobs
must be calibrated periodically. High-precision machines require periodic cali-
bration to ensure precision. Methodology for calibrating these machines is itself
an area of research; mainly, it includes [14,15,17,18]. Generally, machines are no
longer considered to be accurate after a period. There are many guidelines to
determine this calibration interval, or period of time between calibrations, both
from industry and academia [4,9,11,13,16].

The scheduling problem with calibrations proposed by Bender et al. [5] is
as follows. We are given a set of n jobs that need to be scheduled on a set
of m identical machines. Each job j has a release time rj , a deadline dj and
a processing time pj . A job is scheduled if it is processed entirely inside its
interval [rj , dj). However, we can schedule jobs only if we perform calibrations
beforehand. A calibration activates instantaneously the machine for a period of T
time units and the machine can start to process jobs as soon as it is calibrated.
After T time units, the machine cannot schedule any jobs unless we perform
another calibration. The goal is to find a feasible schedule such that all jobs are
scheduled with the minimum number of calibrations.

1.1 Related Works

The scheduling problem of minimizing the number of calibrations has been first
studied in the seminal paper by Bender et al. [5]. They restricted their work
to the unit processing time case and provided an optimal algorithm for this
problem when there is only one available machine, and a 2-approximation algo-
rithm1 when there are multiple available machines. Moreover, they proposed
several structural properties and several cases where the algorithm is optimal.
Although this problem admits a polynomial time algorithm for the case of one
machine, it remains open whether it is polynomial or NP-hard for the multi-
ple machines case. Later, Fineman and Sheridan [7] generalized the calibration
model. They considered the case where jobs have arbitrary processing time, pre-
emption of jobs is not allowed and jobs must be entirely scheduled within the
same calibration. The problem is NP-complete to find a feasible solution and they
study the problem with resource-augmentation. More recently, Angel et al. [1]
developed dynamic programming algorithms for further generalizations—where
for example there are multiple kinds of calibrations, or jobs have non-unit pro-
cessing times, but are preemptible and can be assigned to different calibrations.
Chau et al. [6] considered the flow time problem with calibration constraints.
They studied the online version whose goal is to minimize the total (weighted)

1 A ρ-approximation algorithm for an optimization problem is a polynomial-time algo-
rithm that for all instances of the problem produces a solution whose value is within
a factor of ρ of the value of an optimal solution. By convention, we have ρ > 1 for
minimization problems, while ρ < 1 for maximization problems.
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flow time, the (weighted) time between the release time of a job and its comple-
tion as well as the calibration cost. They proposed several constant competitive
online algorithms where jobs are not known in advance and also proposed a
polynomial time algorithm for the offline case.

Scheduling with calibrations has similarities with some other well-known
scheduling problems, such as minimizing idle periods [2], and scheduling on
cloud-based machines which must be rented to perform work [12].

1.2 Our Problem

In this paper, we study the throughput version of the scheduling problem with
calibrations. Instead of minimizing the number of calibrations such that all jobs
are scheduled, we are interested to schedule a subset of jobs with a limited num-
ber of calibrations such that the total weights of the selected jobs is maximized.
More formally, we are given a set of n jobs with their respective release time,
deadline, processing time and each job is associated to a weight (profit). We
have a limited budget K in the number of calibrations and each job has its own
weight. The goal is to find a subset of jobs that can be scheduled with at most
K calibrations such that the total weights of the selected jobs is maximized.

A first observation is that in the worst case, each job is assigned to a different
calibration. So in any reasonable feasible schedule, there are at most n calibra-
tions. Secondly, our problem is at least as hard as the calibration minimization
problem. Indeed, let us consider the following decision problem: given a calibra-
tion budget K, is it possible to schedule a subset of jobs with total weights at
least W? If we can answer this question in a positive way, we can perform a
binary search on the number of calibrations we are allowed to use and aim to
find the minimum number of calibrations such that all jobs are scheduled. In
other words, a polynomial time algorithm that can solve our problem implies
that the calibration minimization problem can be solved in polynomial time.

Furthermore, we study the variant where jobs have arbitrary processing time.
Jobs can be preempted but must be resumed in the same calibration. Indeed,
resuming a job in a different calibration may incur overhead cost. This work
is the first to our knowledge to study the throughput version of the calibration
scheduling problem.

1.3 Our Contributions

When jobs have unit processing time, we propose a framework that achieves a
(1 − 1

e )-approximation (Theorem 1) when the calibration budget is less than or
equal to the number of machines, a 1

3 -approximation otherwise (Theorem 3).
On the other hand, when jobs have arbitrary processing time, we show that
we are able to solve the problem in polynomial time by losing a factor of 6
(Proposition 3). Therefore, we get a polynomial time algorithm for the case when
jobs have arbitrary processing time and the calibration budget is more than the
number of machines, and its approximation ratio is 1

18 (1 − ε) (Theorem 6).
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The paper is organized as follows: we first study the case where jobs have
unit processing time and the budget of calibrations is less than or equal to the
number of machines in Sect. 2 as well as the complementary case (when the
budget of calibrations is more than the number of machines) in Sect. 3. We then
study the case where jobs have arbitrary processing time in Sect. 4: a pseudo-
polynomial time approximation algorithm is given in Sect. 4.1 while a polynomial
time algorithm is given in Sect. 4.2. Then we conclude in Sect. 5. Due to space
limitation, some proofs are omitted.

2 Warm-Up: K ≤ m, Unit Processing Time

We first present a simple algorithm to solve the problem of maximum throughput
with calibrations when the calibration budget is less than or equal to the number
of machines. In this case, we do not need to worry about whether we have enough
machines or not since we can perform each calibration on a different machine.
The idea is to transform our problem to a Maximum Coverage Problem.

Definition 1 (Maximum Coverage Problem). We are given a collection of
sets S = {S1, S2, ..., Sp}. We aim to select at most K sets such that the total
weight of the covered elements is maximized, i.e. find a subset S′ ⊆ S such that
|S′| ≤ K and

∑
Si∈S′ w(Si) is maximized.

A greedy algorithm [8] (Algorithm 1) has been proved to have an approxima-
tion ratio of (1 − 1/e). The algorithm is as follows. Select the set that contains
the maximum weight of uncovered elements until we select K sets.

Algorithm 1. Greedy algorithm for the Maximum Coverage Problem
Require: K, S = {S1, S2, ..., Sp}
1: C ← ∅
2: E ← ∅
3: while |C| ≤ K do
4: S′ ← arg maxSi∈S{w(Si \ E)}
5: C ← C ∪ S′

6: E ← E
⋃

e∈S′ e
7: end while
8: return C

We now construct an instance of the Maximum Coverage Problem from an
instance of our problem. Each element corresponds to a job, and each set corre-
sponds to a calibration containing some jobs. Depending on when the calibration
starts, it may not contain the same set of jobs. From [1], we know that it is suf-
ficient to consider a restricted number of starting times of calibrations.

Definition 2 (Definition 1 [1]). Let Ψ :=
⋃

i{di − n, di − n + 1, . . . , di}.
Proposition 1 (Proposition 1 [1]). There exists an optimal solution in which
each calibration starts at a time in Ψ .
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High Level Idea of the Algorithm. At each step of the algorithm, we choose
the calibration that covers the maximum number of unselected jobs. It is not
necessary to consider all subsets of jobs for a given calibration among all feasible
subsets. In other words, if a calibration starts at some time t ∈ Ψ , we will choose
the one that contains the maximum number of jobs. Therefore, we only need
to consider one schedule for each different starting time of the calibration. To
get a feasible solution that contains a maximum number of jobs, we can use
the algorithm for the classical scheduling problem whose aim is to maximize
the number (weight) of scheduled jobs. We first construct a new instance in the
following way.

– After deciding the starting time of the calibration, we know that the machine
is available in the interval [t, t + T ).

– For each job j whose release time is before t, change it to t or the deadline
dj whichever happens first, i.e. rj := min{t, dj},

– Similarly for the deadline of a job j that is after t + T , change it to t + T or
its release time rj , i.e. dj := max{t + T, rj}.

– Remove all infeasible jobs, these jobs verify rj = dj if they are outside the
interval [t, t + T ).

After we create such an instance, we use the algorithm proposed by Baptiste
et al. [3] in order to find the set of jobs that can be scheduled in the interval
[t, t + T ) in polynomial time such that the total weight is maximized.

Definition 3. An edf schedule is a schedule in which the machine schedules
the job with the earliest deadline among the set of available jobs at this time.

In the sequel, we only consider edf schedules inside each calibration. Among
different starting times of calibrations, we choose the one with the maximum
weight. After we choose the calibration and the associated jobs, we update the
set of jobs by removing the already chosen jobs, and we repeat the procedure
until we choose K calibrations. The algorithm is described in Algorithm 2. Since
we have K ≤ m, the resulting solution is a feasible schedule and we do not need
to verify whether there is at most m − 1 calibrations for a given time t (line 6).

Theorem 1. Algorithm 2 can solve the problem of maximizing the total weights
of selected jobs with a calibration budget K ≤ m in O(Kn6) time and it is a
(1 − 1

e )-approximation algorithm.

Proof. The approximation ratio of Algorithm 2 comes from the approximation
ratio of the algorithm for the maximum coverage problem [8]. If we generate all
possible calibrations (for each starting time of calibration, we choose a subset of
jobs in {0, 1}n) and apply Algorithm 1, the returned solution is the same as if we
use Algorithm 2. As mentioned previously, we do not need to generate all possible
subsets of jobs for a given starting time of calibration. There is one calibration
that dominates all others (choose the lexicographically smaller (in terms of the
vector of jobs in {0, 1}n) if tie). Hence, at each step, both algorithms will select
the same calibrations as well as the same set of jobs.
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Algorithm 2. Greedy algorithm for the problem of maximizing the total weights
of selected jobs with a calibration budget
Require: K, J = {1, 2, . . . , n}
1: Ψ ← ⋃

i{di − n, di − n + 1, . . . , di}.
2: C ← ∅ //set of calibrations
3: E ← ∅ //set of chosen jobs
4: while |C| ≤ K do
5: S ← ∅ // set of choices of calibrations
6: for t ∈ Ψ such that at most m − 1 calibrations in interval [t, t + T ] do
7: St ← Solve the maximum weighted throughput scheduling problem in interval

[t, t + T ]
8: S ← S ∪ {St}
9: end for

10: S′ ← arg maxSt∈S{E ∪ St}
11: C ← C ∪ S′

12: E ← E
⋃

e∈S′ e
13: J ← J \ S′

14: end while
15: return C

The set Ψ has O(n2) elements. For each different starting time of calibration
in Ψ , we use the algorithm proposed by Baptiste et al. [3] in order to find the cal-
ibration that dominates all others. The running time of their algorithm is O(n4).
Since we need to select K calibrations, the overall running time is O(Kn6). ��

3 A Framework when K > m

In this section, we use the same Algorithm 2, but we need to analyze in a different
way. In order to check whether there are at most m calibrations at timeslot t, we
only need to check that there are at most m calibrations that start in the interval
[t−T +1, t]. We use a charging scheme argument to show the approximation ratio
of the greedy algorithm. We compare the schedule returned by Algorithm 2 with
the optimal schedule. In particular, we will compare directly the jobs scheduled
in each calibration.

Definition 4. Let A =
⋃

1≤i≤K Ai be the set of jobs that Algorithm 2 chooses
where Ai is the set of chosen jobs at the i-th step. Let w(Ai) be the total weights of
the jobs in Ai. From Algorithm 2, we know that w(A1) ≥ w(A2) ≥ . . . ≥ w(AK).

Without loss of generality, we require that both schedules, the one returned
by Algorithm 2 and the optimal solution, have the following properties:

– Calibrations are sorted in non-increasing order of their profit (weight).
– Following this order, calibrations are assigned to the first available machine.

In order to prove the approximation ratio, we will compare the algorithm
with the optimal solution in three phases. Firstly, we check whether there are
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common jobs in both schedules. Secondly, we compare the calibrations that
contain some overlap in both schedules, i.e., there exists a non-empty interval
on some machine such that a calibration in A and a calibration in the optimal
schedule occur at the same time. Finally, we analyze the remaining calibrations.

The calibrations from the optimal schedule will be mapped to the calibrations
of the schedule returned by Algorithm 2. We can bound the number of times
that each calibration will be mapped to, which leads to the approximation ratio.

Definition 5. For a given machine, we say that two calibrations overlap when
they have at least one common time slot.

Observation 1. When comparing two feasible schedules on the same machine,
each calibration in one schedule overlaps with at most two calibrations in the
other schedule.

Theorem 2. Algorithm 2 is a 1
3 -approximation for the problem of maximizing

the throughput with calibration constraints.

Proof. Let ALG be the set of calibrations that Algorithm 2 chooses. Each cal-
ibration contains a set of jobs that we schedule. Similarly, let OPT be the set
of calibrations in the optimal solution. We denote JA to be the set of jobs of a
schedule A or a calibration A (depending on the context). Let C = JALG ∩JOPT

be the set of common jobs that are scheduled by Algorithm 2 as well as by the
optimal solution. We use a charging argument to prove the approximation ratio
of the algorithm. A charging from an element (in our case a job or a calibra-
tion) a to b is valid only if the profit of a is less than or equal to the profit of
b. Finally, we show that each calibration of ALG receives a charge of a most 3
times its profit which leads to the approximation ratio of 3. The proof is divided
into two parts. We charge each job of C from OPT to ALG. After we map these
jobs, we do not consider them in OPT anymore in the sequel. Then, we charge
each calibration in OPT (without considering jobs in C) to a calibration in ALG
(with the jobs in C). See Fig. 1 for an illustration of the charging scheme.

First, we map each job of C one by one from OPT to ALG. This mapping
can be done because these jobs are scheduled in both OPT and ALG, so each
job of C in ALG receives a charge equal to its own profit.

Now, we map each calibration in OPT (without considering the jobs in C)
to a calibration in ALG (with the jobs in C). We consider the case where there
is an overlap of a calibration in ALG with a calibration in OPT , i.e. they have
at least one common time slot on the same machine. The complementary case
(without overlap) will be handled at the end. By Observation 1, we know that a
calibration O in OPT overlaps with at most two calibrations in ALG. At least
one of these has a profit more valuable than the profit of the current calibration.
As we do not consider jobs in C in calibration O, if the profit of jobs in JO \ C is
larger than the other overlapped calibration(s) in OPT , we have a contradiction
with the algorithm, because the algorithm would have chosen this calibration
before the others. So we can map the jobs in JO to a calibration that has a
higher profit.
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Fig. 1. Illustration of the charging scheme. In the first schedule, we map each job
of C (the set of common jobs) from JOPT to the same job in JALG. In the second
schedule, the jobs in C are not considered any more (in gray). Each calibration in
OPT is mapped to a calibration in ALG such that the profit of a calibration in OPT
(without the common jobs) is smaller than the profit of a calibration in ALG (with
the common jobs).

For the remaining calibrations in OPT and the calibrations in ALG that
are not mapped, we can map them one by one. As previously, since we do not
consider jobs in C, it means that the remaining profit of each calibration in OPT
is lower than the profit of each unmapped calibration in ALG, otherwise, the
algorithm would have chosen such a calibration. Note that both schedules have
K calibrations (it may have no jobs assigned to them).

Finally, we show that each calibration in ALG receives at most 3 times its
profit. Each calibration may receive a mapping from the jobs of C. Since we never
schedule a job twice, then the mapping is at most the profit of the calibration.
Each calibration in ALG overlaps with at most two calibrations in OPT on
a machine (Observation 1). So it may be mapped by at most two calibrations
that have a profit less than or equal to its profit. The calibrations that were not
considered before, are mapped to the calibrations that have not been mapped
before. So a calibration in ALG can be mapped at most 3 times. Thus we have
w(OPT ) ≤ 3w(ALG) and 1

3w(OPT ) ≤ w(ALG) ≤ w(OPT ). ��
Theorem 3. When jobs have unit processing time, Algorithm 2 runs in time
O(Kn6).

Proof. Since jobs have unit processing time, the set Ψ has a size of O(n2). In
order to solve the maximum throughput scheduling problem (line 7), we use the
algorithm proposed by Baptiste et al. [3]. In particular, their algorithm can find
the maximum throughput in time O(n4). Finally, we need to choose at most K
calibrations. So the running time of Algorithm 2 is O(Kn6). ��



Weighted Throughput Maximization with Calibrations 319

4 Arbitrary Processing Time

In this section, we study the case where jobs have arbitrary processing time.
Preemption of jobs is allowed but must be resumed in the same calibration, i.e.,
a job can only be assigned to one calibration. We first show that the problem is
NP-hard by reducing our problem from the Knapsack problem and we obtain
the following theorem.

Theorem 4. The problem of maximizing the profit with calibration constraint
when jobs have arbitrary processing times and arbitrary weights is NP-hard.

Sketch of Proof: It is sufficient to show that the problem of maximizing the
profit with calibration is NP-hard on a single machine. The idea is to show
that a special case of our problem is equivalent to the Knapsack problem. In
particular, we consider the following instance: we are allowed to use only one
calibration whose length T is large enough. Moreover, jobs are released at time
0 while their deadline are T . The goal is to choose the set of jobs such that
they can be scheduled within one calibration and such that the total profit is
maximized. This instance is indeed equivalent to the Knapsack problem.

4.1 A Pseudo-Polynomial Time Algorithm

The idea is similar to the unit processing time case: we find a set of potential
starting times of calibrations, find the calibration that maximizes the profit of
scheduled jobs, then repeat until we use K calibrations. Since jobs have arbitrary
processing times, we need to consider every time slot at a distance at most
P =

∑
pj from every deadline which is the starting time of a set of consecutive

calibrations (a set of calibrations without a time slot such that the machine is not
calibrated). With this starting time, we know we can calibrate the machine every
T unit times, and at most n times since in the worst case, each job is scheduled
in a different calibration. We get the following Definition 6 and Proposition 2.
It is clear that the running time of Algorithm 2 becomes pseudo polynomial.

Definition 6. Ω :=
⋃

j{dj − i+aT, i = 0, . . . , P, a = −n,−n+1, . . . , n−1, n}
be the set of starting times of the calibrations.

Proposition 2. There exists an optimal solution in which each calibration
starts at a time in Ω.

Theorem 5. When jobs have arbitrary processing times, Algorithm 2 runs in
time O(n5PW 2K), where W is the sum of weights of jobs and P is the sum of
processing times and has an approximation ratio of 1/3.

Proof. When jobs have arbitrary processing time, the set Ω has a size of O(n2P ).
In order to solve the maximum throughput scheduling problem (line 7), we use
the algorithm proposed by Lawler [10]. In particular, this algorithm can find the
maximum throughput in time O(n3W 2). Finally, we need to choose at most K
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calibrations. Therefore the running time of Algorithm 2 is O(n5PW 2K). With
Proposition 1 and the algorithm proposed by Lawler [10], it is also optimal. The
approximation ratio of the overall algorithm (Theorem 2) is 1/3. ��
Corollary 1. When jobs have arbitrary processing times, Algorithm 2 runs in
time O(KPn5	n/ε
2), where P is the sum of processing times, and has an
approximation ratio of 1

3 (1 − ε).

Sketch of Proof: With a similar proof of the FPTAS (Fully Polynomial Time
Approximation Scheme) for the Knapsack problem, we can round the weights of
the jobs as follows: w̃j = 	wj

R 
 where R = εW
n . In this way, the solution returned

by the algorithm in [10] is a (1 − ε)-approximated solution.

Corollary 2. When jobs have arbitrary processing times but unit weight, Algo-
rithm 2 runs in time O(KPn6) where P is the sum of processing times and has
an approximation ratio of 1

3 .

4.2 A Polynomial Time Algorithm

We consider in this section that each calibration must be of length T because we
do not allow to recalibrate the machine if the current calibration is still valid. In
the following, we consider the optimal schedule OPT such that each calibration
starts or ends at a time in Ω. We restrict our attention to a subset of times
Θ ⊆ Ω such that Θ has a polynomial number of times by losing a constant
factor on the objective. Since we are not allowed to stop a calibration, we know
that we may need to calibrate the machine every T time units.

Definition 7. Let Θ :=
⋃

j{dj + aT, a = −n,−n + 1, . . . , n − 1, n} be a set of
restricted starting times of calibrations.

The above definition guarantees that there is at least one time in Θ inside
each calibration interval in OPT .

Proposition 3. There exists a 1
6 -approximation schedule such that each cali-

bration starts or ends at a time in Θ.

Proof. We show how to transform an optimal schedule that satisfies Proposi-
tion 2 into a schedule that satisfies Proposition 3 by losing a factor of 6 on
the profit. Without loss of generality, we prove for a single machine as we can
repeat such a transformation independently on each machine. First, we number
the calibrations on the machine in the increasing order of their starting times.
We separate all the calibrations into two sets: the calibrations with odd index
and the calibrations with even index. Let W odd (resp. W even) be the total profit
of the odd (resp. even) calibrations. If W odd > W even, we keep the calibrations
with odd index (even index otherwise). In this way, we lose at most half of the
profit, but we create enough space for our modifications, i.e., there are at least
T unit times between two consecutive calibrations.
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Let ci be the first calibration in the optimal schedule such that its starting
time or its ending time is not in Θ. Let [bi, ei) be the interval of the calibration
ci. Let t ∈ Θ ∩ [bi, ei) be a critical time inside the calibration. The idea is to
cut the calibration at a time t such that the calibration starts or ends at this
time and therefore verify the proposition we are proving. Let us consider that
t is the smallest release time rj in [bi, ei). Figure 2 shows different cases of the
transformation.

– JB : the set of jobs that are entirely processed before t;
– JA: the set of jobs that are entirely processed after t;
– JM : the set of remaining jobs.

Since we have w(JB) + w(JA) + w(JM ) = w(ci), then at least one of the
following cases is true:

case (a) w(JB) ≥ 1
3w(ci)

case (b) w(JA) ≥ 1
3w(ci)

case (c) w(JM ) ≥ 1
3w(ci)

We claim that there is at most one job in JM , i.e., at most one job is scheduled
before and after t. Since, we consider edf schedule, the preemption of a job
may occur only at a release time (a more urgent job become available when it
is released). And since t is the smallest release time in [bi, ei), then there is no
another job that is scheduled before and after t.

Case (a) If w(JB) ≥ 1
3w(ci), then we can stop the calibration at time t

and discard all jobs from JA and JM . In this case, we discard at most 2/3 of its
initial profit. In order to make the calibration length equal to T , we can start the
calibration at time t−T . The schedule is feasible because it covers [bi, t), so jobs
in JB can be scheduled as before, and the new ending time of the calibration
is smaller because we perform the calibration earlier. Such a modification is
possible because we have bi − T ≤ t − T ≤ bi ≤ t and we know that the machine
is not calibrated at time bi − T since we remove the previous calibration (odd
or even calibrations). Therefore, the new calibration cannot start more than T
time units earlier.

Case (b) If w(JA) ≥ 1
3w(ci), then we start the calibration at time t and

discard all other jobs from JB and JM . We have the same argument as in the
first case. The calibration starts at time t and ends at time t + T and schedules
all the jobs from JA.

Case (c) If w(JM ) ≥ 1
3w(ci), the set JM has only one job. We try to schedule

the job in JM as early as possible such that its starting time is in Θ. Let ei−1

be the completion time of calibration ci−1. By definition, we have ei−1 ∈ Θ,
then we can schedule the job in JM at time max{ei−1, rJM } and the calibration
ends at time max{ei−1 + T, rJM + T}. Note that the release time rJM is before
the starting time of the calibration, otherwise, we have a contradiction with the
fact that we choose the smallest release time in the interval. So we always have
max{ei−1 + T, rJM + T} < ei. This leads to a feasible schedule because the
calibration starts earlier since the job in JM will be completed before ei.
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Fig. 2. Illustration of different cases of the modification. After the modification, the
calibration starts or ends at time t ∈ Θ. In the last case, the job in JM needs to start
at its release time which is also in Θ. Note that jobs are not necessarily scheduled
continuously.

We repeat this modification as long as there is a calibration that does not
start or end at a time in Θ. Thus, with such a modification, we can get a feasible
schedule by losing a factor of 6 of the profit from the optimal schedule such that
each calibration of this schedule starts and ends at a time in Θ. ��
Theorem 6. When jobs have arbitrary processing times and arbitrary weights,
Algorithm 2 runs in time O(Kn5	n/ε
2) and has an approximation ratio of
1
18 (1 − ε).

Proof. Instead of considering the set Ψ in Algorithm 2, we use the set Θ which
contains O(n2) starting times. From Proposition 3, we get a 1

6 -approximation
by only considering the starting times of calibrations in Θ. For each potential
starting time of the calibration, we calculate the maximum profit with the algo-
rithm in [10] which runs in time O(n3W 2) where W =

∑
j wj . As we show

in Corollary 1, it is possible to get a (1 − ε)-approximation on the maximum
profit and the running time is O(n3	n/ε
2). Finally by Theorem 2, the greedy
algorithm (the choice of the calibrations) has an approximation of 1

3 and has
K steps. Notice that we compare the solution returned by Algorithm 2 with
the optimal solution such that calibrations start and end at a time in Θ. Thus,
Algorithm 2 has an approximation ratio of 1

18 (1 − ε) when jobs have arbitrary
processing times and arbitrary weights and runs in time O(Kn5	n/ε
2). ��
Corollary 3. When jobs have arbitrary processing times and unit weight, Algo-
rithm 2 runs in time O(Kn6) and has an approximation ratio of 1

18 .

5 Conclusion

This work is the first to our knowledge to study the throughput maximization
scheduling problem with calibrations and the first to give polynomial time algo-
rithms with constant approximation ratio. When jobs have arbitrary processing
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times, we get a 1
18 (1 − ε)-approximation polynomial time algorithm. On the

other hand, we have a 1
3 -approximation polynomial time algorithm for the unit

processing time case. A natural question is whether it is possible to improve the
approximation ratio.

Since this problem is at least as hard as the calibration minimization schedul-
ing problem, if we are able to propose an optimal polynomial time algorithm for
the case where jobs have unit processing time and unit weight, it will answer the
question of the hardness of the problem initially proposed by Bender et al. [5].
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Abstract. Given a set P of n points with weights (possibly negative),
a set Q of m points in the plane, and a positive integer k, we consider
the optimization problem of finding a subset of Q with at most k points
that dominates a subset of P with maximum total weight. We say a
set of points Q′ dominates p if some point q of Q′ satisfies x(p) � x(q)
and y(p) � y(q). We present an efficient algorithm solving this prob-
lem in O(k(n + m) log m) time and O(n + m) space. Our result implies
algorithms with better time bounds for related problems, including the
disjoint union of cliques problem for interval graphs (equivalently, the
hitting intervals problem) and the top-k representative skyline points
problem in the plane.

Keywords: Dominance · Disjoint cliques · Hitting intervals

1 Introduction

We consider the following optimization problem in the plane. Given two sets P
and Q of points in the plane, and a positive integer k, find a subset of Q with
at most k points that dominates as many points of P as possible. We provide
an efficient algorithm solving the problem in O(k(n + m) log m) time, where
n and m are the numbers of points in P and Q, respectively. The algorithm is
quite simple and can be easily implemented. In fact, we solve a weighted variant,
where the points of P have weights, possibly negative, and we want to dominate
a subset of P with maximum total weight.

The (unweighted) problem generalizes problems that have been considered
before in the context of scheduling, optimization in graphs and databases, and
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our algorithm directly improves the time bounds for the algorithms discussed on
those contexts.

Problem Statement. For a point p in the plane, x(p) and y(p) denote its x
and y-coordinate, respectively. A point q dominates a point p if x(p) � x(q) and
y(p) � y(q). A set of points Q′ dominates p if some point of Q′ dominates p.

For each point q ∈ Q, let dom(q) be the closed 2-sided range (−∞, x(q)] ×
(−∞, y(q)]. Note that dom(q) is the set of points in the plane dominated by q.
For each subset Q′ ⊆ Q, we define dom(Q′) =

⋃
q∈Q′ dom(q), that is, the set of

points in the plane dominated by Q′.
We are given sets P and Q of points in the plane, and a function w : P → R

assigning a weight w(p) to each point p of P . The weights may be negative. We
extend the function w to regions of R2 by summing up the weights of the points
of P contained in the region: w(R) :=

∑
p∈P ∩ R w(p) for each R ⊆ R

2. We refer
to w(R) as the weight of region R. If R ∩ P = ∅, then w(R) = 0.

Given a positive integer k, we want to select a subset Q′ ⊂ Q with at most
k points such that the total weight of the points of P dominated by Q′ is maxi-
mized. We refer to this problem as maxDominance. Formally, we want to compute

maxDominance(P,Q, k) := max
{
w

(
dom(Q′)

)
| Q′ ⊂ Q, |Q′| � k

}

and to obtain an optimal solution, that is, a subset Q∗ ⊂ Q satisfying |Q∗| � k
and w(dom(Q∗)) = maxDominance(P,Q, k). It is important to ensure that each
point p ∈ dom(Q′) ∩ P contributes w(p) to w(dom(Q′)) exactly once, even if p
is covered multiple times by the dominance regions dom(q), q ∈ Q′.

Previous Work. We are not aware of any previous work on the maxDominance
problem in its full generality. A related problem is the maximum volume subset
selection problem for anchored boxes, where we select k boxes among n given
axis-parallel boxes, each box contained in the positive quadrant of R

d with a
corner at the origin, that maximize the volume of the union of the selected boxes.
The volume of the union is known as the hypervolume indicator. It can be solved
in O((n − k)k + n log n) time [4,11] in R

2, but it is NP-hard already in R
3 [3].

This problem can be interpreted as a continuous version of the maxDominance
problem. Placing a point in each cell of the arrangement defined by the anchored
boxes with weight equal to be the volume of the cell, we reduce the maximum
volume subset selection problem to the maxDominance problem. However, this
reduction introduces O(nd) points, and thus not very useful.

Other related problems include the disjoint union of cliques problem for inter-
val graphs, the hitting intervals problem, and the top-k representative skyline
points problem in the plane. We will describe them in the next subsection.

1.1 Our Contribution

Henceforth, we use n = |P | and m = |Q| to bound the asymptotic time of
the algorithms. We show that the maxDominance problem can be solved in
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O(k(n + m) log m) time and O(n + m) space. We employ a dynamic program-
ming approach where we use a data structure based on segment trees to speed
up the computation. Our result implies algorithms with better time bounds for
problems considered by other authors in other contexts. We describe this next.

Disjoint Cliques in Interval Graphs and Hitting Intervals. In the disjoint
union of cliques problem (DUC for short), we are given a graph G = (V,E) and
a positive integer k, and we are to find a set C of k disjoint cliques of G such
that

∑
c∈C |c| is maximized. Here |c| is the number of vertices in a clique c, and

a set of cliques is disjoint if each node of G belongs to at most one of the cliques.
For general graphs, the DUC problem is NP-hard and difficult in practice, as

it includes the problem of finding a largest clique (k = 1) as a special case. The
problem keeps getting attention because of its applications in analyzing data;
see for example [8,15] for some recent accounts. Perhaps not so obvious, the
problem encounters applications also in scheduling [5,10].

Algorithmically, research has focused on particular classes of graphs. The
DUC problem remains hard even in split (and thus chordal) graphs [14], where
finding a maximum clique is solvable in polynomial time. On the positive side,
Gavril [9], Yannakis and Gavril [14] and Jansen, Scheffler and Woeginger [10]
provide polynomial-time algorithms for interval graphs, comparability graphs,
co-comparability graphs, directed path graphs, cographs, and for partial m-trees
for a constant m.

We are interested in the DUC problem in interval graphs. It is well-known,
and we discuss it in more detail in Sect. 4, that the DUC problem in interval
graphs is equivalent to the HittingIntervals problem: given a set I of intervals on
the real line and a value k, find k points on the real line such that the number
of intervals of I hit by the points is maximized. Here, we say that a point x ∈ R

hits an interval I when x ∈ I. This problem is sometimes also called as the
maximum piercing problem.

Jansen, Scheffler and Woeginger [10] and Chrobak et al. [5] provide algo-
rithms to solve the DUC problem in interval graphs in O(k|V |2) time. Dam-
aschke [6] improves the running time to O(k|E|) for connected interval graphs,
which is relevant for graphs that are not very dense.

The weighted versions of the DUC problem in interval graphs and the Hit-
tingIntervals problem are also equivalent when the weights are positive. However,
when negative weights are present, both problems are not equivalent anymore.
Indeed, in the DUC problem we will never put a vertex with negative weight
into the optimal solution, as we can remove it from the solution and increase
the total value. In contrast, in the HittingIntervals problem we do not have any
flexibility as to which intervals are counted. In any case, the DUC problems in
interval graphs can be reduced to the HittingIntervals problem by first removing
vertices with negative weights, and then solving the HittingIntervals problem in
the remaining intervals. The reduction does not work in the other direction.

In this paper, we use a simple reduction to the maxDominance problem which,
together with our new algorithm for the maxDominance problem, solves the
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(weighted version of the) HittingIntervals problem in O(k|V | log |V |) time. This
also implies that the (weighted version of the) DUC problem in interval graphs
can be solved also in O(k|V | log |V | + |E|) time. (The term O(|E|) comes from
the graph complexity O(|V | + |E|).) This improves all previous results when
|E| = ω(|V | log |V |).

Representative Skyline Points. The skyline points of a set P of points are
those that are not dominated by any other point of P . Lin et al. [12] introduce
the top-k representative skyline points problem: given a set P of n points, select
k of them maximizing the number of points from P they dominate. Among
other results, they provide an algorithm to solve this problem in the plane in
O(km2+n log m) time and O(n+m2) space, where m is the number of points in
the skyline. (Additional data structures can be used to reduce the space bound
to O(n+km)). In the worst case we have m = Θ(n), the running time is O(kn2),
and the space is O(n2) (or O(kn) using additional data structures).

Setting Q to be the points in the skyline and w(p) = 1 for all p ∈ P ,
this problem is a particular case of our problem. Thus, we can solve the top-k
representative skyline points problem in O(kn log m) time and O(n) space.

Lin et al. [12] also show that the problem is NP-hard in 3-dimensional space.
Thus, our problem is NP-hard in 3 dimensions as well.

Several alternative measures have been introduced to choose the most repre-
sentative points in the skyline, also in a variety of fields. See for example [1,4,13]
for a small sample. It is beyond our possibilities to survey them.

2 Data Structure

We want to store n values a1, . . . , an, initially set to arbitrary values in R ∪
{−∞}, in a data structure that supports the following operations:

– max(i, j) returns the pair (t, a) with i � t � j and at = a = max{ai, . . . , aj}.
As a special case, we can get ai by querying max(i, i).

– add(i, j, c) adds the value c ∈ R to ai, . . . , aj , where i � j.
– set(i, c) sets the value of ai to c ∈ R ∪ {−∞}.

Using an adaptation of segment trees [7, Section 10.3] we have the following.

Lemma 1. There is a data structure to maintain a1, . . . , an in O(n) space that
supports the operations max, add and set in O(log n) time per operation.

Proof. We use a balanced binary search tree T with keys {1, . . . , n} at the leaf
nodes. We use ν(i) to denote the leaf node of T that has key i and r for the
root. For a nonleaf node u of T , we use u� and ur to denote its left and right
child, respectively. For any two nodes u, v of T , let π(u, v) denote the path from
u to v in T and let p(u) denote the parent node of u 
= r.

Each node u of T represents a contiguous sequence of integers Iu = Z ∩ [x, x′]
for two integers x and x′ with 1 � x � x′ � n. More precisely, a leaf node u with
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key i represents Iu = {i}, and for a nonleaf node u we have Iu = Iu�
∪ Iur

. A key
property of this representation is that, for each contiguous sequence of integers
Z ∩ [x, x′], there is a set U(x, x′) of O(log n) nodes of T such that Z ∩ [x, x′] is
the disjoint union of Iu, u ∈ U(x, x′). In particular, for each i ∈ Z ∩ [x, x′] there
is exactly one node u ∈ U(x, x′) that is on the path π(r, ν(i)). Furthermore, for
any given integers x and x′ with 1 � x � x′ � n, the set U(x, x′) can be found
in O(log n) time using the search paths in T from the root to x and to x′, and
all the nodes of U(x, x′) together have O(log n) ancestors in T .

At each node u of T we store three values, α(u), β(u) and γ(u). For any two
nodes u and v of T , we denote by sumα(u, v) the sum of α(w) along all vertices
w in π(u, v). We maintain the following invariants:

– For each leaf node u of T , we have α(u) ∈ R ∪ {−∞}. For each nonleaf node
u of T , α(u) ∈ R; thus α(u) 
= −∞.

– For each leaf node ν(i) of T , sumα(r, ν(i)) is ai.
– For each node u of T , β(u) is the maximum among sumα(u, v) over all leaf

nodes v in the subtree rooted at u. An alternative, useful way to think of it
is the following recursive formulation:

β(u) =

{
α(u) if u is a leaf node,
α(u) + max{β(u�), β(ur)} if u is a nonleaf node.

(1)

– For each node u of T , γ(u) tells the index i of the leaf node that determines
the value β(u). Therefore,

γ(u) =

⎧
⎪⎨

⎪⎩

i if u = ν(i) is a leaf node,
γ(u�) if u is a nonleaf node and β(u�) � β(ur),
γ(ur) if u is a nonleaf node and β(u�) < β(ur).

(2)

Note, for example, that β(r) is max{a1, . . . , an} = aγ(r). It is clear that T takes
O(n) space because we store only a constant amount of information per node.
See Fig. 1 for an example.

Fig. 1. An example of the tree used in the proof of Lemma 1.
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Fig. 2. The tree of Fig. 1 after the operation add(1, 6, −2). Grey nodes are nodes in
U(1, 6). Nodes with thicker, green boundary are those that have to be updated, as they
are in U(1, 6) or are their ancestors. (Color figure online)

We start with setting α(ν(i)) = ai and γ(i) = i for all leaf nodes ν(i) of T ,
and α(u) = 0 for all nonleaf nodes u of T . We then compute β(u) and γ(u) in T
from the bottom up using Eqs. (1) and (2). With this, we establish the invariant
before making any operations.

Consider now the operation max(i, j), where i � j. We find the set U(i, j)
of O(log n) nodes such that {i, . . . , j} is the disjoint union

⊔
u∈U(i,j) Iu. Then

max{ai, . . . , aj} is the maximum of β(u) + sumα(r, p(u)) over u ∈ U(i, j). These
values sumα(r, p(u)) can be computed in O(log n) time in total because the nodes
of U(i, j) altogether have O(log n) ancestors. The index t where the maximum
is attained can be computed similarly, but using the indices γ( ).

Consider now the operation add(i, j, c), which adds c ∈ R to each of the
elements ai, . . . , aj . Again, we start with finding the set U(i, j) of O(log n) nodes.
For each u ∈ U(i, j), we set α(u) = α(u) + c. This settles the invariant for the
values α( ). For the ancestors v of the nodes of U(i, j), traversing T in bottom-
up manner, we update β(v) and γ(v) using Eqs. (1) and (2). Since the nodes of
U(i, j) altogether have O(log n) ancestors, we spend O(log n) time in total. See
Fig. 2 for an example. Consider now the operation set(i, c), which sets ai to c ∈
R ∪ {−∞}. We compute the value sumα(p(ν(i)), r) in O(log n) time by following
π(ν(i), r) from p(ν(i)), and at the leave ν(i) set α(ν(i)) to c − sumα(p(ν(i)), r).
With this we get the property sumα(ν(i), r) = c. Then we update β( ) and
γ( ) for the nodes on π(ν(i), r) by following the path from ν(i) using Eqs. (1)
and (2).

3 Max Dominance Problem

We first consider the most general case, where the points of P have weights,
possibly negative. We want to choose a subset Q′ of Q = {q1, . . . , qm} with at
most k points such that w(dom(Q′)) is maximized. It is convenient to assume
that the points of Q have different x- and y-coordinates. This can be enforced
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symbolically, for example replacing each point qi ∈ Q by qi + i · (ε, ε) for an
infinitesimal ε > 0. This can also be done explicitly in O((n + m) log m) time.

For ease of description, we add a point qnew = (xmax+1, ymin−1) to Q, where
xmax = max{x(t) | t ∈ P ∪ Q} and ymin = min{y(t) | t ∈ P ∪ Q}. In particular,
qnew does not dominate any other input point. Note that now we always have a
solution Q′ = {qnew} of weight 0.

Let q1, . . . , qm+1 be the points of Q sorted by decreasing y-coordinate, that
is, y(qi) > y(qi+1) for each i ∈ {1, . . . , m}. Clearly, qm+1 = qnew. For each
i ∈ {1, . . . , m + 1}, let Pi = {p ∈ P | y(p) > y(qi)} and Q�

i = {q ∈ Q | x(q) �
x(qi), y(q) � y(qi)}. Note that qi ∈ Q�

i . See Fig. 4, left. We use wi(R) to denote
the sum of the point weights in R ∩ Pi for any region R in the plane. Note that
wi(dom(qi)) = 0 for each i, Pm+1 = P , wm+1( ) = w( ) and Q�

m+1 = Q.
In general, we use the index 
 to bound the number of points selected from

Q, while the indices i and j encode a point of Q, so that we use Q�
j , Q�

i or Pi.
For each 
 ∈ {0, . . . , k} and i ∈ {1, . . . , m + 1}, let

T�(i) = max
{
wi

(
dom(Q′)

)
| Q′ ⊂ Q�

i , |Q′| � 

}

.

This means that we consider the weights of candidate solutions, restricted to
Pi, with at most 
 points selected among the points of Q�

i . Thus, T�(i) =
maxDominance(Pi, Q

�
i , 
), and we are interested in the value Tk(m+1). We have

T�(i) � 0 because Q′ = ∅ is a candidate solution. Obviously, T0(i) = 0 for each
i ∈ {1, . . . , m + 1}.

For each 
 ∈ {1, . . . , k}, i ∈ {1, . . . , m + 1} and j ∈ {1, . . . , i}, let

S�(i, j) = max
{
wi

(
dom(Q′)

)
| Q′ ⊂ Q�

j , |Q′| � 
, qj ∈ Q′} . (3)

This means that we consider the weights of nonempty candidate solutions,
restricted to Pi, with at most 
 points selected among the points of Q�

j that
must include the point qj . We have S�(i, i) � 0 because Q′ = {qi} is a candidate
solution considered in (3), and wi(dom(qi)) = 0.

We will use dynamic programming to compute the values S�(i, j) and T�(i)
for all 
, i and j � i. The following lemma provides the recursive formulas for
the computation. See Fig. 3, right, for some intuition.

Lemma 2. For each 
 ∈ {1, . . . , k}, i ∈ {1, . . . , m + 1} and j ∈ {1, . . . , i},

T�(i) = max{S�(i, j) | qj ∈ Q�
i },

S�(i, j) = T�−1(j) + wi(dom(qj)).

Proof. We first show that T�(i) � max{S�

(
i, j

)
| qj ∈ Q�

i }. Let jopt be an index
j that determines max{S�

(
i, j

)
| qj ∈ Q�

i } and let Qopt be an optimal solution
defining S�(i, jopt). This means that |Qopt| � 
 and Qopt ⊂ Q�

jopt
⊂ Q�

i because
qjopt ∈ Q�

i . Therefore Qopt is considered as a candidate solution in the defini-
tion of T�(i), and thus T�(i) � wi

(
dom(Qopt)

)
= S�

(
i, jopt

)
= max{S�

(
i, j

)
|

qj ∈ Q�
i }.
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Fig. 3. Illustration for parts of the proof of Lemma 2. The gray region is dom(Qopt).
Right: the black dots contribute to wj(dom(Qopt \ {qj})), while the black crosses con-
tribute to wi(dom(qj)).

Now we show that T�(i) � max{S�

(
i, j

)
| qj ∈ Q�

i }. Let Qopt be an optimal
subset of Q�

i defining T�(i). If Qopt = ∅, then T�(i) = 0 = wi(dom(qi)) �
S�(i, i) � max{S�

(
i, j

)
| qj ∈ Q�

i }. For Qopt 
= ∅, let qj′ be the rightmost point
of Qopt, that is, the one with largest x-coordinate. Note that qj′ ∈ Q�

i because
Qopt ⊂ Q�

i . For any point q ∈ Qopt with y(q) � y(qj′), we have dom(q) ⊂
dom(qj′). Thus dom(Qopt) = dom(Qopt ∩ Q�

j′). See Fig. 3, left. We then conclude
that T�(i) = wi(dom(Qopt)) = wi(dom(Qopt ∩ Q�

j′)) � S�(i, j′) � max{S�

(
i, j

)
|

qj ∈ Q�
i }.

Now we show the second equality, for S�(i, j). First, we show that S�(i, j) �
T�−1(j)+wi(dom(qj)) for 
 � 1. Let Qopt be an optimal solution defining S�(i, j).
Since qj ∈ Qopt and Qopt ⊂ Q�

j , for Q′
opt = Qopt\{qj}, we have (see Fig. 3, right)

wi

(
dom(Qopt)

)
= wi

(
dom(Q′

opt ∪ {qj})
)

= wi

(
dom(Q′

opt)
)

− wi

(
dom(Q′

opt) ∩ dom(qj)
)

+ wi

(
dom(qj)

)

= wj

(
dom(Q′

opt)
)

+ wi

(
dom(qj)

)
.

Since |Qopt \ {qj}| � 
 − 1 and Qopt \ {qj} ⊂ Q�
j , S�(i, j) = wi(dom(Qopt)) =

wj(dom(Qopt \ {qj})) + wi(dom(qj)) � T�−1(j) + wi(dom(qj)).
Finally, we show that S�(i, j) � T�−1(j)+wi(dom(qj)) for 
 � 1. Let Qopt be

an optimal solution defining T�−1(j). This means that Qopt ⊂ Q�
j , |Qopt| � 
−1

and wj(dom(Qopt)) = T�−1(j). Therefore, Q′ = Qopt ∪ {qj} is a candidate
solution considered in the definition of S�(i, j), and thus

S�(i, j) � wi(dom(Qopt ∪ {qj}))
= wj(dom(Qopt \ {qj})) + wi(dom(qj))
= wj(dom(Qopt)) + wi(dom(qj))
= T�−1(j) + wi(dom(qj)).

The result follows.

The values T0(i) = 0 can be computed and stored in O(m) time. For each

 � 1, the straightforward computation of T�(i) using the formulas of Lemma 2
takes Θ(m2) time, even when the values wi(dom(qj)) are already available. Using
the data structure of Lemma 1, we can do this step in O((n + m) log m) time.
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Lemma 3. Consider a fixed index 
 � 1 and assume that the values T�−1(i) are
available for all i. We can compute T�(i) for all i in O((n + m) log m) time and
O(n + m) space.

Proof. We use an iterative algorithm, with a for loop with i = 1, . . . , m + 1,
where we maintain the values S�(i, j) in a data structure. First we analyze how
we can transform S�(i − 1, j) into S�(i, j).

Consider first the case j < i. Note that, because of Lemma 2,

S�(i, j) = T�−1(j) + wi

(
dom(qj)

)

= T�−1(j) + wi−1

(
dom(qj)

)
+ wi

(
dom(qj)

)
− wi−1

(
dom(qj)

)

= S�(i − 1, j) + wi

(
dom(qj)

)
− wi−1

(
dom(qj)

)
.

Observe that the term wi(R) − wi−1(R) is the sum of the weights of the points
of Pi \ Pi−1 contained in a region R. This means that

∀j < i : S�(i, j) = S�(i − 1, j) +
∑

p ∈ Pi \ Pi−1
x(p) � x(qj)

w(p). (4)

Our algorithm exploits the fact that each point p ∈ Pi \ Pi−1 contributes the
same change, +w(p), to all the indices j with x(p) � x(qj).

For j = i, Lemma 2 implies that

S�(i, i) = T�−1(i) + wi

(
dom(qi)

)
= T�−1(i).

Fig. 4. Left: An example showing the notation. The black dots correspond to P5 and
the black crosses to P \ P5. We have Q�

5 = {q1, q3, q5} and Q�
7 = Q. If w(p) = 1 for all

p ∈ P , w5(dom(q3)) = 2 and w6(dom(q4)) = 5. Center: At the end of iteration i = 5,
a1, a7 = −∞ (because π(1) = 6, π(7) = 7) while at = S�(i, π(t)) for t ∈ {2, . . . , 6}.
Right: During iteration i = 6, we handle p, p′ ∈ P6 \ P5. We have τ(p) = 2, τ(p′) = 6.
Thus, we make add(2, 7, w(p)), add(6, 7, w(p′)) and set(1, T�−1(6)).

Now we explain how we maintain the values S�(i, j) through the algorithm.
See Fig. 4, center and right, for an example illustrating the description. We want
to consider the points of Q sorted by x-coordinate. Let π : {1, . . . , m + 1} →
{1, . . . , m + 1} be a permutation that sorts (the indices of) the points of Q by
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non-decreasing x-coordinate. Since the points of Q have different x-coordinates,
x(qπ(1)) < x(qπ(2)) < · · · < x(qπ(m+1)). Note that π(m + 1) = m + 1 as qm+1 =
qnew. We can compute π and its inverse π−1 in O(m log m) time.

We maintain values a1, . . . , am+1. It is convenient to interpret at as a value
associated to the point qπ(t), that is, the tth point of Q from left to right. Through
the algorithm we maintain the invariant that, at the end of the ith iteration,

∀t : at =

{
−∞ if π(t) > i,

S�(i, π(t)) if π(t) � i.
(5)

Note that S�(i, π(t)) is not defined, when π(t) > i. Thus, we can interpret −∞
as undefined. Before the for loop, we set at = −∞ for all t and store the values
a1, . . . , am+1 in the data structure of Lemma 1.

For each point p ∈ P , let τ(p) be the smallest integer such that x(p) �
x(qπ(τ(p))). This means that p is to the right of qπ(τ(p)−1) and to the left of
or on the vertical line through qπ(τ(p)). We can compute τ(p) for all p ∈ P
together in O((n + m) log m) time, as follows. First, we sort Q by x-coordinates
in O(m log m). Then, for each p ∈ P we perform a binary search on the x-
coordinates of the points of Q. This takes O(log m) time per point of P . (Note
that this computation can be reused for different values of 
.)

Computationally, at the ith iteration we maintain the invariant (5) making
the following operations:

– For each point p in Pi \ Pi−1, apply add(τ(p),m + 1, w(p)). This takes care
that the value w(p) has to be added to S�(i − 1, j) to obtain S�(i, j), for all
j with π(j) � π(τ(p)). See equation (4).

– If π(t) = i, set at to T�−1(i) by applying set(t, T�−1(i)).

Recall Fig. 4 for an example. Note that the second operation is applied only
once to each at over the whole algorithm, and it takes care that the invariant
holds for the value t with π(t) = i. The first operation takes care that the
invariant holds for all t with π(t) 
= i. Indeed, if π(t) > i, we add some finite
values to at = −∞, and if π(t) < i, we transform at = S�(i − 1, π(t)) to at =
S�(i, π(t)) because of equation (4).

Recall that T�(i) = max{S�(i, j) | qj ∈ Q�
i } because of Lemma 2. This

implies that, at the end of the ith iteration, we get the value T�(i) by querying
max(1, π−1(i)). Indeed, if we denote by t the value such that π(t) = i, max(1, t)
returns max{a1, . . . , at} = max ({−∞} ∪ {S(i, j) | j � i, x(qj) � x(qi)}).

Each point of P is considered only once over all iterations. Thus, we perform
O(n+m) operations in the representation of a1, . . . , am+1. Since each operation
takes O(log m) time, the result follows.

Making repeated used of Lemma 3, we can solve the problem maxDominance
in O(k(n + m) log m) time. With some care we can use linear space.

Theorem 1. The maxDominance problem in the plane for n weighted points in
P and m points in Q using at most k points of Q can be solved in O(k(n +
m) log m) time using O(n + m) space.
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Proof. We use the notation T�(∗) to denote the table T�(i) for all i. We can
compute T0(∗) in O(m) time.

For each 
 = 1, . . . , k, once we have T�−1(∗) we can compute T�(∗) in O((n+
m) log m) time using O(n + m) space because of Lemma 3. The running time
over all applications of Lemma 3 together is O(k(n + m) log m). We reuse the
space when computing each T�(∗) so that we compute the final Tk(∗) in linear
space. Then Tk(m + 1) gives the optimal value for the problem maxDominance,
but we do not find the optimal solution yet because we do not have access to
T�(∗) for 
 � k − 2 anymore.

We use a standard technique to construct an optimal solution without affect-
ing the asymptotic running time or space. Unrolling the relations in Lemma 2,

T�(i) = max{T�−1(j) + wi(dom(qj)) | qj ∈ Q�
i }.

During the computation of the table T�(∗), we maintain a table of pointers π�(∗)
telling in which index the maximum was achieved. Thus, for each i we have

T�(i) = T�−1(π�(i)) + wi

(
dom(qπ�(i))

)
.

Following the pointers π�(i), starting from πk(m+1), we can recover an optimal
solution. We have π�(i) = i when the solution has fewer than k elements.

Set k′ = k/2�. For each 
 > k′ and i, we want to store an index τ�(i) in
the table Tk′(∗) that leads to an optimal solution for T�(i). We achieve this
with a small adaptation: for 
 � k′, we just compute the tables T�(∗). For

 = k′ +1, we store the pointer τ�(i) = π�(i). For 
 > k′ +1, we store the pointer
τ�(i) = τ�−1(π�(i)).

Fig. 5. Left: The two-dimensional table T (�, i); the shaded regions are the ones com-
puted during the recursion. Right: Geometric interpretation of the recursion.

Recall that Tk(m + 1) is the optimal value. Set t = τk(m + 1). See Fig. 5.
There exists an optimal solution Q∗ such that qt ∈ Q∗. Moreover, such an optimal
solution Q∗ contains at most k′ − 1 � k/2 points from Qup := Q�

t \ {qt} and at
most k − k′ � k/2 points from Qdown := {q ∈ Q | y(q) < y(qt), x(q) > x(qt)}.
We can use the index t to split the problem because

maxDominance(P, Q, k) := w(dom(qt)) + maxDominance(Pt, Qup, k′ − 1)

+ maxDominance(P \ (Pt ∪ dom(qt)), Qdown, k − k′).
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See Fig. 5, right. Note that each point of P and Q goes to at most one of the
recursive problems. We solve the problems recursively. Let A(k,m, n) denote
the time needed to construct the optimal solution using this recursive approach.
Since we need O(k(n+m) log m) time to compute the table Tk(∗) and τk(∗), we
have

A(k,m, n) � O(k(n + m) log m) + A(k′ − 1, t − 1, n1) + A(k − k′,m − t, n2)
� O(k(n + m) log m) + A(k/2, t − 1, n1) + A(k/2,m − t, n2),

where n1 + n2 � n. This solves to A(k,m, n) = O(k(n + m) log m). (Since
(k/2)(t − 1 + n1) + (k/2)(m − t + n2) � (k/2)(m + n), the size (number of cells)
of the tables we have to compute at the same level of the recursion decreases
geometrically through the recursive calls. See Fig. 5, left.)

At each level of the recursion we need O(1) additional space to keep the
indices defining the optimal solution. All other space can be reused. Thus, we
spend O(n + m + k) = O(n + m) space.

When the points have positive weights, we can make some simplifying step
as in the following lemma. Its proof can be found in the full version.

Lemma 4. Assume that the points of P have positive weights. After a prepro-
cessing that takes O((n + m) log m) time and O(n + m) space, we can assume
that no point of Q is dominated by another point of Q and each point of P is
dominated by some point of Q.

As a consequence of Theorem 1 and Lemma 4, we improve the results by Lin
et al. [12] mentioned in the introduction when n = O(m2/ log m).

Corollary 1. The problem of computing the top-k representative skyline points
in the plane can be solved in O(kn log m) time and O(n) space, where n is the
total number of points and m is the number of points in the skyline.

4 Hitting Intervals and Disjoint Clique Problem

An interval graph G(I) is the intersection graph of a set I of intervals on the
real line. That is, each interval of I is a node of the graph G(I), and there is an
edge between two nodes of G(I) if and only if the two corresponding intervals
intersect. The set of intervals defining the interval graph is the geometric repre-
sentation or geometric model of the graph. Given an interval graph G = (V,E),
we can find a geometric representation in O(|V | + |E|) time [2]. In the opposite
direction, given a set I of n intervals, we can construct the interval graph G(I) in
O(n log n + |E(G(I))|) time, where E(G(I)) is the edge set of G(I). (The term
O(n log n) comes from sorting the endpoints of the intervals, and becomes O(n)
if the input is sorted.) Thus, up to sorting, there is no difference in assuming the
input between an interval graph and its geometric model.

A set of intervals on the real line intersect pairwise if and only if they all
have a common point. For an interval graph G(I), a subset I ′ ⊆ I of intervals
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defines a clique if and only if there is a point piercing all the intervals of I ′. Thus,
the total number of the nodes in k disjoint cliques of an interval graph is the
same as the total number of intervals hit (or pierced) by k points corresponding
the k cliques. Here, intervals that are hit by more than one point get assigned
arbitrarily to only one clique. The same equivalence holds for weighted variants
of the problem, if the weights are positive. When there are negative weights, the
equivalence does not hold because we may have intervals with negative weights
that are hit by a point, but we do not include them into the clique.

Assume that we are given a set I = {I1, . . . , In} of intervals and we want to
solve the HittingIntervals problem. For simplicity, we assume that each interval
is closed and that the endpoints of the intervals are all distinct. The intervals I
split the lines into cells (intervals).

Map each interval Ii = [ai, bi] to the point pi = (ai, bi) in the xy-plane, and
let P = {p1, . . . , pn}. Since ai � bi, every interval is mapped to a point lying on
or above the line y = x. A point q ∈ R hits an interval Ii if and only if pi is on
the top-left quadrant defined by the point (q, q), and denoted by R(q,q). By a
counterclockwise rotation of the setting by π/2 around the origin, Rq,q becomes
exactly a dominance region, namely dom((−q, q)).

Let X be a set of endpoints of all intervals in I. For the HittingIntervals
problem, it is sufficient to choose hitting points from X. Consider the set of O(n)
points Q = {(q, q) | q ∈ X}, which lies on the diagonal y = x. Then there is
bijection between each candidate solution, restricted to X, for the HittingIntervals
problem for I and each candidate solution for the maxDominance problem for P
and Q (after a rotation). By Theorem 1 we conclude the following.

Theorem 2. The HittingIntervals problem for n weighted intervals using at most
k hitting points can be solved in O(kn log n) time and O(n) space. The result also
holds when there are negative weights.

We can also solve the DUC problem for weighted interval graphs. We remove
the intervals with negative weights because they will never be in an optimal solu-
tion. Then, the problem is equivalent to the weighted HittingIntervals problem.

Theorem 3. The DUC problem for weighted interval graphs G = (V,E) using
at most k cliques can be solved in O(k|V | log |V | + |E|) time and O(|V | + |E|)
space.
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Abstract. In this paper we study the computational complexity of
the Upward Planarity Extension problem, which takes as input an
upward planar drawing ΓH of a subgraph H of a directed graph G and
asks whether ΓH can be extended to an upward planar drawing of G.

We show that the Upward Planarity Extension problem is NP-
complete, even if G has a prescribed upward embedding, the vertex set of
H coincides with the one of G, and H contains no edge. Conversely, we
show that the Upward Planarity Extension problem can be solved
in O(n log n) time if G is an n-vertex upward planar st-graph. This result
improves upon a known O(n2)-time algorithm, which however applies to
all n-vertex single-source upward planar graphs. We also show how to
solve in polynomial time a surprisingly difficult version of the Upward

Planarity Extension problem, in which the underlying graph of G is
a path or a cycle, G has a prescribed upward embedding, H contains no
edges, and no two vertices share the same y-coordinate in ΓH .

1 Introduction

The study of the extensibility of partial representations of graphs has recently
become a mainstream in the graph drawing community; see, e.g., [5,12,14–16,23–
27,29]. Major contributions in this scenario are the result of Angelini et al. [5],
which states that the existence of a planar drawing of a graph G extending a
given planar drawing of a subgraph of G can be tested in linear time, and the
result of Brückner and Rutter [12], which states that the problem of testing the
extensibility of a given partial level planar drawing of a level graph (where each
vertex has a prescribed y-coordinate, called level) is NP-complete.

Upward planarity is the natural counterpart of planarity for directed graphs.
In an upward planar drawing of a directed graph no two edges cross and an edge
directed from a vertex u to a vertex v is represented by a curve monotonically
increasing in the y-direction from u to v. The study of upward planar drawings
is a most prolific topic in the theory of graph visualization [2–4,6–11,13,18,19,
21,22,30]. Garg and Tamassia showed that deciding the existence of an upward
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planar drawing is an NP-complete problem [22]. On the other hand, Bertolazzi
et al. [7] showed that testing for the existence of an upward planar drawing
belonging to a fixed isotopy class of planar embeddings can be done in polynomial
time. Further, Di Battista et al. [19] proved that any upward planar graph is
a subgraph of an upward planar st-graph and as such it admits a straight-line
upward planar drawing.

In this paper, we consider the extensibility of upward planar drawings of
directed graphs. Namely, we introduce and study the complexity of the Upward

Planarity Extension (for short, UPE) problem, which is defined as follows.
The input is a triple 〈G,H, ΓH〉, where ΓH is an upward planar drawing of a sub-
graph H of a directed graph G; we call H and ΓH the partial graph and the partial
drawing, respectively. The UPE problem asks whether ΓH can be extended to an
upward planar drawing of G; or, equivalently, whether an upward planar draw-
ing of G exists which coincides with ΓH when restricted to the vertices and edges
of H. We also study the Upward Planarity Extension with Fixed Upward

Embedding (for short,UPE-FUE) problem, which is theUPE problem with the
additional requirement that the drawing of G we seek has to respect a given upward
embedding, i.e., a left-to-right order of the edges entering and exiting each vertex.

The NP-hardness of the Upward Planarity Testing problem [22] directly
implies the NP-hardness of the UPE problem, as the former coincides with the
special case of the latter in which the partial graph is the empty graph. In the full
version of the paper [17], we prove two stronger NP-hardness results. First, we
show that the UPE problem is NP-hard even if the partial graph contains all the
vertices and no edges, and no three vertices share the same y-coordinate in the
partial drawing. This result is established by means of a simple reduction from
the Ordered Level Planarity (OLP) problem, introduced and proved to be
NP-complete by Klemz and Rote [28]. The input of the OLP problem is a partial
drawing of a level graph containing all the vertices and no edges; the problem asks
for the existence of a level planar drawing of the graph extending the partial one.
Second, we show that the UPE-FUE problem is NP-hard even for connected
instances whose partial graph contains all the vertices and no edges. This result
is established by means of a non-trivial reduction from the already mentioned
Partial Level Planarity (PLP) problem by Brückner and Rutter [12]. Our
result is in contrast with several constrained embedding problems that are NP-
hard when the graph has a variable embedding and efficiently solvable in the fixed
embedding setting. Some examples are the Upward Planarity Testing prob-
lem [7,22], the Windrose Planarity Testing problem [1], and the notorious
Bend Minimization in Planar Orthogonal Drawings problem [22,31].

We now present an overview of our algorithmic results. First, we identify
two main factors that contribute to the complexity of the UPE and UPE-FUE

problems: (i) The presence of edges in the partial graph and (ii) the existence of
vertices with the same y-coordinate in the partial drawing. These two proper-
ties are strictly tied together. Namely, any instance of the UPE or UPE-FUE

problems can be efficiently transformed into an equivalent instance 〈G,H, ΓH〉
of the same problem in which H contains no edges or no two vertices share the
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same y-coordinate in ΓH (see Sect. 2). Hence, the NP-hardness results for the
UPE and UPE-FUE problems discussed above carry over to such instances,
even when V (G) = V (H). When the partial graph contains no edges and no
two vertices share the same y-coordinate in the partial drawing, then the UPE

and UPE-FUE problems appear to be more tractable. Indeed, while we could
not establish their computational complexity in general, we could solve them for
instances 〈G,H, ΓH〉 such that the underlying graph of G is a path or a cycle
(see Sect. 4). In particular, in order to solve the UPE-FUE problem for paths,
we employ a sophisticated dynamic programming approach.

Second, we look at the UPE and UPE-FUE problems for instances
〈G,H, ΓH〉 such that G is an upward planar st-graph (see Sect. 3), i.e., it has
a unique source s and a unique sink t. The upward planarity of an n-vertex
st-graph is known to be decidable in O(n) time [19,21]. We observe that a result
of Brückner and Rutter [12] implies the existence of an O(n2)-time algorithm to
solve the UPE problem for upward planar st-graphs; their algorithm works more
in general for upward planar single-source graphs. We present O(n log n)-time
algorithms for the UPE and UPE-FUE problems for upward planar st-graphs.
Notably, these results assume neither that the edge set of H is empty, nor that
any two vertices have distinct y-coordinates in ΓH , nor that V (G) = V (H).

Due to space limitations some theorems and proofs are omitted or sketched
and can be found in the full version of the paper [17].

2 Preliminaries

In this section we give some preliminaries and definitions.
Let G be a directed graph. We denote by (u, v) an edge from a vertex u to a

vertex v. A path (u1, . . . , un) in G is directed if it consists of the edges (ui, ui+1),
for i = 1, . . . , n − 1. A vertex v is a successor (predecessor) of a vertex u if G
contains a directed path from u to v (from v to u). We denote by SG(u) (by
PG(u)) the set of successors (predecessors) of a vertex u in G.

A drawing of a directed graph G is upward if each edge (u, v) is represented
by a curve monotonically increasing in the y-direction from u to v. A graph
is upward planar if it admits an upward planar drawing. Consider an upward
planar drawing and a vertex v. The list S(v) = [w1, . . . , wk] contains the adjacent
successors of v in “left-to-right order”. That is, consider a half-line � starting at
v and directed leftwards; rotate � around v in clockwise direction and append a
vertex wi to S(v) when � overlaps the tangent to the edge (v, wi) at v. The list
P(v) = [z1, . . . , zl] of the adjacent predecessors of v is defined similarly. Then
two upward planar drawings of a connected directed graph are equivalent if they
have the same lists S(v) and P(v) for each vertex v. An upward embedding is
an equivalence class of upward planar drawings. Given an upward planar graph
G with a fixed upward embedding, and given a subgraph G′ of G, we always
implicitly assume that G′ inherits the upward embedding from G.

We assume that any instance 〈G,H, ΓH〉 of the UPE and UPE-FUE prob-
lems is such that ΓH is a drawing in which the edges are represented as polygonal
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Fig. 1. The drawings ΓH (a) and ΓH′ (b) in the proximity of �∗
i . The vertices that are

inserted on �∗
i are gray; those inserted on �∗

i−1 and �∗
i+1 are not shown.

lines. Then the size of 〈G,H, ΓH〉 is |〈G,H, ΓH〉| = |V (G)| + |E(G)| + s, where
s is the number of segments of the polygonal lines representing the edges in ΓH .

Consider an upward planar st-graph G with a fixed upward embedding. In
any upward planar drawing of G, every face f is delimited by two directed
paths (u1, . . . , uk) and (v1, . . . , vl) connecting the same two vertices u1 = v1
and uk = vl. Assuming that S(u1) = [. . . , u2, v2, . . . ], we call (u1, . . . , uk) the
left boundary of f and (v1, . . . , vl) the right boundary of f . For a vertex v �=
t, the leftmost outgoing path L+

G(v) = (w1, . . . , wm) of v is the directed path
such that w1 = v, wm = t, and S(wi) = [wi+1, . . . ], for each i = 1, . . . , m −
1. The rightmost outgoing path R+

G(v), the leftmost incoming path L−
G(v) and

the rightmost incoming path R−
G(v) are defined similarly. The paths L+

G(s) and
R+

G(s) are also called leftmost and rightmost path of G, respectively. Note that
these paths delimit the outer face of G. Consider a directed path Q from s to t.
Let Q∗ be obtained by extending Q with a y-monotone curve directed upwards
from t to infinity and with a y-monotone curve directed downwards from s to
infinity. Then a vertex u is to the left (to the right) of Q if it lies in the region to
the left (resp. to the right) of Q∗. In particular, u is to the left of a vertex v if it
lies to the left of the directed path composed of L+

G(v) and L−
G(v). Similarly, u

is to the right of v if it lies to the right of R+
G(v) ∪ R−

G(v). We denote by LG(v)
(RG(v)) the set of vertices that are to the left (resp. right) of a vertex v in G.

2.1 Simplifications

In this section we prove that it is not a loss of generality to restrict our atten-
tion to instances 〈G,H, ΓH〉 of the UPE and UPE-FUE problems in which H
contains no edges or no two vertices share the same y-coordinate in ΓH .

Lemma 1. Let 〈G,H, ΓH〉 be an instance of the UPE or UPE-FUE problem
and let n = |〈G,H, ΓH〉|. There exists an equivalent instance 〈G′,H ′, ΓH′〉 of
the UPE or UPE-FUE problem, respectively, such that: (i) E(H ′) = ∅, (ii)
if V (H) = V (G), then V (H ′) = V (G′), and (iii) if G is an st-graph, then
G′ is an st-graph. Further, the instance 〈G′,H ′, ΓH′〉 has O(n) size and can be
constructed in O(n log n) time. The drawing ΓH′ may contain vertices with the
same y-coordinate even if ΓH does not.
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Fig. 2. The strip S∗
i in the construction of 〈G′, H ′, ΓH′〉.

Proof sketch. The graph G′ is obtained from G by replacing the edges of H by
directed paths, as described below. Property (iii) is then satisfied. The graph H ′

is composed of all the vertices of H plus all the internal vertices of the directed
paths that are inserted in G′ to replace the edges of H. Property (ii) is hence
satisfied. Further, H ′ contains no edge, hence Property (i) is also satisfied. The
drawing ΓH′ coincides with ΓH when restricted to the vertices in H. It remains
to specify the lengths of the directed paths that are inserted in G′ to replace the
edges of H and to describe how to place their internal vertices in ΓH′ . This is
done in the following.

We compute the increasing order y∗
1 , . . . , y

∗
m of the y-coordinates of the ver-

tices of H in ΓH . Let �∗
i be the line with equation y = y∗

i . Refer to Fig. 1. We
look at the left-to-right order X∗

i in which the vertices of H lying on �∗
i and the

edges of H crossing �∗
i appear in ΓH . We place a vertex v in ΓH′ at the point in

which an edge e of H crosses �∗
i if: (i) e is preceded or followed by a vertex of

H in X∗
i ; or (ii) e has an end-vertex whose y-coordinate in ΓH is y∗

i−1 or y∗
i+1;

in both such cases v is also a vertex that is internal to the directed path that
is inserted in G′ to replace e. This concludes the construction of 〈G′,H ′, ΓH′〉.
The proof is completed by showing that 〈G,H, ΓH〉 is a positive instance of the
UPE or UPE-FUE problem if and only if 〈G′,H ′, ΓH′〉 is. ��

Lemma 2. Let 〈G,H, ΓH〉 be an instance of the UPE or UPE-FUE problem
and let n = |〈G,H, ΓH〉|. There exists an equivalent instance 〈G′,H ′, ΓH′〉 of the
UPE or UPE-FUE problem, respectively, such that: (i) no two vertices of H ′

share the same y-coordinate in ΓH′ and (ii) if V (H) = V (G), then V (H ′) =
V (G′). Further, the instance 〈G′,H ′, ΓH′〉 has O(n) size and can be constructed
in O(n log n) time. The graph H ′ may contain edges even if H does not.

Proof sketch. By Lemma 1 we can assume that H contains no edges. Let
y∗
1 , . . . , y

∗
m be the y-coordinates of the vertices of H in ΓH in increasing order.

Let �∗
i be the line with equation y = y∗

i . Let S∗
1 , . . . ,S∗

m be disjoint horizontal
strips, where �∗

i is in the interior of S∗
i , for i = 1, . . . , m. Refer to Fig. 2. We define

〈G′,H ′, ΓH′〉 by initializing G′ = G and by replacing each vertex v ∈ V (H) with
an edge (u,w), where u gets all the incoming edges of v, while w gets all the
outgoing edges of v. The edge (u,w) belongs to H ′ and is represented in ΓH′ by
a vertical segment with its midpoint at v. Vertical segments corresponding to
distinct vertices of H lying on �∗

i have different lengths and lie inside S∗
i . ��
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3 Upward Planar st-Graphs

In this section we study the UPE and UPE-FUE problems for upward planar
st-graphs. The following lemma will be useful for our algorithms.

Lemma 3. Let G be an n-vertex upward planar st-graph with a given upward
embedding. There exists a data structure to test in O(1) time, for any two vertices
u and v of G, whether v ∈ SG(u), v ∈ PG(u), v ∈ LG(u), or v ∈ RG(u). Further,
such a data structure can be constructed in O(n) time.

Proof sketch. First, we construct the transitive reduction G∗ of G, that is, the
upward planar st-graph obtained from G by removing all its transitive edges.
This can be done in O(n) time. We then exploit the fact that, for each vertex v of
G (and of G∗), it holds SG∗(v) = SG(v), PG∗(v) = PG(v), LG∗(v) = LG(v), and
RG∗(v) = RG(v). We use the O(n)-time algorithm by Di Battista et al. [21] to
construct a dominance drawing Γ ∗ of G∗ such that: (i) x(v) < x(u) if and only if
v ∈ PG(u)∪LG(u); and (ii) y(v) < y(u) if and only if v ∈ PG(u)∪RG(u). Hence,
for a query v ∈ PG(u), we check whether x(v) < x(u) and y(v) < y(u) in Γ ∗.
The other queries can be similarly answered in O(1) time. ��

We now present one of our main tools to deal with the UPE and UPE-FUE

problems for upward planar st-graphs.

Lemma 4. An instance 〈G,H, ΓH〉 of the UPE-FUE problem such that G is an
upward planar st-graph with a given upward embedding and such that H contains
no edges is a positive instance if and only if:

Condition 1: For each vertex v of H, all its successors (predecessors) in G that
belong to H have a y-coordinate in ΓH that is larger (smaller) than y(v); and

Condition 2: For each vertex v of H, all the vertices of H whose y-coordinate
is the same as y(v) and whose x-coordinate is larger (smaller) than x(v) in
ΓH are to the right (to the left) of v in G.

Proof sketch. Condition 1 is obviously necessary for the existence of an upward
drawing of G extending ΓH . Suppose that two vertices u, v exist in H such that
(i) u is to the left and on the same horizontal line as v in ΓH and (ii) u is to
the right of v in G. Then any two minimal directed paths Quw and Qvw from
u and v to a common vertex w determine, in any upward planar drawing of G
extending ΓH , a list P(w) of adjacent predecessors of w that does not respect
the upward embedding of G. This proves the necessity of Condition 2.

For the sufficiency, we construct an upward planar drawing ΓG of G that
extends ΓH . First we draw every vertex of G not in H at an exclusive y-
coordinate larger than those of its predecessors and smaller than those of its
successors; then the instance still satisfies Conditions 1 and 2. Now we draw the
edges of G “one face at a time”. After each step we maintain the invariants that:
(i) the subgraph of G currently drawn consists of an upward planar st-graph G′

plus a set of isolated vertices; (ii) the current drawing of G′ in ΓG is upward
planar; and (iii) the rightmost path of G′ is represented by a y-monotone curve
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Fig. 3. (a) Drawing the leftmost path L+
G(s) of G. (b) Drawing the right boundary

(u1, . . . , ul) of a face f .

that has all the isolated vertices to its right. We first draw L+
G(s) so to keep all

the vertices not in it to its right; see Fig. 3a. Then, repeatedly, we consider a
face f whose left boundary belongs to G′ and whose right boundary (u1, . . . , ul)
consists of edges not in G′; see Fig. 3b. Such a right boundary is a directed path
which is drawn upward (this is possible by Condition 1), to the right of the left
boundary of f and so close to it that no vertex which is still isolated in the
drawing lies to the left of it (this is possible by Condition 2). ��

We can now prove the following algorithmic theorem.

Theorem 1. The UPE-FUE problem can be solved in O(n log n) time for
instances 〈G,H, ΓH〉 with size n = |〈G,H, ΓH〉| such that G is an upward planar
st-graph with a given upward embedding.

Proof sketch. We apply Lemma 1 in O(n log n) time to modify 〈G,H, ΓH〉 so that
H contains no edges while G remains an upward planar st-graph. Next, we test
whether 〈G,H, ΓH〉 satisfies Conditions 1 and 2 of Lemma 4 in O(n log n) time.

In order to test Condition 1, we construct an auxiliary graph A, which we
initialize to G. We construct in O(n log n) time a sequence S in which the vertices
of H are ordered by increasing y-coordinates and, secondarily, by increasing x-
coordinates in ΓH . We partition S into maximal subsequences S1, . . . ,Sk such
that all the vertices in Si have the same y-coordinate. For every pair Si,Si+1 we
add to A a vertex vi and directed edges from every vertex in Si to vi and from vi

to every vertex in Si+1. Then 〈G,H, ΓH〉 satisfies Condition 1 if and only if A is
acyclic. The graph A can be constructed in O(n log n) time; further, it has O(n)
vertices and edges, hence it can be tested in O(n) time whether it is acyclic.

In order to test Condition 2, we look at every pair u, v of consecutive vertices
in each sequence Si and test whether u ∈ LG(v). By Lemma 3, this can be done
in O(1) time per query, after an O(n)-time preprocessing. ��

Next, we deal with the UPE problem. Notice that an instance 〈G,H, ΓH〉
of the UPE problem such that G is an upward planar st-graph can be easily
transformed into an equivalent instance of the PLP problem. This is due to the
fact that Condition 1 of Lemma 4 does not depend on the upward embedding
of G and that we can assume: (i) the edge set of H to be empty, by Lemma 1;
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Fig. 4. (left) A biconnected upward planar st-graph G and (right) the SPQR-tree T
of G. The skeletons of all the non-leaf nodes of T are depicted. The allocation nodes
of a vertex v are in the yellow-shaded region.

and (ii) the partial drawing to contain all the vertices of G, by drawing each
vertex in V (G) \ V (H) as in the proof of Lemma 4 without violating neither
Condition 1 nor Condition 2 of the lemma. Hence, the UPE problem for upward
planar st-graphs can be solved in quadratic time, due to the results of Brückner
and Rutter about the PLP problem for single-source graphs [12]. However, in
the following theorem we show how to reduce the time bound to almost linear.

Theorem 2. The UPE problem can be solved in O(n log n) time for instances
〈G,H, ΓH〉 with size n = |〈G,H, ΓH〉| such that G is an upward planar st-graph.

Proof sketch. First, we test in O(n log n) time whether G satisfies Condition 1
of Lemma 4; this is done as in the proof of Theorem 1. If the test fails, we reject
the instance, otherwise we apply Lemma 1 in order to modify 〈G,H, ΓH〉 so that
H contains no edges while G remains an upward planar st-graph.

In order to test whether G admits an upward embedding satisfying Condi-
tion 2 of Lemma 4 we proceed as follows. First, we add the edge (s, t) to G, so
to ensure the biconnectivity of G. Second, we compute in O(n log n) time the
order O = v1, v2, . . . , vh of the vertices in H by increasing y-coordinates and,
secondarily, by increasing x-coordinates in ΓH . Third, we compute in O(n) time
the SPQR-tree T of G (see [20] and Fig. 4). The tree T represents the recur-
sive arrangement of the triconnected components of G. Roughly speaking, these
components might be arranged in a cycle (this corresponds to an S-node in T ),
or might share two vertices and be arranged in parallel (this corresponds to a
P-node in T ), or might be arranged as in a triconnected graph (this corresponds
to an R-node in T ). An auxiliary graph, called skeleton and denoted by sk(ν), is
associated to each node ν of T and represents the corresponding arrangement.
Each edge of sk(ν) corresponds to a subgraph of G, called pertinent graph.

Any upward embedding of G can be obtained by choosing a left-to-right order
for the edges of the skeleton of each P-node of T and an upward embedding for
the skeleton of each R-node of T . We outline the approach for performing these
choices so to satisfy Condition 2. First, we consider each R-node ν of T and
we arbitrarily choose one of the two upward embeddings of sk(ν); we associate
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to ν two boolean variables preserve(ν) and flip(ν), that we both initially set
to false, respectively indicating whether the arbitrarily chosen embedding of
sk(ν) has to be maintained or changed; finally, we set up in O(|sk(ν)|) time a
data structure that, for a pair (x, y) of vertices or edges of sk(ν), determines in
O(1) time whether x ∈ Lsk(ν)(y), x ∈ Rsk(ν)(y), or none of the previous, in the
chosen upward embedding of sk(ν); this can be done by Lemma 3.

We now consider any two vertices u = vi and v = vi+1 with the same y-
coordinate in ΓH . Note that x(u) < x(v) in ΓH . Then u ∈ LG(v) in the upward
embedding of G we look for. This imposes a constraint on the skeleton sk(ν)
of the lowest common ancestor ν of the proper allocation nodes of u and v in
T . Specifically: (1) If ν is an S-node, then we reject the instance. (2) If ν is
a P-node, then we constrain the edge of sk(ν) whose pertinent graph contains
u to precede the edge of sk(ν) whose pertinent graph contains v. (3) If ν is
an R-node, then let xu be the representative of u in sk(ν), that is, if u is a
vertex of sk(ν) then xu = u, otherwise xu is the edge of sk(ν) whose pertinent
graph contains u. The representative xv of v in sk(ν) is defined in the same way.
We query in O(1) time the data structure associated to sk(ν) to test whether
xu ∈ Lsk(ν)(xv) (then we set preserve(ν) = true), or xu ∈ Rsk(ν)(xv) (then we
set flip(ν) = true), or xu /∈ Lsk(ν)(xv) and xu /∈ Rsk(ν)(xv) (then we reject the
instance).

Finally, for each P-node ν of T , we test whether the precedence constraints
imposed on the edges of sk(ν) induce an acyclic relationship. In case of a neg-
ative answer, we reject the instance. For each R-node ν of T , we test whether
preserve(ν) = false or flip(ν) = false. In case of a negative answer, we reject
the instance. Finally, if we did not reject the instance, then we accept it. ��

4 Paths and Cycles

In this section we deal with the UPE and UPE-FUE problems for instances
〈G,H, ΓH〉 such that the underlying graph of G is a path or a cycle, H contains
no edges, and no two vertices share the same y-coordinate in ΓH . For the sake
of readability, in the following we often just say “path” or “cycle” to address a
directed graph whose underlying graph is a path or cycle, respectively.

It turns out that paths and cycles are easy to handle if they do not come
with a prescribed upward embedding. Namely, as long as obvious conditions on
the y-coordinates of the vertices in the partial drawing are satisfied, an upward
planar drawing can be constructed one directed path at a time, so that every
new directed path leaves to its left the already drawn directed paths. Hence, we
immediately get the following.

Theorem 3. The UPE problem can be solved in O(n) time for instances
〈G,H, ΓH〉 such that G is an n-vertex directed graph whose underlying graph
is a path or a cycle, H contains no edges, and no two vertices share the same
y-coordinate in ΓH .

Conversely, solving the UPE-FUE problem for paths and cycles, despite the
simplicity of their structure, has proved to be challenging.
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Fig. 5. (a)–(c) Three cases for the computation of the value of t(ui, uj , um, uM ). (d)
Illustration for the necessity of Condition (6).

Theorem 4. The UPE-FUE problem can be solved in O(n4) time for instances
〈G,H, ΓH〉 such that G is an n-vertex directed graph whose underlying graph is
a path with a given upward embedding, H contains no edges, and no two vertices
share the same y-coordinate in ΓH .

Proof sketch. Let G = (u1, . . . , un). We show a decision algorithm for the
UPE-FUE problem employing dynamic programming. Namely, we fill a table
with entries t(ui, uj , um, uM ), for all the indices i, j,m,M ∈ {1, . . . , n} with
i ≤ m ≤ j, i ≤ M ≤ j, i �= j, and m �= M . Let Gi,j = (ui, . . . , uj) and let
ΓH,i,j be the restriction of ΓH to the vertices of Gi,j . Then t(ui, uj , um, uM ) =
true if and only if there is an upward planar drawing ΓG,i,j of Gi,j that
extends ΓH,i,j in which um and uM are the vertices with the smallest and
largest y-coordinate, respectively. If such a drawing ΓG,i,j exists, then we say
it is valid for t(ui, uj , um, uM ). The UPE-FUE problem is positive if and only
if t(u1, un, um, uM ) = true, for some 1 ≤ m ≤ n and 1 ≤ M ≤ n with m �= M .

We start by computing the entries t(ui, uj , um, uM ) such that Gi,j is a
directed path. Assume that the edge between ui and ui+1 is outgoing ui, the
other case is symmetric. Then t(ui, uj , um, uM ) = true if and only if the follow-
ing conditions are satisfied: (1) m = i; (2) M = j; and (3) for any two indices i′

and j′ such that i′ < j′ and such that ui′ , uj′ ∈ V (Hi,j), we have y(ui′) < y(uj′)
in ΓH,i,j .

Assume now that Gi,j is not a directed path and that the values of all the
entries t(ui, uj , um, uM ) such that 1 ≤ j − i ≤ x have been computed, for some
x ∈ {1, 2, . . . }. After the computation of the entries t(ui, uj , um, uM ) such that
Gi,j is a directed path, this is indeed the case with x = 1. We compute the
values of the entries t(ui, uj , um, uM ) such that j − i = x + 1. We distinguish
three cases, based on how many of the equalities i = m, i = M , j = m, and
j = M are satisfied, that is, based on how many vertices among um and uM are
end-vertices of Gi,j . Refer to Figs. 5a to c.

In each case we characterize whether t(ui, uj , um, uM ) = true based on
the values of already computed entries of the table and on the possibility of
um and uM to be the lowest and highest vertex in an upward planar drawing
of Gi,j extending ΓH,i,j , respectively. In this proof sketch, we present such a
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characterization only for the (most difficult) case in which um and uM are both
end-vertices of Gi,j . We have that t(ui, uj , ui, uj) = true if and only if there
exist indices M ′ ∈ {i + 1, . . . , j − 2} and m′ ∈ {M ′ + 1, . . . , j − 1} such that:

(1) t(ui, uM ′ , ui, uM ′) = true;
(2) t(uM ′ , um′ , um′ , uM ′) = true;
(3) t(um′ , uj , um′ , uj) = true;
(4) either ui does not belong to H or ui has the smallest y-coordinate among

the vertices of Gi,j in ΓH ;
(5) either uj does not belong to H or uj has the largest y-coordinate among

the vertices of Gi,j in ΓH ; and
(6) either P(uM ′) = [uM ′−1, uM ′+1] and S(um′) = [um′−1, um′+1], or P(uM ′) =

[uM ′+1, uM ′−1] and S(um′) = [um′+1, um′−1].

For the necessity, consider a valid drawing ΓG,i,j for t(ui, uj , ui, uj). Then
define uM ′ as the internal sink of Gi,j with the largest y-coordinate in ΓG,i,j

and um′ as the internal source of GM ′,j with the smallest y-coordinate in
ΓG,i,j . Restricting ΓG,i,j to the vertices and edges of Gi,M ′ , GM ′,m′ , and
Gm′,j yields valid drawings for t(ui, uM ′ , ui, uM ′), t(uM ′ , um′ , um′ , uM ′), and
t(um′ , uj , um′ , uj), respectively, which proves the necessity of Conditions (1)–(3).
Conditions (4)–(5) hold true since ui and uj are the vertices with the smallest
and largest y-coordinate in ΓG,i,j , respectively. Finally, the necessity of Con-
dition (6) is proved by observing that if, say, P(uM ′) = [uM ′−1, uM ′+1] and
S(um′) = [um′+1, um′−1], then ΓG,i,j contains a crossing, as in Fig. 5d.

For the sufficiency, we start from valid drawings ΓG,i,M ′ , ΓG,M ′,m′ , and
ΓG,m′,j for t(ui, uM ′ , ui, uM ′), t(uM ′ , um′ , um′ , uM ′), and t(um′ , uj , um′ , uj). We
modify ΓG,i,M ′ , ΓG,M ′,m′ , and ΓG,m′,j so that uM ′ is at the same point in ΓG,i,M ′

and ΓG,M ′,m′ , um′ is at the same point in ΓG,M ′,m′ and ΓG,m′,j , and ui (uj)
has the smallest (resp. largest) y-coordinate among all the vertices in ΓG,i,M ′ ,
ΓG,M ′,m′ , and ΓG,m′,j . Satisfying these properties might require modifying the
placement of ui, uM ′ , um′ , and uj , and scaling parts of ΓG,i,M ′ , ΓG,M ′,m′ , and
ΓG,m′,j . Gluing together these drawings results in an upward drawing ΓG,i,j of
Gi,j that extends ΓH,i,j and in which ui and uj are the vertices with the smallest
and largest y-coordinate, respectively. However, ΓG,i,j might contain crossings
and the left-to-right order of the edges incoming at uM ′ (outgoing from um′)
in ΓG,i,j might not correspond to P(uM ′) (resp. to S(um′)). We overcome these
issues by redrawing the curves representing the edges of Gi,M ′ , GM ′,m′ , and
Gm′,j in internally-disjoint regions of the plane, without changing the position
of any vertex.

The quartic running time comes from the number of entries of the dynamic
programming table, which is in fact Θ(n4). ��

By exploiting arguments analogous to those in the proof of Theorem 4 we
can extend our quartic-time algorithm to cycles.

Theorem 5. The UPE-FUE problem can be solved in O(n4) time for instances
〈G,H, ΓH〉 such that G is an n-vertex cycle with given upward embedding, H
contains no edges, and no two vertices share the same y-coordinate in ΓH .
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Proof. Suppose that an upward planar drawing ΓG of G = (u1, . . . , un) extending
ΓH exists. Since no two vertices share the same y-coordinate in ΓH , we can
assume w.l.o.g. that no two vertices share the same y-coordinate in ΓG either.
Our strategy is to test, for every possible pair of vertices (um, uM ) with m,M ∈
{1, . . . , n} and with m �= M , whether there is an upward planar drawing ΓG of
G extending ΓH in which the vertices with the smallest and largest y-coordinate
are um and uM , respectively. For any pair (um, uM ), the cycle G consists of
two paths connecting um and uM , call them Gm,M = (um, um+1, . . . , uM ) and
GM,m = (uM , uM+1, . . . , um), where indices are modulo n. Let ΓH,m,M and
ΓH,M,m be the restrictions of ΓH to the vertices that belong to Gm,M and GM,m,
respectively. Then, G has an upward planar drawing extending ΓH in which the
vertices with the smallest and largest y-coordinate are um and uM , respectively,
if and only if: (1) Gm,M has an upward planar drawing extending ΓH,m,M in
which the vertices with the smallest and largest y-coordinate are um and uM ,
respectively; (2) GM,m has an upward planar drawing extending ΓH,M,m in
which the vertices with the smallest and largest y-coordinate are um and uM ,
respectively; and (3) either P(uM ) = [uM−1, uM+1] and S(um) = [um+1, um−1],
or P(uM ) = [uM+1, uM−1] and S(um) = [um−1, um+1].

From a computational point of view, we act as follows. First we compute,
for every possible pair of vertices (um, uM ) with m,M ∈ {1, . . . , n} and with
m �= M , whether there are upward planar drawings of Gm,M and GM,m extend-
ing ΓH,m,M and ΓH,M,m, respectively, in which the vertex with the small-
est y-coordinate is um and the vertex with the largest y-coordinate is uM .
This can be done by considering the 2n-vertex path (u1, u2, . . . , un, un+1 =
u1, un+2 = u2, . . . , u2n = un) and by setting up a dynamic programming table
with entries t(ui, uj , um′ , uM ′), for all the indices i, j,m′,M ′ ∈ {1, . . . , 2n} such
that i ≤ m′ ≤ j and i ≤ M ′ ≤ j, with i �= j, m′ �= M ′, and j − i ≤ n. The values
of the entries of this table can be computed in total O(n4) time as in the proof
of Theorem 4.

Then, for each of the O(n2) pairs of vertices (um, uM ) with m,M ∈ {1, . . . , n}
and with m �= M , we query the table constructed in the step above to
check whether G has an upward planar drawing extending ΓH in which the
vertices with the smallest and largest y-coordinate are um and uM , respec-
tively. Concerning Conditions (1) and (2), we check in O(1) time whether
t(um, uM , um, uM ) = true and t(uM , un+m, un+m, uM ) = true (if m < M)
or whether t(uM , um, um, uM ) = true and t(um, un+M , um, un+M ) = true (if
m > M). Condition (3) can also be trivially checked in O(1) time. ��

5 Conclusions and Open Problems

In this paper we introduced and studied the Upward Planarity Extension

(UPE) problem, which takes as input an upward planar drawing ΓH of a subgraph
H of a directed graph G and asks whether an upward planar drawing of G exists
which coincides with ΓH when restricted to the vertices and edges of H.
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We proved that the UPE problem is NP-complete, even if G has a prescribed
upward embedding and H contains all the vertices and no edges. Conversely, the
problem can be solved efficiently for upward planar st-graphs.

Several questions are left open by our research. We cite our favorite two. First,
is it possible to solve the UPE-FUE problem in polynomial time for instances
〈G,H, ΓH〉 such that H contains no edges and no two vertices have the same
y-coordinate in ΓH? We proved that if any of the two conditions is dropped,
then the UPE-FUE problem is NP-hard, however we can positively answer the
above question only if G is a directed path or cycle. Second, are the UPE and
UPE-FUE problems polynomial-time solvable for directed paths and cycles?
Even when H contains no edges and no two vertices have the same y-coordinate
in ΓH , answering the above question in the affirmative was not a trivial task.

Acknowledgments. Lemma 4 comes from a research session the third author had
with Ignaz Rutter, to which our thanks go.
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Abstract. We consider problems in which a simple path of fixed length,
in an undirected graph, is to be shifted from a start position to a goal
position by moves that add an edge to either end of the path and remove
an edge from the other end. We show that this problem may be solved in
linear time in trees, and is fixed-parameter tractable when parameterized
either by the cyclomatic number of the input graph or by the length of
the path. However, it is PSPACE-complete for paths of unbounded length
in graphs of bounded bandwidth.

1 Introduction

In this paper, we consider the problem of sliding a fixed-length simple path within
an undirected graph from a given starting position to a given goal position. The
path may move in steps where we add an edge to either end of the path and
simultaneously remove the edge from the opposite end, maintaining its length.
Effectively, this can be thought of as sliding the path one step along its length in
either direction. The allowed movements of the path are similar to those of trains
in a switchyard, or of the model trains in any of several train shunting puzzles;
the edges of the path can be thought of as the cars of a train. However, unlike
train tracks, we do not constrain connections at junctions of track segments to
be smooth: a path that enters a vertex along an incident edge can exit the vertex
along any other incident edge. Additionally, we do not distinguish the two ends
of the path from each other.
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Fig. 1. State space of three-edge paths on a six-vertex graph

Our aim is to understand the computational complexity of two natural recon-
figuration problems for such paths: the decision problem, of testing whether it is
possible to reach the goal position from the start position, and the optimization
problem, of reaching the goal from the start in as few moves as possible. One
natural upper bound for the complexity of these problems is the size of the state
space for the problem, a graph whose vertices are paths of equal length on the
given graph and whose edges represent moves from one path to another (Fig. 1).
If a given graph has N paths of the given length, and M moves from one path to
another, we can solve either the decision problem or the optimization problem
in time O(M + N) (after constructing the state space) by a simple breadth-first
search. As we will see, it is often possible to achieve significantly faster running
times than this naive bound. On the other hand, the general problem is hard,
even on some highly restricted classes of graphs.

Specifically, we prove the following results:

1. The decision problem for path reconfiguration is fixed-parameter tractable
when parameterized by the length of the path. This stands in contrast to the
size of the state space for the problem which (for paths of length k in n-vertex
graphs) can have as many as Ω(nk+1) states.
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2. For paths of unbounded length in graphs parameterized by the circuit rank,
both the decision and the optimization problems can be solved in fixed-
parameter tractable time by state space search. The same problem can be
solved in polynomial (but not fixed-parameter tractable) time when param-
eterized by feedback vertex set number.

3. The optimization problem for path reconfiguration in trees can be solved in
linear time, even though the state space for the problem has quadratic size.

4. The decision problem for path reconfiguration is PSPACE-complete for paths
of unbounded length, even when restricted to graphs of bounded bandwidth.
Therefore (unless P = PSPACE) path reconfiguration is not fixed-parameter
tractable when parameterized by bandwidth, treewidth, or related graph
parameters.

Because of limited space, the detailed versions of several of our results are
deferred to the full version of this paper (arXiv:1905.00518).

1.1 Related Work

There has been much past research on reconfiguring structures in graphs, with
motivations that include motion planning, understanding the mixing of Markov
chains and bounding the computational complexity of popular games and puz-
zles. See, for instance, Ito et al. [1] for many early references, and Mouawad et
al. [2] for more recent work on the parameterized complexity of these problems.
Often, in these problems, one considers moves in which the structure changes by
the removal of one element and the addition of an unrelated replacement element
(token moving) or in which an element of the structure changes only locally, by
moving along an edge of the graph (token sliding).

Several authors have considered problems of reconfiguring paths or shortest
paths under token jumping or token sliding models of reconfiguration [3–5].
However, the path sliding moves that we consider are different. Token sliding
moves only a single vertex or edge of a path along a graph edge, while we move
the whole path. And although our path sliding moves can be seen as a special
case of token jumping, because they remove one edge and add a different edge,
token jumping in general would allow the replacement of edges or vertices in the
middle of a path, while we allow changes only at the ends of the path.

The path reconfiguration problem that we study here is also closely related
to a popular video game, Snake, which has a very similar motion to the path
sliding moves that we consider. Our problem differs somewhat from Snake in that
we consider bidirectional movement, while in Snake the motion must always be
forwards. Snake is typically played on grid graphs, and it is known to be PSPACE-
complete to determine whether the Snake can reach a specific goal state from
a given start state on generalized grid graphs [6]. Independently of our work,
Gupta et al. [7] have found that reconfiguring snakes (paths that can move
only unidirectionally) is fixed-parameter tractable in the length of the path,
analogously to our Theorem 1.

https://arxiv.org/abs/1905.00518
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Fig. 2. A graph G of tree-depth 2 (solid black edges) and a tree T realizing this depth
(dashed blue edges). (Color figure online)

2 Preliminaries

2.1 Reconfiguration Sequences and Time Reversal

Definition 1. We define a reconfiguration step in a graph G to be a pair of
edges (e, f), and a reconfiguration sequence to be a sequence σ of reconfiguration
steps. We may apply a reconfiguration step to a path P by adding edge e to P
and removing edge f , whenever f is one of the two edges at the ends of P , e is
incident to the vertex at the other end, and the result of the application is another
simple path. We may apply a reconfiguration sequence to a path by performing a
sequence of applications of its reconfiguration steps. If applying reconfiguration
sequence σ to path P produces another path Q we say that we can reconfigure P
into Q or that σ takes P to Q.

If (e, f) is a reconfiguration step, then we define its time reversal to be the
step (f, e). We define the time-reversal of a reconfiguration sequence σ to be
the sequence of time reversals of the steps of σ, taken in the reverse order. If
σ takes P to Q, then its time reversal takes Q to P . For this reason, when we
seek the existence of a reconfiguration sequence (the path reconfiguration decision
problem) or the shortest reconfiguration sequence (the path reconfiguration opti-
mization problem), reconfiguring a path P to Q is equivalent under time reversal
to reconfiguring Q to P . We call this equivalence time-reversal symmetry.

We define the length |P | of a path P to be its number of edges, and the
length |σ| of a reconfiguration sequence to be its number of steps.

2.2 Tree-Depth

Tree-depth is a graph parameter that can be defined in several equivalent
ways [8], but the most relevant definition for us is that the tree-depth of a
connected graph G is the minimum depth of a rooted tree T on the vertices of
G such that each edge of G connects an ancestor-descendant pair of T (Fig. 2).
Here, the depth of a tree is the length of the longest root-to-leaf path. Another
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way of expressing the connection between G and T is that T is a depth-first
search tree for a supergraph of G. For disconnected graphs one can use a forest
in place of a tree, but we will only consider tree-depth for connected graphs.

Tree-depth is a natural graph parameter to use for path configuration,
because it is closely connected to the lengths of paths in graphs. If a graph
G has maximum path-length �, then clearly its tree-depth can be at most �,
because any depth-first search tree of G itself will achieve that depth. In the
other direction, a graph with tree-depth d has maximum path-length at most
2d+1 − 2, as can be proven inductively by splitting any given path at the vertex
closest to the root of a tree T realizing the tree-depth. Therefore, the tree-
depth and maximum path-length are equivalent for the purposes of determining
fixed-parameter tractability. The parameterized complexity of reconfiguration
problems on graphs of bounded tree-depth has been studied by Wrochna [9].
However, these graphs are highly constrained, so algorithms that are parame-
terized by tree-depth are not widely applicable.

We will prove as a lemma that path reconfiguration is fixed-parameter
tractable for the graphs of bounded tree-depth. Because these graphs have
bounded path lengths, this result will be subsumed in our theorem that path
reconfiguration is fixed-parameter tractable when parameterized by path-length.
However, we will use this lemma as a stepping-stone to the theorem, by proving
that in arbitrary graphs we can either find a structure that allows us to solve
the problem easily or restrict the input to a subgraph of bounded tree-depth.

3 Parameterized by Path Length

In this section we show that path reconfiguration is fixed-parameter tractable
when parameterized by path length. As discussed above, our strategy is to find
a structure (loose paths, defined below), whose existence allows us to solve
the reconfiguration problem directly. When these structures do not exist or
exist but cannot be used, we will instead restrict our attention to a subgraph
of bounded tree-depth. We begin with the lemma that the problem is fixed-
parameter tractable when parameterized by tree-depth instead of path length.

3.1 Tree-Depth

Our method for graphs of low tree-depth is based on the fact that, when these
graphs are large, they contain a large amount of redundant structure: subgraphs
that are all connected to the rest of the graph in the same way as each other.
When this happens, we can eliminate some copies of the redundant structures
and reduce the problem to a smaller instance size.

Definition 2. Given a graph G and a vertex set S, we define an S-flap to be a
subset X of the vertices of G such that X is disjoint from S and there are no edges
from X to G \ {S ∪ X}. We say that two S-flaps X and Y are equivalent when
the induced subgraphs G[S∪X] and G[S∪Y ] are isomorphic, by an isomorphism
that reduces to the identity mapping on S (Fig. 3).
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Fig. 3. Two equivalent S-flaps X and Y in a graph G

Observation 1. For any graph G and any vertex set S, a path of length k can
include vertices from at most �(k − 1)/2� S-flaps of G.

Proof. The path has k + 1 vertices, and any two vertices in distinct flaps must
be separated by at least one vertex of S. ��
Lemma 1. Suppose we are given an instance of path reconfiguration for paths
of length k in a graph G, and that G contains a subset S that is disjoint from
the start and goal positions of the path and has more than �(k + 1)/2� pairwise
equivalent S-flaps X1,X2, . . . , all disjoint from the start and goal. Then we can
construct an equivalent and smaller instance by removing all but �(k + 1)/2�of
these equivalent S-flaps.

Proof. Any reconfiguration sequence in the original graph can be transformed
into a reconfiguration sequence for the reduced graph by using one of the remain-
ing S-flaps whenever the sequence for the original graph enters an S-flap. Because
the S-flaps are equivalent, the moves within the flap can be mapped to each other
by the isomorphism defining their equivalence, and by Observation 1 there will
always be a free S-flap to use in the reduced graph. ��
Lemma 2. We can solve the decision or optimization problems for path recon-
figuration in time that is fixed-parameter tractable in the tree-depth of the input
graph.

Proof. We provide a polynomial-time kernelization algorithm that uses Lemma1
to reduce the instance to an equivalent instance whose size is a function only of
the given tree-depth d. The problem can then be solved by a brute-force search
on the resulting smaller instance. We assume without loss of generality that we
already have a tree decomposition T of depth d, as it is fixed-parameter tractable
to find such a decomposition when one is not already given [8, p. 138]. Recall
that, for graphs of tree-depth d, the length k of the paths being reconfigured can
be at most 2d+1 − 2.
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We apply Lemma 1 in a sequence of stages so that, after stage i, all vertices
at height i in T have O(1) children. As a base case, for stage 0, all vertices at
height 0 in T automatically have 0 children, because they are the leaves of T .
Therefore, suppose by induction on i that all vertices at height less than i in T
have O(1) children.

For a given vertex v at height i, let Sv be the set of ancestors of v in T
(including v itself). Then, for each child w of v in T , let Xw be the set of
descendants of w (including w itself). Then Xw is an Sv-flap, because Sv includes
all of its ancestors in T and it can have no edges to vertices that are not ancestors
in T . If we label each vertex in T by the set of heights of its adjacent ancestors,
then the isomorphism type of G[Sv ∪ Xw] is determined by these labels, so
two children u and w of T have equivalent Sv-flaps whenever they correspond to
isomorphic labeled subtrees of W . Trees of constant size with a constant number
of label values can have a constant number of isomorphism types, so there are a
constant number of equivalence classes of Sv flaps among the sets Wx. Within
each equivalence class, we apply Lemma 1 to reduce the number of flaps within
that equivalence class to a constant. After doing so, we have caused the vertices
of T at height i to have a constant number of children, completing the induction
proof.

To implement this method in polynomial time, we can use any polynomial time
algorithm for isomorphism of labeled trees [10]. The equivalence of subtrees of T by
labeled isomorphism may be finer than the equivalence of the corresponding sub-
graphs of G by graph isomorphism (because two different labeled trees may corre-
spond to isomorphic subgraphs) but using the finer equivalence relation neverthe-
less leaves us with a kernel of size depending only on d. The time for this algorithm
can be bounded by a polynomial, independent of the parameter. ��

As the following observation shows, this result is nontrivial in the sense that
its time bound is significantly smaller than the worst-case bound on the size of
the state space for the problem.

Observation 2. In graphs of tree-depth d, the number of paths of a given length
can be Θ(n2d).

Proof. Let T be a tree realizing the depth of the given graph. To prove that the
number of paths is O(n2d), consider the vertex v in any path that is highest
in tree T , and apply the same bound inductively for the two parts of the path
on either side of v, both of which must live in lower-depth subtrees. The total
number of paths can be at most the product of the numbers of choices for these
two smaller paths.

To prove that the number of paths can be Ω(n2d), let T be a star as the base
case for depth one (with Ω(n2) paths of length two) and at each higher depth
connect two inductively-constructed subtrees through a new root vertex v. Given
a tree T constructed in this way, let G be the graph of all ancestor-descendant
pairs in T (Fig. 4). Each two paths in the two subtrees can be connected to each
other through v, so the number of paths in the whole graph is the product of
the numbers of paths in the two subtrees. ��



360 E. D. Demaine et al.

Fig. 4. One of Ω(n4) paths of length 6 in a graph of tree-depth 2

Fig. 5. A loose path R for start and goal paths P and Q

Therefore, an algorithm that searched the entire state space would only be
in XP, not FPT.

3.2 Loose Paths

We have seen that graphs without long paths are easy for path reconfiguration.
Next, we show that graphs with long paths are also easy. The following definition
is central to this part of our results:

Definition 3. Consider an instance of path reconfiguration consisting of a graph
G, a start path P of length k, and a goal path Q of length k. We define a loose
path to be a simple path R of length 2k in G, such that R is vertex-disjoint from
both P and Q (Fig. 5).

Lemma 3. Let R be a loose path for an instance (G,P,Q) of path reconfigura-
tion, such that it is possible to reconfigure path P into a path that uses at least
one vertex of R. Then for every vertex v in R, it is possible to reconfigure path
P into a sub-path of R for which v is an endpoint.

Proof. Consider a sequence σ of reconfiguration steps starting from P that
results in a path using at least one vertex of R and is as short as possible.
Because σ is as short as possible and R is disjoint from P , the last move of
σ must cause exactly one vertex u of R to be an endpoint of the reconfigured
path. Because R has length 2k, at least one endpoint of R is at distance k or
more along R from u. By sliding the path along R towards this endpoint, we can
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reconfigure it so that it lies entirely along R. Again, because R has length 2k,
one of the two sub-paths of R ending at v has length at least k. By concatenating
to σ an additional sequence of steps that slide the path along R (if necessary)
we can reconfigure the starting path so that it lies within this sub-path and ends
at v. ��

We call a loose path R that meets the conditions of Lemma 3 a reachable
loose path.

Lemma 4. If an instance (G,P,Q) of path reconfiguration has a reachable loose
path, and the graph G is connected, then all loose paths for that instance are
reachable.

Proof. Let R be a reachable loose path, and L be any other loose path. If R
and L share a vertex v, then it is possible to slide any sub-path of R so that
it includes this vertex, showing that L meets the conditions of Lemma 3. If R
and L are disjoint, let T be a shortest path between them in G, and let v be
the unique vertex of T that belongs to R. By Lemma 3, we can reconfigure the
starting path so that it lies along R and ends at v. From there, we can slide the
path along T until it reaches the other endpoint of T , a vertex of L. This shows
that L meets the conditions of Lemma 3. ��

It will be helpful to bound the tree-depth of graphs with no loose path.

Observation 3. If an instance of path reconfiguration for paths of length k has
no loose path, then its graph has tree-depth less than 4k.

Proof. Form a depth-first-search forest F of the subgraph formed by removing
all vertices of the start and goal paths. Because there is no loose path, F has
depth at most 2k − 1. Form a single rooted path R of the vertices of the start
and goal paths, in an arbitrary order. Connect R and F into a single tree T
(not necessarily a subtree of the input graph) by making each root of F be a
child of the leaf node of R. Then every edge in the given graph connects an
ancestor–descendant pair in T , because either it connects two vertices in the
depth-first-search forest or it has at least one endpoint on the ancestral path R.
Thus, T meets the condition for trees realizing the tree-depth of a graph, and
its depth is at most 4k − 1, so the given graph has tree-depth at most 4k − 1. ��

3.3 Win-Win

We show now that we can either restrict our attention to a subgraph of bounded
tree-depth or find a reachable loose path, in either case giving a structure that
allows us to solve path reconfiguration.

Definition 4. Given an instance (G,P,Q) of path reconfiguration, we say that
S is a reachable set of vertices if, for every vertex v in S, there exists a sequence
of reconfiguration steps that takes P into a path that uses vertex v. We say that
S is an inescapable set of vertices if, for every vertex v that is not in S, there
does not exist a sequence of reconfiguration steps that takes P into a path that
uses vertex v.
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Lemma 5. Given an instance (G,P,Q) of path reconfiguration, parameterized
by the length k of the start and goal paths, we can in fixed-parameter-tractable
time find either a reachable loose path, or a reachable and inescapable set S of
vertices that induces a subgraph G[S] of tree-depth at most 4k − 1.

Proof. We will maintain a vertex set S that is reachable and induces a subgraph
of tree-depth less than 4k until either finding reachable loose path or finding
that S is inescapable and has no path. Initially, S will consist of all vertices of
the start path P ; clearly, this satisfies the invariants that S is reachable and has
tree-depth less than 4k.

Then, while we have not terminated the algorithm, we perform the following
steps:

– For each edge uv where u ∈ S and v �∈ S, use the algorithm of Lemma 2
to test whether P can be reconfigured within S ∪ {v} (a graph of tree-depth
at most 4k) into a path that uses vertex v. If we find any single edge uv for
which this test succeeds, we go on to the next step. Otherwise, if no edge uv
passes this test, S is inescapable and we terminate the algorithm.

– Test whether the graph S ∪ {v} contains a loose path. Finding a path of
fixed length is fixed-parameter tractable for arbitrary graphs [11–13] and can
be solved even more easily by standard dynamic programming techniques
for graphs of bounded tree-depth. If this test succeeds, the loose path must
contain v, as the remaining vertices have no loose path. In this case, we
have found a reachable loose path (as v is reachable) and we terminate the
algorithm.

– Add v to S and continue with the next iteration of the algorithm. Because
(in this case) v is reachable but S ∪{v} contains no loose path, it follows that
including v in S maintains the invariants that S be reachable and induce a
subgraph with tree-depth at most 4k − 1.

Because each iteration adds a vertex to S, the loop must eventually terminate,
either with a reachable inescapable subgraph of low tree-depth (from the first
step) or with a reachable loose path (from the second step). ��

3.4 Fixed-Parameter Tractability

We are now ready to prove our main result:

Theorem 1. The path reconfiguration decision problem is fixed-parameter tract-
able when parameterized by the length of the start and goal paths.

Proof. Our algorithm for path reconfiguration begins by applying Lemma 5 to
find either a reachable inescapable subgraph of low tree-depth or a reachable
loose path. If we find a reachable inescapable subgraph that does not include all
the goal path vertices, the reconfiguration problem has no solution. If we find a
reachable inescapable subgraph that does include all the goal path vertices, we
can solve the reconfiguration problem by applying Lemma 2.
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If we find a reachable loose path R for the given instance (G,P,Q), we apply
Lemma 5 a second time, to the equivalent reversed instance (G,Q,P ). If we find
a reachable inescapable subgraph that does not include all the vertices of the
original start path P , the reconfiguration problem has no solution. If we find a
reachable inescapable subgraph that does include all the vertices of P , we can
solve the reconfiguration problem by applying Lemma 2.

If we find a second reachable loose path R′, one that (by time-reversal symme-
try) can reach the goal configuration, then the original reconfiguration problem
has a positive solution. For, in this case, we can reconfigure P to a path that lies
along R, then (by Lemma 4) to a path that lies along R′, then (by the reverse of
the reconfiguration sequence found by the second instance of Lemma 5) to Q. ��

We leave as open the question of whether a similar result can be obtained
for the optimization problem.

4 Tree-Like Graphs

In the full version of this paper we show that several special classes of graphs
have polynomial algorithms for path reconfiguration regardless of path length.
The prototypical example are the trees, for which the existence of a polynomial
time algorithm follows immediately from the fact that any n-vertex tree has
O(n2) distinct paths. In the full version, we refine this idea and provide a linear
time algorithm for path reconfiguration in trees.

We also observe that the graphs of bounded circuit rank, and the graphs of
bounded feedback vertex number, have polynomial algorithms for path reconfig-
uration, because in these graphs the size of the state space (the number of distinct
paths in the graph) is bounded by a polynomial. For circuit rank the exponent
of the polynomial is a constant, and we obtain a fixed-parameter tractable algo-
rithm. For feedback vertex number, the exponent depends on the feedback vertex
number. We defer the details to the full version of the paper.

5 Hardness

In the full version of this paper we describe a reduction from nondeterministic
constraint logic showing that path reconfiguration (with unbounded path length)
is PSPACE-complete even on graphs of bounded bandwidth. This result rules out
the possibility (unless P = PSPACE) that our results on tree-like graph classes
from Sect. 4 can be extended to another tree-like class of graphs, the graphs of
bounded treewidth.

Theorem 2. The path reconfiguration decision problem is PSPACE-complete,
even for graphs of bounded bandwidth.

An example of our reduction is depicted in Fig. 6.
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Fig. 6. Reduction from nondeterministic constraint logic to path reconfiguration. The
underlying constraint logic instance has six vertices (yellow shaded circles) and nine
edges (thick red and blue shaded arrows). Within each of the shaded circles is a vertex
gadget of our reduction, and within each thick shaded arrow is an edge gadget of our
reduction. The thin green shaded regions contain connection gadgets of our reduction,
which the path that is undergoing reconfiguration uses to pass from one edge or vertex
gadget to another. The heavy black edges depict one possible state of the path to be
reconfigured. (Color figure online)
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Abstract. We consider the online problem of packing circles into a
square container. A sequence of circles has to be packed one at a time,
without knowledge of the following incoming circles and without moving
previously packed circles. We present an algorithm that packs any online
sequence of circles with a combined area not larger than 0.350389 of the
square’s area, improving the previous best value of π/10 ≈ 0.31416; even
in an offline setting, there is an upper bound of π/(3+2

√
2) ≈ 0.5390. If

only circles with radii of at least 0.026622 are considered, our algorithm
achieves the higher value 0.375898.

As a byproduct, we give an online algorithm for packing circles into
a 1 × b rectangle with b ≥ 1. This algorithm is worst case-optimal for
b ≥ 2.36.

Keywords: Circle packing · Online algorithms · Packing density

1 Introduction

Packing a set of circles into a given container is a natural geometric optimization
problem that has attracted considerable attention, both in theory and practice.
Some of the many real-world applications are loading a shipping container with
pipes of varying diameter [10], packing paper products like paper rolls into one
or several containers [9], machine construction of electric wires [19], designing
control panels [2], placing radio towers with a maximal coverage while minimizing
interference [20], industrial cutting [20], and the study of macro-molecules or
crystals [21]. See the survey paper of Castillo, Kampas, and Pintér [2] for an
overview of other industrial problems. In many of these scenarios, the circles
have to be packed online, i.e., one at a time, without the knowledge of further
objects, e.g., when punching out a sequence of shapes from the raw material.

Even in an offline setting, deciding whether a given set of circles fits into a
square container is known to be NP-hard [4], which is also known for packing
squares into a square [11]. Furthermore, dealing with circles requires dealing
with possibly complicated irrational numbers, incurring very serious additional
geometric difficulties. This is underlined by the slow development of provably
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?

Fig. 1. Circles are arriving one at a time and have to be packed into the unit square.
At this stage, the packed area is about 0.33. What is the largest A ≥ 0 for which any
sequence of total area A can be packed?

optimal packings of n identical circles into the smallest possible square. In 1965,
Schaer [17] gave the optimal solution for n = 7 and n = 8 and Schaer and
Meir [18] gave the optimal solution for n = 9. A quarter of a century later, Würtz
et al. [3] provided optimal solutions for 10,11,12, and 13 equally sized circles. In
1998, Nurmela and Osterg̊ard [15] provided optimal solutions for n ≤ 27 circles
by making use of computer-aided optimality proofs. Markót and Csendes [13]
gave optimal solutions for n = 28, 29, 30 also by using computer-assisted proofs
within tight tolerance values. Finally, in 2002 optimal solutions were provided
for n ≤ 35 by Locatelli and Raber [12]; at this point, this is still the largest n
for which optimal packings are known. The extraordinary challenges of finding
densest circle packings are also underlined by a long-standing open conjecture
by Erdős and Oler from 1961 [16] regarding optimal packings of n unit circles
into an equilateral triangle, which has only been proven up to n = 15.

These difficulties make it desirable to develop relatively simple criteria for
the packability of circles. A natural bound arises from considering the packing
density, i.e., the total area of objects compared to the size of the container; the
critical packing density δ is the largest value for which any set of objects of total
area at most δ can be packed into a unit square; see Fig. 1.

In an offline setting, two equally sized circles that fit exactly into the unit
square show that δ ≤ δ∗ = π/(3 + 2

√
2) ≈ 0.5390. This is indeed tight:

Fekete, Morr and Scheffer [7] gave a worst-case optimal algorithm that packs
any instance with combined area at most δ∗; see Fig. 2 (left). More recently,
Fekete, Keldenich and Scheffer [6] established 0.5 as the critical packing density
of circles in a circular container.

The difficulties of offline circle packing are compounded in an online setting.
This is highlighted by the situation for packing squares into a square, which does
not encounter the mentioned issues with irrational coordinates. It was shown in
1967 by Moon and Moser [14] that the critical offline density is 0.5: Refining
an approach by Fekete and Hoffmann [5], Brubach [1] established the currently
best lower bound for online packing density of 0.4. This yields the previous best
bound for the online packing density of circles into a square: Inscribing circles
into bounding boxes yields a value of π/10 ≈ 0.3142.
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Fig. 2. Examples of algorithmic circle packings. (Left) The worst-case optimal offline
algorithm of Fekete et al. [7] for packing circles into the unit square. (Center) The
worst-case optimal offline algorithm of Fekete et al. [6] for packing circles into the unit
circle. (Right) Our online algorithm for packing circles into the unit square.

1.1 Our Results

In this paper, we establish new lower bounds for the online packing density of
circles into a square and into a rectangle. Note that in the online setting, a
packing algorithm has to stop as soon as it cannot pack a circle. We provide
three online circle packing results for which we provide constructive proofs, i.e.,
corresponding algorithms guaranteeing the claimed packing densities.

Theorem 1. Let b ≥ 1. Any online sequence of circles with a total area no larger
than min

(
0.528607 · b − 0.457876, π

4

)
can be packed into the 1 × b-rectangle R.

This is worst-case optimal for b ≥ 2.36.

We use the approach of Theorem 1 as a subroutine and obtain the following:

Theorem 2. Any online sequence of circles with a total area no larger than
0.350389 can be packed into the unit square.

If the incoming circles’ radii are lower bounded by 0.026623, the density
guaranteed by the algorithm of Theorem 2 improves to 0.375898.

Theorem 3. Any online sequence of circles with radii not smaller than 0.026623
and with a total area no larger than 0.375898 can be packed into the unit square.

We describe the algorithm of Theorem 1 in Sect. 2 and the algorithm of the
Theorems 2 and 3 in Sect. 3.

2 Packing into a Rectangle

In this section, we describe the algorithm, Double-Sided Structured Lane Pack-
ing (DSLP), of Theorem 1. In particular, DSLP uses a packing strategy called
Structured Lane Packing (SLP) and an extended version of SLP as subroutines.
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Fig. 3. Comparison of Tight Lane Packing (left) with Structured Lane Packing (right)
for the same input. The former has a smaller packing length.

2.1 Preliminaries for the Algorithms

A lane L ⊂ R
2 is an x- and y-axis-aligned rectangle. The length �(L) and the

width w(L) of L are the dimensions of L such that w(L) ≤ �(L). L is horizontal
if the length of L is given via the extension of L w.r.t. the x-axis. Otherwise, L is
vertical. The distance between two circles packed into L is the distance between
the orthogonal projections of the circles’ midpoints onto the longer side of L. A
lane is either open or closed. Initially, each lane is open.

Packing a circle C into a lane L means placing C inside L such that C does
not intersect another circle that is already packed into L or into another lane. A
(packing) strategy for a lane L is a set of rules that describe how a circle has to
be packed into L. The (packing) orientation of a strategy for a horizontal lane
is either rightwards or leftwards and the (packing) orientation of a strategy for
a vertical lane is either downwards or updwards.

Let w be the width of L. Depending on the radius r of the current circle C,
we say: C is medium (Class 1) if w > r ≥ w

4 , C is small if w
4 > r ≥ 0.0841305w

(Class 2), C is tiny (Class 3 or 4) if 0.0841305w > r ≥ 0.023832125w, and C is
very tiny if 0.023832125w > r (Classes 5,6, . . . ). For a more refined classification
of r, we refer to Sect. 2.3. The general idea is to reach a certain density within a
lane by packing only relatively equally sized circles into a lane with SLP.

For the rest of Sect. 2, for 0 < w ≤ b, let L be a horizontal w × b lane.

2.2 Structured Lane Packing (SLP) – The Standard Version

Rightwards Structured Lane Packing (SLP) packs circles into L alternating
touching the bottom and the top side of L from left to right, see Fig. 3 (right).

In particular, we pack a circle C into L as far as possible to the left while
guaranteeing: (1) C does not overlap a vertical lane packed into L, see Sect. 2.3
for details1. (2) The distance between C and the circle C ′ packed last into L is
at least min{r, r′} where r, r′ are the radii of C,C ′, see Fig. 3 (right).

Leftwards Structured Lane Packing packs circles by alternatingly touching
the bottom and the top side of L from right to left. Correspondingly, upwards
and downwards Structured Lane Packing packs circles alternatingly touching the
left and the right side of L from bottom to top and from top to bottom.
1 Requiring that C does not overlap a vertical lane placed inside L is only important

for the extension of SLP (see Sect. 2.3), because the standard version of SLP does
not place vertical lanes inside L.
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2.3 Extension of SLP – Filling Gaps by (Very) Tiny Circles

Now consider packing medium circles with SLP. We extend SLP for placing tiny
and very tiny circles within the packing strategy, see Fig. 4. Note that small
circles are not considered for the moment, such that (very) tiny circles are rela-
tively small compared to the medium ones. In particular, if the current circle C
is medium, we apply the standard version of SLP, as described in Sect. 2.2. If C
is (very) tiny, we pack C into a vertical lane inside L, as described next.

Fig. 4. A packing produced by extended SLP: 128 (3 medium, 17 tiny, and 108 very
tiny) circles packed into 15 (1 medium, 4 tiny and 10 very tiny) lanes. A possible input
order of the circles is 1 medium circle, 23 very tiny circles (filling the sparse block A),
1 medium circle, 13 tiny circles (filling the sparse block B), 24 very tiny circles (filling
the vertical lane C), 1 medium circle, 2 tiny circles (filling the sparse block D), 11 very
tiny circles (filling the sparse block E), and 2 tiny circles (filling the vertical lane F ).
(Color figure online)

We pack (very) tiny circles into vertical lanes inside L, see Fig. 4. The vertical
lanes are placed inside blocks that are the rectangles induced by vertical lines
touching medium circles already packed into L, see Fig. 3 (right).

Blocks that include two halves of medium circles are called dense blocks, while
blocks that include one half of a medium circle are called sparse blocks. The area
of L that is neither covered by a dense block or a sparse block is called a free block.
Packing a vertical lane L′ into a sparse block B means placing L′ inside B as far
as possible to the left, such that L′ does not overlap another vertical lane already
packed into B. Packing a vertical lane L′ into L means placing L′ inside L as far as
possible to the left, such that L′ does neither overlap another vertical lane packed
into L, a dense block of L, or a sparse block of L.
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We extend our classification of circles by defining classes i of lane widths wi

and relative lower bounds qi for the circles’ radii as described in Table 1. This
means a circle with radius r belongs to class 1 if 0.5w ≥ r > q1w1 and to class i
if qi−1wi−1 ≥ r > qiwi, for i ≥ 2. Only circles of class i are allowed to be packed
into lanes of class i.

Table 1. Circles are classified into the listed classes. Note that the lower bounds to
the circles’ radii is relative to the lane width, e.g., the absolute lower bound for circles
inside a small lane is qSw2 = 0.168261w2.

Class i (Relative) lower bound qi Lane width wi

1 (Medium) q1 := qM := 0.25 w1 := w

2 (Small) q2 := qS := 0.168261 w2 := 2qMw = 0.5 · w

3 (Tiny) q3 := 0.371446 w3 := 4qMqSw = 0.168261 · w

4 (Tiny) q4 := 0.190657 w4 := 8qMqSq3w ≈ 0.125 · w

5 (Very tiny) q5 := 0.175592 w5 := 16qMqSq3q4w ≈ 0.047664 · w

6 (Very tiny) q6 := 0.170699 w6 := 32qMqSq3q4q5w ≈ 0.016739 · w

7 (Very tiny) q7 := 0.169078 w7 ≈ 0.005715 · w

8 (Very tiny) q8 := 0.168354 w8 ≈ 0.001932 · w

9 (Very tiny) q9 := 0.168293 w9 ≈ 0.000651 · w

10 (Very tiny) q10 := 0.168272 w10 ≈ 0.000219 · w

11 (Very tiny) q11 := 0.168265 w11 ≈ 0.000074 · w

12 (Very tiny) q12 := 0.168263 w12 ≈ 0.000025 · w

13 (Very tiny) q13 := 0.168262 w13 ≈ 0.000008 · w

. . . . . . . . .

k (Very tiny) qk := 0.168262 wk := 2k−1qMqSq3q4 · . . . · qk−1w

A sparse block is either free, reserved for class 3, reserved for class 4, reserved
for all classes i ≥ 5, or closed. Initially, each sparse block is free.

We use SLP in order to pack a circle C of class i ≥ 3, into a vertical lane
Li ⊂ L of class i and width wi by applying the Steps 1–5 in increasing order
as described below. When one of the five steps achieves that C is packed into a
vertical lane Li, the approach stops and returns successful.

– Step (1): If there is no open vertical lane Li ⊂ L of class i go to Step 2.
Assume there is an open vertical lane Li of class i. If C can be packed into Li,
we pack C into Li. Else, we declare Li to be closed.

– Step (2): We close all sparse blocks B that are free or reserved for class i in
which a vertical lane of class i cannot be packed into B.

– Step (3): If there is an open sparse block B that is free or reserved for class i
and a vertical lane of class i can be packed into B:
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• (3.1): We pack a vertical lane Li ⊂ L of class i into B. If the circle half
that is included in B touches the bottom of L, we apply downwards SLP
to Li. Otherwise, we apply upwards SLP to Li.

• (3.2): If B is free and i ∈ {3, 4}, we reserve B for class i. If B is free
and i ≥ 5, we reserve B for all classes i ≥ 5.

• (3.3): We pack C into Li.
– Step (4): If a vertical lane of class i can be packed into L:

• (4.1): We pack a vertical lane Li of class i into L and apply upwards SLP
to Li.

• (4.2): We pack C into Li

– Step (5): We declare L to be closed and return failed.

2.4 Double-Sided Structured Lane Packing (DSLP)

We use SLP as a subroutine in order to define our packing strategy Double-Sided
Structured Lane Packing (DSLP) of Theorem 1. In particular, additionally to L,
we consider two small lanes L1, L2 that partition L, see Fig. 5.

Fig. 5. A packing produced by DSLP: The medium lane is packed from left to right by
medium circles. The two contained small lanes are packed simultaneously in parallel
from right to left by small circles.

Rightwards Double-Sided Structured Lane Packing (DSLP) applies the
extended version of rightwards SLP to L and leftwards SLP to L1, L2. If the
current circle C is medium or (very) tiny, we pack C into L. If C is small, we
pack C into that lane of L1, L2, resulting in a smaller packing length.

Leftwards DSLP is defined analogously, such that the extended version of
leftwards SLP is applied to L and rightwards SLP to L1, L2. Correspondingly,
upwards and downwards DSLP are defined for vertical lanes.

3 Packing into the Unit Square

We extend our circle classification by the class 0 of large circles and define a
relative lower bound q0 := w

2 and the lane width of corresponding large lanes as
w0 := 1 − w.



Online Circle Packing 373

We set w to 0.288480 and 0.277927 for Theorem 2 respectively Theorem 3.
In order to pack large circles, we use another packing strategy called Tight Lane
Packing (TLP) defined as SLP, but without restrictions (1) and (2), see Fig. 3.

Fig. 6. Left: The unit square is divided into four lanes L1, L2, L3, and L4, into which
medium, small, tiny, and very tiny circles are packed. Large circles are packed into a
lane L0 that overlaps L1, L2, and L3. Right: An example packing. A medium circle
(dotted) does not fit.

We cover the unit square by the union of one large lane L0 and four medium
lanes L1, . . . , Lk for k = 4, see Fig. 6. We apply TLP to L0 and DSLP to
L1, . . . , L4. The applied orientations for L0, L1, L2 are leftwards, rightwards, and
downwards. For i = 3, 4, the orientation for Li is chosen such that the first circle
packed into Li is placed adjacent to the bottom side of Li.

If the current circle to be packed is large, we pack C into the large lane L0

and stop if C does not fit in L0. Otherwise, in increasing order we try to pack C
into L1, . . . , L4.

4 Analysis of the Algorithms

In this section we sketch the analysis of our approaches and refer to the appendix
for full details. First, we analyze the packing density guaranteed by DSLP. Based
on that, we prove our main results Theorems 1, 2, and 3.

4.1 Analysis of SLP

In this section, we provide a framework for analyzing the packing density guar-
anteed by DSLP for a horizontal lane L of width w. It is important to note that
this framework and its analysis in this subsection deals with the packing of only
one class into a lane.

We introduce some definitions. The packing length p(L) is the maximal differ-
ence of x-coordinates of points from circles packed into L. The circle-free length
f(L) of L is defined as �(L)− p(L). We denote the total area of a region R ⊂ R

2

by area(R) and the area of an a×b-rectangle by R(a, b). Furthermore, we denote
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the area of a semicircle for a given radius r by H(r) := π
2 r2. The total area of

the circles packed into R is called occupied area denoted by occ(R). Finally, the
density den(R) is defined by occ(R)/area(R).

In order to apply our analysis for different classes of lanes, i.e., different lower
bounds, we consider a general (relative) lower bound q for the radii of circles
allowed to be packed into L with 0 < q ≤ 1/2. The following lemma deduces a
lower bound for the density of dense blocks depending on q (Fig. 7).

Lemma 1. Consider a dense block D containing two semicircles of radii r1
and r2 such that 0 < qw ≤ r1, r2 ≤ 1/2w. Then den(D) is lower-bounded by

δ :
(

0,
1
2

]
→ R with q 	→

⎧
⎪⎪⎨
⎪⎪⎩

πq 0 < q < 1
3
√
3

π
3
√
3

≈ 0.6046 1
3
√
3

≤ q ≤ 1
3

πq2
√
4q−1

1
3 < q ≤ 1

2 .

Fig. 7. (Left): A plot of δ(q) for its complete range. It provides the minimal density
of a dense block whose two semicircles have a radius of at least q · w. A lower bound
of q = 1/2 leads to a minimal density of π/4 which is the ratio of a circle to its
minimal bounding square. (Right): (1): δ(0.15) ≈ 0.47123, (2): δ( 1

3
√
3
) ≈ 0.6046, and

(3): δ(0.4) ≈ 0.6489.

We continue with the analysis of sparse blocks. Sparse blocks have a minimum
length qw. Lemma 2 states a lower bound for the occupied area of sparse blocks.
This lower bound consists of a constant summand and a summand that is linear
with respect to the actual length.

Lemma 2. Given a density bound δmin ≤ δ(q) for dense blocks. Let S be a
sparse block and z be the lower bound for �(S) with �(S) ≥ z ≥ qw. Then
occ(S) ≥ R(�(S) − z, w) · δmin + H(z).
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The occupied area of a sparse block is at least a semicircle of a smallest
possible circle plus the remaining length multiplied by the lane width and by
the minimal density δmin of dense blocks. This composition is shown in Fig. 8.

Next, we combine the results of Lemmas 1 and 2. We define the term
minSLP

(
p,w, z, δmin

)
:= R(p − 2z, w) · δmin + 2 · H(z) for some p,w, z, δmin > 0

and state the following (see also Fig. 8 (4)).

Fig. 8. (1)+(2)+(3) Three sparse blocks S1, S2, S3 in order of ascending length. The
grey coloured area (light and dark unified) represents the occupied area. The dashed
area shows the lower bound of Lemma 2, which is composed of the smallest possible
semicircle plus a linear part. The dark grey parts symbolize the area that exceeds the
bound, whereas the red parts symbolize the area missing to the bound. Block S1 has
the minimal length p so that the occupied area and the bound are equal. For blocks of
larger length, represented by S2 and S3, the dark grey area is larger than the red area.
(4) A packing produced by SLP and the lower bound of Lemma 3.

Lemma 3. Given a lane L packed by SLP, a lower bound q, and a density bound
δmin ≤ δ(q) for dense blocks. Let w be the width of L. The occupied area in L is
lower-bounded by minSLP

(
p(L), w, qw, δmin

)
.

4.2 Analysis of DSLP

Let L be a horizontal lane packed by DSLP. We define pt(L) (pb(L)) as the sum
of the packing lengths of the packing inside L and the length of the packing
inside the top (bottom) small lane inside L. Furthermore, we define ft(L) :=
�(L) − pt(L) and fb(L) := �(L) − pb(L), see Fig. 5.

By construction, vertical dense blocks packed into L have a density of at
least δ(q2). In fact, the definitions of circle sizes for all classes i ≥ 2 ensure the
common density bound δ̂ := δ(q2) for dense blocks.

We consider mixed dense blocks, that were defined as sparse blocks of L in
which vertical lanes are packed, also as dense blocks and extend the lower bound
den(D) ≥ δ̂ to all kinds of dense blocks by the following Lemma.

Lemma 4. Let D be a dense block of L. Assume all vertical lanes packed into
D to be closed. Then den(D) ≥ δ̂.

As some vertical lanes may not be closed, we upper bound the error O(L)
that we make by assuming that all vertical lanes L1, . . . , Ln ⊂ L are closed.
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Lemma 5. O(L1 ∪ . . . ∪ Ln) < 0.213297 · w2.

We lower bound the occupied area inside L by using the following term:

minDSLP (pt(L), pb(L), w, z, δmin) := R(
pt(L) + pb(L) − w − 4z, w2

) · δmin

+ 2 · H(w

4
)

+ 4H(z),

where z denotes the minimal radius for the circles, i.e., z := q2w2.
Applying Lemma 4 and Lemma 2 separately to L, L1, and L2, analogous to

the combination of Lemmas 1 and 2 in the last subsection, and estimating the
error O(L) with Lemma 5, yields lower bounds for the occupied areas of L, L1,
and L2. Figure 9 separately illustrates the lower bounds for the occupied areas
of L, L1, and L2 for two example packings and Lemma 6 states the result.

Fig. 9. Two example packings and the compositions of our lower bounds (red) for the
occupied area implied by Lemma 6. Note that O(L) is not visualized. (Color figure
online)

Lemma 6. minDSLP

(
pt(L), pb(L), w, z, δ̂

) − O(L) ≥ occ(L).

4.3 Analysis of Packing Circles into a Rectangle

Given a 1 × b rectangle R, we apply DSLP for packing the input circles into R.

Theorem 1. Let b ≥ 1. Any online sequence of circles with a total area no larger
than min

(
0.528607 · b − 0.457876, π

4

)
can be packed into the 1 × b-rectangle R.

This is worst-case optimal for b ≥ 2.36.
The lower bound for the occupied area implied by Lemma 6 is equal to(

b− 3
4 −q2) · δ̂ + π

16 + π
2 (q2)2 −0.213297. This is lower bounded by π

4 for b ≥ 2.36.
Hence, the online sequence consisting of one circle with a radius of 1

2 + ε and
resulting total area of π

4 + ε is a worst case online sequence for b ≥ 2.36, see
Fig. 10. This concludes the proof of Theorem 1.

Fig. 10. A worst case for packing circles into an 1 × b-rectangle with b ≥ 2.36 consists
of one circle with radius 1

2
+ ε. The shown circle with radius 1

2
just fits.
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4.4 Analysis of Packing Circles into the Unit Square

In this section, we analyze the packing density of our overall approach for online
packing circles into the unit square. In order to prove Theorem 3, i.e., a lower
bound for the achieved packing density, we show that if there is an overlap or if
there is no space in the last lane, then the occupied area must be at least this
lower bound. Our analysis distinguishes six different higher-level cases of where
and how the overlap can happen, see Fig. 11 left.

Fig. 11. (Left): Different cases for an overlap. Case 0: A single circle is too large
for L0. Case 1: L0 exceeded. Case 2: Overlap in L2. Case 3: Overlap in L3. Case 4:
Overlap in L4 with large circle being involved. Case 5: Overlap in L4 with no large
circle being involved. (Right): A plot of 24 terms for corresponding 24 (sub-)cases for
qS = 0.191578. The point P = (0.277927, 0.375898) is the highest point of the 0-level.
Its y-value is the highest guaranteed packing density for circles with minimal radii of
0.191578 · 0.277927/2 < 0.0266223.

For each of the six cases and its subcases, we explicitly give a density function,
providing the guaranteed packing density depending on the choice of w, see
Fig. 11 right. The shown functions are constructed for the case of no (very) tiny
circles with an alternative q2 = 0.191578, which was chosen numerically in order
to find a high provable density. The w with the highest guaranteed packing
density of 0.375898 is w = 0.277927. This concludes the proof of Theorem 3.

Theorem 3. Any online sequence of circles with radii not smaller than 0.026623
and with a total area no larger than 0.375898 can be packed into the unit square.

With the same idea but with w = 0.288480 and all circles classes, especially
with classes i ≥ 2 as defined in Table 1, we prove Theorem 2.

Theorem 2. Any online sequence of circles with a total area no larger than
0.350389 can be packed into the unit square.
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5 Conclusion

We provided online algorithms for packing circles into a square and a rectangle.
For the case of a rectangular container, we guarantee a packing density which is
worst-case optimal for rectangles with a skew of at least 2.36. For the case of a
square container, we provide a packing density of 0.350389 which we improved
to 0.375898 if the radii of incoming circles are lower-bounded by 0.026622.
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Abstract. We consider the problem of maximizing the sum of a mono-
tone submodular function and a linear function subject to a general
solvable polytope constraint. Recently, Sviridenko et al. [16] described
an algorithm for this problem whose approximation guarantee is opti-
mal in some intuitive and formal senses. Unfortunately, this algorithm
involves a guessing step which makes it less clean and significantly affects
its time complexity. In this work we describe a clean alternative algorithm
that uses a novel weighting technique in order to avoid the problematic
guessing step while keeping the same approximation guarantee as the
algorithm of [16].

Keywords: Submodular maximization · Continuous greedy ·
Curvature

1 Introduction

The last decade has seen a surge of work on submodular maximization prob-
lems. Arguably, the main factor that allowed this surge was the invention of the
multilinear relaxation for submodular maximization problems as well as algo-
rithms for (approximately) solving this relaxation [4,6,8,9,11]. The invention of
the multilinear relaxation was so influential because it allowed algorithms for
submodular maximization to use the technique of first solving a relaxed version
of the problem, and then rounding the fractional solution obtained. This tech-
nique is well-known, and it is often used in the design of algorithms for other
kinds of problems; but, prior to the invention of the multilinear relaxation, it
was not known how to apply it to submodular maximization problems.

An algorithm based on the above mentioned technique usually has two main
components: a solver that (approximately) solves the relaxation and a rounding
procedure. Historically, the first solver described for multilinear relaxations was
the Continuous Greedy algorithm that solves such relaxations up to an approxi-
mation ratio of 1−1/e when the objective function is non-negative and monotone
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(in addition to being submodular) [6].1 While the invention of continuous greedy
was very significant, one can note that unlike standard solvers for more familiar
relaxations such as LPs and SDPs, the approximation ratio of continuous greedy
is quite far from 1. Unfortunately, a hardness result due to [14] implies that its
approximation ratio cannot be improved in general.

This situation motivates the question of how well can one approximate mul-
tilinear relaxations whose objective includes both monotone submodular and
linear components. Specifically, it is interesting to know whether the approxi-
mation ratio that can be achieved in such cases improves gradually as the lin-
ear component of the objective becomes more prominent. Recently, Sviridenko
et al. [16] answered this question in the affirmative. More formally, they consid-
ered the following problem. Given a non-negative monotone submodular function
g : 2N → R≥0, a linear function � and a solvable polytope P ⊆ [0, 1]N ,2 find a
point x ∈ P that approximately maximizes G(x)+ �(x), where G is the multilin-
ear extension of g (see Sect. 2 for a definition). Sviridenko et al. [16] described a
variant of continuous greedy that, given an instance of this problem, outputs a
vector x obeying the inequality G(x)+�(x) ≥ (1−e−1) ·g(OPT )+�(OPT ) up to
a small error term, where OPT is an optimal integral solution for the problem.3

Intuitively, the result of Sviridenko et al. [16] is tight since it approximates
the submodular component of the objective up an approximation ratio of 1− 1/e

and the linear component up to a ratio of 1. More formally, Sviridenko et al. [16]
showed that their result is tight since it yields optimal approximation ratios
for two problems of interest: maximizing a non-negative monotone submodular
function with a bounded curvature subject to a matroid constraint, and min-
imizing a non-negative non-increasing supermodular function with a bounded
curvature subject to the same kind of constraint.

1.1 Our Result

Despite being optimal in terms of its approximation guarantee, in the senses
described above, the algorithm of Sviridenko et al. [16] suffers from a significant
drawback. Namely, it is based on guessing the contribution of the linear com-
ponent of the objective to the optimal solution, and this guessing step is quite
problematic for the following reasons.

– The guessing is done by enumerating Θ(nε−1 log n) different possible val-
ues, and thus, increases the time complexity of the algorithm by this factor.
Moreover, to guarantee that one of the enumerated values is a good enough

1 A set function f : 2N → R is monotone if f(S) ≤ f(T ) for every two sets S ⊆ T ⊆ N
and submodular if f(S ∪ {u}) − f(S) ≥ f(T ∪ {u}) − f(T ) for every two such sets
and element u ∈ N \ T .

2 A polytope P is solvable if one can optimize linear functions subject to it.
3 Technically, Sviridenko et al. [16] considered only the special case of the problem

in which P is a matroid polytope, and designed two algorithms for this case. How-
ever, one of these algorithms (the continuous greedy based one) trivially extends to
arbitrary solvable polytopes.
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guess, the set of values tried is constructed in a non-trivial way, which is then
reflected in the complexity of the algorithm’s analysis.

– The original continuous greedy algorithm repeatedly maximizes linear func-
tions subject to the constraint polytope P . While this computational step
is quite slow in general, for many cases of interest (for example, when P is
a matroid polytope) it can be implemented very efficiently. In contrast, the
algorithm of [16] maximizes linear functions subject to the intersection of P
with a polytope defined by the guessed value, which might be a very slow
operation even when optimizing linear functions subject to P itself is fast.
Moreover, various techniques have been described to speed up continuous
greedy when it is applied to a matroid polytope [3,5], and these techniques
fail to apply to the algorithm of [16] because it considers the intersection of
P with another polytope rather than P itself.

In this work we present a clean alternative algorithm that has the same
approximation guarantee as the algorithm of Sviridenko et al. [16], but avoids
the guessing step and all the problems resulting from it. In a nut shell, our
algorithm is a modification of continuous greedy in which the weight assigned to
each component of the objective function varies over time. At the beginning of an
execution of the algorithm, the linear component has much more weight than the
monotone submodular component, and over time their weights become equal.
Intuitively, this kind of weighting makes sense because the standard analysis
of continuous greedy for submodular functions uses a lower bound on the gain
of the algorithm in its later steps which decreases if the algorithm has already
made a significant gain in earlier steps. Thus, any gain from the submodular
component of the objective that is obtained early in the algorithm’s execution
is partially cancelled by the resulting decrease in the gain guaranteed in later
steps of the execution. In contrast, gain obtained from the linear component of
the objective in the same early steps of the execution does not suffer from such
partial cancellation, and thus, should get more weight.

It should be mentioned that in addition to the algorithm of Sviridenko
et al. [16] discussed above, Sviridenko et al. [16] also presented another algo-
rithm for the same problem which is based on local search techniques. This other
algorithm has the advantage that, like our algorithm, it does not need to resort
to guessing. However, unlike our algorithm, this other algorithm of [16] applies
only to matroid polytopes, and moreover, it has a very large time complexity of
Õ(ε−3n8).

1.2 Additional Related Work

When the linear function is non-negative, its sum with the monotone submodular
function is still monotone and submodular. Thus, in this case the work of Sviri-
denko et al. [16] can be viewed as improving over the guarantee of continuous
greedy in a special case. More recently, Soma and Yoshida [15] used an algo-
rithm based on a similar technique to improve over the guarantee of continuous
greedy in the more general case in which the monotone submodular objective
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can be decomposed into a monotone submodular component and a significant
M �-concave component. In an earlier work, Feldman et al. [11] took the comple-
menting approach of using properties of the constraint polytope, rather than the
objective function, to improve over the guarantee of continuous greedy. Specifi-
cally, they described a variant of continuous greedy, named Measured Continuous
Greedy, which achieves an improved approximation ratio when the constraint is
dense (in some sense).

As mentioned above, an algorithm that works by solving a relaxation and
then rounding the solution has two main components: a relaxation solver and a
rounding procedure. All the discussion up to this point was devoted to relaxation
solvers because the current work is about such a solver and also because, unlike
solvers, rounding procedures tend to be very problem specific. Nevertheless, there
are a few more noticeable such procedures. A large portion of the work done so far
on submodular maximization has been in the context of matroid constraints, for
which there are two known rounding procedures that do not lose anything in the
objective: Pipage Rounding [6] and Swap Rounding [7]. In another line of work,
Chekuri et al. [8] designed a framework called “contention resolution schemes”
which yields a rounding procedure for every constraint that can be presented as
the intersection of few simple constraints. Later works extended the contention
resolution schemes framework into online and stochastic settings [1,12,13].

2 Preliminaries

In this section we describe the notation that we use and give a few relevant
definitions. Using these definitions we then formally describe the guarantee of
the algorithm we analyze.

Given a set S and an element u, we use S +u and S −u as shorthands for the
union S ∪ {u} and the expression S \ {u}, respectively. If we are also given a set
function f , then the marginal contribution of u to S with respect to f is denoted
by f(u | S) � f(S + u) − f(S). Notice that using this notation we get that a
function f : 2N → R is submodular if and only if for every two sets S ⊆ T ⊆ N
and element u ∈ N \ T it holds that f(u | S) ≥ f(u | T ). Occasionally, we are
also interested in the marginal contribution of a set T to a set S with respect to
f , which we denote by f(T | S) � f(S ∪ T ) − f(S).

The multilinear extension of a set function f : 2N → R is a function
F : [0, 1]N → R whose value for a vector x ∈ [0, 1]N is defined as

F (x) = E[f(R(x))] =
∑

S⊆N

(
∏

u∈S

xu

)
·
⎛

⎝
∏

u∈N\S

(1 − xu)

⎞

⎠ · f(S) ,

where R(x) is a random set containing every element u ∈ N with probability xu,
independently. One can observe that F is an extension of f in the sense that
for every set S ⊆ N , if we denote by 1S the characteristic vector of S, then
it holds that f(S) = F (1S). Additionally, observe that the rightmost side of
F ’s definition implies that F is indeed a multilinear function, as suggested by
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its name. The multilinearity of F implies that for every vector y ∈ [0, 1]N and
element u ∈ N the partial derivative of F at y with respect to u is given by

∂F (x)
∂xu

∣∣∣∣
x=y

= F (y ∨ 1{u}) − F (y ∧ 1N−u) = E[f(u | R(y) − u)] ,

where the vector operations ∨ and ∧ represent coordinate-wise maximum and
minimum, respectively.

A linear function is defined by a vector � ∈ R
N . We abuse notation and

identify the vector � with the linear function it defines. Accordingly, we denote
the value of the function for a vector x ∈ [0, 1]N by �(x) � 〈�, x〉—where the
notation 〈·, ·〉 denotes the dot product. In a further abuse of notation, given a
set S ⊆ N , we use �(S) as a shorthand for �(1S) =

∑
u∈S �u.

An instance of the problem we consider in this work consists of a non-negative
monotone submodular function g : 2N → R≥0, a linear function � : 2N → R and
a solvable polytope P ⊆ [0, 1]N . We make the standard assumption that the
submodular function g, whose description might be exponential in terms of the
size n of N , is accessible to the algorithm through a value oracle that given
a set S ⊆ N returns g(S). The objective of the problem is to find a vector
x ∈ P maximizing G(x) + �(x), where G is the multilinear extension of g. The
result that we prove for this problem is given by the next theorem. Let OPT
be the set corresponding to an optimal integral solution for the problem, i.e.,
OPT = arg maxS⊆2N ,1S∈P {g(S) + �(S)}, and let m = maxu∈N {g(u | ∅)}.

Theorem 1. There exists a polynomial time algorithm for the above problem
that given a value ε ∈ (0, 1) outputs a vector x ∈ P such that with high probability
G(x) + �(x) ≥ (1 − e−1) · g(OPT ) + �(OPT ) − O(ε) · m.

Theorem 1 is very similar to the corresponding result of Sviridenko et al. [16].
However, there are two differences between the two. First, the error term of [16]
depends also on maxu∈N |�u|, which is unnecessary for the analysis of our cleaner
algorithm. Second, Sviridenko et al. [16] considered only matroid polytopes, for
which there are known lossless rounding methods [6,7], and thus, their result is
stated in terms of sets rather than vectors.

It should also be noted that Theorem 1 guarantees an algorithm that outputs
a fractional vector x which has a certain approximation guarantee with respect
to the discrete optimal solution OPT . One might argue that, since x is fractional,
it more natural to have the approximation guarantee of x with respect to the
optimal fractional solution opt = arg maxx∈P {G(x) + �(x)}. Interestingly, this
can be done. In particular, by making only a few technical changes in the proof
of Theorem 1, one can show that the vector x produced by the algorithm used
to prove Theorem 1 in fact has a value of at least (1 − e−1) · G(opt) + �(opt).
Nevertheless, we chose to prove the stated version of Theorem 1 in this paper
because its proof is slightly cleaner, and most of the theorem’s applications
require a guarantee only with respect to the integral optimum anyhow.
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3 Continuous Time Algorithm

In this section we give a non-formal proof of Theorem 1. This proof demonstates
our new ideas, but uses some non-formal simplifications such as allowing a direct
oracle access to the multilinear extension G of g and giving the algorithm in the
form of a continuous time algorithm (which cannot be implemented on a discrete
computer). There are known techniques for getting rid of these simplifications
(see, e.g., [6]), and Sect. 4 includes a formal proof of Theorem 1 based on these
techniques.

The algorithm we use for the non-formal proof of Theorem 1 is given as
Algorithm 1. Like the original continuous greedy algorithm of [6], this algorithm
grows a solution y(t) over time. The solution starts as 1∅ at time t = 0, and
the output of the algorithm is the solution at time t = 1. Our algorithm differs,
however, from the original continuous greedy algorithm in the method used to
determine the direction in which the solution is grown at every given time point.
Specifically, our algorithm defines a weight vector w(t) for every time t ∈ [0, 1)
based on the derivatives of the multilinear extension G. It then looks for a vector
z(t) in P maximizing a weighted combination of w(t) with the linear function �,
and this vector z(t) determines the direction in which the solution y(t) is grown.

Algorithm 1. Distorted Continuous Greedy(g, �, P )
1 Let y(0) ← 1∅.
2 foreach time t ∈ [0, 1) do

3 For each u ∈ N , let wu(t) ← ∂G(x)
∂xu

∣
∣
∣
x=y(t)

.

4 Let z(t) be the vector in P maximizing 〈z(t), et−1 · w(t) + �〉.
5 Increase y(t) at a rate of dy(t)

dt
= z(t).

6 return y(1).

We begin the analysis of Algorithm 1 by observing that its output is a vector
in P .

Observation 1. y(1) ∈ P .

Proof. By definition, z(t) is a vector in P for every time t ∈ [0, 1). Hence,
y(1) =

∫ 1

0
z(t)dt is a convex combination of vectors in P , and thus, belongs to

P by the convexity of P . ��
Let us consider now the function Φ(t) � et−1 ·G(y(t))+�(y(t)). This function

is a central component in our analysis of the approximation ratio of Algorithm 1.
The following technical lemma gives an expression for the derivative of this
important function.

Lemma 1.

dΦ(t)
dt

= et−1 · G(y(t)) + 〈z(t), et−1 · w(t) + �〉 .
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Proof. By the chain rule,

dΦ(t)
dt

= et−1 · G(y(t)) + et−1 · dG(y(t))
dt

+
d�(y(t))

dt

= et−1 · G(y(t)) + et−1 ·
∑

u∈N

dyu(t)
dt

· ∂G(x)
∂xu

∣∣∣∣
x=y(t)

+
∑

u∈N

dyu(t)
dt

· ∂�(x)
∂xu

∣∣∣∣
x=y(t)

= et−1 · G(y(t)) + et−1 ·
∑

u∈N
zu(t) · wu(t) +

∑

u∈N
zu(t) · �u

= et−1 · G(y(t)) + 〈z(t), et−1 · w(t) + �〉 . ��
The next lemma lower bounds the expression given by the last lemma for the

derivative of Φ(t).

Lemma 2. For every t ∈ [0, 1),

et−1 · G(y(t)) + 〈z(t), et−1 · w(t) + �〉 ≥ et−1 · g(OPT ) + �(OPT ) .

Proof. Recall that z(t) is chosen by Algorithm 1 as the vector in P maximizing
〈z(t), et−1 · w(t) + �〉. Since 1OPT ∈ P , we get

〈z(t), et−1 · w(t) + �〉 ≥ 〈1OPT , et−1 · w(t) + �〉 = et−1 ·
∑

u∈OPT

wu(t) + �(OPT ) .

Note now that, by the multilinearity of G,

∑

u∈OPT

wu(t) =
∑

u∈OPT

∂G(x)
∂xu

∣∣∣∣
x=y(t)

=
∑

u∈OPT

[G(y(t) ∨ 1{u}) − G(y(t) ∧ 1N−u)]

≥
∑

u∈OPT

[G(y(t) ∨ 1{u}) − G(y(t))] ≥ G(y(t) ∨ 1OPT ) − G(y(t))

≥ g(OPT ) − G(y(t)) ,

where the first and last inequalities follow from the monotonicity of g, and the
remaining inequality follows from its submodularity.

Combining the two above inequalities yields

〈z(t), et−1 · w(t) + �〉 ≥ et−1 · [g(OPT ) − G(y(t))] + �(OPT ) ,

and the lemma now follows by adding et−1 · G(y(t)) to both sides of this
inequality. ��

We are now ready to prove Theorem 1.

Proof (Proof of Theorem 1). Observation 1 shows that y(1) ∈ P . Thus, to prove
the theorem it only remains to prove G(y(1)) + �(y(1)) ≥ (1 − e−1) · g(OPT ) +
�(OPT ).

Lemmata 1 and 2 prove together that

dΦ(t)
dt

= et−1 · G(y(t)) + 〈z(t), et−1 · w(t) + �〉 ≥ et−1 · g(OPT ) + �(OPT ) .
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Integrating both sides of this inequality from t = 0 to t = 1, we get

Φ(1) − Φ(0) ≥ (1 − e−1) · g(OPT ) + �(OPT ) ,

and the theorem now follows by noticing that

Φ(1) = G(y(1)) + �(y(1)) and Φ(0) = e−1 · G(y(0)) + �(y(0)) ≥ 0

(the last inequality holds since g is non-negative and �(y(0)) = �(1∅) = 0). ��

4 Discrete Algorithm

In this section we give a formal proof of Theorem 1. The algorithm that we use
for this proof is given as Algorithm 2. Notice that this algorithm considers only
discrete times that are integer multiples of a value δ. This value δ is chosen in
a way that guarantees δ ≤ εn−2/2 ≤ 1/2 and also ensures that 1 is an integer
multiple of δ.

Algorithm 2. Distorted Continuous Greedy – Formal(g, �, P, ε)
1 Let y(0) ← 1∅, t ← 0 and δ ← �2n2/ε�−1.
2 while t < 1 do
3 For each u ∈ N , let wu(t) be an estimate for E[g(u | R(y(t)) − u)] obtained

by averaging the value of the expression within this expectation for
r = �−2n2ε−2 ln(δ/n2)� independent samples of R(y(t)).

4 Let z(t) be the vector in P maximizing 〈z(t), (1 + δ)(t−1)/δ · w(t) + �〉.
5 Let y(t + δ) ← y(t) + δ · z(t).
6 Update t ← t + δ.

7 return y(1).

Let T be the set of times considered by Algorithm 2, i.e., T = {iδ | i ∈ Z, 0 ≤
i < δ−1}. The following observation, which corresponds to Observation 1, shows
that the output of Algorithm 2 is feasible.

Observation 2. y(1) ∈ P .

Proof. By definition, z(t) is a vector in P for every time t ∈ T . Observe also
that |T | = δ−1. Hence, y(1) =

∑
t∈T δ · z(t) is a convex combination of vectors

in P , and thus, belongs to P by the convexity of P . ��
Next, we need to lower bound the probability that any of the estimates made

by Algorithm 2 has a significant error. This is done by Lemma 4, whose proof is
based on the following known lemma.

Lemma 3 (The symmetric version of Theorem A.1.16 in [2]). Let Xi,
1 ≤ i ≤ k, be mutually independent with all E[Xi] = 0 and all |Xi| ≤ 1. Set
S = X1 + · · · + Xk. Then, Pr[|S| > a] ≤ 2e−a2/2k.
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Let E be the event that |wu(t)−E[g(u | R(y(t))−u)]| ≤ εm/n for every element
u ∈ N and time t ∈ T .

Lemma 4. Pr[E ] ≥ 1 − 2n−1, and hence, E is a high probability event.

Proof. Consider an arbitrary element u ∈ N and time t ∈ T , and let us denote
by Ri the i-th independent sample of R(y(t)) used for calculating wu(t). We now
define for every 1 ≤ i ≤ r

Xi =
g(u | Ri − u) − E[g(u | R(y(t)) − u)]

m
.

Clearly E[Xi] = 0 due to the linearity of the expectation. Additionally, note
that Xi ∈ [−1, 1] because the monotonicity of g guarantees that g(u | Ri − u)
and E[g(u | R(y(t)) − u)] are both non-negative, and the submodularity of g
guarantees that these expressions are upper bounded by g(u | ∅)—and therefore,
also by m because m is defined as maxu∈N {g(u | ∅)}. Hence, by Lemma 3,

Pr
[
|wu(t) − E[g(u | R(y(t)) − u)]| >

εm

n

]
= Pr

[
m

r
·
∣∣∣∣∣

r∑

i=1

Xi

∣∣∣∣∣ >
εm

n

]

= Pr

[∣∣∣∣∣

r∑

i=1

Xi

∣∣∣∣∣ >
rε

n

]
≤ 2e−(rεn−1)2/2r

= 2e−rε2/(2n2) ≤ 2eln(δ/n2) =
2δ

n2
.

Using the union bound, we now get that the probability that there is any
pair of element u ∈ N and time t ∈ T for which

|wu(t) − E[g(u | R(y(t)) − u)]| >
εm

n

is at most |N | · |T | · (2δ/n2) = 2/n. ��
Let us define now Φ(t) � (1 + δ)(t−1)/δ · G(y(t)) + �(y(t)). Lemma 6 bounds

the rate in which this expression increases as a function of t (and thus, can be
viewed as a counterpart of Lemma 1). The following technical lemma is used in
the proof of Lemma 6. Since similar lemmata have been proved in other places
(see, for example, [10,11]), we defer the proof of this lemma to Appendix A.

Lemma 5. Given two vectors y, y′ ∈ [0, 1]N such that 0 ≤ y′
u − yu ≤ δ ≤ 1 and

a non-negative monotone submodular function f : 2N → R≥0 whose multilinear
extension is F ,

F (y′) − F (y) ≥
∑

u∈N
(y′

u − yu) · ∂F (x)
∂xu

∣∣∣∣
x=y

− n2δ2 · max
u∈N

f(u | ∅) .
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Lemma 6. If the event E happens, then, for every time t ∈ T ,

Φ(t + δ) − Φ(t)
δ

≥ (1+δ)(t−1)/δ ·G(y(t))+〈z(t), (1 + δ)(t−1)/δ · w(t) + �〉−2εm .

Proof. Since y(t + δ) − y(t) = δz(t), and every coordinate of z(t) is between 0
and 1, we get by Lemma 5 that

G(y(t + δ)) − G(y(t)) ≥
∑

u∈N
(y(t + δ) − y(t)) · ∂G(x)

∂xu

∣∣∣∣
x=y(t)

− n2δ2 · max
u∈N

g(u | ∅)

≥
∑

u∈N
δzu(t) · E[g(u | R(y(t)) − u)] − εδm (1)

≥
∑

u∈N
δzu(t) · [wu(t) − εm/n] − εδm ≥ 〈δz(t), w(t)〉 − 2εδm ,

where the second inequality hold since δ ≤ εn−2 by definition, and the third
inequality holds since we assume that the event E happened.

Using the linearity of � and the definition of Φ, we now get

Φ(t + δ) − Φ(t)
δ

=
(1 + δ)(t+δ−1)/δ · G(y(t + δ)) − (1 + δ)(t−1)/δ · G(y(t))

δ

+
�(y(t + δ)) − �(y(t))

δ

=
(1 + δ)(t−1)/δ · [G(y(t + δ)) − G(y(t))]

δ
+ (1 + δ)(t−1)/δ · G(y(t + δ))

+ 〈�, z(t)〉 .

Plugging Inequality (1) and the inequality G(y(t + δ)) ≥ G(y(t)) (which holds
due to monotonicity) into the last equality, we get

Φ(t + δ) − Φ(t)
δ

≥ (1 + δ)(t−1)/δ · G(y(t))

+ 〈z(t), (1 + δ)(t−1)/δ · w(t) + �〉 − 2εm · (1 + δ)(t−1)/δ .

The lemma now follows from the last inequality by observing that (1+δ)(t−1)/δ ≤
1 since (t − 1)/δ ≤ 0. ��

The last lemma gives a lower bound on the increase in Φ(t) as a function
of t. Unfortunately, this lower bound depends on a lot of entities (such as z(t)
and w(t)), and thus, it is difficult to use it. The following lemma allows us to
simplify the lower bound.

Lemma 7. If the event E happens, then 〈z(t), (1 + δ)(t−1)/δ · w(t) + �〉 ≥ (1 +
δ)(t−1)/δ · [g(OPT ) − G(y(t))] + �(OPT ) − εm.
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Proof. Recall that z(t) is the vector in the polytope P maximizing the dot prod-
uct 〈z(t), (1 + δ)(t−1)/δ · w(t) + �〉. Since 1OPT ∈ P , we get

〈z(t), (1 + δ)(t−1)/δ · w(t) + �〉 ≥ 〈1OPT , (1 + δ)(t−1)/δ · w(t) + �〉
= (1 + δ)(t−1)/δ ·

∑

u∈OPT

w(u) + �(OPT )

≥ (1 + δ)(t−1)/δ ·
∑

u∈OPT

{E[g(u | R(y(t)) − u)] − εm/n} + �(OPT )

≥ (1 + δ)(t−1)/δ ·
∑

u∈OPT

E[g(u | R(y(t)) − u)] + �(OPT ) − εm ,

where the second inequality holds since we assume that the event E happened.
Observe now that the submodularity and monotonicity of f yield

∑

u∈OPT

E[g(u | R(y(t)) − u)] ≥
∑

u∈OPT

E[g(u | R(y(t)))] ≥ E[g(OPT | R(y(t)))]

= E[g(OPT ∪ R(y(t))) − g(R(y(t)))] ≥ g(OPT ) − G(y(t)) .

The lemma now follows by combining the two above inequalities. ��
Combining the last two lemmata, we immediately get the following corollary,

which is the promised simplified lower bound on the increase in Φ(t) as a function
of t.

Corollary 1.

Φ(t + δ) − Φ(t)
δ

≥ (1 + δ)(t−1)/δ · g(OPT ) + �(OPT ) − 3εm .

Using the last corollary, we can now get a lower bound on the value of
G(y(1)) + �(y(t)) conditioned on the event E .

Lemma 8. If the event E happens, then G(y(1))+�(y(1)) ≥ (1−e−1)·g(OPT )+
�(OPT ) − 4εm.

Proof. Observe that

G(y(1)) + �(y(1)) = Φ(1) = Φ(0) +
∑

t∈T

[Φ(t + δ) − Φ(t)] (2)

≥ Φ(0) +
∑

t∈T

[
δ(1 + δ)(t−1)/δ · g(OPT ) + δ · �(OPT ) − 3εδm

]

≥ e−1 · g(∅) + g(OPT ) ·
∑

t∈T

δ(1 + δ)(t−1)/δ + �(OPT ) − 3εm ,

where the first inequality holds due to Corollary 1 and the second inequality holds
since |T | = δ−1 and Φ(0) = (1+δ)−1/δ·g(∅)+�(∅) = (1+δ)−1/δ·g(∅) ≥ e−1·g(∅)
because � is linear and g is non-negative.
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We now need to lower bound the sum on the rightmost side of the last
inequality. Notice that this sum can be presented as the sum of a geometrical
series as follows.

∑

t∈T

δ(1 + δ)(t−1)/δ =
δ−1−1∑

i=0

δ(1 + δ)(iδ−1)/δ = δ(1 + δ)−δ−1 ·
δ−1−1∑

i=0

(1 + δ)i

= δ(1 + δ)−δ−1 · 1 − (1 + δ)δ−1

1 − (1 + δ)
= 1 − (1 + δ)−δ−1

≥ 1 − e−1(1 − δ)−1 ≥ 1 − e−1(1 + 2δ) ≥ 1 − e−1 − εe−1/n ,

where the first inequality holds since it is known that (1 + 1/a)a ≥ e(1 − 1/a)
for every a ≥ 1 (and in particular for a = δ−1), the second inequality holds
since (1 − a)−1 ≤ 1 + 2a for every a ≤ 1/2, and the last inequality holds since
δ ≤ εn−2/2. Plugging the last inequality into Inequality (2) (and using the
non-negativity of g), we get

G(y(1)) + �(y(1)) ≥ e−1 · g(∅) + (1 − e−1 − εe−1/n) · g(OPT )+ �(OPT )− 3εm

≥ e−1 · g(∅) + (1 − e−1) · g(OPT ) − (εe−1/n) · [g(∅) + mn] + �(OPT )− 3εm

≥ (1 − e−1) · g(OPT ) + e−1 · (1 − ε/n) · g(∅) + �(OPT ) − 4εm

≥ (1 − e−1) · g(OPT ) + �(OPT ) − 4εm ,

where the second inequality holds since the submodularity of g guarantees

g(OPT ) ≤ g(∅) +
∑

u∈OPT

g(u | ∅) ≤ g(∅) + mn . ��
We are now ready to prove Theorem 1.

Proof (Proof of Theorem 1). Observation 2 shows that y(1) ∈ P . Additionally,
Lemmata 4 and 8 show together that with high probability

G(y(1)) + �(y(1)) ≥ (1 − e−1) · g(OPT ) + �(OPT ) − 4εm

= (1 − e−1) · g(OPT ) + �(OPT ) − O(ε) · m . ��

A Proof of Lemma 5

In this section we prove Lemma 5. Let us begin by recalling the lemma itself.
Lemma 5. Given two vectors y, y′ ∈ [0, 1]N such that 0 ≤ y′

u − yu ≤ δ ≤ 1 and
a non-negative monotone submodular function f : 2N → R≥0 whose multilinear
extension is F ,

F (y′) − F (y) ≥
∑

u∈N
(y′

u − yu) · ∂F (x)
∂xu

∣∣∣∣
x=y

− n2δ2 · max
u∈N

f(u | ∅) .

Let us denote the elements of N by u1, u2, . . . , un in an arbitrary order. We
define y(i) for every integer 0 ≤ i ≤ n as the vector in [0, 1]N that agrees with
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y′ on the coordinates 1 to i and with y or the remaining coordinates. Note that
this definition implies, in particular, y(0) = y and y(n) = y′. The next lemma
bounds the amount by which the partial derivative ∂F (x)

∂xu
can differ between the

points x = y and x = y′.

Lemma 9. For every integer 0 ≤ i ≤ n and element u ∈ N ,

∂F (x)
∂xu

∣∣∣∣
x=y(i)

≥ ∂F (x)
∂xu

∣∣∣∣
x=y

− nδ · f(u | ∅) .

Proof. For the sake of the proof, we assume that R(y(i)) is formed from R(y)
using the following process. Every element of N \ R(y) is added to a set D

with probability of 1 − (1 − y
(i)
u )/(1 − yu). Then, R(y(i)) is chosen as R(y) ∪ D.

Observe that every element u ∈ N gets into D with probability y
(i)
u − yu ≤ δ,

independently, and thus, R(y)∪D indeed has the distribution that R(y(i)) should
have.

Using the above definitions, we get

∂F (x)
∂xu

∣∣∣∣
x=y(i)

= E[f(u | R(y(i)) − u)] = E[f(u | R(y) ∪ D − u)]

≥ Pr[D = ∅] · E[f(u | R(y) − u) | D = ∅] ,

where the inequality follows from the law of total expectation and the mono-
tonicity of f . Additionally, by the submodularity of f we also get

f(u | R(y) − u) ≤ f(u | ∅) .

Combining this inequality with the previous one yields

∂F (x)
∂xu

∣∣∣∣
x=y(i)

+ Pr[D �= ∅] · f(u | ∅)

≥ Pr[D = ∅] · E[f(u | R(y) − u) | D = ∅]
+ Pr[D �= ∅] · E[f(u | R(y) − u) | D �= ∅]

= E[f(u | R(y) − u)] =
∂F (x)
∂xu

∣∣∣∣
x=y

.

One can verify that the last inequality will imply the lemma if we have
an upper bound of nδ on Pr[D �= ∅]. Thus, all we are left to do is to prove
this upper bound. Since elements belong to D with probability at most δ and
independently,

Pr[D �= ∅] = 1 −
∏

u∈N
Pr[u �∈ D] ≤ 1 −

∏

u∈N
(1 − δ) = 1 − (1 − δ)n ≤ nδ . ��

We are now ready to prove Lemma 5.
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Proof (Proof of Lemma 5). Observe that for every integer 1 ≤ i ≤ n the vectors
y(i−1) and y(i) differ only in coordinate i (in which they differ by y′

u − yu).
Recalling that y(0) = y, y(n) = y′ and F is multilinear, this observation yields

F (y′) − F (y) =
n∑

i=1

(y′
ui

− yui
) · ∂F (x)

∂xui

∣∣∣∣
x=y(i−1)

≥
∑

u∈N
(y′

u − yu) ·
[

∂F (x)
∂xu

∣∣∣∣
x=y

− nδ · f(u | ∅)

]

≥
∑

u∈N
(y′

u − yu) · ∂F (x)
∂xu

∣∣∣∣
x=y

− n2δ2 · max
u∈N

f(u | ∅) ,

where the first inequality follows from Lemma 9 and the second inequality holds
by the monotonicity of f and the fact that y′

u − yu ≤ δ for every u ∈ N . ��
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Abstract. We give an algorithm to compute a one-dimensional shape-
constrained function that best fits given data in weighted-L∞ norm. We
give a single algorithm that works for a variety of commonly studied
shape constraints including monotonicity, Lipschitz-continuity and con-
vexity, and more generally, any shape constraint expressible by bounds
on first- and/or second-order differences. Our algorithm computes an
approximation with additive error ε in O

(
n log U

ε

)
time, where U cap-

tures the range of input values. We also give a simple greedy algorithm
that runs in O(n) time for the special case of unweighted L∞ convex
regression. These are the first (near-)linear-time algorithms for second-
order-constrained function fitting. To achieve these results, we use a novel
geometric interpretation of the underlying dynamic programming prob-
lem. We further show that a generalization of the corresponding problems
to directed acyclic graphs (DAGs) is as difficult as linear programming.

1 Introduction

We consider the fundamental problem of finding a function f that approximates
a given set of data points (x1, y1), . . . , (xn, yn) in the plane with smallest pos-
sible error, i.e., f(xi) shall be close to yi (formalized below), subject to shape
constraints on the allowable functions f , such as being increasing and/or con-
cave. More specifically, we present a new algorithm that can handle arbitrary
constraints on the (discrete) first- and second-order derivatives of f .

When we only require f to be weakly increasing, the problem is known as
isotonic regression, a classic problem in statistics; (see, e.g., [13] for history and
applications). It has more recently also found uses in machine learning [12,15,16].

In certain applications, further shape restrictions are integral part of the
model: For example, microeconomic theory suggests that production functions
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are weakly increasing and concave (modeling diminishing marginal returns);
similar reasoning applies to utility functions. Restricting f to functions with
bounded derivative (Lipschitz-continuous functions) is desirable to avoid over-
fitting [15]. All these shape restrictions can be expressed by inequalities for first
and second derivatives of f ; their discretized equivalents are hence amenable to
our new method. Shape restrictions that we cannot directly handle are studied
in [26] (f is piecewise constant and the number of breakpoints is to be minimized)
and [24] (unimodal f). For a more comprehensive survey of shape-constrained
function-fitting problems and their applications, see [14, §1]. Motivated by these
applications, the problems have been studied in statistics (as a form of nonpara-
metric regression), investigating, e.g., their consistency as estimators and their
rate of convergence [4,13,14].

While fast algorithms for isotonic-regression variants have been designed [25],
both [20] and [3] list shape constraints beyond monotonicity as important chal-
lenges. For example, fitting (multidimensional) convex functions is mostly done
via quadratic or linear programming solvers [22]. In his PhD thesis, Balázs writes
that current “methods are computationally too expensive for practical use, [so]
their analysis is used for the design of a heuristic training algorithm which is
empirically evaluated” [4, p. 1].

This lack of efficient algorithms motivated the present work. Despite a few
limitations discussed below (implying that we do not yet solve Balázs’ prob-
lem), we give the first near-linear-time algorithms for any function-fitting prob-
lem with second-order shape constraints (such as convexity). We use dynamic
programming (DP) with a novel geometric encoding for the “states”. Simpler
versions of such geometric DP variants were used for isotonic regression [23]
and are well-known in the competitive programming community; incorporating
second-order constraints efficiently is our main innovation.

Problem Definition. Given the vectors x = (x1, . . . , xn) ∈ R
n and y ∈ R

n, an
error norm d and shape constraints (formalized below), compute f = (f1, . . . , fn)
satisfying the shape constraints with minimal d(f ,y), i.e., we represent f via
its values fi = f(xi) at the given points. d is usually an Lp norm, d(x,y) =(∑

i |xi − yi|p
)
1/p; least squares (p = 2) dominate in statistics, but more general

error functions have been studied for isotonic regression [3,18,20,21]. We will
consider the weighted L∞ norm, i.e., d(f ,y) = maxi∈[n] wi|fi − yi|, where [n] =
{1, . . . , n} and w ∈ R

n
≥0 is a given vector of weights.

Since we are dealing with discretized functions (a vector f), restrictions for
derivatives f ′ and f ′′ have to be discretized, as well. We define local slope and
curvature as

f ′
i =

fi − fi−1

xi − xi−1
, (i ∈ [2..n]), and f ′′

i =
f ′

i − f ′
i−1

xi − xi−1
, (i ∈ [3..n]);

the shape constraints are then given in the form of vectors f ′−,f ′+,f ′′−,f ′′+

of bounds for the first- and second-order differences, i.e., we define the set of
feasible answers as F =

{
f ∈ R

n
∣
∣ f ′− ≤ f ′ ≤ f ′+ ∧ f ′′− ≤ f ′′ ≤ f ′′+}

where
inequalities on vectors mean the inequality on all components. The weighted -L∞
function-fitting problem with second-order shape constraints is then to find
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f∗ = arg min
f ∈F

(
max

i
wi · |fi − yi|

)
. (1)

Often, we only need a lower resp. upper bound; we can achieve that by allowing
−∞ and +∞ entries in f ′±

i and f ′′±
i . For example, setting f ′′− = 0, f ′− =

f ′′− = +∞ and f ′− = −∞, we can enforce a convex function/vector. We also
consider the decision-version of the problem: given a bound L, decide if there is
an f ∈ F with maxi wi |fi − yi| ≤ L, and if so, report one.

Contributions. Our main result is a single O(n)-time algorithm for the deci-
sion problem of function fitting with second-order constraints; see Theorem 1.2
for the precise statement. With binary search, this readily yields an additive ε-
approximation for (1), and thus weighted L∞ isotonic regression, convex regres-
sion and Lipschitz convex regression, in O

(
n log U

ε

)
time (Theorem 1.4), where

U = (maxi wi) · (maxi yi −mini yi). In the extended online version of this article
(arxiv.org/abs/1905.02149), we give a simple greedy algorithm for unweighted
(w = 1) L∞ convex regression that runs in O(n) time. Finally, we show that
a generalization of the problem to DAGs (where the applied first- and second-
order difference constraints are restricted by the graph), is as hard as linear
programming.

Related Work. Stout [25] surveys algorithms for various versions of isotonic
regression; they achieve near-linear or even linear time for many error metrics.
He also considers the generalization to any partial order (instead of the total
order corresponding to weakly increasing functions). A related task is to fit a
piecewise-constant function (with a prescribed number of jumps) to given data.
[9,10] solve this problem for L∞ in optimal O(n log n) time. Since the geometric
constraints are much easier than in our case, a simple greedy algorithm suffices
to solve the decision version.

For more restricted shapes, less is known. [24] gives a O(n log n) solution
for unimodal regression. [1] gives an O(n log n) algorithm for unweighted L2

Lipschitz isotonic regression and a O(n poly(log n)) time algorithm for Lips-
chitz unimodal regression. [22] describes (multidimensional) L2 convex regres-
sion algorithms based quadratic programming. Fefferman [8] studied a closely
related problem of smooth interpolation of data in Euclidean space minimizing
a certain norm defined on the derivatives of the function. His setup is much
more general, but his algorithm cannot find arbitrarily good interpolations (ε is
fixed for the algorithm). All fast algorithms above consider classes defined by
constraints on the first derivative only, not the second derivative as needed for
convexity. To our knowledge, the fastest prior solution for any convex regression
problem is solving a linear program, which will imply super-linear time.

We use a geometric interpretation of dynamic-programming states and rep-
resent them implicitly. The work closest in spirit to ours is a recent article by
Rote [23]; establishing the transformation of states is much more complicated in
the presently studied problem, though. Implicitly representing a series of more
complicated objects using data structures has been used in geometric and graph
algorithms, such as multiple-source shortest paths [17] and shortest paths in

https://arxiv.org/abs/1905.02149
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polygons [5,7,19]. The only other work (we know of) that interprets dynamic
programming geometrically is [26].

There is a rich literature on methods for speeding up dynamic program-
ming [6,11,27,28]. They involve a variety of powerful techniques such as mono-
tonicity of transition points, quadrangle inequalities, and Monge matrix search-
ing [2], many of which have found applications in other settings. The focus of
these methods is to reduce the (average) number of transitions that a state is
involved in, often from O(n) to O(1). Therefore, their running times are lower
bounded by the number of states in the dynamic programs.

1.1 Results

We formally state our theorem for the decision problem here; results for shape-
constrained function fitting are obtained as corollaries. For our algorithm, the
discrete derivatives (as defined above) are inconvenient because they involve the
x-distance between points. We therefore normalize all x-distances to 1 (s. t. xi =
i); for the second-order constraints, this normalization makes the introduction
of an additional parameter necessary, the scaling factors αi (see below).

Definition 1.1 (1st/2nd-diff-constrained vectors). Let n-dimensional vec-
tors x− ≤ x+ (value bounds), y− ≤ y+ (difference bounds), z− ≤ z+ (second-
order difference bounds), and α > 0 be given. We define S ⊂ R

n to be the set of
all b ∈ R

n that satisfy the following constraints:

∀i ∈ [1..n] x−
i ≤ bi ≤ x+

i (value constraints)

∀i ∈ [2..n] y−
i ≤ bi − bi−1 ≤ y+

i (first-order constr.)

∀i ∈ [3..n] z−
i ≤ (bi − bi−1) − αi(bi−1 − bi−2) ≤ z+i (second-order constr.)

Moreover, we consider the “truncated problems” Sk, where Sk is the set of all
b ∈ R

n that satisfy the constraints up to k (instead of n).

A visualization of an example is shown in Fig. 1. We can encode an instance
(x,y,f ′±,f ′′±) of the decision version of the weighted-L∞ function-fitting prob-
lem with second-order constraints as 1st/2nd-diff-constrained vectors by setting

x±
i = yi ± L/wi, y±

i = f ′± · (xi − xi−1),

z±
i = f ′′± · (xi − xi−1)2, αi =

xi − xi−1

xi−1 − xi−2
.

So, our goal is to efficiently compute some b ∈ S or determine that S = ∅. Our
core technical result is a linear-time algorithm for this task:

Theorem 1.2 (1st/2nd-diff-constrained decision). With the notation of
Definition 1.1, in O(n) time, we can compute b ∈ S or determine that S = ∅.
Section 2 will be devoted to the proof. To simplify the presentation, we will
assume throughout that x+, x−, y+, y−, z+, z− are bounded.1For the opti-
mization version of the problem, Eq. (1), we consider approximate solutions in
the following sense.
1 Some problems are stated with ±∞ values, but we can always replace unbounded

values in the algorithms with an (input-specific) sufficiently large finite number.
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Fig. 1. Exemplary input for the 1st/2nd-diff-constrained decision problem (with α =
1). Value constraints are illustrated as blue bars. First-order constraints are shown
as green circles, indicating the allowable incoming angles/slopes; the green dot and
the circle can be moved up and down within the blue range. Finally, second-order
constraints are given as red triangles, in which the minimal and maximal allowable
change in slope is shown (dotted red), based off an exemplary incoming slope (dashed
red). The thin dotted line shows b = (1.7, 1.2, 2.2, 2.8, 3.3) ∈ S.
Below the visualization of the instance, we show the set of pairs (bi, bi − bi−1) for
b ∈ Si, i.e., allowable combinations of value and slope at i for the truncated problems;
our specific solution is shown as a black dot. These sets are the feasibility polygons Pi

(defined in Sect. 2.1) that play a vital role in our algorithm. Given all Pi, one can easily
construct a solution backwards, starting from any point in P5. (Color figure online)
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Definition 1.3 (ε-approximation). We call f ∈ F an ε-approximate solution
to the weighted L∞ function-fitting problem if it satisfies

max
i

wi |fi − yi| ≤ min
g∈F

(
max

i
wi |gi − yi|

)
+ ε.

By a simple binary search on L, we can find approximate solutions.

Theorem 1.4 (Main result). There exists an algorithm that computes an ε-
approximate solution to the weighted-L∞ convex regression problem that runs in
O(n log U

ε ) time, where U = (maxi wi)(maxi yi − mini yi). The same holds true
for isotonic regression, Lipschitz isotonic regression, convex isotonic regression.

Proof. We will argue for the case of convex regression here, other cases are
similar. Abbreviate L(f) = maxi wi|fi − yi|. For a given L, the decision version
of convex regression can be solved in O(n) time using Theorem 1.2. That is,
in O(n) time, we can either find f ∈ F such that L(f) ≤ L or conclude that
for all f ∈ F, L(f) > L. If we know an L0 for which there exists f ∈ F with
L(f) ≤ L0, then we can do a binary search for Lc in [0, L0]. We can easily find
such an L0 for the convex case: Let f = min yj be constant (hence convex). For
this f , we have L(f) ≤ (maxj wj)(maxj yj − minj yj). Therefore, we can take
L0 = (maxj wj)(maxj yj − minj yj) and the result immediately follows. 	


We note that for the specific case of unweighted convex function fitting, there
is a simpler linear-time greedy algorithm; we give more details on that in the
extended online version. This algorithm was the initial motivation for studying
this problem and for the geometric approach we use. For more general settings,
in particular second-order differences that are allowed to be both positive and
negative, the greedy approach does not work; our generic algorithm, however, is
almost as simple and efficient.

2 First- and Second-Order Difference-Constrained
Vectors

In this section, we present our main algorithm and prove Theorem 1.2.
In Sect. 2.1, we give an overview and introduce the feasibility polygons Pi.
Section 2.2 shows how Pi can be inductively computed from Pi−1 via a geomet-
ric transformation. We finally show how this transformation can be computed
efficiently, culminating in the proof of Theorem 1.2, in Sect. 2.3. Two proofs are
deferred to the extended online version of this article.

2.1 Overview of the Algorithm

Recall that the problem we want to solve, in order to prove Theorem 1.2, is
finding a feasible point b in S from Definition 1.1. Our algorithm will use dynamic
programming (DP) where each state is associated with the feasible bi in the
truncated problem. We will iteratively determine all bi such that bi is the ith
entry of some b ∈ Si.
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Feasible bi have to respect the first- and second-order difference constraints.
To check those, we also need to know the possible pairs (bi−1, bi−2) of (i − 1)th
and (i − 2)th entries for some b ∈ Si−1, so the states have to maintain more
information than the bi alone. It will be instrumental to rewrite this pair as
(bi−1, bi−1−bi−2), the combination of valid values bi−1 and valid slopes at which
we entered bi−1 for a solution in Si−1. From that, we can determine the valid
slopes at which we can leave bi−1 using our shape constraints. We thus define
the feasibility polygons

Pi =
{
(x, y)

∣
∣ ∃b ∈ Si : x = bi ∧ y = bi − bi−1

}
(2)

for i = 2, . . . , n. See Fig. 1 for an example. We view each point in Pi as a “state”
in our DP algorithm, and our goal becomes to efficiently compute Pi from Pi−1.
The key observation is that each Pi is indeed an O(n)-vertex convex polygon,
and we only need an efficient way to compute the vertices of Pi from those of
Pi−1. This needs a clever representation, though, since all vertices can change
when going from Pi−1 to Pi. A closer look reveals that we can represent the
vertex transformations implicitly, without actually updating each vertex, and
we can combine subsequent transformations into a single one. More specifically,
if we consider the boundary of Pi−1, the transformation to Pi consists of two
steps: (1) a linear transformation for the upper and lower hull of Pi−1, and (2)
a truncation of the resulting polygon by vertical and horizontal lines (i.e., an
intersection of the polygon and a half-plane).

The first step requires a more involved proof and uses that all line segments
of Pi have weakly positive slope (“+sloped”, formally defined below). Implicitly
computing the first transformation as we move between Pi is straightforward,
only requiring a composition of linear operations (a different one, though, for
upper and lower hull). We can apply the cumulative transformation whenever
we need to access a vertex.

The second step is conceptually simpler, but more difficult to implement
efficiently, as we have to determine where a line cuts the polygon in amortized
constant time. For this operation, we separately store the vertices of the upper
and lower hull of Pi in two arrays, sorted by increasing x-coordinate; since Pi

is +sloped, y-values are also increasing. A linear search for intersections has
overall O(n) cost since we can charge individual searches to deleted vertices.

Finally, if Pn �= ∅, we compute a feasible vector b backwards, starting from
any point in Pn. Since we do not explicitly store the Pi, this requires successively
“undoing” all operations (going from Pi back to Pi−1); see the extended version
of this paper for details.

2.2 Transformation from State Pi−1 to Pi

We first define the structural property “+sloped” that our method relies on.

Definition 2.1 (+sloped). We say a polygon P ⊆ R
2 with vertices v1, . . . , vk

is +sloped if slope(vi, vj) ≥ 0 for all edges (vi, vj) of P . Here, the slope between
two points v1 = (x1, y1), v2 = (x2, y2) ∈ R

2 is defined as slope(v1, v2) = y2−y1
x2−x1

,
when x1 �= x2, and slope(v1, v2) = ∞, otherwise.
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We will now show that Pi can be computed by applying a simple geometric
transformation to Pi−1. In passing, we will prove (by induction on i) that all
Pi are +sloped. For the base case, note that P2 = {(b2, b2 − b1) | x−

1 ≤ b1 ≤
x+
1 ∧x−

2 ≤ b2 ≤ x+
2 ∧y−

2 ≤ b2−b1 ≤ y+
2 }, which is an intersection of 6 half-planes.

The slopes of the defining inequalities are all non-negative or infinite, so P2 is
+sloped.

Let us now assume that Pi−1, i ≥ 3, is +sloped; we will consider the trans-
formation from Pi−1 to Pi and show that it preserves this property. We begin
by separating the transformation from Pi−1 to Pi into two main steps.

Step 1: Second-order constraint only. For the first step, we ignore the value and
first-order constraints at index i. This will yield a convex polygon, P (z)

i , that
contains Pi; in Step 2, we will add the other constraints at i to obtain Pi itself.

Definition 2.2 (P (z)
i : 2nd-order-only polygons). For a fixed i, consider the

modified problem with x−
i , y−

i = −∞ and x+
i , y+

i = ∞. Define the second-order-
only polygon, P (z)

i , as the polygon Pi of this modified problem (considering only
the zi constraints at i).

The statement of the following lemma is very simple observation, but allows us
to compute P (z)

i from Pi−1 with an explicit geometric construction, (whereas
such seemed not obvious for the original feasibility polygons).

Fig. 2. The transformation from P3 to P4 for the example instance of Fig. 1. Upper
and lower hulls are shown separately in green resp. red. (Color figure online)
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Lemma 2.3 (P (z)
i : scaled, sheared and shifted Pi−1). P (z)

i =
{
(x + αiy +

z, αiy + z) | (x, y) ∈ Pi−1, z ∈ [z−
i , z+i ]

}
.

Proof. The only constraint at i is z−
i ≤ (bi − bi−1) − αi(bi−1 − bi−2) ≤ z+i .

We rewrite this as (a) a constraint for bi − bi−1, using that bi−1 − bi−2 is the
y-coordinate in Pi−1, and (b) a constraint for bi, using that, additionally, bi−1

is the x-coordinate in Pi−1. 	

Once we have computed this polygon P (z)

i , computing Pi is easy: adding the
constraints x−

i ≤ x ≤ x+
i and y−

i ≤ y ≤ y+
i requires only cutting P (z)

i with two
horizontal and vertical lines. We give a visual representation of the mapping on
an example in Fig. 2. We break the above mapping into two simpler stages:

Corollary 2.4 (P (z)
i : sheared and shifted Pαi

i−1).
Setting Pαi

i−1 = {(x, αiy) | (x, y) ∈ Pi−1}, we have
P (z)

i =
{
(x + y + z, y + z) | (x, y) ∈ Pαi

i−1, z ∈ [z−
i , z+i ]

}
.

We note that scaling the y-coordinate by αi preserves the +sloped-property:

Lemma 2.5. Let α ≥ 0. If P is +sloped, so is Pα = {(x, αy) | (x, y ∈ P )}.
Proof. Scaling the y-coordinates will preserve all of the vertices of P , and also
scale the slope of each vertex pair by α ≥ 0. So, Pα is +sloped. 	

That leaves us with the core of the transformation, from Pαi

i−1 to P (z)
i . Intuitively,

it can be viewed as sliding Pαi
i−1 along the line x = y by any amount z ∈ [z−

i , z+i ]
and taking the union thereof, (see Fig. 2). To compute the result of this operation,
we split the boundary into upper and lower hull.

Definition 2.6 (Upper/lower hull). Let P be a convex polygon with vertex
set V . We define the upper hull (vertices) resp. lower hull (vertices) of P as

u-hull(P ) =
{
ui = (xi, yi) ∈ V

∣
∣ �(xi, y) ∈ P : y > yi

}

l-hull(P ) =
{
ui = (xi, yi) ∈ V

∣
∣ �(xi, y) ∈ P : y < yi

}

Unless specified otherwise, hull vertices are ordered by increasing x-coordinate.

Note that a vertex can be in both hulls. Moreover, the leftmost vertices in
u-hull(P ) and l-hull(P ) always have the same x-coordinate, similarly for the
rightmost vertices. As proved in Lemma 2.3, each point in Pαi

i−1 is mapped to a
line-segment with slope 1; we give this mapping a name.

Definition 2.7 (2nd-order P transform). Let fi((x, y)) be the line-segment
{(x+y + z, y + z) | z ∈ [z−

i , z+i ]} and denote by f−
i ((x, y)) = (x+y + z−

i , y + z−
i )

and f+
i ((x, y)) = (x + y + z+i , y + z+i ) the two endpoints of fi((x, y)).

We write f(S) =
⋃

(x,y)∈S f((x, y)) for the element-wise application of f to
a set S of points.
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The vertices of P (z)
i result from transforming the upper hull of Pαi

i−1 by f+
i and

the lower hull by f−
i . The next lemma formally establishes that applying f+

i

resp. f−
i to the hulls of Pαi

i−1 correctly computes P (z)
i , (again, compare Fig. 2).

Lemma 2.8 (From Pαi
i−1 to P (z)

i via hulls). If Pαi
i−1 is +sloped, then P (z)

i

is +sloped and u-hull(P (z)
i ) = {f−

i (vll)}∪f+
i (u-hull(Pαi

i−1)) and l-hull(P (z)
i )

= f−
i (l-hull(Pi−1))∪{f+

i (vur )}, where vll (lower-left) and vur (upper-right) are
the first vertex of l-hull(Pαi

i−1) and the last vertex of u-hull(Pαi
i−1), respectively.

A formal proof is given in the extended version. Intuitively, since each point in
Pαi

i−1 is mapped to a line-segment with slope 1 in P (z)
i , P (z)

i is obtained by sliding
Pαi

i−1 along the line x = y. The full transformation from Pi−1 to P (z)
i can now

be stated as:

Lemma 2.9 (Pi−1 to P (z)
i ). Let f∗,αi

i be the function f∗,αi

i (x, y) = (x + αiy +
z∗
i , αiy + z∗

i ) for ∗ ∈ {−,+}. If Pi−1 is +sloped, then P (z)
i is +sloped with

u-hull(P (z)
i ) =

{
f−,αi

i (vll)
} ∪ f+,αi

i (u-hull(Pi−1))

l-hull(P (z)
i ) = f−,αi

i (l-hull(Pi−1)) ∪ {
f+,αi

i (vur )
}

with vll and vur the lower-left resp. upper-right vertex of Pi−1.

Proof. This follows immediately from Corollary 2.4 and Lemmas 2.5 and 2.8. 	


Step 2: Truncating by value and slope. To complete the transformation, we need
to add the constraints x−

i ≤ bi ≤ x+
i and y−

i ≤ bi − bi−1 ≤ y+
i to P (z)

i . This is
equivalent to cutting our polygon with two vertical and horizontal planes. The
following lemma shows that this preserves the +sloped-property.

Lemma 2.10 (# new vertices). If Pi−1 is +sloped with k vertices, then Pi

is either empty or +sloped with at most k + 6 vertices.

It follows that over the course of the algorithm, only O(n) vertices are added
in total. This will be instrumental for analyzing the running time.

Proof. We know that P (z)
i is +sloped, and it follows easily from the definition

that cutting by horizontal and vertical planes will preserve this property. Fur-
thermore, note that cutting a convex polygon will increase the total number of
vertices by at most one. We added at most 2 vertices to Pi−1 to obtain P (z)

i . We
then cut P (z)

i by the inequalities x ≤ x+
i , x ≥ x−

i , y ≤ y−
i , and y ≥ y+

i , i.e., two
horizontal and vertical planes. Each adds at most one vertex, giving the desired
upper bound. 	


2.3 Algorithm

A direct implementation of the transformation of Lemma 2.9 yields a “brute
force” algorithm that maintains all vertices of Pi and checks if Pn is empty; (the
running time would be quadratic). It works as follows:
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1. [Init]: Compute the vertices of P2.
2. [Compute Pi]: For i = 3, . . . , n, do the following:

2.1. At step i, scale the y-coordinate of each vertex by αi.
2.2. Apply f+

i resp. f−
i to each vertex, depending on which hull it is in.

2.3. Add the new vertex to u-hull and l-hull, as per Lemma 2.9.
2.4. Delete all the vertices outside [x−

i , x+
i ] × [y−

i , y+
i ] and

add the vertices created by intersecting with [x−
i , x+

i ] × [y−
i , y+

i ].
3. [Compute b] : If Pn �= ∅, compute (b1, . . . , bn) by backtracing.

Observe that Lemma 2.9 applies the same linear function (multiplication of y-
coordinate by αi and f+

i or f−
i ) to all vertices in u-hull resp. l-hull. So, we

do not need to modify every vertex each time; instead, we can store – separately
for u-hull and l-hull – the composition of the linear transformations as a
matrix. Whenever we access a vertex, we take the unmodified vertex and apply
the cumulative transformation in O(1) time.

At each step, after applying the linear transformations, by Lemma 2.9 we
also need to copy the leftmost vertex of l-hull, add it to the left of u-hull
and copy the rightmost vertex of u-hull and add it to the right of l-hull. To
add these vertices, we simply apply the inverse of each respective cumulative
transformation such that all stored vertices require the same transformation.
This will also take O(1) time.

Since all the slopes of P (z)
i are non-negative (+sloped) and we keep vertices

sorted by x-coordinate, the truncation by a horizontal or vertical plane can only
remove a prefix or suffix from u-hull and l-hull of P (z)

i . Depending on the
constraint we are adding, (x ≤ x+

i , x ≥ x−
i , y ≤ y−

i , or y ≥ y+
i ), we start at the

rightmost or leftmost vertex of the u-hull and l-hull, and continue until we
find the intersection with the cutting plane. We remove all visited vertices.

This could take O(n) time in any single iteration, but the total cost over
all iterations is O(n) since we start with O(1) vertices and add O(n) vertices
throughout the entire procedure (by Lemma 2.10). This allows us to use two
deques (double-ended queues), represented as arrays, to store the vertices of
u-hull and l-hull. Putting this all together gives the linear time algorithm for
the decision problem “S = ∅?”.

To compute an actual solution when S �= ∅, we compute bn, . . . , b1, in this
order. From the last Pn, we can find a feasible bn (the x-coordinate of any
point in Pn). Then, we retrace the steps of our algorithm through specific points
in each Pi. Since intermediate Pi were only implicitly represented, we have to
recover Pi by “undoing” the algorithm’s operations in reverse order; this is possi-
ble in overall time O(n) by remembering the operations from the forward phase.
The details on the backtracing step are presented in the extended version of this
article.

3 Conclusion

In this article, we presented a linear-time dynamic-programming algorithm to
decide whether there is a vector b that lies (componentwise) between given
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upper and lower bounds and additionally satisfies inequalities on its first- and
second-order (successive) differences. This method can be used to approximate
weighted-L∞ shape-restricted function-fitting problems, where the shape restric-
tions are given as bounds on first- and/or second-order differences (local slope
and curvature).

This is a first step towards much sought-after efficient methods for more gen-
eral convex regression tasks. A main limitation of our approach is the restriction
to one-dimensional problems. We show in the extended version of this article
(arxiv.org/abs/1905.02149) that a natural extension of the problem studied here
to directed acyclic graphs is already as hard as linear programming, leaving lit-
tle hope for an efficient generic solution. This is in sharp contrast to isotonic
regression, where similar extensions to arbitrary partial orders do have efficient
algorithms (for L∞) [25]. This might also be bad news for multidimensional
regression with second-order constraints, since higher dimensions entail, among
other complications, a non-total order over the inputs.

A second limitation is the L∞ error metric, which might not be adequate
for all applications. We leave the question whether similarly efficient methods
are also possible for other metrics for future work. A further extension to study
is convex unimodal regression; here, finding the maximum is part of the fitting
problem, and so not directly possible with our presented method.
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Abstract. In the classic dictionary matching problem, the input is a dic-
tionary of patterns D = {P1, P2, . . . , Pk} and a text T , and the goal is to
report all the occurrences in T of every pattern from D. In the dynamic
version of the dictionary matching problem, patterns may be either added
or removed from D. In the online version of the dictionary matching prob-
lem, the characters of T arrive online, one at a time, and the goal is to
establish, immediately after every new character arrival, which of the pat-
terns in D are a suffix of the current text.
In this paper, we consider the dynamic version of the online dictionary
matching problem. For the case where all the patterns have the same
length m, we design an algorithm that adds or removes a pattern in
O(m log log ‖D‖) time and processes a text character in O(log log ‖D‖)
time, where ‖D‖ =

∑
P∈D |P |. For the general case where patterns may

have different lengths, the cost of adding or removing a pattern P is
O(|P | log log ‖D‖ + log d/ log log d) while the cost per text character is
O(log log ‖D‖ + (1 + occ) log d/ log log d), where d = |D| is the number
of patterns in D and occ is the size of the output. These bounds improve
on the state of the art for dynamic dictionary matching, while also pro-
viding online features. All our algorithms are Las-Vegas randomized and
the time costs are in the worst-case with high probability. A by-product
of our work is a solution for the fringed colored ancestor problem, resolving
an open question of Breslauer and Italiano [J. Discrete Algorithms, 2013].

1 Introduction

In the classic dictionary matching problem [2–8,11,13,15,17–20,22], the input is
a dictionary of patterns D = {P1, P2, . . . , P|D|} and a text T , both over alphabet
Σ, and the goal is to report all the occurrences of patterns from D in T . The
dictionary matching problem is one of the most fundamental pattern matching
problems and was already considered in the 70s [1]. For example, one of the
crucial components of Network Intrusion Detection Systems (NIDS) is the ability
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to detect the presence of viruses and malware in streaming data. This task
is typically executed by searching for occurrences of special digital signatures
which indicate the presence of harmful intent. However, while searching for one
such signature is a relatively simple task, NIDS have to deal with the task
of searching for many signatures in parallel, which is exactly the dictionary
matching problem where the patterns are the special digital signatures. Indeed,
the task of finding these signatures dominates the performance of such security
tools [25], and several practical approaches have been suggested [9,24].

A common objective in many dictionary matching applications is to support
online arrivals of the text characters. In NIDS, for example, the typical goal is
to report a special digital signature as soon as it appears, before the next packet
of data arrives. To this end, in the online version of the dictionary matching
problem, the text T arrives one character at a time, and the goal is to report all
of the occurrences of patterns from D in T as soon as they appear, before the
next character arrives. Thus, if an occurrence of a pattern P ∈ D ends at the ith
character of T , then P must be reported before the (i + 1)th character arrives.

Online Dynamic Dictionary Matching Problem. Another common task in appli-
cations that utilize dictionary matching is to support changes to D. In NIDS, for
example, one might introduce new digital signatures on the fly or remove from
consideration digital signatures creating too many false positives. To this end,
this paper focuses on the online dynamic dictionary matching problem, where
the goal is to solve the online dictionary problem so that patterns may be added
or removed from D between the arrivals of text characters. In particular, the
requirement now is that when the ith character T [i] arrives, the algorithm must
report all patterns in the current D with an occurrence that ends at the ith
character of T , and this reporting must take place before T [i + 1] arrives.

In this work, we investigate the online dynamic dictionary matching problem
with a focus on randomized Las-Vegas algorithms, with worst-case high proba-
bility1 guarantees on the runtime. A summary of our results follows.

1.1 Previous Work and New Results

For (offline) dictionary matching the Aho–Corasick (AC) data structure [1] pro-
vides an optimal linear time solution. However the AC data structure was not
initially designed for being neither dynamic nor online.

Let ‖D‖ =
∑

P∈D |P | be the total length of all patterns in D, let d = |D| be
the number of patterns in D, and let occ denote the size of the output.

Dynamic Dictionary Matching. In the following we provide an overview of previ-
ous work on dynamic dictionary matching that does not support online report-
ing. Amir et al. [3] improved on Amir et al. [2] by designing a dynamic dic-
tionary matching data structure that allows for adding/deleting a pattern P
in O(|P | log ‖D‖/ log log ‖D‖) time, and processing a text T costs O((|T | +

1 Throughout this paper, an event happens with high probability (whp) if the proba-
bility of the event not happening is polynomially small in the size of the input.
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occ) log ‖D‖/ log log ‖D‖) time. Sahinalp and Vishkin [23] provide an optimal
solution for a restricted family of dictionaries2. Feigenblat et al. [14] sacrifice the
update time in order to obtain a faster text processing time. Remarkably, there
have been no significant improvements to date over these time bounds.

Online Dictionary Matching. The AC data structure is an online dictionary
matching, but the time guarantee per text character is in an amortized sense.
Kopelowitz et al. [22] provide an online data structure that is based on the AC
data structure, and has a worst-case time of O(log log |Σ|) per text character.

In recent years there has been a renewed interest in dictionary matching in
the streaming model which inherently provide online solutions. Let m be the
length of the longest pattern in D. Clifford et al. [11] introduced an algorithm
that costs O(log log m) time per character, which was improved by Golan and
Porat [20] to an algorithm that costs O(log log |Σ|) time per character.

Our Results: Online Dynamic Dictionary Matching. While there has been a
large body of work on either online or dynamic dictionary matching, not much
is known about the combination, beyond trivial solutions. In order to simplify
the description of our results, we first focus on the special case in which all of
the patterns in D have the same length.

Theorem 1. Let m > 0 be a positive integer and let D be a dictionary where
each P ∈ D has |P | = m. Then there exists a linear-space data structure for
online dynamic dictionary matching that supports the following operations on D
(the worst-case time costs are given in parentheses):

1. insert(P ) (assumes |P | = m): Insert a pattern P into D (O(m log log ‖D‖)
with high probability).

2. delete(P ): Delete a pattern P ∈ D (O(m log log ‖D‖) with high probability).
3. online search(T ): Report all of the occurrences of patterns from P in D in an

online fashion, processing one character at a time (O(log log ‖D‖) time per
character).

Moreover, the updates to D can take place during an online search operation.
If such an update takes place during an online search operation, then from that
time onwards the algorithm applies the update to the output.

Notice that the time costs of our algorithm are only a log log ‖D‖ factor away
from optimal, which is an exponential improvement over [3] and [2]. Moreover,
our algorithm is online and has worst-case guarantees per text character.

For the case of a general dictionary D, we present the following algorithm.

Theorem 2. There exists a linear-space data structure for online dynamic dic-
tionary matching that supports the following operations on a dictionary D (the
worst-case time costs are given in parentheses):

2 Sahinalp and Vishkin [23] claim that their results can be extended to general dic-
tionaries, but the details were left for a full version that was never made available.
The missing details are unclear and do not seem to be straightforward.
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1. insert(P ): Insert a new pattern P into D (O(|P | log log ‖D‖ + log d/ log log d)
with high probability).

2. delete(P ): Delete a pattern P ∈ D (O(|P | log log ‖D‖ + log d/ log log d) with
high probability).

3. online search(T ): Report all of the occurrences of patterns from P in D in
an online fashion, processing one character at a time (O(log log ‖D‖ + (1 +
occ) log d/ log log d) time per character).

Moreover, the updates to D can take place during an online search operation. If
such an update takes place during an online search operation, then from that time
onwards the algorithm applies the update to the output.

The main difference between Theorem 1 and Theorem 2 is that when the
lengths of patterns are all the same then there can be at most one pattern whose
occurrence ends at a given text location, while if the lengths of the patterns are
different then there could be several patterns whose occurrence ends at a given
location. This difference ends up costing a factor of log d/ log log d per output
element and per text location in the general case. Nevertheless, this overhead is a
significant improvement compared to the log ‖D‖/ log log ‖D‖ overhead from [3].

Fringe Colored Ancestors. As a consequence of our data structure, we also
address an open problem described in [10] which is known as the fringe colored
ancestors problem. The problem definition and solution are given in Sect. 3.

2 Algorithmic Preliminaries

2.1 The Aho-Corasick Data Structure

The following provides an overview of the AC algorithm [1], which is helpful
for gaining intuition for our new algorithm. The AC algorithm stores a trie
of all of the patterns in D where each edge is marked with the corresponding
character from Σ. Each node u in the trie corresponds to a string S(u) that is
a prefix of some pattern (possibly more than one) from D and is comprised of
the concatenation of the characters on the unique simple path from the root to
u. Thus, if r is the root, then S(r) is the empty string. Moreover, each node u
in the trie has at most |Σ| edges to children of u, each edge corresponding to
a different character from Σ, which are called forward-links. In addition, each
non-root node u has a failure-link which points to a node u′ if and only if S(u′)
is the longest prefix of some pattern from D that is also a proper suffix of S(u).
Notice that a failure-link exists for every non-root node in the trie since the
string corresponding to the root is the empty string. Finally, each node u stores
a reporting-link to the node û, if such a node exists, where S(û) is the longest
proper suffix of S(u) such that S(û) ∈ D (that is, û represents a pattern in D).

In order to solve the dictionary matching problem, the AC algorithm starts
from the root of the trie and scans T . Suppose that after scanning i−1 characters
of T , the algorithm is at node u and the ith character is c. If there exists a child x
of u where the edge (u, x) is marked with c, then the algorithm transitions to x.
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Otherwise, if u is the root then the algorithm continues to the next text character,
and if u is not the root then the algorithm follows the failure-link (u, u′), sets
u to be u′, and attempts to transition from the new u with c (this last step is
recursive which may entail following additional failure-links if needed). Once a
transition is successful, then the algorithm uses reporting-links to report all of
the occurrences of patterns in T that end at the ith location.

Using standard amortization arguments together with hashing, it is straight-
forward to show that the total time for scanning a text T is O(|T | + occ) time,
where occ is the size of the output.

Worst-Case Versions of the AC Data Structure. The main downside of the AC
data structure regarding the time cost is that the worst-case (as opposed to amor-
tized) time for treating a single character from T could be Ω(maxP∈D{|P |}). One
straightforward way of reducing this worst-case time is to store a direct failure-
link for each pair of a node u and a character c for which there is no forward-link
for u that has character c. The direct failure-link for u and c points to a node v
such that S(v) is the longest suffix of S(u)c. The direct failure-links allow for a
constant worst-case time per character, but the space usage becomes O(n|Σ|).

Challenges with the Dynamic Setting. When considering the dynamic dictio-
nary case, one of the challenges in using an AC-like data structure is that a
single update to D has the potential of updating a large number of failure-links
(whether we are using direct failure-links or not).

2.2 Generalized Suffix Tree

The backbone of the new data structure is the generalized suffix tree (GST) T(D)
of the patterns in D, which is also the main component of the solution by Amir
et al. [2] and its subsequent improved variants [3]. The GST T(D) is a compacted
trie of the suffixes of the patterns P ∈ D. That is, we construct the trie containing
the suffixes of the patterns P ∈ D and compress every non-branching path with
no terminal inner nodes (a path whose internal nodes have a single child and
do not represent suffixes of the patterns) into a single edge. Since edges in the
compressed trie may correspond to multiple characters (which happens when
the edge represents a non-branching path in the uncompacted trie), the string
corresponding to a given edge is stored implicitly as a pointer to a fragment of
one of the patterns P ∈ D. By standard arguments the size of T(D) is O(‖D‖).

Notice that the nodes of T(D) form a subset of the nodes of the underlying
uncompacted trie. A node u of the uncompacted trie is explicit if u is in T(D),
and otherwise u is implicit. As in the AC data structure, for a node u (implicit or
explicit), let S(u) denote the unique string corresponding to u, which is obtained
by concatenating the labels of edges on the path from the root to u.

For each substring S of a pattern in D, there exists either an implicit or
explicit node u such that S(u) = S; we call u the locus of S. Since the locus
might be implicit, u is represented by a pair (v, β), where v is the nearest explicit
descendant of u and β is the offset—the length of the path from u to v in the
uncompacted trie. Notice that if u is explicit, then u is represented as (u, 0).
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Suffix Links. A crucial and extremely helpful feature of suffix trees is that suffix-
links are stored in explicit nodes. The suffix-link from a non-root node u is a
pointer to the node v such that S(u) = cS(v) for some c ∈ Σ. The suffix-links
play a role similar to that of failure-links in the AC data structure: S(v) is the
longest substring of some pattern in D that is also a proper suffix of S(u)3. By
standard suffix-tree arguments, if u is explicit, then v is also explicit.

The suffix-links of T(D) span a tree SLT(D) on the set of implicit and explicit
nodes of T(D). The suffix-link path from a node u (either implicit or explicit)
in SLT(D), denoted by πu, is the path in SLT(D) from u to the root of SLT(D).
Notice that πu may contain implicit nodes (but only if u is implicit).

GST Construction. Amir et al. [2] showed that a GST (and its suffix-links) can
be maintained efficiently while undergoing insertions and deletions of strings.
The implementation of [2] was designed for constant-size alphabets, but the
only issue with supporting large integer alphabets is the following primitive:
given a node u and a character c, retrieve the outgoing edge from u whose label
starts with c. Such a primitive can be implemented in O(1) worst-case time using
dynamic hash tables [16], which also support updates in O(1) time whp.

Lemma 3 (Dynamic GST; Amir et al. [2]). A generalized suffix tree T(D),
including the suffix-links for explicit nodes, can be maintained in linear space so
that inserting a string to D takes O(|P |) time with high probability.

The Extended GST of the Reversed Dictionary. The reversed dictionary of D
is the dictionary DR = {PR : P ∈ D}, where PR is the string obtained by
reversing P . Notice that SLT(D) is isomorphic to the generalized suffix trie of
DR, which is the uncompacted version of T(DR). Specifically, a node u that is
either explicit or implicit in T(D) corresponds to a unique node v (either implicit
or implicit) in T(DR) such that S(v) = (S(u))R. Due to the isomorphism, we
denote v = uR. In this work, T(DR) is represented using an extension E(DR)
(the E stands for “extension”) obtained by explicitly adding all implicit nodes
of T(DR) which correspond to explicit nodes of T(D). We emphasize that while
this is not the first time that the generalized suffix trie of DR [14,22] is used
for solving dictionary matching, as far as we know this is the first time that an
algorithm uses E(DR).

2.3 Traversing the Generalized Suffix Tree

As text characters arrive, the GST enables maintaining the main pointer—the
locus of the longest suffix of T that is a substring of some pattern in D4. In an
online solution, the locus must be updated before the next character arrives.
3 This is in contrast to the AC failure-links, which lead to the locus of the longest

prefix of some pattern in D that is also a proper suffix of S(u).
4 That is, for each prefix of the text, the algorithm finds the longest suffix that is a

substring of some pattern in D. This is in contrast to [2] where the goal is to find, for
each suffix of T , the longest prefix of the suffix that is a substring of some pattern
in D. Notice that in general the sets of these strings is not necessarily the same.
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Suppose that the main pointer is at a node u. When the next character c
arrives, the algorithm must find the node v representing the longest suffix of Tc.
Notice that v is the locus of the longest suffix of S(u)c that is also a substring
of a pattern in D. If u has a forward-link � labeled with c, then v is the other
endpoint of �, and finding v costs O(1) time using standard suffix tree traversal
methods. Otherwise, a näıve way of finding v is to follow the path of suffix-links,
starting from u, until reaching a node u′ with a forward-link �′ labeled with c,
and then to traverse �′. If such a node does not exist (which is only possible if c
does not occur in any P ∈ D), then v is the root.

If an amortized bound for processing a character of T is sufficient, then one
can traverse the suffix-link path from u (while suffix-links are not stored for
implicit nodes, they can be simulated in constant amortized time). Our goal
is to obtain efficient worst-case running time, so a different solution is needed.
The main idea is to implement direct failure-links, which allow to directly reach
v from u and c. Formally, given a node u and a character c ∈ Σ, the c-labeled
direct failure-link leads from u to the locus of the longest suffix of S(u)c occurring
as a substring of a pattern P ∈ D.

As observed above, the task of simulating a direct failure-link reduces to
finding the lowest ancestor u′ of u in SLT(D) that has a c-labeled forward-link.
If u′ exists, then, by standard suffix-tree arguments, all ancestors u′′ of u′ in
SLT(D) must also have a c-labeled forward-link. In other words, the nodes with
a c-labeled forward-link satisfy the so-called fringe property [10] on SLT(D): a set
M of nodes in a rooted tree T satisfies the fringe property if v ∈ M implies that
either v is the root of T or the parent of v is also in M . Moreover, the ancestors
of u in SLT(D) define πu, and πu corresponds to the path in T(DR) from uR to
the root. Thus, the task of finding u′ can be expressed in terms of fringe colored
ancestor queries (see Sect. 3 for a formal definition) in T(DR). Moreover, the
algorithm uses E(DR), instead of T(DR), since if u does not have a c-labeled
forward-link, then u′ must be explicit in T(D) (see Claim 8), and therefore u′R

is explicit in E(DR).
To conclude, traversing the GST reduces to simulating direct failure-links

from explicit and implicit nodes of T(D). A subroutine designed for this task is
among our main technical contributions and is described in Sect. 4.

2.4 Reporting the Patterns

As in previous amortized procedures for scanning the text T [2,3], the most
expensive phase is reporting the patterns. If the main pointer is to a node u,
then the loci of the patterns to be reported lie on πu. The algorithm maintains a
mark on each node v in SLT(D) where S(v) ∈ D, and so the reporting procedure
reduces to the task of repeatedly finding lowest marked ancestors in SLT(D),
starting from u. However, finding the marked ancestors is performed on E(DR),
since all of the terminal nodes of T(D) correspond to explicit nodes in E(DR).

While any algorithm for reporting marked ancestors could be used, in order
to derive our main results, we tweak existing marked ancestor algorithms. The
proof of Theorem 1 exploits the fact that a locus of a pattern P is marked only
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when P is inserted, and so when marking the locus of P , one can spend time
proportional to |P | which is also the depth of the locus. Furthermore, due to
uniform pattern lengths, there is at most one ancestor to be reported. The proof
of Theorem 2 uses a new algorithm for reporting marked ancestors whose cost
depends on the number of marked nodes d rather than on the tree size ‖D‖.

In Sect. 5 we provide more details on how to report the patterns.

2.5 Updates to the Dictionary

Insertions. When a pattern P is inserted into D, the GST, the data structure
for implementing direct failure-links, and the reporting data structure need to
be updated accordingly. In addition, the main pointer may need to be updated
(because a longer suffix of the current T may now occur as a substring of P ).
If the node u represented by the main pointer is at depth at least |P |, then the
main pointer does not need to change. However, if the depth of u is less than
|P |, then right after P is inserted into the GST, the algorithm traverses from the
root of the GST with the last |P | characters of T (the time cost of the traversal
is amortized over the time cost of inserting P ).

Deletions. The only immediate effect of deleting a pattern P is that P should not
be reported anymore, but the suffixes of P may remain in the GST for some time.
Thus, when deleting P , the only immediate consequence is that the algorithm
removes P from the reporting data structure. Since we are interested in a linear
space solution, the algorithm employs a lazy approach for updating the GST and
the data structure for implementing direct failure-links by using the standard
doubling technique: if the GST becomes too large, the algorithm initiates a
background process of constructing a new GST (including the auxiliary data
structures) on the non-deleted patterns. By using the doubling technique, the
algorithm avoids the technical details of explicitly supporting pattern deletions.

3 Fringe Colored Ancestors

In this section, we describe a solution for the fringe colored ancestor problem. We
begin by recalling two results from the literature that we shall use as subroutines.

Lemma 4 (Kopelowitz [21, Theorem 5.1]). There exists a linear-space data
structure maintaining an ordered list L and disjoint subsets S1, . . . , Sk ⊆ L that
supports the following operations (the runtimes are given in parentheses5):

1. insert(u, v): Insert a new item u after a given item v ∈ L (O(1) time whp).
2. set insert(v, i) (assumes that v /∈ ⋃k

j=1 Sj): Insert an element v ∈ L into Si

(O(log log |L|) time whp).
3. pred(v, i): Locate the predecessor of v ∈ L in Si (O(log log |L|) time whp).

5 Theorem 5.1 in [21] is expressed in terms of expected runtimes. However, the only
randomization is due to hashing, and the same time bounds hold whp.
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Lemma 5 (Cole and Hariharan [12, Theorem 8.1]). There exists a linear-
space data structure maintaining a dynamic rooted tree T subject to the following
operations, supported in O(1) time:

1. insert leaf(u, v): Insert a new leaf u as a child of a node v.
2. insert(u, v): Insert a new node u by subdividing the edge from a non-root node

v to the parent of v.
3. LCA(u, v): Return the lowest common ancestor of two nodes u and v.

We now describe the new component for fringe colored ancestors.

Lemma 6. Let T be a rooted tree such that each node in T is colored using 0
or more colors from a set Δ. If a node u in T has 0 colors, then u is said to be
uncolored. For each color δ ∈ Δ, let Mδ be the nodes of T colored with color δ.
Let N = |T |+∑

δ∈Δ |Mδ|. Suppose that for each color δ ∈ Δ, the set Mδ satisfies
the fringe property. Then there exists an O(N)-space data structure that supports
each of the following operations in O(log log N) time with high probability:

1. insert leaf(u, v): Insert a new leaf u as a child of node v.
2. insert(u, v) (assumes that v is a non-root uncolored node): Insert a new node

u by subdividing the edge connecting node v and the parent of v.
3. color(v, δ) (assumes that v is either the root or the parent of v is already

colored with δ): Color node v with color δ, i.e., add v to Mδ.
4. colored ancestor(v, δ): Return the lowest ancestor of node v that is colored with

color δ.

Proof. The data structure uses Lemma 5 on T in order to support LCA queries.
In addition, the data structure uses Lemma 4 to store the parenthesis repre-
sentation of T , defined recursively as follows. Let r be the root of T and let
v1, . . . , vk be the children of r (in an arbitrary order). The parenthesis repre-
sentation of the tree is the concatenation of the representations of the subtrees
rooted at v1, v2, . . . vk, wrapped with (at the beginning and) at the end. The
two enclosing parentheses represent the root r.

We extend the parenthesis representation to represent T together with the
colors of nodes in T , and denote this new representation by L. The representa-
tion L is defined as follows. For a node v with c(v) > 0 colors, instead of creating
just one pair of wrapping parentheses representing v, the parenthesis representa-
tion uses c(v) + 1 nested pairs of parentheses, one additional pair for each color.
Thus, each extra pair of parentheses is assigned a unique color from Δ, repre-
senting one of the colors of v. The algorithm maintains the invariant that the
innermost parentheses for a node v are the uncolored parentheses. Each node
v ∈ T maintains pointers to the corresponding uncolored parentheses, and each
(colored or uncolored) parenthesis stores a pointer to the corresponding node.

For each δ ∈ Δ, let Sδ ⊆ L be the set of parentheses in L corresponding to
color δ. Notice that for different δ, δ′ ∈ Δ, the sets Sδ and Sδ′ are disjoint, and
thus the algorithm uses Lemma 4 to store the sets Sδ. The total space usage of
all of the data structures is O(|T |) machine words.
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Supporting Operations. To insert a new leaf u with parent v, the algorithm
locates the closing uncolored parenthesis )v corresponding to v and adds a new
pair of matching uncolored parentheses (u and )u immediately prior to )v.

To subdivide the edge from v to its parent, the algorithm locates the uncol-
ored parentheses corresponding to v and inserts an opening (closing) uncolored
parenthesis (u ()u) immediately before (after) (v.

To add a color δ to a node v, the algorithm locates the uncolored parentheses
(v and )v representing v, inserts a pair of parentheses (v,δ and )v,δ immediately
before (v and after )v, respectively, and adds both (v,δ and )v,δ to Sδ.

To answer a lowest colored ancestor query, the algorithm finds the node x ∈ T
corresponding to the predecessor in Sδ of the opening uncolored parenthesis (v

representing v, and then returns y = LCA(x, v). The time cost is O(log log N)
time using the data structures of Lemmas 4 and 5.

The correctness of the query algorithm follows from the fringe property: Since
x is colored with δ, then y is both an ancestor of v and colored with δ. Suppose
by contradiction that there exists a lower ancestor u of v that is colored with
δ. Then the opening δ-colored parenthesis of u appears between the parenthesis
that defines x and (v, contradicting x being the node corresponding to the
predecessor of (v in Sδ. Thus, y is the lowest ancestor of v colored with δ. ��

4 Simulating Direct Failure Links

We begin by proving two claims that are used in the proof of Lemma 9.

Claim 7. Let (xR, yR) be an edge in T(DR) with subsequent internal implicit
nodes zR

1 , . . . , zR
k . Then zR

1 , . . . , zR
k are either all explicit or all implicit in E(DR).

Proof. Denote zR
0 = xR and zR

k+1 = yR. If a node zR
i , for 1 ≤ i ≤ k, is explicit in

E(DR), then zi is explicit in T(D), and the occurrences of S(zi) in D are followed
by at least two distinct characters a, b. On the other hand, as zR

i is implicit in
T(DR), the occurrences of S(zi) in D are all preceded by the same character c.
Hence, both a and b follow some occurrences of S(zi+1) = cS(zi) in D, so zi+1 is
explicit in T(D) and zR

i+1 is explicit in E(DR). Furthermore, zi−1 is the target of
the suffix-link from zi, so zi−1 is explicit in T(D) and zR

i−1 is explicit in E(DR).
By induction, zR

1 , . . . , zR
k are all explicit in E(DR) if at least one of them is. ��

Claim 8. Let u be a node of T(D) with no c-labeled forward-link. If u′ is the
lowest ancestor of u in SLT(D) with a c-labeled forward-link, then u′ is explicit
in T(D).

Proof. If u is explicit in T(D), then all of the nodes in πu are also explicit,
and in particular u′ is explicit. Otherwise, all of the nodes in πu (including u)
have a forward-link with another label d �= c. Consequently, u′ has at least two
forward-links and thus u′ is explicit in T(D). ��
Lemma 9. There exists a data structure that augments T(D) with O(‖D‖)
space, and supports inserting a string P into D in O(|P | log log ‖D‖) time with
high probability, and simulating direct failure-links in O(log log ‖D‖) time.

Proof. The proof begins by listing the components augmenting T(D).
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Components. The first augmenting component is E(DR). Additionally, for every
explicit node u of T(D), the data structure stores a bidirectional pointer between
u and the corresponding node uR in E(DR). If u has a c-labeled forward link,
then uR is colored with color c. Notice that every node on πu is then explicit
and has a c-labeled forward-link. Moreover, the nodes on πu correspond to the
ancestors of uR in E(DR), and so all of the ancestors of uR in E(DR) are colored
with color c. Therefore, the set Mc of nodes in E(DR) with color c satisfies the
fringe property, and so the algorithm augments E(DR) with the data structure
of Lemma 6 to maintain the sets Mc, while supporting colored ancestor queries.

In order to support updating E(DR), the algorithm also maintains T(DR)
and, for every explicit node of T(DR), a bidirectional pointer between the node
and its counterpart in E(DR). Claim 7 classifies edges of T(DR) into two types
depending on whether the internal nodes are all explicit or implicit in E(DR). If
the internal nodes of an edge e from T(DR) are explicit in E(DR), then the data
structure stores an array Ae with pointers to these explicit nodes in E(DR), and
e maintains a pointer to Ae.

For each explicit node u of T(D), the algorithm maintains a pointer to a
fragment6 P [�..r] of a pattern P ∈ D such that P [�..r] = S(u). Finally, for each
pattern P ∈ D, and each r ∈ {1, . . . , |P |}, the data structure stores a pointer
λP,r to the locus of (P [1..r])R in E(DR) (which is a terminal node).

The only non-trivial aspect of the space complexity is the size of the compo-
nent of Lemma 6, which is O(‖D‖) since the number of colorings

∑
c∈Σ |Mc| is

bounded by the number of edges in the GST.

Implementing Direct Failure-Links. Given a node u in T(D) and a character
c ∈ Σ, let v be the target of the c-labeled direct failure-link from u. The algorithm
locates v as follows. Recall from Sect. 2 that, if u′ is the lowest ancestor of u in
SLT(D) that has a c-labeled forward-link, then v is the target of the c-labeled
forward-link from u′. Thus, the goal of the algorithm is to locate u′ and then
return v using the hash table stored at u′. However, u′ may not exist (in the case
c does not occur in any pattern of D). For simplicity, the algorithm description
first assumes that u′ exists and later shows how this assumption is supported.

If u has a c-labeled forward-link, then u′ = u. Otherwise, notice that πu

contains u′ and corresponds to a path in E(DR) from uR to the root. Node
u′ can be either explicit or implicit. In either case, if the algorithm locates an
explicit node wR in E(DR) such that u′ is the lowest ancestor of the (possibly
implicit) corresponding node w in SLT(D) that has a c-labeled forward-link, then
u′R is the lowest ancestor of wR colored with c (since u′ is explicit in T(D) by
Claim 8), and u′ is located using a single colored ancestor query on wR and c.

If u is explicit, then uR satisfies the requirements for wR. If u is implicit,
let x be the highest explicit descendant of u in T(D). Recall that the main
pointer provides direct access to x. Through x, the algorithm gains access to
the fragment P [�..r] of a pattern P ∈ D such that P [�..r] = S(u). Let z be the

6 Recall that the pointers to fragments are one of the standard ways of storing edge
labels in a GST.
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locus of P [1..r] in T(D). Notice that πu is a sub-path of πz and the sub-path
of πz from z to u does not contain any explicit nodes. Hence, u′ is the lowest
ancestor of z in SLT(D) that has a c-labeled forward-link, and so z satisfies the
requirements for w. Therefore, wR is the locus of (P [1..r])R in E(DR), which is
accessible through λP,r.

Finally, if u′ does not exist, then w′R does not exist either. Thus, the algo-
rithm identifies this case when executing the colored ancestor query. Such a case
implies that c does not appear in any pattern from D (since the root of E(DR)
is colored by all characters that appear in D), and so v is the root of T(D).

Updates. Upon insertion of a pattern P , both T(D) and T(DR) are updated
in O(|P |) time using Lemma 3. Updates to T(DR) are reiterated in E(DR) as
follows. If a new node u is inserted by subdividing an edge e, and the implicit
nodes on e are implicit in E(DR) too, then the algorithm executes the same
insertion in E(DR). Otherwise, u is explicit in E(DR), and so the array Ae already
stores a pointer to u in E(DR). Note that the task of maintaining array Ae subject
to splits is a straightforward task. The insertion of a leaf u is also straightforward
since parent of u already knows its counterpart in E(DR).

The second phase of updates to E(DR) is to introduce an explicit node uR for
each new explicit node u of T(D). The new explicit nodes of T(D) are processed
by non-decreasing depths, and so when processing a node u, the target v of
the suffix-link from u is guaranteed to have already been processed; hence, v
already has a pointer to vR in E(DR). Notice that S(u) = cS(v) for a character
c ∈ Σ and uR is the target of the c-labeled forward-link from vR (in E(DR)).
The algorithm retrieves uR using the hash table stored at vR. If uR is an implicit
node on an edge e in E(DR), then the algorithm converts all implicit nodes on
e into explicit nodes so that Claim 7 holds at all times (including during the
update process). The number of implicit nodes converted to explicit nodes is
proportional to the length of e. Nevertheless, by Claim 7, the total number of
nodes converted during an update is still O(|P |).

However, every update to E(DR) imposes an update to the data structure
of Lemma 6. Moreover, for every new edge (u, v) added to T(D), the algorithm
retrieves the first character c of the edge label and colors uR with color c. Thus,
the total update time is O(|P | log log ‖D‖) whp. ��

5 Reporting Patterns

Having updated the location u of the main pointer (i.e., the locus of the longest
substring of some P ∈ D which occurs as a suffix of T ), the algorithm reports
all patterns which occur as suffixes of T . Notice that πu contains the locus of
every suffix of S(u), so the task is reduced to reporting all patterns whose loci
lie on πu. The terminal nodes are explicit in T(D), so the corresponding nodes
are explicit in E(DR), and the algorithm marks them.

If u is explicit, then the task reduces to reporting all marked ancestors of
the corresponding node uR of E(DR). Otherwise, via the same arguments as in
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Sect. 4, the locus of (P [1..r])R, where P [�..r] = S(u) for P ∈ D, is used instead
of uR. In either case, the task reduces to reporting marked ancestors of a node
wR in E(DR).

If all the patterns are of the same length, the algorithm maintains marks in
E(DR) for all ancestors of the loci of PR for P ∈ D, and so the marked nodes
satisfy the fringe property. In this case, if wR has an ancestor vR representing
a pattern, then vR is the nearest marked ancestor of wR, and vR is found in
O(log log ‖D‖) time using a fringe marked ancestor data structure [10]. Upon
inserting a pattern P , at most O(|P |) nodes may need to be marked, which
costs O(|P | log log ‖D‖) time. This completes the proof of Theorem 1.

The proof of Theorem 2 is deferred to the full version of the paper.
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Abstract. Balanced Stable Marriage (BSM) is a central opti-
mization version of the classic Stable Marriage (SM) problem. We
study BSM from the viewpoint of Parameterized Complexity. Informally,
the input of BSM consists of n men, n women, and an integer k. Each
person a has a (sub)set of acceptable partners, A(a), who a ranks strictly;
we use pa(b) to denote the position of b ∈ A(a) in a’s preference list. The
objective is to decide whether there exists a stable matching µ such that
balance(µ) � max{∑

(m,w)∈μ pm(w),
∑

(m,w)∈μ pw(m)} ≤ k. In SM, all
stable matchings match the same set of agents, A� which can be com-
puted in polynomial time. As balance(µ) ≥ |A�|

2
for any stable matching

µ, BSM is trivially fixed-parameter tractable (FPT) with respect to k.
Thus, a natural question is whether BSM is FPT with respect to k− |A�|

2
.

With this viewpoint in mind, we draw a line between tractability and
intractability in relation to the target value. This line separates addi-
tional natural parameterizations higher/lower than ours (e.g., we auto-
matically resolve the parameterization k− |A�|

2
). The two extreme stable

matchings are the man-optimal µM and the woman-optimal µW . Let
OM =

∑
(m,w)∈μM

pm(w), and OW =
∑

(m,w)∈μW
pw(m). In this work,

we prove that
– BSM parameterized by t = k − min{OM , OW } admits (1) a kernel

where the number of people is linear in t, and (2) a parameterized
algorithm whose running time is single exponential in t.

– BSM parameterized by t = k − max{OM , OW } is W[1]-hard.
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Kernelization
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1 Introduction

Over the last two decades, Parameterized Complexity has evolved to be a cen-
tral field of research in theoretical computer science. However, the scope of this
field was essentially limited to applications to NP-hard optimization problems
on graphs. There is no inherent reason why this should be the case. Indeed, the
main idea of Parameterized Complexity is very general—measure running time
in terms of both input size and a parameter that captures structural properties
of the input instance. The idea of a multivariate analysis of algorithms holds the
potential to address the need for a framework for refined algorithm analysis for all
kinds of problems across all domains and subfields of computer science. Recently,
techniques in Parameterized Complexity were successfully applied in the area of
Computational Social Choice Theory. In particular, Voting has become a sub-
ject of intensive study from the viewpoint of Parameterized Complexity (for a few
examples, see [1, Chapter 10, 11] and [2]; for more information on the current state-
of-the-art, we refer to excellent surveys such as [3–5,11]. However, Voting is only
one topic under the rich umbrella of Computational Social Choice. Parameterized
analysis of other topics has been few and far between. In the past few months, a
collective effort to study Matching under Preferences through the lens of Param-
eterized Complexity was initiated [6,17,18,21,22,24,25,28–31]. Our work is the
first to introduce kernelization to this topic. We note that recently Chen et al. [6]
have presented results on this topic (for different problems) that include a kernel-
ization algorithm. However, it is fair to say that our work is the first to introduce
“above guarantee parameterization” to this topic.

In Matching under Preferences, a matching is an allocation (or assignment)
of agents to resources that satisfies some predefined criterion of compatibil-
ity/acceptability. Here, (arguably) the best known model is the two-sided model,
where the agents on one side are referred to as men, and the agents on the
other side are referred to as women. A few illustrative examples of real life situ-
ations where this model is relevant include matching hospitals to residents, stu-
dents to colleges, kidney patients to donors and users to servers in a distributed
Internet service. At the heart of all of these applications lies the fundamental
Stable Marriage problem. In particular, the Nobel Prize in Economics was
awarded to Shapley and Roth in 2012 “for the theory of stable allocations and
the practice of market design.” Moreover, several books have been dedicated to
the study of Stable Marriage as well as optimization variants of this classi-
cal problem such as the Egalitarian Stable Marriage, Minimum Regret

Stable Marriage, Sex-Equal Stable Marriage and Balanced Stable

Marriage problems [19,20,23,27].
The input of Stable Marriage consists of a set of men, M , and a set of

women, W . Each person a has a set of acceptable partners, A(a), who are ranked
by a in a strict order. Consequently, each person a has a so-called preference list,
where pa(b) is the position of b ∈ A(a) in a’s preference list. Without loss of
generality, it is assumed that if a person a ranks a person b, then the person b
ranks the person a as well (if not then b can be deleted from a’s preference list,
since they can not matched to each other). The sets of preference lists of the
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men and the women are denoted by LM and LW , respectively. In this context,
we say that a pair of a man and a woman, (m,w), is an acceptable pair if both
m ∈ A(w) and w ∈ A(m). Accordingly, the notion of a matching refers to a
matching between men and women, where two people matched to one another
form an acceptable pair. Roughly speaking, the goal of the Stable Marriage

problem is to find a matching that is stable in the following sense: there should
not exist two people who prefer being matched to one another over their current
“status”. More precisely, a matching μ is said to be stable if it does not have
a blocking pair, which is an acceptable pair (m,w) such that (i) either m is
unmatched by μ or pm(w) < pm(μ(m)), and (ii) either w is unmatched by μ
or pw(m) < pw(μ(w)). Here, the notation μ(a) indicates the person to whom μ
matches the person a. Note that a person always prefers being matched to an
acceptable partner over being unmatched.

The seminal paper [13] by Gale and Shapely on stable matchings shows
that given an instance of Stable Marriage, a stable matching necessarily
exists, but it is not necessarily unique. In fact, for a given instance of Stable
Marriage, there can be an exponential number of stable matchings, and they
should be viewed as a spectrum where the two extremes are known as the man-
optimal stable matching and the woman-optimal stable matching. Formally, the
man-optimal stable matching, denoted by μM , is a stable matching such that
every stable matching μ satisfies the following condition: every man m is either
unmatched by both μM and μ or pm(μM (m)) ≤ pm(μ(m)). The woman-optimal
stable matching, denoted by μW , is defined analogously. These two extremes,
which give the best possible solution for one party at the expense of the other
party, always exist and can be computed in polynomial time [13]. Naturally, it
is desirable to analyze matchings that lie somewhere in the middle. Here, the
quantity pa(μ(a)) is the “satisfaction” of a in a matching μ, where a smaller value
signifies a greater amount of satisfaction. The most well-known measures are as
follows:

– μ is globally desirable if it minimizes
∑

(m,w)∈µ(pm(μ(m))+pw(μ(w))), called
the egalitarian stable matching;

– μ is minimum regret if it minimizes max(m,w)∈µ{max{pm(μ(m)), pw(μ(w))}},
called the minimum regret stable matching;

– μ is fair towards both sides if it minimizes |∑(m,w)∈µ pm(μ(m)) −∑
(m,w)∈µ

pw(μ(w))|, called the sex-equal stable matching;
– μ is desirable by both sides if it minimizes max{∑

(m,w)∈µ pm(w),
∑

(m,w)∈µ pw(m)}, called the balanced stable matching.

Each notion above leads to a natural, different well-studied optimization
problem (see Related Work). We focus on the NP-hard Balanced Stable

Marriage (BSM) problem, where the objective is to find a stable matching μ
that minimizes

balance(μ) = max{
∑

(m,w)∈µ

pm(w),
∑

(m,w)∈µ

pw(m)}.
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This problem was introduced in the influential work of Feder [12] on stable
matchings, and was shown to be NP-hard and admitting a 2-approximation
algorithm. We refer reader to [16] for the full version of this paper.

Our Contribution. Above guarantee parameterization is a topic of exten-
sive study in Parameterized Complexity [7]. We introduce two “above-guarantee
parameterizations” of BSM. Consider the minimum value OM (OW ) of the total
dissatisfaction of men (women) realizable by a stable matching. Formally, OM =∑

(m,w)∈µM
pm(w), and OW =

∑
(m,w)∈µW

pw(m), where μM (μW ) is the man-
optimal (woman-optimal) stable matching. Denote Bal = minµ∈SM balance(μ),
where SM is the set of all stable matchings. An input integer k would indicate
that our objective is to decide whether Bal ≤ k. In our first parameterization, the
parameter is k −min{OM , OW }, and in the second one, it is k −max{OM , OW }.

Above-Min Balanced Stable Marriage (Above-Min BSM)
Input: An instance (M,W,LM ,LW ) of Balanced Stable Marriage, and
a non-negative integer k.
Question: Is Bal ≤ k?
Parameter: t = k − min{OM , OW }

Above-Max Balanced Stable Marriage (Above-Max BSM)
Input: An instance (M,W,LM ,LW ) of Balanced Stable Marriage, and
a non-negative integer k.
Question: Is Bal ≤ k?
Parameter: t = k − max{OM , OW }

Choice of Parameters: Note that the minimum dissatisfaction the party of
men can hope for (call it optimum satisfaction) is OM , and the minimum dissat-
isfaction the party of women can hope for (also call it optimum satisfaction) is
OW . First, consider the parameter t = k −min{OM , OW }. Whenever we have a
solution such that the amounts of satisfaction of both parties are close enough to
the optimum, this parameter is small. (When the parameter is small, we cannot
simply pick μM or μW since balance(μM ) and balance(μW ) can be arbitrarily
larger than min{OM , OW }.) Indeed, the closer the satisfaction of both parties
to the optimum (which is exactly the case where both parties would find the
solution desirable), the smaller the parameter is, and the smaller the parameter
is, the faster a parameterized algorithm is. In this above guarantee parame-
terization, the guarantee is already quite high—for example, our parameter is
significantly stronger than k − n′, where n′ is the number of men (or women)
matched by a stable matching, since k − min{OM , OW } is (i) never larger than
k − n′, and (ii) can be arbitrarily smaller than k − n′, e.g. k − n′ can be of the
magnitude of O(n) while our parameter is 0.

Since we are taking the minimum of {OM , OW }, we need the satisfaction of
both parties to be close to optimal in order to have a small parameter. As we are
able to show that BSM is FPT with respect to this parameter, it is very natural
to next examine the case where we take the max of {OM , OW }. In this case,
the closer the satisfaction of at least one party to the optimum, the smaller the
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parameter is. In other words, now to have a small parameter, the demand from a
solution is weaker than before. In the vocabulary of Parameterized Complexity,
it is said that the parameterization by t = k −max{OM , OW } is “above a higher
guarantee” than the parameterization by t = k − min{OM , OW }, since it is
always the case that max{OM , OW } ≥ min{OM , OW }. Interestingly, as we show
in this paper, the parameterization by k − max{OM , OW } results in a problem
that is W[1]-hard. Hence, the complexities of the two parameterizations behave
very differently. We remark that in Parameterized Complexity, it is not at all
the rule that when one takes an “above a higher guarantee” parameterization,
the problem would become W[1]-hard, as can be evidenced by the Vertex

Cover problem, the classical above guarantee parameterizations in this field, for
which three distinct above guarantee parameterizations yielded FPT algorithms
[8,15,26,32]. Overall, our results draw a nontrivial line between tractability and
intractability of above guarantee parameterization of BSM.

Finally, the three main theorems that we establish in this study are as follows.

Theorem 1. Above-Max BSM is W[1]-hard.

Theorem 2. Above-Min BSM admits a kernel that has at most 3t men, at
most 3t women, and such that each person has at most 2t+1 acceptable partners.

Note that Theorem 2 implies that Above-Min BSM has an FPT algorithm
with running time 2O(t log t). However, we present an algorithm whose running
time is single exponential in t utilizing the method of bounded search trees on
top of our kernel (See [16]).

Theorem 3. Above-Min BSM can be solved in time O∗(8t)1.

Our Techniques: The reduction we develop to prove Theorem 1 is quite tech-
nically intricate; the overview followed by a detailed reduction is presented in
Sect. 2. The proof of Theorem 2 is based on the introduction and analysis of a
“functional” variant of Above-Min BSM. Our kernelization algorithm consists
of several phases, each simplifying a different aspect of Above-Min BSM, and
shedding light on structural properties of the Yes-instances of this problem. We
stress that the design and order of our reduction rules are very carefully tailored
to ensure correctness. For example, it is tempting to execute Step 2 before Step
1 (see the outline in Sect. 3.1), but this is simply incorrect as it alters the set of
stable matchings. The reduction rules are easy to express for this functional vari-
ant of Above-Min BSM. Hence, we choose to define the reduction rules for this
functional variant of Above-Min BSM instead of Above-Min BSM directly.

Preliminaries. Let f be a function f : A → B. For a subset A′ ⊆ A, we let f |A′

denote the restriction of f to A′. That is, f |A′ : A′ → B, and f |A′(a) = f(a) for
all a ∈ A′. For basic notions in Parameterized Complexity, see preliminaries in
[16]. We refer the reader to the books [7,10] for more information on Parame-
terized Complexity.
1 O∗ hides terms that are polynomial in the input size.
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Throughout the paper, whenever the instance I of BSM under discussion is
not clear from context or we would like to put emphasis on I, we add “(I)” to
the appropriate notation. For example, we use the notation t(I) rather than t.
When we would like to refer to the balance of a stable matching μ in a specific
instance I, we would use the notation balanceI(μ). A matching is called a perfect
matching if it matches every person (to some other person).

A Functional Variant of Stable Marriage. To obtain our kernelization
algorithm for Above-Min BSM, it will be convenient to work with a “functional”
definition of preferences, resulting in a “functional” variant of this problem which
we call Above-Min FBSM. Here, instead of the sets of preferences lists LM and
LW , the input consists of sets of preference functions FM and FW , where FM

replaces LM and FW replaces LW . Specifically, every person a ∈ M ∪ W has
an injective (one-to-one) function fa : A(a) → N, called a preference function.
Intuitively, a lower function value corresponds to a higher preference. Since every
preference function is injective, it defines a total order over a set of acceptable
partners. Note that all of the definitions presented in the introduction extend to
our functional variant in the natural way (the required adaptations can be found
in [16]. Clearly, it is straightforward to turn an instance of Above-Min BSM

into an equivalent instance of Above-Min FBSM as stated in the following
observation. We list some classical results, which were originally presented in
the context of Stable Marriage. These results also hold in the context of
Functional Stable Marriage (see [16]).

Observation 1. Let I = (M,W,LM ,LW , k) be an instance of Above-Min

BSM. For each a ∈ M ∪ W , define fa : A(a) → N by setting fa(b) = pa(b) for
all b ∈ A(a). Then, I is a Yes-instance of Above-Min BSM if and only if
(M,W,FM = {fm}m∈M ,FW = {fw}w∈W , k) is a Yes-instance of Above-Min

FBSM.

Proposition 1 ([13]). For any instance of Stable Marriage (or Func-

tional Stable Marriage), there exist a man-optimal stable matching, μM ,
and a woman-optimal stable matching, μW , and both μM and μW can be com-
puted in polynomial time.

Proposition 2 ([14]). Given an instance of Stable Marriage (or Above-

Min FBSM), the set of men and women that are matched is the same for all
stable matchings.

Proposition 3 ([20]). For any instance of Stable Marriage (or Func-

tional Stable Marriage), every stable matching μ satisfies the follow-
ing conditions: every woman w is either unmatched by both μM and μ or
pw(μM (w)) ≥ pw(μ(w)), and every man m is either unmatched by both μW

and μ or pm(μW (m)) ≥ pm(μ(m)).
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2 Hardness

In this section, we prove Theorem 1. For this purpose, we give a reduction from
a W[1]-hard problem, Clique [9]. Thus, to prove Theorem 1, it is sufficient to
prove the following result.

Lemma 1. Given an instance I = (G = (V,E), k) of Clique, an equivalent
instance Î = (M,W,LM ,LW , k̂) of Above-Max BSM such that t = 6k +
3k(k − 1) can be constructed in time O(f(k) · |I|O(1)) for some function f .

The goal is to construct (in “FPT time”) an instance Î = (M,W,LM ,LW , k̂) of
Above-Max BSM. The following subsection contains an informal explanation
of the intuition. A formal description of the gadget construction and the analysis
are presented in [16].

Reduction. Let I = (G = (V,E), k) be some instance of Clique. We select
arbitrary orders on V and E, and accordingly we denote V = {v1, v2, . . . , v|V |}
and E = {e1, e2, . . . , e|E|}.

First, to construct the sets M and W , we define three pairwise-disjoint
subsets of M , called MV ,ME and M̃ , and three pairwise-disjoint subsets of
W , called WV ,WE and W̃ . Then, we set M = MV ∪ ME ∪ M̃ � {m∗} and
W = WV ∪ WE ∪ W̃ � {w∗}, where m∗ and w∗ denote a new man and a new
woman, respectively.

– MV = {mi
v : v ∈ V, i ∈ {1, 2}}; WV = {wi

v : v ∈ V, i ∈ {1, 2}}.
– ME = {mi

e : e ∈ E, i ∈ {1, 2}}; WE = {wi
e : e ∈ E, i ∈ {1, 2}}.

– Let δ = 2(|V | + |E| + |V ||E| + |V ||E|2) − k(4 + 4k + 2|E| + (k − 1)|V ||E|).
Then, M̃ = {m̃i : i ∈ {1, 2, . . . , δ}} and W̃ = {w̃i : i ∈ {1, 2, . . . , δ}}.

Note that |M | = |W |. We remark that in what follows, we assume w.l.o.g. that
δ ≥ 0 and |V | > k + k(k − 1)/2, else the size of the input instance I of Clique

is bounded by a function of k and can therefore, by using brute-force, be solved
in FPT time.

Roughly speaking, each pair of men, m1
v and m2

v, represents a vertex, and we
aim to ensure that either both men will be matched to their best partners (in the
man-optimal stable matching) or both men will be matched to other partners
(where there would be only one choice that ensures stability). Accordingly, we
will guarantee that the choice of matching these two men to their best partners
translates to not choosing the vertex they represent into the clique, and the other
choice translates to choosing this vertex into the clique.

Now, having just the set MV , we can encode selection of vertices into the
clique, but we cannot ensure that the vertices we select indeed form a clique. For
this purpose, we also have the set ME which, in a manner similar to MV , encodes
selection of edges into the clique. By designing the instance in a way that the
situation of the men in the man-optimal stable matching is significantly worse
than that of the women in the women-optimal stable matching, we are able to
ensure that at most 2 (k + k(k − 1)/2) men in MV ∪ ME will not be assigned
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their best partners (here, we exploit the condition that balance(μ) ≤ k̂ for a
solution μ). Here the man m∗ plays a crucial role—by using dummy men and
women (in the sets M̃ and W̃ ) that prefer each other over all other people, we
ensure that the situation of m∗ is always “extremely bad” (from his viewpoint),
while the situation of his partner, w∗, is always “excellent” (from her viewpoint).

At this point, we first need to ensure that the edges that we select indeed
connect the vertices that we select. For this purpose, we carefully design our
reduction so that when a pair of men representing some edge e obtain partners
worse than those they have in the man-optimal stable matching, it must be that
the men representing the endpoints of e have also obtained partners worse than
those they have in the man-optimal stable matching, else stability will not be
preserved—the partners of the men representing the endpoints of e will form
blocking pairs together with the men representing e.

Finally we observe that we still need to ensure that among our
2 (k + k(k − 1)/2) distinguished men in MV ∪ ME , which are associated with
k + k(k − 1)/2 selected elements (vertices and edges), there will be exactly 2k
distinguished men from MV and exactly k(k − 1) distinguished men from ME ,
which would mean we have chosen k vertices and k(k − 1)/2 edges. For this
purpose, we construct an instance where for the women, it is only somewhat
“beneficial” that the men in MV will not be matched to their best partners, but
it is extremely beneficial that the men in ME will not be matched to their best
partners. This objective is achieved by carefully placing dummy men (from M̃)
in the preference lists of women in WE . By again exploiting the condition that
balance(μ) ≤ k̂ for a solution μ, we are able to ensure that there would be at
least k(k − 1) distinguished men from ME .

3 Kernel

In this section, we design a kernelization algorithm for Above-Min BSM. More
precisely, we prove Theorem 2.

3.1 Functional Balanced Stable Marriage

To prove Theorem 2, we first prove the following result for the Above-Min

FBSM problem. Proofs of result marked with (*) can be found in [16].

Lemma 2 (*). Above-Min FBSM admits a kernel with at most 2t men, at
most 2t women, and such that the image of the preference function of each person
is a subset of {1, 2, . . . , t + 1}.

To obtain the desired kernelization algorithm, we execute the following plan.

1. Cleaning Prefixes and Suffixes. Simplify the preference functions by
“cleaning” suffixes and thereby also “cleaning” prefixes.

2. Perfect Matching. Zoom into the set of people matched by every stable
matching.
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3. Overcoming Sadness. Bound the number of “sad” people. Roughly speak-
ing, a “sad” person a is one whose best attainable partner, b, does not recip-
rocate by considering a as the best attainable partner.

4. Marrying Happy People. Remove “happy” people from the instance.
5. Truncating High-Values. Obtain “compact” preference functions by trun-

cating “high-values”.
6. Shrinking Gaps. Shrink some of the gaps created by previous steps.

Each of the following subsections captures one of the steps above. In what
follows, we let I denote our current instance of Above-Min FBSM. Initially,
this instance is the input instance, but as the execution of our algorithm pro-
gresses, the instance is modified. The reduction rules that we present are applied
exhaustively in the order of their presentation. In other words, at each point of
time, the first rule whose condition is true is the one that we apply next. In par-
ticular, the execution terminates once the value of t drops below 0, as implied
by the following rule.

Reduction Rule 1. If k < max{OM , OW }, then return No.

Lemma 3 (*). Reduction Rule 1 is safe.

Note that if t < 0, then k < min{OM , OW } ≤ max{OM , OW }. From Propo-
sition 1 we can infer that each of our reduction rules can indeed be implemented
in polynomial time.

Cleaning Prefixes and Suffixes. We begin by modifying the images of the
preference functions. We remark that it is necessary to perform this step first
as otherwise the following steps would not be correct. To clean prefixes while
ensuring both safeness and that the parameter t does not increase, we would
actually need to clean suffixes first. Formally, we define suffixes as follows.

Definition 1. Let (m,w) denote an acceptable pair. If m is matched by μW and
fm(w) > fm(μW (m)), then we say that w belongs to the suffix of m. Similarly,
if w is matched by μM and fw(m) > fw(μM (w)), then we say that m belongs to
the suffix of w.

By Proposition 3, we have the following observation.

Observation 2. Let (m,w) denote an acceptable pair such that one of its mem-
bers belongs to the suffix of the other member. Then, there is no μ ∈ SM(I) that
matches m with w.

For every person a, let worst(a) be the person in A(a) to whom fa assigns its
worst preference value. More precisely, worst(a) = argmaxb∈A(a)fa(b). We will
now clean suffixes.

Reduction Rule 2. If there exists a person a such that worst(a) belongs to the
suffix of a, then define the preference functions as follows.
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– f ′
a = fa|A(a)\{worst(a)} and f ′

worst(a) = fworst(a)|A(worst(a))\{a}.
– For all b ∈ M ∪ W \ {a,worst(a)}: f ′

b = fb

The new instance is J = (M,W, {f ′
m′}m′∈M , {f ′

w′}w′∈W , k).

Lemma 4 (*). Reduction Rule 2 is safe, and t(I) = t(J ).

By cleaning suffixes, we actually also accomplish the objective of cleaning
prefixes, which are defined as follows.

Definition 2. Let (m,w) denote an acceptable pair. If m is matched by μM and
fm(w) < fm(μM (m)), then we say that w belongs to the prefix of m. Similarly,
if w is matched by μW and fw(m) < fw(μW (w)), then we say that m belongs to
the prefix of w.

Lemma 5 (*). Let I be an instance of Above-Min FBSM on which Reduc-
tion Rules 1 to 2 have been exhaustively applied. Then, there does not exist an
acceptable pair (m,w) such that one of its members belongs to the prefix of the
other one.

Corollary 1. Let I be an instance of Above-Min FBSM on which Reduc-
tion Rules 1 to 2 have been exhaustively applied. Then, for every acceptable
pair (m,w) in I where m and w are matched (not necessarily to each other)
by both μM and μW , it holds that fm(μM (m)) ≤ fm(w) ≤ fm(μW (m)) and
fw(μW (w)) ≤ fw(m) ≤ fw(μM (w)).

Perfect Matching. Having Corollary 1 at hand, we are able to provide a simple
rule that allows us to assume that every solution matches all people.

Reduction Rule 3. If there exists a person unmatched by μM , then let M ′

and W ′ denote the subsets of men and women, respectively, who are matched
by μM . For each a ∈ M ′ ∪ W ′, denote A′(a) = A(a) ∩ (M ′ ∪ W ′), and define
f ′
a = fa|A′(a). The new instance is J = (M ′,W ′, {f ′

m}m∈M ′ , {f ′
w}w∈W ′ , k).

To prove the safeness of this rule, we first prove the following lemma.

Lemma 6 (*). Let I be an instance of Above-Min FBSM on which Reduction
Rules 1 to 2 have been exhaustively applied. Then, for every person a not matched
by μM , it holds that A(a) = ∅.
Lemma 7 (*). Reduction Rule 3 is safe, and t(I) = t(J ).

By Proposition 2, from now onwards, we have that for the given instance, any
stable matching is a perfect matching. Due to this observation, we can denote
n = |M | = |W |, and for any stable matching μ, we have the following equalities.

∑

(m,w)∈µ

fm(w) =
∑

m∈M

fm(μ(m));
∑

(m,w)∈µ

fw(m) =
∑

w∈W

fw(μ(w)). (I)
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Overcoming Sadness. As every stable matching is a perfect matching, every
person is matched by every stable matching, including the man-optimal and
woman-optimal stable matchings. Thus, it is well defined to classify the people
who do not have the same partner in the man-optimal and woman-optimal stable
matchings as “sad”. That is,

Definition 3. A person a ∈ M ∪ W is sad if μM (a) �= μW (a).

We let MS and WS denote the sets of sad men and sad women, respectively.
People who are not sad are termed happy. Accordingly, we let MH and WH

denote the sets of happy men and happy women, respectively. Note that MS = ∅
if and only if WS = ∅. Note that by the definition, a happy person a and
μM (a) = μW (a) are matched to each other in every stable matching. Next, we
bound the number of sad people in a Yes-instance.

Reduction Rule 4. If |MS | > 2t or |WS | > 2t, then return No.

Lemma 8 (*). Reduction Rule 4 is safe.

Marrying Happy People. Towards the removal of happy people, we first need
to handle the special case where there are no sad people. In this case, there is
exactly one stable matching, which is the man-optimal stable matching (that is
equal, in this case, to the woman-optimal stable matching). This immediately
implies the safeness of the following rule.

Reduction Rule 5. If MS = WS = ∅, then return Yes if balance(μM ) ≤ k
and No otherwise.

Observation 3. Reduction Rule 5 is safe.

Next, we turn to removing happy people. For this, we need to ensure that the
balance of the instance is preserved. This is because we do not know which side
(men or women) attains the Bal(I) value, hence we cannot reduce the quantity k
by the dissatisfaction of the happy people on that side. Consequently, we need to
ensure that Bal(I) = Bal(J ), where J denotes the new instance resulting from
the removal of some happy people. Let (mh, wh) denote a happy pair, a pair of a
happy man and a happy woman who are matched to each other in every stable
matching.2 Then, we redefine the preference functions in a manner that allows
us to transfer the “contributions” of mh and wh from Bal(I) to Bal(J ) via some
sad man and woman. Note that these sad people exist because Reduction Rule 5
does not apply.

Reduction Rule 6. If there exists a happy pair (mh, wh), then proceed as fol-
lows. Select an arbitrary sad man ms and an arbitrary sad woman ws. Denote
M ′ = M \ {mh} and W ′ = W \ {wh}. For each person a ∈ M ′ ∪ W ′, the new
preference function f ′

a : A(a) \ {mh, wh} → N is defined as follows.

2 Such a pair is often referred to as fixed pair in literature.
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– For each w ∈ A(ms) \ {wh}: f ′
ms

(w) = fms
(w) + fmh

(wh).
– For each m ∈ A(ws) \ {mh}: f ′

ws
(m) = fws

(m) + fwh
(mh).

– For each w ∈ W ′ \ {ws}: f ′
w = fw|M ′ , and for each m ∈ M ′ \ {ms}: f ′

m =
fm|W ′ .

The new instance is J = (M ′,W ′, {f ′
m}m∈M ′ , {f ′

w}w∈W ′ , k).

The following lemma proves one direction of the safeness of Reduction Rule 6.

Lemma 9 (*). Let μ ∈ SM(I). Then, μ′ = μ \ {(mh, wh)} is a stable matching
in J such that balanceJ (μ′) = balanceI(μ).

The following observation helps to prove the other direction of the safeness
of Reduction Rule 6.

Observation 4 (*). Let I be an instance of Above-Min FBSM on which
Reduction Rules 1 to 2 have been exhaustively applied. Then, for every happy
pair (mh, wh), it holds that A(mh) = {wh} and A(wh) = {mh}.
Lemma 10 (*). Let μ′ ∈ SM(J ). Then, μ = μ′ ∪{(mh, wh)} is a stable match-
ing in I such that balanceI(μ) = balanceJ (μ′).

Lemma 11 (*). Reduction Rule 6 is safe, and t(I) = t(J ).

Before we examine the preference functions closely, we prove the following.

Lemma 12 (*). Given an instance I of Above-Min FBSM, one can exhaus-
tively apply Reduction Rules 1 to 6 in polynomial time to obtain an instance
J such that t(J ) ≤ t(I). All people in J are sad and matched by every stable
matching, and there exist at most 2t men and at most 2t women.

Truncating High-Values. So far we have bounded the number of people. How-
ever, the images of the preference functions can contain integers that are not
bounded by a function polynomial in the parameter. Thus, even though the
number of people is upper bounded by 4t, the total size of the instance can be
huge. Hence, we need to process the images of the preference functions. Formally,
we have the following rule.

Reduction Rule 7. If there exists an acceptable pair (m,w) such that fm(w) >
(k − OM ) + fm(μM (m)) or fw(m) > (k − OW ) + fw(μW (w)), then define the
preference functions as follows:

– f ′
m = fm|A(m)\{w} and f ′

w = fw|A(w)\{m}.
– For all a ∈ M ∪ W \ {m,w}: f ′

a = fa.

The new instance is J = (M,W, {f ′
m′}m′∈M , {f ′

w′}w′∈W , k).

Lemma 13 (*). Reduction Rule 7 is safe, and t(I) ≥ t(J ).
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Shrinking Gaps. Currently, there might still exist a man m or a woman w such
that fm(μM (m)) > 1 or fw(μW (w)) > 1, respectively. In the following rule, we
would like to decrease some values assigned by the preference functions of such
men and women in a manner that preserves equivalence.

Reduction Rule 8. If there exist m ∈ M and w ∈ W such that fm(μM (m)) >
1 and fw(μW (w)) > 1, then define the preference functions as follows.

– For all w′ ∈ A(m): f ′
m(w′) = fm(w′) − 1 and for all m′ ∈ A(w): f ′

w(m
′) =

fw(m′) − 1.
– For all a ∈ M ∪ W \ {m,w}: f ′

a = fa.

The new instance is J = (M,W, {f ′
m′}m′∈M , {f ′

w′}w′∈W , k − 1).

Lemma 14 (*). Reduction Rule 8 is safe, and t(I) = t(J ).

After the exhaustive application of Reduction Rule 8, at least one of the
two parties does not have any member without a person assigned 1 by his/her
preference function. Thus,

Observation 5. Let I be an instance of Above-Min FBSM that is reduced
with respect to Reduction Rules 1 to 8. Then, either (i) for every m ∈ M , we have
that fm(μM (m)) = 1, or (ii) for every w ∈ W , we have that fw(μW (w)) = 1. In
particular, either (i) OM = |M | or (ii) OW = |W |.

This concludes the description of our reduction rules yielding Lemma 2.

3.2 Balanced Stable Marriage

We would like to use the kernel for Above-Min FBSM, given by Lemma 2, to
design a kernel for Above-Min BSM. In order to view the preference functions
as preference lists, we need to remove the “gaps” from the preference functions.
The details of the construction can be found in the full version [16]. We conclude
by stating the following result which completes the proof of Theorem 2.

Lemma 15. Above-Min BSM admits a kernel that has at most 3t men among
whom at most 2t are sad, at most 3t women among whom at most 2t are sad,
and such that each happy person has at most 2t+1 acceptable partners and each
sad person has at most t+1 acceptable partners. Moreover, every stable matching
in the kernel is a perfect matching.
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Abstract. In this paper, we consider the problem of maximizing a
monotone submodular function subject to a knapsack constraint in the
streaming setting. In particular, the elements arrive sequentially and at
any point of time, the algorithm has access only to a small fraction of
the data stored in primary memory. For this problem, we propose a
(0.4 − ε)-approximation algorithm requiring only a single pass through
the data. This improves on the currently best (0.363 − ε)-approximation
algorithm. The required memory space depends only on the size of the
knapsack capacity and ε.

Keywords: Submodular functions · Streaming algorithm ·
Approximation algorithm

1 Introduction

A set function f : 2E → R+ on a ground set E is submodular if it satisfies
the diminishing marginal return property, i.e., for any subsets S ⊆ T � E and
e ∈ E \ T ,

f(S ∪ {e}) − f(S) ≥ f(T ∪ {e}) − f(T ).

A set function is monotone if f(S) ≤ f(T ) for any S ⊆ T . Submodular func-
tions play a fundamental role in combinatorial optimization, as they capture
rank functions of matroids, edge cuts of graphs, and set coverage, just to name
a few examples. Besides their theoretical interests, submodular functions have
attracted much attention from the machine learning community because they
can model various practical problems such as online advertising [1,24,35], sensor
location [25], text summarization [30,31], and maximum entropy sampling [28].

Many of the aforementioned applications can be formulated as the maximiza-
tion of a monotone submodular function under a knapsack constraint. In this
problem, we are given a monotone submodular function f : 2E → R+, a size
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function c : E → N, and an integer K ∈ N, where N denotes the set of positive
integers. The problem is defined as

maximize f(S) subject to c(S) ≤ K, S ⊆ E, (1)

where we denote c(S) =
∑

e∈S c(e) for a subset S ⊆ E. Note that, when c(e) = 1
for every item e ∈ E, the constraint coincides with a cardinality constraint.
Throughout this paper, we assume that every item e ∈ E satisfies c(e) ≤ K as
otherwise we can simply discard it.

The problem of maximizing a monotone submodular function under a knap-
sack or a cardinality constraint is classical and well-studied [20,37]. The problem
is known to be NP-hard but can be approximated within the factor of 1−e−1 (or
1 − e−1 − ε); see e.g., [3,15,21,26,36,38].

In some applications, the amount of input data is much larger than the main
memory capacity of individual computers. In such a case, we need to process
data in a streaming fashion (see e.g., [32]). That is, we consider the situation
where each item in the ground set E arrives sequentially, and we are allowed
to keep only a small number of the items in memory at any point. This setting
effectively rules out most of the techniques in the literature, as they typically
require random access to the data. In this work, we assume that the function
oracle of f is available at any point of the process. Such an assumption is standard
in the submodular function literature and in the context of streaming setting
[2,13,39].

Our main contribution is to propose a single-pass (2/5 − ε)-approximation
algorithm for the problem (1), which improves on the previous work [23,39] (see
Table 1). The space complexity is independent of the number of items in E.

Table 1. The knapsack-constrained problem. The algorithms [16,36] are not for the
streaming setting. See also [15,26].

Approx. ratio #passes Space Running time

Ours 2/5− ε 1 O
(
Kε−4 log4 K

)
O

(
nε−4 log4 K

)

Huang et al. [23] 4/11− ε 1 O
(
Kε−4 log4 K

)
O

(
nε−4 log4 K

)

Yu et al. [39] 1/3− ε 1 O
(
Kε−1 logK

)
O

(
nε−1 logK

)

Huang et al. [23] 2/5− ε 3 O
(
Kε−4 log4 K

)
O

(
nε−4 log4 K

)

Huang-Kakimura [22] 1/2− ε O
(
ε−1

)
O

(
Kε−7 log2 K

)
O

(
nε−8 log2 K

)

Ene and Nguy˜̂en [16] 1− e−1 − ε — — O
(
(1/ε)O(1/ε4)n logn

)

Sviridenko [36] 1− e−1 — — O
(
Kn4

)

Theorem 1. There exists a single-pass streaming (2/5−ε)-approximation algo-
rithm for the problem (1) requiring O

(
Kε−4 log4 K

)
space.
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Our Technique. Let us first describe approximation algorithms for the knapsack-
constrained problem (1) in the offline setting. The simplest algorithm is a greedy
algorithm, that repeatedly takes an item with maximum marginal return. The
greedy algorithm admits a (1 − 1/

√
e)-approximation, together with taking one

item with the maximum return, although it requires to read all the items K
times. Sviridenko [36] showed that, by applying the greedy algorithm from each
set of three items, we can find a (1 − 1/e)-approximate solution. Recently, such
partial enumeration is replaced by a more sophisticated multi-stage guessing
strategies (where fractional items are added based on the technique of multilinear
extension) to improve the running time in nearly linear time [16]. However, all
of them require large space and/or a large number of passes to implement.

In the streaming setting, Badanidiyuru et al. [2] proposed a single-
pass thresholding algorithm that achieves a (0.5 − ε)-approximation for the
cardinality-constrained problem. The algorithm just takes an arriving item e
when the marginal return exceeds a threshold and the feasibility is maintained.
However, this strategy gives us only a (1/3−ε)-approximation for the knapsack-
constrained problem. This drop in approximation ratio comes from the fact that,
while we can freely add an item as long as our current set is of size less than K
for the cardinality constraint, we cannot take a new item if its addition exceeds
the capacity of the knapsack.

To overcome this issue, in [23] a branching technique is introduced, where one
stops at some point of the thresholding algorithm and use a different strategy
to collect subsequent items. The ratio of this branching algorithm depends on
the size of the largest item o1 in the optimal solution; when o1 is overly large,
other strategies must be employed. Overall, the proposed approach of [23] gives
a (4/11 − ε)-approximation.

How does one improve the ratio further when c(o1) is large? One can certainly
guess the size c(o1) and the f -value f({o1}) beforehand and in the stream pick
the item of similar size and f -value. The difficulty lies in how to pick such an item
that, together with the rest of the optimal solution (excluding o1), guarantees a
decent f -value. Namely, we need a good substitute of o1. In [23], a single-pass
procedure, called PickOneItem, is designed to find such an item (see Sect. 2 for
details). Once equipped with such an item, it is not difficult to collect other
items so as to improve the approximation ratio to 2/5−ε. The down-side of this
approach is that one needs multiple passes.

In this paper, we introduce new techniques to achieve the same ratio without
the need to waste a pass to collect a good substitute of o1. Depending on the
relative size of o1 and o2 (second largest item in the optimal solution), we combine
PickOneItem with the thresholding algorithm in two different ways. The first one
is to perform both of them dynamically, that is, each time we find a candidate e
for an approximation of o1, we perform the thresholding algorithm starting from
e with the current set. In contrast, the other runs both of them in a parallel
way; we perform the thresholding algorithm and PickOneItem independently for
some subset of items, and combine their results in the end. The details of these
algorithms are described in Sects. 3.2 and 3.3, respectively.
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Related Work. Maximizing a monotone submodular function subject to various
constraints is a subject that has been extensively studied in the literature. We
do not attempt to give a complete survey here and just highlight the most rele-
vant results. Besides a knapsack constraint or a cardinality constraint mentioned
above, the problem has also been studied under (multiple) matroid constraint(s),
p-system constraint, multiple knapsack constraints. See [9,11,12,15,19,26,29]
and the rences therein.

In the streaming setting, single-pass algorithms have been proposed for the
problem with matroid constraints [10,18] and knapsack constraint [23,39], and
without monotonicity [13,34]. Multi-pass streaming algorithms, where we are
allowed to read a stream of the input multiple times, have also been stud-
ied [3,10,22,23]. In particular, Chakrabarti and Kale [10] gave an O(ε−3)-pass
streaming algorithms for a generalization of the maximum matching problem
and the submodular maximization problem with cardinality constraint. Huang
and Kakimura [22] designed an O(ε−1)-pass streaming algorithm with approx-
imation guarantee 1/2 − ε for the knapsack-constrained problem. Other than
the streaming setting, recent applications of submodular function maximization
to large data sets have motivated new directions of research on other compu-
tational models including parallel computation model such as the MapReduce
model [6,7,27] and the adaptivity analysis [4,5,14,17].

The maximum coverage problem is a special case of monotone submodular
maximization under a cardinality constraint where the function is a set-covering
function. For the special case, McGregor and Vu [33] and Batani et al. [8] gave
a (1 − e−1 − ε)-approximation algorithm in the multi-pass streaming setting.

2 Preliminaries

For a subset S ⊆ E and an element e ∈ E, we use the shorthand S + e and S − e
to stand for S ∪ {e} and S \ {e}, respectively. For a function f : 2E → R+, we
also use the shorthand f(e) to stand for f({e}). The marginal return of adding
e ∈ E with respect to S ⊆ E is defined as f(e | S) = f(S + e) − f(S). Thus the
submodularity means that f(e | S) ≥ f(e | T ) for any subsets S ⊆ T � E and
e ∈ E \ T .

In the rest of the paper, let I = (f, c,K,E) be an input instance of the
problem (1). Let OPT = {o1, . . . , o�} denote an optimal solution with c(o1) ≥
c(o2) ≥ · · · ≥ c(o�). We denote ri = c(oi)/K for i = 1, 2, . . . , �. Let v be an
approximated value of f(OPT) such that v ≤ f(OPT) ≤ (1 + ε)v.

In the following sections, we review the previous results: the thresholding
algorithm and the procedure PickOneItem.

2.1 Thresholding Algorithms

In this section, we present a thresholding algorithm with a single pass [2,23,39].
The algorithm just takes an arriving item e when the marginal return exceeds a
threshold. That is, when a new item e arrives, we decide to add e to our current
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set S if c(S + e) ≤ K and f(e | S) ≥ α c(e)
K v, where α is a parameter. The

performance is due to the following fact, which follows from submodularity.

Lemma 1. Let S = {e1, e2, . . . , es}. Suppose that f(ei | {e1, e2, . . . , ei−1}) ≥
α c(ei)

K v for each i = 1, . . . , s. Then it holds that f(S) ≥ α c(S)
K v.

By setting α = 1/2, the algorithm finds a set S such that f(S) ≥ v/2 with a
single pass for the cardinality-constrained problem [2]. Setting α = 2/3, together
with taking a singleton with maximum return in parallel, we can find a set S
such that f(S) ≥ v/3 with a single pass [23].

2.2 Guessing the Large Item

We here consider a procedure to approximate the largest item o1 in OPT. It is
difficult to correctly identify o1 among the items in E, but we can nonetheless
find a reasonable approximation of it by a single pass. This procedure is used
to design multi-pass streaming algorithms [22,23]. Recall that we are given an
approximated value v of f(OPT) such that v ≤ f(OPT) ≤ (1 + ε)v.

We first present the following fact.

Lemma 2 ([23]). Let E1 ⊆ E such that e∗ ∈ E1∩OPT. Suppose that θ satisfies
θv/(1 + ε) ≤ f(e∗) ≤ θv. For a number t with t > 1

θ − 2, define

λ = 2
(

θ

t + 1
− 1

(t + 1)(t + 2)

)

. (2)

Suppose that a set X = {e1, e2, . . . , ex} ⊆ E1 satisfies that f(ei |
{e1, e2, . . . , ei−1}) ≥ (θ − λ(i − 1))v for each i = 1, . . . , x. Then the following
holds:

(i) If x = t+1, then at least one item e ∈ X guarantees that f(OPT−e∗ +e) ≥
Γ(θ)v − O(ε)v.

(ii) If x < t+1 and f(e∗ | X) < (θ−λx)v, then at least one item e ∈ X satisfies
f(OPT − e∗ + e) ≥ Γ(θ)v − O(ε)v.

Here Γ is the function defined by

Γ(θ) =
t(t + 3)

(t + 1)(t + 2)
− t − 1

t + 1
θ. (3)

This lemma suggests the following procedure to approximate o1, which we
call PickOneItem. Suppose that we are given approximations r1, r1 of r1 such
that r1 ≤ r1 ≤ r1 and r1 ≤ (1 + ε)r1. Define E1 = {e ∈ E | r1K ≤ c(e) ≤
r1K, θv/(1+ε) ≤ f(e) ≤ θv}. Then we see that o1 ∈ E1. In a single pass, starting
from X = ∅, we decide to add an item e ∈ E1 to X if f(e | X) ≥ (θ − λ|X|)v.
We stop this decision when |X| = t + 1. Then, in each step, X always satisfies
the assumption in Lemma 2, that is, X = {e1, e2, . . . , ex} ⊆ E1 satisfies that
f(ei | {e1, e2, . . . , ei−1}) ≥ (θ − λ(i − 1))v for each i = 1, . . . , x.
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We claim that the output X contains an item e ∈ X such that f(OPT−o1 +
e) ≥ Γ(θ)v−O(ε)v. Indeed, we consider the situation just before o1 arrives. If the
current set X has size t+1, then Lemma 2 (i) implies that there exists e ∈ X such
that f(OPT − o1 + e) ≥ Γ(θ)v − O(ε)v. If X has size less than t + 1, then either
o1 is put in X, or there exists e ∈ X such that f(OPT−o1 + e) ≥ Γ(θ)v −O(ε)v
by Lemma 2 (ii). Hence, in any case, at least one item e ∈ X guarantees that
f(OPT − o1 + e) ≥ Γ(θ)v − O(ε)v.

By choosing an optimal value t for a given θ, we can obtain Γ(θ) ≥ 2/3. More
specifically, we have the following theorem.

Theorem 2 ([23]). Let E1 ⊆ E such that e∗ ∈ E1 ∩ OPT. Suppose that θ
satisfies θv/(1 + ε) ≤ f(e∗) ≤ θv. Define t to be

t =

⎧
⎪⎨

⎪⎩

1 if θ ≥ 1
2

2 if 1
2 ≥ θ ≥ 2

5

3 if 2
5 ≥ θ ≥ 0.

(4)

Then, with a single pass and O(1) space, we can find a set X ⊆ E1 such that
there exists e ∈ X such that f(OPT − e∗ + e) ≥ Γ(θ)v − O(ε)v, where

Γ(θ) ≥

⎧
⎪⎨

⎪⎩

2
3 if θ ≥ 1

2
5
6 − θ

3 if 1
2 ≥ θ ≥ 2

5
9
10 − θ

2 if 2
5 ≥ θ ≥ 0.

3 Single-Pass (2/5 − ε)-Approximation Algorithm

In this section, we present a single-pass (2/5 − ε)-approximation algorithm for
the problem (1). We first show that, if c(o1) is at most K/2 or more than 2/3K,
then the algorithm in [23] can be used. So we focus on the case when c(o1)
is in [K/2, 2/3K]. For this case, we develop two algorithms by combining the
technique in Sect. 2.2 into the thresholding algorithm in Sect. 2.1. The first one
is useful when c(o2) is at most K/3, while the other is applied when c(o2) is
more than K/3. Some proofs are omitted due to the page limitation.

In what follows, we often assume that we know in advance approximations of
r1 and r2. That is, we are given r�, r� such that r� ≤ r� ≤ r� and r� ≤ (1+ε)r� for
� ∈ {1, 2}. These values can be guessed from a geometric series of some interval.

3.1 Algorithm When c(o1) is Small

It is known that when c(o1) ≤ K/2, we can improve the thresholding algorithm
so that we can find a (2/5 − ε)-approximate solution in O(Kε−4 log4 K) space
with a single pass.

Theorem 3 ([23]). Suppose that c(o1) ≤ K/2. We can find a (2/5 − ε)-
approximate solution with a single pass for the problem (1). The space complexity
of the algorithm is O(Kε−4 log4 K).
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The above theorem can be extended to the case where we aim to find a set
S of items that maximizes f(S) subject to the relaxed constraint that the total
size is at most pK, for a given number p ≥ 1. We say that a set S of items is a
(p, α)-approximate solution if c(S) ≤ pK and f(S) ≥ αf(OPT), where OPT is
an optimal solution of the original instance.

Theorem 4 ([23]). For a constant number p ≥ 2r1, there is a
(
p, 2p

2p+3 − ε
)
-

approximation streaming algorithm with a single pass. The space complexity of
the algorithm is O(Kε−3 log3 K).

With the aid of this algorithm, we can find a (2/5 − ε)-approximate solution
for some special cases even when c(o1) ≥ K/2.

Corollary 1. If c(o1) > 2/3K, then we can find a (2/5−ε)-approximate solution
with a single pass. The space complexity of the algorithm is O(Kε−3 log3 K).

Corollary 2. Suppose that c(o1) > K/2. If f(o1) ≤ 3/10f(OPT) then we can
find a (2/5 − ε)-approximate solution with a single pass. The space complexity
of the algorithm is O(Kε−3 log3 K).

3.2 Algorithm for Small c(o2)

By Theorem 3 and Corollary 1, we may assume that c(o1) is in [K/2, 2/3K]. In
this section, we describe a single-pass algorithm that works well when c(o2) is
small.

Suppose that we know in advance the approximate value v of f(OPT), i.e.,
v ≤ f(OPT) ≤ (1 + ε)v. This assumption can be removed with dynamic update
technique using O(ε−1 log K) additional space in a similar way to [2,23,39].

In addition, we suppose that we are given θ1 such that θ1v/(1 + ε) ≤
f(o1) ≤ θ1v, which is an approximation of f(o1). Define E1 = {e ∈ E | c(e) ∈
[r1K, r1K], f(e) ∈ [θ1v/(1+ε), θ1v]}. We can assume that E is the disjoint union
of E1 and E1 = {e | c(e) ≤ r2K}, as we can discard the other items. We note
that o1 ∈ E1 and OPT − o1 ⊆ E1.

We propose a single-pass streaming algorithm, where the target approxima-
tion ratio is β = 2/5. The algorithm description is given in Algorithm 1.

In the algorithm, we basically run the thresholding algorithm for E1 to collect
a set S of items. In the same pass in parallel, we try to find a subset X ⊆ E1 that
contains a good approximation of o1, based on Lemma 2. That is, when an item e
in E1 arrives, we add e to X if |X| < t+1 and f(e | X) ≥ (θ1−λ|X|)v. Each time
an item e is added to X, since e may be a good approximation of o1, we create
a new feasible set S + e, and start to run the thresholding algorithm to S + e in
parallel. Thus a feasible set is generated for each e in X, and the family of these
feasible sets is maintained as T in the algorithm. We remark that, to guarantee
the approximation ratio of the algorithm starting from S + e, we need to satisfy
the thresholding condition for e in X as well (Line 7): f(e | S) ≥ α c(e)

K v for the
current set S. Thus the above algorithm performs dynamically the thresholding
algorithm to E1 and E1 + e for each e ∈ X.
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Algorithm 1.
1: procedure Dynamic(v)
2: S := ∅; T := ∅; X := ∅.
3: α := β 1

1−r2
.

4: Define t and λ from θ1 by (4) and (2).
5: while item e is arriving do � First phase
6: if e ∈ E1 then
7: if |X| < t + 1 and f(e | X) ≥ (θ1 − λ|X|)v and f(e | S) ≥ α c(e)

K
v then

8: T := T ∪ {S + e} and X := X + e.

9: else
10: if f(e | S) ≥ α c(e)

K
v and c(S + e) ≤ K then S := S + e.

11: for each T ∈ T do
12: if f(e | T ) ≥ α c(e)

K
v and c(T + e) ≤ K then T := T \ {T} ∪ {T + e}.

13: if c(S) ≥ (1 − r1 − r2)K then S′
0 := S and break.

14: S′ := S′
0.

15: while item e is arriving do � Second phase
16: if e ∈ E1 then
17: if f(S′) < f(S′

0 + e) then S′ := S′
0 + e.

18: else
19: if f(e | S) ≥ α c(e)

K
v and c(S + e) ≤ K then S := S + e.

20: for any T ∈ T do
21: if f(e | T ) ≥ α c(e)

K
v and c(T + e) ≤ K then T := T \ {T} ∪ {T + e}.

return the best one among {S, S′} ∪ T .

However, the above strategy does not work when the size of S becomes large.
Indeed, as we perform the thresholding algorithm to S + e for each e ∈ X, it is
necessary that S+e is feasible, that is, c(S) ≤ K−c(e) when e arrives. Moreover,
since we have the additional condition f(e | S) ≥ α c(e)

K v to pick an item to X,
we may throw away an approximation of o1 when f(e | S) is small (even if
Lemma 2 is applicable). To avoid them, we adopt another strategy when c(S)
becomes large. Let S′

0 be the set we have the first time when c(S) is at least
(1 − r1 − r2)K. It follows from Lemma 1 that f(S′

0) is relatively large as (6)
below. Moreover, since c(S) is at most (1 − r1)K, we can add any item in E1

to S′
0. In the rest of a stream, we just take one item e ∈ E1 that maximizes

f(S′
0 + e). At the same time, we continue to run the thresholding algorithm to

S and every set in T . In the end, the algorithm returns the best one among all
the candidates.

Theorem 5. Suppose that v ≤ f(OPT) ≤ (1+ε)v. Then Algorithm Dynamic(v)
returns a set S such that c(S) ≤ K and

f(S) ≥ min
{

β, 1 − β
1

1 − r2
,Γ(θ) − β

1 − r1
1 − r2

}

v − O(ε)v. (5)

The space complexity is O(K).

Let S̃ be the final set of S, and S̃′ be the output obtained by adding one item
in E1 to S′

0 (Line 17). Let T̃e be the final set in T containing an item e ∈ X.
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We remark that the sets S̃ and T̃e are obtained by adding an item satisfying the
thresholding condition repeatedly. Also, S̃′ and T̃e contain exactly one item e in
E1.

It is not difficult to see that all the obtained sets are of size at most K. We
note that c(S′

0) < (1 − r1)K, since S′
0 is the set the first time the size exceeds

(1 − r1 − r2)K by adding an item of size at most r2K.
In the rest of this subsection, we will show (5). We first claim that, by

Lemma 1, we have
f(S′

0) ≥ α(1 − r1 − r2)v, (6)

since c(S′
0) ≥ (1 − r1 − r2)K. Let X̃ be the final set of X.

Lemma 3. At the end of the algorithm, one of the following holds.

– There exists an item e ∈ X̃ such that f(OPT − o1 + e) ≥ Γ(θ)v − O(ε)v.
– It holds that f(o1 | S̃) < αr1v.
– It holds that f(S̃′) ≥ βv.

Proof. Suppose that o1 arrives during the first while-loop. Let X = {e1, e2, . . . ,
ex} be the set just before o1 arrives such that items are sorted in the ordering
of the addition. Then X satisfies that f(ei | {e1, e2, . . . , ei−1}) ≥ (θ − λ(i − 1))v
for each i = 1, . . . , x. Note that, when o1 will be contained in X, clearly the first
statement holds. Thus we may assume that o1 does not satisfy the condition
in Line 7, that is, one of the following three conditions holds: |X| = t + 1,
f(o1 | X) < (θ − λ|X|)v, and f(o1 | S) < αc(o1)v ≤ αr1v. It follows from
Lemma 2 that, if one of the first two conditions holds, then at least one item
e ∈ X satisfies f(OPT − o1 + e) ≥ Γ(θ)v − O(ε)v. If f(o1 | S) < αr1v, then
f(o1 | S̃) ≤ f(o1 | S) < αr1v by submodularity. Thus one of the first two
statements of Lemma 3 is satisfied since X ⊆ X̃.

Next suppose that o1 arrives after constructing S′
0, and suppose that f(S̃′) <

βv. From Line 17, we see that f(S′
0 + o1) ≤ f(S̃′) < βv. Hence we have

f(o1 | S′
0) = f(S′

0 + o1) − f(S′
0) < βv − f(S′

0).

By (6), it holds that

f(o1 | S′
0) < βv − α(1 − r1 − r2)v ≤ αr1v = β

r1
1 − r2

v,

where we recall β = α(1 − r2). Therefore, by submodularity, we obtain f(o1 |
S̃) ≤ f(o1 | S′

0) ≤ αr1v. Thus the lemma follows. ��

We then show that, for each case of Lemma 3, the approximation ratio can
be bounded as below. Combining all the cases, we can prove Theorem 5.

Lemma 4. Suppose that there exists e ∈ X̃ such that f(OPT−o1+e) ≥ Γ(θ)v−
O(ε)v. Then it holds that

f(T̃e) ≥ min
{

β,Γ(θ) − β
1 − r1
1 − r2

}

v − O(ε)v.
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Lemma 5. If f(o1 | S̃) < αr1v, then we have f(S̃) ≥ min{β, 1 − α}v − O(ε)v.

It turns out from Theorem 5 that the algorithm works well when c(o2) is
small or f(o2) is small.

Corollary 3. Suppose that v satisfies v ≤ f(OPT) ≤ (1 + ε)v. If c(o1) ≥ K/2
and c(o2) ≤ K/3, then we find a set S such that c(S) ≤ K and f(S) ≥ (2/5 −
O(ε))v. The space complexity is O(Kε−3 log K).

Corollary 4. Suppose that 2K/3 ≥ c(o1) > K/2 and c(o2) > K/3. If f(o2) <
1/5f(OPT), then we can find a set S such that c(S) ≤ K and f(S) ≥ (2/5 −
O(ε))f(OPT). The space complexity of the algorithm is O(Kε−4 log3 K).

In summary, we have the following theorem, together with the dynamic
update technique to guess the approximate value v of f(OPT).

Theorem 6. If c(o1) ≥ K/2 and c(o2) ≤ K/3, then we can find a (2/5 − ε)-
approximate solution with a single pass. The space complexity is O(Kε−4 log2 K).

3.3 Algorithm for Large c(o2)

In this section, we propose our second algorithm that is efficient when c(o2)
is large. Since o1, o2 ∈ OPT, it is clear that c(o1) + c(o2) ≤ K, and hence
r2 ≤ 1−r1. We here assume that r2 ≤ 1−r1−ε, where the other case when r2 is
too large is easier as in the following lemma. Note that the assumption implies
that r1 + r2 ≤ 1.

Lemma 6. If c(o1)+c(o2) ≥ (1−ε)K, then we can find a (2/5−ε)-approximate
solution with a single pass using O(Kε−3 log3 K) space.

Similarly to the previous section, we assume that we know in advance the
approximate value v of f(OPT), i.e., v ≤ f(OPT) ≤ (1 + ε)v. This assumption
can be removed using O(ε−1 log K) additional space. We also assume that we
are given θ� such that θ�v/(1 + ε) ≤ f(o�) ≤ θ�v for � ∈ {1, 2}. Define E� =
{e ∈ E | c(e) ∈ [r�K, r�K], f(e) ∈ [θ�v/(1 + ε), θ�v]} for � ∈ {1, 2}. Then o� ∈ E�

holds. We can assume that E is the union of E1, E2 and E = {e | c(e) ≤ r2K},
as we can discard the other items.

In the algorithm, we perform the thresholding algorithm and the procedure
PickOneItem in Sect. 2.2 in parallel. We apply PickOneItem to both E1 and E2

to obtain approximations of o1 and o2. Then X� includes an approximation of
o� for � = 1, 2. While finding X1 and X2, we check in Line 11 whether there
exists a pair of items each from X1 and X2, respectively, whose f -value is more
than βv. In parallel, we run the thresholding algorithm with α� to E to obtain
a set S�, where α� := β

1−r�
, for � = 1, 2. If the output S� has large size, then

Lemma 1 guarantees that f(S�) is large. Otherwise, c(S�) is small, meaning that
there is a room for adding an item from X�. The algorithm returns the set that
maximizes f(S� +e) for e ∈ X� and � = 1, 2. Intuitively, the algorithm partitions
the ground set E into three parts E1, E2 and E, and then it returns the best
set that can be obtained from two of the three parts.
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Algorithm 2.
1: procedure Parallel(v)
2: S� := ∅; X� := ∅ for � = 1, 2.
3: α� := β

1−r�
for � = 1, 2.

4: Define t� and λ� from θ� by (4) and (2) for � = 1, 2.
5: while item e is arriving do
6: for each � ∈ {1, 2} do
7: if e ∈ E� then
8: if |X�| < t� + 1 and f(e | X�) ≥ (θ� − λ�|X�|)v then
9: X� := X� + e.

10: else if e ∈ E1 ∪ E2 \ E� then
11: if there exists an item ē ∈ X� such that f({ē, e}) ≥ βv then return

{ē, e}.

12: else
13: if f(e | S�) ≥ α�

c(e)
K

v and c(S� + e) ≤ K then S� := S� + e.

14: if c(S�) ≥ (1 − r�)K for some � ∈ {1, 2} then return S�.
15: else return the set that achieves max�∈{1,2},e∈X�

f(S� + e).

Theorem 7. Suppose that v ≤ f(OPT) ≤ (1 + ε)v. If r1 + r2 ≤ 1 − ε, then
Algorithm Parallelv returns a set S such that c(S) ≤ K and f(S) ≥ γv − O(ε)v,
where

γ = min
{

β,Γ(θ2) + θ2 − β
2 − 2r2 − r1

1 − r2
,Γ(θ1) + θ1 − β

2 − 2r1 − r2
1 − r1

}

. (7)

The space complexity is O(K).

Let S̃� (� = 1, 2) be the final set of S� in the algorithm. We also denote by X̃�

the final set of X�. Let S̃′
� be the set that achieves maxe∈X̃�

f(S̃� +e) for � = 1, 2.
The set S̃� is obtained by adding an item based on the thresholding condition
f(e | S�) ≥ α�

c(e)
K v.

In the algorithm, each item in E is added to S1 or S2 only when it does
not exceed the knapsack capacity. Hence c(S̃�) ≤ K for � = 1, 2. Also clearly
c(S̃′

�) ≤ K for � = 1, 2 if c(S̃�) ≤ (1 − r�)K. On the other hand, if the algorithm
terminates in Line 11, then the output has only two items each from E1 and E2,
and hence the size is at most K since r1 + r2 ≤ 1 by the assumption. Thus the
output of the algorithm is of size at most K.

From now on, we will prove (7). We consider the following two cases sepa-
rately: the case when o2 arrives before o1 and when o1 arrives before o2.

Case 1: Suppose that o2 Arrives Before o1. We consider the case when � = 2. We
may assume that the algorithm terminates in the end (not in Line 11). Moreover,
if c(S̃2) ≥ (1 − r2)K, then f(S̃2) ≥ βv by Lemma 1. Thus we may assume that
c(S̃2) < (1 − r2)K.

Let X2 = {e1, e2, . . . , ex} be the set collected just before o2 arrives. Then X2

satisfies that f(ej | {e1, e2, . . . , ej−1}) ≥ (θ2 − λ2(j − 1)) for each j = 1, . . . , x.
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When o1 arrives, we return the set {e, o1} for some e ∈ X2 if f({o1, e}) ≥ βv at
Line 11. Thus we may assume that f({o1, e}) < βv for any e ∈ X2.

Lemma 7. Suppose that c(S̃2) < (1 − r2)K and that, for any e ∈ X2, we have
f({o1, e}) < βv. There exists an item e ∈ X2 such that

f(S̃2 + e) ≥ Γ(θ2)v + θ2v − β
2 − 2r2 − r1

1 − r2
v.

Proof. By Lemma 2, we have e ∈ X2 such that f(OPT−o2+e) ≥ Γ(θ2)v−O(ε)v.
Since f({o1, e}) < βv and f(e) ≥ θ2v, we see that f(o1 | e) = f({o1, e})−f(e) <
(β − θ2)v. It then holds by submodularity that

f(OPT − o2 + e) ≤ f(e) + f(o1 | e) + f(OPT − o1 − o2 | e)
≤ (β − θ2)v + f(OPT − o1 − o2 + e).

Hence, since f(OPT − o2 + e) ≥ Γ(θ2)v − O(ε)v,

Γ(θ2)v − (β − θ2)v − O(ε)v ≤ f(OPT − o1 − o2 + e).

On the other hand, it follows from submodularity that

f(OPT − o1 − o2 + e) ≤ f(S̃2 + e) + f(OPT − o1 − o2 − S̃2 | S̃2 + e)

≤ f(S̃2 + e) + f(OPT − o1 − o2 − S̃2 | S̃2)

≤ f(S̃2 + e) + α2(1 − r1 − r2)v,

where the last inequality follows from the fact that, since c(S̃2) ≤ (1 − c(o2))K,
any item o ∈ OPT− o1 − o2 − S̃2 is discarded due to the thresholding condition,
implying f(o | S̃2) ≤ α2c(o)v. Combining them, we obtain

f(S̃2 + e) ≥ (Γ(θ2) − (β − θ2) − α(1 − r1 − r2)) v − O(ε)v

≥
(

Γ(θ2) + θ2 − β
2 − 2r2 − r1

1 − r2

)

v − O(ε)v.

��

Case 2: Suppose that o1 Arrives Before o2. Let X1 be the set just before o1
arrives. We can use the symmetrical argument to Case 1. We omit the proof.

Lemma 8. Suppose that c(S̃1) < (1 − r1)K and that, for any e ∈ X1, we have
f({o2, e}) < βv. There exists an item e ∈ X1 such that

f(S̃1 + e) ≥ Γ(θ1)v + θ1v − β
2 − 2r1 − r2

1 − r1
v.

Combining the above two lemmas, we have Theorem 7. It follows from The-
orem 7 that the algorithm admits a (2/5 − ε)-approximation when r2 ≥ 1/3.
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Corollary 5. Suppose that v ≤ f(OPT) ≤ (1 + ε)v. Consider the case when
K/2 < c(o1) ≤ 2/3K and K/3 ≤ c(o2) < (1 − r1 − ε)K. We can find a set
S such that c(S) ≤ K and f(S) ≥ (2/5 − O(ε))v. The space complexity of the
algorithm is O(Kε−2).

Theorem 8. If c(o1) ≥ K/2 and K/3 ≤ c(o2) < (1−r1−ε)K, then we can find
a (2/5 − ε)-approximate solution with a single pass using O(Kε−3 log K) space.

Theorem 1 follows from Theorem 6, Lemma 6, and Theorem 8.
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Abstract. We study problems that integrate depot location decisions
along with the inventory routing problem of serving clients from these
depots over time balancing the costs of routing vehicles from the depots
with the holding costs of demand delivered before they are due. Since
the inventory routing problem is already complex, we study the ver-
sion that assumes that the daily vehicle routes are direct connections
from the depot thus forming stars as solutions, and call this problem
the Star Inventory Routing Problem with Facility Location (SIRPFL).
As a stepping stone to solving SIRPFL, we first study the Inventory
Access Problem (IAP), which is the single depot, single client special
case of IRP. The Uncapacitated IAP is known to have a polynomial time
dynamic program. We provide an NP-hardness reduction for Capaci-
tated IAP where each demand cannot be split among different trips. We
give a 3-approximation for the case when demands can be split and a
6-approximation for the unsplittable case. For Uncapacitated SIRPFL,
we provide a 12-approximation by rounding an LP relaxation. Combin-
ing the ideas from Capacitated IAP and Uncapacitated SIRPFL, we
obtain a 24-approximation for Capacitated Splittable SIRPFL and a 48-
approximation for the most general version, the Capacitated Unsplittable
SIRPFL.

Keywords: Inventory routing problem · Facility Location ·
Approximation algorithms

1 Introduction

We initiate the integrated study of facility opening and inventory routing prob-
lems. Facility location has many applications such as the placement of factories,
warehouses, service centers, etc. The facility location problem involves selecting
a subset of locations to open facilities to serve demands minimizing the facility
opening costs plus connection costs between demands and the opened locations.
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Inventory routing arises from Vendor Managed Inventory systems in which a
product supplier and its retailers cooperate in the inventory planning. First, the
retailers share with the supplier the demand patterns for its product and the
storage costs for keeping early deliveries per retailer location. Then the supplier
is responsible for planning a delivery schedule that serves all the demands on
time. The inventory routing problem (IRP) trades off visits from fixed depots
over a planning horizon to satisfy deterministic daily demands at clients to min-
imize routing costs plus the holding costs of demand delivered before they are
due at clients. We integrate the decision of which depots to open in the problem
and study the joint problem of opening depots (given opening costs), and using
these depots to minimize the total inventory routing costs, i.e. the sum of the
routing costs from these depots and the holding costs at clients.

The IRP has been challenging to study by itself from an approximation
perspective: constant-factor approximations are known only in very structured
metrics like trees [3] or when the routes are periodic [5]. Hence we simplify the
routing considerably to gain a better understanding of the integrated problem.
In particular, we assume that the visits from each client go to the closest opened
depots via a direct edge: the routing solution is thus a collection of stars rather
than the Steiner trees or tours considered in the original IRP. We call this sim-
plified variant of IRP the Star IRP or SIRP for short.

1.1 Problem Definitions

The Star Inventory Routing Problem with Facility Location (SIRPFL) is inven-
tory routing with the extra choice to build depots at a subset of the locations for
additional costs before the first day, which then can be used to route deliveries
throughout the entire time horizon. Formally, we are given an undirected graph
G = (V,E) with edge weights we, a time horizon 1, . . . , T , a set D of demand
points (v, t) with dv

t units of demand due by day t, facility opening costs fv for
vertex v, holding costs hv

s,t per unit of demand delivered on day s serving (v, t).
The objective is to open a set F ∈ V of facilities that can be used throughout
the entire time horizon, determine the set of demands to serve/visit per day, and
connect any visited clients to opened facilities per day so that the total cost from
facility openings, client-facility connections, and storage costs for early deliver-
ies is minimized. Three natural variants of the problem arise based on whether
the delivery vehicles are uncapacitated, and if not, whether or not any single
day’s demand can be split among different visits. We call the first variant the
Uncapacitated version. For the Capacitated version, we assume all vehicles have
a fixed capacity U and arrive at two variants: Unsplittable where every daily
demand is satisfied wholly in one visit and the Splittable where it can be split
across multiple visits (even across multiple days). We assume that any single
demand never exceeds the capacity of the vehicle so that the splittable problem
is always feasible.

Once the facility decisions are fixed, the resulting SIRP instances can be
decomposed across the clients due to the assumption that the visits are direct
edges from the client to an open facility. Thus, for each client, the routing solution
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is the direct edge to the closest open facility, and the only decisions are the
delivery days and in the capacitated case, the number of trips on such days. We
call the single-depot single-client problem the Inventory Access Problem (IAP).
Even the simple IAP has the three variants alluded to above.

1.2 Contributions

1. We initiate the study of inventory routing problems integrated with Facility
Location (IRPFL) and supply the first complexity and approximation results.

2. For the simpler Inventory Access Problem, we show that the unsplittable
capacitated case is already weakly NP-hard. The uncapacitated problem is
a single-item lot-sizing problem, for which a polynomial time exact solution
exists [20]. For the latter and its splittable counterpart, we give constant
approximation algorithms using LP rounding.

3. For the Star versions of the IRPFL we consider, we give constant-factor
approximation for all three versions by deterministically rounding new lin-
ear programming relaxations for the problems. The table below summarizes
the approximation guarantees.

IAP SIRPFL

Uncapacitated polynomial time [20] 12-approx

Capacitated Splittable 3-approx 24-approx

Capacitated Unsplittable NP-hard, 6-approx 48-approx

4. Our algorithms need to modify and adapt current facility location LP round-
ing methods, since none of the variables in the objective function can directly
be used for the rounding methods. These methods may be useful in future
work involving time-indexed formulations integrating network design and
facility location.

We review related work in the next section. We then present a complete
description of our 12-approximation for the Uncapacitated SIRPFL in Sect. 3.
To handle the capacitated versions, we need to strengthen the LP relaxation
to better bound multiple visits per day: we illustrate this using the simpler
example of the Capacitated Splittable IAP by providing a 3-approximation in
Sect. 4. Building on the 3-approximation, we show a 6-approximation for the
Capacitated Unsplittable IAP. Finally, Sect. 5 summarizes the results and open
problems. Details of the other results are in the full version of this paper [11].

2 Related Work

UFL: The first constant approximation for Uncapacitated Facility Location was
a 3.16-approximation by Shmoys et el. [19] using the filtering method of Lin
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and Vitter [15]. Various LP-based methods made further improvements [4,9,10].
More recently, Li gave a 1.488-approximation [14].

IRP: Without facility opening decisions, IRP itself on general metrics has
an O( log T

log log T )-approximation by Nagarajan and Shi [16] and an O(log N)-
approximation by Fukunaga et al. [5]. For variants of periodic IRP, Fukunaga
et al. [5] provide constant approximations. IRP on tree metrics have a constant
approximation [3]. Another special case of IRP is the joint replenishment prob-
lem (JRP), which has also been extensively studied [1,2,12,13,17].

TreeIRPFL: Another related problem is the Tree IRPFL, which has the same
requirements except that the connected components for the daily visits are trees
(instead of tours in the regular IRP, or stars in the Star IRP version we study).
Tree IRPFL differs from Star IRPFL by allowing savings in connection costs by
connecting clients through various other clients who are connected to an opened
facility.

Single-day variants of Tree IRPFL have been studied extensively. In these
problems, there is no holding cost component and thus they trade off the facility
location placements with the routing costs from these facilities. We use ρΠ to
denote the best existing approximation ratio for problem Π. For uncapacitated
single-day Tree IRPFL, the problem can directly be modeled as a single Steiner
tree problem: attach a new root node with edges to each facility of cost equal
to its opening cost; finding a Steiner tree from this root to all the clients gives
the required solution. Thus, this problem has a ρST-approximation algorithm. If
clients are given in groups such that only one client per group needs to be served,
Glicksman and Penn [6] generalize the Steiner tree approximation method of
Goemans and Williamson [7] to (2 − 1

|V |−1 )L-approximation, where L is the
largest size of a group. For the capacitated single-day case of Tree IRPFL, Harks
et al. [8] provide a 4.38-approximation. They also give constant approximations
for the prize collecting variant and a cross-docking variant. For the group version
of the problem, Harks and König show a 4.38L-approximation.

Integrated Logistics: Ravi and Sinha [18] originated the study of more general
integrated logistics problems, and give a (ρST + ρUFL)-approximation for a gen-
eralization of the capacitated single-day Tree IRPFL called Capacitated-Cable
Facility Location (CCFL). Here, ST stands for Steiner Tree and UFL stands
for Uncapacitated Facility Location. In CCFL, the amount of demand delivered
through each edge must be supported by building enough copies of cables on the
edge. They give a bicriteria (ρk−MEDIAN + 2)-approximation opening 2k depots
for the k-median version of the CCFL, which allows k depots to be located at
no cost.

3 Uncapacitated SIRPFL

In this section, we give a constant approximation for Uncapacitated SIRPFL.
First, we state the LP formulation for Uncapacitated SIRPFL. Let zv indicate
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whether a facility at v is opened, yuv
s indicate whether edge uv is built on day s,

yuv
st indicate whether to deliver the demand of (v, t) on day s from facility u, and

xv
s,t indicate whether demand point (v, t) is served on day s. Then Uncapacitated

SIRPFL has the following LP relaxation. To simplify notation, define Hv
s,t =

dv
t hv

s,t, i.e., Hv
s,t is holding cost of storing all of the demand for demand point

(v, t) from day s to day t.

min
∑

v∈V

fvzv +
∑

s≤T

∑

e∈E

wey
e
s +

∑

(v,t)∈D

∑

s≤t

Hv
s,tx

v
s,t

s.t.
∑

s≤t

xv
s,t ≥ 1 ∀(v, t) ∈ D (1)

∑

u∈V

yuv
st ≥ xv

s,t ∀(v, t) ∈ D, s ≤ t (2)

zu ≥
T∑

s=1

yuv
st ∀(v, t) ∈ D,u ∈ V (3)

yuv
s ≥ yuv

st ∀(v, t) ∈ D,u ∈ V, s ≤ t (4)
zu ≥ yuv

s ∀u, v ∈ V, s ≤ T (5)
∑

u∈V

t2∑

s=s′
yuv
st2 ≥

∑

u∈V

t2∑

s=s′
yuv
st1 ∀v ∈ V, t2 > t1 ≥ s′ (6)

zu, y
e
r , y

a
l,mxv

s,t ≥ 0 ∀u, v ∈ V, e, a ∈ E, r,m, t ≤ T, l ≤ m, s ≤ t. (7)

Constraint 1 requires that every demand point is served by its deadline.
Constraint 2 enforces that v gets connected to some facility on day s if (v, t) is
served on day s. Constraint 3 ensures that facility u is open if u is assigned to
any demand point over the time horizon. Constraint 4 ensures that whenever
(v, t) is served on day s from u, an edge between u and v must be built on day s.
Constraint 5 ensures that whenever some client v is connected to u on some day
s, a facility must be built at u. Constraint 6 is valid for optimal solutions since for
any v, if there is a service to (v, t1) within [s′, t1] and t1 < t2, then the service to
t2 is either on the same day or later, i.e., there must be a service to (v, t2) within
[s′, t2]. Here we are using the property that in an optimal solution the demands
from a client over time are served in order without loss of generality, which is a
consequence of the monotonicity of the unit holding costs at any location.

Using the above LP formulation, we provide an LP rounding algorithm.
Before stating the algorithm, we define the necessary notation. First, let (x, y, z)
be an optimal LP solution. Let f(x, y, z), r(x, y, z), and h(x, y, z) denote the
facility cost, routing cost, and holding cost of (x, y, z) respectively. Define sv,t

to be the latest day s∗ such that
∑

u∈V

∑t
s=s∗ yuv

st ≥ 1
2 .

The key idea is to apportion the visit variable ys
uv at day s to different demand

days t that it serves using the additional variable yst
uv. The latter variables for

any demand at node v on day t provide a stronger lower bound, via Constraint 3,
on how much facility must be installed at node u than any lower bound from
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yuv
s alone. Constraint 3 is a crucial component in the proof of Lemma 1, which

ultimately allows us to bound the facility cost.
Ideally, we would like to use sv,t to bound the holding cost incurred when

serving (v, t) on day sv,t. However, to avoid high routing costs, not all demands
will get to be served by the desired sv,t. Instead, for each client v, an appropri-
ately chosen subset of {sv,t : t ≤ T} will be selected to be the days that have
service to v. To determine facility openings and client-facility connections, the
idea is to pick “balls” that gather enough density of zu values so that the cheap-
est facility within it can be paid for by the facility cost part of the LP objective.
To be able to bound the routing cost, we would like to pick the radii of the balls
based on the amount of yuv

s values available from the LP solution. However, yuv
s

by itself does not give a good enough lower bound for zu. So we will carefully
assign disjoint portions of yuv

s to yuv
st for different t’s. In this way, we use yuv

st to
bound the facility cost, and the disjoint portions of yuv

s to pay for the routing
cost. With these goals in mind, we now formally define the visit days and the
radius for each client.

Fix a client v. The set Av of demand days t that v gets visited on their sv,t

will be assigned based on collecting enough yuv
st over u and s. We call the days

in Av anchors of v. Denote by tLv
the latest day that has positive demand at v.

We use Sv to keep track of the service days for the anchors.

Algorithm 1. Visits for v

1: Initialize Av ← {tLv}.
2: Initialize Sv ← {sv,tLv

}.

3: Denote by t̃ the earliest anchor in Av.
4: while there is a positive unserved demand at v on some day before t̃ do
5: Denote by t the latest day before t̃ with positive demand at (v, t).
6: if t ≥ sv,t̃ then
7: Serve (v, t) on day sv,t̃.
8: else
9: Update Av ← Av ∪ {t}.

10: Update Sv ← Sv ∪ {sv,t}.
11: Update t̃ ← t.
12: end if
13: end while
14: Output the visit set Sv for v.

Define Wv,t =
∑

u∈V

∑t
s=sv,t

wuvyuv
st . Let Wv = mint∈Av

Wv,t. Finally, define
Bv = {u ∈ V : wuv ≤ 4Wv}, which is a ball of radius 4Wv centered at v. For
ball Bv, let Fv = arg minq∈Bv

fq. Simply, Fv is a location in Bv with the lowest
facility cost. Now we are ready to state the algorithm for opening facilities in
Algorithm 2.

Denote by Bv1 , . . . , Bvl
the balls picked into B by Algorithm 2.

Proposition 1. The holding cost of the solution from the algorithm is at most
2h(x, y, z).
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Algorithm 2. 12-approximation for Uncapacitated SIRPFL
1: B ← ∅
2: while there is any ball Bv disjoint from all balls in B do
3: Add to B the ball Bvi of smallest radius
4: end while
5: Within each ball Bvi , open a facility at Fvi .
6: Assign each client v to the closest opened facility u(v).
7: For each v, serve it on all days in Sv by building an edge from facility u(v) to v

per day s ∈ Sv.

Proof. For each demand point (v, t), we will charge a disjoint part of twice the
x values in the LP solution to pay for the holding cost. In particular, to pay
for the holding cost incurred by (v, t), we charge

∑sv,t

s=1 Hv
s,tx

v
s,t part of the LP

solution. We consider two cases: t ∈ Av and t /∈ Av.

1. In this case, assume that t ∈ Av. Then (v, t) is served on day sv,t, and incurs a
holding cost of Hv

sv,t,t. By definition of sv,t, we have
∑

u∈V

∑t
s=sv,t+1 yuv

st < 1
2 .

Then
sv,t∑

s=1

xv
s,t ≥ 1 −

t∑

s=sv,t+1

xv
s,t ≥ 1 −

t∑

s=sv,t+1

∑

u∈V

yuv
st > 1 − 1

2
=

1
2
.

So our budget of
∑sv,t

s=1 Hv
s,tx

v
s,t is at least Hv

sv,t,t

∑sv,t

s=1 xv
s,t ≥ Hv

sv,t,t

2 .
2. In this case, assume that t /∈ Av. Let t̃ be the earliest anchor after t. Since t

is not an anchor, [sv,t, t] must have overlapped [sv,t̃, t̃]. So sv,t̃ ≤ t. So (v, t)
is served on sv,t̃. By constraint 6, we have sv,t ≤ sv,t̃. By monotonicity of
holding cost, the holding cost incurred by serving (v, t) on sv,t̃ is at most
Hv

sv,t,t ≤ 2
∑sv,t

s=1 Hv
s,tx

v
s,t.

Proposition 2. The routing cost of the solution from the algorithm is at most
12r(x, y, z).

Proof. We will charge a disjoint portion of 12 times the y values in the LP
solution to pay for the routing cost. Note that only anchors cause new visit days
to be created in the algorithm. So consider a demand point (v, t) such that t is
an anchor for v.

1. First, consider the case that v ∈ {v1, . . . , vl}, the set of vertices for whose
balls were picked in B in Algorithm 2. Then the routing cost to connect (v, t)
to the nearest opened facility is

wFv,v ≤ 4Wv ≤ 4Wv,t(by definition of Wv)

≤ 4
∑

u∈V

t∑

s=sv,t

wuvyuv
s (by constraint 4).

Since it is within 4 times the LP budget, the desired claim holds.
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2. Now, assume that v /∈ {v1, . . . , vl}. Then Bv overlaps Bv′ for some v′ of
smaller radius than Bv (otherwise Bv would have been chosen into B instead
of the larger balls that overlap Bv). Then the edge built to serve (v, t) connects
Fv′ to v. So the routing cost to serve (v, t) is

wFv′ ,v ≤ Wv,v′ + Wv′,Fv′

≤ 2 · 4Wv + 4Wv (since radius of Bv is at least radius of Bv′)

≤ 12Wv ≤ 12Wv,t ≤ 12
∑

u∈V

t∑

s=sv,t

wuvyuv
s (by constraint 4).

Observe that for every v and any two anchors t1, t2 for v, we have [sv,t1 , t1]∩
[sv,t2 , t2] = ∅ by the construction of anchors in Algorithm 1. So each yuv

s is
charged at most once among all demands whose deadline correspond to anchors.

Before bounding the facility costs, we show a Lemma that will help prove
the desired bound.

Lemma 1. For all i ∈ {1, . . . , l}, we have
∑

v∈Bvi
zv ≥ 1

4 .

Proof. Suppose there is some i ∈ {1, . . . , l} such that
∑

u∈Bvi
zu < 1

4 . Let t̂ =
arg mint Wvi,t. Then

Wvi
= Wv,t̂ =

∑

u∈V

t̂∑

s=sv,t̂

wuvyuv
st̂

≥
∑

u/∈Bvi

t̂∑

s=sv,t̂

wuvyuv
st̂

≥ 4Wv

∑

u/∈Bvi

t̂∑

s=sv,t̂

yuv
st̂

(since u /∈ Bvi
)

≥ 4Wv(
∑

u∈V

t̂∑

s=sv,t̂

yuv
st̂

−
∑

u∈Bvi

t̂∑

s=sv,t̂

yuv
st̂

)

≥ 4Wv(
1
2

−
∑

u∈Bvi

t̂∑

s=sv,t̂

yuv
st̂

) (by definition of sv,t)

≥ 4Wv(
1
2

−
∑

u∈Bvi

zu) (by constraint 3)

> Wv (by the supposition
∑

u∈Bvi

zu <
1
4
,which leads to a contradiction).

Proposition 3. The facility cost of the algorithm’s solution is at most
4f(x, y, z).

Proof. We will charge four times the z values of the LP solution to pay for
the facilities opened by the algorithm. Since the balls picked by Algorithm 2
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are disjoint, we can pay for each facility opened using the LP value in its ball.
Consider ball Bvi

picked by the algorithm and its cheapest facility Fvi
. Then the

cost of opening Fvi
is at most fv for all v ∈ Bvi

. So the facility cost for Fvi
is

fFvi
≤ 4

∑

v∈Bvi

zvfFvi
≤ 4

∑

v∈Bvi

zvfv.

The first inequality follows from Lemma 1. The second inequality is due to Fvi

being the cheapest facility in the ball.

Since facility, holding and routing costs are bounded within 12 times their
respective optimal values, we have the following result.

Theorem 1. Algorithm 2 is a 12-approximation for Uncapacitated SIRPFL.

4 Capacitated IAP

Recall that the Inventory Access Problem (IAP) is the single client case of the
Inventory Routing Problem. The only decision needed is to determine on each
day whether to visit the client and how much supply to drop off. In SIRPFL, if
we know where to build the facilities, then the best way to connect clients would
be to the closest opened facility. So once facility openings are determined, the
remaining problem decomposes into solving IAP for every client.

4.1 A 3-Approximation for Capacitated Splittable IAP

Here, we consider Capacitated Splittable IAP, in which a single demand is allowed
to be served in parts over multiple days. Let W be the distance between the depot
and the client. Denote by hs,t the holding cost to store one unit of demand from
s to deadline t. The demand with deadline t is denoted by dt. Recall that U
denotes the capacity of the vehicle. We model Capacitated Splittable IAP by
the following LP relaxation.

min
∑

s≤T

Wys +
∑

t∈D

∑

s≤t

hs,tdtxs,t

s.t.
∑

s≤t

xs,t ≥ 1 ∀t ∈ D (8)

ys ≥
T∑

t=s

xs,tdt

U
∀s ≤ T (9)

ys ≥ xs,t ∀t ≤ T, s ≤ t (10)
xs,t ≥ 0 ∀t ∈ D, s ≤ t (11)
ys ≥ 0 ∀s ≤ T (12)
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The variable ys indicates the number of trips on day s. Variable xs,t indicates
the fraction of dt to deliver on day s. Note that the objective only counts the
cost of the visit to the client as a single copy of the trip variable ys reflecting
the star constraint (if a return trip needs to be accounted for, we can multiply
this term by 2 and all our results generalize easily). Constraint 8 requires that
each demand becomes entirely delivered by the due date (possibly split over
multiple days). Constraint 9 ensures that the total demand that day s serves do
not exceed the total capacity among all trips on day s. Constraint 10 ensures
that there is a trip whenever some delivery is made on day s.

Let (x, y) be an optimal LP solution. For convenience of the analysis, let
r(x, y) =

∑
s≤T Wys and h(x, y) =

∑
t∈D

∑
s≤t hs,tdtxs,t denote the routing

and holding cost of the solution respectively. We will use the LP values xs,t to
determine when to visit the client and which demands to drop per visit. For
each t ∈ D, let st be the latest day for which

∑t
s=st

xs,t ≥ 1
2 . We will keep track

of a visit set S of days when visits are scheduled along with an anchor set A
consisting of demand days that caused the creation of new visits.

Algorithm 3. Visit Rule for Capacitated Splittable IAP
1: Initialize A ← ∅.
2: Initialize S ← ∅.
3: while there is any unsatisfied demand do
4: Denote by t the unsatisfied demand day with the latest st
5: A ← A ∪ {t}.
6: S ← S ∪ {st}.
7: Satisfy t by dropping off dt on day st.
8: for unsatisfied demand day t̂ ≥ st do
9: satisfy t̂ by dropping off dt̂ on day st.

10: end for
11: end while
12: Output the visit set S.

For the analysis, denote by Ts the set of all demand days t such that t was
satisfied by s in Algorithm 3.

Proposition 4. The holding cost of the solution from Algorithm 3 is at most
2h(x, y).

Proof. 1. Assume that t ∈ A. Then t was served on day st, i.e., incurs holding
cost hst,tdt. To pay for the holding cost, we use the following part of the LP.

st∑

s=1

hs,tdtxs,t ≥ hst,tdt

st∑

s=1

xs,t ≥ hst,tdt

2
.

2. Assume that t /∈ A. Let s̃ be the latest day in S such that s̃ ≤ t. Then the
holding cost incurred by the demand on day t is hs̃,tdt. By definition of the
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chosen visit days S, t was not chosen as anchor because st was earlier than
s̃. So we pay for the holding cost using

s̃∑

s=1

hs,tdtxs,t ≥
st∑

s=1

hs,tdtxs,t (byst ≤ s̃)

≥ hst,tdt

2
≥ hs̃,tdt

2
(by monotonicity of holding costs).

Proposition 5. The routing cost of the solution from Algorithm 3 is at most
3r(x, y).

Proof. For each visit day st̃ ∈ S, the number of trips made is
⌈∑

t∈Ts
t̃

dt

U

⌉
≤

∑
t∈Ts

t̃
dt

U + 1. So the total number of trips made is at most
∑

t̃∈A

(∑
t∈Ts

t̃
dt

U + 1
)

≤
(∑

t̃∈A

∑
t∈Ts

t̃
dt

U

)
+ |A|. We will use 3 copies of

∑T
s=1 ys to pay for the routing cost–1 copy to pay for the first term and 2 copies

to pay for the second term. The total LP budget for the number of trips is

T∑

s=1

ys ≥
∑T

s=1

∑T
t=s xs,tdt

U
(by constraint 9)

≥
∑T

t=1

∑t
s=1 xs,tdt

U
≥

T∑

t=1

dt

U
≥

∑

t̃∈A

∑
t∈Ts

t̃

dt

U
.

So we can pay for the first term using one copy of the LP budget from all
the y variables.

To pay for the second term, we will use constraint 10 instead so that we can
use disjoint intervals of y for different anchors. In particular, for anchor t̃, we
will charge

2
t̃∑

s=st̃

ys ≥
t̃∑

s=st̃

xs,t̃ ≥ 2 · 1
2

(by definition of st̃).

By the construction of A, for any t1, t2 ∈ A, we have [st1 , t1] ∩ [st2 , t2] = ∅.
So the payment for different anchors use disjoint portions of y. Hence the second
term can be paid for within 2 copies of the budget provided by y.

Since both holding and routing costs are bounded within 3 times their respec-
tive optimal values, we have the following result.

Theorem 2. Algorithm 3 is a 3-approximation for the Capacitated Splittable
Inventory Access Problem.
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4.2 A 6-Approximation for Capacitated Unsplittable IAP

Here, we show that Capacitated Unsplittable IAP has a 2αCSIAP -
approximation, where αCSIAP is the best approximation factor for Capacitated
Splittable IAP.

Proposition 6. There is a 2αCSIAP -approximation for Capacitated Unsplit-
table IAP.

Proof. Given a Capacitated Unsplittable IAP instance, solve the corresponding
Capacitated Splittable IAP instance obtaining a solution (x, y) with approxima-
tion factor αCSIAP . To obtain a solution that does not split the demands, we will
repack the demands per visit day of (x, y). For each visit day s of the solution
(x, y), let Ds be the set of demands assigned to be served on day s by (x, y).
Let Ds

≤1/2 = {t ∈ Ds : dt ≤ U/2} and Ds
>1/2 = Ds \ Ds

≤1/2. Denote by n(s) the

number of trips on day s in the splittable solution. Note that n(s) ≥ �
∑

t∈Ds dt

U 	.
For each trip, for each demand in Ds

>1/2, give each demand its own trip.
Then, fill all demands of Ds

≤1/2 (without splitting) greedily into the previous
trips and new ones as long as the capacity is not exceeded. This means that
all trips involving demands in Ds

≤1/2, except for possibly one trip, will be filled
to strictly more than half the capacity. Let n′(s) be the number of trips in the
unsplittable solution thus obtained. If there are no trips of more than half the
capacity, then n′(s) = 1 = n(s). Otherwise, the total sum of demands across
the trips is strictly more than (n′(s) − 1) · U

2 . Since n(s) ≥ �
∑

t∈Ds dt

U 	, we get
n(s) > n′(s)−1

2 , i.e., n′(s) < 2n(s) + 1, which implies that n′(s) ≤ 2n(s) since
n′(s) is an integer. Since we kept all deliveries to the days they occurred in (x, y),
the holding cost does not change. Hence, the unsplittable solution has cost at
most 2 times the splittable solution.

Applying Proposition 6 with the 2-approximation for Capacitated Splittable
IAP, we obtain the following result.

Theorem 3. Capacitated Unsplittable IAP has a 6-approximation.

In the full paper [11], we show weak NP-hardness for the Capacitated Unsplit-
table IAP.

5 Conclusion

We studied the Uncapacitated, Capacitated Unsplittable, and Capacitated Split-
table variants of IAP and SIRPFL. For the Uncapacitated IAP, a polynomial
time dynamic program is known [20]. For the Capacitated Splittable IAP, we
proved a 3-approximation by rounding the LP. For the Capacitated Unsplit-
table IAP, we gave an NP-hardness reduction from Number Partition and a
6-approximation. For the more general Uncapacitated Star Inventory Rout-
ing Problem with Facility Location (Uncapacitated SIRPFL), we gave a 12-
approximation by combining rounding ideas from Facility Location and the
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visitation ideas from our 3-approximation for Capacitated Splittable IAP. For
Capacitated Splittable SIRPFL, we provided at 24-approximation. Following
that, we have a 48-approximation for Capacitated Unsplittable SIRPFL. It
remains open whether Capacitated Splittable IAP is NP-hard. Since we tried
to keep the proofs simple and did not optimize for the approximation factors, it
may not be difficult to improve the factors.

References

1. Arkin, E., Joneja, D., Roundy, R.: Computational complexity of uncapacitated
multi-echelon production planning problems. Oper. Res. Lett. 8, 61–66 (1989)

2. Bienkowski, M., Byrka, J., Chrobak, M., Jeż, L., Nogneng, D., Sgall, J.: Better
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Abstract. Let P be a path graph of n vertices embedded in a metric
space. We consider the problem of adding a new edge to P to minimize
the radius of the resulting graph. Previously, a similar problem for min-
imizing the diameter of the graph was solved in O(n log n) time. To the
best of our knowledge, the problem of minimizing the radius has not
been studied before. In this paper, we present an O(n) time algorithm
for the problem, which is optimal.

1 Introduction

In this paper, we consider the problem of augmenting a path graph embedded
in a metric space by adding a new edge so that the radius of the new graph is
minimized.

Let P be a path graph of n vertices, v1, v2, . . . , vn, ordered from one end to
the other. Let e(vi, vi+1) denote the edge connecting vi and vi+1 for i ∈ [1, n−1].
Let V be the set of all vertices of P . We assume that P is embedded in a metric
space, i.e., (V, |·|) is a metric space and |vivj | is the distance of any two vertices vi
and vj of V . Specifically, the following properties hold: (1) the triangle inequality:
|vivk| + |vkvj | ≥ |vivj |; (2) |vivj | = |vjvi| ≥ 0; (3) |vivj | = 0 iff i = j. For each
edge e(vi, vi+1) of P , its length is equal to |vivi+1|.

Suppose we add a new edge e connecting two vertices vi and vj of P , and let
P ∪{e} denote the resulting graph. Note that a point of P can be either a vertex
of P or in the interior of an edge. A point c on P ∪ {e} is called a center if it
minimizes the largest shortest path length from c to all vertices of P , and the
largest shortest path length from the center to all vertices is called the radius.
Our problem is to add a new edge e to connect two vertices of P such that the
radius of P ∪ {e} is minimized. We refer to the problem as the radius-optimally
augmenting path problem, or ROAP for short.

To the best of our knowledge, the problem has not been studied before. In
this paper, we present an O(n) time algorithm. We assume that the distance
|vivj | can be obtained in O(1) time for any two vertices vi and vj of P .

A full version of this paper is available at https://arxiv.org/abs/1904.12061.
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1.1 Related Work

A similar problem for minimizing the diameter of the augmenting graph was
studied before. Große et al. [9] first gave an O(n log3 n) time algorithm, and
later Wang [15] solved the problem in O(n log n) time.

Some variations of the diameter problem have also been considered in the
literature. If the path P is in the Euclidean space Rd for a constant d, then Große
et al. [9] gave an O(n+1/ε3) time algorithm that can find a (1+ ε)-approximate
solution for the diameter problem, for any ε > 0. If P is in the Euclidean plane
R

2, De Carufel et al. [5] gave a linear time algorithm for adding a new edge to P
to minimize the continuous diameter (i.e., the diameter is defined with respect to
all points of P , not only vertices). For a geometric tree T of n vertices embedded
in the Euclidean plane, De Carufel et al. [6] gave an O(n log n) time algorithm
for adding a new edge to T to minimize the continuous diameter. For the discrete
diameter problem where T is embedded in a metric space, Große et al. [10] first
proposed an O(n2 log n) time algorithm and later Bilò [3] solved the problem in
O(n log n) time. Oh and Ahn [13] studied the problem on a general tree (i.e., the
tree is not embedded in a metric space) and gave O(n2 log3 n) time algorithms
for both the discrete and continuous versions of the diameter problem, and later
Bilò [3] gave an optimal algorithm of O(n2) time for the discrete case.

The more general problem of adding k edges to a graph G so that the diameter
of the resulting graph is minimized has also been considered before. The problem
is NP-hard [14] and some other variants are even W[2]-hard [7,8]. Approximation
algorithms have been proposed [4,7,12]. The upper and lower bounds on the
diameters of the augmented graphs were also studied, e.g., [1,11]. Bae et al. [2]
considered the problem of adding k shortcuts to a circle in the plane to minimize
the diameter of the resulting graph.

Like the diameter, the radius is a critical metric of network performance,
which measures the worst-case cost between a “center” and all other nodes.
Therefore, our problem of augmenting graphs to minimize the radius potentially
has many applications. As an example, suppose there is a highway that connects
several cities and we want to build a facility along the highway to provide certain
service for all these cities. To reduce the transportation time, we plan to build
a new highway connecting two cities such that the radius (i.e., the maximum
distance from the cities to the facility located at the center) is as small as possible.

1.2 Our Approach

Note that in general the radius of P ∪ {e} is not equal to the diameter divided
by two. For example, suppose e connects v1 and vn (i.e., P ∪ {e} is a cycle).
Assume that the edges of the cycle have the same length and n is even. Suppose
the total length of the cycle is 1. Then, the diameter of the cycle is 1/2 while
the radius is (1 − 1/n)/2, very close to the diameter.

An easy way to solve ROAP is to try all edges e connecting vi and vj for all
i, j ∈ [1, n], which would take Ω(n2) time. We instead use the following approach.
Suppose an optimal edge e connecting two vertices vi∗ and vj∗ . Depending on
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v1 vi∗ vj∗ vn

c∗

v1 vi∗ vj∗ vnc∗

Fig. 1. Illustrating two configurations for the optimal solution, where c∗ is the cen-
ter and the thick (blue) paths are shortest paths from c∗ to its two farthest vertices,
depicted by larger points. In the top configuration, c∗ is on the new edge e and both
farthest vertices are on the sub-path of P between vi∗ and vj∗ . In the bottom config-
uration, c∗ is on the sub-path of P between vi∗ and vj∗ ; v1 is a farthest vertex of c∗

and the other one is on the sub-path of P between vi∗ and vj∗ . There are also other
configurations, e.g., c∗ is on the sub-path of P between v1 and vi∗ . (Color figure online)

the locations of the center c∗ and its two farthest vertices in P ∪ {e}, there are
several possible configurations for the optimal solution (e.g., see Fig. 1). For each
such configuration, we compute the best solution for it in linear time, such that
if there is an optimal solution conforming with the configuration, our solution
is also optimal. The efficiency of our approach relies on many observations and
properties, which help us avoid the brute-force method. In fact, our algorithm,
which involves several kinds of linear scans, is relatively simple. The challenge,
however, is on discovering and proving these observations and properties.

The remaining paper is organized as follows. In Sect. 2, we introduce some
notation. In Sect. 3, we present our linear time algorithm for ROAP. Due to the
space limit, most proofs are omitted but can be found in the full paper.

2 Preliminaries

Denote by e(vi, vj) the edge connecting two vertices vi and vj for any i, j ∈ [1, n].
The length of e(vi, vj) is |vivj |. This implies that for any two points p and q on
e(vi, vj), the length of the portion of e(vi, vj) between p and q is |pq|. Later we
will use this property directly without further explanations.

For any two points p and q on P , we use P (p, q) to denote the subpath of
P between p and q. Unless otherwise stated, we assume i ≤ j for each index
pair (i, j) discussed in the paper. For any pair (i, j), we use G(i, j) to denote the
new graph P ∪{e(vi, vj)} and use C(i, j) to denote the cycle P (vi, vj)∪e(vi, vj).
Note that if j ≤ i + 1, then G(i, j) = P and C(i, j) = P (vi, vj).

For any graph G, we use dG(p, q) to denote the length of the shortest path
between two points p and q in G, and we also call dG(p, q) the distance between
p and q in G. In our paper, G is usually a subgraph of G(i, j), e.g., P or C(i, j).
For example, dP (p, q) denotes the length of P (p, q). We perform a linear time
preprocessing so that dP (vi, vj) can be computed in O(1) time for any pair of
(i, j). Recall that |vivj | > 0 unless i = j, and thus, dP (vi, vj) > 0 unless i = j.
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A center of G(i, j) is defined as a point (either a vertex or in the interior
of an edge) that minimizes the maximum distance from it to all vertices in
G(i, j)1, and the maximum distance is called the radius of G(i, j). Hence, the
problem ROAP is to find a pair of indices (i, j) such that the radius of G(i, j) is
minimized.

We assume that P from v1 to vn is oriented from left to right, so that we
can talk about the relative positions of the points of P (i.e., a point p is to the
left of another point q on P if p is closer to v1 than q is). Similarly, each edge
e(vi, vj) with i < j from vi to vj is oriented from left to right.

3 Our Algorithm for ROAP

In this section, we present our algorithm for solving the problem ROAP. Let
(i∗, j∗) be an optimal solution with i∗ ≤ j∗ and c∗ be a center of G(i∗, j∗). Let
r∗ denote the radius of G(i∗, j∗). We begin with the following observation.

Observation 1. In G(i∗, j∗), there are two vertices va∗ and vb∗ such that the
following are true.

1. dG(i∗,j∗)(c∗, va∗) = dG(i∗,j∗)(c∗, vb∗) = r∗.
2. There is a shortest path from c∗ to va∗ , denoted by πa∗ , and a shortest path

from c∗ to vb∗ , denoted by πb∗ , such that c∗ is at the middle of πa∗ ∪πb∗ (i.e.,
the concatenation of the two paths).

Proof. If this were not true, then we could slightly move c∗ so that the maximum
distance from the new position of c∗ to all vertices in G(i∗, j∗) becomes smaller
than r∗, which contradicts with the definition of r∗. ��

Let a∗ and b∗ be the indices of the two vertices va∗ and vb∗ , and π∗ be the
union of the two paths πa∗ and πb∗ stated in Observation 1.

Without loss of generality, we assume a∗ < b∗. Depending on the locations of
c∗, a∗, b∗, as well as whether e(vi∗ , vj∗) ∈ π∗, there are several possible configu-
rations. For each configuration, we will give a linear time algorithm to compute
a candidate solution, i.e., a pair (i, j) (along with a radius r and a center c), so
that if there is an optimal solution conforming with the configuration then (i, j)
is also an optimal solution with c as the center and r = r∗. On the other hand,
each such solution is feasible in the sense that the distances from c to all vertices
in G(i, j) is at most r. There are a constant number of configurations. Since we
do not know which configuration has an optimal solution, we will compute a
candidate solution for each configuration, and among all candidate solutions we
return the one with the smallest radius. The runtime of the algorithm is O(n).

For example, one configuration is that a∗ = 1 and c∗ is on P (v1, vi∗). In this
case, r∗ is equal to dP (v1, c∗) and also equal to dP (c∗, vi∗) plus the distance from
vi∗ to its farthest vertex vk for all k ∈ [i∗, n], i.e., maxk∈[i∗,n] dG(i∗,j∗)(vi∗ , vk).

1 The concept of center is defined with respect to the graph instead of to the metric
space.
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In other words, r∗ is equal to half of dP (v1, vi∗) + maxk∈[i∗,n] dG(i∗,j∗)(vi∗ , vk).
Further, it can be verified that j∗ must be the index j that minimizes the value
maxk∈[i∗,n] dG(i∗,j)(vi∗ , vk) among all j ∈ [i∗, n]. Therefore, r∗ is equal to half of
dP (v1, vi∗) + minj∈[i∗,n] maxk∈[i∗,n] dG(i∗,j)(vi∗ , vk). Also, since c∗ ∈ P (v1, vi∗),
dP (v1, vi∗) ≥ maxk∈[i∗,n] dG(i∗,j∗)(vi∗ , vk). Correspondingly, we can compute a
candidate solution as follows.

For any i ∈ [1, n], define λi = minj∈[i,n] maxk∈[i,n] dG(i,j)(vi, vk), and let j(i)
denote the index j ∈ [i, n] that achieves λi. Suppose λi and j(i) for all i ∈ [1, n]
are known (which will be computed below). Then, in O(n) time we can find
the index i that minimizes the value dP (v1, vi) + λi among all i ∈ [1, n] with
dP (v1, vi) ≥ λi. We return the pair (i, j(i)) (with radius r = (dP (v1, vi) + λi)/2
and center c as the point on P (v1, vi) such that dP (v1, c) = r) as the candidate
solution for the configuration. It is not difficult to see that if the configuration
has an optimal solution, then (i, j(i)) is an optimal solution with the center at c
and r∗ = r. Further, by our definition of λi, the distance from c to every vertex
in G(i, j(i)) is at most r, and thus our candidate solution is feasible.

It remains to compute λi and j(i) for all i ∈ [1, n], which is done in the
following lemma, with the algorithm given in the next subsection.

Lemma 1. λi and j(i) for all i ∈ [1, n] can be computed in O(n) time.

3.1 The Algorithm for Lemma 1

The success of our approach hinges on several monotonicity properties that we
shall prove first in the following. Consider any i ∈ [1, n]. For any j ∈ [i, n],
define α(i, j) = maxk∈[i,n] dG(i,j)(vi, vk), β(i, j) = maxk∈[i,j] dG(i,j)(vi, vk), and
γ(i, j) = maxk∈[j+1,n] dG(i,j)(vi, vk) if j < n and γ(i, j) = 0 otherwise. Clearly,
α(i, j) = max{β(i, j), γ(i, j)} and λi = minj∈[i,n] α(i, j).

Note that for any k ∈ [i, j], the shortest path from vi to vk in G(i, j) must
be in the cycle C(i, j). Hence, β(i, j) = maxk∈[i,j] dC(i,j)(vi, vk). Also, it is not
difficult to see that γ(i, j) = dG(i,j)(vi, vn). For dG(i,j)(vi, vn), there are two
paths from vi to vn in G(i, j): P (vi, vn) and e(vi, vj) ∪ P (vj , vn). The length of
the latter path is |vivj |+dP (vj , vn). Due to the triangle inequality in the metric
space, it holds that |vivj | ≤ dP (vi, vj). Hence, γ(i, j) = |vivj | + dP (vj , vn). Our
first monotonicity property is given in Lemma 2.

Lemma 2. γ(i, j) ≥ γ(i, j + 1) for all j ∈ [i, n − 1].

Proof. Since γ(i, j) = |vivj |+dP (vj , vn) and γ(i, j+1) = |vivj+1|+dP (vj+1, vn),
we have γ(i, j)−γ(i, j +1) = |vivj |+dP (vj , vj+1)−|vivj+1| = |vivj |+ |vjvj+1|−
|vivj+1| ≥ 0. The last inequality is due to the triangle inequality. ��

Let I(i, j) be the index k in [i, j] such that β(i, j) = dC(i,j)(vi, vk) (if there
more than one such k, then we let I(i, j) refer to the smallest one). In our
algorithm given later, we will need to compute β(i, j) for some pairs (i, j). For
each k ∈ [i, j], observe that dC(i,j)(vi, vk) = min{dP (vi, vk), |vivj | + dP (vk, vj)}.
Hence, if I(i, j) is known, then β(i, j) can be computed in constant time due to
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our preprocessing in Sect. 2. In order to determine I(i, j), we introduce a new
notation. Define I ′(i, j) to be the smallest index k ∈ [i, j] such that dP (vi, vk) ≥
|vivj | + dP (vk, vj). Note that such k must exist since dP (vi, vj) ≥ |vivj |.
Observation 2. I(i, j) is either I ′(i, j) or I ′(i, j) − 1.

Proof. Let h = I ′(i, j). We first assume that h > i. By the definition of I ′(i, j),
dP (vi, vh) ≥ |vivj | + dP (vj , vh) and dP (vi, vh−1) < |vivj | + dP (vj , vh−1). Thus,
dC(i,j)(vi, vh) = |vivj | + dP (vj , vh) and dC(i,j)(vi, vh−1) = dP (vi, vh−1).

Consider any k ∈ [i, j]. If k > h, then dC(i,j)(vi, vh) = |vivj | + dP (vj , vh) ≥
|vivj |+ dP (vj , vk) ≥ dC(i,j)(vi, vk). If k < h− 1, then we have dC(i,j)(vi, vh−1) =
dP (vi, vh−1) > dP (vi, vk) ≥ dC(i,j)(vi, vk). Note that dP (vi, vh−1) > dP (vi, vk)
holds because dP (vi, vh−1) = dP (vi, vk) + dP (vk, vh−1) and dP (vk, vh−1) > 0.
Therefore, one of h and h − 1 must be I(i, j).

If h = i, since dP (vi, vh) = 0, by the definition of h, it must be the case that
i = j. Thus, I(i, j) = i = h. ��

Observation 2 tells that if we know I ′(i, j), then β(i, j) is equal to the min-
imum of dC(i,j)(vi, vI′(i,j)) and dC(i,j)(vi, vI′(i,j)−1), which can be computed in
constant time. Hence, to compute β(i, j), it is sufficient to determine I ′(i, j).
To efficiently compute I ′(i, j) during our algorithm, the following monotonicity
properties on I ′(i, j) will be quite helpful.

Lemma 3. 1. I ′(i, j) ≤ I ′(i, j + 1) for all j ∈ [i, n − 1].
2. I ′(i, j) ≤ I ′(i + 1, j) for all i ∈ [1, j − 1].

The following lemma characterizes a monotonicity property of the β values.

Lemma 4. β(i, j) ≤ β(i, j + 1) for all j ∈ [i, n − 1].

Proof. Let h = I(i, j). Then, β(i, j) = dC(i,j)(vi, vh) = min{dP (vi, vh), |vivj | +
dP (vj , vh)}. By the triangle inequality, |vivj | + dP (vj , vh) ≤ |vivj+1| +
dP (vj+1, vh). Since β(i, j + 1) = maxk∈[i,j+1] min{dP (vi, vk), |vivj+1| +
dP (vj+1, vk)}, we obtain

β(i, j + 1) ≥ min{dP (vi, vh), |vivj+1| + dP (vj+1, vh)}
≥ min{dP (vi, vh), |vivj | + dP (vj , vh)} = β(i, j).

��
Consider any i ∈ [1, n]. Recall that j(i) is the index j that minimizes the

value α(i, j) for all j ∈ [i, n], and α(i, j) = max{β(i, j), γ(i, j)}. If we consider
α(i, j), β(i, j), and γ(i, j) as functions of j ∈ [i, n], then by Lemmas 2 and 4,
α(i, j) is a unimodal function (first decreases and then increases; e.g., see Fig. 2).
In order to compute j(i) and thus λi during our algorithm, we define j′(i) to be
the smallest index j ∈ [i, n] such that γ(i, j) ≤ β(i, j). Note that such j must
exist because γ(i, n) ≤ β(i, n). We have the following observation.

Observation 3. j(i) is either j′(i) − 1 or j′(i).
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ni j (i)

β(i, j)γ(i, j)

j
j (i) − 1

Fig. 2. Illustrating the two functions β(i, j) and γ(i, j) for j ∈ [i, n]. The function
α(i, j), depicted by the thick (red) curve, is the pointwise maximum of them. The
index j′(i) is also shown. (Color figure online)

Lemma 5 gives our last monotonicity, which will help us to determine j′(i).

Lemma 5. j′(i) ≤ j′(i + 1) for all i ∈ [n − 1].

Based on the above several monotonicity properties, we present our linear
time algorithm for computing λi and j(i) for all i ∈ [1, n], as follows. Recall that
we have done preprocessing so that dP (vi, vj) can be computed in O(1) time for
any pair (i, j).

Starting with i = 1 and j = 1, we increment j from 1 to n. For each j, we
maintain the four values γ(i, j − 1), γ(i, j), β(i, j − 1), and β(i, j). So α(i, j − 1)
and α(i, j) can be obtained in O(1) time. Since γ(i, j) = |vivj | + dP (vj , vn),
γ(i, j) can be computed in O(1) time, and the same applies to γ(i, j − 1). We
will explain how to compute the β values later. During the increasing of j,
if the first time we find γ(i, j) ≤ β(i, j), then j′(i) = j. By Observation 3,
λi = min{α(i, j − 1), α(i, j)}.

Then, we increase i by one (for differentiation, we use i + 1 to denote the
increased i). By Lemma 5, to determine j′(i + 1), we only need to start j from
j = j′(i). Following the similar procedure as above, we increase j and maintain
γ(i+1, j − 1), γ(i+1, j), β(i+1, j − 1), and β(i+1, j). Initially when j = j′(i),
γ(i + 1, j − 1) and γ(i + 1, j) can be computed in O(1) time as discussed before;
for β(i + 1, j − 1) and β(i + 1, j), we will show later that they can be computed
in O(1) amortized time. In this way, the total time for computing λi and j(i)
for all i ∈ [1, n] is O(n).

It remains to describe how to compute the values β(i, j). As discussed before,
by Observation 2, it is sufficient to determine I ′(i, j), after which β(i, j) can be
computed in O(1) time.

Our algorithm relies on the monotonicity properties of Lemma 3. Initially,
when i = j = 1, we let k = 1. As j increases, we also increase k. We can
compute both dP (vi, vk) and |vivj | + dP (vk, vj) in constant time for each triple
(i, k, j). During the increasing of k, if we find dP (vi, vk) ≥ |vivj | + dP (vk, vj)
for the first time, then I ′(i, j) is k. After j is increased, we need to compute
β(i, j + 1), i.e., determine I ′(i, j + 1) (for differentiation, we use j + 1 to refer to
the increased j). To this end, by Lemma 3, we have k start from I ′(i, j), which
is the exactly current value of k. Similarly, when i is increased and we need to
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determine I ′(i+ 1, j), we also have k start from I ′(i, j), i.e., the current value of
k. Thus, in the entire algorithm, the index k continuously increases from 1 to n.

In summary, in the overall algorithm i and j simultaneously increase from 1
to n with i ≤ j. Hence, the number of β(i, j) values computed in the entire algo-
rithm is at most 2n. Further, the procedure for computing all β values increases
k from 1 to n. Thus, the total time for computing all β values in the algorithm
is O(n), and the amortized time for computing each β value is O(1).

3.2 The Configurations and Our Algorithm

In this section, we present our algorithm for computing an optimal solution.
As discussed before, we will consider all possible configurations for the optimal
solution and compute a candidate solution for each such configuration.

Recall the definitions of c∗, a∗, b∗, r∗, and π∗ in the beginning of Sect. 3.
We already discussed one configuration above, i.e., c∗ is on P (v1, vi∗). With the
help of Lemma 1, we gave a linear time algorithm for it. Another configuration,
which is symmetric, is that c∗ is on P (vj∗ , vn). Correspondingly, we can use
an analogous algorithm (e.g., reverse the indices of P and then apply the same
algorithm) to compute a candidate solution in linear time. We omit the details.
For the reference purpose, we consider the above two configurations as Case 0.

It remains to consider the configuration c∗ ∈ C(i∗, j∗) \ {vi∗ , vj∗}. Here, c∗

is in the interior of either e(vi∗ , vj∗) or P (vi∗ , vj∗). It is not difficult to see that
va∗ is either v1 or a vertex in P (vi∗ , vj∗), i.e., a∗ = 1 or a∗ ∈ [i∗, j∗]. Similarly,
b∗ = n or b∗ ∈ [i∗, j∗]. Depending on whether a∗ = 1, b∗ = n, or both a∗ and b∗

are in [i∗, j∗], there are three main cases.

Case 1. a∗ = 1. In this case, depending on whether b∗ = n or b∗ ∈ [i∗, j∗],
there are two cases.

Case 1.1. b∗ = n. In this case, if π∗ does not contain e(i∗, j∗), then π∗ is the
path P , and we keep a candidate solution with dP (v1, vn)/2 as the radius. Below,
we focus on the case where π∗ contains e(i∗, j∗). As c∗ ∈ C(vi∗ , vj∗) \ {vi∗ , vj∗}
and c∗ ∈ π∗, c∗ must be in the interior of e(vi∗ , vj∗) (e.g., see Fig. 3).

v1 vi∗ vj∗ vn

c∗

Fig. 3. Illustrating the configuration for Case 1.1, where c∗ ∈ e(vi∗ , vj∗), a∗ = 1, and
b∗ = n. The thick (blue) path is π∗. (Color figure online)

We make an assumption on j∗ that no index j > j∗ exists such that (i∗, j) is
also an optimal solution with the same configuration as (i∗, j∗), since otherwise
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we could instead consider (i∗, j) as (i∗, j∗). We also assume that none of the
previously discussed configurations has an optimal solution since otherwise our
previously obtained candidate solutions already have an optimal one. With these
assumptions, we have the following key lemma for our algorithm.

Lemma 6. Let k∗ be the smallest index such that dP (vi∗ , vk∗) > dP (v1, vi∗).
Such an index k∗ must exist in [i∗, j∗]. Further, j∗ is the largest index j ∈ [k∗, n]
such that dP (vk∗ , vj) ≤ dP (vj , vn).

Based on Lemma 6, our algorithm for this case works as follows. For each
index i ∈ [1, n], define k(i) as the smallest index k ∈ [i, n] such that dP (vi, vk) >
dP (v1, vi) (let k(i) = n + 1 if no such index exists), and if k(i) ≤ n, define
j(i)2 as the largest index j ∈ [k(i), n] such that dP (vk(i), vj) ≤ dP (vj , vn) (let
j(i) = n + 1 if k(i) = n + 1). The following observation is self-evident.

Observation 4. For each i ∈ [1, n − 1], k(i) ≤ k(i + 1) and j(i) ≤ j(i + 1).

By the above observation, we can easily compute k(i) and j(i) for all i ∈ [1, n]
in O(n) time by a linear scan on P . We omit the details.

For each i, if j(i) ≤ n, let r(i) = (dP (v1, vi) + |vivj(i)| + dP (vj(i), vn))/2, and
if dP (v1, vi) < r(i) and dP (vj(i), vn) < r(i) (implies that the center is in the
interior of e(vi, vj(i))), then we keep (i, j(i)) as a candidate solution with r(i) as
the radius (and the center is a point c in e(vi, vj(i)) with dP (v1, vi)+|vic| = r(i)).
Note that due to our definitions of k(i) and j(i), the solution is feasible, i.e., the
distances from c to all vertices in the graph G(i, j(i)) are no more than r(i). The
above computes at most n candidate solutions, and among them, we keep the
one with the smallest r(i) value as our candidate solution for this configuration.
Based on our discussions, if this configuration has an optimal solution, then our
solution is also optimal. The running time of the algorithm is O(n).

Case 1.2: b∗ ∈ [i∗, j∗]. Note that π∗ either contains e(i∗, j∗) or does not con-
tain any interior point of the edge. Depending on whether π∗ contains e(i∗, j∗),
there are two cases.

Case 1.2.1: π∗ contains e(i∗, j∗). Recall that c∗ is in the interior of either
e(vi∗ , vj∗) or P (vi∗ , vj∗). We discuss the two cases below.

Case 1.2.1.1: c∗ ∈ e(i∗, j∗), e.g., see Fig. 4. Our algorithm for this case
is somewhat similar to that for Case 1.1. We make an assumption on j∗ that
no index j < j∗ exists such that (i∗, j) is also an optimal solution with the
same configuration as (i∗, j∗) since otherwise we could instead consider (i∗, j)
as (i∗, j∗). We also assume that none of the previously discussed configurations
has an optimal solution. We have the following lemma.

2 This notation was used differently before. As we have several cases to consider, to
save notation, we may use the same notation as long as the context is clear.
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v1 vi∗ vj∗ vn

c∗

vb∗

Fig. 4. Illustrating the configuration for Case 1.2.1.1, where c∗ ∈ e(vi∗ , vj∗), a∗ = 1,
and b∗ ∈ [i∗, j∗]. The thick (blue) path is π∗. (Color figure online)

Lemma 7. 1. Let k∗ be the smallest index such that dP (vi∗ , vk∗) > dP (v1, vi∗).
Such an index k∗ must exist in [i∗, j∗].

2. b∗ = k∗.
3. j∗ is the smallest index j ∈ [k∗, n] such that dP (vk∗ , vj) > dP (vj , vn).

Based on Lemma 7, our algorithm for this case works as follows. For each
index i ∈ [1, n], define k(i) as the smallest k ∈ [i, n] such that dP (vi, vk) >
dP (v1, vi) (let k(i) = n + 1 if no such index exists), and if k(i) ≤ n, define
j(i) as the smallest index j ∈ [k(i), n] such that dP (vk(i), vj) > dP (vj , vn) (let
j(i) = n + 1 if no such index exists or if k(i) = n + 1). It is easy to see that for
each i ∈ [1, n − 1], k(i) ≤ k(i + 1) and j(i) ≤ j(i + 1). The indices k(i) and j(i)
can be computed in O(n) time by a linear scan on P . We omit the details.

For each i, if j(i) ≤ n, then let r(i) = (dP (v1, vi)+|vivj(i)|+dP (vj(i), vk(i)))/2,
and if dP (v1, vi) < r(i) and dP (vj(i), vk(i)) < r(i) (this implies that the center is
in the interior of e(vi, vj(i))), then we have a candidate solution (i, j(i)) with r(i)
as the radius. By our definitions of k(i) and j(i), the solution is feasible. Finally,
among the at most n candidate solutions, we keep the one with the smallest r(i)
as our solution for this configuration. The running time of the algorithm is O(n).

Case 1.2.1.2: c∗ ∈ P (i∗, j∗). Since π∗ contains e(vi∗ , vj∗), c∗ must be to the
right of vb∗ (e.g., see the bottom example in Fig. 1). Further, dP (v1, vc∗) =
dP (v1, vi∗) + |vi∗vj∗ | + dP (c∗, vj∗) = r∗. We make an assumption on j∗ that no
index j < j∗ exists such that (i∗, j) is also an optimal solution with the same
configuration as (i∗, j∗). We also assume that none of the previously discussed
configurations has an optimal solution. The following lemma is literally the same
as Lemma 7, although the proof is different.

Lemma 8. 1. Let k∗ be the smallest index such that dP (vi∗ , vk∗) > dP (v1, vi∗).
Such an index k∗ must exist in [i∗, j∗].

2. b∗ = k∗.
3. j∗ is the smallest index j ∈ [k∗, n] such that dP (vk∗ , vj) > dP (vj , vn).

Based on Lemma 8, our algorithm for this case works as follows. For each
index i ∈ [1, n], define k(i) and j(i) in the same way as in the above Case
1.2.1.1. We also compute them in O(n) time. For each i, if j(i) ≤ n, then let
r(i) = (dP (v1, vi)+ |vivj(i)|+dP (vj(i), vk(i)))/2, and if dP (v1, vi)+ |vivj(i)| < r(i)
(implies that the center is on P (vk(i), vj(i))), then we have a candidate solution
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(i, j(i)) with r(i) as the radius. Finally, among the at most n candidate solutions,
we keep the one with the smallest radius as our solution for this case. The total
running time of the algorithm is O(n).

Case 1.2.2: π∗ does not contain e(i∗, j∗). In this case, the shortest path from
c∗ to v1 in G(i∗, j∗) is P (v1, c∗) and the shortest path from c∗ to vb∗ is P (c∗, vb∗).
Since c∗ is in the middle of π∗, π∗ is P (v1, vb∗) (e.g., see Fig. 5). Further, it is
not difficult to see that for any j ∈ [b∗ + 1, n], the shortest path from c∗ to vj
in G(i∗, j∗) is P (c∗, vi∗) ∪ e(vi∗ , vj∗) ∪ P (vj∗ , vj). Also note that b∗ < j∗, since
otherwise (i.e., b∗ = j∗, which is smaller than n as b∗ �= n) dG(i∗,j∗)(c∗, vn) =
dG(i∗,j∗)(c∗, vb∗)+dP (vb∗ , vn) > dG(i∗,j∗)(c∗, vb∗) = r∗, a contradiction. We make
an assumption on j∗ that no index j < j∗ exists such that (i∗, j) is also an
optimal solution with the same configuration as (i∗, j∗). We also assume that
none of the previously discussed configurations has an optimal solution. We begin
with the following observation.

v1 vi∗ vj∗ vnc∗ vb∗

Fig. 5. Illustrating the configuration for Case 1.2.2, where a∗ = 1, b∗ ∈ [i∗, j∗], and
c∗ ∈ P (vi∗ , vj∗). The thick (blue) path is π∗. (Color figure online)

Observation 5. For any i ∈ [1, n], the value |vivj |+dP (vj , vn) is monotonically
decreasing as j increases from i to n.

Lemma 9. 1. Let k∗ be the largest index in [i∗, j∗] such that dP (v1, vi∗) <
|vi∗vj∗ | + dP (vj∗ , vk∗). Such an index k∗ must exist.

2. b∗ = k∗.
3. j∗ must be the smallest index j ∈ [i∗, n] such that dP (v1, vi∗) ≥ |vi∗vj | +

dP (vj , vn).
4. dP (v1, vi∗) < dP (vi∗ , vn).

Based on Lemma 9, our algorithm works as follows. Let i1 be the largest
index i in [1, n] such that dP (v1, vi) < dP (vi, vn). Let i2 be the smallest index
i in [1, n] such that dP (v1, vi) ≥ |vivn|. By Lemma 9 and Observation 5, if
i2 ≤ i1

3, we only need to consider the indices in [i2, i1] as the candidates for
i∗. For each i ∈ [i2, i1], define j(i) as the smallest index j ∈ [i, n] such that
dP (v1, vi) ≥ |vivj | + dP (vj , vn)4, and define k(i) as the largest k ∈ [i, j(i)] such
that dP (v1, vi) < |vivj(i)| + dP (vj(i), vk) (let k(i) = 0 if no such index k exists).

The monotonicity properties of j(i) and k(i) in the following lemma will lead
to an efficient algorithm to compute them.
3 Note that i2 ≤ i1+1 always holds because dP (v1, vi1+1) ≥ dP (vi1+1, vn) ≥ |vi1+1vn|.
4 The index j must exist because dP (v1, vi) ≥ |vivn| due to the definition of i2.
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Lemma 10. For any i ∈ [i2, i1 − 1], j(i + 1) ≤ j(i) and k(i + 1) ≤ k(i).

Our algorithm for this configuration works as follows. We first compute the
two indices i1 and i2. If i2 > i1, then we do not keep any solution for this case.
Otherwise, by the monotonicity properties of j(i) and k(i) in Lemma 10, we can
compute j(i) and k(i) for all i ∈ [i2, i1] in O(n) time by a linear scan on P .
The details are omitted. Then, for each i ∈ [i2, i1], if k(i) �= 0 and dP (v1, vi) <
dP (vi, vk(i)) (this makes sure that the center is in P (vi, vk(i))), then we have a
candidate solution (i, j(i)) with radius r(i) = dP (v1, vk(i))/2. By our definition of
j(i) and k(i), the solution is feasible. Finally, among all the at most n candidate
solutions, we keep the one with the smallest radius as our solution for this case.
The algorithm runs in O(n) time.

Case 2: b∗ = n. This case is symmetric to Case 1 (a∗ = 1), so we omit the
details.

Case 3: Both a∗ and b∗ are in [i∗, j∗]. Since a∗ �= 1 and b∗ �= n, a∗ cannot
be i∗ and b∗ cannot be j∗. Hence, both a∗ and b∗ are in [i∗ +1, j∗ −1]. As in Case
1, depending on whether c∗ is in e(i∗, j∗) or P (vi∗ , vj∗), there are two subcases.

Case 3.1. c∗ ∈ e(i∗, j∗). More precisely, c∗ is in the interior of e(i∗, j∗), which
implies that e(i∗, j∗) is in π∗. It is not difficult to see that b∗ = a∗ + 1 (e.g., see
Fig. 6). We make an assumption on [i∗, j∗] that there is no smaller interval [i, j] ⊂
[i∗, j∗] such that (i, j) is also an optimal solution with the same configuration as
(i∗, j∗) (since otherwise we could instead consider (i, j) as (i∗, j∗)).

v1 vi∗ vj∗ vn

c∗

vb∗va∗

Fig. 6. Illustrating the configuration for Case 3.1, where a∗, b∗ ∈ [i∗, j∗] and c∗ ∈
e(vi∗ , vj∗). The thick (blue) path is π∗. (Color figure online)

We also assume that none of the previously discussed cases happens. This
implies that neither v1 nor vn is a farthest vertex of c∗ in G(i∗, j∗). To see this,
suppose to the contrary that v1 is also a farthest vertex. Then, if we consider v1
and vb∗ as two farthest vertices stated in Observation 1, then the configuration
becomes Case 1.2.1.1 (the bottom example in Fig. 1), which incurs contradiction.
Similarly, vn is not a farthest vertex. Since neither v1 nor vn is a farthest vertex
of c∗, dP (v1, vi∗) < dP (vi∗ , va∗) and dP (vj∗ , vn) < dP (vb∗ , vj∗).

Lemma 11. i∗ is the largest index i ∈ [1, a∗] such that dP (v1, vi) < dP (vi, va∗).
j∗ is the smallest index j ∈ [b∗, n] such that dP (vj , vn) < dP (vb∗ , vj).
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Based on Lemma 11, our algorithm works as follows. For each interval
[k, k + 1] with k ∈ [2, n − 2] (since a∗ > 1 and b∗ < n, we do not need to
consider the case where k = 1 or k + 1 = n), define i(k) as the largest index
i ∈ [1, k] such that dP (v1, vi) < dP (vi, vk), and define j(k) as the smallest index
j ∈ [k + 1, n] such that dP (vj , vn) < dP (vk+1, vj). It can be verified that for
any k ∈ [2, n − 3], i(k) ≤ i(k + 1) and j(k) ≤ j(k + 1). Thus, we can eas-
ily compute i(k) and j(k) for all k ∈ [2, n − 2] in O(n) time. Then, for each
k ∈ [2, n − 2], let r(i) = (dP (vi(k), vk) + |vi(k)vj(k)| + dP (vk+1, vj(k)))/2, and if
r(i) > dP (vi(k), vk) and r(i) > dP (vk+1, vj(k)) (this makes sure that the center
is on the edge e(vi(k), vj(k))), then we have a candidate solution (i(k), j(k + 1))
with r(i) as the radius. By the definitions of i(k) and j(k + 1), the solution is
feasible. Finally, among the at most n candidate solutions, we keep the one with
the smallest radius as our solution for this case. The algorithm runs in O(n)
time.

Case 3.2. c∗ ∈ P (vi∗ , vj∗). More precisely, c∗ is in the interior of P (vi∗ , vj∗).
We first have the following observation.

Lemma 12. π∗ must contain e(vi∗ , vj∗); b∗ = a∗ + 1; va∗ and vb∗ are on the
same side of c∗ (e.g., see Fig. 7).

v1 vi∗ vj∗ vnvb∗va∗ c∗

Fig. 7. Illustrating the configuration for Case 3.2, where a∗, b∗ ∈ [i∗, j∗] and c∗ ∈
P (vi∗ , vj∗). The thick (blue) path is π∗. (Color figure online)

In the following, we only discuss the case where c∗ is to the right of va∗ and
vb∗ (e.g., see Fig. 7), and the algorithm for the other case is symmetric. We make
an assumption on [i∗, j∗] such that there is no smaller interval [i, j] ⊂ [i∗, j∗] such
that (i, j) is also an optimal solution with the same configuration as (i∗, j∗). We
again assume that none of the previously discussed cases happens. The following
lemma is literally the same as Lemma 11, although the proof is different.

Lemma 13. i∗ is the largest index i ∈ [1, a∗] such that dP (v1, vi) < dP (vi, va∗).
j∗ is the smallest index j ∈ [b∗, n] such that dP (vj , vn) < dP (vj , vb∗).

Based on Lemma 13, our algorithm for this configuration works as follows.
We define i(k) and j(k) for each k ∈ [2, n − 2] in the same way as those for
Case 3.1, and their values have already been computed in Case 3.1. Then, for
each k ∈ [2, n− 2], let r(i) = (dP (vk, vi(k))+ |vi(k)vj(k)|+ dP (j(k), vk+1))/2, and
if r(i) < dP (vk+1, vj(k)) (this makes sure that the center is on P (vk+1, vj(k)),
then we keep (i(k), j(k)) as a candidate solution with r(i) as the radius.
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The definitions of i(k) and j(k) guarantee that it is a feasible solution. Finally,
among the at most n candidate solutions, we keep the one with the smallest
radius as the solution for this configuration. The total time of the algorithm
is O(n).

Remark. The above gives the algorithm for Case 3.2 when c∗ is to the right of
vb∗ . If c∗ is to the left of va∗ , then we also use the above same values i(k), j(k),
and r(i). We keep the candidate solution only if r(i) < dP (vi(k), vk) (this makes
sure that the center is on P (vi(k), vk). In fact, the can unify our algorithms for
Case 3.1 and Case 3.2 to obtain an algorithm for Case 3, as follows. We compute
the same values i(k), j(k), and r(i) as before. Then, for each k ∈ [2, n − 2], we
keep (i(k), j(k)) as a candidate solution with r(i) as the radius. Finally, among
the at most n candidate solutions, we keep the one with the smallest radius.

Theorem 1. The ROAP problem is solvable in linear time.

Proof. The above provides a linear time algorithm for computing at most one
candidate solution for each configuration. As there are O(1) configurations, the
total time is O(n). ��
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Abstract. In 2006, Alberto Bressan [3] suggested the following problem.
Suppose a circular fire spreads in the Euclidean plane at unit speed. The
task is to build, in real time, barrier curves to contain the fire. At each
time t the total length of all barriers built so far must not exceed t · v,
where v is a speed constant. How large a speed v is needed? He proved
that speed v > 2 is sufficient, and that v > 1 is necessary. This gap
of (1, 2] is still open. The crucial question seems to be the following.
When trying to contain a fire, should one build, at maximum speed, the
enclosing barrier, or does it make sense to spend some time on placing
extra delaying barriers in the fire’s way? We study the situation where
the fire must be contained in the upper L1 half-plane by an infinite
horizontal barrier to which vertical line segments may be attached as
delaying barriers. Surprisingly, such delaying barriers are helpful when
properly placed. We prove that speed v = 1.8772 is sufficient, while
v > 1.66 is necessary.

Keywords: Barrier · Firefighting · Geodesic circle

1 Introduction and Problem Statement

Fighting wildfires is a difficult problem, involving many parameters one can
neither foresee nor control. But there seem to be two main techniques firefight-
ers employ, namely to extinguish the fire by dropping water or chemicals from
aircraft, and to prevent the fire from spreading further by firebreaks. In 2006,
Alberto Bressan [3] developed a rather general model for containing a fire by
means of barrier curves that must be built in real time, subject to velocity
constraints. Barriers are impenetrable by fire, they do not burn and cannot be
moved once built.

In addition to general optimality results [5–7], in [3] Bressan proposed the
following problem. Suppose a circular fire spreads in the plane at unit speed.
In real time, barrier curves must be built to contain it. At each time t, the
total length of barriers built so far must not exceed t times v, for some velocity
constant v. The question is how large a velocity is needed to contain the fire.
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Bressan showed that v > 1 is necessary and that v > 2 is sufficient; see also [15]
for short proofs. He conjectured that speed v = 2 is necessary. But the gap (1, 2]
is still open, even though a 500 USD reward has been offered [4] in 2011.

It seems that the difficulty lies with the following question. To contain a
fire, should one build an enclosing barrier at maximum speed, or is it better
to invest some time in building extra delaying barriers that will not be part of
the final enclosure but can slow the fire down during construction? If delaying
barriers could be shown to be useless, Bressan’s proof of the lower bound 1
could be easily extended to prove his conjecture, the lower bound of 2. In fact
they consider a special variant in [6], where the fire spreads in a half plane. In
that case they can construct an optimal strategy without delaying barriers, that
encloses the fire between the boundary of the half plane and the barrier curve.

To study the effectiveness of delaying barriers we study a different setting
where an infinite horizontal barrier has to be built to contain the fire in the upper
half-plane, instead of the interior of a closed barrier curve. To this horizontal
barrier, vertical line segments may be attached as delaying barriers. Without
vertical barriers speed v = 2 is necessary and sufficient to build the horizontal
barrier. While it takes extra time to build vertical barriers, they offer some
respite because the expanding fire has to overcome them before it reaches the
horizontal barrier again. To simplify matters further we are working in the L1

norm, so that distances are free of square roots. Also, all intersections of the
fire’s boundary with the barriers advance at unit speed.

Our main result is the following. In our setting, speed v > 1.66 is necessary,
and, with a careful placement of delaying barriers, speed v = 1.8772 is sufficient.
While this result does not disprove Bressan’s conjecture it casts a new light on
the problem by showing that building delaying barriers can be helpful. Also, the
gap we leave open is smaller than the one for the original containment problem.

Previous, but weaker results have been presented at EuroCG’18 [14].

1.1 Related Work

Among theoretical work on extinguishing a fire, the “lion and man” problem
stands out [1,2,8,13]. Here, r fighters are tasked with quenching a fire in an
n×n grid. In every step, fighters and fire move simultaneously to adjacent cells,
subject to certain rules. While r = n fighters can easily extinguish the fire, �n/2�
fighters are not enough. The gap in between is still open, despite serious efforts.

How to contain a fire has received a lot of attention in graph theory, see,
e. g., [9–11]. In quite a few examples, in each round, a stationary guard can be
placed in a vertex not on fire, then the fire spreads to all unguarded adjacent
vertices. This continues until the fire cannot spread any further. The problem to
determine the maximum number of vertices that can be protected is NP-hard,
even in trees of degree 3.

Similar in spirit is a geometric firefighting problem in simple polygons [18],
where barriers must be chosen from a set of pairwise disjoint diagonals, to save
an area of maximum size. Even for convex polygons, the problem is NP-hard,
but a 0.086 approximation algorithm exists.
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It is interesting to see what happens when building a barrier along the bound-
ary of an expanding circular fire [5,6,16,17]. A spiraling curve results that closes
on itself, and thus contains the fire, if the speed of building is larger than 2.6144.
Then the number of rounds to completion can be determined by residue calculus.
Below this threshold, the curve keeps winding forever.

The rest of this paper is organized as follows. Section 2 formally introduces
the problem as well as terms and definitions required for the analysis. In Sect. 4
we develop a lower bound of v > 1.66. In Sect. 5 we show that v = 17/9 = 1.8 is
sufficient and discuss how this value can even be reduced to v = 1.8772.

2 Model

In our model, the fire spreads from the origin and continuously expands over time
with speed 1 according to the L1 metric. To prevent the fire from immediately
spreading into the lower half-plane, we allow an arbitrarily small head-start of
barrier of length s into both directions along the x-axis.

Fig. 1. Fire spreading along delaying barriers. The dashed line shows the fire front
at different times t, solid points represent consumption points, while empty points
represent places, where the fire burns along the back of already consumed parts of the
barrier bi. In (a) there is one consumption point, so there is a 1-interval in the right
direction. In (b) there are three consumption points and in (c) there is a 0-interval in
the right direction as there are no consumption points.

Assume that a system of barriers has been built. The barrier system consists
of a horizontal barrier containing the fire in the upper half-plane and several
vertical delaying barriers attached to it.

To describe a barrier system, we denote the i-th delaying barrier to the right
by bi. The part of the horizontal barrier between bi−1 and bi is denoted by ai.
For simplicity, we also refer to their length by ai and bi. For the other direction,
we use ci and di respectively. For convenience, Ai :=

∑i
j=1 aj will denote the

total length of horizontal barriers in the right direction up till and including ai

and Bi :=
∑i

j=1 bj will denote the total length of vertical barriers in the right
direction up till and including bi. Equivalently for the left direction we define Ci

and Di.
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As the fire spreads over the barrier system, it represents a geodesic L1 circle,
which consumes the barriers when burning along them. The fire-front is the set
of all points in the plane, which shortest non-barrier-crossing path to the fire
origin has length t. We consider a point x on a barrier as consumed at time t if
the fire has reached this point at time t. That means there exists a non-barrier-
crossing path of length at most t from the fire origin to the point x. Hence, any
piece of the barrier is not consumed all at once, but as the fire burns along it. We
call a point on a barrier, which shortest non-barrier-crossing path to the fire has
exactly length t a consumption point at time t, so the consumption points are a
subset of the fire front. We call the number of consumption points at time t the
current consumption and a time interval with constant k consumption points at
all times a k-interval.

The fire front, consumption points and the effect of vertical delaying barriers
are illustrated in Fig. 1. As one can see, after the fire reaches a delaying barrier for
the first time, it may burn along multiple barriers at multiple points. However,
after reaching both ends and passing the top of a barrier there might be no
consumption for a while as the delaying barrier has already been burned along
from the other side.

We define the total consumption C and consumption-ratio Q for a time inter-
val [t1, t2] in a barrier system:

C(t1, t2) := length of barrier pieces consumed by the fire between t1 and t2

Q(t1, t2) :=
C(t1, t2)
t2 − t1

.

For the consumption in a time interval [0, t], we will also write C(t) and Q(t)
for short. In our setting, if [t0, t1] is a k-interval, then C(t1) = C(t0)+(t1 − t0) ·k.

Note that all these definitions can easily be applied to either side of the
barrier system, denoted by Ql(t), Qr(t) and Cl(t), Cr(t) equivalently. Obviously,
Q(t) = Ql(t) + Qr(t) and C(t) = Cl(t) + Cr(t).

It is clear that when building a barrier system simultaneously to the fire
spreading, then every piece of barrier should be build before the fire reaches it.
For a limited build speed v, it is necessary and sufficient to have C(t) ≤ v · t for
all times t, which means v ≥ supt Q(t). The question then obviously is: What is
the minimum speed v for which such a barrier system exists?

3 Prerequisites

Observe that a vertical barrier which is shorter than the predecessor in the same
direction does not delay the fire. Hence, we can assume that vertical barriers in
one direction increase strictly in length, so bi > bi−1 and di > di−1 for all i > 1.
But we can show an even stronger bound on the growth of successive vertical
barriers.

Lemma 1. If there exists a barrier system with C(t) ≤ v · t at all times t, then
there also exists such a barrier system in which any vertical barrier bi (or di)
is more than twice as long as the previous barrier bi−1 (or di−1) in the same
direction.
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This can be proven constructively by transforming any barrier system S into a
slightly different barrier system S ′ with CS′(t) ≤ CS(t) at all times fulfilling both
bi > 2bi−1 and di > 2di−1 for all i > 1. The details of this can be found in [12].

This means that when given an arbitrary barrier system, we can assume
bi > 2bi−1 and di > 2di−1 for all i > 1. From this we can derive a helpful
observation about the order of consumption of vertical and horizontal barriers
in a barrier system: when the fire reaches the top of a vertical barrier bi at some
time t (compare Fig. 2), every barrier ak and bk with k ≤ i has been completely
consumed, as for every point on ak or bk the shortest non-barrier-crossing path
has length smaller than Ai + bi = t. Hence, a 0-interval in the right direction
will begin at such times t and Cr(t) = Ai + Bi − s, where s denotes the length
of the head-start not contributing to the consumption. This observation holds
equivalently for both directions.

4 A Lower Bound of v > 1.66

Assume there exists a barrier system S consisting of horizontal barriers along the
x-axis and vertical barriers attached to it. Further assume for S that C(t) ≤ v · t
at all times t for some v = (1 + V ) with V ≤ 2

3 . For this we will construct a
contradiction by identifying a specific time tS , for which C(tS) > (1 + V ) · tS .

By Lemma 1, we can assume bi > 2bi−1 and di > 2di−1 for all i > 1 in S.

Fig. 2. At some time t = Ai + bi the fire will reach the top of a vertical barrier bi.

As without vertical delaying barriers, the consumption-ratio just goes
towards 2, S has an unbounded number of vertical barriers in at least one direc-
tion. W. l. o. g. assume this is the right direction. Consider a moment when the
fire reaches the end of some barrier bi as illustrated in Fig. 2. As explained
in Sect. 3, this happens at time t = bi + Ai and Lemma 1 implies we have
Cr(t) = Ai + Bi − s.

Cr(t) = Ai + Bi − s = Ai + bi + Bi−1 − s | Bi−1 > 2s for i large enough
> Ai + bi + s > t + s > t (1)

Hence for t large enough, Qr(t) > 1 at times t, when the fire reaches the top
of a vertical barrier. Therefore, S has repeated 0-intervals in the left direction
as well, or else Ql(t) would go towards 1 and Q(t) > 2 at such times t.
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Fig. 3. All three possible situations for the left side to be in at time t. Note that in case
(1) and (2) the fire might have reached dj+1, which does not affect our considerations.

We now consider the situation in the left direction at time t = bi + Ai. Let
dj denote the last vertical barrier, whose upper end was reached by the fire,
so t = dj + Cj + δ with 0 ≤ δ < cj+1 + dj+1 − dj . W. l. o. g. we assume that
bi+1 + Ai+1 ≥ dj+1 + Cj+1. Otherwise, there must be multiple vertical barriers
in the right direction whose upper ends are reached by the fire after it reaches
the upper end of dj and before it reaches the upper end of dj+1. In that case, we
can assume that bi is the last among those, such that bi+1 +Ai+1 ≥ dj+1 +Cj+1

holds.
We split our consideration in three cases, which are all illustrated in Fig. 3:

1. 0 ≤ δ < dj

2. dj ≤ δ < dj + cj+1

3. dj + cj+1 ≤ δ < cj+1 + dj+1 − dj

In the first case, the fire has not reached the horizontal barrier cj+1 yet after
passing over dj ; in the second case, it has reached cj+1, but not its end; in the
third case the fire has completely consumed cj+1.

In Case 3, δ = dj + cj+1 + ε and then Cl(t) ≥ Cj+1 + Dj + 2dj + ε − s >
(dj + Cj) + (dj + cj+1) + ε = t, which together with Inequality (1) already gives
C(t) > 2t > (1 + V ) · t which is a contradiction.

For both remaining cases, we will derive a lower bound for dj . We will then
consider the moment t1 = 2dj + Cj+1, when the fire reaches the end of the
horizontal barrier cj+1. Using the lower bound on dj , we will prove C(t1) >
(1 + V ) · t1.

4.1 Case 1: 0 ≤ δ < dj

In Case 1, Cl(t) > Cj + Dj − s = Cj + dj + Dj−1 − s > Cj + dj , since Dj−1 > s
for j large enough. Now at time t, it must hold:

C(t) = Cr(t) + Cl(t) < (1 + V ) · t | Inequality (1)
⇒ Cj + dj < V (dj + Cj + δ)
⇒ (V − 1)Cj > (1 − V )dj − V δ | (V < 1)
⇔ Cj < V/(1−V ) · δ − dj (2)
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V ≤ 2
3 implies V/(1−V ) ≤ 2 by direct calculation, which gives bounds for

Cj , dj :

Cj < 2δ − dj < dj | δ < dj in Case 1
⇒ 2dj > Cj + δ

⇔ dj > 1/2(Cj + δ) (3)

4.2 Case 2: dj ≤ δ < dj + cj+1

In Case 2 a part of cj+1 of length (δ − dj) has already been consumed, so
Cl(t) ≥ Dj + Cj + (δ − dj) − s > dj + Cj + (δ − dj) = Cj + δ, as Dj−1 > s for j
large enough. Now at time t it must hold

C(t) = Cr(t) + Cl(t) < (1 + V ) · t | Inequality (1)
⇒ Cj + δ < V (dj + Cj + δ)
⇒ (1 − V )(Cj + δ) < V dj

⇒ dj > (1−V )/V (Cj + δ) (4)

V ≤ 2
3 implies (1−V )/V ≥ 1

2 by direct calculation, which gives the bound:

dj > 1/2(Cj + δ) (5)

This is the same bound as found for Case 1 in Inequality (3).

4.3 Deriving the Contradiction C(t1) > (1 + V ) · t1

Now we consider time t1 = Cj+1 + 2dj > t, when the fire reaches the end of the
horizontal barrier cj+1; see Fig. 4. As for any time, at time t1, it must hold

C(t1) = Cr(t1) + Cl(t1) ≤ (1 + V ) · t1

⇔ Cl(t1) ≤ (1 + V ) · t1 − Cr(t1)
= (1 + V ) · t + (1 + V )(t1 − t) − (Cr(t) + Cr(t, t1))
≤ V t + (1 + V )(t1 − t) + t − Cr(t) | Ineq. (1) (6)

⇒ Cl(t1) + s < V t + (1 + V )(t1 − t) (7)

By construction, t1 = Cj+1 + 2dj . As t = dj + Cj + δ, this means t1 =
t + (dj + cj+1 − δ). Due to Lemma 1, we know that the fire has not reached the
end of dj+1 yet, hence Cl(t1) ≥ 3dj +Cj+1 − s. Hence, we arrive at the following
inequalities:

3dj + Cj+1 < V (dj + Cj + δ) + (1 + V )(dj + cj+1 − δ)
⇔ −V (cj+1 − δ) < (V − 1)δ + (V − 1)Cj + (2V − 2)dj | (1 > V )

⇔ cj+1 − δ >
1 − V

V
δ +

1 − V

V
Cj + 2

1 − V

V
dj . (8)
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Fig. 4. After dj + cj+1 − δ additional time after t, the fire has reached the end of cj+1

and has also consumed a piece of length 2dj of the next vertical barrier.

V ≤ 2
3 implies (1−V )/V ≥ 1

2 by direct calculation, which gives the bound:

cj+1 − δ >
1
2
δ +

1
2
Cj + dj

⇔ dj + cj+1 − δ >
1
2
δ +

1
2
Cj + 2dj (9)

Now in both cases we got dj > 1/2(Cj + δ) (Inequalities (3) and (5)), so we
can apply that and conclude:

t1 − t = dj + cj+1 − δ > Cj + dj + δ = t = Ai + bi (10)

So we know, that in both cases t1− t > bi +Ai. Now consider the situation in
the right direction again (compare Fig. 2). At t+bi the fire reaches the horizontal
barrier ai+1 behind bi. Additionally, by assumption bi+1 + Ai+1 ≥ dj+1 + Cj+1,
the fire has not reached the top of the next barrier bi+1 at t1. This means,
that between t + bi and t1, there is always at least consumption 1 in the right
direction, which means the fire has consumed barriers of length at least Ai, hence
Cr(t, t1) ≥ Ai.

As our whole consideration is based on inequalities, we will consider an edge
case with a contradiction that can be extended to our given barrier system S.
More precisely, assume, that Inequality (6) is tight for some t∗1, so:

Cl(t∗1) = V t + (1 + V )(t∗1 − t) + t − Cr(t)
⇔ Cr(t) + Cl(t∗1) = (1 + V )t∗1

By our arguments above, Cr(t, t∗1) ≥ Ai and hence C(t∗1) = Cr(t, t∗1) + Cr(t) +
Cl(t∗1) ≥ (1 + V )t∗1 + Ai > (1 + V )t∗1, which is a contradiction for this edge case.

Now in our given barrier system S it holds t1 = t∗1 + x for some x > 0. As
everything except cj+1 is fixed at t, this additional time results in additional
consumption of at least horizontal barriers of length x in both directions in
comparison to the edge case. Hence we can extend the contradiction:
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C(t1) = Cl(t1) + Cr(t) + Cr(t, t1)
= Cl(t∗1) + Cr(t) + Cr(t, t∗1) + 2x
= (1 + V )t∗1 + 2x + Ai > (1 + V )(t∗1 + x) = (1 + V )t1.

Theorem 1. The fire can not be contained in the upper half-plane with speed
v ≤ 1.66 by a barrier system consisting of a horizontal barrier along the x-axis
and vertical barriers attached to it.

5 Upper Bounds

We prove the upper bound by defining a barrier system with bounded
consumption-ratio. Before we present the construction, we give some intuition.
We choose the following conditions:

ai+1 ≥ bi and bi+1 ≥ 2bi ∀i ≥ 1,
similarly ci+1 ≥ di and di+1 ≥ 2di ∀i ≥ 1.

(11)

This forces the 0-intervals generated by bi to be of length of bi. For a single
direction this results in a repeating sequence of k-intervals of specific lengths
and k as shown in Fig. 5.

Fig. 5. A sequence of k-intervals to the right of (0, 0). The length is given above each
interval and the current consumption below.

The idea is to construct the barrier system in such a way that the 0-intervals
always appear in an alternating fashion, so the local maxima in the consumption-
ratio of one direction can be countered by the 0-intervals of the other direction.

To show that this idea can be realized, we consider the periodic interlacing
of time intervals as illustrated in Fig. 6. There, the ends of the 0-intervals in one
direction coincide with the ends of the 3-intervals in the other direction, that is,
at t3 and t6.

The current consumption is always greater than 1, since the 0-intervals do
not overlap. Also, the combined consumption-ratio Q(t) must be smaller than 2
at all times. This also implies that t3 is no local maximum and the consumption-
ratio grows towards 2 between t3 and t4. Hence, by setting di > 2bi we make t1,
t4, t7 the local maxima and t2, t5 the local minima of Q(t).
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Fig. 6. The periodic interlacing of time intervals.

Let us now consider the consumption-ratio Q(t1, t4) of the cycle from t1 to
t4. There are two 1-intervals involved in this cycle in the right direction. The
first one, where the fire burns along ai+1, is of length ai+1 − bi and lies partially
in this cycle. The second one, where the fire crawls up along bi+1, is of length
bi+1 − 2bi and lies completely in this cycle. As the beginning of this cycle is
given by the start of the 0-interval on one side and the end is given by the end of
the second 1-interval on the other side, we know that the length of this cycle is
di +(bi+1−2bi). The total consumption in this cycle is 1 ·di +2 ·bi +2(bi+1−2bi).
Now we define di = β · bi, bi+1 = β · di, and di = α + 2bi for some α, β ∈ R>0.
Note that this choice satisfies all our conditions, including di > 2bi, and that
α = (β −2)bi and bi+1 = β2bi. Then the consumption-ratio Q(t1, t4) of the cycle
is given by

C(t1, t4)
t4 − t1

=
(α + 2bi) + 2bi + 2(bi+1 − 2bi)

(α + 2bi) + bi+1 − 2bi
=

α + 2bi+1

α + bi+1
=

(β − 2) + 2β2

(β − 2) + β2

and attains a minimal value of 17/9 for β = 4. Note that by design, Q(t1, t2)
and Q(t1, t3) stay below 17/9, as well. Moreover, if the consumption-ratio has a
maximum of 17/9 at the beginning of the cycle at t1, this will also be the case at
the end at t4 as

Q(t4) =
C(t1) + C(t1, t4)

t4
=

t1
t4

· C(t1)
t1

+
t4 − t1

t4
· C(t1, t4)

t4 − t1
≤ 17

9
.

Since the cycles change their roles at t4 such that the 0-interval occurs on
the right side of (0, 0), the same argument can be used to bound the local
consumption-ratio in the following interval and for all subsequent cycles, recur-
sively. Note that by looking at the time interval from t3 to t6, we can derive a
closed form for ci+1. Similarly we proceed for ai+1.

To prove the final theorem, it remains to find initial values to get the inter-
lacing started, while maintaining Q(t) ≤ 17/9. Suitable values are

a1 := s b1 := 17s a2 := 34s ai+1 := 7.5bi bi+1 := 4di

c1 := s d1 := 34s c2 := 238s ci+1 := 7.5di di+1 := 4bi+1,

which results in the starting intervals given in Fig. 7. The local maxima at t1 and
t4 then have consumption-ratio exactly 17/9. The interval between t2 and t3 is set
up equivalent to the one between t3 and t6 in Fig. 6, which means the interlacing
construction can be applied to all intervals beyond. Note that all barriers scale
with s. An example of this construction for s = 1 is given in Fig. 8.
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Fig. 7. Illustration of time intervals at the start. Due to their growth, the sizes of the
intervals are not true to scale.

Fig. 8. Example for the final barrier system for s = 1, also not true to scale.

Theorem 2. The fire can be contained in the upper half-plane with speed v =
17
9 = 1.8

5.1 Improving the Upper Bound

It is possible to reduce the upper bound of v = 1.8 slightly. As shown in Fig. 6,
the end of the 3-interval in one direction coincides with the end of the 0-interval
in the other direction, which makes t4 the only local maximum of the interval
[t1, t4]. We introduce a regular shift by a factor of δ, see Fig. 9. This allows the
3-interval in one direction to lie completely inside the 0-interval of the other
direction, as shown in Fig. 9. Then, there are two local maxima in the equivalent
interval [t1, t5], namely at t3 and t5. We force both maxima to attain the same
value to minimize both at the same time. Again, we set di = β·bi and bi+1 = β·di,
for some β ≥ 1 determined below. Then the value of the first local maximum
can be expressed as

Q(t1, t3) =
C(t1, t3)
t3 − t1

=
1 · (δ · bi) + 3 · bi

δ · bi + bi
=

δ + 3
δ + 1

= 1 +
2

δ + 1
.

Considering the cycle from t1 to t5 in Fig. 9, we can conclude that ci+1 =
bi+1 − bi + δbi + δdi. Similarly, we can proceed on the interval from t5 to t9 to
express ai+1 in terms of β, δ and bi.

Using these identities, we obtain for the second local maximum

Q(t1, t5) = C(t1,t5)
t5−t1

= 1·(δ·bi)+3bi+1·(bi+1−2bi)+1·(ci+1−di−δ·di)
di+(ci+1−di)−δ·di

= ci+1−δ·di

ci+1−δ·di
+ bi+1+δ·bi+bi−di

ci+1−δ·di
= 1 + bi+1−bi+δ·bi+2bi−di

bi+1−bi+δbi

= 2 + 2bi−di

bi+1−bi+δbi
= 2 + 2−β

β2−1+δ .
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Fig. 9. A general periodic interlacing of time intervals.

As mentioned above, we set both local maxima to be equal, solve for δ and
obtain

δ =
1
2

(
β − β2 +

√
−12 + 4β + 5β2 − 2β3 + β4

)
.

Plugging this into either one of the two local maxima and minimizing the
resulting function for β ≥ 1, we obtain

β =
3
2

+
1
6

(
513 − 114

√
6
)1/3

+

(
19(9 + 2

√
6)

)1/3

2 · 32/3
≈ 4.06887

for the optimal value of β, δ ≈ 1.2802 and

v =
1
6

⎛

⎝10 − 192/3

3

√
2(4 + 3

√
6)

+
3

√
19(4 + 3

√
6))

22/3

⎞

⎠ ≈ 1.8771

as the minimum speed.
Note that the optimal value for β satisfies our conditions given in Eq. 11, so

that the barrier system can in fact be realized. Finally, we give suitable values
to get the interlacing started:

b1 := 1 d1 := 2b1
s := (4β+2δ+1)−v(2β+δ+1)

v · b1 a1 := c1 := s

a2 := (δ + 1) · b1 c2 := (2β + 3δ − 1) · b1
ai+1 := (δ − 1)di + (β + δ)bi+1 bi+1 := β · di

ci+1 := (δ − 1)bi + (β + δ)di di+1 := β · bi+1.

To keep the expression simple, we fixed the value of b1 and scaled the value
of s as listed above. These values can be rescaled to work for any given s.

Theorem 3. The fire can be contained in the upper half-plane with speed v =
1.8772.
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6 Conclusion

We have shown non-trivial bounds for the problem of protecting the lower half-
plane from fire with an infinite horizontal barrier. Our results show that delaying
barriers – in this case vertical segments attached to the horizontal barrier– can
help to break the obvious upper bound of 2 for the building speed. More complex
delaying barriers, e. g., free-floating ones, were not analysed specifically, however
it is hard to imagine a way for those to have improving effects. It will be interest-
ing to see if such an effect can also be achieved for the problem of containing the
fire by a closed barrier curve, i. e., for Bressan’s original problem. As a interme-
diate result in that direction, one ought to extend these results to the Euclidean
metric first, where the effect of delaying barriers is less pronounced and harder
to analyse.

Acknowledgements. We thank the anonymous referees for their valuable input.
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Abstract. We study continuous analogues of “vitality” for discrete
network flows/paths, and consider problems related to placing seg-
ment barriers that have highest impact on a flow/path in a polygonal
domain. This extends the graph-theoretic notion of “most vital arcs” for
flows/paths to geometric environments. We give hardness results and effi-
cient algorithms for various versions of the problem, (almost) completely
separating hard and polynomially-solvable cases.

Keywords: Simple polygon · Geodesic distance · Flows and paths

1 Introduction

This paper addresses the following kind of questions:

Given a polygonal domain with an “entry” and an “exit”, where should
one place a given set of “barriers” so as to decrease the maximum entry-
exit flow as much as possible (“flow” version), or to increase the length of
the shortest entry-exit path as much as possible (“path” version)?

Figure 1 illustrates these questions in their simplest form (placing a single barrier
in a simple polygon). We call the solutions to the problems most vital segment
barriers for the flow and the path resp. The name derives from the notion of most
vital arcs in a network – those whose deletion decreases the flow or increases the
length of the shortest path as much as possible. While the graph problems are
well studied [1–4,16,18,22,27], to our knowledge, geometric versions of locating
“most vital” facilities have not been explored. Throughout the paper, the seg-
ment barriers will be called simply barriers. When several segments are aligned
to form a longer barrier, we call this longer segment a super-barrier. We focus
only on segment barriers because already with segments there are a number
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Fig. 1. A polygon in which a single barrier is placed to minimize the flow between two
edges of the polygon (left) or lengthen the shortest path between two points (right).

of interesting problem versions, and in principle, any polygonal barrier may be
created from sufficiently many segments; however, our results imply that the
optimal blocking is always attained by gluing the barriers into super-barriers
(no other configuration of segments is most vital).

Determining the most vital barriers is related to resilience and critical infras-
tructure protection, as it identifies the most vulnerable spots (“bottlenecks, weak-
est links”) in the environment by quantifying how fragile or robust the flow/path
is, how much it can be hurt, in the worst case, due to an adversarial act. It is thus
an example of optimizing from an adversarial point of view: do as much harm as
possible using available budget. In practice, the abstract “bad” and “good” may
swap places, e.g., when the “good guys” build a defense wall, under constrained
resources, to make the “evil” (epidemics, enemy, predator, flood) reach a treasure
as late as possible (for the path version) or in a small amount (for the flow ver-
sion). Our problem may also be viewed as a Stackelberg game (in networks/graphs
parlance aka interdiction problems [8,11,13,28,30], extensively studied due to its
relation to security) where the leader places the blockers and the follower com-
putes the maximum flow or the shortest path around them.

Our paper also contributes to the plethora of work on uncertain environments
[7,17,24]. Motion planning under uncertainty is important, e.g., in computing
aircraft paths: locations of hazardous storm systems and other no-fly zones are
not known precisely in advance, and it is of interest to understand how much the
path or the whole traffic flow may be hurt, in the worst case, if new obstacles
pop up (of course, there are many other ways to model weather uncertainty).

Finally, similar types of problems arise when barriers are installed for man-
aging the queue to an airline check-in desk or controlling the flow of spectators
to an event entrance.

Taxonomy. Since our input consists of the domain and the barriers, several
problem versions may be defined:

H/h The domain may have an arbitrary number of holes (such versions will be
denoted by H) or a constant number of holes (denoted by h)

B/b There may be arbitrarily many barriers (denoted B) or O(1) barriers in
the input (denoted b)

D/1 The barriers may have different lengths (denoted D) or all have the same
length – w.l.o.g. unit (denoted 1)
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Overall, for each of the two problems—flow blocking and path blocking—we
have 8 versions (HBD, HB1, HbD, Hb1, hBD, hB1, hbD, hb1); e.g., flow-hBD is
the problem of blocking the flow in a polygonal domain with O(1) holes using
arbitrarily many barriers of different lengths, etc. We allow barriers to intersect
the holes. Depending on the nature of the barriers and the environment, in some
of the envisioned applications these may be impractical (e.g., if a hole is pillar
in the building, a barrier cannot run through it) while in others the assumptions
are natural (e.g., if a hole is a pond near the entrance to an event). From the
theoretical point of view, in most of our problems these assumptions are w.l.o.g.
because in the optimal solution the barriers just touch the holes, not “wasting”
their length inside a hole (one exception is HBD in which the solution may
change if the barriers must avoid the holes).

Overview of the Results. Section 3 describes our main technical contribution:
a linear-time algorithm for the fundamental problem of finding one most vital
barrier for the shortest s-t path in a simple polygon. The algorithm is based
on observing that the barrier must be “rooted” at a vertex of the polygon. The
main challenge is thus to trace the locations of the barrier’s “free” endpoint (the
one not touching the polygon boundary) through the overlay of shortest path
maps from s and t. The overlay has quadratic complexity, so instead of building
it, we show that only a linear number of the maps’ cells can be intersected and
work out an efficient way to go through all the cells. Furthermore, we prove
that when placing multiple barriers they can be lined up into a single super-
barrier; this reduces the problem to that of placing one barrier. In the remainder
of the paper we consider polygons with holes. Section 4 shows hardness of the
most general problems flow-HBD and path-HBD, i.e., blocking with multiple
different-length barriers in polygons with (a large number of) holes. We also
prove weak hardness of the versions with small number of holes (flow-hBD and
path-hBD). Finally, we argue that path blocking is weakly hard if the barriers
have the same length (path-HB1). Section 5 presents polynomial-time algorithms
for path blocking with few barriers (path-HbD), implying that path-hbD, path-
Hb1 and path-hb1 are also polynomial. The section then describes polynomial-
time algorithms for the remaining versions of flow blocking. We first show that
the problem is pseudopolynomial if the barriers have the same length (flow-HB1).
We then prove that blocking with few barriers (flow-HbD) is strongly polynomial,
implying that flow-hbD, flow-Hb1 and flow-hb1 are also polynomial. Finally, we
show polynomiality of the version with constant number of holes (flow-hB1).
Table 1 summarizes the hardness and polynomiality of our results.

Table 1. When the number of holes and barriers exceeds 1, the problem may become
(weakly or strongly) NP-hard. This table shows which combinations of parameters lead
to polynomial or hard problems. The results for Hb1, hbD and hb1 follow directly from
the result for HbD.

HBD HB1 HbD Hb1 hBD hB1 hbD hb1

Path NP-hard weakly NP-hard poly poly weakly NP-hard ? poly poly

Flow NP-hard pseudo-poly poly poly weakly NP-hard poly poly poly
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2 Preliminaries

Let P be a polygonal domain with n vertices, and let the source S and the sink
T be two given edges on the outer boundary of P (Fig. 2). A flow in P is a vector
field F : P → R

2 with the following properties: div F (p) = 0 ∀p ∈ P (there are
no source/sinks inside the domain), F (p) ·n(p) = 0 ∀p ∈ ∂P \{S∪T} where n(p)
is the unit normal to the boundary of P at point p (the flow enters/exits P only
through the source/sink), and |F (p)| ≤ 1∀p ∈ P (the permeability of any point
is 1, i.e., not more than a unit of flow can be pushed through any point—the
flow respects the capacity constraint). Similarly to the discrete network flow,
the value of a continuous flow F is the total flow coming in from the source
(
∫
S

F·n ds) – since in the interior of P the flow is divergence-free (flow conserves
inside P), by the divergence theorem, the value is equal to the total flow out
of the sink (−

∫
T

F ·n dt). A cut is a partition of P into 2 parts with S, T
in different parts (analogous to a cut in a network); the capacity of the cut
is the length of the boundary between the parts. Finally, the source and the
sink split the outer boundary of P into two parts called the bottom B and the
top T , and the critical graph of the domain [10] is the complete graph on the
domain’s holes, B and T , whose edge lengths equal to the distances between
their endpoints (we assume that the edges are embedded to connect the closest
points on the corresponding holes, B or T ). The celebrated Flow Decomposition
and MaxFlow/MinCut theorems for network flows have continuous counterparts:
(the support of) a flow decomposes into (thick) paths [25], and the maximum
value of the S-T flow is equal to the capacity of the minimum cut [29]; moreover,
the mincut is defined by the shortest B-T path in the critical graph [21].

For shortest path blocking, the setup is a bit more elaborated. Let s be a
point on the outer boundary of P, and let S∗ be the edge containing s. We
assume that s is actually an infinitesimally small gap s−s+ in the boundary of
P (with s− below s and s+ above), and that the union of the barriers and the
holes is not allowed to contain a path that starts on S∗ below s− and ends on

Bottom, B

Top,

S T

Fig. 2. Flow setup. An S-T flow decomposed into 3 thick paths (blue); two edges of
the critical graph, defining a cut (dashed). (Color figure online)
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Fig. 3. Path setup; barriers are red and s-t path is blue. Surrounding s−s+ (left) is
forbidden, even if no barrier touches the gap. Completely “shutting the door” s−s+

with one barrier (right (a)) is not allowed: if a barrier is at s, it must touch at most
one of s−, s+ (right (b,c)). (Color figure online)

S∗ above s+, completely cutting out s (Fig. 3).1 W.l.o.g. we treat s− and s+ as
vertices of P. Similarly, we are given a point t, modeled as a gap t+t− in another
edge T ∗ on the outer boundary of P.

Let SP(p, q) denote a shortest path (a geodesic) between points p and q in
P . Where it creates no confusion, we will identify a path with its length; in
particular, for two points p, q, we will use pq to denote both the segment pq and
its length. The shortest path map from s, denoted SPM(s), is the decomposition
of P into cells such that shortest paths SP(s, p) from s to all points p within a
cell visit the same sequence of vertices of P; the last vertex in this sequence is
called the root of the cell and is denoted by rs(p). The shortest path map from
t (SPM(t)) and the roots of its cells (rt(p)) are defined analogously. The maps
have linear complexity and can be built in O(n log n) time (in O(n) time if P is
simple) [20]. Our algorithm for path blocking in a simple polygon uses:

Lemma 1. [26, Lemma 1] Let p, q, and r be three points in a simple polygon P .
The geodesic distance from p to a point x ∈ SP(q, r) is a convex function of x.

Finally, let E(u, v, p) denote the ellipse with foci u and v, going through the
point p. It is well known that the sum of distances to the foci is constant along
the ellipse; for the points outside (resp. inside) the ellipse, the sum is larger (resp.
smaller) than up+pv. It is also well known that the tangent to the ellipse at p is
perpendicular to the bisector of the angle upv (the light from u reaches v after
reflecting from the ellipse at p).

1 Other modeling choices could have been made; e.g, another way to avoid complete
blockage could be to introduce a “protected zone” around s à la in works on geo-
graphic mincut [23]. Also a more generic view, outside our scope, could be to combine
the flow and path problems into considering minimum-cost flows [9,25] (the shortest
path is the mincost flow of value 0) and explore how the barriers could influence
both the capacity of the domain and the cost of the flow.
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3 Linear-Time Algorithms for Simple Polygons

In this section P is a simple polygon. For a set X ⊂ P , let SPX(p, q) denote the
shortest path between points p, q in P \ X (and the length of the path), i.e., the
shortest p-q path avoiding X. We first consider finding the most vital unit barrier
for the shortest path, i.e., finding the unit segment ab maximizing SPab(s, t). For
the path blocking, we (re)define the bottom B and top T of P as the t−-s− and
s+-t+ parts of ∂P resp. (which mimics the flow setup, replacing the entrance S
and exit T with s−s+ and t−t+). We will treat s−, s+, t−, and t+ as vertices of
P . We then prove that a most vital barrier is placed at a vertex of P (Sect. 3.1).
We focus on placing the barrier at (a vertex of) B; placing at T is symmetric. In
Sect. 3.2 we test whether it is possible for any unit barrier ab touching B to also
touch T (while not lying on S∗ or T ∗): if this is possible, the barrier separates s
from y completely and SPab(s, t) = ∞. We test this by computing the Minkowski
sum of B with a unit disk and intersecting the resulting shape with T , taking
special care around s and t (to disallow having ab ⊂ S∗). In Sect. 3.3 we then
proceed to our main technical contribution: showing how to optimally place a
barrier touching (a vertex of) B given that no such barrier can simultaneously
touch T . For this, we compute the shortest s-t path H around the Minkowski
sum of B with the unit disk and argue that an optimal barrier will have one
endpoint on (a vertex of) B and the other endpoint on H. Furthermore, we show
that this path H intersects edges of the shortest path maps SPM(s) and SPM(t)
only linearly many times. We subdivide H at these intersection points, and show
that for each edge e of H we can then calculate the optimal placement of a point
on e maximizing the sum of distances to s and t. This gives us a linear-time
algorithm for finding a single most vital barrier. In Sect. 3.4 we then show that
even if we have multiple barriers, it is best to glue the barriers together into a
single super-barrier.

3.1 A Most Vital Barrier is “Rooted” at a Vertex of P

We start by establishing the following lemma. It’s complete proof can be found
in the full version of this paper [15].

Lemma 2. There exists a most vital barrier ab in which one endpoint, say b,
lies on a vertex of P.

Proof sketch. The main idea is to first show that there is a most vital barrier that
touches ∂P , then that we can shift it to touch ∂P in an endpoint, and finally that
we can shift it along ∂P until it’s endpoint coincides with a vertex. 	


3.2 Blocking the Path from s to t Completely

We now argue that we can check in linear time whether it is possible to com-
pletely block passage from s to t, by placing a barrier that connects B to T
(without placing the barrier along S∗ or T ∗, which is forbidden by our model;
see Sect. 2).
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Observation 1. Let u and v be two vertices of SP(s, t) in B. The geodesic makes
a right turn at u if and only if it makes a right turn at v. Let u′ and v′ be two
vertices of SP(s, t) in T . The geodesic makes a left turn at u′ if and only if it
makes a left turn at v′. Moreover, if SP(s, t) makes a right turn in u then it
makes a left turn in u′.

Assume w.l.o.g. that SP(s, t) makes a right turn at a vertex u ∈ B. By
Observation 1 it thus makes right turns at all vertices of SP(s, t) ∩ B, and left
turns at all vertices of SP(s, t) ∩ T .

Observation 2. If SP(s, t) makes a right turn at u ∈ B, and we place a barrier
ur at u, then SPur(s, t) makes a right turn at r.

For every point p on B, consider placing a barrier pq of length at most one,
with one endpoint on p. The possible placements Dp of the other endpoint, q,
form a subset of the unit disk centered at p. Let D =

⋃
p∈B Dp denote the union

of all these regions (see Fig. 4).

Observation 3. There is a barrier that separates s from t if and only if s and
t are in different components of P \ D.

We now observe that D is essentially the Minkowski sum of B with a unit
disk D. More specifically, let A ⊕ B = {a + b | a ∈ A ∧ b ∈ B} denote the
Minkowski sum of A and B, let S∗

B = S∗ ∩ B denote the part of S∗ in B, let S∗
T ,

T ∗
B, and T ∗

T be defined analogously, and let B′ = B \ (S∗
B ∪ T ∗

B).

Lemma 3. We have that D = D′ ∪ XS ∪ XT , where D′ = B′ ⊕ D, XA =
(A∗

B ⊕ D) \ A∗
T , and D is the unit disk centered at the origin. Moreover, D can

be computed in O(n) time.

Proof. The equality follows directly from the definition of D and the Minkowski
sum. It then also follows D has linear complexity. So we focus on computing D.
To this end we separately compute D′, XS , and XT , and take their union. More
specifically, we construct the Voronoi diagram of B′ using the algorithm of Chin,
Snoeyink, and Wang [6], and use it to compute B′ ⊕ D [14]. Both of these steps
can be done in linear time. Since S∗, T ∗, and D have constant complexity, we
can compute XS and XT in constant time. The resulting sets still have constant
complexity, so unioning them with B′ ⊕ D takes linear time. 	


Lemma 4. We can test if s and t lie in the same component C of P \ D, and
compute C if it exists, in O(n) time.

Proof. Using Lemma 3 we compute D in linear time. If s or t lies inside D, which
we can test in linear time, then C does not exist. Otherwise, by definition of XS

and XT , s and t must lie on the boundary of D. We then extract the curve σ
connecting s to t along the boundary of D, and test if σ intersects the top of
the polygon T . If (and only if) σ and T do not intersect, their concatenation
delineates a single component C ′ of P \ D. Since C ′ contains both s and t we
have C = C ′. So, all that is left is to test if σ and T intersect. This can be done
in linear time by explicitly constructing C ′ and testing if it is simple [5]. 	
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Fig. 4. Our algorithm constructs the region D describing possible placements of a
barrier incident to B, and the shortest path H around D. An optimal barrier incident
to B has one endpoint on H.

Theorem 4. Given a simple polygon P with n vertices and two points s and t
on the boundary of P, we can test whether there exists a placement of a unit
length barrier that disconnects s from t in O(n) time.

3.3 Maximizing the Length from s to t with a Single Barrier

In the remainder of the section we assume that we cannot place a barrier on (a
vertex of) B that completely separates s from t. Fix a distance d, and consider
all points p ∈ P such that SP(s, p) + SP(p, t) = d. Let Cd denote this set of
points, and define C≤d =

⋃
d′≤d Cd′ .

Observe that an optimal barrier will have one of its endpoints on the bound-
ary of D. Let H = SPD(s, t) be the shortest path from s to t avoiding D. We
will actually show that there is an optimal barrier V ∗ whose endpoint a lies on
H, and that H has low complexity. This then gives us an efficient algorithm to
compute an optimal barrier. To show that a lies on H we use that if V ∗ realizes
detour d∗ (i.e., SPV ∗(s, t) = d∗), the endpoint a also lies on Cd∗ . First, we prove
some properties of Cd∗ towards this end.

Observation 5. Let Δs be a cell in SPM(s) with root as, and Δt be a cell in
SPM(t) with root at. We have that Cd ∩ Δs ∩ Δt consists of a constant number
of intervals along the boundary of the ellipse with foci as and at.

Proof. A point p ∈ Cd satisfies SP(s, p) + SP(p, t) = d. For p ∈ Δs ∩ Δt we thus
have SP(s, as) + ‖asp‖ + ‖pat‖ + SP(at, t) = d. Since d, SP(s, as), and SP(at, t)
are constant, this equation describes an ellipse with foci as and at. Since Δs and
Δt have constant complexity the lemma follows. 	


Lemma 5. C≤d is a geodesically convex set (it contains shortest paths between
its points).

Proof. Let p and q be two points on Cd, and assume, by contradiction, that
there is a point r on SP(p, q) outside of C≤d. By Lemma 1 the geodesic dis-
tance from s to SP(p, q) is a convex function. Similarly, the distance from t to
SP(p, q) is convex. It then follows that the function f(x) = SP(s, x) + SP(x, t),
for x on SP(p, q) is also convex, and thus has its local maxima at p and/or q.
Contradiction. 	




Most Vital Segment Barriers 503

Fig. 5. A sketch of the regions C≤d (purple) and Rd. Observe that Rd cannot contain
any vertices of T , otherwise T would have to pierce SP(s, t) and thus C≤d. (Color figure
online)

Lemma 6. If there is an optimal barrier ua incident to a vertex u of B, then
the ray ρ from u through a intersects H.

Proof. The ray ρ splits P into two subpolygons P1 and P2. Since SPua(s, t)
makes a right bend at a (Observation 2 and our assumption that SP(s, t) makes
a right turn at u) it intersects both subpolygons P1 and P2. It is easy to show
that therefore s and t must be in different subpolygons (otherwise the geodesic
crosses ρ a second time, and we could shortcut the path along ρ). Since H
connects s to t it must thus also intersect ρ. 	


Next, we define the region Rd “below” C≤d. More formally, let R′ be the
region enclosed by B and SP(s, t), let d ≥ SP(s, t), and let Rd = R′ \ C≤d. See
Fig. 5. We then argue that it is separated from the top part of our polygon T ,
which allows us to prove that there is an optimal barrier with an endpoint on H.

Observation 6. Region Rd contains no vertices of T .

Proof. Assume, by contradiction that there is a vertex of T in Rd. Observe that
this disconnects C≤d. However, since C≤d is geodesically convex (Lemma 5) and
non-empty it is a connected set. Contradiction. 	


Lemma 7. If there is an optimal barrier ua where u is a vertex of B, then there
is an optimal barrier ur where r is a point on Du ∩H (recall that Du is the unit
disk centered at u).

Proof. Assume, by contradiction, that there is no optimal barrier incident to u
that has its other endpoint on H. Consider the ray from u in the direction of a. By
Lemma 6, the ray hits H in a point r′ (Fig. 6(a)). Because a lies on Cd∗ and C≤d∗

is geodesically convex (Lemma 5), r′ lies outside C≤d∗ . Let H[p, q] = SPD(p, q)
be the maximal (open ended) subpath of H that contains r′ and lies outside
of C≤d∗ . We then distinguish two cases, depending on whether or not H[p, q]
intersects (touches) D: 	


H[p, q] does not intersect (touch) D. It follows that H[p, q] is a geodesic in
P as well, i.e. H[p, q] = SP(p, q). Since p, q ∈ C≤d∗ , and C≤d∗ is geodesically
convex (Lemma 5) we then have that H[p, q] ⊆ C≤d∗ . Contradiction.
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Fig. 6. (a) Illustration of Lemma 7. (b) and (c) The two cases in the proof of Lemma 8.

H[p, q] intersects D in a point z. Let v ∈ B be a point such that z ∈ Dv. We
distinguish two subcases, depending on whether z lies in the region Rd∗ .
z ∈ Rd∗ . In this case z lies “below” C≤d∗ . From z ∈ H it follows that

H[p, q] ⊂ Rd∗ . However, as Cd∗ is geodesically convex, this must mean
that H[p, q] has a vertex w in Rd∗ at which it makes a left turn. This
implies that w is a vertex of T . By Observation 6 there are no vertices of
T in Rd∗ . Contradiction.

z �∈ Rd∗ . Observe that vz is a valid candidate barrier. Since z �∈ C≤d∗ , the
point z actually lies above (i.e. to the left of) SP(s, t), and thus SPvz(s, t)
makes a right turn at z. Using that z �∈ C≤d∗ it follows that SPvz(s, t) >
d∗. This contradicts that d∗ is the maximal detour we can achieve.

Since all cases end in a contradiction this concludes the proof. 	

We now know there exists an optimal barrier with an endpoint on H. Next,

we focus on the complexity of H.

Observation 7. Let b and c be two points on H, such that H makes a left turn
in between b and c (i.e. the subcurve H[b, c] of H between b and c intersects the
half-plane right of the supporting line of bc). Then H[b, c] contains a vertex of T .

Lemma 8. The curve H intersects an edge e of SPM(z), with z ∈ {s, t}, at
most twice. Hence, H intersects SPM(z) at most O(n) times.

Proof. If e is a polygon edge, then H cannot intersect e at all, so consider the
case when e is interior to P . Assume, by contradiction, that H intersects e at
least three times, in points a, b, and c, in that order along H (Fig. 6(b) and (c)).

If the intersections a, b, and c, are also consecutive along e, then H makes
both a left and right turn in between a and c. It is easy to see that since H can
bend to the left only at vertices of T (Observation 7), the region (or one of the
two regions) enclosed by H and ac must contain a polygon vertex. Since both e
and H[a, c] lie inside P , this means that P has a hole. Contradiction.

If the intersections are not consecutive, (say a, c, b), then again there is a
region enclosed by H[a, c] and ab, containing a polygon vertex. Since both H[b, c]
and cb lie inside P , this vertex must lie on a hole. Contradiction. 	


Algorithm. We compute intersections of H with the shortest path maps SPM(s)
and SPM(t), and subdivide H at each intersection point. By Lemma 8, the
resulting curve H ′ still has only linear complexity. Consider the edges of H ′

in which H ′ follows the boundary of Dv, for the vertices v of B. By Lemma 7
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for some v ∈ B there is an optimal barrier that has one endpoint on such an
edge of H ′ and the other at v. Since H ′ has only O(n) edges we simply try
each edge e of H ′. For all points r ∈ e, the geodesics SP(s, r) and SP(t, r)
have the same combinatorial structure, i.e., the roots as = rs(r), at = rt(r)
stay the same. It follows that we have a constant-size subproblem in which we
can compute an optimal barrier in constant time. Specifically, we compute the
smallest ellipse E with foci as and at that contains e and goes through the
point r in which E and e = Dv have a common tangent (if such a point exists).
See Fig. 4. For that point r, we then also know the length of the shortest path
SPvr(s, t) = SP(s, r) + SP(r, t), assuming that we place the barrier vr. We then
report the point r that maximizes this length over all edges of H ′.

Constructing the connected component P ′ of P \D that contains s and t takes
linear time (Lemma 4). This component P ′ is a simple splinegon, in which we
can compute the shortest path H connecting s to t in O(n) time [19]. Computing
SPM(s) and SPM(t) also requires linear time [12]. We can then walk along H,
keeping track of the cells of SPM(s) and SPM(t) containing the current point
on H. Computing the ellipse, the point p on the current edge e, and the length
of the geodesic takes constant time. It follows that we can compute an optimal
barrier incident to B in linear time. We use the same procedure to compute an
optimal barrier incident to T . We thus obtain the following result.

Theorem 8. Given a simple polygon P with n vertices and two points s and t
on ∂P , we can compute a unit length barrier that maximizes the length of the
shortest path between s and t in O(n) time.

3.4 Using Multiple Vital Barriers

We prove a structural property that even when we are given many barriers, there
always exists an optimal solution in which they glued into a single super-barrier.
This implies that our linear-time algorithm from the previous section can still
be used to solve the problem.

Clearly, any solution distributes the barriers over some (unknown) number of
super-barriers. First observe that, similarly to Sect. 3.1, any super-barrier must
have a vertex at a vertex of P. We only need to argue that it is suboptimal to
have more than one such super-barrier. Let a1b1 and a2b2 be two segments inside
P , and let m1 ∈ a1b1,m2 ∈ a2b2 be two points that divide the segments in the
same proportion, that is m1 = γa1 + (1 − γ)b1,m2 = γa2 + (1 − γ)b2 for some
γ ∈ [0, 1]. Then we may argue, similar to Lemma 1, that f(γ) = SP(m1,m2) is
convex for γ ∈ [0, 1]. The result then follows from multiple application of the
triangle inequality, using that SP(m1,m2) ≤ γSP(a1, a2)+(1−γ)SP(b1, b2) . The
complete argument can be found in the full version of this paper [15].

Theorem 9. Given a simple polygon P with n vertices, two points s and t
on ∂P , and k unit-length barriers, the optimal placement of the barriers which
maximizes the length of the shortest path between s and t consists of a single
super-barrier.



506 I. Kostitsyna et al.

3.5 Most Vital Barriers for the Flow

In simple polygons the critical graph has only two vertices – B and T (which,
for the flow blocking, are the T -S and S-T parts of ∂P ; refer to Fig. 2). Flow
blocking thus boils down to finding the shortest B-T connection (then all the
barriers will be placed along the connecting segment) – a problem that was
solved in linear time in [21].

4 Hardness Results

In the remainder of the paper P is a polygonal domain with holes (as defined
in Sect. 2). We show that when there are many barriers, it is hard to decide
whether full blockage can be achieved, by reduction from Partition which reduces
to deciding whether equal-width channels between S and T can be blocked (the
reduction for path-HB1 is more involved, as it is not based on deciding full
blockage); the details are in full version [15]. We summarize our results in the
following two theorems.

Theorem 10. Flow-HBD and path-HBD are NP-hard.

Theorem 11. Path-HB1, Flow-HBD, and path-hBD are weakly NP-hard.

Membership in NP for our problems is open, since verifying solutions involve
summing square roots.

5 Polynomial-Time Algorithms

For path blocking, we show that O(1) barriers have only a polynomial number
of “combinatorially different” placements and for each placement the different-
homotopy path lengths are given by fixed functions of the barriers’ locations.
Flow blocking is reduced to shortening the B-T path in the critical graph.
The details are in the full version. We summarize our results in the following
theorems.

Theorem 12. Path-HbD, and hence path-hbD, path-Hb1 and path-hb1, are poly-
nomial.

Theorem 13. Flow-HB1 can be solved in pseudopolynomial time.

Theorem 14. Flow-HbD, and hence flow-hbD, flow-Hb1 and flow-hb1, are poly-
nomial.

Theorem 15. Flow-hB1 is polynomial.
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6 Conclusion

We introduced geometric versions of the graph-theoretic most vital arcs problem.
We presented efficient solutions for simple polygons, and gave hardness results
and algorithms for various versions of the problem. The most intriguing open
problem is the hardness of path-hB1 (path blocking with few holes, our only
unresolved version); we conjecture that it is polynomial, as still only a constant-
number of super-barriers may be needed. Another interesting question is whether
the flow and the path blocking have fundamentally different complexities: we
proved that the complexities are the same for all versions except HB1 – for path-
HB1 we showed weak hardness but lack a pseudopolynomial-time algorithm,
while for flow-HB1 we have a pseudopolynomial-time algorithm but no (weak)
hardness proof. More generally, various other setups may be considered. For
instance, one may be given a budget on the total length of the barriers– the
problem then is how to split the budget between the barriers and where to
locate them. For minimizing the maximum flow this version is easy: just place
the barriers along the shortest B-T path in the critical graph of the domain. For
maximizing the shortest path in a simple polygon the solution is trivial: make
a single barrier of the full length (and use our algorithm to find the optimal
barrier location). Blocking shortest paths in polygons with holes in this setting
is an open problem.
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Abstract. Let T be a binary search tree of n nodes with root r, left
subtree L = left(r), and right subtree R = right(r). The preorder and
postorder of T are defined as follows: the preorder and postorder of the
empty tree is the empty sequence, and

preorder(T ) = (r) ⊕ preorder(L) ⊕ preorder(R)

postorder(T ) = postorder(L) ⊕ postorder(R) ⊕ (r),

where ⊕ denotes sequence concatenation. (We will refer to any such
sequence as a preorder or a postorder). We prove the following results
about the behavior of splaying [21] preorders and postorders:
1. Inserting the nodes of preorder(T ) into an empty tree via splaying

costs O(n). (Theorem 2.)
2. Inserting the nodes of postorder(T ) into an empty tree via splaying

costs O(n). (Theorem 3.)
3. If T ′ has the same keys as T and T is weight-balanced [18] then

splaying either preorder(T ) or postorder(T ) starting from T ′ costs
O(n). (Theorem 4.)

For 1 and 2, we use the fact that preorders and postorders are pattern-
avoiding : i.e. they contain no subsequences that are order-isomorphic
to (2, 3, 1) and (3, 1, 2), respectively. Pattern-avoidance implies certain
constraints on the manner in which items are inserted. We exploit this
structure with a simple potential function that counts inserted nodes
lying on access paths to uninserted nodes. Our methods can likely be
extended to permutations that avoid more general patterns. The proof
of 3 uses the fact that preorders and postorders of balanced search trees
do not contain many large “jumps” in symmetric order, and exploits
this fact using the dynamic finger theorem [5,6]. Items 2 and 3 are both
novel. Item 1 was originally proved by Chaudhuri and Höft [4]; our proof
simplifies theirs. These results provide further evidence in favor of the
elusive dynamic optimality conjecture [21].
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Outline. Section 1 discusses the mathematical preliminaries, historical back-
ground, and context for this investigation, and Sect. 2 samples some related
work. Familiar readers may skip directly to the main results and their proofs, in
Sects. 3 and 4. Section 3 proves that inserting both preorders and postorders via
splaying takes linear time. Section 4 establishes that splaying preorders and pos-
torders of balanced search trees [18] takes linear time, regardless of starting tree.
Section 5 provides our thoughts on how to analyze insertion splaying permuta-
tions that avoid more general patterns, particularly the class of “k-increasing”
sequences [3].

1 Preliminaries

Binary Search Trees. A binary tree T contains of a finite set of nodes, with one
node designated to be the root. All nodes have a left and a right child pointer,
each leading to a different node. Either or both children may be missing, and we
denote a missing child by null. Every node in T , save for the root, has a single
parent node of which it is a child. (The root has no parent.) The size of T is the
number of nodes it contains, and is denoted |T |.

There is a unique path from root(T ) to every other node x in T , called the
access path for x in T . If x is on the access path for y then we say x is an ancestor
of y, and y is a descendent of x. We refer to the subtree comprising x and all
of its descendants as the subtree rooted at x. Nodes thus have left and right
subtrees rooted respectively at their left and right children. (Subtrees are empty
for null children.) The depth of the node x, denoted dT (x), is the number of
edges on its access path. Its right-depth is the number of right pointers followed,
and its left-depth is the number of left pointers followed.

In a binary search tree, every node has a unique key, and the tree satisfies
the symmetric order condition: every node’s key is greater than those in its
left subtree and smaller than those in its right subtree. The binary search tree
derives its name from how its structure enables finding keys. To find a key k
initialize the current node to be the root. While the current node is not null
and does not contain the given key, replace the current node by its left or right
child depending on whether k is smaller or larger than the key in the current
node, respectively. The search returns the last current node, which contains k if
k is in the tree and otherwise null.

The lowest common ancestor of x and y in T , denoted lcaT (x, y), is the
deepest node shared by the access paths of both x and y. Since the root is a
common ancestor of any pair of nodes in T and T is finite, lcaT (x, y) exists and
is well defined. Furthermore min{x, y} ≤ lcaT (x, y) ≤ max{x, y}.

To insert a new key k into a binary search tree T , we first do a search for k
in T . When the search reaches a missing node, we replace this node with a node
containing the key k. (Inserting into an empty tree makes k the root key.)

Rotation. Binary search trees are the canonical data structure for maintaining
an ordered set of elements, and are building blocks in countless algorithms.
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Perhaps the most attractive feature of binary search trees is that the number of
comparisons required to find an item in an n-node binary search tree is O(log n),
provided that the tree is properly arranged, which is good in theory and practice.
However, without exercising care when inserting nodes, a binary search tree
can easily become unbalanced (for example when inserting 1, 2, . . . , n in order),
leading to search costs as high as Ω(n). Thus, binary search trees require some
form of maintenance and restructuring for good performance.

Fig. 1. Rotation at node x with parent y, and reversing the effect by rotating at y.

We will employ a restructuring primitive called rotation. A rotation at left
child x with parent y makes y the right child of x while preserving symmetric
order. A rotation at a right child is symmetric, and rotation at the root is
undefined. (See Fig. 1). A rotation changes three child pointers in the tree.

Rotations were first employed in “balanced” search trees, which include AVL
trees [1], Red-Black trees [10], weight-balanced trees [18], and more recently
weak AVL trees [11]. These trees augment nodes with bits that provide rough
information about how “balanced” each node’s subtree is. Whenever an item is
inserted or deleted, rotations are performed to restore invariants on the balance
bits that ensure all search paths have O(log n) nodes. While balanced searched
trees are not the focus of this work, they were progenitors for the main algorithm
of interest.

Splaying. The Splay algorithm [21] eschews keeping track of balance informa-
tion, replacing it with an intriguing notion: instead of adjusting the search tree
only after insertion and deletion, Splay modifies the tree after every search.

The algorithm begins with a binary search for a key in the tree. Let x be
the node returned by this search. If x is not null then the algorithm repeat-
edly applies a “splay step” until x becomes the root. A splay step applies a
certain series of rotations based on the relationship between x, its parent, and
its grandparent, as follows. If x has no grandparent (i.e. x’s parent is the root),
then rotate at x (this case is always terminal). Otherwise, if x is a left child and
its parent is a right child, or vice-versa, rotate at x twice. Otherwise, rotate at
x’s parent, and then rotate at x. Sleator and Tarjan [21] assigned the respective
names zig, zig-zag and zig-zig to these three cases. The series of splay steps that
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Fig. 2. A splaying step at node x. Symmetric variants not shown. Triangles denote
subtrees.

bring x to the root are collectively called to as splaying at x, or simply splaying
x. The three cases are depicted in Fig. 2.

The cost of splaying a single item x in T is defined to be dT (x) + 1.1 If
X = (x1, . . . , xm) is a sequence of requested keys in T then the cost of splaying
X starting from T is defined as m +

∑m
i=1 dTi−1(xi), where T0 = T , and for

1 ≤ i ≤ m, we form Ti by splaying xi in Ti−1. To perform insertion splaying,
insert a key into the tree and then splay the newly created node. The cost of an
insertion splay is the cost splaying the new node.

While splaying individual items can cost Ω(n), the total cost of splaying m
requested items in a tree of size n > 0 is O((m+n) log n). Hence, the worst case
cost of a splay operation, amortized over all the requests, is the same as any
balanced binary search tree. This is perhaps surprising for an algorithm that
keeps no record of balance information.

What makes Splay truly remarkable is how it takes advantage of “latent
structure” in the request sequence, and provides more than simple “worst-case”
guarantees. As just one example, if tX(i) is the number of different items accessed
before access i since the last access to item xi (or since the beginning of the
sequence if i is the first access to xi), then the cost to splay X starting from
T is O(n log n +

∑m
j=1 log(tX(j) + 1)) [21].2 (This is called the “working set”

property.) Thus, Splay exploits “temporal locality” in the access pattern.
Splay simultaneously exploits “spatial” locality, as shown by the following

theorem (originally conjectured in [21]) that we will use later on:

Theorem 1 (Dynamic Finger [5,6]). Let the rank of x in T , denoted rT (x),
be the number of nodes in T whose keys are less than or equal the key in x. The
cost of splaying X = (x1, . . . , xm) starting from T is O(|T | + m + DFT (X)),
where DFT (X) ≡ ∑m

i=2 log2(|rT (xi) − rT (xi−1)| + 1).

1 We absorb the search cost into the rotations.
2 Note that O(log n) amortized cost per splay is a corollary of this.
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In fact, the properties of Splay inspired the authors of [21] to speculate on
a much stronger possibility: that Splay’s cost is always within a constant factor
of the “optimal” way of executing the requests. Formally, an execution E for
(X,T ) comprises the following. Let T0 = T , and for 1 ≤ i ≤ m, we perform some
number ei ≥ 0 of rotations starting from Ti−1 to form Ti, followed by a search
for xi. The cost of this execution is

∑m
i=1(1 + ei + dTi−1(xi)). The optimal cost

OPT(X,T ) ≡ min{cost(E) | E executes (X,T )}. The following conjecture has
spawned a great deal of related research (see Sect. 2):

Conjecture 1 (Dynamic Optimality [21]). costsplay(X,T ) = O(OPT(X,T )).

The conjecture remains open. In fact, there is no sub-exponential time algo-
rithm whatsoever that is known to compute, even to within a constant factor,
the cost of an optimum binary search tree execution for an instance. There are
several known lower bounds [7,25], none known to be tight (though some con-
jectured to be).

Pattern-Avoidance. For simplicity, we restrict subsequent discussion to per-
mutation request sequences (i.e. no key is requested twice). By [3], any algorithm
that achieves optimal cost on all permutations can be extended to an algorithm
that is optimal for all request sequences.

An auxiliary question to determining if Splay (or any other algorithm) is
dynamically optimal is: “what class(es) of permutations have optimum execu-
tions with ‘low’ cost?” This issue is not a mere curiosity, as almost every permu-
tation of length n has optimal execution cost Θ(n log n) [14], a bound achieved by
any balanced search tree. Thus, in the absence of insertions or deletions, adjust-
ing the tree after every access only gives an advantage on a small subset of
“structured” request sequences. In addition, these structured request sequences
provide candidate counter-examples to dynamic optimality. In this work, we
focus on certain pattern-avoiding permutations: those that do not contain any
subsequences of a specified type. More formally:3

Two permutations α = (a1, . . . , an) and β = (b1, . . . , bn) of the same
length are order-isomorphic if their entries have the same relative order, i.e.
ai < aj ⇐⇒ bi < bj . For example, (5, 8, 1) is order-isomorphic to (2, 3, 1).
A sequence π avoids a sequence α (or is called α-avoiding) if it has no subse-
quence that is order-isomorphic with α. If π is α-avoiding then all subsequences
of π are α-avoiding. We use π\α as shorthand for “an (arbitrary) permutation π
that avoids α.” Both preorders and postorders may be characterized as pattern-
avoiding permutations:

Lemma 1 (Lemma 1.4 from [13]). For any permutation π:

(a) π = preorder(T ) for some binary search tree T ⇐⇒ π avoids (2, 3, 1).
(b) π = postorder(T ) for some binary search tree T ⇐⇒ π avoids (3, 1, 2).

3 The following definitions and theorems are taken from [13, Chapter 1.3], almost
verbatim.
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Proof (Sketch). For preorders, Kozma builds a bijection between binary search
trees and (2, 3, 1)-avoiding sequences, and uses a simple argument by contradic-
tion to show preorders avoid (2, 3, 1) [13]. The proof for postorders is a nearly
symmetric variation of this argument. ��

2 Related Work

The first result about Splay’s behavior on pattern-avoiding request sequences
was the sequential access theorem [24]: the cost of splaying the nodes of T in
order is O(|T |). This is a special case of a corollary4 of dynamic optimality:

Conjecture 2 (Traversal [21]). There exists c > 0 for which the cost of splaying
preorder(T ) starting from T ′ is at most c|T | for all pairs of binary search trees
T, T ′ with the same keys.

Theorem 2 and [4] is another special case, when T = T ′. In Sect. 3 we prove a
new special case: when T is α-weight balanced.

Interest in the behavior of binary search tree algorithms on “structured”
request sequences was revived by Seth Pettie’s analysis of the performance of
Splay-based deque data structures using Davenport-Schinzel sequences [19], and
his later reproof of the sequential access theorem via the theory of forbidden
submatrices [20].

This analysis was later adapted to and greatly extended for another binary
search tree algorithm, colloquially known as “Greedy,” that was first proposed
as an off -line algorithm independently by Lucas [16] and Munro [17]. Greedy is
widely conjectured to be dynamically optimal, and is known to have many of
the same properties of Splay, including the working set [8] and dynamic finger
[12] bounds.

Greedy was later recast as an on-line algorithm in a “geometric” view of
binary search trees [7]. This geometric view of Greedy is especially amenable
to forbidden submatrix analysis. In [3], Chalermsook et. al. show that Greedy
has nearly-optimal run-time on a broad class of pattern-avoiding permutations.
Moreover, they demonstrate that if Greedy is optimal on a certain class of “non-
decomposable” permutations then it is dynamically optimal. Chalermsook et
al.’s analysis was later simplified in [9].

3 Insertion Splaying

If π = (p1, . . . , pn) is a permutation then the insertion tree for π, denoted
BST(π), is the binary search tree obtained by starting from an empty tree and
inserting keys in order of their first appearance in π.

Lemma 2. If x is a proper ancestor of y in BST(π) then x precedes y in π.
4 A priori, the traversal conjecture follows from dynamic optimality conditioned on

Splay being optimal with low “additive overhead.” The authors recently proved that
this corollary is actually unconditional [15].
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Proof. Let π≺y denote the prefix of π containing the elements preceding y. By
construction, y is inserted as a child of some node z in BST(π≺y). Every proper
ancestor of y is an ancestor of z, thus x ∈ BST(π≺y). Hence, x precedes y. ��

Insertion splaying π has the same cost as splaying π starting from BST(π).5

For the purposes of analysis we will assume that, initially, every node in BST(π)
is marked as untouched. An insertion splay marks the node as touched, and then
splays the node. The touched nodes form a connected subtree containing the
root, called the touched subtree. The untouched nodes form subtrees each of
which contains no touched node. Call an untouched node with a touched parent
a sub-root. The subtrees rooted at sub-roots have identical structure in both the
splayed tree and BST(π). By Lemma 2, the next node to be touched is always a
sub-root.

For 1 ≤ i ≤ n, form Ti by touching and then splaying pi in Ti−1, where
T0 = BST(π) starts with all nodes untouched. At any time we define the potential
to be the twice the number of touched nodes that are ancestors of sub-roots,
and we define Φi to be the potential of Ti. The amortized cost of splaying pi

in Ti−1 is defined as ci = ti + Φi − Φi−1, where ti denotes the actual cost.
By a standard telescoping sum argument, the cost of insertion splaying π is∑n

i=1 ti =
∑n

i=1 ci + Φ0 − Φn [23]. Since Φ0 = Φn = 0, an upper bound on
amortized cost provides an upper bound on the actual cost.

Pattern-avoidance provides certain information about both BST(π) and
about which sub-root can be touched next. We exploit this information in the
next two sections.

Insertion Splaying Preorders. There are no restrictions on the possible struc-
ture of preorder insertion trees as BST(preorder(T )) = T .6 However, the manner
in which sub-roots are chosen is particularly simple.

Lemma 3. If π\(2, 3, 1) = (p1, . . . , pn) is a preorder then, for 1 ≤ i ≤ n, pi is
the smallest sub-root of Ti−1, where all nodes begin untouched in T0 = BST(π)
and Ti is formed by touching and splaying pi in Ti−1.

Proof. The statement is vacuously true for i = 1. We prove for i > 1 by con-
tradiction, as follows. Suppose Ti−1 has some sub-root q that is smaller than pi.
Since q and pi are both sub-roots in Ti−1, they are both children of respective
(though not necessarily distinct) nodes a and b in Ti−1. Let r = lcaTi−1(a, b).
Since q 
= a and pi 
= b, all of pi, q and r are distinct nodes in Ti−1, and fur-
thermore q < r < pi. By Lemma 2, r precedes both q and pi in π, and by
construction pi precedes q. We thus have (r, pi, q) is a subsequence of π. But
(r, pi, q) is order-isomorphic with (2, 3, 1), contradicting π\(2, 3, 1). ��

5 This is because the manner in which Splay restructures the access path is indepen-
dent of nodes outside the path.

6 In fact, this property is shared by any permutation π for which every node in T
appears in π before those in its left and right subtrees.
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Fig. 3. Possible locations for the next sub-root x to be insertion splayed in π\(2, 3, 1).
The case on the left occurs when the next splayed node has left-depth 0, and the case
on the right occurs when it has left-depth 1. Dashed nodes may or may not be present,
and any number of nodes may lie on the paths denoted by dashed lines.

Theorem 2. Insertion splaying preorder(T ) keeps each sub-root at left-depth at
most 1 and takes O(1) amortized time per splay operation.

Proof. The theorem is trivial for the first insertion splay. The inductive hypoth-
esis is that every sub-root has left depth 0 or 1. Let x be the next sub-root to
be splayed, and let y and z (either or both of which can be missing) be its left
and right children. Touching x makes y and z into sub-roots.

Suppose x has left depth 0 before it is touched. Converting x from untouched
to touched (without splaying it) increases the potential by at most 2 and gives
the new sub-roots y and z left depths of 1 and 0, respectively. (In this case
they are the only two sub-roots.) Each splay step, except possibly the last, is a
zig-zig in which x starts as a left child with parent p and grandparent g. After
completing the zig-zig, g is no longer an ancestor of any untouched node, which
decreases the potential by 2. The zig-zig also preserves the left depths of y and
z. (y becomes the right child of p.) No other sub-roots can increase left-depth,
as x is the smallest sub-root. If the last splay step is a zig, the potential does
not change (although the length of the path to y increases by 1).

More complicated is the case in which x has left depth 1. Converting x from
untouched to touched (without splaying it) makes y a sub-root of left depth 2
and z a sub-root of left depth 1. Let w be the parent of the ancestor of x that is
a left child. All other sub-roots are in the right subtree of w, which is unaffected
by splaying x. The splay of x consists of 0 or more left zig-zigs, followed by
a zig-zag (which can either left-right or right-left), followed by zero of more
left zig-zigs, followed possibly by a zig. Each zig-zig reduces the potential by 2
and preserves the left depths of all sub-roots. The zig-zag does not increase the
potential, reduces the left depth of y from 2 to 1, and that of x from 1 to 0, and
preserves the left depth of z. Now x has left depth 0, and the argument above
applies to the remaining splay steps.

By Lemma 3, the next node to be splayed will be y if present, otherwise z if
present, otherwise w if present. All three of these items have left-depth 0 or 1,
hence an identical form to Fig. 3. Thus the hypothesis holds.
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To obtain the constant factor, we observe that converting x from untouched to
touched increases the potential by 2. Each zig-zig step pays for itself: it requires 2
rotations, paid for by the potential decreasing by at least 2. The zig-zag requires
2 rotations, and the zig requires 1 rotation. If the cost of a splay is the number
of nodes on the splay path, equal to the number of rotations plus 1, we have an
amortized cost of 6 per splay. ��

Insertion Splaying Postorders. Postorder insertion trees are more restricted.
A binary search tree C is a (left-toothed) comb if the access path for x ∈ C always
comprises some number j ≥ 0 of right children followed by some number k ≥ 0
of left children. The nodes of C are partitioned into teeth, where every node in
the ith tooth has right-depth i − 1. The shallowest node in a tooth is called the
head. The insertion trees of postorders are combs:

Lemma 4. If π is a postorder then no left child in BST(π) has a right child.

Proof. By contradiction. Let y be a left child in BST(π) with right child z, and let
x = parent(y). As z is y’s right child, y < z. Similarly, as both y and z are in x’s
left subtree, y < z < x. By Lemma 2, y can be an ancestor of z only if y precedes
z in π, and similarly x must precede y. Thus, (x, y, z) is a subsequence of π that
is order-isomorphic to (3, 1, 2). By Lemma 1(b), π is not a postorder. ��

While postorder insertion trees are less varied than for preorders, there may
be many postorders with a given insertion tree. This affords some amount of
freedom for choosing different sub-roots.

Lemma 5. Let π\(3, 1, 2) = (p1, . . . , pn) be a postorder with insertion tree
sequence T0, T1, . . . , Tn. For 1 ≤ i ≤ n, pi is either:

(a) The single sub-root greater than max{Ti−1} (if present), or
(b) The largest sub-root smaller than max{Ti−1} (if present).

Proof. The result is vacuous for i = 1, 2. If pi is case (a), we merely note that
if pi is a new maximum then it must be the right child of the largest node in
max{Ti−1}. There can be at most one sub-root in this position. Hence, pi is
unique.

For the sake of contradiction, suppose pi is not of the form in case (a) or
(b), and let q be the largest sub-root smaller than max{Ti−1}. By Lemma 2, the
items of each tooth are added in decreasing order. As q is not the head of its
tooth, its successor r must be in Ti−1, and furthermore r precedes both pi and
q in π. By construction, (r, pi, q) is a subsequence of π. Yet this subsequence is
isomorphic to (3, 1, 2) since pi < q < r, contradicting Lemma 1(b). ��

Theorem 3. Insertion splaying postorders maintains the following invariants:

1. After each insertion splay, the path to every sub-root comprises j ≥ 0 left
pointers followed by k ≥ 0 right pointers. (Furthermore, after the first inser-
tion, k ≥ 1.)
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Fig. 4. Possible locations for the next sub-root x to be insertion splayed in π\(3, 1, 2).
The case on the left occurs when the next splayed node is less than the root, and the
case on the right occurs when the next sub-root is the new tree maximum. Dashed
nodes may or may not be present, and any number of nodes may lie on the paths
denoted by dashed lines.

2. The left-depth of every sub-root decreases from smallest to largest.7

3. The splay operation takes constant amortized time.

Proof. The base case is trivial. Lemma 5 dictates that the next splayed sub-root
is either greater than all marked items, or is the largest sub-root smaller than
the tree root. Let x be the next node to be insertion splayed, y its left child, and
z its right child (either or both children may be missing).

Suppose x is greater than the current tree root. Marking x increases the
potential by 2 and makes y and z new sub-roots. The splay operation brings x
to the root by a sequence of left zig-zigs followed possibly by a left zig (depending
on whether the length of the access path is odd or even). After each one of these
zigs or zig-zigs, y’s left-depth remains 1, and z’s left depth remains 0. Let v be
the root prior to the splay operation. If the last splay step is a zig then the last
splay operation increases the left depth of v and everything in its left subtree by
either 1 or 2. Since the left-depth of x was 0 and x was the largest sub-root, the
inductive hypothesis ensures that all sub-roots had left-depth at least 1 before
the splay operation, and therefore at least 2 afterward. Thus, when x becomes
the root, the left-depths of each sub-root decrease from left to right.

Otherwise, x is the largest sub-root less than the root. Marking x again
increases the potential by at most 2. By Lemma 4, x has no right child (see Fig. 4),
so we only need to worry about its left child y. Let w be the last ancestor of x
that is a left child. Each left zig-zig prior to the splay step involving w maintains
the left-depth of y to be one greater than the left-depth of x. The splay step
involving w will either be a left zig-zig or a left-right zig-zag, depending on the
length of the original path connecting w to x. Regardless, immediately after the
splay step involving w, the ancestor of y that is the left child of x is either the
left child of w or the left child of w’s parent. Since all the sub-roots less than y
are in the left subtree of w, and thus have left-depth greater than the left-depth

7 The first two invariants dictate that the ancestors of sub-roots form a right-toothed
comb.
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of y, the invariant is restored, and remains true after each right zig-zig or zig
that brings x to the root.

All that remains is showing constant amortized time. As noted before, mark-
ing x costs 2. If x is greater than the root then each left zig-zig, except possibly
the last, pays for itself, giving amortized cost of 4. In the other case, all splay
steps except for the one involving w and the one making x the root pay for
themselves, giving amortized cost at most 6. ��

4 Balanced Trees

Let |x| denote the size of the subtree rooted at x. Following [18], we say T is α
weight balanced for α ∈ (0, 1/2] if min{| left(x)|, | right(x)|} + 1 ≥ α · (|x| + 1) for
all x ∈ T , and write T ∈ BB[α].

Theorem 4. For any (fixed) 0 < α ≤ 1/2, if S ∈ BB[α] and T has the same
keys as S, then the cost of splaying preorder(S) or postorder(S) starting from
T is O(|T |).
Proof. By Theorem 1, it suffices to show that DFT (preorder(S)) = O(|T |). Let

Aα(n) ≡ max{DFT (preorder(S)) | S ∈ BB[α] and |T | = n}.

Recall that preorder(S) = (root(S)) ⊕ preorder(L) ⊕ preorder(R), where L
and R are the left and right subtrees of the root of S, respectively. Notice that the
rank differences between root(S) and the first item in preorder(L), and between
the last item in preorder(L) and the first item in preorder(R), are at most |T |
by definition. Hence,

DFT (preorder(S)) ≤ DFT (preorder(L)) + DFT (preorder(R)) + 2 log2(|T | + 1).

Observe that (|L|+1)/(|S|+1) ∈ [α, 1−α] since S ∈ BB[α], and by definition
|R| < |S| − |L|. Hence8,

Aα(n) = max
α≤β≤1/2

{Aα(β · n) + Aα((1 − β) · n)} + O(log n).

Akra-Bazzi’s result [2] suffices to show Aα(n) = O(n) for fixed α. The proof for
postorders is identical. ��
Remark 1. In actuality, Aα(n) = O(f(α) · n) for some function f of α. Unfortu-
nately, the computation appears to be messy. We have declined to do the nec-
essary footwork, as we strongly suspect that, regardless, Aα(n) does not tightly
bound the cost of splaying these sequences.

Remark 2. This result extends to any binary search tree algorithm that satis-
fies the dynamic finger bound. Iacono and Langerman proved Greedy also has
the dynamic finger property [12]; their analysis does not consider initial trees,
however.
8 Technically, since |L|/|S| < (|L| + 1)/(|S| + 1), we need to pick S sufficiently large

for a given alpha, and offset the recurrence term by a corresponding constant. This
does not asymptotically affect the result.
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5 Remarks

Patterns that avoid (2, 1, 3) are “symmetric” to those that avoid (2, 3, 1): if
π\(2, 1, 3) then π is the preorder of the mirror image of BST(π). Similarly, pat-
terns that avoid (1, 3, 2) are symmetric to patterns that avoid (3, 1, 2). Thus,
insertion splaying π\(2, 1, 3) and π\(1, 3, 2) takes linear time.

The only other patterns of length three are (3, 2, 1) and its symmetric coun-
terpart (1, 2, 3). The pattern (3, 2, 1) was explored in [3], where it was shown that
Greedy executes (3, 2, 1)-avoiding permutations in linear time starting from an
arbitrary tree. In fact, they showed that executing π\(k, . . . , 2, 1) takes time pro-
portional to n·2O(k2); this is linear in n for fixed k. These permutations are called
k-increasing because they can be partitioned into k − 1 disjoint monotonically
increasing subsequences [3]. They form the natural generalization of sequential
access, which is the (unique) permutation of the tree nodes that avoids (2, 1).

More general invariants can be derived about insertion tree structure and sub-
root insertion order based on pattern-avoidance. As one particularly interesting
example:

Theorem 5. If π\(k, . . . , 2, 1) then no node in BST(π) has left-depth more than
k − 2, and the next sub-root inserted (without splaying) is always the smallest
sub-root with its given left-depth.

The proof is similar to Lemmas 4 and 5. In particular, the insertion trees of
(3, 2, 1)-avoiding permutations look like the combs of postorder insertion trees,
except the teeth are rightward, instead of leftward paths.

For k-increasing sequences, the potential used for Theorems 2 and 3 needs
modifications. The main issue is that in both of these cases, the zig-zigs paid for
themselves because the nodes knocked off the access path did not have sub-root
descendants. This structure no longer holds for (3, 2, 1)-avoiding sequences, since
we must splay the nodes of the teeth in increasing order. The proof seems to
require a generalization of the sequential access theorem. It is possible that the
notion of kernel trees used by Sundar in [22] for a potential-based proof of the
sequential access theorem could be useful.
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Abstract. In the Directed Feedback Vertex Set (DFVS) problem,
given a digraph D and k ∈ N, the goal is to check if there exists a set of
at most k vertices whose deletion from D leaves a directed acyclic graph.
Resolving the existence of a polynomial kernel for DFVS parameterized
by the solution size k is a central open problem in Kernelization. In this
paper, we give a polynomial kernel for DFVS parameterized by k plus the
size of a treewidth-η modulator. Our choice of parameter strictly encom-
passes previous positive kernelization results on DFVS. Our main result
is based on a novel application of the tool of important separators embed-
ded in state-of-the-art machinery such as protrusion decompositions.

Keywords: DFVS · Kernel · Important separator · Treewidth

1 Introduction

Feedback Set problems are fundamental combinatorial optimization problems.
Typically, in these problems, we are given a (directed or undirected) graph G
and an integer k, and the objective is to select at most k vertices, edges or
arcs to hit all cycles of the input graph. Feedback Set problems are among
Karp’s 21 NP-complete problems and have been a subject of active research from
algorithmic [3,5,6,9–11,13,15,18,19,25,31,32,34,36,44,48] as well as structural
point of view [24,33,35,43,45–47]. In particular, such problems constitute one of
the most important topics of research in parameterized algorithms [9,11,13,15,
18,19,32,34,36,44,48], spearheading the development of several new techniques.

In this paper, we study the Directed Feedback Vertex Set (DFVS)

problem, whose input consists of a digraph D on n vertices and m arcs, and
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an integer k that is the parameter. The goal is to check whether there exists
a vertex subset of size at most k that intersects every directed cycle in D. In
other words, we ask whether there exists a set of vertices S of size at most
k such that F = D − S is a directed acyclic graph (DAG). For over a decade,
resolving the parameterized complexity of DFVS was considered one of the most
important open problems in parameterized complexity. In fact, this question was
posed as an open problem in the first few papers on fixed-parameter tractability
(FPT) [21,22]. In a breakthrough paper, DFVS was shown to be fixed-parameter
tractable by Chen et al. [13] in 2008, who gave an algorithm that runs in time
O(4k ·k! ·k4 ·n4). Subsequently, it was observed that, in fact, the running time of
this algorithm is O(4k · k! · k4 · nm) (see, e.g., [16]). Since this breakthrough, the
techniques used to solve DFVS have found numerous applications. However,
apart from the design of a parameterized algorithm for DFVS with a linear
dependency on m + n [40], the question of the existence of a polynomial kernel
for the same problem has seen close to no progress. To be specific, the following
fundamental question about the problem remains open:

Does DFVS admit a polynomial kernel?

That is, does there exist a polynomial-time algorithm (called a kerneliza-
tion algorithm) that, given an instance (D, k) of DFVS, returns an equivalent
instance (D′, k′) (called a kernel) of DFVS whose size is bounded by a polyno-
mial function of k? We refer the reader to the surveys [29,30,37,39], as well as
the books [16,23,26,28,42], for a detailed treatment of the area of kernelization.

The lack of progress on the kernelization complexity of DFVS has led to
the study of this problem on restrictive input instances. In particular, we know
of polynomial kernels for DFVS when the input digraph is a tournament or
even various other generalizations of it [1,4,20,38]. However, the existence of a
polynomial kernel for DFVS is open even when the input digraph is a planar
digraph. Recently, in order to shed some light on the kernelization complexity
of DFVS, the following two directions have been proposed.

1. Study the kernelization complexity of DFVS where, in addition to the solu-
tion size, we parameterize by a structural parameter (such as the size of
a modulator to a graph of constant treewidth). Throughout the paper, by
treewidth of a digraph we refer to the treewidth of its underlying undirected
graph.

2. Study the kernelization complexity of DFVS with an additional restriction
on the resulting DAG F = D − S.

In this paper, we aim to significantly broaden the scope of both directions as
much as possible—our efforts are mostly aimed at the first approach, but we also
deal with the second one. Towards our contribution for the first direction, we
give a polynomial kernel for DFVS parameterized by the solution size plus the
size of a treewidth-η modulator. Let Fη be the family of digraphs of treewidth
at most η. For a directed graph D, a subset M ⊆ V (D) is called a treewidthη-
modulator if D − M ∈ Fη. We consider the following parameterized problem
parameterized by k + �.
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DFVS/DFVS+Treewidth-η Modulator (Tw-η Mod)
Input: A digraph D, k ∈ N, M ⊆ V (D) where |M | = � and D−M ∈ Fη.
Output: Is there S ⊆ V (D) where |S| ≤ k and D − S is a DAG?

Observe that DFVS/DFVS+Tw-η Mod is the same problem as DFVS

with just a different parameter. Our main contribution is the following theorem.

Theorem 1.1. DFVS/DFVS+Tw-η Mod admits a kernel of size (k · �)O(η2).

Notably, our result can be viewed as a proof that DFVS parameterized only
by k, admits a polynomial kernel on the class of all graphs whose treewidth can be
made constant by the removal of kO(1) vertices. Yet another justification for our
choice of parameter is the following. Parameterized by k alone, the problem has
been open for a very long time. On the other hand, parameterized by � alone,
it can be easily seen that the problem does not exhibit a polynomial kernel
(by a reduction from Vertex Cover parameterized by the size of a treewidth-2
modulator) unless NP ⊆ coNP/poly [17]. Thus, k + � is a natural parameter to
explore.

We also remark that the proof of Theorem 1.1 required the development of a
novel use of important separators, among other ideas for finding protrusions and
using the state-of-the-art protrusion machinery. Thus, as a side reward, the ideas
developed in this article may be insightful, helping to design reduction rules for
a polynomial kernel of DFVS. Lastly, our result encompasses the recent result of
Bergougnoux et al. [7], where they studied DFVS parameterized by the feedback
vertex set number of the underlying undirected graph, and gave a polynomial
kernel for this problem. Specifically, they gave a kernel of size O(fvs4), where
fvs is the feedback vertex set number of the underlying undirected graph of D.
Note that our parameter k + � is not only upper bounded by O(fvs), but it can
be arbitrarily smaller than fvs. We also remark that DFVS has already been
parameterized by treewidth in the literature (not for kernelization purposes)—
recently, Bonamy et al. [8] showed that DFVS parameterized by the treewidth
of the input graph, t, can be solved in time 2O(t log t)nO(1), and that unless the
Exponential Time Hypothesis fails, it cannot be solved in time 2o(t log t)nO(1).

We now consider our contribution towards the second direction viz. under-
standing the kernelization complexity of DFVS with an additional restriction on
the resulting DAG F = D − S. This direction was proposed by Mnich and van
Leeuwen [41]. Essentially, the basic philosophy of their program is the following:
What happens to the kernelization complexity of DFVS when we consider dele-
tion to subclasses of DAGs? Specifically, Mnich and van Leeuwen [41] obtained
polynomial kernels for the classes of out-forests, out-trees and directed pump-
kins. Note that for all these families, the treewidth of the graph obtained after
deleting the solution is constant. In a follow-up paper [2], the kernel sizes given
by Mnich and van Leeuwen [41] were reduced. We study the problem named
Fη-Vertex Deletion Set which is defined as follows. Given a digraph D and
an integer k, determine whether there exists a set S of size at most k such that
D−S is a DAG in Fη. Observe that this problem is different from DFVS as the
deletion set is required to bring in more structure to the resulting graph. Towards
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resolving the existence of a polynomial kernel for this problem (parameterized
by k), we observe that the existing machinery can already be harnessed to resolve
this question affirmatively. We omit the proof of this result (Theorem 1.2) in the
short version of the paper.

Theorem 1.2. Fη -Vertex Deletion Set admits a polynomial kernel param-
eterized by k.

Given a choice of which amongst the two directions may bring us closer to
the resolution of the kernelization complexity of DFVS, we believe that studying
DFVS parameterized by a non-trivial structural parameter larger than k has a
major advantage over studying the DFVS problem by restricting the resulting
DAG—the study of a larger parameter does not alter the problem at hand, that
is, the focus is still aimed at DFVS itself rather than at a variant of it. In fact,
the second approach may derail us from the track of resolving the kernelization
complexity of DFVS as each restriction of the output DAG results in its own
definition of a variant of DFVS that may have its own properties. Thus, if the
ultimate goal is to design a polynomial kernel for DFVS itself (or prove that such
a kernel does not exist), we find the first approach more suitable. Nevertheless,
it is also important to note that the questions raised by the second approach,
namely, the study of the variants of DFVS, may be interesting in their own
right.

Proof Idea of Theorem 1.1. Our kernelization algorithm can be divided into
three main phases. We give a brief summary of each phase here.

1. Computing a Zone Decomposition of the Directed Graph: We first
compute a decomposition of D into three components: the vertex set M (modula-
tor), a collection of O(k�2) vertex sets Z (zones), and a vertex set R (remainder)
of size O(k�2). All of these sets are pairwise disjoint and form a partition of V (D).
The aim of this decomposition is to achieve a few properties with respect to each
zone Z ∈ Z, which we will later exploit to design reduction rules to bound the
size of each zone. Since the number of zones in the decomposition and the size of
R is O(k�2), in order to get the desired kernel, it would be enough to bound the
size of each zone Z ∈ Z by k�O(1), after such a decomposition is constructed.

Let us mention three important properties of a zone Z ∈ Z that this decom-
position achieves, and which play a critical role in helping us bound the size
of Z. The first property is that if D has a directed feedback vertex set of size
at most k, then there exists a directed feedback vertex set, say S, in D of size
at most k, whose intersection with Z is of constant size. The second property
is that the neighborhood of Z is entirely contained in M ∪ R and the size of
the neighborhood of Z in R is bounded by some constant. Finally, for any two
vertices in the neighborhood of Z in M , the maximum value of a directed flow
from one to the other is either extremely high or zero. We will exploit the first
property to mark a “small” set of vertices in Z that in some sense “represents”
all partial solutions in Z. Such a set, which is called ΓDFVS, is then used to
design reduction rules that eliminate arcs between Z \ ΓDFVS and M . The third
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property is critically used in these reduction rules. Then, from the second prop-
erty, all the vertices in Z \ΓDFVS have a constant-sized neighborhood outside Z.
Having this information at hand, we further partition Z into small slices, each
of which is then replaced by constant sized sets by using protrusion machinery.

Though at first glance this decomposition of the graph may look very similar
to the near-protrusion decomposition of [27], it is not a near-protrusion decom-
position. In fact, for this problem we probably cannot find a near-protrusion
decomposition.

2. Computing a k-DFVS Representative Set in Z: A k-DFVS represen-
tative in a zone Z is a subset of vertices of Z (say, ΓDFVS) with the following
property: If D has a directed feedback vertex set of size at most k, then there
is a directed feedback vertex set S in D of size at most k and S ∩ Z ⊆ ΓDFVS.
We aim to compute such a set whose size is bounded by some polynomial in k
and �.

For this purpose, we first revisit the relation between our problem and Skew

Multicut. In particular, we see that for any directed feedback vertex setS in D,
S∩Z is a solution to an “appropriate” instance of the Skew Multicut problem.
Thus, if we can compute solutions to all possible appropriate instances of Skew
Multicut, then we can set ΓDFVS to be the union of all these solutions. In this
overview, we prefer to keep the notion of an appropriate instance abstract.

Unfortunately, a single instance of our problem gives rise to a huge number
of appropriate instances. In particular, if we naively construct ΓDFVS by individ-
ually computing a solution for each possible choice for an appropriate instance,
we do not obtain a set whose size is bounded by a polynomial function in k and �.
So, in the second step, we invest significant efforts to construct a set ΓDFVS of
the desired small size, which contains a solution for each possible choice of an
appropriate instance. To this end, we observe that if such a set of the desired
size exists, then solutions of “many” possible appropriate instances intersect a
lot. Very roughly speaking, we aim to identify a small set of vertices that is guar-
anteed to be contained in solutions of “many” instances. If we can identify such
a set, then we delete it from all appropriate instances in which it is guaranteed
to be present in some solution, and recurse on the resulting instances. (Here,
only one recursive call is performed.) From the properties of a zone decomposi-
tion, we are able to derive that there is a solution to our original problem whose
intersection with Z is small, which in turn leads us to the observation that we
can only focus on small solutions for each appropriate instance. Hence, we can
bound the depth of the recursion. Though this description roughly conveys the
broad picture, the implementation of these ideas is significantly more complex.
For example, we are unable to find a small set of vertices that is contained in
some solution for “many” instances. Instead, we find a collection of small sets
such that at least one among them is the set that we want, though we do not
know which one.

These abstract ideas are materialized with the help of important separators
(defined in Sect. 2), the Pushing Lemma for Skew Multicut and a new (simple)
lemma, which we call the Important Separator Preservation (via Small Sink Set)
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Lemma. This lemma says that if S is an important (X,Y )-separator of size α in
some digraph, then S is also an important (X,Y ′)-separator for some subset Y ′

of Y of size at most α+1, where Y \Y ′ is removed from that digraph. We mainly
use this lemma in situations (that arise when we try to compute the collection of
sets mentioned above) that require guessing the set Y when X is given, so that we
can compute important (X,Y )-separators. In these situations, since it is enough
to guess Y ′ to compute all important (X,Y )-separators (from the Important
Separator Preservation Lemma), the fact that Y ′ is small significantly reduces
the search space for Y ′ compared to that for Y .

3. Reduction Rules for Bounding the Size of Each Zone Z: After com-
puting a small set that is a k-DFVS representative in a zone in our zone decom-
position, our final objective is to bound its size. To this end, we design reduction
rules that decompose a zone Z into a “small” number of protrusions. (Roughly
speaking, a protrusion in a graph G is an induced subgraph G[U ] of G for a
subset U ⊆ V (G) that has constant treewidth and only a constant number
of vertices with neighbors in G − U .) More precisely, we first design a set of
reduction rules that only bounds the size of the neighborhood of every zone Z
(with ΓDFVS removed) outside Z by a constant. Then, by computing a nice tree
decomposition of D[Z] and relying on properties of an LCA-closure in that tree,
we decompose the set Z as Z = ˜ΓDFVS �⊎

U∈U U such that ΓDFVS⊆ ˜ΓDFVS, the
size of U is “small”, and each set U ∈ U induces a protrusion. We then replace
each protrusion D[U ] by a “small” digraph such that the resulting digraph is a
“minor” of the original digraph, and the input modulator M is also a treewidth-η
modulator in the resulting digraph. This concludes our kernelization algorithm.

We remark that the operations of the last step of our kernelization algorithm
ensure that the input modulator M remains a modulator in the final returned
kernel. If we allow the modulator in the returned instance to be of size larger
than |M |, then we can bypass all of these reduction rules and the protrusion
machinery, and directly create the kernelized instance by taking the torso of the
set S that is the union of M , R and a k-DFVS representative set in each Z.
Here, by torso we mean that for every two vertices u, v ∈ S with a directed path
from u to v whose internal vertices do not belong to S, we add an arc from u to
v. Since the set S is of small size (polynomial in k and �), we directly obtain a
kernel by omitting the vertices outside S. However, when we perform the torso
operation, we lose the property that M is a modulator for the final instance,
which means that the parameter can increase to be of the magnitude of the
entire kernel.

Road-map. In this extended abstract, we only present a high-level overview
of our approach. In particular, our focus is to convey the main ideas of Step 2
above. In Sect. 3, we present a short description of our zone decomposition (Step
1). In Sect. 4, we describe the main difficulties, and the insights incorporated
to overcome them, with respect to the design a procedure to find a k-DFVS
representative set for any single zone (Step 2). In Sect. 5, we recall our final
objective, that is, to bound the size of each zone (Step 3).
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2 Preliminaries

Throughout the paper, parenthesis (resp. braces) notation denote ordered
(resp. unordered) sets. For a digraph D and subsets X,Y ⊆ V (D), an (X,Y )
-separator in D is a set S ⊆ V (D) \ (X ∪ Y ) such that there is no path from
any vertex in X to any vertex in Y in D − S. When we consider a topological
ordering of a DAG, suppose that no arc is directed from a vertex v to a vertex
u that occurs before v in the ordering. Given a topological ordering π of a DAG
D and X ⊆ V (D), we say that πX is induced by π if the vertices of X appear
in the same order in πX and in π. By the treewidth tw(D) of a digraph D and
a (nice) tree decomposition of D, we refer to the treewidth and a (nice) tree
decomposition of the underlying undirected graph of D, respectively. For any
X ⊆ V (D), we say that X is a η-treewidth modulator in D if tw(D − X) ≤ η.

Definition 2.1 (Important Separators). Let D be a digraph and X,Y ⊆
V (D). Let S ⊆ V (D) \ (X ∪ Y ) be an (X,Y )-separator and let R be the set of
vertices reachable from X in D − S. We say that S is an important (X,Y )-
separator if it is inclusion-wise minimal and there is no (X,Y )-separator S′ ⊆
V (D) \ (X ∪ Y ) such that |S′| ≤ |S| and R � R′, where R′ is the set of vertices
reachable from X in D − S′.

Proposition 2.1 ([12,14]). Let D be a digraph, X,Y ⊆ V (D) and k ∈ N∪{0}.
Then, D has at most 4k important (X,Y )-separators of size at most k, and the
set of all of them can be constructed in time O(4k · k2 · (n + m)).

3 Decomposing the Graph

Given an instance (D, k,M) of DFVS/DFVS+Tw-η Mod, the goal of this
section is to compute a decomposition of D consisting of three components: the
vertex set M (modulator), a collection of vertex sets Z (zones), and a vertex set
R (remainder). All of these sets would be pairwise disjoint. The crux is to “divide-
and-conquer” D so that each zone—that is, a set Z ∈ Z—would correspond to a
subproblem that is easier to solve than (D, k,M) because (1) the intersection of
a minimum solution with Z would be necessarily small, and (2) the interaction
of Z is “well-structured” with respect to M , “limited” with respect to R , and
“non-existent” with respect to any other zone. Towards the computation of R,
we compute three sets: (i) a solution S in D−M ; (ii) a set F to separate vertices
in M that have low-flow; (iii) an LCA-closure of bags derived from S ∪ F . The
arguments given on the way to construct these sets will only partially prove that
we have derived the desired decomposition. At the end, we complete the proof
by focusing on the property regarding the intersection of a minimum solution
with each zone. The details are deferred to the full version of the paper.

Definition 3.1. Let (D, k,M) be an instance of DFVS/DFVS+Tw-η Mod.
A partition V (D) = M � R � (

⊎

Z∈Z Z) is a zone-decomposition if:

1. D − (M ∪ R) is a DAG.



530 D. Lokshtanov et al.

2. For all Z ∈ Z, we have N(Z) ⊆ M ∪ R, and |N(Z) ∩ R| ≤ 2(η + 1).
3. For all (u, v) ∈ M × M \ E(D), either there is no path from u to v in the

digraph D − ((M ∪ R) \ {u, v}), or there are at least k + 1 internally vertex-
disjoint paths from u to v in D.(For u = v, having no path refers to having
no path on at least two vertices.)

Lemma 3.1. There is a polynomial-time algorithm that, given an instance
(D, k,M) of DFVS/DFVS+Tw-η Mod, either correctly decides that (D, k,M)
is a NO-instance, or constructs a zone-decomposition V (D) = M �R�(

⊎

Z∈Z Z)
with |Z| ≤ 6k(�2 + 1) and |R| ≤ 2(η + 1)k(�2 + 1).

We now argue that if (D, k,M) is a YES-instance, then the size of the inter-
section of each minimum(-size) solution with each zone is only a constant.

Lemma 3.2. Let (D, k,M) be a YES-instance of DFVS/DFVS+Tw-η Mod

with zone-decomposition V (D) = M � R � (
⊎

Z∈ZZ). For any minimum-
sized directed feedback vertex set S of D, we have |S∩Z|≤ |N(Z)∩R|≤2(η+1)
for all Z ∈Z.

4 Reducing Each Part: k-DFVS Representative Marking

For an instance (D, k,M) of DFVS/DFVS+Tw-η Mod, the kernelization algo-
rithm starts by applying Lemma 3.1 and either concludes that (D, k,M) is a
NO-instance, or obtains a zone decomposition V (D) = M � R � (

⊎

Z∈Z Z) with
the properties in Lemma 3.1. In this section, we fix an arbitrary zone Z ∈ Z and
give a polynomial time algorithm (Lemma 4.1) to mark a small set of vertices
in Z which in some sense “represents” all partial solutions in Z. Such a set will
then be used to design reduction rules that bound the degree of the vertices in
Z that are not in the representative, which will further be useful to decompose
Z into a small number of protrusions. We now formally define the desired set.

Definition 4.1 (k-DFVS Representative in Z). For a digraph D, Z ⊆
V (D) and an integer k, we say that ΓDFVS ⊆ Z is a k-DFVS representative
in Z if the following holds. If D has a directed feedback vertex set of size at
most k, then it also have a directed feedback vertex set S of size at most k where
S ∩ Z ⊆ ΓDFVS.

Lemma 4.1 (k-DFVS Representative Marking Lemma). There is an
algorithm that given a digraph D, Z ⊆ V (D) and an integer k, runs in time
2O(η2) · (k�)O(η2) · (n + m), and returns a set ΓDFVS ⊆ Z of size (k�)O(η2) such
that ΓDFVS is a k-DFVS representative in Z.1

We prove Lemma 4.1 in two parts. In Sect. 4.1, we revisit the relation between
DFVS and Skew Multicut (defined later). Using this relation, we conclude

1 Throughout the paper, we do not hide constants that depend on η in the O notation.
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that ΓDFVS can be computed by taking the union of skew multicuts of “appro-
priate” instances of Skew Multicut. The problem at this stage stems from
the fact that the set of appropriate instances that we need to consider is not
polynomially bounded, and hence a naive approach of finding a solution to each
of these instances and taking their union does not work. This issue is tackled in
Sect. 4.2.

4.1 Revisiting the Relation with the Skew Multicut Problem

Towards the definition of Skew Multicut, we first define a skew multicut in a
digraph. Let D be a digraph, and P = ((s1, t1), . . . , (sp, tp)) be an ordered set of
pairs of vertices (called terminals) of D. A skew multicut in D with respect to
P is a set S of non-terminal vertices of D such that for all i, j ∈ {1, . . . , p} with
i ≤ j, there is no path from si to tj in D − S. In Skew Multicut (SMC), the
input is a digraph D, an ordered set P = ((s1, t1), . . . , (sp, tp)) and an integer k.
The goal is to decide whether D has a skew multicut of size at most k with respect
to P. The relation between DFVS and Skew Multicut was established in [13].
We restate the relation here in the format that will be useful later. The proofs
are deferred to the full version of the paper.

Definition 4.2. Let D be a digraph and B ⊆ V (D). The digraph D†B is
obtained from D as follows. Replace each vertex v ∈ B by two new vertices vout

and vin, add the arc (vin, vout) and replace each arc (u, v) ∈ E(D) by (u, vin)
and each arc (v, u) ∈ E(D) by (vout, u).

Lemmas 4.2 and 4.3 show that any DFVS solution restricted to Z is a skew
multicut solution to an appropriate instance of Skew Multicut and vice-versa.

Lemma 4.2. Let D be a digraph, Z ⊆ V (D) and k ∈ Z. Let S be a directed
feedback vertex set in D of size at most k. Let B = N(Z) \ S, and let πB =
(v1, . . . , vb) be an ordering of B induced by a topological ordering π of D − S.
Denote D′ = D[Z ∪ B]†B, P = ((vout

1 , vin
1 ), . . . , (vout

b , vin
b )) and k′ = |S ∩ Z|.

Then, there is a skew multicut in D′ with respect to P of size at most k′, that
is, (D′,P, k′) is a YES-instance of Skew Multicut.

Lemma 4.3. Let D be a digraph, Z ⊆ V (D) and k ∈ Z. Let S be a directed
feedback vertex set in D of size at most k. Let B = N(Z) \ S and let πB =
(v1, . . . , vb) be an ordering of the vertices of B induced by a topological ordering
π of D − S. Denote D′ = D[Z ∪ B]†B, and P = ((vout

1 , vin
1 ), . . . , (vout

b , vin
b )). Let

S′ be any skew multicut in D′ with respect to P. Then, S∗ = (S \ Z) ∪ S′ is a
directed feedback vertex set in D.

The number of guesses for the Skew Multicut instance for which the inter-
section of a potential DFVS solution with Z is a skew multicut solution is
2|N(Z)| · |N(Z)||N(Z)|. This is not polynomially bounded in k and �. In the next
section, we see how to compute a set containing some skew multicut solution to
each of these instances without having to go over the instances individually.
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4.2 Computing Solutions for All Instances of Skew Multicut

We formalize the notion of “all possible choices for the appropriate instance
of Skew Multicut”, by defining a family of instances of Skew Multicut

denoted by FSMC. To simplify notation, for a digraph D and a (not necessarily
ordered) set P of terminal pairs, let D − P be the digraph obtained from D
by deleting all terminals in P. Similarly, for a subset X ⊆ V (D), let X − P be
the set of vertices obtained from X by deleting all terminals in P. To improve
readability, unordered sets of terminal pairs will be denoted by Q rather than P.
We also stress that in what follows, k should be thought of as a small constant,
because here it does not refer to the original k in the input instance of DFVS,
but to the parameter set up when we construct an instance of Skew Multicut.

Definition 4.3. Given a digraph D, an unordered set Q = {(si, ti) : i ∈
{1, . . . , p}, si, ti ∈ V (D)} and an integer k, FSMC(D,Q, k) is a family of
instances of Skew Multicut such that for each P ∗ ⊆ {1, . . . , p}, for each
ordering π of P ∗ and for each k′ ≤ k, the instance (D − (Q\P∗),P∗, k′) belongs
to FSMC(D,Q, k) where P∗ = ((sπ(i), tπ(i)) : i ∈ P ∗).

We clarify that the above notation P∗ = ((sπ(i), tπ(i)) : i ∈ P ∗) means that
for all i, j ∈ P ∗, we have that (sπ(i), tπ(i)) is ordered before (sπ(j), tπ(j)) if and
only if i < j. Similar to the notion of a k-DFVS representative of Z, we first
define the notion of a k-SMC representative. The construction of a set that, for
any instance in FSMC, contains some solution for that instance, is captured by
the Lemma 4.4.

Definition 4.4 (k-SMC Representative). Given a digraph D, a set Q =
{(si, ti) : i ∈ {1, . . . , p}, si, ti ∈ V (D)} and an integer k, a k-SMC representative
in D with respect to Q is a subset ΓSMC⊆ V (D) such that each YES-instance in
the family FSMC(D,Q, k) has a solution that belongs to ΓSMC.

Lemma 4.4 (k-SMC Representative Marking Lemma). There is an algo-
rithm that, given a digraph D p, k ∈ N and Q = {(si, ti) : i ∈ {1, . . . , p}, si, ti ∈
V (D)}, runs in time pO(k2) · (n + m) time and outputs a k-SMC representative
in D with respect to Q of size at most k2(k + 1)k · pk(k+2) · 4k2

.

In the rest of the section, we give an intuitive explanation of the algorithm
of Lemma 4.4. The details can be found in the full version of the paper. Since
|FSMC(D,Q, k)| is exponential in p, if a k-SMC representative in D with respect
to Q, say ΓSMC, of the desired size exists, then the solutions of “many” instances
in FSMC(D,Q, k) intersect “a lot”. This is exactly what we want to exploit.
Roughly speaking, we want to recursively apply the following step. In each recur-
sive call, partition the instances of FSMC(D,Q, k) into pO(k) classes, and for each
class find a set that is guaranteed to be contained in some solution for each of
the instances in the class. Delete this set from the instances in the class, and
recurs. Note that we keep track of deleted vertices, since they are precisely the
vertices that will form ΓSMC. Since we are looking for a k-sized solution in each
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instance in FSMC(D,P, k), the depth of the recursion is at most k and hence,
we can form the set ΓSMC of the desired size (i.e. O(pg(k)) for some function g
of k).

Now, we try to formalize this approach; depending on the obstacles faced,
we add layers and machinery to the outline above. First consider the step of
partitioning the instances of FSMC(D,Q, k) into some pO(k) classes, such that
for each class there is a set guaranteed to be contained in some solution for
each of the instances in the class. To this end, we first try the power of the
Pushing Lemma for Skew Multicut, defined below. Roughly speaking, this
lemma states that any YES-instance (D, ((si, ti) : i ∈ {1, . . . , a}), k) of Skew

Multicut (for instances in FSMC(D,Q, k), we have a ≤ p) has a solution of
size at most k that contains an important ({s1}, {t1, . . . , ta})-separator of size
at most k.

Proposition 4.1 (Pushing Lemma for Skew Multicut, [13]). For a YES-
instance (D,P = ((s1, t1), . . . , (sp, tp)), k) of Skew Multicut, there is a solu-
tion S∗ containing an important ({s1}, {t1, . . . , tp})-separator in D of size at
most k.

Now, consider any P ∗ ⊆ {1, . . . , p}. Assume w.l.o.g. that P ∗ = {1, . . . , p∗}.
Consider all YES-instances in FSMC(D,P, k) where the first terminal pair is
(s1, t1) and the other terminal pairs are {(s2, t2), . . . , (sp∗ , tp∗)} in some order.
Then, by Proposition 4.1, for each of these instances there exists a solution
containing some important ({s1}, {t1, . . . , tp∗})-separator of size at most k. This
is not exactly what we wanted (since we do not obtain a single set that is
contained in some solution for each of the instances), but we can still work with
this as the number of important separators of size at most k is at most 4k (from
Proposition 2.1). Then, we can branch on which important separator to add to
ΓSMC. Thus, Proposition 4.1 seems to give a way to go about constructing ΓSMC.

However, we are not done yet because if we naively utilize the Pushing Lemma
approach, we need to partition FSMC(D,P, k) into 2p ·p classes. Indeed, we have
2p possibilities to choose a subset P ∗ ⊆ {1, . . . , p} (which captures the indices of
the terminals pairs in P that should not be deleted), and p∗ ≤ p choices for which
is the index in P ∗ of the first terminal pair (from which we push our solution
as described above). For us, 2p · p is a huge number. To handle this issue, we
introduce another tool, called the Important Separator Preservation (via Small
Sink Set) Lemma (formally defined later). Intuitively, this lemma says that if I
is an important (X,Y )-separator, then I is also an important (X,Y ′)-separator
for some Y ′ ⊆ Y where the size of Y ′ is at most the size of I plus one.

Lemma 4.5 (Important Separator Preservation (via Small Sink Set)
Lemma). Let D be a digraph with X,Y ⊆ V (D) and an important (X,Y )-
separator S ⊆ V (D) of size α. There is Y ′ ⊆ Y of size α + 1 such that S is an
important (X,Y ′)-separator in D − (Y \ Y ′).

The observation that we can exploit this lemma in our setting is a crucial
insight in the design of our kernel. Recall that by Proposition 4.1, we can con-
clude that for some class of instances, the following property holds: There exists



534 D. Lokshtanov et al.

a pair (X,Y ), where X = {si} and Y is some set of terminals tj , such that there
is an important (X,Y )-separator of size at most k that is contained in some
solution for each of the instances in the class. Since the number of important
(X,Y )-separators of size at most k is small, we could branch on them. Basically,
we combine Lemma 4.5 with Proposition 4.1 to add another layer of branching.
Below, we briefly discuss the meaning of this extra layer.

Here, we partition our instances into p classes: All instances that have (si, ti)
as the first terminal pair (recall that the set of terminal pairs in Skew Multicut

is ordered) belong to the same class. While before we had a refined partition
with 2p · p classes, here we only have p classes, but which at first glance seem
non-informative. However, we show that (by Lemma 4.5) not much additional
information is needed. More precisely, we argue that for all YES-instances in
the same class of our rough partition, there exists some pO(k) sized collection of
pairs {(Xi, Yi) : i ∈ pO(k)} with the following property: For any instance in the
class, there exists a pair in this collection, say (Xi, Yi), such that there exists an
important (Xi, Yi)-separator of size at most k that is contained in some solution
of that instance. Since the size of the collection is pO(k), and for each pair in it
there are at most 4k important separators of size at most k, we branch into at
most pO(k) ·4k branches for each class. Since pO(k) ·4k is small enough to obtain a
kernel—recall that in Skew Multicut, k is small (constant) but p is large—let
us move ahead to see how we obtain the collection {(Xi, Yi) : i ∈ pO(k)}.

We claim that for any class, whose first terminal pair is some (si, ti), the
collection {(si, T ) : T ⊆ {t1, . . . , tp}, |T | ≤ k +1} is precisely that collection that
we want. To see this, consider any YES-instance (D,P∗, k) whose first terminal
pair is (si, ti). Let P ∗ denote the set of indices of the pairs in P∗. By the Pushing
Lemma for Skew Multicut, there exists a solution to this instance that con-
tains some important ({si}, {tj | j ∈ P ∗})-separator of size at most k. In turn, by
the Important Separator Preservation Lemma, there exists T ⊆ {tj | j ∈ P ∗} of
size at most k+1, such that any important ({si}, {tj | j ∈ P ∗})-separator is also
an important ({si}, T )-separator! Thus, we conclude that for each YES-instance
in FSMC(D,P, k) whose first terminal pair is (si, ti), there exists a pair in the
collection {(si, T ) : T ⊆ {t1, . . . , tp}} such that one of the important separators
of size at most k of this pair is contained in some solution for this instance.

5 Reduction Rules

In this section we give reduction rules to reduce the size of each “zone”. More
precisely, we first apply the algorithm of Lemma 3.1 which either correctly
decides that (D, k,M) is a NO-instance, or constructs a zone-decomposition
V (D) = M � R � (

⊎

Z∈Z Z) with |Z| ≤ 6k(�2 + 1) and |R| ≤ 2(η + 1)k(�2 + 1).
For a fixed zone Z ∈ Z, we concentrate on reducing the size of Z. Once we are
able to bound the size of each zone by a polynomial function of k and �, we obtain
a polynomial kernel for our problem. Thus, from now onwards we concentrate
on bounding the size of a single zone Z. Let ΓDFVS be a k-DFVS representative
in Z, computed using the algorithm of Lemma 4.1. We bound the size of Z in a
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two step procedure. In the first step, we design reduction rules that remove all
the arcs between M and Z \ ΓDFVS (at the cost of adding arcs between M and
ΓDFVS). Once this is done, we have that Z interacts with the “outside world”
in a limited fashion via ΓDFVS alone. After we have achieved this, in the second
step, we will be able to partition Z \ΓDFVS into a “small” number of slices such
that each slice has treewidth at most η and has at most O(η) neighbors outside
(that is, the slice is an O(η)-protrusion). Each such slice can then be replaced
by a constant size equivalent slice using the protrusion replacement machinery.
The details of this can be found in the full version of the paper.
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Abstract. We introduce a theoretical and computational framework to
use discrete Morse theory as an efficient preprocessing in order to com-
pute zigzag persistent homology. From a zigzag filtration of complexes,
we introduce a zigzag Morse filtration whose complexes are Morse reduc-
tions of the original complexes, and we prove that they both have same
persistent homology. The key point of our construction is that it does not
require any knowledge of past and future maps of the input filtration.
We deduce an algorithm to compute the zigzag persistence of a filtration
that depends mostly on the number of critical cells of the complexes, and
show experimentally that it performs better in practice.

1 Introduction

Persistent homology is an algebraic method that permits to characterize the
evolution of the topology of a growing sequences of spaces X1 ⊆ . . . ⊆ Xn,
called a filtration. The theory has found many applications, especially in data
analysis where it has been successfully applied to material science [25], shape
classification [6,10], or clustering [9,11]. Its success relies on sound theoretical
foundations [19,37], favorable stability properties [3,12,14], and fast algorithms
for computation [1,2,4,13].

Another approach to fast computation consists of preprocessing the input fil-
tration in order to drastically reduce the size of the domains Xi, while preserving
persistence [5,18,30,34]. This has the double advantage of reducing both time
and memory complexity. This goal has in particular been successfully reached
by the use of discrete Morse theory [21], which led to the implementation of effi-
cient software, such as Perseus [32] and Diamorse [17]. Additionally, noticeable
successes, at the crossroad of persistence and discrete Morse theory, have been
reached in the study of 3D images [34], allowing drastic improvements in mem-
ory and time performance, as well as the study of data ranging from medical
imaging to material science [15,16,22].
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Zigzag persistent homology is a generalization of persistent homology that
allows the measurement and tracking of the topology of sequences of spaces that
both grow and shrink, known as a zigzag filtrations X1 ⊆ X2 ⊇ X3 ⊆ · · · .
Zigzag persistence was introduced in [7], and theoretical [29] and practical [8,27]
algorithms have been designed to compute it. They perform however much slower
than standard persistence algorithms, due to the maintenance of heavier data
structures to manage both insertions and deletions of faces. In particular, the
optimizations of standard persistence do not apply to zigzag persistence.

Motivation and Applications for Zigzag Persistence. We give two impor-
tant applications of zigzag persistence on which we test the experimental per-
formance of our method.

(1) Topology inference from data points P . A standard approach [19] consists
of computing the persistent homology of the Rips complex Rρ(P ) on the
set of points P , for an increasing threshold ρ ≥ 0. We compute instead the
zigzag persistence of oscillating Rips zigzag filtrations [33]. These filtrations
add data points progressively while reducing the scale of reconstruction in
order to adapt to a more and more dense set of points. Specifically,

Rμεi(Pi)···�� ⊆ �� Rνεi(Pi ∪ {pi+1}) ��
⊇ Rμεi(Pi ∪ {pi+1}) ··· �� , (1)

where Rα(P ) is the Rips complex of threshold α on points P , and εi a mea-
sure of the “sparsity” of the set of points Pi := {p1, . . . , pi} that decreases
when points are added. Finally, 0 < μ ≤ ν are parameters. This filtra-
tion is known to furnish provably correct persistence diagrams, with much
less noise than standard persistence [33], while naturally maintaining much
smaller complexes during computation. This application is of importance in
data analysis [9,11].

(2) Levelset persistence of images. Given a function f : X → R on a domain
X, classical persistence studies the persistent homology of sublevel sets
f−1(−∞, ρ] for an increasing ρ. Levelset persistence [8] studies instead
the zigzag persistence of of the pre-images of intervals, for appropriate
s1 ≤ s2 ≤ . . .,

f−1[si−1, si]···�� ⊆ �� f−1[si−1, si+1] ��
⊇

f−1[si, si+1] ··· �� . (2)

From the levelset persistence, one can recover the sublevel set persistence [8],
while maintaining again much smaller structures. This application is of par-
ticular importance for medical imaging and material science [15,16,22].

Streaming Model and Memory Efficiency. A main advantage of zigzag per-
sistence is to consequently maintain much smaller complexes over the computa-
tion. To formalize this notion, we adopt a streaming model for the computation
of zigzag persistence. The input is given by a stream of insertions and deletions of
faces, with no knowledge of the entire zigzag filtration, and zigzag persistence is
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computed “on the fly”. In particular, the memory complexity of our algorithms,
depends solely on the maximal size of any complex in the filtration, maxi |Xi|,
as opposed to the entire number of insertions and deletions of faces, which is
generally much larger.

Contributions and Existing Results. In the spirit of [30], we introduce a pre-
processing reduction of a zigzag filtration based on discrete Morse theory [21].
After introducing some background in Sect. 2, we introduce in Sect. 3 a zigzag
Morse filtration that generalizes the filtered Morse complex [30] of standard per-
sistence, and we prove that it has same persistent homology as the input zigzag
filtration. Because of removal of cells not agreeing with the Morse decomposi-
tion, the zigzag Morse filtration contains chain maps that are not inclusions.
We study the effect of those maps on the boundary operator of the Morse com-
plex in Sect. 4, and design a persistence algorithm for zigzag Morse complexes
in Sect. 5. Finally, we report on the experimental performance of the zigzag per-
sistence algorithm for Morse complexes in Sect. 6.

Note that a similar approach to adapt discrete Morse theory to zigzag per-
sistence was followed by Escolar and Hiraoka [20]. Adapting [30], they define a
global zigzag filtered Morse complex for a zigzag filtration, and study its inter-
val decomposition. The main limitation of their approach is that the user must
know the entirety of the input zigzag filtration to compute the Morse pairing,
canceling the benefit of using “small complexes” in zigzag persistence. On the
contrary, our approach requires no other than local knowledge of the input zigzag
filtration, and all computation are done “on the fly” in the streaming model.

2 Background

Due to space constraints, we assume the reader has knowledge of the notions
of general abstract complexes and homology [26], persistent homology [19], and
discrete Morse theory [21]. Otherwise, we refer the reader to a longer arxiv
version [28] of this paper for more detailed definitions and explanations.

Algebraic Topology. We fix some notations. The incidence function of a com-
plex X is denoted by [· : ·]X : X × X → D, for a fixed PID D (usually Z, or a
field F), its boundary operator by ∂X , and its homology groups by Hd(X) when
we assume the coefficients are in a fixed field F.

A Morse matching on a set of cells X is denoted by (A,Q,K, ω) where A
are the critical cells, and ω : Q → K is the bijection forming the Morse pairs
(τ, ω(τ)) of the Morse matching. A Morse matching induces an orientation of
the Hasse diagram of X, denoted by H. For critical cells σ of dimension d + 1,
and τ of dimension d, the set of all gradient paths from σ to τ is denoted Γ (σ, τ).

Persistent Homology and Discrete Morse Theory. We refer the reader
to [30] for the study of the (standard) persistence of discrete Morse complexes.

Persistent homology is the study of persistent modules induced by filtrations.
Let X1 ⊆ . . . ⊆ Xn be a filtration of complexes. A standard Morse filtration
(called filtered Morse complex in [30]) for this filtration is a collection of Morse
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matchings (Ai,Qi,Ki, ωi)i=1...n for each Xi, with Morse complex (Ai, ∂
Ai) on

the critical cells, and Morse pairs ωi : Ki bij. �� Qi , satisfying:

Ai ⊆ Ai+1, Qi ⊆ Qi+1, Ki ⊆ Ki+1, ωi+1

∣
∣
Qi

= ωi, ∂Ai+1
∣
∣
Ai

= ∂Ai . (3)

A filtered Morse complex consequently forms a filtration A1 ⊆ . . . ⊆ An of Morse
complexes connected by inclusions, which induces a persistence module.

Theorem 1 (Forman [21] , Mischaikow and Nanda [30]). Let (Ai,Qi,
Ki, ωi)i=1...n be a standard Morse filtration for a filtration X1 ⊆ . . . ⊆ Xn. There
exist collections of chain maps (ψi : C(Xi) → C(Ai))i=1...n and (ϕi : C(Ai) →
C(Xi))i=1...n for which the following diagrams commute for every i

C(Xi)
⊆ ��

ψi ��

C(Xi+1)
ψi+1��

C(Ai)
⊆ �� C(Ai+1)

C(Xi)
⊆ ��

��
ϕi

C(Xi+1)��
ϕi+1

C(Ai)
⊆ �� C(Ai+1)

and ϕi and ψi induce isomorphisms at the homology level, that are inverses of
each other. They induce an isomorphism of persistence modules.

For a fixed ordering of the Morse pairs reducing Xi into Ai, the map ψi

(resp. ϕi) can be expressed as the composition of maps ψτ,σ : X ′ → X ′ \ {τ, σ},
over Morse pairs (τ, σ), (resp. ϕτ,σ : X ′ \ {τ, σ} → X ′) between partially reduced
complexes differing by one Morse pair. Maps ψτ,σ and ϕτ,σ induce isomorphisms
in homology, inverse of each other (see [30] for explicit formulas).

3 Zigzag Morse Filtration and Persistence

For a zigzag filtration of complexes F , we introduce in this article a canonical
zigzag filtration M of Morse complexes admitting the same persistent homology.

3.1 Zigzag Morse Filtration

Without loss of generality, consider the zigzag filtration

F := X1
� � Σ1 �� X2

�� Σ2 � � · · · � � Σ2k−1 �� X2k−1
�� Σ2k � �X2k , (4)

where the Xi are complexes, X1 = X2k = ∅, and the ith arrow is an inclusion,
either forward (i odd) or backward (i even), where complexes Xi and Xi+1 differ
by a set of cells Σi (possibly empty). We now further decompose F .

Atomic Operations. For each forward arrow •i
�� •i+1 , i odd, let (Âi, Q̂i,

K̂i, ω̂i) be a Morse matching of the set of cells Σi.
Because Morse matchings are acyclic, there exists a total ordering of the cells

of Σi, compatible with the face partial ordering of Σi, such that paired cells in
(Âi, Q̂i, K̂i, ω̂i) are consecutive with regard to that order. We can consequently
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decompose a forward inclusion Xi ⊆ Xi+1 into a sequence of inclusions of a
single critical cell σ ∈ Âi, and of inclusions of a single Morse pair of cells (τ, σ) ∈
Q̂i × K̂i, with σ = ω̂i(τ).

For every backward arrow •i
�� •i+1 , i even, the Morse matchings (Âj ,

Q̂j , K̂j , ω̂j), for smaller odd indices j < i, induce a Morse matching on the cells of
Xi. To avoid ambiguity, if a cell is reinserted in the filtration after being removed
it is considered as a different element. By restriction, they consequently induce a
valid Morse matching on all cells of Σi, except on those cells σ ∈ Σi that form a
Morse pair (τ, σ), with τ /∈ Σi. We decompose backward arrows into a sequence
of removals of a single critical cell, of removals of a single Morse pair of cells,
and of removals of a non-critical cell σ, without its paired cell τ /∈ Σi.

In summary, given an input filtration F as above, and the Morse matchings
(Âi, Q̂i, K̂i, ω̂i), we defined an atomic zigzag filtration

F := (∅ =) X1
�� �� X2

�� �� · · · �� �� Xn−1
�� �� Xn (= ∅) ,

where all arrows are of the following three types:

X �� σ �� X ′ (5)

X �� {τ,σ} �� X ′ (6)

X
1 �� X �� σ � �X \ {σ} (7)

where σ is in each case a maximal cell in X, Diagrams (5) and (6) are forward or
backward insertions of a critical cell or a Morse pair (τ, σ) of cells, respectively,
and Diagram (7) is the removal of the cell σ from a Morse pair (τ, σ), where the
cell τ is not removed. The identity arrow in this last diagram is a technicality
that is clarified later. Naturally, one can recover the persistent homology of the
zigzag filtration F from the one of F . We work with F for the rest of the article.

Morse Filtration. Given a zigzag filtration F , Morse matchings (Ai,Qi,
Ki, ωi), and an associated atomic filtration F as above, we define a zigzag Morse
filtration

M := (∅ =)A1
�� �� A2

�� �� · · · �� �� An−1
�� �� An (= ∅) ,

of Morse complexes (Ai, ∂
Ai) of the complexes (Xi, ∂

Xi) of F inductively. Note
that the maps of the zigzag Morse filtration are not all inclusions. Specifically,
for a critical cell σ in both Xi and Xi+1, in general ∂Ai(σ) �= ∂Ai+1(σ).

All X1,Xn,A1 and An are empty complexes. The zigzag Morse filtration is
constructed inductively for the insertion of a critical cell (Diagram (5)) and the
insertion of a Morse pair (Diagram (6)) as for standard Morse filtrations [30]:

C(X) �
� σ′

��

ψ ��

C(X ∪ {σ′})
ψ��

C(A) �
� σ′

�� C(A ∪ {σ′})

C(X) �
�{τ,σ}��

ψ ��

C(X ∪ {τ, σ})
ψτ,σ◦ψ
��

C(A) 1 �� C(A) ,

(8)
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where all horizontal arrows are inclusions of complexes, and in particular the
boundary maps of A and A ∪ {σ′} are equal when restricted to the cells of A.
The removal of critical cells and Morse pairs is symmetrical. The chain maps ψ
and ψτ,σ are the ones of Theorem 1, and are used later.

For the removal of a non-critical cell σ without its paired cell τ (Diagram (7)),
which is specific to zigzag persistence, the Morse filtration is constructed with:

C(X) 1 ��

ψτ,σ◦ψ
��

C(X) �� σ � �

ψ��

C(X \ {σ})
ψ��

C(A, ∂)
ϕτ,σ �� C(A ∪ {τ, σ}, ∂′) �� σ � �C(A ∪ {τ}, ∂′′) .

(9)

The main technicality is that the boundary maps ∂ and ∂′ differ in a non
trivial way, that we study in Sect. 4. The map ∂′′ is equal to the restriction
of ∂′ to the critical cells A ∪ {τ} (the right arrow is a backward inclusion of
complexes). The chain maps ψτ,σ and ϕτ,σ are the ones from Theorem 1, and
ψ is the compositions of all maps ψμ,ω(μ) over the Morse pairs (μ, ω(μ)) of the
Morse matching of X, except the pair (τ, σ). We give an example of zigzag Morse
filtration in Fig. 1.

Diagrams (8) are studied in [30]. We now focus on the study of Diagram (9).

Fig. 1. Zigzag filtration (top) and its Morse filtration (bottom), given by Hasse dia-
grams and (Morse) boundary maps. Upward arrows in Hasse diagrams represent Morse
matchings, critical faces are circled. Note that the rightmost operation illustrates Dia-
gram (9), with a non trivial modification of ∂1({1, 3}).

3.2 Isomorphism of Zigzag Modules

Theorem 1 implies that the atomic operations of Diagrams (8) induce commuting
diagrams in homology, with vertical maps being isomorphisms. We prove the
following lemma, which is specific to our zigzag Morse filtration.

Lemma 1. Let X be a complex and (A,Q,K, ω) a Morse complex obtained from
X. Let σ be a maximal cell of X not in A, which therefore forms a Morse pair
with a cell τ , [σ : τ ]X �= 0. There exist isomorphisms ψ∗, (ψτ,σ)∗, and (ϕτ,σ)∗
such that the following diagram commutes:

H(X) 1 ��

(ψτ,σ)∗◦ψ∗ ��

H(X) ��
σ∗

ψ∗��

H(X \ {σ})
ψ∗��

H(A)
(ϕτ,σ)∗�� H(A ∪ {τ, σ}) ��

σ∗
H(A ∪ {τ})
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Proof. Apply the homology functor to Diagram (9). The right square commutes,
being induced by horizontal inclusions. Because the maps induced at homology
level by ψτ,σ and ϕτ,σ are isomorphisms, inverse of each other (see Theorem 1),
we get (ϕτ,σ)∗ ◦ (ψτ,σ)∗ ◦ ψ∗ = ψ∗ and the left square commutes. By Theorem 1,
the maps ψ, ψτ,σ, and ϕτ,σ are isomorphisms.

Theorem 2. The zigzag filtrations F and M have same persistent homology.

Proof. Applying the homology functor to F and M, we get the zigzag modules

H(F) : H(X0) �� ��

ψ0
∗��

H(X1) �� ��

ψ1
∗��

· · · �� �� H(Xm)
ψm

∗��
H(M) : H(A0) �� �� H(A1) �� �� · · · �� �� H(Am)

where, by construction, every Ai is a Morse complex of Xi, and the ψi
∗ are the

isomorphisms induced by the chain maps ψi : C(Xi) → C(Ai), connecting a
complex and its Morse reduction (Theorem 1). By Theorem 1 and Lemma 1, all
squares commute and are compatible with each other, and the (ψi

∗) define an
isomorphism of zigzag modules.

4 Boundary of the Morse Complex

Referring to Diagram (9), let X be a complex with incidence function [· : ·]X ,
together with a Morse matching (A,Q,K, ω), inducing an orientation of the
Hasse diagram H of the complex, and a Morse complex (A, ∂).

In this section, we track the evolution of the boundary operators in Morse
complexes under the evaluation of the map ϕτ,σ : (A, ∂) → (A ∪ {τ, σ}, ∂′) from
Diagram (9). Both complexes are Morse complexes of the same X, whose match-
ings differ by exactly one pair (τ, σ), i.e., the Morse partition of complex A∪{τ, σ}
is (A ∪ {τ, σ})  (Q \ {τ})  (K \ {σ}). We denote this last complex by (A′, ∂′),
with incidence function [· : ·]A′

in the following. We prove:

Lemma 2. Let ν be a cell of the complex (A, ∂). Then, in the complex (A′, ∂′),

∂′(ν) = ∂(ν) +
(

[σ : τ ]X
)−1

[ν : τ ]A
′ · ∂′σ. (10)

Proof. First, note that σ is maximal in X, and so it is maximal in A ∪ {τ, σ}.
Let H and H′ be the Hasse diagrams of X induced by the Morse matchings

of A and A′, respectively. Because the matchings differ by a single Morse pair
(τ, σ), H and H′ only differ by the orientation of the edge τ ↔ σ.

For a critical cell ν ∈ A, we have:

∂ν =
∑

μ∈A
γ∈Γ (ν,μ)

m(γ) · μ =
∑

μ∈A, γ∈Γτ→σ(ν,μ)

m(γ) · μ

︸ ︷︷ ︸

(�)

+
∑

μ∈A, γ∈Γτ�σ(ν,μ)

m(γ) · μ

︸ ︷︷ ︸

∂′ν−[ν:τ ]A′ ·τ

,
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where Γτ→σ(ν, μ) are the gradient paths from ν to μ in H containing the upward
arrow τ → σ, and Γτ�σ(ν, μ) are the ones not containing it. Moreover, m(γ) is
defined as a product of weights on the edges of the path γ (see [28] for details);
in particular m(γ2 ◦ γ1) = m(γ1) · m(γ2). Also, assume τ is of dimension d, and
σ of dimension d + 1.

Because σ is critical in A′, it has no ingoing arrow from cells of dimension
d in H′. Consequently, Γτ�σ(ν, μ) contains exactly all gradient paths from ν to
μ �= τ in H′. Hence, the sum over Γτ�σ(ν, μ), for μ ∈ A, gives ∂′ν − [ν : τ ]A

′
τ .

Note that σ cannot appear in ∂′ν because σ is maximal by hypothesis.
Now, studying the left term (�), and splitting gradient paths passing through

edge (τ, σ), then factorizing, we get

(�) =
∑

μ∈A, γ1∈Γ (ν,τ), γ2∈Γ (σ,μ)

m(γ1) ·
(

− [σ : τ ]X
)−1

m(γ2) · μ

= −
(

[σ : τ ]X
)−1 ∑

μ∈A

⎛

⎝
∑

γ2∈Γ (σ,μ)

m(γ2) · μ

⎞

⎠

︸ ︷︷ ︸

(�2) = ∂′σ−[σ:τ ]·τ

·
⎛

⎝
∑

γ1∈Γ (ν,τ)

m(γ1)

⎞

⎠

︸ ︷︷ ︸

(�1)

.

The sum (�1) over Γ (ν, τ) is independent of μ, and equal to [ν : τ ]A
′

by
definition.

Because τ is critical in A′, it has no outgoing arrow towards cells of dimension
d + 1 in H′. Consequently, Γ (σ, μ) contains exactly all gradient paths from σ to
μ in H′, where μ �= τ . Hence, the sum (�2) over Γ (σ, μ) gives ∂′σ − [σ : τ ]X · τ .

Finally, putting terms together, the following allows us to conclude:

∂ν =
(

∂′ν − [ν : τ ]A
′ · τ

)

− [ν : τ ]A
′

[σ : τ ]X
(

∂′σ − [σ : τ ]X · τ
)

.

5 Persistence Algorithm for Zigzag Morse Complexes

In this section, we describe an algorithm to perform the update of Diagram (9)
to compute the zigzag persistent homology of the Morse filtration. Let F be an
atomic zigzag filtration of complexes where all maps are forward or backward
inclusions of a single cell: F : X1 X2

���� �� �� · · · Xn
���� .

Compatible Homology Matrix. Following [27,35] it is sufficient to maintain,
at step j, a homology matrix for Xj that is compatible with the persistence mod-
ule H(Fj) : H(X1) �� �� · · · H(Xj)���� made of the j first homology groups.

Definition 1 ([35]). Let X be a cell complex of size m and B = {c0, . . . , cm−1}
be a collection of m chains of C(X). We say that B is a homology matrix at X
if there exists an ordering σ0, . . . , σm−1 of the m cells of X such that:

(0) for all 0 ≤ r < m, the restriction {σ0, . . . , σr} ⊂ X is a subcomplex of X,
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(1) for all 0 ≤ r < m, the leading term of cr is σr for the chosen ordering, i.e.,
cr = ε0σ0 + . . . + εr−1σr−1 + σr, for some εi ∈ F,

and there exists a partition {0, . . . , m − 1} = F  G  H, and a bijective pairing
G ↔ H, satisfying:

(2) for all indices f ∈ F , ∂Xj cf = 0,
(3) for all pairs g ↔ h of G × H, ∂Xj ch = cg.

Additionally, the homology matrix at Xj is compatible if it agrees with the
interval decomposition of the persistence module H(Fj); see [28] for details. The
data of a compatible homology matrix is enough to compute the persistence
diagram of a zigzag filtration [27,35].

The Morse theory algorithm for persistent homology of [30] can be applied
to maintain a compatible homology matrix for a Morse filtration under the
operations pictured in Diagrams (8). We design the update for the new operation
of Diagram (9). Consider:

Mj : A1
�� �� · · · Aj

���� and Fj : X1
�� �� · · · Xj

���� ,

such that Mj is a zigzag Morse filtration for Fj . Assume Aj has m cells, and
let B = {c0, . . . , cm−1} be a homology matrix at Aj compatible with H(Mj).
Following Diagram (9), consider:

Mj : A1
�� �� · · · Aj

���� �� Aj ∪ {τ, σ} and F j : X1
�� �� · · · Xj

���� 1 �� Xj

such that Mj is a zigzag Morse filtration for Fj . From B, we define a homology
matrix B := {c′

0, . . . , c
′
m−1, cτ , cσ} at Aj ∪{τ, σ} that is compatible with H(Mj).

Denote the two last complexes and their boundary maps in Mj by (Aj , ∂)
and (A′

j , ∂
′), with A′

j := Aj ∪ {τ, σ}. Then:

– for all indices i ∈ F  H, define

c′
i := ci −

(

[σ : τ ]Xj

)−1
(

∑

ν∈ci

[ν : τ ]A
′
)

· σ,

where the sum is taken over all cells ν in the support of chain ci,
– define cτ := ∂′σ, and cσ := σ, and put the index of cτ in G, the index of cσ

in H, and pair them together,
– the pairing G ↔ H inherited from B remains unchanged, and so does F .

Lemma 3. The collection B is a homology matrix at Aj ∪ {τ, σ}.
Proof. We prove that B satisfies the three conditions of Definition 1.

(0) Because a Morse matching induces an acyclic Hasse Diagram, there exists
r such that σ0, . . . , σr, τ, σ, σr+1, . . . , σm−1 is an ordering of the cells of
Aj ∪ {τ, σ} such that the first k cells form a subcomplex, for any k, as
in Definition 1.
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(1) Case cτ , cσ. The leading term of cσ is σ. We prove that the leading term of
cτ is τ in the ordering defined above. Let H be the oriented Hasse diagram
of Xj for the Morse matching where (τ, σ) forms a Morse pair (complex Aj),
and H′ for the matching where τ and σ are critical (complex Aj ∪ {τ, σ});
they differ by the orientation of arrow σ ↔ τ . First, 〈∂′σ, τ〉Aj∪{τ,σ} �= 0
because there exists a unique gradient path from critical cell σ to critical
cell τ in Aj ∪ {τ, σ}, which is the one edge path γ = (τ, σ). The path γ
exists because τ is a facet of σ in Xj . If there were another distinct gradient
path from σ to τ in H′, not containing the edge σ → τ , this path would
exist in H and form a cycle with edge τ → σ in H; a contradiction with the
definition of Morse matchings. Second, if μ ∈ Aj ∪ {τ, σ}, is critical such
that [σ : μ]Aj∪{τ,σ} �= 0, then μ appears before σ (and τ) in the ordering.
Indeed, there exists a gradient path γ = (σ, μ1, ω(μ1), . . . , ω(μr−1), μr = μ)
from σ to μ in H′. The cells (μi, ω(μi)) of a pair are inserted consecutively
by construction, and, for all i, μi is inserted before ω(μi−1) because it is a
facet in Xj . By transitivity, μ is inserted before σ.

Case c′
i. The leading term of c′

i is σi. If c′
i = ci, it is direct. Otherwise, by

construction, c′
i = ci + α · σ, α �= 0, and the chain ci contains cells ν in

its support such that [ν : τ ]Aj∪{τ,σ} �= 0, i.e., cofacets of τ in Aj ∪ {τ, σ}.
With a similar transitivity argument as above, τ (and σ) must consequently
appear before such ν in the ordering of cells defined. The leading term of c′

i

is then unchanged.
(2) Let ci be a chain such that i ∈ F  H. By Lemma 2, it is a direct calcula-

tion from the definition of c′
i that ∂′c′

i = ∂ci. Consequently, Conditions (2)
and (3) of Definition 1 are satisfied for those chains. The pairing G ↔ H
remains valid, because ∂′c′

h = ∂ch = cg = c′
g for g ↔ h, (g, h) ∈ G × H.

(3) By definition, ∂′cσ = cτ , their indices are in H × G and paired together.

Additionally, this new homology is compatible with the appropriate filtration;
see [28] for more details. For the reproducibility of the experiments (Sect. 6), we
give a detailed description of the use of the zigzag persistence algorithm [27]
adapted to our Morse framework.

Implementation and Complexity. We represent B = {c0, . . . , cm−1} by an
(m × m)-sparse matrix data structure MB. Assume computing boundaries and
coboundaries in a Morse complex of size m is given by an oracle of complexity
C(m). We implement the transformation B = {c0, . . . , cm−1} → B = {c′

0, . . . ,
c′
m−1, cτ , cσ} presented above by:

– computing the boundary ∂′σ of σ in Aj ∪ {τ, σ}, and the coboundary {ν :
[ν : τ ]Aj∪{τ,σ} �= 0} of τ , in O(C(m)) operations,

– adding columns cτ and cσ to the matrix in O(m) operations,
– computing c′

i for all i, in O(m2). We can restrict the transformation to those
ci containing a cell of the coboundary of τ .
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Consequently, we can perform the transformation above in O(m2 + C(m))
operations on a (m×m)-matrix. The zigzag persistence algorithm of [8,27] deals
with forward and backward insertions of a single cell in O(m2) operations.

In conclusion, let F = ( Xi
�� Σi

�� Xi+1 )i=1...2k be a general zigzag filtration
(Diagram (4)), and let M be a zigzag Morse filtration as defined in Sect. 3, for
a collection of Morse matchings (Ai,Qi,Ki, ωi) on Σi, i odd. And:

– denote by n the total number of insertions and deletions critical cells in M,
and by |Am| the maximal number of critical cells of a complex in M,

– denote by N the total number of insertion and deletion of cells in F , and by
|Xm| the maximal number of cells of a complex in F .

Table 1. Experimental results for the oscillating Rips zigzag filtrations. For each exper-
iment, the maximal dimension is 10, μ = 4, ν = 6, except for Sph3, where ν = 7. The
number of vertices is 2000.

Without

Morse

reduction

With Morse

reduction

N ×106 |Xm| time (s)

cpx + pers

mem. peak

(GB)

n ×106 |Am| time (s)

cpx + pers

mem. peak

(GB)

KlBt5 63.3 187096 403 + 2912 4.7 4.9 11272 394 + 448 1.1

Spi3 66.1 47296 435 + 4438 5.2 3.8 12810 382 + 343 1.1

MoCh 75.7 37709 460 + 4680 5.8 4.1 11975 450 + 318 1.1

Sph3 99.4 66848 430 + 3498 7.5 4.2 13432 665 + 853 1.3

To3 32.8 32903 117 + 847 2.4 1.6 7570 173 + 79 0.47

By 30.5 18764 153 + 951 2.3 5.2 8677 165 + 287 0.96

Additionally, we compute Morse matchings using the fast coreduction algo-
rithm of Mrozek and Batko [31]. Even if computing optimal Morse matchings is
hard in general [24], this heuristic gives experimentally very small Morse com-
plexes, with constant amortized cost per cell considered. We compute boundaries
and coboundaries in a Morse complex A of a complex X by a linear traversal of
the Hasse diagram of X. We store in memory the homology matrix of the Morse
complex and the complex X. Consequently, the total cost of the algorithm is:

Theorem 3. The persistent homology of F can be computed in

– time: O(n · |Am|2 + n · |Xm| + N),
– memory: O(|Am|2 + |Xm|).

In comparison, running the (practical) zigzag persistence algorithms [7,8,27]
require O(N · |Xm|2) operation and memory O(|Xm|2).



Discrete Morse Theory for Computing Zigzag Persistence 549

6 Experiments

In this section, we report on the performance of the zigzag persistence algo-
rithm [27] with and without Morse reduction. The corresponding code will be
available in a future release of the open source library GUDHI [36].

The following tests are made on a 64-bit Linux (Ubuntu) HP machine with
a 3.50 GHz Intel processor and 63 GB RAM. The programs are all implemented
in C++ and compiled with optimization level -O2 and gcc-8. Memory peaks are
obtained via the /usr/bin/time -f Linux command, and timings are measured
via the C++ std::chrono::system clock::now() method. The timings for
File IO are not included in any process time.

Table 2. Experimental results for the level set zigzag filtrations. For each experiment,
the function f : [0; 1]3 → [−14, 21] is applied to 1293 = 2 146 689 cells and the per-
sistence is computed for maximal dimension 3. The interval size is denoted by ε. The
infinity symbol ∞ corresponds to more than 12 h computing time.

Without Morse reduction With Morse reduction

ε max. noise N ×106 |Xm| time (s)

cpx +

pers

mem.

peak

(GB)

n ×106 |Am| time (s)

cpx +

pers

mem.

peak

(GB)

0.1 0 34 286780 563 + 1725 3.9 6.3 48578 224 + 29 2.7

0.15 0 - - ∞ - 9.3 115558 756 + 44 3.6

0.15 0.5 36.5 315305 417 + 3248 4.2 4.7 36144 221 + 59 2.8

0.2 0 - - ∞ - 15.5 245360 2097 + 68 4.7

0.2 0.5 - - ∞ - 5.6 56500 392 + 47 3.4

We run two types of experiments: homology inference from point clouds,
using oscillating Rips zigzag filtrations, and levelset persistence of 3D-images.
Both applications are described in the introduction.

For homology inference, we use both synthetic and real data points. The
point clouds KlBt5, Spi3, Sph3, and To3 are synthetic samples of respectively
the 5-dimensional Klein bottle, a 3-dimensional spiral wrapped around a torus,
the 3-dimensional sphere, and the 3-dimensional torus. The point cloud MoCh
and By are 3-dimensional measured samples of surface models: the MotherChild
model, and the Stanford bunny model from the Stanford Computer Graphics
Laboratory. The results with corresponding parameters are presented in Table 1.

Levelset persistence is computed for a function f : [0; 1]3 → R, were f is
a Fourier sum with random coefficients, as proposed in the DIPHA library1 as
representative of smooth data. The cube [0; 1]3 and function f are discretized
into equal size voxels. For some tests, we also added random noise to the values
of f . The values of s1 ≤ s2 ≤ . . . are spaced out equally such that si+1 − si = ε
for all i. The results with corresponding parameters are presented in Table 2.

1 github.com/DIPHA/dipha/blob/master/matlab/create smooth image data.m.

http://www.github.com/DIPHA/dipha/blob/master/matlab/create_smooth_image_data.m
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In all experiments, timings are decomposed into ‘cpx’ for computation dedi-
cated to the complex (construction, computation of (co)boundaries and of Morse
matchings) and ‘pers’ for the computation of zigzag persistence.

Analysis of the Results. The results show a significant improvement when
using Morse reduction. For homology inference (Table 1), the total running time
is between 2.5 and 6.7 times faster when using Morse reduction. Moreover, most
of the computation is transferred onto the computation of the Morse complex,
which opens new roads to improvement in future implementation, such as paral-
lelization of the Morse reduction [23] (note that parallelization of the computa-
tion of zigzag persistence is not possible in the streaming model). In particular,
the computation of zigzag persistence is from 3.3 to 14.7 times faster. The better
performance is due to filtrations being from 5.8 to 23.5 times shorter than the
original ones (quantities n vs N in the complexity analysis) and smaller com-
plexes, from 2.2 to 16.6 times smaller with the Morse reduction (quantities |Am|
and |Xm| in the complexity analysis). Note that the memory consumption with
Morse reduction is from 2.4 and up to 5.6 times smaller, which is critical on
complex examples in practice.

For levelset persistence (Table 2), the total running time is at least 9 times
faster, and the computation of zigzag persistence alone is itself approximatively
55 times faster, when the computation without Morse reduction finished. On
those cases that finish, the filtration size is from 5.5 to 7.7 times shorter with
Morse reduction, the maximal size of the complexes between 5.9 and 8.7 times
smaller, and the memory consumption around 50% more efficient.

Additionally, using Morse reduction allows to handle cases where the stan-
dard zigzag algorithm never finishes (more than 12 h). On these examples, the
Morse algorithm does not take more than 36 min. for the entire computation.

These results agree with the complexity analysis (Sect. 5) where terms
O(|Am|2) and O(|Xm|2) dominate both time and memory complexities.
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Abstract. We give offline algorithms for processing a sequence of 2-
and 3-edge and vertex connectivity queries in a fully-dynamic undirected
graph. While the current best fully-dynamic online data structures for
3-edge and 3-vertex connectivity require O(n2/3) and O(n) time per
update, respectively, our per-operation cost is only O(log n), optimal
due to the dynamic connectivity lower bound of Patrascu and Demaine.
Our approach utilizes a divide and conquer scheme that transforms a
graph into smaller equivalents that preserve connectivity information.
This construction of equivalents is closely-related to the development of
vertex sparsifiers, and shares important connections to several upcoming
results in dynamic graph data structures, including online models.

1 Introduction

Dynamic graph data structures seek to answer queries on a graph as it undergoes
edge insertions and deletions. Perhaps the simplest and most fundamental query
to consider is connectivity. A connectivity query asks for the existence of a path
connecting two vertices u and v in the current graph. As the insertion or deletion
of a single edge may have large consequences to connectivity across the entire
graph, constructing an efficient dynamic data structure to answer connectivity
queries has been a challenge to the data structure community. A number of
solutions have been developed, achieving a wide variety of runtime tradeoffs in
a number of different models [10–12,18,19,22–24,30,34,36]

The models typically addressed are online: each query must be answered
before the next query or update is given. A less demanding variant is the offline
setting, where the entire sequence of updates and queries is provided as input to
the algorithm. While an online data structure is more general, there are many
scenarios in which the entire sequence of operations is known in advance. This is
often the case when a data structure is used in a subroutine of an algorithm [6,
28], one specific example being the use of dynamic trees in the near-linear time
minimum cut algorithm of Karger [25].
c© Springer Nature Switzerland AG 2019
Z. Friggstad et al. (Eds.): WADS 2019, LNCS 11646, pp. 553–565, 2019.
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In exchange for the loss of flexibility, one can hope to obtain faster and sim-
pler algorithms in the offline setting. This has been shown to be the case in the
dynamic minimum spanning tree problem. While an online fully-dynamic mini-
mum spanning tree data structure requires about O(log4 n) time per update [20],
the offline algorithm of Eppstein requires only O(log n) time per update [10].

In this paper, we show similar, but stronger, performance gains for higher ver-
sions of connectivity. In particular, we consider the problems of 2, 3-edge/vertex
connectivity on a fully-dynamic undirected graph. An extension of connectiv-
ity, c-edge connectivity asks for the existence of c edge-disjoint paths between
two vertices u and v in the current graph. Vertex connectivity requires vertex-
disjoint paths instead of edge-disjoint paths. Current online fully-dynamic 2-
edge/vertex connectivity data structures require update time Õ(log2 n)1 [19]
and Õ(log3 n)2 [34], respectively, and current online fully-dynamic 3-edge/vertex
connectivity data structures require update time O(n2/3) and O(n), respec-
tively [11]. In contrast, our offline algorithms for 2, 3-edge/vertex connectivity
require only O(log n) time per operation. As the lower bound on dynamic con-
nectivity [32], as well as most lower bounds in general [1–3,7], also apply in the
offline model, our algorithms are optimal up to a constant factor. This paper
further shows that any lower bound attempting to show hardness stronger than
Ω(log n) time per operation for online fully-dynamic 2, 3-edge/vertex connectiv-
ity must make use of the online model.

As a straightforward application of our results, one can consider the use
of our algorithms when data regarding a dynamic network is collected, but not
analyzed, until a later point in time. For example, to diagnose an issue of network
latency across key routing hubs, or determine viability of a dynamically-changing
network of roads, our algorithms can answer a batch of queries in time O(t log n),
where t is the total number of updates and queries. Since online fully-dynamic
algorithms for higher versions of connectivity are significantly slower, namely,
O(n2/3) and O(n) time update for 3-edge and 3-vertex connectivity, respectively,
our offline data structure makes these computations practical for large data sets
when they would otherwise be prohibitively expensive.

Related to our work are papers by �L ↪acki and Sankowski [30] and Karczmarz
and �L ↪acki [24], which also apply to the above applications but for lower versions
of connectivity. Their work considers a fixed sequence of graph updates, given in
advance, and is then able to answer connectivity queries regarding intervals of
this sequence, online. This is more general than the model we consider because
the queries need not be supplied in advance and data regarding an interval of
time is richer than information from a specific point in time. For connectivity
and 2-edge connectivity, Karczmarz and �L ↪acki achieve O(log n) time per opera-
tion [24]. Both 2-vertex connectivity and 3-edge/vertex connectivity queries are
not supported.

1 The Õ(·) notation hides log log n factors.
2 This complexity is claimed in Thorup’s STOC 2000 [34] result. As noted by Huang

et al. [22], the paper provides few details, deferring to a journal version that has since
not appeared. The best complexity for online fully-dynamic biconnectivity prior to
this claim was O(log5 n) by Holm and Thorup [18].
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In competitive programming, the idea of using divide and conquer as an
offline algorithm for connectivity is known. The authors are aware of several
contest problems3 that are solved with similar techniques to Eppstein’s mini-
mum spanning tree algorithm [10], as we do here. The master’s thesis of Sergey
Kopeliovich, a member of the competitive programming community, describes
such an offline algorithm for fully-dynamic 2-edge connectivity, also achieving
about O(log n) time per operation [26]. Unfortunately, the thesis only appears
in Russian, but we speculate that the ideas used are similar.

The techniques developed in this paper may be of independent interest. Our
work has close connections with recent developments in vertex sparsification, par-
ticularly vertex sparsification-based dynamic graph data structures [4,5,8,9,12–
17,27]. In particular, the equivalent graphs at the core of our algorithms are akin
to vertex sparsifiers, with the main difference that 2- and 3-connectivity require
preserving far less information than the more general definitions of vertex sparsi-
fiers [15,27]. A promising step in this direction is very recent work of Goranci et
al. [17], which suggests the notion of a local sparsifier. This is a generalization of
the sparsifier that we consider here, and leads to efficient incremental algorithms
in the online setting.

Indeed, offline algorithms haven proven useful for the development of online
counterparts in the past. One such example is recent development in the mainte-
nance of dynamic effective resistance. Recent work in fully-dynamic data struc-
tures for maintaining effective resistances online [8] relied heavily upon ideas
from earlier data structures for maintaining effective resistances in offline [9,29]
or offline-online hybrid [9,28] settings.

The results of this paper were previously published online in the open access
journal arXiv [33] and have recently been extended to offline 4- and 5-edge
connectivity [31]. This new work achieves about O(

√
n) time complexity per

operation.
The rest of this paper will be dedicated to proving the following theorem:

Theorem 1. Given a sequence of t updates/queries on a graph of the form:

– Insert edge (u, v),
– Delete edge (u, v),
– Query if a pair of vertices u and v are 2-edge connected/3-edge connected/bi-

connected/tri-connected in the current graph,

there exists an algorithm that answers all queries in O(t log n) time.

For simplicity, we will assume the graph is empty at the start and end of the
sequence, but the results discussed are easily modified to start with an initial
graph G, at the cost of an additive O(m) term in the running time, where m is

3 See https://codeforces.com/blog/entry/15296 and https://codeforces.com/gym/
100551/problem/A, for example.

https://codeforces.com/blog/entry/15296
https://codeforces.com/gym/100551/problem/A
https://codeforces.com/gym/100551/problem/A
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the number of edges of G. Further, we assume a fixed vertex set of size n. Any
update sequence with arbitrary vertex endpoints can be modified to one on a
fixed set of vertices, where the size of the fixed set is equal to the largest number
of non-isolated vertices in any graph achieved in the given update sequence.
Finally, we consider the graph G to be a multigraph, since at times during our
constructions and definitions, we will need to work with multigraphs.

The paper is organized as follows. We describe our offline framework for
reducing graphs to smaller equivalents in Sect. 2. We show how simple tech-
niques can be used to create such equivalents for 2-edge connectivity and
bi-connectivity in Sect. 3. In Sect. 4 we extend these constructions to 3-edge con-
nectivity. Our most technical section is 3-vertex connectivity, where constructing
equivalent graphs requires careful manipulation of SPQR trees. Unfortunately,
due to page limits, this will only appear in the full version of this paper.

2 Offline Framework

The main idea of our offline framework is to perform divide and conquer on the
input sequence, similar to what is done in Eppstein’s offline minimum spanning
tree algorithm [10]. Consider the full sequence of updates and queries x1, . . . , xt,
where each xi is either an edge insertion, edge deletion, or query. Call each xi

an event.
Assume each inserted edge has a unique identity. Then for each inserted edge

e, we may associate an interval [I(e),D(e)], indicating that edge e was inserted
at time I(e) and removed at time D(e). Plotting time along the x-axis and edges
on the y-axis as in Fig. 1 gives a convenient way to view the sequence of events.

e4

e3

e2

e1

I(e1) I(e2) Q I(e3) D(e2) Q I(e4) D(e3) Q D(e4) D(e1)

1 2 3 4 5 6 7 8 9 10 11

Fig. 1. A timeline diagram of four edge insertions(I)/deletions(D) and three queries(Q),
with time on the x-axis and edges on the y-axis.

Fix some subinterval [l, r] of the sequence of events. Let us classify all edges
present at any point of time in the sequence xl, . . . , xr as one of two types.

1. Edges present throughout the duration (ie ≤ l ≤ r ≤ de), we call permanent
edges.

2. Edges affected by an event in this range (one or both of I(e),D(e) is in (l, r)),
we call non-permanent edges.
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While there may be a large number of permanent edges, the number of non-
permanent edges is limited by the number of time steps, r − l + 1. Therefore,
the graph can be viewed as a large static graph on which a smaller number of
events take place.

Our goal will be to reduce this graph of permanent edges to one whose size
is a small function of the number of events in the subinterval. If we may do
so without affecting the answers to the queries, we can recursively apply the
technique to achieve an efficient divide and conquer algorithm for the original
dynamic c-connectivity sequence.

We will work in the dual-view, considering cuts instead of edge-disjoint or
vertex-disjoint paths. Two vertices u and v are c-edge connected if there does
not exist a cut of c − 1 edges separating them; further, u and v are c-vertex
connected if there does not exist a cut of c − 1 vertices that separates them.

We need the following definition.

Definition 1. Given a graph G = (VG, EG) with vertex subset W ⊆ VG and a
graph H = (VH , EH) with W ⊆ VH , we say that H and G are c-edge equivalent
if, for any partition (A,B) of W , the size of a minimum cut separating A and B
is the same in G and H whenever either of these sizes is less than c. Similarly,
we say H and G are c-vertex equivalent if, for any partition (A,B,C) of W
with |C| < c, the size of a minimum vertex cut D separating A and B such that
C ⊆ D and D ∩ A = ∅, D ∩ B = ∅, is the same in G and H whenever either of
these sizes is less than c.

This gives the following.

Lemma 1. Suppose G = (VG, EG) and H = (VH , EH) are c-edge/c-vertex
equivalent on vertex set W . Let EW denote any set of edges between vertices
of W . Then H ′ = (VH , EH ∪EW )4 and G′ = (VG, EG ∪EW ) are c-edge/c-vertex
equivalent.

Proof. We first show c-edge equivalence. Let (A,B) be any partition of W and
consider the minimum cuts separating A and B in G′ and H ′. Since the edges
in EW are between vertices of W , they must cross the separation (A,B) in the
same way. Therefore, if the minimum cut separating A and B had size less than
c in either G or H, the minimum cuts separating A and B will have equivalent
size in G′ and H ′. Further, if the minimum cuts separating A and B had size
larger or equal to c in both G and H, the minimum cuts separating A and B
will also have size larger or equal to c in G′ and H ′, since we only add edges to
G′ and H ′. Thus G′ and H ′ are c-edge equivalent.

We now consider c-vertex equivalence. Consider a partition (A,B,C) of W .
As with edge connectivity, if no vertex subset D exists satisfying the conditions
of Definition 1, the introduction of additional edges between any vertices of W
will not change the existence of such a set D in G′ or H ′. Furthermore, if an

4 We take ∪ here to be in the multigraph sense; an edge uv ∈ EW is added regardless
if there is already a uv edge in EH or EG.
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edge of EW connects a vertex of A to a vertex of B, no vertex cut separates A
and B in G′ and H ′. Now suppose none of these cases is true, and there exists
a vertex set D satisfying the conditions of Definition 1 such that the removal of
D disconnects A and B in G and H and further that no edge of EW connects a
vertex of A to a vertex of B. Then the removal of vertex set D still disconnects
A and B in G′ and H ′. Thus c-vertex equivalence of G′ and H ′ follows from
c-vertex equivalence of G and H.

Now consider the graph G of permanent edges for the subinterval xl, . . . , xr

of events. Let W be the set of vertices involved in any event in the subinterval
(that is, W is the set of endpoints of all non-permanent edges in the subinterval,
as well as vertices involved in a query). We will refer to these vertices as active
vertices, and all other vertices of G not in W as inactive vertices. Lemma 1 says
that if we reduce G to a c-edge/ c-vertex equivalent graph H on set W , the
result of all queries in xl, . . . , xr on H will be the same as on G. This is because
all cuts in H and G that affect the queries (therefore of size less than c) are of
equivalent size, even after the addition of non-permanent edges in H and G.

This idea can lead to a divide and conquer algorithm if we can produce such
equivalent graphs H of small size efficiently. Specifically:

Lemma 2. Given a graph G with m edges and vertex set W of size k, if there is
an O(m) time algorithm that produces a graph H of size O(k) that is c-edge/c-
vertex equivalent to G on W , then there is an algorithm that can answer all c-
edge/c-vertex connectivity queries in a sequence of events x1, . . . , xt in O(t log n)
time.

Proof. We perform divide and conquer on the sequence of events. We take the
sequence of events x1, . . . , xt and divide it in half. Over each half, we will take
the graph of permanent edges, which we denote G, and reduce it to a c-edge/ c-
vertex equivalent graph H. We repeat the scheme recursively. As the subintervals
get smaller, non-permanent edges become permanent and are absorbed by the
production of equivalent graphs. Eventually, we reduce to subintervals with a
constant number of events, which can be answered by any algorithm of our
choice on a graph of constant size.

Consider the sizes of the graphs in each step of recursion. The graph G is
the graph produced in the previous level plus the edges that became permanent
in this interval. The graph produced at the previous level has size linear in
the number of events at the current level, and since we reduce the number of
events by a factor 2 in each step of recursion, the number of edges that become
permanent is also linear. It follows that the divide and conquer satisfies the
recurrence T (t) = 2T (t/2) + O(t), which solves to T (t) = O(t log t). If t is
polynomially-bounded by n, T (t) = O(t log n). If not, we may first break the
sequence of events x1, . . . xt into blocks of size, say, n2. Since the size of the
graph G cannot be more than O(n2) in any subinterval, we can therefore handle
each block separately and answer all queries in O(t log n) time. This proves the
lemma.
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The remainder of the paper will show the construction of 2-edge, 2-vertex,
3-edge, and 3-vertex equivalent graphs.

3 Equivalent Graphs for 2-Edge Connectivity and
Bi-connectivity

We now show offline algorithms for dynamic 2-edge connectivity and bi-
connectivity by constructing 2-edge and 2-vertex equivalents needed by Lemma
2. These two properties ask for the existence of a single edge/vertex whose
removal separates query vertices u and v. Since these cuts can affect at most
one connected component, it suffices to handle each component separately.

The underlying structure for 2-edge connectivity and bi-connectivity is tree-
like. This is perhaps more evident for 2-edge connectivity, where vertices on
the same cycle belong to the same 2-edge connected component. We will first
describe the reductions that we will make to this tree in Sect. 3.1, and adapt
them to bi-connectivity in Sect. 3.2.

At times we will make use of the term “equivalent cut”. By this we mean
that a cut C ′ is equivalent to C if it has the same size and separates the vertices
of W in the same way.

3.1 2-Edge Connectivity

Using depth-first search [21], we can identify all cut-edges in the graph and the
2-edge connected components that they partition the graph into. The case of
edge cuts is slightly simpler conceptually, since we can combine vertices without
introducing new cuts. Specifically, we show that each 2-edge connected compo-
nent can be shrunk to single vertex.

Lemma 3. Let S be a 2-edge connected component in G. Then contracting all
vertices in S to a single vertex s in H5, and endpoints of edges correspondingly,
creates a 2-edge equivalent graph.

Proof. The only cuts that we need to consider are ones that remove cut edges in
G or H. Since we only contracted vertices in a component, there is a one-to-one
mapping of these edges from G to H. Since S is 2-edge connected, all vertices
in it will be on the same side of one of these cuts. Furthermore, removing the
same edge in H leads to a cut with s instead. Therefore, all active vertices in S
are mapped to s, and are therefore on the same side of the cut.

This allows us to reduce G to a tree H, but the size of this tree can be much
larger than k. Therefore we need to prune the tree by removing inactive leaves
and length 2 paths whose middle vertex is inactive.

5 Here we slightly abuse our requirement W ⊆ VH , where VH are the vertices of H.
A map of W onto VH that preserves the cuts needed by c-edge/c-vertex equivalence
suffices.
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Lemma 4. If G is a tree, the following two operations lead to 2-edge equivalent
graphs H.

– Removing an inactive leaf.
– Removing an inactive vertex with degree 2 and adding an edge between its two

neighbors.

Proof. In the first case, the only cut in G that no longer exist in H is the one
that removes the cut edge connecting the leaf with its unique neighbor. However,
this places all active vertices in one component and thus does not separate W
and need not be represented in H.

In the second case, if a cut removes either of the edges incident to the degree 2
vertex, removing the new edge creates an equivalent cut since the middle vertex
is inactive. Also, for a cut that removes the new edge in H, removing either of
the two original edges in G leads to an equivalent cut.

This allows us to bound the size of the tree by the number of active vertices,
and therefore finish the construction.

Lemma 5. Given a graph G with m edges and k active vertices W , a 2-edge
equivalent of G of size O(k), H, can be constructed in O(m) time.

Proof. We can find all the cut edges and 2-edge connected components in O(m)
time using depth-first search [21], and reduce the resulting structure to a tree H
using Lemma 3. On H, we repeatedly apply Lemma 4 to obtain H ′.

In H ′, all leaves are active, and any inactive internal vertex has degree at
least 3. Therefore the number of such vertices can be bounded by O(k), giving
a total size of O(k).

3.2 Bi-connectivity

All cut-vertices (articulation points) can also be identified using DFS, leading to
a structure known as the block-tree. However, several modifications are needed
to adapt the ideas from Sect. 3.1. The main difference is that we can no longer
replace each bi-connected component with a single vertex in H, since cutting
such vertices corresponds to cutting a much larger set in G. Instead, we will
need to replace the bi-connected components with simpler bi-connected graphs
such as cycles.

Lemma 6. Replacing a bi-connected component with a cycle containing all its
cut-vertices and active vertices gives a 2-vertex equivalent graph.

Proof. As this mapping maintains the bi-connectivity of the component, it does
not introduce any new cut-vertices. Therefore, G and H have the same set of
cut vertices and the same block-tree structure. Note that the actual order the
active vertices appear in does not matter, since they will never be separated.
The claim follows similarly to Lemma 3.
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The block-tree also needs to be shrunk in a similar manner. Note that the
fact that blocks are connected by shared vertices along with Lemma 6 implies
the removal of inactive leaves. Any leaf component with no active vertices aside
from its cut vertex can be reduced to the cut vertex, and therefore be removed.
The following is an equivalent of the degree two removal part of Lemma 4.

Lemma 7. Two bi-connected components C1 and C2 with no active vertices that
share cut vertex w and are only incident to one other cut vertex each, u and v
respectively, can be replaced by an edge connecting u and v to create a 2-vertex
equivalent graph.

Proof. As we have removed only w, any cut vertex in H is also a cut vertex
in G. As C1 and C2 contain no active vertices, this cut would induce the same
partition of active vertices.

For the cut given by removing w in G, removing u in H gives the same cut
since C1 has no active vertices (which in turn implies that u is not active). Note
that the removal of u may break the graph into more pieces, but our definition
of cuts allows us to place these pieces on two sides of the cut arbitrarily.

Note that Lemma 6 may need to be applied iteratively with Lemma 7 since
some of the cut vertices may no longer be cut vertices due to the removal of
components attached to them.

Lemma 8. Given a graph G with m edges and k active vertices W , a 2-vertex
equivalent of G of size O(k), H, can be constructed in O(m) time.

Proof. We can find all the initial block-trees using depth-first search [21]. Then
we can apply Lemmas 6 and 7 repeatedly until no more reductions are possible.
Several additional observations are needed to run these reduction steps in O(m)
time. As each cut vertex is removed at most once, we can keep a counter in each
component about the number of cut vertices on it. Also, the second time we run
Lemma 6 on a component, it’s already a cycle, so the reductions can be done
without examining the entire cycle by tracking it in a doubly linked list and
removing vertices from it.

It remains to bound the size of the final block-tree. Each leaf in the block-tree
has at least one active vertex that’s not its cut vertex. Therefore, the block-tree
contains at most O(k) leaves and therefore at most O(k) internal components
with 3 or more cut vertices, as well as O(k) components containing active ver-
tices. If these components are connected by paths with 4 or more blocks in
the block tree, then the two middle blocks on this path meet the condition of
Lemma 7 and should have been removed by the above procedure. This gives a
bound of O(k) on the number of blocks, which in turn implies an O(k) bound
on the number of cut vertices. The edge count then follows from the fact that
Lemma 6 replaces each component with a cycle, whose number of edges is linear
in the number of vertices, and that the bi-connected components themselves are
arranged in a tree.
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4 3-Edge Connectivity

We now extend our algorithms to 3-edge connectivity. Our starting point is a state-
ment similar to Lemma 3, namely that we can contract all 3-edge connected com-
ponents. Though of no consequence to our algorithms, we note that unlike 2-edge
or biconnected components, 3-edge connected components need not be connected.

Lemma 9. Let S be a 3-edge connected component in G. Then contracting all
vertices in S to a single vertex s in H, and endpoints of edges correspondingly,
creates a 3-edge equivalent graph.

Proof. A two-edge cut will not separate a 3-edge connected component. There-
fore all active vertices in S fall on one side of the cut, to which vertex s may
also fall. The proof follows analogously to Lemma 3.

Such components can also be identified in O(m) time using depth-first
search [35], so the preprocessing part of this algorithm is the same as with the
2-connectivity cases. However, the graph after this shrinking step is no longer a
tree. Instead, it is a cactus, which in its simplest terms can be defined as:

Definition 2. A cactus is an undirected graph where each edge belongs to at
most one cycle.

On the other hand, cactuses can also be viewed as a tree with some of the
vertices turned into cycles6. Such a structure essentially allows us to repeat the
same operations as in Sect. 3 after applying the initial contractions.

Lemma 10. A connected undirected graph with no nontrivial 3-edge connected
component is a cactus.

Due to space restrictions, we save the proof for Appendix A.
With this structural statement, we can then repeat the reductions from the

2-edge equivalent algorithm from Sect. 3.1 to produce the 3-edge equivalent
graph.

Lemma 11. Given a graph G with m edges and k active vertices W , a 3-edge
equivalent of G of size O(k), H, can be constructed in O(m) time.

Proof. Lemma 10 means that we can reduce the graph to a cactus after O(m)
time preprocessing.

First consider the tree where the cycles are viewed as vertices. Note that in
this view, a vertex that’s not on any cycle is also viewed as a cycle of size 1.
This can be pruned in a manner analogous to Lemma 4:

1. Cycles containing no active vertices and incident to 1 or 2 other cycles can
be contracted to a single vertex.

2. Inactive single-vertex cycles incident to 1 other cycle can be removed.
6 Some ‘virtual’ edges are needed in this construction, because a vertex can still belong

to multiple cycles.
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This procedure takes O(m) time and produces a graph with at most O(k) leaves.
Correctness of the first rule follows by replacing a cut of the two edges within an
inactive cycle by a cut of the single contracted vertex with one of its neighbors.
The second rule does not affect any cuts separating W . It remains to reduce the
length of degree 2 paths and the sizes of the cycles themselves.

As in Lemma 4, all inactive vertices of degree 2 can be replaced by an edge
between its two neighbors. This bounds the length of degree 2 paths and reduces
the size of each cycle to at most twice its number of incidences with other cycles.
This latter number is in turn bounded by the number of leaves of the tree of
cycles. Hence, this contraction procedure reduces the total size to O(k).

We remark that this is not identical to iteratively removing inactive vertices
of degrees at most 2. With that rule, a cycle can lead to a duplicate edge between
pairs of vertices, and a chain of such cycles needs to be reduced in length.

A Omitted Proofs

Proof (Proof of Lemma 10). We prove by contradiction. Let G be a graph with no
nontrivial 3-edge connected component. Suppose there exists two simple cycles
a and b in G with more than one vertex, and thus at least one edge, in common.

Call the vertices in the first simple cycle a1, . . . , an and the second simple
cycle b1, . . . , bm, in order along the cycle.

Since these cycles are not the same, there must be some vertex not common
to both cycles. Without loss of generality, assume (by flipping a and b) that b is
not a subset of a, and (by shifting b cyclically) that b1 is only in b and not a.

Now let bfirst be the first vertex after b1 in b that is common to both cycles, so

first
def= min

i
bi ∈ a. (1)

and let blast be the last vertex in b common to both cycles

last
def= max

i
bi ∈ a. (2)

The assumption that these two cycles have more than 1 vertex in common means
that

first < last. (3)

We claim bfirst and blast are 3-edge connected.
We show this by constructing three edge-disjoint paths connecting bfirst and

blast. Since both bfirst and blast occur in a, we may take the two paths formed
by cycle a connecting bfirst and blast, which are clearly edge-disjoint.

By construction, vertices

blast+1, . . . , bm, b1, . . . , bfirst−1 (4)

are not shared with a. Thus they form a third edge-disjoint path connecting
bfirst and blast, and so the claim follows. Therefore, a graph with no 3-edge
connected vertices, and thus no nontrivial 3-edge connected component has the
property that two simple cycles have at most one vertex in common.
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Abstract. We introduce the zip tree, (Zip: “To move very fast.”) a form
of randomized binary search tree that integrates previous ideas into one
practical, performant, and pleasant-to-implement package. A zip tree is
a binary search tree in which each node has a numeric rank and the tree
is (max)-heap-ordered with respect to ranks, with ties broken in favor of
smaller keys. Zip trees are essentially treaps [8], except that ranks are
drawn from a geometric distribution instead of a uniform distribution,
and we allow rank ties. These changes enable us to use fewer random
bits per node.

We perform insertions and deletions by unmerging and merging paths
(unzipping and zipping) rather than by doing rotations, which avoids
some pointer changes and improves efficiency. The methods of zipping
and unzipping take inspiration from previous top-down approaches to
insertion and deletion by Stephenson [10], Mart́ınez and Roura [5], and
Sprugnoli [9].

From a theoretical standpoint, this work provides two main results.
First, zip trees require only O(log logn) bits (with high probability) to
represent the largest rank in an n-node binary search tree; previous data
structures require O(log n) bits for the largest rank. Second, zip trees
are naturally isomorphic to skip lists [7], and simplify Dean and Jones’
mapping between skip lists and binary search trees [2].

1 Introducing: Zip Trees

Preliminaries. A binary search tree is a binary tree in which each node contains
an item, each item has a key, and the items are arranged in symmetric order :
if x is a node, all items in the left subtree of x have keys less than that of x,
and all items in the right subtree of x have keys greater than that of x. Such a
tree supports binary search: to find an item in the tree with a given key, proceed
as follows. If the tree is empty, stop: no item in the tree has the given key.
Otherwise, compare the desired key with that of the item in the root. If they
are equal, stop and return the item in the root. If the given key is less than
that of the item in the root, search recursively in the left subtree of the root.
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Otherwise, search recursively in the right subtree of the root. The path of nodes
visited during the search is the search path. If the search is unsuccessful, the
search path starts at the root and ends at a missing node corresponding to an
empty subtree.

To keep our presentation simple, in this and the next section we do not
distinguish between an item and the node containing it. (The data structure
is endogenous [12].) We also assume that all nodes have distinct keys. It is
straightforward to eliminate these assumptions. We call a node binary, unary,
or a leaf, if it has two, one or zero children, respectively. We define the depth of
a node recursively to be zero if it is the root, or one plus the depth of its parent
if not. We define the height of a node recursively to be zero if it is a leaf, or
one plus the maximum of the heights of its children if not. The left (resp. right)
spine of a tree is the path from the root to the node of smallest (resp. largest)
key. The left (resp. right) spine of x contains only the root and left (resp. right)
children. We represent a binary search tree by storing in each node x its left
child x.left , its right child x.right , and its key, x.key . If x has no left (resp. right)
child, x.left = null (resp. x.right = null).

Intuition. Our goal is to obtain a type of binary search tree with small depth
and small update time, one that is as simple and efficient as possible. If the
number of nodes n is one less than a power of two, the binary tree of minimum
depth is perfect : each node is either binary (with two children) or a leaf (with
no children), and all leaves are at the same depth. But such trees exist only for
some values of n, and updating even an almost-perfect tree (say one in which all
non-binary nodes are leaves and all leaves have the same depth to within one)
can require rebuilding much or all of it.

We observe, though, that in a perfect binary tree the fraction of nodes of
height k is about 1/2k+1 for any non-negative integer k. Our idea is to build a
good tree by assigning heights to new nodes according to the distribution in a
perfect tree and inserting the nodes at the corresponding heights.

We cannot do this exactly, but we can do it to within a constant factor in
expectation, by assigning each node a random rank according to the desired
distribution and maintaining heap order by rank. Thus we obtain zip trees.

Definition of Zip Trees. A zip tree is a binary search tree in which each node
has a numeric rank and the tree is (max)-heap-ordered with respect to ranks,
with ties broken in favor of smaller keys: the parent of a node has rank greater
than that of its left child and no less than that of its right child. We choose the
rank of a node randomly when the node is inserted into the tree. We choose node
ranks independently from a geometric distribution with mean 1: the rank of a
node is non-negative integer k with probability 1/2k+1. We denote by x.rank
the rank of node x. We can store the rank of a node in the node or compute it
as a pseudo-random function of the node (or of its key) each time it is needed.
The pseudo-random function method, proposed by Aragon and Seidel [8], avoids
the need to store ranks but requires a stronger independence assumption for the
validity of our efficiency bounds, as we discuss in Sect. 3.
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To insert a new node x into a zip tree, we search for x in the tree until reaching
the node y that x will replace; namely the node y such that y.rank ≤ x.rank ,
with strict inequality if y.key < x.key . From y, we follow the rest of the search
path for x, unzipping it by splitting it into a path P containing each node with
key less than x.key and a path Q containing each node with key greater than
x.key . Along P from top to bottom, nodes are in increasing order by key and non-
increasing order by rank; along Q from top to bottom, nodes are in decreasing
order by both rank and key. Unzipping preserves the left subtrees of the nodes
on P and the right subtrees of the nodes on Q. We make the top node of P the
left child of x and the top node of Q the right child of x. Finally, if y had a
parent z before the insertion, we make x the left or right child of z depending
on whether its key is less than or greater than that of z, respectively (x replaces
y as a child of z); if y was the root before the insertion, we make x the root.

Deletion is the inverse of insertion. To delete a node x, we do a search to find
it. Let P and Q be the right spine of the left subtree of x and the left spine of the
right subtree of x. Zip P and Q to form a single path R by merging them from
top to bottom in non-decreasing rank order, breaking a tie in favor of the smaller
key. Zipping preserves the left subtrees of the nodes on P and the right subtrees
of the nodes on Q. Finally, if x had a parent z before the insertion, make the
top node of R (or null if R is empty) the left or right child of z, depending on
whether the key of x is less than or greater than that of z, respectively (the top
node of R replaces x as a child of z); if x was the root before the insertion, make
the top node of R the root. Figure 1 demonstrates both insertion and deletion
in a zip tree.

An insertion or deletion requires a search plus an unzip or zip. The time for
an unzip or zip is proportional to one plus the number of nodes on the unzipped
path in an insertion or one plus the number of nodes on the two zipped paths
in a deletion.

2 Related Work

Zip trees closely resemble two well-known data structures: the treap of Seidel
and Aragon [8] and the skip list of Pugh [7]. A treap is a binary search tree
in which each node has a real-valued random rank (called a priority by Seidel
and Aragon) and the nodes are max-heap ordered by rank. The ranks are cho-
sen independently for each node from a fixed, uniform distribution over a large
enough set that the probability of any rank tie is small. Insertions and deletions
are done using rotations to restore heap order. A rotation at a node x is a local
transformation that makes x the parent of its old parent while preserving sym-
metric order. In general a rotation changes three children. To insert a new node
x in a treap, we generate a rank for x, follow the search path for x until reaching
a missing node, replace the missing node by x, and rotate at x until its parent
has larger rank or x is the root. To delete a node x in a treap, while x is not a
leaf, we rotate at whichever of its children has higher rank (or at its only child
if it has only one child). Once x is a leaf, we replace it by a missing node.
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Fig. 1. Insertion and deletion of a node with key “K” assigned rank 3.

One can view a zip tree as a treap but with a different choice of ranks and
with different insertion and deletion algorithms.1 Our choice of ranks reduces the
number of bits needed to represent them from O(log n) to lg lg n+O(1) (Theorem
1), if ranks are stored rather than computed as a function of the node or its key.
Treaps have the same expected depth as search trees built by uniformly random
insertions, namely 2 lnn, about 1.39 lg n, as compared to 1.5 lg n for zip trees.
The results in Sect. 3 correspond to results for treaps. Allowing rank ties as we
do thus costs about 8% in average depth (and search time) but allows much
more compact representation of priorities.

A precursor of the treap is the cartesian tree of Jean Vuillemin [14]. This is a
binary search tree built by leaf insertion (search for the item; insert it where the
search leaves the bottom of the tree), with each node having a priority equal to
its position in the sequence of insertions. Such a tree is min-heap ordered with
respect to priorities, and its distributional properties are the same as those of
a treap if items are inserted in an order corresponding to a uniformly random
permutation.

Mart́ınez and Roura [5] proposed insertion and deletion algorithms that pro-
duce trees with the same distribution as treaps. Instead of maintaining a heap
order with respect to random priorities, they do insertions and deletions via
random rotations that depend on subtree sizes. These sizes must be stored, at
a cost of O(log n) bits per node, and they must be updated after each rotation.
This suggests using their method only in an application in which subtree sizes
are needed for some other purpose.

1 Seidel and Aragon [8] hinted at the possibility of doing insertions and deletions
by unzipping and zipping: in a footnote they say, “In practice it is preferable to
approach these operations the other way around. Joins and splits of treaps can be
implemented as iterative top-down procedures; insertions and deletions can then be
implemented as accesses followed by splits or joins.” But they provide no further
details.
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Doing insertions and deletions via unzipping and zipping takes at most one
child change per node on the restructured path or paths, saving a constant
factor of at least three over using rotations. Stephenson used unzipping in his
root insertion algorithm [10]; insertion by unzipping is a hybrid of his algorithm
and leaf insertion. Sprugnoli [9] was the first to propose insertion by unzipping.
He used it to insert a new node at a specified depth, with the depth chosen
randomly. His proposals for the depth distribution are complicated, however,
and he did not consider the possibility of choosing an approximate depth rather
than an exact depth. Zip trees choose the insertion height approximately rather
than the depth, a crucial difference.

A skip list is an alternative randomized data structure that supports logarith-
mic comparison-based search. It consists of a hierarchy of sublists of the items.
The level-0 list contains all the items. For k > 0, the level-k list is obtained by
independently adding each item of the level-(k −1) list with probability 1/2 (or,
more generally, some fixed probability p). Each list is in increasing order by key.
A search starts in the top-level list and proceeds through the items in increasing
order by key until finding the desired item, reaching an item of larger key, or
reaching the end of the list. In either of the last two cases, the search backs up to
the item of largest key less than the search key, descends to the copy of this item
in the next lower-level list, and searches in this list in the same way. Eventually
the search either finds the item or discovers that it is not in the level-0 list. To
guarantee that backing up is always possible, all the lists contain a dummy item
whose key is less than all others.

One can view a zip tree as a compact representation of a skip list. There is
a natural isomorphism between zip trees and skip lists. (See Fig. 2.) Given a zip
tree, the isomorphic skip list contains item e in the level-k sublist if and only if
e has rank at least k in the zip tree. Given a skip list, the isomorphic zip tree
contains item e with rank k if and only if e is in the level-k sublist but not in the
level-(k + 1) sublist. Let e be an item in the zip tree with left and right children
e′ and e′′, respectively. Let e, e′, and e′′ have ranks k, k′, and k′′, respectively.
A search in the skip list that reaches an occurrence of e will reach it first in the
level-k sublist. The next node visited during the search that is not an occurrence
of e will be the occurrence of e′ in the level-k′ sublist or the occurrence of e′′ in
the level-k′′ sublist, depending on whether the search key is less than or greater
than the key of e. Our rule for breaking rank ties in zip trees is based on the
search direction in skip lists: from smaller to larger keys.

A search in a zip tree visits the same items as the search in the isomorphic skip
list, except that the latter may visit items repeatedly, at lower and lower levels.
Thus a zip tree search is no slower than the isomorphic skip list search, and can be
faster. The skip list has at least as many pointers as the corresponding zip tree, and
its representation requires either variable-size nodes, in which each item of rank k
has a node containing k + 1 pointers; or large nodes, all of which are able to hold a
number of pointers equal to the maximum rank plus one; or small nodes, one per
item per level, requiring additional pointers between levels. We conclude that zip
trees are at least as efficient in both time and space as skip lists.
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Fig. 2. Representation of the zip tree from Fig. 1 as a skip list. The level-k sublist
comprises nodes of the Zip Tree of rank k or less. The search path for L is highlighted
in blue in both the zip tree and the corresponding skip list.

Dean and Jones were the first to provide a mapping that converts a skip list
into a binary search tree [2], but it is not the natural isomorphism given in the
previous paragraph. They store ranks in the binary search tree in difference form.
They map the insertion and deletion algorithms for a skip list into algorithms
on the corresponding binary search tree by using rotations.

3 Properties of Zip Trees

If we ignore constant factors, the properties of zip trees are shared with treaps,
skip lists, and the randomized search trees of Mart́ınez and Roura. Because zip
trees use a different rank distribution than treaps and Mart́ınez and Roura’s
trees, and a different representation than skip lists, we reprove a selection of
these properties. None of the proofs are difficult.

We denote by n the number of nodes in a zip tree. To simplify bounds, we
assume that n > 1, so log n is positive. We denote by lg n the base-two logarithm.
The following lemma extends a well-known result for trees symmetrically ordered
by key and heap-ordered by rank [8] to allow rank ties:

Lemma 1 (From [8]). The structure of a zip tree is uniquely determined by
the keys and ranks of its nodes.

Proof. The lemma is immediate by induction on n, since the root is the node of
largest rank whose key is smallest, and the nodes in the left and right subtrees
of the root are those with keys less than and greater than the key of the root,
respectively. �
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By Lemma 1, a zip tree is history-independent : its structure depends only on
the nodes it currently contains (and their ranks), independent of the sequence
of insertions and deletions that built it.

In our efficiency analysis we assume that each deletion depends only on the
sequence of previous insertions and deletions, independent of the node ranks.
(If an adversary can choose deletions based on node ranks, it is easy to build
a bad tree: insert items in arbitrary order; if any item has a rank greater than
0, immediately delete it. This will produce a path containing half the inserted
nodes on average.)

Theorem 1. The expected rank of the root in a zip tree is at most lg n + 3. For
any c > 0, the root rank is at most (c + 1) lg n with probability at most 1 − 1/nc.

Proof. The root rank is the maximum of n samples of the geometric distribution
with mean 1. For c > 0, the probability that the root rank is at least lg n + c
is at most n/2lg n+c = 1/2c. It follows that the expected root rank is at most
�lg n� +

∑∞
i=1 i/2i ≤ �lg n� + 2 ≤ lg n + 3. For c > 0, the probability that the

root rank exceeds (c + 1) lg n is at most 1/2c lgn = 1/nc. �

Let x be a node in a zip tree. If y is on the search path for x then y is an ancestor
of x and x is a descendant of y. The low (respectively high) ancestors of x are the
ancestors of x with key less than (respectively greater than) that of x.

Lemma 2. The expected number of low ancestors of x of rank at most k is at
most k. For any δ > 0, this number is at most (1 + δ)k with probability at least

1 − e− δ2k
2+δ .

Proof. If we order the low ancestors of x in increasing order by key, they are in
non-increasing order by rank. We can think of these ancestors and their ranks
as being generated by coin flips in the following way. At each successive node y
less than x in decreasing key order we flip a fair coin until it comes up tails and
give y a rank equal to the number of heads. Given such a y, let z be the low
ancestor of smallest key greater than that of y if there is such a low ancestor;
otherwise, let z = y. Then y is a low ancestor of x if and only if its rank is at
least the rank of z. We call the first z.rank coin flips at y irrelevant and the rest
relevant.

Node y is a low ancestor of x if and only if at least one flip at y is relevant.
The relevant flips are a sequence of Bernoulli trials in which the number of tails is
the number of the number of low ancestors of x produced so far and the number
of heads is at most the rank of the low ancestor of x of highest rank produced
so far. Thus, the number of low ancestors of x of rank at most k is the number
of tails in a sequence of flips containing at most k heads. Since the expected
number of tails equals the expected number of heads, the expected number of
low ancestors of x of rank at most k is at most k. The second half of the lemma
follows by a Chernoff bound [1]. �
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Lemma 3. The expected number of high ancestors of x of rank at most k is at
most k/2. For any δ > 0, this number is at most (1 + δ)k/2 with probability at

least 1 − e− δ2k
2(2+δ) .

Proof. The proof is like that of Lemma 2. We think of generating the high
ancestors of x and their ranks by flipping a fair coin until it comes up tails at
each node y greater than x in increasing key order and giving y a rank equal to
the number of heads. Given such a y, let z be the high ancestor of x of largest
key smaller than that of y, or x if there is no such high ancestor. We call the
first z.rank + 1 flips at y irrelevant and the rest relevant.

Node y is a high ancestor of x if and only if at least one flip at y is relevant.
The relevant flips are a sequence of Bernoulli trials in which the number of tails
is the number of high ancestors of x produced so far and the number of flips is
at most the rank of the high ancestor of x of highest rank produced so far. Thus,
the number of high ancestors of x of rank at most k is the number of tails in a
sequence of at most k flips. This is at most k/2 in expectation. The second half
of the lemma follows by a Chernoff bound. �

Theorem 2. The expected depth of a node in a zip tree is at most (3/2) lg n +
O(1). For c ≥ 1, the depth of a zip tree is O(c lg n) with probability at least
1 − 1/nc, where the constant inside the big “O” is independent of n and c.

Proof. The expected rank of the root is at most lg n + 3 by Theorem 1. Adding
together the bounds in Lemmas 2 and 3, the expected number of ancestors of
any node x is at most (3/2) lg n + O(1). The second half of the Theorem follows
from the high-probability bounds in Theorem 1 and Lemmas 2 and 3. �

Remark 1. Rather than proceeding from scratch, one can prove Theorem 2 using
results from [6].

By Theorem 2, the expected number of nodes visited during a search in a
zip tree is at most (3/2) lg n + 2, and the search time is O(log n) with high
probability.

Theorem 3. If x is a node of rank at most k, the expected number of nodes
on the path that is unzipped during its insertion, and on the two paths that are
zipped during its deletion, is at most (3/2)k + 2. For any δ >, this number is at

most (1 + δ)(3/2)k + 2 with probability at least 1 − 2e− δ2k
2(2+δ) .

Proof. Let x be a node of rank at most k. If x is not in the tree but is inserted,
the nodes on the path unzipped during its insertion are exactly those on the
two paths that would be zipped during its deletion. Thus, we need only consider
deletion. Let P and Q be the two paths zipped during the deletion of x, with
P containing the nodes of smaller key and Q containing the nodes of larger key.
Let y and z be the predecessor and successor of x in key order, respectively.
Then the nodes on P are y and the low ancestors of y of rank less than x.rank ,
and the nodes on Q are z and the high ancestors of z of rank at most x.rank .
The theorem follows from Lemmas 2 and 3. �
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Theorem 4. The expected number of pointer changes during an unzip or zip is
O(1). The probability that an unzip or zip changes more than O(1) pointers is
at most 1/ck for some c > 1.

Proof. The expected number of pointer changes is at most one plus the number
of nodes on the unzipped path during an insertion or the two zipped paths during
a deletion. For a given node x, these numbers are the same whether x is inserted
or deleted. Thus we need only consider the case of deletion. The probability that
x has rank k is 1/2k+1. Given that x has rank k, the expected number of nodes
on the two zipped paths is at most (3/2)k + 2 by Theorem 3. Summing over all
possible values of k gives the first half of the theorem.

By the second half of Theorem 3, there is a constant a > 1 such that if the
rank of x is at most k/(2a), then the probability that the insertion or deletion of
x changes more than k + O(1) pointers is at most 1/(2ak). The probability that
the rank of a node exceeds k/(2a) is at most 1/2k/a+1. Choosing c = min{a, 21/a}
gives the second half of the theorem. �

By Theorem 4, the expected time to unzip or zip is O(1), and the probability
that an unzip or zip takes k steps is exponentially small in k.

In some applications of search trees, each node contains a secondary data
structure, and making any change to a subtree may require rebuilding the entire
subtree, in time linear in the number of nodes. The following result implies that
zip trees are efficient in such applications.

Theorem 5. The expected number of descendants of a node of rank k is at most
3(2k) − 1. The expected number of descendants of an arbitrary node is at most
(3/2) lg n + 3.

Proof. Let x be a node of rank k. Consider the nodes with key less than that
of x. Think of generating their ranks in decreasing order by key. The first such
node that is not a descendant of x is the first one whose rank is at least k. The
probability that a given node has rank at least k is 1/2k. The probability that
the ith node is the first of rank at least k is (1−1/2k)i−1/2k. The expected value
of i is 2k, which means that the expected number of descendants of x of smaller
key is at most 2k − 1. (The expected value of i minus one is an overestimate
because there are at most n − 1 nodes of key less than that of x and they may
all have smaller rank.)

Similarly, among the nodes with key greater than that of x, the first one that
is not a descendant of x is the first one with rank greater than k. A given node
has rank greater than k with probability p = 1/2k+1. The probability that the
ith node is the first of rank greater than k is (1−1/2k+1)i−1/2k+1. The expected
value of i is 2k+1, so the expected number of descendants of x of larger key is at
most 2k+1 − 1.

We conclude that the expected number of descendants of x, including x itself,
is at most 3(2k)−1. The expected number of descendants of an arbitrary node is
the sum over all k of the probability that the node has rank k times the expected
number of descendants of the node given that its rank is k. Using the fact that
the number of descendants is at most n, this sum is at most (3/2) lg n + 3. �
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4 Comments and Extensions

Zip trees combine two independent ideas: the use of random ranks distributed
geometrically and the use of unzipping and zipping to perform insertion and
deletion. The former saves space as compared to treaps and makes zip trees
isomorphic to skip lists but more efficient. In practice, allocating a byte (8 bits)
per rank should suffice in practice. The latter makes updates faster as compared
to using rotations. Either idea may be used separately.

As compared to other kinds of search trees with logarithmic search time, zip
trees are simple and efficient: insertion and deletion can be done purely top-down,
with O(1) expected restructuring time and exponentially infrequent occurrences
of expensive restructuring. Certain kinds of deterministic balanced search trees,
in particular weak AVL trees and red-black trees achieve these bounds in the
amortized sense [3], but at the cost of somewhat complicated update algorithms.

Zipping and unzipping make catenating and splitting zip trees simple. To
catenate two zip trees T1 and T2 such that all items in T1 have smaller keys than
those in T2, zip the right spine of T1 and the left spine of T2. The top node of the
zipped path is the root of the new tree. To split a tree into two, one containing
items with keys at most k and one containing items with keys greater than k,
unzip the path from the root down to the node x with key k, or down to a
missing node if no item has key k. The roots of the two unzipped paths are the
roots of the new trees.

If the rank of a node is a pseudo-random function of its key, then search and
insertion can be combined into a single top-down operation that searches until
reaching the desired node or the insertion position. Similarly, search and deletion
can be so combined. Furthermore ranks need not be stored in nodes, but can be
computed as needed. However, for our efficiency analysis to hold this approach
requires the stronger independence assumption that the sequence of insertions
and deletions is independent of the function generating the ranks.2

One more nice feature of zip trees is that deletion does not require swapping
a binary node before deleting it, as in Hibbard deletion [4].

As compared to treaps, zip trees have an average height about 8% greater.
By choosing the ranks using a geometric distribution with higher mean, we can
reduce this discrepancy, at the cost of increasing the number of bits needed to
represent the ranks. Whether this is worthwhile is a question for experimental
study.

We believe that the properties of zip trees make them a good candidate
for concurrent implementation. The third author developed a preliminary, lock-
based implementation of concurrent zip trees in his senior thesis [13]. We plan
to develop a non-blocking implementation.

2 This issue is not merely theoretical. Reuse of random seeds has led to real-world
“denial-of-service” attacks for a number of programming libraries. See http://ocert.
org/advisories/ocert-2011-003.html.

http://ocert.org/advisories/ocert-2011-003.html
http://ocert.org/advisories/ocert-2011-003.html
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Implementation 1: Recursive versions of insertion and deletion.

insert(x, root):

if root = null then {x.left ← x.right ← null ; x.rank ← RandomRank; return x}
if x.key < root .key then

if insert(x, root .left) = x then
if x.rank < root .rank then root .left ← x
else {root .left ← x.right ; x.right ← root ; return x}

else
if insert(x, root .right) = x then

if x.rank ≤ root .rank then root .right ← x
else {root .right ← x.left ; x.left ← root ; return x}

return root

zip(x, y):

if x = null then return y
if y = null then return x
if x.rank < y.rank then {y.left ← zip(x, y.left); return y}
else {x.right ← zip(x.right, y); return x}

delete(x, root):

if x.key = root .key then return zip(root .left, root .right)
if x.key < root .key then

if x.key = root .left .key then
root .left ← zip(root .left .left, root .left .right)

else delete(x, root .left)

else
if x.key = root .right .key then

root .right ← zip(root .right .left, root .right .right)
else delete(x, root .right)

return root

5 Implementation

In this section we present pseudocode implementing zip tree insertion and dele-
tion. Our implementation is recursive; we provide iterative insertion methods
in an extended version of this paper [11]. Our pseudocode assumes an endoge-
nous representation (nodes are items), with each node x having a key x.key , a
rank x.rank , and pointers to the left and right children x.left and x.right of x
respectively.

Our recursive methods for insertion and deletion appear in Implementation
1. Method insert(x, root) inserts node x into the tree with root root and returns
the root of the resulting tree. It requires that x not be in the initial tree. Method
delete(x, root) deletes node x from the tree with root root and returns the root
of the resulting tree. It requires that x be in the initial tree. Unzipping is built
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into the insertion method; in deletion, zipping is done by the separate method
zip(x, y), which zips the paths with top nodes x and y and returns the top node
of the resulting path. It requires that all descendants of x have smaller key than
all descendants of y.

Remark 2. Once the last line of insert (“return root”) is reached, insert can
actually return from the outermost call: all further tests will fail, and no addi-
tional assignments will be done.

Acknowledgements. We thank Dave Long for carefully reading the manuscript and
offering many useful suggestions, most importantly helping us simplify the iterative
insertion and deletion algorithms that appear in the extended version of this paper
[11]. We thank Sebastian Wild for correcting the bound on expected node depth in
treaps in Sect. 2 and for his ideas on breaking rank ties. Finally, we are grateful to
Dominik Kempa for providing us with C++ zip-tree implementations, benchmarks,
and general comments.
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Abstract. We consider a bichromatic two-center problem for pairs of
points. Given a set S of n pairs of points in the plane, for every pair,
we want to assign a red color to one point and a blue color to the other,
in such a way that the value max{r1, r2} is minimized, where r1 (resp.,
r2) is the radius of the smallest enclosing disk of all red (resp., blue)
points. Previously, an exact algorithm of O(n3 log2 n) time and a (1+ε)-
approximate algorithm of O(n + (1/ε)6 log2(1/ε)) time were known. In
this paper, we propose a new exact algorithm of O(n2 log2 n) time and
a new (1 + ε)-approximate algorithm of O(n + (1/ε)3 log2(1/ε)) time.

1 Introduction

In this paper, we consider the following bichromatic 2-center problem for pairs
of points. Given a set S of n pairs of points in the plane, for every pair, we want
to assign a red color to one point and a blue color to the other, in such a way
that the value max{r1, r2} is minimized, where r1 (resp., r2) is the radius of the
smallest enclosing disk of all red (resp., blue) points.

Previously, Arkin et al. [2] proposed an O(n3 log2 n) time exact algorithm,
as well as two (1 + ε)-approximate algorithms of time O((n/ε2) log n log(1/ε))
and O(n + (1/ε)6 log2(1/ε)), respectively. In this paper, we propose a new exact
algorithm of O(n2 log2 n) time, which is a linear factor improvement over the
exact algorithm in [2]. Also, we propose a new (1 + ε)-approximate algorithm of
O(n + (1/ε)3 log2(1/ε)) time, shaving off three 1/ε factors of the second term of
the previous O(n + (1/ε)6 log2(1/ε)) time.

1.1 Related Work

Our problem may be considered as a new type of facility location problem.
Facility location problems have been studied extensively in operations research,

A full version of the paper is available at [17]. The work was partially done when Jie
Xue was visiting Utah State University. The research of Jie Xue is supported, in part,
by a Doctoral Dissertation Fellowship from the Graduate School of the University of
Minnesota.
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computational geometry, and other related areas. The classical 1-center problem
for a set of points in the plane, which is also the smallest enclosing disk problem,
can be solved in linear time [4,7,15]. Our problem may be more closely related to
the 2-center problem for a set of n points in the plane, which has attracted much
attention. Hershberger and Suri [12] first solved the decision version of the prob-
lem in O(n2 log n) time, which was later improved to O(n2) time [11]. Using this
result and with parametric search technique [14], Agarwal and Sharir [1] gave
an O(n2 log3 n) time algorithm for the planar 2-center problem. Later, Jarom-
czyk and Kowaluk [13] proposed an O(n2) time algorithm. A breakthrough was
achieved by Sharir [16], who gave the first-known subquadratic algorithm for the
problem, and the running time is O(n log9 n). Afterwards, based on Sharir’s algo-
rithm scheme [16], Eppstein [8] derived a randomized algorithm with O(n log2 n)
expected time, and then Chan [3] developed an O(n log2 n log2 log n) time deter-
ministic algorithm.

As discussed in [2], in addition to a natural variant of the planar 2-center
problem, the bichromatic 2-center problem is motivated by a chromatic cluster-
ing problem arising in certain applications in biology, e.g., [6], as well as in trans-
portation. For example, suppose we have a set of origin/destination pairs. We
want to find two centers to build airports, such that for each origin/destination
pair, we can travel from the origin to the destination by first driving to the
closer airport, and then flying to the other airport, and finally driving to the
destination. If the goal is to minimize the maximum of the driving time, then
the problem is exactly an instance of our bichromatic 2-center problem.

The distance in our bichromatic 2-center problem is measured in the
Euclidean metric. Arkin et al. [2] also considered the same problem in the L∞
metric, which is much easier and is solvable in O(n) time. In addition, instead of
minimizing the maximum radius of the two smallest enclosing disks for red and
blue points, Arkin et al. [2] studied the problem of minimizing the sum of the
radii of the two smallest enclosing disks. They gave an O(n4 log2 n) time exact
algorithm for this min-sum problem in the Euclidean metric, along with two
(1 + ε)-approximate algorithms, and an O(n log2 n) time (deterministic) algo-
rithm and an O(n log n) time randomized algorithm for the same problem in the
L∞ metric. Refer to [2] for some other variants of the problem.

Outline. In Sect. 2, we introduce some notation. We present our exact and
approximation algorithms in Sects. 3 and 4, respectively. Due to the page limit,
many proofs are omitted but can be found in the full paper [17].

2 Preliminaries

Let r∗ denote the radius of the larger disk in an optimal solution for our bichro-
matic 2-center problem. Note that there exists an optimal solution consisting
of two congruent disks of radius equal to r∗. We use OPT to denote such an
optimal solution in which the distance between the centers of the two disks is
minimized. Let D∗

1 and D∗
2 be the two disks in OPT .
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We say that two disks bichromatically cover S if it is possible to assign a point
a red color and the other a blue color for every pair of S such that one disk covers
all red points and the other covers all blue points. To solve our bichromatic 2-
center problem, it is sufficient to find two congruent disks of smallest radius that
bichromatically cover S.

For a subset S′ of S, we denote by P (S′) the set of points in all pairs of S′.
For a connected region B in the plane, let ∂B denote the boundary of B.
For any point c in the plane and a value r, let Dr(c) denote the disk centered

at c with radius r. For a set A of points in the plane, define Ir(A) =
⋂

c∈A Dr(c),
i.e., the common intersection of the disks Dr(c) for all points c ∈ A. Note that
Ir(A) is convex and can be computed in O(|A| log |A|) time [12].

For a point pair (p, p′) ∈ S and a value r, let Ur(p, p′) denote the union of
the two disks Dr(p) and Dr(p′). For a subset S′ of pairs of S, define Ur(S′) =⋂

(p,p′)∈S′ Ur(p, p′). The following lemma, given by Arkin et al. [2] (specifically,
in Lemma 1), will be used later in our algorithm.

Lemma 1 (Arkin et al. [2]). Given a subset S′ of pairs of S and a point c with
a value r such that Dr(c) covers all points of P (S′), Ur(S′) can be computed in
O(|S′| log |S′|) time and the combinatorial complexity of Ur(S′) is O(|S′|·α(|S′|)),
where α(·) is the inverse Ackermann function.

Remark. In our algorithm, we often need to solve the following subproblem. Let
S′, c, and r be specified as in Lemma 1. Let A be a set of O(n) points in the
plane. The problem is to determine whether Ur(S′)∩Ir(A) is empty. The problem
can be solved in O(n log n) time [2] (specifically, Lemma 1), as follows. We first
compute Ur(S′) and Ir(A) in O(n log n) time as discussed above. Then, since
Ir(A) is convex and Ur(S′) is star-shaped with respect to the point c, checking
whether Ur(S′) ∩ Ir(A) = ∅ can be done in additional O(nα(n)) time by an
angular sweeping around the point c (see Lemma 1 in [2] for more details). Note
that we can also slightly change the algorithm to check whether the interior of
Ur(S′) intersects the interior of Ir(A) in the same time asymptotically as above.

3 The Exact Algorithm

Before describing our algorithm in detail, we first give an overview of our app-
roach. To obtain the O(n3 log2 n) time algorithm for the problem, Arkin et al. [2]
first solved in O(n3 log n) time the decision version of the problem: Given a value
r, decide whether r ≥ r∗. Then, an easy observation is that r∗ is equal to the
radius of the circumcircle of two or three points of S, and thus one can easily
form a set of O(n3) candidate values for r∗. Consequently, r∗ can be found in
the set by binary search using the decision algorithm.

We take a different approach. As our problem is closely related to the planar
2-center problem for a set of points, we follow the algorithmic scheme in [3,8,16]
for the planar 2-center problem. More specifically, as in [3,8], let δ∗ be the
distance of the centers of the two disks D∗

1 and D∗
2 in OPT . We consider two

cases. If δ∗ ≥ r∗, we call it the distant case; otherwise, it is the nearby case.
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Fig. 1. Illustrating the distant case.

xo

ρ1

ρ2

Fig. 2. Illustrating the nearby case.

In the distant case, as for the planar 2-center problem [3,8,16], we can deter-
mine a constant number of lines such that at least one line l has the following
property (e.g., see Fig. 1): The subset of points of S on one side of l (say, the left
side) are contained in one disk, say, D∗

1 , of the optimal solution, such that the
subset has a point on the boundary of D∗

1 and D∗
1 is the circumcircle of two or

three points of S. By using this observation, we first solve the decision problem
of this case in O(n2 log n) time. Then, following a similar algorithm scheme to
that in [8] and using our decision algorithm, we compute r∗ in O(n2 log2 n) time
using parametric search [5,14].

In the nearby case, as for the planar 2-center problem [3,8,16], we can deter-
mine a constant number of points such that at least one point o is contained in
the intersection of D∗

1 and D∗
2 (e.g., see Fig. 2). In this case, we sort all points

of S cyclically around o and form a matrix M of size Θ(n2), such that r∗ is
the smallest element in M . The similar approach is also used in [3,8,16]. The
difference, however, is that it is quite challenging to evaluate a matrix element in
our problem. To this end, we first solve the decision problem in O(n log n) time
and then solve the optimization problem (i.e., computing the matrix element) in
O(n log2 n) by parametric search [5,14]. Then, with help of an observation on the
monotonicity properties of the matrix M , we find r∗ in M in O(n2 log2 n) time
without evaluating all elements of M (more precisely, we only need to evaluate
O(n) elements), by a matrix searching technique [8–10].

Given the set S, because we do not know which case happens, we will simply
run our algorithms for the above two cases and then return the best solution.

Comparing with the planar 2-center problem [3,8,16], a main challenge in
our problem is that we do not have an efficient data structure to dynamically
compute certain values needed in the algorithm (e.g., the elements of the matrix
M) in poly-logarithmic time each. Instead, in most cases we have to spend more
than linear time on computing each such value. This is a main obstacle that
prevents us from achieving a subquadratic time algorithm for our problem. In the
next two sections, we consider the distant case and the nearby case, respectively.
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3.1 The Distant Case

In this case (i.e., δ∗ ≥ r∗), the two disks D∗
1 and D∗

2 in OPT are relatively
far from each other, and they may intersect or not. As shown in [8], after the
smallest enclosing disk of all points of P (S) is obtained, which can be done in
O(n) time [4,7,15], we can determine in constant time a set L of O(1) lines such
that at least one line l ∈ L must have the following property: The subset P1 of
the points of P (S) on one particular side (e.g., the left side) of l are contained
in one disk of OPT such that a point of P1 is on the boundary of the disk and
the disk is the circumcircle of two or three points of P (S) (e.g., see Fig. 1).

With L, because we do not know which line of L and which side of the line
has the above property, we will run the following algorithm for the subset P1 for
each side of every line of L, and finally return the best solution. In the following,
we give our algorithm by assuming that we know the line l as well as the set P1

with the property stated above.
We first consider the decision problem: Given a value r, decide whether r ≥

r∗. The property of P1 leads to the following observation.

Observation 1. r ≥ r∗ if and only if there exist two congruent disks of radius
r bichromatically covering S such that one disk contains all points of P1 and has
one point of P1 on its boundary.

We first compute the common intersection Ir(P1), which can be done in
O(n log n) time as discussed in Sect. 2. Then, for each point c ∈ P (S)\P1, we
compute the intersection ∂Ir(P1)∩∂Dr(c), which consists of at most two points
as argued in [12], and can be done in O(log n) time since Ir(P1) is convex [12].
We sort these intersection points and the vertices of Ir(P1), along ∂Ir(P1), into
a list I, which can be done in O(n log n) time since |I| = O(n).

We run a scanning procedure to scan the list of I. For each point c ∈ I, we
process it as follows. We place a disk of radius r centered at c, i.e., Dr(c). We
wish to answer the following question: Whether do there exist two congruent
disks of radius r bichromatically covering S such that one of them is Dr(c)?
This can be done in O(n log n) time, as follows.

First, in O(n) time, we check whether Dr(c) contains at least one point from
each pair of S. If no, then the answer to the above question is negative and the
processing of the point c is done (and we proceed to process the next point of
I). Otherwise, we proceed as follows. Let S(c) be the subset of pairs of S whose
points are both covered by Dr(c). Let P (c) denote the subset of points of P (S)
not covered by Dr(c). To answer the question, it is now sufficient to determine
whether there exists a disk of radius r containing all points of P (c) and at least
one point from each pair of S(c). To this end, we first compute Ur(S(c)), which
can be done in O(n log n) time by Lemma 1, since every point of S(c) is covered
by Dr(c). Next, we compute Ir(P (c)) in O(n log n) time. Finally, we determine
whether Ur(S(c)) ∩ Ir(P (c)) is empty, which can be done in O(n log n) time as
remarked in Sect. 2. Note that the answer to our question is positive if and only
if Ur(S(c)) ∩ Ir(P (c)) is not empty.
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If the answer to our question is positive, then we stop our decision algorithm
with the assertion that r ≥ r∗, in which case two congruent disks of radius r that
bichromatically cover S are also obtained as implied by the above algorithm.
Otherwise, we continue on the next point of I. If the answer to the question
is negative for all points of I, then we stop with the assertion that r < r∗.
Observation 1 guarantees the correctness of the algorithm.

Since |I| = O(n) and processing each point of I takes O(n log n) time, the
total time of the algorithm is O(n2 log n).

With the decision algorithm, in Lemma 2 we solve the optimization prob-
lem, i.e., computing r∗, in O(n2 log2 n) time using parametric search [5,14]. The
parametric search scheme is almost the same as that in [8] (i.e., in Sect. 4).

Lemma 2. An optimal solution can be computed in O(n2 log2 n) time.

3.2 The Nearby Case

In this case (i.e., δ∗ < r∗), the centers of the two disks D∗
1 and D∗

2 of OPT are
relatively close and the two disks must intersect. As shown in [8,16], after the
smallest enclosing disk of P (S) is computed, we can determine in constant time
a set of O(1) points such that one point o must be in D∗

1 ∩D∗
2 . Because we do not

know which point has the property, we will run the following algorithm for each
such point as o, and then return the best solution. In the following, we assume
that the point o has the property. We make o as the origin of the plane.

Note that ∂D∗
1 and ∂D∗

2 have exactly two intersections, and let ρ1 and ρ2 be
the two rays through these intersections emanating from o (e.g., see Fig. 2). As
argued in [3], one of the two coordinate axes must separate ρ1 and ρ2 since the
angle between the two rays lies in [π/2, 3π/2], and without loss of generality, we
assume it is the x-axis. Again, because we do not know which axis separates the
two rays, we will run the following algorithm once for the x-axis and once for
the y-axis, and then return the best solution. In the following, we present the
algorithm by assuming that it is the x-axis.

For ease of exposition, we make a general position assumption that no point of
P (S) has the same y-coordinate as o and no two points of P (S) are collinear with
o. The degenerate case can still be solved by our technique, but the discussion
would be more tedious.

Let P+ denote the subset of points of P (S) above the x-axis, and P− the
subset below the x-axis. To simplify the discussion, let |P+| = |P−| = n. Let
p1, p2, . . . , pn be the sorted list of the points of P+ counterclockwise around
o, and q1, q2, . . . , qn the sorted list of the points of P− also counterclockwise
around o (e.g., see Fig. 3). For each i = 0, 1, . . . , n and j = 0, 1, . . . , n, define
Lij = {pi+1 . . . , pn, q1, . . . , qj} and Rij = {qj+1, . . . , qn, p1, . . . , pi}. Note that if
i = n, then Lij = {q1, . . . , qj}, and if j = n, then Rij = {p1, . . . , pi}. In other
words, if we consider a ray emanating from o and between pi and pi+1 and
another ray emanating from o and between qj and qj+1, then Lij (resp., Rij)
consisting of all points to the left (resp., right) of the two rays (e.g., see Fig. 3).
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Fig. 3. Illustrating the points of P+ and P−.

For any pair (i, j) with 0 ≤ i, j ≤ n, we consider the following restricted
bichromatic 2-center problem. Find a pair of two congruent disks D1 and D2 of
the smallest radius such that the following hold: (1) D1 and D2 bichromatically
cover S; (2) D1 covers all points of Lij ∪{o} and D2 covers all points of Rij ∪{o}.
We let r∗

ij denote the radius of the two disks in an optimal solution. We use
RB2C(i, j) to refer to the problem. If a pair of disks satisfies the above two
conditions, then we call them a feasible pair of disks for RB2C(i, j).

The following lemma shows why we need to consider the problem RB2C(i, j).

Lemma 3. r∗ = min0≤i,j≤n r∗
ij.

Define an (n + 1) × (n + 1) matrix M [0 . . . n; 0 . . . n], where M [i, j] = r∗
ij for

all 0 ≤ i, j ≤ n. By Lemma 3, r∗ is equal to the minimum element in M . To
find r∗ from M , instead of computing all (n + 1)2 elements of M , we will prove
certain monotonicity properties of the matrix and then apply a matrix searching
technique [8–10], so that it suffices to compute O(n) elements of M . One of the
challenges is that it is not trivial to compute even a single element of M . In
the following, we first present an algorithm that can compute a single matrix
element M [i, j], i.e., r∗

ij , in O(n log2 n) time. By using the algorithm, we describe
later how to find r∗ in M in O(n2 log2 n) time.

An Algorithm for Computing r∗
ij . To compute r∗

ij for RB2C(i, j), we will
resort to parametric search again. To this end, we first solve the decision problem:
Given a value r, decide whether r ≥ r∗

ij . We present an O(n log n) time decision
algorithm for it. Let S1 be the subset of pairs of S whose points are both in
Lij , and S2 the subset of pairs of S whose points are both in Rij . The following
observation is self-evident.

Observation 2. r ≥ r∗
ij if and only if there exist a pair of congruent disks of

radius r such that one disk covers all points of Lij ∪ {o} and at least one point
from each pair of S2, and the other disk covers all points of Rij ∪ {o} and at
least one point from each pair of S1.

Based on Observation 2, our algorithm works as follows. First, we compute
the radius r1 of the smallest enclosing disk of Lij ∪ {o} and the radius r2 of
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the smallest enclosing disk of Rij ∪ {o}. Note that Observation 2 implies that
r1 ≤ r∗

ij and r2 ≤ r∗
ij . Hence, if r < max{r1, r2}, then we have r < r∗

ij , and thus
we can stop the algorithm. Otherwise, we proceed as follows.

Observe that there exists a disk of radius r covering all points of Lij∪{o} and
at least one point from each pair of S2 if and only if Ir(Lij ∪ {o}) ∩ Ur(S2) �= ∅.
Computing Ir(Lij ∪{o}) can be done in O(n log n) time. For Ur(S2), notice that
every point of S2 is in the disk Dr(c) because r2 ≤ r, where c is the center of the
smallest enclosing disk of Rij∪{o}. Hence, by Lemma 1, Ur(S2) can be computed
in O(n log n) time. In addition, determining whether Ir(Lij ∪ {o}) ∩ Ur(S2) = ∅
can also be done in O(n log n) time, as remarked in Sect. 2. As such, determining
whether there exists a disk of radius r covering all points of Lij ∪ {o} and at
least one point from each pair of S2 can be done in O(n log n) time.

Similarly, it takes O(n log n) time to determine whether there exists a disk
of radius r covering all points of Rij ∪ {o} and at least one point from each pair
of S1. This solves the decision problem in O(n log n) time.

The next lemma provides a parametric search algorithm for computing r∗
ij .

Lemma 4. For any pair (i, j) with 0 ≤ i, j ≤ n, the value r∗
ij can be computed

in O(n log2 n) time.

Searching r∗ in the Matrix M. We now find r∗ in M by using the algorithm
in the previous subsection. The runtime of our algorithm is O(n2 log2 n).

To find r∗ in M , a straightforward way is to compute all (n + 1)2 elements
of M and then return the minimum one, which would take O(n3 log2 n) time
by Lemma 4. To reduce the time, we resort to some matrix searching tech-
niques [8–10]. To this end, we need some sort of “stronger” solution for the
problem RB2C(i, j), as follows.

Consider any pair (i, j) with 0 ≤ i, j ≤ n. Define S1 to be the subset of pairs
of S whose points are both in Lij . Similarly, define S2 to be the subset of pairs
of S whose points are both in Rij . Define D1

ij to be the smallest disk containing
all points of Lij ∪{o} and at least one point of each pair of S2, and let lij be the
radius of D1

ij . Similarly, define D2
ij to be the smallest disk containing all points

of Rij ∪ {o} and at least one point of each pair of S1, and let rij be the radius
of D2

ij . We have the following observation.

Observation 3. 1. max{lij , rij} = r∗
ij.

2. If lij < r∗
ij, then rij = r∗

ij; otherwise, lij = r∗
ij.

Proof. Notice that D1
ij and D2

ij form a feasible pair of disks for the problem
RB2C(i, j). Therefore, max{lij , rij} ≥ r∗

ij holds.
Next, we show that max{lij , rij} ≤ r∗

ij . Consider an optimal solution for the
problem RB2C(i, j), in which one disk D1 must contain all points of Lij ∪ {o}
and at least one point of each pair of S2 and the other disk D2 must contain
all points of Rij ∪ {o} and at least one point of each pair of S1, and D1 and
D2 are congruent with radius r∗

ij . By the definitions of lij and rij , lij ≤ r∗
ij and

rij ≤ r∗
ij . Therefore, max{lij , rij} ≤ r∗

ij .
The above proves that max{lij , rij} = r∗

ij , from which the second part of the
observation easily follows. 	
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Our algorithm for searching r∗ in M needs to solve the following subproblem:
decide whether lij < r∗

ij . With help of Lemma 4, we have the following result.

Lemma 5. For any (i, j) with 0 ≤ i, j ≤ n, deciding whether lij < r∗
ij can be

done in O(n log2 n) time.

Proof. We first compute r∗
ij by Lemma 4. Let r = r∗

ij , and P1 = Lij ∪ {o}.
We compute Ir(P1) and Ur(S2). Ir(P1) can be computed in O(n log n) time,
as discussed in Sect. 2. For Ur(S2), notice that all points of S2 are covered by
the disk Dr(c), where c is the center of the smallest enclosing disk of Rij , since
r = r∗

ij is no smaller than the radius of the smallest enclosing disk of Rij . Hence,
once c is computed in O(n) time [4,7,15], Ur(S2) can be computed in O(n log n)
time by Lemma 1. Then, observe that lij < r if and only if the intersection of
the interior of Ir(P1) and the interior of Ur(S2) is not empty. Checking whether
the interior of Ir(P1) intersects the interior of Ur(S2) can be done in additional
O(nα(n)) time as remarked in Sect. 2. Hence, we can determine whether lij < r∗

ij

in O(n log2 n) time, which is dominated by the algorithm for computing r∗
ij . 	


The following lemma provides a basis for applying a matrix searching tech-
nique [8–10] to search r∗ in the matrix M .

Lemma 6. For any 0 ≤ i, j ≤ n, if lij < r∗
ij, then r∗

ij ≤ r∗
i′j′ for any i′ ∈ [i, n]

and j′ ∈ [0, j]; otherwise, r∗
ij ≤ r∗

i′j′ for any i′ ∈ [0, i] and j′ ∈ [j, n].

Proof. If lij < r∗
ij , then rij = r∗

ij by Observation 3. Consider any pair (i′, j′)
with i′ ∈ [i, n] and j′ ∈ [0, j]. By their definitions, Rij ⊆ Ri′j′ and Li′j′ ⊆ Lij .
Let S′

1 be the subset of pairs of S whose points are both in L′
ij . Then, S′

1 ⊆ S1,
for Li′j′ ⊆ Lij . We claim that rij ≤ ri′j′ . Indeed, consider a disk D of radius ri′j′

containing all points of Ri′j′ and at least one point for each pair of S′
1. Observe

that at least one point of each pair of S1\S′
1 is in Ri′j′ . Because Rij ⊆ Ri′j′ , the

disk D contains all points of Rij and at least one point of S1. Therefore, by the
definition of rij , since ri′j′ is the radius of D, rij ≤ ri′j′ holds. Because rij = r∗

ij

and ri′j′ ≤ r∗
i′j′ (by Observation 3), we obtain that r∗

ij ≤ r∗
i′j′ .

If lij < r∗
ij does not hold, then lij = r∗

ij by Observation 3. This is a symmetric
case to the above and by a similar proof we can show that r∗

ij ≤ r∗
i′j′ holds for

any i′ ∈ [0, i] and j′ ∈ [j, n]. 	

Recall that r∗ is equal to the smallest element of M and each matrix element

M [i, j] is equal to r∗
ij . Lemma 6 essentially tells the following: If lij < r∗

ij for a
cell M [i, j] of M , then all cells of M to the southwest of M [i, j] can be pruned
(i.e., they are irrelevant to finding r∗); otherwise all cells of M to the northeast
of M [i, j] can be pruned. This is exactly the property the matrix searching
algorithm in [8] (i.e., the algorithm in Lemma 5.3, which relies on the property
in Lemma 5.2 that is similar to ours and follows a similar technique as in [9,10])
relies on. By using that algorithm, we can compute r∗ from M with O(n) matrix
cell evaluations and O(n) additional time, and here each matrix cell evaluation
on M [i, j] is to compute r∗

ij and determine whether lij < r∗
ij . By Lemmas 4 and
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5, each matrix cell evaluation can be done in O(n log2 n) time, which leads to
an O(n2 log2 n) time algorithm for finding r∗ from the matrix M .

Once r∗ is known, we can obtain a pair of optimal disks as follows. Assume
that r∗ is equal to r∗

ij for some i and j. We apply our decision algorithm with
r = r∗ for the problem RB2C(i, j) to obtain two congruent disks of radius r∗ as
the optimal solution for our original bichromatic 2-center problem on S.

Theorem 1. The bichromatic 2-center problem on a set of n pairs of points in
the plane is solvable in O(n2 log2 n) time.

4 The Approximation Algorithm

In this section, we give a (1+ε)-approximate algorithm of O(n+(1/ε)3 log2(1/ε))
time, improving the O(n + (1/ε)6 log2(1/ε))-time algorithm of [2]. We assume
that ε is sufficiently small.

4.1 Reducing to the IB2C Problem

The first step of our algorithm is to use a grid and identify the points in the
same cell. This is similar to an idea in [2] (and is in fact a standard technique
used in many other geometric approximation algorithms), and here we describe
it in a self-contained way. Let r̃ be the radius of the minimum enclosing disk of
P (S). Clearly, r̃ ≥ r∗. If r̃ ≥ 10r∗, the problem is actually easy.

Lemma 7. If r̃ ≥ 10r∗, then the bichromatic 2-center problem for S can be
solved exactly in O(n) time.

So it suffices to consider the case where r̃ ∈ [r∗, 10r∗). We build a grid G
consisting of square cells of side-length δ = εr̃/100. For a point x ∈ R

2, we
denote by �x the cell containing x. For each pair (ai, a

′
i) ∈ S, we create another

point-pair (bi, b′
i) where bi is an arbitrary vertex of �ai

and b′
i is an arbitrary

vertex of �a′
i
. Let S′ be the set of all these pairs excluding the duplicates, and

D be the collection of all disks whose centers are grid points of G. Consider the
bichromatic 2-center problem for S′ with the solution space D (i.e., the disks
must be chosen from D), and let (Dr(c1),Dr(c2)) be an optimal solution of this
problem consisting of two congruent disks of radius r. Set r′ = (1 + ε/3)r.

Lemma 8. (Dr′(c1),Dr′(c2)) is a feasible solution for the bichromatic 2-center
problem for S. Furthermore, r∗ ≤ r′ ≤ (1 + ε)r∗.

The above lemma reduces the approximate bichromatic 2-center problem for
S to the (exact) bichromatic 2-center problem for S′ with the solution space D.
To solve the latter problem, we exploit its following special properties.

– All points in P (S′) are grid points of G.
– All points in P (S′) are contained in a (orthogonal) square of side-length

(2 + 2ε)r̃. Indeed, the diameter of P (S) is at most 2r̃ and thus the diameter
of P (S′) is at most (2 + 2ε)r̃.

– The two disk-centers in a solution must be grid points of G.
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By scaling, we may assume that the grid points of G are the points in R
2 with

integral coordinates (or integral points hereafter). We say a disk is integral if its
center is an integral point. We then pass to the following integral bichromatic
2-center (IB2C) problem.

The Integral Bichromatic 2-center Problem (IB2C). Given a set T
of m point-pairs each consisting of two integral points in [U ] × [U ] where
[U ] = {1, . . . , U}, find two integral disks bichromatically covering T such that
the radius of the larger one is minimized.

We have |S′| ≤ n. Before scaling, the points in P (S′) are contained in a
square of side-length (2 + 2ε)r̃ and the side-length of the cells in G is Θ(εr̃).
Therefore, the original problem is reduced to the IB2C problem with m = O(n)
and U = O(1/ε). S′ can be computed in O(n) time from S (using the floor
function, as did in [2]). Hence, if the IB2C problem can be solved in f(m,U)
time, then there is an O(n + f(n, 1/ε))-time (1 + ε)-approximate bichromatic
2-center algorithm.

4.2 An IB2C Algorithm

In this section, we solve the IB2C problem in O(m + U3 log2 U) time, and
in turn establish our approximate bichromatic 2-center algorithm of O(n +
(1/ε)3 log2(1/ε)) time. The IB2C problem itself is of independent interest, as
it is a natural variant of the standard bichromatic 2-center problem.

Let T be a set of m point-pairs such that P (T ) ⊆ [U ] × [U ], which is the
input of the IB2C problem. For a point a ∈ [U ] × [U ], we define Ta ⊆ [U ] × [U ]
to be the set consisting of all points b ∈ [U ]× [U ] such that (a, b) ∈ T . Note that∑

a∈[U ]×[U ] |Ta| = O(m). To solve the IB2C problem, we first compute a subset
T ′ ⊆ T with the property: a pair (D1,D2) of disks bichromatically covers T iff
it bichromatically covers T ′. To this end, we observe an important fact.

Lemma 9. Let (a, b1), . . . , (a, bk) be k pairs of points in R
2 sharing a common

point a, and b ∈ R
2 be a point in the convex hull of b1, . . . , bk. If (a, b1), . . . , (a, bk)

are all bichromatically covered by a pair (D1,D2) of disks and b ∈ D1 ∪D2, then
(a, b) is also bichromatically covered by (D1,D2).

We construct T ′ as follows. For a set Z ⊆ [U ] × [U ] and a point z ∈ Z, we
say z is a left (resp., right) extreme point in Z if all points in Z on the same
horizontal line as z are to the right (resp., left) of z, except z itself. Note that (1)
Z is contained in the convex hull of the left and right extreme points in Z and
(2) the number of the left/right extreme points in Z is O(U). For a ∈ [U ] × [U ],
let T ′

a ⊆ Ta be the subset consisting of all left and right extreme points in Ta.
Then we define T ′ = {(a, b) : a ∈ [U ] × [U ], b ∈ T ′

a}. We have |T ′| = O(U3), as
T ′
a = O(U) for all a ∈ [U ] × [U ]. Furthermore, T ′ can be computed from T in

O(m + U3) time. The desired property of T ′ follows from the above lemma.

Corollary 1. A pair (D1,D2) of disks bichromatically covers T iff it bichromat-
ically covers T ′.
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Now it suffices to solve the IB2C problem for T ′, whose size is O(U3). To this
end, we consider the configuration of an optimal solution. Let r∗ be the radius
of the larger disk in an optimal solution.

Lemma 10. For all r ≥ r∗, there exists a pair (D1,D2) of congruent disks of
radius r bichromatically covering T ′ such that the centers of D1 and D2 are both
in [U ] × [U ]. In particular, r∗ ∈ {√

0,
√

1, . . . ,
√

2(U − 1)2}.
By the above lemma, we can do binary search for r∗ among the O(U2) val-

ues
√

0,
√

1, . . . ,
√

2(U − 1)2, and pass to the decision problem, namely, deciding
whether there is a feasible solution of radius r for a given number r. In addi-
tion, according to the above lemma, when solving the decision problem, we may
require the centers of the two disks to be in [U ] × [U ]. Therefore, it suffices to
solve the following decision problem.

The Decision Problem. Given a set T ′ of O(U3) pairs of points in [U ] × [U ]
and a value r, decide whether there exist two points c1, c2 ∈ [U ] × [U ] such that
(Dr(c1),Dr(c2)) bichromatically covers T ′.

To solve this problem, we first establish a sufficient and necessary condition
for (Dr(c1),Dr(c2)) to bichromatically cover T ′.

Lemma 11. For c1, c2 ∈ [U ] × [U ], (Dr(c1),Dr(c2)) bichromatically covers T ′

iff c1, c2 ∈ Ur(T ′) and P (T ′) ⊆ Dr(c1) ∪ Dr(c2).

Using Lemma 11, we solve the decision problem in two steps. In the first
step, we compute the set C of all points in [U ] × [U ] that lie in Ur(T ′). We call
the points in C candidate centers. In the second step, we check if there exist two
candidate centers c1, c2 ∈ C such that P (T ′) ⊆ Dr(c1) ∪ Dr(c2). By Lemma 11,
the answer of the decision problem is “yes” iff such two points exist.

The difficulty of the first step is that we are not able to compute Ur(T ′)
efficiently, unless the points in P (T ′) lie in a disk of radius r. To resolve this
issue, we recall the definition of T ′

a for a point a ∈ [U ] × [U ]. We observe that

Ur(T ′) =
⋂

(a,b)∈T ′
Dr(a) ∪ Dr(b) =

⋂

a∈P (T ′)

Dr(a) ∪ Ir(T ′
a).

Therefore, a point is in Ur(T ′) iff it is in Dr(a) ∪ Ir(T ′
a) for all a ∈ P (T ′).

Note that we can compute Ir(T ′
a) for all a ∈ P (T ′) in O(U3 log U) time because∑

a∈P (T ′) |T ′
a| = O(U3). With Ir(T ′

a), a direct way to compute the candidate
centers is to check for every c ∈ [U ] × [U ] whether c ∈ Dr(a) ∪ Ir(T ′

a) for
all a ∈ P (T ′). However, this requires Ω(U4) time since |P (T ′)| = Ω(U2) in the
worst case. In order to do it more efficiently, our idea is to compute the candidate
centers in a row simultaneously. Formally, let Rj = [U ] × {j} be the set of the
points in the j-th row of [U ] × [U ], for j ∈ [U ]. We want to find the candidate
centers in Rj . For a ∈ P (T ′), let Ia be the intersection of Dr(a) ∪ Ir(T ′

a) and
the horizontal line y = j. We define the depth of a point in Rj as the number
of Ia’s containing it. A point in Rj is a candidate center iff it is contained in
Ia for all a ∈ P (T ′), or equivalently, its depth is |P (T ′)|. We find the candidate
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centers in Rj by computing the depths of these points as follows. Since Dr(a)
and Ir(T ′

a) are both convex, each Ia is either an interval or a double-interval
(i.e., the union of two disjoint intervals). Let E be the set of the endpoints of
these intervals and double-intervals. Note that |E| ≤ 4|P (T ′)| = O(U2), as an
interval has two endpoints and a double-interval has four. We sort the points
in E ∪ Rj from left to right in O(U2 log U) time, and scan these points in this
order. In this procedure, we maintain a number dep which is the depth of the
current point. Initially, we set dep = 0. At every time we hit a left (resp., right)
endpoint in E, we increase (resp., decrease) dep by 1. When we hit a point in
Rj , its depth is just the current value of dep. In this way, we compute the depths
of the points in Rj in O(U2 log U), and find the candidate centers in Rj . After
doing this for all j ∈ [U ], we obtain the set C of all candidate centers, which
takes O(U3 log U) time in total.

With C, we proceed to the second step, namely, finding two candidate centers
c1, c2 ∈ C such that P (T ′) ⊆ Dr(c1) ∪ Dr(c2), or deciding the nonexistence of
them. To this end, we first build a set of data structures E1, . . . , EU as follows.
For each row Rj , consider the points in Cj = C ∩ Rj . These points lie on the
horizontal line 
j : y = j. The data structure Ej can answer 1-dimensional range-
emptiness queries on Cj : given an interval I on the line 
j , Ej can decide whether
Cj∩I = ∅ and return a point in Cj∩I if Cj∩I �= ∅. Such a data structure is well-
known, and can be built in O(U log U) time with O(log U) query time, as |Cj | =
O(U). Building all E1, . . . , EU takes O(U2 log U) time. With the data structures
in hand, we solve the problem by considering the rows R1, . . . , RU separately.
For each row Rj , we want to check whether there exist c1 ∈ C ∩ Rj and c2 ∈ C
such that P (T ′) ⊆ Dr(c1) ∪ Dr(c2). Fix j ∈ [U ]. For i ∈ [U ], define pi ∈ Rj as
the point whose coordinate is (i, j). Assume we set c1 = pi for some pi ∈ C ∩Rj .
Then there exists c2 ∈ C satisfying the desired property iff C ∩ Ir(P (pi)) �= ∅
where P (pi) = P (T ′)\Dr(pi). Note that C ∩ Ir(P (pi)) =

⋃
j′∈[U ](Cj′ ∩ Ii,j′)

where Ii,j′ = Ir(P (pi)) ∩ 
j′ is an interval on the line 
j′ . Therefore, if we
know Ii,j′ for all j′ ∈ [U ], then we can use the data structures E1, . . . , EU to
determine in O(U log U) time the emptiness of Cj′ ∩ Ii,j′ for all j′ ∈ [U ] and
hence the emptiness of C ∩Ir(P (pi)); furthermore, if C ∩Ir(P (pi)) �= ∅, a point
c2 ∈ C ∩ Ir(P (pi)) can be found by one of E1, . . . , EU . It follows that as long as
we know Ii,j′ for all i, j′ ∈ [U ], we can determine in O(U2 log U) time if there
exist c1 ∈ C∩Rj and c2 ∈ C such that P (T ′) ⊆ Dr(c1)∪Dr(c2), by enumerating
all pi ∈ C ∩ Rj . The following lemma computes Ii,j′ for all i, j′ ∈ [U ].

Lemma 12. The intervals Ii,j′ for all i, j′ ∈ [U ] can be computed in O(U2 log U)
time.

By considering all j ∈ [U ], we can complete the second step in O(U3 log U)
time.

Now we see that both steps can be done in O(U3 log U) time, which is also
the time for solving the decision version of the IB2C problem. Using the decision
algorithm as a sub-routine to do binary search, we can solve the IB2C problem
on T ′ in O(U3 log2 U) time. Including the time for constructing T ′ from T , we
finally obtain an IB2C algorithm with O(m + U3 log2 U) running time.
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Theorem 2. There exists an O(m + U3 log2 U)-time IB2C algorithm.

Corollary 2. The (1+ε)-approximate bichromatic 2-center problem on a set of
n pairs of points in the plane is solvable in O(n + (1/ε)3 log2(1/ε)) time.
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