
Chapter 4
Clustering and Classification

Abstract Optimization is another important tool that helps in defining, designing,
and in model selection in various machine learning tasks including dimensionali-
ty reduction, clustering, and classification. We discuss, in this chapter, the role of
optimization in feature selection, feature extraction, clustering, and classification.

Keywords Optimization · Regularization · Feature selection · Classification ·
Clustering

4.1 Introduction

We have examined the roles of centrality and diversity in search and representation
earlier. In the discussion, we had considered their roles in clustering and classification
also. In this chapter, we will consider more details on the roles of centrality and
diversity in clustering and classification.

4.2 Clustering

We have observed that a unifying representation of both hard and soft clustering is
through matrix factorization. Specifically, if we represent the set of n l-dimensional
points,

X = {x1, x2, . . . , xn},

to be clustered as the rows of a matrix An×l , then we can factorize it into the product
of matrices Bn×K and CK×l where

• Bn×K is the cluster/topic assignment matrix, Bik is the membership or importance
of cluster k to pattern i for i = 1, . . . , n and k = 1, . . . ,K .
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• CK×l is the cluster/topic description matrix where Ckj indicates the importance of
feature j to cluster k, j = 1, . . . , l and k = 1, . . . ,K .

Anobservation in such a representation is that anydatamatrixAn×l is a�n×l structure.
Further, any n × l matrix A has its

rank(A) = row − rank(A) = column − rank(A)

where row rank is the number of linearly independent rows in A and column rank is
the number of linearly independent columns of A. Because clustering is grouping of
rows (n patterns) and dimensionality reduction deals with columns (l features), their
ranks being equal means the number of clusters and number of features are equal
from the linear independence view.

We examine one representative each from clustering, feature selection, and feature
extraction with the help of an example data set.

Example 4.1 Let A4×3 be a matrix representing 4 patterns in a 3-dimensional space
given by

A =

⎡
⎢⎢⎣
1 0 1
0 1 0
1 0 1
0 1 0

⎤
⎥⎥⎦

For the sake of simplicity rows are replicated, rows 1 and 3 are identical and rows 2
and 4 are also same. We will examine clustering first using matrix A.

4.2.1 Clustering-Based Matrix Factorization

Clustering the 4 rows of A into K = 2 clusters gives us {A1,A3} and {A2,A4}, where
Ai is the ith row of A. This is obtained by selecting the first two rows, diverse rows,
as the initial cluster centers and assigning the remaining two points, third and fourth
rows based on nearness to the selected points. The centroids of clusters c1 and c2 are
(1, 0, 1) and (0, 1, 0) respectively. This gives us

• The assignment matrix B4×2 to be

B =

⎡
⎢⎢⎣
1 0
0 1
1 0
0 1

⎤
⎥⎥⎦

• The cluster description matrix C2×3 has the 2 centroids as its rows given by

C =
[
1 0 1
0 1 0

]
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• Note that

A =

⎡
⎢⎢⎣
1 0 1
0 1 0
1 0 1
0 1 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0
0 1
1 0
0 1

⎤
⎥⎥⎦

[
1 0 1
0 1 0

]
= BC

Observe that because of the simplicity of the data, any clustering algorithm will lead
to the same partition and if centroids of clusters or other representatives are used,
again we get the same C matrix. However, some important observations are

• In generalA ≈ BC. In this example, A = BC because each centroid coincides with
2 out of the 4 patterns.

• In most of the practical applications A will have elements from �+ ∪ {0}. The
factorization is called non-negative matrix factorization (NMF) if elements of B
and C are nonnegative reals.

• It is known that in such a NMF if any two out of A, B, C are given, then getting
the third one is simple. In KMA based clustering, given A, getting the centroids
and the C matrix are reasonably straightforward.

• InNMF, in general, we are givenA and findingB andC is posed as the optimization
problem

min
B,C

||A − BC||F s.t.B ≥ 0,C ≥ 0

where ||A − BC||F is the squared Frobenius norm or element-wise difference be-
tween the n × l matrices A and BC.

4.2.2 Feature Selection

It is easy to observe that columns 1 and 3 are identical in matrix A. So, by grouping
the columns and identifying diverse columns gives rise to using either columns 1 and
2 or columns 2 and 3. Suppose we use columns 1 and 2 to represent matrix B, then

B =

⎡
⎢⎢⎣
1 0
0 1
1 0
0 1

⎤
⎥⎥⎦ .

Consequently we get the same C matrix as earlier that is given by

C =
[
1 0 1
0 1 0

]
.
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This simple example is ideally suited to illustrate the equivalence between features
and clusters by using feature selection. Further, all the matrices involved are non-
negative. So, this is an example NMF .

4.2.3 Principal Component Analysis (PCA)

Principal components, PCs, are popular linear feature extractors. Given the data
represented in l-dimensional space using features f1, f2, . . . , fl . An extracted feature,
f , is a linear combination that is obtained from the given l features. So, f = ∑l

i=1 αifi
where αi is the weight or importance associated with the given feature fi. In general,
we can extract features using nonlinear combinations also, but that may be time
consuming.

In PCA, the features extracted are the eigenvectors of the covariance matrix of the
data. These are popularly called the principal components (PCs). There could be up
to l PCs when A is an n × l matrix. These are ordered based on decreasing order of
the respective eigenvalues. Some properties of PCA are

1. Because the underlying matrix is the covariance matrix, these eigenvalues are
variances in the directionof the respectivePCs. So, thefirstPC is in themaximum
variance direction of the data.

2. The covariance matrix is a symmetric matrix. So, the eigenvectors (PCs) are
orthogonal to each other when the corresponding eigenvalues are distinct.

3. If we take the first K out of l possible PCs to represent the data, it corresponds
to optimizing a criterion function that captures average deviations between the
given patterns in the l-dimensional space and aK-dimensional space. This mini-
mization leads toK PCs as the optimal new features that are linear combinations
of the given features.

4. These PCs provide uncorrelated directions under some conditions.

Considering the data matrix A4×3, the corresponding sample covariance matrix is
obtained first by getting the zero-mean normalized matrix, An is

An =

⎡
⎢⎢⎣

1
2 − 1

2
1
2− 1

2
1
2 − 1

2
1
2 − 1

2
1
2− 1

2
1
2 − 1

2

⎤
⎥⎥⎦

and then the covariance matrix Σ given by AntAn which is

Σ = 1

4

⎡
⎣

1 −1 1
−1 1 −1
1 −1 1

⎤
⎦ .
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The eigenvalues of Σ are 3, 0, and 0. So, the top two eigenvectors are (1,−1, 1)t

and (1, 2, 1)t . They are orthogonal. To make them orthonormal we normalize them
to make them unit norm vectors to get the two PCs to be

(
1√
3
,− 1√

3
,

1√
3

)t

,

(
1√
6
,

2√
6
,

1√
6

)t

So, Cpc matrix is given by

Cpc =
[

1√
3

− 1√
3

1√
3

1√
6

2√
6

1√
6
.

]

This gives us the Bpc matrix to be

Bpc =

⎡
⎢⎢⎢⎣

2√
3

2√
6

− 1√
3

2√
6

2√
3

2√
6

− 1√
3

2√
6
.

⎤
⎥⎥⎥⎦

Note that the 4 rows of Bpc are obtained by projecting the 4 patterns onto these
two PCs. Projecting the first row (pattern) of A, that is (1, 0, 1) gives us ( 2√

3
, 2√

6
).

The second row projection gives us (− 1√
3
, 2√

6
). Putting them all together, we have

A = BpcCpc given by

A =

⎡
⎢⎢⎣
1 0 1
0 1 0
1 0 1
0 1 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2√
3

2√
6

− 1√
3

2√
6

2√
3

2√
6

− 1√
3

2√
6

⎤
⎥⎥⎥⎦

[
1√
3

− 1√
3

1√
3

1√
6

2√
6

1√
6
.

]

This factorization is indicating how the 3-dimensional points are represented in the
2-dimensional PC space. When the rank of the matrix A is 2, which is the case
here, we can represent it using 2 orthogonal basis vectors as indicated in the equality
between A and BpcCpc. Also this is not an NMF as there are negative elements in
both Bpc and Cpc.

However, the second eigenvalue ofΣ is 0. So, the variance is captured by the first
PC itself. In such a case, using the first PC we get approximation

A =

⎡
⎢⎢⎣
1 0 1
0 1 0
1 0 1
0 1 0

⎤
⎥⎥⎦ ≈

⎡
⎢⎢⎢⎣

2√
3

− 1√
3

2√
3

− 1√
3

⎤
⎥⎥⎥⎦

[
1√
3

− 1√
3

1√
3
.
]
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Here Bpc is the projection of the 4 rows of A onto the first PC.
This approximation amounts to ||A − BpcCpc||F = 16

3 , where each pattern is ap-
proximated with an error of 4

3 . However, the 1-dimensional representation is able to
discriminate between the patterns 1 and 3 from the patterns 2 and 4. There could be
other approximations with a lesser value of 4 as the squared Frobenius norm for the
following.

A =

⎡
⎢⎢⎣
1 0 1
0 1 0
1 0 1
0 1 0

⎤
⎥⎥⎦ ≈

⎡
⎢⎢⎣

√
3
0√
3
0

⎤
⎥⎥⎦

[
1√
3

− 1√
3

1√
3

]
=

⎡
⎢⎢⎣
1 −1 1
0 0 0
1 −1 1
0 0 0

⎤
⎥⎥⎦ .

Even though some discrimination between elements of the two clusters is exhibited in
the PCs space, in general the first K PCsmay not be able to retain the discrimination
present in the l-dimensional space. The reason is that the underlying optimization
is planned to reduce the expected squared deviation between the patterns in the l-
dimensional space and their representations in the K-dimensional space specified by
minimization of

E[(xl − xK )t(xl − xK )],

where xl and xK are original pattern and its approximation, that is represented in
the K(< l) dimensional space respectively and E is the expectation operation. The
following high-level summary of the properties will link the above criterion function
and the PCs.

• Note that xl is a vector in a l-dimensional space. So, it can be uniquely represented
using l orthonormal basis vectors v1, . . . , vl . Specifically,

xl =
l∑

i=1

divi

where dis are some real numbers, for i = 1, . . . , l.
• Now xK may be viewed as coming out of K-dimensional subspace and

xK =
K∑
i=1

divi

• The error, by exploiting the orthonormality property of v1, v2, . . . , vl will reduce
to

error = E[(xl − xK )t(xl − xK )] =
l∑

i=K+1

vt
iΣvi =

l∑
i=K+1

vt
iviλi =

l∑
i=K+1

λi

where vi and λi are an eigenvector and the respective eigenvalue of Σ .
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• This error is minimized when λK+1,λK+2, . . . ,λl are smaller. This indicates that
λ1,λ2, . . . ,λK need to be the larger eigenvalues. Correspondingly, v1, v2, . . . , vK
are the eigenvectors that characterize xK .

• So, first K PCs are the eigenvectors of Σ which can uniquely characterize projec-
tion of each pattern in the K space.

So, error considered is intuitively appealing as itminimizes the average error between
patterns in the l space and the respective projections in the K PCs space. This
optimization is reproduction friendly and the basis vectors in theK space capture the
variance in the data to the best possible extent. However, there is no guarantee that
the K PCs retain the discrimination present in the patterns.

4.2.4 Singular Value Decomposition (SVD)

A more general factorization of An×l may be viewed An×l = Bn×nDn×lCl×l , where
D is a diagonal matrix with n − l zero rows if n > l or with l − n zero columns if
n < l. In the earlier cases, where A = BC,Dmay be viewed as having in its diagonal
portion the identity matrix I .

SVD may be viewed as

• orthonormal eigenvectors of the symmetric matrix AAt as the columns of B.
• orthonormal eigenvetors of the symmetric matrix AtA as the rows of C.
• Square roots of the eigenvalues of AAt or AtA, based on whether n < l or l < n
respectively, as the diagonal entries of D with remaining elements to be 0. These
diagonal entries are called the singular values of A.

• Importantly, SVD always gives B, D, and C such that A = BDC, an exact de-
terministic factorization of any A matrix.

Consider the matrix A given in the example, we have

AtA =
⎡
⎣
2 0 2
0 2 0
2 0 2

⎤
⎦ .

The eigenvalues of AtA are 4, 2, and 0 the respective eigenvectors are (1, 0, 1)t,
(0, 1, 0)t, (1, 0,−1)t . They are orthogonal and by normalizing them to be unit norm
vectors, we get the C matrix as

C =
⎡
⎢⎣

1√
2
0 1√

2
0 1 0
1√
2
0 − 1√

2

⎤
⎥⎦

Similarly, the eigenvalues of AAt are 4, 2, 0, 0 and respective orthonormal eigen-
vectors that are used as columns of B give B as
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B =

⎡
⎢⎢⎢⎣

1√
2

0 1
2 − 1

2

0 1√
2

− 1
2 − 1

2
1√
2

0 − 1
2

1
2

0 1√
2

1
2

1
2

⎤
⎥⎥⎥⎦ .

The D4×3 is given

D =

⎡
⎢⎢⎣
2 0 0
0

√
2 0

0 0 0
0 0 0

⎤
⎥⎥⎦ ,

where nonzero entries
√
4 = 2, and

√
2 are the singular values that are the positive

square roots of the nonzero eigenvalues of either AAt or AtA. Note that

A =

⎡
⎢⎢⎣
1 0 1
0 1 0
1 0 1
0 1 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1√
2

0 1
2 − 1

2

0 1√
2

− 1
2 − 1

2
1√
2

0 − 1
2

1
2

0 1√
2

1
2

1
2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
2 0 0
0

√
2 0

0 0 0
0 0 0

⎤
⎥⎥⎦

⎡
⎢⎣

1√
2
0 1√

2
0 1 0
1√
2
0 − 1√

2

⎤
⎥⎦ = BDC.

This is an exact factorization, which could be obtained for anyAm×n.We can consider
an approximation by retaining some largest singular values and ignoring (making
them 0) the smaller singular values. For example, here if we ignore

√
2, that is

approximate D to

D =

⎡
⎢⎢⎣
2 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦ ,

then the resulting approximation to A based on the largest singular value is A1 where

A1 =

⎡
⎢⎢⎣
1 0 1
0 0 0
1 0 1
0 0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1√
2

0 1
2 − 1

2

0 1√
2

− 1
2 − 1

2
1√
2

0 − 1
2

1
2

0 1√
2

1
2

1
2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
2 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦

⎡
⎢⎣

1√
2
0 1√

2
0 1 0
1√
2
0 − 1√

2

⎤
⎥⎦

Note that the squared Frobenius norm ||A − A1||F is 2 or the Frobenius norm is√
2 which is the singular value that is ignored. It is not a coincidence. In general,

if a matrix A is approximated to AK by using the top K singular values in D, then
||A − AK ||F = σ2

K+1 where σK+1 is the largest of the ignored singular values. This
helps in monitoring the possible error in approximating A to AK for both dimension-
ality reduction and clustering. A popular application is in document representation,
clustering, and classification under latent semantic analysis (LSA).
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Table 4.1 Optimization in clustering and dimensionality reduction

Specific task Criterion function Solution Regularizer (Domain
knowledge)

PCA Minimize
E[(xl − xK )t(xl − xK )

Eigenvectors Covar.
matrix

Best K (Domain)

KMA Minimize squared
error

Local minimum Diverse Centers

Hierarchical clustering Minimum spanning
Tree

Dendrogram of
clusters

Dendrogram cut
appropriately

MI based Feat.
SelectionMI

Maximize features K Best Consider all classes

SVD A = BDC Exact Approx. AK

Under the matrix factorization, one can characterize any linear feature extraction
including feature selection, hard and soft clustering, and even classification. Note that
even nonlinear problemsmay be viewed as linear in an appropriate high-dimensional
space. So, linear algebra in general andmatrix factorization in particular are important
in several of these topics.

Even the probabilistic variants like probabilistic latent semantic analysis (PLSA)
are shown to be equivalent to deterministic factorization approaches likeNMF and the
KMA. This happens because both the approaches depend on some empirical schemes,
based on the given data set in practice. In amore general sense statistics is responsible
for the equivalence. An important semantic underlying matrix factorization is some
kind of criterion function that is optimized with additional constraints to regularize
or reduce the diversity of the solution space. We summarize the optimization related
properties associated with clustering and dimensionality reduction in Table 4.1.

4.2.5 Diversified Clustering

Conventionally in clustering, the points in each cluster are similar to each other
and points in different clusters are dissimilar. However, there are applications where
each cluster needs to have diverse elements and a pair of clusters are highly similar.
In other words there is a higher within cluster entropy and lower between cluster
entropy.

Some of these applications are in

• Peer Learning: If a collection of students, selected based on some qualifying score,
are to be grouped then the conventional clustering will lead to stratified grouping.
In such a grouping all the students similar in terms of the qualifying score will
be put together. This reduces the chance for peer learning. It can be shown to be
good if each group has diverse students, that is students with varying qualifying
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scores. Further, to avoid discrimination between groups different groups should
have similar collective behavior. This means round-robin allotment students to
groups is a better deal than stratified grouping.

• Team formation: When different soccer teams are to be selected to participate in a
cup, there will be diversity in terms of special roles of players like the goalkeeper,
wing, center forward, full back, etc., This means there will be diversity in terms
of these special roles in each team. Further, every team requires a goalkeeper, two
wings, etc., whichmeans a pair of teams are structurally similar. Not only in sports,
this kind of grouping is required in the formation of committees and many other
team formation scenarios.

• Groups based on a Standard: UG programmes offered by various computer sci-
ence departments typically follow ACM curriculum. So, the similarity between
different UG programmes exists because of the standard like the ACM curriculum.
At the same time, each programme needs to show enough diversity in terms of
representation of theoretical CS, computer systems, and other topics like ML, AI,
DBMS, graphics, etc. There other standards like, for example, the Dewey Decimal
Classification, Library Congress classification, etc. which are followed by libraries
across the globe.

4.3 Classification

We have seen in earlier chapters how search and representation impact the classi-
fiers. Knowledge is used in the form of prior densities, selection of representation
schemes for patterns and classes. We can search for how knowledge can be exploited
in modeling, selecting the correct model, and even selection of the values of the
hyperparameters. Search takes different forms including searching for a solution to
an optimization problem based on some constraints. In this section, we will examine
how optimization can be used in modeling and selecting classifier models.

A good number of classifiers are explicitly modeled or can be interpreted as
solutions to some intuitively appealing and convenient optimization problems. We
will look into some of the classifiers.

4.3.1 Perceptron

It may be viewed as minimizing the sum of the violations of the training patterns,
their distances from the wrong side of the decision boundary, using the current w,
the weight vector of perceptron. This happens because w has misclassified some
training patterns. Noting that each such pattern, x satisfies wtx < 0, the perceptron
criterion function based on w is, PCF(w) is



4.3 Classification 59

PCF(w) = −
∑

x:wt x<0

wtx.

wtx captures the extent of violation of x because of w. Because wtx < 0 for such an
x, we minimize −wtx for every x that is misclassified by w so that sum of the extent
of violations is minimized.

If we consider the gradient ∇wPCF(w), we get −∑
x:wt x<0 x. So, if we use the

gradient descent method tominimizePCF(w), then the updates tow are given, using
the negative of the gradient with a suitable scaling factor η, by

wk+1 = wk + η
∑

x:wt
k x<0

x (4.1)

This update rule is called batch mode update. There are several simplifications to
this equation.

1. One variant is to use η = 1 and consider one x that ismisclassified at a time rather
than the sum of all the patterns x that are misclassified by wk . This is popularly
called the fixed increment rule that we discussed in the previous chapter.

2. Another variant is to insist that thew obtained is a simple sparse vector,minimum
possible nonzero entries, that can be effectively used for classification which is
useful in high-dimensional spaces. This is specified by

PCF(w) = −
∑

x:wt x<0

wtx + λ′wtw, (4.2)

so that while minimizing the sum of violations, we reduce the nonzero entries
in w as well. There is a scaling factor λ′. Noting that the gradient of wtw is 2w,
we have the the corresponding incremental update rule, one pattern at a time, to
be

wk+1 = wk + ηxk − λwk → wk+1 = (1 − λ)wk + ηxk

where λ = 2ηλ′ and xk is the first pattern misclassified by wk .

Note that both these variants are constraining or regularizing the optimization solu-
tion, w.

4.3.2 Support Vector Machine (SVM)

In SVMs, the criterion function that is considered ismargin between the two classes.
Thismay be detailed using Fig. 4.1. In SVM margin between the positive and negative
classes is maximized. In the figure, there are negative class patterns in the left side.
These are labeled by using −. Similarly, on the right side we have the positive class
patterns. These are labeled by +.
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Fig. 4.1 Margin between
the two classes

In this two-dimensional case, there are two parallel lines (in higher dimensions
they will be parallel hyperplanes) called support lines. The respective class boundary
patterns are located on these support lines. The negative class patterns satisfy the
property that wtx + b ≤ 1 where the boundary vectors, xs, or support vectors (SV s)
of the negative class satisfy wtx + b = −1. Similarly, the positive class patterns
satisfy wtx + b ≥ 1 with the respective SV s satisfying the property wtx + b = +1.

The decision boundary between the two classes is characterized by points x such
that wtx + b = 0. Points to its right are from positive class and left side patterns are
of negative class. If two points x1 and x2 are points on the decision boundary, then

wtx1 + b = wtx2 + b = 0 ⇒ wt(x1 − x2) = 0.

This means vector w is orthogonal to x1 − x2 or the line on which they are located
which is the decision boundary itself. So, w is orthogonal to the decision boundary
as shown in the figure.

Another property is that w points towards the positive side. Consider a problem
where the origin is on the decision boundary. So, wt0 + b = 0 ⇒ b = 0. Now if we
consider a point x1 ∈ c+ the positive class, then wtx1 > 0. The cosine of the angle,
θ, between w and x1 is given by

cosθ = wtx1
||w||||x1|| .

The denominator terms are positive here and the numerator is positive as x1 ∈ c+. So,
cosθ > 0 ⇒ the angle between w and x1 is acute. So, w points towards the positive
side.

Any point x ∈ c+ may be written as x = xd + p w
||w|| where xd is point on the

decision boundary at which the normal projection of x onto the decision boundary
meets it. If the distance between x and xd is p units, then the corresponding vector is
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p w
||w|| because w is orthogonal or normal to the decision boundary. But as x ∈ c+,

wtx + b = wt(xd + p
w

||w|| ) + b = wtxd + b + p||w|| = p||w|| > 0

as wtxd + b = 0, where w
||w|| is a unit vector in the direction of w. So,

wtx + b = p||w|| ⇒ p = wtx + b

||w|| .

So, normal distance between any point x on the positive support line and the
decision boundary is wt x+b

||w|| = 1
||w|| . Similarly, fromanypoint x on the negative support

line to the decision boundary the modulus of the distance is again 1
||w|| . So,

margin = 1

||w|| + 1

||w|| = 2

||w|| .

In SVM , we findw thatmaximizes themargin. Equivalently, weminimize 1
2 ||w||2

which maximizes the margin. The constraints are yi(wtxi + b) ≥ 1 where yi is the
class label of xi; yi = 1 or − 1 based on whether xi ∈ c+ or xi ∈ c− respectively.

We can express the corresponding Lagrangian by taking into account the con-
straints as

L(w, b,α) = 1

2
||w||2 +

n∑
i=1

αi(1 − yi(w
txi + b)),

wherewewould like to find the vectorsw,α = {α1, . . . ,αn} and the scalar b. Optimal
values of these variables can be obtained by equating the gradient to zero which is
given by

∇wL = w −
n∑

i=1

αiyixi = 0 ⇒ w =
n∑

i=1

αiyixi.

∇bL =
∑
i=1

αiyi = 0.

∇αiL = 1 − yi(w
txi + b) = 0 ⇒ yi(w

txi + b) = 1 ⇒ wtxi + b = yi

There are other conditions also including αi ≥ 0 and αi(1 − yi(wtxi + b)) = 0.
By using these equations all the variables w, α, and b can be determined using

different approaches. Here, the optimization problem was chosen such that it is a
well-behaved problem guaranteeing a globally optimal solution to the minimization.
However, we face a difficulty when there is no margin between the two classes. This
can happen, for example in Fig. 4.1, if a point from the positive class falls to the left
of the decision boundary or equivalently a point from the negative class falls to the



62 4 Clustering and Classification

right of the decision boundary. Such points are called violators. This can be the case
in most of the real-world problems.

To overcome this problem, a popularly used solution is to formulate it as a soft
margin problem. This is achieved by weighing each of the violators using a weight
C based on the extent of violation. If we do not want to permit any violator then
C → ∞. This amounts to the soft margin formulation to converge to the hard margin
formulation. On the other extreme, a value of C = 0 means every point can be a
violator. However, this will not solve the problem in practice.

Typically, a positive finite nonzero value is used for C to accommodate some
violators. The corresponding problem is

min
w

1

2
||w||2 + C

n∑
i=1

ξi

s.t. yi(wtxi + b) ≥ 1 − ξi. and ξi ≥ 0. It is seen that there is no change in the form
of the variables. Only change is that in the hard margin formulation, αi ≥ 0. In the
soft margin case, 0 ≤ αi ≤ C.

An important practical consideration is the right value of C. This shifts the at-
tention from getting the global optimal solution to getting the right value of C. So,
tuning of hyperparameter C occupies the central stage in practice. Some profession-
ally developed software packages have helped in realizing this practically.

4.3.3 Summary

In this chapter, we have seen the role of optimization in dimensionality reduction,
clustering, and classification.We have considered only some of the algorithms. There
are potentially a large variety of other machine learning platforms like neural net-
works. In a sense optimization based solutions exhibit diversity which is controlled
using regularization to provide more central or less variance solutions.

Note the following about optimization. The set of constraints specify the feasi-
ble region. This may typically characterize potentially infinite solutions or diverse
possible solutions. The criterion function being optimized will force the selection of
one or more of these diverse points in the solution space increasing the centrality. A
regularizer will shrink this collection of possible solutions further.

Consider, for example, a data set of the following four patterns drawn from 2
classes as shown in Table 4.2. Let patterns 1 and 2 be training points from class 1
and let the other 2, that is patterns 3 and 4 be from class 2.

Let a classifier gave two w vectors given by
w1 = (1, 0, 1, 0,−2)
w2 = (0.5, 0.6, 0.5, 0.4,−2). Verify that both these weight vectors classify all the
four patterns correctly. For example, using w1 on pattern 2 gives us
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Table 4.2 4-dimensional data from two classes

Pattern x1 x2 x3 x4

1 0.6 0.4 0.7 0.4

2 0.5 0.3 0.7 0.5

3 1.2 1.4 1.5 1.6

4 1.3 1.3 1.4 1.5

0.5 + 0 + 0.7 + 0 − 2 < 0. Similarly w2 with pattern 4 gives us 0.65 + 0.78 +
0.7 + 0.9 − 2 > 0. Similarly one can verify other patterns.

Among these two weight vectors, if we require a sparse vector, then w1 will be
selected and w2 will be left out.
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