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Preface

Overview

Centrality and Diversity are two important notions in Search in a generic manner.
Their Roles in A.I., Machine Learning (ML), Social Networks, and Pattern
Recognition are important. This book aims at clarifying these notions in terms of
some of the foundational topics like search, representation, regression, ranking,
clustering, optimization, and classification.

Centrality and diversity have different roles in different tasks associated with AI
and ML. For example, search may be generically viewed as playing an important
role in

• AI problem solving. Here, we represent a problem configuration as a state and
we reach the goal state or final state by using appropriate search scheme.

• Representation of a problem configuration in AI, representation of a data point,
class, or cluster.

• Optimization which itself involves the search for an appropriate solution.
• Selecting a model for classification, clustering, or regression.
• Search engines where the search is the most natural operation.

Representation itself is an important task in a variety of tasks. Popularly rep-
resentation deals with every task in AI and ML. Optimization is controlled through
some regularizer to reduce the diversity in the solution space.

Clustering is an important data abstraction task that is popular in ML, data
mining, and pattern recognition. Classification and regression have some common
characteristics and bias–variance trade-off unifies them. Ranking is important in a
variety of tasks including information retrieval.

Centrality and diversity play different roles in different tasks. In classification
and regression, they show up in the form of variance and bias. In clustering,
centroids represent clusters and diversity is essential in arriving at a meaningful
partition. Diversity is essential in ranking search results, recommendations, and
summarization of documents.
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Audience

This book is intended for senior undergraduate and graduate students and
researchers working in machine learning, data mining, social networks, and pattern
recognition. We present material in this book so that it is accessible to a wide
variety of readers with some basic exposure to undergraduate level mathematics.
The presentation is intentionally made simpler to make the reader feel comfortable.

Organization

This book is organized as follows:
Chapter 1 deals with a generic introduction to various concepts including cen-

trality, diversity, and search. Further, their role in several AI and ML tasks is
examined. Chapter 2 deals with searching and representation is discussed in Chap. 3.

Clustering and classification form the subject matter in Chap. 4. Ranking is
examined in Chap. 5. Chapter 6 deals with applications to social and information
networks. Finally, it is concluded in Chap. 7.

Bengaluru, India M. N. Murty
Anirban Biswas
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Chapter 1
Introduction

Abstract Search is an important operation carried out by any machine learning
task. Centrality and diversity play a potential role in every machine learning task.
This chapter introduces the role of centrality and diversity in search carried out
by a variety of tasks in machine learning, data mining, pattern recognition, and
information retrieval.

Keywords Search · Centrality · Diversity

1.1 Introduction

Search is easily the most important and popular task carried out by any digital com-
puter. In an extreme view, any operation on a computer involves search. For example:

• Finding the optimal value of a function might amount to searching for a solution
based on a gradient descent procedure or some other variant. So, optimization is
search only. Gradient-based searching is popular in deep learning.

• Inmachine learning, we infer amodel by using a learning algorithm and data. Such
an inference involves search. For example, in a linear classifier like the support
vector machine (SVM), we find a weight vector W and a threshold b from the
training data. Intrinsically, it involves searching for W and b corresponding to
maximizing the margin which involves search again. In the process, the support
vectors with their associated weights will be searched for and these are used to get
W and b.

• Matching is an important operation often exploited by machine learning algo-
rithms. It could be either exact or approximate matching based on the need. Fur-
ther, it could be matching strings, vectors, trees, and the like. Note that every such
matching operation is also a search operation.

• In the areas of machine learning and deep learning, search is a popular activity.
It could be in the form searching for an optimal representation of patterns/data/
classes/clusters; it could be searching for the right set of parameter values which

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
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2 1 Introduction

is optimal in some sense; it could be searching for the optimalmatching/proximity
function; or it could be in model selection and assessment.

• In information retrieval or for search engines, search is themost fundamental oper-
ation. Here, results obtained based on an appropriate search operation performed
over a collection of documents are ranked. So, this search plays a vital role in the
overall ranking as well.

• In the most extreme case, even basic numerical operations involve search. For
example, if the sine or cosine function values for several arguments are required,
then these function values could be obtained by a table lookup or search operation.
This could be used to reduce the repeated computational overhead.

1.2 Notation and Terminology

First we describe the terms that are important and used in the rest of the book.

• Pattern: It is a physical object like a dog, a pen, etc or a property of objects like
signature, speech, iris, fingerprints of humans etc.
Because we are dealing with machine learning, we often do not directly deal with
the objects, rather we deal with their representations. Even though pattern and its
representation are different, it is convenient and customary to use pattern for both.
Further, we sometimes use equivalent terms like point, data point, object, example,
and vector also to mean the same. The context clarifies the usage.

• Feature: It is a property/characteristic of the pattern. These features are also called
attributes. These could be either numerical or categorical in general. However, in
most of the current applications, only numerical features are used.

• Even though there could be other ways of representing patterns, we use the vector
representation of patterns with a view that the patterns are elements of a vector
space.
There could be some important applications where we encounter categorical fea-
tures, for example, terms in documents. It is customary to convert them into
numeric vectors in areas like deep learning.

• Collection of Patterns: A collection of n patterns, X , is a set {x1, x2, . . . , xn},
where xi denotes the ith pattern.
We assume that each pattern is an l-dimensional vector unless otherwise stated.
So, xi = (xi1, xi2, . . . , xil).

• Cluster: It is a collection of similar patterns.

– Similarity or proximity is captured either explicitly through some function that
typically maps a pair of vectors to a nonnegative real number or it could be
implicitwhere some gestalt property underlies the characterization of the cluster
as a whole. In a simple sense a cluster is a set of the points in it. This is popular
in hard clustering.
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– Hard clustering: Here, clustering is partitioning where a partition of a collection
X is

π(X ) = {c1, c2, . . . , cK }.

Here ci ⊂ X is the ith cluster,
⋃K

i=1 ci = X and ci ∩ cj = φ.
– Syntactic Labeling: This K-partition of a collection of n points X is such that
the label i associated with cluster ci is syntactic. So, the labels of clusters ci and
cj could be swapped without loss of information.

– Soft clustering: Here, it is possible that the same point xj could belong to more
than one cluster. So, ci ∩ cj = φ is not satisfied.

– Description of a cluster: It is useful to describe a cluster by using some kind of
summary. In statistical clustering, a cluster could be described by its centroid
which is a kind of summary where

centroid(ci) = 1

|ci|
∑

x∈ci
x.

In logic-based clustering, a cluster is described by a concept which is a logical
formula. In topic modeling, a topic is an assignment of probabilities to the
components of the vectors in the cluster. So, the underlying soft cluster is defined
by this probability distribution.

• Class: A class is a collection of points that are associatedwith some semantic label.
So, ith class ci and jth class cj carry different semantics. So, they are associated
with different semantic labels.

We use some other terms also in the later chapters and their usage will be clear based
on the context.

1.3 Centrality and Diversity

So search plays a vital role not only in digital computer operations but also inmachine
learning, data mining, pattern recognition, and information retrieval in the form of
important generic operations like representation, inference, matching, optimization,
and parameter tuning. More specifically, these operations are involved in machine
learning tasks including representation of patterns, clusters, classes; clustering; clas-
sification; ranking; and regression or curve fitting. We will examine how generic
notions centrality and diversity play a role in each of these tasks. We will see how
they play a specific role in each task before abstracting these two concepts.



4 1 Introduction

1.3.1 Representation

We represent patterns as vectors and each component corresponds to a feature. Based
on the type of application and patterns, the dimensionality could vary. For example,
consider the simple 4 × 4 binary patterns shown in Fig. 1.1. There are four patterns
labeled (a), (b), (c), and (d) in the figure. The figure in (a) may be viewed as the digit
1 and the one in (b) is a version of digit 7. Similarly, the patterns in (c) and (d) may be
viewed as noisy variants of digits 1 and 7, respectively. It may be possible to depict
the characters better using bigger size patterns. However, for the sake of illustration,
we are using these 4 × 4 patterns.

It is possible to consider each of the patterns as a 16-dimensional binary pattern by
considering the row-major order, where rows follow each other from top to bottom
in a sequence. For example figure (d) is viewed as “1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1”.
The four patterns may be viewed in 16 dimensions as shown in Table 1.1. Note that
the Hamming distance between the 16-bit strings corresponding to (a) and (b) is 3
as they differ in the first three bits. Similarly, strings against (a) and (c) differ in 1
bit, the 13th bit, and so the Hamming distance between (a) and (c) is 1. Hamming
distance between various pairs are depicted in Table 1.2. Here each row and each
column is labeled by one of the four patterns. The ijth entry in the table indicates the
Hamming distance between the ith and jth patterns, where i is the row label and j

Fig. 1.1 Characters 1 and 7

Table 1.1 Row-major representation of patterns

Figure label 16-bit representation

(a) 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

(b) 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1

(c) 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1

(d) 1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1
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Table 1.2 Hamming distance, the number of bits mismatched, between string pairs

Pattern (a) (b) (c) (d)

(a) 0 3 1 4

(b) 3 0 4 1

(c) 1 4 0 5

(d) 4 1 5 0

is the column label. The diagonal entries (i = j) are all 0 as the Hamming distance
between a pattern and itself is 0.

Note from Table 1.2 that patterns in Fig. 1.1a and c are similar with a minimum
Hamming distance of 1 and similarly patterns in (b) and (d) are equally similar. So,
digit 1 in (a) is similar to a noisy version of digit 1 in (c). A similar argument applies
to digit 7 in (b) and (d).

It is possible to select a subset of features that might be adequate. For example,
in Fig. 1.1a, b, c, and d if we consider only the four bits in the first row of the four
characters, then the four bits in (a) and (c) are “0 0 0 1” revealing their similarity and
similarly figures (b) and (d) share the same bit string “1 1 1 1” again indicating that
(b) and (d) are similar in the 4-dimensional space. So, in this simple example case,
values of the bits in the first row of the 4 × 4 characters are adequate to discriminate
between the classes 1 and 7 here. This type of selection of a subset of features (bits
here) from the given set (16 bits here) is generically called feature selection. Note
that in this example, the 4 bits, out of 16, in the first row are important (central)
and are discriminative (diverse). Here, centrality is specified by importance of fea-
tures and the values they assume across the the two classes of digits are diverse and
discriminatory. Even though we have selected the first row here by visual inspec-
tion, it is possible to mechanically obtain such discriminating features using mutual
information (MI ) that we examine in a later chapter. It helps in ranking features.

Another scheme that could be used to reduce the number of features is feature
extraction, where a possibly new set of features is obtained (extracted) from the given
set. For example, by considering the column sums in the characters in figures (a),
(b), (c), and (d) we get the vectors of their respective column sums to be (0, 0, 0, 4)
for (a); (1, 1, 1, 4) for (b); (1, 0, 0, 4) for (c); and (1, 1, 2, 4) for (d). Even in this 4-
dimensional case similarity between the pairs (a) and (c); and (b) and (d) can be seen
based on Euclidean distance. In this case, the new features (column sums) extracted
may be viewed as linear combinations of the original features. For example, if we
consider the row-major ordering of the bits in the 4 × 4 binary patterns in Fig. 1.1
and number them as b1, . . . , b16 where b1, b2, b3, b4 correspond to the first row, and
so on, then the column sums may be viewed as

Sum of column 1 = b1 + b5 + b9 + b13
Sum of column 2 = b2 + b6 + b10 + b14
Sum of column 3 = b3 + b7 + b11 + b15
Sum of column 4 = b4 + b8 + b12 + b16
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Fig. 1.2 Centroids of 1
and 7

Fig. 1.3 Character 1 with
diversity (a)–(d) and their
centroid (e)

In each of the above sums, the bits in the respective column are weighted (mul-
tiplied by 1) and the rest of the 12 bits may be considered to have a zero weight
each. Such a linear combination may be generically represented using

∑16
i=1 wibi

where wi is the weight (multiplier) of the ith bit (bi). For the sum of column 1,
w1 = w5 = w9 = w13 = 1 and the other weights are 0. There are popular schemes
based on principal component analysis and others for feature extraction which we
consider in detail later.

Feature selection and feature extraction are important dimensionality reduction
techniques. We have briefly examined linear feature extraction in this section. Non-
linear feature extraction also is gaining importance because of several applications
including embeddings in natural language processing and social networks. We will
examine the role of centrality and dimensionality in dimensionality reduction in later
chapters.

1.3.2 Clustering and Classification

Centroid or sample mean of a collection of patterns in a cluster is a central or
representative pattern of the cluster. It could also be viewed as a representative or a
prototype of a class. Figure 1.2 depicts the centroid of patterns of digit 1 (i) and digit
7 (ii) in Fig. 1.2. Note that the 0.5 stands for the average of 0 and 1. Even though
centroid is a popular representative of a cluster (class), it may not always work well.
For example, Consider Fig. 1.3.

There are 4 patterns corresponding to digit 1 in (a), (b), (c), and (d) and their
centroid is shown in (e). Here the centroid in (e) fails to “represent” the digit 1. Note
that there is a sufficient diversity among the patterns in (a)–(d) and each corresponds
to a 1 with a shift in the column having binary bits with value 1. In fact, each of
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themmay be viewed as a representative of a subclass of 1s. So, one has to respect the
diversity present in the class of patterns before capturing the centrality. It makes sense
to represent each subclass with its respective centroid. In this context, the notions of
centrality and diversity are different from the ones in the context of feature selection
exemplified in the previous subsection. Here, centrality of a class/cluster of vectors
is captured by their centroid and diversity could be present in various subclasses of
a class. We will see later the role of centroid in clustering and classification. A more
detailed discussion on centrality and diversity in clustering and classification will
be undertaken in a later chapter.

1.3.3 Ranking

It involves ordering a collection of entities based on some specification. For example,
in machine learning we might order a collection of features by using some ranking
function which captures the discrimination capabilities of the features. In social net-
workswemay order the nodes in the network based on their centrality or importance;
a simple notion of centrality is characterized by the degree of the node. Similarly, in
information retrieval, wemay order the terms based on their frequency of occurrence
in a given collection of documents. In recommender systems, we would like to order
or rank the recommendations based on some notion of importance or centrality.
Ranking is important in several of these tasks and some notion of centrality drives
the ranking operation.

Ranking is themost essential and routinely performedoperationby search engines.
Search engines provide a ranked list of documents against a specified query. In the
early days, search engines used to rank order the output list of documents bymatching
the content present in the query with that in each of the documents. So, a document
is more central if its content matches better with that of the query. In a practical
sense, combining the link structure across various web pages/documents along with
their content to improve the search results. In this setting, a web page/document is
more central if it matches in terms of its content and if the web page is central in
its link structure with other web pages. Here, the notion of centrality comes through
PageRank, the rank index of a web page based on its link structure. A web page
has larger PageRank if larger PageRank web pages refer to it. So, in this combined
context, a web page is central if it not only matches in content with the query but
also has a good PageRank. So, notion of centrality is changed.

It is easy to see that ranking based on centrality alone may lead to a repetition of
similar/identical documents appearing close to each other in the ranked list. This may
not be desirable. So, some notion of diversity has to exploited. Keeping in mind that
a typical user may navigate only through the first page of the ranked results output
by a search engine, sufficient diversity needs to be shown in the document snippets
shown on the first page; the other pages may not be visited by the user. So, enough
diversity must be present in the early results. So, while ranking we need to consider
both centrality and diversity among the displayed results.
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One way to achieve this is to cluster the results rank ordered based on central-
ity into cohesive groups, where each group has similar documents and documents
from different clusters are dissimilar. To maintain diversity, one can select central
documents from different clusters and display them on the first page. This way one
can display on the first page documents that are diverse from each other and each
document is central/important. This could be a generic framework that is useful in
preserving diversity and centrality in different machine learning tasks.

1.3.4 Regression

Regression or curve fitting may be viewed as a generalized version of classification.
In classification, we typically have a finite number of class labels; in regression we
may view the number of classes as infinite. In regression, we need to learn a function
f which maps vectors such that

f : X → Y, where X ⊂ �d and Y ⊂ �d ′

The training set will consist of n pairs of vectors {(xi, yi), i = 1, . . . , n} and the
dimensionality, d , of x ∈ X could be large but the dimensionality, d ′, of y ∈ Y is
small or even one. So, in regression each x can be mapped to one of potentially
infinite (cardinality of � with d ′ = 1) values (labels).

A major problem in classification and regression is overfitting. For example con-
sider the following regression/curve fitting problem. Consider the pair of x and y
values shown in Table 1.3 which are generated by using y = f (x) = 1 + x + x2.

Suppose we consider the first 3 points in the table. It is possible to fit a degree-2
polynomial uniquely. So, if we start with a generic polynomial form given by

g2(x) = a0 + a1x + a2x
2

where gi(x) is a degree-i polynomial in x and use the three points to fit a least-square
fit, then we obtain the values of the coefficients to be a0 = 1, a1 = 1, and a2 = 1
giving us back the polynomial that was behind generating the three pairs of values.
The least-square fit error is 0 and g2(x) = f (x). Note that using g2(x), the fourth pair

Table 1.3 Pairs of x and y values

Pattern no Value of x Value of y = f(x)

1 0 1

2 1 3

3 2 7

4 1
2

7
4
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also is correctly predicted because g2(
1
2 ) = 7

4 . It is obvious because the fourth point
also is generated using the same function form.

However, it will be interesting to examine what happens if we fit a degree-1 or
degree-3 polynomial using the same 3 pairs of points. Let us examine the degree-1
polynomial fit by using the least-square method. Let the generic form

g1(x) = a0 + a1x

be used to represent a degree-1 polynomial. In this case, the least-square fit gives
us a0 = 2

3 , and a1 = 3 with an overall error value of 1 unit on the three points. So,
g1(x) = 2

3 + 3x is the degree-1 polynomial obtained using the least-square fit. The
form of g1 issimpler than that of g2 and it is a unique degree-1 polynomial.

Now let us consider fitting a degree-3 polynomial using the same 3 pairs of points.
Let the generic form be

g3(x) = a0 + a1x + a2x
2 + a3x

3.

By using the least-square fit we may get several options. Let us choose one option
given by a0 = 1, a1 = 3

2 , a2 = 1
4 , and a3 = 1

4 . So,

g3(x) = 1 + 3

2
x + 1

4
x2 + 1

4
x3

and the error is 0 for this degree-3 fit also on the three points. However, if we consider
the fourth pair of x and y values in the table given by x = 1

2 and y = 7
4 , then g3(x)

gives a value of 59
32 , instead of

7
4 which is erroneous.

There are other degree-3options in addition to the degenerate solutionwitha3 = 0.
For example, one such degree-3 polynomial, g′

3(x), is given by

g′
3(x) = 1 + 5

3
x + 1

3
x3.

Note that g′
3(x) also makes a 0 error on the first three points and on the fourth value

of x, it gives g′
3(

1
2 ) = 45

24 , instead of 7
4 leading to an error that varies from the error

given by g3(x) on the fourth value of x.
This simple example illustrates the following generic behavior, which is called

the bias–variance dilemma.

• Using some d + 1 pairs of x and y values generated from a degree-d polynomial,
we can predict uniquely a generic degree-d polynomial using the least-square fit
with 0 error.

• If we use these d + 1 pairs to predict a polynomial of degree less than d , then we
will get a least-square fit with nonzero error. Such simpler models are typically
erroneous and exhibit a smaller variance in the error. In the above example, there
is a unique g1 that minimizes the least-square error and so the variance in the



10 1 Introduction

error is 0. Even in the presence of noise these simpler models are erroneous and
are low-variance (in the error) fits. So, polynomials of degree d or less are more
central and lesser degree polynomials are said to underfit the data.

• However, if we use the same d + 1 points to fit a degree-D polynomial where D
is larger than d , then we may have multiple options and each option may give rise
to a different error on additional points leading to a larger variance in the error
even though the error values could be smaller leading to a low bias on these d + 1
points. So, these models exhibit high diversity and are said to overfit the data.
These may be viewed as better bias controllers.

• The overall error may be viewed as a combination of a bias term and a variance
term and these work in opposite directions. Overfitting models fit the data (along
with noise if any) better and are bias-controllers and underfitting models exhibit
higher bias and are variance-controllers.

• For example, the nearest neighbor classifier (NNC) is a nonlinear classifier and
gives 100%accuracy on the training data.However, itmay do badly on the test data.
This is an example of overfitting. However, even in very high-dimensional spaces
people use a linear SVM, instead of a kernel SVM, because of the simplicity of the
former. So such a simpler, underfitting linear SVMmay not exhibit 100% training
accuracy, but it works very well on the test data leading to a smaller generalization
error.

Bias–variance dilemma is important in both regression and classification. We
encounter centrality and diversity in a different manner in the learning of the associ-
ated models. Simple or low-variance models may be viewed as central models and
complex or flexible models overfit the data and exhibit diversity. The best model is
obtained by controlling centrality and diversity appropriately.

1.3.5 Social Networks and Recommendation Systems

A social network is typically represented as a graphG =< V,E >. Here each social
entity is represented as a node v ∈ V in the graph and an edge eij ∈ E represents the
relation between the entities represented by nodes i and j. For example, a friendship
network will be represented by an undirected graph where each member of the
network is represented by a node of the graph and an edge is present between nodes
i and j if the corresponding individuals are friends. The graph is undirected because
friendship is symmetric. One popular data structure that can be used to represent a
graph is its Adjacency Matrix A. If there are n nodes in the graph, then A is an n × n
matrix where ith row represents node i and its jth column represents the jth node
where i, j ∈ {1, 2, . . . , n}. In a simple scenario, A is a binary matrix and its ijth entry
ai,j is 1 if nodes i and j have an edge in the graph else ai,j = 0. We say that i is a
neighbor j and vice versa if ai,j = 1. Let ai be the ith row of A for i = 1, . . . , n; it
is a row vector with n entries corresponding to n columns of A. Centrality is a well-
defined and important notion in social networks. A product company might identify
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influential or central individuals in different communities and promote their product
through these identified central individuals. Some popularly used centrality notions
are:

• Degree Centrality: A node is central if its degree is large. This is the simplest
notion of centrality.

• Closeness Centrality: A node is central if it is closer to a large number of nodes
around it. Closeness could be based on the length of the path between nodes.
Shorter the length of the path between a pair of nodes, the closer the two nodes.

• Betweenness Centrality: An edge is more central if it connects two or more
important communities. For example, a single bridge between two or more geo-
graphical regions is crucial in maintaining connectivity between the regions. This
notion is important in forming communities.

• Eigenvector Centrality: This is a recursive notion of centrality. A node is central
if it is connected to central nodes. A nonzero vector x is an eigenvector of A if
Ax = λx with λ ∈ � being the eigenvalue of A corresponding to x. Note that x is
a column vector of size n and xi is the ith component of x, for i = 1, . . . , n. So,
from Ax = λx we get

λxi =
n∑

j=1

ai,jxj ⇒ xi = 1

λ

n∑

j=1

ai,jxj.

Entries in eigenvector x indicate the centralities of the respective nodes; the above
equation explicitly indicates the eigenvector centrality of node i, xi, in terms of the
eigenvector centralities of all the n nodes, x1, . . . , xn.

Note that even in this context also, centrality alone is not adequate. For example,
if there are two central nodes i and j, such that they have a large number of common
neighbors, then itmay not bemeaningful to consider both of them for the promotional
purposes as both of them may be able to influence the same set of nodes or nodes in
the same community. In a such a case, it is important to be concerned about diversity
among such central nodes also; for example, how diverse various central nodes are
in terms of their influence on the other individuals or how nonoverlapping are their
sets of neighbors are.

1.3.5.1 Recommender Systems

In addition to the link structure present in social networks, each node may also have
some content associated with it. Such networks are called information networks
where each node carries both the link information and content. In such networks, a
dichotomy exists.

1. Homogeneous Information Networks: Here all the nodes are of the same type
and edges are also of the same type. For example, in a citation network each
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publication is represented by a node in the graph alongwith its associated content.
A directed edge exists from node i to node j if the the publication represented by
i refers to the publication corresponding to node j. The corresponding graph is a
directed graph in this example.

2. Heterogeneous Information Networks: There can be applications where we
may need multiple types of nodes and also multiple types of edges. Such net-
works are called heterogeneous networks where either the nodes or edges are of
different types. For example, in a restaurant network where we want to repre-
sent the (i) users, (ii) restaurants, (iii) cuisine, and (iv) their location information,
then we end up with multiple types of nodes; a node may represent any one of
these four types. Further, the edges also can be of multiple types. A user visits a
restaurant; is a friend of another user; stays in a location; and likes Italian dishes.
We may have many more types of relations in this network among types nodes
other than user.
Such heterogeneous information networks are exploited by recommendation sys-
tems. A restaurant is recommended to a user based on the notion of its impor-
tance/centrality that is characterized based on the preferences of the user. Even
here diversity is important. For example, if two important/central restaurants are
located in the same region and offer the same type of cuisine, then it may not
be good to recommend both of them just based on their centrality. It may be
meaningful to recommend to the user diverse and central restaurants.

1.4 Summary

In this chapter, we have introduced the notions of centrality and diversity. Also
their roles in search in general and more specifically in important machine learning
tasks including representation, clustering and classification, ranking, regression and
application areas like social networks and recommendation systems are introduced.
We will examine in more detail their role in specific tasks in later chapters.
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Chapter 2
Searching

Abstract Search is the most basic and fundamental operation of computers. It plays
a vital role in areas like artificial intelligence, machine learning, deep learning, and
a variety of applications. We examine the role of search in several related topics in
this chapter.

Keywords Exact match · Inexact match · Classification · Representation

2.1 Introduction

Matching is a fundamental operation in areas including artificial intelligence,
machine learning, data mining, and pattern recognition. Different types of matching
are exact match and inexact match. In the exact match, we insist that the matching
item and the matched item are identical in some sense. In the inexact match, we look
for similar items or approximately matching items.

2.1.1 Exact Match

The algorithms community has excelled in dealing with exact matching and cur-
rently, there is a growing interest in approximation algorithms. The problem in exact
matching is as follows.

Given a collection of items CI containing n elements and an item x, to find out
whether x is a member of CI or not. This problem is classically called the search
problem and various algorithms for search are

1. Linear Search: This is also called the sequential search as x is compared with
the members of CI sequentially starting from the first element. The search stops
and reports success if x is matched with an element of CI , else it reports failure.
It requires O(n) time if there are n elements in CI in the worst case. That is why
it is called linear search.
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2. Binary Search: Here elements in CI are assumed to be in a sorted order. Let them
be in nondecreasing order. Let the middle element of CI , CI (mid), be y. First, x
is compared with y and the search progresses as follows:

a. If x = y then stop and report success.
b. If x < y then recursively search for x in CI (1) to CI (mid − 1).
c. If x > y then recursively search for x in CI (mid + 1) to CI (n).

It reports failure if x fails tomatchwith any element ofCI . This algorithmemploys
divide-and-conquer strategy and it is possible to show that it requires O(logn) in
the worst case. That is why it is also called logarithmic search.

3. Hashing: Here a function h, called hash function, is used to map items in CI to
locations in an array. It is possible that the size of the array is smaller than n.
In such a case, h may map two different elements of CI to the same location in
the array. Such a collision is resolved by maintaining a bucket containing all the
elements that are mapped to the same location in the array. Then search for x is
carried out by matching elements in the bucket associated with h(x). It is claimed
that the search can be carried out in O(1) or constant time.

Exact search where the matching operation outputs a collection of records that match
the query/requirement is popular in databases. For example, from a collection of
employee records of an organization, against a query get names of all the employees
whose salary is less than an amount x get a collection of one or more employee
records satisfying the query.

Even though database researchers concentrated typically on such exact matching,
they have played an important role in making research in machine learning, specifi-
cally making information retrieval and search work. For example, database research
has contributed more to the success of search engines, founding the area of data
mining and also in the analysis of social and information networks.

2.1.2 Inexact Match

Typically in artificial intelligence, machine learning, and pattern recognition, we
depend more on approximate or inexact search. Specifically, we depend on inexact
search in representation, clustering, classification, working of search engines, and
regression. We discuss it in detail next.

2.1.3 Representation

The nearest neighbor classifier (NNC) is the simplest and easy to comprehend clas-
sifier. In NNC, a set of training patterns
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X = {(x1, c1), (x2, c2), . . . , (xn, cn)}

is given in which the ith pattern xi is labeled with ci for i = 1, . . . , n. Here ci ∈
{1, 2, . . . ,C} for i = 1, . . . , n where C is the number of classes. Using the NNC a
test pattern x is classified to belong to the same class as its nearest neighbor. So, if
xj, j ∈ {1, . . . , n} is the nearest neighbor of x, then the test pattern x is assigned the
label cj by NNC. Here the problem is one of making an inexact search where the
nearest neighbor of x is xj if

(xj, cj) = argmin
(xi,ci)∈X

d(x, xi).

Here d(p, q) is some distance, usually Euclidean distance, between the vectors p and
q.

A similar inexact search is used by the K- nearest neighbor classifier (KNNC)
also. Here for a test pattern x, we find K of its nearest neighbors from X . Let the
K neighbors be x1, . . . , xK with their respective labels c1, . . . , cK . We assign to x
the label that occurs with a maximum frequency (majority class label among the K
neighbors) among c1, . . . , cK . So in the case of KNNC also we use inexact search
to find the K neighbors.

A major problem with KNNC is that it does not work well in high-dimensional
spaces as d(x,NN (x)) may converge to d(x,FN (x)) as the dimensionality goes on
increasingwhere d(p, q) is the distance between patterns p and q,NN (x) is the nearest
neighbor of x andFN (x) is the farthest neighbor of x. So, KNNC is not recommended
for classifying documents or other such high-dimensional patterns. Some solutions
to the problem are: (1) Feature Selection and/or (2) Feature Extraction.

In feature selection, we are given a collection of n training patterns each rep-
resented as a vector in a l- dimensional space where the set, F , of features is
F = {f1, f2, . . . , fl} and the set, C, of classes is C = {c1, . . . , cC} are given as inputs.
The output is F ′, where F ′ ⊂ F and |F ′| = d(< l). In other words, we select d out
of the l features. There are different schemes for for this selection. One of the most
popular schemes is based on mutual information (MI). We can rank the l features
based onMI and select the top d features. Mutual information between feature fi and
class cj is given by

MI(fi, cj) =
∑

i,j

p(Ii, Ij)log
p(Ii, Ij)

p(Ii).p(Ij)

where we are assuming, for the sake of simplicity, that fi either occurs (value of
Ii = 1) or does not occur (value Ii = 0); similarly, Ij = 1 if the class is cj and Ij = 0
if the class is non-cj. MI gives us some kind of discriminative index of feature fi with
respect to class cj.
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These probabilities can be computed as follows. Let n be the number of training
patterns; n1,1 be the number of patterns in cj in which fi occurs; n1,0 be the number
of patterns in class non-cj (other than cj) in which fi occurs; n0.1 be the number of
patterns in cj in which fi does not occur; and n0.0 be the number of patterns in non-
cj in which fi does not occur. So, (n1,1 + n1,0) is the number of patterns in which fi
occurs and (n0,1 + n0,0) is the number of patterns inwhich fi does not occur. Similarly,
(n1,1 + n0.1) is the number of patterns in cj and (n1,0 + n0,0) is the number of patterns
in non-cj. Then, we can interpret both i and j as binary variables by examining the
following possibilities:

1. Feature fi is present in class cj ⇒ Ii = Ij = 1. Consequently p(Ii, Ij) = n1,1
n ;

p(Ii = 1) = n1,0+n1,1
n ; p(Ij = 1) = n0,1+n1,1

n .
2. Feature fi is present in class non-cj ⇒ Ii = 1; Ij = 0. So, p(Ii, Ij) = n1,0

n ;
p(Ii = 1) = n1,0+n1,1

n ; p(Ij = 0) = n1,0+n0,0
n .

3. Feature fi is absent in class cj ⇒ Ii = 0; Ij = 1. So, p(Ii, Ij) = n0.1
n ; p(Ii = 0) =

n0,0+n0,1
n ; p(Ij = 1) = n1,1+n0,1

n .
4. Feature fi is absent in class non-cj ⇒ Ii = Ij = 0. So,p(Ii, Ij) = n0,0

n ; p(Ii = 0) =
n0,0+n0,1

n ; p(Ij = 0) = n1,0+n0,0
n .

Once we have each of the l features with the corresponding MI value, we can rank
them based on the MI value. This ranking is based on some kind of discriminative
evidence in the form of MI values of the features. Thus, MI plays the role impor-
tance/centrality of the feature. It is adequate to select the top d features based on the
MI values to represent data items in a binary classification problem, where there are
only two classes. However, if there are more than two classes, that is C > 2, then
top d features may not be adequate; among the central/important features we need
to select d discriminative/diverse features. We need to select d features such that
collectively they can discriminate between all the C classes; it is not good to select a
larger number of features that can discriminate a class cj from the rest at the cost of
some of the other (non-cj) classes. So, such a selection involves both centrality and
diversity.

In feature extraction,we select d new features f ′
1 , . . . , f

′
d that are linear or nonlinear

combinations of the given l features; For example, if the extracted features are linear
combinations, then

f ′
j =

l∑

i=1

αi,j fi,

where αi,j is the importance/weight of fi for f ′
j . It is important that f ′

j is as diverse
as possible from f ′

k , k �= j. Principal Components (PCs) are the eigenvectors of the
sample covariance matrix of the data set; they are ranked based on the ordering of the
eigenvalues of the matrix in a nonincreasing order. The first PC is the eigenvector
corresponding to the largest eigenvalue while the last PC is the eigenvector pairing
up with the smallest eigenvalue. We need to select the best d principal components
that can discriminate patterns from different classes. It is well-known that the PCs
are orthogonal to each other as the covariance matrix is symmetric. It is possible that
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the first d PCs are not the best features for discriminating between different classes.
However, the best d PCs show diversity by being orthogonal to each other.

There are other applications of search in classification. For example, searching
for a classification model based on some optimality criterion.

2.2 Proximity

A cluster or a class of points satisfies some kind of similarity or proximity. This
proximity could be captured based on some common properties of the data points in
the cluster/class. This gestalt property is captured by

• Probability distribution: The points in a class/cluster are drawn from an unknown
underlying probability distribution. This view permits us to characterize proximity
between a pair of classes/clusters. For example, Kullback−Leibler divergence
(KLD) between a pair of classes/clusters as

KLD(pi, pj) =
l∑

k=1

pi,k log(
pi,k
pj,k

)

where pi is the probability mass function underlying class ci in a l-dimensional
space.

• Vector space: The vectors in a class/cluster are elements of a l-dimensional vector
space. So, a collection of patterns can be viewed as a matrix An×l . Typically, the
vector space is �l . In such a case, matrix A could be factorized into Bn×K and
CK×l where K is the number of soft clusters. Here, proximity is implicit and is
characterized by the semantics underlying the matrix factorization, A = BC.

• Logical Description: A cluster/class is described by a concept that is a formula
in a formal language like mathematical logic. A collection of objects is described
by the concept based on the properties shared by the objects in it. Here, inference
based on logic could be used to check whether a pattern is from a class/cluster or
not.

In statistical pattern recognition, machine learning, and deep learning, it is assumed
that patterns are vectors and proximity between pairs of patterns is used to extract
the clusters. The notion of proximity is used in both clustering and classification.

2.2.1 Distance Function

Distance between patterns Xi and Xj is denoted by d(Xi,Xj) and the most generic
distance measure is the Minkowski Distance Metric and it is given by
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d(Xi,Xj) =
(

l∑

k=1

|xik − xjk |p
) 1

p

A pair of patterns are closer or similar if the distance between them is smaller.
Different positive integer values of p lead to different metrics. The most popular
among them is the Euclidean distance which corresponds to p = 2. Even though
metrics are useful in terms of computational requirements, they are not essential in
machine learning.

For example, KLDivergence is not a metric; still, it is popularly used in several
important applications. Proximity is characterized by either distance or similarity.

2.2.1.1 Cosine Similarity

Is popularly used in information retrieval and is defined as

cos(Xi,Xj) =
∑l

k=1 xikxjk
|| Xi || || Xj ||

2.2.2 Clustering

In partitional clustering, we search for an optimal partition based on some criterion
function. For example, the popular K-means algorithm (KMA) is given in Algo-
rithm 1. In clustering applications, KMA is popularly used as it is a linear time
algorithm requiring O(Kn) time. The K centroids are important to represent the
underlying clustering structure or the K-partition; KMA generates a hard partition of
the data set based on minimizing the squared error criterion (SEC) which is given
by

SEC({c1, . . . , cK }) =
K∑

i=1

∑

x∈ci
d2(x, μi),

where d2(x, μi) is the squared Euclidean distance or deviation of x ∈ ci from the
corresponding centroid μi. The algorithm may end up in a local optimum of SEC if
the initial centroids/representatives are not selected properly. We illustrate it using a
2-d example.

Example 2.1 Consider a collection of 2-dimensional patterns given by

X = {(1, 1)t, (1, 2)t, (2, 1)t, (2, 2)t, (7, 2)t, (7, 7)t, (8, 2)t, (8, 7)t, (9, 7)t, (8, 8)t}
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Algorithm 1 K-Means Algorithm
Input: A d -dimensional data set X with n data objects and values for parameters K .
Output: A hard partition of X .
1: Select K (< n) data points as initial representatives/centers of K clusters, each representing a

cluster. Let them be x1, . . . , xK .
2: Let x be a point of the set XR = X − {x1, . . . , xK }. Assign x to cluster ci if

d(x, xi) < d(x, xj) for j �= i,

where d(x, y) is the Euclidean distance between x and y. Assign each of the points in XR to its
nearest cluster based on minimum Euclidean between the point and the cluster representative.

3: Compute the sample mean, μi , of cluster ci , where μi = 1
|ci |

∑
x∈ci x.

4: Assign each element ofX to its nearest cluster, based on the Euclidean distance between the point
and μis. Stop if there is no change in the assignment of points to clusters over two successive
iterations. Else go to step (3).

Let us consider application ofKMA on this data set withK = 3 based on two different
selection of the initial centroids as given below;

1. Let the three initial cluster representatives for c1, c2, and c3 be (1, 1)t, (1, 2)t,
and(2, 2)t , respectively. So, the assignment of the points to their respective clus-
ters during iterations of KMA (steps 3 and 4 of KMA) is as shown in Table 2.1.

2. Instead, if we take the three initial representatives to be (2, 2)t, (7, 2)t, and(7, 7)t

for c1, c2, c3 respectively, then the assignment is going to be different and is given
in Table 2.2.

It is interesting to analyze the partitions shown in Tables 2.1 and 2.2. Some important
observations are the following.

Table 2.1 Iterations of KMA: The assignment is same across iterations 2 and 3. So, KMA stops at
the end of iteration 3 (step 4 of KMA)

Iteration Assignment c1 c2 c3
Representative (1, 1)t (1, 2)t (2, 2)t

1 Other points (2, 1)t · · · (7, 2)t, (8, 2)t, (7, 7)t

(8, 7)t, (9, 7)t, (8, 8)t

Centroid (1.5, 1)t (1, 2)t (7, 5)t

2 All 9 Points (1, 1)t (1, 2)t (7, 2)t, (8, 2)t, (7, 7)t

(2, 1)t (2, 2)t (8, 7)t, (9, 7)t, (8, 8)t

Centroid (1.5, 1)t (1.5, 2)t (7.9, 5.5)t

3 All 9 Points (1, 1)t (1, 2)t (7, 2)t, (8, 2)t, (7, 7)t

(2, 1)t (2, 2)t (8, 7)t, (9, 7)t, (8, 8)t

Centroid (1.5, 1)t (1.5, 2)t (7.9, 5.5)t

Contribution to SEC 0.5 0.5 46.36

SEC of the partition 47.36
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Table 2.2 Iterations of KMA: The assignment is same across iterations 1 and 2. So, KMA stops at
the end of iteration 2 (step 4 of KMA)

Iteration Assignment c1 c2 c3
Representative (2, 2)t (7, 2)t (7, 7)t

1 Other points (1, 1)t, (1, 2)t

(2, 1)t
(8, 2)t (8, 8)t, (8, 7)t

(9, 7)t

Centroid (1.5, 1.5)t (7.5, 2)t (8, 7.25)t

2 All 9 Points (1, 1)t, (1, 2)t (7, 2)t (7, 7)t, (8, 7)t

(2, 1)t, (2, 2)t (8, 2)t (9, 7)t, (8, 8)t

Centroid (1.5, 1.5)t (7.5, 2)t (8, 7.25)t

Contribution to
SEC

2.0 0.5 2.75

SEC of the partition 5.25

1. In this simple example, the 3-partition characterized by Table 2.2 is the best in
terms of SEC value of 5.25. It is better than the 3-partition shown in Table 2.1 as
the corresponding SEC value is 47.36.

2. The partition, shown in Table 2.1, based on selecting the initial cluster represen-
tatives that are very close to each other resulted in a local optimum of SEC.

3. On the other hand, the partition obtained using initial representatives that are far
apart from each other (diverse) gave the best SEC value.

So, characterizing clusters by their centroids/central representatives is not adequate.
We need to capture the diversity present in the cluster structure by selecting initial
representatives that exhibit diversity. K-Means++ is a randomized version of KMA
that addresses this problem by exploiting diversity in the selection. However, if we
give toomuch importance to diversity, then outlier patternsmight be selected as initial
cluster representatives. So, one has to ensure that each such selected representative
is central and comes from a dense region.

2.2.3 Classification

In classification, we learn a classification model using a set of training patterns.
Test patterns or patterns that are not yet labeled are labeled or classified using the
classification model. Some of the important issues in building classifiers include the
following.
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2.2.3.1 Representation

For the machine to learn the model, typically we need to represent the patterns/data
points as vectors. We use discriminative or central features in vector representation;
further one needs to select these features respecting the diversity asmentioned earlier.

Not only representing each pattern as a vector, in some cases we need to search
for a compact representation of the training dataset. For example, if there are n
training patterns, then exemplar-based classifiers like NNC will require O(n) time
to compute the nearest neighbor of each test pattern. One way to reduce the effort
is by condensing or reducing the dataset. The condensed nearest neighbor classifier
(CNNC) condenses the dataset size from n to m. CNNC works by first obtaining the
condensed dataset and then use it for classifying a test pattern by using NNC and the
condensed set. We explain it using Algorithm 2.

Algorithm 2 Condensation
Input: A labeled training data set X = {(x1, lab1), (x2, lab2), . . . , (xn, labn)} with n data objects;
labi is the class label of xi .
Output: A condensed dataset, CONDENSED that is a subset of X .
1: CONDENSED = {(x1, lab1)}. REMAIN = X − CONDENSED.
2: If REMAIN = φ then goto step 5.
3: Let (x, lab) be the first pattern in REMAIN . Let (x′, lab′) ∈ CONDENSED be such that x′ is the

nearest neighbor (NN) of x.
4: If lab �= lab′ then CONDENSED = CONDENSED ∪ {(x, lab)}. Let REMAIN = REMAIN −

{(x, lab)}. Goto step 2.
5: Stop if CONDENSED is not updated during the entire iteration. Otherwise,

REMAIN = X − CONDENSED

. Goto step 2.

Once we get the set CONDENSED, a condensed set of training patterns, we use
it along with NNC to classify the test patterns.

Example 2.2 Consider a collection of training patterns. These are 2-dimensional
patterns belonging to three classes given by

X ={((1, 1)t, 1), ((2, 2)t, 1), ((3, 2)t, 1), ((5, 2)t, 2), ((4, 2)t, 2), ((7, 7)t, 3), ((8, 7)t, 3)}

The generation of CONDENSED set using Algorithm 2 is illustrated using
Table 2.3.

Ifwe consider the samedataset in the orderX = {((1, 1)t, 1), ((2, 2)t, 1), ((3, 2)t,
1), ((4, 2)t, 2), ((5, 2)t, 2), ((7, 7)t, 3), ((8, 7)t, 3)} then we have the CONDENSED
updated as shown in Table 2.4.

So, even though it condenses the dataset to retain some essential/central data
points, it is order dependent as it processes the data points incrementally. Each point
is processed in isolation based on NNC and CONDENSED. Different orders of the
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Table 2.3 Stepwise processing of condensation

Step number CONDENSED REMAIN

1 {((1, 1)t, 1)} Set of last 6 patterns in X
Next 2 patterns No change Set of last 4 patterns in X
4 {((1, 1)t, 1), ((5, 2)t, 2)} Set of last 3 patterns in X
4 {((1, 1)t, 1), ((5, 2)t, 2), ((7, 7)t, 3)} {((8, 7)t, 3)}
5 {((1, 1)t, 1), ((5, 2)t, 2), ((7, 7)t, 3)} {((2, 2)t, 1), ((3, 2)t, 1), ((4, 2)t, 2),

((8, 7)t, 3)}
5 {((1, 1)t, 1), ((5, 2)t, 2), ((7, 7)t, 3)} φ

Table 2.4 Stepwise processing of condensation with a different ordering

Step number CONDENSED REMAIN

1 {((1, 1)t, 1)} Set of last 6 patterns in X
Next 2 patterns No change Set of last 4 patterns in X
4 {((1, 1)t, 1), ((4, 2)t, 2)} Set of last 3 patterns in X
4 {((1, 1)t, 1), ((4, 2)t, 2), ((7, 7)t, 3)} {((8, 7)t, 3)}
5 {((1, 1)t, 1), ((4, 2)t, 2), ((7, 7)t, 3)} {((2, 2)t, 1), ((3, 2)t, 1), ((5, 2)t, 2),

((8, 7)t, 3)}
4 {((1, 1)t, 1), ((4, 2)t, 2), ((7, 7)t, 3),

((3, 2)t, 1)}
{((5, 2)t, 2), ((8, 7)t, 3)}

5 {((1, 1)t, 1), ((4, 2)t, 2), ((7, 7)t, 3),
((3, 2)t, 1)}

φ

input data might give rise to different outputs as shown in Table 2.3 and 2.4. One
solution to this problem of order dependence is to modify the CNNC by introducing
diversity as shown in Algorithm 3

Algorithm 3Modified Condensed Set
Input: A labeled training data set X = {(x1, lab1), (x2, lab2), . . . , (xn, labn)} with n data objects;
labi is the class label of xi .
Output: A condensed dataset, CONDENSED that is a subset of X .
1: MCONDENSED = {(x1, 1), (x2, 2), . . . , (xC ,C)}, where (xi, i) is a typical/representative pat-

tern from class i, i = 1, . . . ,C. REMAIN = X − MCONDENSED.
2: If REMAIN = φ then goto step 5.
3: Let (x, lab) be the first pattern in REMAIN . Let (x′, lab′) ∈ MCONDENSED be such that x′ is

the nearest neighbor (NN) of x.
4: If lab �= lab′ then MCONDENSED = MCONDENSED ∪ {(x, lab)}. Let REMAIN =

REMAIN − {(x, lab)}. Goto step 2.
5: Stop ifMCONDENSED is not updated during the entire iteration. Otherwise,

REMAIN = X − MCONDENSED

. Goto step 2.
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Table 2.5 Typical patterns

Class Patterns Centroid Typical (nearest to centroid)

1 (1, 1)t, (2, 2)t, (3, 2)t (2, 1.66)t (2, 2)t

2 (5, 2)t, (4, 2)t (4.5, 2)t (5, 2)t

3 (7, 7)t, (8, 7)t (7, 5, 7)t (7, 7)t

In step (1), we add toMCONDENSED one typical pattern from each class. Such
a typical pattern could be obtained by considering a pattern nearest to the centroid
of the class. For example, if we consider the data set X ={((1, 1)t, 1), ((2, 2)t, 1),
((3, 2)t, 1), ((5, 2)t, 2), ((4, 2)t, 2), ((7, 7)t, 3), ((8, 7)t, 3)}, then typical patterns in
the three classes are indicated in Table 2.5.

Note that MCONDENSED = {((2, 2)t, 1), ((5, 2)t, 2), ((7, 7)t, 3)} by including
all the three typical patterns and there are no updates as all the remaining patterns are
correctly classified. Further, these typical patterns are both central and also account
for diversity by selecting core/close to centroid patterns from each of the classes.
This modification can help in improving order independence.

Centrality and diversity are important, perhaps in a different form, in some of
the other classifier learning tasks including model selection. If we select a simpler
model, then it can have less variance and more bias as a single simple model may
fail to capture the diversity or details in the data; such a simple model is more central
because of its simplicity. Different such simple models may emerge because each of
them may see the diversity in the data or details in the data differently; so, diversity
among the simple models is because of the inherent bias in the data. Naturally, we
need to control both centrality and diversity. We will examine in a more detailed
manner in a later chapter.

2.2.4 Information Retrieval

Searching is the most essential and routinely required operation in information
retrieval. Search engines or retrieval systems provide a ranked list of documents
against a user-specified query. In the early days, search engines used to rank-order
the output list of documents by matching the content present in the query with that in
each of the documents. So, a document is more central if its content matches better
with that of the query.

It is typically assumed that underlying a collection of documents, D there is a
vocabulary, V , of words/phrases that occur in the documents. So, in a simple binary
representation of documents it is possible to view each document as a binary vector
of size |V | = l where the th bit is 1 if the th term in the vocabulary has occurred
in the document, else the th bit is 0, where i = 1, . . . , l. Here, a user query also is
represented as a l-bit binary vector like the documents. In this case, the matching
between a queryQ and a document d ∈ D is based on Boolean search. We say that d
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satisfies or is relevant to Q if all the terms in Q are present in d also when the query
is viewed as an and query (a conjunction of terms in it).

A more popular representation of a document or a query is based on TF − IDF ,
a product of the term frequency (TF) and the inverse document frequency (IDF). Let

D = {d1, d2, . . . , dn}

be a collection of n documents and let

V = {t1, t2, . . . , tl}

be the vocabulary of l terms (words/phrases). Let TFij be the frequency of term tj in
document di. Let IDFj be

IDFj = log(
n

nj
)

be a simple characterization of the inverse document frequency,where n is the number
of documents and nj is the number of documents in which term tj occurred. A
frequent term like “is” or “the” occurs in all the n documents (nj = n for such terms)
and so IDFj = log(1) = 0, even though TFij can be large. On the other hand rare
terms like “abracadabra” may occur in a small number of documents. If nj = 1, then
IDFj = log(n) which could be large; however value of TFij will be very small (0 or
close to being 0). The term TF − IDF is defined as

TF − IDF(i, j) = TFij × IDFj.

Note that TF − IDF(i, j)will be very small whether tj is frequent or rare. Terms with
medium frequency will have larger TF − IDF values.

Each document is represented as an l -dimensional numerical vector, one number
per term and this number, for term tj in document di is TF − IDF(i, j) for j =
1, . . . , l and i = 1, . . . , n. In a similar way, the query Q also is represented as a l-
dimensional vector based on the respective TF − IDF values. Similarity between Q
and a document d is obtained by typically using the cosine of the angle between d
and Q given by

sim(Q, d) = Qtd

||Q||||d || .

A document di is ranked better than another document dj if sim(Q, di)>sim(Q, dj).
However, in applications where the link structure is also available, it is advanta-

geous to combine information from both the content and structure. For example, in
web data mining the link structure across various web pages/documents along with
their content can improve the search results. In this setting a web page/document
is more central if it matches the query in terms of its content and if different web
pages are equally important/central to the query, then diversity among them could
be established through their importance through the link structure. Here, a web
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page/document matching the query, in terms of content, is given a better rank if
it is important through its link structure also. A web page has a larger PageRank if
larger PageRank web pages refer to it. So, in this combined context, a web page is
treated as more relevant to the query if it not only matches in content with the query
but also has a good PageRank. So, notion of centrality is changed.

2.2.5 Problem Solving in Artificial Intelligence (AI)

Search plays an important role in problem solving. Typically, a problem is solved
by representing different solution paths by using transitions across states describing
different configurations. Even though this is a generic setting that can deal with
varieties of problems including playing games, solving puzzles, optimization, we
illustrate the underlying ideas using a simple example puzzle.

Let us consider a 3-puzzle problem shown in Fig. 2.1 where we are given some
initial configuration/state of the puzzle and would like to reach some specified/goal
state. The top left configuration in the figure is the initial state and the top right one
is the goal state. Each configuration/state has 3 tiles that are numbered 1, 2, or 3 and
one of the locations is free so that the tiles can move appropriately. It is convenient
to abstract each possible move by viewing as to how the free space is moving. In the
case of the Initial State in the figure, free space can be occupied by either the tile
numbered 3 or tile numbered 2. So, equivalently the free space can either move right
(R) or down (D). The resulting states are shown as left and right children nodes of
the root node (initial state). From the right child by moving the free space right (R)
we get the goal state as shown in the figure.

Here, we need to reach the goal state by using a sequence of legal operations.
These are

1. The free space can move either horizontally or vertically; it can not move diago-
nally.

Fig. 2.1 State transitions in
3-puzzle problem
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2. One can move the free space only by one position at a time. For example, from
the initial state we cannot move the free space to reach the goal state by moving
it by a sequence of two or more operations at a time.

In addition, we can have other problem-specific constraints like from the right child
of the root node we can not move the free space up to go back to its parent node.
We can record all the generated states so far to deal with this need by avoiding
generation of the same state multiple times. So, there will not be any cycles in the
resulting structure and also each state will have a single parent. This will ensure that
the resulting structure is a tree.

This activity may be viewed as searching the set of states till the goal state is
reached. Such a search is conducted by considering all possible legal operations on
each state starting from the initial state. Such a transition from a state to another is
captured by parent and child nodes, respectively. The entire search process can be
abstracted by a tree under the specified constraints. Two popular schemes for search
are breadth-first search (BFS) and depth-first search (DFS).

In BFS, we generate and examine the nodes in a level-wise manner; we consider
all the children nodes of the root, one after the other, before proceeding further. For
example, in Fig. 2.1, the left child of the root node has to be expanded before the
right child. On the contrary, in DFS, we generate nodes along a path from the root
and examine whether the goal state is reached in which case the process stops. If the
goal node is not reached after a prespecified depth, then it will explore a different
path from the root.

A more efficient and focused search is based on employing a heuristic. Such a
search is called heuristic search or informed search as the heuristic employs some
problem-specific knowledge. For example, we may consider a node that is more sim-
ilar to the goal node before considering nodes that are less similar. Let the similarity
between the goal and the current configurations be the number of rows matching
between the two. So, in the example shown in Fig. 2.1, the root node is considered
first. There are two children that are possible as shown in the figure. Among these
two, the right child is more similar to the goal node as the first row matches between
the two whereas there is no row matching between the goal and the left child. So,
the right child is considered before the left child of the root as shown in Fig. 2.1.
The path from the root (initial state) to the goal state is of length 2. The goal state is
reached with the minimum number of node expansions that is 2 here.

Using such heuristics helps in several problem-solving situations. However, not
every heuristic satisfies the optimal property. Some heuristics may even miss the
optimal solution even if it exists and in some other cases they may mislead. For
example, in Fig. 2.1 every state shown may be viewed as having the sequence 1, 2, 3
or its cyclic permutations like 2, 3, 1 or 3, 1, 2 ignoring the free space. Note that it is
not possible to reach a sequence 2, 1, 3 or its cyclic permutations like 1, 3, 2 or 3, 2, 1
from a state with sequence 1, 2, 3 or its cyclic permutations as shown in Fig. 2.2.

Note that a heuristic that looks for match among the columns might assign a score
of 1 to the similarity between the initial state and the goal state. However, using
the legal operations considered earlier, it is not possible to reach the goal state from
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Fig. 2.2 Impossible
3-Puzzle Problem

the initial state shown in Fig. 2.2. So, some important properties of these search
algorithms are

1. An uninformed search like BFS guarantee reaching the goal if it is possible
to reach it from the initial state. This is the completeness property of a search
algorithm. However, it may not provide an optimal solution, for example, in terms
of node evaluations. In the problem specified in Fig. 2.1 BFS needs to expand 3
nodes before encountering the goal state.

2. So, an uninformed search may not be optimal. Note that in Fig. 2.1 it is possible
to reach the goal state by expanding just 2 nodes as discussed earlier.

3. On the other hand, heuristic search can speed up the problem-solving process by
combining a complete search like BFS with the knowledge of the problem in the
form of an appropriate heuristic.

4. However, it is possible that heuristic search may fail to reach the goal state even
when a legal path from the initial state to the goal state exists. This is called the
admissibility property of a search algorithm.

5. Heuristic search also might fail to detect that it is not possible to reach the goal
state from some initial state as in the case discussed in Fig. 2.2.

So, complete search based algorithms may not be optimal; they capture the diver-
sity present in the space of solutions or sequences of paths. Heuristic search, on the
other hand, provides optimal search perhaps at the cost of admissibility. So, heuris-
tic search is focused/centrality preserving search. The well-known algorithm A∗,
which we do not discuss here, judiciously combines the heuristic power with some
uninformed search to provide an optimal/admissible algorithm.

2.3 Summary

In this chapter, we have considered the role of search in a variety of important tasks
in AI, machine learning, representation, and information retrieval. The specific roles
of search are that we search for:

• A set of features to represent patterns.
• A set of representative/centroid patterns in partitional clustering.
• An appropriate subset of training patterns for efficient classification.
• A ranked collection of documents/snippets against a user’s query in information
retrieval.
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Table 2.6 Roles of centrality and diversity

Task Centrality Diversity

Pattern representation Discriminating features Discriminate all classes

K-Prototype clustering Centroids/Prototypes Far apart representatives

Training Essential training points Represent intra-class diversity

Classifier learning Simple models Data variability

Search engine Pagerank Content match

Search in AI Heuristic search Complete search

Regression Low variance Bias preserving

Recommendations Based on user Diverse recommendations

Social networks Centrality of entities Multiple types of nodes

• An optimal/admissible scheme in problem solving in AI.

In the previous chapter also, we discussed how centrality and diversity are useful
in search in different tasks. A summary of different roles played by centrality and
diversity is provided in Table 2.6.

Bibliography

1. Nilsson NJ (1998) Artificial intelligence: a new synthesis. Morgan Kaufmann
2. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, New

York
3. Knuth DE (1998) The art of computer programming: sorting and searching, vol 3. Addison-

Wesley
4. Manning CD, Schütze H, Raghavan P (2009) An introduction to information retrieval. Cam-

bridge University Press
5. Nandanwar S, Moroney A, Murty MN (2018) Fusing diversity in recommendations in heteroge-

neous information networks. In: Proceedings ofWSDM, 5–9 Feb 2018. LosAngeles, California,
USA



Chapter 3
Representation

Abstract Representation is important in machine-based pattern recognition, AI,
and machine learning. We need to represent states and state transitions appropriately
in AI-based problem-solving. Similarly, in clustering and classification, we need to
represent the data points, clusters, and classes.

Keywords Representation · Classification · Clustering · AI

3.1 Introduction

In dealing with several tasks in artificial intelligence and machine learning, we need
to represent the problem/data appropriately so as to capture the knowledge about
the problem/application. Each application might have a different requirement for the
representation. We consider some of the relevant representations next.

3.2 Problem Solving in AI

Recall the description of the 3-puzzle problem discussed in the previous chapter.
Each configuration/state is represented as a node in a tree/graph. This would help
in implementing BFS and DFS directly on the nodes of the tree/graph. Note that
searching on graphs can be complex compared to searching on trees. This helps in
directly importing the well-established properties of these search schemes into the
current problem-solving context.

Consider the puzzle problem shown in Fig. 3.1. The initial and goal state could
be represented as a node in a graph as discussed in the previous chapter. Instead,
it is also possible to represent each state as a string. For example, the initial state
in the figure may be represented by 1, 2, #, 3 where the tile numbers are presented
row-wise and the free space is represented by #. The given problem in the figure may
be represented as

(Initial State) 1, 2, #, 3 →to 2, #, 1, 3 (Goal State)
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Fig. 3.1 Example 3-Puzzle
problem

This is one way of linear representation of the 2-dimensional view of the puzzle.
There could be other ways of linearizing. To be consistent with the legal moves in
the 3-puzzle, we need to devise equivalent operations on strings.

For example, from the initial state in the figure, it is legally possible to move
the free space either right (R) or up (U ). It is not possible to move the free space
either Left (L) or Down (D) in this state. The two possible legal operations may be
characterized in the case of strings by

1, 2, #, 3 →U #, 2, 1, 3

1, 2, #, 3 →R 1, 2, 3, #

The optimal path between the initial state and the goal state using the string repre-
sentations is

1, 2, #, 3 →U #, 2, 1, 3 →R 2, #, 1, 3

With this representation, one can perform all the operations that are possible in
tree/graph representation of the state space.

3.3 Vector Space Representation

Representing patterns as vectors is the most popular scheme in machine learning,
pattern recognition, and information retrieval. Here, wewill consider how documents
could be represented.

3.3.1 What is a Document?

It is important to ask this question as almost anything that you store on a computer
may be viewed as a document as almost any operation one performs on a computer
is some kind of search. A popularly accepted collection of entities that could qualify
as documents includes:
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• Text Documents:

1. Electronic mail (email): The quantum of data received through email is increas-
ing enormously. The growth in size is so large to the extent that reading all the
maild received during a period of time could become difficult before newmails
start accumulating. Both categorization of mail to put them into different fold-
ers for easy reference and identifying unwanted/spam mail so that it could be
separated fromwhat is typically of interest to the usermight require automation.

2. Messages: Typically, text messages are received on mobile devices.
3. Multilingual Documents: Text that employs a combination of languages.
4. Tweets: Twitter is a platform for people to share short messages of text where

vocabulary may not be standard.
5. Academic publications: These include books, journal and conference papers,

and online course material.

Different types of text data are represented as vectors.

• Multimedia Data

1. Web page: Typically, it includes text, images, video, and an search engines
deal with this type of data. The most popular representation is to view them as
vectors. Text, images, and video content could be represented as vectors.

2. Health Records: This type of documents might include printed text correspond-
ing to the patient details, handwritten text including doctor’s observations and
prescriptions, photos, ultrasound images, X-ray, MRI scans, etc.

3. Personal Identity Cards: These may include text, face photo, iris, and finger-
prints of the individual.

4. Others: There are several other categories of data, including offline and online
news, encyclopedias, product manual pages, company reports, government
records, weather reports, and court transcripts.

All these multimedia data can be represented as vectors for further processing.

• Software: This also may be viewed as text data.

1. Code: Typically text in a formal language.
2. Documentation: This will be text in some natural language
3. Bug reports: Typically, multilingual text that combines formal and natural lan-

guages.

So, the document is a very pervasive notion and it might be almost any entity/item
stored on a computer/network/cloud.

3.4 Representing Text Documents

There are different representations employed for text, images, videos, and other data
sets. Here, we concentrate on representing text documents. Some of these schemes
could be extended to other types of documents. We will examine the representation
of network data sets in the applications chapter.
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3.4.1 Analysis of Text Documents

Earlier researchers have analyzed large collections of documents. The observations
are:

1. The frequency, fi, of a term with rank i is given by

fi ∝ 1

i

where words in the underlying vocabulary are arranged in decreasing order of
frequency and the most frequently occurring word like the gets rank 1 and the
least frequent word gets the rank |V |where V is the vocabulary set. This property
is called Zipf’s law. In information retrieval approaches, it is a common practice
to remove the frequent words from the vocabulary. This is called stopping.

2. The communication gap between the speaker and the listener is smaller if the
listener understands the words used by the speaker.

Noting that frequent words, for example the, of, to, and, even though shared well
between the speaker and the listener, do not offer much information. On the other
hand rare words like biblioklept if used by the speaker may not be comprehensible
to the listener. So, words in the mid-frequency zone are important. This property is
exploited by TF − IDF that was discussed earlier which typically will assign larger
weights to the words, like data, mining, pattern, recognition, operating system, etc.
in the mid-frequency zone.

Models that deal with one word at a time are called uni-word models. They are
popular because of their simplicity resulting out of bag-of-words assumption. Here,
the order of word occurrence is not important, but the frequency of occurence of a
word in the document is important. Sometimes it might be useful to deal with biwords
in representing the documents. For example,machine learning, artificial intelligence,
pattern recognition, and social networks are popular biwords. It is possible to consider
tri-words (3-word phrases) and beyond. However, this may blowup the number of
terms and increase the diversity in representation.

A well-known approach based on TF − IDF weights is to generate soft clus-
ters/features using matrix factorization. Here, the collection of n documents in a
l-dimensional space (|V | = l), is abstracted as a n × l matrix, A, where the ith row
of A corresponds to the ith document, i = 1, . . . , n and the jth column of A, is char-
acterized by jth term in the vocabulary, j = 1, . . . , l.

The i, jth entry in A, Aij, is the TF − IDF(i, j) value. There are different schemes
for factorizing A such that

An×l = Bn×K CK×l

whereK is the number of soft clusters. Additional normalizationwill also correspond
to these soft clusters being viewed as topics. Under this factorization, it is possible
to view the K clusters to be bringing out the Latent Semantics in the data. There are
several schemes for matrix factorization. These include:
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• Latent Semantic Indexing: Here singular value decomposition is used to decom-
pose A as

An×l = Un×nDn×l Vl×l

where U and D are obtained based on eigenvectors and eigenvalues of the sym-
metric matrix AAt and V is obtained from the eigenvectors of AtA.

• Random Projections: The simplest decomposition is

An×l = Bn×K CK×l

where B is obtained using Random Projections of rows of A. In other words, B =
An×lRl×K where R is a matrix with random entries specified by some distribution.
Once A and B are given, obtaining C so that the Frobenius norm, |A − BC|2F , is
minimized is a simpler optimization problem. Using R a pair of documents, di and
dj, the rows i and j of A are projected to K-dimensional vectors, rows i and j of B.
It is shown that Euclidean distance between a pair of rows of A converges to the
Euclidean distance between the corresponding rows of B.

• Other Approaches: Some of the other important factorization schemes are based
on

– Non-negative matrix factorization (NMF)
HerematricesB andC are obtained so that they have nonnegative real entries and
|A − BC|2F is minimized. It is possible because A has nonnegative real entries.

– Latent Dirichlet allocation (LDA)
Based on some convenient assumptions on the prior distribution, a Bayesian
model is used to get An×l = Bn×K CK×l . Here, B is a soft assignment matrix
indicating how each of the documents is assigned softly to the K topics and
C describes the topics. A topic is a probability assignment to words in the
vocabulary and each row of C is a topic description in terms of the words in the
vocabulary.

Matrix factorization can capture the latent cluster/topic structure in document
collections. Based on the number of these clusters/topics (value of K), diversity in
the representation can get affected; larger K values lead to higher diversity. A major
difficulty with the matrix factorization schemes is that they can be computationally
explosive and may take an unreasonable amount of time on large data sets.

A more recent and efficient approach is based on representing words as vectors
which is called word2vec model. Here, a word is converted into a vector based on
the occurrence of words in its vicinity in various parts of documents in a document
collection. This involves training a neural network with pairs of words where a
selectedword in the pair is input to the network and the otherword is the target output.
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Such word pairs are obtained from the corpus by selecting a word and considering
words that occur within the vicinity of the selected word for possible pairing. We
will provide more details in later chapters.

3.5 Representing a Cluster

Typically, hard clustering algorithms are either partitional algorithms or hierarchi-
cal. A well-known hard clustering algorithm is the K-means algorithm(KMA). It
represents each cluster by its Centroid.

3.5.1 Centroid

An interesting statistical property of centroid of a cluster of points is that it is closest
to all the points in the cluster. Consider a cluster

c = {x1, x2, . . . , xp}.

Let x be the best vector that minimizes

p∑

i=1

(x − xi)
t(x − xi),

that is it minimizes the sum of squared distances to all the p points in the cluster.
Equating the gradient to zero would result in

x∗ = 1

p
xi

or equivalently x∗ is the centroid.
Selection of an appropriate set of centroids is important for the KMA to provide

a good partition as discussed earlier. The initial centroids must reflect sufficient
diversity and at the same time, they must be representing dense regions; otherwise,
outlier clusters will be formed.

Even though centroid summarizes the points in the cluster in an intuitively appeal-
ing way, it is not robust to the presence of outliers in the cluster. If one of the p points
is an outlier that is far off from the rest of the p − 1 points in the cluster, then it
can affect the location of the centroid adversely. One solution offered to solve this
problem is to consider medoid instead of the centroid. Medoid is a point in the cluster
that is nearest to all the remaining p − 1 points. Medoid is robust to outliers . Note
that centroid need not be a member of the cluster whereas medoid is constrained to
be a member of the set.
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Fig. 3.2 A dendrogram
depicting hierarchical
clustering

3.5.2 Hierarchical Clustering

Wedepict an abstraction of the hierarchical clustering using an example tree structure,
dendrogram as shown in Fig. 3.2.

There are 6 points in this example and they are labeled 1, 2, . . . , 6. Each is viewed
as a singleton cluster. So, there are 6 clusters as depicted by the leaves.We recursively
keep merging a pair of clusters by identifying the most similar pair. Dissimilarity
between a pair of clusters ci and cj is given by

Minx∈ci,y∈cj d(x, y).

Among all possible pairs of clusters, we select that pair that has the minimum dis-
similarity between the two member clusters. Such a merging process is repeated till
we are left with a single cluster. This is called the single-link algorithm.

In the dendrogram shown in the figure, we depict how starting from 6 singleton
clusters, we keep on merging till we are left with a single cluster. Here, the singleton
clusters {1} and {2} are merged to get 5 clusters given by

{{1, 2}, {3}, {4}, {5}, {6}}.

Among these 5 clusters, {3}, and {5} are the most similar and by merging them, we
get 4 clusters given by

{{1, 2}, {3, 5}, {4}, {6}.

Next, the clusters {4} and {6} are merged followed by merging {1, 2} and {3, 5} are
merged to get 2 clusters

{1, 2, 3, 5}, {4, 6}.

Next, we merge the two clusters to form a single cluster having all the 6 points. This
entire merging process is shown in the figure. Note that each cluster is represented
by a subtree of the dendrogram in the figure. By stopping the merging process in
the dendrogram at an appropriate level, we get the required clusters. It is equivalent
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to cutting the dendrogram at the required level as shown by the broken line in the
figure, which corresponds to having three clusters seen as three subtrees in the figure.
Diversity is exhibited when the cut is closer to the leaves and the clustering is less
diverse as we shift the cut to be closer to the root.

For a collection of n patterns, hierarchical algorithm requires O(n2) time and
space as it computes a matrix that stores proximity values between all

(n
2

)
pairs of

points. Because of this quadratic time and space requirements, this algorithm is not
attractive to cluster large data sets.

There are a host of clustering algorithms based on different formulations. A
notable direction as already mentioned is based on viewing each point as a row
of the matrix and achieve clustering through matrix factorization. For example, con-
sider the 3-dimensional data set of 6 points shown as the rows of the 6 × 3 matrix A
where each of the 3 columns corresponds to one of the 3 features. Consider also its
factorization into B6×2C2×3 given by

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 1 2
1 2 1
7 7 6
7 6 7
7 7 7

⎤

⎥⎥⎥⎥⎥⎥⎦
≈

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
0 1
0 1
0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

[
1 1.33 1.33
7 6.66 6.66,

]

where

B =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
0 1
0 1
0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
and C =

[
1 1.33 1.33
7 6.66 6.66.

]

Here, the value of K , the number of clusters is 2. Matrix B is the assignment matrix
depicting the assignment of each of the six patterns to one of the two clusters. Matrix
C, on the other hand, is the description matrix providing the description of each the
two clusters (its rows) using the respective centroid.

The data in A is such that the two clusters are reasonably well-separated from
each other. So, the hard 2-partition (two clusters) given by

{(1, 1, 1)t, (1, 1, 2)t, (1, 2, 1)t}, {(7, 7, 6)t, (7, 6, 7)t, (7, 7, 7)t}

is justified.Note thatKMAwould have generated the same2-partitionwith the respec-
tive centroids, the 2 rows of C, summarizing the clusters. So, the above factorization
abstracts the KMA.

It may not always be the case that hard clustering is justified. Consider another set
of five 3-dimensional points shown inmatrixE5×3 with a factorizationE = F5×2G2×3

given by
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E =

⎡

⎢⎢⎢⎢⎣

3 2 3
2 3 2
4 4 4
6 5 6
5 6 5

⎤

⎥⎥⎥⎥⎦
≈

⎡

⎢⎢⎢⎢⎣

1 0
1 0
0.5 0.5
0 1
0 1

⎤

⎥⎥⎥⎥⎦

[
3 3 3
5 5 5.

]

Note that the data in E does not exhibit the same level of well-separated clusters as
that in A. A possible factorization of E depicting softness in the assignment of the
third pattern (4, 4, 4)t is captured in F and matrix G provides cluster descriptions
using some weighted centroids.

There are other algorithms that exploit the matrix representations including spec-
tral clustering. However, their usage is restricted to smaller data sets. Even explicit
matrix factorization algorithms suffer due to computational resource requirements.
Currently, there is more interest in random walk based methods as they can scale up
well. We will discuss them in the application chapter.

3.6 Representing Classes and Classifiers

A classifier learning algorithm takes the training data as input and learns an appro-
priate abstraction. Some of the prominent ones are as follows:

3.6.1 Neighborhood Based Classifier (NNC)

In the simplest form of NNC all the n training examples in l-dimensional space are
used to classify a test pattern. So, it is called an exemplar-based classifier. It is a
simple classifier as it classifies a test pattern x to the class of its nearest neighbor
(NN) from the training data and it may be represented as NN (x). Equivalently

class_label(x) = class_label(NN (x)).

It is an exemplar-based classifier giving 100% accuracy on the training data. This
training data is represented, when there are C classes c1, . . . , cC , by

X = {(x1, c1), (x2, c2), . . . , (xn, cn),

where
cj ∈ {c1, . . . , cC} for j = 1, . . . , n.

Some important properties of NNC are as follows:
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1. It is often said that it does not employ any learning or knowledge. However,
subtly it does both learning and usage of knowledge. It has to abstract or learn
the notion of neighborhood of a test pattern from the training data.

2. It exploits the domain knowledge and representation of patterns using an appro-
priate distance/similarity or proximity function.

3. Routinely metrics like the Euclidean distance are used to capture the notion of
neighbor. Here

NN (x) = arg minxi∈X d(x, xi),

where d is a distance function. Typically, d is assumed to be a metric. However,
several nonmetric distances like the KL-divergence are very popularly used in
several machine learning, social network representation, and other areas. What
is essential is that different proximity functions capture neighborhood in diverse
ways; so their usage imposes additional semantics on neighbor.

4. A minor practical difficulty with NNC is that in order to classify a test pattern
x it needs to consider all the n training patterns leading to O(n) time ans space
requirement.

5. A well-known problem is that it is not robust to outliers or noise in the training
data. Depending on a single NN is the problem.

6. The most important difficulty that is not so well-known is that as the dimension-
ality of the data increases, it fails to identify the correct class label for the test
pattern because

d(x,NN (x)) → d(x,FN (x)) as l → ∞.

That is as the dimensionality increases it is difficult to discriminate between
the NN (x) and the farthest neighbor of x (FN (x)). This limiting behavior is
probabilistic. A consequence of this is that in important current day applications,
where the dimensionality is large, NNC is not a good classifier.

So,NNC in its simplest form is associatedwith some complexity and so is diversity
friendly. Some variants that can deal with some of these problems are:

1. CNNC: It deals with a condensed data set of prototype patterns of various
classes in classification. This reduces the time and space complexities from
O(n) to O(m) where m is the number of prototypes in the condensed set. It
reduces diversity by possibly selecting the right prototypes. It is not robust to
outliers as it adds them to the condensed set.

2. Minimal distance classifier (MDC): The simplest prototype set is obtained
by having one representative per class. The representative can be the sample
mean/centroid,µ, of the vectors in the class. Now a pattern x is assigned the label
of its nearest of the C centroids. This is called the MDC. Here,

class_label(x) = class_label(arg minµi∈Ptr d(x, µi)), where

Ptr = {µ1, µ2, . . . , µC}.
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It is possible to show that when the classes are restricted to possess some proba-
bility structure, MDC will classify x exactly like the Optimal classifier.

3. KNNC: It is a well-known classifier that classifies a test pattern x by finding its
label as the majority class label present among K nearest neighbors of x. So, it
uses K NNs where typically K > 1. So,

a. It is more robust to noise.
b. Error rate of KNNC can asymptotically (n → ∞) converges to the optimal

error rate under conditions on K .
c. It uses K NNs of x without considering the distances of these neighbors in

classifying x. To reduce the affect of outliers, it is modified to get weighted
majorities of different class labels among the K NNs by weighing the con-
tributions of the neighbors based on their neighborhood ranks. The nearer
the neighbor of x among the K neighbors the larger its importance (weight).

d. In practice, n is finite and if K = n then any test pattern x is labeled with the
class label of the majority class in the training data. This is a very simple
model and exhibits centrality.As the value ofK → 1, it offersmore diversity.
Smaller the value of K larger the diversity.

4. Fractional Norms: It is observed that instead of usingEuclidean distance to get the
NN (x), city block distance (L1 norm) will do better as the dimensionality grows.
Further, fractional norms can do better than the L1 norm on high-dimensional
data. Here, the fractional norm, d , is defined as

d(x, xi) = (

l∑

j=1

|x(j) − xi(j)|q) 1
q ,

where q is a fraction in (0, 1) and x(j) is the jth component of x, for j = 1, . . . , l.
So, fractional norms reduce the diversity in classification byNNC and its variants.

5. Approximate NN : There are several schemes suggested to get an approximate
NN of a test pattern x. One recent contribution in this direction is the locality
sensitive hashing (LSH) which could be viewed simply as obtaining the NN in a
randomly selected subset of features. It combines the approximate NNs obtained
by some L random subsets of features. So, neighborhood is defined here based
on a collection of neighbors in several random subspaces. This combination can
reduce the diversity in NNC as it operates in lower dimensional subspaces.

NNC captures all the details including noise and so is more diverse compared to
either CNNC or K − NNC. In the case of CNNC, only essential patterns from the
training data are retained; so it is a simpler model. In the case of KNNC, the value of
K is learnt using the training and validation data. Along with increase in the value
of K , performance of KNNC becomes more predictable. Even though NNC is a
simple classifier, it has an error rate that is twice that of the optimal Bayes classifier
asymptotically. So, in classification of big data, NNC is more robust. However, it is
computationally inefficient as its abstraction capability is poor.
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3.6.2 Bayes Classifier

Here, each class is represented by a probability density function.With the availability
of the prior probabilities it computes the posterior probability using Bayes rule and
uses the posterior probabilities to come out with an optimal classifier. If P(ci) is the
prior probability of class ci and P(x/ci) is the mass function of x under class ci, then
the posterior probability P(ci/x), that depends upon a specific x to be classified is

P(ci/x) = P(ci)P(x/ci)∑C
j=1 P(cj)P(x/cj)

.

It computes the posterior probability for each of the C classes and assigns x to the
classwith the largest posterior probability. It minimizes the average of the probability
of error. However, it needs to estimate the underlying probability structure from the
training data. Naïve Bayes classifier (NBC) is a simplified model where features
are assumed to be class-conditionally independent. That is if x is an l-dimensional
vector thenP(x/ci) is approximated as

∏l
p=1 P(xp/ci). This assumption simplifies the

estimation of the probabilities. Bayes classifier is based on the probability structure
and is an ideal one. However, to realize it, we need to depend on statistics and so is
affected by the empirical properties including the bias-variance trade-off.

3.6.3 Neural Net Classifiers

There are a variety of artificial neural net classifiers including perceptron, multilayer
perceptron (MLP), and support vector machine (SVM).

3.6.3.1 Perceptron

It is the simplest neural classifier. In its simplest from, it may be viewed as a linear
classifier.

If x is a l-dimensional point, then perceptron finds a l-dimensional vector w and
a scalar b such that

wtx + b > 0 if x ∈ c+ and

wtx + b < 0 if x ∈ c−.

The second inequality can be rewritten as

−wtx − b > 0 if x ∈ c−.
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So, both these inequalities can be replaced by a single inequality of the form

wt
axa > 0

wherewa = [w, b] and xa = [x, 1] if x ∈ c+ and xa = [−x,−1] if x ∈ c− wherewa

and xa are suitably appended l + 1-dimensional vectors. Even though wa and w are
different because wtx + b = wt

axa, we will use w for the augmented vector wa also
and the usage will be clear based on the context in which it is used. Some details of
the perceptron algorithm (Algorithm 4) for obtaining a w from the training data will
be discussed next.

• Perceptron Learning Algorithm (PLA)

Algorithm 4 Perceptron Learning
Input: A labeled and augmented training data set X = {(x1, lab1), (x2, lab2), . . . , (xn, labn)} with
n data objects; labi is the class label of xi . There are two classes—a positive class and a negative
class.
Output: A vector w such that wtxi > 0, ∀i.
1: Let k = 0 and wk = 0. Consider patterns in the order x1, . . . , xn, x1, . . . , xn, x1, . . ..
2: STOP if no pattern in a sequence of n successive patterns ismisclassified bywk ; declarew = wk .

Else let xp be the first misclassified pattern in the order by wk or equivalently wt
k xp ≤ 0.

3: Let k = k + 1, and wk = wk−1 + xp. Goto step (2).

• It is possible to show that if there is at least one such w that exists satisfying the
inequality for all the training patterns in a two class (c+, and c−) problem, then
perceptron can learn such aw. Such a pair of classes are called linearly separable.

• PLA is a deterministic algorithm and it converges to a w in a finite number of
iterations (epochs) over the data if the two classes are linearly separable.

• Example 3
Let us consider a 1-dimensional labeled data set

{(1, c−), (2.1, c−), (3.5, c−), (5.7, c+), (6.5, c+).

In this example,

x ≤ 3.5 ⇒ x ∈ c− and x ≥ 5.7 ⇒ x ∈ c+

Based on the training data, a simple rule like x > 4 ⇒ x ∈ c+ else x ∈ c− is ade-
quate. Instead of 4, any value in the interval (3.5, 5.7) will work. The augmented
data is

(−1,−1)t, (−2.1,−1)t, (−3.5,−1)t, (5.7, 1)t, (6.5, 1)t .

Starting with w0 = (0, 0)t , in a small number of updates we get w = (3.7,−13)t

whichmeans (3.7,−13).(x, 1) = 3.7x − 13 = 0 defines the boundary between the
two classes. Equivalently, x = 130

37 ≈ 3.513. So, a value less than 3.513 belongs to
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c−, else it belongs to c+. If one goes through the updates onw using PLA it will be
noticed that the number of updates is larger because of (−3.5,−1)t that is closest
to the boundary, 3.513, between c− and c+. The reason is that p = (−3.5,−1)t

being closest to the decision boundary can be close to being orthogonal to the
weight vector w and hence wtp is close to 0; so, it can have more impact on the
convergence of PLA.

3.6.3.2 Multilayer Perceptron (MLP)

Perceptron fails to capture the discrimination information between the classes when
they are not linearly separable. For example, consider the boolean function shown in
Table 3.1. Note that the boolean function f (x, y) and the algebraic form 2xy − x −
y + 1 are equivalent as shown in the table. Further, the xy term in the expression in
column 4 of the table indicates the possible nonlinearity.

The input–output behavior of the function is shown in Table 3.1. Note that it is not
possible to linearly separate the two points with output 1 from the other two points
with output 0 or equivalently there is no straight line segment that can separate the
0s from 1s. However, from the equivalent function, 2xy − x − y + 1 shown in the
table, it is possible to have a linear separation in the 3-dimensional space of (xy, x, y).
Specifically, if z = (xy, x, y, 1)t and Wm = (2,−1,−1, 1)t , then

f (x, y) = W t
mz

is a linear function in the 4-dimensional space.
This view perhaps hints at using the perceptron with four inputs xy, x, y ; and 1

to do the job. However, computing xy from x and y needs one more percptron unit
as shown in Fig. 3.3. This leads to a two-layer perceptron network which is an
MLP. Typically, such an MLP is trained using backpropagation algorithm which
is a gradient descent-based algorithm that updates vector W to minimize the error
between the target output and output obtained using the current W vector. This
gradient descent approach may not get the best W ; the backpropagation algorithm
may reach a local minimumof the error. Thediversity in descent direction is controlled
by using some heuristics like momentum term.

Table 3.1 Typical patterns

x y f (x, y) 2xy − x − y + 1

0 0 1 1

1 0 0 0

0 1 0 0

1 1 1 1
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Fig. 3.3 An MLP for the
boolean function

3.6.3.3 Support Vector Machine

An MLP once trained may get the best W vector or equivalently train the network
properly. This motivated the need for a better learning algorithm in the form of the
support vector machine (SV M ). A more convenient criterion function is chosen for
optmization by SVM.

Here, the binary classification problem is formulated as maximization of the mar-
gin or separation between the two classes. In case there is no margin between the two
classes because there is an overlap between the classes, a soft margin formulation is
used to reduce the impact of the points on the margin, or the non-feasible points. A
consequence of this is that the resulting optimization function is well behaved. The
weight vector W learnt by SV M is based on typically a small set of boundary pat-
terns and margin violators which are called support vectors. These support vectors
are demonstrated to form some kind of essential set or support set for classification,
clustering, and regression.

3.6.4 Decision Tree Classifiers (DTC)

Decision tree classifier may be viewed as a piece-wise linear classifier that combines
a sequence of decisions to abstract the training data into the tree. The entire training
data set is associated with the root node of the tree. At each nonterminal node,
including the root node of the tree, a test based on the best feature is used to split the
training data set associated with the node into smaller data sets and associate them
with its children nodes. Here, the best feature and the split are based on minimizing
entropy in the resulting split. The split is axis parallel, that is using one feature at a
time. For example, consider the data set shown in Fig. 3.4.

The corresponding decision tree is shown in Fig. 3.5. All the 11 patterns (6 x,
5 o) are associated with the root nodes in both (a) and (b) in the figure. The axis-
parallel split on feature f < a in Fig. 3.5a is better than the axis-parallel split using
f ′ shown in Fig. 3.5b. Note that against each node of the trees, the number of patterns
in each class is displayed to compute the proportions of the two classes. This may
be explained using gini index, an impurity measure associated with a node.

Gini index is based on the proportion of patterns, fromeach class, at a node. If there
are C classes in the data and the proportions of points at a node v are p1, p2, . . . , pC ,
then gini index (GI) at v is
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Fig. 3.4 Example data set

Fig. 3.5 a The decision tree constructed b Another split at the root

GI(v) = 1 −
C∑

i=1

p2
i .

For example, in Fig. 3.5, there are two classes (C = 2). Out of the 11 patterns
associated with the root in (a), the left child has 4 points all from class x. So the
proportions are px = 1 and po = 0. So, its GI value is 0 indicating that the node is
pure. In the case of the right child of the root in (a) in the figure, the proportions are
px = 2

7 and po = 5
7 . So, the GI value of the node is

20
49 . Hence, the split based on f at

the root of the tree in (a) of the figure leads to weighted impurity of

0.
4

11
+ 20

49
.
7

11
= 20

77

as the left child has 0 impurity and the right child with 7 out of 11 points has impurity
of 20

49 .
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On the contrary, in (b) of the figure, where ta the root the split is based on f ′, the
split has a weighted impurity of

0.
2

11
+ 9

11
.(1 − (

4

9
)2 − (

5

9
)2) = 40

99
.

So, the impurity is more than that corresponding to the split at the root in (a) of the
figure.

In general, the root node carries the decision based on the best feature that leads
to the least impurity split. The construction of the decision tree is done in a greedy
manner. So, once the best decision is fixed for the root, the splits at the nodes that
are descendants are biased by the decision made at the root node. The implications
of this greedy decision in building the tree are:

1. If the classification problem is high-dimensional, then to arrive at the best deci-
sion, all the features in the large set need to be considered for evaluating the best
split. This limits the use of decision tree classifiers to low-dimensional problems.

2. Even in the low-dimensional problems, the greediness may lead to decisions with
many levels to ensure purity at the leaf level. It is demonstrated that trees with a
single decision node perform well on a large number of benchmark data sets.

Some of the important positive aspects of decision tree classifier are as follows:

1. It is highly transparent classifiers and are simple.
2. It can be extended to be used for both classification and regression like theKNNC.

Even though it is possible to use splits other than axis-parallel splits, the alternatives
are not popular because of computational complexity. Also, decision trees with too
many levels do not do well in classifying the test patterns (generalization) as the trees
may overfit the training data. Such classifiers exhibit a lot of diversity; minor changes
in the training data may lead to variations in the trees generated. This diversity is
controlled by pruning the leaf nodes in the tree which account for a small number of
points. Equivalently splitting at nodes that have a very small amount of impurity is not
performed. This improves the generalization by making the tree classifier simpler.

Simpler decision tree classifiers are combined to learn more robust classifiers as
follows:

1. Several simple decision tree classifiers are combined to form a classifier that
performs well. In fact, it is possible to combine decision stump classifiers (one
node decision trees) and realize a competitive classifier.

2. To deal with high-dimensional data sets having n patterns and l features, a forest
of simple decision trees is used in classification. Each decision tree classifier is
built from n training patterns of l′-dimensionwith l′  l with possible repetitions
(sampling with replacement). A collection of p such decision tree classifiers are
used to classify each test pattern by using the majority class label obtained from
the p classifiers on the test pattern. Such a forest of classifiers is popularly called
as the random forest (RF) classifier which controls the diversity in classification.
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3.7 Summary

In this chapter, the notion of representation of problem states, patterns, clusters, and
classes is considered. This has an impact on the underlying tasks in AI, machine
learning, and information retrieval. The roles of centrality and diversity in searching
for proper representations is also discussed. We summarize some of these roles in
Table 3.2.

Recall the discussionwehadon the role ofbias and variance in learning classifiers.
In a nutshell, simpler models lead to low variance and central models and complex
models are low bias and diverse models. We summarize how the representation of
data, and classes can impact the classifier’s behavior. In Table 3.3, we consider NNC
and its variants.

In the case of classifiers other than NN based also, representation can impact the
centrality and diversity in searching for representation of patterns, classes, and other
hyperparameters as shown in Table 3.4.

Table 3.2 Centrality and diversity in representation

Task Centrality Diversity

AI problem-solving Tree (simpler search) Graph (complex search)

Document processing Mid-frequency words
(low-dimensional)

Stopping (Zipf’s law)
(high-dimensional)

Phrase length Bag-of-words N-words

Document matrix factorization Smaller number of topics Large number of topics

K-means clustering Medoid based (robust to
outliers)

Centroid based (outliers affect)

Single-link clustering
(Hierarchical)

Dendrogram is cut close to root Dendrogram is cut close to
leaves

Table 3.3 Centrality and diversity in neighborhood based classifiers

Classifier Diversity Centrality

NNC Diverse (noise, outliers) Simpler (approximations)

CNNC More diverse (outliers) Less diverse (Apt prototype set)

KNNC Larger diversity (K small) Predictable (K is large)

Distance Larger (Euclidean and higher) Simpler L1 and fractional

LSH Less diverse Simpler (central)



Bibliography 47

Table 3.4 Centrality and diversity in classification

Classifier Diversity Centrality

Bayes classifier Optimal (class-conditional pdf) Optimal (Prior Probabilities)

NBC (small data sets) Larger (max likelihood
estimation)

Simpler (Bayesian estimation)

NBC (Big data) Smaller (max likelihood
estimation)

Simpler (Bayesian estimation)

MLP Higher (local minimum of error) Higher (regularizer like
momentum)

Perceptron Larger (W varies) Smaller

SV M Smaller (smaller variation in W ) Larger

DTC Larger (taller tree) Larger (pruned tree)

RF (low variance) Smaller Larger
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Chapter 4
Clustering and Classification

Abstract Optimization is another important tool that helps in defining, designing,
and in model selection in various machine learning tasks including dimensionali-
ty reduction, clustering, and classification. We discuss, in this chapter, the role of
optimization in feature selection, feature extraction, clustering, and classification.

Keywords Optimization · Regularization · Feature selection · Classification ·
Clustering

4.1 Introduction

We have examined the roles of centrality and diversity in search and representation
earlier. In the discussion, we had considered their roles in clustering and classification
also. In this chapter, we will consider more details on the roles of centrality and
diversity in clustering and classification.

4.2 Clustering

We have observed that a unifying representation of both hard and soft clustering is
through matrix factorization. Specifically, if we represent the set of n l-dimensional
points,

X = {x1, x2, . . . , xn},

to be clustered as the rows of a matrix An×l , then we can factorize it into the product
of matrices Bn×K and CK×l where

• Bn×K is the cluster/topic assignment matrix, Bik is the membership or importance
of cluster k to pattern i for i = 1, . . . , n and k = 1, . . . ,K .

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
M. N. Murty and A. Biswas, Centrality and Diversity in Search,
SpringerBriefs in Intelligent Systems, https://doi.org/10.1007/978-3-030-24713-3_4
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• CK×l is the cluster/topic description matrix where Ckj indicates the importance of
feature j to cluster k, j = 1, . . . , l and k = 1, . . . ,K .

Anobservation in such a representation is that anydatamatrixAn×l is a�n×l structure.
Further, any n × l matrix A has its

rank(A) = row − rank(A) = column − rank(A)

where row rank is the number of linearly independent rows in A and column rank is
the number of linearly independent columns of A. Because clustering is grouping of
rows (n patterns) and dimensionality reduction deals with columns (l features), their
ranks being equal means the number of clusters and number of features are equal
from the linear independence view.

We examine one representative each from clustering, feature selection, and feature
extraction with the help of an example data set.

Example 4.1 Let A4×3 be a matrix representing 4 patterns in a 3-dimensional space
given by

A =

⎡
⎢⎢⎣
1 0 1
0 1 0
1 0 1
0 1 0

⎤
⎥⎥⎦

For the sake of simplicity rows are replicated, rows 1 and 3 are identical and rows 2
and 4 are also same. We will examine clustering first using matrix A.

4.2.1 Clustering-Based Matrix Factorization

Clustering the 4 rows of A into K = 2 clusters gives us {A1,A3} and {A2,A4}, where
Ai is the ith row of A. This is obtained by selecting the first two rows, diverse rows,
as the initial cluster centers and assigning the remaining two points, third and fourth
rows based on nearness to the selected points. The centroids of clusters c1 and c2 are
(1, 0, 1) and (0, 1, 0) respectively. This gives us

• The assignment matrix B4×2 to be

B =

⎡
⎢⎢⎣
1 0
0 1
1 0
0 1

⎤
⎥⎥⎦

• The cluster description matrix C2×3 has the 2 centroids as its rows given by

C =
[
1 0 1
0 1 0

]
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• Note that

A =

⎡
⎢⎢⎣
1 0 1
0 1 0
1 0 1
0 1 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0
0 1
1 0
0 1

⎤
⎥⎥⎦

[
1 0 1
0 1 0

]
= BC

Observe that because of the simplicity of the data, any clustering algorithm will lead
to the same partition and if centroids of clusters or other representatives are used,
again we get the same C matrix. However, some important observations are

• In generalA ≈ BC. In this example, A = BC because each centroid coincides with
2 out of the 4 patterns.

• In most of the practical applications A will have elements from �+ ∪ {0}. The
factorization is called non-negative matrix factorization (NMF) if elements of B
and C are nonnegative reals.

• It is known that in such a NMF if any two out of A, B, C are given, then getting
the third one is simple. In KMA based clustering, given A, getting the centroids
and the C matrix are reasonably straightforward.

• InNMF, in general, we are givenA and findingB andC is posed as the optimization
problem

min
B,C

||A − BC||F s.t.B ≥ 0,C ≥ 0

where ||A − BC||F is the squared Frobenius norm or element-wise difference be-
tween the n × l matrices A and BC.

4.2.2 Feature Selection

It is easy to observe that columns 1 and 3 are identical in matrix A. So, by grouping
the columns and identifying diverse columns gives rise to using either columns 1 and
2 or columns 2 and 3. Suppose we use columns 1 and 2 to represent matrix B, then

B =

⎡
⎢⎢⎣
1 0
0 1
1 0
0 1

⎤
⎥⎥⎦ .

Consequently we get the same C matrix as earlier that is given by

C =
[
1 0 1
0 1 0

]
.
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This simple example is ideally suited to illustrate the equivalence between features
and clusters by using feature selection. Further, all the matrices involved are non-
negative. So, this is an example NMF .

4.2.3 Principal Component Analysis (PCA)

Principal components, PCs, are popular linear feature extractors. Given the data
represented in l-dimensional space using features f1, f2, . . . , fl . An extracted feature,
f , is a linear combination that is obtained from the given l features. So, f = ∑l

i=1 αifi
where αi is the weight or importance associated with the given feature fi. In general,
we can extract features using nonlinear combinations also, but that may be time
consuming.

In PCA, the features extracted are the eigenvectors of the covariance matrix of the
data. These are popularly called the principal components (PCs). There could be up
to l PCs when A is an n × l matrix. These are ordered based on decreasing order of
the respective eigenvalues. Some properties of PCA are

1. Because the underlying matrix is the covariance matrix, these eigenvalues are
variances in the directionof the respectivePCs. So, thefirstPC is in themaximum
variance direction of the data.

2. The covariance matrix is a symmetric matrix. So, the eigenvectors (PCs) are
orthogonal to each other when the corresponding eigenvalues are distinct.

3. If we take the first K out of l possible PCs to represent the data, it corresponds
to optimizing a criterion function that captures average deviations between the
given patterns in the l-dimensional space and aK-dimensional space. This mini-
mization leads toK PCs as the optimal new features that are linear combinations
of the given features.

4. These PCs provide uncorrelated directions under some conditions.

Considering the data matrix A4×3, the corresponding sample covariance matrix is
obtained first by getting the zero-mean normalized matrix, An is

An =

⎡
⎢⎢⎣

1
2 − 1

2
1
2− 1

2
1
2 − 1

2
1
2 − 1

2
1
2− 1

2
1
2 − 1

2

⎤
⎥⎥⎦

and then the covariance matrix Σ given by AntAn which is

Σ = 1

4

⎡
⎣

1 −1 1
−1 1 −1
1 −1 1

⎤
⎦ .
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The eigenvalues of Σ are 3, 0, and 0. So, the top two eigenvectors are (1,−1, 1)t

and (1, 2, 1)t . They are orthogonal. To make them orthonormal we normalize them
to make them unit norm vectors to get the two PCs to be

(
1√
3
,− 1√

3
,

1√
3

)t

,

(
1√
6
,

2√
6
,

1√
6

)t

So, Cpc matrix is given by

Cpc =
[

1√
3

− 1√
3

1√
3

1√
6

2√
6

1√
6
.

]

This gives us the Bpc matrix to be

Bpc =

⎡
⎢⎢⎢⎣

2√
3

2√
6

− 1√
3

2√
6

2√
3

2√
6

− 1√
3

2√
6
.

⎤
⎥⎥⎥⎦

Note that the 4 rows of Bpc are obtained by projecting the 4 patterns onto these
two PCs. Projecting the first row (pattern) of A, that is (1, 0, 1) gives us ( 2√

3
, 2√

6
).

The second row projection gives us (− 1√
3
, 2√

6
). Putting them all together, we have

A = BpcCpc given by

A =

⎡
⎢⎢⎣
1 0 1
0 1 0
1 0 1
0 1 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2√
3

2√
6

− 1√
3

2√
6

2√
3

2√
6

− 1√
3

2√
6

⎤
⎥⎥⎥⎦

[
1√
3

− 1√
3

1√
3

1√
6

2√
6

1√
6
.

]

This factorization is indicating how the 3-dimensional points are represented in the
2-dimensional PC space. When the rank of the matrix A is 2, which is the case
here, we can represent it using 2 orthogonal basis vectors as indicated in the equality
between A and BpcCpc. Also this is not an NMF as there are negative elements in
both Bpc and Cpc.

However, the second eigenvalue ofΣ is 0. So, the variance is captured by the first
PC itself. In such a case, using the first PC we get approximation

A =

⎡
⎢⎢⎣
1 0 1
0 1 0
1 0 1
0 1 0

⎤
⎥⎥⎦ ≈

⎡
⎢⎢⎢⎣

2√
3

− 1√
3

2√
3

− 1√
3

⎤
⎥⎥⎥⎦

[
1√
3

− 1√
3

1√
3
.
]
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Here Bpc is the projection of the 4 rows of A onto the first PC.
This approximation amounts to ||A − BpcCpc||F = 16

3 , where each pattern is ap-
proximated with an error of 4

3 . However, the 1-dimensional representation is able to
discriminate between the patterns 1 and 3 from the patterns 2 and 4. There could be
other approximations with a lesser value of 4 as the squared Frobenius norm for the
following.

A =

⎡
⎢⎢⎣
1 0 1
0 1 0
1 0 1
0 1 0

⎤
⎥⎥⎦ ≈

⎡
⎢⎢⎣

√
3
0√
3
0

⎤
⎥⎥⎦

[
1√
3

− 1√
3

1√
3

]
=

⎡
⎢⎢⎣
1 −1 1
0 0 0
1 −1 1
0 0 0

⎤
⎥⎥⎦ .

Even though some discrimination between elements of the two clusters is exhibited in
the PCs space, in general the first K PCsmay not be able to retain the discrimination
present in the l-dimensional space. The reason is that the underlying optimization
is planned to reduce the expected squared deviation between the patterns in the l-
dimensional space and their representations in the K-dimensional space specified by
minimization of

E[(xl − xK )t(xl − xK )],

where xl and xK are original pattern and its approximation, that is represented in
the K(< l) dimensional space respectively and E is the expectation operation. The
following high-level summary of the properties will link the above criterion function
and the PCs.

• Note that xl is a vector in a l-dimensional space. So, it can be uniquely represented
using l orthonormal basis vectors v1, . . . , vl . Specifically,

xl =
l∑

i=1

divi

where dis are some real numbers, for i = 1, . . . , l.
• Now xK may be viewed as coming out of K-dimensional subspace and

xK =
K∑
i=1

divi

• The error, by exploiting the orthonormality property of v1, v2, . . . , vl will reduce
to

error = E[(xl − xK )t(xl − xK )] =
l∑

i=K+1

vt
iΣvi =

l∑
i=K+1

vt
iviλi =

l∑
i=K+1

λi

where vi and λi are an eigenvector and the respective eigenvalue of Σ .
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• This error is minimized when λK+1,λK+2, . . . ,λl are smaller. This indicates that
λ1,λ2, . . . ,λK need to be the larger eigenvalues. Correspondingly, v1, v2, . . . , vK
are the eigenvectors that characterize xK .

• So, first K PCs are the eigenvectors of Σ which can uniquely characterize projec-
tion of each pattern in the K space.

So, error considered is intuitively appealing as itminimizes the average error between
patterns in the l space and the respective projections in the K PCs space. This
optimization is reproduction friendly and the basis vectors in theK space capture the
variance in the data to the best possible extent. However, there is no guarantee that
the K PCs retain the discrimination present in the patterns.

4.2.4 Singular Value Decomposition (SVD)

A more general factorization of An×l may be viewed An×l = Bn×nDn×lCl×l , where
D is a diagonal matrix with n − l zero rows if n > l or with l − n zero columns if
n < l. In the earlier cases, where A = BC,Dmay be viewed as having in its diagonal
portion the identity matrix I .

SVD may be viewed as

• orthonormal eigenvectors of the symmetric matrix AAt as the columns of B.
• orthonormal eigenvetors of the symmetric matrix AtA as the rows of C.
• Square roots of the eigenvalues of AAt or AtA, based on whether n < l or l < n
respectively, as the diagonal entries of D with remaining elements to be 0. These
diagonal entries are called the singular values of A.

• Importantly, SVD always gives B, D, and C such that A = BDC, an exact de-
terministic factorization of any A matrix.

Consider the matrix A given in the example, we have

AtA =
⎡
⎣
2 0 2
0 2 0
2 0 2

⎤
⎦ .

The eigenvalues of AtA are 4, 2, and 0 the respective eigenvectors are (1, 0, 1)t,
(0, 1, 0)t, (1, 0,−1)t . They are orthogonal and by normalizing them to be unit norm
vectors, we get the C matrix as

C =
⎡
⎢⎣

1√
2
0 1√

2
0 1 0
1√
2
0 − 1√

2

⎤
⎥⎦

Similarly, the eigenvalues of AAt are 4, 2, 0, 0 and respective orthonormal eigen-
vectors that are used as columns of B give B as
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B =

⎡
⎢⎢⎢⎣

1√
2

0 1
2 − 1

2

0 1√
2

− 1
2 − 1

2
1√
2

0 − 1
2

1
2

0 1√
2

1
2

1
2

⎤
⎥⎥⎥⎦ .

The D4×3 is given

D =

⎡
⎢⎢⎣
2 0 0
0

√
2 0

0 0 0
0 0 0

⎤
⎥⎥⎦ ,

where nonzero entries
√
4 = 2, and

√
2 are the singular values that are the positive

square roots of the nonzero eigenvalues of either AAt or AtA. Note that

A =

⎡
⎢⎢⎣
1 0 1
0 1 0
1 0 1
0 1 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1√
2

0 1
2 − 1

2

0 1√
2

− 1
2 − 1

2
1√
2

0 − 1
2

1
2

0 1√
2

1
2

1
2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
2 0 0
0

√
2 0

0 0 0
0 0 0

⎤
⎥⎥⎦

⎡
⎢⎣

1√
2
0 1√

2
0 1 0
1√
2
0 − 1√

2

⎤
⎥⎦ = BDC.

This is an exact factorization, which could be obtained for anyAm×n.We can consider
an approximation by retaining some largest singular values and ignoring (making
them 0) the smaller singular values. For example, here if we ignore

√
2, that is

approximate D to

D =

⎡
⎢⎢⎣
2 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦ ,

then the resulting approximation to A based on the largest singular value is A1 where

A1 =

⎡
⎢⎢⎣
1 0 1
0 0 0
1 0 1
0 0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1√
2

0 1
2 − 1

2

0 1√
2

− 1
2 − 1

2
1√
2

0 − 1
2

1
2

0 1√
2

1
2

1
2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
2 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦

⎡
⎢⎣

1√
2
0 1√

2
0 1 0
1√
2
0 − 1√

2

⎤
⎥⎦

Note that the squared Frobenius norm ||A − A1||F is 2 or the Frobenius norm is√
2 which is the singular value that is ignored. It is not a coincidence. In general,

if a matrix A is approximated to AK by using the top K singular values in D, then
||A − AK ||F = σ2

K+1 where σK+1 is the largest of the ignored singular values. This
helps in monitoring the possible error in approximating A to AK for both dimension-
ality reduction and clustering. A popular application is in document representation,
clustering, and classification under latent semantic analysis (LSA).
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Table 4.1 Optimization in clustering and dimensionality reduction

Specific task Criterion function Solution Regularizer (Domain
knowledge)

PCA Minimize
E[(xl − xK )t(xl − xK )

Eigenvectors Covar.
matrix

Best K (Domain)

KMA Minimize squared
error

Local minimum Diverse Centers

Hierarchical clustering Minimum spanning
Tree

Dendrogram of
clusters

Dendrogram cut
appropriately

MI based Feat.
SelectionMI

Maximize features K Best Consider all classes

SVD A = BDC Exact Approx. AK

Under the matrix factorization, one can characterize any linear feature extraction
including feature selection, hard and soft clustering, and even classification. Note that
even nonlinear problemsmay be viewed as linear in an appropriate high-dimensional
space. So, linear algebra in general andmatrix factorization in particular are important
in several of these topics.

Even the probabilistic variants like probabilistic latent semantic analysis (PLSA)
are shown to be equivalent to deterministic factorization approaches likeNMF and the
KMA. This happens because both the approaches depend on some empirical schemes,
based on the given data set in practice. In amore general sense statistics is responsible
for the equivalence. An important semantic underlying matrix factorization is some
kind of criterion function that is optimized with additional constraints to regularize
or reduce the diversity of the solution space. We summarize the optimization related
properties associated with clustering and dimensionality reduction in Table 4.1.

4.2.5 Diversified Clustering

Conventionally in clustering, the points in each cluster are similar to each other
and points in different clusters are dissimilar. However, there are applications where
each cluster needs to have diverse elements and a pair of clusters are highly similar.
In other words there is a higher within cluster entropy and lower between cluster
entropy.

Some of these applications are in

• Peer Learning: If a collection of students, selected based on some qualifying score,
are to be grouped then the conventional clustering will lead to stratified grouping.
In such a grouping all the students similar in terms of the qualifying score will
be put together. This reduces the chance for peer learning. It can be shown to be
good if each group has diverse students, that is students with varying qualifying
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scores. Further, to avoid discrimination between groups different groups should
have similar collective behavior. This means round-robin allotment students to
groups is a better deal than stratified grouping.

• Team formation: When different soccer teams are to be selected to participate in a
cup, there will be diversity in terms of special roles of players like the goalkeeper,
wing, center forward, full back, etc., This means there will be diversity in terms
of these special roles in each team. Further, every team requires a goalkeeper, two
wings, etc., whichmeans a pair of teams are structurally similar. Not only in sports,
this kind of grouping is required in the formation of committees and many other
team formation scenarios.

• Groups based on a Standard: UG programmes offered by various computer sci-
ence departments typically follow ACM curriculum. So, the similarity between
different UG programmes exists because of the standard like the ACM curriculum.
At the same time, each programme needs to show enough diversity in terms of
representation of theoretical CS, computer systems, and other topics like ML, AI,
DBMS, graphics, etc. There other standards like, for example, the Dewey Decimal
Classification, Library Congress classification, etc. which are followed by libraries
across the globe.

4.3 Classification

We have seen in earlier chapters how search and representation impact the classi-
fiers. Knowledge is used in the form of prior densities, selection of representation
schemes for patterns and classes. We can search for how knowledge can be exploited
in modeling, selecting the correct model, and even selection of the values of the
hyperparameters. Search takes different forms including searching for a solution to
an optimization problem based on some constraints. In this section, we will examine
how optimization can be used in modeling and selecting classifier models.

A good number of classifiers are explicitly modeled or can be interpreted as
solutions to some intuitively appealing and convenient optimization problems. We
will look into some of the classifiers.

4.3.1 Perceptron

It may be viewed as minimizing the sum of the violations of the training patterns,
their distances from the wrong side of the decision boundary, using the current w,
the weight vector of perceptron. This happens because w has misclassified some
training patterns. Noting that each such pattern, x satisfies wtx < 0, the perceptron
criterion function based on w is, PCF(w) is
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PCF(w) = −
∑

x:wt x<0

wtx.

wtx captures the extent of violation of x because of w. Because wtx < 0 for such an
x, we minimize −wtx for every x that is misclassified by w so that sum of the extent
of violations is minimized.

If we consider the gradient ∇wPCF(w), we get −∑
x:wt x<0 x. So, if we use the

gradient descent method tominimizePCF(w), then the updates tow are given, using
the negative of the gradient with a suitable scaling factor η, by

wk+1 = wk + η
∑

x:wt
k x<0

x (4.1)

This update rule is called batch mode update. There are several simplifications to
this equation.

1. One variant is to use η = 1 and consider one x that ismisclassified at a time rather
than the sum of all the patterns x that are misclassified by wk . This is popularly
called the fixed increment rule that we discussed in the previous chapter.

2. Another variant is to insist that thew obtained is a simple sparse vector,minimum
possible nonzero entries, that can be effectively used for classification which is
useful in high-dimensional spaces. This is specified by

PCF(w) = −
∑

x:wt x<0

wtx + λ′wtw, (4.2)

so that while minimizing the sum of violations, we reduce the nonzero entries
in w as well. There is a scaling factor λ′. Noting that the gradient of wtw is 2w,
we have the the corresponding incremental update rule, one pattern at a time, to
be

wk+1 = wk + ηxk − λwk → wk+1 = (1 − λ)wk + ηxk

where λ = 2ηλ′ and xk is the first pattern misclassified by wk .

Note that both these variants are constraining or regularizing the optimization solu-
tion, w.

4.3.2 Support Vector Machine (SVM)

In SVMs, the criterion function that is considered ismargin between the two classes.
Thismay be detailed using Fig. 4.1. In SVM margin between the positive and negative
classes is maximized. In the figure, there are negative class patterns in the left side.
These are labeled by using −. Similarly, on the right side we have the positive class
patterns. These are labeled by +.
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Fig. 4.1 Margin between
the two classes

In this two-dimensional case, there are two parallel lines (in higher dimensions
they will be parallel hyperplanes) called support lines. The respective class boundary
patterns are located on these support lines. The negative class patterns satisfy the
property that wtx + b ≤ 1 where the boundary vectors, xs, or support vectors (SV s)
of the negative class satisfy wtx + b = −1. Similarly, the positive class patterns
satisfy wtx + b ≥ 1 with the respective SV s satisfying the property wtx + b = +1.

The decision boundary between the two classes is characterized by points x such
that wtx + b = 0. Points to its right are from positive class and left side patterns are
of negative class. If two points x1 and x2 are points on the decision boundary, then

wtx1 + b = wtx2 + b = 0 ⇒ wt(x1 − x2) = 0.

This means vector w is orthogonal to x1 − x2 or the line on which they are located
which is the decision boundary itself. So, w is orthogonal to the decision boundary
as shown in the figure.

Another property is that w points towards the positive side. Consider a problem
where the origin is on the decision boundary. So, wt0 + b = 0 ⇒ b = 0. Now if we
consider a point x1 ∈ c+ the positive class, then wtx1 > 0. The cosine of the angle,
θ, between w and x1 is given by

cosθ = wtx1
||w||||x1|| .

The denominator terms are positive here and the numerator is positive as x1 ∈ c+. So,
cosθ > 0 ⇒ the angle between w and x1 is acute. So, w points towards the positive
side.

Any point x ∈ c+ may be written as x = xd + p w
||w|| where xd is point on the

decision boundary at which the normal projection of x onto the decision boundary
meets it. If the distance between x and xd is p units, then the corresponding vector is
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p w
||w|| because w is orthogonal or normal to the decision boundary. But as x ∈ c+,

wtx + b = wt(xd + p
w

||w|| ) + b = wtxd + b + p||w|| = p||w|| > 0

as wtxd + b = 0, where w
||w|| is a unit vector in the direction of w. So,

wtx + b = p||w|| ⇒ p = wtx + b

||w|| .

So, normal distance between any point x on the positive support line and the
decision boundary is wt x+b

||w|| = 1
||w|| . Similarly, fromanypoint x on the negative support

line to the decision boundary the modulus of the distance is again 1
||w|| . So,

margin = 1

||w|| + 1

||w|| = 2

||w|| .

In SVM , we findw thatmaximizes themargin. Equivalently, weminimize 1
2 ||w||2

which maximizes the margin. The constraints are yi(wtxi + b) ≥ 1 where yi is the
class label of xi; yi = 1 or − 1 based on whether xi ∈ c+ or xi ∈ c− respectively.

We can express the corresponding Lagrangian by taking into account the con-
straints as

L(w, b,α) = 1

2
||w||2 +

n∑
i=1

αi(1 − yi(w
txi + b)),

wherewewould like to find the vectorsw,α = {α1, . . . ,αn} and the scalar b. Optimal
values of these variables can be obtained by equating the gradient to zero which is
given by

∇wL = w −
n∑

i=1

αiyixi = 0 ⇒ w =
n∑

i=1

αiyixi.

∇bL =
∑
i=1

αiyi = 0.

∇αiL = 1 − yi(w
txi + b) = 0 ⇒ yi(w

txi + b) = 1 ⇒ wtxi + b = yi

There are other conditions also including αi ≥ 0 and αi(1 − yi(wtxi + b)) = 0.
By using these equations all the variables w, α, and b can be determined using

different approaches. Here, the optimization problem was chosen such that it is a
well-behaved problem guaranteeing a globally optimal solution to the minimization.
However, we face a difficulty when there is no margin between the two classes. This
can happen, for example in Fig. 4.1, if a point from the positive class falls to the left
of the decision boundary or equivalently a point from the negative class falls to the
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right of the decision boundary. Such points are called violators. This can be the case
in most of the real-world problems.

To overcome this problem, a popularly used solution is to formulate it as a soft
margin problem. This is achieved by weighing each of the violators using a weight
C based on the extent of violation. If we do not want to permit any violator then
C → ∞. This amounts to the soft margin formulation to converge to the hard margin
formulation. On the other extreme, a value of C = 0 means every point can be a
violator. However, this will not solve the problem in practice.

Typically, a positive finite nonzero value is used for C to accommodate some
violators. The corresponding problem is

min
w

1

2
||w||2 + C

n∑
i=1

ξi

s.t. yi(wtxi + b) ≥ 1 − ξi. and ξi ≥ 0. It is seen that there is no change in the form
of the variables. Only change is that in the hard margin formulation, αi ≥ 0. In the
soft margin case, 0 ≤ αi ≤ C.

An important practical consideration is the right value of C. This shifts the at-
tention from getting the global optimal solution to getting the right value of C. So,
tuning of hyperparameter C occupies the central stage in practice. Some profession-
ally developed software packages have helped in realizing this practically.

4.3.3 Summary

In this chapter, we have seen the role of optimization in dimensionality reduction,
clustering, and classification.We have considered only some of the algorithms. There
are potentially a large variety of other machine learning platforms like neural net-
works. In a sense optimization based solutions exhibit diversity which is controlled
using regularization to provide more central or less variance solutions.

Note the following about optimization. The set of constraints specify the feasi-
ble region. This may typically characterize potentially infinite solutions or diverse
possible solutions. The criterion function being optimized will force the selection of
one or more of these diverse points in the solution space increasing the centrality. A
regularizer will shrink this collection of possible solutions further.

Consider, for example, a data set of the following four patterns drawn from 2
classes as shown in Table 4.2. Let patterns 1 and 2 be training points from class 1
and let the other 2, that is patterns 3 and 4 be from class 2.

Let a classifier gave two w vectors given by
w1 = (1, 0, 1, 0,−2)
w2 = (0.5, 0.6, 0.5, 0.4,−2). Verify that both these weight vectors classify all the
four patterns correctly. For example, using w1 on pattern 2 gives us
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Table 4.2 4-dimensional data from two classes

Pattern x1 x2 x3 x4

1 0.6 0.4 0.7 0.4

2 0.5 0.3 0.7 0.5

3 1.2 1.4 1.5 1.6

4 1.3 1.3 1.4 1.5

0.5 + 0 + 0.7 + 0 − 2 < 0. Similarly w2 with pattern 4 gives us 0.65 + 0.78 +
0.7 + 0.9 − 2 > 0. Similarly one can verify other patterns.

Among these two weight vectors, if we require a sparse vector, then w1 will be
selected and w2 will be left out.
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Chapter 5
Ranking

Abstract Ranking is an important task in machine learning, information retrieval,
and data mining. We consider different notions like similarity and density and their
role in ranking. Further, we discuss how centrality and diversity are captured in a
variety of ranking tasks.

Keywords Similarity · Search engine · Centrality · Diversity

5.1 Introduction

We have seen roles of centrality and diversity in several AI tasks including repre-
sentation, clustering, and classification. Another important task is ranking. Ranking
deals with assigning each point in a collection,X = {x1, . . . , xK } to an integral value
in the range [1, 2, . . . , K ]. In its simplest form, it may be viewed as classification
where we bin items into two groups that are ranked. There are several applications
of ranking including presenting results of a search engine against a user query.

5.2 Ranking Based on Similarity

This is prominently used in the context of search engines. Here, the problem is given a
collection of documents,D = {d1, . . . , dn} and a user query, q, to rank the matching
documents based on similarity. Here, query also is viewed as a document. In a simple
content-based retrieval, we represent each document as a vector of size |V | where V
is the set of vocabulary. If |V | = l, that is the number of words in the vocabulary is
l, then q and any document di are represented as l-dimensional vectors. The entry
in each of the l locations is the corresponding T F − I DF value. Now, similarity
between q and di , i = 1, . . . , n is typically computed by using the cosine of the angle
between q and di which is given by
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cos(angle(q, di )) = qtdi
||q||||di || ,

where the denominator terms in the RHS are the Euclidean norms of q and di .
Note that smaller the angle between q and some d j larger the cosine value or

equivalently higher the similarity between q and d j . This observation helps us to
rank documents against a q by ordering the documents in the decreasing order of
similarity with query q.

It was observed that similarity computation based on content alone is inadequate
to make an effective retrieval of web documents. It was proposed to include the
(hyper-)link structure that is present among the web pages. Specifically, importance
of aweb document is aweighted combination of the contentmatchwith the query and
centrality of the web page with which it is associated. The centrality of a web page, in
a simple manner, is a recursive characterization based on a weighted combination of
centrality of pages linked or connected to it. For example, the eigenvector associated
with the largest eigenvalue of the adjacency matrix of the web graph provides a
recursive characterization of centrality of all the nodes in the network.

5.3 Ranking Based on Density

In applications like clustering based on centroids/representatives, it is important to
select an appropriate set of initial cluster representatives. We have seen that such
representatives need to be diverse. However, outlier points are from low-density
regions. So, in the process of maintaining diversity, outlier points should not be
considered as centroids.Abalance between centrality and diversity can bemaintained
by selecting representative patterns from dense regions. So, we need to rank the
possible centroids based on density and ensure diversity by selecting an appropriate
subset of this ranked set of dense points.

When a search engine displays results against a query, one possibility is to identify
density with a concept that is popular among a good number of documents. So, each
concept/cluster of documents is associated with the cardinality of the cluster, which
can be viewed as the density. We rank these concepts by ranking based on density in
terms of size of the associated clusters.

Ranking based on density is useful in several other applications like facility lo-
cation, transportation arrangements, among others. Here, density is associated with
the number of possible customers depending on a facility from a location. Density
need not be simply based on location alone; it could also be based on time, and other
factors.
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5.4 Centrality and Diversity in Ranking

Searching a collection of documents against a user query and displaying the results in
a ranked order for the consumption of the user is an important activity in information
retrieval. Such a task is routinely performed by search engines.

However, in performing this task search engines consider documents as influen-
tial/central if they match the query and are associated with influential websites. The
statistics about users scrolling the search engine results indicate that a large percent-
age of users never scroll beyond the first page that typically contains less than a
dozen results. So, it is likely that out of a large number of results displayed against
a query, a vast majority of the results go unnoticed by the users.

So, it is practically important that the first page of results has enough diversity
against the query so that an average user is satisfied. For example, consider the query
word model, which will bias the search engine toward the popular usage of the word
in the fashion industry. Documents related to model of the automobile or models as
in hidden Markov models may fail to show up in the first page of results displayed
by the search engine. So, the challenge is to present results on the first page by
diversifying them to reflect all these different meanings of the same term.

5.4.1 Diversification Based on a Taxonomy

If a knowledge structure/taxonomy capturing the different relevant topics is available,
then it is possible to exploit the taxonomy, that is a hierarchical structure describing
various categories, to provide diverse search results. If relevance/centrality alone is
considered to rank and display the results then diversity could get sacrificed. So, a
judiciousmix of results based on relevance and diversity can be achieved if taxonomy
also is exploited where both the documents and the query may be associated with
more than one subtree in the hierarchy.

Not just in terms of ranking and displaying the results, even the evaluation of
search engines must take into consideration the diversity among the results instead
of relevance alone.

5.5 Ranking Sentences for Extractive Summarization

In summarizing documents, there are two categories:

1. Abstractive summarization: Here, some natural language understanding capa-
bility is required of the system to abstract the important semantic concepts in the
document. A summary of the document is generated by well-formed sentences
based on these concepts and interactions between them.
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2. In extractive summarization of a text document, a learning algorithm is typically
employed to rank sentences based on some criterion. For example, the presence
of high-frequency words, and location of sentences can be used to rank the
sentences. A combination of these important/central sentences is used to form
the summary.
Another possibility is to rank a sentence in the document based on entropy of the
sentence. Here, Shannon’s entropy is computed based on estimating the proba-
bilities using the collection frequencies of words in the document; the collection
frequency of a word is the frequency of the word in the document collection. It
is possible that ranking words based on entropy alone may not be adequate. If
the training data consists of labeled documents, then one can use topic models
like Latent Dirichlet Allocation (LDA). This will help in identifying summary
topics in a document and exploit them in extracting sentences still maintaining
the required diversity.

5.6 Diversity in Recommendations

Typically while making recommendations to a user, a problem that is encountered is
that important/central recommendations are made. Because of the lack of diversity
in the recommendations, an average user may not be satisfied as the set of recom-
mendations is not comprehensive.

Conventionally, diversity is captured with the help of distances between items
that are represented as vectors based on their attributes. For example, in K-means++,
diverse initial centroids are obtained based on interpoint distances. There are some
limitations to this approach.

1. It is possible that there is no semantic information available with every item
considered for possible recommendation.

2. Even if the semantic information is available, it may be difficult to capture
diversity through the semantics. For example, two different books authored by
the same person may not be similar.

However, it is possible to bring in a regularizer based on entropy to diversify recom-
mendations. Instead of pairwise distance/similarity, it can capture the gestalt informa-
tion provided by the entire vector space. It is shown thatwhen the items recommended
are orthogonal in their vector space representation, then the entropy regularizer will
be maximized indicating the presence of diversity between the item vectors. On the
contrary, if the item vectors are linearly dependent, then the entropy regularizer is
minimized indicating the absence of diversity between the items.

Another way to ensure diversity in recommendations is based on employing a
non-Markovian random walk where the transition probability matrix is not static,
rather it can change with time. One can employ a Vertex-Reinforced Random Walk
(VRRW). It is based on the idea that the future transition probability, from node vi
to node v j , is influenced by the number of times node v j has been visited in the past.
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This will be justified because even though two competing books or movies start
with a similar size customer base, over a period of time one of the items (book/movie)
may becomemore popular and hencemay increase its customer base. This can impact
the diversity in the resulting recommendations because if a node v j has a higher
transition probability, from vi , for the random walk to visit it, similar nodes that are
immediately connected to v j will attract lesser number of visits by the random walk
under the time-varying transition probabilities.

5.7 Summary

In this chapter, a detailed discussion on ranking was provided. Specific topics in-
cluded were on ranking based on similarity and density. The roles of centrality and
diversity in ranking were considered. Specifically, diversification of ranking results
based on taxonomies, in recommendations, and in extractive summarization of doc-
uments was considered.
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Chapter 6
Centrality and Diversity in Social
and Information Networks

Abstract There are several applications where centrality and diversity can play
important roles. These include networks and recommendation systems.We deal with
networks in this chapter. We specifically examine the representation of networks
using graphs, centrality in social networks, and diversity among communities in
benchmark network data sets.

Keywords Social networks · Structure · Content · Centrality · Diversity

6.1 Introduction

Networks are gaining their importance and popularity in AI, machine learning, and
a variety of other tasks. In any of our day-to-day applications, it is important to view
the collection of underlying entities, not as a set of isolated objects/events, but as
a single network of entities where different subsets of the collection satisfy one or
more relationships. This abstraction permits us to exploit the domain knowledge in
the best possible way to analyze and understand the underlying dependencies among
the entities. Graph is the most popularly used structure to represent networks. We
discuss the representation of networks using graphs after introducing the related
notions.

A network is a structure made up of a set of possible links between collections of
nodes. For different applications, these notions node and link could stand for different
entities.

For example, in citation networks, each node represents a publication and a link
from node ni to node nj indicates the publication corresponding to ni has cited the
publication behind nj. In road networks each city is represented by a node and a link
between ni and nj represents existence of a road between the two cities.
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Fig. 6.1 Example network

6.2 Representation

A network is popularly represented as a simple graph. We illustrate it with the help
of an example shown in Fig. 6.1.

Some important observations from the figure are as follows:

1. There are seven nodes in the example network; they are labeled A to G.
2. There is a link/edge between some pairs of nodes; for example, node pairs A,B

and G,D.
3. Edges are absent between some pairs of nodes; for example, node pairs A,F and

F,G.
4. The graph shown in Fig. 6.1 is undirected. The link betweenD andG may be rep-

resented either by (D,G) or (G,D); there is no difference. Such a representation
abstracts association between the two nodes. For example, A has coauthored a
publication with B is the same as B has coauthored a publication with A. Such
relations that are symmetric can be captured by edges/links that are undirected
in the graph.

5. A path between a pair of nodes A and B is a sequence of distinct nodes
A, n1, n2, . . . , nl−1,B such that there exists an edge between two successive
nodes in the sequence. The length of the path or Path Length is l if there are
l + 1 nodes in the path.
There is a path of length 3 between A and E; the corresponding sequence is
A, B, D, E. Similarly, there is a path of length 2 between B and F specified by
B, D, F .

6. The number of edges associated with a node is the degree of the node in an
undirected graph. The degree of node B is 3 and the degree of D is 4.

7. In a directed graph, the degree is split into indegree and outdegree.

• The indegree of a node A is the number of edges pointing to A, that is edges
of the form (x,A), for some node x. In a directed graph, (x,A) is not the same
as (A, x).

• Similarly, outdegree of A is the number of edges going out of A, that is edges
of the from (A, x).
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6.3 Matrix Representation of Networks

There are different types of networks that require different representation schemes.
Some of them may require schemes based on hypergraphs. However, popularly
known networks are represented using graphs. Further, graphs are typically rep-
resented on the machine using either the adjacency matrix representation or the
adjacency list representation. We consider the adjacency matrix here because of its
popularity.

• Adjacency Matrix (A): The adjacency matrix of a graph is a square matrix A of
size n × n where n is the number of nodes in the graph. The (i, j)th entry, Aij, in A
is 1 if there is an edge between nodes i and j; if there is no link then the entry is 0.
If the graph is undirected, then the adjacency matrix is symmetric also. The adja-
cencymatrix corresponding to the undirected graph in Fig. 6.1 is given in Table 6.1.

• Number of Paths of Length 2:
The adjacency matrix A of a graph abstracts edges or paths of length 1. We get
paths of length 2 by considering the matrix A2(A × A). The matrix A2 for the
example graph in Fig. 6.1 is given in Table 6.2

• Note that in A2 the ith diagonal entry, Ai,i corresponds to the degree of the ith
node.

• Note that some entries in A2 are 0 indicating that there are no paths of length 2
between the corresponding pair of nodes. For example, the entry for node pair
B,C is 0 meaning that there are no paths of length 2 between B and C.

• Observe that every non-diagonal entry is either 0 or 1. This is the case because of
the simplicity of the example in Fig. 6.1.

• The number of paths of length 2 between B and F is 1. So, there is a third node
on the path between B and F which happens to be D in this example. Such a node
is a neighbor of both B and F and is called a common neighbor.

Some of the basic notions path, common neighbors, and degree is useful in analysis
and prediction tasks associated with networks which we will consider in detail later.

6.4 Link Prediction

Link prediction (LP) is one of the important prediction tasks in networks. A network
is typically viewed as a set G = {V,E} where V is the set of vertices of some type
and E is the collection of edges.

The LP problem is specified as follows: Given a static snapshot of the network
at time t (that is Gt = {Vt,Et} is given) to predict the edge set at time t + 1, Et+1,
assuming that Vt+1 = Vt .
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Table 6.1 Adjacency matrix for the graph in Fig. 6.1

Node/Node A B C D E F G

A 0 1 0 0 0 0 0

B 1 0 1 1 0 0 0

C 0 1 0 0 0 0 0

D 0 1 0 0 1 1 1

E 0 0 0 1 0 0 0

F 0 0 0 1 0 0 0

G 0 0 0 1 0 0 0

Table 6.2 Square of the adjacency matrix for the graph in Fig. 6.1

Node/Node A B C D E F G

A 1 0 1 1 0 0 0

B 0 3 0 0 1 1 1

C 1 0 1 1 0 0 0

D 1 0 1 4 0 0 0

E 0 1 0 0 1 1 1

F 0 1 0 0 1 1 1

G 0 1 0 0 1 1 1

Note that Et+1 − Et is the set of missing links that need to be predicted. Typically
an LP algorithm computes the similarity between all pairs of nodes that are not yet
linked using the graph Gt and ranks the edges based on the computed similarity
values.

6.4.1 LP Algorithms

These LP algorithms are categorized into local and global LP algorithms based on
whether the similarity is computed using the local neighborhood of the two end
vertices or a global neighborhood is used. We provide some related details next.

• Local Similarity functions: Let A and B be the two end vertices of the link to be
predicted and let ND(A) and ND(B) be the sets of neighboring nodes of A and B
respectively. Then

1. Common-neighbors(A,B) = |ND(A) ∩ ND(B)|.

The common neighbors (CN ) based similarity function is the simplest example
of local computation of similarity. Here, all the common neighbors are given
equal importance of 1 unit each. Note that
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CN (A,B) ∈ [0,min(|ND(A)|, |ND(B)|)].

2. Jaccard-coefficient(A,B) = |ND(A)∩ND(B)
|ND(A)∪ND(B)| .

The CN function does not normalize the score. Consequently, the score can be
large if ND(A) and ND(B) are large size sets and it may assume smaller values
if ND(A) and ND(B) are smaller in size.
The Jaccard coefficient(JC) similarity function normalizes the CN score, be-
tween a pair of nodes, by dividing it with the size of the union of the sets ND(A)
and ND(B). Note that JC(A,B) ∈ [0, 1].

3. Adamic–Adar score(A,B) =
∑

x∈ND(A)∩ND(B)
1

log|ND(x)| .

Here, each CN contributes differently based on the logarithm of the degree of
the CN . The minimum degree of any CN node is 2 because it is linked to both
A and B, perhaps in addition to other possible nodes. So, if the base of the
logarithm is 2, then log2|ND(x)| ≥ 1.
The minimum possible Adamic–Adar(AA) value occurs when the numerator
has the minimum possible value of 1 and the denominator has the maximum
possible value which is log2(n − 1), where there are n nodes in the graph. In
such a case, the value will be 1

log2(n−1) . The maximum value occurs when the
numerator has maximum value of n − 2 and the denominator has a minimum
value of 1 = log22. So, AA(A,B) ∈ [ 1

log2(n−1) , (n − 2)].

4. Preferential-attachment-score(A,B) = |ND(A)| × |ND(B)|

It promotes edges/links between high-degree nodes. For example, in preferential
attachment(PA), theminimumpossible value ofPA(A,B) is 1whenA andB have
degree 1 each. The maximum value of PA is (n − 1)2 which occurs when A and
B has a maximum possible degree of n − 1. So, PA(A,B) ∈ [1, (n − 1)2].

We have indicated a small list of local LP similarity functions. There are several
others.

• Global Similarity functions: We consider two global similarity functions.

– Graph Distance: Here, the similarity, gds, between a pair of nodes A and B is
inversely proportional to the length of the shortest path between A and B.

gds(A,B) = 1

length of the shortest path(A,B)
.

– Katz’s Similarity is a popular global similarity function that is based on paths
between the two nodes. If pli is the number of paths of length i = 2, . . . , q
between the nodes A and B, then
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katz − similarity(A,B) =
q∑

i=2

βipli,

where β is a parameter that assumes typically a value in the range (0, 0.1]. So,
paths are combined here to arrive at the similarity.

6.5 Social and Information Networks

A social network is a network where the nodes represent humans and the links/edges
characterize interactions/socialization among humans. An example interaction is the
friendship which is the property characterized by a pair of nodes in the network
and this property is symmetric as A is a friend of B if B is a friend of A. It is
possible to represent a social network as a graph. In an abstract sense, a graph may
be characterized using a set of nodes (V ), a set of edges/links (E), and a set of weights
(W ). So,

• G = {V,E,W } where
• V = set of nodes, {v1, v2, . . . , vn}
• E = set of edges ei,j ∈ E is the edge between vi and vj and
• W = set of weights

In a simple representation, we can have weightwi,j = 1 if there is an edge between
nodes vi and vj; if there is no edge, then wi,j = 0. This corresponds to a binary
representation that characterizes the presence or absence of an edge between pairs
of nodes. It is possible to have a more general representation wherewi,j ∈ �; here
� is the set of real numbers. However, we deal with only binary representation in
this chapter. In such a case, we can simplify the notation and view the graph G as

– G = < V,E > where
– V = set of nodes, {v1, v2, . . . , vn}
– E = set of edges present; here edge ei,j ∈ E if there is an edge between nodes vi
and vj, else ei,j /∈ E.

It is convenient to extend the notion to entities other than humans as the resulting
networks share a good number of interesting and useful properties. These networks
include

– Citation networks Each node represents a paper P and an edge between a pair of
nodes, Pi and Pj abstracts a citation which is a directed edge.

– Coauthor Networks Here each author is represented by a node and a link between
twonodes if the corresponding authors have coauthored a paper. This is represented
by an undirected graph as coauthorship is symmetric.

– Homogeneous and Heterogeneous Networks In a homogeneous network, all the
nodes are of the same type. For example, friendship network is homogeneous. On
the other hand, in a heterogeneous network nodes could be of different types. For
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example, in an academic network, nodes represent both the authors and papers.
Further, the links could be of different types; coauthorship between two authors,
author of between an author and a paper, and cited by link between two papers.

– Information Networks In addition to the structural information, attribute infor-
mation is available with each node in several applications including coauthor
networks.

We consider the analysis of only homogeneous social networks in this chapter.

6.6 Important Properties of Social Networks

We briefly discuss some of the important properties of a social network.

– Power-Law Degree Distribution: It is observed that degree distribution follows a
power law asymptotically. Specifically, N (i), number of nodes of degree i is given
by

N (i) ∝ i−α,

where α ∈ [2, 3] based on empirical studies. It is called scale-free because the
form of N (i) does not change with different scales for i. A plot of the log N (i)
versus log i and N (i) versus i is shown in Fig. 6.4. Note that even if we scale i by
some positive real number c, the values on the X axis will shift by a constant, that
is by log(c); this is because log(ci) = log(c) + log(i). Hence the specific form
of the plot will not change but for a parallel shift characterized by log(c).
It means that in a given network, there will be a large number of low degree nodes
and a small number of high-degree nodes.
This property is exploited in the analysis of social networks. For example, the AA
similarity function gives less importance to high-degreeCN s and larger importance
tomiddle and lowdegreeCN s.Note that this is similar to the power-lawdistribution
of the frequencies of the terms in a collection of documents where high-frequency
words are not discriminative.

– The Small-World Phenomenon: It is based on the observation that average path
length between a pair of nodes is small. This is also called as six degrees of
separation where it was observed that the median path length between a pair of
nodes is 6 (Fig. 6.2).
This property is useful in the analysis that involves lengths of the paths between a
pair of nodes. For example, in computing the Katz similarity, the value of q, that
is the maximum path length is capped at a value of 6.

– Exhibits Community Structure: Intuitively we may say that nodes in V c ⊆ V are
all in the same community if they are all similar to each other; or equivalently every
pair of nodes in V c are similar. This is formally characterized using the notion of
clustering coefficient(CC), which is defined as follows:
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Fig. 6.2 Power-Law Degree Distribution exhibited by Pubmed data set available at https://linqs.
soe.ucsc.edu/data. This data set has 19717 nodes and 44327 edges. The maximum, minimum, and
average degree of the data set is 171, 1, and 4.50 respectively

CC(vi) = 2 | Evi |
degreei (degreei − 1)

Here, degreei is the degree of vi. The maximum possible number of edges in the
neighborhood of vi is

degreei(degreei−1)
2 andEvi is the number of edges present among

the neighbors of vi. Note thatCCi has the maximum value of 1. This happens when
every pair of neighbors of vi are connected by an edge.
The clustering coefficient of a cluster (or a subgraph) is the average of the clustering
coefficients of all the nodes in the cluster (or the subgraph).

It is observed that for different types of networks, the clustering coefficient is
reasonably larger than what random chance permits. Specifically, it is prominent in
Actor Networks, Metabolic Networks, and Coauthor Networks.

6.7 Centrality in Social Networks

Centrality is a well studied and reasonably well-understood notions in networks.
A node is central or influential if it is active or important in some sense. Some
popular centrality characterization is based on degree, closeness, betweenness, and
eigenvector.

6.7.1 Degree Centrality

This is the simplest notion of centrality. A node is more central if it can be reached
by other nodes better. So, higher the degree of a node, larger is its centrality. We

https://linqs.soe.ucsc.edu/data
https://linqs.soe.ucsc.edu/data
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Fig. 6.3 Three different graphs with four nodes

illustrate it with the help of Fig. 6.3. For the sake of simplicity, the four nodes are
labeled A,B,C and D in all the three subfigures labeled (a), (b), and (c).

In figure (a), degree(B) is 3 and the remaining three nodes have degree 1 each.
In figure (b), degree(B) = degree(C) =2 and the remaining two nodes have degree 1
each. In figure (c), each of the four nodes is of degree 2. So, node B in figure (a) is
more central than any other nodes in figure (a) and any node in figures (b) or (c).

6.7.2 Closeness Centrality

It is defined for each node in a network.

Closeness − centrality(vi) = 1
∑n

j=1,j 	=i dij

where dij = Shortest − path − length between vi and vj This means if a node vi
closer to rest of the nodes in a network, then it has a high closeness centrality.

In Fig. 6.3a, node B has a closeness centrality value of 1
3 . The other three nodes

have a value of 1
5 each. In figure (b), nodes B and C have a closeness centrality value

of 1
4 each and the remaining two nodes have 1

6 each. In figure (c), every node has a
closeness centrality value of 1

4 .

6.7.3 Betweenness Centrality

Betweenness centrality of a node vi is defined as the number of shortest paths between
pairs of other vertices on which vi is located.

In Fig. 6.3a, node B is on the shortest paths between A and C; A andD; and C and
D. So, its betweenness centrality value is 3. The other three nodes have a value of 0
each. In figure (b), nodes B and C have a betweenness centrality value of 2 each and
the other two nodes have 0 each. In figure (c), each node has a betweenness centrality
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value of 1
2 . This is because the shortest path between B andD can pass through either

A or C.

6.7.4 Eigenvector Centrality

Eigenvector centrality is a recursive characterization of the centrality of nodes. The
recursive specification is

ei = 1

λ

n∑

j=1

adijej,

where (λ, e) is the eigenpair corresponding to the dominant eigenvalue λ of the
adjacency matrix Ad of the network under consideration. adij is the ijth element of
Ad . ei and ej are the ith and jth components of the eigenvector e.

For the figure in (a), the adjacency matrix Ad is

Ad =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

⎤

⎥
⎥
⎦

The eigenvalues of the matrix are
√
3, 0, 0, and −√

3. So, the dominant eigenvalue
is

√
3 and the corresponding eigenvector is (1,

√
3, 1, 1)t . So, node B is more central

with a centrality value that is
√
3 = 1.732 times that of the remaining three nodes.

The adjacency matrix corresponding to the graph in figure (b) is

Ad =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎤

⎥
⎥
⎦

The dominant eigenvalue of this matrix is 1+√
5

2 The corresponding eigenvector is

(1, 1+√
5

2 , 1+√
5

2 , 1)t . So, both the nodes B and C have a centrality value that is 1+√
5

2
times that of the centrality of the other two nodes.

In the case of figure (c), the adjacency matrix is

Ad =

⎡

⎢
⎢
⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤

⎥
⎥
⎦
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Fig. 6.4 Node frequency versus Degree for Pubmed data set available at https://linqs.soe.ucsc.
edu/data. This data set has 19717 nodes and 3 communities. It is evident that power-law degree
distribution is present in the original network(top-left image) as well as in all the three communities

The dominant eigenvalue is 2 and the corresponding eigenvector is ( 12 ,
1
2 ,

1
2 ,

1
2 )

t

which indicates that the centrality of all the four nodes is the same and is 0.5.

6.8 Community Detection

There are several applications where centrality of a node can be exploited. Because
central nodes are also influential, product marketing teams try to target the central
nodes in the network to improve the product promotion.

Typically, it is assumed that a central node influences other nodes in its community
and the community is formed around the central node. So, diversity among these
central nodes is needed to achieve a good set of communities. One of the important
issues in community formation is to generate communities from a network such
that the entire network G = {V,E} satisfies power-law degree distribution and each
community Gi = {Vi,Ei} also satisfies power-law degree distribution.

This means that network is clustered into K communities, where clustering a
power-law degree distributed data into communities that are in turn power-law degree
distributed. This is evident from the publicly available benchmark communities data
sets.

https://linqs.soe.ucsc.edu/data
https://linqs.soe.ucsc.edu/data
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Table 6.3 Centrality-based embedding of nodes in the figures (a), (b), and (c) in Fig. 6.3

Figure Node A Node B Node C Node D

(a) (1, 0.200, 0.0, 1.0) (3, 0.333, 3.0, 1.732) (1, 0.20, 0.0, 1.00) (1, 0.200, 0.0, 1.0)

(b) (1, 0.165, 0.0, 1.0) (2, 0.250, 2.0, 1.62) (2, 0.25, 2.0, 1.62) (1, 0.165, 0.0, 1.0)

(c) (2, 0.25, 0.5, 0.5) (2, 0.250, 0.5, 0.5) (2, 0.25, 0.5, 0.5) (2, 0.25, 0.5, 0.5)

Note that each cluster shows diversity and the distributions across different com-
munities are similar.

6.9 Network Embedding

Nodes in the networks are represented using the underlying adjacency matrix that
captures the structural/linkage properties among the nodes in the network. However,
the size of thematrix is n × nwhere n is the number of nodes in the network. So, each
node (row of the matrix) is viewed as an n-dimensional (row) vector. Such a repre-
sentation can be very high-dimensional and so can be unwieldy to exploit in various
network mining/analysis tasks including community detection, link prediction, and
network visualization.

This prompted researchers to explore embedding nodes in a lower dimensional
space. We will explore some of them next.

6.9.1 Node Embeddings Based on Centrality

Here, we can represent any node in any network as a 4-dimensional vector where the
four components are:

1. The first component is the degree centrality value.
2. The second component is the closeness centrality value.
3. The third component is the betweenness centrality value.
4. The fourth component is the eigenvector centrality value.

We represent the nodes in each of (a), (b), and (c) in Fig. 6.3 in Table 6.3.

6.9.2 Linear Embedding of Nodes Using PCA

It is possible to reduce the dimensionality of the nodes using the conventional tech-
niques like the principal components (PCs). For example, consider the Ad matrix
corresponding to the graph in Fig. 6.3a. The sample covariance matrix is
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Table 6.4 PC Based
embedding of nodes in the (a)
Fig. 6.3a

Node 2-dimensional
Representation

A (− 1
2 ,

1
2 )

t

B ( 32 ,
1
2 )

t

C (− 1
2 ,

1
2 )

t

D (− 1
2 ,

1
2 )

t

⎡

⎢
⎢
⎢
⎢
⎣

3
16 − 3

16
3
16

3
16

− 3
16

3
16 − 3

16 − 3
16

3
16 − 3

16
3
16

3
16

3
16 − 3

16
3
16

3
16

⎤

⎥
⎥
⎥
⎥
⎦
.

The eigenvalues of the matrix are 3
4 , 0, 0, 0. The two leading orthonormal eigen-

vectors are (0.5,−0.5, 0.5, 0.5)t and (0.5, 0.5,−0.5, 0.5)t . By projecting the four
4-dimensional points (rows) in the Ad matrix given by

Ad =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

⎤

⎥
⎥
⎦ ,

we get the 2-dimensional vectors as shown in Table 6.4.
In a similarmanner, it is possible to represent the points in graphs in (b) and (c) also

using their respective PCs. It is possible to use matrix factorization based schemes
discussed in the earlier chapters to embed each of the nodes in the graph in some
reduced K-dimensional space. However, they may be computationally expensive.

6.9.3 Random Walk-Based Models for Node Embedding

One of the most influential contributions to the natural language analysis models is
based on representing each word in a sentence as a vector. Specifically, Word2Vec
that was originally proposed and used in the context of natural language sentences
was influential in generating node embeddings in networks. The node embedding
problem was solved akin to the word embedding by conducting random walks on
networks and viewing these random walks as sentences in a language made up of
nodes and edges. we examine these models next.

• Word2Vec: In this model for each word occurring in a document, words occurring
in a fixed size window around the word under consideration are selected to identify
the context in terms of possible words that can pair up with the word. Let w be
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the word considered and w1, w2, . . . , wm be the words occurring in the context
of the window around w. Then (w,w1), (w,w2), . . . , (w,wm) are the pairs with
respect to w. This process is repeated for all the words in all the documents in the
collection to identify training pairs that capture the co-occurrence of words in the
document collection.
These pairs are used to train a one hidden layer neural network. Here, the words
cannot be directly input. Instead, each word is represented as a one-hot vector
based on its index in the vocabulary V . If |V | = l, then there are l words in
the vocabulary. When these words are ordered in the lexicographic order, then
each word in V will occupy a position/index value between 1 and l based on its
lexicographic order.
So, a word w is a binary vector of l − 1 zeros, and one 1; this 1 is located in
the position corresponding to the index of word w in V . So, a pair of the form
(w,wi) is used to train the network by inputting the word w as a one-hot vector
and expecting the output to be the one-hot vector corresponding towi as shown in
Fig. 6.5. Training of the one hidden layer neural net is carried out using the pairs
of words of the form (w,wi) based on the context, in terms of the window around
word w for every word in the document collection.
IfK is the number of nodes in the hidden layer, then at the end of training, each input
node will be associated with aK-dimensional vector. So, effectively each word has
an input node position associated based on the one-hot vector representation and as
each input node has aK-dimensional representation, each of the l wordswill end up
having aK-dimensional representation. This is theWord2Vec representationwhere
each word is represented as a K-dimensional vector. Some additional heuristics
are employed to reduce the computational burden of the model; these include the
following:

– using popular phrases in addition to the words in the vocabulary.
– Undersampling frequent pairs to reduce the number of training pairs.
– Negative sampling where in the output one-hot vector only a small fraction of
randomly selected 0s are viewed as essential in training rather than insisting all
l − 1 zeroes.

• DeepWalk: It captures the latent representations of nodes in the network by ex-
ploiting the structural information abstracted by the adjacency matrix.
With each node, some r random walks each of length t are generated. A simple
strategy for the randomwalk is to choose uniformly any one of the neighbors from
the current node. Each such randomwalk is viewed as a sentence in some artificial
language.
Each node is initially assigned some embedding. Now, the random walks are used
to update the embedding of the node under consideration by maximizing the prob-
ability of its neighbors being present in the random walk given the representation
of the node. In order to make the computation feasible and efficient, the problem
of probability estimation is viewed as estimating the probability of a path in a
tree from the root to a leaf; the tree is rooted at the representation of the node
under consideration and all the nodes are viewed as leaves of the tree. Some of the
important features of DeepWalk are as follows:
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Fig. 6.5 Neural Network for
Word2Vec

– It is possible to perform random walks and the resulting processing in parallel.
It is experimentally observed that parallel scheme for node embedding does not
affect the performance of the resulting embeddings.

– Nodes sharing similar neighborhoods will acquire similar representations.
– The same embedding is found to be useful in a variety of machine learning tasks
on the network like community detection, classification of nodes, and network
visualization.

There are several other node embedding schemes based on first- and second-order
structural neighborhood of nodes and based on breadth-first and depth-first search
strategies.

6.10 Combining Structure and Content

We have seen so far the role of embedding nodes in a network based on structural
information in the network. There are several applications where there is attribute
information associated with each node in the form of content. The structural infor-
mation is captured by the adjacency matrix Ad which we have examined earlier in
this chapter.

If At is the content/attribute matrix of the network, then At is of size n × l where
n is the number of nodes and l is the number of words in the vocabulary. A solution
based on matrix factorization is given by

Adn×n = Bn×KCK×n,

and
Atn×l = Bn×KEK×l .
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This makes sense if the assignment of nodes to communities based on structure
and content are the same which is the reason for using the same B matrix in both
structure and content basedmatrix factorization. There are othermatrix factorization-
based combinations that combine DeepWalk with text features. Matrix factorization
may be computationally expensive. So random walk based methods might be the
right approaches.

6.11 Summary

The application of social and information networks is considered in this chapter.
Representation of networks as graphs, and in turn graphs as adjacency matrices are
considered. The important notion of centrality in networks and several variants of
centrality in networks was considered. Also, the notion of diversity in the benchmark
communities in real-world networks was explored. Representation of networks both
in terms of structure and content was explored.
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Chapter 7
Conclusion

In this book, we have examined the role of centrality and diversity in search. Specif-
ically, we consider the roles of centrality and diversity in

1. Search, representation, classification and clustering, ranking, and regression in
an introductorymanner. The roles of bias and variance in regression is considered
in detail; the correspondence between centrality and diversity against variance
and bias is also examined.

2. Search in detail is considered in Chap. 2. Variations like exact and inexact search
are considered. Searching for proper representation, proximity anddistance func-
tions, clustering and classification, information retrieval, andAI problem-solving
are considered. The roles of centrality and diversity in search-based applications
is summarized.

3. Representation is considered in detail in Chap. 3. Its importance in AI problem
representation, document representation, clusters, classes, and classifiers is ex-
amined. The roles of centrality and diversity in a variety of representation-based
tasks is summarized.

4. Clustering and classification is considered in Chap. 4. Specifically, the role of
optimization and regularization and their relation to diversity and centrality in
representation, clustering and classification is summarized.

5. Ranking is considered in Chap. 5. Ranking based on similarity and density is
considered. The roles of centrality and diversity in ranking, summarization, and
recommendations are examined.

6. Social and information networks in Chap. 6. A detailed discussion on represen-
tation of networks, link prediction, centrality, community detection, and network
embedding are considered in detail. The roles of diversity in these tasks is con-
sidered. The role of centrality, linear transforms, and randomwalk-basedmodels
in node embedding in networks is also considered.
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Glossary

Σ Covariance Matrix
C+ Positive class
C− Negative class
W Weight vector
b Threshold weight
α weight of support vector
LLL Lagrangian
X i i th pattern
yi Class label of the i th pattern
G Graph representing a network
V Set of vertices or nodes in the graph
E Set of edges in a graph
π(XXX ) Hard partition of the the data set X .
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Index

A
Abstractive summarization, 67
Academic network, 77
Adamic–Adar, 75
Adjacency list, 73
Adjacency matrix, 10, 73, 74
Analysis, 73
Artificial Intelligence (AI), 29
Axis-parallel split, 45

B
Backpropagation, 42
Bag-of-words, 32
Bayes classifier, 39, 40
Bayesian model, 33
Betweenness centrality, 11, 79
Bias and variance, 87
Bias–variance dilemma, 9
Binary classification, 16
Binary pattern, 4
Binary representation, 23, 76
Binary search, 14
Binary variable, 16
Binary vector, 23
Boolean function, 42
Boolean search, 23

C
Cardinality, 66
Categorical features, 2
Centrality, 67, 71, 78, 87
Centrality and diversity, 3
Centroid, 3, 34, 36

Citation network, 71, 76
City block distance, 39
Class, 3
Classification, 20, 29, 58
Closeness centrality, 11, 79
Cluster, 2, 66
Cluster description, 3
Clustering, 29, 50
Clustering coefficient, 77
Cluster representative, 20
Coauthor network, 76
Common Neighbor (CN ), 73, 74
Community structure, 77
Concept, 3, 17, 66
Conclusion, 87
Condensed dataset, 21
Conjunction, 24
Content, 7
Cosine similarity, 18
Covariance matrix, 16
Criterion function, 18

D
Data mining, 65
Decision boundary, 60
Decision Tree Classifier (DTC), 43
Deep learning, 1, 2
DeepWalk, 84
Degree, 72, 73
Degree centrality, 11, 78
Dendrogram, 35
Density, 65, 66, 69
Diagonal entry, 73
Dimensionality reduction, 6, 49
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Discriminating feature, 5
Distance function, 17
Diversification, 69
Diversified clustering, 57
Diversity, 7, 34, 36, 67, 71, 87
Diversity in recommendations, 68
Document, 30

E
Edge, 10, 72, 73
Eigenvalue, 16
Eigenvector, 16
Eigenvector centrality, 11, 80
Entropy, 43, 68
Entropy regularizer, 68
Euclidean distance, 5, 15, 18, 33
Evaluation, 67
Exact deterministic factorization, 55
Exact match, 13
Extractive summarization, 67, 69

F
Feature, 2
Feature extraction, 5, 16, 49, 50
Feature selection, 5, 15, 49 50
Fractional norm, 39
Frequent term, 24
Friendship network, 10, 76
Frobenius norm, 33

G
Gestalt, 2
Gini index, 43
Global similarity, 75
Gradient descent, 42
Graph, 10, 71, 73, 74, 76
Graph distance, 75

H
Hamming distance, 4
Hard clustering, 2, 34
Hash function, 14
Heterogeneous network, 76
Hierarchical clustering, 35
High- degree node, 77
Homogeneous network, 12, 76

I
Impurity measure, 43

Indegree, 72
Inexact match, 13
Inference, 1
Influential, 67
Information network, 11, 76, 77
Information retrieval, 2, 7, 23, 30, 32, 65, 67
Inverse document frequency, 24
Iteration, 19

J
Jaccard coefficient, 75

K
Katz’s similarity, 75
K-Means Algorithm (KMA), 18
Kullback-Leibler Divergence (KLD), 17

L
Labeled document, 68
Latent Dirichlet Allocation (LDA), 33
Latent representation, 84
Latent Semantic Analysis (LSA), 56
Learning algorithm, 1
Linear classifier, 1, 40
Linear feature extractor, 52
Linearly independent, 50
Linearly separable, 41
Linear search, 14
Link, 71
Link prediction, 73
Link structure, 7
Local minimum, 42
Local optimum, 18
Local similarity, 74
Logarithmic search, 14
Logical description, 17
Low degree node, 77

M
Machine learning, 1, 2, 7, 8, 18, 30, 65
Matching, 1, 13
Mathematical logic, 17
Matrix factorization, 17, 32, 57, 86
Maximum margin, 1
Medoid, 34
Metric, 18
Minkowski distance, 17
Model assessment, 2
Model selection, 2, 23
Momentum, 42
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Multilayer Perceptron (MLP), 42
Mutual Information (MI), 5, 15

N
Nearest neighbor, 15
Nearest Neighbor Classifier (NNC), 10
Negative sampling, 84
Network, 71, 73
Network analysis, 82
Network embedding, 82
Networking mining, 82
Neural net classifier, 40
Node, 10, 71
Nonlinear classifier, 10
Non-Markovian random walk, 68
Non-negative Matrix Factorization (NMF),

51
Numerical feature, 2

O
Optimal partition, 18
Optimization, 49
Optimization problem, 33
Order dependent, 21
Orthogonal, 16, 42
Outdegree, 72
Outlier, 34, 66
Overfitting, 8

P
Pair of nodes, 72, 77
Parameter values, 1
Path, 72
Path length, 73, 77
Pattern, 2
Pattern recognition, 29, 30
Perceptron, 40, 58
Perceptron learning algorithm, 41
Polynomial, 8
Posterior probability, 40
Power-law degree distribution, 77
Prediction, 73
Preferential attachment, 75
Principal Component (PC), 16
Principal Component Analysis (PCA), 52
Probabilistic Latent Semantic Analysis

(PLSA), 57
Probability distribution, 3, 17
Proximity, 2, 17
Pruning, 45

Q
Query, 7

R
Random forest, 45
Random projection, 33
Random walk, 84
Ranking, 7, 65, 69
Ranking features, 5
Rank sentences, 68
Rare word, 32
Recommendations, 69
Regression, 8
Relation, 71
Relevance, 67
Relevant, 24
Representation, 1, 2, 24, 29
Road network, 71
Row-major order, 4

S
Search, 1, 2, 13, 87
Search algorithm, 13
Search engine, 2, 7, 23, 67
Semantic information, 68
Semantic label, 3
Sequential search, 13
Set of edges, 76
Set of nodes, 76
Shortest path, 75
Similarity, 2, 65, 69
Simple graph, 72
Single-link algorithm, 35
Singular Value Decomposition (SVD), 55
Six degrees of separation, 77
Small-world phenomenon, 77
Social network, 7, 10, 71, 76, 77
Social network analysis, 77
Soft cluster, 32
Soft clustering, 3
Soft margin, 43
Soft margin problem, 62
Squared error, 18
Square matrix, 73
Structural information, 84
Subclass, 7
Support Vector Machine (SVM), 1, 43, 59
Support vectors, 1, 43, 60
Symmetric, 72, 76
Symmetric matrix, 16, 73
Syntactic label, 3
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T
Table lookup, 2
Target output, 42
Taxonomy, 67, 69
Term frequency, 24
Test pattern, 15, 20, 21
Threshold, 1
Topic, 32, 33
Topic assignment matrix, 49
Topic description, 33
Topic description matrix, 50
Topic model, 3, 68
Training data, 1, 10
Training pattern, 15, 20
Typical pattern, 23

U
Uncorrelated, 52
Undersampling, 84
Undirected, 72, 73

Undirected graph, 10, 72, 76
Unifying representation, 49
Unit norm, 53
User query, 23

V
Vector representation, 2
Vector space, 2, 17
Vector space representation, 30
Vertex-reinforced random walk, 68
Vocabulary, 23, 33

W
Weight vector, 1, 42
Word2Vec, 33, 83

Z
Zipf’s Law, 32
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