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Abstract Although grapevine (Vitis spp.) is one of the most ancient and important
fruit crops, there is no concerted international effort to conserve its genetic resources,
which are estimated to consist of 10-14,000 cultivars. Synthetic seed technology
offers opportunities to conserve clonal genetic resources either in the form of
quiescent somatic embryos or as encapsulated regenerable somatic tissue. Since
the first report of somatic embryogenesis in grapevine in 1976, much research has
been conducted into synchronising the process, maturation, dehydration, encapsu-
lation and testing longevity under cold storage. Since the development of
vitrification-based cryopreservation methods, both somatic embryos and other
somatic tissue with meristematic regions have been used in cryopreservation exper-
iments, and methods have been optimised to reach post-thaw regeneration percent-
ages that satisfy gene bank standards for implementing cryopreservation.
Nevertheless, improved protocols for ‘difficult’ genotypes are still needed for
induction of somatic embryos and synchronising their formation, maturation and
germination, as well as cryopreservation. As a result of these difficulties, conserva-
tion by cryopreservation has progressed using encapsulated shoot tips or axillary
buds of tissue culture plants. Some vitrification-based methods use a droplet of
vitrification solution to protect the shoot tips on an aluminium strip allowing faster
freezing of tissue, an important factor for post-cryo-survival. The novel V cryo-plate
method combines the advantages of both encapsulating the shoot tips in alginate
beads that then adhere to the aluminium of the V cryo-plate, meaning manipulations
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can be performed easily, and the high thermal conductivity of aluminium speeding
processed of freezing and thawing. Cryopreservation of somatic embryos has been
suggested as a way to conserve the diversity of wild V. vinifera ssp. sylvestris, and
limited results obtained to date are promising.

Keywords Somatic embryogenesis - Non-zygotic embryo - Cryopreservation -
Encapsulation - Vitrification - Embryo maturation - Tissue culture - Genetic
resources

1 Introduction

Grapevine (Vitis vinifera L. ssp. vinifera) is a crop with great economic and cultural
significance. There is 7.5 million ha under cultivation producing 75.8 million tons
worldwide (OIV 2017). The genus Vitis belongs to the family Vitaceae and com-
prises about 60 inter-fertile species distributed through Europe, Asia and North
America under subtropical, Mediterranean and continental-temperate climatic con-
ditions (Carimi et al. 2011; Hancock 2004; Terral et al. 2010). While V. vinifera ssp.
vinifera contributed almost entirely to the diversity of cultivars grown for fruit, juice
and wine, other species such as the North American V. rupestris, V. riparia,
V. berlandieri or their hybrids are used as rootstock for V. vinifera varieties, mainly
due to their resistance to Phylloxera but also to other diseases such as Oidium and
mildews, and for better tolerance to biotic stresses as well (Carimi et al. 2011; Terral
etal. 2010). It is now established that grapevine as a crop originated independently in
multiple regions, with evidence for West Asian and Caucasian centres of origin
(Arroyo-Garcia et al. 2006; Imazio et al. 2013). It is also established that the
cultivated form originated from the wild forms of Vitis vinifera L. ssp. sylvestris
(Gmelin) Hegi (Bacilieri et al. 2013; Carimi et al. 2016; Myles et al. 2011).
Archaeobotanical and archaeological evidence for grape cultivation in the Cau-
casus region dates back to the sixth millennium BC (Imazio et al. 2013) and for the
Aegean and Mesopotamian regions and in Egypt dates back to at least 4000 BC
(Zohar and Horf 2000). Wild grapevine forms can be found from the South Atlantic
coast of Europe through to the Western Himalayas and from sea level to 1000 m
above sea level (Arnold et al. 1998). As grape cultivation spread to new areas, the
cultivars probably hybridised with local wild and other cultivated genotypes
resulting in selection of more adapted genotypes and cultivars with desirable fruit
traits. Selection over several millennia has led to the development of an estimated
10,000-14,000 cultivars that are currently held in field collections (Alleweldt and
Dettweiler 1994). Management of grapevine plants under field conditions is expen-
sive and has resulted in loss of material in field gene banks (Maleti¢ et al. 2008).
Vegetative propagation adds another risk factor with potential for transfer of path-
ogens to new planting material. Therefore, development and application of plant
tissue culture-based biotechnological approaches such as synthetic seeds and
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cryopreservation are important for future conservation of Vitis germplasm. In this
chapter, we present research on somatic embryogenesis in Vitis and its potential
applications from an ex situ conservation perspective, with special reference to
cryopreservation as a long-term conservation option.

2 Somatic Embryogenesis in Grapevine

Somatic embryogenesis (SEg) is the first step towards synthetic seed technology.
The first successful induction of SEg was demonstrated in V. vinifera cv Cabernet
sauvignon more than 40 years ago using unfertilised ovules (Mullins and Srinivasan
1976). Absence of a protective seed coat and lack of surrounding nutritive tissue
make direct storage of somatic embryos (SE) difficult compared with zygotic
embryos enclosed within seeds. Moreover, SE develop asynchronously and lack
the quiescent resting stage of zygotic embryos (Gray et al. 1991). Therefore, research
in synthetic seed technology has been directed not only at optimising induction of SE
but also synchronising their induction (Jayasankar et al. 1999; Vasanth and Vivier
2011) and development, maturation (Vasanth and Vivier 2011), drying (McKersie
et al. 1989; Senaratna et al. 1990; Madakadze and Senaratna 2000) and coating them
to facilitate handling and supply of additional nutrients to the growing seedling
(Senaratna 1992). Successful induction of SEg and maintenance of embryogenic
cultures depend on a complex interaction between genotype, explant type used and
culture conditions. Moreover, results are influenced by differential responses due to
interaction of factors such as developmental stage of explants and nutrients and plant
growth regulators (PGR) included in culture media (Carra et al. 2016; Prado et al.
2010b). Producing mature and well-developed somatic embryos that are able to
grow into normal plants is challenging (Ji et al. 2017; Perrin et al. 2001).

2.1 Stages of Somatic Embryogenesis in Grapevine

SEg is the process by which somatic cells, under inductive conditions, generate
embryogenic cells, which go through a series of morphological and biochemical
changes that result in the formation of a SE. In grapevine, embryos pass through
recognisable globular, heart, torpedo and early cotyledon stages, finally resulting in
germinated embryos (Carimi et al. 2005).

Globular embryos usually appear on the surface of the embryogenic calli, and in
this stage the young embryo is circular or slightly oblong and is still in close contact
with the callus from which it was derived. Later, it detaches from the callus and the
elongation of axial cells marks the beginning of tissue differentiation. At the end of
the globular stage the two apical meristems are present and they persist through the
heart-shaped to the torpedo stages. During the transition from the torpedo stage to
the germinated embryo, grapevine somatic embryos undergo changes characteristic
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of germination, e.g. radicle growth, tannin accumulation in the central cylinder and
acquisition of an external suberin sheath (Faure et al. 1996; Ammirato 1987).

2.2 Explant, Genotype and Growth Regulator Effects
on Somatic Embryogenesis of Grapevine

The influence of genotype, explant and PGR on somatic embryogenesis in grapevine
including significant interactions between those factors have been demonstrated by
several authors (Table 1).

Genotype is considered to be one of the most important factors affecting plant
regeneration in vitro (Conde et al. 2008; Landi and Mezzetti 2006; Rodriguez et al.
2008). In grapevine, genotypes vary relatively widely in their embryogenic potential,
and although several protocols have been published, methods still need improvement
to optimise media and explant combinations to initiate embryogenic cultures from
recalcitrant genotypes (Carra et al. 2016; Gambino et al. 2011a). SEg has been
successfully achieved from different genotypes of Vitis latifolia, V. longifolia,
V. rupestris, V. rotundifolia, V. vinifera L. ssp. vinifera and V. vinifera L. ssp.
sylvestris starting from different explants (Carimi et al. 2013, 2016). Anthers have
been widely used and embryogenic callus has been obtained for a remarkable number
of genotypes (Martinelli and Gribaudo 2009). SEg has also been achieved from
different reproductive organs like ovaries (Lépez-Pérez et al. 2005), stigmas and
styles (Carimi et al. 2005; Carra et al. 2016; Morgana et al. 2004), anthers (Gribaudo
et al. 2004; Kikkert et al. 2005), anther filaments (Acanda et al. 2013; Perrin et al.
2004) and whole flowers (Gambino et al. 2007). Even if less common, SE can be
induced from tissues derived from vegetative structures like tendrils (Salunkhe et al.
1997), leaf discs (Das et al. 2002), leaves and petioles (Martinelli et al. 1993) and stem
nodal explants (Maillot et al. 2006, 2016).

The most common tissue culture media for inducing SE are based on MS
(Murashige and Skoog 1962), NN (Nitsch and Nitsch 1969) or BS (Gamborg et al.
1968) salts supplemented with different PGR. Usually auxins are the most important
PGR to induce SE, and the auxin most frequently used is 2,4-dichlorophenoxyacetic
acid (2,4-D). Indole-3-acetic acid (IAA), 2-naphthoxyacetic acid (NOA) and naph-
thalene acetic acid (NAA) are also used. When cytokinins are used in SEg induction
media, they are added to the culture medium together with auxins. The most used
cytokinin, 6-benzylaminopurine (BAP), supplemented at different concentrations
depending on the type of explant and genotype, is used to initiate embryogenic
cultures in combination with 2,4-D. Urea derivatives like thidiazuron (TDZ) or
N-(2-chloro-4-pyridyl)-N-phenylurea (4-CPPU) in combination with auxins were
effective when used in the induction phase in anther, pistil and ovary culture of
V. vinifera (Acanda et al. 2013; Bouamama-Gzara et al. 2017; Carra et al. 2016;
Kikkert et al. 2005). After embryogenic callus has been induced, in some cases
development of somatic embryos is achieved by reducing or removing auxin from
the culture medium (Coutos-Thevenot et al. 1992).
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Table 1 Successful somatic embryogenesis protocols in Vitis
Explant Species (cultivar/genotype) PGR References
Anther Vitis vinifera (Hencha) 24-D9uM + TDZ 10 pM | Bouamama-
filaments Gzara et al.
(2017)
Anther Rootstock (6 genotypes); 2,4-D 4.5 pM + BAP 9 pM | Perrin et al.
filaments V. vinifera (13 cvs) (2004)
Anthers Vitis vinifera (6 cvs) NOA 5 pM + BAP 2 pM Vasanth and
Vivier
(2011)
Anthers Vitis berlandieri x Vitis NOA 5 pM + BAP 1 pM Ben-Amar
rupestris; V. vinifera (2 cvs) et al. (2013)
Anthers V. berlandieri x V. rupestris 2,4-D + TDZ combinations | Forgacs
(110 Richter) et al. (2017)
Anthers V. vinifera x V. rupestris 24-D5puM + BAP | yM Rajasekaran
(Gloryvine and other cvs) and Mullins
(1979)
Anthers V. rupestris, V. longii, 24-D5puM + BAP 1 yM Mullins and
V. vinifera (Grenache) Rajasekaran
(1980)
Anthers V. vinifera (Cabernet 24-D45pM + BAP 1.1 pM | Mauro et al.
Sauvignon) (1986)
Anthers V. riparia 24-D5 puM + BAP 0.9 pM | Mozsar and
Sule (1994)
Anthers V. vinifera (4 cvs) 24-D9 pM + BAP 0.9 uM | Perl et al.
(1995)
Anthers V. vinifera (Grenache Noir) 24-D4.5uM +BAP 1.1 pM | Faure et al.
(1996)
Anthers Vitis ssp. (10 cvs) 24-D5uM + BAP 1 pM Torregrosa
(1998)
Anthers V. vinifera (Sultana) 2,4-D 4.5 uM + BAP 9 uM | Franks et al.
(1998)
Anthers V. latifolia 2,4-D 20 uyM + BAP 9 pM | Salunkhe
et al. (1999)
Anthers V. vinifera (15 cvs) 2,4-D2.5uM +BAP 0.8 uM | Perrin et al.
(2001)
Anthers V. vinifera (9 cvs) 2,4-D 9 uM + TDZ Bouamama
11.35 yM et al. (2007)
Anthers V. vinifera (Macabeo and 24-D5pM + BAP | yM Cutanda
Tempranillo) et al. (2008)
Anthers V. vinifera (16 cvs); Vitis 24-D 5 pM + TDZ 0.2 uM; | Oldh et al.
hybrids (11 cvs) 24-D 5 uM + BAP 0.4 pM; | (2009)
2,4-D 2.5 uM + NOA
2.5 pM + 4-CPPU 5 pM
Anthers Vitis vinifera (Pinot noir) 24-D4.4pM + BAP4.4 pM | Larrouy
et al. (2017)
Anthers and Vitis vinifera (Manicure 24-D4.5uM +BAP4.4puM | Xu et al.
gynoecia Finger) (2014)

(continued)
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Table 1 (continued)
Explant Species (cultivar/genotype) PGR References
Anthers and V. longii (microsperma) 24-D5pM + BAP 1 yM Gray and
ovaries Mortensen
(1987)
Anthers and V. vinifera (2 cvs); 24-D 9 uM + BAP 4.4 uyM | Martinelli
ovaries V. berlandieri x V. rupestris et al. (2001)
(110 Richter); V. berlandieri x
V. riparia (SBB)
Anthers and V. vinifera (6 cvs); Vitis hybrid | 2,4-D 2.5 uyM + NOA Kikkert et al.
ovaries (Chancellor); V. labruscana 2.5 M + 4-CPPU 5 pM (2005)
(Concord and Niagara)
Anthers and V. vinifera (7 cvs) 24-D4.5uM +BAP 8.9 uM | Croce et al.
ovaries (2005)
Anthers and V. vinifera (Touriga Nacional) |2,4-D 4.5pM + BAP 8.9 pM | Pinto-Sintra
ovaries (2007)
Anthers and Vitis vinifera L. ssp. sylvestris | NOA 5 pM + BAP 4.4 yM | Carimi et al.
pistils (2016)
Anthers, ova- Vitis vinifera (Chardonnay) 2,4-D + BAP + picloram Dai et al.
ries and flower several concentrations (2015)
buds
Filaments V. vinifera; V. labruscana 24-D1puM + TDZ 1 pM Nakajima
(Bailey) and Matsuta
(2003)
Floral explants | V. vinifera (Albarifio) 2,4-D 4.52 pM + BAP Saporta et al.
4.4 pM; (2014)
2,4-D 4.52 uyM + NOA
2.5 uM+
4-CPPU 5 uM
Immature Vitis vinifera (Mencia) 24-D4.5 pM + BAP 9 upM | Prado et al.
anthers (2014)
Immature V. vinifera (8 cvs) 2,4-D 4.52 pM + BAP Vidal et al.
anthers and 4.4 pM; (2009)
ovaries 2,4-D 4.52 pM + NOA
2.5 M+
4-CPPU 5 pM
Immature V. vinifera (6 cvs) 2,4-D 4.5-9 pM + BAP 4.5- | Prado et al.
anthers and 9 uM (2010a)
ovaries
Immature V. vinifera (Thompson NOA 2.5 uyM + BAP 5 pM+ | Tapia et al.
leaves Seedless) 2,4-D 2.5 M (2009)
Immature V. rotundifolia (2 cvs); 2,4-D + BAP + NOA several |Li etal.
leaves and V. vinifera (4 cvs) combinations (2014)
stamens
Immature seeds | Vitis vinifera L (14 cvs) TDZ 0.90 pM San Pedro
et al. (2017)
Leaves V. vinifera (Crimson Seedless) | NOA 4.95 uM+ BAP Nookaraju
regenerated 4.44 uM+ phenylalanine and Agrawal
in vitro 5.0 mM (2012)

(continued)
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Table 1 (continued)
Explant Species (cultivar/genotype) PGR References
Leaves Vitis vinifera (Crimson NOA 5 pM+ BAP Nookaraju
regenerated Seedless) 4.5 pM + several amino and Agrawal
in vitro acids (2013)
Leaves V. vinifera (Velika) 2,4-D 9 upM+ 1AA Tsvetkov
regenerated 6 pM + BAP 4.4 pM + GA; |etal. (2014)
in vitro 1.8 uM
Leaves V. vinifera (Koshusanjaku) 2,4-D 5-10 uyM + TDZ or Matsuta and
4-CPPU 5-10 pM Hirabayashi
(1989)
Leaves Vitis hybrids (Seyval Blanc and | NOA 20 pM + BAP 40 pM | Harst (1995)
Chancellor); V. thunbergii or TDZ 4 yM
Leaves V. rupestris (du Lot) 2,4-D 9 uM + BAP 9 uyM Tsolova and
Atanassov
(1996)
Leaves V. vinifera (Podarok 24-D9 uM + BAP 44 pM | Kuksova
Magaracha) then NAA 5.4 pM + BAP et al. (1997)
4.4 pM
Leaves V. vinifera (Pusa Seedless, 2,4-D 0.45 uM + BAP Das et al.
Beauty Seedless, Perlette and | 4.5 pM (2002)
Nashik)
Leaves and V. vinifera; V. rupestris (sev- NOA 5 pM + BAP Stamp and
anthers eral cvs) 0.94.5 yM Meredith
(1988b)
Leaves and V. rupestris TIAA 5.7 pM or IBA 0.5 pM | Martinelli
petioles et al. (1993)
Leaves and V. rotundifolia (Regale and 2,4-D 9 uM + BAP 4.4 uM, | Robacker
petioles Fry) then NAA 10.7 uyM + BAP | (1993)
0.9 pM
Ovaries V. labruscana (Fredonia and 2,4-D 9 uM + BAP Motoike
Niagara) 1 pM + IASP 17 pM then et al. (2001)
2,4-D 2 uM or 2,4-D
2 uM + IASP 4 pM
Ovaries, anther | Vitis vinifera (8 cvs) 24-D 5 pM + CPPU 5 pM; | Carra et al.
filaments, stig- NOA 20 pM + TDZ 4 pM; | (2016)
mas and styles NOA 5 pM + BAP 4.4 pM;
NOA 10 pM + BAP 4.4 uyM
Ovules V. vinifera (Cabernet 24-D5uM + BAP 1 yM Srinivasan
Sauvignon and Grenache), and Mullins
Vitis hybrid (Gloryvine) (1980)
Ovules V. labruscana (Kyoto) 24-D1puM + TDZ 0.2 pM | Nakajima
et al. (2000)
PEM from V. vinifera (Chardonnay) 2,4-D 2 yM Jayasankar
anthers and et al. (2001)
ovaries
Petioles V. vinifera; Vitis hybrid BAP 2.2 yM Zlenko et al.
(2002)

(continued)
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Table 1 (continued)
Explant Species (cultivar/genotype) PGR References
Protoplasts Vitis hybrids (Seyval Blanc) NOA 20 uM + TDZ 4 uM | Reustle et al.
(1995)
Protoplasts V. vinifera (Koshusanjaku) NAA 10.7 pM + BAP Zhu et al.
2.2 uM (1997)
Seed V. vinifera (Autumn Royal 2,4-D 9 uM + BAP 4 uM Xu and Lu
integuments Seedless) (2009)
Stamen Vitis vinifera (Mencia) 24-D 1 pM+ TDZ 4.5 yM | Acanda et al.
filaments (2013)
Stamen Vitis vinifera (Mencfa) 24-D1pM+ TDZ 4.5 uyM | Acandaet al.
filaments (2015)
Stamens V. vinifera L. (Thompson 2,4-D 2.25 pM + BAP Zhou et al.
Seedless) 18 pM (2014)
Stamens and Vitis vinifera L. (4 cvs) 24-D4.5uM + BAP 8.9 uM | Gambino
pistils et al.
(2011b)
Stem segments | Vitis vinifera (Chardonnay) 2,4-D + BAP at several Maillot et al.
with a unique concentrations (2016)
axillary bud
Styles and V. vinifera (Sugraone) NOA 5 pM + BAP 9 pM Morgana
stigmas et al. (2004)
Styles and V. vinifera (4 cvs) NOA 9.9 uM+ BAP 4.5 pM; | Carimi et al.
stigmas BAP 9 pM (2005)
Tender stems V. amurensis Rupr NAA 0.5 pM + BAP2.2 uM | Sun et al.
(2016)
Tendrils V. vinifera (3 cvs) NAA 0.4 pM + BAP Salunkhe
10 pM + GA;5 2.8 pM et al. (1997)
Unopened Vitis rotundifolia (5 cvs) 2,4-D 9 uyM + BAP 4.4 uM | Dhekney
leaves, petioles et al. (2011)
and fully
opened leaves
Whole flower Vitis vinifera (Thompson NOA 2.5 puM + 2,4-D Jietal.
bud Seedless) 2.3 pM + (2017)
4-CPPU 4 pM
Whole flowers, | V. vinifera (8 cvs); 24-D 4.5 uyM + BAP 9 uM | Martinelli

anthers and V. berlandieri x V. rupestris et al. (2003)
ovaries (110R)

Whole flowers, | V. vinifera (8 cvs); 2,4-D 4.5 uyM + BAP 9 pM | Gribaudo
anthers and V. berlandieri x V. rupestris et al. (2004)
ovaries (110R)

Whole flowers,
anthers and

V. vinifera (8 cvs);
V. berlandieri x V. rupestris

2,4-D 4.5 pM + BAP 9 pM

Gambino
et al. (2007)

ovaries (110R)

Whole flowers, | V. vinifera (8 cvs); 24-D 4.5 uM + BAP 9 upM | Cadavid-

anthers and V. berlandieri x V. rupestris Labrada

ovaries (110R) et al. (2008)

Zygotic V. vinifera (4 cvs); V. longii NOA 5 pM + BAP 0.9 pM | Stamp and

embryos Meredith
(1988a)

(continued)
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Table 1 (continued)

Explant Species (cultivar/genotype) PGR References
Zygotic V. rotundifolia (5 cvs) NOA 5 pM + BAP 0.9 uM | Gray (1992)
embryos

2,4-D 2,4-dichlorophenoxyacetic acid, BAP 6-benzyladenine, 4-CPPU N-(2-chloro-4-pyridyl)-N-
'-phenylurea, cvs cultivars, JAA indole-3-acetic acid, IBA indole-3-butyric acid, JASP indole-3-
acetyl-L-aspartic acid, NAA 2-naphthaleneacetic acid, NOA 2-naphthoxyacetic acid, PEM
proembryogenic masses, PGR plant growth regulators, 7DZ N-(1,2,3-thiadiazol-5-yl)-N-
'-phenylurea (thidiazuron)

Physical culture conditions significantly influence the embryogenic response. By
manipulating light intensity and temperature, Das et al. (2002) developed an efficient
leaf-disc method for the regeneration of plants via SEg. Other workers incubate
cultures in total darkness until embryogenic callus is formed and then transfer cultures
to the light (Oldh et al. 2009; Prado et al. 2010a). Several parameters such as
composition of basal medium, medium pH, type of gelling agent, presence of activated
charcoal, carbohydrate source and light intensity and spectral composition can influ-
ence culture success (Jittayasothorn et al. 2007). Type of culture, liquid or solid,
influences the final result, and the liquid culture is to be preferred in the induction
phase while structured embryogenic callus grows better on solid media (Jayasankar
et al. 2003; Mullins and Srinivasan 1976). Moreover, quality of SE affects regenera-
tion frequency, which varies depending on type of culture: SE cultured on solid media
often show dormancy, whereas in liquid media SE were not dormant and showed
higher regeneration efficiency (Jayasankar et al. 2003; Mullins and Srinivasan 1976).

SEg is significantly influenced by the developmental stage of explants, and
preconditioning treatments have been proved to be crucial in determining the final
result. Gribaudo et al. (2004) screened six different developmental stages of anthers
to initiate SEg cultures and identified a correlation between anther stage and SEg
efficiency. The optimal developmental stage is related to genotype, and for
V. vinifera ‘Chardonnay’ and ‘Barbera’, higher rates of SEg had been obtained
when explants were collected at early stages, while in the rootstock ‘110R’, later
stages proved to be more efficient. In V. lambruscana, the best results were obtained
with anthers collected 20 days before anthesis (Nakajima et al. 2000), while for eight
Tunisian cultivars of V. vinifera, the best performance was achieved with anthers at
the tetrad stage of microspore development (Bouamama et al. 2007). Similar results
were reported more recently also for V. vinifera ‘Sultana’, ‘Red Globe’ and ‘Merlot’
(Vasanth and Vivier 2017).

2.3 Synchronisation of Somatic Embryo Production
and Their Germination

The synchronisation of SE development is a critical step for taking advantage of SEg
for applications, such as micropropagation, germplasm conservation and genetic
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transformation, and for gene expression studies. Anatomical and developmental
studies towards this goal have been made, comparing SE development in solid
media with those in suspension cultures (Jayasankar et al. 2003). Developing SEs
on solid media had large cotyledons, little or no visible suspensor structure and a
relatively undeveloped concave shoot apical meristem, whereas those developing in
liquid media had smaller cotyledons, a distinct suspensor and a flat-to-convex shoot
apical meristem. Also, SEs derived from solid media exhibited physiological dor-
mancy and did not germinate without a dormancy-breaking treatment (Jayasankar
et al. 2003). Faure et al. (1996) observed asynchronous development of SEs when
embryogenic callus cultured in liquid media supplemented with 2,4-D and BAP was
transferred to the same liquid media devoid of PGR. They described developmental
stages of proembryos in PGR supplemented media, followed by development of
globular stage embryos in PGR-free media (Faure et al. 1996).

Jayasankar et al. (1999) reported a high degree of synchronisation of somatic
embryo production by alternating solid and liquid media for culture. However,
further development of somatic embryos was better achieved in semi-solid media.
Embryo germination was influenced by genotype and culture conditions. SEs
derived from suspension cultures of ‘Chardonnay’ did not have a dormant phase
and germinated precociously, whereas ‘Thompson Seedless’ SEs did not develop
beyond the heart stage in liquid medium (Jayasankar et al. 1999). In contrast, Zlenko
et al. (2002, 2005) successfully converted somatic embryos developed on liquid
induction media by subculturing them on liquid media supplemented with BAP and
GA3, or GA; alone. Plant regeneration appears to be easier for SEs of Muscadine
grapes (Muscadinia rotundifolia), as Lu et al. (2007) were able to germinate more
than 95% of synchronously produced SEs using suspension cultures established in
woody plant medium (Lloyd and McCown 1980). In contrast, in some cultivars of
V. vinifera such as ‘Grenache noir’, the germination of somatic embryos is very poor
due to their inability to utilise the starch and lipids accumulated in cotyledons at the
torpedo stage (Faure and Aarrouf 1994). Another problem with suspension cultures
of grapevine is the browning of the suspension of cells and medium, due to
production of phenolic compounds. Jayasankar et al. (1999) overcame this problem
by sieving the larger cell masses, which contained differentiated somatic embryos.
After three subcultures, they managed to produce large numbers of cytoplasm-rich
proembryonic masses (PEM). Two cultivars used behaved quite differently: ‘Char-
donnay’ produced SEs from PEMs directly upon subculture onto hormone-free
media, whereas ‘“Thompson Seedless’ did not advance beyond the heart stage. The
use of conditioned medium has been reported to facilitate embryo proliferation and
conversion. Supplementing liquid culture media with arabinogalactan-proteins has
been shown to facilitate cell proliferation of grapevine embryogenic cultures (Ben
Amar et al. 2007). Recently, an improved protocol based on the dynamic mainte-
nance of culture medium has been proposed. Forgécs et al. (2017) stated that culture
density affects both the amount of differentiating embryos and their stage of
development in ‘Richter 110°. Results show that to achieve full synchrony, it is
essential to use low cell density obtained through readjusting it to the initial value
every week.
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2.4 Applications of Somatic Embryogenesis in Grapevine

SEg is the preferred method for cell to plant regeneration in V. vinifera L. and has
been reported for several important Vitis species. SEg has been widely applied in
crop genetic improvement and it was suggested as a specific tool to induce
somaclonal variation in grapevine and specifically to amplify clonal variability
(Acanda et al. 2015; Desperrier et al. 2003; Kuksova et al. 1997; Torregrosa et al.
2001). SEs have proven to be an excellent resource for mutations (Pathirana 2011)
even if this approach does not guarantee a good rate of SE induction and conversion
into plantlets, which is strictly genotype dependent. For this reason, mutagenesis has
not been extensively used for grapevine improvement even if physical and chemical
mutagens have been investigated. Recently, production of colchicine- and oryzalin-
induced polyploid mutants has been described starting from SEs of ‘Crimson
seedless’, ‘BRS Clara’ and ‘Mencia’ (Acanda et al. 2015; Sinski et al. 2014).
Currently, SEg is the most suitable tool for in vitro manipulation of the Vitis genus
(Kikkert et al. 2001; Martinelli and Mandolino 2001). For this reason, mutagenesis
of somatic embryos has become an interesting tool in genomics programs to assign
gene function, particularly since the availability of the draft genome sequence of
grapevine (Jaillon et al. 2007; Velasco et al. 2007).

Virus infections cause severe economic losses in grapevine with several viruses
known to negatively influence grape quality and yield. SEg has been proved to be highly
effective in eliminating some viruses, either alone or in combination with thermotherapy
(Gambino et al. 2006, 2009). Bouamama-Gzara et al. (2017) reported 100% elimination
of Grapevine leafroll-associated virus 3, Grapevine stem pitting-associated virus and
Grapevine virus A from the Tunisian cultivar Hencha through SEg.

Other applications include the isolation of natural somatic mutants (Boss and
Thomas 2002; Franks et al. 2002), and germplasm conservation through synthetic
seeds technology and cryopreservation (Brambilla 1999; Carimi et al. 2016; Gray
and Compton 1993; Gray et al. 1991; Jayasankar et al. 2005).

SEs have been tested as a resource for conservation of grapevine germplasm.
Jayasankar et al. (2005) cultured mature somatic embryos at low density
(250 embryos/40 ml liquid media) for 2 weeks, dried them in the laminar flow for
~4 h and sealed in Petri dishes. Ninety percent of these dehydrated SEs produced
plants after 42 months of storage at 4 °C in V. vinifera ‘Chardonnay’. V. vinifera
‘Autumn Seedless’ SEs were generally poor in germination from the beginning but
did not show any deterioration during the month storage trial, rather their conversion
rate increased from 30 to 40% over the storage period, a statistically significant
difference (Jayasankar et al. 2005).

Possible use of SEs for clonal propagation was demonstrated by Jayasankar et al.
(2001) using V. vinifera ‘Chardonnay’. They blot-dried mature SEs and germinated
directly in different sterilised agar-free potting media under aseptic conditions. Com-
mercial potting mixture overlaid by sand produced the best results with 32% of the SEs
growing into normal plantlets ready for greenhouse acclimation. They proposed
encapsulating SEs for further improvements to the propagation methodology.
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2.5 Genetic Stability of Somatic Embryo-Derived Grapevine
Plants

Plantlets derived from an in vitro culture may exhibit somaclonal variations (Larkin
and Scowcroft 1981). There are two types of somaclonal variations: heritable and
epigenetic (Skirvin et al. 1994). Heritable changes in in vitro cultures occur at higher
frequency than occurs spontaneously in seeds or grafted plants (Prado et al. 2010b;
Sahijram et al. 2003). Therefore, somaclonal variations may constitute a serious
problem in clonal propagation systems aimed at the preservation of plant genetic
integrity (Sahijram et al. 2003). However, somaclonal variations may also be
exploited as a source of new genetic variability for crop improvement, especially
in trees and long-lived perennial species and vegetatively propagated plants (Karp
1995). Methods for detecting somaclonal variation were extensively reviewed by
Bairu et al. (2011). Somaclonal variants can be detected using various techniques
that are broadly categorised as morphological and molecular detection techniques.

Morphological variants can be easily detected based on characters such as
differences in plant stature, leaf morphology or pigmentation abnormalities (Israeli
etal. 1991). In grapevine, variation in leaf shape was reported for several somaclones
of ‘Grenache’ (Martinez et al. 1997). Variability in cropping level, berry weight and
vigour are also reported (Torregrosa et al. 2011). DNA-based techniques, such as
restriction fragment length polymorphism (RFLP), random amplified polymorphic
DNA (RAPD), microsatellite or inter-simple sequence repeat (ISSR) and amplified
fragment length polymorphism (AFLP) markers, are valuable tools for analysing the
genetic fidelity of in vitro propagated plants. Variations in tissue culture-derived
plants can also be generated by changes in methylation (Schellenbaum et al. 2008)
and ploidy (Martinelli and Gribaudo 2001). Genetic profiles determined by DNA
markers (ISSR, AFLP, RAPD, SSR) have shown that genetic fidelity is not
compromised during SE, except in very rare instances (Prado et al. 2010b; Yang
et al. 2006). Flow cytometry has been used in V. vinifera to verify the ploidy level
and ploidy stability of SE-derived plants (Leal et al. 2006; Prado et al. 2010b).
Researchers reported a low percentage of somaclonal variation, taking into account
that all the embryos were produced from callus tissue, which is prone to genetic
variability (Sato et al. 2011; Smulders and De Klerk 2011).

3 Conservation of High-Health Germplasm Through
Cryopreservation

Plant cryopreservation is the storage of structurally intact cells, tissues or organs in
liquid nitrogen (LN) or its vapour phase at ultra-low temperatures, mainly for
conservation of genetic resources. The temperature in LN (=196 °C) or its vapour
phase ensures the cellular activity is slowed to the point of cessation where vital
functions such as enzymatic activity, gene function and respiration cease, thus
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arresting the cell aging. Hence in theory, cryopreserved cells cannot age beyond the
physiological point at which they were placed in cryo storage (Benson 2008). Thus,
cryopreservation provides a means to conserve plant genetic resources in gene banks
that are otherwise under threat when maintained in the field, particularly in the case
of clonally propagated species such as grapevine that are expensive to duplicate in
different locations or to maintain as in vitro cultures.

3.1 Developing High-Health Plants for Industry
and Conservation

In addition to storage of genetic resources for future use, cryopreservation has been
used in recent years to eradicate infecting microorganisms in many horticultural
species including grapevine (Bettoni et al. 2016; Wang and Valkonen 2007, 2009; Bi
et al. 2018a; Wang et al. 2003). Table 2 gives details of the grapevine cultivars from
which different viruses were eradicated using cryopreservation techniques.

There are a number of advantages of using cryotherapy to obtain high-health
plants for the industry compared with traditional methods of virus eradication.
Among these advantages, the ability to treat a large number of samples and geno-
types simultaneously, higher frequency of virus-free plants and cost-effectiveness
are the major benefits of cryo-based technologies (Bettoni et al. 2016).

4 Methods Used for Grapevine Cryopreservation

Although the first method of cryopreservation of plant material developed using
winter dormant twigs of Salix, mulberry and poplar (Sakai 1960) may apply to frost
hardy grapevine, its wider application may be limited. Further manipulation of
freezing tolerance, for example, through exogenous abscisic acid (Rubio et al.
2018), may enable the use of the method in grapevine. Currently, the dormant bud
method is successfully used mainly in apple for long-term preservation (Hofer 2015;
Pathirana et al. 2018; Towill and Bonnart 2005). On the other hand, development of
vitrification-based methods applied to embryogenic masses, SEs, shoot tips and
axillary buds from tissue cultured plants has progressed rapidly.

Vitrification is freezing of a solution without crystallisation. The water molecules
are sparsely distributed in highly concentrated solutions, including cytoplasm of
highly dehydrated plant tissue, particularly in the non-vacuolar, highly cytoplasmic
meristematic tissue. Snap freezing of such tissue in LN will result in the solution
transitioning to a vitreous (glassy) state. In this state, the metabolic activity in cells
ceases and cells survive without aging, theoretically for eternity.

The vitrification method of cryopreservation involves dehydration of cells/tissues
in glycerol-based cryoprotective solutions such as plant vitrification solution
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2 (PVS2) (Sakai et al. 1990). Penetrative cryoprotectants such as ethylene glycol and
dimethyl sulphoxide (DMSO) in vitrification solutions are believed to prevent ice
formation by interfering with hydrogen bonding between water molecules (Best
2015), and they also displace water within the cytoplasm, thus supporting dehydra-
tion of tissue.

There are several methods of vitrification described for plant tissue:

(a) Two-Step Freezing

This older method was mainly used for ‘unprotected’ (Ezawa et al. 1989) and
protected shoot tips (Plessis et al. 1991, 1993) and axillary buds through encapsu-
lation in alginate beads (Miaja et al. 2000; Zhao et al. 2001), as well as for
embryogenic cell suspensions (Dussert et al. 1991, 1992; Ben-Amar et al. 2013).
Ezawa et al. (1989) used a freezing solution containing 10% DMSO and 60 g/L
sucrose to cryopreserve Vitis labrusca shoot tips (1-2 mm). After holding shoot tips
for 2 h in this solution at room temperature, they cooled the shoot tips in the same
solution at a rate of —0.5 °C per minute using a programmable freezer and found that
freezing to —30 °C followed by immersion in LN gave better regeneration than those
frozen to —20 °C or — 40 °C and immersed in LN. Also, shoot tips from twigs
harvested from the field in November and December from Hokkaido Research
Station fields in Japan responded better to freezing in LN than those harvested in
October (Ezawa et al. 1989).

Zhao et al. (2001) encapsulated axillary buds of four V. vinifera accessions and
treated them in increasing sucrose concentrations from 0.1 to 1 M and desiccated
with silica gel to 21% moisture content then slowly cooled to —40 °C at a rate of
—0.2 °C/min before immersion in LN. They found that plants maintained without
subculture for 3 or 4 months and those that received a cold-acclimation of 1 month at
5 °C were amenable to cryopreservation. Shoot tips from younger plants in tissue
culture did not regenerate after cryopreservation by this method.

Dussert et al. (1991) used anthers of rootstock ‘41B’ (V. vinifera ‘Chasselas’ x
V. berlandieri) to induce embryogenic callus from which they produced embryo-
genic cell cultures. These were used in their cryopreservation experiments. They
demonstrated that fast freezing is not effective for cryopreservation of embryogenic
cell suspensions and only two-step freezing allowed successful cryopreservation.
DMSO (5% w/v) and 0.25 M maltose in the freezing solution gave the highest
(>60%) regeneration rates after slow cooling to —40 °C at the rate of —0.5 °C/min
followed by immersion in LN. Another important step is the incubation of the cells
in the medium for 1 h at 0 °C as a pretreatment step before slow freezing. The
optimum post-thaw culture medium consisted of a semi-solid medium supplemented
with 2 mg/L naphthoxyacetic acid (Dussert et al. 1992). Activated charcoal (0.1%)
helped prevent browning of the cells after thawing, but regrowth was reduced in its
presence. A minimum of 6 days in the semi-solid medium was essential for recovery
of cells after cryopreservation (Dussert et al. 1992).

Ben-Amar et al. (2013) compared a two-step freezing method with direct freezing
for cryopreservation of embryogenic cell lines of three grapevine accessions: Root-
stock 110 Richter (V. berlandieri x V. rupestris) and V. vinifera cv. Riesling and
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cv. Tempranillo. For both procedures, they employed pre-culture of embryogenic
cell masses in increasing sucrose concentrations from 0.25, 0.5, 0.75 M through to
1 M over 4 days either before encapsulating in alginate beads (dehydration-
encapsulation) or after (encapsulation-dehydration). Then, the cells in beads were
treated for 3 days in a mixture of 2 M glycerol and 0.4 M sucrose before either being
dehydrated in the laminar flow hood airflow before direct immersion in LN or
maintained at 0 °C for 30 min, for 45 min at —20 °C or for 45 min at —80 °C before
transfer to LN. Direct freezing recorded significantly higher regeneration rates
(43.3-78%) than slow freezing (15.3-25.3%) in all three accessions. However, the
slow freezing method employed was different from that of previous workers who
demonstrated better results when a programmed freezer was used (Dussert et al.
1991, 1992; Zhao et al. 2001) to control the rate of temperature drop.

The method used by Plessis et al. (1993) and Miaja et al. (2000) involved sucrose
pre-culture of shoot tips in alginate beads followed by dehydration for 4 h in the
laminar hood airflow that resulted in 30% moisture content (Miaja et al. 2000),
followed by slow freezing at 0.5 °C/min to —80 °C and transfer to LN. While Plessis
et al. (1993) recorded 24% shoot tip survival in V. vinifera ‘Chardonnay’ by this
two-step encapsulation-dehydration procedure, Miaja et al. (2000) did not recover
whole plants in three cultivars (‘Nebbiolo’, ‘Barbera’ and ‘Brachetto’), although
cells of some explants showed viability when tested using fluorescent microscopy.

In the three-step vitrification method, explants are stepwise pre-cultured in tissue
culture media enriched with increasing sucrose concentrations over several days
followed by osmoprotection using a glycerol and sucrose mixture and finally PVS2
dehydration. In this method, after the final treatment in vitrification solution,
explants are held in a cryotube with vitrification solution and transferred directly
to LN. Researchers describe such vitrification methods as two-step or three-step
vitrification methods; however, this should not be confused with two-step freezing
method where the explants are first cooled slowly at a selected rate and then
transferred to LN after reaching a designated temperature such as —30 °C.

(b) Encapsulation-Dehydration

This method was first reported by Fabre and Dereuddre (1990) for cryopreservation
of Solanum shoot tips and is based on the technology developed for the production
of artificial seeds. Encapsulation-dehydration has been experimented with in well
over 70 different plant species (Engelmann et al. 2008). Plessis et al. (1991) were the
first to report this method to cryopreserve grapevine shoot tips. In this method,
explants are placed into alginate solution (3% Na-alginate (w/v), 2 M glycerol and
0.4 M sucrose in MS liquid medium with no CaCl,), and then individual explants in
alginate solution are transferred by pipette to a calcium chloride solution (0.1 M
calcium chloride, 2 M glycerol and 0.4 M sucrose in MS liquid medium) in a droplet.
The explant gets entrapped in beads by ionotropic gelation, with CaCl, acting as the
crosslinking agent. Crosslinking is complete in about 30 min and produces beads of
4-5 mm diameter containing an explant. Then the beads are pre-cultured on basal
MS media supplemented with increasing sucrose concentrations of 0.25, 0.5, 0.75
and 1 M for 4 days, a step per day, before partial desiccation in the air current of a
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laminar flow hood or on silica gel to desiccate the beads to about 16 to 20% moisture
content (Markovic et al. 2013; Wang et al. 2000). The dehydration period can vary
depending on the ambient temperature and humidity, especially for air-drying in a
laminar flow hood. The two desiccation methods produce similar results with respect
to Vitis shoot regrowth as demonstrated in rootstock LN33 (Couderc 1613 x Vitis
vinifera ‘“Thompson Seedless’). The highest survival (60%) was achieved when
beads were dehydrated for 7 h in laminar flow hood airflow or for 4.5 h on silica
gel, with a final bead moisture content of about 16% (Wang et al. 2000). However,
desiccation on silica gel is easier to reproduce than air-drying, since the room
conditions are variable among labs or even at different periods of the year within
the same lab. After desiccation, the beads are transferred to cryovials (~10 beads per
cryovial) and plunged into LN. For testing viability, cryovials are warmed in a 40 °C
water bath for 3 min and encapsulated shoot tips are cultured on recovery medium.
Encapsulation-dehydration procedures for different Vitis genotypes have been tested
using both direct immersion in LN after osmoprotection (Bayati et al. 2011; Bi et al.
2018a; Carimi et al. 2016; Dussert et al. 1991; Wang et al. 2000, 2002, 2004) and by
two-step freezing (Dussert et al. 1991, 1992; Ezawa et al. 1989; Miaja et al. 2000,
2004; Plessis et al. 1991, 1993; Zhao et al. 2001) focusing on several Vitis species.

(c) Encapsulation-Vitrification

This method is a combination of encapsulation-dehydration and vitrification pro-
cedures, where explants are encapsulated in alginate beads and dehydrated chemi-
cally using vitrification solutions; it combines the advantages of ease of
manipulation of encapsulated explants and the fast dehydration by vitrification
(Matsumoto and Niino 2017; Sakai and Engelmann 2007). The encapsulation-
vitrification method has been studied less than other cryopreservation procedures
for grapevine (Bettoni et al. 2016). In the study of Benelli et al. (2003), shoot tips
from rootstock Kober SBB (Vitis berlandieri x Vitis riparia) were excised from cold
acclimated cultures (3-week at 4 °C) and encapsulated in 3% calcium alginate. The
beads were placed in cryovials and exposed to PVS2 at 0 °C for 90 min. Cryovials
containing shoot tips and PVS2 were then immersed in LN and stored. For recovery,
LN-stored cryovials were warmed in a 40 °C water bath and encapsulated shoot tips
were cultured on recovery medium. This protocol resulted in low regrowth levels,
not specified by the authors (Benelli et al. 2003).

(d) Droplet-Vitrification

This technique is a variant of vitrification-based cryopreservation and was derived
from the droplet-freezing technique developed by Kartha et al. (1982) for freezing
cassava shoot tips using slow cooling and then modified by Schafermenuhr et al.
(1994) for potato shoot tip cryopreservation. In this method, explants are
osmoprotected, exposed to vitrification solution, placed onto individual droplets or
a thin layer of PVS2 on aluminium foil strips and then transferred to LN (Bi et al.
2018b; Pathirana et al. 2016). The main advantage of this technique over the
traditional vitrification procedures is the possibility of achieving faster freezing
and warming rates due to the direct contact of explants with LN (Panis et al. 2011;
Sakai and Engelmann 2007). Aluminium, with its high thermal conductivity, further
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facilitates fast freezing of the shoot tips. Droplet-vitrification has been applied
successfully to in vitro grown shoot tips of diverse plant species, including grapes
(Bi et al. 2018b; Carimi et al. 2016; Hassan and Haggag 2013; Markovic et al. 2013;
Pathirana et al. 2016; Volk et al. 2018). So far, droplet-vitrification appears to be a
promising method to overcome species- and genotype-specific responses that have
been bottlenecks for the widespread use of Vitis cryopreservation (Bi et al. 2018b;
Volk et al. 2018). Recently, improvements in droplet-vitrification protocols for
cryopreservation of Vitis have been reported, and these are associated with improv-
ing the explant quality (Markovic et al. 2013) and pretreatment conditions, adding
antioxidants (Bi et al. 2018a) and elicitors of defence proteins such as salicylic acid
(Bi et al. 2018b; Pathirana et al. 2016; Volk et al. 2018). Volk et al. (2018) reported a
widely applicable Vitis droplet-vitrification method and applied it to nine species. In
their protocol, shoot tips were excised from nodal sections that were grown on MS
medium containing 0.2 mg L~ N°benzyladenine, 1 mM salicylic acid, 1 mM
glutathione (reduced form) and 1 mM ascorbic acid for 2 weeks. Then, the shoot
tips were pre-cultured on half-strength MS medium containing 0.3 M sucrose,
0.1 mM salicylic acid, 1 mM ascorbic acid and 1 mM glutathione (reduced form)
for 3 days, treated with loading solution (half-strength MS + 2 M glycerol +0.4 M
sucrose) for 20 min and then with half-strength PVS2 for 30 min at 22 °C followed
by full-strength PVS2 treatment for 90 min at O °C prior to immersion in LN. Shoot
tips were warmed in unloading solution (half-strength MS + 1.2 M sucrose) for
20 min and post-thaw cultured for shoot regrowth. This cryo-protocol resulted in
24-43% shoot regrowth and averaged 35 4+ 2% across nine Vitis species. Bettoni
et al. (2018) reported a similar Vitis droplet-vitrification method to that described by
Volk et al. (2018); in addition, they showed the possibility of cryopreserving Vitis
vinifera ‘Chardonnay’ shoot tips without first introducing the accession into tissue
culture, using plants from a growth chamber. Nodal sections were harvested from the
growth chamber plants, surface sterilised and plated on pretreatment medium for
2 weeks, and then shoot tips (1 mm) were dissected and pre-cultured for 3 days. The
pretreatment and pre-culture medium were those described above by Volk et al.
(2018), with addition of the plant preservation mixture (PPM®, 1.5% v/v) to reduce
microbial contamination. Pre-cultured shoot tips were treated with loading solution
for 20 min, followed by half-strength PVS2 for 30 min at 22 °C and then full-
strength PVS2 treatment for 30 min at 0 °C prior to immersion in LN. Following LN,
the shoot tips were warmed in unloading solution for 20 min and post-thaw cultured
for shoot regrowth. About 43% shoot regrowth was obtained for V. vinifera
‘Chardonnay’.

(e) V Cryo-plate Method

The recently developed V cryo-plate technique is an optimisation of the encapsula-
tion and droplet-vitrification methods and combines advantages of both (Yamamoto
et al. 2011). Explant handling is facilitated by droplet encapsulated plant tissues
adhering to the wells of aluminium cryo-plates, and at the same time, this process
aids fast cooling and warming rates, an important requirement for successful cryo-
preservation protocols (Niino et al. 2013; Panis et al. 2005; Yamamoto et al. 2011).
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The main advantages of the cryo-plate method, over the other vitrification-based
cryopreservation techniques, are simplicity and user-friendliness; samples can be
easily transferred between solutions with minimal risk of mechanical injuries
because all treatments can be carried out on cryo-plates with shoot tips attached,
i.e. the cryo-plate is manipulated only after the shoot tips have adhered onto it
(Rafique et al. 2015). The V cryo-plate method has been successfully applied to a
diverse range of species (Matsumoto and Niino 2017). Bettoni et al. (2019) reported
a practical and promising cryopreservation protocol for in vitro grapes shoot tips
using the V cryo-plate method. In this protocol, microcuttings were grown on MS
pretreatment medium supplemented with 0.2 mg L™' N®benzyladenine, 1 mM
salicylic acid, 1 mM glutathione (reduced form) and 1 mM ascorbic acid for
2 weeks, and then shoot tips (I mm) were dissected from the shoots and
pre-cultured on half-strength MS medium containing 0.3 M sucrose, 0.1 mM
salicylic acid, 1 mM ascorbic acid and 1 mM glutathione (reduced form) for
3 days. Pre-cultured shoot tips were attached to wells of a cryo-plate with alginate
(2% Na-alginate (w/v)) and calcium (0.1 M calcium chloride) beads and treated with
loading solution for 30 min and then exposed to PVS2 at 22 °C for 40 min. The cryo-
plate was then immersed in LN for 1 h and warmed into unloading solution for
20 min, and the alginate beads were transferred onto the recovery medium. This
protocol resulted in 68—70% shoot regrowth in Vitis accessions V. aestivalis (DVIT
1408) and Vitis jacquemontii (P1 135726).

5 Conclusions and Future Perspectives

Since the first report of SEg in grapevine, much research has been conducted on
improving the conditions for inducing embryogenic cultures and on manipulating
those to obtain mature SEs synchronously. Lack of synchrony and consistency in SE
formation, poor maturation, lack of a quiescent stage resulting in autonomous
germination and inability to dehydrate them unlike zygotic embryos are problems.
There are only a few reports of attempts to store dehydrated SEs of grapevine, but
some accessions have stored well up to 2 years at 4 °C. Variability in response in
different genotypes requires optimising media and conditions for recalcitrant geno-
types. As a result of these difficulties, conservation by cryopreservation has
progressed using encapsulated shoot tips or axillary buds of tissue culture plants.
One vitrification-based method uses a droplet of vitrification solution to protect the
shoot tips on an aluminium strip allowing faster freezing of tissue, an important
factor for post-cryo-survival. The novel V cryo-plate method combines the advan-
tage of both encapsulation in alginate beads to adhere the explants, so manipulations
can be performed easily, and the high thermal conductivity of aluminium. Cryo-
preservation of SEs has been suggested as a way to conserve the diversity of wild
V. vinifera ssp. sylvestris, and the limited results are promising. Further research
towards incorporating dehydration tolerance in SEs would allow further progress in
using SEs as the clonal unit of conservation.
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