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Preface

Synthetic or artificial seeds are described as alginate-encapsulated somatic embryos,
vegetative buds, or any other micropropagules that can be used as seeds and
converted into plantlets after propagating in vitro or in vivo conditions and also
sustain the regeneration potential after low temperature storage. Production of
synthetic or artificial seeds using micropropagules opens up new vistas in agricul-
tural biotechnology that helped to overcome the challenges that face important
economic and medicinal plant species. Encapsulated propagules could be used
for in vitro regeneration and mass multiplication at reasonable cost. In addition,
these propagules may be use for germplasm preservation of elite plant species
and exchange of plant materials between national and international laboratories.
Besides, the technology has been successfully utilizing for cryopreservation via
encapsulation-dehydration, and encapsulation-vitrification for germplasm storage
of elite plant species. Synthetic seeds are reasonably inexpensive to produce and
easy to handle, plant, and transport and have great advantages in comparison with
traditional in vitro culture methods. The aim of this book is to provide relevant state-
of-the-art findings on methods, application, and prospects of synthetic or artificial
seeds. Being involved in this area, we comprehend that information on encapsulation
and synseed production is still obscure, and there is no single book available on this
aspect.

The intended volume comprised several chapters on relevant topics contributed
by experts working in the field of plant biotechnology so as to make available a
comprehensive treatise designed to provide an in-depth analysis of the subject in
question. The book is a compilation of 22 chapters having relevant text, tables, and
illustration describing the experimental work on encapsulation and synthetic seeds
production, for regeneration, multiplication, germplasm preservation, exchange, and
crop improvement in several plant species which will be useful in planning and
execution of various experiments smoothly and effectively.

The present book aimed to induce new outlooks to scientists/researcher who are
unfamiliar with synthetic seeds and will be very helpful in various present and future
researches in different areas of plant biotechnology, cryobiology, molecular biology,
plant physiology, and seed biology.
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An Introduction to Synthetic Seeds:
Production, Techniques, and Applications

Ahmad A. Qahtan, Eslam M. Abdel-Salam, Abdulrahman A. Alatar,
Qiao-Chun Wang, and Mohammad Faisal

Abstract Recent breakthroughs in in vitro culturing of plant cell tissue have helped
to overcome the challenges that face important economic and medicinal plant
species. Micropropagation and encapsulation techniques have been combined to
develop a new tool, known as “synseed,” which has the advantages of both tech-
nologies. Synseeds or artificial seeds are alginate encapsulated somatic embryos,
vegetative buds, or any other micropropagules that can be used as seeds and
germinated into plantlets after propagating under in vitro or in vivo conditions and
that can also sustain the regeneration potential after low temperature storage. Encap-
sulated propagules may be used for germplasm preservation of elite plant species
and exchange of plant materials between national and international laboratories. In
addition, the technology has been successfully utilized for cryopreservation via
encapsulation-dehydration, and encapsulation–vitrification for the germplasm stor-
age of elite plant species. In this paper, we provide updated and comprehensive
information on synseed technology, with a particular focus on the importance of
explant selection for successful synseed production and on the matrices used as an
encapsulation material for synseeds. Furthermore, the limiting factors that hinder the
progress of synseed technology and related future perspectives are also discussed.

Keywords Conservation · Elite species · Germplasm · Synseeds · Tissue culture
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1 Introduction

Synthetic seeds, or artificial seeds, are encapsulated plant tissues such as shoot buds,
axillary buds, somatic embryos, shoot tips, cell aggregates, or any other tissues that
can be cultured as a seed and grown into a complete plant under either in vitro or in
ex vitro conditions and have the potential to retain their viability after cold storage
(Magray et al. 2017; Rihan et al. 2017). Previously, artificial seeds were produced by
encapsulation of the somatic embryo; however, in recent years, synseeds have been
produced by the encapsulation of various in vitro-derived propagules such as nodal
segments containing axillary buds, apical shoot buds, and stem segments (Bapat
et al. 1987; Danso and Ford-Lloyd 2003; Rai et al. 2008a). Murashige (1977) was
the first researcher to discuss the concept of artificial seeds, while desiccated artificial
carrot seeds were first produced by Kitto and Janick (1982). Later, Redenbaugh et al.
(1984) successfully developed a method for synseed production by encapsulation of
somatic embryos of alfalfa in sodium alginate. Similarly, Bapat et al. (1987) also
succeeded in producing synthetic seeds of Morus indica from shoot buds encapsu-
lated in alginate and in agar as an alternative to somatic embryos.

During recent decades, there has been great interest in the use of synseed
technology to produce artificial seeds, especially for the plants that have low seed
viability, seedless fruit, and poor germination rates, as well as for plants that depend
on mycorrhizal–fungal symbiosis for germination (Rai et al. 2008b; Gantait et al.
2015). Furthermore, synseed technology may be useful in the selection of genotypes
and sterile unsteady genotypes; germplasm preservation of elite planting materials;
and in vitro propagation of endangered, rare, and commercially important plants
(Danso and Ford-Lloyd 2003; Naik and Chand 2006; Gantait et al. 2015). Addi-
tionally, encapsulation technology provides easy handling, short- and long-term
storage capacity, genetic uniformity, and low cost quality plant materials; it also
allows for transportation and exchange of germplasm between national and interna-
tional laboratories (Rai et al. 2009; Parveen and Shahzad 2014). Synseed technology
has been successfully applied to numerous plant species, including medicinal plants,
ornamentals, vegetables, fruits, cereals, and forest trees (Table 1). Schematic repre-
sentation of synseed production is depicted in Fig. 1.

2 Selection of Plant Materials

Selection of the most appropriate explant as a starting material is a key factor for the
successful production of synseeds. Synseeds have been produced from different
plant propagules, which are discussed in this section.

2 A. A. Qahtan et al.



Table 1 Application of synseed technology in different plant species

Plant species Explant

Concentration
of sodium
alginate

Concentration
of calcium
chloride References

Allium sativum Callus 1.5% 50 mM Kim and Park
(2002)

Manihot
esculenta

Nodal cuttings
and shoot tips

3% 100 mM Danso and Ford-
Lloyd (2003)

Paulownia
elongata

Somatic
embryos

1, 2.5, and 3% 50, 60, 80 mM Ipekci and
Gozukirmizi
(2003)

Oryza sativa Somatic
embryos

4% 1.5% Kumar et al.
(2005)

Rotula aquatica Somatic
embryos

3% 50 mM Chithra et al.
(2005)

Pinus patula Somatic
embryos

1.5, 2, 2.5, and
3%

100 mM Malabadi and
Staden (2005)

Rhodiola
kirilowii

Axillary buds
and callus

4 and 5% 50 mM Zych et al. (2005)

Arnebia
euchroma

Somatic
embryos

3% 100 mM Manjkhola et al.
(2005)

Hibiscus
moscheutos

Nodal segments 2.75% 50 mM West et al. (2006)

Punica granatum Nodal segments 1–6% 50, 75, 100, and
125 mM

Naik and Chand
(2006)

Chonemorpha
grandiflora

Shoot tips 3% 50 mM Nishitha et al.
(2006)

Tylophora indica Nodal segments 1–5% 25, 50, 75,
100, and
200 mM

Faisal and Anis
(2007)

Nodal segments 2–5% 75 and 100 mM Gantait et al.
(2017b)

Pogonatherum
paniceum

Shoot buds 3% 2% Wang et al.
(2007)

Pinus radiata Somatic
embryos

1, 2, and 3% 50, 75, and
100 mM

Aquea et al.
(2008)

Psidium guajava Shoot tips 2–4% 100 mM Rai et al. (2008b)

Nothofagus
alpina

Somatic
embryos

2, 3, and 4 5.5, 14, and
15 g/L�1

Cartes et al.
(2009)

Zingiber
officinale

Microshoots 4% 100 mM Sundararaj et al.
(2010)

Vitex negundo Nodal segments 2–5% 25, 50, 75,
100, and
200 mM

Ahmad and Anis
(2010)

Eclipta alba Nodal segments 2–5% 50, 100, and
150 mM

Singh et al.
(2010)

Solanum nigrum Shoot tip 2–4% 100 mM Verma et al.
(2010)

(continued)
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Table 1 (continued)

Plant species Explant

Concentration
of sodium
alginate

Concentration
of calcium
chloride References

Khaya
senegalensis

Shoot tips 3% 100 mM Hung and
Trueman (2011)

Salvia officinalis Shoot tips 2 and 3% 50 mM Grzegorczyk and
Wysokińska
(2011)

Corymbia
torelliana �
C. citriodora

Shoot tips and
nodal segments

3% 100 mM Hung and
Trueman (2012)

Ruta graveolens Nodal segments 2–5% 25, 50, 75,
100, and
200 mM

Ahmad et al.
(2012)

Rauvolfia
tetraphylla

Microshoots 1–5% 25, 50, 75,
100, and
200 mM

Alatar and Faisal
(2012)

Clitoria ternatea Somatic
embryos

3, 4, and 5% 75 and 100 mM Kumar and
Thomas (2012)

Rauvolfia
serpentina

Nodal segments 3% 100 mM Faisal et al.
(2012)

Shoot tips 1–5% 75 and 100 mM Gantait et al.
(2017a)

Cymbidium Protocorm-like
bodies

3, 3.5, and 4% 100 mM da Silva (2012)

Dendrobium
nobile

Protocorm-like
bodies

3% 100 mM Mohanty et al.
(2013)

Rhinacanthus
nasutus

Somatic
embryos

4% 100 mM Cheruvathur et al.
(2013)

Withania
somnifera

Nodal segments
with axillary
buds

2–5% 25, 50, 75,
100, and
200 mM

Fatima et al.
(2013)

Aristolochia
tagala

Microshoots 2, 3, and 4% 68 mM Remya et al.
(2013)

Ceropegia
bulbosa

Nodal explants 1–5% 100 mM Dhir and
Shekhawat
(2013)

Phyllanthus
fraternus

Nodal segments 1, 1.5, 2, 2.5,
3, and 4%

25, 50, 75,
100, and
200 mM

Upadhyay et al.
(2014)

Ocimum
gratissimum

Microshoots 1–5% 25, 50, 75,
100, and
150 mM

Saha et al. (2014)

Terminalia
arjuna

Shoot tips 2–5% 100 mM Gupta et al.
(2014)

Cucumis sativus Shoot tips 1–5% 25, 50, 75, and
100 mM

Adhikari et al.
(2014)

(continued)
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Table 1 (continued)

Plant species Explant

Concentration
of sodium
alginate

Concentration
of calcium
chloride References

Anethum
graveolens

Somatic
embryos

1–5% 75 and 100 mM Dhir et al. (2014)

Balanites
aegyptiaca

Nodal segments 2–5% 25, 50, 75,
100, and
200 mM

Varshney and
Anis (2014)

Sterculia urens Nodal segments 2, 4, and 6 100 mM Devi et al. (2014)

Cassia
angustifolia

Nodal segments 1–5% 25, 50, 75,
100, and
200 mM

Parveen and
Shahzad (2014)

Mondia whitei Somatic
embryos

1–4% 75, 100, and
125 mM

Baskaran et al.
(2015)

Vitex trifolia Nodal segments 1–5% 25, 50, 75,
100, and
200 mM

Ahmed et al.
(2015)

Nodal segments 2–5% 25, 50, 75,
100, and
200 mM

Alatar et al.
(2017)

Gossypium
hirsutum

Axillary buds 1–5% 25, 50, 75,
100, and
200 mM

Hu et al. (2015)

Ledebouria
revoluta

Somatic
embryos

1.5, 3, and 4.5% 150 mM Ca
(NO3)2

Haque and Ghosh
(2016)

Solanum
tuberosum

Axillary buds 2.5, 3, and 3.5% 1 and 1.5% Ghanbarali et al.
(2016)

Curcuma amada Somatic
embryos

1–4% 100 mM Raju et al. (2016)

Erythrina
variegata

Nodal segments 1–4% 25, 50, 75,
100, and
200 mM

Javed et al.
(2017)

Urginea altissima Shoot tips 3% 100 mM Baskaran et al.
(2017)

Spathoglottis
plicata

Protocorm-like
bodies

1.5, 3, and 4.5% 3% calcium
nitrate

Haque and Ghosh
(2017)

Capparis decidua Nodal segments 2–5% 25, 50, 75,
100, and
125 mM

Siddique and
Bukhari (2018)

Ceropegia
barnesii

Nodes 2, 3, and 4% 60 mM Ananthan et al.
(2018)

Rosa damascena
trigintipetala

Axillary buds 2, 4, and 5% 75 and 100 mM Attia et al. (2018)

Salix tetrasperma Nodal segments 1–5% 25, 50, 75,
100, and
200 mM

Khan et al. (2018)

Plumbago rosea Nodal axillary
buds

2.5, 3, 4, and
5%

50, 75, 100, and
200 mM

Prakash et al.
(2018)

(continued)
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2.1 Somatic Embryo

Bipolar structures that contain both the shoot and root poles are described as somatic
embryos. These are the most suitable material for synseed seed production because
of their polar nature, which means they are able to develop roots and shoots in a
single step (Standardi and Piccioni 1998; Sharma et al. 2013). Somatic embryos have
been successfully used for synseed production in several plant species including

Table 1 (continued)

Plant species Explant

Concentration
of sodium
alginate

Concentration
of calcium
chloride References

Taraxacum
pieninicum

Shoot tips 3% 100 mM Kamińska et al.
(2018)

Saccharum
officinarum

Microshoots 2, 3, and 4% 25, 50, 75,
100, and
125 mM

Badr-Elden
(2018)

Fig. 1 (a) Schematic representation of synthetic seed production; (b) synseed seed produced from
nodal segments of Tylophora indica. Source: Faisal and Anis (2007)

6 A. A. Qahtan et al.



Rotula aquatica (Chithra et al. 2005),Oryza sativa (Kumar et al. 2005), Pinus radiata
(Aquea et al. 2008), Nothofagus alpina (Cartes et al. 2009), Dalbergia sissoo (Singh
and Chand 2010), Clitoria ternatea (Kumar and Thomas 2012), Rhinacanthus
nasutus, Hemidesmus indicus (Cheruvathur et al. 2013), Anethum graveolens (Dhir
et al. 2014), Mondia whitei (Baskaran et al. 2015), Ledebouria revoluta (Haque and
Ghosh 2016), and Curcuma amada (Raju et al. 2016). However, the deficient and
asynchronous maturation of the embryonic pole is the basic problem for synseed
production in woody species (Cartes et al. 2009; da Silva and Malabadi 2012). To
address this problem, several researchers proposed using compounds such as nutri-
ents, growth regulators, herbicides, anti-pathogens, bio-fertilizers, and bio-controllers
(Kumar et al. 2005; Cartes et al. 2009). Somatic embryos ofPinus patula that had been
encapsulated with 2.5% sodium alginate and dissolved in DCR basal medium had a
germination rate of 89% (Malabadi and Staden 2005). Cheruvathur et al. (2013)
reported that synseeds produced from somatic embryos had a 100% regeneration
rate in MS with 2 μM kinetin and 0.5 μM IBA.

2.2 Nodal Segment and Shoot Tips

Nodal segments with axillary bud (microcuttings) are the most common propagules
used for synseed production. This is probably due to the relative ease with which
these explants are produced once the micropropagation system has been established
and because they have the ability to retain viability in terms of sprouting and
conversion potential even after a considerable period of storage, which is required
for germplasm exchange (Piccioni and Standardi 1995; Ahmad et al. 2012). Nodal
segments have been frequently used for synthetic seeds in several plants, such as
Tylophora indica (Faisal and Anis 2007; Gantait et al. 2017b), Eclipta alba (Singh
et al. 2010), Vitex negundo (Ahmad and Anis 2010), Ruta graveolens (Ahmad et al.
2012), Rauvolfia serpentina (Faisal et al. 2012), Cannabis sativa (Lata et al. 2012),
Ceropegia bulbosa (Dhir and Shekhawat 2013), Sterculia urens (Devi et al. 2014),
Balanites aegyptiaca (Varshney and Anis 2014), Phyllanthus fraternus (Upadhyay
et al. 2014), Centella asiatica (Prasad et al. 2014), Vitex trifolia (Ahmed et al. 2015;
Alatar et al. 2017), Gossypium hirsutum (Hu et al. 2015), Solanum tuberosum
(Ghanbarali et al. 2016), Erythrina variegata (Javed et al. 2017), Capparis decidua
(Siddique and Bukhari 2018), Salix tetrasperma (Khan et al. 2018), and Rosa �
damascena f. trigintipetala (Attia et al. 2018).

Apical meristems or shoot tips were also used for encapsulation of explants in
several plant species, such as Psidium guajava (Rai et al. 2008b), Solanum nigrum
(Verma et al. 2010), Khaya senegalensis (Hung and Trueman 2011), Salvia
officinalis (Grzegorczyk and Wysokińska 2011), Cucumis sativus (Adhikari et al.
2014), Terminalia arjuna (Gupta et al. 2014), Rauvolfia serpentina (Gantait et al.
2017a), Urginea altissima (Baskaran et al. 2017), and Taraxacum pieninicum
(Kamińska et al. 2018). Hung and Trueman (2012) successfully developed methods
for synseed production in Corymbia torelliana� C. citriodora using nodal segments
and shoot tips. They found higher regrowth abilities, with about 76–100% regrowth
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from nodal segments and 78–100% from encapsulated shoot tips, using full and half-
strength MS media, respectively.

2.3 Callus and Protocorm-Like Bodies

Generally, calluses are not often used in production of synseeds. This could be
attributed to the undifferentiated nature of calluses, which have several requirements
for successful differentiation that limits the utility and acceptability of the use of
calluses in the production of synseeds (Gantait et al. 2015). There have been very
few successful attempts to produce synseeds by encapsulating calluses. In a previous
study, calluses of Allium sativum obtained in vitro from shoot tip explants were
encapsulated using calcium chloride and sodium alginate and regenerated on semi-
solid ½MS medium without growth regulators, and achieved a regeneration fre-
quency of 95% (Kim and Park 2002). Similarly, Zych et al. (2005) successfully
encapsulated the differentiating calluses derived from the hypocotyls of Rhodiola
kirilowii plants. The encapsulated calluses can be stored at a low temperature (4 �C)
for 6 weeks and exhibited regeneration potential after transfer without hormones,
with 95% regeneration frequency.

The production of synthetic seeds using protocorm-like bodies (PLBs) is mainly
used for orchids because they produce tiny, non-endospermic seeds. Several studies
have investigated the feasibility of encapsulating PLBs and culturing the produced
seeds directly in the soil, without in vitro regeneration (e.g., Ara et al. 2000;
Saiprasad 2001; Vij et al. 2001; Saiprasad and Polisetty 2003). Corrie and Tandon
(1993) found that encapsulated PLB of Cymbidium giganteum could be cultivated
directly in sterilized soil with a regeneration frequency of 88 and 64% on sand and
on a sand and soil mixture, respectively. Seeking to optimize seed production in
three orchid genera (Dendrobium, Oncidium, and Cattleya), Saiprasad and Polisetty
(2003) tried different developmental stages of PLBs and various combinations of
sodium alginate, CaCl2, and MS salts. They successfully encapsulated fractionated
PLBs after 13–15 days of culture using 3% sodium alginate and 75 mM CaCl2.
Seeds of Dendrobium, Oncidium, and Cattleya were stored at 4 �C for 75, 60, and
30 days, respectively, and had a regeneration potential of more than 88%. Sarmah
et al. (2010) used PLB produced from 6-week-old leaves of Vanda coerulea plants
for encapsulation using 100 mM CaCl2 solution for 30 min, and the encapsulated
PLBs were stored for 100 days at 4 �C.

3 Selection of the Encapsulation Matrix

The encapsulation material is considered to be a critical factor for the production of
uniform synseeds. The encapsulation material should be consistent enough to allow
seed handling without breakage, but weak enough to allow the bud to break free
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from the capsule upon regrowth (Redenbaugh et al. 1986). This balance between
synseed hardness and softness can be achieved by encapsulating explants with
sodium alginate hydrogel (Rai et al. 2009; Gantait et al. 2015). Sodium alginate is
the most commonly used substance for encapsulation of explants; however, there are
other agents such as sodium alginate with gelatin, potassium alginate, sodium
pectate, and carrageenan that are used for encapsulation. In general, sodium alginate
has been shown to be the most commonly used for encapsulation because of its
useful thickness, low cost, fast gelation, and nontoxic nature (Rai et al. 2009;
Cheruvathur et al. 2013; Gantait et al. 2015; Rihan et al. 2017). It can also provide
better protection for the covered explants against mechanical damage (Saiprasad
2001). The strength of encapsulated beads depends mainly on the concentration of
sodium alginate and calcium chloride, as well as the mixing duration; however, it
may vary for different explants and plant species (Rai et al. 2009; Rihan et al. 2017).
Furthermore, the addition of nutrients and growth regulators to the encapsulation
matrix is also an important factor for successful synseed production, as it increases
the reliability of germination and the viability of the synseeds. These matrices are
considered to be artificial endosperms, and they also play an important role in the
storage of synseeds at low temperatures and in regrowth ability after transfer to
germination media (Saiprasad 2001; Rihan et al. 2017).

In most studies, the optimum concentration for synthetic seed production has
been reported to be 3% sodium alginate and 100 mM CaCl2 for several plant species
including Manihot esculenta (Danso and Ford-Lloyd 2003), Tylophora indica
(Faisal and Anis 2007), Psidium guajava (Rai et al. 2008a, b), Vitex negundo
(Ahmad and Anis 2010), Eclipta alba (Singh et al. 2010), Solanum nigrum
(Verma et al. 2010), Khaya senegalensis (Hung and Trueman 2011), Ruta
graveolens (Ahmad et al. 2012), Rauvolfia tetraphylla (Alatar and Faisal 2012),
Rauvolfia serpentina (Faisal et al. 2012), Dendrobium nobile (Mohanty et al. 2013),
Ceropegia bulbosa (Dhir and Shekhawat 2013), Balanites aegyptiaca (Varshney
and Anis 2014), Cucumis sativus (Adhikari et al. 2014), Vitex trifolia (Ahmed et al.
2015; Alatar et al. 2017), Mondia whitei (Baskaran et al. 2015), Curcuma amada
(Raju et al. 2016), Erythrina variegata (Javed et al. 2017), Salix tetrasperma (Khan
et al. 2018), and Taraxacum pieninicum (Kamińska et al. 2018). Nevertheless, an
encapsulation matrix of 2% sodium alginate with CaCl2 of 50 mM was found to
produce high quality beads in Artemisia vulgaris by encapsulating nodal segments
(Sujatha and Kumari 2008). Wang et al. (2007) reported that Pogonatherum
paniceum synseeds produced using 3% sodium alginate, 1% activated carbon, and
2% calcium chloride gave a higher conversion rate (61.58%) than synseeds prepared
without activated carbon (44.06%). da Silva (2012) reported that 3.5% sodium
alginate was the most appropriate concentration for the encapsulation of PLB in
hybrid Cymbidium. Furthermore, 3% sodium alginate and 75 mM calcium chloride
(CaCl2� 2H2O) were found to be the most appropriate combination for synseed
production in Tylophora indica and Rauvolfia serpentina (Gantait et al. 2017a, b).
Similarly, Siddique and Bukhari (2018) also found that 3% sodium alginate and
75 mM calcium chloride was the best suited matrix for synseed production in
Capparis decidua.
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4 Methods

4.1 Encapsulation Matrix

The required concentrations of sodium alginate solution (0.5–5.0% w/v) were
prepared in liquid nutrient medium or double distilled water to form the gel matrix.
Similarly, calcium chloride solutions were prepared at different concentrations
(25–200 mM) in double distilled water to form the complexing agent. Both the gel
matrix and complexing agent were autoclaved at 121 �C and 1.1 kg cm�2 pressure
for 15 min.

4.2 Encapsulation

After preparation of gel matrix and complexing agent, selected plant materials
(explants) were prepared for encapsulation as follows:

1. The propagules were dipped in 3% sodium alginate solution.
2. The mixture (propagules contained within sodium alginate) was placed into

calcium chloride solution (100 mM) and left for 30–40 min to allow the alginate
beads to harden, forming calcium alginate around the propagules.

3. Calcium alginate beads were washed with sterile double distilled water two to
three times to remove traces of calcium chloride.

4. Synseeds were transferred to sterile filter paper and left for 5 min under the
laminar air flow hood to dry.

5. The synseeds were then ready and could be stored at 4, 15, or 24 �C, depending
on the intended use.

5 Applications of Synseeds

Synseeds have several applications in different fields of plant biotechnology and the
conservation of rare or endangered plant species. These applications include in vitro
or ex vitro (direct sowing) propagation of various plant species; short-, medium-, and
long-term preservation of germplasm; and transportation and exchange of plant
materials.

5.1 Propagation

Encapsulated explants are characterized by regrowth and conversion abilities after
encapsulation and storage at low temperatures, when transferred to the germination
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media (Micheli et al. 2007). Synseeds could be used for propagation and multiplica-
tion of rare and endangered plants, elite genotypes, seedless plants, medicinal plants,
genetically engineered (modified) plants, and commercially important plants (Rai et al.
2009; Gantait et al. 2015). Synseeds can be efficiently cultivated in vitro, either on
semi-solid culture medium or planting substrate (e.g., perlite, vermicompost, vermic-
ulite, soil, soilrite, sand, or gravel) for conversion into complete plantlets (Sharma et al.
2013). Generally, the regrowth ability of explants encapsulated in calcium alginate
beads into complete plantlets on nutrient-rich medium is more effective than on
nutrient-deficient substrates (Mandal et al. 2000; Sharma et al. 2013). The concentra-
tion of plant growth regulators in the medium plays a crucial role in conversion and
whole plant regeneration from encapsulated buds (Cheruvathur et al. 2013). The plant
growth regulator requirement in nutrient medium significantly depends upon the plant
species. Nishitha et al. (2006) reported that encapsulated shoot tips of Chonemorpha
grandiflora had a 95% conversion to plantlets on medium containing 0.49 μM IBA
and 11.7 μM silver nitrate. Plantlets showed a 90% survival after acclimatization in
soil. Dhir and Shekhawat (2013) reported that maximum percentage response for
conversion of synthetic seeds into plantlets in Ceropegia bulbosa was 100% on
medium supplemented with 8.88 μM BA. Gupta et al. (2014) found that highest rate
of plantlet conversion from encapsulated shoot tips in Terminalia arjuna on 0.14%
gelrite-gelled MMS supplemented with 0.5 mg L�1 BAP and 0.1 mg L�1 NAA was
91.6%. Encapsulated somatic embryos ofMondia whitei had 95.7% survival and 73%
germination rates (Baskaran et al. 2015). Baskaran et al. (2017) obtained 91%
adventitious shoot regeneration from Urginea altissima encapsulated shoot tips on
semi-solid MS medium containing 10 μM mT and 2 μMNAA. Siddique and Bukhari
(2018) obtained the highest conversion rate of 93% from encapsulated nodal segment
of Capparis decidua.

5.2 Short- and Medium-Term Conservation

Synseed technology offers strategies for the conservation of plant species through
short- and medium-term preservation. These processes are generally known as slow-
growth techniques. Appropriate storage conditions and a finite storage period are the
most critical factors to maintain synseed viability during transportation and conser-
vation, and these may lead to the successful commercialization of this technique
(Sharma et al. 2013). The optimal storage temperature for short- or medium-term
storage varies depending on the plant species. Generally, low temperature storage at
4 �C in a laboratory freezer has been found to be the most suitable conditions for
synseeds of most plant species (Ray and Bhattacharya 2008; Parveen and Shahzad
2014; Ahmed et al. 2015; Alatar et al. 2017). The role of temperature on short- or
medium-term storage of synseeds has been investigated by several researchers
(Table 2). Faisal et al. (2013) reported that 4 �C was the optimal temperature for
short-term storage (storage for up to 4 weeks), with a high conversion percentage
(80.6%). In Ceropegia bulbosa, the conversion frequency of encapsulated nodal
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segments was 50.7% after 60 days of storage at 4 �C, while storage of up to 90 days
inhibited conversion into plantlets (Dhir and Shekhawat 2013). Fatima et al. (2013)
reported that the conversion frequency of Withania somnifera synseeds was 86.2%
after 4 weeks of cold storage at low temperatures. Devi et al. (2014) observed a
73.33% germination rate from encapsulated nodal segments of Sterculia urens plants
incubated at 4 �C for 24 weeks. Muthiah et al. (2013) obtained a 86.6% regrowth rate
in Bacopa monnieri from encapsulated shoot tips and a 60% regrowth rate from
encapsulated nodal segments after 6 months of storage at 4 �C. Benelli (2016)
observed a 83.3% regrowth rate in encapsulated shoot tips of Vitis (V. berlandieri
� V. riparia) “Kober 5BB” grapevine rootstock after 9 months of cold storage (4 �C)
in darkness, while the encapsulated nodal segments had a regrowth rate of 55.6%
under the same storage conditions. Furthermore, Khan et al. (2018) found that the
conversion and development rate of plantlets from encapsulated nodal segments of
Salix tetrasperma plants was 71% after 4 weeks of storage at 4 �C, while
non-encapsulated nodal segments of the same plant had a 30.33% conversion rate
for the same time period. The encapsulated somatic embryos of Curcuma amada
incubated at 4 �C had germination rates of 88.10% after a month of storage and
54.16% after 4 months of storage (Raju et al. 2016). However, Sujatha and Kumari
(2008) successfully stored encapsulated nodal segments of Artemisia vulgaris for a
period of 60 weeks at 5 �C with an 85% survival rate on proliferation medium.
Nevertheless, Haque and Ghosh (2016) observed a 57.8% regrowth rate for
Ledebouria revoluta encapsulated somatic embryos incubated at 15 �C after
4 months of storage, while the synthetic seeds stored at 24 and 4 �C had regrowth
rates of 26.7 and 0% after the same storage period, respectively. For Tylophora
indica synseeds, storage at 15 � 1 �C for 45 days was more optimal for regrowth
than either 5 � 1 �C or 25 � 1 �C (Gantait et al. 2017b).

5.3 Transport

Many commercially important plants have been studied for propagation, genetic
engineering, breeding, and pharmaceutical purposes. Synseed production technol-
ogy could be useful for the transportation and exchange of elite germplasms, axenic
plant material, and genetically engineered plants between laboratories at national and
international levels (Danso and Ford-Lloyd 2003; Naik and Chand 2006; Rai et al.
2008a; Parveen and Shahzad 2014; Rihan et al. 2017). Ahmed et al. (2015)
suggested that the high frequency of plantlet retrieval from encapsulated nodal
segments of Vitex trifolia after 4 weeks of storage at low temperatures could enable
this to be used as a delivery system for the exchange of germplasms, and researchers
should explore the possibility of using this method for ex situ conservation of this
forest plant.
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6 Limitations and Future Perspectives

Since synseeds are one of the key techniques that could be utilized for germplasm
exchange between countries and for conservation (especially for short- and medium-
term conservation), they have attracted the attention of the scientific world in recent
years. Nevertheless, the commercialization of this technique cannot be optimized
unless several major limitations are resolved. The large-scale production of synseeds
with high regeneration ability in a cost-effective manner is the first step that needs
to be achieved to allow commercialization of this technique (Ara et al. 2000).
Currently, the most suitable plant material for production of synseeds is somatic
embryos. However, their utilization as synseeds is limited by asynchronous devel-
opment, the loss of embryogenic potential with aging cultures, precocious germina-
tion, the lack of tolerance to desiccation, and structural anomalies (Mandal et al.
2000; Naik and Chand 2006; Hung and Trueman 2012). Further research is required
in this area to solve the problems facing the production of synseeds. Furthermore,
additional research is also needed in order to automate the production of synseeds via
automation of encapsulation and regeneration methods; this would likely increase the
efficiency of production in a cost-effectivemanner (Pintos et al. 2008). Automated and
optimized production of synseeds may aid the utilization of other non-embryogenic
propagules for the production of synseeds in plants species that are not able to form
somatic embryos. Another limitation for the use of non-embryogenic propagules is the
conversion for rooting, especially inwoody plants, which requires further research and
investigation (Hung and Trueman 2011, 2012). Moreover, optimization and refine-
ment of the existing protocols for production of synseeds of several plant species also
requires further research. Germplasm cryopreservation is considered to be one of the
main potential applications for synthetic seeds. Therefore, there is a significant need
for further research in this area.
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Synthetic Seeds: Relevance to Endangered
Germplasm Conservation In Vitro

Akansha Saxena, Mukund Shukla, and Praveen Saxena

Abstract The twentieth century witnessed deterioration of biodiversity and loss of
natural habitats of many plant species. However, it was also an era of significant
progress in tissue culture technology which opened further vistas for multiplication
and conservation of plant species. Synthetic seed technology is one such method
which involves selection of a suitable explant and encapsulating it in an apposite
matrix for successful germination and conversion into a healthy plantlet. The
underlying basis of synthetic seed technology is to imitate natural plant development
that occurs through seed germination. This method has been successfully employed
for propagation and storage of various forest, medicinal, and vegetable plant species.
The technique is of pivotal importance for species which produce non-viable seeds,
recalcitrant seeds, or have limited and rare seed production. Threatened and endan-
gered plant species are one such category which has several bottlenecks in seed
development, reproduction, and establishment in their natural environments that
have undergone disruptive changes. This review aims to explore and assess the
potential of synthetic seed technology as an effective approach to support conser-
vation strategies for endangered plant species.

Keywords Synthetic seeds · Endangered plants · Life cycle · Propagation ·
Conservation
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BAP/BA 6-Benzyladenine
CR Critically endangered
DD Data deficient
EC Embryogenic cells
ES Endangered species
GA3 Gibberellic acid
H2SO�

4 Sulphuric acid
IAA Indole-3-acetic acid
KN Kinetin
MS Murashige and Skoog media
NAA α-Naphthaleneacetic acid
PGR Plant growth regulators
SE Somatic embryo
TDZ Thidiazuron
tTCL Thin cell layers

1 Introduction

In the later years of the twentieth century, two unrelated events occurred. In order to
protect and conserve nature, and natural resources worldwide, representatives of
governments and conservation organisations established the International Union for
Conservation of Nature (later renamed as International Union for Conservation of
Nature and Natural Resources, IUCN) in 1948. The prime role of this organisation
was to impart scientific knowledge, data, and tools to public, private, and
non-governmental organisations, to facilitate nature conservation and sustainable
development (http://www.iucn.org). In order to assess the global conservation status
and extinction risk of biological species, the IUCN Red List of Threatened Species
(also known as the IUCN Red List or Red Data List) was prepared in 1964. The
criteria used to evaluate biological species included declining or fluctuating popula-
tion, small population or geographic range size and fragmentation, and quantitative
analysis of extinction. The species were divided into several different classes includ-
ing extinct, extinct in wild, critically endangered, endangered vulnerable, near threat-
ened, least concern, data deficient, and not evaluated (Guidelines for Using the IUCN
Red List Categories and Criteria 2017). Apart from classification of plant species into
these categories, efforts to save the endangered and threatened plants also began.

The other significant event took place in the year 1977 when Murashige presented
the idea of an artificial seed or synthetic seed described as ‘an encapsulated single
somatic embryo’ (Murashige 1977). Later in 1985, this theoretical idea was
transformed into reality when Kitto and Janick (1985) encapsulated and successfully
germinated carrot somatic embryos in polyoxyethylene. With these studies, the
development of synthetic seed technique began. In simplest term, the technique
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can be described as a method to mimic natural seeds by coating the somatic embryo
and meristematic parts of plants in a protective and non-toxic matrix.

These two very unrelated events both address and provide a solution to the
problem of plant extinction. The decrease in the number of several plant species
due to climate change and human activities poses a severe threat towards extinction
of a number of plants, leading to unbalanced ecosystems. However, some plant
species have bottlenecks in their life cycle, which further hinder their reproduction
and population increase. Some of the approaches towards conservation of endan-
gered plants include in vitro mass multiplication of plants for redistribution in natural
or new environments, establishment of seed banks, in situ and ex situ conservation,
and cryopreservation of endangered plants. This review aims to explore the question
‘can synthetic seed technology facilitate efforts to save endangered plants?’

When synthetic seed production technology was in its infancy, only somatic
embryos were used as an explant for encapsulation. However, somatic embryo
production is not feasible in all the plant species which has led to some researchers
suggesting the use of non-embryogenic tissue as explants. The use of encapsulated
shoot buds for propagation in Morus indica L. was proposed by Bapat et al. (1987)
as a method to overcome lack of somatic embryo induction and difficulty in rooting
of the cuttings. The substitution of somatic embryos with non-embryogenic tissues
like shoot tips, nodal segments, protocorm-like bodies, and callus further opened
new vistas for extension of synthetic seed technology to recalcitrant species. In
addition, the use of meristematic tissue can minimise the risk of somaclonal variation
(Standardi and Piccioni 1998), which can be of key importance for conserving
endangered plant species.

The type of explants to be encapsulated is not restricted only to in vitro produced
explants. In some cases, ex vitro produced explants were used for encapsulation.
These included vegetative buds from a mature mulberry tree (Pattnaik et al. 1995);
in vivo grown microshoots of Curcuma amada Roxburgh (Banerjee et al. 2012);
axillary buds from garden grown plants of Ocimum americanum L. (hoary basil),
O. basilicum L. (sweet basil), O. gratissimum L. (shrubby basil), and O. sanctum
L. (sacred basil) (Mandal et al. 2000); and axillary buds from greenhouse grown
Chrysanthemum � grandiflorum (Ramat.) Kitam. cv. ‘Royal Purple’ (Hung and
Dung 2015).

Thus, synthetic seeds from ex vitro propagated plant materials could be very
useful in broadening the application of this technology in plants for which a
micropropagation protocol is not available. Similarly, in the case of endangered
plants, where tissue availability for micropropagation protocol development is rather
limited, various explants from natural populations can also be used for encapsulation
and synthetic seed production.

Synthetic seed production has advantages over natural seed production in certain
situations. Natural seeds require dormancy and a drying period. Some seeds are
susceptible to seed-borne diseases and insect infestation in field and storage, further
adding to the difficulty of processing and conserving them. Additionally, naturally
produced seeds are not always true to the type, and some plants do not produce seeds
regularly or produce non-viable seeds. In contrast, synthetic seeds are produced
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vegetatively and are likely to be true to the type in most cases. They can be produced
all around the year and are unaffected by seed-borne diseases and insect damage, as
well as are easier to handle and transport. Natural seed production requires more
labour, time, and space, while synthetic seed production needs skilled labour, but it
is more time and space efficient. Synthetic seed technology has been effectively used
for propagation, storage, transportation, and conservation of many forest (Reddy
et al. 2012; Gupta and Kreitinger 1993), medicinal (Gantait et al. 2015), and
vegetable species (Yussof et al. 2011; Siong et al. 2012). Similarly, synthetic seed
technology may be useful for conservation of endangered plants. However, this
would require greater understanding of the life cycle of rare and endangered plant
species and long-term implications of their use in natural environments.

2 Why Do We Need Synthetic Seeds?

Plant’s sexual reproductive life cycle consists of many phases such as seed germi-
nation, seedling establishment, plant growth, flowering, fruit development, and seed
production. However, in the case of endangered/threatened plants, the cycle is
interrupted at one point or another due to disruptions at the physiological, biochem-
ical, and molecular levels, as a result of ecological changes often caused by human
activities. Some of the reasons of constraints in seed production in endangered plant
species are listed below.

2.1 Seed Dormancy in Rare and Endangered Plant Species

Seed dormancy is a state which allows plant survival during adverse conditions.
Several factors such as the type and levels of seed coat phytohormones, light,
temperature, soil nutrient status, water potential, and genetics are known to
control dormancy and germination (Bentsink and Koornneef 2008; Finch-Savage
and Footitt 2017). Seed dormancy has been classified into five classes by Baskin
and Baskin (1998)—physiological dormancy, morphological dormancy,
morphophysiological dormancy, physical dormancy, and combinational dormancy.
Physiological dormancy is the most common type of seed dormancy and is associ-
ated with inability of embryo to grow normally due to a physiological limitation
(Baskin and Baskin 2004). The physiological dormancy is often released on seed
treatment with gibberellic acid and dry storage. Physiological dormancy is found in
plants such as critically endangered Ceropegia odorata (Srinivasarao et al. 2010),
Echium acanthocarpum Svent. (Carqué-Álamo et al. 2003), and Dysophylla
yatabeana Makino (Kwon et al. 2018). Morphological dormancy is characterised
by underdeveloped and differentiated embryo which needs time to grow (Baskin and
Baskin 2004), and it is found in medicinal plants Apium graveolens L. (Jacobsen and
Pressman 1979) and Lonicera caerulea var. emphyllocalyx (Phartyal et al. 2009).
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Morphophysiological dormancy in seed is due to underdeveloped embryo and physi-
ological inhibitors of dormancy; it is reported in Heptacodium miconioides Rehder,
endemic in China (Geneve and Kester 2018), and an endemic Iberian species Narcissus
hispanicusGouan (Copete et al. 2011). Combinational dormancy is found in seeds with
both physical and physiological dormancy as reported in endemic Western Australian
speciesDiplopeltis huegelii Endl. (Turner et al. 2006). Physical dormancy is caused due
to the presence of water-impermeable layers of palisade cells in the seed or fruit coat
(Baskin et al. 2000). The physical dormancy breaks when seed is able to uptake water
or when exposed to heating treatment (Morrison et al. 1998). Physical dormancy has
been reported in endangered plant species such as Iliamna corei (Sherff) Sherff (Baskin
1997), Pomaderris walshii J. C. Millott and K. L. McDougall, Pomaderris adnata
N. G. Walsh and F. Coates (Natale 2016), and critically endangered Astragalus
nitidiflorus Jiménez and Pau (Segura et al. 2015) and Malvella sherardiana (L.) Jaub
and Spach. (Veiga-Barbosa et al. 2016). In normal conditions, seed dormancy breaks
when plants are exposed to favourable conditions. However, some plants need treat-
ments such as chilling, dry storage/elevated temperatures, light, leaching, scarification,
and exposure to chemicals and fluctuating physio-chemical conditions (Bradbeer 1988)
to overcome seed dormancy. Seed dormancy has been reported in the case of several
endangered/threatened plants, and attempts have been made in order to overcome this
issue. A brief account of approaches to overcome seed dormancy in different plant
species is summarised below (Table 1).

2.2 Poor Seed Viability and Seed Germination in Endangered
Plants

Seed viability is the capacity of seed to germinate under optimal conditions. A
non-viable seed fails to germinate under suitable conditions, even if treated for
dormancy removal (Bradbeer 1988). Seed germination can be simply defined as
‘emergence of radicle through seed coat’ (Copeland and McDonald 2001). The
endangered and rare plants lack proper seed viability and germination processes,
thus threatening population establishment and reproduction. Plant species such as
Rauwolfia serpentina (L.) Benth. ex Kurz, an endangered medicinal plant, produces
non-viable seeds which need treatment with distillery effluent to promote seed
germination (Mishra and Gupta 2017). In Aquilaria malaccensis Lam., a critically
endangered species (Harvey-Brown 2018), short seed viability is a major problem,
and seeds require double layer polynet for germination (Tabin and Shrivastava
2014). In critically endangered (Oates and de Lange 1998) Chordospartium muritai
Purdie, poor seed germination is due to tough seed coat barrier and requires seed
scarification in a range of 20–24 �C (Williams et al. 1996). In some plant species, the
environmental factors play a significant role in seed germination. The seeds of
endangered cactus Harrisia portoricensis Britt. require specific microclimate
under the canopies of native shrub species for germination (Rojas-Sandoval and
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Table 1 List of plant species with seed dormancy issue and their recovery strategies

No. Scientific name
Reason for seed
dormancy Recovery method References

1 Gentiana lutea L. Underdeveloped
embryos

Cold stratification at
0 �C

Cuena-
Lombraña et al.
(2017)

2 Malvella
sherardiana (L.)
Jaub and Spach.

Tough seed coat Soaking seeds in 96%
H2SO4 for 3 h

Veiga-Barbosa
et al. (2016)

3 Echium
acanthocarpum
Svent.

Physiological
dormancy

High temperature
(17 �C/20 �C) treatment

Carqué-Álamo
et al. (2003)

4 Silene diclinis
(Lag.) M. Laínz

Germination facilitated
by after-ripening
period of seed

Storage temperature
between 2.7 and 1.6 �C

Mira et al.
(2011)

5 Drosophyllum
lusitanicum (L.)
Link

Allelochemical from
the soil

Seed treatment for
5 min at 100 �C

Gómez-
González et al.
(2018)

6 Dysophylla
yatabeana Makino

Physiological
dormancy

Pre-soaking in
1000 mg/L GA3 and
incubation at 30–35 �C

Kwon et al.
(2018)

7 Eryngium
maritimum L.

Underdeveloped
embryos

Cold stratification at
5 �C

Necajeva and
Ievinsh (2013)

8 Eryngium
viviparum Gay.

Empty seeds, underde-
veloped embryos, and
morphophysiological
dormancy

1 mg/L GA3, high
incubation temperature

Ayuso et al.
(2017)

9 Euryale ferox
Salisb.

Physiological
dormancy

Cold stratification at
4 �C

Imanishi and
Imanishi
(2014)

10 Manglietiastrum
sinicum
(Y. W. Law) Noot.

Inhibitory substances
in seed

Moist chilling at 4 �C
and seed treatment at
500 mg/L GA3

Zheng and Sun
(2009)

11 Malcolmia littorea
(L.) W. T. Aiton

Physiological
dormancy

Germination at
10–25 �C

De Vitis et al.
(2014)

12 Podophyllum
hexandrum Royle

Hypocotyl dormancy Treatment with
200 ppm GA3 of coty-
ledonary leaves of
1-week-old seedlings

Kharkwal et al.
(2008)

13 Pomaderris
walshii, P. adnata,
and P. vacciniifolia
Reissek.

Physical dormancy Heat shock treatment at
(100 �C)

Natale (2016),
Patykowski
et al. (2016)

14 Trapella sinensis
Oliver

Physiological
dormancy

Cold stratification Kato and
Kadono (2011)
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Meléndez-Ackerman 2012). In critically endangered Widdringtonia whytei Rendle
(Farjon 2013), seeds require incubation at 20 �C for germination (Chanyenga
et al. 2012), and seeds of vulnerable species (http://www.natureserve.org/explorer)
Scirpus ancistrochaetus Schuyler require stratification at 3–8 �C for 8–12
weeks (Lentz and Johnson 1998).

2.3 Inefficient Pollen and Seed Dispersal in Endangered
Plants

Seed dispersal is defined as ‘departure of a diaspore (e.g. seed and fruit) from the
parent plant’ (Howe and Smallwood 1982). The process of seed dispersal prevents
competition and predation and promotes establishment of the offspring in new
habitats, for seed germination and population regeneration (Liu et al. 2014). In a
study conducted by Neuschulz et al. (2016), several factors such as pollination, seed
dispersal, seed predation, recruitment, and herbivory were assessed in respect of
forest disturbances caused by humans. It was determined that out of all the phases
involved in regeneration of plant populations, pollination and seed dispersal, which
often require interaction with animals, were negatively affected. In the case of
endangered plants, lack of seed dispersal and pollination may also be the limiting
factors for plant reproduction and species survival. Lack of effective pollinators is
reported for endangered species such as Erysimum capitatum ssp. angustatum L. and
Oenothera deltoides ssp. howellii L. (Pavlik et al. 1993). In some cases, plant
multiplication may remain suppressed due to multiple factors functioning in combi-
nation to affect seed and pollen dispersal (Table 2).

2.4 Bottlenecks in Life Cycle of Plants Leading to Poor Seed
Production

In the case of some plant species, more than one factor is responsible for limited seed
production. In Rauwolfia serpentina (L) Benth. ex Kurz., poor seed production and
declining plant populations are due to low seed viability, poor seed germination rate,
low vegetative propagation rate, over-exploitation, and loss of habitat (Dey and De
2011). In some species, mutualism plays an important factor in seed establishment.
In Sarracenia rubra ssp. alabamensis, an endemic to central Alabama, the lack of
sphagnum moss affects seedling recruitment (Chesser and Brewer 2011). In near
threatened Pouteria splendens (A.DC.) Kuntze the seed survival is impaired due to
lack of leaf litter (Sotes et al. 2018).
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3 Synthetic Seeds: Techniques and Applications
for Endangered Plants

Synthetic seed production draws parallels with natural seed development. The
technique involves encapsulation of competent explants in an apposite matrix. The
artificial encapsulation matrix is analogous to endosperm, which supplies nutrients
and protection to the embryo enclosed within the seed. The method aims to achieve
encapsulation of somatic embryos or meristematic explants, in a bead providing ease
of handling, transport, storage, and a high conversion percentage. The technique has
several components such as selection of explant, encapsulation in a gelling agent,
polymerisation in different polymers and the duration of polymerisation, evaluation
of germination, and conversion of synthetic seeds to plants.

3.1 Selection of Explants

A suitable, totipotent, and competent explant is the elemental unit of synthetic seed
technology. Any part of plant can be used as an explant to initiate culture (Smith
2012). Based on the nature and polarity of explant, it can be categorised as bipolar,
unipolar, or callus:

Table 2 List of plant species with inadequate pollen and seed dispersal

Sr.
no. Scientific name Cause of poor seed and pollen dispersal References

1 Bretschneidera
sinensis Hemsl.

Protogynous, high pollen/ovule ratio, limited
numbers of flowering individuals, poor pollen
transfer efficacy, weak fruit retention, and short
flowering season

Qiao et al.
(2012)

2 Cordylanthus
maritimus ssp.
maritimus L.

Lack of effective pollinators, canopy disturbances Parsons and
Zedler
(1997)

3 Penthorum chinense
L.

Water-mediated seed dispersal hindered by
surface-active agents/detergents in river

Ikeda and
Itoh (2001)

4 Pomaderris
vacciniifolia Reissek

Seed dispersal suppressed by habitat
fragmentation

Patykowski
et al. (2016)

5 Anthemis chrysantha
J. Gay

Ombrohydrochory (rain-operated seed dispersal) Aguado et al.
(2012)

6 Euphorbia brevitorta
P.R.O. Bally

Insect-mediated pollen dispersal is compulsory for
fruit set and seed dispersal by harvester ants

Martins
(2010)
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(A) Bipolar Explants: The Explants That Have Two Developmental Axes (Root
and Shoot)

1. Somatic Embryos
Somatic embryos originate from somatic cells (which are not usually involved

in embryo formation) and develop into a whole plant. The somatic embryo has
both a shoot and a root axis and a closed vascular system. The somatic embryo
also undergoes maturation and accumulation of storage lipids, carbohydrate,
proteins, polyamines, and plant hormones like their zygotic counterparts
(Winkelmann 2016). Somatic embryos have been considered the most suitable
explant for encapsulation and mass production of synthetic seeds (Redenbaugh
1990). Somatic embryos of the endangered plant species like Swertia chirayita
(Roxb. ex Fleming. H. Karst.) (Kumar and Chandra 2014) and Gentiana lutea L.
(Holobiuc and Catana 2012) have been successfully encapsulated and
regenerated. Somatic embryogenesis is reported in many endangered plants.
Thus, these species can potentially be propagated and conserved through syn-
thetic seed production as briefly summarised in Table 3.

2. Protocorm-Like Bodies
Post germination in orchids, the embryo develops in a unique structure known

as a protocorm. The prime function of this reproductive structure is to establish a
symbiotic relationship with fungus and formation of shoot apical meristem
(Yeung 2017). The protocorms are produced by seeds and protocorm-like bodies
(PLBs) are formed from explants primarily in in vitro conditions. The PLBs are
bipolar in nature and generate root and shoot upon development (Antony et al.
2011; Gnasekaran et al. 2016). Synthetic seed production by encapsulation of
PLB in endangered orchid species Dendrobium nobile Lindl. (Mohanty et al.
2013) and in Vanda coerulea Griff. ex. Lindl. (Sarmah et al. 2010) has been
reported. Synthetic seed production in orchids has an advantage over normal
plantlet production as encapsulation of single protocorm would minimise the
seedling detachment and sorting (Gantait et al. 2015).

(B) Unipolar Explants
Explants such as nodal segments, shoot tips, and root segments which have one
developmental axis are unipolar in nature. All plant species do not have an
established somatic embryogenesis protocol; therefore, encapsulation of unipolar
explants provides an option. In some plant species, micropropagated explants were
encapsulated like in Salvia splendens F. Sellow ex R. and S. nodal segments
(Sharma et al. 2014a, b), M.26 apple rootstock microcuttings (Brischia et al.
2002), and Chonemorpha grandiflora L. shoot tips (Nishitha et al. 2006) to develop
artificial seeds. Similarly, various tissues from micropropagated plants of endan-
gered and rare plants can help in production of shoots, roots, and callus which can be
encapsulated and used for production of synthetic seed. Micropropagation protocols
have been developed for several rare and endangered plants; thus, a vast potential of
synthetic seed production exists. The works undertaken on micropropagation of
endangered plants under the category of critically endangered and endangered are
summarised below (Table 4).
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1. Nodal Segments or Microcuttings
Nodal segments or microcuttings are shoot segments with one or more buds.

Compared to somatic embryos, nodal segments are easier to produce (Piccioni
and Standardi 1995), with negligible or limited physiological variation, and easier
to store and transport (Benelli 2016; Micheli et al. 2007). Nodal segments have
been successfully encapsulated in rare plants such as Tylophora indica (Burm.
Fil.) Merrill. (Faisal and Anis 2007).

2. Shoot Tips
The use of shoot tips with zones of active meristematic growth is space and cost

efficient in synthetic seed production (Fig. 2a, b). Moreover, the encapsulated
shoot tips provide ease of transport of propagules in limited space. Shoot tips have
been used to develop synthetic seed in various rare plant species like Mentha
arvensis L. (Islam and Bari 2012) and Mimosa pudica L. (Banu et al. 2014).

3. Hairy Roots
The encapsulation of root segments is uncommon for synthetic seed produc-

tion as compared to use of shoot tips, somatic embryos, and nodal segments.
Hairy root segments are developed by genetic modification with Agrobacterium
rhizogenes Ri (root inducing) plasmids as vectors (Uozumi and Kobayashi 1995).
The hairy roots of endangered medicinal plant species like horseradish (Repunte
et al. 1996), Picrorhiza kurrooa Royle ex Benth. (Rawat et al. 2013), and
Centaurium erythraea Rafn. (Piątczak and Wysokińska 2013) have been encap-
sulated successfully. Hairy roots are source of secondary metabolite, and produc-
tion of synthetic seed can open new avenues for commercial production of
valuable chemicals produced by rare medicinal plants.

4. Microtubers
In vitro produced tubers are known as microtubers (Wattimena 1984).

Microtubers have been encapsulated and used as synthetic seed in various plants
(Ma et al. 2011). Encapsulated microtubers of virus-free seedlings of
Pseudostellaria heterophylla Rupr. and Maxim. were developed as synthetic
seeds, and microtubers produced by several endangered plants like Gloriosa
superba L. (Yadav et al. 2012), Ceropegia spiralis Wight (Murthy et al. 2012),
and wild Cyclamen persicum Mill. (Karam and Al-Majathoub 2000) have also
been encapsulated.

(C) Callus
In synthetic seed production, usually the explants employed are differentiated and
preprogramed at the cellular level to develop into plantlets. The undifferentiated
callus is however an exception to this trend. In a few cases, callus has been used to
develop synthetic seed. The calli of Rhodiola kirilowii Rgl. ex Maxim (Zych et al.
2005) and Allium sativum L. (Kim and Park 2002) were encapsulated and success-
fully regenerated. The use of callus may be beneficial for conservation of the plant
species for which a micropropagation protocol is unavailable currently, but may be
developed in the future.
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3.2 Encapsulating Agent

The encapsulating agent is an artificial endosperm which surrounds and protects the
explants and also serves as a source of nutrients. The encapsulating agents are
technically ‘hydrogels’ made of hydrophilic polymers which can hold a large
amount of water, while maintaining the structure, due to cross-linking of individual
polymer chains (Ahmed 2015). The hydrogels mimic natural tissue because of their
high-water absorption capacity, porosity, soft consistency, and flexibility. Hydrogels
can be prepared with natural polymers like proteins, collagen, gelatine, and poly-
saccharides such as starch, alginate, and agarose. Agar is extracted from marine
algae Gracilaria and Gelidium. It is heated at 100 �C and cooled and the cells/tissues
are embedded in it before it solidifies. Agarose is a neutral gelling agent obtained
from agar and used similarly as agar. Carrageenans are extracted from red seaweed
such as Chondrus, Eucheuma, and Gigartina. Carrageenan is classified into various
types such as lambda (λ), kappa (κ), and iota (ι) based upon percentage of sulphate
group attached. The hydrogel commonly used for encapsulation is κ-carrageenans. It
is a product of 1,3-linked α-galactose-4-sulphate and 1,4-linked 3,6-β-anhydro
galactose. The gelation of κ-carrageenans is induced by alkali metal ions (K+, Rb+,
Cs+), alkaline earth metal ions (Ca+), or trivalent ions (Al3+) and amines. Chitosan is
obtained by partial deacetylation of insoluble naturally available chitin, obtained
from exoskeletons of crustaceans (Martínez-Ruvalcaba et al. 2007). Vorlop andKlein
(1981) encapsulated E. coli cells in beads of chitosan-acetate solution dropped in 2%
K4Fe(CN)6 (pH 5.7). Gellan gum is synthesised by bacteria Pseudomonas elodea and
is similar in characteristics to κ-carrageenans. The encapsulation of gellan gum is
promoted in CaCl2 or KCl (Norton and Lacroix 1990). The most commonly used
encapsulating agent is sodium alginate due to its non-toxicity, low spin ability, and
moderate viscosity which makes it suitable to coat the propagules (Redenbaugh et al.
1988). There are however disadvantages of sodium alginate as it forms a sticky seed
coat and allows rapid dehydration of artificial seeds. Advantages and disadvantages
of various encapsulating agents are listed in Table 5.

3.3 Polymerising Agent and Polymerising Time Span

The encapsulated explants require an intact shape and structure, along with tolerance
to desiccation and mechanical injury, in order to survive in ex vitro conditions and
germinate. Ideally, the hydrogel encapsulated explants dropped in polymerising agent
should result in beads with optimum rigidity, roundness, and firmness. When sodium
alginate encapsulated explant is dropped in calcium chloride (CC) (CaCl2�2H2O), ion
exchange between sodium and calcium ions takes place resulting in a bead of calcium
alginate. Apart from calcium chloride, calcium nitrate (Inpuay and Te-chato 2012) and
potassium nitrate (Onishi et al. 1994) have been used as polymerising agent. Two
major factors contribute towards the formation of alginate bead of the required
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consistency and shape. First is the concentration of ions in encapsulating agent and
polymerising agent to establish ionic bonds. The second factor is polymerisation time
which depends on desirable texture of bead and dose of complexing and encapsulating
agents. A low concentration of sodium alginate and calcium chloride might lead to
formation of fragile beads without definite shape, and a very high concentration might

Table 5 Advantages and disadvantages of common hydrogels used for synthetic seed productiona

Sr.
no. Hydrogel Monomer Advantage Disadvantage

Polysaccharides

1 Agar 1-Agarobiose, 1,3-linked
β-D-galactopyranose, and
1,4-linked
3,6-anhydro-α-L-
galactopyranose

Good viability of
cells, solidified
gel can be cut
easily

Heat damage to cells

2. Agarose Agarobiose Lower gelling
temperature, high
purity

NA

3. κ-Carrageenans 1,3-Linked α-galactose-4-
sulphate and 1,4-linked
3,6-β-anhydro galactose

Thermally revers-
ible gel

1. Instability in the
presence of ions
2. High gelling
temperature

4. Chitosan (1–4)2-Amino-β-D-glucose Antimicrobial Low viability of
plant cells

5 Gellan gum D-Glucose, L-rhamnose,
and D-glucuronic acid

Gels faster and
clearer than agar
(Kang et al. 1982)

NA

6 Alginate Alginic acid is a linear
(1–4)-linked copolymer of
β-D-mannuronate (M) and
its C-5 epimer α-L-
guluronate (G)

High mechanical
strength, high
porosity, stability
towards monova-
lent cation

1. Autoclaving
reduces polymer vis-
cosity. UV
sterilisation pre-
ferred (Sakamoto
et al. 1995)

Organic gels

1 Polyacrylamide Acrylamide and N,
N0-methylenebisacrylamide

Allows swelling
and deswelling of
gel beads

Toxic effect of
monomers on cells

Protein gels

2 Gelatin Glycine, proline,
hydroxyproline

First gelling agent Stable over a narrow
temperature range

Resin

3 Polyox Polyethylene oxide No growth of
microbes,
non-toxic imparts
desiccation
tolerance

NA

NA not available
aSuprasanna et al. (2006), Kang et al. (1982)
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give rise to rigid and unbreakable beads within a polymerisation time period of 30 min
(Taha et al. 2008; Hegde et al. 2017). The complexing time also effects bead to plant
conversion. Sarmah et al. (2010) evaluated the germination percentage of encapsulated
PLBs of Vanda coerulea Grifft. ex. Lindl. in relation to different exposure time to
CaCl2�2H2O solution and determined that best time period was 30 min and the
response was lower with shorter and longer duration. A similar effect of 100 mM of
CaCl2�2H2O was reported for germination of synthetic seeds of Saintpaulia ionantha
Wendl. (Daud et al. 2008). Optimisation of polymerisation time is also important in
order to avoid ion toxicity. Nagesh et al. (2009) studied the effect of CaCl2 polymer-
isation time on shoot development from synthetic seeds of Curculigo orchioides
Gaertn. The beads produced from 2.5% sodium alginate when exposed to 100 mM
CaCl2 for a duration longer than 5 min adsorbed a higher amount of calcium chloride
leading to calcium ion toxicity and reduced regeneration of synthetic seed.

3.4 Rinsing

The synthetic seed beads sometimes have sodium and chloride ion residuals attached
to their surface. The beads have to be washed in distilled water repeatedly to remove
excess ions and limit ion toxicity (Gantait and Kundu 2017). The washed beads are
transferred to blotting paper for drying. The dried synthetic seed can be stored,
transported, or transferred to regrowth media.

3.5 Evaluation of Germination and Conversion of Synthetic
Seeds

Synthetic seed germination is marked by development of the encapsulated embryo
into a seedling with cotyledons and roots. The term conversion refers to the
development of an embryo into a seedling with true leaves and roots (Redenbaugh
1993). Lai et al. (1995) has described ‘germination’ in somatic embryos as radicle
emergence and ‘conversion’ as the presence of at least one leaf. Normal seed
germination is controlled by environmental factors like ambient temperature, soil
moisture level, soil oxygen level, and availability of light/darkness. Apart from all
these factors, internal factors such as plant growth regulators (PGRs), especially
gibberellin, and nutrient reserves (stored in cotyledons and endosperm) aid in seed
germination. The synthetic seed however lacks cotyledons and endosperm; there-
fore, they have to be transferred on regrowth media to aid germination and enable
successful conversion. Regrowth media are enriched with basal salts of commonly
used growth media including Murashige and Skoog (MS) (Latif et al. 2007; Pandey
and Chand 2005), White’s basal medium (Soneji et al. 2002), and Woody Plant
Medium (WPM) (Faisal et al. 2013; Nower 2014) as sources of macro- and
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micronutrients. The addition of phytohormones improves germination and root
development in synthetic seeds (Gantait et al. 2017). Maqsood et al. (2012) tested
α-naphthaleneacetic acid (NAA), 6-benzylaminopurine (BAP), and gibberellic acid
(GA3) at various concentrations in germination medium of encapsulated embryos of
Catharanthus roseus (L.) G. Don. and determined that the best medium was
MS + 1.34 μM NAA + 1.10 μM BA. Siddique and Bukhari (2018) evaluated
thidiazuron (TDZ) and indole-3-acetic acid (IAA), singly and in combination, and
obtained optimum conversion of synthetic seeds of Capparis decidua (Forsk.) with
MS + 5.0 μM TDZ + 0.5 μM IAA. Encapsulation procedure also affects conversion
efficiency of synthetic seeds. For example, Micheli et al. (2002) found that Malus
pumila Mill synthetic seed conversion was best with encapsulation coating proce-
dure which involves a coating of 2.5% sodium alginate + 2% propylene glycol + 5 g
egg albumin over the calcium-alginate bead as compared to simple and double
alginate coating.

4 Applications of Synthetic Seeds

Synthetic seed technology imitates natural seed production and can be used as the
same also. It can be used to propagate and conserve endangered and threatened plant
species (Fig. 1).

4.1 Reintroduction

According to the IUCN (1987), reintroduction is the ‘intentional movement of an
organism into part of its native range from which it has disappeared or become
extirpated in historic times as a result of human activities or natural catastrophes’.
Endangered plant species can be reintroduced in their natural habitat using synthetic
seeds; however, it is important to take into consideration the geographic character-
istics of the areas to be repopulated and to avoid outbreeding and inbreeding
depression. Several endangered plant species have been multiplied in in vitro con-
ditions and reintroduced including Cochlearia bavarica Vogt (Kaulfuß and Reisch
2017), Castilleja levisecta Greenm. (Salama et al. 2018),Woodsia ilvensis (L.) R.Br.
(Aguraiuja 2011), and Renanthera imschootiana Rolfe (Wu et al. 2014). The use of
synthetic seed technology for reintroduction will make this process faster as syn-
thetic seed preparation takes lesser time as compared to plantlet development and is
efficient due to ease of transportation.
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4.2 Direct Sowing

Synthetic seeds do not require an acclimatisation period which is mandatory for
micropropagated plants (Gantait and Kundu 2017). Direct planting has been success-
ful in several species including alfalfa (Medicago sativa L., cv. Regen S, clone RA3)
(Fujii et al. 1992), Dalbergia sissoo Roxb. (Chand and Singh 2004), Phyllanthus
amarus L. (Singh et al. 2006), and Erythrina variegata L. (Javed et al. 2017). The
synthetic seeds, including those of medicinal and endangered plants, can be directly
sown in soil or planting substrates like sand, soilrite, perlite, and vermicompost
(Mandal et al. 2000) for higher germination and survival rates.

Reintroduction                 Cryopreservation                      Direct Sowing Storage  

Endangered 
plants

Explant 
selection

somatic 
embryo

nodal 
segment shoot tips calli protocorm 

like bodies

Fig. 1 Flowchart depicting the use of synthetic seed technology for conservation of endangered
plants
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4.3 Storage and Transport

Seed banks are normally used to store the seed of endangered plant species around
the world. However, seed banking requires periodic assessment of germination and
viability of the stored accessions. The germination and viability of stored germplasm
are often influenced by taxonomic and plant specific characteristics (Godefroid et al.
2010). Synthetic seeds can also be stored at lower (�4 �C for cucumber; Tabassum
et al. 2010) or higher temperature (25 �C for hybrid orchid ArandaWan Chark Kuan
‘Blue’ � Vanda coerulea Grifft. ex. Lindl.; Gantait and Sinniah 2013). Apart from
ease of storage, synthetic seeds can be transported easily around the globe, and
germplasm can be exchanged easily due to small size and lighter weight (Gantait
et al. 2017) compared to bulky plantlets and seedlings.

4.4 Dried Somatic Embryo Production and Encapsulation
in Endangered Plants

Synthetic seeds can be developed by encapsulation of hydrated as well as dried
somatic embryo. The dried somatic embryos are produced by treating the somatic
embryo with ABA, nutrient stress, environmental stress, and air-drying. The advan-
tages of dried somatic embryo over the hydrated ones are desiccation tolerance,
increased germination efficiency, and longer storability. In Medicago sativa L.
(McKersie et al. 1989), dried somatic embryos have been developed by ABA
treatment and were stored with no loss of viability for 8 months; however, loss of
vigour was observed. Winkelmann et al. (2004) developed dried somatic embryos in
Cyclamen persicum Mill. by drying somatic embryos at different levels of relative
humidity generated by desiccators filled with saturated salt solution. The dried
somatic embryos showed high germination, bigger tubers, and better cotyledons.
In grapevine, the dehydrated embryos were stored for 42 months and 90% germi-
nated into plantlets (Jayasankar et al. 2005). In the case of Norway and Serbian
spruce, partly dried somatic embryo showed improved radicle growth and germina-
tion (Hazubska-Przybył et al. 2015). Development of dried somatic embryo for
endangered plant species will aid in better synthetic seed production, longer storage
period, ease of transport, and transplantation in natural habitats.

4.5 Cryopreservation of Synthetic Seed

The storage of biological material at ultra-low temperature (�196 �C) at which all
cellular divisions and metabolic processes are stopped for long-term conservation is
known as cryopreservation (Engelmann 2004). The technique of cryopreservation
employs several methods—like classical method of freeze-induced dehydration,
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vitrification of internal solutes, encapsulation–dehydration, encapsulation–vitrifica-
tion, droplet vitrification, etc. The technique of encapsulation–dehydration is an
extension of the artificial seed technology (Fig. 2a–e). In this technique, the explants
(meristem, zygotic or somatic embryo) are encapsulated in alginate beads and
pre-cultured in liquid medium enriched with sucrose for 1–7 days. Later encapsulated
explants undergo partial desiccation in the air current of a laminar airflow cabinet or
with silica gel down to a water content around 20% (fresh weight) and are then frozen
rapidly. This method has high survival rates, and growth recovery of cryopreserved
samples is faster and direct (Engelmann 2000). It avoids the use of cryo-solutions on
explants. Encapsulation of explants in an alginate bead has several advantages such as
higher availability of mineral and hormonal nutrients (Fabre and Dereuddre 1990),
ease of cryopreservation of desiccation-sensitive material (Redenbaugh 1993), and
slow release of endogenous substances to outside media due to the presence of bead
(Flachsland et al. 2006). In a study conducted on Ribes nigrum cultivar Ben More
(Benson et al. 1996), the alginate-encapsulated/air-evaporated desiccated meristems
had stable glass transition profiles upon cryopreservation. Several plant species have
been successfully encapsulated and cryopreserved including Solanum phureja Juz.
and Bukasov (Fabre and Dereuddre 1990), protocorms of Cleisostoma arietinum
(Rchb.f.) Garay (Maneerattanarungroj et al. 2007) and Vanda coerulea (Jitsopakul
et al. 2008), protocorm like bodies (PLBs) of Phalaenopsis bellina (Rchb.f.)
Christenson (Khoddamzadeh et al. 2011), and Dendrobium Sonia-17 (Subramaniam
et al. 2011). The synthetic seeds of endangered plants likeCentaurium rigualiiEsteve
(Gonza et al. 1997), Cosmos atrosanguineus (Hook.) Voss (Wilkinson et al. 2003),
Betula lenta L. (Rathwell et al. 2016), and Castilleja levisectaGreenm. (Salama et al.
2018) can be cryopreserved and used for long-term conservation.

5 Synthetic Seeds in Endangered and Rare Plants:
Examples

The following selected examples illustrate the usefulness of synthetic seeds for
propagation and long-term conservation.

Fig. 2 Potential steps for synthetic seed development for in vitro meristem ofDraba yukonensis (a)
using sodium alginate beads (b) and dehydrating the beads containing meristem (c) for storage or
cryostorage. The synthetic seeds cultured on the MS basal medium (d) for shoot growth develop-
ment (e) under in vitro condition (Saxena et al. unpublished)
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5.1 Ipsea malabarica (Reichb. f.) J. D. Hook

Ipsea malabarica (Reichb. f.) J. D. Hook is an endemic and endangered orchid
which belongs to family Orchidaceae of the Western Ghats of Kerala, India. In this
species, reproduction is obstructed by slow rhizome propagation, and seed propa-
gation relies on mycorrhizal association (Martin and Pradeep 2003). Martin (2003)
coated bulbs in half-strength MS medium (devoid of CaCl2) fortified with 6.97 mM
KN containing 3.0% (w/v) sodium alginate and 3.0% sucrose. The treated bulbs
were dropped into sterilised CaCl2 (0.7%) solution for 30 min. The encapsulated
bulbs were cultured both on half-strength MS agar medium with or without 6.97 mM
KN, and 100% conversion was recorded.

5.2 Swertia chirayita (Roxb. Ex Fleming) H. Karst

Swertia chirayita (Roxb. ex Fleming) H. Karst is an annual/biennial herb which
belongs to family Gentianaceae and is categorised as critically endangered by the
IUCN (Joshi and Dhawan 2005). It is popular as a medicinal plant due to its wide
usage in traditional medicines (Kumar and Van Staden 2016). The plant is distrib-
uted in regions of Himalaya, Kashmir, Shillong, Bhutan, and Khasi hills. A drastic
reduction in the population has resulted from over-exploitation of plants by local
people and traders. Moreover, the life cycle of the plant is hindered due to low seed
viability and germination rates (Joshi and Dhawan 2007). Joshi and Dhawan (2007)
developed a protocol for axillary multiplication from 4-week-old seedling-derived
nodal explants by supplementing MS medium with 4 μM BA and 1.5 μM 2iP. The
shoots can be potential explants and can be encapsulated. Kumar and Chandra
(2014) developed a protocol for somatic embryogenesis from in vivo leaf explants
by supplementing MS media with 0.5 mg/L 2,4-D and 0.5 mg/L KN which resulted
in 76% of embryogenic callus. Torpedo stage embryos were encapsulated in sodium
alginate (4% W/V) gel, dropped into 100 mM calcium chloride (CaCl2�2H2O)
solution to produce synthetic seed. The most effective germination medium was
MSmedium supplemented with 1.0 mg/L BA and 0.5 mg/L NAA with a success rate
of 84%. The highest plantlet survival rate of 80% was obtained in soilrite and sand in
1:2 ratio. The plantlets were successfully acclimatised to ex vitro conditions.

5.3 Tylophora indica (Burm. Fil.) Merrill

Tylophora indica (Burm. Fil.) Merrill is a threatenedmedicinal herb which belongs to
the Apocynaceae family and is native to India. The root and leaves of the plant are
source of alkaloids such as tylophorine, tylophorinine, tylophorinidine, and
tylophorindine. The key bioactive agent is tylophorine which is anti-inflammatory
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and anti-asthmatic (Kaur and Singh 2012). The plant suffers from overharvesting
pressure and slowmultiplication rate due to poor seed viability, low germination rate,
limited fruit set, and small number of propagules (Thomas and Philip 2005). Faisal
and Anis (2007) produced artificial seeds by encapsulating nodal segments in 3.0%
(w/v) sodium alginate and 100 mMCaCl2�2H2O. The maximum conversion rate was
achieved on MS medium containing 2.5 μM BA and 0.5 μM NAA. Successful
conversion and plantlet development were observed from encapsulated nodal seg-
ments stored at 4 �C for 8 weeks consecutively. Direct sowing of encapsulated nodal
segment on Soilrite™moistened with 1/2 MS salts led to a high conversion rate. The
plants regenerated from encapsulated nodal segments were successfully hardened,
acclimatised, and established in soil. Gantait et al. (2017) used nodal segments and
prepared artificial seeds using 75mMcalcium chloride (CaCl2�2H2O) and 3.0% (w/v)
sodium alginate. The artificial seeds were stored at (5 � 1) �C, (15 � 1) �C, and
(25� 1) �C, and highest frequency of conversion (90%) was obtained at a (15� 1) �C
after 15 days and 70% after 30 days of storage.

5.4 Gentiana lutea L.

Gentiana lutea L. is a medicinal plant which belongs to family Gentianaceae with
gastro-protective effects (Aberham et al. 2011; Niiho et al. 2006). The roots of this
plant are used in food products and also traditional medicine to stimulate appetite
and for better digestion (Leung 1980). The plant is herbaceous perennial and grows
in Europe and Asia. The plant has slow growth habit and produces dormant seed
(González-López and Casquero 2014). The species is assessed as least concern
(LC) in the IUCN European Red List (Bilz et al. 2011). Holobiuc and Catana
(2012) developed synthetic seeds by encapsulating somatic embryos in 3.0% sodium
alginate and 100 mM CaCl2. The optimum temperature for synthetic seed preserva-
tion was 10 �C in the growth room for several months.

5.5 Bacopa monnieri (L.) Wettst.

Bacopa monnieri (L.) Wettst. is a perennial herb from family Scrophulariaceae and
grows in the wetlands of southern and eastern India, Australia, Europe, Africa, Asia,
and North and South America. The plant and plant extracts have been used in
traditional medicines as a sedative, anti-inflammatory, analgesic, antipyretic, and
antiepileptic agent (Russo and Borrelli 2005). Demand for the plant is very high with
the pharmaceutical industry using around 6600 tonnes/year in India (National
Medicinal Plant Board 2004) which resulted in drastic depletion of the wild plant
population. The life cycle of the plant is also limited by poor seed viability (60 days),
seedling death at the two-leaf stage, and slow vegetative propagation (Tiwari et al.
2001). The growth habit of the plant is habitat specific as it prefers open spaces (Shah
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1965). The plant is categorised as least concern in the IUCN Red List (Lansdown
et al. 2013). Khilwani et al. (2016) developed a protocol by using leaf explants for
somatic embryogenesis, shoot organogenesis, and encapsulation of the embryos and
shoots in order to produce synthetic seeds. Shoot tips and somatic embryos were
encapsulated in sodium alginate (3.0%, w/v) and 125 mM calcium chloride
(CaCl2�2H2O). The synthetic seeds were analysed for short-term storage by storing
at 4 �C and 25 �C (room temperature) for 140 days. The artificial seeds retained
viability after 140 days of storage at both temperatures, but the germination of
encapsulated somatic embryos was higher when stored at 25 �C. However, the
encapsulated apical shoot buds failed to germinate after 40 days when stored at
4 �C. Sharma et al. (2012) encapsulated nodal shoots using 2.5% sodium alginate
and 100 Mm CaCl2�2H2O. The highest conversion rate (86.67%) was achieved on
MS medium supplemented with 1.0 mg/L BAP after 6–8 weeks. The regenerated
plantlets were hardened, acclimatised, and established under net house conditions.

6 Future Prospects: Technology Improvement
and Applications

The synthetic seed technology can be used to save endangered and rare plant species
by following methods:

6.1 Development of Synthetic Seeds to Generate Variability
in Endangered Plant Species

Plant species categorised as endangered and rare are resorted to that status due to
several anthropogenic, environmental, and physiological factors. Loss of diversity
and variation is also one of them. The central theme of conservation biology is to
maintain genetic variation in endangered plants (Frankel and Soulé 1981). Genetic
variation is indispensable for long-term survival of endangered plant species (Frankel
and Frankel 1970). The synthetic seed can be used as source of potential variation in
rare and endangered plant species just like naturally produced seeds. The variation
originating in cell and tissue culture is described as ‘somaclonal variation’ (Larkin
and Scowcroft 1981). However, the definition has evolved with time and application
of the same. Morrison et al. (1988) described somaclonal variation ‘as genetic
variation observed among progeny of plants regenerated from somatic cells cultured
in vitro’. Tapingkae et al. (2012) emphasised on the practical aspect of the phenom-
enon ‘Somaclonal variation is a valuable tool in plant breeding, wherein variation in
tissue culture regenerated plants from somatic cells can be used in the development of
crops with novel traits’. The mechanism of variation can be genetic and epigenetic
(Gao et al. 2009). The genetic factors (pre-existing variation) can arise due to use of
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chimera as explant (George 1993; Kunitake et al. 1995), chromosomal anomalies
(Lee and Phillips 1988; Mujib et al. 2007), cell cycle abnormalities (Larkin and
Scowcroft 1981; Lee and Phillips 1988), and active transposons (Pietsch and Ander-
son 2007; Barret et al. 2006). The epigenetic factors (can be tissue culture induced)
are type of explants (Israeli et al. 1996; Sharma et al. 2007), source of explants
(Kawiak and Łojkowska 2004; Chuang et al. 2009), genotype (Etienne and Bertrand
2003; Bordallo et al. 2004), plant growth regulators (Peschke and Phillips 1992;
Giménez et al. 2001), number of subculture (Rodrigues et al. 1997), duration of
culture (Reuveni and Israeli 1989; Bairu et al. 2006), and effect of stress (Lee and
Phillips 1988; Halim et al. 2018). Somaclonal variations have been observed and
exploited in different species. Krishnamurthi and Tlaskal (1974) developed Fiji
disease-resistant Saccharum officinarum L. somaclones. Shepard et al. (1980) devel-
oped potato somaclones with tubers of uniform skin colour, size, and shape, and they
increased fruit production and disease resistance to early blight. In rice, Joshi and Rao
(2009) developed submergence tolerant somaclones. Somaclonal variation has also
been reported in endangered and rare plant species in vitro culture. Dey et al. (2015)
developed somaclones in Cymbopogon winterianus Jowitt. and observed significant
variation for agronomic traits like plant height, diameter of bush, number of tiller/clump,
number of leaves/clump, leaf length, leaf breadth, weight of leaves, and essential oil
content and quality. The somaclones were subjected to stability analysis, and the
polymorphism was confirmed by random amplified polymorphic DNA (RAPD) anal-
ysis. Slazak et al. (2015) developed somaclones in an endangered medicinal plant Viola
uliginosa Besser with higher cyclotide production. In this study, leaf and petiole were
cultured on MS media supplemented with TDZ (0.5 or 1 mg L�1) or with equal
concentrations (2 mg L�1) of KN and 2,4-D, followed by callus transfer on 1 mg L�1

TDZ. The regenerants had different ploidy level as compared to diploid mother plant;
majority of them were tetraploid. The tetraploid plants had higher production of
cyclotides. The morphological variation in somaclones has also been studied in some
rare plant species. Isabel et al. (1996) observed four variegated phenotypes in plants
developed from somatic embryos of Picea glauca (Moench) Voss (least concern). The
variationwas due to chlorophyll deficiency in leaves and the presence of green andwhite
cells. The variegated phenotypes were screened with 250RAPDmarkers and correlated
with one of them. Tremblay et al. (1999) studied morphological variation in plants from
somatic embryos of two pine species, Picea mariana (Mill.) Britton, Sterns and
Poggenburg and Picea glauca (Mill.) Britton. The morphological variation was
categorised into nine types based on plant architecture: dwarf, bushy, normal needle
hooked stem, reduced height with thick short needles, needle fasciation, abnormality in
tree architecture, variegated phenotype, plants with an overall regular morphology but
smaller than normal plants and plagiotropic plants. Two separate phenotypes dwarf and
reduced height with thick short needles had aneuploid cells indicating chromosomal
instability. The somaclones with desirable variation can be encapsulated and used as
synthetic seeds. However, the somaclonal variation has to be screened for stability and
heritability for successful creation and maintenance of genetic variation in endangered
and rare plants.

Synthetic Seeds: Relevance to Endangered Germplasm Conservation In Vitro 47

https://en.wikipedia.org/wiki/Philip_Miller


6.2 Use of Synthetic Seeds for Mass Reforestation
Programme

Endangered and non-endangered forest tree species many a times have problems in
seed production and germination. A period of 20–30 years is needed to produce
seeds for reforestation (Gupta and Kreitinger 1993). Synthetic seeds can be produced
in a shorter period of time and can be transported and planted in barren land and
forest area. Synthetic seeds have been reported in forest tress; some examples are
Jacaranda mimosaefolia D. Don (vulnerable) (Maruyama et al. 2007) and Pinus
patula Scheide et Deppe (least concern) (Malabadi and Van Staden 2005).

6.3 Integrated and Combined Strategy for Production
of Synthetic Seed of Endangered Plants and Rearing
the Animal Species with Which It Has Mutualism
Interaction

Flora and fauna share a close relationship with each other in an ecosystem, and
endangered plant species are no exception. Several endangered plants depend on
animals to complete their life cycle and spread their population. In order to establish
a balanced ecosystem, it is required that apart from planting and transplanting
endangered plants and sowing synthetic seed, the animal which helps in the survival
of the plant should also be introduced in the area of planting. Some of the examples
are gecko (Phelsuma cepediana Milbert) which is involved in pollination and seed
dispersal of endangered Roussea simplex Sm. The relationship is disrupted by
invasive ants Technomyrmex albipes Smith which feed on nectar and fruit pulp of
the plant and limit the visitation rate of the lizard to the flowers (Hansen and Müller
2009). A primate yellow-breasted capuchin (Sapajus xanthosternos Wied.) (criti-
cally endangered) is responsible for seed dispersal for 23 endemic and 3 endangered
plants, and it has a significant role in seed dispersal of Manilkara sp. (Canale et al.
2016). Unfortunately, many frugivores are facing threat of hunting and decrease in
population. Traveset and Riera (2005) studied the seed dispersal in a perennial shrub,
Daphne rodriguezii (Texidor), by a frugivorous lizard Podarcis lilfordi Günther and
found that the lizard is facing extinction due to carnivorous mammals like weasels,
pine martens, genets, and cats. It is therefore important to consider the factors that
influence the entire life cycle of a plant in its natural environment for effective
strategies of long-term conservation.
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7 Conclusion

In spite of the fact that synthetic seed technology has existed since 1985 and has been
widely used for production of medicinal, forest, and vegetable species, the full
potential of this technology has not been utilised for the conservation of rare and
endangered plant species. The available literature suggests that the micropropagation
and somatic embryogenesis protocols of several endangered plants exist, but still
there is lack of synthetic seed preparation and utilisation. The synthetic seeds in
endangered plant species can be used for production, conservation, cryopreserva-
tion, and reintroduction, thus saving them from extinction.
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Synseed: A New Trend in Seed Technology

Buhara Yücesan

Abstract Synseed technology is a growing trend in innovative and sustainable
agriculture applications. It provides a promising method based on encapsulation of
embryonic (somatic embryos) or non-embryonic tissues (i.e., shoot tips, shoot buds,
microshoots, nodal segments, protocorms, etc.) in a gel-like matrix for the massive
plant production. This approach can be generalized for the commercial production
when the techniques minimize the production costs of elite plant genotypes in case
of conservation and delivery. For the last 20 years, plant tissue culture researchers
have focused on practical implementations of synseed technology which are yet to
be solved such as preference of chemical composition for encapsulation, sowing and
subsequent regrowth efficiency, and optimization of storage conditions prior to the
plant material transportation. This chapter focuses on the basics of synseed produc-
tion underlying the practical applications, its achievements, and limitations, which
might provide a new insight for the farmers of the twenty-first century.

Keywords Synseed · Encapsulation · Sodium alginate · Artificial seed · Seed
technology

1 Development of Seed Technology

A seed is formed after fertilization of egg in a protective coating in vascular plants. It
allows plants to propagate across great distances, borne by wind or water or sometimes
stuck to other organisms for the transportation. Seed provides a superior advantage to
the diploid embryo which is readily found in a protective coat and storage tissue. From
this view of evolutionary perspective, the need of seed for the plant propagation is as
old as the history of mankind. Man has become so utterly dependent on the plants; thus

B. Yücesan (*)
Department of Seed Science and Technology, Bolu Abant İzzet Baysal University, Bolu,
Turkey

Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
e-mail: buhara@ibu.edu.tr

© Springer Nature Switzerland AG 2019
M. Faisal, A. A. Alatar (eds.), Synthetic Seeds,
https://doi.org/10.1007/978-3-030-24631-0_3

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24631-0_3&domain=pdf
mailto:buhara@ibu.edu.tr


he grows for food, fights for food, and dies for food. This interaction did not domes-
ticate theman only as a process of transition from a lifestyle of hunting and gathering to
the agricultural society with a settlementmaking larger populations but also all those of
plants fully domesticated have not survived without the aid of human since Neolithic
period (Harari 2015). This can also be associated with a first agricultural revolution in
human cultures that paved the way of industrial revolution in Europe starting from
Britain in the eighteenth century. New farming techniques eventually increased the
population as well as prosperity in developed countries. However, more efforts were
needed in agriculture for satisfactory food production; the growing populations could
not meet the need for adequate nutrient for their life. At this point, green revolutionwas
glittered in the 1960s; seed technologywith innovative fertilizer and irrigationmethods
pioneered the high yielding variety of seeds. Moreover, Japanese scientists Toshio
Murashige and Folke Skoog published a well-documented tissue culture protocol on
tobacco plant, and their approaches inspired the researchers for the plant propagation
under in vitro conditions (Murashige and Skoog 1962). Upon a simple literature survey
in the Internet, it seems clear that more than 10,000 plants have been propagated
through tissue culture techniques as yet, and those reports on plant propagation differ in
either the way or techniques used or just a snapshot of trending topics.

Synseed, artificial or synthetic seed production was coined for the first time by
Toshio Murashige as an “encapsulation of a somatic embryo” (Murashige 1977).
Today, when taken into account the topic of “synthetic seed” as a keyword refined by
“encapsulation” from the Web of Science core collection (WOS 2018) covering a
wide variety of indexes, around 250 results are shown, and majority of the studies
have been reported in the last decade (covering 66% of total publications; see Fig. 1).

Fig. 1 Publications in the last quarter of the century that focused on synseed technology with the
preference of the terms, synseed in green bars versus artificial seed in blue bars [Retrieved from the
Web of Science Core Collection (WOS 2018). Index coverages are SCI-expanded, SSCI, A&HCI,
CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-expanded, IC]
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However, synseed versus artificial seed emerges more as a new term with only
44 publications (Fig. 1). The idea behind this innovative seed production was based
on engineering the tissue for the practical use of plant production. Thus, this
approach can be generalized for the commercial production when the techniques
minimize the production costs of value-added plant species. In this context, a real
seed that involves a zygotic embryo was mimicked on a meristematic tissue which
enables diploid embryo production, and these somatic embryos were beaded into a
polymer matrix to sustain further growth and development as seen in nature.
Synseed production could also be achieved by in vitro-derived propagules without
prefering direct use of somatic embryos, since many plants are recalcitrant to somatic
embryo production under in vitro conditions. Especially, non-embryonic tissues,
such as shoot tips, shoot buds, microshoots, nodal segments, protocorms, etc., can
also be used in synseed production with an ability to be converted into a complete
plant under in vitro or ex vitro conditions (Fig. 2).

2 Plant Tissue Culture Techniques for the Synseed
Production

2.1 Somatic Embryogenesis

Somatic embryos are of great potential for the synseed production, since they have
bipolar differentiation during development resulting in a radicle and plume axis in a
single step as compared to the non-embryonic tissues having unipolar differentiation
at the initiation step. It means that root formation occurs prior to the shoot organo-
genesis, and complete regeneration may take longer period than somatic embryo-
genesis. In theory, plant cells can initiate embryo development in two main ways:
regaining embryogenic cell identity via induction and losing vegetative/somatic cell
identity via reversion (Fehér et al. 2016). In other words, these plant cells are not
inherently embryogenic but become embryogenic in response to external or internal
signals which are mostly regulated by auxin concentrations as well as epigenetic
factors under certain conditions. The plants species which are capable of producing
somatic embryos keep their regenerative capacity for a long time by passing
intervening callus stage, thus making a clonal propagation genetically stable.
Aitken-Christie et al. (1994) improved the idea of encapsulating the somatic embryo
to such an extent that synseed technology was defined as artificially encapsulated
somatic embryos, sprouts or other tissues that may be used for in vitro or ex vitro
culture conditions. Actually somatic embryos can be used directly for large-scale
planting. This might be why Toshio Murashige proposed the term of encapsulation
of somatic embryos in 1978 (Murashige 1977). To achieve this, a protective layer
that covers the somatic embryo must be of a certain quality: (1) it must be
non-damaging to the embryos, (2) it must be protective but also sufficiently durable
for the handling, and (3) it must have a good enough matrix composition that
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Fig. 2 Schematic representation of synseed technology. Explant selection from a plantlet (1) or
callus tissue (2) for the somatic embryo production. Depending on the regeneration response,
non-embryonic tissues or somatic embryos are added into a polyelectrolyte solution (i.e., sodium
alginate with or without growth medium composition and respective additives) and sucked up by a
micropipette with a cut pipette tip (4), transferring the tissue into a crosslink solution (i.e., calcium
chloride) for the gelation from outside to inside (5). After polymerization step, the bead-like
synseeds (6) are either directly transferred into an open non-axenic sowing medium (7) or trans-
ferred into growth media under in vitro conditions (8). For the storage purpose, short-term (9) or
long-term (i.e., cryopreservation) conservation of synseeds in liquid nitrogen (10) can be applicable
depending on the future application(s) (11). Photographs at the right margin show the steps from the
synseed production to the complete plantlet formation in Stevia rebaudiana (Photographs from
Buhara Yücesan; the diagram showing the steps of synseed technology was drawn by Ece
Tıpyardım)
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contains nutrients, growth regulators, etc.; high quality of the embryo inside of the
beads is promptly needed for the success of germination. As to the germination
pattern, somatic embryos generally perform poor germination as compared to their
convertibility into whole plantlets. This is also an observable pattern for the seed
embryos in nature, since the reserve food materials such as proteins and secondary
metabolites impart desiccation tolerance to the embryo, thus promoting normal
development to be prepared for the germination. Accumulation of ABA at this
stage is critical for the prevention of precocious germination; instead it facilitates
embryo development by suppressing the secondary embryogenesis. For the synseed
production, secondary embryo production can be more useful over primary ones,
because newly formed somatic embryos are formed in large quantities from primary
somatic embryos. Therefore, high commercialization with high production rate
without the need of explant source might be feasible for the selected lines of
secondary embryos in a short period.

2.2 Non-embryonic Meristematic Tissue Production

Synseed production is not only based on somatic embryos as mentioned before, but
also non-embryonic tissues might replace the success of somatic embryos in novel
technology. These non-embryonic tissues or explants such as shoot tips, nodal
segments, callus tissues derived from cotyledonary, mature leaves, and internodes
are widely used in synseed production (Table 2). In contrast to somatic embryos,
non-embryonic meristems undergo a unipolar differentiation; thus further root mer-
istems are needed to induce the root system before or after encapsulation depending
on the suitability of the explants for the tissue culture system as well as the synseed
production (Ara et al. 2000; Sharma et al. 2013; Gantait and Kundu 2017). Yücesan
et al. (2015) reported that nodal explants of goldenberry (Physalis peruviana) were
suitable for the encapsulation, and those of synseeds induced root formation without
using any growth regulator in either encapsulation matrix or sowing medium. How-
ever, Nishitha et al. (2006) offered a protocol for the synseeds of Bengal creeper using
an auxin for the root induction in encapsulation matrix (see Table 2). The best way is
to understand the suitability of the explants for the synseed production; regeneration
of a certain plant species should be well-documented in order to achieve a simulta-
neous shoot and root induction of capsulated explants on sowing media (see the steps
in Fig. 2). For healthy plant regeneration, shoot tips eliminate the plant pathogens,
thus providing an efficient explant source for synseed capsulation. Nodal segments
are of great potential for meristematic activity, and they respond effectively to the
plant growth regulators producing multiple shoots or callus tissue depending on
medium formulation. Protocorm-like bodies (PLBs) resemble somatic embryos,
and the production of PLBs has been reported mainly in orchid species (Lee et al.
2007). Although synseed production is limited in this tissue type, there are reports on
some ornamental plants, Cymbidium Twilight Moon ‘Day Light’ (Teixeira da Silva,
2012) and Dendrobium Shavin White (Bustam et al. 2013).
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3 The Types of Encapsulation in Synseed Production

There are simply two types of synthetic seeds, desiccated synthetic and hydrated
seeds. The first attempt on desiccated synseed production was established by Kitto
and Janick (1985) using somatic embryos of carrot (Daucus carota). After encap-
sulation of the multiple somatic embryos in a water-soluble polyoxyethylene glycol
(Polyox), these embryos were desiccated overnight. This technique was also devel-
oped by a group of scientist, and they applied PEG-based mixture for carrot somatic
embryos and embryogenic callus. After that, drying out was achieved on Teflon
surface overnight in running laminar flow cabinet. Desiccated synseeds stored at
different temperatures was then rehydrated in culture media to check viability of
somatic embryos. It seems clear that for an efficient desiccation synthetic seed
production, somatic embryos should be desiccation tolerant. Ara et al. (2000)
reported a clear insight about the achievement of desiccation through storage
applications at different periods in growth chambers with relatively low humidity,
and condition of petri plates without parafilm sealing let the synseeds overnight to be
dried. Sundararaj et al. (2010) reported the synseeds transferred to the liquid medium
containing various sucrose as an example for the dehydration that resulted in high
recovery at 0.5 M sucrose. Desiccated synseed production bears some limitation
unless embryos are coated with a protective and nutritious layer, especially at the
early stage of regrowth. As seen in the real seed coats (testa layer of the seeds),
artificial layer that mimics the seed coat must be non-toxic, non-aqueous but
sufficiently soft to facilitate the emergence of shoot and root primordia (Pond and
Cameron 2003). For the second group of synseeds, they are produced by encapsu-
lating embryonic or non-embryonic tissues in a hydrogel matrix (see Table 2).
Encapsulation is achieved by an ion exchange process between calcium and sodium
ions that form an alginate bead (calcium alginate) in case of synseed production.
However, this technology is not new and has already been used in food industry
widely for 50 years (Gibbs et al. 1999). The idea of encapsulation is based on
protecting the items in a gel capsule from the environment. From this point of view,
plant tissues can be encapsulated in a single- or double-layer hydrogel encapsulation.

3.1 Single-Layer or Double-Layer Encapsulation

Single-layer encapsulation is the simplest and widely used layering process for
which varying concentrations of polymer matrix or hydrogel such sodium alginate
(up to 5.0%, w/v) are largely used. For single-layer encapsulation, two different
solutions are used, calcium chloride (CaCl2) as crosslink solution and sodium
alginate as a polyelectrolyte in which plant tissues are readily suspended. Subse-
quent interaction of these aforesaid solutions at various concentrations results in an
ion exchange between calcium and sodium in a certain time for the polymerization
(ranging between 15 and 50 min; see Tables 1 and 2). Plant tissues are immobilized
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in a bead-like inotropic gel (calcium alginate) that is called synseed. In most cases,
concentrations of these aforesaid solutions and polymerization time must be opti-
mized for the best synseed production. In general, 3% (w/v) sodium alginate and
100 mM calcium chloride for 15–30 min have proved to be the best combination for
the formation of an ideal synseed (Tables 1 and 2). Moreover, for an ideal synseed
shape, 1000 μL micropipettes are mostly used, and disposable pipet tip was cut from
its tip to have a larger opening through which sodium alginate matrix was easily
sucked up with a plant tissue. Depending on the sodium alginate matrix composition,
encapsulation can be of many forms such as multiwall further coated with similar
sodium alginate concentration or can be an irregular shape when the sodium alginate
contains full-strength MS medium including calcium chloride (CaCl2) that makes
generally amorphous synseed (Gibbs et al. 1999). For better protection, double-layer
encapsulation of single-layer synseeds might be applicable; however, it might
increase the contamination risks depending on the chemical constituents of the
second layer; MS medium thereof presumably increases the infection rates (Sharma
et al. 2013).

3.2 Storage, Sowing and Regrowth Patterns of the Synseeds

Synseed technology favors a cost-effective approach for the germplasm conservation
ensuring the minimum space for storage and protection from various environmental
factors. After an effective storage of the synseeds, cost-effective and disease-free
germplasm transportation might be applicable for the plant species; thus, this approach
facilitates exchanging germplasm between countries without additional formalities for
the quarantine departments at the borders. There are two types of storage used in
synseed technology: short- to mid-term storage and long-term storage. In first type of
storage, synseed production can be formulated with growth retardants and high
osmoticum in polymer matrix, and sometimes concentration of growth medium is
reduced to ensure slow-growth conservation after storage at low temperature (ranging
between 4 and 14 �C). For the long-term storage, freezing of the tissue might be
needed, and encapsulation-dehydration or simple desiccation can also be applicable
for longer periods of storage depending on the plant species (Sharma et al. 2013).

In general, increase in storage period of synseeds eventually decreases the
regrowth of synseed after sowing. For example, Varshney and Anis (2014) reported
a short-term storage for the synseeds of the desert date tree. In their report, consid-
ering the cold storage at 4 �C for 4 weeks, the percentage conversion of encapsulated
nodal segments into shoots was 82% on growth medium. However, percentage of
conversion gradually decreased to 60% after 8 weeks of incubation. Similar pattern
was also observed in stevia (Stevia rebaudiana) synseeds, and percentage of con-
version was reported with a significant decline from 100% at first week of storage to
70% after 3 weeks of incubation at 4 �C in darkness (Yücesan et al. 2015). The basic
idea of the long-term storage is based on osmotic and evaporative dehydration of
plant cells embedded in high sucrose concentration, which favors the desiccation for
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best protection at�196 �C in liquid nitrogen. Since sucrose is an effective and one of
cheapest options for the osmoticum that influences osmotic potential in gel matrix,
its concentration might be kept at high level by simply applying air-drying method in
running laminar flow (Shajahan et al. 2016). After a certain period of storage,
synseeds should be placed onto the medium either under axenic or non-axenic
conditions for their conversion into the complete plantlets. Regrowth media as
shown in Table 2 are variable depending on plant species. Regrowth of the synseeds
under in vitro conditions can be achieved using a wide range of medium formula-
tions (i.e., half- or full-strength MS medium with or without growth regulators), and
soil/compost mixtures are also applicable in some selected plant species especially
for geophytes (Table 2). Once the synseed technology is associated with regrowth
under non-axenic conditions, it most likely provides a promising approach for the
sowing in an inexpensive way as compared to in vitro techniques. For instance,
Saiprasad and Polisetty (2003) reported a successful regrowth of three different
orchids (Dendrobium, Oncidium, and Cattleya) in pots containing either charcoal
or briquette pieces. Similarly, Bektaş and Sökmen (2016) reported synseed produc-
tion of Serapias vomeracea (an orchid spp.) using protocorm-like body structures.
Their results showed that percentage germination of synseed on sterilized peat
medium was 60% in pots, while the synseeds lost their viability as a result of fungal
contamination in the non-sterilized peats. In the same report, germination rates of
synseed from protocorm-like structures were found to be higher than natural seeds
derived from zygotic embryos under in vitro conditions. Direct sowing of the
synseeds under non-axenic conditions also skips acclimatization procedure required
for in vitro systems; thereby, it can be more commercially viable in a cost-effective
way of the plantlet production in vitro.

4 Future Prospects

Despite the ample number of publications in plant tissue culture, majority of those
publications are mainly focusing on propagation techniques apart from their conser-
vation, storage, and transportation. Over 30 years, synseed technology has attempted
to minimize these limitations regarding commercialization of the approach in large-
scale production. The success of a propagation protocol cannot always address the
success of synseed regrowth, unless certain conditions such as the preference of the
best nursery medium, storage temperature, and its duration are determined accord-
ingly. Once the studies on somatic embryo production are associated with synseed
production properly, limiting factors as presented in this chapter can be minimized as
summarized briefly in Table 3. Apparently, non-embryonic meristematic tissues are
of great potential for the synseed production; thus storage and transportation of the
germplasm can be cost-effective commercial applications. Chemical constituents of
gel matrix and formulations of artificial endosperm associated with synseed tech-
nology are also another aspect to be considered recommending germplasm conser-
vation on a commercial scale.
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Synthetic Seeds: An Alternative Approach
for Clonal Propagation to Avoiding
the Heterozygosity Problem of Natural
Botanical Seeds

Biswajit Ghosh and Sk Moquammel Haque

Abstract The seed is a functional element of sexual reproduction of higher plant. In
nature, the humble beginning of the independent life of higher plants starts along
with seed germination. Seeds are the “mysterious genetic capsules” which store the
genetic information and carry forward to next progeny. The zygotic embryo present
inside the botanical seed serves as propagule to produce offspring, and these
embryos are always heterozygous because of the recombination during meiotic
crossing over in the course of gamete formation as well as for mix-up of the genome
of two different parents through cross-pollination. In seed-propagated crops, the
agricultural yield is highly unstable due to heterozygosity among seed-derived
plants. The answer of this problem is synthetic seeds—the functional mimic of
botanical seeds.

Synthetic seed is one of the most promising tools of plant biotechnology, which
could be tailor-made for horti- and agricultural improvement at present as well as
upcoming days. As all the propagules used for synthetic seed preparation are
produced through in vitro clonal propagation, which means they did not encounter
two fundamental events of sexual reproduction, the meiotic recombination (during
crossing over) and gametic fusion of two different parental genome (cross-
pollination), both of these events can create new types of heterozygosity in zygotic
seeds. Therefore synthetic seed-derived offspring are always true to type to their
source plant. Although, unlike zygotic seed, new types of heterozygosity are never
generated in synthetic seeds, the heterozygosity already existed in the mother plant is
always transmitted in all synthetic seed-derived offspring.

However, the heterozygosity problem will be totally avoidable, and production of
homozygous synthetic seeds is also possible only by using double haploid source
plant, because double haploid plants are always truly homozygous. Otherwise
synthetic seed technology can only aid to restrict the formation of new types of
heterozygosity in offspring, which are abundant in botanical seeds.
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1 Introduction

In nature, the humble beginning of the independent life of higher plants
(i.e. spermatophytes) starts from seeds. Spermatophyte is the most latest evolutionary
embellishment of the plant kingdom and includes gymnosperm and angiosperm. The
key character of spermatophyte is that they are seed bearing, unlike Pteridophyta and
other cryptogams. It is really tough to overstate the significance of seeds for the
evolutionary prosperity of the spermatophytes and the development of human civili-
zation, improvement of human cultures, and their existence (Knapp 2015; Sabelli and
Larkins 2015). Plants produce seeds for their most important purpose of life—repro-
duction. Although gymnosperm and angiosperm both are seed-bearing plants, gymno-
sperms are more primitive as they have uncovered seeds; in contrast the angiospermic
seeds are enclosed within fruits. Plants store enough nutrients within the seed for
utilization of their zygotic embryos (Ali and Elozeiri 2017). Seeds can be divided
into two groups on the basis of their nutrient storage tissue—albuminous seeds
(endosperm tissues serve for storage) and exalbuminous seeds (cotyledons serve for
storage). Due to the presence of these nutrient storage tissues, seeds perform as an
important element of the world’s diet (Bewley 1997).

In higher plants the life cycle is divided into two phases―sporophyte and
gametophyte (Haque and Ghosh 2016a). The dominant phase is diploid sporophytic
stage where the main plant body occupies maximum span of the life cycle, whereas
haploid gametophytic phase (pollen and ovule) is too much reduced and occupies
very little span of the life cycle. The gametophytic generation starts from microspore
(male gametophyte) or from megaspore (female gametophyte) and ultimately pro-
duces sperm and egg cell, respectively (Yadegari and Drews 2004). These haploid
sperm and egg cells fertilize together to form a single diploid cell, i.e. zygote—the
first cell of the sporophytic generation. Fertilization activates a complex cellular
programme that converts two highly specialized haploid germ cells, the sperm and
the oocyte, into a totipotent diploid zygote (Clift and Schuh 2013). The first part of
the sporophytic development starting from zygote formation up to embryo matura-
tion takes place within the ovule, and ultimately the ovule gives rise to a seed. The
initial step in seed development is a double fertilization, where first fertilization
occurs between sperm nucleus and egg nucleus to form the diploid zygote, whereas
second fertilization occurs among one sperm nucleus and two central cell nuclei,
resulting in the development of triploid nutritive endosperm (Sabelli and Larkins
2015). The components of mature seeds—embryo (propagule), endosperm (storage
food), and seed coat (protective jacket)—are derived from the fertilized egg cell (2n),
fertilized central cell (3n), and ovule integuments (diploid mother tissue), respec-
tively (Drews and Koltunow 2011). Contemporary genetic studies point out that the
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female gametophyte influences the events of seed development through maternal-
effect genes as well as by regulating maternal contributions (Yadegari and Drews
2004; Drews and Koltunow 2011). The development of the seeds takes place in the
mother plant; as a result zygote to embryo formation and their maturation are fully
dependent on mother plants (Maheshwari 1950). Therefore, the independent life of
higher plants eventually starts from seed germination, and the ultimate aim of their
life is to produce seeds for the next generation (Fig. 1). Starting from zygote, the
sporophytic plant bodies develop via embryo development, different phases of
embryo maturation, embryo germination, and the vegetative growth (roots, stems,
leaves) of the main plant body. After prolonged vegetative developmental phase,
they attain certain maturity, and then transition from vegetative to flowering stage
occurs (Haque et al. 2018). Female and male reproductive organs develop within the
flowers, and ultimately haploid spores (mega- and microspores) are produced
through reductive (i.e. meiosis) cell division (Haque and Ghosh 2017a).

“Evolution is the process of heritable change in populations of organisms over
multiple generations” (https://www.nature.com/subjects/evolution). Evolution in
living organisms is a very essential process which creates a gradual modification
of all forms of life over generations. Without evolution, all life gets threatened and
ultimately goes to extinction in ongoing changing environments of the earth (Burger
and Lynch 1995; Parmesan 2006). The four major factors which lead to the evolu-
tion process are mutation, gene flow, genetic drift, and natural selection (Allendorf
2017). Evolution occurs in populations because of the modifications in allele
frequency over time. Modification of allele frequency increases the heterozygosity

Fig. 1 Diagrammatic representation of the life cycle of seed-bearing plants
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in individuals as well as in populations. Hence, more heterozygosity means more
probabilities of speciation, i.e. formation of new species. This marvel of heterozy-
gosity is utilized by the plant breeder as a weapon for creating new hybrid varieties
(Acquaah 2012). At this point, heterozygosity serves as blessing for the progress of
agriculture. But whenever a hybrid line was created, maintenance of genetic stability
of this hybrid line is very essential, which is only possible through clonal propaga-
tion of this hybrid plant (Wang et al. 2019). Clonal propagation is none other than a
vegetative mode of propagation, where all the offspring truly maintain the genetic
make-up of their parent plant by avoiding the genetic recombination, i.e. meiotic
crossing over. Some of the organisms have ostensibly evolved without sexual
reproduction for several centuries (Schön and Martens 2003). Due to human-
exercised selective pressures, the clonally multiplied food crops incorporate an
enormous range of ecological, morphological, and phylogenetic diversity (McKey
et al. 2010). Somatic mutations are the cause of genetic variation among clonally
propagated domesticated crop plants which supports the adaptive evolution
(Whitham and Slobodchikoff 1981).

Seeds are the functional component of plant reproduction, from where the
independent life of higher plants starts. In general, the botanical seeds comprise
three basic criteria—(1) first and foremost it contains a propagule in the form of
zygotic embryo, (2) the zygotic embryo is covered by a hard jacket, i.e. seed coat for
mechanical protection, and (3) it contains storage food for zygotic embryo in the
form of nutritive tissue, i.e. endosperm or cotyledon (DuPont 2012). Apart from
these three basic criteria, though not all, most of the seeds have another important
features—seed dormancy (Yildiz et al. 2017). During dormancy period the seeds
cannot germinate even in the presence of favourable environmental conditions
(temperature, humidity, oxygen, and light) required for germination. Seed dormancy
is a trait acquired by the spermatophytes during evolution to subsist in adverse
environments such as low or high temperature, salinity, and drought (Yildiz et al.
2017). Dormancy can compare with “sleep” and dormancy-break with “wake-up”.
After dormancy-breaking the seed germinates and give rise to a seedling. However,
dormancy-break is very unpredictable because the threshold stimulus needed to
encourage germination differs extensively among individual seeds; therefore all
seeds among the same population do not germinate synchronously (Bewley 1997).
Seed germination frequency is considered as a determining factor for plant produc-
tivity (Ali and Elozeiri 2017). Although seed propagation is the leading mode of
reproduction of higher plants, there are some drawbacks like all seedlings are
genetically not true to type, production of seed is not possible throughout the year
but restricted to a particular season only, and few species aren’t able to produce seeds
throughout their life. Hence, an alternative of botanical seed is strongly desiderated
to address the above-mentioned drawbacks.

Synthetic seeds are functionally alternatives of botanical seeds and are tailor-
made and developed in laboratories. Synthetic seed is one of the most promising
plant biotechnological tools which could be expedient for agricultural improvement
at present as well as upcoming days (Haque and Ghosh 2014). This technology has
been established to utilize somatic embryos or some other micropropagules like
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shoot tips, nodes, etc. as seed analogues effectively in the greenhouse or field and
their commercial planting (Ara et al. 2000). Nowadays, the synthetic seed is an
ardent topic of research, and importance of this technology can be predicted by the
huge number of scientific works continuously done on it. A casual perusal of the
scientific search engines (https://www.sciencedirect.com/) reveals that over 4450
publications related to “synthetic seed or artificial seed” have been published in the
last 3 years (2017–2019, accessed on February 4, 2019). In crop plants, the main-
tenance of genetic stability of the high-yielding variety and retain of the high-
yielding features in next generation is very essential, which is possible only through
clonal propagation (Bhojwani and Razdan 1996). Since all zygotic seeds are hetero-
zygous (except when parents are inbred line), therefore seed-derived plants are
genetically not true to type to their parents; henceforth, all the desired characters
of the parents may not be expressed in offspring. Heterozygosity is a realistic
problem for those crop species, whose planting material is zygotic or botanical
seeds. Over botanical seeds, the synthetic seeds have some advantages like synthetic
seed-derived seedlings are true clones of their source plant, and it can be produced in
huge quantity throughout the years (Bapat and Mhatre 2005).

2 Propagation Through Seeds

Seed propagation is the method of plant reproduction through seeds. Maximum plant
species naturally reproduces through seed propagation. As well, farmers also take
advantage of seed propagation for cultivation of agricultural and horticultural crops.
Seeds are an essential element of the life cycle of higher plants, as they store the
hereditary information essential for the next progeny to disperse, inaugurate, grow,
and finally reproduce to perpetuate the species (Nambara and Nonogaki 2012). Seed
formation in higher plants begins along with the developmental decision to
switchover from a vegetative to a reproductive phase of development (Simpson
et al. 1999). The seeds contain a lot of secrets that have yet to be discovered, that’s
why Nambara and Nonogaki (2012) mentioned seed as “mysterious genetic cap-
sules”. In this type of plant propagation, seeds can be germinated, post-germination
development occurs, and ultimately a seedling was developed. In recent years, an
understanding of the seed biology especially seed dormancy and germination has
been greatly progressed (Nonogaki 2017). In nature, germination postponement due
to dormancy keeps certain seedlings safe from possible damage of detrimental
weather or from seasonally migrating herbivores (DuPont 2012). Seed germination
is a very crucial event in agricultural aspects, and yield may directly depend on the
percentage of seed germination. There are four environmental factors which affect
germination—water, oxygen, light, and temperature; and germination is rapid and
uniform at optimal temperature and moisture (DuPont 2012). Seed vigour is a most
important agronomic trait determined by longevity during storage, germination
capability, and growth of the seedling in field condition (Daniel 2017). Two types
of seeds are found in nature, albuminous seeds and exalbuminous seeds (Fig. 2).
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Albuminous seeds have endosperm, a special nutritious tissue for food storage,
which remains persistent even at maturity (e.g. rice, wheat, castor seed, etc.). Here
cotyledons merely performed as nutrient-sucking organs. In contrast, the
exalbuminous seeds are those seeds where endosperm is used up by the developing
embryo and cotyledons turn thick and fleshy and serve as food storage tissue
(e.g. Alisma plantago seed, chickpea, jackfruit seed, etc.). In dicotyledonous albu-
minous seeds, the endosperm is solely made with uniform living reserve cells,
whereas, in monocotyledonous albuminous seeds, the starchy endosperm mostly
consists of nonliving storage tissue, enclosed by the living aleurone layer (Joët et al.
2009).

3 Propagation Through Isolated Zygotic Embryo Culture

Zygote is the progenitor of subsequent generation, which forms an embryo through
sequential developmental stages (Bhojwani and Dantu 2013a). Zygotic embryo
culture refers to an aseptic excision of the zygotic embryo (generally in immature
conditions but sometimes at mature stage) from seeds and their in vitro culture in
artificial nutritive medium (in absence of endosperm tissue) with aim to obtaining
complete plants. Excision of embryos from seeds and their in vitro culture were first
time initiated by Hannig in more than 115 years ago (Hannig 1904). Three main
utilities of zygotic embryo culture are:

1. A rare hybrid can be obtained through immature zygotic embryo rescue and their
culture, because in reciprocal cross among two distantly related species (during

Fig. 2 Diagrammatic representation of (a) albuminous seed (wheat) and (b) exalbuminous seeds
(chickpea)
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interspecific and intergeneric hybridization), the fertilization occurs but endo-
sperm tissue is not developed or degenerated; as a result further maturation of
embryo hampers due to lack of nutrition, and ultimately embryo is aborted if not
rescued (Sahijram et al. 2013). Nowadays it is potential to rescue hybrid zygotic
embryos which are mostly aborted even at the early stage of development,
i.e. globular stage, and the method of hybrid zygotic embryo culture has come
to be an important part of the plant breeding methodology (Bhojwani and Dantu
2013a; Wang et al. 2019). In vitro zygotic embryo culture is now very popular
and being regularly used to produce rare hybrids which may be possibly not
produced by the conventional breeding method because of sexual incompatibility
between the male and female parents at postfertilization stages (Rajamony et al.
2006; Eeckhaut et al. 2007; Sahijram et al. 2013; Gupta et al. 2019).

2. The zygotic embryo culture is also exploited for overcoming the dormancy of
recalcitrant seeds (Raghavan 2003). In case of coat-enhanced seed dormancy, the
embryos excised from these seeds remain not dormant (Bewley 1997). Therefore,
the excised embryo of coat-enhanced dormant seed when cultured in vitro on
nutrient medium can grow by breaking the dormancy.

3. In addition, zygotic embryo-derived callus possesses a high regenerative capacity
as compared to mature organ (leaf, stem, root)-derived callus; hence zygotic
embryo is a good source of explant for developing callus-mediated indirect
organogenesis or embryogenesis and plant regeneration. There are so many
micropropagation protocols that had been established in gymnosperms and
angiosperms where zygotic embryos are used as initial explants (Fitch and
Manshardt 1990; Bodhipadma and Leung 2002; Chaturvedi et al. 2004; Zhang
et al. 2006; Yang et al. 2008; Konieczny et al. 2010).

4 Heterozygosity in Seeds

Zygosity is the degree of resemblance among the genetic alleles for a particular trait
in an organism. While some traits exhibit the occurrence of just a single allele, lots of
others show the existence of two or more alleles for a particular locus within a
population. In diploid plants, one allele is inherited typically from the female parent
and another from the male parent. On the basis of similarity or dissimilarity of DNA
sequence among these homologous alleles, the genetic trait is considered to be
homozygous or heterozygous, respectively (Fernandez 2013) (Fig. 3). Hence, het-
erozygosity is the form of having two dissimilar alleles at a locus, and it is
fundamental for studying genetic variation within populations. Mutation, natural
selection, genetic drift, and migration play critical roles on maintaining heterozy-
gosity in populations (Allendorf 2017). During meiosis, crossing over among two
non-sister chromatids of homologous pair resulted reciprocal exchange of genetic
materials, which ultimately mixed up the hereditary factors of male and female
parents and transgresses in offspring (Clift and Schuh 2013). Hence, sexual repro-
duction especially crossing over plays a crucial role on creating as well as
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maintaining the heterozygosity. Therefore, all the botanical seeds containing zygotic
embryo, which are produced by the random fusion of two meiotic products,
i.e. sperm and egg cell, are always heterozygous in nature.

4.1 Heterozygosity and Plant Breeding

During Mendel’s time, people have no idea regarding the genetics, but farmers
realized that plants may perhaps be changed vividly through cautious selective
breeding. The resilient, strong, disease-resistant wild relatives of crop plants were
crucial for cross-breeding programme (Acquaah 2012). Since then, simultaneously
with natural cross-breeding, the human being was also trialled with various types of
cross-breeding to obtain high-yielding, disease- and drought-resistant hybrid plants
which are better for cultivation. Mendel’s famous experiment on Pisum revealed
segregation of traits, established the function of gametes as the carriers of genetic
factors, and established the mutual significances of segregation and recombination
(Pupilli and Barcaccia 2012). Heterozygosity, genetic diversity, natural selection,
and mutation, all of these may lead speciation and hence evolution. For example, an
only ancestor species of weedy coastal mustard in due course of evolution gave rise
to over half dozen of accustomed European vegetables (Hanson 2013). Hence,
heterozygosity is one of the main causes of genetic diversity and speciation (Avise
1977; Allendorf 2017).

Plant breeding is a mechanism for the improvement of plants by hybridization or
selective mating for the benefit of human beings. Traditionally it serves as tool for
the production of new plant varieties for upliftment of agriculture and horticulture
(https://www.nature.com/subjects/plant-breeding, accessed on February 4, 2019). In
plant breeding the “inbred” line is those plants where every single locus is homo-
zygous. Generally inbred lines are produced by repeated self-pollination followed by
selection for minimum 6–10 consecutive generations to attain the almost homozy-
gous condition (Prigge et al. 2012). Nowadays, apart from the conventional breeding

Fig. 3 Graphical representation of homologous chromosome showing heterozygosity and homo-
zygosity concept. If three different alleles (a1, a2, a3) of the same gene are present in a population,
then three types of homozygous (a1a1, a2a2, a3a3) and three types of heterozygous (a1a2, a1a3, a2a3)
individuals may present within this population
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method, another popular and time-saving in vitro biotechnological method is avail-
able for truly homozygous line production—i.e. double haploid plant production
(Ren et al. 2017; Kleter et al. 2019). These truly homozygous or inbred lines are very
essential in a plant breeding programme for hybrid production (Dong et al. 2019).
Plant breeding has given rise to many new varieties of seed crop with high levels of
carbohydrates, proteins, fats, or certain combination of those three in their seeds
(Krebbers et al. 1997).

4.2 Demerits of Heterozygosity

In today’s agriculture, hybrid crops are very important for their high-yielding
potentiality, but required lucrative phenotypes are lost in the progeny of subsequent
generations due to genetic segregation (Wang et al. 2019). Once the hybrid line is
produced, most of the time we want exact true-to-type offspring, which permits the
continuation of the desired phenotypic characteristics of the hybrid cultivar and
helps to maintain the stable high yield. When the requirement is true-to-type plant
production, then the above-mentioned (see Sect. 4.1) merits of heterozygosity are
considered as demerits. Zygotic embryo present inside the botanical seed serves as a
natural propagule to produce offspring, and these propagules are always heterozy-
gous because of the crossing over during meiosis as well as cross-pollination among
two different parents. Phenotypic expression from heterozygotes failed to maintain
same agronomic quality compare to that of source plant (Küpper et al. 2010). Now,
when the target is to produce true-to-type parental plants, sexual reproduction creates
problems and does not provide desired characters at that time; alternatively clonal
propagation is appropriate to serve the purpose (Wang et al. 2019).

4.2.1 Heterozygosity Formation Due to Crossing Over in Meiosis-I

Meiosis, the exclusive and essential event of the life cycle of the entire range of
sexually reproducing organisms (Wijnker and Schnittger 2013), is the procedure
through which a diploid sporophytic cell gives rise to haploid spore cells which grow
further to develop the gametophyte and ultimately the gametes (Schwarzacher
2003). The first meiotic division (i.e. meiosis-I) is very crucial for sexually propa-
gated plant species because of the two major events. First is the reduction of the
chromosome number to half of their somatic number to produce haploid gamete;
therefore the meiotic division is alternatively known as reduction division. During
fertilization the gametic fusion of microspore and megaspore (i.e. ♂ and ♀ gametes)
gives a diploid zygote. Thus reduction division is the only way to maintaining the
chromosome number characteristic of the sexually reproduced species. Second is
recombination in crossing over that takes place during the pachytene stage of first
meiotic prophase, where the hereditary factors from male and female parents get
mixed due to the reciprocal exchange among non-sister chromatids (Schwarzacher
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2003). This type of mix-up of genetic materials causes rearrangement of alleles and
enhances the probability of heterozygosity, and segregation may arise among the
progeny (Zhang et al. 2019). For example, if we consider only two genes and both
have only two alleles (A, a, and B, b) and crossing over takes place in one locus and
other genes have not participated in crossing over, then after meiosis four different
types of gametes (AB, Ab, aB, ab) will be produced (Fig. 4). If crossing over does
not happen, then only two types of gametes (AB, ab) will be produced. Hence,
crossing over increases the recombinant types in gamete and therefore increases the
chances of heterozygosity in offspring. However, the present example (Fig. 4)
considers only one pair of homologous chromosomes, only two genes in two loci,
and both genes having only two alleles, but in nature, more chromosomes are present
in every individual, and a huge number of genes (few thousands) reside in different
chromosomes, and, most of the time, multiple alleles of each gene are present in

Fig. 4 Diagrammatic
presentation about how
meiotic crossing over
creates new recombinant
types in gametes. Present
example considers only one
pair of homologous
chromosomes and only two
genes in two loci, and both
genes have only two alleles,
but in nature, several pairs of
homologous chromosomes
are present in each
individual, and few
thousands of genes reside in
different chromosomes as
well as multiple alleles of
each gene are present in
population which remain
more complex and create
diverse types of
heterozygous gametes
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population which obviously creates more complexity and generates several new
types of heterozygous gametes.

4.2.2 Heterozygosity Formation Due to Random Cross-Pollination

In the previous section (see Sect. 4.2.1), it was already discussed about the role of
meiotic crossing over on creation of new types of heterozygosity. Now, even if we
don’t consider the crossing over phenomenon (i.e. let’s assume that the crossing over
did not happen), all offspring are not always true to type because of the random
cross-pollination. Specifically, when pollen and ovule are from different parents,
their genetic make-up is also different in nature (Acquaah 2012). Therefore, all
zygotes produced in a particular plant may not be genetically identical because
though the female recipient germ cell was fixed, the male donor (i.e. source of pollen
grains) is different. For example, consider only two genes and both have four alleles
(A1, A2, A3, A4 and B1, B2, B3, B4), male parent with A1A2B1B2 and female with
A3A4B3B4 (Fig. 5). Let’s assume that the crossing over did not happen and then after
meiosis two dissimilar types of gametes (A1B1, A2B2) are produced in male parent
and two additional types of gametes (A3B3, A4B4) are produced in female parent. As
a result of random cross-pollination, four totally new types of heterozygosity are
produced among offspring (A1A3B1B3, A1A4B1B4, A2A3B2B3, A2A4B2B4), and
none of them are similar with any parent (A1A2B1B2, and A3A4B3B4). However,
in the present example (Fig. 5), it considered only one pair of homologous chromo-
some, two genes in two loci, and both genes having four alleles (two alleles in each
parent), but in nature, several pairs of homologous chromosomes are present in each
individual, and few thousands of genes reside in different chromosomes as well as
multiple alleles of each gene are present in population which remain more complex
and create diverse types of heterozygosity. The next-generation sequencing tech-
nique provides the facility to screen 10–100 of thousands of loci all over the genome
for detecting heterozygosity, which has reformed our understanding of heterozygos-
ity in natural populations (Allendorf 2017). Hence random cross-pollination also
causes mix-up of different alleles present in the population and also enhances the
probability of new form of heterozygosity in offspring (Acquaah 2012).

5 Clonal Propagation and Its Importance

Multiplication by means of non-sexual mode of propagation when all the multiplied
copies are genetically identical to their parent is called clonal propagation. Plant
population produced from a particular individual plant through non-sexual mode of
propagation creates a clone. All clones are genetically true to type to their source
plant. In natural condition, clonal plant propagation occurs by vegetative propaga-
tion or by apomixis (Park et al. 2016). Several plant species that propagate clonally
(non-sexually) are also capable of sexual reproduction (Bailey 2018). Clonal
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propagation has some advantages over sexual mode of reproduction—fixation of
valuable agronomical traits, control of gene flow from wild-to-crop plant, and
easiest way of multiplication (Bhojwani and Razdan 1996). As well, the clonal
propagation also has some drawbacks like restriction on genetic diversity, deleteri-
ous mutations, retain of pathogenic entities and transfer to subsequent progeny
(McKey et al. 2010).

Variability arising between seed-derived plants can be omitted by avoiding sexual
reproduction and following vegetative mode of propagation. Unwanted gene flow
from wild-to-crop plant can be controlled through clonal propagation (McKey et al.

Fig. 5 Diagrammatic presentation about how cross-pollination enhances the probability of hetero-
zygosity in offspring. Four totally new types of heterozygosity are produced among offspring
(A1A3B1B3, A1A4B1B4, A2A3B2B3, A2A4B2B4), and none of them are similar with any parent
(A1A2B1B2’ and ‘A3A4B3B4). Present example considers only one pair of homologous chromo-
some and two genes in two loci, and both genes have four alleles (two alleles in each parent), but in
nature, several pairs of homologous chromosomes are present in each individual, and few thousands
of genes reside in different chromosomes as well as multiple alleles of each gene are present in a
population which remains more complex and creates diverse types of heterozygosity
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2010). Clonal propagation is very useful when exact true-to-type plants are required.
In this type of propagation, all offspring are genetically identical to their parent, so
all the important characters of parental plant are truly unchanged among all progeny.
Clonal propagation is the easiest way of multiplication and highly practical in the
case of tree propagation, particularly in fruit cultivation; because a seed-derived tree
needs several years to reach maturity, whereas a vegetatively propagated (through
grafting or gootee) tree requires comparatively much less time to reach the fruiting
stage (Bonga 1982; Park et al. 2016). Clones are very useful in the field of
agriculture on the way of maintaining the steady production (Bhojwani and Razdan
1996).

6 Different Modes of Clonal Propagation

In higher plants, mainly two types of clonal propagations are observed in nature,
viz., vegetative propagation and apomixes (Fig. 6). Besides the natural mode of
propagation, human beings too have established a number of methods for artificial
vegetative propagation of numerous valuable plant species (Megersa 2017). Again,
natural propagation always happens in in vivo condition, whereas man-made artifi-
cial methods of propagation through vegetative mode are either in vivo or in vitro
condition.

Fig. 6 Schematic representation of different paths of in vivo clonal propagations
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6.1 Vegetative Propagation

The vegetative mode of propagation is very common and adopted by numerous plant
species, even though many of them are also capable of sexual reproduction (Bailey
2018). Different plant organs like root, stem, and leaves are modified in a different
way for vegetative propagation (Megersa 2017). Few of the very common structures
which are modified for vegetative reproductions are root tubers (sweet potato),
adventitious shoot buds from root (Albizia lebbeck, Aegle marmelos), bulbs
(onion, Ledebouria revoluta, Drimiopsis botryoides), rhizomes (ginger, Curcuma
longa, Alpinia calcarata, Kaempferia angustifolia), tubers (potato,Oxalis tuberosa),
runners (strawberry, Centella asiatica), offset (Eichhornia crassipes), corms (Cro-
cus sativus, Gladiolus), bulbils (Ananas comosus), sucker (Musa spp.), adventitious
shoot buds from leaf (Bryophyllum spp.), etc.

In higher plants, where natural way of vegetative reproduction is absent, few
special methods had been developed by humans for clonal propagation. These
methods are mainly applied for the propagation of horticultural as well as fruit plants
(Bailey 2018). Some of these man-made methods are as follows—Cutting is a
method where a plant part, usually a stem or root or leaf, is separated from mother
plants and sometimes treated with plant hormones and then planted in moist soil.
Adventitious organs are developed from the cuttings, and ultimately a new plant was
produced. Rose, Hibiscus rosa-sinensis, and Chrysanthemums spp. are some com-
mon examples of stem cutting; similarly Bougainvillea spp. are propagated through
root cutting and Sansevieria sp. through leaf cutting. Grafting is another method
where a shoot tip (or scion) was collected of the desired source plant and grafted on
the stem of another healthy seed-derived plant (or stock). In due course, the tissue of
stock and scion become attached together to form a complete plant (e.g. Mango,
Adenium). Few other popular methods are layering (Rubus sp.), gootee (Psidium
guajava, Citrus), etc. (Bailey 2018).

6.2 Apomixis and Clonal Seed Propagation

Apomixis refers to a process of non-sexual propagation through seeds, in absence of
the meiotic cell division as well as gametic fusion, producing clonal offspring of
maternal origin (Spillane et al. 2004). In 1908 Winkler for the first time coined the
term “apomixis” to mean “substitution of sexual reproduction by an asexual multi-
plication process without nucleus and cell fusion” (Winkler 1908). Since this is a
fertilization-independent, spontaneous natural development of the embryo from
somatic cell (2n) without any gametic fusion, so perhaps it can be said in other
words as “natural somatic embryo”. In agriculture the apomixis is employed as a
reproductive tactic for clonal plant production by seeds (Spillane et al. 2001;
Bicknell and Koltunow 2004; Pupilli and Barcaccia 2012). The plants produced
through apomixis are known as apomictic plant, which is not very uncommon
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among higher plants, and more than 400 species of about 40 families are apomictic
(Bicknell and Koltunow 2004). In higher plants apomixis is defined as the asexual
development of a seed from the female parental tissues (2n) of the ovule, bypassing
two utmost fundamental events of sexual reproduction—meiosis and fertilization,
leading to the development of an embryo. The momentary definition of apomixis
defines an end product, but the developmental procedures that lead to this end result
can differ broadly (Ozias-Akins 2006). Primarily four kinds of apomixis are found in
nature:

1. Recurrent apomixis: here an embryo sac develops from the megaspore mother
cell where meiosis has not happened or from some adjoining cell; therefore, the
egg cell is diploid. An embryo develops directly from the diploid egg cell (2n)
escaping fertilization. Some examples of recurrent apomixis are somatic apos-
pory, diploid apogamy, and diploid parthenogenesis.

2. Nonrecurrent apomixis: here an embryo develops directly from a typical haploid
egg cell (n) without fertilization; as a result the embryos will also be haploid.
Nonrecurrent types of apomixis are rarely found in nature. Particular examples of
such types of apomixis are haploid parthenogenesis, haploid apogamy, and
androgamy.

3. Adventive embryony: here embryos were developed from cells of nucellus or
integuments, outside the embryo sac. In addition to such adventive embryos, the
regular zygotic embryo may also develop concurrently within the embryo sac,
thus generating polyembryony situation, frequently found in Citrus spp.

4. Vegetative apomixis: here instead of flowers, some vegetative buds or bulbils are
produced in the axil of inflorescence, and they can be regenerated without any
struggle. Such types of apomixis are observed in Agave, Poa bulbosa, and some
grass species.

Apomixis is a beautiful attribute for the improvement of crop cultivation because
it facilitates the formation of huge genetically identical populations and maintains
hybrid vigour through continual seed production (Spillane et al. 2001; Hand and
Koltunow 2014). In plant breeding the apomixis prospered several advantages.
During sexual reproduction, cross- and self-fertilization followed by segregation
have a tendency to modify the genetic configuration of offspring. Inbreeding and
abandoned outbreeding as well have a tendency to interrupt heterozygote superiority
in such offspring. In contrast, apomicts have a tendency to protect the genetic
configuration as such (Spillane et al. 2001). Apomicts are also proficient of conserv-
ing benefits of heterozygote generation after generation. Thus, apomixis offers
remarkable advantage in plant breeding where genetic consistency maintained
over several generations for both heterozygosity (in hybrids of both outbreeders
and selfbreeders) and homozygosity (in selfbreeders) is the remarkable motive
(Hand and Koltunow 2014). Furthermore, apomixis may also offer an effective
utilization of maternally inherited factors, if present, reflecting in the subsequent
offspring.

It is mostly believed that zygotic embryogenesis (sexual reproduction) and
apomictic embryogenesis (asexual reproduction) both follow alike developmental
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pathways in the course of embryo and seed development (Pupilli and Barcaccia
2012). But the offspring of an apomictic plant are always genetically uniform to their
mother plant.

6.3 In Vitro Clonal Propagation

Nowadays, in vitro plant cell and tissue culture method is considered as one of the
basic components of modern plant biotechnology (Neumann et al. 2009). In vitro
methods of plant propagation always follow the vegetative mode of regeneration.
Plant growth and development occur in in vitro aseptic and controlled environmental
condition in the presence of artificial nutrient medium and plant growth regulators
(Jha and Ghosh 2016). The prodigious advantages of in vitro aseptic technique of
clonal propagation (i.e. micropropagation) are that an enormous number of disease-
free true to type plantlets can be produced within little space and short time span plus
season-independent round-the-year production (Bhojwani and Razdan 1996; Altman
and Loberant 1998; Anis and Ahmad 2016). Theoretically all living plant cells are
“totipotent” and have the capability to produce a whole plant from any single cell. In
vitro culture technique is obviously the best platform to utilize the cellular totipotency
of the plant cell for clonal propagation (Bhojwani and Dantu 2013b). The most
significant and unique capacity of in vitro culture system is—irrespective of the
nature of the explant source (root, leaf, shoot tip, node, internode, flower parts, pollen,
ovule, zygotic embryo, endosperm, etc.)—a complete plant can be produced via
axillary or via adventitious regeneration through organogenesis or embryogenesis
(Fig. 7). In axillary regeneration methods, shoot tips and nodes are used as explant,
and plant growth regulators (especially cytokinins) are used for inducing axillary
branching by breaking the dormancy of shoot buds which are already present in their
axil. Profuse branching is induced through this process, and complete plantlets are
produced from these multiplied shoots followed by root organogenesis. The adventi-
tious regeneration refers induction of plant organs or embryos from unnatural position,
i.e. from where they are not grown in in vivo natural conditions. Plants can adventi-
tiously propagate through two different primary morphogenic pathways, i.e. either
through organogenesis (unipolar organs are formed) or through somatic embryogenesis
(bipolar embryos are formed). Again, both organogenesis and embryogenesis may go
through either direct morphogenic pathway without any callus phase or through
indirect morphogenic pathway via callus phase (Fig. 8). The callus-mediated path has
been accompanying with an augmented risk of genetic instability and henceforth
increasing somaclonal variations among regenerated plants (Hervé et al. 2016). There-
fore, the plants produced through direct morphogenic pathway are more reliable when
target is clonal propagation, because comparatively more somaclonal variants are
induced in callus-mediated regeneration (Bhojwani and Dantu 2013c).

The in vitro somatic embryogenesis process has been routinely used as large-
scale micropropagation method (Ghosh and Sen 1989, 1991, 1996; Haque and
Ghosh 2016b; El-Esawi 2016). Somatic embryogenesis is a typical example of
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cellular totipotency concept which is expressed in a huge number of plant species
(Verdeil et al. 2007; Loyola-Vargas and Ochoa-Alejo 2016). All living plant cells
cannot be deliberated as totipotent per se, but few of them can reclaim totipotency in

Fig. 7 In vitro clonal propagations of different plants through different paths. (a–c) Multiple shoot
inductions from node culture of Bacopa chamaedryoides, Hemidesmus indicus, and Physalis
minima; (d) multiple shoot inductions from shoot tip culture of Kaempferia angustifolia; (e, g, h)
adventitious shoot induction from leaf explant via direct shoot organogenesis in Solanum
americanum, Bacopa monnieri, and Tylophora indica; (f) direct shoot organogenesis from inter-
node explant in Bacopa chamaedryoides; (i) direct somatic embryogenesis from leaf explant in
Ledebouria revoluta; (j, k) indirect somatic embryogenesis via callus phase in Ledebouria revoluta
and Drimiopsis botryoides; and (i) indirect shoot organogenesis via callus phase in Tylophora
indica
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suitable environments (Fehér et al. 2016). Somatic embryogenesis is considered to
be developmental reprogramming of somatic cells or non-sexual cells towards the
embryonic pathway followed by development through typical morphological stages
(Yang and Zhang 2010) that are similar to the zygotic embryo development (Leljak-
Levanic’ et al. 2015). In somatic embryogenesis process, the somatic cell is dis-
tracted from their usual fate and reprogrammed an entire ontogenic developmental
process to form embryos without any gametic fusion or zygote formation. Somatic
and zygotic embryogenesis represent similar developmental events in which single
cells obtain embryogenic cell fate and redifferentiate into mature embryos (Harada
et al. 2010). For evidence, the developmental study between zygotic and somatic
embryos of oak (Quercus robur) exhibited nearly four to seven identical develop-
mental stages among them (Palada-Nicolau and Hausman 2001). During fertiliza-
tion, two haploid (n) gametes fuse together to form a diploid (2n) zygote. The zygote
is truly a totipotent single cell, from where an embryo is formed by way of gradual
differentiation process. The embryo produced from a single zygotic cell is known as
zygotic embryo, which is the propagule present inside the botanical seeds. Hence,
fertilization is a must-needed process on the way of zygotic embryo production. The
zygotic embryo is a bipolar structure having an embryonic axis and cotyledons.
Monocotyledonous embryos have single cotyledon, while dicotyledonous embryos
have double. The embryonic axis contains radicle (root initial) and plumule (shoot
initial) at their two ends. In the course of somatic embryogenesis, the fertilization did
not happen; instead, the embryo is developed directly from diploid (2n) somatic cell
without fusion of two haploid (n) gametes. Therefore, the somatic embryogenesis is

Fig. 8 Schematic representation of different paths of in vitro clonal propagations
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alternatively known as non-zygotic embryogenesis (Yang and Zhang 2010;
El-Esawi 2016). The development of both zygotic and somatic embryos is schemat-
ically presented in Fig. 9.

De novo shoot organogenesis is also another good example of in vitro clonal
propagation. Dissimilar to somatic embryogenesis, only unipolar (shoot pole) struc-
tures are developed during de novo shoot organogenesis (Yumbla-Orbes et al. 2017).
The complete plantlets are produced from these de novo shoots pursued by root
organogenesis.

Fig. 9 Schematic representation of the comparative development of zygotic and somatic embryos
as well as botanical and synthetic seeds
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7 Clonal Propagation of Genetically Modified (GM) Crops

Transgenic or genetically modified (GM) crops are those plants that have been
improved genetically by means of recombinant DNA technology (Key et al.
2008). The population of human beings is growing faster than expected and
predicted to reach almost ten billion people by the year 2050, therefore making
food security is the vital social issue for the next three decades (Herrera-Estrella
2000). The food availability for everyone, particularly in developing countries, is
possible through the cultivation of GM crops (Herrera-Estrella and Alvarez-Morales
2001). In the last two decades, the agricultural lands planted with GM crops have
increased more than 100-fold, which clearly indicates that crop biotechnology is
today’s fast-growing promising area (Mall et al. 2018). America is the chief manu-
facturer of GM crops, including cotton, maize, soybean, and canola, representing
80% of the entire production of GM crops worldwide (Mall et al. 2018). Bt cotton,
Bt brinjal, and GM papaya are well grown in Asian countries (James 2010).
Regeneration of plants from the genetically transformed cells is indispensable to
the success of genetic engineering and is only possible using in vitro tissue culture
techniques (Darbani et al. 2008). The in vitro plant tissue culture system was recently
described as “a battle horse in the genome editing” through a novel CRISPR/Cas9
technology (Loyola-Vargas and Avilez-Montalvo 2018). Ones the GM crops intro-
duced through recombinant DNA technology (RDT), cross pollination and subse-
quent seed formation fail to retain the GM trait. Hence once again, the clonal
micropropagation is only a viable option for large-scale production to address the
huge requirements of GM crops. Clonal micropropagation of different transgenic
plants species like Betula platyphylla, Tylophora indica, Lactuca sativa, and many
others is well studied in the last decade (Pua and Davey 2007; Darbani et al. 2008;
Zeng et al. 2010; Roychowdhury et al. 2013; Pniewski et al. 2017; Mall et al. 2018).

8 Synthetic Seed: A Modern Approach for Clonal Seed
Propagation

Synthetic seeds are nothing but a functional mimic of botanical seeds, which was
manufactured in laboratories and therefore alternatively known as manufactured
seed or artificial seed (Sharma et al. 2013). Synthetic seed is one of the most
promising modern plant biotechnological tools which could be useful for agricul-
tural improvement at present as well as upcoming days. Application of synthetic
seed technology is the perfect approach for micropropagation and conservation of
important plant species, owing to their several advantages, including genetically true
to type nature, comfort in handling and transportation, round-the-year production,
and effectiveness in relation to space, time, labour, and cost (Niazian 2019). Recent
advancement of in vitro clonal propagation systems opens a door for use of high-
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quality high-vigour clonal plants in agri-horticultural field (Anis and Ahmad 2016).
However, for commercial application of micropropagation, several steps like large-
scale multiplication, in vitro root induction, their acclimatization, and planting are
needed, which is more laborious and expensive. In this context, synthetic seed can
provide a better option for cost-effective delivery system of in vitro-propagated
clonal plants (Sharma et al. 2013) and may prove to be an effective alternative of
the botanical seeds in future. Synthetic seeds offer a little-cost, high-volume clonal
propagation system (Roy 2013). The advantages of synthetic seeds over other tissue
culture-based propagation methods are easy to handle and potential for long-term
storages (Rai et al. 2009).

8.1 Concept of Synthetic Seed

The idea of artificial seed or synthetic seed was the brainchild of Japanese botanist
Toshio Murashige; he coined the word “artificial seed” for the very first time in 1977
(Murashige 1977). The definition of an artificial seed was first time given by
Murashige (1978), as “an encapsulated single somatic embryo, i.e., a clonal product
that could be handled and used as a real seed for transport, storage and sowing, and
that, therefore, would eventually grow, either in vivo or ex vitro, into a plantlet”.
Therefore, synthetic seed production was previously restricted to only those plants in
which somatic embryogenesis had been successfully standardized. Later, Bapat et al.
(1987) proposed to expand the synthetic seed technology to the encapsulation of
various in vitro-derived propagules other than somatic embryos, and they used
axillary buds of Morus indica as a first example of this new application. Up-to-date
perusal revealed that more than 20 scientific review papers were already published on
the topic “synthetic seed”, which clearly reflects the exact importance of this tech-
nology in modern days (Table 1). On the basis of research and review papers existent
so far, synthetic seeds can be differentiated into two types—(1) encapsulated desic-
cated synthetic seed and (2) encapsulated hydrated synthetic seed. In botanical seed,
after maturity the zygotic embryo enters in dormancy period when all cells of the
embryo enter into quiescent (i.e. G0 phase of the cell cycle) resting phase (Bewley
1997). For the first type, encapsulated desiccated synthetic seed preparation needs
desiccation of propagules, which helps to improve the storage capability
(or dormancy period) of the synthetic seed by aiding to enter the propagules in
quiescent resting phase. However, this type of synthetic seed is less popular because
of their low rate of germination as compared to encapsulated hydrated synthetic seed.
For the second type, encapsulated hydrated synthetic seeds had to be developed by
hydrogel encapsulation of propagule. This method was first time used by
Redenbaugh et al. (1984) and was patented by them in 1988 (Patent # 4,780,987).
In the present day, hydrogel encapsulation method is the most effective and broadly
accepted technique of synthetic seed production (Sharma et al. 2013). Aiming for
better understandings on how to prepare synthetic seedmore successfully, Rihan et al.
(2017b) studied the accumulation of dehydrin proteins during the maturation of
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Table 1 Important scientific review papers related to the topic “synthetic seed” or “artificial seed”

Year
of
publish Title of the review paper References

2018 Synthetic seed—future prospects in crop
improvement

Chandra et al. (2018). https://ijair.org/
administrator/components/com_
jresearch/files/publications/IJAIR_2688_
FINAL.pdf

2018 Manufactured seeds of woody plants Hartle (2018). https://doi.org/10.1007/
978-3-319-89483-6_8

2017 Artificial seeds (principle, aspects, and
applications)

Rihan et al. (2017a). https://doi.org/10.
3390/agronomy7040071

2017 The usage of cryopreservation and syn-
thetic seeds on preservation for plant
genetic resources

İzgü and Mendi (2017). https://
juniperpublishers.com/ijcsmb/pdf/
IJCSMB.MS.ID.555583.pdf

2017 Synthetic seed technology in vegetables—
A review

Khatoon et al. (2017). http://www.
envirobiotechjournals.com/article_
abstract.php?aid¼7536&iid¼224&jid¼3

2017 Synthetic seed technology Magray et al. (2017). https://doi.org/10.
20546/ijcmas.2017.611.079

2017 Synthetic seed technology and its applica-
tions: A review

Tripathi (2017). http://biotech.
journalspub.info/?journal¼IJPB&
page¼article&op¼view&path%5B%
5D¼157

2016 Development of synthetic seed technology
in plants and its applications: A review

Nongdam (2016). http://www.
currentsciencejournal.info/issuespdf/
Nongdam.pdf

2015 Synthetic seed production of medicinal
plants: a review on influence of explants,
encapsulation agent, and matrix

Gantait et al. (2015). https://doi.org/10.
1007/s11738-015-1847-2

2015 Artificial seed: A practical innovation Panwar (2015). http://www.rroij.com/
open-access/artificial-seed-a-practical-
innovation.pdf

2014 Synthetic seeds: A boon for conservation
and exchange of germplasm

Kumara et al. (2014). http://
advancejournals.org/bmr-biotechnology/
article/synthetic-seeds-a-boon-for-conser
vation-and-exchange-of-germplasm/

2013 Synseed technology—a complete
synthesis

Sharma et al. (2013). https://doi.org/10.
1016/j.biotechadv.2012.09.007

2013 Synthetic seed production; its relevance
and future panorama

Siddique et al. (2013). https://doi.org/10.
21276/ajptr

2012 Production and applications of artificial
seeds: A review

Ravi and Anand (2012). http://www.isca.
in/IJBS/Archive/v1/i5/13.ISCA-JBS-
2012-106.php

2012 Synthetic seeds: A review in agriculture
and forestry

Reddy et al. (2012). https://
academicjournals.org/journal/AJB/arti
cle-full-text-pdf/FEF310B30197

2011 Alginate-encapsulated shoot tips and
nodal segments in micropropagation of
medicinal plants. A review

Kikowska and Thiem (2011)
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botanical seeds of cauliflower and their significant role in the drought tolerance of
seeds, and these findings could help on quality improvement of artificial seeds.

8.2 Considerable Criteria in the Designing of Synthetic Seed

At the time of synthetic seed preparation, the following three basic properties of
botanical seeds have to be fulfilled—(1) primarily it must contain a propagule which
later grows up as a plantlet (like zygotic embryo in botanical seed), (2) it should
contain a nutrient medium which serves as storage food for plant propagule (like
endosperm or cotyledons in botanical seed), and (3) the plant propagule should be
covered by a hard protective layer for mechanical protection (like seed coat in
botanical seed) (Fig. 10).

8.3 Preparation of Synthetic Seed

Somatic embryo is the ideal propagule for encapsulation to produce synthetic seed
because of its bipolar nature (Gray et al. 1991; Ghosh and Sen 1991, 1994), but

Table 1 (continued)

Year
of
publish Title of the review paper References

2011 The green revolution via synthetic (artifi-
cial) seeds: A review

Helal (2011). http://www.aensiweb.net/
AENSIWEB/rjabs/rjabs/2011/464-477.
pdf

2009 The encapsulation technology in fruit
plants—A review

Rai et al. (2009). https://doi.org/10.1016/
j.biotechadv.2009.04.025

2001 Artificial seeds and their applications Saiprasad (2001). https://www.ias.ac.in/
article/fulltext/reso/006/05/0039-0047

2000 Synthetic seeds: a novel concept in seed
biotechnology

Bapat (2000). http://www.barc.gov.in/
publications/nl/2000/200009-02.pdf

2000 Synthetic seed: prospects and limitations Ara et al. (2000). https://www.jstor.org/
stable/24104316

1998 Recent perspectives on synthetic seed
technology using non-embryogenic
in vitro-derived explants

Standardi and Piccioni (1998) https://
www.jstor.org/stable/10.1086/314087

1993 Embryogeny of gymnosperms: advances
in synthetic seed technology of conifers

Attree and Fowke (1993). https://doi.org/
10.1007/BF00043936

1992 Artificial seeds Senaratna (1992). https://doi.org/10.
1016/0734-9750(92)90301-O

1991 Somatic embryogenesis and development
of synthetic seed technology

Gray et al. (1991). https://doi.org/10.
1080/07352689109382306
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successful somatic embryogenesis protocol is not established in many important
plant species. Alternatively, any parts of plant which have the ability to grow can be
used as non-embryogenic propagule (Fig. 11). In this context, recently different parts
of plant organs like shoot tip and node (containing apical and axillary shoot buds),
protocorm-like bodies (PLBs), corm, rhizome, micro-bulblet, micro-tuber, etc. are
very popularly used for synthetic seed preparation (Fig. 12 and Table 2).

Nutrients present in encapsulation matrix are used by encapsulated plant propa-
gule for their nutritional requirement. Different formulations of basic nutrient media
which are used for in vitro plant culture are also used in encapsulation matrix with
slight modification (Gantait et al. 2015). Although all the basic nutrients are same,
calcium salts are not added. For example, if MS nutrients (Murashige and Skoog
1962) are used in encapsulation matrix, then calcium chloride is replaced with
sodium chloride, which is devoid of calcium ions but fulfils the requirement of
chloride ions. Apart from inorganic nutrients and sodium alginate, carbohydrates in
the form of sucrose or glucose are also needed. In addition to inorganic and organic
nutrients, plant growth regulators, antibiotics are also used in encapsulation medium
(Sharma et al. 2013).

Another important requirement of encapsulation matrix is hydrogel. More than a
few encapsulating agents such as agarose, potassium alginate, sodium alginate,
gelrite, sodium pectate, sodium alginate with carboxymethyl cellulose, guar gum,
carrageenan, tragacanth gum, gelatin, etc. have been experimented as hydrogels (Ara
et al. 2000; Rai et al. 2009; Sharma et al. 2013). Among all of these gelling agents,
sodium alginate achieved maximum popularity due to its adequate viscosity, rapid
gelation, low cost, as well as non-toxicity for plants (Gantait et al. 2015).

For the preparation of encapsulated hydrated synthetic seeds, the encapsulation
medium (or matrix of synthetic seed) should be prepared at first. Encapsulation
medium contains all inorganic and organic nutrients (without calcium ion) of any

Fig. 10 Diagrammatic representation of the concept of synthetic seed and their different parts
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Fig. 11 Synthetic seeds prepared from embryonic and non-embryonic explants. (a–d) Freshly
prepared seeds produced by encapsulating the somatic embryo, shoot-tips, and nodal segment,
respectively. (e–h) germinated seeds, (a, e) synthetic seed of Ledebouria revoluta before and after
germination, (b, f) synthetic seed of Bacopa monnieri before and after germination, (c, g) synthetic
seed of Bacopa chamaedryoides before and after germination, and (d, h) synthetic seed of
Tylophora indica before and after germination

Fig. 12 Schematic representation of different types of explant used for synthetic seed preparation
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Table 2 Important publications (in 2016 and onwards) on synthetic seed informing about the
recent trends on use of different explants for encapsulation

Year of
publish Plant species

Encapsulated
explant type References

2016 Solanum
tuberosum

Axillary buds Ghanbarali et al. (2016). https://doi.org/
10.1007/s11240-016-1013-6

2018 Sugarcane Bud chip da Silva et al. (2018). https://doi.org/10.
5539/jas.v10n4p104

2018 Sugarcane Micro-shoots Badr-Elden (2018). https://ejbo.journals.
ekb.eg/article_5168_
2f3913c2d70d6a019aa587b3a90fd465.
pdf

2018 Althaea officinalis Nodal segments Naz et al. (2018). https://doi.org/10.1080/
11263504.2018.1436610

2018 Capparis decidua Nodal segments Siddique and Bukhari (2018). https://doi.
org/10.1007/s10457-017-0120-7

2018 Ceropegia
barnesii

Nodal segments Ananthan et al. (2018). https://doi.org/10.
1007/s11627-018-9934-x

2017 Erythrina
variegata

Nodal segments Javed et al. (2017). https://doi.org/10.
1016/j.indcrop.2017.04.053

2016 Manihot esculenta Nodal segments Hegde et al. (2016). http://isrc.in/ojs/
index.php/jrc/article/view/407/290

2018 Salix tetrasperma Nodal segments Khan et al. (2018). https://doi.org/10.
1016/j.bcab.2018.07.002

2018 Sphagneticola
calendulacea

Nodal segments Kundu et al. (2018). https://doi.org/10.
1007/s11738-018-2633-8

2017 Tylophora indica Nodal segments Gantait et al. (2017b). https://doi.org/10.
1016/j.hpj.2017.06.004

2017 Vitex trifolia Nodal segments Alatar et al. (2017). https://doi.org/10.
1080/14620316.2016.1234949

2017 Spathoglottis
plicata

PLBs Haque and Ghosh (2017b). https://doi.org/
10.1016/j.hpj.2017.10.002

2018 Ansellia africana
(Leopard orchid)

Protocorm-like
bodies (PLBs)

Bhattacharyya et al. (2018). https://doi.
org/10.1007/s11240-018-1382-0

2018 Plumbago rosea Shoot tips Prakash et al. (2018). https://doi.org/10.
1007/s12298-018-0559-7

2017 Rauvolfia
serpentina

Shoot tips Gantait et al. (2017a). https://doi.org/10.
1016/j.jarmap.2017.01.005

2017 Rauvolfia
serpentina

Shoot tips Gantait and Kundu (2017). https://doi.org/
10.1007/s12210-017-0637-8

2018 Taraxacum
pieninicum

Shoot tips Kamińska et al. (2018). https://doi.org/10.
1007/s11240-017-1343-z

2018 Urginea altissima Shoot tips Baskaran et al. (2018). https://doi.org/10.
1007/s13205-017-1028-7

2018 Nerium oleander Shoot tips and first
nodal segments

Hatzilazarou et al. (2018). https://doi.org/
10.1080/14620316.2018.1542283

2017 Withania
coagulans

Shoot tips and
Nodal segments

Rathore and Kheni (2017). https://doi.org/
10.1007/s40011-015-0577-y
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suitable formulation of basic medium (e.g. MS medium), sucrose, sodium alginate,
plant growth regulators, and antibiotics. Suitable plant propagules are mixed with
encapsulation medium, and then sodium alginate-containing medium dropped into a
solution of calcium salt (calcium chloride or calcium nitrate). Each drop (bead)
containing a single propagule should be maintained in calcium solution for
10–20 min with gentle shaking. Ion exchange reaction takes place on the outer
surface of the beads where Na+ ion of the sodium alginate is replaced with Ca+2 to
form a hard layer of calcium alginate (Jha and Ghosh 2016). Polymerization of
calcium alginate resulted in the construction of hydrogel capsules with single
propagule inside—i.e. synthetic seed. The capsules containing gel matrix actually
perform as a repository of nutrient which assists in the survival, as well as growth
and development of propagules (Gantait et al. 2015).

9 Applications of Synthetic Seed to Avoiding
Heterozygosity

Applications of synthetic seed are not only restricted to avoiding the heterozygosity
problem but have a wide-ranging list of utility (Fig. 13). In general, synthetic seed
technology is utilized for the following purposes—(1) for micropropagation; (2) for
short-, medium-, or long-term conservation; (3) for clonal or true to type seed
production; (4) for large-scale seed production aimed at commercial use; (5) for
season-independent round-the-year seed production; (6) for propagation of non-
seed-bearing plants; (7) for easy handling and transportation; and (8) for exchange
of germplasm between different countries by lowering plant quarantine requirements
as for the germ-free condition of the plant propagules (Ara et al. 2000; Rai et al.
2009; Sharma et al. 2013; Hartle 2018; Chandra et al. 2018).

Table 2 (continued)

Year of
publish Plant species

Encapsulated
explant type References

2016 Zingiber officinale Shoot tips and
Somatic embryos

Babu et al. (2016). https://doi.org/10.
1007/978-1-4939-3332-7_28

2016 Mountain garlic Shoot tips or
Micro-bulbs

Mahajan (2016). https://doi.org/10.1007/
978-1-4939-3332-7_23

2016 Citrus spp. Somatic embryo Micheli and Standardi (2016). https://doi.
org/10.1007/978-1-4939-3061-6_30

2016 Bacopa monnieri Somatic embryos Khilwani et al. (2016). https://doi.org/10.
1007/s11240-016-1067-5

2016 Curcuma amada Somatic embryos Raju et al. (2016). https://doi.org/10.1007/
s13580-016-0096-7

2017 Date palm Somatic embryos Bekheet (2017). https://doi.org/10.1007/
978-1-4939-7159-6_7

2016 Ledebouria
revoluta

Somatic embryos Haque and Ghosh (2016b). https://doi.org/
10.1007/s11240-016-1030-5
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Now keeping aside the general benefits, let us come back to our main focus,
i.e. avoiding heterozygosity through synthetic seeds. Two phenomena, namely, meiotic
crossing over and gametic fusion, are unavoidable events of sexual reproduction. In
diploid plants, one chromosome of each homologous pair originates from male parent
and another from female parent. During crossing over, the genetic materials of two
different chromosomes of the homologous pairs get mixed and recombined due to the
reciprocal exchange among non-sister chromatids (Schwarzacher 2003). As a result,
new types of heterozygosity are generated in haploid gametic cells. Now another event is
gametic fusion where a lot of new forms of heterozygosity are generated. During
fertilization, male and female gametes may perhaps from two different parents partici-
pate; as a result two totally different sets of alleles come together in zygotic cell
(Acquaah 2012). Hence, in comparison with any one of the parental plants, the newly
formed zygote contains many new combinations of alleles, i.e. so many new forms of
heterozygosity are created in zygote.

Since all the propagules used for synthetic seed preparation are propagated
vegetatively, which means they escape meiotic recombination (during crossing
over) as well as gametic fusion of two different parental genomes (Clift and Schuh
2013), they ceased the chances of the formation of new types of heterozygosity in
seed. Although the heterozygous conditions which are already present in source
plant (from where clonal propagations initiated) can’t be eliminated, they can be
shifted to all offspring.

10 Summary and Future Prospects

Synthetic seed is an up-to-date tool of plant biotechnology which manufactured in
laboratories and serve as efficient alternative of botanical seeds. Since vegetatively
propagated propagules are used for synthetic seed preparation, all the manufactured

Fig. 13 Schematic representation of different applications of synthetic seeds
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seeds are genetically true to type of their parent. Nevertheless, the heterozygosity
that already existed in a mother plant cannot be eliminated but can also be transmit-
ted in all synthetic seed-derived offspring.

However, if the production of homozygous synthetic seeds is wanted in realistic
form, the only method is double haploid source plant selection, because double
haploid plants are always truly homozygous (Prigge et al. 2012; Kleter et al. 2019).
The clonal propagation of double haploid plant gives rise to a huge number of
homozygous clones. If those clonal propagules are used for synthetic seed prepara-
tion, then the heterozygosity problem will totally be avoidable. Otherwise synthetic
seed technology can only help to restrict the construction of new forms of hetero-
zygosity in successive regeneration cycle, which are abundant in zygotic or botanical
seeds.
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Insight View of Topical Trends on Synthetic
Seeds of Rare and Endangered Plant
Species and Its Future Prospects

B. Nandini and P. Giridhar

Abstract In the present era, global plant biodiversity is dilapidated annually at a
pioneering rate. Preservation of plant genetic resources has been threatened by the
safety with foremost problems by limiting its efficiency. Contemporary trends on
synthetic seeds, i.e., artificially encapsulated somatic embryos, open up new avenue
in agriculture. It is one of the most promising alternate tools for propagation of many
rare and endangered plant species. Success of synthetic seeds endowed with its
protective hydrogel coating by increasing the growth of micropropagule in the field
conditions. Synthetic seeds are also helpful in stipulations of their role in preventing
the spread of plant diseases, and it is a gifted path for scale-up of multi-clone
production for commercial purpose. Synthetic seeds are more durable for handling,
transportation, and storage. Presently, it is well documented that any kind of
non-embryogenic explants from tissue culture can be used for synthetic seed pro-
duction like shoot tips, axillary buds, nodal segments, protocorms, bulblets, section
of callus, bipolar propagule, or unipolar propagule. Currently, significant focus has
been given for synthetic seeds, as they are economical for conservation of germ-
plasm, maintenance of the genetic uniformity of plants through clonal propagation,
and direct deliverance to the field. Under this context, various effective protocols for
preparing synthetic seeds and conservation of plants are developed. Accordingly, an
appraisal on synthetic seed aspects of various endangered and rare plant species has
been contemplated, and the same will be covered in this chapter.

Keywords Synthetic seeds · Explants · Tissue culture · In vitro propagation ·
Encapsulation
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Ca(NO3)2 Calcium nitrate
CaCl2 Calcium chloride
IAA Indole-3-acetic acid
MS Murashige and Skoog medium
NAA α-Naphthalene acetic acid
PLBs Protocorm-like bodies
TDZ Thidiazuron
TTC Triphenyltetrazolium chloride

1 Introduction

Plant genetic diversity is threatened globally due to unparalleled perturbations,
habitat loss, and extinction pace. Various species are depicted as rare and endan-
gered due to unprogrammed nature of work. Presently, integrated programs are
necessary to protect and preserve biodiversity in its natural habitat (Sarasan et al.
2006). Synthetic seed technology is an exhilarating and swiftly budding area of
research as it compacts with conservation and storage of enviable genotypes besides
its easy handling and transportation (Mohanty et al. 2013). Synthetic seeds are
generally referred as “syn” seeds and described as artificially encapsulated somatic
embryos, shoot buds, cell aggregates, or any other tissue that can be exercised for
sowing as a seed and that owns the ability to transfer into a plant underneath in vitro
or ex vitro conditions and further retains its potential after storage (Capuano et al.
1998). In the present era, the approach of synthetic seeds for ex situ preservation of
the germplasm of elite endangered plant species was strongly emphasized (Rao
2004; Borner 2006). An invention of synthetic seeds facilitates in minimizing the
price of micropropagated plantlets economically. In most of the trees, seed propa-
gation has not been successful because of reduced endosperm, an incidence of
heterozygosity of seeds, and low germination rate. This circumstance raises the
interest on encapsulation technology for propagation and conservation of
germplasm.

Synthetic seed technology is stated as a boon for conservation and exchange of
germplasm (Kumari et al. 2014). Synthetic seeds are novel analogue to true seed
comprising of a somatic embryo enclosed by an artificial coat which is almost similar
to an immature zygotic embryo, probably at early cotyledonary stage (Bekheet
2006). This artificial seed technique was primarily applied in clonal propagation to
nurture somatic embryos set into an artificial endosperm and restrained by an
artificial seed coat. Potential advantages of synthetic seeds involve their term as
“genetically identical materials” with increased competence of in vitro propagation
in terms of space, time, labor, and overall cost (Nyende et al. 2003). Owing to these
advantages, there is an increased attention in using encapsulation technology in
various plant species. Synthetic seeds possess immense potential for large-scale
production of plants at low cost value as an alternative option to true seeds (Roy
and Mandal 2008). In vitro techniques are known as key factors of biotechnological
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advances boasting potential to regenerate elite genotypes and to preserve important
plant genetic resources (Rathore and Kheni 2015). The modern progress in encap-
sulation technology provide diverse potential attributes, such as production of
synthetic seed as a potential substitute for mass production of plantlets for different
practices and through encapsulation approach the exchange of germplasm among
different laboratories in the form of encapsulated alginate micro-cuttings (Micheli
et al. 2007; Sharma et al. 2013). Potential of plantlet conservation by retention and
regeneration is most enviable property of encapsulated beads after storage (Micheli
et al. 2007; Parveen and Shahzad 2014). Momentous success was achieved in the
past few years by encapsulation of both embryogenic and non-embryogenic in vitro
derived plant material (Ara et al. 2000; Lambardi et al. 2006; Gantait et al. 2012;
Gantait and Sinniah 2013; Sharma et al. 2013). Apparently, 3% sodium alginate
solution and 100 mM CaCl2 facilitated as most suitable ion exchange involving Na+

and Ca2+, producing transparent, compact, isodiametric beads (Gantait et al. 2015).
To overcome the extinction of valuable plant species in nature, more emphasis has to
be given to improve the protocol of synthetic seed in view of long-term conservation
of elite germplasm to reintroduce in its original habitat.

2 Endangered Plant Species Used for Synthetic Seed
Production (Table 1)

2.1 Centaurium rigualli Esteve.

Centaurium rigualli Esteve. commonly known as “stomach bitter” which belongs to
the family Gentianaceae is endemic to the Southeast of the Iberian Peninsula and
recorded as an “endangered” according to the IUCN grouping, owing to its minute
population range and threats to its habitat from urban development (Alcaraz et al.
1987). It is a distinctive case of a species with low seed accessibility due to its small
population. The conservation of this species by in situ was found to be not so easy,
because of the human pressure in the region of its natural habitat (Alcaraz et al.
1987). Conservation approaches in terms of tissue culture and micropropagation by
synthetic seed path are not yet channelized properly. However, nodal segments from
in vitro grown shoots of the C. rigualii were effectively cryopreserved. A protocol
was developed for improving survival after direct immersion in liquid nitrogen
(�196 �C) by the encapsulation-dehydration method to safeguard against ice crystal
development. Gonzalez-Benito et al. (1997) able to achieve 70% survival of
C. rigualli synthetic beads after 8 weeks in culture on semisolid regeneration
medium, i.e., liquid MS medium comprising with 1 mg L�1 BAP plus 0.1 mg L�1

NAA. In this case, synthetic seeds were prepared with alginate beads 3% in MS
liquid medium having medium viscosity, amid with sucrose, 0.75 M and 100 mM
CaCl2. Other than above reports, there are no accessible studies on the regeneration
of C. rigualli by in vitro propagation as well as its conservation strategies. Hence,
there is an imperative need to focus on this plant propagation and long-term
conservation approaches to avoid extinction.
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2.2 Plantago algarbiensis Samp.

Plantago algarbiensis belongs to Plantaginaceae family, is an endemic and endan-
gered species to the Algarve, Portugal, due to populaces restricted to a quite small
area. Various species of Plantago are scheduled as harmless herbs in the pharmaco-
peias of several countries (Blumenthal 1998), whereas few are utilized as animal feed
and food purposes (Chiang et al. 2003). P. algarbiensis is a rosulate hemicryptophyte
(Franco 1984). Due to its constrained allocation worldwide, P. algarbiensis is in
threat of extinction globally and is considered endangered species with legal protec-
tion by the Portuguese law and European Habitats Directive 92/43/CEE (reference
140/99 of April 24; ICN 2007). Micropropagation by in vitro practice has been
reported, as conservation approach of ex situ for safeguarding P. algarbiensis.
Shoot buds of P. algarbiensis was propagated successfully and acclimatized effec-
tively under ex vitro condition with 95% of survival rate (Goncalves et al. 2009).
Synthetic seed approach for the conservation of P. algarbiensis was performed by
cryopreservation of nodal segments in droplet-vitrification and encapsulation-
dehydration method. To obtain encapsulated nodal segments, sodium alginate 3%
prepared in MSmediumwith 0.35M sucrose and 100 mMCaCl2 solution were used.
Encapsulation-dehydration method reveals the significant percentage of regrowth,
i.e., 63% after 3-h desiccation onMSmedium amended with 0.2 mg L�1 BA (Coelho
et al. 2014a). Further there are no inclusive studies on in vitro propagation and
synthetic seeds of P. algarbiensis. Rapid clonal propagation and synthetic seed
formulation via encapsulation have to be performed for its long-term conservation
and reintroduction to the natural haunt.

2.3 Rhododendron maddeni Hook. f.

The genus Rhododendron is a member of the family Ericaceae. They are the residents
of elevated altitude, including about 1000 species typically dwelling in a cosmic part
of Southeastern Asia extending from Northwestern Himalaya all the way through
Nepal, Northeastern India, Eastern Tibet, Northern Burma, and Western and Central
China (Leach 1961; Pradhan and Lachungpa 1990). Rhododendron maddeni Hook.
f. is an endangered and beautiful rhododendron that has restricted allocation. During
the past few years, modest attempts for in vitro restoration have been made for this
endangered species by using nodal and shoot tip segments (Mercure et al. 1998;
Kumar et al. 2004; Singh and Gurung 2009; Eeckhaut et al. 2010). The synthetic
seeds or artificial seed production by encapsulation technique has become a signif-
icant asset in micropropagation of this plant. Synthetic seeds of R. maddeni were
developed under in vitro condition by encapsulation of shoot tips with 3% sodium
alginate in Anderson medium with 3% sucrose and 60 mM CaCl2�2H2O. Further,
these synthetic seeds can be preserved for 30 days at a temperature of 5 �C, and later
68% of shoot proliferation noticed on Anderson medium supplemented with
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7 mg L�1 isopentenyladenine, 100 mg L�1 polyvinyl pyrrolidone, 100 mg L�1

ascorbic acid, 10 mg L�1 citric acid, 3% sucrose, and 3% phytagel was recorded.
Upon transplantation to ex vitro conditions, 86% survival frequency of plantlets was
recorded (Singh 2008). To date, no further significant effort has been made on the
advance of synthetic seeds for mass scale production of rhododendron species, which
is beneath the threat of extinction.

2.4 Splachnum ampullaceum Hedw.

The Splachnum ampullaceum Hedw. commonly known as dung moss and belongs
to the family Splachnaceae is a critically endangered moss in the Iberian Peninsula
(Sergio et al. 1994; Red Data Book of European Bryophytes, ECCB 1995; Reinoso
et al. 2002). In bryophytes, in vitro culture methods are assured to be helpful for
medium and long-period germplasm conservation (Gonzalez et al. 2006). In vitro
regeneration and long-term conservation approach of S. ampullaceum germplasm
have been illustrated by using protonema explants. Enduring conservation of
S. ampullaceum has been examined via deliberate growth by modifying the com-
pounds in culture medium (Gonzalez et al. 2006). Mallon et al. (2007) studied
encapsulation parameter of S. ampullaceum with calcium alginate matrix consisting
of 1% (w/v) low-viscosity sodium alginate solution dropped into CaCl2, and further
they evaluated the efficiency of the moss regeneration with an aptitude of short-,
medium-, and long-term periods of conservation by preserving the species via
cryopreservation. They suggested encapsulation of moss with no prior treatment is
suitable approach for long-period germplasm conservation with as high as 50%
survival rates achieved in cold storage even after 2.5 years. Long-term preservation
of S. ampullaceum was poised with the preservation of the beads in a minute amount
of water in containers during slight dehydration, when the inner atmosphere in the
alginate beads was a hypertonic solution. To conserve this endangered moss, still
more standard protocol for in vitro propagation and synthetic seeds techniques has to
be developed.

2.5 Sterculia urens Roxb.

Sterculia urens is an endangered gum-yielding tree, which belongs to the family
Sterculiaceae, and it is an average-sized tree that grows in the deciduous forests of
India. It is a native inhabitant of tropical Himalayas and distributed widely in different
states of India, viz., Assam, Bihar, Eastern and Western Peninsula, northeast of
Belgaum, Maharashtra and Southern Gujarat (Kumar 2016; Kumar and Desai
2016), Sri Lanka, Australia, Pakistan, Panama, and Malaysia. The gum of S. urens
is in huge demand both inside and outside India (Anonymous 1976) as a wet-end
additive in the manufacture of paper in concurrence with starches. Naturally, the
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S. urens propagation is through seeds, but the seed viability declines as the timescale
progresses (Devi et al. 2012). Since the tree turns into recalcitrant, its propagation via
stem cuttings frommature plants creates difficulties (Thorpe et al. 1991). Further, as it
grows the rooting percentage and organogenic potential decline (Mascarenhas and
Muralidhan 1989). Micrografting methods will be used in such cases (Amiri 2005).
However, such method doesn’t give successful results in S. urens (Sunnichan et al.
1998). The tree has become endangered owing to overexploitation. Micropropagation
of Sterculia urens has been carried out for the large-scale propagation from nodal
segments (Purohit and Dave 1996; Sunnichan et al. 1998) and intact seedlings
(Hussain et al. 2008). Synthetic seeds were developed for conserving the S. urens
germplasm by encapsulating the explants of nodal segment in alginate droplets
consisting of 4% sodium alginate with 100mMCaCl2�2H2O and illustrated efficiency
of developed encapsulated synthetic buds for in vitro propagation as well as ex situ
conservation. Encapsulated nodal segments show significant regeneration potential
(73.33% � 1.33) on MS + TDZ (0.2 mg L�1) even after storage of 6 months at 4 �C
(Devi et al. 2014). The dominance of TDZ was reported in encapsulated axillary buds
of S. urens (Devi et al. 2011). Advanced research is required in view of S. urens to ideal
the technology so that it can be utilized on a commercial range.

2.6 Taraxacum pieninicum Pawł.

Taraxacum pieninicum Pawł. is the oldest critically endangered endemic plant arises
in the Pieniny Mountains (Poland). It belongs to the prime family of flowering
plants, Asteraceae. Features like a minute amount of entity with inadequate germi-
nation of seeds due to the feeding of invertebrates, particularly snails, are threat
factor to the endurance of this plant species. Additionally, Taraxacum species seeds
are hard to preserve, as seed germination takes place directly after maturation and
their significant loss of seed vigor after storage of 2 years (Tas and Van Dijk 1999;
Honek et al. 2005). A procedure for competent in vitro micropropagation and
process for preserving the shoot tips of T. pieninicum species at 10 �C were
demonstrated (Trejgell et al. 2013; Kamińska et al. 2016). But, growth of the
shoot has not been suitably repressed despite the low storage temperature, which
negatively influenced the value of the stored material quality. Kamińska et al.
(2018a) overviewed on inhibition T. pieninicum shoot growth by low temperature
at 4 �C and an advance approach to limit the harm on meristem tissue through
synthetic seed formation via alginate encapsulation of the shoot tips. Microshoots
are encapsulated with 3% sodium alginate primed in MS liquid medium and 100 mM
CaCl2�2H2O. Synthetic seed confirms conversion frequency of 70.0–96.7% regard-
less of the duration period on full-strength MS medium with 3% sucrose plus
0.14 μM NAA, 1.11 μM BA, and 0.8% agar in preeminent growth parameters.
They illustrated that T. pieninicum synthetic seeds prepared from shoot tips can be
preserved even for 12 months without subculture at 4 �C. Synthetic seed storage is
most suitable in dark conditions with significant survival, visual, and proliferation
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rate. Further, influence of jasmonic acid on cold storage of encapsulated shoot tips of
T. pieninicum with 3% sodium alginate primed in liquid MS medium and 100 mM
CaCl2�2H2O was examined by Kamińska et al. (2018b). Application of jasmonic
acid exogenously slightly induces cold tolerance, and further tissue growth inhibi-
tion is more effective compared to subsequent preculture on media amended with
jasmonic acid (Kamińska et al. 2018b). In view of these points, it conveys that still
even more appropriate procedure for long-term preservation of T. pieninicum has to
be developed with standard program to evade the extinction of this species.

3 Medicinally Important Endangered Plant Species Used
for Synthetic Seed Production (Table 2)

3.1 Arnebia euchroma (Royle) Jonst.

Arnebia euchroma (Royle) Jonst. belongs to the family of Boraginaceae and is a
perennial herb of the Alpine province. It is found in the regions of Pamirs, north and
south hillside of the Tian Shan Mountain in Xinjiang, Western Tibet, Pakistan,
Nepal, Iran, Afghanistan, the Central Asia area of the Soviet Union, and Siberia
the Himalaya above the sea level between a range of altitude 3700 and 4200 m
(Anonymous 1985). Because of its remedial importance, the species is being col-
lected subjectively from the native habitat for pharmaceutical and domestic pur-
poses. This effected in status of A. euchroma as critically endangered and has
recorded in the species list for protection and conservation in West Himalaya
(Molur and Walker 1998). Since ancient periodic times, derivatives extorted from
the A. euchroma roots exercised as dyes for silk, used in traditional medicine and
food products and further shikonin valued at US$4000 per kg (wholesale price)
(Kaith et al. 1996; Kosger et al. 2009). Tissue culture of A. euchroma was initially
payed attention in Russia (Davydenkov et al. 1991). Further, protocols have been
developed for in vitro shoot multiplication of A. euchroma using thidiazuron (Jiang
et al. 2005; Malik et al. 2016). Most of the tissue culture studies of A. euchroma have
been payed attention much on enhancing shikonin and other metabolite production
(Zakhlenjuk and Kunakh 1998; Gupta et al. 2014; Arghavani et al. 2015). Simulta-
neous organogenesis, somatic embryogenesis, and synthetic seed production have
been exemplified in A. euchroma by encapsulating early cotyledonary-stage
embryos with sodium alginate (3%) and Ca(NO3)2 (for 25 min, 100 mM) under
in vitro condition, and it shows 60.6% germination rate in MS medium. Further,
rooted shoots showed 72% survival rate under ex vitro conditions (Manjkhola et al.
2005). Still even much more work has to be done on synthetic seed concept of
A. euchroma for conservation and long-term preservation of germplasm. Appliance
of efficient synthetic seed protocols is extremely helpful to maintain the resource in
its natural inhabitants and also to preserve for long-term storage of elite genotypes.
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3.2 Ceropegia spiralis Wt. and C. pusilla Wt. and Arn.

Ceropegia spiralisWt. and C. pusillaWt. and Arn. which belong to Asclepiadaceae
are endemic and endangered medicinal herbs. The tubers are edible, rich in starch,
and also helpful as a nutritive stimulant (Nadkarni 1976; Reddy et al. 2006). Since it
was in neck of being endangered and having prominent medicinal significance,
conservation of these plants is an important strategy. There are few margins for in
situ conservation of these species, like awfully low accessibility of seeds and reduced
reproductive capability. In advance, the alternative techniques like synthetic seed
production are quite required to conserve these plant species. The micropropagation
of various species ofCeropegia has been studied via tissue culture, such asC. juncea,
C. spiralis, C. intermedia, C. hirsute, and C. sahyadrica (Nikam et al. 2008;
Karuppusamy et al. 2009; Murthy et al. 2010; Krishnareddy et al. 2011). C. spiralis
plants were regenerated successfully from young nodal segments with 100% shoot-
ing frequency (Chavan et al. 2011). Micropropagation, microtuberization, and
in vitro flowering protocol of C. pusilla are illustrated with maximum survival rate
of explants (Kondamudi andMurthy 2011; Murthy 2011; Kalimuthu and Prabakaran
2013). Murthy et al. (2013) studied the efficacy of endangered C. pusilla and
C. spiralis by encapsulating the explants with 2.5–3% sodium alginate and 50 mM
CaCl2 and examined the influence of composition of nutrients in alginate matrix on
regrowth performance. In encapsulated C. pusilla and C. spiralis synthetic seeds,
shoot tips show the highest percentage of regrowth frequency with 86.6 and 90.0%,
respectively, in a MS medium with 3% sucrose, 3% sodium alginate, and BAP 3 mg/
L. Further studies are needed for these plant species to meet the propagation supplies
for reintroduction of these plants in natural environment.

3.3 Dendrobium nobile Lindl.

Dendrobium nobile Lindl. is an epiphytic orchid with therapeutic significance
and native inhabitant to the states of China, Northeast India, Thailand, Nepal, and
Myanmar. The gracious D. nobile is a member of the family Orchidaceae
(Bhattacharyya andKumaria 2015). The huge ethnobotanical, ornamental, andmedic-
inal values of D. nobile have been focused to harsh anthropogenic pressure for
centuries resulting the inhabitants fetching threatened and endangered in its natural
environments (Faria and Illg 1995; Miyazawa et al. 1997; Ye et al. 2002; Yang et al.
2006). In the recent past, D. nobile has gained much biopharmaceutical and horticul-
tural importance globally owing to its significant source of diverse secondary metab-
olites (Ng et al. 2012). Few reports are available on tissue culture aspects ofD. nobile.
Exploration on in vitro growth and rooting of D. nobile was illustrated by using
different sucrose concentrations (Faria et al. 2004). Axillary buds of D. nobile var.
Emma white orchid were micropropagated by using phytotechnology medium
(Asghar et al. 2011). In vitro regeneration protocols of D. nobile were illustrated
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with a high frequency of survival rate of 82–92%with significant genetic stability and
higher antioxidant activity being reported (Malabadi et al. 2005; Bhattacharyya et al.
2016). Regarding synthetic seed concept, no sufficient research reports are available to
meet the desired prerequisite. Cryopreservation of PLBs of D. nobile was demon-
strated on the basis of encapsulation-vitrification and encapsulation-dehydration.
Encapsulation-vitrification shows higher regrowth (75.9%) and survival rate
(78.1%) compared to encapsulation-dehydration (53.3 and 50.2%), respectively.
Successful adaptation of plantlets was noticed under ex vitro condition with 82%
maximum survivability (Mohanty et al. 2012). Mohanty et al. (2013) demonstrated
short-term storage of encapsulated PLBs of D. nobile using mannitol and sucrose as
osmotica up to 60 days. PLBs were encapsulated in 3% sodium alginate solution and
100 mM CaCl2�2H2O solution, prepared in MS liquid medium with various osmotic
concentrations (mannitol and sucrose) in a series of 0.0–15.0% (w/v). After storage,
encapsulated synthetic seeds show successful regeneration on optimized regrowth
medium consisting of half-strength MS medium with 2% sucrose and 0.6% agar
together with 0.1 mg/L NAA and 1 mg/L BAP media for the regeneration PLBs
(Mohanty et al. 2012). Highest survival frequency of stored encapsulated PLBs on
regeneration medium was 78.20% which was achieved with 7.5% mannitol followed
by 64.56% with 7.5% sucrose concentration. Conservation and storage of various
valuable threatened, rare, and endangered species of orchid can be possible by
adaptation of consecutive advance protocols like synthetic seed approach. To over-
come and meet the commercial demand of this species, much more attention has to be
focused to formulate eminent procedure to maintain and preserve the valuable germ-
plasm of D. nobile.

3.4 Rotula aquatica Lour.

Rotula aquatica Lour. is a species of aromatic flowering shrub and included as a
member of the family Boraginaceae. It is a rhoeophytic rare woody medicinal shrub
native to India, dispersed in tropical Southeast Asia, Sri Lanka, and Latin America.
The tubery root is the representative component as well as serves as a raw material
for several significant ayurvedic drug procedures (Sivarajan and Balachandran 1994;
Chithra et al. 2005). Plants were exploited by excavating the roots for their medicinal
properties, causing them to endanger. In vitro regeneration methods for R. aquatica
by rapid clonal propagation, through in vitro culture of mature nodal explants and
further the rooted shoots, were effectively transmitted to field with 70–80% survival
rate (Sebastian et al. 2002; Martin 2003b). Indirect somatic embryogenesis, encap-
sulation, and plant regeneration were examined with friable callus developed from
internode and leaf explants. Cotyledonary embryos were encapsulated with sodium
alginate 3% solution in half-strength CaCl2-free MS basal medium with 3% sucrose
and 50 mM CaCl2 solution. It exhibits 100% conversion to plantlets on half-strength
MS basal solid medium. Under field conditions, 95% of survival frequencies of the
plantlets were established, and they were morphologically similar to the mother plant
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(Chithra et al. 2005). For conservation of this valuable and rare medicinal plant,
established protocol of encapsulation has to be developed further to open the
windows of conservation.

3.5 Spilanthes mauritiana (A.Rich. ex Pers.) DC.

Spilanthes mauritiana (A.Rich. ex Pers.) DC., a monogeneric endangered herb,
belongs to Asteraceae, originated from Eastern Africa, and is employed in the
local pharmacoepia to treat mouth and throat infections (Watt and Brayer-Brandwijk
1962) and also as medication for diarrhea and stomach ache (Kokwaro 1976).
Deficient in ethnobotanical facts and the limited availability of S. mauritiana have
led to lack in the information of undifferentiated compounds of S. mauritiana (Bais
et al. 2002). Several attempts have been made previously on in vitro regeneration of
Spilanthes species, i.e., S. mauritiana through axillary buds (Bais et al. 2002) and
S. acmella through hypocotyls, axillary bud, and leaf explants (Saritha et al. 2002;
Haw and Keng 2003; Pandey and Agrawal 2009). The rooting is usually a very
leisurely process in S. mauritiana and also few explants are inadequate to adopt the
protocol for a large-scale plantation program. Large-scale propagation and conser-
vation through synthetic seeds have been illustrated for S. mauritiana through
encapsulation of axillary buds in 3% sodium alginate and 100 mM
CaCl2�2H2O. After 3 weeks of storage, all the synthetic seeds germinated and
developed into plantlets on half-strength MS nutrient medium, and further retrieved
synthetic seeds were hardened effectively with 90% survival frequency with normal
morphological and growth behavior, but subsequent storage reduced developing
capability (Sharma et al. 2009a). Additionally, protocol was developed for germ-
plasm exchange and short-term storage of S. mauritiana by synthetic seeds of nodal
segments via encapsulating with 4 and 3% sodium alginate and 100 mM
CaCl2�2H2O with maximum conversion of 83% under in vitro regeneration on
basal MS medium complemented with 0.5 μM IAA and 5.0 μM BA. Under ex vitro
condition, the success of 90% conversion with 80% survivability was achieved
(Sharma and Shahzad 2014).

3.6 Swertia chirayita Roxb. ex Fleming. H. Karst.

Swertia chirayita (Roxb. ex Fleming. H. Karst.) is commonly known as “Chiretta”
and is a decisively endangered medicinal herb and a member of the family
Gentianaceae with valuable medicinal importance (Clarke 1885; Kirtikar and Basu
1984). Swertia chirayita is additionally recognized by a range of forenames like
Bhunimba, Anaryatikta, Kairata in Sanskrit, Chiratitka, Chiaravata in Urdu,
Qasabuzzarirah in Arab and Farsi, Sekhagi in Burma, and Chirrato or Chiraita in
Nepal (Joshi and Dhawan 2005). This ethnomedicinal herb is also renowned for its
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typical bitter flavor, incentive by the existence of diverse chemical elements such as
swerchirin, amarogentin, swertiamarin, and other bioactive amalgams that are
instantly related with welfare of human health (Joshi and Dhawan 2005). The
complete plant is broadly utilized by local group for the healing of inflammation,
hepatitis, and digestive illness (Bhatt et al. 2006). Owing to its extreme over-misuse
from the likely habitat, constricted geographic frequency (Bhat et al. 2013), unsolved
intrinsic tribulations of seed germination and seed viability (Badola and Pal 2002;
Joshi and Dhawan 2005), incessant deforestation, and inadequate efforts for its
replacement, S. chirayita is becoming extinct. There are a good number of studies
on micropropagation of S. chirayita (Wawrosch et al. 1999; Joshi and Dhawan
2007; Chaudhuri et al. 2007, 2008, 2009; Wang et al. 2009; Balaraju et al. 2009,
2011; Pant et al. 2010a, b; Jha et al. 2011; Kumar et al. 2014, 2018; Shailja et al.
2017). Seed germination rate and viability of S. chirayita are awfully poor. Kumar
and Chandra (2014) demonstrated a production of synthetic seeds of S. chirayita and
competent procedure for plant in vitro regeneration through somatic embryogenesis
from in vivo leaf explants of S. chirayita with maximum germination frequency of
76% onMSmediumwith 0.5 mg/L of kinetin and 0.5 mg/L of 2,4-D. Synthetic seeds
of S. chirayita were by encapsulation of torpedo stage embryos in 4% (W/V) sodium
alginate gel and dropped into 100 mM CaCl2�2H2O solution. Synthetic seed shows
maximum conversion frequency of 84% germination on MS medium included with
0.5 mg/L NAA and 1 mg/L BA. Under ex vitro condition, regenerants were produc-
tively acclimatized with 80% conversion frequency in soilrite and sand in 1:2 ratios.
However, substitute advances for effective conservation and propagation are indeed
necessary to evade the feasible annihilation of this significant plant species.

3.7 Tecomella undulata (Sm.) Seem.

Tecomella undulata (Sm.) Seem. belongs to the Bignoniaceae family and is well
known by different names like honey tree, rohida, marwar teak, ammora, white
cedar, and desert teak. It is economically important monotypic species native to India
and Arabia (Randhawa and Mukhopadhyay 1986). The plant is renowned for its
medicinal healing values in Ayurveda (Oudhia 2005). In periodic time, it has been
utilized to heal spleen and liver disorders, inner tumors, conjunctivitis, abdominal
illness, hepatosplenomegaly, wound remedial, as a blood purifier, plus to cure syph-
ilis, gonorrhea and also gratifying in hepatitis (Singh and Gupta 2011; Chal et al.
2011). Significant studies have been overviewed on tissue culture studies of
T. undulata from juvenile terminal and axillary explants (Arya and Shekhawat
1986) as well as adult tissues acquired from 10 to 15 years mature plant (Bhansali
1993), nodal sections obtained from older trees (Rathore et al. 1991; Bhansali 1993;
Kumari and Singh 2012; Tyagi and Tomar 2013; Chhajer and Kalia 2017), cotyle-
donary nodes, seedling explants, hypocotyls, and root fragments (Nandwani et al.
1995, 1996; Aslam et al. 2006; Singh et al. 2009a; Varshney and Anis 2012).
Synthetic seed regeneration approach was demonstrated in encapsulated nodal
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segments of T. undulata obtained from mature tissues with 3% sodium alginate,
synthesized in MS liquid medium and 100 mM CaCl2�2H2O including 2.5 μM BA
and 0.5 μM IAA, and further successive conversion of encapsulated synthetic nodal
segments into shoots was achieved with optimal regeneration rate of 96.50% on MS
medium with 10.0 μMBA under in vitro conditions (Shaheen and Shahzad 2015). In
advance, influence of silver nanoparticles (AgNPs) on ACS gene expression profile
was examined in the in vitro regenerated leaves of T. undulate and proposed that
AgNPs improve the lifespan of explants as well as increase multiplication frequency
(Sarmast et al. 2015). For long-term conservation of Tecomella undulate, even
supplementary work has to be focused on synthetic seed approach to overcome the
endangered status and to reintroduce the plant back to its natural ecosystem.

3.8 Tuberaria major (Willk.) P. Silva and Rozeira.

Tuberaria major (Willk.) P. Silva and Rozeira. belongs to family Cistaceae. It is an
endemic small perennial plant of the Algarve, in the south of Portugal. Globally,
ecological and geographical occurrence is rare, because distribution of this plant
species is constrained to a very petite region reliable to a particular territory at a
provincial comparison range. The foremost risks to this species are the invariable
pressure of human and rising urbanization in the province. According to European
legislation, T. major is a precedence and endangered plant species, and its protection
is provided by the European Habitats Directive 92/43/CEE and by Portuguese law
(reference 140/99 from April 24; ICN (Instituto da Conservação da Natureza 2006).
The legitimate defense entails with the conservation of ecosystems and biodiversity
in their normal territories; however, it might not always be ample to conserve the
genetic diversity of a specified species. Therefore, it is essential to unite some
conservation plan that will balance and maintain each other. Studies on the cryo-
preservation of T. major seeds were previously carried out (Goncalves et al. 2009a),
and a protocol for in vitro micropropagation has also been illustrated (Goncalves
et al. 2010), indicating imperative task for the conservation of this species exterior to
its innate habitat. Plantlets of T. major formed in vitro are used to appraise the
viability in long-term conservation method via cryopreservation of the different
plant material to seeds. Coelho et al. (2014b) demonstrated T. major shoot tips
cryopreservation by two ways, i.e., encapsulation-dehydration and vitrification.
They stated that maximum percentage of regrowth was observed in encapsulation-
dehydration and vitrification method with 67 and 60% survival through 3% sodium
alginate solution synthesized in medium of MS having sucrose, 0.35 M, and
100 mM CaCl2 solution cultured on MS semisolid medium amended with
0.2 mg L�1 zeatin at 25 �C in the dark, respectively. The appropriate exposure
times were found to be 60 min in plant vitrification solution and 3 h desiccation for
encapsulation-dehydration. The practice of cryopreservation techniques confirmed
to be a significant positive feature in the conservation of endangered plant species
and will further harmonize the strategies of conservation once developed.
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3.9 Tylophora indica (Burm. f.) Merrill

Tylophora indica (Burm f.) Merrill is an endangered woody perennial climber,
resident to the hills (�900 m a.s.l) and plains of Southern and Eastern India (Anon-
ymous 2003) and usually recognized as “Antamul or Indian ipecac.” Indian Ipecac is
a petite, more pronged, slender, velvety, climbing, or twining herb by yellowish sap.
Traditionally, this native remedial plant has been utilized by ethnic groups in confi-
dent provinces of India for the healing of rheumatic pain, dermatitis, bronchitis, and
bronchial asthma. The main vibrant element of this plant is the alkaloid tylophorine,
accountable for its strong anti-inflammatory act (Gopalakrishnan et al. 1980; Bentley
and Trimen 1992; Jayanthi and Mandal 2001; Faisal and Anis 2003). The lack of
appropriate farming practices, demolition of plant habitation and uncontrolled com-
pilation of plants from their innate environments, has led to a quick decline of
T. indica in its natural environment (Jayanthi and Mandal 2001). Previously, sub-
stantial attempt has been performed on in vitro regeneration of this medicinally
important endangered plant species by means of different explants (Sharma and
Chandel 1992; Faisal and Anis 2003; Chaudhuri et al. 2004, 2006; Faisal et al.
2005). Owing to synthetic seed production, the artificial seed development by
alginate encapsulation basis became a proficient tool mutually for mass propagation
as well as interim preservation of numerous medicinal plants having commercial
significance (Gantait et al. 2015). Synthetic seeds of T. indica were developed
through encapsulation of in vitro derived explants, like somatic embryos from leaf
segments with 3% sodium alginate in MS solution and 50 mM CaCl2. Conversion of
plant from encapsulated somatic embryos shows 22.4% germination and 6.8%
rejuvenation frequency into plantlets on MS half-strength medium (Devendra et al.
2011). Synthetic seeds were produced from nodal segments T. indica with 3% (w/v)
sodium alginate and 100 mM CaCl2�2H2O, and it confirms 91% maximum conver-
sion frequency into plantlets in the MS medium comprising BA, 2.5 μM, and NAA,
0.5 μM, after 6 weeks of culture. Synthetic seeds of T. indica proposed by using
calcium alginate beads also show successful 43% of conversion to plantlets, when
they were sown directly into Soilrite™ moistened with 1/2MS salts after 6 weeks.
Encapsulated nodal segments were further successfully acclimatized and hardened
into plants in soil, with a conversion rate of 90% (Faisal and Anis 2007). Synthetic
seeds by in vitro nodal segments [(4 � 1) mm long] reveal successful encapsulation,
resulting in sphere-shaped synthetic seeds of similar morphology through
75 mmol L�1 CaCl2�2H2O plus 3% sodium alginate with 93.3% conversion fre-
quency. The initial conversion of synthetic seeds within 7 days of incubation occurred
in half-strength liquidMSmedium. After 30 days of storage period at 15� 1 �C, 70%
of conversion frequency was recorded without further decline even in subsequent
45 days of storage (Gantait et al. 2017), and their potentiality was determined at
ambient temperature for storing of artificial seeds ensuring maximum post-storage.
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3.10 Withania coagulans (Stock) Dunal.

Withania coagulans Dunal. belongs to the family Solanaceae and is generally called
as “Indian cheese maker” or “vegetable rennet” since fruits and leaves of this plant
are used as a coagulant and are also one of the vital medicinal plants. Withanolides
isolated from W. coagulans aqueous fruit extract comprise cardioprotective,
hepatoprotective, and anti-inflammatory activity (Budhiraja et al. 1983, 1986).
Due to overexploitation this plant is considered as highly endangered. Significant
research was carried out on in vitro regeneration in W. coagulans by using different
explants (Rathore et al. 2012, 2016; Purushotham et al. 2015; Joshi et al. 2016).
Rathore and Kheni (2015) illustrated synthetic seed production of W. coagulans
micro-cuttings by alginate encapsulation with 3% sodium alginate and 100 mM of
CaCl2�2H2O with maximum 96% of regrowth on regeneration medium, i.e., 0.75%
MS agar-gelled medium supplemented 0.57 μM of IAA and 1.11 μM of BAP. They
demonstrated efficiency of in vitro plantlet regeneration for rapid multiplication,
storage for a short term, and also distribution of germplasm. After the 60-day storage
period at 4 �C under sterile environment, the encapsulated explants showed 72%
revival of plantlets on regeneration medium. The derived synthetic seed plantlets
were effectively established and acclimatized. Regarding work on W. coagulans
synthetic seeds is still lacking, and much emphasis is needed for long-term conser-
vation and restoration of germplasm by encapsulation techniques.

4 Ornamentally Important Endangered Plant Species Used
for Synthetic Seed Production (Table 3)

4.1 Buxus hyrcana Pojark.

Buxus is a genus which belongs to the Buxaceae family. Buxus hyrcana is commonly
used for landscape and gardens. Cuttings of B. hyrcana are frequently used for
production of softwood, semi-hardwood, and hardwood (Orhan et al. 2012).
B. hyrcana is an ornamental shrub beneath threat of annihilation. Due to invasion
of pathogens, this flowering shrub is a crucially endangered species. Earlier studies
illustrate various attributes and health benefits of B. hyrcana including antioxidant
and anti-inflammatory deeds activity, owing to its alkaloids and triterpenoids com-
pounds (Babar et al. 2006; Choudhary et al. 2006; Esmaeili et al. 2009; Ata et al.
2010; Ebrahimzadeh et al. 2010; Mesaik et al. 2010). Micropropagation along with
cryopreservation by encapsulation-dehydration method of B. hyrcana has been
illustrated with 3% sodium alginate formed in MS salt solution with 0.75 M con-
centration of sucrose and 100 mM CaCl2�2H2O solution. Significant regrowth (60%)
was observed in cryopreserved shoot tip after storage of 3 months in MS medium
included with 1.50 mg L�1 NAA and 0.50 mg L�1 BAP, whereas there is no survival
pace noticed in non-encapsulated shoot tip on regeneration medium after storage
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(Kaviani and Negahdar 2017). Presently, there is a vast necessity to expand a
stratagem for long-term preservation of B. hyrcana elite germplasm. However, still
there is no relevant approach in concern to preserve this threatened species. Hence,
more prominence is needed to research on in vitro propagation and synthetic seed
concept to develop the authentic procedures to maintain the B. hyrcana germplasm
and also for long-term conservation to re-establish the species in its natural
environment.

4.2 Cymbidium aloifolium (L.) Sw.

The species of Cymbidium, originally depicted in 1703 as Epidendrum aloifolium.
Further, Swartz in 1799 separated into a new genus, Cymbidium. Cymbidium
aloifolium (L.) Sw. is an epiphytic threatened orchid of Nepal with significant
medicinal and ornamental importance (Das et al. 2008; Pant and Raskoti 2013).
Cymbidium aloifolium also reside in an important place in the everyday life of tribal
people of Northeastern India owing to its medicinal and ornamental significances.
The indigenous people mainly in hilly regions take huge pride in treasuring this plant
because of its high usefulness in traditional therapeutic and cures and floriculture
deal (Medhi and Chakrabarti 2009). Apart from its medical magnitude, this orchid
also magnetizes the floriculture marketplace, by its long-lasting extremely dazzling
beautiful flowers. Due to its diverse application, public evacuated this plant from its
native wild habitat and thus attain to the group of threatened species (Raskoti 2009;
Nongdam and Chongtham 2011; Pant and Raskoti 2013). Cymbidium aloifolium is
at present lying on the edge of extinction from its normal habitat owing to
overexploitation for trade market, deforestation, and lack of pollinators due to
arbitrary application of pesticides and further variations of the biome (Chugh et al.
2009). Therefore, a distinctive propagation advance is needed to safeguard this
economically significant, threatened orchid. Micropropagation via tissue culture
practices has been broadly employed for the in vitro large-scale multiplication for
various economically significant orchids. A choice of work has been described about
in vitro development of C. aloifolum by using various explants (Nayak et al. 1997;
Hossain et al. 2009; Nongdam and Chongtham 2011; Pradhan et al. 2013;
Trunjaruen and Taratima 2018). Synthetic seed technology with its beneficial
advantage for germplasm storage has a huge potential for large-scale propagation
loom of C. aloifolium ensuing field-ready propagules. Cymbidium aloifolium was
studied for the development of synthetic seeds by encapsulation of 3-week-old
protocorm with 4% sodium alginate and 0.2 M CaCl2�2H2O solution. This encap-
sulation results in the regeneration of 85% plantlets on MS media and was success-
fully hardened (Pradhan et al. 2014, 2016). Synthetic seed germination by
asymbiotic method using protocorms offers a helpful mode to restore the plants in
the native habitat, for germplasm conservation, as well as for commercial prolifer-
ation. Haphazard collection for illegal trade, habitat loss, and growing requirement
are main reducing factors for distribution of this orchid species in its native residents
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(Pradhan et al. 2013, 2016). However, modest is known about the synthetic seed
path of C. aloifolium. Further, development of sequential procedure and paradigm
will help substantially to overcome the extinction of this species.

4.3 Ipsea malabarica (Reichb. f.) J. D. Hook.

Ipsea malabarica (Reichb. f.) J. D. Hook. is an endangered and endemic rhizoma-
tous terrestrial orchid of the Kerala Western Ghats, and they are generally recognized
as “the Malabar Daffodil Orchid.” The genus Ipsea is endemic to India in high-
altitude hills of the southern Western Ghats and Sri Lanka. Earlier, it was believed
that this species was extinct, and after a period of 132 years, i.e., in 1982, this species
was further rediscovered (Manilal and Kumar 1983). It is endangered, and endeavors
have been made to propagate the species through tissue culture to reintroduce them
into the native place (Kumar and Manilal 1987; Martin and Madassery 2005). Ipsea
is commonly propagated by seeds and vegetative propagation by rhizomes. The
germination rate pace of seeds is extremely poor. Furthermore, propagation of seed
depends on the association of obligatory mycorrhiza, and due to cross-pollination,
the progenies are not true to type. The rate of propagation of this species has a
straight persuade on its path of extinction. Poor propagation pace along with habitat
loss along the Kerala Western Ghats has thrusted this terrestrial orchid to the
category of endangered. Vegetative propagation by rhizomes is sluggish and not
enough to overcome the risk of extinction. Propagation of this endemic and endan-
gered orchid has been described in vitro (Gangaprasad et al. 1995; Martin and
Pradeep 2003; Martin and Madassery 2005). Clonal propagation and synthetic
seed approach by encapsulation of in vitro formed bulbs of I. malabarica were
examined for its reintroduction to the innate haunt and facilitated with 100%
conversion. In vitro formed bulbs were encapsulated with 3% sodium alginate and
0.7% CaCl2. Encapsulated in vitro formed bulbs aided 100% conversion, when
cultured on hormone-free half-strength MS and 6.97 μM kinetin-supplemented
medium. Additionally, as a stride to in situ conservation, 50 plantlets were
reintroduced into their native territory, i.e., at Vellarimala (at 1300 m height) of
the Kerala Western Ghats, and plantlets were flowered normally. Primarily, from a
single explant within 250 days, development of an above 40,000 plantlets is possi-
ble. This established protocol assists significantly for this endemic endangered
orchid and also stands confidently to hold back the threat of extinction (Martin
2003a). Encapsulated synthetic bulbs can serve as a potential loom for in vitro
germplasm conservation of I. malabarica, as studied in various endemic and endan-
gered species of orchids like Renanthera imschootiana (Chetia et al. 1998) and
Geodorum densiflorum (Datta et al. 1999). Except above preliminary approach,
there is no inclusive study on reinhabitation on this endemic and endangered species.
Further, footsteps are needed to restore I. malabarica into their indigenous native
consigns in nature.
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4.4 Vanda coerulea Grifft. ex. Lindl.

Vanda coerulea is commonly called as blue orchid (Plants Database 2015), blue vanda,
or autumn lady’s tresses. It has been recorded in different countries like India (Assam,
Arunachal Pradesh,Meghalaya, andNagaland), Burma,Nepal, Northern Thailand, and
Southern China (Yunnan) and also probably found in Bhutan, Laos, and Vietnam. It is
recognized as Vandaar in Sanskrit and Kwaklei in Manipuri. The juice of the flower is
applied as eye drops against glaucoma, cataract, and blindness. The sap extracted from
its leaves is utilized to treat dysentery, diarrhea, and dermal disorders (Nadkarni 1954).
In India, overexploitation and demolition from its habitat are the main threatening
factors for its survivability (Pradhan 1985). Few attempts have beenmade for rapid and
efficient outline for in vitro propagation of Vanda coerulea (Seeni and Latha 2000;
Manners et al. 2010; Roy et al. 2011; Hrahsel and Thangjam 2015). The production of
synthetic seeds in orchids is very helpful, as orchids form non-endospermic and tiny
seeds. In regard to synthetic seed approach, germination frequency of V. coeruleawas
examined by encapsulating 40-day-old PLBs in sodium alginate and preserved for
120 days at 4 �C, and it confirms 72% significant rate of regermination. Further,
encapsulated beads stored at room temperature results in 50% germination in MS
media. Conversely, unencapsulated PLBs preserved at room temperature and for
30 days at 4 �C did not show any germination (Devi et al. 2000). V. coerulea
protocorms were productively cryopreserved by encapsulation-dehydration, and it
shows highest regrowth of 40% amid with 35% water content subsequent to 8 h of
dehydration with no significant morphological difference between non-cryopreserved
and cryopreserved plantlets (Jitsopakul et al. 2008). Plant regeneration, short-term
storage, and alginate encapsulation from PLBs of Aranda Wan Chark Kuan
“Blue”� Vanda coerulea (a monopdial orchid hybrid) and conversion into completed
plantlet regeneration were demonstrated. They recorded maximum percent of germi-
nation even after being stored for 180 days at 25 �C with 76.9 and 70.2% germination
and conversion frequency and further acclimatized successfully with 92% of survival
rate (Gantait et al. 2012). Encapsulation method of V. coerulea with 3% sodium
alignate and 100 M CaCl2�2H2O was developed by PLBs obtained from leaf explants
as an alternative tool for conservation. Optimal duration of storage for germination of
encapsulated beads ofV. coeruleawas examined. Encapsulated PLBs show significant
percent of germination (94.9%) in Ichihashi and Yamashita basal medium, and addi-
tionally encapsulated PLBs retain their viability up to 100 days at 4 �C (Sarmah et al.
2010). The above findings suggest that the synthetic seed approach confirms to be the
most useful alternative tool for conservation of this endangered species.

4.5 Vanilla planifolia Jacks. ex Andrews.

Vanilla planifolia is an endangered vanilla orchid species, which belongs to the
family Orchidaceae. Vanilla planifolia is a crop of immense commercial significance
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as the source of natural vanillin, the main component of flavor industry (Divakaran
et al. 2006). It is inhabitant to Mexico, Central America, the Caribbean, and
Northeastern South America. Commercially, vanilla is grown for its pods, from
which the flavoring substance, vanillin, has been extracted, and this is the only
orchid with edible fruits (Geetha and Sudheer 2000). Compared to other vanilla-
producing countries, Mexico is the center of origin of vanilla and has the largest
genetic diversity of V. planifolia. However, currently wild inhabitants of vanilla are
threatened with extinction. Vanilla is propagated exclusively through asexual prop-
agation (cuttings), but stem cutting collection from plants growing in the wild results
in the detained growth and development of the mother plants (Lubinsky 2003). To
preserve the genetic resources of vanilla and for broadcasting uniform and disease-
free elite material to growers, in vitro micropropagation by synthetic seed method is
an effective approach. Initial exertion on in vitro propagation of vanilla is referred by
Knudson, which was carried out in 1947 by Bouriquet with germinating seeds
(Knudson 1950). Propagation of V. planifolia in vitro has been studied extensively
using various propagules, explants, and culture medium, viz., through callus
(Janarthanam and Seshadri 2008), protocorms, root tips (Philip and Nainar 1986),
nodal explants, shoot tips, (Giridhar et al. 2001; Oliveira et al. 2013; Morwal et al.
2015), and axillary bud explants (Giridhar and Ravishankar 2004; Lee-Espinosa
et al. 2008). Recently, an advance approach like hormetic and antimicrobial signif-
icances of silver nanoparticles were examined on in vitro regeneration of Vanilla
planifolia by a temporary immersion method (Spinoso-Castillo et al. 2017). Syn-
thetic seed development was demonstrated for in vitro regenerated shoot buds and
protocorms by encapsulation with 4% sodium alginate and CaCl2�2H2O solution
with 80% germination rate. Further, they standardized on slow growth medium that
shoot cultures could be stored for an above 7 years with annual subculture. Further,
in vitro preserved material is recovered and multiplied into normal plants in MS
medium supplemented 0.5 mg L�1 IBA and 1.0 mg L�1 BA (Divakaran et al. 2006).
Further, cryopreservation of apices from in vitro grown-up plants of Vanilla
planifolia using three different techniques, i.e., encapsulation-dehydration, vitrifica-
tion, and droplet-vitrification, was examined. Maximum survival frequency of 30%
with regeneration rate of 10% of new-fangled multiple shoots was attained by the
droplet-vitrification procedure with experimental parameters of 1-d preculture of
apices with 0.3 M sucrose on solid medium, consignment with 0.4 M sucrose plus
2 M glycerol solution for 20–30 min, and exposure to plant vitrification solution
(Gonzalez-Arnao et al. 2009). Additional research for the cryogenic practice needs
to be optimized to progress for successful report of cryopreservation of vanilla
apices. From the above reports, it conveys that in vitro conservation approach by
synthetic seeds is the best path for maintenance and exchange of vanilla genetic
resources.
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5 Rare Plant Species Used for Synthetic Seed Production
(Table 4)

5.1 Ansellia africana Lindl.

Ansellia africana Lindl. is an important orchid, which belongs to the family
Orchidaceae, and it is commonly known as leopard orchid. It is generally distributed
in the subtropical regions of Southern Africa (Bhattacharyya and Van Staden 2016).
Owing to its significant medicinal practice and commercialization ofA. africana, it has
resulted in increased collection fromwild inhabitants. The risk condition ofA. africana
has been classified as “vulnerable” by IUCN and by the Red List of South African
Plants (2015) (http://www.iucnredlist.org/details/44392142/0). Together with the
effect of overexploitation, A. africana has an extremely slow seed germination rate,
i.e., below 3%, and also needs successful mutualistic fungal involvement for the
seedlings to survive (Vasudevan and Van Staden 2010; Papenfus et al. 2016). This
particular orchid has been utilized by the various African tribes and traditionally used
in the healing ofmadness. Current research studies illustrate thatA. africana roots have
effective anti-acetyl cholinesterase action and are used in the treatment of nerve
disorders, usually a path which may endow a solution for Alzheimer’s disease
(Chinsamy et al. 2011, 2014; Bhattacharyya and Van Staden 2016). Assessment of
micropropagated A. africana has been performed by using different explants under
in vitro conditions to know its genetic stability and influence different biotic and abiotic
growth regulators (Zobolo 2010; Vasudevan and Van Staden 2011; Bhattacharyya
et al. 2017). Even though few protocols have been reported on micropropagation of
A. africana, still there is a dearth to meet the frequency of commercial relevance
(Bhattacharyya and Van Staden 2016). Synthetic seed of A. africana has been devel-
oped by using PLBs obtained from nodal segments of seedlings with 3% sodium
alginate and 100 mM CaCl2�H2O. Encapsulated sodium alginate beads show maxi-
mum response with 88.21% on medium supplemented with 7.5 μM meta-methoxy
topolin 9-tetrahydropyran-2-yl (memTTHP) (Bhattacharyya et al. 2018). Till date,
there is no protocol that has been developed for long-term preservation illustrating
the restoration of species to its natural habitat. To meet the economic necessity of this
vulnerable orchid, relevant program and procedures have to be developed, and indeed
research support has to be spotlighted to overcome the threat episode of A. africana.

5.2 Ceropegia bulbosa Roxb. var. bulbosa

Ceropegia bulbosa Roxb. var. bulbosa is distributed in the subcontinent parts of
India (Punjab, Rajasthan, Western Ghats, Madhya Pradesh, etc.) (Murthy et al.
2012). Ceropegia bulbosa belongs to the Asclepiadaceae family, commonly identi-
fied as Khedula, Khadula, or Hedula. It is a significant medicinally vital herbaceous
plant allocated throughout India (Kirtikar and Basu 1975; Jain and Defillips 1991)
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and possesses characteristic tuberous roots (Mabberley 1987). But here, in the
current scenario, this plant is hardly ever observed due to critical compilation, habitat
humiliation, reduced viability of seed and poor germination rate. The species has
become threatened, due to overexploitation of the species from the native habitat and
its rapid disappearance leading to its depletion in population. Tissue culture
approach of plants tenders the likelihood for sustainable maintenance and reasonable
utilization of biodiversity (Shekhawat et al. 2002; Mathur et al. 2002a, b, 2008; Jana
and Shekhawat 2011), and it can be used for the ecorestoration of the plant.
Micropropagation of C. bulbosa was described by a few researchers (Patil 1998;
Britto et al. 2003; Goyal and Bhadauria 2006; Rathore et al. 2010) using nodal
explants and epicotyl explants (Phulwaria et al. 2013). Furthermore, these conser-
vative modes of propagation cannot accomplish the demand of pharmaceutical
industries. Synthetic seeds were attempted by encapsulation of C. bulbosa var.
bulbosa by using the segments of nodal with 3% sodium alginate and 100 mM
CaCl2�2H2O. Significant percentage of conversion frequency of the encapsulated
nodal segments into plantlets was accomplished on MS medium complemented with
BA at 8.88 μM concentration, resulting in 100% conversion of encapsulated nodal
segments into shoots and can be effectively preserved up to 60 days at lower
temperature of 4 �C with a 50.7% survival rate of recurrence (Dhir and Shekhawat
2013). Accordingly, in future there is a need for the development of even more
reliable protocol for in vitro synthetic seed restoration way for the protection and
conservation of C. bulbosa var. bulbosa.

5.3 Cleisostoma areitinum (Rchb.f.) Garay.

Cleisostoma areitinum (Rchb.f.) Garay. is a rare Thai orchid species. Orchid species
are very well recognized as imperative ornamental plants in Thailand, particularly
wild orchids. Cleisostoma arietinum is an epiphytic orchid and native habitat of
Thailand. Also, it is quite often found in Southeast Asia (Northeast India, Burma,
Thailand, Laos, Malaysia, and Vietnam). This particular orchid is in the stage of
vulnerability as it is very rare to be noticed due to improper maintenance, risk of
losing progressions due to contamination, difficulty in maintenance under in vitro
collection, methodology errors, or somaclonal variations. Till date, there are no
reports related to in vitro propagation of C. areitinum, and regarding synthetic
seed method. Also, the development of sufficient standard protocol is quite lacking.
In this regard, a preliminary cryopreservation of C. areitinum was examined through
encapsulation-dehydration method by using protocorms. Protocorm explants were
immersed in a solution of 3% alginate prepared with new Dogashima medium and
then dropped into 100 mM CaCl2 solution. Cryopreserved explants show significant
regrowth percentage of survival on new Dogashima semisolid medium with 0.25 M
sucrose for 1 week in dark conditions. Cryopreserved protocorms show 49% of
survival rate and viability of protocorm confirms 77% by 2, 3, 5-TTC assay after
storage of 2 weeks. This approach relies in simple, reliable protocol for C. areitium
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cryopreservation by encapsulation (Maneerattanarungroj et al. 2007). Presently,
there is a gigantic importance to further channelize and safeguard the germplasm
of C. areitium by developing standard protocols for conservation stratagem.

5.4 Flickingeria nodosa (Dalz.) Seidenf.

Flickingeria nodosa (Dalz.) Seidenf. is a epiphytic medicinally important orchid
with pseudobulbs, noticed in Sri Lanka, Eastern Himalayas, and in different divi-
sions of Western Ghats of India, namely, Hassan, Kodagu, Udumbansholai, and
Uttara Kannada (Abraham 1981; Rao 1998). Previously, it has been renowned as
Ephemerantha macraei (Lindl.) (Rao 1998). Successively, it starts disappearing
from its normal habitation rapidly due to over-misuse by humans and results in the
status of vulnerable species (Kumar et al. 2001). It has immense medicinal signif-
icance in traditional system of medicine (Gupta et al. 1970; Nagananda and
Satishchandra 2013). In “Charak Samhita,” it is well known as Jeewanti which
means life promoter. Preliminary in vitro regeneration protocol was studied on
F. nodosa via asymbiotic seed germination with five different basal media.
F. nodosa shows germination only on Lindemann orchid medium with 68% germi-
nation frequency (Wesley et al. 2013). The foremost phytoconstituents of F. nodosa
are alkaloid Jibentine and α- and β-jivantic acids (Gupta et al. 1970). In the
environment, orchids usually grow via seeds, but in the nonexistence of mycorrhizal
alliance; additionally they don’t grow in adequate quantity, hence its relies as a
vulnerable species form. These barriers can be defeated by implementing in vitro
propagation of synthetic seed technique. Synthetic seeds or beads for Flickingeria
nodosa were developed by ex situ germplasm conservation through encapsulation of
PLBs with 2% sodium alginate dropped in 100 mM CaCl2 solution; it shows 95%
germination even after being stored at 4 �C for 3 months on 1X Burgeff’s N3F
medium, 2% sucrose prepared with adenine sulfate at 2 mg L�1 and 1 mg L�1 of
IAA. Plantlets were successfully acclimatized and hardened with 85% survival
frequency under indoor conditions (Nagananda et al. 2011).

5.5 Serapias vomeracea (Burm.f.) Briq.

Serapias vomeracea is an entomophilous plant and is a species of orchid group in the
genus Serapias, but it cannot offer floral rewards to pollinators, as it does not
generate nectar. Serapias vomeracea is commonly known as long-lipped serapias
or the plow-share serapias. The species is prevalent from south-central Europe, the
Mediterranean Basin to the Caucasus (Pignatti 1982; Delforge 1995; Rossi 2002;
GIROS 2009). Due to their economic importance, excessive and uncontrolled
collection of these orchid tubers and assorted imperative parts of the plant before
the seed maturation lowers the limited inhabitants of vital species and further even
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constrains few species to near extinction. Synthetic seed production, in vitro seed
germination, tuberization, and plantlet growth of Serapias vomeracea have been
demonstrated. Tissue culture approach of seed germination and development of
S. vomeracea were illustrated via asymbiotic germination under in vitro conditions.
The maximum germination rate of 84.03% was achieved on Orchimax plus activated
charcoal medium complemented with BA at 2.0 mg/L. Micropropagation by syn-
thetic seed formation with 3% sodium alginate and 75 mM CaCl2 and its germina-
tion frequency and acclimatization to ambient conditions were examined by using
PLBs of S. vomeracea. The germination frequency of synthetic seeds to seedlings
was 100% on Orchimax medium including activated charcoal and 60% on peat
substrate (Bektas and Sokmen 2016). Serapias vomeracea is evaluated as least
concern, owing to the lack of proper micropropagation practices, deficient in syn-
thetic seed process for mass scale fabrication and harming to their natural allocation
caused by neighboring assembles. Henceforth, maximum emphasis has to be given
to develop standard protocol and programs to conserve the elite S. vomeracea
germplasm.

5.6 Spathoglottis plicata Blume.

Spathoglottis plicata Blume. is a terrestrial vulnerable orchid with horticultural
importance bearing graceful flowers booming around the year but invasive in
perceptive tropical habitats. Spathoglottis plicata generally known as the Philippine
ground orchid belongs to the family Orchidaceae. It is native inhabitant of South-
eastern Asia and is also observed in the Philippines, Australia, New Guinea, and in
southwest Pacific Ocean Islands (Cribb and Tang 1982). A momentous number of
orchids, like Spathoglottis, have been employed for industrial rationale and are
gathered immensely from its natural territory which has led this group of plants
likely to become endangered if trends continue. Seed germination and propagation
of S. plicata is quite complex under in vitro conditions (Aewsakul et al. 2013). Few
approaches on in vitro micropropagation have been reported previously (Kauth et al.
2008; Sinha et al. 2009; Novak and Whitehouse 2013; Hossain and Dey 2013),
above of these in vitro propagation processes have trailed the straight path of
restoration without any development of callus, and their regeneration rate of plantlet
was reasonably low. Morphogenesis via callus formation by indirect pathway is the
most effective way that can be used for in vitro mutagenesis, selection, and plant
transformation (Sahijram and Bahadur 2015). Hence, there is indeed prerequisite of
competent procedure for regeneration via the indirect path to safeguard this horti-
culturally significant orchid. Khor et al. (1998) developed a complex conservation of
two-coat methods for the S. plicata protocorms and seed encapsulation, i.e., alginate-
chitosan and alginate-gelatin. As a result, 40% of large protocorms (1.6–2.0 mm)
and 54% of seeds were capable to withstand desiccation treatment for 6 h. But,
viability factor of the diminutive protocorms (0.7–0.9 mm) was significantly
decreased, if they were desiccated prior to encapsulation. Further, viability percent-
age of seeds and protocorms increased significantly by encapsulation after
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desiccation. Recently, Haque and Ghosh (2017) demonstrated S. plicata plantlet
production with high-frequency through indirect PLB formation using callus by
employing Aloe vera gel as a complex organic supplement for in vitro culture of
orchid. For encapsulation process, 3% of sodium alginate and 3% of Ca(NO3)2 show
most appropriate form for the synthetic bead formation with good germination rates
(86.7%). Even after storage period of 90 days at 4 �C, synthetic seeds show 66.7%
germination capability. Plantlets reveal 86.6% rate of survival, and 76.3% of these
transferred plants formed flowers within 12–15 months of field transmit. Till now,
significant contribution was not contributed to maintain S. plicata plant. Thus, there
is indeed a necessity to develop reliable protocol in the point of mass scale com-
mercial propagation and also proconservation for a long-term of this imperative
orchid.

5.7 Spilanthes acmella (L.) Murr.

Spilanthes acmella (L.) Murr. belongs to the family Asteraceae, a threatened medic-
inal plant that develops in tropics and subtropics. This plant species has been
generally utilized in a folk therapy, e.g., for rheumatic, fever, and toothache (Haw
and Keng 2003; Wongsawatkul et al. 2008), also consumed as fresh vegetable
(Tiwari et al. 2011) and spices for Japanese appetizer (Leng et al. 2011). Spilanthes
acmella refers to the significant medicinal plant disseminated in the tropical and
subtropical provinces around the world with wealthy source of beneficial and medic-
inal components. Over the precedent petite years, substantial attempts have been
performed on in vitro propagation of this threatened plant species using different
explants (Pandey and Agrawal 2009; Singh et al. 2009c; Yadav et al. 2012; Sharma
and Shahzad 2013; Kurian and Thomas 2015; Joshi et al. 2015; Algabri and Pandhure
2017; Sana and Rani 2017). Few reports are available on synthetic seed concept of
S. acmella. Synthetic seed production of S. acmella was reported previously using
shoot tips with sodium alginate (3%) and CaCl2 (100 mM). Significant conversion
frequency into plantlets was achieved in the encapsulated shoot tips on full-strength
liquid MS medium. Regenerated plantlets from encapsulated shoot tips were suc-
cessfully ascertained under field environment with 90.0% survival rate. After storage
for 60 days at low temperature (4 �C), encapsulated shoot tips show survival response
was 50% (Singh et al. 2009b). Synthetic seeds were illustrated by nodal segments
gained from in vitro raised seedlings of S. acmella using 4% sodium alginate and
100 mM CaCl2�2H2O. Successful conversion of encapsulated nodal segments into
plantlets was achieved at the rate of 87.8% onMSmediumwith α-NAA (0.5 μM) and
BA (10 μM) after 6 weeks of culture. Regenerated plants from encapsulated synthetic
nodal fragments were effectively toughened, adapted, and established in soil, with a
survival frequency of 90% under ex vitro conditions (Sharma et al. 2009b). Further,
morphogenic responses of synthetic seeds were studied in encapsulated shoot tips
with 3% sodium alginate and 100 mM CaCl2�H2O to different kinds of growth
regulators in various concentrations of encapsulated shoot tips. Encapsulated shoot
buds show maximum conversion response of 92% into plantlet on MS basal medium
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with 1.0 mg/L BAP after 2–4 weeks of subculture and were stored at 4 �C, and it
remained viable for 12 weeks of storage period (Geetha et al. 2009). In the future,
optimization is quite required to the practice of S. acmella synseed approach for long-
term in vitro conservation.

5.8 Urginea altissima (L. f.) Baker.

Numerous genera of Hyacinthaceae, including Urginea, contain ornamental and
medicinal properties (McCartan and Van Staden 1999; SANBI 2017). Since they
are ephemeral in nature, seeds of this genus should be sown immediately. Urginea
altissima (L.f.) Baker is a bulbous perennial threatened medicinal plant (Williams
et al. 2016). It is commonly identified as squills. Traditionally, this plant has been
employed for the healing of asthma, influenza, warts, bronchitis, cancer, rheuma-
tism, cardiac arrhythmia, and congestive heart failure (Watt and Brayer-Brandwijk
1962; Hutchings 1989; Hutchings et al. 1996; Langat et al. 2013). Due to demand
for medicinal and ornamental applications, natural inhabitants of U. altissima are
overexploited, thus resulted the plant to be cataloged as a threatened species in the
Red Data Record of South African plants (Williams et al. 2016; SANBI 2017). Few
in vitro propagation procedures have been illustrated for other species of Urginea
(Jha et al. 1984; Jha and Sen 1986; El Grari and Backhaus 1987; Stojakowska 1993).
However, for U. altissima, no significant proper assessment on in vitro propagation
has been carried out. Synthetic seeds ofU. altissimawere produced by encapsulation
of shoot tips, in which they examined adventitious shoot regeneration with 91.0%;
12.6 shoots per synthetic seed on MS semisolid medium amended with 10 μMmeta-
topolin plus 2 μM of NAA after storage period of 15 days in dark condition at
temperature of 25 � 2 �C. Shoot tips of U. altissima were encapsulated with 3%
sodium alginate prepared in MS liquid medium and 100 mM CaCl2. In regrowth
parameters, encapsulated seeds show adventitious shoot regeneration of 91.0%; 12.6
shoots per synthetic seed on semisolid MS medium supplemented with 10 μM mT
and 2 μM NAA after 15 days of storage in darkness at 25 � 2 �C. In the greenhouse
all the plantlets were 100% successfully acclimatized (Baskaran et al. 2018). Further
refined studies on in vitro propagation and synthetic seed production for U. altissima
are needed to be focused to improve the conservation approach.

6 Future Perspectives

Synthetic seed technique is a boon for the vegetative propagation, preservation, and
long-term conservation of elite germplasm of rare, endangered, and threatened
species. In the present era, synthetic seed has immense applications in the field of
agriculture with its strong aptitude of long-term storage and direct propagation of
seedlings to field level. Plant species with precious elite germplasm with significant
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commercial, medicinal values can be restored for future generations via this
approach. Additionally, those plant species, which are not capable to produce
seed, i.e., seedless species, can be able to propagate by means of synthetic seed
approach. For the exchange of elite plant material from private and public laborato-
ries and to transport across frontiers without spread of disease through aseptic path,
development of synthetic seeds plays a major task by way of direct propagation
behavior from nursery to field. The present scenario of synthetic seed to advance the
innovation in agriculture zone still needs even more practical directed appliances.
From the past few decades to till date, sustainable efforts have been made, but the
relevance on application to conserve the elite germplasm and to restore them back to
natural habitat is not yet channelized properly. Unfortunately, still there is a break-
down of efforts is being faced in concept of above norms. Direct sowing of synthetic
seed in soil or in commercial substrates like compost, vermiculite, etc. is considered
to be major limitations for the practical applicability of this technique. According
to Murashige, synthetic seeds are an encapsulated distinct somatic embryo, a clonal
product that can be utilized as true seed for storage, sowing, and for transport either
in vitro or ex vitro conditions. Encapsulation coat of synthetic seed is measured as
protective shield against drought and pathogens under different ecological factors,
and thus they increase the shelf life of micropropagules. Now, it is well-established
fact that synthetic seed approach is an efficient approach to carry elite germplasm in
it. It also facilitates in polyploidy invention without any genetic recombination
process; thus it holds up a major grip in plant breeding system. In transgenic plants,
synthetic seed production via somatic embryos helps to carry single gene consigned
in somatic cell and inherit to progenies successfully with same aptitude. In view of
research measures, further study has to be carried out to progress non-embryogenic
synthetic seeds to progress cultivation practices for its adaptation under unfavorable
conditions. Even in-depth view is needed for long-term preservation of synthetic
seed, and further priorities have to be oriented to overcome reduced survivability
after storage period. As enlightened above in this chapter, flourishing endeavors
were made by various researchers to recover and advance the eminence of few
important elite plant germplasm with intervention of plant tissue culture and differ-
ent synthetic seed methods. From all the above information, it proclaims that
synthetic seed is a resourceful technology in propagation of plant. Synthetic seed
technique opens up a new avenue for long-term conservation of precious privileged
plant material and further facilitates to overcome extinction of endangered, rare, and
threatened plant species.
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Application of Synthetic Seeds
in Propagation, Storage, and Preservation
of Asteraceae Plant Species

Dariusz Kulus

Abstract The artificial seed technology is one of the most important tools to plant
scientist working with in vitro cultures. Encapsulation can provide a source of
aseptic explant material that can be used if stock plants or in vitro cultures become
infected with microorganisms. Moreover, the application of artificial seeds allows to
maintain gene collections, which cannot be stored in liquid nitrogen. Up-to-date
several studies on 13 Asteraceae genera were performed. It was found that synthetic
seeds are suitable for medium-term storage under refrigeration conditions; however,
long storage periods often lead to viability loss. The composition of the ideal gel
matrix depends on the species and explant type. In general, however, the artificial
endosperm should be supplemented with Murashige and Skoog (1962) salts and
sucrose for in vitro germination. As for the recovery medium, the presence of benzyl
adenine is beneficial. Also direct sowing of synseeds to ex vitro conditions is
possible, provided that the artificial endosperm does not contain any organic com-
pounds. The performed studies confirmed the stability of plants recovered from
artificial seeds on the genetic, cytogenetic, biochemical, and phenotypic levels.
Further research should be carried out to standardize optimum storage technique
for better results and to prolong the artificial seeds viability.

Keywords Artificial seed · Synseed · Sodium alginate · Somatic embryo · Shoot tip ·
Callus

1 Introduction

The horticultural market is represented by numerous plant taxa. Those resources can
be used in food production, medical, aromatic, and ornamental purposes. The
Asteraceae is one of the most evolved, important, and diverse botanical families
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distributed worldwide (Abraham and Thomas 2016). Nowadays, biotechnology-
based methods are applied with the members of this family for various purposes
(Teixeira da Silva and Kulus 2014). Synthetic seeds, i.e., artificially encapsulated
plant tissues, can be utilized in the propagation, storage, and protection of the
Asteraceae species. Numerous publications in this area are available.

The aim of this review was to summarize some information from the past decade
on the application of artificial seeds with medicinal, ornamental, and threatened plant
species of the Asteraceae family.

1.1 Asteraceae: Brief Description of the Family

The Asteraceae (previously Compositae) is a botanical family comprising 43 tribes,
1600–1700 genera, and about 24,000–30,000 species, which makes it one of the
largest botanical families, representing approximately 10% of all flowering plants
worldwide (Abraham and Thomas 2016). It is also known as sunflower, thistle, or
daisy family. Its members exhibit a diversity of life forms, including annual,
biennial, or perennial herbs, shrubs, trees, scramblers, as well as succulent and
aquatic plants, which occupy almost every environment and continent except Ant-
arctica (Bisht and Purohit 2010; Abraham and Thomas 2016). The Asteraceae
includes ornamental, edible, noxious, medicinal, endangered, and invasive species
(Achika et al. 2014). Many plants of this family are widely overexploited for various
purposes (mainly folk medicine), and hence there is an urgent need for standardizing
efficient propagation and preservation methods of genetic resources. The synthetic
seed technology is a promising solution for both those issues.

1.2 Synthetic Seeds: Basic Concepts

The concept of synthetic seeds, also known as artificial seeds, manufactured seeds,
or synseeds, was developed in the 1970s for potato (Solanum tuberosum L.) by a
professor of biology and co-founder of the famous medium—Toshio Murashige
(Murashige 1977). Synthetic seed consists of either a hydrated or dehydrated
explant, naked or covered with a protective polymeric bead. The later approach is
much more popular with Asteraceae. Primarily, only somatic embryos were encap-
sulated, but currently, the definition of artificial seeds is much wider (Gantait et al.
2015; Nic-Can et al. 2015). The biological material used for this purpose can be any
organ or tissue that is able to reproduce the complete plant. This may include zygotic
embryos, embryonic axes, shoot tips, axillary or adventitious buds, meristems, and
even callus (Reddy et al. 2012). Explants are usually embedded in sodium alginate
(NaC6H7O6)—a polysaccharide composed of homopolymeric blocks of (1-4)-linked
β-D-mannuronate and α-L-guluronate residues, extracted from the cell walls of brown
algae thrown to the shores of the Atlantic. Because of nontoxic, inert, cheap, and
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easily manipulable qualities, alginate is the most commonly applied polymer for the
immobilization of plant cells (Sudarshana et al. 2013). In the presence of divalent
cations, e.g., calcium, ion exchange occurs resulting in the alginate polymerization
to a hard bead with rigid structure and large pore size (insoluble in water) that
protects the explant (Kakita and Kamishima 2008). By adding nutrients, such as
macro- and microelements, vitamins, etc., an artificial endosperm is formed that
provides the explant with good conditions for growth, both in vitro and ex vitro. In
the latter case, however, it is necessary to cover the synseed with an additional
fungicidal layer, as the matrix is also a suitable medium for microbial contamination
development.

Synthetic seeds combine the advantages of clonal and generative reproduction
(Alatar and Faisal 2012). They facilitate the manipulation of explants and their short-
and medium-term storage and transport and are used in large-scale production at low
cost (Reddy et al. 2012). Due to their small size, 2–3 mm in diameter, artificial seeds
can be stored in a Petri dish, vial, or other vessel, in minimum volume, i.e., 20–30
pieces, in a single tube. After adding the dehydration step (chemical and/or physi-
cal), synseeds are also used in cryopreservation, i.e., storage in liquid nitrogen at
�196 �C (Kulus and Zalewska 2014a). An alginate-gelled matrix surrounding an
explant provides the mechanical support needed to protect the tissue within encap-
sulation medium during long-term storage (Sujatha and Kumari 2008). This helps to
preserve germplasm, which in turn plays an important role in the maintenance and
management of plant genetic resources (Geetha and Gopal 2009; Kulus 2016).

2 Application of Synthetic Seed Technology with Asteraceae
Family

Synthetic seeds have been applied with numerous Asteraceae plant species
(Table 1). Nodal segments are the most often encapsulated explants, although
shoot tips, axillary buds, or even whole microshoots are also used for this purpose.
Only three protocols described the possibility of producing synseeds with somatic
embryos, and one with callus.

The optimal sodium alginate and calcium chloride concentration for bead pro-
duction, as well as germination medium composition, may change with different
explant types in addition to different plant species. Moreover, differences in ideal
sodium alginate concentration may also vary in terms of chemical commercial
source, due to the difference in pore size of Na-alginate (Sharma and Shahzad 2014).
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Table 1 Application of synthetic seed technology in various Asteraceae species

Plant material Procedure Germination Remarks References

Ajania pacifica
‘Bengo’
7-day-old shoot
tips, 2 mm in
length

Single-node
explants cultured on
MS medium with
3% sucrose (7 days)
! shoot tips coated
in 3% Na-alg.
(10 min) + MS salts
+3% sucrose !
polymerization in
100 mM CaCl2
(30 min) ! osmotic
dehydration in
0.3–0.9 M sucrose
(5 days) ! air des-
iccation (4 h; 41%
MC) ! culture on
MS medium with
1.11 μM BA or
1.16 μM KIN for
30 days at 25 � 1 �C
in light (16-h
photoperiod)

70–90%
survival
30%
germination

The presence of the
artificial matrix
improved the quality
of the shoots, but
dehydration had a
deleterious effect on
their germination.
Rooting was similar
with the untreated
control

Kulus and
Abratowska
(2017)

Artemisia
vulgaris
Embryos

Coating in 2%
Na-alg. ! polymer-
ization in 75 mM
CaCl2 (30 min) !
culture on MS
medium with
4.33 μM GA3 and
2.85 μM IAA and
40 mg�L�1 ascorbic
acid for 30 days at
22 �C in dark

90.0% Development of
multiple shoots from
a single synthetic
seed was reported.
The regenerated
plantlets were trans-
ferred to sterile soil
for hardening and
acclimatization in
the field

Sudarshana
et al. (2013)

Nodal segments Coating in 2%
Na-alg. ! polymer-
ization in 50 mM
CaCl2 (20 min) !
culture on MS
medium with
4.9 μM 2iP for 0, 20,
40 and 60 weeks at
5 �C in dark

85.0% Recovery after 1–-
3 months, depending
on the length of the
storage time. Nodal
segments that were
stored for 40 and
60 weeks grew
slower than those
not refrigerated or
stored for 20 weeks

Sujatha and
Kumari
(2008)

Atractylodes
macrocephala
Axillary buds

Coating in 2.5%
Na-alg. and 2.85 μM
IAA ! polymeriza-
tion in 2% CaCl2
(9 min) ! culture at
25 �C in light (16-h
photoperiod)

100% sur-
vival
82.0%
germination

Germination of syn-
thetic seeds with the
addition of ½ MS
salts into the matrix
was similar to that of
synseeds with the
addition of distilled
water

Wang et al.
(2011)

(continued)
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Table 1 (continued)

Plant material Procedure Germination Remarks References

Chrysanthemum
� grandiflorum
Shoot tips
(non-disinfected)

Coating in 2.5%
Na-alg. (1 min) !
polymerization in
100 mM CaCl2
(30 min) ! sowing
on vermiculite for
4 weeks at 20� 4 �C
and 80% RH in nat-
ural light

70.0% All used chemicals
were non-autoclaved

Hung and
Dung (2015)

Shoot tips Coating in 3%
Na-alg. (10 min) !
polymerization in
100 mM CaCl2
(30 min) ! culture
for 90 days at
24 � 2 �C in light
(16-h photoperiod)

82.5–97.5% Presence of the bead
inhibited spontane-
ous rooting, which is
otherwise common
in chrysanthemum
cultured in vitro

Kulus and
Zalewska
(2014b)

Cineraria
maritima
Microshoots
(3–5 mm in
length)

Coating in 3%
Na-alg. +½MS salts
+ 1.5% sucrose !
polymerization in
3% CaCl2 (25 min)
! storage for
6 months at
25 � 2 �C with
SDW spraying in
15-day intervals !
germination on
semisolid MS
medium

82.4% A total of 90%
plants survived
acclimatization and
transfer to the
greenhouse

Srivstava et al.
(2009)

Eclipta alba
Shoot tips
Nodal segments

Coating in 3%
Na-alg. and 3%
sucrose ! polymer-
ization in 1.11%
CaCl2 (30–45 min)
! culture on MS
medium for 8 weeks
at 4 �C in reduced
light
(1.5 μmol m�2 s�1)
! recovery at
20 � 2 �C, in light
(18-h photoperiod;
30 μmol m�2 s�1)

82.6–85.4% Growth of encapsu-
lated explants found
5–8 days after trans-
ferring to recovery
conditions with no
PGRs
Nearly 100% sur-
vival after acclimati-
zation to ex vitro
conditions was
reported

Ray and
Bhattacharya
(2010)

Nodal segments Coating in 3%
Na-alg. ! polymer-
ization in 100 mM
CaCl2 (20–30 min)
! storage on MS
medium with
0.88 μMBA for 60 d

51.2% Shoots and roots
emerged from
encapsulated
explants after 1 and
2 weeks of culture,
respectively
Non-encapsulated

Singh et al.
(2010)

(continued)
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Table 1 (continued)

Plant material Procedure Germination Remarks References

at 4 �C ! recovery
on MS medium with
0.88 μM BA

explant did not sur-
vive storage

Gerbera
jamesonii

Coating in 3%
Na-alg. + 3%
sucrose + 8.88 μM
BA +2.69 μM NAA
! polymerization in
100 mM CaCl2
(30 min) ! culture
on MS medium for
30 days at 25� 1 �C,
in light (16-h
photoperiod)

The synthetic seeds
could have been
sawn directly to gar-
den soil with 90 and
83% germination
rates (microshoots
and somatic
embryos, respec-
tively)
The survival rate of
plantlets reached
75% after transfer-
ring to the
greenhouse

Taha et al.
(2009)

Microshoots 75.0%

Somatic
embryos

63.2%

Glossocardia
bosvallea
Embryoids

Embryogenic callus
induced on leaves on
MS medium with
7.77 μM BA
+5.37 μM NAA !
embryo coating in
2.5% Na-alg. !
culture on MS
medium for 25 days
at 25 � 2 �C

67.0% Storage over 25 days
decreased the viabil-
ity of the encapsu-
lated embryos, and
no germination was
reported from the
capsules stored for
30 days

Geetha and
Gopal (2009)

Hypochaeris
radicata

Coating in 3%
Na-alg. ! polymer-
ization in 35 mM
CaCl2 (30 min) !
culture on MS
medium with
8.88 μM BA for
4 months at 25 �C in
light (16-h
photoperiod)

Storage longer than
4 months decreased
the regeneration
ability of explants

Senguttuvan
and
Subramaniam
(2014)

In vitro leaf 82.5%

In vitro root 32.9%

In vitro callus 51.1%

Sphagneticola
calendulacea
Nodal segments

Coating in 2.5%
Na-alg. (10 min) !
polymerization in
75 mM CaCl2
(30 min) ! culture
on semisolid ½
MS + 1.5% sucrose
for 14 days at
25 � 2 �C in light
(16-h photoperiod)

84.4% Acclimatization to
ex vitro conditions
on sand, soil, and
vermicompost
(1:1:1; w/w) with
89% survival
frequency

Kundu et al.
(2018)

Spilanthes
acmella
Shoot tips

Coating in 3%
Na-alg. ! polymer-
ization in 100 mM

50.0% The addition of MS
nutrients into gel
matrix improved

Singh et al.
(2009)

(continued)
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Table 1 (continued)

Plant material Procedure Germination Remarks References

CaCl2 (20–30 min)
! culture on liquid
MS medium for
60 days at 4 �C in
dark

shoot and root
emergence

Shoot tips Coating in 3%
Na-alg. ! polymer-
ization in 100 mM
CaCl2 (30 min) !
culture on MS
medium + 4.44 μM
BA for 4 weeks at
4 �C

92.0% MS germination
medium gave supe-
rior sprouting results
followed by Nitsch
and Nitsch (1969)
and B5 media
Storage over
4 weeks leads to a
significant synseed
viability loss with
60 and 20% germi-
nation rates after
10 and 12 weeks,
respectively

Geetha et al.
(2009)

Nodal segments Coating in 4%
Na-alg. ! polymer-
ization in 100 mM
CaCl2 (20–25 min)
! culture on MS
medium + 1 μM BA
+ 0.5 μM NAA for
6 weeks at 25� 2 �C
in light (16-h
photoperiod)

87.8% Transfer to soil with
90% success rate

Sharma et al.
(2009a)

Spilanthes
mauritiana
Nodal segments

Coating in 3%
Na-alg. + MS salts +
3% sucrose ! poly-
merization in
100 mM CaCl2
(20 min) ! storage
in beakers moist
with SDW for
4 weeks at 4 �C !
germination on ½
MS medium

80.0% Produced plantlets
were covered with
glass bottles and
acclimatized for
4 weeks with 90%
survival rate and no
morphological
alternations

Sharma et al.
(2009b)

Nodal segments Coating in 4%
Na-alg. + MS salts +
3% sucrose ! poly-
merization in
100 mM CaCl2
(20–25 min) ! ger-
mination on semi-
solid MS medium +
1 μM BA + 0.5 μM

77.4% Longer storage
periods led to the
conversion rate
decrease (41% after
8 weeks)
Explants coated with
encapsulation matrix
prepared in MS
medium were more

Sharma and
Shahzad
(2014)

(continued)
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Table 1 (continued)

Plant material Procedure Germination Remarks References

IAA for 2 weeks at
4 �C

viable in comparison
to water-based ones

Stevia
rebaudiana
Nodal segments

Coating in 5%
Na-alg. ! polymer-
ization in 50 mM
CaCl2 ! culture on
MS medium with
0.91 μM TDZ for
8 months at 25 �C

77.0% 87% acclimatization
efficiency
No morphological
changes reported

Lata et al.
(2014)

Nodal segments
(0.2–0.5 cm in
length)

Coating in 4%
Na-alg. ! polymer-
ization in 75 mM
CaCl2 (30 min) !
germination on MS
medium for 8 days

60.0% Acclimatization in
soil with solarite and
vermiculite (2:1:1)
for 10–15 days with
60–70% survival
rate

Khan et al.
(2013)

Shoot tips Coating in 3%
sodium alginate !
polymerization in
2.5% CaCl2 ! cul-
ture on MS medium
+ 8.88 μM BA +
4.92 μM IBA for
30 days at 4 �C in
dark

70% Conversion within
3 weeks. Acclimati-
zation in peat and
moss (1:1) substrate

Andlib et al.
(2011)

Shoot tips Coating in 4%
Na-alg. ! polymer-
ization in 100 mM
Ca(NO3)2 (30 min)
!culture on MS
medium + 1.11 μM
BA for 5 weeks at
20 �C in dark

100% The addition of
osmotic agents into
the culture medium
was not an effica-
cious procedure

Nower (2014)

Taraxacum
pieninicum
Shoot tips

Coating in 3%
Na-alg. ! polymer-
ization in 100 mM
CaCl2 (25 min) !
culture on MS
medium at 4 � 1 �C
in dark

96.7% Non-stored (control)
synthetic seeds were
able to conversion
into the whole plant
in 46.7%
The produced shoots
were successfully
rooted on the
PGR-free MS
medium and accli-
matized to ex vitro
conditions

Kamińska
et al. (2018)

2iP 2-isopentenyladenine (6-(γ,γ-dimethylallylamino)purine), B5 Gamborg et al. (1968) medium,
BA benzyl adenine, GA3 gibberellic acid, IAA indole-3-acetic acid, KIN N6-furfuryladenine (kine-
tin),MCmoisture content,MSMurashige and Skoog (1962) medium, ½MS half-strength MS, NAA
1-naphthaleneacetic acid, Na-alg. sodium alginate, PGRs plant growth regulators, RH relative
humidity, SDW sterile distilled water, TDZ thidiazuron
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2.1 Ajania

The Ajania genus is a novelty on the horticultural market, valued also in medicine.
To date, only one paper focused on the possibility of producing synthetic seeds of
Ajania pacifica (Nakai) Bremer et Humpries ‘Bengo’ for the propose of long-term
storage (Kulus and Abratowska 2017). In this protocol, shoot tips were encapsulated
in 3% calcium alginate, as described originally by Lynch in 2002. Next, the beads
were dehydrated in sucrose gradient (0.3–0.9 M) for 5 days and then desiccated for
0–5 h (up to 39% initial moisture content). Afterwards, the synthetic seeds were
inoculated on various recovery media.

Despite good survival of the synthetic seeds (70–90% after 30 days of culture),
the stimulation of their further growth was problematic, regardless of the recovery
medium, especially after dehydration (germination ~30%). Low dehydration toler-
ance is a serious limitant for long-term storage of biological diversity, as such
material cannot be stored at sub-zero temperatures and has to be recovered quite
often (Kulus and Zalewska 2014a). On the other hand, it was found that the presence
of the alginate bead had a positive influence on the quality of the recovered plantlets,
which had longer shoots and roots and a greater fresh weight as compared with the
control (plantlets produced from naked shoot tips). This could be a result of the
nutrient matrix, stimulating the growth of shoots. The authors suggest that addition
of GA3 (gibberellic aid) into the recovery medium could improve the protocol
efficiency (Kulus and Abratowska 2017).

2.2 Artemisia

Several medicinally active components of Artemisia vulgaris L. have been identi-
fied, i.e., vulgrin, quercetin, coumarins, sesquiterpene lactones, volatile oils, and
insulin. Since the harvest of medicinal plants from their natural habitats is leading to
a depletion of plant resources, the conservation of these valuable genotypes is
imperative. Therefore, research is conducted for cheap mass propagation of elite
artemisia genotypes to meet the ever-increasing demand of the pharmaceutical
industry (Sudarshana et al. 2013).

Low-temperature storage can greatly minimize the cost of maintaining germ-
plasm collections because of the reduced need for manual labor due to less frequent
subculturing. It also lessens the possibility of genetic variation occurrence (Kulus
and Zalewska 2014a). The temperature requirement for optimum viability differs
among species. In general, 4 �C is reported to be most suitable for alginate bead
storage (Sharma and Shahzad 2014). Therefore, in the study by Sujatha and Kumari
(2008), nodal segments (4–6 mm long) were coated with 1, 1.5, 2, 2.5, and 3%
sodium alginate. The synthetic seeds were then stored at 5 � 1 �C for 0, 20, 40, and
60 weeks. Since explant growth is not desirable during storage, therefore, this step
was carried out in dark. The highest (2.5 and 3%) sodium alginate concentrations
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were difficult to decant, and the latter one significantly reduced the length of roots
produced. This phenomenon can be explained in two ways: (1) the actual physical
barrier of the denser matrix may have delayed the regeneration of the root or (2) the
higher concentrations of sodium from sodium alginate caused a change in water
potential, resulting in less water for root growth. On the other hand, low concentra-
tions (1.0 and 1.5%) of sodium alginate coated the nodal segments poorly, probably
due to a reduction in its gelling after exposure to high temperature during autoclav-
ing. Therefore, an optimum 2.0% sodium alginate was determined, as the produced
beads held the nodal segments in place and still provided enough resistance to
external mechanical pressure for ease of handling. All encapsulated nodal segments
survived 20 weeks of 5 �C storage. Moreover, 85% of encapsulated nodal segments
survived refrigerated storage for 60 weeks and, after additional 3 months on germi-
nation medium, the nodal segments produced normal shoots. In comparison, after
4 weeks of storage at 5 �C, the control (naked) nodal segments were dead and had
completely dried up (Sujatha and Kumari 2008).

In another study by Sudarshana et al. (2013), encapsulated somatic embryos of
A. vulgaris showed signs of germination after 6–7 days of culture on MS (Murashige
and Skoog 1962) medium. The efficiency of the protocol was again dependent on the
sodium alginate concentration. It was reported that beads formed with high concen-
tration (4%) of sodium alginate, dropped in 75–80 mM CaCl2 (calcium II chloride)
for 20–30 min, were too hard for somatic embryos to germinate (53% conversion).
On the other hand, 84% plantlet development rate was reported after coating the
embryos with 2% sodium alginate. Moreover, embryo conversion frequency
depends on storage period and temperature. Higher germination of encapsulated
explants was recorded at the shortest (1 month) storage period, i.e., 64.3, 71.0, and
88.7% conversion at 4 �C, 20 �C, and 25 �C, respectively. With further increase in
storage period, a decline in germination percentage was reported. This decrease may
be due to oxygen deficiency and drying of gel capsule (Sudarshana et al. 2013).

2.3 Atractylodes

Atractylodes macrocephala Koidz. is a commonly used Chinese medicinal plant. It
has long been cultivated without variety breeding, which results in the gender
degradation, the decline in the output and quality of the plants, and the instability
of its chemical components (Wang et al. 2011). Tissue culture technique can be used
in rapid propagation of A. macrocephala, but high costs and inconvenient storage
and transport are serious limitants of this approach (Kulus 2015a). Synthetic seed
technique allows to overcome those problems.

In the study by Wang et al. (2011), nodal segments and axillary buds were
encapsulated in sodium alginate (2–3.5%) with an addition of various PGRs (plant
growth regulators) and nutrients into the synseed endosperm. The axillary buds were
superior to stem fragments because they had fully developed “growing points” that
were easily activated in the presence of sufficient external nutrients. It should be
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noticed though that endogenous phytohormones of A. macrocephala buds were
inadequate to stimulate the growth of synthetic seeds, and therefore some nutrients
must be added into the gel matrix. The cytokinin BA (benzyl adenine) promoted the
seeds germination at early stage, but it inhibited root regeneration. On the other
hand, IAA (indole-3-acetic acid) auxin promoted both the seed’s germination and
rooting. Also, the addition of carbon source, e.g., sucrose or glucose, or ½ (half-
strength) MS nutrients into the artificial endosperm affected positively the seed’s
germination and rooting steps (82% conversion), which were additionally signifi-
cantly shortened as compared to water-based gelling matrix.

2.4 Chrysanthemum

Chrysanthemum � grandiflorum/Ramat./Kitam. (syn. C. morifolium Ramat.) is the
second most popular ornamental plant species on the horticultural market. Due to
self-incompatibility and (partial) sterility, the species does not produce viable seeds
or fertile pollen; therefore, in vitro cultures are commonly applied with this plant for
the purpose of mass reproduction and breeding (Teixeira da Silva and Kulus 2014).
The synthetic seed technology was first developed with chrysanthemum in 2005
(Pinker and Abdel-Rahman 2005). It is also widely utilized for cryopreservation of
the species in the encapsulation-dehydration and encapsulation-vitrification tech-
niques (Jeon et al. 2015; Kulus 2015b).

Since the species is susceptible to mutation occurrence (there are several hot spots
identified in the chrysanthemum genome); therefore, the use of meristematic
explants is more preferred to produce true-to-type plants (Zalewska et al. 2011).
Kulus and Zalewska (2014b) investigated the influence on various germination
media on the morphogenetic potential of encapsulated shoot tips of four chrysan-
themum cultivars of the Lady group. The highest germination (89%) of the encap-
sulated shoot tips after 90 days of storage in culture was reported on cytokinin
(0.44 μMBA or 0.46 μMKIN)-supplemented medium, with no differences in regard
to cultivar or culture duration. There was no influence of the medium composition on
the morphometric parameters of the plants (i.e., shoot and root length or weight) in
most cases. However, the presence of BA stimulated the proliferation of multiple
shoots from a single explant. On the other hand, KIN (kinetin) was more effective in
stimulating spontaneous rooting of shoots. Nonetheless, it was reported that encap-
sulation in general had a negative impact on rooting and an additional transfer of the
recovered shoots on the IAA-supplemented (11.42 μM) medium was necessary to
obtain 75–90% rhizogenesis efficiency.

Usually artificial seeds are produced in sterile conditions, in a laminar airflow
chamber, which requires considerable costs associated with disinfection, tissue
culture experts, purchase of expensive facilities, equipment and consumables, and
further acclimatization of micropropagated plantlets (Kulus 2015a). All of this
restricts the practical application of the encapsulation technology. The utilization
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of non-aseptic conditions, i.e., ex vitro direct sowing, can greatly increase the
potential for large-scale production of synthetic seeds.

For example, Pinker and Abdel-Rahman (2005) achieved 45% plantlet develop-
ment (i.e., formation of shoots with roots) from double-layered synseeds on
non-sterile vermiculite substrate when the second layer of calcium alginate
contained only water. Numerous contaminations were reported when mannitol
and/or MS medium were incorporated into the second layer. This is because despite
MS macro- and microelements contain inorganic compounds, however, vitamins
and sugar added together with MS salts are organic substances which can stimulate
microbial contamination development.

Also Hung and Dung (2015) made an attempt of preparing and sowing synseeds
of chrysanthemum in non-aseptic conditions. They embedded in vivo-grown shoot
tips in 2.5% calcium alginate which were then sowed on vermiculite substrate and
maintained in a polyethylene propagation chamber. It was reported that the presence
of MS vitamins and 3% sucrose, either in the artificial endosperm alone or in both
endosperm and vermiculite, caused bacterial and fungal contamination (already in
the first week of sowing) in all synseeds and complete plant growth inhibition. On
the other hand, in the absence of those organic compounds in both the endosperm
and commercial substrate, chrysanthemum explants started to sprout into single
shoots in the first week after sowing, and rapid rooting was detected within
2–4 weeks. Complete plantlets (70% conversion rate) were produced after
5 weeks. Moreover, removal of organic compounds from the gelling matrix and
substrate stimulated the development of plantlets with more leaves, longer shoots
and roots, and greater fresh and dry biomass. The presence of MS vitamins and 3%
sucrose in vermiculite only resulted in a reduced contamination level (49%) and also
lower plantlet formation frequency (34%). The findings by Pinker and Abdel-
Rahman (2005) and Hung and Dung (2015) suggest that elimination of organic
compounds is essential for wide-scale in vivo application of artificial seeds witch
chrysanthemum.

Physical barrier provided by the gel matrix can also be used in the storage of
explants at cryogenic temperatures, c.a. �196 to �135 �C. Zalewska and Kulus
(2014) and Kulus (2018) reported that chrysanthemum shoot tips can be precultured
for 7 days on the MS medium supplemented with 10 μM ABA (abscisic acid; which
increases the explant stress resistance), encapsulated in 3% calcium alginate, and,
after further osmotic and physical dehydration (to a level of approximately 30–40%
initial moisture content), stored in liquid nitrogen. Water removal is necessary to
avoid lethal ice (re)crystallization during cooling and rewarming. As for the recov-
ery, cryopreserved material should be transferred to a water bath at 38 � 1 �C for
3 min and, next, cultured on the MS medium supplemented with 1.16 μM KIN
(Zalewska and Kulus 2013). By those means, indefinitely long-term storage of
biological material is possible, without cell damage or morphology alternations
(Kulus et al. 2018).
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2.5 Cineraria

Cineraria maritima L., syn. dusty miller or silver dust, is an important annual exotic
medicinal herb and ornamental species with the need of conservation. Typically,
lower temperatures, e.g. refrigeration, (deep)freezing, or cryopreservation, are
recommended for the purpose of biological material storage. However, Srivstava
et al. (2009) developed a protocol for medium-term storage at room temperature of
encapsulated microshoots (shoot tips and nodal segments) of the species. After
6 months of storage at 25 � 2 �C, the encapsulated C. maritima explants were
capable of recovery within 2 weeks of subsequent culture. The only requirement was
moisturizing the environment by spraying the stored synseeds with sterile distilled
water.

The multiplication rate (number of new shoots produced from a single donor
plant) is one of the most important factors determining the micropropagation effi-
ciency. Among the encapsulated C. maritima explants, 33 and 28% revealed mul-
tiple and single shoot formation per encapsulated microshoot, respectively
(Srivstava et al. 2009). The recovery of a single or multiple shoots from one
encapsulated explant results from the presence of one or more primordia on the
explant, as observed with chrysanthemum (Kulus et al. 2018). Unfortunately, the
authors did not provide the exact number of multiple shoots produced.

Usually, plantlets produced in the micropropagation process are of high quality
due to lack of natural pathogens, presence of all required nutrients, etc. However,
shoot hyperhydration or callusing is among the major concerns of in vitro-produced
plant material. In the study by Srivstava et al. (2009), only 9% of growing shoots
showed some form of abnormal phenotype, e.g., hyperhydration.

Another issue is the often reported problem with spontaneous rhizogenesis and
the necessity of including an additional rooting step to the micropropagation proto-
col (Kulus and Zalewska 2014a). Also in the study with C. maritima, only 11% of
developing shoots exhibited simultaneous rhizogenesis. As for the non-rooted
shoots, root development was induced after 2–3 weeks of culture on root inducing
medium, i.e., MS with 5.37 μM NAA (1-naphthaleneacetic acid) (Srivstava et al.
2009). Auxins, such as NAA, IAA, or IBA (indole-3-butyric acid), are typically
engaged in the rooting process.

Unlike natural seeds, artificial seeds should guarantee the stability and uniformity
of the plants. The genetic stability of the recovered from synseeds microshoots of
C. maritima was assessed using RAPD (Randomly Amplified Polymorphic DNA)
markers. Among the 14 amplified primers, 7 generated polymorphic patterns (20.3%
of scorable bands were polymorphic). Still, clustering analysis of the RAPD profiles
revealed a mean similarity coefficient of 0.944. Therefore, the genetic stability of
plants produced from encapsulated microshoots following 6 months of storage was
confirmed (Srivstava et al. 2009).
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2.6 Eclipta

Eclipta alba (L.) Hassk is a popular herb of tropical, subtropical, and temperate
climate. It is currently overexploited from the wild to meet up the pharmaceutical
demand as a treatment for liver diseases and skin and memory disorders. Moreover,
it naturally grows in wet and moist habits, which makes it vulnerable to diseases and
pests. For those reasons, it is necessary to develop alternative reproduction methods
of the species to avoid using contaminated pharmaceutical raw material (Singh et al.
2010). Synthetic seeds can be used to exchange germplasm of elite genotypes and
axenic plant material between laboratories and pharmaceutical companies.

In the study by Ray and Bhattacharya (2010), shoot tips and nodal segments were
encapsulated in 3% calcium alginate. After storage and recovery on the MS medium,
the explants formed first shoots and then roots. Therefore, one-step conversion into
full plantlets was achieved without the need of adding PGRs. Both explant types
demonstrated similar utility for encapsulation. The artificial seeds incubated at 12 �C
and 20 �C could not be stored past 4 weeks, due to the rapid revival of metabolic
activities in encapsulated explants. Storage at 4 �C, on the other hand, was possible
for even 8 weeks with 82.6–85.4% conversion frequency. Reduction of the sucrose
concentration in the artificial matrix from 3 to 1–2% extended the storage period up
to 15 weeks (40–44% conversion rate), but lower carbohydrate concentrations had a
deleterious effect. The recovered plantlets were morphologically similar with the
donor plants. This uniformity was confirmed by nine RAPD amplified primers (Ray
and Bhattacharya 2010).

In another study, nodal segments from in vivo-grown plants of E. alba were used
to initiate in vitro cultures. The explants were disinfected with 70% ethanol (30 s)
followed by 0.05% mercuric chloride (3–4 min) and rinsed four to five times with
sterile distilled water under aseptic conditions. Next, the nodal segments were
embedded in various concentrations of sodium alginate (2.0–5.0%) and calcium II
chloride (20–150 mM). After polymerization, the beads were washed three to four
times with sterile distilled water. This is a typical step required to remove the excess
of CaCl2 and stop further hardening of the bead. The beads were stored in cold room
on various media, i.e., PGR-free MS containing 0.88 μM BA or 0.92 μM KIN. A
gelling matrix of 3.0% sodium alginate and 100 mM CaCl2 was found most suitable
for isodiametric bead formation. The use of double distilled water for preparing
artificial endosperm reduced the shoot development as compared to liquid MS
medium (devoid of calcium). Conversion into complete plantlets occurred after
4 weeks of culture, irrespectively of medium composition (93.2–100%). Moreover,
encapsulated explants exhibited higher conversion rate in comparison to
non-encapsulated ones (90.1–93.8%). The recovered plantlets with six to eight
fully expanded leaves (3–5 cm in length) were transferred to plastic pots with soil
and covered with a polyethylene bag to maintain high humidity and irrigated with
tap water (Singh et al. 2010). Additional cover with mesh is also often applied to
protect plants from the sunlight, as microshoots often have dysfunctional stomata
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and reduced cuticle thickness. Acclimatization efficiency of plantlets reached 90%
and no morphological variation was reported (Singh et al. 2010).

2.7 Gerbera

Gerbera daisy (or Barberton Daisy) is aimed at producing plants at a very high
multiplication rate, as the species is in high demand worldwide. In the study by Taha
et al. (2009), microshoots of G. jamesonii Bolus ex Hooker were produced from
petiole explants cultured on MS medium with 13.32 μM BA, and the indirect
somatic embryos were induced from leaf explants cultured on MS medium fortified
with 4.44 μMBA and 0.54 μmNAA with the addition of 50 mM L-proline. Next, the
explants were coated with sodium alginate (2.0–6.0%) and hardened in CaCl2
(25–125 mM). It was reported that the most optimal sodium alginate concentration
was 3 and 4%, and the best CaCl2 solution concentration was between 100 and
125 mM.

Encapsulated microshoots responded somewhat better to encapsulation than
somatic embryos. It was necessary, however, to fortify the artificial endosperm
with not only MS medium salts (calcium-free) and 3% sucrose but also with
8.88 μM BA and 2.69 μM NAA. Otherwise, the germination and survival rates of
the synthetic seeds were lower as compared with the non-coated control. The
encapsulated microshoots and somatic embryos could have been stored at 4 �C for
60 days without viability loss (90 and 70%, respectively). Three-month storage also
demonstrated good germination at 77% (encapsulated microshoots) and 60%
(encapsulated somatic embryos). Longer storage, however, leads to a continuous
decline in the synseed germination rate to 13 and 7% after 180 days. This is probably
due to inhibited respiration of plant tissue by alginate. No phenotypic changes of the
recovered plantlets were reported (Taha et al. 2009).

2.8 Glossocardia

The need for medicinal and aromatic plants of the Glossocardia genus has increased
in the recent years because of the renaissance of natural, plant-dependent pharma-
ceuticals and cosmetic industries, which harvest plant mostly from their natural
habitat (Alatar et al. 2017). Therefore, in vitro multiplication and ex situ conserva-
tion, supported also by the artificial seed technology, are important.

Composition of the gel matrix has an essential impact on the synseeds’ germina-
tion capacity and should be carefully optimized. Ion exchange between Na+ and Ca2+

determines its bonding, as well as the degree of rigidity of synthetic seeds (Kundu
et al. 2018). A too low concentration of sodium alginate may prolong bead forming
time; not provide enough protection of the explant, as beads are without a definite
shape and are too soft to handle; or lead to tissue hyperhydration. On the other hand,
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too high concentration may delay or even suppress the growth of plant material and
limit the uptake of nutrients. Therefore, alginate concentration (1–4%) in 50–100mM
CaCl2 range needs to be optimized depending on the explant (Rihan et al. 2017).

Geetha and Gopal (2009) investigated the influence of various sodium alginate
concentrations (1.5–3.5%) and recovery media on the germination of synthetic seeds
from embryoids ofGlossocardia bosvallea (L.f.) DC—a medicinal annual herb. The
best result (67% germination) was obtained in 2.5% sodium alginate, i.e., a concen-
tration slightly lower than traditionally used (3%). On the other hand, germination
was nil in the synthetic seed encapsulated with 1.5 and 3.5% sodium alginate. As for
the recovery medium, the frequency of artificial seeds germination in MS medium
was significantly higher than that of seeds cultured on Nitsch and Nitsch (1969)
medium. Germinated synseeds with well-developed shoot and roots were success-
fully acclimatized to greenhouse conditions.

2.9 Hypochaeris

Hypochaeris radicata L. (hairy cat’s ear) is an edible, perennial herb native to
South Africa. Due to the presence of many bioactive compounds of medicinal
importance, the species is used in the treatment of jaundice, rheumatism, dyspepsia,
constipation, hypoglycemia, and kidney-related problems (Jamuna et al. 2014).
Unfortunately, the species seed longevity is poor under natural conditions, hence
affecting negatively the population sizes. The production of synthetic seeds and
sowing them during appropriate period is a possible solution of this problem.
Preparation of synseeds, however, requires proper explant selection.

Senguttuvan and Subramaniam (2014) produced artificial seeds of H. radicata
from in vitro-derived leaf, root, and callus (leaf-derived) explants. Among the tested
sodium alginate concentrations (1–6%); 3% was optimal. The highest shoot regen-
eration (over 86%) was reported with encapsulated leaf segments stored at 25 �C in
the MS medium supplemented with 8.88 μM BA (which had a superior impact on
shooting in comparison to other PGRs). Over 88% of explants produce multiple
shots, with a mean 15.6 shoots per explant. This may indicate that BA is an
important growth regulator for caulogenesis initiation, as observed by other
researchers (Kulus and Zalewska 2014b; Kulus and Abratowska 2017). Interest-
ingly, explant shooting frequency was lower if stored at 4 �C, regardless of the
storage period and explant type. Rooting of shoots was well performed (73.5%
efficiency) on MS medium with 5.37 μM NAA, which was more effective as
compared to IAA and IBA in terms of rooting rate, number of roots per shoot, and
root length. The in vitro-regenerated plantlets were acclimatized successfully (70%
survivability) to glasshouse conditions using garden soil, sand, and vermicompost
(1:1:1 v/v) (Senguttuvan and Subramaniam 2014).
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2.10 Sphagneticola

Sphagneticola calendulacea (L.) Pruski is a perennial herb. The unsustainable use of
this medicinal species from the wild has led to its habitat threat. Moreover, the low
seed viability and seed-borne diseases make traditional propagation inefficient. The
synthetic seed technology, on the other hand, is a dependable system enabling
transportation and storage of explants and, thus, satisfying the needs of the pharma-
ceutical industry (Kundu et al. 2018).

In the study by Kundu et al. (2018), various sodium alginate (2–4%) and calcium
II chloride (75 and 100 mM) concentrations were evaluated. The ideal beads were
produced through a combination of 2.5% sodium alginate polymerized with 75 mM
CaCl2. As for the recovery medium, the full-strength MS had been reported to be
optimum by many researchers (Geetha and Gopal 2009; Kamińska et al. 2018).
However, with S. calendulacea the highest regeneration rate was achieved on ½MS
medium. Furthermore, liquid ½MS medium was superior in respect to regrowth rate
(88.8%) than semisolid ½MS (86.6%). This is probably a result of better absorption
of nutrients from the liquid state.

One of the biggest problems of encapsulated explants is the conversion into full
plantlets, i.e., simultaneous caulogenesis and rhizogenesis. Media without PGRs,
regardless of state and strength, were unable to stimulate shooting and rooting of the
explants at the same time. On the other hand, ½ MS with the addition of various
concentrations of BA at 0.44–8.88 μM and NAA at 1.34–5.37 μM allowed for
one-step formation of complete plantlets. Optimal combination (4.44 μM BA and
1.34 μMNAA) provided 91.1% regeneration, as well as 6.6 shoots and 3.1 roots per
encapsulated nodal segment. It is also beneficial to add sucrose (1.5–3.0%) into the
bead matrix and/or germination medium. Sucrose is a carbohydrate and energy
source for plants in tissue culture, and its deficiency in the medium may completely
inhibit synseed germination. On the other hand, too high carbohydrate concentration
(above 2.5%) may also temporarily suppress explant development which can be used
in short-term conservation of the species desirable genotypes (Kundu et al. 2018).

In the study with S. calendulacea, it was reported that the regeneration rate and
pace (days taken to bead break, 8–14) of artificial seeds decreased slowly with a
prolongation of storage duration, both at 8 and 25 �C. However, this decrease was
much more drastic at the latter temperature (88, 26.7, and 0% regeneration rates after
30, 60, and 90 days, respectively). Moreover, those conditions exhibited a greater
decrease in the mean shoots and root number produced by a single explant. In
comparison, over half of the synseeds stored at 8 �C for 90 days were able to
germinate, confirming the beneficial influence of refrigeration (Kundu et al. 2018).

Sowing of artificial seeds directly in non-sterile condition is a much more cost-
effective practice. The best regeneration frequency (42.2%) of S. calendulacea
synthetic seeds, under ex vitro conditions, was recorded on sand, soil, and
vermicompost (1:1:1, w/w) irrigated with ½ MS salts without sucrose. The
pretreatment of excised node segments on agar-solidified ½ MS medium with
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19.6 μM indole-3-acetic acid (IBA) in dark for 24 h prior to encapsulation facilitated
the explants to form root meristems after sowing.

Evaluating the genetic homogeneity of the recovered plantlets is essential to
conclude the success of a procedure. RAPD and ISSR (inter-simple sequence
repeats) are among the most popular molecular markers due to their simplicity,
relatively low cost, and whole-genome screening ability. In the study by Kundu et al.
(2018), the genetic uniformity of the regenerants from synthetic seeds after 90 days
of storage at 8 and 25 �C was confirmed by those two marker types.

2.11 Spilanthes

Most of the available literature is focused on the synthetic seed production of the
Spilanthes genus: S. acmella (L.) Murr. and S. mauritiana DC.

Spilanthes acmella is a threatened medicinal and pesticidal species, documented
for its antibacterial, antifungal, and antimalarial activity, grown in tropics and
subtropics. Due to the presence of numerous valuable secondary metabolites, the
species is of great demand on the cosmetic and pharmaceutical markets. Hence the
need for large-scale propagation of the species. Unfortunately, traditional reproduc-
tion through seeds is limited by their low viability, seasonal dependency, low
germination rates, and high level of heterozygosity (Devi et al. 2012). Therefore,
developing efficient micropropagation protocols is desired.

Singh et al. (2009) were the first to describe an encapsulation technology of
S. acmella shoot tips (3–5 m in length) excised from in vitro-proliferated shoots. The
encapsulated in 3% calcium alginate explants could be stored at 4 �C up to 60 days.
It was found that the presence of full-strength MS salts in the gel matrix was superior
over the double distilled water for sprouting, although half-strength MS medium was
found best for root growth. Interestingly, the addition of 2.2 μM BA to the artificial
endosperm caused significantly worse plantlet conversion. Shoots and roots broke
the capsule within 1 week; however, conversion into complete plantlets took
4–5 weeks of culture in liquid MS medium. Culture on solid planting media was
less effective. This is beneficial since liquid medium is preferable for
micropropagation as it reduces expenditures; agar is one of the most expensive
media components. An often observed problem is the decline of synseed viability
with increasing storage duration at refrigeration (4 �C), which was also reported by
Singh et al. (2009). The plantlet conversion ability decreased from 97 to 100% after
15-day storage to 50% after 60-day storage. Still, plantlets regenerated from
synseeds were successfully acclimatized to ex vitro conditions (90% survival) in a
mixture of sand and garden soil (1:1) during 30 days.

Even though the described protocol was successful, not many shoot tips can be
excised from a single mother plant. Therefore, utilization of nodal segments with
axillary buds can be more effective, especially with species which do not have a
developed somatic embryo induction protocol.
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Sharma et al. (2009a) found that among the tested sodium alginate and calcium II
chloride concentrations (1–5% and 25–200 mM, respectively), 4% and 100 mM
were optimal for the encapsulation of S. acmella single-node explants in isodiametric
beads. As for the PGRs added to the germination medium (BA with IAA, IBA, or
NAA), the combination of BA and NAA proved to be most efficient; regrowth was
observed after 2–3 weeks of culture. It was possible to store the encapsulated node
segments at 4 �C for even 8 weeks (46% conversion) in parafilm-sealed sterilized
beakers, provided that the encapsulation matrix was enriched with MS salts. Another
possibility was direct sowing of synthetic seeds to ex vitro conditions on Soilrite™
substrate moistened with ¼ (quarter-strength) MS salts (63% conversion rate). This
approach could be useful in developing a cost-effective propagation system for
S. acmella.

In the study by Devi et al. (2012), it was found that the presence of SH salts
(Schenk and Hildebrandt 2002) with 4.44 μM BA in the artificial endosperm
stimulated the formation of longer shoots and roots in comparison to MS medium-
based beads. On the other hand, when IAA (2.9 μM) was incorporated with
cytokinin in the encapsulation matrix, the overall frequency, number, and length
of shoots and roots declined, irrespective of the basal media used. Addition of 2.9
IAA and 2.22 μM BA to the germination MS medium, however, was superior over
KIN and BA in higher concentrations in reducing the time needed for multiple shoot
formation (6 days) from encapsulated nodal segments (25 shoots from a single
explant). Those differences in PGRs activity may be explained by their different
translocation rates and metabolic process in which the PGRs can be degraded or
conjugated with other compounds (Singh and Chaturvedi 2010).

Spilanthes mauritiana is an endangered herb with antimicrobial activity, native of
Eastern Africa. Traditional vegetative reproduction of the plant via cuttings is
inefficient; therefore, in vitro tissue cultures should be employed with this species
(Sharma and Shahzad 2014).

Sharma et al. (2009b) investigated the influence of germination medium strength
and storage period on the conversion (shoot and root formation) of encapsulated
S. mauritiana axillary buds. The synseeds remained high viability (over 80%) for up
to 4 weeks of storing at 4 �C, which was the longest investigated storage period.
Therefore, longer storage is probably also possible. Interestingly, the highest con-
version rate of synseeds was reported on the half-strength MS medium; both full-
strength and quarter-strength MS were less effective.

Sharma and Shahzad (2014) focused on the development of a synthetic seed
protocol for the purpose of short-term storage and germplasm exchange of
S. mauritiana nodal segments. Under in vitro conditions, sprouting started within
8–10 days of incubation on MS basal medium. The simultaneous development of
shoot and root was observed, which resulted in rapid growth of plantlets after
5–6 weeks. It should be noticed, however, that the induced roots were very thin
and few in number which resulted in poor survival during acclimatization in
Soilrite™. Therefore, addition of auxin and cytokinin into the germination medium
was necessary. Interestingly, regardless of the PGR composition, only single shoots
with roots were produced. Among the combinations evaluated, MSmedium with BA
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(1.0 μM) and IAA (0.5 μM) guaranteed maximum conversion, greatest shoot length,
maximum root number per synseed, and greatest root length, without any interven-
ing callus. The acclimatization efficiency of such produced plantlets reached 90%.

Sharma and Shahzad (2014) also assessed the possibility of ex vitro synseeds
sowing and found that among various planting substrates, Soilrite™ moistened with
¼MS salts was most optimal with 63.4% conversion frequency. In such conditions,
shoot sprouting was noticed after 2 weeks of sowing followed by rooting after
3 weeks. Soilrite™ moistened with tap water was less effective, probably because
of reduced nutrient availability. Similarly, soil was not as effective because of its
compact texture as compared to the Soilrite™.

2.12 Stevia

Stevia rebaudiana Bertoni is one of the most well-described species in terms of
encapsulation and synthetic seeds production. Its cultivation is popular worldwide as
the only zero-calorie sugar substitute which is 300 times sweeter than cane sugar.
Unfortunately, stevia seeds show a very low germination rate, whereas vegetative
propagation is limited by lower number of individuals produced and long time
needed. Due to the intensive exploitation and low propagation response, this medic-
inal plant became endangered (Nower 2014).

Andlib et al. (2011) focused on the importance of artificial matrix composition
when preparing S. rebaudiana synseeds. They found that preparation of beads based
on MS medium salts is more efficient (70% plantlet development) than on distilled
water (55% conversion). MS medium was also more effective for germination than
White’s medium.

Besides sodium alginate and calcium chloride concentrations, also the treatment
time has a significant influence on the quality of the obtained beads and, thus, of the
whole conservation or propagation procedure. In the study by Ali et al. (2012), shoot
tips and nodal explants were placed for different time durations in sodium alginate
and calcium II chloride. It was found that the duration of sodium alginate treatment
has no effect on bead formation. On the other hand, timing of CaCl2 treatment
proved to be crucial. With 100 mM CaCl2, 15 min is suitable for isodiametric bead
formation, whereas shorter treatment led to fragile bead formation, while after longer
periods, the beads became very hard and the explants dried and died. Ali et al. (2012)
also investigated the effect of chemical pretreatment on synthetic seed germination.
They subjected the synseeds to self-breaking treatment by dipping them in 200 mM
potassium nitrate solution for 5 min. This procedure leads to the swelling of seeds
and faster sprouting (within 1 week) in comparison to non-pretreated ones (sprouting
after 30 days). The highest conversion rate after 1 week (100%) was reported in the
liquid MS medium supplemented with 4.44 μMBA. Solid media were less effective.
Root regeneration was achieved after 15 days without the addition of any auxins.
Frequency to plantlet conversion of artificial seeds decreased gradually as the
storage duration at 4 �C increased (from 63.3% after 15 days to 10% after
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60 days). Also the time required for germination increased from 6 days (after 15-day
storage) to 16.6 days (after 60-day storage). This suggests explant damage during
medium-term storage.

Khan et al. (2013) found that ideal isodiametric, compact, clear, and uniform size
of beads with nodal segments can be produced with 4% sodium alginate and 75 mM
calcium II chloride. Germination of S. rebaudiana synthetic seeds occurred within
8 days after inoculation on solid MS medium (60% germination), followed by moist
cotton (25–40%) and soil mixture (10–30%). Interestingly, addition of BA, NAA,
and adenine sulfate to the germination media worsened the results (10–20% germi-
nation). In vitro multiplication of shoots produced from synseeds was reported when
subcultured onMSmedium with 9.29 μMKIN and 40 mg L�1 adenine sulfate. Since
shoot tips and axillary buds are unipolar structures with no root meristem, therefore,
transfer on the rooting medium was necessary. Among the tested NAA and IBA
auxin concentrations (2.46–8.06 μM), the best rooting with the maximum length of
roots was reported with 5.37 μM NAA.

In order to produce a suitable number of S. rebaudiana shoot tips, Nower (2014)
induced multiple shoots formation (22.75 shoots per one explant) from nodal
segments inoculated in MS medium supplemented with 4.44 μM BA and 2%
fructose. The shoot tips were encapsulated in 4% sodium alginate (based on MS
liquid medium) and 100 mM Ca(NO3)2�4H2O (calcium nitrate tetrahydrate). Further
culture in a germination medium of various strength (¼, ½, ¾, and full MS)
supplemented with 1.11 μM BA was investigated. Moreover, the study focused on
inducing osmotic stress (by adding mannitol or sorbitol to the germination medium)
in order to achieve reduced growth. The best results (100% conversion rate) were
achieved after storing the explants for 5 weeks on full-strength MS medium as
compared with other treatments. The addition of 0.05 M mannitol to the medium
increased culture survival but with deterioration of shoots’ quality and growth.
Higher concentrations of osmotic agents had a negative impact on the culture
survival. Transfer of germinated shoots on the auxin-supplemented medium stopped
shoot multiplication and supported nearly 100% rooting. Application of MS medium
fortified with 1.14 μM IAA resulted in the maximum number of roots formed per one
explant, while 4.92 μM IBA resulted in longest root regeneration. Longer roots,
however, may be more “problematic” during acclimatization.

Maintaining the biochemical stability is an important aspect during plant material
storage. Lata et al. (2014) investigated the effect of encapsulation on the stability in
the chemical profile and quantification of rebaudioside A and stevioside content and
found no differences between the mother and regrown plants following in vitro
storage, confirming the dependency of the synseeds technology.

2.13 Taraxacum

Light can be a deleterious factor during storage. Therefore, Kamińska et al. (2018)
focused on the influence of light conditions on the conversion ability and post-
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storage regrowth of the synthetic seeds of Taraxacum pieninicum Pawł.—a critically
endangered Polish species.

It was reported that synseeds produced from shoot tips can be stored at 4 �C even
for 12 months without subculture. In comparison, traditional in vitro cultures need to
be subcultured every 4 weeks, which is associated with the risk of contamination and
additional labor costs. Time of storage did not affect the survival of synseeds, nor the
quality of the produced plantlets. The cultures, however, should be kept in dark, as
light, even at reduced intensity, is a stress factor causing numerous necroses and
decreased shoot ability to proliferate in the first subculture, probably due to the
increase in the ABA/GA3 ratio. A mean of 12.2 shoots from a single explant was
produced after 12-month storage on the proliferation medium containing 1.1 μMBA
and 0.14 μM NAA (Kamińska et al. 2018).

In the study by Kamińska et al. (2018), no ploidy level change was reported (flow
cytometry analyses), regardless of storage conditions. This suggests that slowing
down and speeding up the metabolism of T. pieninicum during cold storage and
regrowth, respectively, do not interfere with cell division. Moreover, all regenerants
from encapsulated and stored shoot tips were genetically similar to the non-cultured
control plants, as confirmed by 21 RAPD primers. It can be assumed that the synseed
technology minimizes the risk of somaclonal variation occurrence, which is a major
problem in traditional tissue culture (Miler and Zalewska 2014). One should keep in
mind that even though the growth of the explants in cold conditions is reduced, still
prolonged exposure to low temperature may cause stress or variation, especially to
thermophilic species, due to the generation of reactive oxygen species (ROS)
(Kamińska et al. 2018).

The described synthetic seed production protocol is very effective, as it allows to
overcome the problem of physiological dormancy of natural seeds, which normally
require stratification for germination.

3 Conclusions

In vitro tissue culture is a dependable biotechnological tool for the rapid reproduc-
tion of Asteraceae plants for the purpose of micropropagation, preservation, and
breeding, especially for species with limited reproductive capacity.

Synthetic seeds possess the ability to convert into a plant under in vitro or in vivo
conditions and also retain this potential after storage. They have numerous applica-
tions, including multiplication of non-seed-producing plants, polyploids or orna-
mental hybrids, propagation of male or female sterile plants, and germplasm
preservation.

Despite the great progress done over the past 30 years, the synthetic seed
technology still has some issues which need to be considered, such as synthetic
testa and endosperm composition standardization, too low conversion rate in ex vitro
substrate or after longer storage, and the fact that most of works are operated
manually. It is also worth to consider other gelling agents in future research, e.g.,
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carrageenan, gellan gum, sodium pectate, poly(ethylene glycol), poly(vinyl alcohol),
and carboxyl methyl cellulose. Nevertheless, the synthetic seed technology can be
successfully applied with the Asteraceae plant species.
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Synthetic Seeds: A Valuable Adjunct
for Conservation of Medicinal Plants

Neelam Sharma, R. Gowthami, and Ruchira Pandey

Abstract Encapsulation technology is an upcoming powerful tool for plant propa-
gation and germplasm conservation. It is expected to impact exchange of plant
materials among laboratories within and across countries in a more economical
and convenient way with lesser quarantine restrictions.

For synthetic seed production, alginate-encapsulated in vitro-derived shoot tips
and nodal segments are preferred propagules over somatic embryos. It is an efficient
technique for clonal propagation, germplasm conservation, and exchange of valu-
able plant genetic resources. Concerted efforts are required to apply above technique
to strengthen the ongoing efforts towards conservation of medicinal and RET plants.

In some plants encapsulated shoot tips/nodal segments conserved in a cryovial
without any medium offer tremendous scope especially for exchange and need to be
applied to other plants. This technique once developed can contribute significantly to
the conservation of germplasm diversity, as it requires minimum inputs and infra-
structure. Additionally encapsulated propagules facilitate cryopreservation using
encapsulation-dehydration and/or encapsulation-vitrification technique. Though an
important aspect of any in vitro program, there is limited information on the genetic
stability assessment of synthetic seed-derived (before and after conservation)
plantlets.
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1 Introduction

Synthetic seed refers to an encapsulated propagule capable of producing a plant
under suitable growing conditions. The concept of artificial seed, for “an encapsu-
lated single somatic embryo” allowing somatic embryo to germinate so as to be used
as an “artificial seed,” was first proposed by Murashige (1977). However successful
development of synthetic seeds was reported in early 1980s in carrot (Kitto and
Janick 1982) and alfalfa (Redenbaugh et al. 1984). Realizing the distinct advantages,
a number of publications dealing with various aspects of synthetic seeds on different
plant species including medicinal plants have appeared in literature (Gantait et al.
2015; Sharma et al. 2013).

As many plant species fail to produce somatic embryos and owing to low success
coupled with high cost of somatic embryo production in many species, Bapat et al.
(1987) proposed use of in vitro-derived propagules for synseed formation, especially
in non-embryo-producing species. Thus, an artificial seed (also known as synseed,
synthetic seed, or manufactured seed) as per revised concept refers to an artificially
encapsulated somatic embryo, shoot bud, or any other propagule that possesses the
ability to form a plantlet under in vitro or in vivo conditions (Ara et al. 2000; Sharma
et al. 2013). The synthetic seed technology holds great promise especially in
difficult-to-conserve plant species/crops owing to lack of seeds formation or pro-
duction of small quantities of seeds or production of recalcitrant seeds and/or due to
their being rare, threatened, and endangered (RET) species.

The advantages of aforementioned technique include reduction in overall expen-
diture owing to economy of space, culture medium, and time as each bead contains a
single plantlet in a small amount of nutrient medium in the encapsulating matrix.
According to an estimate, a 250 ml flask can accommodate five times more encap-
sulated propagules than it can hold shoots (Ahuja et al. 1989). It also facilitates
transfer out especially in species posing problems in rooting and ex vitro transfer of
plantlets. In recent past, with the feasibility of encapsulating in vivo-derived propa-
gules such as dormant buds, technique is being increasingly applied as tool for long-
term (cryopreservation) conservation. Besides tremendous potential in the storage
and conservation of propagules, it allows easy transport, transplantation, and
exchange of propagules. Due to less stringent quarantine requirements, the synseed
technology can facilitate germplasm exchange (Sharma et al. 2013). In addition, it is
also viewed as a promising option for the management of transgenic (seedless) plants
and polyploidy plants with unique traits (Gangopadhyay et al. 2011).

Medicinal plants have special significance in healthcare due to presence of
secondary metabolites with high curative value. A large number of plants employed
for medicinal purposes—in allopathy, traditional medicine systems, and tribal/folk
practices—are collected from naturally occurring wild populations. Additionally,
many of these produce limited or recalcitrant seeds that cause problem in propaga-
tion, conservation, and utilization. Only a few species of medicinal plants are under
cultivation, and for majority even the reproductive biology is unknown. Indiscrim-
inate collection from nature coupled with limited or no successful efforts of
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cultivation, endemism, reduced population size, destruction of natural habitat due to
anthropogenic activities, and climate change has led to decline in a number of
species and, thereby, resulted in many species becoming threatened with extinction.
Additionally in many species, upon cultivation in some the active principle may not
be the same or may need long period to build up level of active principle. There are
only few medicinal plants which have been successfully cultivated (Pareek et al.
2005), in general some factors which discourage commercial cultivation of medic-
inal plants besides lack of information on their propagation behavior include low
seed viability/germination and long gestation periods (Pareek et al. 2005; Sharma
et al. 2013; Sharma and Pandey 2013). Additionally propagation of RET medicinal
plants is also constrained due to small endosperm, low germination rate, physical/
physiological dormancy, nonavailability of sufficient propagules, recalcitrance to
propagation techniques, etc. This has led to increasing thrust on application of
in vitro techniques for propagation, conservation, and secondary metabolite produc-
tion (Chandel et al. 1996; Sharma and Pandey 2013; Sharma et al. 2007). Synthetic
seed technology has further opened new avenues in the field of propagation and
conservation of plant genetic resources (PGR). Despite reported since three decades,
the technique for artificial seed production has not been amply developed for the
medicinal plants. Application of artificial seeds as a technique, with dual benefits of
clonal propagation and conservation, needs attention and research thrust in this
group of precious plants, before these are lost.

In literature, extensive progress made in synthetic seed technology has been
reviewed either for a particular group of crops (e.g., fruit crops) or the technique/
technology vis-à-vis prospects and limitation of technology (Ara et al. 2000;
Kiwoska and Thiem 2011; Rai et al. 2009; Saiprasad 2001; Sharma et al. 2013).
There is no consolidated information regarding application of technology for short-
and long-term conservation of plant germplasm. The present chapter provides an
update on progress, challenges, and application of synthetic seed technology with
special emphasis on conservation of medicinal plants.

2 Synthetic Seed Technology

There are two essential components of synthetic seed: (1) plant propagule (in vitro-
or in vivo-derived) and (2) matrix (a gelling material to encapsulate plant propa-
gules) containing nutrients, antibiotics, or other essential additives.

2.1 Plant Propagule

In general and as per original concept, synthetic seed involved encapsulation of
somatic embryos. With revised concept (Bapat et al. 1987), the technology was
extended to encapsulation of shoot tips, shoot buds, nodal segments, embryogenic
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masses, and calli as also in vitro-induced bulb, bulblets, hairy roots, and microtubers
(Reddy et al. 2012; Gantait and Sinniah 2013) in different plant species. In general,
the size of propagule used for encapsulation is 3–5 mm with exception of in vivo-
derived winter buds.

In medicinal plants, though the work initiated later, successful encapsulation
using various propagules has been reported in a large number of species (Table 1).
In Decalepis spp. nodal segments from aseptically raised seedlings were most
suitable propagules for encapsulation (Sharma and Shahzad 2012).

Though in most encapsulation studies, in vitro-derived propagules from prolifer-
ating shoot cultures were used, there are only a few reports of successful encapsu-
lation of in vivo-derived propagules from mature plants (Sharma et al. 2013). For
example, in Curcuma amada, synseed was produced using microshoots with a small
basal rhizome portion from in vivo-grown rhizomes (Banerjee et al. 2012).

A brief account of various propagules used in synseed formation in medicinal
plants is described below.

2.1.1 Somatic Embryos

Encapsulated somatic embryos (SE) can be handled like true seeds. Despite realizing
the advantages of somatic embryos over other propagules, there is limited and
varying degree of success with somatic embryogenesis in medicinal plants, for
example, in Dioscorea floribunda and D. deltoidea (Sharma 1995; Sharma and
Chaturvedi 1989), Holostemma ada-kodien (Martin 2003a), etc. Additionally,
embryogenic ability is genotype specific (Sharma 1995), and not much work has
been done on medicinal plants. Among a few medicinal plants for which SEs have
been reported, synthetic seed production has been successful in Anethum graveolens
(Dhir et al. 2014), Arnebia euchroma (Manjkhola et al. 2005), Artemisia vulgaris
(Sudarshana et al. 2013), Hemidesmus indicus (Cheruvathur et al. 2013a), Rotula
aquatica (Chithra et al. 2005), and Swertia chirayita (Kumar and Chandra 2014)
(see Table 1).

2.1.2 Shoot Tips

Among various non-embryogenic explants, shoot tips—unipolar propagule without
root meristem—have proven to be the most amenable for synseeds development in a
number of medicinal plants such as Adhatoda vasica (Anand and Bansal 2002),
Bacopa monnieri (Sharma et al. 2016), Ceropegia spp. (Murthy et al. 2013),
Chonemorpha grandiflora (Nishitha et al. 2006), Cineraria maritime (Srivastava
et al. 2009), Coleus forskohlii (Swaroopa et al. 2007), Curculigo orchioides (Nagesh
et al. 2009), Eclipta alba (Ray and Bhattacharya 2010), Glycyrrhiza glabra
(Mehrotra et al. 2012), Picrorhiza kurroa (Mishra et al. 2011), Mentha arvensis
(Islam and Bari 2012), Withania somnifera (Singh et al. 2006b), etc.
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2.1.3 Nodal Segments

The nodal explants, obtained either from ex vitro/in vivo plants or in vitro plants, are
also preferred propagules. However better plantlet recovery has been achieved using
in vitro-derived nodal explants as compared to mature nodal segments obtained from
field-grown plants. In medicinal plants, and as detailed in Table 1, varying degree of
success has been achieved by encapsulating nodal explants in number of plants such
as Centella asiatica (Prasad et al. 2014), Ceropegia bulbosa (Dhir and Shekhawat
2013), Coleus forskohlii (Swaroopa et al. 2007), Decalepis hamiltonii (Sharma and
Shahzad 2012), Mentha arvensis (Islam and Bari 2012), Ocimum basilicum
(Siddique and Anis 2009), Pogostemon cablin (Swamy et al. 2009), Picrorhiza
kurroa (Mishra et al. 2011), Rauvolfia serpentina (Faisal et al. 2012), Rauvolfia
tetraphylla (Alatar and Faisal 2012; Faisal et al. 2013), Tylophora indica (Faisal and
Anis 2007), and Vitex negundo (Ahmad and Anis 2010). In many species, regener-
ation of one or more shoots from the synthetic seeds proved nodal segment encap-
sulation to be a viable strategy.

As apparent from literature, among various unipolar propagules, nodal segments
are the most suitable for encapsulation studies due to presence of generally two
pre-existing axillary meristems compared to one in shoot tip explants. One of the
limitations faced is the inability of shoots to form roots in vitro especially for
recalcitrant RET plants and woody plant species. On the other hand, in Coleus
forskohlii and Picrorhiza kurroa, encapsulated nodal segments produced roots on
PGR-free nutrient media (Mishra et al. 2011; Swaroopa et al. 2007). However, in
some species, it was required to include a step for root induction in the encapsulation
protocols. It involves either incubating explants, before encapsulation, in dark to
induce root primordia, or inclusion of PGR to the encapsulation matrix or regrowth
media (Sharma et al. 2013).

2.1.4 In Vitro Storage Organs

Storage organs such as bulbs, rhizomes, and protocorms are natural propagules that can
also be induced under in vitro conditions. Despite being a viable and promising option,
there are hardly any reports regarding encapsulation of these explants inmedicinal plants.
In Allium sativum a protocol for the conservation using encapsulated in vitro-induced
bulblets with good shoot recovery (6.30), on MS + BA (2 mg/l) + NAA (2 mg/l), has
been established (Bekheet 2006). In Acorus calamus storage of encapsulated
microrhizome for 24–48 weeks also could be achieved (Quraishi et al. 2017).

2.2 Encapsulation Matrix

In synthetic seed technology, the encapsulating agent serves as a coating around the
explant that includes mineral elements, source of carbohydrate (generally sucrose),
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growth regulators, etc. in water or standard nutrient media (MS, B5, WPM etc.) (see
Table 1) and acts as an artificial endosperm. Hence it has a significant role on the
ultimate sustainability of the synthetic seed. The “synthetic seed coat” (insoluble gel
matrix of calcium alginate) provides nutrients for growth and shields the explants
during storage and handling. Selection of plant material is equally important. Thus,
the crucial factors responsible for the successful synthetic seeds include the concen-
tration and type of gel required for encapsulation and the duration of exposure of
beads to calcium chloride (CaCl2) (Redenbaugh 1993).

During the initial phase, much of the research was directed towards selection of
suitable encapsulation matrix and combinations of chemicals. Sodium alginate
(SA) has been advocated by various researchers owing to its moderate viscosity,
non-toxicity, low cost, the long-term storability, quick gelation properties, and hard-
ening of beads at room temperature (Kumari et al. 2014). The variation in Na-alginate
concentration for alginate bead formation in different plant species (Table 1) may be
attributed to the use of different brands or batch-to-batch variation within same brand
and not specific to the plant species (Mandal et al. 2000; Sharma et al. 2009b).

In medicinal plants also SA (3–6%) with 75–125 mM CaCl2 has been used in
various laboratories in India. Detailed experiments conducted in a number of
medicinal plants at Central Institute of Medicinal and Aromatic Plants at Lucknow,
India, indicated that though use of SA from various batches affected bead quality,
concentration of SA required appropriate adjustment, but the beads sprouting
remained unaffected. However the CaCl2 solution concentration remained the
same (75 mM) (Ahuja et al. 1989).

In authors’ laboratory, a combination of 3% SA (Sigma) with 100 mM CaCl2
(Hi Media) has resulted in high-quality bead formation in a number of plants such as
Allium spp., Bacopa monnieri, Curculigo orchioides, Pogostemon patchouli,
Zingiber officinale, etc. (Fig. 1a, b).

In Swertia chirayita, encapsulation of somatic embryos using 4% SA and 100mM
CaCl2 proved best for obtaining uniform high-quality beads (Kumari et al. 2014).
Similarly the use of 4% SA was optimum for firm and uniform beads in Curcuma
longa, Decalepis hamiltonii (Sharma and Shahzad 2012), Pogostemon cablin
(Swamy et al. 2009), and Zingiber officinale (Gayatri et al. 2005; Sharma et al. 1994).

Duration of complexation of SA with CaCl2 also had a bearing on quality of
beads. Longer complexation durations adversely affected the percent plantlet devel-
opment from encapsulated shoot buds (Ahuja et al. 1989). Duration of 30 min has
been found sufficient for complete complexation.

It was evident from the aforementioned information that the majority of the
reports employed 3% SA and 100 mM CaCl2 to facilitate proper ion exchange
which thus produces the most advantageous bead formation (Gantait et al. 2015).
Beads produced with lower levels of SA (1–2%) were asymmetrical in shape,
remarkably fragile, and soft to handle, while those with 5% or higher SA were too
rigid for regrowth and germination of explants (Gantait et al. 2015). This combina-
tion has been successfully employed for all propagules including somatic embryos,
shoot tip/shoot bud, and nodal segments, for instance, in Rauvolfia serpentina
(Faisal et al. 2012), Rauvolfia tetraphylla (Faisal et al. 2013), Tylophora indica
(Faisal and Anis 2007), Vitex negundo (Ahmad and Anis 2010), etc., and the
regeneration of synthetic seeds was ~90%.
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Regarding the type of carbohydrate, sucrose has been used most commonly as
component of encapsulation matrix. In many cases, addition of growth regulators to
improve germination and/ or induce rooting has been beneficial (Table 1, Gantait
et al. 2015; Sharma et al. 2013). Protective chemicals such as antibiotics may be
added to protect the synthetic seed from fungal and/or bacterial infection especially
if the sowing is to be done on soil/soilrite (Ahuja et al. 1989).

2.3 Regrowth

For effective utilization, encapsulated explants are regenerated in vitro, using
defined basal media (MS/ WPM) at 1/2, 1/3, 1/4, or full-strength (Lloyd and
McCown 1980) or ex vitro directly on soil or any substrate. Conversion to plantlets
has been the most crucial aspect of synseed technology that limits the commercial
exploitation of this technology. Availability of appropriate nutrient to encapsulated
propagule is the crucial factor for its germination (Mallikarjuna et al. 2016). For
somatic embryos, germination on solidified agar yields good results. In some cases,
supplementation of plant growth regulators (PGRs) to the regrowth medium boosts
the germination of artificial seeds. The inclusion of BA (2.5 mg/l) to the medium was
beneficial for early initiation of regrowth of the synseeds. Addition of cytokinin has
been a promising strategy for increasing the number of shoots/synseed without any
adverse effects on shoot and root growth. For example, presence of cytokinins in
medium with full strength of MS salts, e.g., kinetin for ginger (Sharma et al. 1994)

Fig. 1 Flow chart showing steps of encapsulation techniques in Bacopa monnieri
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and BA + NAA for Tylophora indica (Faisal and Anis 2007) while in Ocimum
basilicum half-strength MS with BA + IAA (Siddique and Anis 2009) resulted in
improved proliferation of shoots developed from synseeds. The rate of germination
is known to vary noticeably with different media concentrations (Ahuja et al. 1989).
Ahmad andAnis (2010) reported beneficial effect of inclusion of Kn (2.5 μM) +NAA
(1.0 μM) to MS for inducing roots in encapsulated nodal segments of Vitex negundo,
while WPM + BA (7.5 μM) and NAA (2.5 μM) improved germination and plantlet
formation in Rauvolfia tetraphylla (Alatar and Faisal 2012).

Among various propagules, shoot tips have exhibited high regrowth in majority
of medicinal plants like Picrorhiza kurroa (Mishra et al. 2011), Rauvolfia serpentina
(Ray and Bhattacharya 2008), Eclipta alba (Ray and Bhattacharya 2010), Bacopa
monnieri (Sharma et al. 2016), and Zingiber officinale (Sundararaj et al. 2010)
(Table 1).

There was improved regrowth of explants when encapsulation matrix had nutri-
ents as compared to that without nutrient (Ahmad and Anis 2010; Chand and Singh
2004; Sundararaj et al. 2010). Supplementation of PGRs and growth additives was
conducive for synseed conversion. In Adhatoda vasica, Anand and Bansal (2002)
reported highest conversion using synseeds prepared in B5 medium containing
kinetin (Kn) and phloroglucinol (PG) when cultured on B5 basal medium. However,
reduced response was observed when regrowth medium was also supplemented Kn
and PG irrespective of encapsulation matrix (i.e., with or without growth additives).
Thus, the presence of nutrients and PGRs in the gel matrix seems more critical than
that in the regrowth medium.

Direct planting of encapsulated propagules to soil or other substrates is expected
to circumvent the acclimatization procedure required for in vitro-raised plantlets. As
indicated above, synseed can be grown directly on soil/soilrite, etc. though substrata
other than agar showed lower percent shoot emergence of Picrorhiza kurroa and
Valeriana wallichii (Ahuja et al. 1989) (Table 2). Synseeds are, in general, prone to
bacterial, fungal, and/or microbial infections especially during ex vitro regeneration
even under controlled conditions (Vij and Kaur 1994). To control such infections,
inclusion of antibiotics and antifungal agents to the gel matrix has been advocated
(Ahuja et al. 1989; Sharma et al. 2013). In Picrorhiza kurroa, inclusion of tetracy-
cline (100 mg/l) + bavistin (250 mg/l) resulted in delay in germination, reduced
normal plantlet formation, and inhibition of bacterial and fungal growth. However,
in many species such chemicals affect recovery which can be taken care of by
including PGRs in the encapsulation matrix.

3 Application of Synseed Technology

Since the first successful report of encapsulation of non-embryogenic propagule
(Bapat et al. 1987), the synseed technology has been extended to an array of plant
species including medicinal plants (see Sharma et al. 2013). In medicinal plants, the
technique has been successfully applied for the encapsulation of axillary and apical
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shoot buds of in vitro grown plants of >80 species including RET plants such as
Picrorhiza kurroa, Rheum emodi, Rauvolfia serpentina, Valeriana wallichii, etc.
Realizing its potential for the clonal propagation, recently, the technology has
attracted the interest of scientific community for plant genetic resource management.
The efficiency of the technique lies in small size of synseeds, ease of handling, and
requirements of minimum space, time, and care (Mishra et al. 2011). Facilitation of
easy ex vitro transplantation coupled with feasibility of ex vitro root induction offers
added advantage especially for rehabilitation of plants under natural conditions. In
ginger encapsulation of shoot buds has also been applied for producing disease-free
planting material (Sharma et al. 1994). Further, synseeds greatly aid in the short- and
long-term storage of propagules and germplasm exchange within and across coun-
tries (Germana et al. 2011). Besides conservation, ready availability of the propa-
gules for propagation is also ensured (Ray and Bhattacharya 2008).

Synthetic seed technology has also been applied for regeneration of transgenic
plants. In Centaurium erythraea and Plumbago indica, encapsulated, genetically
transformed hairy root fragments and shoot buds could be successfully stored for
14 and 24 weeks, respectively, with high regeneration (Piatczak and Wysokińska
2013; Gangopadhyay et al. 2011). Regenerated, transformed plantlets after conser-
vation exhibited retention of secondary metabolite, plumbagin, in Plumbago indica
(Gangopadhyay et al. 2011).

Table 2 Comparison of in vitro and ex vitro regeneration of synthetic seeds in medicinal plants

Plant species Propagule

Regeneration (%)

ReferencesIn vitro Ex vitro

Althaea officinalis NS 64.6 55 Naz et al. (2018)

Centaurium
erythraea

ST, HR 56–86 90 Piatczak and Wysokińska
(2013)

Ceropegia barnesii NS – 85–97 Ananthan et al. (2018)

Coleus forskohlii ST, NS 75 61 Swaroopa et al. (2007)

Dioscorea bulbifera NS 70–75 82 Narula et al. (2007)

Mandevilla
moricandiana

NS 83.30 100 Cordeiro et al. (2014)

Nyctanthes arbor-
tristis

NS 86.66 90 Jahan and Anis (2015)

Picrorhiza kurroa SB 87 30 Ahuja et al. (1989)

Rauvolfia serpentina ST 68.5–100 80 Ray and Bhattacharya
(2008)

Rauvolfia tetraphylla NS 90.3 90 Alatar and Faisal (2012)

Solanum nigrum ST 97.2–100 55.5–94.40 Verma et al. (2010)

Spilanthes acmella ST 73.60 90 Sharma et al. (2009b)

Valeriana wallichii SB 98 64 Ahuja et al. (1989)

Zingiber officinale MSt 100 53 Sundararaj et al. (2010)

HR hairy root, MSt microshoot, NS nodal segment, SB shoot bud, ST shoot tip
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3.1 Propagation of Medicinal Plants

Micropropagation through encapsulation is an efficient practice for mass propaga-
tion of the plant species investing minimum time and space. Beads can be grown
in vitro, on regrowth medium, or ex vitro on substrates like gravel, perlite, sand, soil,
soilrite, vermiculite, and vermicompost for regeneration into plantlets. Table 1 pro-
vides an exhaustive list of medicinal plants for which propagation has been
attempted using synseed technology. It is evident that SA (3–4%) and CaCl2 have
been successful in majority of the cases. In some cases, inclusion of PGR in
encapsulation matrix has improved regrowth of beads. Additionally, medium
supplemented with PGR is more beneficial than PGR-free culture medium for
successful conversion (Mandal et al. 2000). The requirement of growth regulators
in culture medium varies from species to species. For example, artificial seeds of
Ocimum spp. exhibited ~90% recovery on MS containing different concentrations of
BA—1.1 μM in O. americanum, 4.4 μM in O. basilicum and O. sanctum, and
2.2 μM in O. gratissimum (Mandal et al. 2000). In contrast, artificial seeds of
Zingiber officinale (Sundararaj et al. 2010) exhibited highest conversion on
PGR-free MS medium (irrespective of its strength). Agar has been the common
gelling agent for regrowth medium (Cameron 2008). According to the reports
available in literature, encapsulation technique has been applied using shoot tips,
nodal segments, and/or apical shoot buds of in vitro grown plants in >80 medicinal
plants (Table 1). Although the regrowth response varied from species to species,
high germination of encapsulated explants (70–90%) has been achieved in a large
number of species (Table 1).

With distinct advantages, the economy of cost owing to reduced requirement of
space, culture medium, and time, synseed is a powerful low-cost tool for mass
propagation of elite species with high medicinal value and especially for rare or
endangered taxa. Coupled with the feasibility of direct ex vitro transfer, it gains
special significance for species for which simulation of conditions for acclimatiza-
tion is extremely challenging.

Successful ex vitro transfer of encapsulated propagules on different planting
substrates has been reported only for a few medicinal plant species (Ahuja et al.
1989), and a comparison of regeneration in a controlled culture room environment
and that under greenhouse conditions is presented in Table 2. The limiting factor
noticed for reduced regrowth rate under ex vitro conditions is the unavailability of
optimum nutrients and greater susceptibility to contamination. As a result, it is
indispensable to maintain a nutrient pool for the encapsulated propagules. Attempts
to directly sow the encapsulated beads using different propagules under ex vitro
conditions in ~15 medicinal plants (see Table 2) resulted in>50% germination in all
except P. kurroa. However inclusion of antibiotics and fungicides in the encapsu-
lation matrix improved germination in P. kurroa under glasshouse conditions (Ahuja
et al. 1989). Some researchers added MS nutrients at 1/4 or 1/2 strength to soilrite for
improved ex vitro regeneration of artificial seeds with 62 and 43% regeneration in
Phyllanthus amarus and T. indica, respectively (Singh et al. 2006a; Faisal and Anis
2007).
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3.2 Rehabilitation of Medicinal Plants

Unsystematic harvesting of medicinal plants from nature coupled with endemism,
limited population size, and destruction of natural habitat have led to the decline of a
large number of medicinal plants. Thus, many plants have become rare, threatened,
and endangered. Propagation and restoration using synthetic seed technology can be
viewed as a potential option to conserve RET species. There are only few reports on
restoration of plants using in vitro propagation technique per se (Sharma et al. 2014),
whereas using synthetic seeds, there are only two reports on Ceropegia barnesii
(Ananthan et al. 2018) and Ipsea malabarica (Martin 2003b).

In Ceropegia barnesii, an endemic and endangered plant, Ananthan and
coworkers standardized in vitro regeneration and synthetic seeds technology with
an aim to support restoration in the wild. Optimum multiple shoot formation from
synthetic seeds was achieved on MS + BA + GA3. Following root induction,
inoculation of vesicular-arbuscular mycorrhizal fungi (Glomus aggregatum and
G. intraradices) on the hardening trials enhanced the survival rate during hardening.
The regenerated plants were reintroduced to their natural habitat for further exper-
iments (Ananthan et al. 2018).

3.3 In Vitro Conservation

In recent years, cost-effectiveness and simplicity of synseeds technologies using
vegetative propagules makes it an easier and popular option for not only propagation
but also for germplasm conservation (Islam andBari 2012; Remya et al. 2013; Sharma
et al. 2016). Alginate encapsulation greatly aids in the short- and long-term conserva-
tion due to avoidance of use of harmful chemicals. Besides ensuring ready availability,
it also facilitates germplasm exchange (Rao et al. 1998; Naik and Chand 2006).
Additional advantages for conservation include small size, ease of handling and
transportation, and retention of genetic stability even after cryopreservation (Ray
and Bhattacharya 2008; Mishra et al. 2011)

3.3.1 Short-Term Conservation

In most of the procedures, the mandatory step is germination or regrowth of
encapsulated propagule and further transfer out. One of the special features for
conservation is the uniform coating of propagules coupled with small size leading
to ease of handling individual bead like a seed. Thus the basic objective of increasing
the shelf life of propagule can be achieved by desiccation of beads, quite akin to
seeds. It is important to note that using synthetic seeds, short-term conservation for
few weeks can be achieved in comparison to medium-term conservation using
in vitro shoot cultures. The strategies adopted for synseed conservation include:
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• Incubation at different temperatures
• Desiccation using air or osmotica like sucrose
• Storage in a cryovial without any nutrient media

Regarding short-term conservation of medicinal plants using one or combination
of strategies, details are presented in Table 3. The following is a brief account of
successful short-term conservation of selected medicinal plants and the strategies
adopted:

In some of the medicinal plants, 4 �C is suitable for short-term storage of encap-
sulated beads (Faisal and Anis 2007; Sharma et al. 2009a, b; Ahmad and Anis 2010;
Tabassum et al. 2010). However, the temperature requirement for optimum storage
differs from species to species. Storage in dark at 25 �Chas been reported beneficial for
tropical and subtropical species as these cannot tolerate low temperature (Table 3).

In author’s laboratory, among various temperatures (4, 10, 15, 20, and 25 �C)
tested on conservation of encapsulated shoot tips of Bacopa monnieri conservation in
a cryovial without nutrient medium, 25 �C was the most suitable temperature with
6 months conservation period. While those stored at 4 �C lost viability within 1 week
(Sharma et al. 2016). In contrast, Muthiah et al. (2013) reported 4 �C to be promising
for encapsulated shoot tips of Bacopa monnieri, and the beads stored at 24 �C started
sprouting within a week. This may be due to difference in method of storage adopted.

In Rauvolfia serpentina, beads stored at three different temperatures (20, 12, and
4 �C) indicated 4 �C to be the most suitable with (68.5–100%) regrowth up to
14 weeks. However, sharp loss of viability was observed after 14 weeks. The
synseed-derived plantlets exhibited 80% ex vitro establishment after root induction
and acclimatization (Ray and Bhattacharya 2008). Low temperature (4 �C) has also
been reported to be beneficial for storage in Spilanthes acmella (Singh et al. 2009)
and Eclipta alba (Ray and Bhattacharya 2010).

Sundararaj et al. (2010) reported that encapsulated microshoots of Zingiber
officinale conserved at 25 �C exhibited 100% regrowth, while there was no regrowth
in those stored at 4 �C in dark. Similarly, in Cineraria maritime and Picrorhiza
kurroa, 25 �C proved suitable for conserving synthetic seeds for 6 and 3 months,
respectively (Srivastava et al. 2009; Mishra et al. 2011).

At the in vitro genebank at NBPGR, India experiments conducted on short-term
conservation of ginger germplasm revealed better storage of synseeds after sucrose
dehydration in comparison to that after air dehydration or fresh synseeds. Following
sucrose dehydration (0.25 M sucrose for 16 h) and storage at 25 �C, beads exhibited
53 and 13% conversion after 8 and 12 weeks, respectively (Sundararaj et al. 2010).

In Bacopa monnieri shoot tip-derived synseeds exhibited better regrowth (~86%)
as compared to encapsulated nodal segments (60%) after 6 months of storage
(Muthiah et al. 2013). However, in Coleus forskohlii and Picrorhiza kurroa, both
shoot tip- and nodal segment-derived synthetic seeds exhibited similar regrowth
after 24 and 12 weeks of storage (Swaroopa et al. 2007; Mishra et al. 2011).

Retention of germination or sprouting potential even after an adequate period of
storage is an essential aspect. Synthetic seeds (synseeds) produced through encap-
sulation technique are capable of producing an entire plant after storage at room
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Table 3 Application of synthetic seed technology for in vitro short-term conservation of medicinal
plants

Species Explant
Storage
duration Storage conditions

Regeneration
(%) References

Acorus
calamus

MR 24
weeks

10 �C + dark 100 Quraishi et al.
(2017)

Acorus
calamus

MR 48
weeks

10 �C + dark 80 Quraishi et al.
(2017)

Allium
tuberosum

Shoot
bases

8 weeks 25 �C;16 h/8 h photope-
riod, in a cryovial with-
out any nutrient medium

– Anonymous
(2004)

Althaea
officinalis

NS 4 weeks 4 �C 64.60 Naz et al.
(2018)

Bacopa
monnieri

ST 24
weeks

4 �C 86.60 Muthiah et al.
(2013)

Bacopa
monnieri

NS 24
weeks

4 �C 60 Muthiah et al.
(2013)

Bacopa
monnieri

ST 24
weeks

25 �C; 16h/8h photope-
riod, in a cryovial with-
out any nutrient medium

80–100 Sharma et al.
(2016)

Catharanthus
roseus

SE 8 weeks 4 �C 81.67 Maqsood
et al. (2012)

Cineraria
maritime

MSt 24
weeks

25 � 2 �C 11.76 Srivastava
et al. (2009)

Centaurium
erythraea

HR 6 weeks 4 �C 86 Piatczak and
Wysokińska
(2013)

Centaurium
erythraea

SB 6 weeks 4 �C 56 Piatczak and
Wysokińska
(2013)

Ceropegia
bulbosa

NS 8 weeks 4 �C 50.70 Dhir and
Shekhawat
(2013)

Cineraria
maritime

ST, NS 24
weeks

25 � 2 �C 82 Srivastava
et al. (2009)

Clitoria
ternatea

SE 20
weeks

25 � 2 �C 92 Kumar and
Thomas
(2012)

Coleus
forskohlii

ST, NS 24
weeks

4 �C 75 Swaroopa
et al. (2007)

Decalepis
hamiltonii

NS 8 weeks 4 �C 77 Sharma and
Shahzad
(2012)

Dioscorea
bulbifera

NS 4 weeks 4 �C 75 Narula et al.
(2007)

Dioscorea
bulbifera

NS 5 weeks 4 �C 70 Narula et al.
(2007)

(continued)
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Table 3 (continued)

Species Explant
Storage
duration Storage conditions

Regeneration
(%) References

Eclipta alba NS 8 weeks 4 �C 51.20 Ray and
Bhattacharya
(2010)

Glochidion
velutinum

ST 4 weeks 4 �C 86.40 Mallikarjuna
et al. (2016)

Hibiscus
moscheutos

NS 78
weeks

5 �C 80 West et al.
(2006)

Mandevilla
moricandiana

NS 4 weeks 15 �C 33.3 Cordeiro
et al. (2014)

Mentha
arvensis

NS 8 weeks 4 � 1 �C 44–46 Islam and
Bari (2012)

Nyctanthes
arbor-tristis

NS 3 weeks 4 �C 86.66 Jahan and
Anis (2015)

Ocimum
americanum

AB 8 weeks 4 �C 31 Mandal et al.
(2000)

Ocimum
basilicum

AB 8 weeks 4 �C 22 Mandal et al.
(2000)

Ocimum
gratissimum

AB 8 weeks 4 �C 13 Mandal et al.
(2000)

Ocimum
sanctum

AB 8 weeks 4 �C 18 Mandal et al.
(2000)

Phyllanthus
amarus

ST 8 weeks 4 �C 47 Singh et al.
(2006a)

Picrorhiza
kurroa

ST, NS 12
weeks

25 � 2 �C 21.43 Mishra et al.
(2011)

Rauvolfia
serpentina

ST 18
weeks

4 �C 68.5–87.50 Ray and
Bhattacharya
(2008)

Rauvolfia
serpentina

NS 4 weeks 4 �C 80 Faisal et al.
(2012)

Rauvolfia
tetraphylla

NS 4 weeks 4 �C 90.30 Alatar and
Faisal (2012)

Rauvolfia
tetraphylla

NS 4 weeks 4 �C 90 Faisal et al.
(2013)

Rhinacanthus
nasutus

SE 45 days 25 � 2 �C 94 Cheruvathur
et al. (2013b)

Rumex
vesicarius

SE 45 days 4 �C 85 Nandini et al.
(2014)

Salvia
officinalis

ST 6 weeks 4 �C 88 Grzegorczyk
and
Wysokińska
(2011)

Salvia
officinalis

ST 24
weeks

4 �C 63 Grzegorczyk
and
Wysokińska
(2011)

(continued)
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temperature or under low temperatures, above 0 �C (Gantait et al. 2015). As evident
from Table 3, majority of medicinal plants exhibited high regrowth, on transfer to
suitable medium and developed into normal shoots (Fig. 2c–e). For example, very
high regrowth was achieved in Glycyrrhiza glabra (98%) (Mehrotra et al. 2012) and
in Cineraria maritime (82%) (Srivastava et al. 2009) following 6 months of storage.

3.3.2 Long-Term Conservation

Cryopreservation, the only available long-term conservation option, is applicable
subject to avoidance of intracellular ice crystal formation which results in irreparable
damage to living cells. In recent years, based on encapsulation technology, new
cryopreservation techniques, encapsulation-dehydration and encapsulation-
vitrification, have been developed.

The approach of encapsulation-dehydration technique, developed for Solanum
shoot tips by (Fabre and Dereuddre 1990), is more handy and does not require either
a costly programmable freezer or harmful cryoprotectants (Reinhoud et al. 2000).
The method is based on successive osmotic and air desiccation of plant cells
allowing gradual removal of water from encapsulated propagules in sucrose-rich
medium. Air-drying or desiccation in a laminar air flow further increases sucrose
concentration in the beads, thus preventing ice crystal formation during freezing to
�196 �C in liquid nitrogen (Engelmann 2000). In encapsulation-dehydration
method, the steps include encapsulation of isolated shoot tips in alginate beads,
dehydration in high sucrose-supplemented liquid medium (0.5–0.8 M) for 1–7 days,
partial desiccation in the air current of a laminar air flow cabinet or with silica gel,
rapid freezing, thawing, and regrowth (Engleman 2003) (Fig. 3).

Table 3 (continued)

Species Explant
Storage
duration Storage conditions

Regeneration
(%) References

Solanum
nigrum

ST 8 weeks 4 �C 25 Verma et al.
(2010)

Spilanthes
mauritiana

NS 3 weeks 4 �C >90 Sharma et al.
(2009a)

Spilanthes
acmella

ST 8 weeks 4 �C 50 Singh et al.
(2009)

Spilanthes
acmella

NS 6 weeks 4 �C 73.60 Sharma et al.
(2009b)

Tylophora
indica

NS 45 days 15 � 1 �C 70 Gantait et al.
(2017b)

Withania
coagulans

ST, NS 8 weeks 4 �C 72 Rathore and
Kheni (2015)

Zingiber
officinale

MSt 8 weeks 25 �C + dark 53 Sundararaj
et al. (2010)

AB axillary bud, HR hairy root, MR microrhizome, MSt microshoot, NS nodal segment, SB shoot
bud, SE somatic embryo, ST shoot tip
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The encapsulation-vitrification is a hybrid of the two techniques—encapsulation
dehydration and vitrification—that reduces any potential injury from vitrification
(Sakai 2000) and offers various advantages of better recovery over encapsulation-
dehydration (Wang et al. 2004). Encapsulation-vitrification method involves encap-
sulation of explants followed by vitrification using cryoprotectant solution, freezing,
thawing, and regrowth (Fig. 4). Embryogenic callus of Dioscorea bulbifera was
successfully cryopreserved using encapsulation-vitrification (Yin and Hong 2010).

Cryopreservation of medicinal plants has received attention only in the past
decade and is still at an experimental stage (Sharma and Pandey 2013, 2018). It is
encouraging to note that even these new techniques—ED and EV—have been
reported in ~10 medicinal plants with limited success (Table 4). Encapsulation-
dehydration technique resulted in high-frequency regeneration from cryopreserved
explants of Dioscorea spp. (Mandal 2000, 2003; Mandal and Ahuja-Ghosh 2007)
and in Holostemma annulare (Decruse et al. 1999, 2004) (Fig. 2f, g). Following

Fig. 2 Regeneration of encapsulated shoot tips (prepared using 3% SA and 100 mM calcium
chloride) in Bacopa monnieri (a) and Gentiana kurroo (b); regrowth of synthetic seeds after short-
term conservation in Allium tuberosum (c), Bacopa monnieri (d), and Zingiber officinale (e); and
regrowth of encapsulated shoot tips after cryopreservation in Dioscorea bulbifera (f) and
Holostemma annulare (g)
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detailed investigations, Decruse and coworkers opined that during preparative pro-
cedures of ED, removal of NH+ ions (ammonium nitrate) from culture medium
improved post-thaw recovery in Holostemma annulare (Decruse et al. 1999, 2004;
Decruse and Seeni 2002).

In our laboratory preliminary success has been achieved in Allium tuberosum,
A. sativum, Bacopa monnieri, and Rauvolfia serpentina using ED with plantlet
recovery after cryopreservation (unpublished data). More research is required for
applying these methods for germplasm conservation in the genebank, as the methods
are known to be genotype specific (Sharma et al. 2017).

Using EV, successful cryopreservation of shoot tips has been reported in two
medicinal plants, namely, Artemisia herba-alba and Astragalus membranaceus
(Sharaf et al. 2012; Ming-Hua and Sen-Rong 2015). It is important that using shoot
tips, EV resulted in higher post-thaw recovery as compared to ED (Sharaf et al. 2012).

3.4 Germplasm Exchange

Synthetic seed technology has been advocated as a promising option for facilitating
exchange of germplasm. For effective exchange, viability of encapsulated explant
during transit is a prerequisite to ensure successful regrowth after transporta-
tion (Hasan and Takagi 1995).

Source of
explant

Explants with alginate
solution dispensed

dropwise

Pretreatment
of explants

Explants in
gel matrix

Encapsulation
of explants in
CaCI2 soln.

Sucrose
dehydration

Air drying

Laminar air flow

or

or

Silica gel drying

Slow at 25°c

Rapid
thawing at

 40°c

Rapid freezing in LN

Recovery growth

Ex vitro plantlet

In vitro plantlet

Fig. 3 Diagrammatic representation of cryopreservation of explants using encapsulation-
dehydration (ED) technique
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For this purpose, work has been carried out in a large number of medicinal plants
to optimize storage conditions resulting in high regrowth (Table 3). As indicated in
Sect. 7.3.3.1, low temperature (4 �C) has been suitable for synseed storage in some
species (Faisal and Anis 2007; Sharma et al. 2009a, b; Singh et al. 2007), whereas in
a number of tropical plants, the suitable temperature is 25 �C (Sharma et al. 2016;
Sundararaj et al. 2010).

Besides successful short-term conservation of beads with high regrowth after
8–12 weeks, the added advantage of storage at 25 �C in dark (24 h) is simulation of
the transit conditions during germplasm exchange. Further, method of storing
synseeds in a cryovial without nutrient medium developed in our laboratory for
Bacopa monnieri (Sharma et al. 2016) and Allium sativa, A. tuberosum, and
Kaempferia spp. (Unpublished data) has the potential for international exchange
due to reduced quarantine issues without the risk of contamination during transit due
to avoidance of nutrient medium in the vial.

Retention of high percentage of germination or sprouting potential even after
>8 weeks of storage (Table 3) is an essential prerequisite for application of synseed
technology for germplasm exchange purpose. As 8 weeks is sufficient period of
transport of material to any place, the technology could be effectively used specially
for exchange of vegetative material without much quarantine restrictions.

Source of
explant

Isolation of
shoot tips

Pretreatment
of explants

Explants in
gel matrix Sucrose

dehydration

Cryoprotectant
treatment

Rapid freezing in LNRapid
thawing at

40°c

Unloading
with 1.2 M
Sucrose

Recovery growthIn vitro
plantlet

Encapsulation
of explants in
CaCI2 soln.

Explants with alginate
solution dispensed

dropwise

Fig. 4 Schematic representation of encapsulation-vitrification (EV) technique for cryopreservation
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Table 4 Application of synthetic seed technology for cryopreservation of medicinal plants

Species
Explant
cryopreserved

Cryopreservation
technique

Regeneration
% References

Allium sativum Shoot tip Encapsulation-
dehydration

– Anonymous (2011)

Allium
tuberosum

Shoot tip Encapsulation-
dehydration

– Anonymous (2014)

Artemisia
herba-alba

Shoot tip Encapsulation-
dehydration

40 Sharaf et al. (2012)

Artemisia
herba-alba

Shoot tip Encapsulation-
vitrification

68 Sharaf et al. (2012)

Astragalus
membranaceus

Shoot tip Encapsulation-
dehydration

50 Ming-Hua and
Sen-Rong (2015)

Astragalus
membranaceus

Shoot tip Encapsulation-
vitrification

80 Ming-Hua and Sen-rong
(2015)

Bacopa
monnieri

Shoot tip Encapsulation-
dehydration

– Sharma et al. (2014)
and Sharma and Pandey
(2018)

Gentiana
tibetica

Cell
suspensions

Encapsulation-
dehydration

68 Mikuła et al. (2008)

Gentiana
cruciata

Cell
suspensions

Encapsulation-
dehydration

83 Mikuła et al. (2008)

Gentiana
kurroo

Shoot tip Encapsulation-
vitrification

– Anonymous (2007) and
Sharma and Pandey
(2015)

Piper nigrum Somatic
embryo

Encapsulation-
dehydration

62 Babu et al. (2012)

Dioscorea
alata

Shoot tip Encapsulation-
dehydration

20 Malaurie et al. (1998)

D. bulbifera Shoot tip Encapsulation-
dehydration

67 Mukherjee et al. (2009)

D. bulbifera Shoot tip Encapsulation-
dehydration

60 Malaurie et al. (1998)

D. bulbifera SE/embryo-
genic tissue

Encapsulation-
dehydration

Regeneration
of plants

Mandal (1999) and
Mandal et al. (1996,
2009)

D. deltoidea Shoot tip Encapsulation-
dehydration

76 Mandal and Dixit-
Sharma (2007)

D. deltoidea Shoot tip Encapsulation-
dehydration

Shoot
regeneration

Mandal (2003) and
Mandal and Dixit (2000)

D. floribunda Shoot tip Encapsulation-
dehydration

75% survival;
25%
regeneration

Mandal et al. (1996,
2000) and Mandal and
Ghosh-Ahuja (2007)

Holostemma
annulare

Shoot tip Pregrowth;
encapsulation-
dehydration

54.2% Decruse and Seeni
(2002) and Decruse
et al. (1999, 2004)

Ziziphora
tenuior

Shoot tip Encapsulation-
dehydration

40 Baba et al. (2015)

Ziziphora
tenuior

Shoot tip Encapsulation-
vitrification

37.5 Baba et al. (2015)
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3.5 Stability of Conserved Germplasm

Shoot tips and shoot buds, also referred as microcuttings, have been the propagules
of choice for encapsulation due to relative ease of availability of material once the
in vitro propagation has been established (Piccioni and Standardi 1995; Standardi
and Piccioni 1998). In most reports, a 3–5 mm-long single nodal segment, shoot tip,
or shoot buds explants have been used for synseed production (Ahmad and Anis
2010). As shown in Table 1, there has been high rate of regeneration with encapsu-
lated explants in ~80 medicinal plant species, but there is limited information on
genetic stability of plantlets obtained from beads. Shoot tips and nodal segments, the
preferred explants for synseed in case of medicinal plants, are known to exhibit a
high degree of genetic stability (Piccioni 1997). However, increasing thrust on use of
synthetic seeds for conservation and propagation necessitates genetic stability
assessment following their conservation (Dehmer 2005).

Table 5 details the research carried out on aspects related to monitoring of genetic
stability in medicinal plants using morphological, cytological, molecular, and/or
biochemical analyses. Plantlets obtained from stored synseeds in Decalepis
hamiltonii and ginger were morphologically similar to their mother plants (Sharma
and Shahzad 2012; Sundararaj et al. 2010). In recent years, Bekheet (2006) and
Mishra et al. (2011) used RAPD analysis to assess the genetic stability of synseed-
derived plantlets of Allium sativum (garlic) and Picrorhiza kurroa, respectively.
Using 45 RAPDmarkers, inPicrorhiza kurroaMishra et al. (2011) confirmed genetic
stability of plants derived from encapsulated microshoots following 3 months of
storage. In Rauvolfia serpentina and Rauvolfia tetraphylla (Alatar and Faisal 2012;
Faisal et al. 2012), genetic fidelity of plantlets after storage of encapsulated shoot tips
was confirmed using 20 RAPD and 5 ISSR primers. Similarly in Ceropegia bulbosa,
plants regenerated were morphologically and genetically identical based on RAPD
analysis (Dhir and Shekhawat 2013). In Dioscorea spp. plantlets regenerated from
cryopreserved shoot tips and embryogenic tissue using ED exhibited maintenance of
genetic stability (Ahuja et al. 2002; Dixit et al. 2003; Dixit-Sharma et al. 2005)

In medicinal plants monitoring of active principle is the best but not always a
feasible strategy owing to diverse nature of plants and the active principle (secondary
metabolites), coupled with limited work on active principle analyses. In Dioscorea
spp. plants regenerated from cryopreserved explants exhibited maintenance of
stability based on biochemical (diosgenin) analysis (Dixit et al. 2003; Dixit-Sharma
et al. 2005; Ahuja et al. 2002). Interestingly, in Plumbago indica, plantlets
regenerated from encapsulated hairy root fragments exhibited maintenance of
plumbagin content following 6 months of storage (Gangopadhyay et al. 2011).

4 Challenges and Future Prospects

Restoration and propagation using synthetic seed technology offer the possibility of
conserving RET species with medicinal value. Successful conservation in genebanks
using in vitro techniques is well documented and with increasing thrust on
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Table 5 Genetic stability studies of plants regenerated after propagation and/or conservation using
synthetic seed technology in medicinal plants

Plant
species Culture system Strategy Response References

Bacopa
monnieri

Regenerated
plantlets from
encapsulated
shoot tips

Molecular
(RAPD, ISSR),
biochemical
(HPLC) analysis

No variation was
observed between con-
trol plants and in vitro
regenerated plants after
6 months storage

Muthiah
et al. (2013)

Bacopa
monnieri

Alginate-encap-
sulated shoot tips

Molecular
(RAPD) analysis

No variation between
control plants and
in vitro-regenerated
plants

Rency et al.
(2017)

Cannabis
sativa

Encapsulated
nodal segments

Molecular
(ISSR) analysis

Genetic stability of
plants derived from
encapsulated
microshoots following
3 months of storage

Lata et al.
(2009b,
2011)

GC-FID analysis Showed homogeneity
in the regrown plants
and mother plants

Dioscorea
bulbifera

Synseed-derived
plantlets

Molecular
(RAPD) analysis

No variation observed Narula et al.
(2007)

Dioscorea
bulbifera

Plants
regenerated from
cryopreserved
encapsulated
embryogenic
tissue

Molecular
(RAPD), bio-
chemical
(HPLC), and
morphological
analyses

Cryopreserved-derived
plants maintained
genetic stability

Dixit et al.
(2003)

Dioscorea
deltoidea

Cryopreserved
shoot tip-derived
in vitro plantlets

Biochemical
(HPLC) and
morphological
analyses

Cryopreserved-derived
plants maintained
genetic stability

Dixit-Sharma
et al. (2005)

Dioscorea
floribunda

Plants
regenerated from
cryopreserved
encapsulated
embryogenic
tissue

Molecular
(RAPD), bio-
chemical
(HPLC), and
morphological
analyses

Cryopreserved-derived
plants maintained
genetic stability

Ahuja et al.
(2002)

Eclipta alba Encapsulated
microshoots

Molecular
(RAPD) analysis

No variation was
observed

Ray and
Bhattacharya
(2010)

Gentiana
tibetica

Encapsulated cell
suspensions

Flow cytometry Cryopreservation did
not influence the
genome size either in
PEM or in regenerants

Mikuła et al.
(2008)

G. cruciata Encapsulated cell
suspensions

Flow cytometry Cryopreservation did
not influence the
genome size either in
PEM or in regenerants

Mikuła et al.
(2008)

(continued)

206 N. Sharma et al.



application of synthetic seed technology for propagation coupled with advances in
cryopreservation, methods are predicted to boost this further in case of medicinal
plants.

In medicinal plants, there are limited reports of somatic embryogenesis with few
reports on conversion of somatic embryos, and these are the factors limiting the

Table 5 (continued)

Plant
species Culture system Strategy Response References

Glycyrrhiza
glabra

Synseed-derived
plantlets

Molecular
(RAPD and
ISSR) analysis

No significant differ-
ences observed in plants
derived from alginate-
encapsulated
microshoots and parent
material

Mehrotra
et al. (2012)

Picrorhiza
kurroa

Synseed-derived
plantlets

Molecular
(RAPD) analysis

Genetic stability of
plants derived from
encapsulated
microshoots following
3 months of storage

Mishra et al.
(2011)

Picrorhiza
kurroa

Synseed-derived
plantlets

Molecular
(RAPD and
ISSR) analysis

No significant differ-
ences observed in
regenerants and mother
plant, but notable dif-
ferences observed
among three adventi-
tious shoots regenerated
from three calli

Rawat et al.
(2013)

Phytochemical
study (HPLC)

Tissue culture-raised
plants showed higher
secondary metabolite
(picrotin and
picrotoxinin) as com-
pared to mother plant

Rauvolfia
serpentina

Synseed-derived
plantlets

Molecular
(RAPD and
ISSR) analysis

Genetic stability of
plants derived from
encapsulated
microshoots after
storage

Faisal et al.
(2012)

Rauvolfia
tetraphylla

Synseed-derived
plantlets

Molecular
(RAPD and
ISSR) analysis

No change in the RAPD
and ISSR profiles
among the regenerated
plantlets

Alatar and
Faisal (2012)

Withania
somnifera

Synseed-derived
plantlets

Molecular
(RAPD and
ISSR) analysis

No variation was
observed

Fatima et al.
(2013)

GC-FID gas chromatography (GC)-flame ionization detector (FID) analysis, HPLC high-
performance liquid chromatography, ISSR inter-simple sequence repeat, PEM proembryogenic
mass, RAPD random amplified polymorphic DNA
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application of this technology. While encapsulation of shoot tips and shoot buds
ensures high germination and stability of conserved synseeds, in vitro rooting is the
major obstacle in many species, including recalcitrant MAPs and RET plants. Thus,
there is a need to work out a strategy to facilitate its use for large-scale utilization.
Research thrust is needed to apply synthetic seed technology for production of
secondary metabolites to ease out collection pressure on natural habitats. Emphasis
should also be directed to exploit the technology for reintroduction of plants to
natural habitat.

Regarding conservation meager but encouraging work has been done so far. The
challenge lies in optimizing repeatable working cryopreservation protocol for appli-
cation in germplasm conservation in the genebanks. Monitoring of genetic stability
of thus propagated and conserved medicinal plants to ensure conservation for
sustainable utilization is challenging but an important aspect requiring focused
research efforts. Encapsulation of transformed hairy roots having potential industrial
significance is one of the thrust areas which need attention.
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Cash Crops: Synseed Production,
Propagation, and Conservation

Zishan Ahmad and Anwar Shahzad

Abstract Advancement in encapsulation technique has provided excellent oppor-
tunity for the improvement of crops, trees, and several other plant species. The
application of encapsulation technology in the field of agriculture opens new vistas
for plant propagation, conservation, and delivery of germplasm. The synthetic seed
was a promising application in the propagation of vegetatively propagated and
polyploidy species that are hard to propagate. In majority of the cash crop, propa-
gation through seed is unsuccessful due to heterozygosity, low germination of seed,
and absence of normal endosperm. Considering these problems, a great interest has
been developed to use encapsulation techniques for the propagation, conservation,
and accelerated germplasm exchange. The proposed study deals with a piece of up-
to-date information on the synseed development in various cash crops.

Keywords Cash crop · Encapsulation · Germplasm exchange

1 Introduction

A cash crop or profit crop is an agricultural crop which is grown to sell for profit and
considered as a precise method that has validated to raise affordable food in
extravagant quantities. It can be described as a farm product that is sold on a
commercial agricultural market and also called as commercial farming or cash
cropping. It is significantly associated with the importance of food security at the
level of governments and farm household in agriculture sector of the emerging
countries. A cash crop brings consequential emolument and employment opportu-
nities to the rural economy and promotes economic diversification. From several
years, cash crops bring impetus to agricultural innovation by raising capital for farm
investment and earning revenue for the government. The production of cash crop
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empowers farmers and farm workers to advance their living standard, thus contrib-
uting to food security. In the beginning, cash crop farming was a small part of a
farm’s total yield, while nowadays, approximately all the crops are mainly grown for
profit particularly in developed countries, while in the case of underdeveloped
countries, it is expanded to attract demands from the developed countries to enhance
the export value.

Like any farming exercise, cash crop farming also required management against
various types of risk. The communities with a high dependency on cash crop farming
will face a drop in incomes due to lack in proper management. Different biotic and
abiotic factors are the stationary factor that restricts the production of cash crop
plants. In the majority of the cash crop, propagation through seeds found to be
abortive. The reason might be the seeds heterozygosity, tiny size, and low germina-
tion and presence of reduced endosperm (Saiprasad 2001). The presence of seedless
varieties is also one of the restrictions for propagation (Saiprasad 2001). The
propagation through a conventional method like grafting, air layering, stooling,
etc. to ameliorate cash crop exists but is restricted due to unusual juvenility that
has made these techniques wasteful of time and bunglesome (Litz and Jaiswal 1991).

Plant tissue culture (PTC) technology found to be effective against these prob-
lems associated with the propagation of cash crops. A potent regeneration protocol is
prerequisite for the advancement of cash crops through different biotechnological
strategies. In most of the cases, the characteristics of the cash crops restrict their
conservation through traditional methods due to several reasons such as desiccation-
sensitive intermediate or recalcitrant seed and long-duration storage problems. A
high rate of occurrence of fungi and their infection are altogether responsible for low
storage period (Rai et al. 2009). Moreover, collection of germplasm from field gene
banks is more prone to exposure to the natural apocalypse and pathogens attacks
(Rai et al. 2009). According to Chaudhury and Malik (2003), the vegetative nature of
material restricts the allocation of genetic resource from gene bank, and the action
will also promote disease transfer. To evade these problems, an accelerated approach
has been established for the application of synseed technology for the preservation
and delivery of germplasm in cash crops. The present communication deals with the
up-to-date information on the application of synseed technology in various cash
crops for their conservation and germplasm exchange.

2 Synseed: Background, Procedure, and Advantage

Murashige (1977) first gives the concept of synthetic seed; however, Kitto and
Janick (1982) published their first work on synseed approach. They use
polyoxythylene glycol as a coating mixture to encapsulate the carrot somatic embryo
to obtain desiccated synthetic seed. However, the first encapsulation using alginate
hydrogel was achieved by Redenbaugh et al. (1984), for the encapsulation of SE in
alfalfa. Since then various studies have been conducted so far on several plant
species such as cereals, fruits, vegetables, ornamentals, medicinal plants, forest
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trees, and orchids (Bapat et al. 1987; Corrie and Tandon 1993; Rout et al. 2001; Naik
and Chand 2006; Micheli et al. 2007; Faisal and Anis 2007; Gantait et al. 2015;
Rathore and Kheni 2017; Prakash et al. 2018; Khan et al. 2018; Kundu et al. 2018).

In the beginning, the synthetic seed technology was used to encapsulate generally
somatic embryos with an objective to be used for long-distance transport, short- and
long-term storage, but later, the techniques were also found to be useful for the
encapsulation of vegetative propagules, viz., apical shoot buds, axillary buds, NS,
etc. which have been seen as optional to SE (Ara et al. 2000; Bapat and Mhatre 2005;
Rai et al. 2008; Gantait et al. 2015; Rathore and Kheni 2017; Prakash et al. 2018).
Encapsulation of above propagules was found to be more advantageous for those
crops plants, where somatic embryo could not substantiate. In such problems,
synthetic seed technology is found to be more applicative for propagation and
transport of germplasm (Rao et al. 1998). Two approaches could be tried for the
synseed production (1) hydrated and (2) desiccated. Hydrated synthetic seeds could
be obtained by encapsulation of propagules in hydrogel (Redenbaugh and Walker
1990). Different coating agents are being used for the encapsulation such as sodium
alginate (SA), potassium alginate, carrageenan, SA with gelatin, sodium pectate,
carboxymethyl cellulose, etc. However, among these coating agents, SA was used
frequently (Redenbaugh et al. 1987; Rao et al. 1998; Ara et al. 2000; Faisal and Anis
2007; Shaheen and Shahzad 2015).

Direct sowing of synthetic seeds ex vitro gives economically meaningful and
worthwhile approaches for the artificial seeds to plantlet recovery. Although various
plants are micropropagated through PTC, however germplasm exchange is
restricted, and hence synthetic seed was found to be an ideal delivery system with
easy handling and transport (Mandal et al. 2000). However, the conversion of
synseed into plantlets is limited to only a few plant species; the reason suggested
is low nutritional availability, which would be overcome by enriching the gel matrix
with hormones or by adding them into the planting media (Singh et al. 2006, Faisal
and Anis 2007; Sharma et al. 2013). Application of nutrient source, growth regula-
tors, antibiotics, fungicides, etc. in the gel matrix was found useful for those species
where nutrient availability is low due to the absence of endosperm in natural seed,
and conversion ability was also found to be improved (Redenbaugh et al. 1987;
Bapat and Mhatre 2005). The appearance of root and shoot from the propagules was
sometimes found to be hindered due to gel capsule; thus self-breaking alginate gel
bead approaches were found to be effective to overcome this shortcoming. The lack
of natural endosperm makes synseed challenging to root and shoot emergence from
the propagules (Onishi et al. 1994).

Onishi et al. (1994) found a smooth emergence of shoot and root from the beads
pretreated with KnO3. Various workers have also achieved similar kind of results in
different plant species (Guerra et al. 2001; Arun Kumar et al. 2005). To obtain the
hydrated seeds, the propagules such as SE, shoot bud, NS, etc. were isolated from
in vitro culture followed by mixing with encapsulation matrix composed of SA
(0.5–5.0% w/v) dropped in CaCl2 solution (30–150 mM) as complexing agent and
which took approximately 30–40 min to harden in to the beads. The hardness is due
to supplant of Na+ by Ca+ leading to the formation of calcium alginate (Redenbaugh
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and Walker 1990; Ara et al. 2000). The hardening process is directly affected by SA
and CaCl2 dosage. However, the concentration also depends on type of explants
used; such kind of beads was washed with DDW and cultured on various nutrient
media or other substrates like wet filter paper, cotton paper, or soilrite to obtain the
plantlets.

3 Advantage of Synthetic Seed

The approach of synseed divulges a new perspective in the area of plant biotech-
nology. Synthetic seed can be useful in various ways for the utilization of germ-
plasm. Thus the primary aim in synseed technology was to deal with SE in such a
way that mimicked zygotic embryo during storage and other application. The
potential use of synthetic seed has been shown in Fig. 1. It is one of the excellent
techniques for the propagation of rare and endangered plants, elite genotype and rare
hybrid plants, etc. (Mandal et al. 2000). The production for hybrid seed like in cash
crops or other traditional propagation techniques is too high, and hence synseeds
become low-cost alternatives. Synthetic seed could be effectively planted either on
semisolid medium or in a planting substrate such as vermicompost, soilrite, etc. to
achieve complete plantlet formation (Mandal et al. 2000). For those species which
must sustain their seed once in a year, synthetic seeds overcome the problems as it is
available throughout the year. The conversion of beads into complete plantlets in
in vitro conditions involves pathogen-free and controlled environment for short- to
medium- or long-term storage duration (Engleman 2003). And it can be achieved by

Fig. 1 Advantages of synthetic seed
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alteration in the environmental conditions and/or in nutrient medium composition
such as prolongation under low temperature or light intensity, application of growth
inhibitor such as ABA (abscisic acid), reduction in oxygen concentration, and use of
osmoticum (Gupta and Mandal 2003).

4 Synthetic Seed Production in Some Important Cash Crop

Several reports are available on the development of synthetic seeds for propagation
and conservation of cash crops (Table 1).

4.1 Cassava (Manihot esculenta Crantz, Family:
Euphorbiaceae)

Cassava is considered to be an essential source of energy in tropical countries. In
India, it is widely used for food security and also in the dye industry to its capability
to survive and propagate in marginal and wasteland in comparison to other crops.
Generally, stem cuttings were carried out for the commercial propagation, however,
low rate of multiplication and difficulty in transporting of plant material, this crop is
unable to draw much attention in the international market. Synthetic seed production
in cassava emerged as a tool to deal with these problems effectively. Hegde et al.
(2016) developed a protocol for the encapsulation of NS of cassava variety (H-226)
with a varying concentration of SA, viz., 2, 3, and 4% coupled with MS salts without
calcium salts and treated with varying level of 75 mM, 100 mM, and 125 mM
calcium chloride solution (CaCl2.2H2O) as a complexing agent. Among the different
concentration of SA and calcium chloride, a combination of 3% SA and 100 mM
CaCl2 was found useful in terms of ideal beads formation, and a frequency of
96.67% regeneration was achieved in in vitro condition. However higher doses of
SA (4%) and CaCl2 (125 mM) exhibited low germination frequency. Various
storage periods were analyzed also, and germination % decreased as the days
advanced. A maximum of 93.33% germination was observed at 0 day, while no
germination was observed after 35 days of storage period. The optimized ratio of SA
and CaCl2 along with MS can surely be utilized as a promising alternative to the
propagation of cassava.

4.2 Cotton (Gossypium hirsutum L., Family: Malvaceae)

Cotton being a significant source of textile fiber in worldwide often faces technical
challenges to producing sterile lines due to cross-pollination. It is hard to maintain
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the lines or F1 hybrid varieties of cotton with extended period of flowering. The
propagation of cotton with plant tissue culture and synthetic seed is an alternative
approach to maintain the F1 hybrid. Hu et al. (2015) established an encapsulation
protocol of axillary buds of Gossypium hirsutum. 3% SA in MS medium (liquid)
with 100 mM CaCl2 was found useful for ideal beads formation. The medium
comprised of MS + 0.5 mg L�1 IBA + 0.5 mg L�1 NAA was found a suitable
treatment for the maximum regeneration, where 95% synthetic seeds germinated;
however, rooting was observed in 35.8% of synthetic seed only with an average

Table 1 Synthetic seed production in some cash crop species

Plant species Conservation method
Plant
material Reference

Ananas comosus
(pineapple)

Low-temp. storage SBs Soneji et al. (2002),
Gangopadhyay et al. (2005)

Encapsulation-dehydration ST Gonzalez-Arnao et al.
(1998)

Encapsulation-vitrification SA Gamez-Pastrana et al.
(2004)

Citrus sp. Low-temp. storage SEs Antonietta et al. (2007)

Encapsulation-dehydration SEs Gonzalez-Arnao et al.
(1998, 2003)

Low-temp. storage SEs Singh et al. (2007)

Cannabis sativa Low-temp. storage SBs Lata et al. (2009)

Gossypium hirsutum
(cotton)

Low-temp. storage SBs Hu et al. (2015)

Hordeum vulgare
(barley)

Low-temp. storage MdE Datta and Potrykus (1989)

Ipomoea batatas
(sweet potato)

Encapsulation-dehydration SA Doussoh et al. (2018)

Manihot esculenta
(cassava)

Low-temp. storage NS Hegde et al. (2016)

Mangifera indica
(mango)

Encapsulation-dehydration SEs Wu et al. (2003)

Morus indica
(mulberry)

Low-temp. storage ABs Bapat et al. (1987), Pattnaik
et al. (1995)

Encapsulation-dehydration ST Niino and Sakai (1992),
Niino et al. (1992)

Oryza sativa (rice) Low-temp. storage SEs Kumar et al. (2005)

Vitis vinifera (grape) Encapsulation-dehydration ST Plessis et al. (1993)

Encapsulation-dehydration ABs Zhao et al. (2001)

Encapsulation-dehydration,
encapsulation-vitrification

ECS Wang et al. (2002, 2004)

Zea mays var.
saccharata (sweet
corn)

Low-temp. storage SEs Thobunluepop et al. (2009)

ABs axillary buds, ECS embryonic cell suspension, MdE microspore-derived embryo, SBs shoot
buds, SEs somatic embryo, ST shoot tips
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length 2.2 cm after 30 days of inoculation. In another experiment, they used a
combination of 3% SA + 1% chitosan dissolved in 85 mM acetic acid and solidified
liquid containing 200 mM CaCl2 + 0.02% NaOH, wherein 96.1% synthetic seed
germination was observed on the same treatment. Among the different storage
temperature (4–20 �C) and storage duration (0–4 week), a temperature of 20 �C
was prominent at 0 week of storage duration wherein a maximum of 95.2%
germination was recorded. Moreover, germination was decreased as the storage
duration increased. The above protocol can be a promising tool in agriculture for
cotton to maintain the F1 hybrid.

4.3 Rice (Oryza sativa L., Family: Poaceae)

Kumar et al. (2005) encapsulated somatic embryos of hybrid rice in SA complex
prepared in the nutrient solution of MS, PGR, and protectants for the artificial
endosperm to increase the germination and transformation ability. The obtained
synseed encapsulated in the matrix supplied with MS + IAA
0.5 mg L�1 + NAA0.5 mg L�1 + BA 0.5 mg L�1and charcoal (1.25%) was found
to be effective, and germination frequency of 30% with 27% conversion efficiency
was observed. They further used bavistin and streptomycin in matrix; however, no
significant effect was observed. Moreover, application of self-breaking gel bead
technique enhances the germination and conversion frequency of 52 and 47% of
synthetic seeds.

4.4 Banana (Musa sp., Family: Musaceae)

Banana is one of the major cash crops in the world. The vegetative propagation
through suckers naturally occurs; however due to a lesser number of sucker produc-
tion, their propagation at massive scale is limited. PTC technology brings an
advantage to meet the world demands of banana. Micropropagation through shoot
tip explants has been reported well (Ganapathi et al. 1992, 2001; Suprasanna et al.
2001). However, a remarkable effort has also been carried out for the propagation
and conservation of banana using encapsulation technology. Banana cv. Basrai was
used as a source of explants and encapsulated in 3% SA supplemented with various
gel matrices (Ganapathi et al. 1992). Application of White (1939) medium was
found useful for the maximum conversion of encapsulated ST into plantlets. Further,
the application of 0.1% activated charcoal and a mixture of antibiotics to the gel
matrix overcomes the problem of bacterial infection. The transport of germplasm of
banana using encapsulated ST is quite affordable, less expensive, and safer than
sucker’s transportation. The encapsulation of banana SE was first reported by
Ganapathi et al. (2001). In their findings, they recorded that the constituents of gel
matrices and substrate effected the conversion of synseed into plantlets. However,
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5% SA was the most promising concentration of gel matrix for the encapsulation and
maximized conversion after incubation on to MS medium. There are various reports
available for the in vitro conversion of banana cultivar using minimal growth
medium. For long-term storage of banana cultivars (Banerjee and De Langhe
1985), cryopreservation was successfully achieved (Abdelnour-Esquivel et al.
1992; Panis et al. 1990, 1996; Cote et al. 2002).

4.5 Sweet Potato (Ipomoea batatas Lam., Family:
Convolvulaceae)

Ex situ conservation of vegetatively propagated species such as sweet potato is one
of the difficult tasks. Doussoh et al. (2018) established a protocol for the conserva-
tion of sweet potatoes, their genetic resources, and long-distance transport using
synthetic seed technology. They achieved short-term preservation by developing the
encapsulation-dehydration technique. Two varieties of Koïdokpon and Dokoui
carotte were used for growing shoot collections and disinfected with 10% sodium
hypochlorite. The evaporative dehydration was carried out using silica gel during
5 and 6 h before encapsulation. The encapsulation was carried out by using 3%
SA + 1.30 CaCl followed by conservation in Eppendorf tubes at 20 �C in batches for
15 days and 90 days. After that, inoculated on a nutrient medium consisting of
0.15 mg/L BAP, 0.2 mg/L NAA, 0.08 mg/L GA3, and 80 mg/L adenine sulfate
followed by evaluation of survival and regeneration rate. Highest survival rates of
59.26% and 37.04% and highest regeneration rates of 37.04% and 11.11% were
recorded, respectively, with the landraces “Koïdokpon” and “Dokoui carotte” when
the apices were dehydrated for 6 h and then stored for 15 days. However, as the
storage duration increased, the regeneration rate decreased accordingly. Similarly, a
significant difference was also observed between the landraces regarding their
preservation. The developed protocol can surely be used for the conservation of
endangered sweet potato.

4.6 Grapes (Vitis spp., Family: Vitaceae)

Grapes are widely used cash crop grown for profit. Grapes are heterozygous with
inbreeding depression, and hence it is hard to produce individual genotype by seed
(Gray and Meredith 1992). The advantage of encapsulation technology overcomes
these problems, and enhanced rate of propagation and conservation can be achieved.
Das et al. (2006) first encapsulated the somatic embryo of Vitis vinifera obtained
from leaf explants. The encapsulated somatic embryos were in 2% alginate and
plated on 0.7% agarified medium composed of B5 macrosalts (half strength), MS
macrosalts (full strength), 3% sucrose, and 2.9 μM gibberellic acid. B5 medium
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supplemented with 0.04 μM ABA was used for transferring the embryos for
4–6 weeks before encapsulation resulted in the enhanced storage of up to 90 days
without any declined in the conversion efficiency. The cryopreservation methods
have also been used for the successful conservation by the various workers (Plessis
et al. 1993; Zhao et al. 2001; Wang et al. 2002, 2004).

4.7 Pomegranate (Punica granatum L., Family: Lythraceae)

Pomegranate is one of the pharmacologically important cash crops of tropics. Naik
and Chand (2006) developed protocol for the encapsulation of axenic NS in calcium
alginate hydrogel containing MS + BA 4.44 mM + 0.54 mM NAA. Among the
different concentrations of SA (1–6%) and calcium chloride (50–125 mM), a
complex of 3% SA and 100 mM calcium chloride was found optimum for the
formation of ideal beads. Similarly, among the different planting media tried, a
combination of MS + BA 4.44 mM + 0.54 mM NAA was witnessed with the highest
regrowth in the shoot. The obtained encapsulated NS could be stored at 4 �C for
30 days.

4.8 Litchi (Litchi chinensis Sonn., Family: Sapindaceae)

Litchi is a valuable crop across the world because of its use in the wine industry.
Most of the cultivars are propagated through air layering and marcottage methods.
However, the storage duration was a limiting factor for successful conservation and
long-distance transport, and hence the encapsulation technology was found to be an
appropriate technique to overcome the problems. Das et al. (2016) used cotyledon-
ary stage somatic embryo developed from a zygotic embryo for the encapsulation
using 2% alginate gel. Nitsch and Nitsch basal medium augmented with 0.7% agar,
3% sucrose, and 1 mg L�1 GA was used as nutrient matrix. The germination
frequency on agar medium was higher (44.3%) for encapsulated somatic embryos
than non-encapsulated embryos (23.7%). Similarly, the effect of ABA (abscisic acid)
was also studied on agar medium for encapsulated somatic embryos wherein ABA at
0.02 μM was found optimum and 69.1% germination was observed. The obtained
plantlets were further transferred to the field soil. However, further effort is required
to apply the applications of encapsulation technology in litchi.

4.9 Barley (Hordeum vulgare L., Family: Poaceae)

The microspore-derived embryo of barley has been used for encapsulation (Datta
and Potrykus 1989). A combination of SA and CaCl2 was used for encapsulation and
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to achieve the artificial beads. Maximum regeneration was observed in the encap-
sulated embryo rather than non-encapsulated embryos. Moreover, the germination
capacity persisted up to 6 months for encapsulated embryo, while non-encapsulated
embryos were unable to survive for more than 2 weeks. The obtained artificial seed
can be surely used for delivery of germplasm in barley.

4.10 Sweet Corn (Zea mays L. var. saccharata, Family:
Poaceae)

Several reports are dealing with somatic embryogenesis in sweet corn; however,
some limitations such as low storage duration and viability of seed were observed. A
protocol has been developed for somatic embryo production coupled with encapsu-
lation technology by Thobunluepop et al. (2009) in sweet corn. They used immature
embryoids obtained from callus, inoculated them on medium comprised of N6 + 2,
4- D 2 mg L�1 + Sucrose 60 g/L. An application of 3% (w/v) SA with 100 mM
CaCl2 was found suitable as encapsulation matrix. Synseed treated with 60 gl�1

sucrose was found with enhancing survival rate of 44% after 8 days of germination
test when stored at 15 � 2 �C for 2 weeks wherein 91% of which were normal
seedling and 9% were abnormal seedling. The obtained results witnessed the scope
of synseed production; however, more researches are required for the perfection of
technology.

4.11 Cannabis (Cannabis sativa L., Family: Cannabaceae)

Cannabis is used as black market cash crop, well known for its medicinal and
therapeutic potential. The allogamous nature of this species limits the potency and
efficacy of propagated through the natural seed. Synthetic seed technology has been
developed for in vitro propagation of C. sativa (MX-1), using encapsulation tech-
niques (Lata et al. 2009). Application of 5% SA with 50 mM CaCl2 was found as
best gel matrix and used to encapsulate the axillary buds. The encapsulated beads
were inoculated on MS + TDZ 0.5 mM and PPM (0.075%), where they exhibit best
regrowth and conversion frequency in in vitro condition. However, under in vivo
condition, 100% conversion of encapsulated explants was achieved on 1:1 potting
mix—fertilome—with coco natural medium, moistened with full-strength MS
medium without TDZ, supplemented with 3% sucrose and 0.5% PPM. The obtained
plantlets were acclimatized and successfully transferred to the soil conditions.
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4.12 Citrus (Citrus reticulata, Family: Rutaceae)

Citrus is grown at a greater extent in tropical and subtropical regions in the world. A
high quality of citric acid and vitamin C is present in juice obtained from citrus.
Antonietta et al. (1999) first tried to encapsulate the somatic embryos of Citrus
reticulata Blanco through alginate encapsulation. Different combinations for artifi-
cial endosperm have been tried such as encapsulation with growth regulator free or
augmented with GA3. However, artificial endosperm containing GA3 has exhibited
maximum potential in plantlet conversion on agar gel medium and was also found
useful in short-term storage of ST at 4 �C for 30 days. Whereas application of
germicide PPM and fungicide (Thiophanate-methyl) on the performance of encap-
sulated embryos during the various storage period were evaluated by Antonietta
et al. 2007. A maximum of 60 days of storage periods was found suitable at 4 �C
without a major decline in viability. There are various reports available also dealing
the in vitro conservation of citrus species (Gonzalez-Arnao et al. 1998, 2003; Malik
and Chaudhury 2006).

5 Conclusion and Future Prospects

A remarkable advancement has been carried out in in vitro propagation via synthetic
seed in various cash crops. It offers excellent scope for the conservation and
germplasm exchange of different cash crops. However, direct sowing of synseed is
a limitation due to low survival (Jung et al. 2004). A viable micropropagule
production of large scale in a cost-effective manner is a first demand for practical
application of synseed (Ara et al. 2000). Therefore purification in the protocol is
prerequisite to achieving suitable beads complexing to advance the propagation
techniques through synseeds. The encapsulation technique is a high-grade approach
for the conservation and delivery of those which have direct seed propagation
limitation and best germplasm and plants which do not produce seed. However, a
concerted efforts are required for the development of synseeds suitable to conversion
and plant growth in soil conditions.
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Synthetic Seeds of Two Aquatic Plants

Maurizio Micheli and Carla Benelli

Abstract Aquatic ornamentals are generally used for aquarium decorations because
of their colored foliage and attractive appearance. Cryptocoryne species are popular
due to their easy growth and capacity to thrive for a long time. Cryptocoryne lutea is
an excellent mid-ground plant with bright green or bronzy oblong leaves. Rotala
rotundifolia is characterized by a rapid growing stem and beautiful growth pattern;
for these features it is considered the ideal aquarium plant for beginners. These
aquatic plants are usually easily propagated by cutting, but previous studies allowed
to develop a suitable protocol of micropropagation. A renewed interest is due to the
possibility to obtain synthetic seeds by in vitro-derived propagules to be used in
aseptic or in ex vitro conditions for propagation system.

Keywords Artificial seed · Calcium alginate · Conversion · Non-embryogenic
propagule · Microcutting · Plant tissue culture

1 Introduction

Aquatic plants (or hydrophytes) are plants that have adapted to live in or on aquatic
environments. Great parts of them are represented by ornamental species, and they
are cultured for their beauty, but also to maintain water quality in aquarium. Their
selection is based on shape, leaf color, and size (Stodola 1980). The demand is still
limited to specific markets, but the production of aquatic plants has been developing
rapidly, and the industry requires a continuous supply of high-quality plants on a
large scale. Cryptocoryne and Rotala gen. are included into the list of the most
common aquatic plants: native in vast areas of Southeast Asia and Indonesia, they

M. Micheli (*)
Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia,
Perugia, Italy
e-mail: maurizio.micheli@unipg.it

C. Benelli
National Research Council - BioEconomic Institute (CNR-IBE), Sesto Fiorentino, Firenze, Italy

© Springer Nature Switzerland AG 2019
M. Faisal, A. A. Alatar (eds.), Synthetic Seeds,
https://doi.org/10.1007/978-3-030-24631-0_9

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24631-0_9&domain=pdf
mailto:maurizio.micheli@unipg.it


are submerged or emerged (Kasselmann 1999). Propagation by seed and division of
rhizomes are not productive systems and require a long time. Consequently, these
methods are not used (Windelow 1987). Most plants commercialized in the USA are
collected in their natural habitat. The clumps are divided into single plants, accli-
matized and grown in baths before sale (Micheli et al. 2006). The introduction of
tissue culture to produce these valuable aquatic plants holds several advantages for
industry. It can provide good-quality plants without pest or disease at a competitive
price for the export market; in addition, large-scale plant production can be
programmed according to export requirements (Yapabandara and Ranasinghe
2006). But the information about in vitro propagation of aquatic plants is limited
and fragmentary, perhaps because the experimental activities are conducted within
private companies (Kane et al. 1988, 1990; Staritski 1977). Nevertheless, previous
studies showed that Cryptocoryne lutea and Rotala rotundifolia can be easily
proliferated in in vitro conditions (Micheli et al. 2006). In addition, good levels of
multiplication can be accompanied by satisfactory roots formation: as consequence,
it is possible to avoid a separate stage dedicated to rooting, but to transfer the
plantlets directly to the aquarium for acclimatation after the proliferation phase
(Micheli et al. 2006). The research is investigating to find new propagation pro-
cedures able to join the advantages of micropropagation (high productive efficiency,
sanitary plant conditions, and reduced space requirements) with the technologic
characteristics of the zygotic seed, as handling, storability, and transportability
(Micheli et al. 2003), represented by the synthetic seed technology. Murashige
(1978) gave the first definition of synthetic seed as an encapsulated single somatic
embryo (SE) inside a covering matrix of calcium alginate. The encapsulation was
proposed to safeguard the SEs from mechanical damage during handling in the
nursery and transportation in the farm, as well as to provide nutrients (artificial
endosperm) during their natural evolution in plantlets (conversion) (Micheli and
Standardi 2016). Recently, different explants were tested to produce synthetic seeds,
as nodal segments (microcuttings). In these explants the absence of root primordia is
coupled with their inability to form adventitious roots spontaneously (Standardi and
Micheli 2013); nevertheless, in Cryptocoryne and Rotala gen., characterized by a
high rooting ability, encapsulated microcuttings are able to convert naturally in
whole plantlet when they are sown in suitable conditions. The encapsulation offers
an efficient and cost-effective system for clonal propagation of plant species and
could be used to produce synthetic seeds for restoration purposes and for the
exchange of axenic plant material between laboratories (Fontanili et al. 2015).

2 Previous Experimental Experiences

Cryptocoryne lutea and Rotala rotundifolia were previously studied in order to
individuate a suitable protocol for micropropagation (Micheli et al. 2006). The
shoot proliferation was obtained in Linsmaier and Skoog (LS) medium (Linsmaier
and Skoog 1965) enriched with 0.5 mg l�1 naphthalene acetic acid (NAA) and two
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concentrations of 6-benzylaminopurine (BAP) (1 and 4 mg l�1) (Note 1). In all
species, the medium containing 4 mg l�1 of BAP resulted in higher multiplication
rates (Micheli et al. 2006). The color of the proliferated shoots was always light
green in Cryptocoryne lutea and dark green in Rotala rotundifolia, proper and
typical colors of the two species. In all cases the proliferation was accompanied by
root formation. The lower concentration of BAP (1 mg l�1) induced a higher number
and length of roots (Micheli et al. 2006). In Cryptocoryne lutea the roots appeared
fleshy, while in Rotala rotundifolia they were fibrous. In general, considering also
the results obtained during the acclimation, with two substrates (natural and com-
mercial substrates), the conclusion was that the application of 4 mg l�1 of BAP was
more productive because it induced a higher number of shoots, while the substrate
poor in cytokinins could be employed to obtain a better quality of rooting (Micheli
et al. 2006).

The high rooting capacity of shoots of Cryptocoryne lutea and Rotala
rotundifolia induced to assume that nodal microcuttings could be able to develop a
whole plantlet (conversion) without inductive treatments and can be employed to
produce synthetic seeds of Cryptocoryne lutea and Rotala rotundifolia. In fact,
subsequent studies confirmed that the synthetic seeds, obtained from the encapsula-
tion of microcutting showed 100% of conversion in both species after sowing in
aseptic conditions (data not published).

3 Encapsulation

The protocol to obtain synthetic seeds of Cryptocoryne lutea and Rotala rotundifolia
is following described.

3.1 Laboratory Facilities

Graduate glasses, pipettes, pipettor, magnetic stirrer, spin bar, analytical balance, pH
meter, NaOH and HCl solutions (0.1 N), glass jars, autoclave, horizontal flow
cabinet, forceps, scalpels, blades, electric incinerator, and growth chamber.

3.2 Plant Material

In aseptic conditions, microcuttings (nodal segments of 3–4 mm) of Cryptocoryne
lutea and Rotala rotundifolia are excised by shoots proliferated, maintained in glass
jars on agarized LS medium (Linsmaier and Skoog 1965) enriched with 0.5 mg l�1

NAA and 1 mg l�1 BAP (Note 1) in growth chamber (Note 7).
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3.3 Encapsulation Solutions

Coating, complexing, and rinsing solutions are essential to carry out the encapsula-
tion of microcuttings (Fig. 1).

Their basal components are:

1. Artificial endosperm. It is composed by half strength LS basal medium enriched
with 0.02 mg l�1 NAA, 0.5 mg l�1 BAP, and 50 g l�1 sucrose (pH 5.7) (Note 1).

2. Coating agent. It is represented by alginate sodium salt with medium viscosity.
3. Complexing agent. It is represented by calcium chloride anhydrous.

The artificial endosperm is the common constituent of each solution.
Coating (2.5% w/v) and complexing (1.1% w/v) agents are separately dissolved

into artificial endosperm to obtain, respectively, coating and complexing solution
(Note 1).

The rinsing solution is composed only by the artificial endosperm (Note 1).

3.4 Encapsulation Procedure

(a) In aseptic conditions, each microcutting is immersed in the coating solution for a
few seconds (Note 2).

(b) Each drop, containing one microcutting, is then immerged into the complexing
solution for 25–30 min (Note 3) to obtain beads (Note 4).

(c) All beads are washed at the same time in the rinsing solution for 10–15 min, 2–3
times (Note 5).

Fig. 1 Coating and
complexing solutions ( from
left to right) employed to
obtain Cryptocoryne lutea
synthetic seeds

236 M. Micheli and C. Benelli



3.5 Sowing Medium

Full-strength LS basal medium enriched with 30 g l�1 sucrose and 7 g l�1 agar
(pH 5.7) (Note 1).

3.6 Sowing Procedure

(a) After rinsing the encapsulated microcuttings (synthetic seeds) are aseptically
transferred into closed glass jars (500 ml), each containing 100 ml of sowing
medium and 8–10 synthetic seeds (Note 6).

(b) Cultures are transferred into the growth chamber (Note 7).
(c) Viability, regrowth, and conversion of encapsulated microcuttings of

Cryptocoryne lutea and Rotala rotundifolia (Fig. 2) are evaluated after 30 days
(Note 8).

3.7 Future Perspectives

Previous study on Cryptocoryne lutea and Rotala rotundifolia micropropagation
was completed by the acclimatation phase directly into the aquarium. It was easily
achieved by transferring the plantlets on a soil composed of peat, fine clay, and sand
(1:1:10/v:v:v) or on COMPO CACTEA®, a commercial substrate used for the
cultivation of Cactaceae (Micheli et al. 2006). This result indicates the possibility
to use also synthetic seeds of two species in ex vitro conditions, inducing conversion
directly into the aquarium. They could be proposed in the future as commercial
biotechnological products, able to assure the development of high-quality plantlets
with regard to the genetic and sanitary aspects.

Fig. 2 Conversion of
synthetic seeds of Rotala
rotundifolia
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4 Notes

1. All containers, solutions, and media are autoclaved at 115 �C for 20 min just after
their employment.

2. Sodium alginate is frequently used due to its moderate viscosity, low spin ability
of solution, low toxicity, quick gelation, low cost, and good biocompatibility. As
an alternative, different substances were proposed, like mixture of sodium algi-
nate with gelatin, potassium alginate, polyco 2133, carboxymethyl cellulose,
carrageenan, gelrite, guar gum, sodium pectate, and tragacanth gum (Rai et al.
2009; Redenbaugh et al. 1993; Saiprasad 2001).

3. During the complexation, step ion exchange occurs through the replacement of
Na+ by Ca++ forming calcium alginate (Ara et al. 2000; Redenbaugh and Walker
1990) by ionic cross-linking among the carboxylic acid groups, and the polysac-
charide molecules form a polymeric structure called “egg-box” (Barbotin et al.
1993). Hardening of bead is affected by the concentration of sodium alginate and
calcium chloride, and it may vary also by the complexation time (Standardi and
Micheli 2013; Benelli et al. 2017).

4. Each encapsulated portion of in vitro-derived plant tissue possessing the ability to
evolve in shoot (not into a whole plantlet) can be defined as bead (Benelli et al.
2017) or capsule (Standardi and Micheli 2013). Beads can be useful for the
exchange of germplasm of elite genotypes and axenic plant material between
laboratories due to the small size and relative ease of handling (Benelli et al.
2017).

5. The final washing is essential to remove the toxic residual ions of chloride and
sodium.

6. Synthetic seeds are sown inserting them just for some millimeters into the
substrate, in order to avoid asphyxia of living tissues, respecting the propagule
growth polarity.

7. Growth chamber conditions: 21 � 2 �C temperature, 40 μmol m�2 s�1 photo-
synthetic photon flux density, and 16 light hours photoperiod.

8. Viability: green appearance of encapsulated propagule, with no necrosis or
yellowing, after sowing (Micheli and Standardi 2016). Regrowth: capacity of a
bead to develop at least a new shoot after sowing (Benelli et al. 2017). The term
regrowth is more appropriate than “germination” used by many other authors, in
spite of the absence of direct root regeneration (Benelli et al. 2017). Conversion:
ability of a synthetic seed to evolve in a whole plantlet after sowing (Micheli and
Standardi 2016).

238 M. Micheli and C. Benelli



References

Ara H, Jaiswal U, Jaiswal VS (2000) Synthetic seed: prospects and limitations. Curr Sci
78:1438–1444

Barbotin JN, Nava Saucedo JE, Bazinet C, Kersulec A, Thomasset B, Thomas D (1993) Immobi-
lization of whole cells and somatic embryos: coating process and cell-matrix interaction. In:
Redenbaugh K (ed) Synseeds: applications of synthetic seeds to crop improvement. CRC, Boca
Raton, FL

Benelli C, Micheli M, De Carlo A (2017) An improved encapsulation protocol for the propagation
and conservation of four ornamental species. Acta Soc Bot Pol 86(3):3559. https://doi.org/10.
5586/asbp.3559

Fontanili L, Lucchesini M, Mensuali-Sodi A (2015) In vitro propagation and shoot encapsulation as
tools for ex situ conservation of the aquatic plant Ludwigia palustris (L.) Ell. Plant Biosys 149
(5):855–864

Kane ME, Mcconnel DB, Sheehan TJ, Dehgan B (1988) A laboratory exercise to demonstrate
adventitious shoot formation using stem internodes of parrot-feather. HortScience 23:408

Kane ME, Gilman EF, Jenks MA, Sheehan TJ (1990) Micropropagation of the aquatic plant
Cryptocoryne lucens. HortScience 25(6):687–689

Kasselmann C (1999) Piante d’acquario. Primaris Ed., Rozzano, Italy
Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures.

Physiol Plant 18:100–127
Micheli M, Standardi A (2016) From somatic embryo to synthetic seed in Citrus spp. through the

encapsulation technology. In: Germanà MA, Lambardi M (eds) In vitro plant embryogenesis in
higher plants, Methods in molecular biology, vol 1359. Springer, Heidelberg, pp 515–522

Micheli M, Gardi T, Standardi A (2003) La tecnologia dell’incapsulamento per la diffusione e/o la
conservazione di materiale vivaistico. Italus Hortus 10(4):259–262

Micheli M, De Gasperis A, Prosperi F, Standardi A (2006) Micropropagation of three species of
aquatic plants. Agr Med 136(1):46–51

Murashige T (1978) The impact of tissue culture in agriculture. In: Thorpe A (ed) Frontiers of plant
tissue culture. International Association for Plant Tissue Culture, Calgary, pp 15–26

Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit
plants: a review. Biotechnol Adv 27:671–679

Redenbaugh K, Walker K (1990) Role of artificial seeds in alfalfa breeding. In: Bhojwani SS
(ed) Plant tissue culture: applications and limitations, Development in crop science, vol 19.
Elsevier, Amsterdam

Redenbaugh K, Fujii JAA, Slade D (1993) Hydrated coatings for synthetic seeds. In: Redenbaugh K
(ed) Synseeds: applications of synthetic seeds to crop improvement. CRC Press, Boca Raton,
CA, pp 35–46

Saiprasad GVS (2001) Artificial seeds and their applications. Resonance 6(5):39–47
Standardi A, Micheli M (2013) Encapsulation of in vitro-derived explants: an innovative tool for

nurseries. In: Lambardi M, Ozudogru AE, Jain SM (eds) Protocols for micropropagation of
selected economically-important horticultural plants, Methods in molecular biology, vol 994.
Springer, Heidelberg, pp 397–418

Staritski G (1977) Die vitrokultur von Cryptocoryne. Aqua-Planta 1:3–6
Stodola J (1980) Le piante d’acquario. Olimpia Ed., Firenze, Italy
Windelow H (1987) Aquarium plants. T.F.H. Editions, Neptune City, NJ, pp 54–96
Yapabandara YMHB, Ranasinghe P (2006) Tissue culture for mass production of aquatic plant

species. Retrieved from http://www.apctt.org/publiction/pdf/tm_dec_tissue.pdf

Synthetic Seeds of Two Aquatic Plants 239

https://doi.org/10.5586/asbp.3559
https://doi.org/10.5586/asbp.3559
http://www.apctt.org/publiction/pdf/tm_dec_tissue.pdf


Synthetic Seed Technology in Forest Trees:
A Promising Technology for Conservation
and Germplasm Exchange

Suprabuddha Kundu , Monoj Sutradhar, and Umme Salma

Abstract Forest trees are less domesticated in comparison with the agricultural
plants, and even the seed produced during breeding programs is genetically diverse.
The increasing global need for food and fibre results in new demands for the
efficiency of wood production. The exploitation of forest area emphasizes the
importance of the immediate development of conservation strategies for forest tree
species. Synthetic seed technology is an advanced and highly increasing forte of
plant biotechnological research. For the last two decades, intensive research efforts
have been made on synthetic seed production in a number of plant species. The
technique involves the use of any meristematic tissue like shoot tip, nodal segment or
somatic embryo for large-scale propagation and germplasm exchange between
laboratories, thus lowering the dependence on micropropagation and minimizing
its relevant expenditures. In most of forest species, seed propagation has not been
successful because of heterozygosity of seeds, minute seed size, presence of reduced
endosperm and low germination rate. Many species have desiccation-sensitive
intermediate or recalcitrant seeds and can be stored for only a few weeks or months.
Under these circumstances, increasing interest has been shown recently to use
encapsulation technology for propagation and conservation. The technology also
provides its importance in ex vitro conservation as the encapsulation protects the
plant sample from the unfavourable effects of toxic cryoprotectants and post-storage
damages. After an introduction on the main procedures for synseed preparation, this
chapter provides information on the protocols that have been developed for the
encapsulation of various explants from forest tree species.
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alginate · Synthetic seed
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Abbreviations

ABA Abscisic acid
BA N6-benzyladenine
CC Calcium chloride
IBA Indole-3-butyric acid
LP Quorin and LePoivre medium
MS Murashige and Skoog medium
NAA α-Naphthaleneacetic acid
NS Nodal segment
PGR Plant growth regulator
SA Sodium alginate
SE Somatic embryo
ST Shoot tip
WPM Woody Plant Medium

1 Introduction

Forests which cover barely 7% of the earth’s surface harbour over 60% of the
world’s biodiversity and one of the most valuable eco-systems in the world
(Reddy et al. 2018). This biodiversity have not only abundant social and economic
tenets but also intrinsic significance. Starting from important ecological functions as
soil and watershed protection, forest trees also serve as the source of numerous
products which can only be extracted from the forest. Forest trees are the primary
raw material base for both of the industrial and domestic wood merchandises, which
provide perpetually renewable energy, fibre and timber. Globally, 48% of the forest
plantation is established for industrial use and 26% for non-industrial use (fuelwood,
soil and water conservation), and the remaining 26% is not specified (Sloan and
Sayer 2015). Modern pharmaceutical industry is largely dependent on plant-based
drugs; for instance, Indian indigenous tree Nothapodytes nimmoniana (Mappia
foetida) is one of the rare forest species, used for cervical cancer treatment in
Japan (Murthy et al. 2018). All of the forests present on earth perform a vital part
in climate regulation by acting as the major carbon sink of atmosphere which
ultimately prevents the escalation of greenhouse effect. Depending upon their
specific utility and human needs, trees are classified under different groups, such
as industrial and timber, agroforestry, social forestry, fast-growing nitrogen fixing
and multipurpose trees. However, due to rapid deforestation and depletion of genetic
resources coupled with escalating human needs, the forest cover is being reduced
tremendously from the earth’s surface. Some of the direct sources of rapid defores-
tation are the transformation of forested lands into crop fields, cattle-raising, logging
and urbanization, acid rain and fire, mining and oil exploitation, etc. Therefore, it is
impossible to meet the increasing demand for forest products along with progressive
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deterioration of natural forests both at the same time, and there is an urgent
requirement for replacement of natural tree population with cultivated trees (Singh
et al. 2017).

Though the conventional approaches such as seed propagation and clonal prop-
agation are being employed for conservation of trees, these are limited to the most
valuable and fast-growing species. Several inherent characteristics of forest trees
such as slow growth, long life cycle, sexually self-incompatibility and high hetero-
zygosity act as the primary bottlenecks in conventional propagation of trees. High
heterozygosity results in higher retention of recessive deleterious alleles within
populations, high genetic load and, hence, inbreeding methods such as selfing;
backcrossing makes it more challenging to fix anticipated alleles in a certain genetic
background (Williams and Savolainen 1996).

Synthetic seed technology has unlocked extraordinary breakthroughs in many
areas of basic and applied biological research (Gantait et al. 2015a). Synthetic seed
refers to the encapsulation of somatic embryos (SEs) or encapsulated buds, bulbs or
any forms of meristem which can develop into plantlets. Encapsulation is usually
done in a suitable gel (sodium/calcium alginate) matrix to produce “synthetic seed
coat”, and the resulting encapsulated propagules can be treated like natural seeds.
The facility to incorporate nutrients, biofertilizers, antibiotics or other essential
additives to the matrix and the easy handling, storage, transportation and planting
are the major advantages to employ synthetic seed technology as a unit of delivery of
tissue-cultured plants. Moreover, many trees produce seeds in certain period of the
year, whereas synthetic seeds would be available throughout the year. It acts as a
simple inexpensive delivery unit of in vitro propagated plants. This review is to
highlight the advancements of synthetic seed technology in forest trees.

2 Synthetic Seed

Synthetic seed technology is one of the most important application of plant tissue
culture, as it combines the advantages of both clonal propagation and seed propa-
gation (i.e. easy handling, storability, transport, use of sowing equipment and also
protection against pests, diseases) (Lambardi et al. 2006). This technology is exten-
sively being used in cryopreservation for long-term storage of plant germplasms
(such as the “encapsulation-dehydration” method). This technology emerged from
the idea of encapsulating a single SE inside a synthetic seed coat, thus mimicking the
natural seeds. Murashige (1977) was the first to produce an official definition of
“synthetic seed”, “an encapsulated SE, that could be used as a real seed for transport,
storage and sowing, and would eventually grow, either in vivo or ex vitro, into
complete plantlet”. Unlike zygotic embryos, secured by a seed coat and have an
access to the nutrients that are accumulated in the cotyledons or in the endosperm,
SEs are naked and dependent on the culture medium. Hence, the new concept paved
the way for the encapsulation of explants other than SEs and to the formulation of a
new definition of synthetic seed (Aitken-Christie et al. 1995) as “synthetically
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encapsulated SEs, shoots, or other tissues which can be used for sowing under
in vitro or ex vitro conditions”.

Encapsulation technology provides many suitable advantages such as easy han-
dling, true to type plants and direct transportation of elite plant materials across the
laboratories or greenhouses (Danso and Ford-Lloyd 2003; Naik and Chand 2006).
Majority of tree species produces seeds only during particular season of the year,
whereas synthetic seeds could be readily available throughout the year (Bapat and
Mhatre 2005). It is also an excellent approach for germplasm conservation and
storage in sterile condition from short to long duration. However, for long-term
storage, slow and steady growth maintenance is most desirable (Englemann et al.
2003). Different methods have been employed in this regard (Gupta and Mandal
2003) such as (1) reduction in temperature and light intensity; (2) application of
growth retardants like abscisic acid; (3) employment of minimal growth medium;
(4) utilization of osmoticum, for instance, mannitol, sorbitol, etc.; (5) decreased
concentration of oxygen; and (6) use of multiple treatment combinations. Long-
term conservation of synthetic seeds can also be attained by dipping them in liquid
nitrogen (�196 �C), and the procedure is known as cryopreservation. Encapsulation-
dehydration and encapsulation-vitrification are two such cryopreservation techniques
which are based on basic encapsulation technology. However, somaclonal variation
in this regard is a matter of concern (Englemann et al. 2003).

3 Factors Influencing Synthetic Seed Technology

3.1 Type of Explant

A range of explant materials are being efficiently utilized for synthetic seed prepa-
ration in forest tree species. Some of the most commonly employed explants are:

3.1.1 Somatic Embryo

SE is considered to be the best suitable explant for synthetic seed production among
the different types of propagules. It has a bipolar structure, i.e. it has both shoot and
root poles (Standardi and Piccioni 1998). Therefore, it can be formed in bulk which
makes them more efficient for encapsulation. SEs can be stored, handled, transported
and planted like true seed (Redenbaugh et al. 1993). The employment of SE in
development of synthetic seeds in forest tree species has been reviewed and
presented in Table 1. SE was effectively utilized for synthetic seed production in
several forest tree species, for instance, Picea abies (Gupta et al. 1987), Santalum
album (Bapat and Rao 1988, 1992), Eucalyptus citriodora (Muralidharan and
Mascarenhos 1995), Camellia japonica (Janeiro et al. 1997), Quercus robur
(Wilhelm et al. 1999), Feijoa sellowiana (Guerra et al. 2001), Goiabeira serrana
(Guerra et al. 2001), Pinus patula (Sparg et al. 2002), Paulownia elongate (Ipekci
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and Gozukirmizi 2003), Elaeis guineensis (Mariani et al. 2008), Pinus radiate
(Aquea et al. 2008), Quercus suber (Pintos et al. 2008), Nothafagus alpine (Cartes
et al. 2009), Dalbergia sissoo (Singh and Chand 2010), etc. The major hurdles in the
way of producing synthetic seeds using SE as explants are metachronous and
delayed development of the embryonic terminal (Castellanos et al. 2004). It was
observed that in majority of the plants taken into account had regeneration as low as
50%. Prewein and Wilhelm (2003) even found 26% regeneration in the case of
Quercus robur synthetic seeds, cultured on P24 medium supplemented with 0.9 μM
BA and 0.1 μM IBA. There was only one instance where synthetic seeds developed
from SE resulted in 100% regeneration in MS with 2 μM BA plus 0.5 μM IBA
(Hemidesmus indicus; Cheruvathur et al. 2013). Interestingly, both of these striking
differences in regeneration were achieved in different media. Hence, a proficient
embryogenic system is indispensable for advancement in plantlet conversion from
synthetic seeds.

3.1.2 Shoot Tip

Shoot tips (STs) or shoot buds are the second most amenable explants which are
non-embryogenic materials and contain suitable mitotic activity in the meristem
(Ballester et al. 1997). The most interesting part of using STs as explants for mass
propagation via synthetic seed production is the requirement of space and cost in
comparison to conventional ST culture in vitro. The amount of space and culture
media needed for multiple shoot formation and its proliferation is 20 times lesser than
that of conventional ST culture. It makes the transportation of even bulk of propagules
in limited space effortlessly. There has been several reports of ST-utilized synthetic
seed production in forest tree species, such as Cedrela odorata (Maruyama et al.
1997), Guazuma crinita Mart (Maruyama et al. 1997), Jacaranda mimosaefolia
(Maruyama et al. 1997), Camellia japonica and C. reticulata (Ballester et al. 1997),
Cedrela fissilis (Nunes et al. 2003), Populus tremuloides � P. tremula hybrid aspen
(Tsvetkov et al. 2006), Eucalypt hybrid (C. torelliana � C. Citriodora; Hung and
Trueman 2012) and Eucalyptus urograndis (E. grandis � E. Urophylla).

3.1.3 Nodal Segment

The relative simplicity of producing microcuttings or nodal segments (NSs) or
axillary buds makes them a fitting explant for synthetic seed production (Piccioni
and Standardi 1995). Moreover, better storage potential for genotype exchange,
better proliferation after storage and lesser occurrences of physiological variations
are the other advantages of utilizing NS for encapsulation (Micheli et al. 2007;
Gantait et al. 2015b). NSs were utilized for synthetic seed production (Table 1) in
several forest tree species, such as Betula platyphylla var. japonica (Kinoshita and
Saito 1990), Betula pendula (Piccioni and Standardi 1995), Crataegus oxyacantha
(Piccioni and Standardi 1995), Dalbergia sissoo (Chand and Singh 2004), Rauvolfia
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tetraphylla (Faisal et al. 2006), Acacia hybrid (Asmah et al. 2011), Rhododendron
dalhousiae (Singh and Gurung 2011), Drypetes roxburghii (Murthy and Reddy
2014), Balanites aegyptiaca (Varshney and Anis 2014) and Ficus carica (Sharma
et al. 2015). In most of the studies, multiple shoot primordia were found to be
frequently emerging from synthetic seeds which is another advantage of NS-induced
synthetic seeds.

3.1.4 Others

Even though majority of the tree species are more suitable to be preserved from
either SEs, NSs or STs, these are not common for all the other tree species. Few of
the occasionally used explant materials are apical bud (Quercus sp.; Tsvetkov and
Hausman 2005), embryo (Parkia speciosa; Ummi et al. 2011), embryoids (Pistacia
vera; Onay et al. 1996), excised embryo (Hopea parviflora; Sunilkumar et al. 2000),
pregerminated SE (Acca sellowiana; Inocente et al. 2007) and cotyledonary NS
(Cedrela fissilis; Nunes et al. 2003). These studies are the evidences of suitable explant
versatility in synthetic seed, prevailing among different types of forest tree species.

3.2 Encapsulating Agents

When looking at the history of synthetic seed technology, a wide number of
encapsulating agents have been tested in time for their capacity to produce beads,
such as agar, agarose, alginate, carboxymethyl cellulose, carrageenan, ethyl cellu-
lose, gelrite, guar gum, nitrocellulose, Polyox, polyacrylamide and sodium pectate
(Datta et al. 2001; Saiprasad 2001). Redenbaugh et al. (1988), after comparing
several substances for making synthetic seed coats, proposed the use of a sodium
alginate (SA) solution which could be turned into a hardened Calcium (Ca)-alginate
gel by an ion-exchange reaction when dropped in the calcium chloride (CC;
CaCl2.2H2O) solution. Bapat and Rao (1988) used alginate matrix for encapsulating
SEs of sandalwood. However, the germination rate of synthetic seeds of sandalwood
after storage for 45 days at 4 �Cwas low (10%). Tsvetkov et al. (2006) achieved 96%
germination recovery in alginate-encapsulated ST of hybrid aspen after 4 weeks of
storage at 4 �C. In most of the forest tree species, the same encapsulating agents
(SA and CC ¼ Ca-alginate matrix) at different combinations of concentration were
used for synthetic seed preparation (Table 1). The main advantages of this com-
pound are the excellent water solubility and moderate viscosity of SA at room
temperature, its easy availability at low cost, the long-term storability of the SA
solution, the easy use of calcium salts for rapid gelation and bead hardening at room
temperature, the possibility to prepare synseeds of different hardness by changing
the concentration of SA and/or the duration of the ion-exchange reaction, the
absence of any kind of toxicity of the Ca-alginate matrix for explants and easy
incorporation of alginate in nutritive medium to obtain an synthetic endosperm.
However, high adhesion and rapid desiccation of Ca-alginate beads in presence of air
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make them difficult to handle and hinder the shoot-root emergence from encapsu-
lated explants. To resolve these issues, Redenbaugh et al. (1987) pointed out the
application of a hydrophobic layer at the surface of the synthetic seeds. Several
hydrophobic coating agents have been tested over time, such as aluminium
monostearate, Elvax 4260 (Dupont, SRI Int.), Gantrez ES, glutaraldehyde, methyl
vinyl ether/maleic anhydride, polylysine and polyproline in this regard (Redenbaugh
et al. 1988). Among them, Elvax 4260 exhibited a substantial impediment to capsule
drying. Khor et al. (1998) introduced the concept of a non-tacky, water barrier
coating of the alginate capsules, obtained by means of alginate chitosan or
alginate-gelatin encapsulation which simulates the endosperm of seeds, better pro-
tection and easy handling.

3.3 Polymerization and Encapsulation Matrix

Numerous factors are involved in maintaining encased explant like temperature,
humidity and nutrient reservoir in order to provide protection and optimum germi-
nation. Evidently, matrix resources play the chief function in sustaining the germi-
nation viability of the biological material (Gantait et al. 2017). The SA-coated
explants are dropped singly into the polymerizing/complexing agent, primarily CC
and kept for 20–25 min for the formation of ideal beads. The encapsulated seed
rigidity depends on the amount of Na+ions present in SA solution exchanged with
the Ca2+ ions of CC solution; as a result the polysaccharide molecules form a
polymeric structure producing a bead of Ca-alginate (Daud et al. 2008). Accord-
ingly, the matrix attains the required consistence to supply security against desicca-
tion and mechanical injuries. Majority of the reports employed 3% SA and 100 mM
CC to facilitate proper ion exchange thus produces the most advantageous bead
formation (Table 1).

3.4 Duration of Polymerization

Synthetic seed formation is largely regulated by the time of SA and CC polymeri-
zation. The optimum time period for polymerization is 20–30 min within which the
Ca-alginate beads are symmetrical in shape (Asmah et al. 2011). Longer polymer-
ization time (30 min) increases the adsorption of Ca2+ by SA since it is occurred
through surface. Though it gives hardier texture of beads and better protection during
handling and transportation, at the same time it suppresses regeneration due to Ca
ion toxicity and also for shoot and root emergence (Nagesh et al. 2009). Hence, it is
necessary to wash the hardened beads several times with sterile water to remove the
toxic remnants of chloride and sodium ions (Gantait et al. 2015a). After washing, the
beads or encased explants should be blotted on blotting paper, and either can be
stored or relocated to regrowth medium for subsequent regeneration.
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4 Regrowth Assessment

After the completion of last encapsulation steps, regeneration of the encapsulated
material is essential. To achieve this, basal media in different concentrations such as
¼-, ½- and full-strength Murashige and Skoog (1962) (MS), Quoirin and LePoivre
(1977) medium (LP), Woody Plant Medium (WPM) (Lloyd and McCown 1980) or
any nutrient medium can be used for both of their semi-solid and liquid states.
However, the germination rates vary significantly with different media compositions
(Inocente et al. 2007). Most of the researchers have found full MS to be most suitable
for shooting and regeneration whereas half MS for rooting and acclimatization. The
most possible causes for the variable effects of nutrient strengths of the regrowth
media on different tree species can be due to higher nutrient toxicity or nutrient
deficiency. Varshney and Anis (2014) achieved 80% shooting from encapsulated
NSs of Balanites aegyptiaca Del. in MS medium supplemented with 12.5 μM BA
and 1.0 μM NAA. However, 70% rooting was observed in half MS supplemented
with 1.0 μM IBA. Singh and Gurung (2011) observed better conversion of encap-
sulated STs in plantlets in MS medium (69.5%) containing activated charcoal (1.0%,
w/v) and 1.0 μM IBA in comparison with half MS containing the same (51.75%).
According to Singh and Chand (2010), inaccessibility of encapsulated plant tissue to
the nutrients is one of the limiting factors for the germination. So, endogenous or
exogenous supply of nutrients is mandatory for the SA-encapsulated meristematic
plant tissue to improve the rate of germination. Inversely, in many reports, the
supplementation of plant growth regulators (PGRs) in the regrowth medium boosts
the germination of synthetic seeds. Supplementation of PGRs to the regrowth
medium has been found to abolish the obligation of a supplementary in vitro root
induction step before acclimatization.

5 Application of Synthetic Seeds

Synthetic seed technology has unravelled pioneering outlooks on the ground of plant
biotechnology. Various approaches can be taken using synthetic seeds that could
assist managing the plant germplasm and further discussed in the sections below.

5.1 Direct Sowing

Direct sowing of encapsulated seeds in ex vitro condition is commercially more
viable process and in turn low-cost practice for the regrowth of plantlets (Kundu
et al. 2018). Sowing of the synthetic seeds directly in the soil skips the acclimatiza-
tion procedure that is unexceptionally required for micropropagated plants. Syn-
thetic seeds can be sown directly in ex vitro planting substrates as perlite, sand,
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soilrite, vermicompost, etc. for the commercialization of the process (Mandal et al.
2000). Ex vitro regeneration has been not been effectively tried except for only few
researchers. Ipekci and Gozukirmizi (2003) used soil containing peat and perlite
(3:1) for direct sowing of Paulownia elongata encapsulated SEs and recorded 43.2%
of germination frequency. Chand and Singh (2004) found 45% regeneration of
Dalbergia sissoo synthetic seeds on peat moss supplemented with ½-strengthMS
medium. The major hurdles faced during direct sowing of synthetic seeds were the
contamination by microbes. The stored nutrients and exudates emitted by the
encased explants are particularly accountable for the infection. Incorporation of
fungicides as carbendazim or bavistin and benomyl at 50–100 mg l�1 into the
encapsulation matrix can resolve this issue to certain extent (Bapat and Rao 1993).
Antonietta et al. (2007) obtained 96.7 and 100% regeneration of encapsulated Citrus
reticulata on filter paper and perlite, correspondingly only after incorporation of
100 mg l�1 thiophanate-methyl into the encapsulation matrix. Sometimes, fungi-
cides may also affect the viability of synthetic seeds and directly influence
regeneration.

5.2 Short-Term Storage

Commercial utilization of synthetic seed technology predominantly requires flexi-
bility in storage and efficient regeneration even after storage. Thus, suitable condi-
tions and durations for storage are necessary to utilize this technique for commercial
purpose (Gantait and Kundu 2017). Most commonly found suitable temperature for
storage of synthetic seed in tree species is 4 �C (Singh and Gurung 2011; Sharma
et al. 2015). Sandalwood was one of the first tree species where embryogenic cell
suspensions were used for encapsulation and storage at 4 �C for 45 days (Bapat and
Rao 1988). Palanyandy et al. (2015) observed that synthetic seeds of oil palm
polyembryoids stored at 5 �C for 60 days had higher survival rate than those stored
at room temperature (25 �C) that lost viability after 30 days of storage. Ipekci and
Gozukirmizi (2003) observed that the germination frequency in encapsulated
embryos of Paulownia elongata after 60-day storage (32.4%) was lower than that
after 30-day storage (43.2%) at 4 �C. There are some instances where higher-
temperature storage provides better regeneration rate. Maruyama et al. (1997)
attempted above freezing temperatures for storage of encapsulated STs in three
different tropical forest tree species. The post-storage viability was 80% after
12 months at 12 �C for C. odorata, 90% after 12 months at 25 �C for G. crinita
and 70% after 6 months at 20 �C for J. mimosaefolia. Synthetic seeds of plantation
eucalypt (Corymbia torelliana� C. Citriodora), containing explants pretreated with
IBA, were stored for 8 weeks, and the regrowth frequencies were 50–84% at 25 �C
storage whereas 0–4% at 4 �C storage (Hung and Trueman 2012). Nunes et al.
(2003) obtained 96–100% regeneration in encapsulated STs and cotyledonary NSs
stored at 25 �C in Cedrela fissilis Vellozo.
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5.3 Long-Term Storage

Generally, cryopreservation techniques are followed for long-term preservation of
germplasms. At this ultra-low temperature, biochemical and physiological mecha-
nisms of the cell become ceased without undergoing any damaging effect. This
technique is successful if the intracellular ice crystallization is by passed since it
damages the cell membrane, effecting semipermeability. Thus far, a range of
approaches have been made for cryopreservation of plant tissues, they are the
two-step freezing, simple desiccation, vitrification, encapsulation-dehydration and
encapsulation-vitrification. There is no report available on long-term conservation;
hence, here lies the prospect of research.

6 Limitations

Although results of intensive researches in the field of synthetic seed technology
seem promising for propagating a number of forest tree species (Table 1), practical
implementations of this technology are constrained due to the following main
reasons:

1. Limited production of viable micropropagules useful in synthetic seed production
2. Anomalous and asynchronous development of SEs
3. Improper maturation of the SEs that makes them inefficient for germination and

conversion into normal plants
4. Lack of dormancy and stress tolerance in SEs that limit the storage of synthetic

seeds
5. Poor conversion of even apparently normally matured SEs and other

micropropagules into plantlets that limit the value of the synthetic seeds and
ultimately the technology itself

Most of the tree species studied for encapsulation was subjected to drastic or
moderate reduction in regeneration after encapsulation. It is mainly due to
asynchronic maturation of embryonic pole, which makes the downstream processes
challenging (Tapia et al. 1999; Castellanos et al. 2004, Cartes et al. 2009). Several
efforts have been made to improve germination and conversion of encapsulated
seeds to plants in woody species such as use of different gelling agents (agar, gelrite)
for encapsulation, alteration in SA concentration, tweaking polymerization time, etc.
(Patel et al. 2000; Maruyama et al. 2003; Utomo et al. 2008). Aquea et al. (2008)
found very less reduction in germination, i.e. from 73% (nonencapsulated) to 66%
(encapsulated) SEs of Pinus radiate. Cartes et al. (2009) achieved higher levels of
germination in Nothofagus alpine by using zygotic embryos (100%) in comparison
with the SEs (45%), owing mainly to the lack of maturity and synchrony of the
embryoids.

A number of researchers have also approached to develop the quality (Guerra
et al. 2001; Ipekci and Gozukirmizi 2003; Inocente et al. 2007; Aquea et al. 2008;
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Singh and Chand 2010) of SEs by reforming the culture medium composition (type
and strength), growth regulators (types and concentrations), physical state of the
medium (solid, liquid), incubation conditions (temperature, illumination), etc. Attree
and Fowke (1993) and Fowke and Attree (1996) have described that inclusion of
high levels of sucrose (i.e. permeating osmotica) and ABA (which is associated with
water stress) in the standard medium prevents maturation, while inclusion of PEG
(non-permeating osmotica) with ABA dramatically improves the frequency and
synchrony of the SE maturation in spruce. Presence of sucrose enhances the
viability of synthetic seed and their subsequent development, maturation and ger-
mination in many plant species (Jain et al. 1995; Attree et al. 1995; Fowke and Attree
1996). ABA regulates somatic (Lee and Soh 1994) and zygotic (Crouch and
Sussex 1981; Ammirato 1983) embryo maturation (Norstog 1965; Choi et al.
1997; Liu et al. 1993). Nevertheless, desiccation and subsequent rehydration have
been found useful in inducing a high-frequency conversion of SEs into plantlets in
some species (Gray 1987; Compton et al. 1992; Redenbaugh 1990; Redenbaugh
et al. 1993).

7 Conclusion

Synthetic seed technology is undoubtedly a breathtaking biotechnological tool with
profound potential in modern times. Our current review summarizes the most
commendable findings in synthetic seed production of various forest tree species.
However, if we compare the progress of this technology in tree species with other
plant species, it becomes clear that only a handful number of tree species are being
studied for decades. There has not been any significant modification in the technol-
ogy from the early days of its development. Though, the practical utility of this
technology mostly depends on the economic values of the concerned plant, it is
imperative to conserve all of the endangered and also commonly found forest tree
species. Hopefully, the policy makers and research around the world will be able to
utilize synthetic seed technology in future.
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Medium- and Long-Term Conservation
of Ornamental Plants Using Synthetic Seed
Technology

Hamit Ekinci, Jayanthi Nadarajan, and Yelda Özden Çiftçi

Abstract Synthetic seed (synseed) describes artificially encapsulated plant tissues,
usually somatic embryos but also other vegetative parts that can be propagated into
complete plants under in vivo or in vitro conditions. Synseed technology can be
utilised for medium-term storage and long-term conservation of valuable ornamental
plant germplasm. Synseeds can be conserved in vitro for several years through
maintenance of encapsulated propagules at low temperatures (slow growth storage
technique) or they can be preserved theoretically ad infinitum at the ultra-low
temperatures of liquid nitrogen. In this chapter, we review recent studies in the
conservation of various ornamental plant species using synseeds developed from
different plant explants (i.e. somatic embryos, protocorm-like bodies, shoot tips,
bulblets and axillary buds).

Keywords Artificial seed · Encapsulation-dehydration · Encapsulation-
vitrification · Slow growth storage · Synseed · Cryopreservation

1 Introduction

Ornamental plants comprise a huge diversity of genera, species, and cultivars. Plants
are propagated sexually and asexually. There is significant international trade in
ornamental plants, estimated at US$55 billion in 2016 (Sources: UN-Comtrade,
Royal Flora Holland, Rabobank, 2016). The consumption of flowers and pot plants
as ornamentals is forecast to reach 100 billion dollars by 2027 (Van Horen 2017).
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Many ornamental varieties are clonally propagated with in vitro tissue culture is
considered the most efficient ornamental plant propagation method (Kulus 2016).

Clonal propagation is only feasible if plants can be sold at a price that justifies the
higher cost of propagation. Higher priced plants come with expectations of quality,
uniformity and health status. In vitro growing and propagation of plants provide
opportunities to deliver plants that meet these requirements. The in vitro environ-
ment additionally provides opportunities to maintain the ‘mother’ plants from which
subsequent generations of invite cultures are propagated. Additionally as for other
plants, the species from which ornamental cultivars are developed face extinction
threats due to over-collection, urbanization, climate change and habitat destruction.
For this purpose, traditional in situ and ex situ conservation strategies must be
developed to complement with biotechnological preservation techniques to safe-
guard and yield high-quality horticultural productions (Benelli et al. 2017).

In this chapter, we review the use of synthetic seed technology for the conser-
vation of ornamental plants for medium- to long-term.

2 Concepts of Conservation

The general strategies to conserve plant biodiversity including ornamental plants are
in situ conservation, ex situ conservation, sustainable use and legislation. Nature
reserves (or protected areas or parks) are an important tool for in situ conservation of
ornamental species biodiversity. However, this can be expensive requiring profes-
sionally skilled staff and implementation of laws (Long et al. 2018). Another form of
in situ conservation for ornamental plant germplasm is to maintain them in tradi-
tional agroecosystems (or on-farm conservation).

Botanical gardens are the most common method of ex situ ornamental germplasm
conservation. However, ex situ conservation of ornamental species as field and
greenhouse collections requires high maintenance, including skilled labour and is
expensive (Reed 2006). In some cases, it is not germplasm in the traditional sense
that requires conservation but high-value breeding lines such as doubled haploid or
transgenic genotypes (Rajasekharan et al. 1994; Joung et al. 2006). In both in situ
and ex situ outdoors growing situations, plants are exposed to environmental factors
(e.g. biotic and abiotic stresses). Adopting in vitro strategies can address these
problems: typically, through plant tissue culture techniques, where plant organs,
cells or tissues are used to produce new plant cells, tissues or metabolites in aseptic
culture conditions. With this approach, it is possible to conserve and produce virus-
free (e.g. meristem culture), genetically stable and clonally produced ornamental
plants in high quantities (Engelmann 2011). A risk with this approach is the soma-
clonal variation frequently reported in in vitro propagation systems.

Somaclonal variation has been reported at different levels (morphological, cyto-
logical, cytochemical, biochemical and molecular) in various micropropagated crops
(Do et al. 1999; Mujib 2005; Orbovic et al. 2008; Sanchez-Teyer et al. 2003;
Cooper et al. 2006; Biswas et al. 2009; Jin et al. 2008; Bednarek et al. 2007;
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Van den Bulk et al. 1990; Gao et al. 2009; Sharma et al. 2007; Ahmed and
Abdelkareem 2005). Though extreme levels of somaclonal variation between
100% (Orton 1984) and 90% in banana (Smith and Drew 1990) have been reported,
typically an average of 15–20% can be expected (Skirvin et al. 1994) depending on
the number of culture cycles and culture conditions. The levels of somaclonal vari-
ation can vary with genotype, type of tissue, explant source, media components and
the duration (and number of) of the culture cycle (Pierik 1988). Though somaclonal
variation is inevitable in tissue culture, manipulating, controlling and minimizing the
putative inductive factors mentioned above will reduce the level of occurrence.

Synthetic seed technology offers complementary approaches for preserving orna-
mental plant germplasm in two ways: medium-term (in vitro storage) by incubating
cultures in sub-optimal growth conditions (e.g. darkness, low temperature or high
sugar content in growing medium) and long term (cryopreservation) by suspending
all metabolic activities through storage in ultra-low temperature of liquid nitrogen
(LN, �196 �C) (Ozudogru et al. 2010; Akdemir et al. 2010). These approaches to
conservation are discussed in detail below.

3 Usage of Synthetic Seeds for Conservation

Synthetic seeds (synseeds), described as ‘artificial seeds’ by Murashige (1977) are
artificially encapsulated somatic embryos (usually) or other vegetative parts of plants
such as shoot tips, cell aggregates, axillary buds, nodal segments, protocorm-like
bodies (PLBs) or any other micropropagules, which can be used as seed and grown
into a plant under in vitro or in vivo conditions (Rihan et al. 2017). A technique for
hydrated encapsulation, using calcium alginate (termed ‘hydrogel’), was developed
by Redenbaugh et al. (1986). The encapsulating hydrogel can be engineered to
perform a similar function to that of the seed coat and endosperm of normal seed
providing physical protection and carrying compounds such as nutrients, plant
growth regulators, antibiotics and fungicides to assist germination and plant growth
(Gray et al. 1991). Synseeds have applications across hybrids, non-seed species and
elite genotypes offering many benefits such as pathogen-free plant production,
genetic uniformity, low-cost and rapid plant production, plus germplasm protection
(Rihan et al. 2017).

Synseed technology is already used across a range of plant species, including
vegetables, fruits, medical plants, ornamentals, forest trees, orchids and cereals for
production and conservation (i.e. Ara et al. 2000; Sharma and Shahzad 2012;
Rihan et al. 2011; Ahmad and Anis 2010; Rai and Jaiswa 2008; Rai et al. 2009;
Danso and Ford-Lloyd 2003; Ozden Tokatli et al. 2008; Akdemir et al. 2010;
Ganapathi et al. 1992; Mandal et al. 2000; Nyende et al. 2003; Chand and Singh
2004; Singh et al. 2009; Micheli et al. 2007; Faisal and Anis 2007). Synthetic seed
technology is especially useful for the propagation of rare hybrids and elite geno-
types (Mandal et al. 2000; Bukhari et al. 2014). Although the majority of artificial seeds
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are produced using in vitro-derived propagules, synseeds have also been produced from
in vivo-derived propagules (Sharma et al. 2013).

Establishment of a somatic embryogenesis pathway is a prerequisite for artificial
seed production. However, there are many challenges particularly for species that are
recalcitrant to somatic embryogenesis. In this situation, non-embryogenic propa-
gules can be used for the production of artificial seeds but require additional
technique development, for example optimised rooting systems. Limitations in
storage of synseeds are reported due to lack of dormancy, non-synchronised matu-
ration, low-level of conversion into plantlets and reduced viability following storage
at low temperatures (Makowczynska and Andrzejewska-Golec 2006).

4 Medium-Term Conservation

The main purpose of protecting plant germplasm using in vitro approaches is to
preserve the genetic integrity of a genotype(s) in an environment away from the field
risks of biotic and abiotic factors, while limiting the number of subcultures without
endangering the plant material (Shibli et al. 2000; Moges et al. 2003). Encapsulated
plant propagules in artificial seeds can be stored in vitro for medium-term durations
(1–2 years) under growth-limiting or sub-optimal conditions (West et al. 2006).
Similar techniques to those used to reduce growth in vitro such as incubation at low
temperature, and/or low light intensity, manipulation of nutrient components in the
medium, use of osmotic agents and growth retardants can be applied for artificial
seed storage as well (Tahtamouni et al. 2001; Moges et al. 2003).

The most common method used to reduce the growth of tissues in cultures is to
lower the temperature of cultures, avoiding temperatures below freezing or where
freezing injuries may occur (Gull et al. 2019; Lyons et al. 1979). For artificial seed
storage reductions in temperature and light intensity can be used simultaneously.
The basic principle here is that incubation at a lower temperature will reduce
metabolic activity and thus limit the growth of encapsulated plant materials. In
most cases, the optimum storage temperature and light intensity are species specific.
For instance, artificial seeds derived from nodal buds of Hibiscus moscheutos have
been successfully preserved at 5 �C for 36 months (West et al. 2006) while artificial
seeds of somatic embryos of Pistacia vera L. (pistachio) were preserved at 4 �C for
up to 2 months (Onay et al. 1996). In a study conducted by Ozden Tokatli et al.
(2008), synseeds of photinia shoot tips were conserved at 4 �C for 3 months with
90% showing ‘germination’ after storage.

Incubation with osmotic agents at room temperature or at low temperature can
also be used to prolong the storage period of artificial seeds. The change of carbon
source is known to have a remarkable effect on growth rate (Rajasekharan and
Sahijram 2015) by reducing the water potential of plant cells. The addition of
osmotic substances to the culture medium is effective in retarding growth and
increasing the viable storage time of many artificial seeds of different plant species
in vitro (Shibli 1991). Osmotic agents such as mannitol, sucrose, sorbitol
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(Shibli et al. 1992), tributyl (2,4-dichlorobenzyl) phosphonium chloride (Posfon D),
maleic hydrazide, succinic acid-2, 2 dimethyl hydrazide (B-995), CCC
(2-chloroethyl trimethylammonium chloride) and ancymidol (Dodds and Roberts,
1985) are among commonly used chemicals for medium-term storage of
artificial seeds.

Growth-retarding compounds that are used to reduce the overall growth rate of
in vitro plantlets and thereby increase the subculture intervals can also be applied to
artificial seed storage. The choice of growth inhibitor generally depends on the
growing conditions and can be species specific but offers a simple, efficient and
potentially cheap method of storage since the artificial seeds can be stored using
these chemicals in a standard rather than specialised growth rooms. However,
growth retardant use has some attendant problems: (1) the plant may be stunted
and show abnormal growth, so it may be difficult to regenerate normal plants; (2) the
presence of these retardants can lead to resistance to growth retardants or the
development of tolerant lines and (3) since some of the growth retardants have
mutagenic properties there may be genetic changes (Rajasekharan and Sahijram
2015). Hence, careful consideration is needed when selecting growth-retarding
compounds for a particular genotype to mitigate the above stated problems.

Some examples of artificial seed medium-term storage are described here. In a
study by Ozden Tokatli et al. (2008), axillary buds taken from in vitro propagated
shoots of photinia (Photinia fraseri) synseeds prepared using sodium alginate
(Na-alginate) (3%) were stored for 3 months at 4 �C and showed high viability
(100%) and regeneration (91%) after storage. A study by Akdemir et al. (2010)
showed that encapsulated shoot tips of photinia could be maintained up to 6 months
at 4 �C in dark with 91.6% sprouting on MS medium. Different explants of various
ornamental plant species have been successfully stored for a range of durations in the
form of synseeds (Table 1).

5 Long-Term Conservation (Cryopreservation)

Cryopreservation, which is preservation of viable cells, tissues, organs and organ-
isms at ultra-low temperatures (c. �196 �C) in the liquid or vapour phase of liquid
nitrogen, is used for long-term conservation of valued plants. This method of
preservation is growing in popularity for plant germplasm conservation due to its
comparatively low maintenance cost, small space requirement and its reliability
(Sakai 2004). The advantages of cryopreservation over slow-growth storage or
in vitro storage are the reduced threats of contamination and somaclonal variation
(Engelmann 2011). Cryopreservation also provides the opportunity to conserve what
is otherwise considered as difficult to store species such as those with recalcitrant
seeds, and vegetatively propagated plant germplasm (Touchell 2000). This method
of preservation is now well established for ornamental species and has been previ-
ously reported for species such as Dianthus hybrida (Fukai 1989), Chrysanthemum
� grandiflorum (Fukai 1989) and various other species (Kulus and Zalewska 2014).
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Cryopreservation protocols are usually developed empirically for specific mate-
rials or explants taking into consideration the physiological and biophysical factors
of the explants to minimise stress and maximise survival (Nadarajan and Pritchard
2014). In addition to this, cryoprotection applied in the form of osmo-protection or
chemical cryoprotection, is the most important factor in determining successful post-
cryopreservation survival (Benson 2008). The development of a simple and reliable
cryopreservation protocol would allow wider application of this preservation tech-
nique in the conservation of plant materials. Desiccation-tolerant explants such as
orthodox seeds and dormant buds can be cryopreserved without complicated
pre-conditioning and pre-culture treatments as cryopreservation mimic the dehydra-
tion process they go through in their natural lifecycle (Pritchard and Nadarajan 2007;
Engelmann 2011). In contrast, explant materials such as cell suspensions, calluses,
shoot tips and embryos that typically contain high amounts of cellular free water are
extremely susceptible to freezing injury. Therefore, they may need to be dehydrated
artificially to prevent intracellular ice crystallization and cell death (Engelmann
2011).

Classical cryopreservation techniques are based on freeze-induced dehydration
achieved through controlled cooling rates—these must neither be too slow, which
risks losing water from the cell, nor too rapid, which risks the formation of intra-
cellular ice (Engelmann 2004). The cooling rate follows the well-known inverted ‘U’
shape where the cell membrane acts as a physical barrier and prevents the ice seeding
formation within cell membranes as they are super-cooled (Mazur 2004). Controlled
slow cooling techniques usually comprise a sequence of cryoprotection steps
namely, pre-culture, stepwise cooling and then osmo-protection with a combination
of cryoprotectants (Benson 2008). This technique has been applied successfully to
cryopreserve cell suspensions and callus (Kartha and Engelmann 1994; Withers and
Engelmann 1998).

Modern cryopreservation techniques involve vitrification, a physical process by
which a concentrated aqueous solution solidifies into a stable amorphous glass
without the formation of ice crystals when the temperature is decreased (Sakai
2004). Vitrification of plant specimens can be achieved in a number of ways,
including desiccation and more recently through the use of highly concentrated
plant vitrification solutions (PVS) that readily form glasses on cooling and inhibit
crystallization (Sakai 2004; Taylor et al. 2004). Vitrification-based methods typi-
cally involve pre-treatment of samples with concentrated cryoprotectant solution: on
rapid freezing a highly viscous solid ‘glass’ forms, thus avoiding lethal ice injury. A
vitrification protocol has the following successive steps: pre-growth of mother
plants; pre-culture of explants; treatment (loading) of samples with cryoprotective
substances; dehydration with highly concentrated vitrification solutions; rapid
cooling and rewarming; removal of cryoprotectants (unloading) and recovery
(Reed 2008). The vitrification solutions most commonly employed for freezing
plant tissues and organs have been termed plant vitrification solutions (PVS). PVS
combine cryoprotectants that vary in permeability [e.g. dimethyl sulphoxide
(DMSO) and glycerol], such that cellular water is replaced, cell viscosity is increased

Medium- and Long-Term Conservation of Ornamental Plants Using Synthetic. . . 267



and the freezing behaviour of the remaining water is altered (Muldrew et al. 2004;
Volk and Walters 2006).

5.1 Encapsulation Cryopreservation

Advancement in cryobiological studies and increased demand for tailored cryo-
preservation protocols led to the development of another innovative cryo-
preservation technique, encapsulation-dehydration, in the early 1990s. This
procedure is based on the technology developed for the production of artificial
seeds (Redenbaugh et al. 1986) and the premise that alginate encapsulation should
allow tissues to better withstand physical manipulation (Yap et al. 1998). This tech-
nique was established for cryopreservation of Solanum shoot tips (Fabre and
Dereuddre 1990; Dereuddre et al. 1991). The two main techniques adapted in encap-
sulation cryopreservation protocol (encapsulation-dehydration and encapsulation-
vitrification) are discussed below.

5.1.1 Encapsulation-Dehydration Cryopreservation

Encapsulation-dehydration cryopreservation is a stepwise process where explants
are preconditioned, encapsulated in alginate beads, osmo-protected by pre-culture in
sucrose-enriched liquid or on solid medium, and partially desiccated in the air
current of a laminar airflow cabinet or with silica gel and then rapidly frozen in
liquid nitrogen followed by rapid warming in a water bath at 40 �C (Fig. 1). Post-
cryopreservation survival rate following this technique is reported to be high and fast
regeneration compared to other cryopreservation protocols used (Sakai et al. 2000).

Fig. 1 Steps involved in encapsulation cryopreservation pathways
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In 2000, a modified protocol was proposed involving simultaneous encapsulation
and pre-growth in medium with sucrose and glycerol (Sakai et al. 2000). A further
modified encapsulation-dehydration cryopreservation protocol replacing cold accli-
mation with high sucrose concentration pre-culture was developed by Reed et al.
(2005). Numerous ornamental species, including temperate and tropical species,
have been cryopreserved using this technique as apices, embryonic axes, cell
suspension cultures, and root cultures (Table 2).

5.1.2 Encapsulation-Vitrification Cryopreservation

Although the encapsulation-dehydration cryopreservation has been successfully
applied to various tissues of many species, the requirement to develop a simple
and reliable cryopreservation method that was widely applicable remained. This led
to the development of encapsulation-vitrification cryopreservation combining both
encapsulation-dehydration and vitrification by use of addition vitrification solutions
(Matsumoto et al. 1995; Sakai et al. 2008; Fig. 1). This technique has proved
particularly useful for highly desiccation-sensitive materials such as shoot tips and
meristematic tissues as vitrification enables maintenance of viability of hydrated
cells and tissues while avoiding lethal intracellular ice crystallization during the
cryopreservation procedures. Exposure time to PVS2 is a critical step in successful
cryopreservation by vitrification: there is a compromise between sufficient cellular
dehydration and limiting injury from chemical toxicity or excessive osmotic stress
during treatment with PVS2 (Sakai et al. 2008; Nadarajan and Pritchard 2014).
The encapsulation-vitrification cryopreservation technique has been successfully
applied to many ornamental species (Table 2).

5.2 Potential Application of Encapsulation Cryopreservation
for Various Tissue Types

Encapsulation cryopreservation is a versatile technique that can be used to cryo store
many different plant tissues including shoot tips, somatic embryos, microspore
embryos, ovules, PLBs, calluses, cell suspension cultures, hairy root cultures and
microalgae (Engelmann et al. 2008; Pence 2014). Vegetative tissue cryopreservation
is particularly useful when dealing with species that have extremely desiccation-
sensitive seeds, produce no seed or have seeds, embryos or embryonic axes that cannot
be adapted to cryopreservation (Pence 2014). Logistically this is often an easier option
than cryopreserving large and highlymetabolically active recalcitrant seeds that can be
difficult to procure and maintain in a viable and quiescent (non-germinating) state for
the periods required to implement cryopreservation protocols. Vegetative materials
are the preferred choice when preserving clonal and elite germplasms for assisting in
plant breeding programmes.
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Table 2 Ornamental plant species cryopreserved using various encapsulation techniques

Species
Explants
cryopreserved Method used References

Begonia x erythrophylla Adventitious
shoots

Encapsulation-
dehydration

Burritt (2008)

Camellia sinensis Embryonic axis Encapsulation-
dehydration

Kaviani (2010)

Catharanthus roseus Cell suspension
cultures

Encapsulation-
dehydration

Bachiri et al. (1995)

Cattleya labiata Protocorms Encapsulation-
dehydration

Galdiano and Lemos
(2018)

Chrysanthemum
morifolium

Shoot tips D cryo-plate Tanaka et al. (2016)

Chrysanthemum x
grandiflorum

Shoot tips Encapsulation-
dehydration

Zalewska and Kulus
(2013)

Cosmos atrosanguineus Cell suspension
cultures

Encapsulation-
dehydration

Wilkinson et al.
(2003)

Dendrobium candidum Protocorms Encapsulation-
vitrification

Yin and Hong (2009)

Dianthus caryophyllus Shoot tips Encapsulation-
vitrification

Halmagyi and Deliu
(2007)

Dianthus caryophyllus Shoot tips V cryo-plate Sekizawa et al. (2011)

Dianthus spp. Shoot tips Encapsulation-
dehydration

Fukai et al. (1994)

Gentian Shoot tips Encapsulation-
vitrification

Tanaka et al. (2004)

Iris nigricans Somatic embryos Encapsulation-
dehydration

Shibli (2000)

Juncus decipiens Basal stem buds V cryo-plate and D
cryo-plate

Niino et al. (2013)

Lilium ledebourii Embryonic axes Encapsulation-
vitrification

Kaviani (2011)

Lolium L Meristem apices Encapsulatin-
dehydration

Chang et al. (2000)

Marchantia polymorpha Gemma V cryo-plate and D
cryo-plate

Tanaka et al. (2016)

Oncidium bifolium Protocorms Encapsulation-
dehydration

Flachsland et al.
(2006)

Paeonia lactiflora Zygotic embryos Encapsulation-
dehydration

Kim et al. (2004)

Passiflora pohlii Root tips V cryo-plate Simao et al. (2018)

Pelargonium spp. Shoot tips Encapsulation-
dehydration

Grapin et al. (2003)

Rhododendron simsii Shoot tips Encapsulation-
dehydration

Verleysen et al.
(2005)

(continued)
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Somatic embryos developed from non-sexual cells are also commonly used in
encapsulation cryopreservation. Somatic embryos are structurally similar to zygotic
embryos having both apical and basal meristematic regions with the ability to form
shoots and roots and grow into complete plants. However, unlike zygotic embryos,
somatic embryos are duplicates of a single genotype and thus can be used for
clonal propagation. To successfully cryopreserve somatic embryos, particular atten-
tion needs to be given to the developmental stage of the embryos, plus the age and
physiological status of the donor tissue and the cell density (Rout et al. 2006).

Root cultures with highly uniform morphology and high regeneration ability are a
useful model material for cryopreservation. Root culture materials can be sourced
from the field, in the case of higher plants and also from in vitro grown hairy root
cultures without inflicting lethal damage to the growing donor plant. Isolation of
root tips is generally straightforward and they can be treated in a similar manner to
shoot tips. One further advantage of root tip cryopreservation is that it guarantees
genetic stability, particularly for chimeric plants as the root tips are formed from a
simple structure with one histogen layer (Simao et al. 2018; Kulus and Zalewska
2014). Table 2 summarises root culture cryopreservation of selected ornamental
plant species using encapsulation technique.

5.3 Technological Advances in Encapsulation
Cryopreservation

5.3.1 Incorporation of Additives

The encapsulation matrix not only provides protection from desiccation and mech-
anical injury but also provides a medium in which nutrients, fungicides, pesticides,
antibiotics, antioxidants and microorganisms can be incorporated. This is especially
useful for embryonic axis cryopreservation (Nadarajan and Pritchard 2014;
Owen et al. 2014; Malik and Chaudhury, 2006) as excision from the seed can
lead to wounding stress and a burst of superoxide (O2.�) in cells (Roach et al.
2008). Such an oxidative ‘burst’ will eventually result in low or nil viability of the
tissue. In this context, supplying free radical scavenging capability exogenously can
assist tissue survival during cryopreservation. Incorporation of antioxidant(s) into

Table 2 (continued)

Species
Explants
cryopreserved Method used References

Rosa ‘New Dawn’ Shoot tips Encapsulation-
dehydration

Pawlowska and Bach
(2011)

Saintpaulia ionantha Shoot tips Encapsulation-
vitrification

Moges et al. (2004)

Tanacetum
cinerariifolium

Shoot tips V cryo-plate Yamamoto et al.
(2011)

Zoysia Meristem apices Encapsulation-
dehydration

Chang et al. (2000)
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the encapsulating gel could overcome oxidative burst problems and improve sur-
vival. This has been demonstrated in cryopreservation of Dioscorea alata and
D. cayenensis shoot tips, where the incorporation of exogenous melatonin in the
Ca-alginate bead matrix improved survival following cryopreservation (Uchendu
and Keller 2016). Hirata et al. (2002) also found that pre-culture and encapsulation
of the Vinca minor hairy roots in the presence of abscisic acid (ABA) were effective
in increasing survival rate after cooling in liquid nitrogen.

It has been reported that incorporation of activated charcoal improves the con-
version rate and vigour of the encapsulated somatic embryos (Saiprasad 2001).
Charcoal is claimed to ‘break up’ the alginate thus increasing respiration of somatic
embryos, which otherwise lose vigour within a short period of storage. In addition,
charcoal is also known to slow the release of nutrients from the hydrogel capsule to
the growing embryo (Saiprasad 2001).

Wood et al. (2000) simultaneously cryopreserved seeds of orchid species;
Dactylorhiza fuchsii and Anacamptis morio with hyphae of their mycorrhizal
fungi, Ceratobasidium cornigerum in encapsulated alginate beads. They reported
that the viability of the seeds and the fungus remained unchanged during 30 days of
cryopreservation. Sommerville et al. (2008) used sucrose-infused alginate to encap-
sulate two Australian orchid seeds together with their mycorrhizal fungi and reported
that the sucrose addition to the alginate matrix improved seedling growth, and
lessened the shock of transfer to potting mix by providing an immediate food source
for the fungus and hence an uninterrupted supply of nutrients for the seedlings.
These results indicate opportunities for the use of simultaneous cryopreservation of
encapsulated material as a conservation tool for diverse taxa.

5.3.2 Cryo-Plate and Cryo-Mesh Methods

A new cryopreservation method using aluminium cryo-plates (V cryo-plate and D
cryo-plate) has been developed for clonally propagated crops by Yamamoto et al.
(2011) and Niino et al. (2013). In V cryo-plate methods, pre-cultured explants are
encapsulated in alginate gel on small wells of cryo-plates and treated with LS,
followed by PVS2 treatment before cryopreservation. In the D cryo-plate method,
following attachment onto a cryo-plate the explants are air dried under the air current
of a laminar flow cabinet before cryopreservation. It was reported that these mate-
rials are easy to handle, resulting in minimal injury to explants, plus the rapid rates of
cooling and warming resulted in high regrowth rates. The cryo-plate method has
been applied successfully to over 20 crop species and some ornamental species as
listed in Table 2.

Funnekotter et al. (2017) investigated an alternative to the cryo-plate protocol
where an aluminium mesh (cryo-mesh) was used instead of the cryo-plate with fixed
well sizes. Cryo-plates require specific and consistent production of wells or shoot
tips may not be able to adhere. Cryo-mesh overcomes this by allowing the alginate to
act as glue between the mesh and the shoot tips. Cryo-mesh efficacy was tested in
comparison with droplet-vitrification during cryopreservation of the West Australian
species Anigozanthos viridis (Funnekotter et al. 2017). No significant difference in
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post-cryogenic generation was observed between the two protocols: 78% for
droplet-vitrification and 83% for cryo-mesh. Cryo-mesh, however, was claimed to
reduce both the manufacturing precision required (compared to cryo-plates) and the
operator skill required in comparison with the droplet-vitrification protocol.

5.3.3 Water Thermal Analysis

Understanding the physical properties of water in plant tissues being cryopreserved
is pivotal as water-solute molecular properties provide information about ice forma-
tion potential, glass transition and vitrified state of the samples (Nadarajan and
Pritchard 2014). To ensure the survival of cryopreserved materials, it is critical to
achieve a stable glass transition and to avoid the formation of ice. Thermal analysis
using a differential scanning calorimetry (DSC) is used to optimise vitrification-
based cryoprotection strategies: this integration of fundamental and applied
approaches advances the development of storage protocols (Nadarajan et al. 2008;
Nadarajan and Pritchard 2014) and has been used to assist in cryopreservation
protocol development of many species (Dereuddre and Kaminski 1992; Block
2003; Zámečník and Šesták 2010). Thermal analysis is relatively straightforward
where a good thermal contact can be easily achieved by placing the samples directly
inside the DSC crucibles for analysis. However, for encapsulated materials, thermal
analysis data need to be interpreted carefully as the alginate matrix that covers the
tissue could give a false indication of water status inside the tissue. Use of empty
alginate beads as a reference or to establish a baseline will enable thermal events
related to tissue only to be distinguished precisely (Block 2003). A study by Umair
(2011) showed that thermal behaviour of encapsulated zygotic embryos of Cycas
revoluta varied greatly from non-encapsulated embryos: encapsulated embryos
needed longer drying periods to achieve a vitrified state or glass transition compared
to non-encapsulated embryos (Fig. 2). Nadarajan et al. (2008) utilised DSC thermal
analysis to reveal the capability of different and complex cryoprotectant combi-
nations to achieve stable glasses on cooling and rewarming for encapsulation-
vitrification cryopreservation of shoot tips of Parkia speciosa. Gamez-Pastrana
and Gonzalz-Arnao (2011) used empty alginate beads as a model to investigate
water thermal behaviour at every successive step in encapsulation-dehydration and
encapsulation-vitrification cryopreservation protocols. They noted that during
encapsulation-dehydration, freezable water was significantly reduced during the
pre-culture step and when pre-culture was combined with desiccation, glass transi-
tion was observed. They also found that in the encapsulation-vitrification procedure,
loading solution treatment reduced freezable water and PVS2 was found to be more
effective in removing freezable water from samples compared to PVS3.

In summary, technology is developing where artificial seed production in the
form of encapsulated propagules could be more effective and efficient in plant
propagation, in reducing stress as well as prolonging storage life of the encapsulated
propagules either for medium- or long-term.
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Fig. 2 Differential scanning calorimetry warming thermograms of Cycas revoluta
non-encapsulated (a) and encapsulated (b) zygotic embryos following desiccation under the air
current of a laminar flow cabinet for up to 6 h. Non-encapsulated embryos showed ice melts up to
2 h of drying and then followed by stable thermal profiles. Encapsulated embryos showed ice melt
up to 4 h drying before a stable profile is obtained. Samples were warmed from�100 �C to 25 �C at
10 �C min�1 (modified from Umair 2011)

274 H. Ekinci et al.



6 Conclusions

This review summarises the need for ornamental plant germplasm conservation and
how synthetic seed technology could complement other conservation strategies to
conserve this valuable germplasm. Encapsulated or synseeds have advantages
including easy handling, storage, transferring, preservation of elite or endemic
ornamental plant species for cryopreservation, exchange of non-contaminated
plant materials among laboratories, gene banks and industries. Synthetic seed
technology allows medium-term germplasm conservation under in vitro condition
at low temperature (below 0 �C) and reduces the needs for frequent sub-culturing.
Cryopreservation technology for artificial seeds provides the opportunity for long-
term conservation, which can be implemented for genotypes of a large number of
species in gene banks and large-scale germplasm conservation programmes. Anti-
cipated advances in artificial seed production technology in combination with
advances in tissue culture and cryobiology technology will further assist the future
conservation of ornamental plant germplasm in a more efficient manner.
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Synthetic Seed Production of Flower Bulbs

Metin Kocak, Basar Sevindik, Tolga Izgu, Mehmet Tutuncu,
and Yesim Yalcın Mendi

Abstract Flower bulbs are perennial or annual plants with underground structures
such as bulb, corn, tuber, and rhizomes. These plants have economic value especially in
ornamental plant sector as cut flower, potted flower, and outdoor plants. Most of these
plants have garish flower, and many of them are monocotyledon. Cyclamen, Tulipa,
Lilium,Narcissus,Gladiolus,Hyacinthus,Crocus, Iris,Allium,Alstroemeria,Anemone,
Orchis, Rhododendron, Freesia, Hippeastrum, Muscari, Ornithogalum, Ranunculus,
and Zantedeschia are the most important geophytes that are commercially used in the
world. These plants can be propagated using conventional and tissue culture techniques.
Synthetic seed production is one of these techniques. Synthetic seed, namely, artificial
seed, is described as artificially encapsulated plant tissues and somatic embryos with
alginate hydrogel. Synthetic seed technology has significant effect on the conservation
of the plant tissues and sustainability of the plants. Recently, conservation of the plant
species studies significantly increased, and artificial seed method was used as the most
common process to conserve important species. In this chapter, oldest and newest
synthetic seed production researches were discussed and presented chronologically.
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1 Introduction

Flower bulbs (Geophytes) including underground structures like bulb, corm, tuber,
and rhizomes (Dafni et al. 1981) have economic value due to their usage in different
areas as food production, medicinal, and aromatic and landscape (Zaidi et al. 2000;
Çığ and Başdoğan 2015). Storage organs include vitally important nutrients (water,
proteins, carbohydrate, minerals, etc.) that are used in long dormancy period of the
plant. Most of the wild geophytes are distributed across the temperate, tropic, and
subtropic zones of the world. These plants are used as cut flower, potted flower, and
gardening in ornamental plant sector (Kamenetsky and Okubo 2012). According to
Kazaz (2016), flower bulbs were cultivated in 30.066 ha all over the world (Kazaz
2016; Karagüzel et al. 2007; AIPH and Union fleurs 2010-2016). The value of this
production is referred to more than 708.5 million € (Kazaz 2016; AIPH and Union
fleurs 2010–2016).

In conventional production, ornamental geophytes are generally propagated
vegetatively, and they have low production rate (Ziv and Lilien-Kipnis 2000).
Besides, some problems and limitations are present in conventional production of
ornamental geophytes. In vitro techniques can be used victoriously to overcome
these problems and limitations. Therefore, propagation and conservation of orna-
mental geophytes under in vitro condition become crucial (Ziv and Lilien-Kipnis
2000). In vitro plant propagation techniques have some advantages: production of a
numerous new mature cultivars in a short span of time, cloning endangered species,
propagation of large amount of clone plants and some elite plants that have desirable
characteristics, plant production in the absence of seeds, and production of geneti-
cally modified plants and pest disease pathogen-free plants (Yildiz 2012). In tissue
culture studies of the geophytes, corms, bulbs, rhizomes, cutting, anthers, ovules,
leaves, and stems are commonly used as explants (Eeckhaut et al. 2018)

Nowadays, many tissue culture applications are used for propagation and conser-
vation of geophytes. Synthetic seed production is one of the significant tissue culture
techniques. Synthetic seed that is also known as artificial seed, manufactured seed, or
synseed was firstly described by Murashige (Murashige 1977) as “an encapsulated
single somatic embryo.”Additionally axillary shoots, apical shoot tips, buds or stem,
root segments, embryogenic calli, and protocorms or protocorm-like bodies also have
potential usage for synthetic seed production (Zulkarnain et al. 2015; Siong et al.
2012; Vdovitchenko and Kuzovkina 2011). Consequently, synthetic seeds are deter-
mined as artificially encapsulated plant tissues such as shoot buds, cell aggregates, or
any other tissue and somatic embryos, which can be used for sowing as a seed and that
possess the regeneration ability under in vitro or ex vitro conditions and that retain
this potential also after storage (Magray et al. 2017). Although several propagules
have potential as plant material to produce synthetic seed, usually somatic embryos
and axillary shoot buds have been preferred as explant for synthetic seed studies
(Zulkarnain et al. 2015; Siong et al. 2012). For cost-efficient and highly productive
proliferation method, somatic embryo coated with a synthetic layer was indicated as
suitable plant material (Redenbaugh 1990; Gantait et al. 2017).
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It is considered that synthetic seed is an imitated natural seed and comprises of
embryo and one or more synthetic layers (capsule) (Murashige 1977; Baskaran et al.
2015; Cangahuala-Inocente et al. 2007; Maqsood et al. 2015). The capsule consists
of gel agent and additional materials such as nutrients, growth regulators, anti-
pathogens, bio-controllers, and bio-fertilizers (Rihan et al. 2017; Cartes et al.
2009), and it participates in preservation of plant material during handling and
provides germination of synthetic seed like a real seed and formation of plantlet
under proper circumstances (Zulkarnain et al. 2015).

Synthetic seed technology allows for conservation and large-scale
micropropagation of special rare hybrids, elite genotypes, sterile unsteady genotypes,
and genetically modified plants (Gantait et al. 2015). In addition, it provides forceful
option for propagation of commercially valuable crop which cannot produce seeds
irrespective of season and climatic conditions (Taha et al. 2013; Grzegorczyk and
Wysokıńska 2011). Synthetic seed technology has developed correlatively with
improvement of somatic embryogenesis and culture system design, providing com-
patibility between somatic embryogenesis and capsulation (Onishi et al. 1994;
Çölgeçen and Toker 2006). However, application of this technology is faced with
some restrictions: insufficient viable propagule production for synthetic seed produc-
tion, abnormal and asynchronous development of somatic embryos, unsuitable
maturation of somatic embryos, lack of dormancy and stress tolerance in synthetic
seeds to be stored, and weak conversion of propagules into plantlets (Ara et al. 2000).

2 Types of Synthetic Seed

Synthetic seeds are mainly separated into two groups as encapsulated desiccated
synthetic seeds and encapsulated hydrated synthetic seeds.

2.1 Desiccated Synthetic Seeds

The desiccated synthetic seeds are produced by desiccation of somatic embryos
either naked or encapsulated in polyethylene glycol. Both slow and rapid desicca-
tions can be carried out based on certain conditions. Although in rapid desiccation,
synthetic seeds can be desiccated in unsealed petri dishes overnight, slow desicca-
tion of synthetic seeds takes 1 or 2 weeks’ time. To produce desiccated synthetic
seeds from a plant species, somatic embryos of this plant species must be tolerant to
desiccation. Seyring and Hohe (2005) tested the tolerance of somatic embryos of
Cyclamen persicum Mill. Torpedo-shaped somatic embryos (sized 700–1000 μm)
showed the best germinability after desiccation. The germination rate of desiccated
somatic embryos reached 28% with supplement of 75 g l�1 polyethylene glycol
(PEG 4000) and 10 mg l�1 abscisic acid in maturation medium. Khor et al. (1998)
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encapsulated desiccated protocorms and seeds of Spathoglottis plicata with
alginate–chitosan or alginate–gelatin. About 54% of large protocorms and 40% of
seeds could tolerate a 6-h desiccation. All the protocorms and seeds encapsulated
with alginate–chitosan or alginate–gelatin after desiccation were able to survive.

2.2 Hydrated Synthetic Seeds

Hydrated synthetic seeds are produced by encapsulating somatic embryos or other
propagules in hydrogel capsules. Hydrogel encapsulation was developed by
Redenbaugh et al. (1984) by encapsulation of individual somatic embryos of alfalfa
(Medicago sativa), and since their study, this encapsulation approach has been the
most preferred technique (Sharma et al. 2013; Ara et al. 2000; Rai et al. 2009). In
comparison with desiccated synthetic seeds, hydrated synthetic seeds can be pro-
duced by encapsulating somatic embryos that are recalcitrant and sensitive to
desiccation. Despite the presence of many gel agents like potassium alginate, agar,
gelrite, and sodium pectate, calcium alginate was suggested as more suitable than the
other gel agents (Nongdam 2016; Redenbaugh et al. 1987). To obtain artificial seed
drop beads, different chemicals combined with Na-alginate were used. In most of the
studies, explants covered by Na-alginate were dropped into the CaCl2 to obtain drop
beads. However, Haque and Ghosh (2016) used CaNO3 to obtain drop beads for
Ledebouria revoluta bulb explant.

3 Propagule Types

Protocorm, protocorm-like body, somatic embryo, bulb, seed, shoot bud, and shoot
tip have been used as propagule for production of synthetic seeds of flower bulbs. In
literature, although there have been many reports for production of synthetic seed in
orchids, the reports for other plant groups of flower bulbs have been restricted.

Protocorm and Protocorm-Like Bodies (PLBs) Protocorm-like bodies (PLBs)
provide an efficient propagating technique for orchids; therefore, they have been
usually preferred to produce synthetic seed in orchids. Protocorm-like bodies are
used as an explant for both artificial seed and cryopreservation researches. In the
artificial seed studies of some orchid species, PLBs have high regeneration response
(Datta et al. 1999; Jitsopakul et al. 2008; Khoddamzadeh et al. 2011; Mohanty et al.
2013; Bhattacharyya et al. 2018).

Somatic Embryos The other propagule used for synthetic seed production in flower
bulbs is somatic embryo. Somatic embryos are the most preferred propagule in
synthetic seed technology, but only a few studies have been reported on synthetic
seed production with somatic embryos in flower bulbs. Winkelmann et al. (2004)
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used somatic embryos that were globular stage to produce synthetic seeds in
Cyclamen persicum from ovule cultures. They produced somatic embryos in a liquid
culture system and examined two encapsulation techniques: conventional alginate
beads and alginate hollow beads. In both encapsulation systems, high level of
germination was observed. In the other study reporting synthetic seed production
in Cyclamen persicum, Seyring and Hohe (2005) tested desiccation tolerance of
torpedo-stage embryos. Haque and Ghosh (2014) developed somatic embryogenesis
protocol for Drimiopsis kirkii from leaf explant and encapsulated somatic embryos
which are produced via their protocol. Encapsulated somatic embryos with 1%
sodium alginate showed the highest germination rate (93.3%). Haque and Ghosh
(2016) encapsulated somatic embryos at globular to elongated stage of Ledebouria
revoluta with different concentrations of sodium alginate (1.5, 3.0, and 4.5%). In the
present study, 57.8% of encapsulated somatic embryos germinated.

Bulb The bulbs obtained from the cultures of rhizome segments of Ipsea
malabarica were encapsulated with sodium alginate by Martin (2003). The highest
conversion rate was reported as 100% in this study. Yücesan et al. (2014) also used
bulblets as propagule to produce synthetic seed in grape hyacinths (Muscari
armeniacum). They developed a somatic embryogenesis protocol and encapsulated
bulblets that regenerated via their protocol. High incidence of synthetic seeds (95%)
showed germination in this study.

Shoot Tip Gantait and Sinniah (2013) developed a short-term storage protocol for
synthetic seeds of orchid hybrid ArandaWan Chark Kuan ‘Blue’� Vanda coerulea
Grifft. ex. Lindl. Synthetic seeds were prepared by encapsulating shoot tips (3–4mm)
with 3% sodium alginate, and almost all of the encapsulated shoot tips (99.6%)
showed germination. Another study including encapsulation of shoot tips was
reported by Baskaran et al. (2017) in Urginea altissima (L.f.) Baker. In this study,
shoot tips were obtained from leaves and longitudinal thin cell layer leaf culture of
Urginea altissima by using semisolid and liquid culture systems. Then shoot tips
were encapsulated with MS medium plus 3% (w/v) sodium alginate. The synthetic
seeds showed a max 91% germination.

Shoot Bud To produce synthetic seed of Curculigo orchioides, Nagesh et al. (2009)
preferred shoot bud as propagule. Different concentrations of sodium alginate (1.5,
2.0, and 2.5%) were used for encapsulation of 5–6.0-mm-sized shoot buds. The
highest germination rate of synthetic seeds was reported as 68.8%.

Seed Khor et al. (1998) desiccated seeds of Spathoglottis plicata and encapsulated
with alginate–chitosan or alginate–gelatin. A hundred percent of desiccated syn-
thetic seeds encapsulated with both of alginate–chitosan or alginate–gelatin was able
to germinate.
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4 Hydrogel Encapsulation Techniques

In synthetic seed production, various encapsulation techniques such as single-
layered encapsulation, double-layered encapsulation, and hollow beads have been
utilized. In literature, single-layered encapsulation and hollow beads have been
reported for synthetic seed production of flower bulbs.

4.1 Single-Layered Encapsulation

Single-layered encapsulation technique is the most ordinary and the most preferred
hydrogel encapsulation method. This encapsulation technique is applied by coating
of propagules with a hydrogel agent, generally sodium alginate or calcium alginate,
and dropping them to calcium chloride or calcium nitrate solution to solidify the outer
surface of the synthetic layer. In this technique, seeds, somatic embryos, protocorm-
like bodies, bulb segments, and bulbs were used as explants (Datta et al. 1999;
Kaviani 2010; Haque and Ghosh 2016; Bhattacharyya et al. 2018). Bhattacharyya
et al. (2018) indicated that synthetic seeds of Ansellia africana protocorm-like bodies
obtained from the nodal segments were regenerated with the response of 88.21%.
They used 3% alginate and 100 ml CaCl2 for encapsulation. In another study, Haque
and Ghosh (2016) encapsulated the somatic embryos of the Ledebouria revolutewith
different concentrations (1.5, 3, 4.5%) of the Na-alginate, and they used Ca(NO3) to
form the drop beads. Researchers reported that the artificial seeds were regenerated
after 4 months in 15 �C cultivation with the response of 57%.

4.2 Hollow Beads

Because of mostly situating propagules near the surface of bead, traditional single-
layered synthetic seeds are not sufficient as natural seeds to preserve the propagule.
Hollow beads have been considered to mimic natural seeds better than traditional
single-layered synthetic seeds. Although hollow beads have some advantages com-
pared with natural seeds, naked somatic embryos, and encapsulated somatic embryos
such as complete protection, easy handling, and rapid clonal propagation, the applica-
tion of hollow bead technique is labor-intensive and costlier (Sharma et al. 2013; Patel
et al. 2000). Winkelmann et al. (2004) examined alginate hollow beads and classic
alginate encapsulation techniques by encapsulating globular-stage somatic embryos of
Cyclamen persicum. They informed that the final germination rate (97%) of classic
encapsulated synthetic seeds was higher than germination rate (7%) of hollow beads.
Although somatic embryos were located centrally in hollow bead, they were not coated
totally in alginate beads. In hollow beads, different growth stages such as cotyledons,
root, and tuberization occurred in the capsule. But in alginate beads, somatic embryos
enlarged and spread out of the capsule in the early stages of germination.
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5 Storage of Synthetic Seeds

Synthetic seeds are not only used for plant propagation but also used for plant
genetic germplasm preservation. Synthetic seed technology has brought new per-
spectives to plant germplasm transportation, characterization, preservation, and
genetic resource management (Ahmed et al. 2014). Synthetic seeds can be stored
for short term and long term.

5.1 Short-Term Germplasm Conservation

The success of germplasm conservation of synthetic seed is directly associated with
storage temperature. Short-term germplasm conservation has been performed at
different temperatures (4–26 �C) in flower bulbs. Some researchers indicated that
conservation of synthetic seeds at 4 �C has been the optimal storage temperature
(Saiprasad and Polisetty 2003; Nagesh et al. 2009; Pradhan et al. 2016; Haque and
Ghosh 2017). Pradhan et al. (2016) produced synthetic seeds of Cymbidium
aloifolium by encapsulating protocorms with calcium alginate. They cultured syn-
thetic seeds in liquid culture containing MS or Kn C media supplemented with
0.5 mg/l 6-benzyl aminopurine (BAP) and 0.5 mg/l α-naphthalene acetic acid (NAA)
at 4 �C and room temperatures (RT, 21 �C � 2 �C) during 90 days. The synthetic
seeds stored at 4 �C had higher germination ability than stored at room temperature
in both of MS Kn C media. Haque and Ghosh (2017) encapsulated PLBs of
Spathoglottis plicata with sodium alginate and stored these synthetic seeds at three
different temperatures (4, 15, and 24 �C). Although synthetic seeds stored at room
temperature (24 �C) showed the best germination rate in the 30th day of storage,
synthetic seeds stored at 4 �C showed the best germinability with 66.7% after
120 days of storage. Although some researchers indicated that storage at 4 �C is
the most suitable for synthetic seed conservation, others reported that storage at
higher temperatures is the best one (Gantait et al. 2012; Gantait and Sinniah 2013;
Mohanty and Das 2013; Haque and Ghosh 2014; Mahendran 2014; Haque and
Ghosh 2016; Baskaran et al. 2017; Bhattacharyya et al. 2018). Haque and Ghosh
(2016) stored encapsulated somatic embryos of Ledebouria revoluta at different
temperatures (4, 15, and 24 �C). After 180 days of storage, synthetic seeds stored at
15 �C gave the best result with 11.1% germination rate, while synthetic seeds stored
at 4 and 24 �C lost their germinability. Bhattacharyya et al. (2018) developed an
efficient short-term storage system for synthetic seed of Ansellia africana. The
synthetic seeds which were produced by encapsulating PLBs with 3% sodium
alginate were stored at 4, 8, and 25 �C during 90 days. At the end of the storage,
the best germination rate was obtained from storage at 4 �C.
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5.2 Long-Term Germplasm Conservation (Cryopreservation)

Cryopreservation is an efficient technique for long-term conservation of plant
germplasm. This technique relies on storage of tissues at ultralow temperatures in
liquid nitrogen (�196 �C) or rarely in vapor phase (�150 �C). Storage of tissues for
long term in this method can be achieved because of pausing metabolic activities and
cell division in ultralow temperatures. Cryopreservation provides some advantages
such as cost-efficient in vitro cultures, minimum space requirement, decrease of
contamination, and somaclonal variation risk (Kulus and Zalewska 2014). Da Silva
(2012) tested both short-term and long-term (cryopreservation) conservation of
synthetic seeds obtained from PLBs of hybrid Twilight Moon “Day Light.”
According to the results of this experiment, it was found that short-term conservation
of Cymbidium was applicable, while long-term (cryopreservation) conservation was
not efficient.

6 Genetic Fidelity of Synthetic Seeds

Somaclonal variation is a common problem in tissue culture. DNA marker systems
provide an efficient tool to determine genetic stability of in vitro-derived plants.
Because of being cost-effective, faster, simpler, and not to need DNA sequence
information, the random amplified polymorphic DNA (RAPD) marker system has
been used to identify somaclonal variations of synthetic seed-derived plants
(Weising et al. 2005, Rizkalla et al. 2012, Nybom et al. 2014, Haque and Ghosh
2016). Mohanty and Das (2013) encapsulated PLBs of Dendrobium densiflorum
Lindl. Ex Wall to produce synthetic seed and stored them up for 90 days. To test
genetic fidelity of regenerated plants, 10 RAPD primers were used, and a total of
39 scorable bands were detected with 3.9 bands per primer. In the present study, no
variation was found between regenerated plants from synthetic seeds and the
parental plant. Haque and Ghosh (2016) used RAPD marker system to compare
genetic fidelity among mother plant and synthetic seed-derived plants of Ledebouria
revoluta. A total of 72 bands were obtained with 17 RAPD primers, and the results
revealed that there was no variation within or between the regenerated plants and
mother plant. Other two studies to check genetic fidelity between synthetic seed-
derived plants and mother plant were reported by Haque and Ghosh (2014) in
Drimiopsis kirkii and Baker and Mishra et al. (2011) in Picrorhiza kurroa. In both
of these studies, regenerated plants and parental plants were found stabile geneti-
cally. Another molecular marker system used to assess genetic variation in synthetic
seed technology is inter simple sequence repeats (ISSR). Gantait and Sinniah (2013)
carried out PCR amplification with ISSR primers to assess genetic stability of
synthetic seed-derived plants obtained from alginate-encapsulated shoot tips of
monopodial orchid hybrid ArandaWan Chark Kuan ‘Blue’ x Vanda coeruleaGrifft.
ex. Lindl. A total of 51 monomorphic bands were produced with 9 ISSR primers,
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and results demonstrated genetic uniformity between clones. Bhattacharyya et al.
(2018) preferred IRAP (inter-retrotransposon amplified polymorphism) and SCoT
(start codon targeted) markers that target genes to evaluate genetic fidelity of
regenerated Ansellia africana (leopard orchid) via synthetic seeds. High level of
genetic uniformity was found between in vitro-derived plants.

The concept of synthetic seed production in flower bulbs is given schematically in
Fig. 1 that presents applied methods in literature, and synthetic seed production
process is presented in Cyclamen sp. in Fig. 2. Also, studies and reports on synthetic
seed production of flower bulbs are given chronologically in Table 1.

Propagule

•Protocorm and Protocorm-like
bodies (PLBs)

•Somatic embryo
•Bulb

•Shoot tip
•Shoot bud

•Seed

Plant

Genetic
fidelity of 
synthetic

seeds

•RAPD
•ISSR
•IRAP
•SCoT

Encapsulation

Hydrated synthetic
seeds

Hydrogel
encapsulation

techniques
•Single layered
encapsulation
•Hollow beads

Gel agents
•Sodium alginate
•Calcium alginate

Desiccated
synthetic

seeds

Gel agent
•Polyethylene

glycol

Storage of synthetic seeds

Short-term
germplasm
consrvation

•Conservation at
4–26 °C

Long-term
germplasm

conservation
(Cryopreservation)

•Conservation at
ultra low

temperatures in
liquid nitrogen

(–196 °C)

Fig. 1 The concept of synthetic seed production in flower bulbs
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Fig. 2 Synthetic seed production at Cyclamen sp. by encapsulating somatic embryos
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Table 1 Researches on synthetic seed production of flower bulbs

Plant (species)
Explant
type

Type of
synthetic seed/
gel agent Result (survival rates) References

Spathoglottis
plicata

Protocorm
and seed

Desiccated
synthetic seed
Alginate–
chitosan,
alginate–gela-
tin, sodium
alginate

2.3–100%
Depending on encapsulation
agents, explant type and
size, desiccation, and
combination of these factors

Khor et al.
(1998)

Geodorum
densiflorum
(Lam) Schltr.

Protocorm-
like bodies

Hydrated
synthetic seed
Sodium
alginate

20.4–88%
Depending on storage time
and storage temperature

Datta et al.
(1999)

Dendrobium
‘SONIA’
Oncidium
‘GOWER
RAMSAY’
Cattleya
LEOPOLDII

Protocorm-
like bodies

Hydrated
synthetic seed
Sodium
alginate

Depending on storage
temperature and period:
12–100% for Dendrobium,
36–100% (4 �C) for Oncid-
ium,
16–100% (4 �C) for
Cattleya

Saiprasad and
Polisetty
(2003)

Ipsea
malabarıca
(Reıchb. f.)
J. D. Hook.

Bulb Hydrated
synthetic seed
Sodium
alginate

100% Martin (2003)

Cyclamen
persicum

Somatic
embryo

Hydrated
synthetic seed
Alginate
beads,
hollow beads

97% for alginate beads, 71%
for hallow beads

Winkelmann
et al. (2004)

Cyclamen
persicum Mill.

Somatic
embryo

Desiccated
synthetic seed
Polyethylene
glycol

28% Seyring and
Hohe (2005)

Curculigo
orchioides

Shoot bud Hydrated
synthetic seed
Sodium
alginate

28–68.3% for sodium
alginate concentration,
9.5–68.8% for CaCl2 expo-
sure time, 0.62–64.5% for
storage temperature and
period

Nagesh et al.
(2009)

Coelogyne
breviscapa
Lindl.

Protocorm-
like bodies

Hydrated
synthetic seed
Sodium
alginate

33.6–91%
Depending on storage time

Mohanraj et al.
(2009)

Vanda
coerulea
Grifft.
ex. Lindl.

Protocorm-
like bodies

Hydrated
synthetic seed
Sodium
alginate

23%–94.9%
Depending on storage time,
concentration of sodium
alginate, and calcium
chloride

Sarmah et al.
(2010)

(continued)
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Table 1 (continued)

Plant (species)
Explant
type

Type of
synthetic seed/
gel agent Result (survival rates) References

Flickingeria
nodosa (Dalz.)
Seidenf

Protocorm-
like bodies

Hydrated
synthetic seed
Sodium
alginate

6.5–95% Depending on
storage time

Nagananda
et al. (2011)

Picrorhiza
kurroa

Microshoots Hydrated
synthetic seed
Sodium
alginate

Max 89.33% Janhvi Mishra
et al. (2011)

Cymbidium
(hybrid)

Protocorm-
like bodies

Hydrated
synthetic seed
Sodium
alginate

6–100%
Depending on storage time
and method

Teixeira da
Silva (2012)

Aranda Wan
Chark Kuan
‘Blue’ x
Vanda
coerulea
Grifft.
ex. Lindl.

Protocorm-
like bodies

Hydrated
synthetic seed
Calcium
alginate

69.5–96.4%
Depending on culture media

Gantait et al.
(2012)

Aranda Wan
Chark Kuan
‘Blue’ x
Vanda
coerulea
Grifft.
ex. Lindl.

Shoot tips Hydrated
synthetic seed
Sodium
alginate

Max 99.6% depending on
MS strength

Gantait and
Sinniah (2013)

Dendrobium
nobile Lindl.

Protocorm-
like bodies

Hydrated
synthetic seed
Sodium
alginate

54.13–78.20%
Depending on sucrose,
mannitol, and different
concentrations of them

Mohanty et al.
(2013)

Dendrobium
densiflorum
Lindl. Ex Wall

Protocorm-
like bodies

Hydrated
synthetic seed
Calcium algi-
nate
Sodium
alginate

79.1–100%
Depending on culture media

Mohanty and
Das (2013)

Drimiopsis
kirkii Baker

Somatic
embryo

Hydrated
synthetic seed
Sodium
alginate

93.3% Haque and
Ghosh (2014)

Cymbidium
aloifolium (L.)
Sw.

Protocorm Hydrated
synthetic seed
Sodium
alginate

85% Pradhan et al.
(2014)

(continued)
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Table 1 (continued)

Plant (species)
Explant
type

Type of
synthetic seed/
gel agent Result (survival rates) References

Dendrobium
white fairy
orchid

Protocorm-
like bodies

Hydrated
synthetic seed
Sodium
alginate

80% Siew et al.
(2014)

Cymbidium
bicolor Lindl.

Protocorm Hydrated
synthetic seed
Sodium
alginate

10.23–80%
Depending on storage time
and temperature

Mahendran
(2014)

Muscari
armeniacum
Leichtlin ex
Baker

Bulblet Hydrated
synthetic seed
Sodium
alginate

95% Yücesan et al.
(2014)

Spathoglottis
plicata Blume

Protocorm-
like bodies

Hydrated
synthetic seed
Sodium
alginate

Stella et al.
(2015)

Serapias
vomeracea
(Burm.
f.) Briq.

Protocorm-
like bodies

Hydrated
synthetic seed
Sodium
alginate

60–100%
Depending on germination
media (in vitro or soil)

Bektaş and
Sökmen
(2016)

Ledebouria
revoluta

Somatic
embryo

Hydrated
synthetic seed
Calcium
alginate

57.8% Haque and
Ghosh (2016)

Cymbidium
aloifolium (L.)
Sw.

Protocorm Hydrated
synthetic seed
Calcium
alginate

10–83%
Depending on storage time,
storage temperature, and
culture media

Pradhan et al.
(2016)

Renanthera
imschootiana
Rolfe

Protocorm-
like bodies

Hydrated
synthetic seed
Sodium
alginate

Max 100% Gupta (2016)

Urginea
altissima (L.f.)
Baker

Shoot tips Hydrated
synthetic seed
Sodium
alginate

Max 91% Baskaran et al.
(2017)

Spathoglottis
plicata Blume

PLB Hydrated
synthetic seed
Sodium
alginate

86.6% Haque and
Ghosh (2017)

Ansellia afri-
cana (leopard
orchid)

Protocorm-
like bodies

Hydrated
synthetic seed
Sodium
alginate

88.21% Bhattacharyya
et al. (2018)
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7 Conclusions

Ornamental geophytes have wide usage as cut flower, garden flower, and pot plant at
homes, in gardens, and to many different places due to their aesthetic properties.
Synthetic seed researches increased after the somatic embryogenesis studies evolve.
The most important properties of the synthetic seed are short-time regeneration,
sustainability of the clonal identity, seasonal independence for seed production, easy
acclimatization, and cost minimization of the ornamental plant production. Hydrogel
encapsulation is a common technique for synthetic seed production, and alginate and
CaCl2 are the commonly used chemicals to encapsulate the plant materials. Addi-
tionally, synthetic seeds can be used for cryopreservation studies, and this technique
provides advantages for conserving the endangered plant species. Therefore, syn-
thetic seed methods have been used for a long time which have different purposes in
the plant biotechnology studies. In this chapter, synthetic seed production was
presented, and the reports about the different usage of the synthetic seeds were
detailed.
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Applications of Synthetic Seed Technology
for Propagation, Storage, and Conservation
of Orchid Germplasms

Saikat Gantait and Monisha Mitra

Abstract A synthetic seed is defined as an artificially encapsulated somatic embryo
(protocorm-like bodies in case of orchids) or meristematic tissue (shoot tips, nodal
segments, corm, and bulb) that portrays the role of a seed and has the proficiency of
germinating into complete plantlets. Synthetic seed technology is an optimistic
approach to preserve and clonally propagate different species of orchids that can be
endangered or possess high esthetic value or in respect to economical and medicinal
prominence which is covered extensively in this chapter. It aids as the most conven-
tional and genuine means for generating plant propagules under in vivo conditions.
Under ex vitro conditions, there is positive enhancement of the large-scale production
of orchid species by bypassing the process of acclimatization. Synthetic seed tech-
nology positively implements the germplasm exchange through short-term storage.
Cryopreservation is a constructive method for long-term germplasm conservation of
plant propagules at ultralow temperature. Molecular marker technology is now an
upcoming advanced practice to sample the germplasm systematically. Minimal
progress has been made in the field of synthetic seed technology; there are still
many challenges to make the technique more practical and feasible especially for
the farmers and producers. The inadequacies are required to be surveyed extensively
and solved so that this technology can be utilized in a long-term basis keeping in mind
the principles of sustainable development and conservation.
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1 Introduction

Synthetic seeds can be regarded as artificial seeds that are formulated from somatic
and non-zygotic embryos, thus opening up a new facet in agriculture, by means of
propagules that can be derived from transgenic plants, non-seed-producing plants,
recalcitrant seed-producing plants, and natural polyploid plants or induced-polyploid
plants with superior and elite alleles. The earliest concept of artificial seed paves back
to Haberlandt’s postulate based on artificial embryo cultivation (1902). Originally,
synthetic seed can be defined as “an encapsulated single somatic embryo.” In a
simpler version, a product that is derived through clonal means can be handled and
utilized just like a real seed for sowing, storage, and transport and subsequently can be
grown in ex vitro or in vitro condition further generating into a plantlet (Murashige
1978). Bapat et al. (1987) stated that in vitro propagules can be used to produce
synthetic seeds apart from somatic embryos. According to Gray and Purohit (1991),
the exact definition of synthetic seed is “a somatic embryo that is engineered for the
practical use in commercial plant production.” Henceforth, in a comprehensive
context, synthetic seed can be defined as any kind of meristematic propagule or
somatic embryo which is artificially encapsulated, and under ex vitro or in vitro
condition, it can generate itself into a plantlet, or the seed can also be stored for future
purpose (Capuano et al. 1998; Ara et al. 2000). Several researchers (Ara et al. 2000;
Danso and Ford-Llyod 2003; Nhut et al. 2005; Faisal and Anis 2007;West and Preece
2009; Ahmad and Anis 2010; Ozudogru et al. 2011; Sharma et al. 2009a, b; Gantait
et al. 2015) suggested that instead of somatic embryos, which are always tricky to
handle, there is also a likelihood of the utilization of vegetative propagules, namely,
shoot tips, protocorm, etc. which are derived from non-embryogenic origin. In addi-
tion, organogenic or embryogenic callus can also be utilized (Ara et al. 2000; Danso
and Ford-Llyod 2003; Faisal and Anis 2007; Ahmad and Anis 2010). There has been
immense progress in the field of synthetic seed (Sharma et al. 2013), and ample
numbers of reports are available on artificial seed for orchids. In fact, synthetic seed
technology in orchid biotechnology has particular relevance since orchids produce
non-endospermic and tiny seeds (Teixeira da Silva 2012). Currently, this particular
technology is considered as an effective and alternative method of propagation with
higher efficiency in orchids having a higher commercial value, and also as a major tool
that can be utilized for the mass propagation of superior and also rarer orchid species
with an economic and/or medicinal value. It is precisely described and cited in many
literature (Singh et al. 2006; Gantait et al. 2012; Gantait and Sinniah 2013) that
synthetic seed technology is an optimistic approach to preserve and clonally propagate
superior genotypes, endangered plants with a higher economic value, transgenic
plants, and sterile genotypes that can’t produce a viable set of seeds, or in the context
of orchids, symbiotic association with the beneficial microorganisms is required by
means of mycorrhiza in a large scale.
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2 Techniques Adopted for Synthetic Seed Development
in Orchids

Based on the technology established for orchid so far, propagules under in vitro or
in vivo conditions were isolated carefully, and an appropriate hydrogel mainly sodium
alginate (0.5–5.0%, w/v) was used. Alginate is structurally aliphatic, hydrophilic, and
colloidal in nature (Cameron 2008). Alginate solution is prepared with the help of
double-distilled water or by using liquid nutrient medium, and in a form of a bead, it is
dropped along with the propagule in calcium chloride (CaCl2�2H2O) or calcium nitrate
[Ca(NO3)2] solution (30–150mM). Prior to sterilization, the pH of both the complexing
agent and alginate matrix is fixed at 5.8. Complexing agent and the gel matrix are
sterilized by autoclaving it at 1.06 kg cm�2 and 121 �C for 20 min (Gantait and Sinniah
2013). The primary principle regarding encapsulation method using alginate is ion
displacement phenomena that take place between sodium (Na+) and calcium (Ca2+)
ions. The rigidity and permeability of the encapsulated propagules depend on concen-
trations of alginate and calcium chloride which vary in different propagules. According
to Teixeira da Silva (2012), to attain the perfect combination for the ideal single-layered
synthetic seed formation in hybrid Cymbidium, the conditions need to be fulfilled with
3.5% sodium alginate and 100 mM calcium chloride, and the time interval was 40 min.
Saiprasad and Polisetty (2003) stated that the amiable conditions for hardening of the
encapsulated beads were 3% sodium alginate that formed complex compound with
75 mM calcium chloride for 20–30 min in orchid species like Oncidium, Cattleya, and
Dendrobium. Sodium alginate at lower concentrations (1–2%) poses difficulty in
encapsulation since it negatively affects the gelling ability, and sodium alginate at
higher level of concentrations (5–6%) formed harder, rigid, and isodiametric beads,
causing delay in emergence of shoot and roots (Gantait et al. 2012; Gantait and Sinniah
2013). In case of orchids, extensive literature is available on singled-layered synthetic
seed. For the development of single-layered synthetic seeds, peristaltic pumps and
pipettes are mostly employed (Blandino et al. 2000; Gantait et al. 2012). Constant
stirring of solution, where the beads are formed, is done so that cohesiveness among the
beads is avoided and spherically shaped beads are formed distinctively. The bead
measurements can be altered by changing the innermost diameter of the nozzle of the
pipette utilized (Ara et al. 2000). Sterile double-distilled water was used to wash the
firm beads, and extra chemicals were removed and placed into a nutrient medium
(Gantait et al. 2012; Gantait and Sinniah 2013).

According to Vij and Kaur (1994), synthetic seeds are severely prone to microbial
attacks (bacterial or fungal). In order to control the microbial contamination, differ-
ent antimicrobial agents can be employed. Addition of activated charcoal (AC) that
helps in the breakdown of alginate enhances the respiration rate of the propagules,
thus significantly extending the storage period (Saiprasad 2001). AC also absorbs the
non-desirable and toxic exudates like 5-hydroxymethylfurfural (a toxic byproduct of
sucrose formed at the time of autoclaving) (Wang et al. 2007). Hindrances at the time of
root and shoot emergence occurs when propagated from synthetic seed that can be
managed by self-breaking alginate bead technology (Onishi et al. 1994). Another
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demerit of hydrated synthetic seeds is stickiness when exposed in the open air, and it
can be solved by coating with Elvax 4260 (ethylene vinyl acetate acrylic acid terpoly-
mer; Dupont, USA) (Redenbaugh and Walker 1990). Till date, there is no report on
development of double-layered synthetic seeds or hollow beads in orchid.

3 Orchid Propagules Used for Synthetic Seed Production

In synthetic seed production, different types of propagules are utilized for encapsu-
lation which are further grouped under two major categories.

3.1 Somatic Embryo or Protocorm-Like Body

A somatic embryo possesses both shoot and root propagules, so it can be regarded as
a bipolar structure (Standardi and Piccioni 1998). Hence it can be regarded as
acceptable propagule for synthetic seed production as compared to conventional
propagules, since, in a single step the radicle and the plumule develops simulta-
neously. In case of orchids, somatic embryo and protocorm-like bodies (PLBs) are
identical terms (Texeira Da Silva et al. 2015), where somatic embryos are miniature
globule-like structure that ultimately becomes enlarged and later is called
“protocorm.” Therefore, on the basis of structure, it is termed as “PLB.” The
morphology of PLB differs from typical somatic embryos by the absence of a distinct
embryonic alignment (Norstog 1979). Instead, these are developed with multiple
meristematic centers that later transformed into standard embryos, shoots, and roots
(da Silva et al. 2000). PLBs consist of shoot apical meristem and leaf primordial and
constricted basal tissue, and at primary stages, it exhibited a globular shape, but in
advanced stages, a dome shape was exhibited (Kundu and Gantait 2018). The term
“PLB” is usually restricted to in vitro culture of orchids (Ishii et al. 1998), apart from a
few exceptions (Ilan et al. 1995; Gantait et al. 2012). In general, orchid breeders
sprout thousands of seeds in small vessels, under aseptic environment. The ensuing
PLBs have an affinity to be transformed into groups of seedlings that are essential to
be separated physically. The advances attained by the invention of synthetic seed
technology where particular seeds or PLBs were encapsulated in a suitable matrix
would obviously minimize the complexity of arrangement and planting of seedlings.
Similarly, for the purpose of encapsulation, PLBs could be employed (Fig. 1a). Corrie
and Tandon (1993) utilized PLBs from Cymbidium giganteum for synthetic seed
production. So far, several studies involving PLBs as explants, to develop synthetic
seeds of several orchid species were carried out, for instance, Aranda � Vanda,
C. giganteum, Dendrobium wardianum, Dendrobium densiflorum, Dendrobium
nobile, Phaius tankervilleae, Oncidium, Cattleya, Spathoglottis plicata, and
Grammatophyllum scriptum (Ara et al. 2000; Saiprasad and Polisetty 2003; Vij
et al. 2001; Gantait et al. 2012; Mohanty et al. 2013a,b; Pitoyo et al. 2017)
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(Table 1). Khor et al. (1998) encapsulated the PLBs of Spathoglottis plicata in three
ways: firstly, by direct encapsulation without any treatment, secondly, by desiccation
prior to encapsulation, and lastly, by the combination of desiccation and abscisic acid
(ABA). Henceforth, encapsulation after desiccation increased the viability and sur-
vival rate of the protocorms. Datta et al. (1999) encapsulated PLBs from Geodorum
densiflorum (Lam) Schltr after 30 days of germination from seed. Saiprasad and
Polisetty (2003) encapsulated PLBs in Dendrobium, Oncidium, and Cattleya by
utilizing shoot tips as explants. Mohanraj et al. (2009) produced synthetic seed of
Coelogyne breviscapa Lindl by encapsulating PLBs after 60 days of germination
from the seed. Sarmah et al. (2010) utilized PLBs from Vanda coerulea Griff.
ex. Lindl. Leaf explants were used for the culturing of PLBs. Nagananda et al.
(2011) conducted an experiment in Flickingeria nodosa (Dalz.) Seidenf by culturing
PLBs from 45 days of culture. An efficient protocol was developed to induce PLB
formation from leaf in orchid hybrid Aranda Wan Chark Kuan ‘Blue’ � Vanda
coerulea Grifft. ex. Lindl. (Gantait and Sinniah 2012). Using the direct regeneration
efficiency of PLBs, the high-rated conversion of synthetic seeds was achieved.

Fig. 1 Synthetic seed production and its application in orchid. (a) Shoot tip (left side) and
protocorm-like bodies (PLBs) (right side) of Aranda Wan Chark Kuan ‘Blue’ � Vanda coerulea
Grifft. ex. Lindl., used as explants for encapsulation, (b) 3% (w/v) sodium alginate-mounted
explants after being dropped in 100 mM calcium chloride solution for formation of synthetic
seeds, (c) spherical and translucent synthetic seeds, (d) storage of synthetic seeds in screw-capped
polypropylene tubes in ambient temperature, (e) post-storage regeneration (in vitro) of synthetic
seeds, (f) complete plantlets regenerated from synthetic seeds (figures are not in scale) (Source:
Unpublished photographs of Saikat Gantait)
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3.2 Nodes with Apical or Axillary Buds and Microshoots

According to Piccioni (1997), for successful development of artificial seeds, shoot
tips and nodal segments are generally used because they ensure higher degrees of
genetic stability and somaclonal variations are avoided. The extensive use of plant
propagules of non-embryogenic origin (Fig. 1a) is now utilized to produce synthetic
seeds in a wide variety of orchid species that has been cited in quite a few literature
(Table 1). Lurswijidjarus and Thammasiri (2004) encapsulated shoot tips of
Dendrobium Walter Oumae. Gantait and Sinniah (2013) used shoot tip explants of
Aranda � Vanda for synthetic seed production from in vitro cultures after 25 days.
Although nodal segments are regarded as the most appropriate among the different
types of unipolar propagules for encapsulation, there are some shortcomings. Mainly,
due to absence of root apex, explants are unable to produce roots. This might be the
key reason that limited number of attempts have been made for encapsulation of
unipolar plant organs in orchids.

3.3 Meristemoids, Cell Aggregates, and Bulbs

These propagules are complex and heterogeneous. Further, these propagules can
differentiate and can develop into different structures like shoots or buds or corm/
bulb (Sharma et al. 1992; Tandon et al. 1994; Martin 2003). From different reports it
can be highlighted that encapsulation of such propagules should be done prior to
their differentiation phase; further it was reported that encapsulation of the prolifer-
ating callus showed promising results due to easy regenerative ability and greater
potential for transformation. Martin (2003) reported that in vitro-formed bulbs of
Ipsea malabarica which were encapsulated by sodium alginate were placed in MS
medium either on plant growth regulator (PGR)-free ½MS or 6.97 μM kinetin-
fortified medium-assisted 100% conversion. Haque and Ghosh (2017) utilized stem
discs, leaf tips, and root segments excised from in vitro-grown plants for callus
induction in Spathoglottis plicata Blume and further encapsulated the PLBs formed
from the cultured plants which gave 76.3% conversion (Table 1).

4 Encapsulating Agent and Matrix Used for Synthetic Seed
Production in Orchid

Synthetic seed matrix is the key component that surrounds the explants and thus
demonstrates its significant influence on the ultimate sustainability of synthetic seed
(Gantait et al. 2015; Pitoyo et al. 2017). It is indispensable that the artificial seed coat
shields the explants during its storage and handling and simultaneously retains the
effectiveness to hold artificially provided growth factors (Khor and Loh 2005). The
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soft hydrogel protects the explant by making sure that the least amount of pressure be
put on the same, thus assuring a much lesser damage to the plant material. In the
perspective of hydrogel, the explants are commingled with a polymeric solution that
when dropped in the other liquid comprising divalent metal ions, commenced a
cross-linking effect, giving rise to the hydrogel. The resultant encapsulation beads
held the explants firmly and continued to provide sufficient resistance to exterior
mechanical stress, for easy handling (Gantait et al. 2015).

It is obvious that the choice of suitable explants is the core of the notion of
synthetic seed, but the selection of related matrix elements to be used in blend with
the biological substances is similarly crucial. The concentration and category of gel
essential for encapsulation and the degree of exposure of encapsulated seeds to
CaCl2�H2O are vital as well (Redenbaugh et al. 1991, 1993). Coating agents are of
various types like sodium pectate, sodium alginate, potassium alginate, sodium
alginate with carboxymethyl cellulose, carrageenan, agar, gelrite, gelatin, tragacanth
gum, guar gum, etc. which have also been used as hydrogels as mentioned by Ara
et al. (2000) and Rai et al. (2009). According to Redenbaugh et al. (1987), sodium
alginate and calcium salt serve as the best combination for encapsulation due to
non-damaging property of these ions, lower price, easy handling, and high plantlet
conversion rate. The gel circumventing the capsule has a potential to provide a range
of nutrients that helps in enhancing the survivability and increasing the rate of
growth in embryos. Sodium alginate is now selected and utilized frequently in all
experiments because of moderate level of viscosity, low spinning potentiality of
solution, negligible toxicity of propagules, instant gellation, cheaper price, and its
biocompatibility (Saiprasad 2001).

A number of gel types are utilized for encapsulation; nevertheless, sodium alginate
is recognized to be the most commonly used matrix because of its minimum cost,
gelling nature, and nonhazardous property (Cheruvathur et al. 2013). Alginate is the
favored choice since it enhances capsule formation, and, additionally, the sturdiness
of alginate beads reassures a much-improved safeguard (in comparison with agar) to
protect explants from physical injury (Saiprasad and Polisetty 2003).

With the times, the idea of matrix materials has advanced into a reasonably
refined interaction that centers on the transformability of synthetic seeds. It is
apparent from the current chapter that a greater part of the optimal results in terms
of well-developed round beads was formed with 100 mM CaCl2�H2O and 3%
sodium alginate (Table 1), for example, in Vanda coerulea (Sarmah et al. 2010),
Cymbidium devonianum (Chettri Das et al. 2011), Cymbidium pendulum (Roxb.)
Sw. (Pehwal et al. 2012), Dendrobium nobile (Mohanty et al. 2013a), Dendrobium
chrysanthum Wall. ex Lindl. (Mohanty et al. 2013b), Cymbidium eburneum Lindl.
and C. hookerianum Rchb. f. (Gogoi et al. 2013), Aranda Wan Chark Kuan
‘Blue’ � Vanda coerulea Grifft. ex. Lindl. (Gantait et al. 2012; Gantait and Sinniah
2013), Cymbidium finlaysonianum Lindl. (Klaocheed et al. 2018) etc., and the
regeneration of synthetic seeds was ~90% in most of the occasions. Apparently,
3% sodium alginate solution and 100 mM CaCl2 H2O assisted in the most beneficial
ion exchange including Na+ and Ca2+, forming compact, translucent, isodiametric
beads. Reduced levels (1 and 2%) of sodium alginate were not suitable since the
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capsules were of irregular form and remarkably brittle and soft to grip; at the same
time, at raised levels (4 and 5% sodium alginate), the capsules were too inflexible
(Fig. 1) causing substantial obstruction during conversion of synthetic seeds.

5 Modes of Utilization of Orchid Synthetic Seeds

In the field of orchid biotechnology, synthetic technology has opened up new
dimensions. For the management of plant germplasm, the utilization of synthetic
seeds can be done in several ways.

5.1 In Vitro Plant Production

According to Mandal et al. (2000) as well as Pinker and Abdel-Rahman (2005),
under in vitro conditions, the encapsulation technique functions as the most con-
ventional and genuine means for producing plant propagules (Table 1). At the same
time, the semisolid culture medium or planting substrates (that includes perlite,
vermiculite, vermin compost, soilrite, soil, sand, and gravel) aid as efficient means
for the successful conversion of synthetic seeds. Generally, for accomplishing higher
conversion efficiency, nutrient-rich media are frequently preferred over nutrient-
deficit media (Mandal et al. 2000). Lurswijidjarus and Thammasiri (2004) cultured
encapsulated shoot tips of Dendrobium Walter Oumae in Vacin and Went
(VW) media fortified with agar and sucrose. In the nutrient medium, the PGR dosage
is variable in different plant species. For example, when shoot tips and PLBs were
encapsulated and placed into MS medium which was supplemented with PGRs, a
high (>90%) conversion efficiency was achieved. Nagananda et al. (2011) cultured
PLBs in Burgeff’s N3F basal medium consisting 2% sucrose and agar. The same
was fortified with adenine sulphate and IAA. Pradhan et al. (2014) recounted that full
strength of MS medium provided the highest percentage of recovery of plantlets in
Cymbidium aloifolium. It was also supplemented with 0.5 mg/L NAA and BAP.
Bhattacharyya et al. (2018) conducted an experiment in Ansellia africana (Leopard
orchid) where culture was done in rooting media comprising of indole acetic acid
(IAA) and indole butyric acid (IBA) (5–20 μM). Phenolic elicitors phloroglucinol
(PG) (10–40 μM) was added in order to reduce the effects of hyper-hydricity and to
eradicate the hindrances that surfaced at the time of root induction and branching.
The highest conversion frequency was achieved at the concentrations of 15–20 μM
IAA and IBA along with 40 μM PG. During in vitro synthetic seed conversion, the
gelling agent also serves as an essential factor. The most popular gelling agent
utilized for synthetic seed conversion medium is agar (Cameron 2008). Alterna-
tively, Singh (2008) demonstrated that conversion results of synthetic seed by the
application of phytagel gave more promising results than agar.
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5.2 Direct Sowing

Sowing of synthetic seeds under ex vitro conditions provides an economical tech-
nique for direct production of the plantlets in terms of economical aspect thus
positively enhancing the large-scale production of plant species. The acclimatization
procedure can also be skipped when direct or ex vitro sowing is done. Mandal et al.
(2000) suggested that for successful commercial-scale propagation, simple and
economical substrate such as soilrite, soil, sand, or vermi-compost is essential for
achieving maximum conversion percentage in the plantlets. The feasibility of direct
germination of artificial seeds of Dendrobium Shavin White was tested in different
substrates, namely, semisolid ½ Murashige and Skoog (1962) basal medium, steril-
ized liquid ½ MS basal medium-drenched cotton bed, sterilized distilled water-
drenched cotton bed, and cotton-drenched with non-sterile water-drenched cotton
bed (Bustam et al. 2013). Chettri Das et al. (2011) reported that acclimatization of
Cymbidium devonianum with higher survivability percentage can be attained by
using a potting mixture comprising of brick, charcoal, decayed waste, and peat
moss. The addition of litter and moss heightened the survivability rate due to better
drainage and air circulation.

The major bottleneck that reduces the conversion efficacy is nutrient deficiency, so
in order to tackle this problem, endogenous or exogenous application of nutrients is
required. In addition, at the time of direct sowing, microbial incidence and attack serve
as the biggest obstacles; thus commercialization of encapsulation technology becomes
difficult. Severe contamination is caused by the release of organic nutrients, mainly
sucrose-stimulated microbial incidence that inhibits rooting (Nhut et al. 2005). How-
ever, Nhut et al. (2005) developed a conventional method in Cymbidium wherein, a
fungicidal solution, namely, chitosan, was used to coat the synthetic seeds.

5.3 Short-Term Germplasm Conservation

Artificial seed technology positively implements the germplasm exchange. For this
reason, the storage conditions play a significant role in determining the successful
conversion rate of synthetic seed at the time of transporting it to long distance
(Fig. 1d). Therefore, definite storage period and appropriate storage conditions
serve as the primary criteria to maintain viability of synthetic seed mainly during
transportation. In most of the literature, the perfect temperature for storing synthetic
seed is 4–5 �C (Saiprasad and Polisetty 2003; Teixeira da Silva 2012) (Table 1).
Khoddamzadeh et al. (2011a) encapsulated and stored PLBs of Phalaenopsis bellina
under storage temperatures of 5, 15, and 25 �C where higher viability and surviv-
ability were achieved at temperature of 5 �C since, there is an inverse relation
between storage temperature and viability. With the increase in storage temperature,
there is reduction in viability. Chettri Das et al. (2011) conducted an experiment in
Cymbidium devonianum, where PLBs were encapsulated and stored in temperature
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(0, 4, and 8 �C) under dark conditions. High survival rate was observed in temper-
atures 4 and 8 �C. The storage duration can also be extended up to 180 days with
minimum loss in viability. Similarly, Klaocheed et al. (2018) encapsulated and
stored PLBS of Cymbidium finlaysonianum Lindl at temperature ranges of 0 � 2,
4 � 2, 8 � 2, and 25 � 2 �C at storage periods of 15, 30, 45, 60, 75, 90, 105, and
120 days. High conversion frequency was achieved in 8� 2 �C as compared to other
temperature conditions. Subsequently, Bhattacharyya et al. (2018) reported similar
results in Ansellia africana (Leopard orchid) where synthetic seeds were maintained
under temperatures of 4, 8, and 25 �C for 15, 30, 45, 60, 75, and 90 days. The best
results were obtained at 8 �C and at 75 days. A conversion frequency of 86.21% was
achieved. In contrast to these reports, there are multiple instances wherein higher
temperature (preferable ambient room temperature) proved to be efficient in sustain-
ing the storability of orchid synthetic seeds. In an experiment conducted by Bustam
et al. (2013) inDendrobium Shavin White, the encapsulated PLBs were stored under
a range of temperatures (4, 10, 25, and 30 �C) for 135 days in different tiers of a
freezer as well as in the growth room. The results showed that at 25 �C temperature,
the highest conversion frequency was exhibited by the beads. In correspondence
with this report, Gantait et al. (2012) and, later, Gantait and Sinniah (2013) opti-
mized the storage condition of Aranda � Vanda synthetic seeds (derived from PLBs
and shoot tips) at 25 �C with germination (Fig. 1e) efficiency of as high as ~72–77%
after 180–200 days of storage.

5.4 Cryopreservation: Long-Term Conservation
of Germplasm

Cryopreservation is an apt method for long-term germplasm conservation of plant
propagules under ultralow temperature conditions for a larger span (Gantait et al.
2017). It ensures the integrity and stability of the germplasm on the basis of its
genotype and phenotype (Texeira Da Silva et al. 2014). Due to orchid’s miniature
structure and thin seed coat, it imparts formidable opportunities for cryopreservation
(Merritt et al. 2014). PLBs of Dendrobium candidum (Yin and Hong 2009) were
efficiently cryopreserved with the aid of encapsulation-vitrification technique.
Khoddamzadeh et al. (2011b) developed a convenient technique of encapsulation-
dehydration in Phalaenopsis bellina where the PLBs were used and no expensive
programmable freezer and higher levels of injurious cryoprotectants were required.
This strategy is based on consecutive dehydration of plant cells in sucrose-rich
medium osmotically due to the gradual loss of water from encapsulated propagules.
Similarly, Yin et al. (2011) used encapsulation dehydration technique to cryopre-
serve the PLBs of Brassidium Shooting Star orchid hybrid, where the PLBs were
successfully dehydrated using preheated silica gel in laminar air flow cabinet and
finally stored in liquid nitrogen for 24 h. Subsequent culturing and biochemical
assays displayed some significant results, which revealed that cryopreserved PLBs
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produced lesser chlorophyll and minimum protein content, however, high peroxi-
dase activity was also observed. It was also conducted by Antony et al. (2011) in
Dendrobium Bobby Messina where the PLBs were also cryopreserved using
encapsulation-dehydration technique using oven-satirized silica gel in paraffin-
sealed wax glass. Mohanty et al. (2011) established protocols for both
encapsulation-dehydration and encapsulation-vitrification. In case of dehydration,
it was done in laminar air flow, and on the other hand, the vitrification was done
using a vitrification solution (VS) that comprised of 30% glycerol, 15% ethylene
glycol, and 15% dimethyl sulfoxide (DMSO) and 0.4 M sucrose. After treatment
with VS, it was immersed in liquid nitrogen. The results showed that encapsulation-
vitrification showed better conversion efficiency (75.92%) and high survival rates as
compared to encapsulation dehydration (53.3%). Later on, the same group of authors
(Mohanty et al. 2013b) established a protocol for cryoconservation of a rare orchid
D. chrysanthum via synthetic seed production of PLBs and their simultaneous long-
term conservation by encapsulation-vitrification approach. Following an initial
osmoprotection (with a mixture of 2 M glycerol and 0.4 M sucrose in the encapsu-
lation matrix followed by preculture and loading treatment for 80 min), the synthetic
seeds (encapsulated PLBs) were subjected to PVS2 (Sakai and Kobayashi 1990) for
100 min. Exposure of encapsulated-vitrified PLBs to liquid nitrogen and subsequent
revival showed as high as 63.2% survival and 59.9% regrowth. Gogoi et al. (2013)
modified the encapsulation-dehydration protocol in Cymbidium eburneum Lindl.,
and Cymbidium hookerianum Rchb. f. where the encapsulated beads were treated
using sucrose (at varying concentrations 0.3–0.8 M) for 20 h prior to dehydration in
laminar air flow cabinet, and then cryopreserved. The results revealed that 0.7 M
sucrose showed the highest conversion efficiency. Pretreatment with sucrose pre-
vents freezing injuries involved during the desiccation. Teixeira da Silva (2013)
utilized the encapsulation-vitrification method in hybrid Cymbidium, where encap-
sulated PLBs were treated with vitrification solutions. DMSO, mannose, and
PEG-6000 resulted in a negative impact on the explant survivability, but 2% sucrose
accounted for the best results. However, hyper-hydricity effects were not reported
from any of the abovementioned osmoprotectants. For majority of orchid species,
encapsulation-dehydration has been extensively used for cryopreservation of the
propagules, mainly shoot tips and PLBs. A remarkable conclusion is drawn out to
the fact that these protocols resulted in more than 80% survivability in the propagules.
Encapsulation-vitrification and encapsulation-dehydration are regarded as simple
and cheaper techniques that maintain the genetic stability and minimize the chances
of potential injuries (Moges et al. 2004).

6 Molecular Marker Technology in Orchid Synthetic Seed

According to Hirai and Sakai (2000), Scocchi et al. (2004), and Bekheet et al.
(2007), the evaluation of genetic variability in the propagules generated from
conserved synthetic seeds has drawn much interest. The evaluation of genetic
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stability is mandatory for the proper utilization of synthetic seed in germplasm
conservation and exchange (Dehmer 2005). According to Jokipii et al. (2004),
Borner (2006), Mandal et al. (2007), and Agnihotri et al. (2009), the molecular
marker technology is now an upcoming advanced practice to sample the germplasm
systematically and further analyze their molecular status. Random amplified poly-
morphic DNA (RAPD) and inter simple sequence repeats (ISSR) analyses have
widely been used for studying clonal integrity, uniformity, and detection of
somaclonal variations on genetic basis due to easy handling, wider availability,
lower cost, and simple genotyping. Poobathy et al. (2013) assessed genetic stability
of encapsulated-dehydrated Dendrobium Sonia-28 PLBs using RAPD marker and
reported that the regenerants were genetically polymorphic (with similarity index of
0.4–1), when compared to the stock culture. Gantait and Sinniah (2013) employed
ISSR markers in Aranda � Vanda to deduce the genetic fidelity and uniformity of
synthetic seeds of the plantlets (shoot tips were encapsulated) derived from the
mother plant. For this experiment nine ISSR markers were used; it was observed
that a total of 561 bands, which were all scorable, were produced with ~5.5 bands per
primer. None of the bands were polymorphic (out of the 561 scorable bands). It was
concluded that the 100% similarity coefficient was revealed thus confirming the
molecular stability of Aranda � Vanda plants, regenerated from synthetic seeds.
Lately, Worrachottiyanon and Bunnag (2018) reported clonal fidelity of Cymbidium
finlaysonianum plantlets, regenerated after encapsulation-dehydration-based cryo-
preservation. RAPD analysis (with 45 primers) employed for comparison of the
polymorphic bands between plantlets germinated from non-cryopreserved and
cryopreserved synthetic seeds revealed a similar index value of 0.998 (considered
to be close to 1), indicating the genetic stability of the cryopreserved synthetic seeds
(encapsulated protocorms). Most recently, Bhattacharyya et al. (2018) assessed the
clonal fidelity of Ansellia africana (Leopard orchid) plantlets, developed from
encapsulated micro-shoots along with the designated mother plant using start
codon targeted (SCoT) and inter-retrotransposon amplified polymorphism (IRAP)
marker systems. Both markers exhibited a great extent of genetic homogeneity
within the in vitro-raised plants, wherein 5 IRAP and 8 SCoT primers developed
81 bands, respectively, of which only 6 bands were polymorphic. So far there are
fewer reports on molecular marker-assisted genetic fidelity assessment of synthetic
seed-germinated orchid plantlets, and hence, there is still much to be done in this
field.

7 Problems, Limitations, and Future Prospects

In the recent era, synthetic seed technology is getting immensely popular for orchids
due to its extensive applications, considering the facets of germplasm storage,
conservation, and exchange between different countries and research institutes.
Apart from the achievements, there are some shortcomings required to be solved in
order to commercialize this technology for orchid. Firstly, in order to commercialize
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synthetic seed technology, cheaper methods should be employed to enhance the
production of highly viable and better-quality micropropagules. Secondly, several
problems that are associated with the usage of somatic embryos in the production of
synthetic seed such as reduction of embryogenic vigor in old cultures, indeterminate
development, advanced germination, structural incongruities, failure to withstand
desiccation tolerance, etc. should be resolved (Ara et al. 2000). A solution to this
problem had been suggested (Soneji et al. 2002) which is the usage of
non-embryogenic propagules instead of somatic embryos or PLBs which is favorable
in many other plant species that produce nonviable set of seeds, although in some
orchid species, usage of unipolar propagules leads to absence of root apex in the
explants. Thirdly, there are still many challenges tomake the techniquemore practical
and feasible especially for the farmers and producers; mainly the ex vitro techniques
or the direct sowing of seeds needs to be refined (Jung et al. 2004). The key
shortcomings associated with the ex vitro techniques are reduction in survivability
rate arising from nutrient deficiency and oxygen supply and microbial attack that
needs major attention (Nhut et al. 2005). Lastly, alginate encapsulation by conven-
tional method is a labor-intensive process which involves repetitive handling of the
explants in various stages that includes excision, alginate coating being dipped into
calcium chloride solution, rinsed with water and finally place into a vessel. West and
Preece (2009) proposed a solution to this problem by signifying the usage of bulk
encapsulation approach that reduced the labor and improved the efficacy. Still, bulk
alginate encapsulation has many shortcomings; plantlets when exposed to high
sodium alginate concentration leads to reduction in shoot and root growth and matrix
shrinkage.

The above listed shortcomings are required to be surveyed extensively and solved
so that this technology can be utilized in a long-term basis keeping in mind the
principles of sustainable development and conservation. To refine the methods,
protocols and machinery that are required for handling synthetic seed at the produc-
tion and post-production stages, additional monetary support and investments are
essential. Minimal progress has been made in the field of synthetic seed technology
in orchid. Attempts were made to demonstrate the feasibility of synthetic seed
production in orchids in various literatures listed in this chapter. Still, there is need
to implement this technology in a commercial and broad scale so that the concept can
emerge from the theoretical means and can be more conceptualized in practical basis.
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Somatic Embryos Encapsulation
for Synthetic Seed Production of Sugar
Palm (Arenga pinnata Wurmb Merr.)

Nazatul Asikin Muda and Asmah Awal

Abstract This paper describes a protocol for producing synthetic seeds of sugar
palm (Arenga pinnataWurmbMerr.) using encapsulated somatic embryos (SEs) and
secondary somatic embryos (SSEs) at different developmental stages. The study
investigates in vitro germination response of the synthetic seeds influenced by
different concentrations of encapsulation matrix and its viability at storage tempera-
ture of 4 �C and 25 �C. Encapsulation of SEs and SSEs in 3.0% sodium alginate,
complexed in 100mM calcium chloride sterile solution (CaCl2�2H2O) and inoculated
on basal MS media under dark condition at 25� 2 �C, promoted an optimum 30 and
80% germination rate after 4 and 8 weeks, respectively. Germinated synthetic seeds
transferred to MS + 1.0 mg/L BAP (6-Benzylaminopurine) + 1.0 g/L NAA
(1-Naphtaleneacetic acid) promoted an optimum average number of shoot regener-
ation at 7.75 � 1.32 after 12 weeks. Synthetic seeds being cold-stored at 4 �C
displayed consistent declination rate of germination at 0–120 days of storage, while
the synthetic seeds stored at normal culture condition of 25 �C promoted optimum
germination (80%) during 0–45 days of storage. Optimum number of shoot regener-
ation at 11.00 � 0.91 and 12.25 � 1.32 with the average number of roots at
3.00 � 0.41 was recorded from the non-refrigerated synthetic seeds cultured on
MS + 1.0 mg/L BAP + 1.0 mg/L NAA after 8 weeks. Shoots of normal morphology
were observed after 12 weeks of transfer on basal MS media.
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Abbreviations

2,4-D 2,4-Dichlorophenoxyacetic acid
2H2O Sterile distilled water
BAP 6-Benzylaminopurine
CaCl2�2H2O Calcium chloride sterile solution
EtOH Ethyl alcohol
MS Murashige and Skoog medium
NAA 1-Naphthaleneacetic acid
NaCl2 Sodium hypochlorite
PGRs Plant growth regulators
SEs Somatic embryos
SSEs Secondary somatic embryos

1 Introduction

The idea of synthetic seeds, also known as “synseed,” was first officially presented
by Toshio Murashige in 1977 at a tissue culture symposium for horticultural
purposes in Belgium (Magray et al. 2017). Murashige (1977) described synthetic
seeds as “an encapsulated single somatic embryo” which was later defined by Gray
et al. (1991) as “an encapsulated single somatic embryo that is engineered for the
practical use in commercial plant production.”

As the technology started to gain interest from researchers throughout the century,
the concept of synthetic seeds was later discovered to be limited only in plants in
which somatic embryos could be demonstrated. Due to recalcitrance issues in certain
plant species to develop somatic embryogenesis, the synthetic seed concept was later
broadened as the “encapsulation of a range of in vitro-derived propagules” (Bapat
et al. 1987). However, the true extended definition concept of synthetic seed tech-
nology was actually described by Kamada (1985) who indicated the encapsulation of
other vegetative parts, tissues, and cell aggregates of plants aside from somatic
embryos in an artificial coating for sowing as a seed and that have the ability to
convert into a complete plant under in vitro and ex vitro condition and that also
retaining this conversion potential after storage. This concept was afterward
pioneering a large number of synthetic seeds studies of many plant species belonging
to both monocot and dicot groups (Purohit 2013).

Commercially valuable crops which have a strong technological basis such as
those that are capable of producing high-quality somatic embryos are a great
candidate for the implementation of synthetic seeds (Redenbaugh et al. 1987).
Transgenic plants, elite plant species, non-seed-producing plants, and plant lines
that have a problem in seed propagation are another significant crop characteristic
which demanded the application of this clonal technique. Synthetic seed technology
symbolizes the biotechnology advancement in agriculture in a cost-effective way as
it shortened the laborious procedure of conventional recombination breeding system
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for many plant species (Rihan et al. 2017). Among other great advantages of this
technique also include cheaper plantlet cost while maintaining its clonal nature,
simple methodology with high potential for mass propagation of elite plant varieties,
facilitating direct use of in vitro plantlets to ex vitro conditions, long-term storage
potential without losing viability, easy long-distance transportation, and ease of
handling while in storage (Bhatia and Bera 2015).

Sugar palm which belongs to monocot plant group is an economically important
palm species cultivated primarily in the Southeast Asian regions for its sugary sap
and industrially strong black fibers (Mogea 2003). The implementation of synthetic
seeds in sugar palm was to overcome the complex handling and recalcitrancy of
natural seeds for germination (Asikin and Puspitaningtyas 2000). Long dormancy
period and short-storage life are other concerning issues for successful seed propa-
gation of sugar palm (Soeseno 2000; Orwa et al. 2009).

The current study thus reports the synthetic seed establishment through the
encapsulation of SEs and SSEs at torpedo-cotyledonary developmental stage
obtained from immature zygotic embryo explants of sugar palm. The method of
inducing the somatic embryos in vitro as propagules was also described. The
established synthetic seed protocol was hoped to facilitate mass propagation of
clonal sugar palm seedlings for commercial production while conserving its germ-
plasm for effective and systematic use at any time in the future.

2 Materials and Methods

2.1 Preparation of Plant Materials and Surface Sterilization
Method

Fresh fruits of sugar palm at an approximate average size of 5.5 cm were collected
from a plantation in Raub, Pahang, Malaysia, and cleaned under running tap water.
Surface sterilization method was carried out by soaking the washed fruits with 70%
ethyl alcohol (EtOH) for 30min, rinsed with sterile distilled water (2H2O) three times,
and followedwith 30-min immersion in 50% sodium hypochlorite (NaCl2) addedwith
a few drops of Tween 20. The surface-sterilized fruits were later rinsed with another
three changes of 2H2O prior to drying in a laminar growth chamber. Immature zygotic
embryos extracted from the endosperms of the surface-sterilized sugar palm fruits
were used as explants to initiate somatic embryogenesis under in vitro condition.

2.2 Preparation of Culture Media

MS (Murashige and Skoog 1962) media were prepared with the mixture of 4.41 mg/L
MS salt and 30.0 g/L sucrose and solidified with 2.5 g/L gelrite. The pH of all culture
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media involved in the experiment was adjusted at 5.8 and sterilized at 121 �C for
20 min. Plant growth regulators (PGRs) were added accordingly to the objectives of
the experiments.

2.3 Somatic Embryogenesis Induction

Immature zygotic embryo explants were cultured on MS media supplemented with
0.4 mg/L 2,4-D (2,4-dichlorophenoxyacetic acid) + 0.5 mg/L NAA to induce
primary embryogenic calluses under in vitro condition at 25 � 2 �C in a complete
darkness. Under similar incubation environment, the induced primary calluses were
later transferred on a fresh MS medium containing 60.0 g/L sucrose + 0.4 mg/L
2,4-D + 0.5 mg/L NAA + 3.0 g/L casein hydrolysate to initiate somatic embryogen-
esis at globular, heart-shaped, and torpedo developmental stage. SSEs at torpedo-
cotyledonary developmental stage were demonstrated within 4 weeks prior to
transfer of SEs on MS + 0.4 mg/L 2,4-D + 0.5 mg/L BAP + 1.0 mg/L silver nitrate
(Muda and Awal 2017). Developed translucent SEs and SSEs at an approximate size
of 3.0–4.0 mm (Fig. 1a, Fig. 1b) were used as propagules to develop synthetic seeds
of sugar palm.

(a)              0.04 cm

(d)               0.30 cm (e)              0.30 cm

HS
T

G

C

(f)               0.30 cm

(c)               1.0 cm(b)              0.04 cm

Fig. 1 SEs at (a) globular [G], heart-shaped [HS], torpedo [T], and (b) cotyledonary
[C] developmental stage as propagules for synthetic seeds production of sugar palm. (c) Encapsu-
lated SEs and SSEs in optimum encapsulation matrix (3.0% sodium alginate +100 mM
CaCl2�2H2O). (d) Secondary callus and (d) SSE development after 4–8 weeks of culture on basal
MS media. (e) Microshoot establishment after 2 weeks on MS + 1.0 mg/L BAP + 1.0 mg/L NAA
under dark condition at 25 � 2 �C
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2.4 Encapsulation of SEs and SSEs for Synthetic Seed
Production

The encapsulation procedure of SEs and SSEs for synthetic seed production of sugar
palm was carried out as demonstrated by Awal et al. (2008). Established SEs and SSEs
were extracted as individuals and encapsulated in amatrix solution consisted of 30.0 g/L
sucrose, four different concentrations of sodium alginate (1.0, 2.0, 3.0, and 4.0%), and
PGRs (1.0 mg/L BAP + 1.0 mg/L NAA). The matrix solutions were autoclaved at
121 �C for 20min. Each SEs andSSEswas dropped in the cooled-down sodium alginate
solutions and later pipetted into sterile solutions of three different concentrations of
CaCl2�2H2O (50.0mM, 75.0mM, and 100.0mM). The sterile solutions of CaCl2�2H2O
were kept stirred to ensure thorough coating of propagules. After 15 min, formed
synthetic beads were collected with a sieve, rinsed with 2H2O, and desiccated on sterile
distilled paper prior to in vitro culture on basal MS media for germination.

2.5 In Vitro Germination of Synthetic Seeds and Storage

Encapsulated SEs and SSEs as synthetic seeds were cultured on basal MS media
prior to incubation in a growth chamber fixed at the temperature of 25 � 2 �C under
dark condition. Their germination percentage and days taken for the germination to
take place were weekly observed and recorded at 4-week intervals. The germination
performance of the synthetic seeds being cold-stored at 4 �C was also recorded for
4 months (120 days). Synthetic seeds stored at normal culture environment (25 �C)
served as control treatment.

2.6 Experimental Design and Data Analysis

The experiments were laid out using randomized complete block design (RCBD)
and repeated twice with ten replications for each treatment. The germination rate was
calculated as the percentage of synthetic seeds germinated from the total number of
synthetic seeds cultured in vitro. The frequency of shoots and roots observed from
the experiment was recorded and analyzed using analysis of variance (ANOVA)
followed with Tukey post hoc test at a significant level of 0.05 (P < 0.05) using
SPSS (Statistical Package for the Social Sciences) software version 20.0. Results
were expressed as mean � standard error (SE).

3 Results and Discussion

The method to encapsulate somatic embryos to produce artificial seeds has been
demonstrated in various monocotyledonous plant species which included rice (Roy
and Tulsiram 2013; Kumar et al. 2005), maize (Thobunluepop et al. 2005), oil palm
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(Mariani et al. 2014; Inpuay and Te-Chato 2012), and date palm (Bekheet 2017;
Diab and El-Fadl 2016), but none has ever been reported in sugar palm. Thus, in the
present work, a protocol to establish synthetic seeds of sugar palm through the
encapsulation of somatic embryos (SEs) and secondary somatic embryos (SSEs) had
been conducted. The selection of somatic embryos as propagules for the purpose of
establishing synthetic seeds is significant to the fact that they are structurally similar
to zygotic embryos found in seeds and feature many of their useful characteristics,
including the ability to grow into complete plants (Saiprasad 2001).

The establishment of decent synthetic seeds of sugar palm was dependent on the
proper manipulation of sodium alginate and CaCl2�2H2O as encapsulation matrix.
Table 1 showed the morphology of synthetic seeds produced using different con-
centrations of sodium alginate and CaCl2�2H2O as encapsulation matrix. Soft, solid,
uniform, and round-shaped translucent synthetic beads were obtained from the
encapsulation of the selected propagules in 3.0% sodium alginate and 75–100 mM
CaCl2�2H2O (Fig. 1c). Meanwhile, synthetic seeds formed with lower concentra-
tions of sodium alginate at 1.0–2.0% and complexed with all tested concentrations of
CaCl2�2H2O (50 mM, 75 mM, and 100 mM) were observed to produce very delicate/
delicate, fragile, and translucent beads with indefinite shapes. Given a slightly forced
strength would easily rupture and break them. On the other hand, higher concentra-
tions of sodium alginate at 4.0% and 50–100 mM CaCl2�2H2O produced hard,
mostly rounded, and tail-shaped translucent synthetic beads. A similar result was
reported by Tarmizi and Zaiton (2013) in their attempt to establish synthetic seeds
for oil palm.

Table 1 The morphology of sugar palm’s synthetic seeds formed by different concentrations of
sodium alginate and CaCl2�2H2O as encapsulation matrix

Sodium alginate
(%)

CaCl2�2H2O
(mM) Synthetic bead morphology

1.0 50 Very delicate, fragile, translucent, and indefinite-shaped
beads

75 Very delicate, fragile, translucent, and indefinite-shaped
beads

100 Very delicate, fragile, translucent, and indefinite-shaped
beads

2.0 50 Delicate, translucent, and indefinite-shaped beads

75 Delicate, translucent, and indefinite-shaped beads

100 Delicate, translucent, and indefinite-shaped beads

3.0 50 Soft, solid, uniform, round-shaped, and translucent
beads

75 Soft, solid, uniform, and round-shaped translucent beads

100 Soft, solid, uniform, and round-shaped translucent beads

4.0 50 Hard, mostly rounded, and tail-shaped translucent beads

75 Hard, mostly rounded, and tail-shaped translucent beads

100 Hard, mostly rounded, and tail-shaped translucent beads
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In terms of germination potential, it was observed that the synthetic seeds
produced with different consistencies of encapsulation matrices promoted a signif-
icantly different rate of germination when inoculated on basal MS media under
in vitro condition (Table 2, Table 3). Optimum germination rate of 30% at 4 weeks
and 80% at 8 weeks of culture was recorded from the synthetic seeds formed with
3.0% sodium alginate and 100 mMCaCl2�2H2O. This result then followed with 30%

Table 2 The germination response of the synthetic seeds formed with different concentrations of
sodium alginate and CaCl2�2H2O inoculated on basal MS media after 4 weeks

Sodium alginate (%) CaCl2�2H2O (mM)

4 weeks

Germination rate (%) Regenerant type

1.0 50 10 Callus

75 20 Callus

100 – –

2.0 50 10 Callus

75 20 Callus

100 – –

3.0 50 30 Callus

75 – –

100 30 Callus

4.0 50 10 Callus

75 – –

100 – –

Table 3 The germination response of the synthetic seeds formed with different concentrations of
sodium alginate and CaCl2�2H2O inoculated on basal MS media after 8 weeks

Sodium alginate
(%)

CaCl2�2H2O
(mM)

8 weeks

Germination rate
(%) Regenerant type

1.0 50 20 Secondary somatic embryos

75 20 Secondary somatic embryos

100 20 Secondary somatic embryos

2.0 50 50 Callus, secondary somatic
embryos

75 10 Callus

100 60 Secondary somatic embryos

3.0 50 60 Callus

75 20 Callus

100 80 Callus, secondary somatic
embryos

4.0 50 20 Callus, secondary somatic
embryos

75 30 Callus

100 50 Callus
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and 60% germination rate after 4 and 8 weeks, respectively, from the synthetic seeds
formed with 3.0% sodium alginate and 50 mMCaCl2�2H2O. The lowest germination
rate (10%) was recorded from the synthetic seeds formed with 4.0% and 100 mM
CaCl2�2H2O after 8 weeks of culture. Not germinated synthetic seeds were observed
to turn severely browny, watery, and mostly deteriorated in culture. These results
were strongly supported by Maqsood et al. (2012) who suggested that different
concentrations of sodium alginate and CaCl2�2H2O would not only determine the
shape of the formed synthetic seeds but also dynamically influence their germination
potential.

In consequent to germination, some of the encapsulated SEs were observed to
generate beige-colored secondary calluses (Fig. 1d), while some other promoted
secondary calluses with translucent and fairly defined SSEs (Fig. 1e). Encapsulated
SSEs in optimum encapsulation matrix (3.0% and 100 mM CaCl2�2H2O) as syn-
thetic seeds were later observed to produce multiplied SSEs after another 4–8 weeks
on similar culture medium and condition. Transfer of the germinated SSEs on MS
medium containing 1.0 mg/L BAP and 1.0 mg/L NAA under continuous light
condition at 25 � 2 �C and 16/8 h photoperiod promoted elongation of SSEs into
translucent microshoots (Fig. 1f) within 2 weeks of culture, which later slowly
developed green pigments (chlorophyll) as a sign of active photosynthesis activity.
The highest number of shoot regeneration at 7.75 � 1.32 was eventually observed
and recorded from the synthetic seeds developed with the optimum encapsulation
matrix treatment (3.0% and 100 mM CaCl2�2H2O) after 12 weeks (Table 4). Devel-
oped shoots with normal morphology were later photographed (Fig. 2). Root
regeneration was unavailable in all treatments tested.

Table 4 The shoot and root regeneration of the germinated synthetic seeds formed with different
concentrations of sodium alginate and CaCl2�2H2O inoculated on MS + 1.0 mg/L BAP + 1.0 mg/L
NAA after 12 weeks

Sodium alginate
(%)

CaCl2�2H2O
(mM)

12 weeks on MS + 1/0 mg/L BAP + 1.0 mg/L NAA

No. of shoots
(mean � SE)

No of roots
(mean � SE)

1.0 50 0.00 � 0.00a 0.00 � 0.00a
75 0.00 � 0.00a 0.00 � 0.00a

100 0.00 � 0.00a 0.00 � 0.00a
2.0 50 1.00 � 0.58a 0.00 � 0.00a

75 0.00 � 0.00a 0.00 � 0.00a
100 4.50 � 0.29b 0.00 � 0.00a

3.0 50 0.00 � 0.00a 0.00 � 0.00a
75 0.00 � 0.00a 0.00 � 0.00a

100 7.75 � 1.32c 0.00 � 0.00a
4.0 50 0.00 � 0.00a 0.00 � 0.00a

75 0.00 � 0.00a 0.00 � 0.00a
100 0.00 � 0.00a 0.00 � 0.00a

Values followed by the same letter(s) within a column are significantly different by Tukey-test at
P < 0.05. SE standard error (n ¼ 4)
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In terms of storage, it was determined that incubated synthetic seeds at the
temperature of 4 �C promoted consistent declination rate of germination within
0–120 days when cultured on basal MS media. The highest germination rate was
recorded at 80–40% within 0–15 days of storage and continuously declining to 10%
within 60–75 days. By 90–120 days of storage, all synthetic seeds refrigerated at the
mentioned temperature failed to germinate (Table 5). In contrast, non-incubated
synthetic seeds and those stored at normal culture environment at 25 �C had
promoted an optimum 80% germination rate within 0–45 days of storage. An
optimum number of shoot regeneration at 11.00 � 0.91 and 12.25 � 1.32 with the
average number of root regeneration at 3.00 � 0.41 were also recorded from the
mentioned synthetic seeds cultured on basal MS media. The germination rate started
to decline at 70% after 60 days and consistently declining to 20% after 90 days of

Fig. 2 Microshoots
evolving into normal shoots
with developing chlorophyll
(green pigments) after
12 weeks of culture on
MS + 1.0 mg/L
BAP + 1.0 mg/L NAA
under continuous light
condition at 25 � 2 �C and
16/8 h photoperiod

Table 5 The germination response of sugar palm’s synthetic seeds refrigerated at 4 �C at 30, 60,
90, and 120 days of storage cultured on MS + 1.0 mg/L BAP + 1.0 mg/L NAA after 8 weeks

Storage temperature 4 �C
Storage duration
(days)

Germination rate
(%)

No. of shoots
(mean � SE)

No. of roots
(mean � SE)

0 80 12.25 � 1.32b 0.00 � 0.00a
15 40 1.25 � 0.75a 0.00 � 0.00a
30 30 0.00 � 0.00a 0.00 � 0.00a
45 20 0.00 � 0.00a 0.00 � 0.00a
60 10 0.00 � 0.00a 0.00 � 0.00a
75 10 0.00 � 0.00a 0.00 � 0.00a
90 – 0.00 � 0.00a 0.00 � 0.00a
105 – 0.00 � 0.00a 0.00 � 0.00a
120 – 0.00 � 0.00a 0.00 � 0.00a

Values followed by the same letter(s) within a column are significantly different by Tukey-test at
P < 0.05. SE standard error (n ¼ 4)
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storage. After 105 days, more than 90% of the synthetic seeds failed to germinate
(Table 6). Contradicted result was reported in Begonia in which the synthetic seeds
stored at 4 �C had promoted 97–100% germination rate from 0 to 60 days of storage
and 80% germination was demonstrated at 90 days (Awal et al. 2008). Nevertheless,
both reports emphasized declination of germination with extended storage period, in
which the condition was explained to possibly occur as a result of oxygen deficiency
and rapid hydration of the matrix beads (Swamy et al. 2009).

4 Conclusion

Somatic embryos (SEs) and secondary somatic embryos (SSEs) at different devel-
opmental stages were successfully encapsulated to produce synthetic seeds of sugar
palm. Encapsulation matrix of 3.0% sodium alginate and 100 mM CaCl2�2H2O
promoted soft, solid, uniform, round-shaped, and translucent synthetic beads. In
consequent to in vitro germination of the synthetic beads on basal MS media, beige
secondary calluses and multiplied secondary somatic embryos were regenerated.
Germinated synthetic seeds transferred to MS + 1.0 mg/L BAP + 1.0 mg/L NAA
promoted optimum shoot and root regeneration after 8–12 weeks of culture. Storage
of synthetic seeds at 25 �C under dark condition provided optimum germination
within 0–45 days. Shoots of normal morphology were observed after 12 weeks of
culture on MS + 1.0 mg/L BAP + 1.0 mg/L NAA under light condition.

Acknowledgment The authors acknowledge Universiti Teknologi MARA (UiTM) Shah Alam for
research funding of 600-RMI/DANA5/3/REI (1/2013) and MyBrain15 Scholarship, Ministry of
Higher Education, Malaysia.

Table 6 The germination response of sugar palm’s synthetic seeds refrigerated at 25 �C at 30, 60,
90, and 120 days of storage cultured on MS + 1.0 mg/L BAP + 1.0 mg/L NAA after 8 weeks

Storage temperature 25 �C
Storage duration
(days) Germination rate (%) No. of shoots (mean � SE)

No. of roots
(mean � SE)

0 80 11.00 � 0.91d 3.00 � 0.41b
15 80 9.25 � 1.11d 1.25 � 0.95a
30 80 9.00 � 1.08d 0.00 � 0.00a
45 80 7.25 � 0.95cd 0.00 � 0.00a
60 70 5.00 � 1.08bc 0.00 � 0.00a
75 50 3.25 � 1.03ab 0.00 � 0.00a
90 20 0.00 � 0.00a 0.00 � 0.00a
105 10 0.00 � 0.00a 0.00 � 0.00a
120 – 0.00 � 0.00a 0.00 � 0.00a

Values followed by the same letter(s) within a column are significantly different by Tukey-test at
P < 0.05. SE standard error (n ¼ 4)

332 N. A. Muda and A. Awal



References

Asikin D, Puspitaningtyas DM (2000) Study on in vitro and in vivo seed germination of Arenga
pinnata (Wurmb) Merr. Seminar Hasil Penelitian dan Pengembangan Bioteknologi, Cibinong,
Bogor (Indonesia). Puslitbang Bioteknologi

Awal A, Taha RM, Hasbullah NA (2008) Induction of somatic embryogenesis and plant regener-
ation in Begonia x hiemalis Fotsch. in vitro. J Biol Sci 8(5):920–924

Bapat VA, Mhatre M, Rao PS (1987) Propagation of Morus indica L. (Mulberry) by encapsulated
shoot buds. Plant Cell Rep 6(5):393–395

Bekheet SA (2017) Encapsulation of date palm somatic embryos: synthetic seeds. In: Date palm
biotechnology protocols, vol II. Humana, New York, NY, pp 71–78

Bhatia S, Bera T (2015) Somatic embryogenesis and organogenesis. In: Bhatia S, Sharma K,
Dahiya R, Bera T (eds) Modern applications of plant biotechnology in pharmaceutical sciences.
Elsevier, London Wall, pp 209–228

Diab MI, El-Fadl REA (2016) In vitro propagation of date palm (Phoenix dactylifera L.) embryos
using synthetic seeds. IOSR J Biotechnol Biochem (IOSR-JBB) 2(6):62–68

Gray DJ, Purohit A, Triglano RN (1991) Somatic embryogenesis and development of synthetic
seed technology. Crit Rev Plant Sci 10:33–61

Inpuay K, Te-chato S (2012) Primary and secondary somatic embryos as tool for the propagation
and artificial seed production of oil palm. J Agricult Technol 8(2):597–609

Kamada FI (1985) Synthetic seeds. In: Tanaka R (ed) Practical technology on the mass production
of clonal plants. CMC, Tokyo

Kumar MA, Vakeswaran V, Krishnasamy V (2005) Enhancement of synthetic seed conversion to
seedlings in hybrid rice. Plant Cell Tissue Organ Cult 81(1):97–100

Magray M, Wani KP, Chatto MA, Ummyiah HM (2017) Synthetic seed technology. Int J Curr
Microbiol App Sci 6(11):662–674

Maqsood M, Mujib A, Siddiqui ZH (2012) Synthetic seed development and conversion to plantlet
in Catharanthus roseus (L.). G Don. Biotechnology 11(1):37–43

Mariani TS, Sasmitamiharja D, Mienanti D, Latif S, Ginting G, Miyake H (2014) Somatic
embryogenesis of oil palm (Elaeis guineensis Jacq.) for synthetic seed production. Asian J
Appl Sci 2(3):358–367

Mogea JP (2003) Four new species of Arenga (Palmae) from Indonesia. Reinwardtia 12
(2):181–189

Muda NA, Awal A (2017) Somatic embryogenesis in sugar palm (Arenga pinnata Wurmb Merr.)
from zygotic embryo explants. Pertanika J Sci Technol 25(S7):133–144

Murashige T (1977) Plant cell and organ cultures as horticultural practices. In: Proceedings of the
symposium on tissue culture for horticultural purposes, Ghent, Belgium

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue
cultures. Physiol Plant 15:473–497

Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) Agroforestry database: a tree species
reference and selection guide version 4.0. World Agroforestry Centre ICRAF, Nairobi, Kenya

Purohit SD (2013) Introduction to plant cell, tissue and organ culture. PHI Learning Private
Limited, Delhi, p 232

Redenbaugh K, Viss P, Slade D, Fujii JA (1987) Scale-up: artificial seeds. In: Alan R (ed) Plant
tissue and cell culture. Liss Inc, New York, pp 473–493

Rihan H, Kareem F, El-Mahrouk M, Fuller M (2017) Artificial seeds (principle, aspects and
applications). Agronomy 7(4):71

Roy B, Tulsiram SD (2013) Synthetic seed of rice: an emerging avenue of applied biotechnology.
Rice Genomics Genet 4(1):14–27

Saiprasad GVS (2001) Artificial seeds and their applications. Resonance 6(5):39–47
Soeseno S (2000) Bertanam Aren. Penebar Swadaya, Jakarta (ID)

Somatic Embryos Encapsulation for Synthetic Seed Production of Sugar. . . 333



Swamy MK, Balasubramanya S, Anuradha M (2009) Germplasm conservation of patchouli
(Pogostemon cablin Benth.) by encapsulation of in vitro derived nodal segments. Int J Biodi-
versity Conserv 1(8):224–230

Tarmizi AH, Zaiton R (2013) Oil Palm synthetic seeds. Malaysian Palm oil boards, Ministries of
Plantation Industries and Commodities, Malaysia, P.O. Box 10620, 50720, Kuala Lumpur,
Malaysia

Thobunluepop P, Pawelzik E, Vearasilp S (2005) Plant regeneration via organogenesis and
embryogenesis in sweet corn. In: Proceedings of the conference on international agricultural
research for development, Stuttgart-Hohenheim

334 N. A. Muda and A. Awal



Perspectives of Synthetic Seed Technology
for Conservation and Mass Propagation
of the Medicinal Plant Castilleja tenuiflora
Benth.

Gabriela Trejo-Tapia, Yatzil León-Romero,
Eridiana Beatriz Montoya-Medina, Alma Rosa López-Laredo,
and José Luis Trejo-Espino

Abstract The production of synthetic seeds through encapsulation is a technology
that is used for the storage and conservation of germplasm ofmedicinal plants, as well
as their propagation. This chapter describes the protocol used for the production of
synthetic seeds of Castilleja tenuiflora Benth. Different concentrations of sodium
alginate and calcium chloride dihydrate had an effect on the shape of the capsules and
their transparency and consistency. With 3% sodium alginate and 50 mM calcium
chloride dihydrate, the capsules were spherical, translucent, and firm in consistency.
On the other hand, the storage of synthetic seeds elaborated with micro-stakes of
C. tenuiflora at 4 �C and in darkness for a period of 50 days allowed a germination of
86% and a conversion of 90% without modifying the chemical profile of the plants
generated. Additionally, the feasibility of generating biomass in in vitro conditions
from the use of synthetic seeds is demonstrated.

Keywords Castilleja tenuiflora · Synthetic seeds · Medicinal plants

1 Introduction

The production of synthetic seeds by means of encapsulation has received great
attention in recent years, because it is an excellent option for the biodiversity
conservation andmass propagation of species with ecological, economic, and cultural
importance (Sharma et al. 2013). A synthetic seed is a somatic embryo, a shoot, a bud,
or any other artificially encapsulated meristematic tissue that can be stored and,
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subsequently, sown simulating a functional seed that has the ability to become a plant
under in vitro or ex vitro conditions (Ara et al. 1999). The most used compounds that
have given positive results in the encapsulation process of synthetic seeds are sodium
alginate (Alg-Na) in complex with calcium chloride dihydrate (CaCl2 2H2O), using
different concentrations and polymerisation times. The additional advantage is that
these ions are easily managed, nontoxic, and low priced (Redenbaugh et al. 1987).

The conservation of germplasm using synthetic seeds has economic advantages
with respect to the conventional plant cell and tissue culture, mainly because sub-
cultures are not necessary within short periods of time. This procedure minimises
maintenance costs and diminishes the risks of contamination, and the space required
for storage is considerably reduced. In addition, synthetic seeds are easy to transport,
which facilitates the exchange of germplasm (Sharma et al. 2013).

One of the groups of plants that are being extensively used for the application of
this technology for conservation purposes are medicinal plants. A large number of
these species are wild, and their seeds are fragile, sensitive to drying, and recalcitrant
or feature low viability (Gantait et al. 2015). Some of the most recent reports
addressing the production of synthetic seeds of medicinal plants are found in the
studies conducted by Gopala Sundararaj et al. (2010). These authors developed a
protocol for the production of synthetic seeds using micro-buds from Zingiber
officinale Rosc. On the other hand, Dhir and Shekhawat (2013) encapsulated nodal
segments from in vitro cultures of Ceropegia bulbosa in order to promote large-scale
mass propagation, short-term conservation, and exchange and distribution of germ-
plasm. Prasad et al. (2014) describe an efficient method for the preparation, short-
term conservation, and regeneration of seedlings from synthetic seeds of Centella
asiatica (L.) Urban. Saeed et al. (2018) developed synthetic seeds from nodal
segments of Gymnema sylvestre with the purpose of exploiting the encapsulation
technology to achieve high recovery of seedlings, short-term storage, and plant
conservation.

Castilleja tenuiflora Benth. (Orobanchaceae) is a hemiparasitic and herbaceous
perennial or sub-shrubby plant, with highly branched erect stems reaching 30 cm to
1 m. It features racemose inflorescences with acute apex and colours ranging from
yellow to reddish orange. This plant grows wild in the highlands of Mexico (between
1300 and 3500metres above sea level), primarily found in temperate pine-oak forests,
scrubs, and grasslands. It is also commonly found both on the edges of agricultural
fields and roadsides (Rzedowski and Rzedowski 2005).

Castilleja tenuiflora has a cultural and ethnobotanical importance in Mexico,
because, since the sixteenth century, it has been used as a medicinal plant to treat
conditions such as cough, dysentery, nerves, menstrual pain and inflammation,
gastrointestinal diseases, and tumours (Hernández 1943). Its medicinal properties
are attributed to the biological activities that have been proven for this species. It has
been reported that wild plants and cultivated in vitro have anti-inflammatory and
anti-ulcerogenic activity (Sánchez et al. 2013; Carrillo-Ocampo et al. 2013). It also
has cytotoxic effects (Nguyen et al. 2005), antioxidants (López-Laredo et al. 2012),
and antidepressants (Herrera-Ruiz et al. 2015). These biological activities have been
related to the secondary metabolites present in wild plants and cultivated in vitro.
These compounds are iridoid glycosides (aucubin and bartsioside) (Martínez-Bonfil
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et al. 2011), phenylethanoid glycosides (verbascosides and isoverbascosides) (Gómez-
Aguirre et al. 2012), flavonoids (apigenin and quercetin) (López-Laredo et al. 2012),
and lignans (tenuifloroside) (Herrera-Ruiz et al. 2015).

Castilleja tenuiflora is extracted from its natural environment and commercialised
inmarkets of medicinal plants. This overexploitation, coupled with the degradation of
its habitat and the fragility of its seeds, may put the permanence of the species at risk.
In order to conserve it, efforts have been made to develop biotechnological systems
for its mass propagation (Salcedo-Morales et al. 2009; Martínez-Bonfil et al. 2011)
and obtain bioactive compounds (Valdez Tapia et al. 2014; Gómez-Aguirre et al.
2012; Medina-Pérez et al. 2015). These systems based on in vitro culture make
biomass available for use. However, the technology of synthetic seeds is a method
that allows increasing subculture periods and storage time, offering a system for the
conservation of germplasm. We describe the protocol that is used for the production
of synthetic seeds of C. tenuiflora, the effects of the concentration of the encapsulat-
ing agents used, their short-term storage, and the advances in the mass propagation of
the plant using this technology.

2 Production of Synthetic Seeds of Castilleja tenuiflora

Plants of C. tenuiflora cultivated in vitro were used as sources of explants for the
production of seeds (Salcedo-Morales et al. 2009). The plants were maintained by
means of subcultures on Murashige and Skoog (MS) medium (1962), supplemented
with 3% sucrose, 0.1 mg L�1 of indole-3-butyric acid (IBA), 0.25 mg L�1 of
6-benzylaminopurine (BAP), and 0.8% agar, and the pH was adjusted to 5.8 before
autoclaving. They were incubated in a culture room with a controlled temperature of
25� 2 �C, light intensity of 77 μmol m�2 s�2, and photoperiod of 16 h of light and 8 h
of darkness. The explants used were micro-stakes (segments of stem with two nodes
counted from the base of the stem) (Fig. 1a) of 5 mm in length obtained from
C. tenuiflora plants (mother plants) cultivated in vitro for 35 days.

For producing the synthetic seeds, we prepared two solutions separately, one
containing 3% Alg-Na in MS medium (described above) and 100 mM of CaCl2
2H2O in sterile distilled water. Subsequently, under aseptic conditions, the micro-
stakes were added to the Alg-Na solution to be coated with it. Then, with the help of
a micropipette (with the disposable tip adapted to have 7 mm in diameter and obtain
a homogeneous droplet size), we aspirated explant by explant together with Alg-Na
and poured one by one in the form of drops in the CaCl2 2H2O solution, where they
were kept under orbital agitation at 100 rpm for 25 min to promote the adequate
formation of the capsule. Once the polymerisation time had elapsed, the synthetic
seeds (Fig. 1b) were recovered by decantation, subjected to three consecutive washes
with sterile distilled water, and allowed to dry for 1 min on filter paper under aseptic
conditions.

With this protocol, it is possible to obtain synthetic seeds of C. tenuiflora of
6–7 mm in diameter (Fig. 1b). However, it is important to determine the concentra-
tions of Alg-Na and CaCl2 2H2O suitable to achieve an effective gelification process
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of the matrix and, consequently, optimum quality of the Alg-Na beads that allow the
storage of the seeds and promote successful mass propagation of the plants (Dhir and
Shekhawat 2013).

3 Selection of Alg-Na and CaCl2.2H2O Concentrations

Even though there are reports according to which optimum concentrations of Alg-Na
and CaCl2 2H2O have been found for the production of synthetic seeds of different
medicinal plant species, it is necessary to define these concentrations for each
species, type of explant, and system used for seed production (Gantait et al. 2015).

Fig. 1 Procedure for the production of synthetic seeds of Castilleja tenuiflora. (a) Explants (micro-
stakes) from in vitro plantlets. (b) Synthetic seeds in Alg-Na. (c) Shoot emergence (germination).
(d, e) Micro-stakes conversion to plantlet. Bar ¼ 5 mm
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In order to determine the concentrations of Alg-Na and CaCl2 2H2O to be used,
we tested three concentrations of both Alg-Na (2, 3, and 4%) and CaCl2 2H2O
(50, 75, and 100 mM), with a polymerisation time of 25 min. After processing, the
seeds were placed to germinate in 10 cm long glass tubes with 1 cm in diameter (one
seed per tube, 30 tubes per treatment), containing 1.5 ml of MS medium with 3%
sucrose and phytagel (15 gL�1). They were incubated in the culture room under the
conditions described above. The percentages of germination (seeds that broke the
capsule, Fig. 1c) and conversion (seeds that became seedlings, Fig. 1d, e) were
measured after 3 weeks of incubation.

Additionally, we measured the resistance of the seeds using a digital force gauge
(Chatillon® DFIS series). Force was applied on the seeds produced with the different
concentrations of Alg-Na and CaCl2 2H2O using the flat geometry of the equipment,
and the force (N) needed to break them was recorded. Also, observations of the
synthetic seeds were made using an environmental scanning electron microscope
(Carl Zeiss EVO LS10, Germany). The samples were placed on an aluminium tray
with double-sided carbon tape and observed directly. All observations were carried
out under constant operating conditions, i.e. 20 kV beam acceleration voltage, using
a retrograde electron detector and a water pressure of 30 Pa. The images were
captured with 2048 � 1536 pixels and converted into TIFF format.

The results indicated that the concentrations of Alg-Na and CaCl2 2H2O had
different effects on the physical characteristics of the seeds and on the percentages of
germination and conversion processes. With low concentrations of Alg-Na (2%) and
CaCl2 2H2O (50 mM), we obtained soft and fragile capsules without a defined shape
(Fig. 2a, d), which caused difficulties in handling. For this reason, it was not possible
to measure the necessary force to break the capsules in this group of seeds or subject
them to the germination and conversion test. With intermediate concentrations of
Alg-Na (3%) and low and intermediate concentrations of CaCl2 2H2O (50 mM and
75 mM), it was possible to obtain spherical seeds, with a translucent appearance and
adequate firmness for handling (Fig. 2b, e). There was no significant difference
between these treatments, and the percentages obtained were 60 and 63% for
germination and 86 and 90% for conversion, respectively.

When the seeds were submitted to the resistance test, it was necessary to apply a
force ranging from 5.7 N to 6.3 N to deform and break the capsules. In contrast, with
higher concentrations of both Alg-Na (4%) and CaCl2 2H2O (100 mM), spherical
and opaque seeds with firm consistency were produced (Fig. 2c, f). However, the
germination and conversion percentages decreased to 40 and 60%, respectively,
whereas the force needed to break the seeds increased to values between 9.5 N and
10.3 N. These results are in line with those reported by Dhir and Shekhawat (2013)
for Ceropegia bulbosa, according to which the concentration of the encapsulating
agents was determinant for the adequate formation of the capsules, and the results
reported by Singh et al. (2010), who found that the synthetic seeds of Eclipta alba
produced with different concentrations of Alg-Na and CaCl2 2H2O had morpholog-
ical differences in terms of texture, shape, and transparency.

In addition to the adequate physical characteristics of the capsules, it is also
important that they allow their storage and maintain the viability of the seeds in terms
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of re-growth and conversion (Gantait et al. 2015). From the results found, the
concentrations selected to produce the synthetic seeds of C. tenuiflora were 3% of
Alg-Na and 50 mM of CaCl2 2H2O. These conditions enable the capsules to protect
the explants and avoid mechanical damages. At the same time, the explants can
break the capsules at the time of germination and plant conversion can take place.

4 Short-Term Preservation of Synthetic Seeds of Castilleja
tenuiflora

In order to determine the appropriate storage temperature, the synthetic seeds of
C. tenuiflora were stored in cryotubes (10 seeds per cryotube, 3 cryotubes per
temperature) for 45 days, under dark conditions at three different temperatures
(1.5, 4, and 25 �C). After this period, the viability of the seeds was assessed
according to what was reported by Micheli et al. (2007), who affirmed that a
synthetic seed is viable if the explant maintains a green colour, without necrosis or
areas with yellow colouration.

All the seeds stored at 4 �C remained viable during the 45 days of storage, whereas
those stored at 1.5 and 25 �C exhibited a viability of 70 and 76%, respectively. There
were seeds with necrotic areas and tissue oxidation. Based on these results, two
groups of 30 seeds were placed into 5ml cryotubes under dark conditions, at 4 �C, and

Fig. 2 Synthetic seeds of Castilleja tenuiflora obtained with different concentrations of Alg-Na
and CaCl2 2H2O. (a, d) Seeds made with 2% Alg-Na + 50 mMCaCl2 2H2O. (b, e) Seeds made with
3% Alg-Na + 50 mM CaCl2 2H2O. (c, f) Seeds made with 4% Alg-Na + 100 mM CaCl2 2H2O. (d,
e) Environmental scanning electron micrographs (beam acceleration voltage of 20 kV with a
backscattered electron detector and water vapor pressure of 30 Pa). Bar ¼ 5 mm
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stored for 50 days. After this storage time, the seeds were placed into magenta boxes
(Fig. 3a) with MS medium plus 3% sucrose, supplemented with 7 μM of IBA. As
control, we sowed synthetic seeds which had not been stored, and all the seeds were
incubated in a culture roomwith controlled temperature (25� 2 �C), light intensity of
77 μmol m�2 s�2, and photoperiod of 16 h of light and 8 h of darkness. After 3 weeks,
we assessed the percentages of germination and conversion and observed whether the
plants had sprouts or not.

The effect of storage at 4 �C under dark condition was positive for the viability of
the seeds in terms of re-growth, reaching a germination of 77% and a conversion of
70%. These results were significantly different from the results obtained from the
control group (synthetic seeds without storage), which only reached values of 30%
and 20%, respectively. Kamińska et al. (2018) reported that storage of synthetic
seeds of Taraxacum pieninicum at 4 �C under dark conditions promoted an increase
in their conversion capacity. It is possible that this response is related to the low
ABA/GA ratio present under dark conditions, which leads to an increase in the
survival and proliferation of plants originated from stored seeds.

In addition, cold storage is the simplest and most efficient method to reduce
in vitro growth (Kamińska et al. 2018). Ray and Bhattacharya (2010) obtained high
conversion percentages (82.4%) when they stored synthetic seeds of Eclipta alba at
4 �C. At low temperatures, synthetic seeds acquire a state of dormancy in which
metabolic activities are reduced, allowing them to be stored for different periods of
time. The explants retain the intrinsic nutrients and can germinate and become plants
when placed under optimal conditions.

5 Mass Propagation of Castilleja tenuiflora Obtained from
Synthetic Seeds

Synthetic seeds stored for 50 days under dark conditions and at 4 �C were placed to
germinate in magenta boxes with MS culture plus 3% sucrose, supplemented with
7 μM of IBA. After 3 weeks, the synthetic seeds germinated and formed leaf
primordia, seedlings, or plants that were used to perform two independent tests for

Fig. 3 Castilleja tenuiflora plantlets propagated from synthetic seeds maintained at 4 �C for
50 days. (a) Synthetic seeds. (b) Castilleja tenuiflora plantlets propagated in vitro from synthetic
seeds. (c) Castilleja tenuiflora plant developed from synthetic seeds grown in mix pot. Bar ¼ 5 mm
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their mass propagation. In the first, the plants were used as a source of explant (nodal
segments) and placed in magenta boxes with fresh culture medium under aseptic
conditions (Fig. 3a). In the second test, the seedlings were transplanted directly into
pots, with mixed substrate (peat/agrolite/vermiculite, 60:20:20) under non-aseptic
conditions. Both assays were incubated in a culture room under controlled condi-
tions (previously described).

The results of the first trial demonstrated the feasibility of using synthetic seeds
for mass propagation and in vitro conservation of C. tenuiflora. The percentage of
explants that produced shoots was 100%, with seven shoots per explant. This meant
an average production of 40 plants with a length ranging from 7 to 8 cm from each
synthetic seed after 3 weeks of cultivation (Fig. 3b). This protocol allows providing a
constant source of plant material and could help to avoid the overexploitation of wild
plants, with the advantage that synthetic seeds also allow the storage of germplasm
and its subsequent conservation.

The plants obtained from synthetic seeds that developed in mixed substrate were
able to grow and form root after 30 days of cultivation (Fig. 3c). However, their size
was eight times less than those developed in a semi-solid medium. This result
indicates that the mixed substrate used provided the plants with a support medium,
but not with a system containing adequate nutrients, moisture, and porosity for the
proper development of the plants. Therefore, we continued conducting studies aimed
at testing different types of substrates and their proportions, as well as different
incubation conditions that could allow an adequate ex vitro development of the
plants obtained from synthetic seeds.

6 Chemical Profile of Castilleja tenuiflora Plants Obtained
from Synthetic Seeds

In order to know whether the production process and cold storage of synthetic seeds
caused a change in the chemical profile of C. tenuiflora or not, we prepared
methanolic extracts from plants grown from synthetic seeds obtained in storage
tests at 4 �C for 50 days and plants cultivated in vitro (mother plants) used as a source
of explants for the production of seeds. To prepare the extract, the dried samples were
placed in 2.5ml Eppendorf tubes and ground in the tissue homogenizer (TissueLyser)
for 5 min at 100 rpm. Subsequently, the sample was suspended in a 5 ml tube, with
1.5 ml of methanol (1:50 ratio), and left in a sonicator apparatus for 1 h at room
temperature. The methanolic extract was filtered using Whatman No. 1 filter paper
and allowed to evaporate to dryness. The extracts were stored under dark conditions
until being analysed.

We used the chromatographic method proposed by Cortes-Morales et al. (2018)
for the analysis of the extract, with an LC-MS 2020 equipment (Shimadzu, Tokyo,
Japan), a CBM-20A system controller, two LC-20 AD pumps, a DGU-20A 5R
degassing unit, a SIL-20 AC HT Autosampler, a CTO 20A column oven, and an
SPD-M20A photodiode array detector (PAD). We performed a high-resolution
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global analysis of liquid chromatography coupled to a simple quadrupole mass
spectrometer (HPLC-MS). The major chemical compounds were identified by
their wavelength (λ), retention time (tR), and total ion count (m/z).

The comparison of the chemical profiles obtained by HPLC is illustrated in Fig. 4.
The results indicated that there was no difference between the chemical compounds
present in the mother plants (control) (profile A) and those obtained from synthetic
seeds stored for 50 days under dark conditions and at 4 �C (profile B). The com-
pounds corresponded to the groups already reported for wild plants and cultivated
in vitro, i.e. glycosylated iridoids (Martínez-Bonfil et al. 2011, glycosylated
phenylethanoids (Gómez-Aguirre et al. 2012), flavonoids (López-Laredo et al.
2012), and lignans (Herrera-Ruiz et al. 2015). Peak 1 (tR ¼ 04.54) corresponded to
aucubin, peak 2 (tR ¼ 11.28) corresponded to isoverbascoside, peak 3 (tR ¼ 12.25)
was a phenylethanoid, peak 4 (tR ¼ 13.43) corresponded to verbascoside, and peaks
5, 6, and 7 corresponded to lignan-type phenolic compounds. These results confirmed
that secondary metabolism was not affected in terms of the biosynthesis of chemical
compounds of C. tenuiflora when subjected to the encapsulation process and storage
at low temperatures.

7 Conclusions

The technology of synthetic seeds applied to the conservation and clonal propaga-
tion of plant species with ethnobotanical and economic importance, threatened or
endangered, is a promising, economical, and feasible method. The protocol for the
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Fig. 4 Chromatogram of the chemical profile of Castilleja tenuiflora plantlets. (A) In vitro plantlets
(control). (B) Plantlets developed from synthetic seeds maintained for 50 days at 4 �C. Peak
1 (tR ¼ 04.54) corresponded to aucubin, peak 2 (tR ¼ 11.28) corresponded to isoverbascoside,
peak 3 (tR ¼ 12.25) was a phenylethanoid, peak 4 (tR ¼ 13.43) corresponded to verbascoside, and
peaks 5, 6, and 7 corresponded to lignan-type phenolic compounds
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production of synthetic seeds and storage at 4 �C, described in this work, allows the
conservation of germplasm in the short term and the subsequent in vitro mass
propagation of C. tenuiflora, without losing the medicinal characteristics of the
plant due to the fact that the process does not promote changes at the level of its
chemical profile. However, it is necessary to conduct further studies with longer
storage times in order to obtain information about aspects of ex vitro mass propaga-
tion using synthetic seeds and the genetic stability of this species.

This is the first report on the use of synthetic seeds of C. tenuiflora. It can also
serve as a basis for the implementation of the process using other threatened species
belonging to the plant family Orobanchaceae.
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Encapsulation and Synthetic Seeds of Olive
(Olea europaea L.): Experiences
and Overview

Maurizio Micheli, Alvaro Standardi, and Daniel Fernandes da Silva

Abstract Olive (Olea europaea L.) is one of the species more representative of
Mediterranean basin where it is strictly connected to the history and culture of the
local populations. In the last 20 years, the olive tree diffusion has increased out of
traditional growing area, due to the appreciated value of olive oil and its properties.
So, a greater amount of plants has been requested to satisfy the worldwide demand.
Commercialization of high-quality plant material could be simplified by using the
encapsulation technology products, as beads (or capsules) and synthetic seeds
(or synseeds or artificial seeds). State of the art on the encapsulation of olive
in vitro-derived microcuttings is discussed. Firstly they were used to prepare beads
able to develop new shoots also after storage; in fact the capsules make easier the
exchange of plant material between laboratories and countries. Moreover, encapsu-
lated microcuttings could be employed to prepare synthetic seeds from which plant-
lets arise after sowing in greenhouse. But in olive these biotechnological tools are still
under investigation.

Keywords Microcutting · cv. Moraiolo · Alginate matrix · Artificial endosperm ·
Bead · Inductive treatment · Cold storage · Regrowth · Conversion

1 Introduction

Olive (Olea europaea L.) is traditionally one of the most important fruit crops of
Mediterranean area. This species is mainly cultivated for production of fine oil,
always more valued worldwide and appreciated from an increasing number of
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consumers. In the last two decades, the cultivation has expanded to other regions, as
Asia, Oceania, and South America, with great commercial perspectives for traditional
olive plant producers. According to data published by the International Olive Council
(IOC), the world’s olive-growing area reached approximately 11.4 million ha in 2015
(Rallo et al. 2018), and the total production of olive fruits is about 19 million tons, of
which 10% are used as table olives and 90% are processed to obtain olive oil
(Petruccelli and Ganino 2018). Since the requirement of plantlets for new orchards
is quite high and increasing, the conventional techniques of propagation by seeds or
asexual methods by grafting and cutting seem not able to satisfy the olive plant
market. New methods of in vitro propagation could be supplementary or alternative
tools for nursery activity. Micropropagation allows mass productions of valuable
genotypes in shorter periods independently of seasonal issues because it is carried out
under controlled environment. But commercial application remains still limited in
olive, and plant tissue culture studies are restricted because of specific procedural
problems. In addition, large-scale deployment of micropropagated plantlets can
implicate difficulties on management, storage, or transport and easily exposes them
to deterioration and damage risks (Standardi and Micheli 2013).

New in vitro technologies are being studied to simplify the exchange of plant
material between producer and final user laboratories/nurseries, especially from
different countries where intransigent regulations are applied to prevent introduction
of pathogens. Encapsulation seems to be a promising technology in the service of
nursery operators and farmers. In olive the production of explants usable for encap-
sulation is relatively easy by the micropropagation. After that in vitro-derived
propagules can be covered by a layer of calcium alginate matrix enriched with an
artificial endosperm which assures protective and nutritive functions. Two can be the
final products: capsules or beads and synthetic (or artificial) seeds or synseeds. The
first ones can be defined as encapsulated portions of in vitro-derived plant tissues
possessing the ability to evolve in shoots (regrowth), which can be reused only for
micropropagation after storage and/or transport. Synthetic seeds instead are able to
develop whole plantlets (conversion) under in vitro or ex vitro conditions (Standardi
and Micheli 2013). Some years ago Sharma and coworkers (Sharma et al. 2013)
affirmed that the encapsulation is really applicable for germplasm conservation and
exchange of valuable rare hybrids and elite genotypes. Recent studies reported the use
of beads and synthetic seeds also to simplify the management of mass clonal
propagation products in different species (Ravi and Anand 2012; Reddy et al.
2012; Gantait and Kundu 2017; Magray et al. 2017). Encapsulation of olive plant
material is still not largely studied as the fruits or themedicinal plants in the face of the
great interest showed toward this species.

2 Experiences in Olive

The history of encapsulation begins from the original concept of synthetic seeds
highly connected with the use of somatic embryos able to develop a whole plantlet
(conversion) (Murashige 1978). That makes them the ideal explants to be
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encapsulated. But the difficulty to set effective protocols to achieve somatic embryos
in a great number of species and the risks of somaclonal variations during in vitro
embryogenesis puts serious problems for application in the nursery activity
(Standardi and Micheli 2013). Later Bapat and collaborators (Bapat et al. 1987)
proposed to broaden this technology to different in vitro-derived propagules until a
new definition of synthetic seed was formulated as “artificially encapsulated somatic
embryos, shoots, or other tissues which can be used for sowing under in vitro or ex
vitro conditions” (Aitken-Christie et al. 1995). As reported by Lambardi et al. (2006),
“new” synthetic seeds can be prepared by any kind of in vitro-derived explants as
axillary buds, shoot tips, nodal segments, bulblets, protocorms, and callus samples or
cells, as like as they evolve in plantlets after encapsulation and sowing.

Our researches on olive were focused on the use of non-embryogenic
microcuttings (3–4-mm-long nodal portions with apical or axillary buds), excised
from micropropagated shoots, genetically stable, but naturally unable to develop
whole plantlets without rooting inductive treatments (Standardi and Micheli 2013;
Sharma et al. 2013; Gantait et al. 2015; Rihan et al. 2017).

We specifically worked on olive which is quite difficult to be micropropagated,
even though the technique shows future high potentialities about its commercial
application for production of high-quality plants. So, we will describe the path
done to develop synthetic seeds of olive; it was long, difficult, and complicated due
to the limitation above mentioned. Therefore, below the key points of our salient
experiments conducted to produce synthetic seeds by using microcuttings will be
described in detail. In particular our researches involved the cv. Moraiolo, typical
genotype of Central Italy and required from farmers of some countries producing
high-quality oil.

The experiments were divided into two main aspects: (a) the initial studies were
focused on the detection of encapsulable non-embryogenic propagules of olive and
on the factors affecting their performances and (b) the following researches were
aimed to induce rooting ability in unipolar microcuttings in order to obtain synthetic
seeds.

2.1 Selection of Explants

Preliminarily, the appropriate size of encapsulable in vitro-derived explants was
studied. Therefore, the sprouting ability of axillary microcuttings and 10–15-mm-
long minicuttings excised from in vitro-derived shoots was monitored in absence of
encapsulation. After 45 days of culture on half-strength agarized Olive Medium
Modified (OMM) (Mencuccini et al. 1997), no malformation, yellowing, or brow-
ning of explants was observed, but their size had a definite effect on the viability
(propagules showing green appearance, with no necrosis or yellowing), regrowth
(propagules showing development of the shoot), and shoot length (length of the
shoots developed from each encapsulated microcuttings). Microcuttings showed
viability and regrowth, respectively, less than 31 and 33% in comparison to those
monitored in minicuttings (Micheli and Standardi 2005). But the minicuttings are
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inappropriate because produce long and narrow beads with propagules not perfectly
enclosed within the alginate matrix, which loses its protective and nutritive functions
(Redenbaugh et al. 1987; Piccioni and Standardi 1995).

The next goal was to individuate the type of microcuttings in connection with their
original position on the micropropagated shoots. For this purpose apical and axillary
nodal portions 3–4 mm long were isolated and encapsulated as reported byMicheli et al.
(1998); the microcuttings were then immersed by forceps in sodium alginate solution
2.5% (encapsulation matrix) and dropped in 11 g 1�1 CaCl2 (complexing solution) for
25–30 min. Both complexing and encapsulating chemicals were dissolved in half-
strength OMM solution without agar (artificial endosperm). The obtained capsules
were rinsed twice for 10 min to wash away chloride and sodium residues. The beads
of ‘Moraiolo’ (Fig. 1) were sown on agarized hormone-free OMM, and after 45 days
into growth room, their vegetative performances were monitored evaluating viability,
regrowth, and shoot length. The results confirmed the differences between two types of
propagules showing higher viability and regrowth of apical microcuttings (80.0%)
compared to axillary ones (28.1%). Moreover, the beads containing the apical buds
developed longer shoots (12.6 mm against 4.2 mm of those grown from axillary
microcutting) (Micheli et al. 1998). The different performances between two types of
encapsulated explants could be influenced also by the effect of apical dominance during
the proliferation of micropropagated shoots (Rugini and Panelli 1993; Mendoza-de
Gyves et al. 2008; Micheli et al. 2018). Nevertheless, the use of apical microcuttings
is inappropriate in the perspective to apply the encapsulation technology for the nursery
mass productions. For this reason, further studies were carried out using axillary
microcuttings only.

Fig. 1 Encapsulated
microcuttings (beads) of
‘Moraiolo’
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2.2 Viability and Regrowth

The initial studies clearly showed that the viability and the regrowth of microcuttings
are affected by bud dormancy and low vegetative vigor which cause the limited
sprouting ability and the difficulty to break the alginate matrix after sowing (mechan-
ical obstacle). Experiments were carried out to increase regrowth of encapsulated
olive microcuttings improving the nutritive function of artificial endosperm and
breaking bud dormancy by chemical or physical treatments.

2.2.1 Artificial Endosperm

It is well known that artificial endosperm plays an essential role as trophic source for
microcuttings to maintain viability, to stimulate regrowth, and to influence the shoot
length. Addition of nutrients and plant growth regulators to encapsulation solutions
increased vegetative vigor in encapsulated plant material (Kikowska and Thiem
2011). In this regard, it is well known that in olive micropropagation, cytokinins
are an important factor to promote shoot formation and the effectiveness of zeatin is
commonly stated (Micheli et al. 2018; Rugini 1990; Grigoriadou et al. 2002; Rugini
and Baldoni 2004). This growth regulator is required in high concentrations and is
very expensive (Mendoza-de Gyves et al. 2008).

On this basis, some experiments were conducted to evaluate the effect of zeatin on
the encapsulated microcuttings of ‘Moraiolo’when added (1.0 mg l�1) to the artificial
endosperm. The results showed that it didn’t determine a real improvement of
viability and regrowth while stimulated the elongation of developed shoots which
reached 8.1 mm. A clear improvement was achieved when the concentration of
sucrose within the artificial endosperm was increased up to 50 g l�1. In this condition,
viability and regrowth showed the highest values (90–100%), and the mean of shoot
length was 45.7 mm (Fig. 2). The availability of a suitable quantity of sucrose was
essential to enhance the encapsulated microcuttings’ performances confirming previ-
ous results (Gardi et al. 1999; Micheli et al. 2007).

Jung and coworkers (Jung et al. 2004) already described the effectiveness of sugar
as component of alginate matrix on conversion of encapsulated somatic embryos of
Siberian ginseng. Carbohydrates are essential as a source of carbon for biosynthesis
energy and have a stabilizing osmotic effect (Rihan et al. 2017). Moreover these
substances are of prime importance for cell growth maintenance and in vitro differ-
entiation (Kumara Swamy et al. 2010). Some fundamental aspects of carbon utiliza-
tion and metabolism in cell and tissue cultures have yet to be fully understood
(Srivastava et al. 2017).

Encapsulation and Synthetic Seeds of Olive (Olea europaea L.):. . . 351



2.2.2 Role of GA3

Carbohydrates are essential for encapsulated microcuttings of olive also because
they interact with hormones playing a stimulatory effect on regrowth. Studies on
in vitro culture reported that zeatin and other cytokinins added to culture medium
may enhance morphogenesis (shoot initiation/bud formation) in olive, while auxins
promote root initiation inducing both growth of pre-existing roots and adventitious
root formation. The gibberellins generally regulate growth, stimulate stem elonga-
tion, and break dormancy of buds (Niaz et al. 2014).

In order to overcome the effect of bud dormancy in encapsulated microcuttings of
olive, some experiments were conducted with the aim to evaluate the effect of a
sprouting inductive treatment using GA3. For this purpose microcuttings of
‘Moraiolo’were dipped in 1mg l�1 GA3 and 30 g l

�1 sucrose solution under darkness
at 23 � 2 �C and maintained on a rotary shaker (100 rpm) for 24 h. After that
microcuttings were placed on a sterile filter paper (Whatman #1) layered on agar
medium (half-strength OMM) inside Petri dishes and kept in the growth chamber
under darkness for 6 days. Microcuttings were then encapsulated and transferred in
growth chamber after sowing on agarized medium. After 45 days of culture, 100% of
beads showed viability and regrowth developing shoots from both two axillary buds
of the single node and drastically reducing callogenesis up to 0% (Micheli et al.
2007).

These results demonstrated the beneficial effect of GA3, as reported by Rugini and
Fedeli (1990), Cañas et al. (1992), and Menghini et al. (1999), when used as liquid
treatment or added to the agarized medium (Dimassi-Theriou 1998; Kotsias and
Roussos 2001); GA3 increased the vigor of explants and promoted the regrowth of
buds. In fact, it is well known that gibberellins stimulate the mitotic activity of sub-apical
meristems (Machácková 1992; Jacqmard et al. 2003; Pattanagul et al. 2005) and play a

Fig. 2 Shoots regrown
from beads of olive with
residue of alginate matrix
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role on breakage of bud dormancy (Augé 1995; Hassani et al. 2014; Zheng et al. 2018).
Lastly, absence of callus could also indicate a balanced utilization of the available
nutrients (Micheli et al. 2007).

2.2.3 Low-Temperature Treatment

Further experiments were conducted with the aim to evaluate the effect of temper-
ature on the viability and the regrowth of encapsulated microcuttings. For this
purpose ten capsules of ‘Moraiolo’ were placed in single well of 25-squared sterile
plastic plates (Fig. 3); each well contained 2 ml of liquid artificial endosperm
medium to avoid dehydration. The storage was carried out in dark conditions at
4 �C for 45, 90, 135, and 180 days. At the end of these periods, the beads were sown
on agarized hormone-free OMM for 45 days in the growth chamber for viability and
regrowth evaluation. The shortest storage period didn’t affect viability and regrowth
of encapsulated microcuttings (up to 49.0%). In the other storage conditions, total
loss of propagules viability was monitored.

These results confirmed that beads can be submitted to cold storage for short-
medium period (Piccioni and Standardi 1995) and that the effect of low temperature
is strictly dependent on the type of encapsulated explants and genotype (Gardi et al.
1999; Tsvetkov and Hausman 2005; Rai et al. 2008; Parveen and Shahzad 2014;
Sharma et al. 2015; Benelli 2016; Hatzilazarou et al. 2018). Cold treatments could be
used to break bud dormancy in in vitro cultures as in woody plants in the field (Naor
et al. 2003; Caffarra and Donnelly 2011). The drastic decrease in microcuttings
viability connected with longer storage period could be attributed to an inhibition of
tissue respiration during storage as a result of impeded oxygen diffusion imposed by
the alginate matrix (Hatzilazarou et al. 2018).

Fig. 3 Beads of ‘Moraiolo’
stored at 4 �C in 25-squared-
well sterile plastic plates
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2.2.4 Combined Effect of GA3 and Temperature

Further experiments were conducted to study the effect of 1 mg l�1 GA3 in combi-
nation with 4 or 18 �C storage temperature on regrowth. After GA3 application, the
microcuttings of ‘Moraiolo’ were encapsulated and stored for 15 and 30 days in the
darkness. Forty-five days after sowing, all beads maintained viability and regrowth
irrespective of the storage temperature showing that the combined treatment didn’t
affect their performances (Micheli et al. 2007). Moreover, the positive effect of room
temperature during storage without any loss of viability and regrowth was registered.
This can reduce drastically the costs of refrigeration or environment conditioning in
the commercial application of encapsulation technology (Ikhlaq et al. 2010).

2.3 Rooting

Usually encapsulated microcuttings are unable to regenerate adventitious roots
without specific treatments. In addition, ‘Moraiolo’ is difficult to root in in vivo
conditions too (Bartolozzi 1998), and 90% of olive genotypes show rooting ability
lower than 50% (Petruccelli et al. 2012). So, experiments were conducted with the
aim to induce rooting ability in microcuttings of this genotype to evaluate the
feasibility of synthetic seed formation. In particular the effect of auxin treatments
before encapsulation was examined, since its involvement on roots initiation is well
documented (Niaz et al. 2014).

De Klerk (2002) proposed that the rooting process in apple microcuttings can be
divided into three phases: dedifferentiation (0–24 h from auxin treatment), induction
(25–96 h), and differentiation (from 97 h onward). During the first step cells become
competent to respond to the hormonal rhizogenic signal; by the action of auxin,
certain cells become determined to root formation. After induction, the signal is not
required anymore: the determined cells produce roots primordia which initiate
growth and emerge from the stem. So, a first experiment was focused to test a
rooting procedure in olive microcuttings. They were subjected to a rooting induction
(RI), dipping the explants in a 5 mg l�1 indole-3-butyric acid (IBA) solution
enriched with 15 g l�1 sucrose and maintaining them for 24 h in darkness on rotator
shaker at 100 rpm. IBA was used because it proved to be a better rooting growth
regulator for ‘Moraiolo’ as compared to other auxins (Niaz et al. 2014). In a second
step, before encapsulation and sowing, all microcuttings were placed on a sterile
filter paper (Whatman no. 1) previously laid on agarized hormone-free OMM and
maintained at darkness for 5 days in growth chamber to induce root primordia
initiation (RPI, Fig. 4). The use of filter paper was employed to enhance gas
exchanges, as successfully applied in other woody species by Welander and
Pawlicki (1993) and Piccioni et al. (1997). After 45 days’ culture, in addition to
viability and regrowth, rooting (encapsulated propagules showing roots formation)

354 M. Micheli et al.



was monitored. The results showed limited viability and regrowth values (respec-
tively, 36.0 and 34.0%) and the total absence of rooting activity.

These preliminary results could be connected with the contemporary presence of
zeatin (as component of artificial endosperm) and auxin which notoriously can have
antagonistic effects when their ratio is not well balanced, as reported by Caraballo
et al. (2010), Wróblewska (2012), and Nakhooda et al. (2012). Our results suggested
that cytokinin may reduce the effectiveness of auxin on rooting induction. This could
be restored by using higher concentration of IBA or extending the RI duration.
Subsequent experiments were carried out increasing to 72 h the RI treatment
(Fig. 5, procedure A), as suggested by Capuano et al. (1998) in apple. The results
showed 93.0% of viability, 66.7% of regrowth, and 36.7% of conversion demon-
strating that the synthetic seeds of ‘Moraiolo’ were obtained. These results are
promising but need further researches because at the moment the conversion is too
low for commercial application.

The treatments with exogenous auxin increase the rooting because it is related to
endogenous content of the same growth regulator; the accumulation of IBA in the
basal region of the vegetative propagules acts as a metabolizing agent and signal to
induce rooting (Brondani et al. 2012). Dissecting the rooting process in apple
microcuttings, during the first day, certain cells in the stem become competent to
respond to the rhizogenic signal. Then, in the next 48 or 72 h under the influence of
the root-inducing signal (auxin), the cells divide and the descendent cells become
increasingly determined to root formation (De Klerk 2002).

The procedure A (Fig. 5) is laborious and inadequate for application in nurseries.
It would be necessary to dispose of semi-automatic/automatic tools to limit hand
labor and/or to simplify the procedures in order to reduce costs of synthetic seeds
preparation with microcuttings (Standardi and Micheli 2013). Just in this view,
further researches were conducted simplifying the auxin treatment. Beads of
‘Moraiolo’ were directly soaked into the rooting solution for 3 days under darkness
conditions at environmental temperature, just before sowing (Fig. 5, procedure B).

Fig. 4 Microcuttings of
olive placed on sterile filter
paper during root primordia
initiation (RPI) phase
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This methodological shift allowed to optimize viability and regrowth (100%), but
the conversion remained clearly unsatisfactory at 13.0% (Micheli et al. 2006).

2.4 Effect of Cold Storage on Conversion

In order to improve the conversion of synthetic seeds of ‘Moraiolo’ prepared by the
simplified procedure B (Fig. 5), further experiments were conducted with the aim to
test the effectiveness of a short period storage at low temperatures. For this purpose
7-day cold storage was applied after the rooting induction (Fig. 5, procedure C).
After 45 days in the growth chamber, synthetic seeds showed 32.7% of conversion
(Fig. 6), confirming the positive effect of cold treatment as reported by Capuano
et al. (1998) working with apple rootstock.

Some researchers described the beneficial effects of cold treatment on rooting as
Van de Pol (1983) in different species, Nikolić et al. (2008) in Fritillaria meleagris,
Luo et al. (2009) in protocorm-like bodies of Dendrobium huoshanense, and Aktar
and Shahzad (2017) in encapsulated nodes of Glycyrrhiza glabra.

3 Overview

At the moment the synthetic seeds obtained by encapsulation of in vitro-derived
microcuttings of olive (cv. Moraiolo) require high manual labor and showed low
conversion levels; so its large application in the nurseries activities is not
economic yet.

Fig. 5 Synthetic seeds preparation of ‘Moraiolo’: the conversion was 36.7% from procedure A,
13.0% from B, and 32.7% from C
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In some laboratories researches are in progress aimed to increase the conversion
response from encapsulated microcuttings by appropriate root inductive treatments
which involve exogenous growth regulators and environmental factors as light and
temperature.

It was demonstrated that in olive the inclusion of single microcuttings in alginate
matrix (capsules) permits to maintain their viability and regrowth until 4 weeks also
when stored at room temperature. This knowledge opens a perspective for commer-
cial utilization of the encapsulation technology in combination with the
micropropagation one to satisfy the high demand of olive plants for the new orchards
expected in some countries. Micropropagated plantlets are inadequate for plant
exchange, because they are not easy to manage, to store, and to transport for long
distance for related risks of deterioration (Standardi and Micheli 2013). The capsules
instead represent the suitable tool for economic store and easy transport of plant
material.

So, on the basis of actual knowledge on the encapsulation technology in olive,
new approach for international exchange and commercialization could be proposed.
In few words, into laboratories of countries in which olive propagation and cultiva-
tion are traditional, the capsules should be prepared utilizing microcuttings from
shoots proliferated in vitro. Into the greenhouses of the countries of destination, the
capsules (beads) would be utilized from local nurseries to obtain shoots for rooting or
directly whole plantlets from synthetic seeds, when efficient protocols will be
available.

Fig. 6 Plantlet from
synthetic seed of ‘Moraiolo’
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In olive, our findings are surely preliminary and incomplete, but they represent a
good point of departure for the next studies aimed to obtain synthetic seeds with
satisfactory conversion rate. For this it is essential to pursue (1) widening of genotypic
base, (2) optimization of storage techniques, (3) obtaining of conversion in ex vitro
conditions, (4) simplification of processes for synthetic seeds production, and
(5) introduction of automation/mechanization.
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Abstract Curcuma is a unique spice crop and sterile triploid plant. The rhizomes
are used for vegetative propagation and sold for consumption. These rhizomes are
highly damaged by biotic and abiotic stress. Alternative approaches of synthetic seed
technology will allow the mass propagation for commercial utilization. Execution of
this technology requires manipulation of in vitro system for large-scale production of
viable propagules. Somatic embryogenesis is the best regeneration system for rapid
and true-to-type multiplication of elite and desirable plant species; it offers reduction
of time, easy storage, and direct delivery to the field. This chapter contributes a
methodology for encapsulation of somatic embryos by optimization of sodium
alginate concentration and exposure time in calcium chloride solution. In addition
to that, germination medium condition including medium strength, sucrose concen-
tration, light/dark incubation period, and storage conditions were also noticed for the
efficient storability of synthetic seeds.
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1 Introduction

1.1 Curcuma spp.

Curcuma spp. belong to the family Zingiberaceae and include 60 species (Tyagi et al.
2007). It encompasses the most significant spice crops of Curcuma longa (turmeric)
and Curcuma amada (mango ginger). In pharmaceutical industry, the rhizome is used
for its stomachic, carminative, aphrodisiac, antipyretic, laxative, germicidal,
anthelminthic, antioxidant, antimicrobial, anti-inflammatory, antidepressant, and
hepatoprotective properties and plantlet aggregation inhibition activities (Nayak et al.
2011; Policegoudra et al. 2011). Turmeric is also known as golden spice and is highly
valued for its underground rhizome. It contains a characteristic yellow-orange coloring
matter, and it is widely used as a natural coloring agent in food industry (Salvi et al.
2002). The rhizomes have major anticancer compounds like curcuminoids [curcumin
(1,7-bis(4-hydoxy-3-methoxyfenil)-1,6-heptadiene-3,5-dione), demethoxy-curcumin,
and bismethoxy-curcumin] (Cousins et al. 2007). Mango ginger is consumed by
human via its rhizomes and has been used to make pickles that have rich source of
starch and a mongo-like smell with the presence of car-3-ene and cis-ocimene com-
pounds (Gholap and Bandyopadhyay 1984). Rhizome has curcumin-free portion,
which was identified to lower liver cholesterol in animals (Srinivasan et al. 2008). It
also contains a labdane-type diterpenoid (labda-8(17), 12-diene-15, and 16-dial),
which exhibits activity against tuberculosis (Singh et al. 2010).

1.2 Methods of Propagation

Curcuma is a sterile triploid species. The farmers utilize its rhizomes for cultivation
and put it on the market for consumption. The vegetative propagation is slow to
multiply and highly susceptible to physiological and temperature stress during
storage (Policegoudra and Aradhya 2007). On the other hand, the rhizomes are
infected by the bacterial wilt (Ralstonia solanacearum), fusarium yellow (Fusarium
oxysporum), and soft/root rot (Pythium sp.) diseases (Prasath et al. 2011). Also, the
rhizome is invaded by nematodes such as Exigua ornithogalli and Trichobaris
trinodata. The larvae of these insects are developed inside the rhizome, which causes
heavy loss in yield (Zapata et al. 2003). It inflicts serious economic loss to small and
marginal farmers who depend on this crop for their livelihood. Therefore, alternative
means of propagation methods are required to meet the increasing demand for
rhizomes. Tissue culture technology offers biotic/abiotic stress-tolerant propagules
for large-scale cultivation within a short duration under aseptic conditions.

1.3 Pretreatment/Callus Induction

Role of 2,4-D is highly effective for initiation of callus induction and somatic
embryogenesis (Guo and Zhang 2005; Anandan et al. 2012). Preincubation
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treatment of explants with lower concentration of 2,4-D in combination with BA to
trigger the morphological competency of the cell by reception of the signals pro-
motes further development of somatic embryos (Franklin et al. 2006; Dam et al.
2010). Prolonged culture in high concentration of 2,4-D leads to rapid cell division
leading to callus induction (Venkov et al. 2000). We observed that the leaf sheath
explants were cultured on MS medium encompassing with the 2,4-D in combination
with BA-induced callus in C. amada (Soundar Raju et al. 2013) and on short
duration incubation (20 days) on 2,4-D alone promote somatic embryogenesis in
C. longa (Soundar Raju et al. 2015).

1.4 Somatic Embryogenesis

Somatic embryogenesis is a process without intervening callus stage (direct somatic
embryogenesis) or from callus (indirect somatic embryogenesis) (Shajahan et al.
2016). A somatic embryogenesis method would also desirably provide for the ready
introduction of plants into the field. 2,4-D has been found to serve as a trigger for
inducing competent embryogenic cells. The reduction or removal of 2,4-D from the
somatic embryo induction medium is essential for propagation of preembryogenic
cells to the advanced stage of somatic embryos (Marsolais and Kasha 1985; Liang
et al. 1987; Borkind et al. 1988; Ball et al. 1993). We found that the preincubated
explants or calli were cultured in MS liquid medium in the presence of BA differ-
entiated into somatic embryos (Soundar Raju et al. 2013, 2015). The plants derived
from direct somatic embryogenesis usually are unicellular in origin and as a result
genetically uniform. This system offers a number of advantages in crop improve-
ment, as cost-effective and large-scale clonal propagation is possible using bio-
reactors, ultimately leading to automation of somatic seed production and
development of artificial seeds (Soundar Raju et al. 2014, 2015) (Fig. 1).

1.5 Synthetic Seeds Technology

Synthetic or artificial seeds (or synseeds) have been described as “artificially encapsu-
lated somatic embryos, shoots or other tissues which can be used for sowing under
in vitro or ex vitro conditions” (Aitken-Christie et al. 1995; Germanà et al. 2011).
Synthetic seed production technology that uses alginate encapsulation is considered an
efficient choice for both propagation and germplasm storage of elite genotypes (Ara
et al. 1999). The alginate coat shields the encapsulated explants from physical and
environmental injury, reduces dehydration, and provides mechanical pressure to phys-
ically support the explants inside the gel matrix during storage (Ara et al. 2000). In
addition, artificial seeds are a low-cost propagation method (Ghosh and Sen 1994;
Saiprasad and Polisetty 2003). The success of synthetic seed technology depends on the
quality of propagules. Somatic embryos represent a uniform developmental stage with
reversible arrested growth and show high rates of conversion upon planting (Pinto et al.
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2008; Cheruvathur et al. 2013). However, the development of an efficient somatic
embryogenesis system is a major prerequisite for the successful production of synthetic
seeds (Bapat and Mhatre 2005). Once a reliable somatic embryo induction system is
developed, the entire artificial seed production process can be automated (Ibaraki and
Kurata 2001). However, the most desirable characteristic of the encapsulated explants
is their ability to regrowth and form normal plants (Micheli et al. 2007; Parveen and
Shahzad 2014). It is important to optimize methods for the storage, germplasm
exchange, and regrowth of encapsulated explants (Sundararaj et al. 2010).

1.6 Calcium Alginate Matrix

Sodium alginate plays a key role in the structure of artificial endosperm that saves
from destruction of the propagule. It has been extensively utilized in synthetic seeds

Fig. 1 Schematic diagram represents the induction of somatic embryogenesis and synthetic seed
technology of Curcuma spp.
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because of its low cost, gelling properties, low toxicity, and adequate firmness to
usage (Bapat andMhatre 2005). The texture of beads is robustly influenced by the gel
matrix (sodium alginate) exposed to complexing agent (calcium chloride) which
presumably helped an ion exchange between the Na+ and Ca2+ (Singh et al. 2009).
The optimum concentration of sodium alginate and exposure times to calcium
chloride make on the preeminence synthetic seeds (Soundar Raju et al. 2016).
Lower concentrations of sodium alginate result in the formation of soft and flimsy
beads that are tricky to handle, while higher concentrations make isodiametric beads
that are extremely hard, which considerably belated germination. High-level accu-
mulation of calcium chloride in matrix might be causing toxicity on propagules
(Nagesh et al. 2009; Gantait et al. 2012).

1.7 Sucrose Dehydration

Sugar accumulation in plant tissues is a renowned approach for dehydration stress; it
stabilizes proteins and membrane bilayers (Zhu et al. 2006). Sustaining the viability
of synthetic seeds after a long period of storage is an important prerequisite in the
synthetic seed industry (Naik and Chand 2006;Micheli et al. 2007). After storage, the
sucrose-dehydrated seeds showed a much higher germination rate than those of fresh
seeds (Sundararaj et al. 2010; Cordeiro et al. 2014). This was proved in synthetic
seeds of C. amada in our laboratory (Soundar Raju et al. 2016). The synthetic seeds
dehydrated with lower concentration of sucrose (8.55%) provided sufficient sucrose
to sustain the germination viability and development. No germination was observed
when the synthetic seeds are dehydrated in high concentration of sucrose (17.11%).
The synthetic seeds were stored at 4 �C for 120 days showed better germination rate.
When the seeds were dehydrated with high sucrose level, negative response of
germination was observed due to nonviability.

1.8 Tissue Culture Medium

Nutrient concentration plays an important role in growth and development of
synthetic seeds (Gantait and Sinniah 2013; Mohanty and Das 2013). The medium
of 1/2 strength had an impact in enhancing germination potential of synthetic seeds.
MS medium at 1/4 strength might not be suitable, higher than 1/2 strength, 3/4
strength, and full strength beyond which synthetic seeds lost their viability. The
germination percentage that was lower at other media strengths might be either
detrimental due to overdose (nutrient toxicity) or inadequate due to low nutrient
element content (Gantait et al. 2012). Sucrose displayed energy to the growing
tissue; it has a pronounced effect on germination at 3%; absence of it or even
reduction in concentration restricted the regrowth. Higher level of sucrose in
medium-poor germination of synthetic seeds gradually turned white and became
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nonviable. Germination and growth of somatic embryos into plants can be stimu-
lated by the application of GA3 in the culture medium (You et al. 2012; Manrique-
Trujillo et al. 2013). Our study reports are evident on medium strength, sucrose
concentration, and GA3 for the germination of dormant somatic embryos in
Curcuma spp. (Soundar Raju et al. 2014, 2015, 2016).

2 Requirements

2.1 Aseptic Establishment

1. In vivo-grown sprouts.
2. Tween-20.
3. Mercuric chloride (HgCl2).
4. Sterilized distilled water.
5. Murashige and Skoog’s (MS; 1962) medium.
6. Sucrose.
7. Benzyladenine (BA).
8. Indole-3-butyric acid (IBA).
9. Agar.

2.2 Somatic Embryogenesis

1. Leaf sheath explants (~1.5 cm long).
2. MS medium.
3. Sucrose.
4. 2,4-Dichlorophenoxyacetic acid (2,4-D)
5. Benzyladenine (BA).
6. Orbital shaker.

2.3 Synthetic Seeds Production

1. Mature somatic embryos (~0.5 cm length).
2. Sodium alginate solution.
3. Calcium chloride (CaCl2.2H2O) solution.
4. MS medium (with or without agar).
5. Sucrose.
6. 1 mL micropipette
7. Gibberellic acid (GA3).
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3 In Vitro Techniques

3.1 Aseptic Establishment

1. Sterilize the sprouts of 20-day-old Curcuma spp. in 2.0% (v/v) Tween-20 for
5 min and 0.1% (w/v) HgCl2.

2. Wash the explants five times with sterilized distilled water.
3. Sprouts are culture on 0.8% (w/v) agar-solidified MS medium contain 3.0% (w/v)

sucrose, supplemented with 1.0 mgL�1 BA and 0.5 mgL�1 IBA.
4. The cultures maintain at a temperature of 25 � 2 �C, 16 h photoperiod (40 μm

light intensity) provide by white fluorescent tubes and a relative humidity at
55–65%.

3.2 Somatic Embryogenesis

3.2.1 Pretreatment/Callus Induction

1. Collect leaf sheath explants from 3-month-old in vitro-raised plantlets.
2. Culture onMS solid medium supplemented with either 2.0 mgL�1 2,4-D alone or

0.5 mgL�1 BA combination.
3. Maintain at above said conditions.

3.2.2 Direct Somatic Embryogenesis

1. Pretreated leaf sheath explants become swollen and soft.
2. Culture in/on MS medium either liquid or solid state.
3. Liquid culture maintain at 110 rpm under orbital Shaker with 25 � 2 �C.

3.2.3 Indirect Somatic Embryogenesis

1. Collect soft, friable embryogenic callus.
2. Transfer to 250 ml Erlenmeyer flask contain 50 ml of 1/2 strength MS liquid

medium with 3.0% sucrose and 0.3 mgL�1 BA.
3. Keep on Orbital Shaker at a rotation of 110 rpm.
4. Every 10 days, change the fresh medium containing flask.

3.3 Synthetic Seeds Production

3.3.1 Calcium Alginate Matrix

1. Select mature somatic embryos (~0.5 cm in length).
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2. Transfer the 3% (w/v) sodium alginate solution prepared by 1/2 MS liquid
medium.

3. Pipette the sodium alginate solution with somatic embryos using a 1 mL micro-
pipette (tip diameter, 0.5 cm).

4. Drop the solution with a single embryo in sterile 100 mM CaCl2�2H2O solution.
5. Expose the calcium alginate beads to the solution for 15 min, with occasional

gentle agitation for successful encapsulation of the matrix.
6. Wash the calcium-alginate beads in sterile distilled water and blot on filter paper

to remove traces of CaCl2�2H2O.

3.3.2 Sucrose Dehydration

1. Prepare the 8.55% (w/v) sucrose solution.
2. Take uniform-sized beads in sucrose solution on Erlenmeyer flask.
3. Keep on 24 h continuous shaking condition at 90 rpm.
4. Blot the beads on filter paper to absorb moisture content.

3.3.3 Synthetic Seed Storage

1. Take sucrose-dehydrated synthetic seeds.
2. Transfer the 15 seeds per sample container (50 mL).
3. Store at 4 �C.

3.3.4 Germination

1. After storage, remove the moisture content of synthetic seeds using filter paper.
2. Culture on 0.25 mgL�1 GA3-augmented 1/2 strength MS solid medium

supplemented with 1.5% sucrose.
3. Incubate on 24 h darkness.

3.4 Hardening

1. Threeweeks after germination, the plantlets transfer to 16 h light/8 h dark conditions.
2. Plantlets with 3–4 green leaves and 4–5 roots harden to pot mixture of autoclaved

sand, soil, and vermiculate (1:2:1).
3. The plantlets maintain at 25 � 2 �C under a 16-h light/8-h dark photoperiod.
4. After induction of new leaves, acclimatize to ex vitro conditions.
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4 Technical Reports

1. In Curcuma spp. leaf sheath excised from in vitro grown plants are used as a
source of explants (Fig. 2a–c).

2. Culture leaf sheath explant on MS medium containing 2.0 mgL�1 2,4-D for the
formation of callus. Duration of explants above 20 days on the medium is
required for induction of embryogenic callus. The medium without 2,4-D or
short duration (5–20 days) culture will not show callus (Fig. 3a–c).

3. Subculture explants on solid medium containing 2.0 mgL�1 2,4-D with a
duration of 15–20 days. Preincubation causes direct somatic embryogenesis
when culture on BA liquid medium (Fig. 3e–h).

4. Transfer preincubated leaf sheath explants/callus to MS liquid medium
supplemented with 0.3 mgL�1 BA for the induction of maximum number of
somatic embryos (direct and indirect). The induction of somatic embryos per
explants will be significantly reduced if the concentration of BA is low or high.

5. Continued culture in MS liquid medium supplemented with 0.3 mgL�1 BA
promotes the maturation of somatic embryos.

6. Although, BA at higher concentrations promote secondary somatic embryos.
7. Bipolar matured somatic embryos should be selected for synthetic seed tech-

nology; it shows uniform developmental stages and highest rate of conversion
(Fig. 4a–d).

8. The size and shape of the beads are uniform in the 3% sodium alginate. The
seeds produced by using 4% sodium alginate will form hardest coat. At lower
concentrations of sodium alginate (1 and 2%), the beads are nonuniform and
fragile, probably due high moisture content.

9. The size and shape of the beads are uniform when the 3% sodium alginate
solution is exposed to 100 mM CaCl2�2H2O solution for 15 min. The shorter
exposure time (5–10 min) will form nonuniform, fragile beads, and longer

Fig. 2 Establishment of turmeric plants under in vitro conditions from in vivo-grown sprouts. (a)
Initiation of sprouts on soil mixture. (b) In vivo-grown 20-day-old adventitious buds. (c) Multiple
shoot formation on MS solid medium supplemented with 2.0 mg L�1 BA and 0.5 mg L�1 IBA
under aseptic condition

Somatic Embryogenesis and Synthetic Seed Technology of Curcuma spp. 371



exposure times (20–30 min) will produce hard beads with high accumulation of
CaCl2, which results in poor germination rate.

10. 1/2 strength MS medium is best for high rate of germination. Lower strength
(1/4 MS) cause insufficient nutrition for germinated synthetic seeds and higher
strengths cause the lower germination.

11. 3% sucrose in 1/2 MS medium enhances the rate of germination. The germina-
tion percentages are lower at other concentrations of sucrose. No artificial seed
germination will occur on high sucrose (7%) concentration.

Fig. 3 Somatic embryogenesis of Curcuma spp. (a–d) Indirect somatic embryogenesis of
C. amada. (a) Soft, friable nature of embryogenic callus, (b) establishment of embryogenic cell
suspension culture, (c) development of bipolar somatic embryos and (d) formation of secondary
somatic embryogenesis. (e–h) Direct somatic embryogenesis of C. longa. (e) Preincubated leaf
sheath explants, (b) induction of embryogenic cell suspension from preincubated leaf sheath
explants, (c) germinated somatic embryos, and (d) well-developed somatic embryo-derived
plantlets

Fig. 4 Production of synthetic seeds from C. amada. (a) Matured bipolar somatic embryos. (b)
Calcium alginate-coated somatic embryos. (c) Germinated synthetic seeds. (d) Ex vitro-
acclimatized plants
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12. The maximum germination can be achieved on medium containing lower
concentration of GA3 (0.25 mg L�1). Germination will be inhibited at higher
GA3 concentrations.

13. Transfer the well-developed plantlets (3–4 leaves and 4–5 roots) to potting
mixture containing autoclaved sand, soil, and vermiculate (1:2:1) and maintain
at 25� 2 �C under a 16-h light/8-h dark photoperiod for the acclimatization and
high survival rate.

14. The results of in vitro propagation via somatic embryogenesis and encapsulation
in calcium alginate matrix can be used as an efficient method for the mass
propagation and germplasm conservation of Curcuma spp.
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Synthetic Seeds of Wild Beet: Basic
Concepts and Related Methodologies

Saber Delpasand Khabbazi, Canan Yüksel Özmen, and Ali Ergül

Abstract Synthetic seeds are artificially encapsulated propagules that mimic true
seeds in agriculture. Although a variety of plant materials, such as shoot tips, axillary
buds, callus, micro cuttings, and protocorm-like bodies, are used in the production of
synthetic seeds, somatic embryos are the most widely used explants in the produc-
tion of these seeds. Synthetic seeds compete with traditional approaches to preserve
the germplasm of threatened plant species. The resulting progenies are the true
clones of the main plant, thus preserving the intactness of the genetic background.
Due to poor germination and low seed amount, wild Beta species are exposed to the
risk of extinction. Wild relatives of Beta have agronomically important properties
such as resistance to diseases and abiotic stresses. Numerous attempts have been
made to give these traits to sugar beet crop through conventional breeding methods.
Despite the importance of synthetic seed for wild beets, it has not yet been investi-
gated. The production of synthetic seeds ensures the conservation and availability of
wild germplasm of the genus Beta for cytogenetic and breeding studies.

Keywords Artificial seeds · Biotic and abiotic stress · Genus Beta · Germplasm
conservation · Resistance genes

1 Introduction

Seeds are zygotic embryonic plants produced after fertilization in flowering plants.
Seeds connect different generations of plants and ensure the maintenance and transfer
of plant genetic material in nature. These structures are enclosed with protective
layers to keep the embryo safe during storage and dispersal (Bewley and Black 1985).

Seeds are essentially composed of an embryo and protective layers. True seeds
contain endosperm tissues that provide the nutrients necessary for germination.
Endosperm stores various substances mainly including starch, proteins, and oils.
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However, in some species, cotyledonary leaves are the source of these components.
Seeds are the basis of agriculture and, when the necessary factors for germination are
provided, they produce a plant similar to the main plant.

Depending on plant species and conditions, the production of true seeds can be
time-consuming, arduous, impossible, or costly. Synthetic seeds have great potential
as an alternative to true seeds, especially due to low production costs and long-term
storage (Roy and Mandal 2008). These seeds can be handled, stored, transported,
and planted like true seeds (Sharma et al. 2013).

The term “synthetic seed” was first defined as an encapsulated single somatic
embryo by Murashige (1977). In the early studies, the concept was limited to plants
where somatic embryogenesis could be demonstrated; however, it was later on
extended to any in vitro-derived propagule due to the recalcitrance of some species
to somatic embryogenesis (Bapat et al. 1987). Synthetic seeds are also known as
artificial seeds, synseeds, and manufactured seeds. Somatic embryos are often used
as propagule in the production of synthetic seeds; however, cell aggregates, shoot
buds, auxiliary buds, or any other structure capable of giving rise to a plant can also
be used. Furthermore, these seeds can hold this ability for a long time and can be
stored (Ara et al. 2000; Saiprasad 2001; Daud et al. 2008).

Synthetic seed technology is a suitable alternative method for proliferation of com-
mercially important plants. These tissue culture-originated artificial seeds are economi-
cally preferred for the propagation of hybrids generated through breeding approaches
(Rihan et al. 2017). Synthetic seeds, however, can be used to proliferate the species that
hardly reproduce through generative propagation and are at risk of extinction.

The wild relatives of sugar beet (Beta vulgaris spp. vulgaris) are invaluable
germplasm reservoirs that are in danger of extinction. Although synthetic seeds
have been produced for more than 30 years, no attempt has been made to utilize
synthetic seed technology for wild beet species. However, in situ and ex situ efforts
have been made to protect these invaluable genotypes (Frese et al. 2001).

In this chapter, we emphasize the importance of wild beet relatives in the genus
Beta and review the synthetic seed technology to evaluate the use of this approach
for wild beet accessions.

2 Origin and Development of Synthetic Seeds

When Steward et al. (1958) and Reinert (1958), at the same time, reported the first
somatic embryogenesis in the carrot plant (Daucus carota), most probably the idea
of synthetic seed production created. However, the first report of plant propagation
by somatic embryos was presented by Murashige (1977). He succeeded to obtain the
surviving plants originating from somatic embryos in vitro conditions. Studies
continued to accelerate the process of developing plants from somatic embryos for
commercial applications. Drew (1979) delivered the carrot somatic embryos in a
liquid drilling system; however, the results were disappointing as he developed only
three carrot plants in carbohydrate-free media. The first synthetic seed production
goes back to a report by Kitto and Janick (1982). They encapsulated multiple
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somatic embryos of carrot in a polyoxyethylene glycol and desiccated the embryos.
Polyoxyethylene is a readily soluble chemical in water and after drying forms a thin
layer. In addition, it is not toxic to the embryo and does not allow growth of the
microorganism and, therefore, later was also used to encapsulate the celery (Apium
graveolens) embryos (Kitto and Janick, 1985). A polyethylene glycol (PEG)-based
mixture was also applied to coat the carrot somatic embryos and embryonic calli.
Following the dehydration procedure, the survival rate was scored by placing the
coated embryos on culture medium allowing them to rehydrate (Janick et al. 1993).
Since the first studies, many efforts have been made to produce synthetic seed in
various plant species (Ravi and Anand 2012). Survival percentage of encapsulated
embryos was enhanced by modifications applied in the encapsulation matrix and
speed of dehydration. Various propagules have been utilized to establish the system
for the species recalcitrant to somatic embryogenesis.

3 Types of Synthetic Seeds

The somatic embryos used for the production of synthetic seeds may or may not be
encapsulated. The state of quiescence in uncoated somatic embryos defines the usage
of these seeds. If the uncoated embryo is non-quiescent, it is used for the in vitro
micropropagation of plant, and if quiescent, it is used for the germplasm storage. The
encapsulated somatic embryos are divided into two types of hydrated and dried
seeds. The encapsulated somatic embryos may be non-quiescent or quiescent if the
seed coat is hydrated or desiccated, respectively. The quiescent somatic embryos
coated with dehydrated artificial coatings are the most resembling synthetic seeds to
the conventional ones in terms of handling and storage.

The vigor of the seedlings obtained from the desiccated embryos is higher than that
obtained from the hydrated embryos. It is ideal if the synthetic seed is produced through
encapsulated desiccated embryos (Pond and Cameron 2003). Prior to encapsulation
process, somatic embryos are hardened to tolerate the desiccation which induces the
quiescence. However, desiccated seeds are only produced if the somatic embryos are
tolerant to dehydration. In some species, the generated somatic embryos are sensitive to
water deficiency; thus, the embryo ought to be coated with hydrogels (Magray et al.
2017). Desiccation degree is determinative and depends on the developmental stage of
the embryo. If the embryo is mature, the drying process should be carried out rapidly,
and if it is immature, it is opted to implement the process slowly (Senaratna et al. 1990).

4 Wild Beets: Synthetic Seed and Applications

4.1 Species of the Genus Beta

Based on the crossing ability between cultivated beet and other genotypes, the genus
Beta divides into three gene pools: the primary gene pool contains the cultivated beet
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and other species which can easily cross; the secondary gene pool includes the
species that despite the crossability with cultivated beet generate sterile progenies;
and the tertiary gene pool members generate hybrids only by human intervention and
artificial crossing (Jassem 1992; Kadereit et al. 2006; Frese 2010) (Table 1). How-
ever, an earlier classification had placed B. nana in a separate section, thus dividing
the genus Beta into four sections as Beta, Corollinae, Nanae, and Procumbentes
(Ford-Lloyd 2005). The Eastern Anatolia-Western Caucasus crossing region is
accepted as the origin and resource of genetic diversity for Beta and Corollinae
(Boughey 1981). Section Nanae is distributed in the mountainous regions of Greece,
whereas the members of the section Procumbentes spread far away in the Canary
Islands, coastal areas of North-West Africa, and Southeastern Spain (Frese 2010).

4.2 Employment of the Wild Beet Genotypes

The interest in wild beet genotypes as the genetic resources for improving the sugar
beet germplasm has been increasing since the late 1800s, and the values of these
genotypes have been well-demonstrated (De Bock 1986; Doney and Whitney 1990;
Van Geyt et al. 1990; Lewellen and Skoyen 1991; Doney 1993). Since that time,
breeders have been employing these germplasms to improve the agronomic traits of
the sugar beet crop. There are committees established to study and protect the
germplasm of the genus Beta. Very comprehensive information on the genotypes
of Beta is available at the Genetic Resources Information Network (GRIN) Database
of National Plant Germplasm System (NPGS). More than 22% of the available Beta
accessions are the B. maritima accessions which are well-characterized and most
useful accessions in the breeding of sugar beet (Biancardi et al. 2010).

4.3 Wild Beets Are the Reservoir for Resistance Genes

Sugar beet yield is affected by different biotic and abiotic factors. The cyst nematode
(Heterodera schachtii Schm.), leaf spot disease (Cercospora beticola Sacc.), and
Beet necrotic yellow vein virus (BNYVV) are among the most destructive pests and
disease agents of sugar beet crop that reduce root yield and sugar content (Weiland

Table 1 Gene pools of the genus Beta (Jassem 1992; Kadereit et al. 2006; Frese 2010)

Gene pool 1 Gene pool 2 Gene pool 3

Beta vulgaris ssp. vulgaris
Beta vulgaris ssp. adanensis
Beta vulgaris ssp. maritima
Beta macrocarpa
Beta patula

Beta corolliflora
Beta macrorhiza
Beta lomatogona
Beta trigyna
Beta intermedia
Beta nana

Beta patellaris
(Patellifolia patellaris)
Beta procumbens
(Patellifolia procumbens)
Beta webbiana
(Patellifolia webbiana)
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and Koch 2004; McGrann et al. 2009; Biancardi et al. 2010). Sugar beet cyst
nematode is spread over more than 40 countries and causes major product losses
(McCarter 2008). However, some Beta species carry cyst nematode resistance genes
that can be employed in breeding programs. C. beticola is a fungal pathogen known
as the most damaging sugar beet disease worldwide, corresponding to leaf spot
disease in sugar beet (Weiland and Koch 2004). Depending on the severity of the
disease, C. beticola reduces the sugar yield by 1–55% (Rossi et al. 1995; Altınok
2012). The soil-borne disease of rhizomania is caused by BNYVV, which is
transmitted by Polymyxa betae Keskin (Keskin 1964). Rhizomania causes yield
losses of up to 80% in the sugar beet crop and the only way to control the disease is
to cultivate resistant varieties (Tamada and Baba 1973).

Wild relatives of genus Beta contain agronomically important characteristics and
can be exploited in introgression of desirable traits into cultivated beet crop
(Table 2). Being a member of the section Beta, B. v. ssp. maritima is a very close
and cross-compatible relative of B. v. ssp. vulgaris (Biancardi et al. 2012). It owns
valuable traits such as resistance toH. schachtii and is the widely deployed wild-type
genotype in sugar beet breeding studies (Panella and Lewellen 2007). In addition,
B. maritima is a source of resistance to Cercospora leaf spot disease, so it has been
used to develop resistant varieties (Munerati et al. 1913). Although resistance to
Cercospora has been reported in all of the Corollinae, Procumbentes, and Beta
sections, the resistance degree is highly different between them. Among species,
B. maritima has the most pronounced degree of resistance, so it is widely used in
sugar beet breeding approaches (Munerati 1932; Panella and Frese 2000; Skaracis
and Biancardi 2000; Luterbacher et al. 2004). In contrast to B. maritima, B. nanae
and B. macrorhiza accessions are susceptible to Cercospora (Coons 1954).
B. maritima also could be a reliable resource for resistance genes of rhizomania,
and among these genes, Rz1 and Rz2 are generally used in the commercial devel-
opment of resistant varieties (Scholten et al. 1999). Wild beet genotypes are also
invaluable resources of tolerance to abiotic stresses such as drought, salt, and frost
which could be exploited to improve the quality of growth in sugar beet under
adverse climatic conditions (Frese et al. 2001). The Corollinae section, in particular
B. corolliflora, is thought to be an important germplasm against abiotic stresses.
However, the low homology percentage of chromosomes between different gene
pools may be an obstacle in the transmission of the desired genes (Jung and Wricke
1987; Van Geyt et al. 1990).

4.4 The Contribution of Synthetic Seeds to Breeding
Programs

The first production of the sugar beet crop was restricted to Northern Europe, a
temperate climate and a relatively disease-free zone; therefore, small selection
pressure was applied against the pathogens. Following the cultivation in other
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Table 2 Transition of resistance genes from wild beet genotypes to sugar beet crop via conven-
tional breeding approaches

Resource of
resistance

B. vulgaris hybrid
accessions obtained
through
interspecific
breeding Biotic factor References

Beta section B. maritima—
WB42, Rızor or
Holly, WB41,
WB258, R36,
R22 (PI 590791)

B. vulgaris—Holly-
1–4, R104

BNYVV Lewellen and
Whitney (1993),
Pelsy and
Merdinoglu (1996),
Scholten et al.
(1999), Gidner
et al. (2005),
Grimmer et al.
(2008a, b)

B. maritima B. vulgaris—
CN921-515 (Reg.
No. GP-295, PI
669447) and
CN921-516 (Reg.
No. GP-296, PI
669448)

Cyst
nematode

Richardson (2018)

B. maritima—
WB242
(PI 546413),
N499
(PI 599349)

B. vulgaris—CN12
(PI 636338), CP07
(PI 632288), CP08
(PI 6322889)

Cyst
nematode

Heijbroek et al.
(1977), Lewellen
(2004, 2006)

B. maritima B. vulgaris—PI
357354, PI 518303,
PI 546413, PI
504180, and PI
546413

Cyst
nematode

Panella and
Lewellen (2007)

B. maritima B. vulgaris—M66,
WB258 (PI 546426)

Root-Knot
Nematode

Yu (1997, 2002)

B. maritima B. vulgaris—
Rovigo (R148,
R581, etc.), varie-
ties “Cesena” and
“Mezzano”

Cercospora Munerati (1932),
Biancardi and De
Biaggi (1979)

B. maritima—
WB97, WB242

B. vulgaris—CP01
and CP02

Powdery
mildew

Lewellen (2000)

B. maritima—
WB178, PI
546403

B. vulgaris—83
W304

Yellow wilt McFarlane (1984)

B. maritima—PI
546409
(WB185), PI
540625
(WB879)

B. vulgaris (SP6822
X WB879)

Aphanomyces Yu (2004)

(continued)
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regions with different climatic conditions, various diseases emerged and affected
crop yield (Lewellen 1992). Although numerous genetic improvements have been
made to date, susceptibility to disease still threatens crop yields and production
worldwide (Table 2). Wild beet accessions have great potential to expand the
germplasm pool of sugar beet. Wild Beta species are evaluated in terms of important
agronomic characteristics to be used in sugar beet breeding. These accessions
indicate different degrees of resistance to biotic and abiotic factors. Initial efforts
to screen wild beet genotypes for pathogen resistance were made in the early 1900s.
The first documented report of using the B. vulgaris ssp. maritima in breeding
studies of cultivated beet belongs to Munerati et al. (1913) who found B. maritima
as a source of resistance to Cercospora leaf spot disease (Biancardi et al. 2010).
However, various resistance genes were later on transferred to B. vulgaris through
interspecific hybridization. The obtained interspecific hybrids were resistant to
different biotic factors (Table 2). The synthetic seed technology contributes to the
breeding of cultivated accessions. The preparation of synthetic seeds for Beta wild
relatives ensures the presence of these accessions for breeding programs.

Sugar beet is a biennial crop and has to be exposed to the prolonged cold of winter
for flowering and seed production (Letschert 1993). However, wild-type relatives are
naturally annual, and production of the flowering stem is triggered in the first year
(Biancardi et al. 2010). Depending on the geographical origin and altitude, a peren-
nial growth pattern is also possible in wild beet genotypes (Marlander et al. 2011). In
vitro production of synthetic seeds allows researchers to shorten the breeding process
by applying equivalent but controlled conditions to stimulate vernalization.

Simultaneous flowering time is very important for successful plant-pollinator
interactions (Elliott and Weston 1993; Alcaraz et al. 1998). The lack of synchronic-
ity in flowering, especially in different genotypes, makes the hybridization of wild

Table 2 (continued)

Resource of
resistance

B. vulgaris hybrid
accessions obtained
through
interspecific
breeding Biotic factor References

Procumbentes
section

B. procumbens B. vulgaris (B883,
ANl-65-2, AN101)

Cyst
nematode

Van Geyt et al.
(1988), Lange et al.
(1988, 1993),
Salentijn et al.
(1992)

B. procumbens—
AU6-1-4 and
D3-2-13;
B. patellaris –
B1-1-54

B. vulgaris—Holly-
1–4

Cercospora Mesbah et al.
(1997)

B. patellaris—
A5-1-7 and
B1-1-192

B. vulgaris—Holly-
1–4

BNYVV Mesbah et al.
(1997)
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and cultivated species difficult (Alibert et al. 2003; Cuguen et al. 2005). Application
of synthetic seeds and human intervention to adjust the cultivation time enhance the
chance of fertilization and seed production. The mass production of clonal plants
with homogeneity in the genetic background causes simultaneous flowering in the
population. In addition to homogeneity in flowering, the production of large amounts
of pollen is another feature that breeders will appreciate when they intend to convey
the desired characteristics between species. Compared to the monogerm seeds, the
multigerm Beta accessions produce more pollen (Alibert et al. 2003; Biancardi et al.
2010). Therefore, the selection of superior genotypes that match the breeding
objectives is an important step before hybridization.

The production of inbred lines is necessary for the development of hybrid seeds.
However, inbreeding is sometimes not possible due to genetic barriers and the presence
of allogamy in many species. Sugar beet is primarily self-incompatible, and the self-
pollination is rare among wild beets. This feature was used by breeders to increase and
maintain heterosis in multigerm varieties prior to the discovery of cytoplasmic male
sterility (Owen 1942). Large-scale conservation and micropropagation of selective rare
hybrid genotypes have attracted interest in the production of synthetic seeds. The
production of synthetic seeds can eliminate the genetic segregation because of the
participation of only one parent, as well as the use of somatic cells in seed production.
These seeds are the actual clones of the sampled plant, so it can also be considered in the
maintenance of the unstable sterile genotypes, genotypes that have difficulty in germi-
nation and transgenic plants (Gantait et al. 2015).

Hybridization of species distributed in different gene pools is limited due to
existing genetic barriers (Abe and Tsuda 1987; Jung and Wricke 1987; Van Geyt
et al. 1990). However, there are successful hybridization reports between the species
of different sections (Table 2). The obtained interspecific hybrids might lack one or
more chromosomes leading to aneuploidy. These individuals will be used in cyto-
genetic and biotechnological studies of Beta species (Savitsky 1960, 1975; Yu 1983,
2005; Heijbroek et al. 1988; Sandal et al. 1997). Thus, the protection of the desired
genotypes between such hybrids requires an asexual multiplication technique. Arti-
ficial seed technology can protect and reproduce the desired progeny for future uses
in breeding programs.

5 Germplasm Conservation of Wild Beet Species

True seeds are consisting of an embryo, nutritive tissues, and protective layers. The
embryo and nutritive tissues of true seeds are covered with a seed coat which keeps
the embryo quiescent and tolerant to adverse climatic conditions that have been the
source of inspiration for the preservation of the germplasm in gene banks. Zygotic
seeds are reliable sources to preserve germplasms in repositories. Furthermore, the
incidence of pathogenic infestations and high metabolic activities affect the period of
seed storage. Unlike the true seeds, synthetic seeds do not necessarily contain
nutritive tissues or seed protective layers and the state of quiescence might be
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different in these seeds. Therefore, depending on the purpose of use, the structural
complexity of synthetic seeds is defined. Seed coats of synthetic seeds not only help
to the keep the propagules from pathogenic diseases but also establish a safe seedbed
in the soil. It protects the propagules from drought and other unfavorable conditions
and also keeps the seed safe during the transportation and storage (Ara et al. 2000).

True seeds of the wild beet species are coated with a thick and excessively
indented testa which causes poor germination (Coons 1975). The perennial pattern
of growth and the low germination rate affect the multiplication of wild beet relatives
in natural habitats (McGrath et al. 2007; Marlander et al. 2011). The difficulties in
germination and proliferation, especially among the species of Corollinae, challenge
the survival of wild beet species (Frese et al. 2001). To date, in situ and ex situ efforts
have been made to save these genotypes in their natural distributed areas or botanical
gardens (Ren et al. 2012). However, the need to accelerate and improve the prop-
agation process and efficiency is still felt.

Unlike the true seeds which produce following the sexual reproduction and undergo
the genetic recombination process, the intactness of the parental genetic background is
protected in synthetic seeds. Propagules used in the production of synthetic seeds are
generated in aseptic conditions; therefore, the resulting seeds are pathogen-free and
thus are superior to the traditionalmethods inwhich diseases encounter severe threats to
the stoked genotype. Moreover, the international exchange of plant material would be
easier and faster across the country borders and successfully contribute to the control of
plant diseases (Daud et al. 2008; Nyende et al. 2005). Recently the in vitro multiplica-
tion of wild beet genotypes was investigated to assess the in vitro regeneration potential
of different species of the genus Beta (Ergül et al. 2018). Results indicated the
multiplication capability of the selected genotypes when were subjected to cytokinin
and gibberellin growth regulators. In an early study, the callus induction potential of the
wild genotypes of Beta sections was evaluated (Yu 1989). Despite the conducted
studies, the assessment of somatic embryogenesis in these species yet remains. Somatic
embryos are frequently used as proper explants in the production of synthetic seeds;
therefore, the importance of studies over the somatic embryogenesis in wild beet
species is emphasized (Skaracis 2005).

Production of synthetic seeds will provide a sufficient quantity of wild beet
accessions to ensure the germplasm conservation. This technique will ease the
renewal of germplasm in gene banks, and the germplasm continuity will be ensured;
moreover, the costs of germplasm maintenance in the gene banks will be reduced
efficiently.

6 Synthetic Seed Production and Storage Methods

6.1 Explant Materials

A variety of propagules have been utilized in the production of synthetic seeds
(Fig. 1). Propagules are divided into two categories of unipolar and bipolar. Both
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types are used in the production of synthetic seeds and have pros and cons. Bipolar
propagules such as somatic embryos contain shoot and root apical meristems and
generate the plant in a single stage (Ara et al. 2000). Such seeds can be used as
hydrated or dried. Seeds carrying the somatic embryos have a strong capacity for
reproduction and can maintain their regenerative potential for a long time leading to
a uniform plant production (Leroy et al. 2000). The germination rate of the somatic
embryos is different from that of zygotic embryos so that the zygotic embryos are
superior to synthetic seeds in germination rate (Lulsdorf et al. 1993; Attree et al.
1994). Nevertheless, the encapsulation method and the plant genotype are determin-
ing factors in germination rate of the seeds (Cartes et al. 2009). The resulting plants
originating from bipolar propagules may cause somaclonal variations. Moreover,
asynchronous and late maturation features of embryonic poles are among the factors
restricting the usage of somatic embryos in the production of synthetic seeds
(Castellanos et al. 2004). On the other hand, unipolar propagules contain only a
shoot or a root pole and are superior to the bipolar ones in terms of genetic fidelity
and a vast range of vegetative explants. Unipolar explants can be any of the apical
tips, axillary buds, micro shoots, micro bulbs, microtubers, corms, rhizomes,
meristemoids, cell aggregates, and primordia biological materials with different
levels of complexity and conversion ratios (Sharma et al. 2013).

Although propagules such as shoot apical meristems, axillary buds, and micro
shoots do not contain root apical meristem, these are encapsulated to generate seeds.
However, prior to the encapsulation process, explants are subjected to the root
inducing chemicals. Some studies reported the possibility of root induction and
conversion of the buds to plantlets when cultivated on white’s rooting medium
without chemical pretreatments (Bapat and Rao 1990; Ganapathi et al. 1992).
Based on a study, the conversion of the encapsulated apical tips was more than

Fig. 1 The pie chart depicts the propagules used in synthetic seed production and their relative
contribution to synthetic seed production studies (Reddy et al. 2012)
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axillary buds; however, a later study indicated the conversion of 100% for axillary
buds when encapsulated in a suitable matrix (Capuano et al. 1998; Lata et al. 2009).

Plant species respond differently to synthetic seed production that emphasizes the
effect of genotype and plant species. The literature review shows that somatic embryos
as the most corresponding propagule have been employed in the majority of the studies
including vegetable crops, spices, and plantation crops, ornamental plants and orchids,
medicinal plants, forage legumes, fruit crops, and forest trees (Reddy et al. 2012).
Following somatic embryos, shoot tip explants are the second most widely used
propagule; however, other explant sources have been less frequently used (Fig. 1).
Both somatic embryos and shoot tip explants were used as plant material in the
production of synthetic seeds for B. vulgaris, which can also be recommended for
wild relatives of Beta (Saunders and Tsai 1999; Rizkalla et al. 2012).

6.2 Encapsulation Chemicals and Processes

Agents such as agar, agarose, alginate, polyox, polyco 2133, guar gum, tragacanth
gum, gelrite, carrageenan, carboxymethyl cellulose, polyacrylamide, nitrocellulose,
and sodium pectate ethyl cellulose have been tested for the encapsulation of syn-
thetic seeds till date (Ara et al. 2000; Saiprasad 2001; Lambardi et al. 2006). Among
these chemicals, sodium alginate has been found as the most suitable agent for
encapsulation of somatic embryos due to its low cost, low toxicity, and quick gelling
properties (Saiprasad 2001). This chemical was used to encapsulate the B. vulgaris
somatic embryo and shoot tip propagules at concentrations of 2% and 4%, respec-
tively (Saunders and Tsai 1999; Rizkalla et al. 2012). Sodium alginate can protect
the biologic material for a longer time when compared to other agents such as agar.
The firmness of the seed coat is determined by the ratio of sodium ions exchanged
with calcium in CaCl2�H2O solution (Daud et al. 2008). The literature review
indicates that the most satisfying results are obtained once explants are encapsulated
with 3% sodium alginate and 100 mM CaCl2�H2O. In the majority of these studies,
the regeneration frequency was noted more than 90% (Singh and Chand 2010;
Ahmad et al. 2012; Sakhanokho et al. 2013; Varshney and Anis 2014).

Structure of the synthetic seeds imitates that of true seeds. The biologic material
in synthetic seeds represents the zygotic embryo in true seeds (Cartes et al. 2009).
Synthetic endosperms are comprised of MS culture medium supplemented with
growth regulators such as cytokinin and auxins, minerals and vitamins, gelling
chemical, and anti-pathogenic components (Ravi and Anand 2012).

Synthetic seeds are single-layered, double-layered, or hollow bead structures. To
produce single-layered seeds, the in vitro originated plant materials are mixed with a
proper hydrogel. Alginate is the most frequently used coating agent employed in the
concentration of 0.5–5%. After alginate dissolves in double distilled water or liquid
nitrogen, the solution is utilized in the production of the beads containing propa-
gules. The beads are then treated with a complexion agent such as calcium chloride
(CaCl2�2H2O). It is important to obtain round and firm calcium alginate beads.
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The concentration of sodium and calcium together with the complexion time
affect the permeability and rigidity of the beads and may be different between plant
species. Generally, treatment of beads with 3% (w/v) sodium alginate and 100 mM
calcium chloride for 20–30 min is reported as the most suitable combination for seed
production (Sarkar and Naik 1998; Tabassum et al. 2010; Ahmad and Anis 2010;
Ozudogru et al. 2011; Alatar and Faisal 2012; Hung and Trueman 2012a, b). Low
alginate concentrations (<3%) interfere with solidification and high concentrations
(5–6%) result in a very hard coating that delays germination (Larkin et al. 1998;
Ahmad and Anis 2010; Sharma et al. 2009a, b).

The content of the matrix, such as nutrients and growth regulators, influences the
success of germination and conversion of the encapsulated explant (Chand and
Singh 2004; Sundararaj et al. 2010). Synthetic seeds are highly susceptible to
microbial infections, so various antimicrobial agents are added to the gel matrix to
reduce infection (Saiprasad 2001; Wang et al. 2007).

The addition of activated carbon to the matrix gel enhances explant conversion
and vigor. Activated carbon adsorbs toxic products such as phenolic compounds that
can damage encapsulated propagule; moreover, it helps the diffusion of nutrients and
gases. It contributes to decomposition of alginate and enhanced respiration of the
biological material, thereby prolongs the storage time. Additionally, the activated
carbon retains the nutrients and releases them gradually which provides a long-term
supply of essential nutrients for the propagule. Pretreatment of synthetic seeds with
potassium nitrate makes an impressive contribution to the production of shoots and
roots from coated propagules (Sharma et al. 2013).

Double layering the plant material is proposed to increase the protection of
encapsulated propagules. Once the single layer seeds are produced, they can be
coated with the same concentration of sodium alginate and then coated with the
treatment of CaCl2�2H2O. Double-layered synthetic seeds have the same properties
of the single-layered ones; however, double encapsulation provides better protection
(Micheli et al. 2002; Pinker and Abdel-Rahman 2005).

When the position of the propagule in the bead is compared between conventional
synthetic seeds and true seeds, the adjacent position of the propagule to bead surface
makes the protection fragile in synthetic seeds. Hollow beads are promising tools to
assure the protection of encapsulated propagules; however, the process is laborious
and costly, and the success of this method is still controversial (Winkelmann et al.
2004; Pourjavadi et al. 2006).

6.3 Storage of Synthetic Seeds

Storage of synthetic seeds is carried out for a variety of purposes, such as the
germplasm transport between countries, proliferation, and protection of invaluable
germplasms. Researchers investigate the ideal conditions for the storage of synthetic
seeds. Storage temperature and matrix components are the most important factors
affecting the conversion rate; however, the effect of species on the storage is also
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decisive. Generally, 4 �C is the most suitable temperature for short-term storage of
synthetic seeds including B. vulgaris (Saiprasad and Polisetty 2003; Kavyashree et al.
2006; Singh et al. 2007; Faisal and Anis 2007; Pintos et al. 2008; Sharma et al. 2009a,
b; Ikhlaq et al. 2010; Tabassum et al. 2010). However, several studies on some
tropical and subtropical crops have reported that higher temperature (25 �C) is
required for bead storage (Srivastava et al. 2009; Sundararaj et al. 2010; Mishra
et al. 2011). Although wild Beta species have not been investigated for synthetic
seeds, there are reported studies over B. vulgaris spp. vulgaris. In vitro storage of
sugar beet synthetic seeds was evaluated after addition of osmotic agents to the MS
medium (Rizkalla et al. 2012). According to the results, the addition of 0.05 M
mannitol or sorbitol to the medium increased seed survival during in vitro storage
but disrupted growth quality. This result is consistent with Westcott (1981), which
previously reported the toxic effects of mannitol. In an early study, the effect of cold
storage of the beads was investigated, and the results showed that the cold treatment
did not improve the conversion rate and also slowed down the rate of development
(Saunders and Tsai 1999).

For long-term storage of synthetic seeds, dehydration and cryopreservation
storage techniques are used. Cryopreservation of the propagules can only be useful
if the formation of intracellular ice crystals is avoided; otherwise, harmful effects
prevent cell survival. Various techniques of cryopreservation inclusion of simple
desiccation, encapsulation-dehydration, the two-stage freezing, vitrification, and
encapsulation-vitrification have been employed to date. Pretreatment of encapsu-
lated biological tissues in a medium supplemented with high concentrations of
sucrose results in progressive water withdrawal of the coated propagule. Additional
dehydration of the encapsulated explants increases the concentration of sucrose
results in a glass transition during cooling to ultralow temperatures (–196 �C) and
subsequently fatal damages to the cells (Engelmann and Takagi 2000). Figure 2
summarizes the approaches used to store synthetic seeds.

7 Difficulties in the Production of Synthetic Seeds

Large-scale and cost-effective synthetic seed production requires investigations of
high-quality propagules and encapsulation methods. Since the first synthetic seed
production report, many improvements have been made. Despite the impressive
advantages, this technique is currently facing limitations that challenge commercial
production. Lack of dormancy in synthetic seeds causes limitations during the storage
period. Especially because these seeds are stored at lower temperatures, the vitality
and conversion rate reduces over time. Among the biological materials studied,
somatic embryos are superior to others because of their potential in the production
of the shoot and root system in one step. However, in addition to improper maturation
of somatic embryos, synchronic deficits in the development of somatic embryosmake
the application of somatic embryos difficult (Reddy et al. 2012; Hung and Trueman
2012a, b). Somatic embryogenesis may be difficult due to the existing recalcitrance of
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some plant species, thus encouraging the use of other explant sources in the produc-
tion of synthetic seeds. Although such explants are promising tools, the creation of
the root system is a complex challenge in this approach. In most woody plant species,
single-step rooting is the major obstacle to non-embryogenic coated propagules
(Chand and Singh 2004; Naik and Chand 2006; Hung and Trueman 2012a).

One of the main problems of synthetic seeds is the practicality of these seeds
during sowing under ex vitro conditions. In addition to the oxygen supply and
nutrient deficiency, the presence of various pathogens in commercial substrates
such as soil or vermiculite causes infection risks and other limitations (Jung et al.
2004; Rihan et al. 2012). However, the successful conversion of encapsulated
propagules into vigorous seedlings remains one of the important factors that hamper
commercial production (Sharma et al. 2013). Adjusting the matrix composition of
the beads will overcome the barriers that exist in storage and direct sowing. The
hydrated calcium alginate-based or dried polyethylene glycol-based encapsulation
will also provide the benefit of synthetic seed technology for long-term preservation
of germplasms by cryopreservation (Ara et al. 2000).

The in vitro responses of wild beet species are not well studied yet. For instance,
the somatic embryogenesis capability of these species is still unknown, whereas
somatic embryo is the most widely used explant in synthetic seed production. Lack
of in vitro studies along with frequently encountered difficulties may cause similar
risks in the artificial seed production of wild Beta species.

8 Conclusion

Synthetic seeds have the potential to take part in the protection of endangered
germplasms or to produce economic plants on commercial scales. Despite the
importance of wild beet genotypes, synthetic seed technology for these species has

Fig. 2 Various techniques are used to store synthetic seeds depending on the purpose of storage
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not yet been investigated. The development of in vitro protocols for somatic
embryogenesis of these species is particularly important in the first step. The
encapsulation procedure, as well as storage, should be examined for wild beet
accessions.
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In Vitro Conservation Through
Slow-Growth Storage

Ravishankar Chauhan, Vikram Singh, and Afaque Quraishi

Abstract In vitro approaches are valuable for the conservation of plant biodiversity
that includes the preservation of genetic resources of vegetatively propagated spe-
cies, threatened plant species, taxa with recalcitrant seed, elite genotypes, and
genetically modified/engineered material. The mid-term conservation is usually
achieved by reducing the growth of in vitro cultures through the application of
minimal media and growth retardant or storage at low temperatures resulting in
prolonged intervals between the subcultures. Moreover, the combinations of all
these factors are also employed for slow-growth storage. The medium-term conser-
vation strategies are consistently employed for a large number of plant species,
including various threatened species, from tropical as well as temperate origin. For
long-term conservation of plant species, cryopreservation (storage in liquid nitrogen
at �196 �C) is commonly employed. However, the main difficulties associated with
cryopreservation are the maintenance of in vitro cultures as the procedure is highly
technical and expensive since it involves a huge amount of resources and labor. In
vitro slow-growth storage, therefore, enables a possible solution for mid- to long-
term conservation of plant materials in limited space and at reduced costs too. Slow-
growth procedures allow clonal plant conservation for several months to years
(depending upon the species) under aseptic conditions, requiring the infrequent
successive transfers of the cultures.

Keywords Cold storage · Endangered species · Germplasm storage · Growth
retardant · Minimal medium
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1 Introduction

The conventional method of plant germplasm conservation includes their mainte-
nance as the whole plant in the field (Pathirana et al. 2016). Field maintenance of
plant materials not only carries the risks of infections of viral, fungal, and bacterial
diseases and insect pests but also includes losses due to the environmental disasters
such as flood, earthquake, drought, fire, volcanic eruptions, etc., which has led to the
erosion of valuable germplasm resources (Barba et al. 2008; Carimi et al. 2011).
However, duplication of materials in different fields is an option but is a quite
expensive approach. The major obstacles in in situ conservation practices are the
requirement of larger space, the high cost of operation, complicated management,
and risk of damage by both biotic and abiotic factors of the environment (Rao 2004).
Therefore, risks involved in field maintenance have led us to search for secure, cost-
effective, and efficient protocols for effective conservation of plant diversity. The
plant genetic resources are conserved in the forms of seeds, bulbs, or tissue culture-
derived propagules in various gene banks and termed as ex situ conservation
(Paunescu 2009). Ex situ conservation is the maintenance of plant genetic resources
under controlled conditions, i.e., away from their native habitats and cultivation in
botanic gardens and nurseries and by seed storage or in gene banks through in vitro
conservation (Dhillon and Saxena 2003; Paunescu 2009). In vitro approaches have
two kinds of storage strategies: (1) active strategy which refers to short- to mid-term
storage of samples and (2) base strategy referring to long-term preservation of
materials (Linington 2003; Engelmann 2011). In gene banks, both the strategies
are complementary to each other in which germplasms are stored in an environment
free from vulnerable depletion by nature and by arthropods (Linington 2003; Li and
Pritchard 2009). Both the strategies distribute disease-free plants, thus minimizing
the cost of disease indexing (Lynch et al. 2007). Among these, the most suitable
method suggested for long-term ex situ conservation of any species is storage of their
seeds.

The species having orthodox seed form can be stored at a low temperature for
extended periods by dehydrating down their moisture level (Roberts 1973). How-
ever, the conservation of other species and seed form is little problematic
(Engelmann 2011), for example, the vegetatively propagated species that do not
produce seeds. Similarly, recalcitrant seeds can’t be dried sufficiently at the low
moisture level with viability to let their storage at low temperatures (Roberts 1973).
Moreover, the seeds of few species are generally highly heterozygous in nature and,
therefore, unsuitable for the conservation purpose. Such species are thus chiefly
maintained as clones (Engelmann 2011). Until now, most of the activities on ex situ
conservation of plants have focused particularly on crops. However, conservation of
wild and threatened plant species has also become an issue of concern. The statistics
of the International Union for Conservation of Nature (IUCN) revealed that out of
over 12,000 plant species, approx. 70% are in the threatened category and 19% are
critically endangered (Trejgell et al. 2015). In addition, 28 species are extinct in the
wild. In situ conservation strategy alone may not be sufficient to rescue the
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threatened species (Sarasan 2010). In line, advancements in the biotechnology lead
to the introduction of few novel categories of germplasm that includes clones
obtained from elite genotypes, the cell lines with special attributes, and genetically
transformed clones (Engelmann 1992). This new category is often of high added
value and a bit problematic to produce (Engelmann 2011). The development of
efficient techniques to ensure its safe preservation is, therefore, of paramount
importance. A lot of efforts have been made to improve the quality and conservation
methodologies by field gene banks and botanic gardens. However, clearly alternative
approaches to plant genetic conservation are needed, and since the early 1970s,
attention has turned to the possibilities offered by biotechnology, specifically in vitro
culture system. Besides the conventional forms of protection of economically
important and threatened species in the past decades, advancements in biotechnol-
ogy and especially in the area of in vitro culture techniques led to the development of
procedures that can be used as an excellent tool in plant conservation (Maryam et al.
2014). Plant tissue culture systems allow propagating plant material in an aseptic
environment with high multiplication rates (Sharma et al. 2018). Disease-free clones
can be obtained through meristem culture in combination with different therapies
such as chemo-, thermo-, and electrotherapy, thus ensuring the production of
disease-free stock materials and simplifying procedures for the germplasm exchange
throughout the world (Singh et al. 2018). The miniaturization of explants allows
reducing space requirements and, consequently, labor costs for the maintenance of
plant germplasm. In vitro conservation protocols have been established for ample
plant species, including a number of endangered species (Chauhan et al. 2016;
Kamińska et al. 2016, 2018). In addition, another importance of ex situ conservation
is that it is an internationally accepted strategy, as stated in the Global Strategy for
Plant Conservation (UNEP 2002), and is frequently employed by a number of
organizations known for biodiversity conservation (Sarasan et al. 2006). Plant tissue
culture technique has been reported as an effective tool to conserve many plant
species, especially of tropical origin (Engelmann 1991). For the short- and mid-term
conservations, various techniques have been developed, which not only results in
slow growth of the cultures but also prolongs the time interval between two sub-
cultures (Cha-um and Kirdmanee 2007; Cordeiro et al. 2014).

2 Germplasm Storage Strategies

The maintenance of plant stocks or material under aseptic and adequate environ-
mental conditions can be conducted using the two main approaches. The first one of
these approaches is based on conserving material without disturbing its growth, i.e.,
successive transfer in a fresh medium, while the second one is based on conservation
under slow-growth condition (Withers 1980; Engelmann 1991; Sarasan et al. 2006;
Novikova et al. 2008). The shortcomings of a successive transfer are an increase in
work expenses and the consumption of basic materials and nutrients (Cordeiro et al.
2014). It should also be taken into consideration that long-term subculture can be
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followed by a decrease and/or the loss of the morphogenetic potential of the culture
as well as by an increase in the probability of genetic changes during long-term
subculturing (Joy et al. 1991; Bessembinder et al. 1993; Hao and Deng 2003).
Furthermore, there is a risk of losing propagating material as a result of a human
errors or microbial contamination in the process of subculture (Grout 1990); there-
fore, it is advisable to reduce frequent interventions during conservation.

With due regard for all these factors, in vitro culture under slow-growth condi-
tions is supposed to be the most effective method of plant germplasm conservation.
The use of this approach is aimed at slowing down the growth of cultures and
prolonging the interval between two successive transfers (Cordeiro et al. 2014), as
well as raising the degree of safety during the conservation of cultures as a result of a
decrease in interferences in a culture system and the minimization of the risk of
contamination during subculture (Grout 1990; Engelmann 2011). The success of the
use of certain approach depends on numerous factors, such as the possibility of
extending the time period between two successive transfer, how long the influence of
a limiting factor lasts until the moment when that factor begins to negatively affect
the culture, and how fast the regular developmental functions could be restored after
reverting to standard culture conditions (Grout 1990). The essential condition for
using slow-growth procedures is the study of vital capacities of various kinds of
cultures and the stability/instability of the preserved material (Shibli et al. 2006; Rai
et al. 2009).

3 Slow-Growth Storage Technique

Slow-growth storage (also known as mid-term conservation) is based on the reduc-
tion of the metabolic activity, i.e., the growth rate of in vitro cultures by maintaining
them on modified growth medium or in altered culture conditions (Lambardi and
Ozudogru 2013). The motto is to prolong the duration between two subcultures
(depending on the species) of in vitro cultures without negatively affecting their
regrowth potential. Reduction in the growth of in vitro cultures is generally achieved
by modifying the culture medium and/or the culture conditions (Engelmann 1998,
2004). Among these approaches, the most widely applied practice is temperature
reduction, which can popularly be coupled with a decrease in light intensity or
incubation of culture in the dark condition (Engelmann 2011). A number of tropical
species often show their susceptibility to low-temperature damage and hence can be
stored at a comparatively higher temperature, which further depends on the cold
sensitivity of the species (Engelmann 2011). And, to maintain in vitro culture, it
should be subsequently subcultured under standard culture conditions to avoid
contamination and/or deterioration of stock materials (Niino and Arizaga 2015).
Manipulations of the culture medium may include dilution of mineral elements,
reduction/enhancement of sugar concentration, changes in nature and/or concentra-
tion of plant growth regulators, and an addition of osmotically active compounds.
Moreover, in a few cases, plant growth retardants were also applied (Acedo and
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Arradaza 2012; Trejgell et al. 2015). Various parameters influence the efficiency of
in vitro slow-growth storage procedures that includes the selection of explants, its
chemical/physiological state during storage, the type of culture vessel, its volume, as
well as the volume of a culture medium used for storage (Niino and Arizaga 2015,
Engelmann 1991).

4 Low-Temperature Storage

The most extensively applied technique is temperature reduction, which can be
pooled with a decrease in the light intensity or by maintaining the cultures in the
dark conditions. Tropical and sub-tropical plant species are often cold-sensitive and
have to be stored at higher temperatures, which depend on the cold sensitivity of the
particular species. Potato in vitro plants can be stored at 7 �C without transfer for up
to 18 months (Gopal and Chauhan 2010). Other species such as Ananas are much
more cold-sensitive since the 66 accessions of Ananas shoot cultures have to be
conserved at temperatures higher than 20 �C (Souza et al. 2004; Silva et al. 2016).

In vitro slow-growth storage procedures are being frequently used for medium-
term conservation of a number of species, both from tropical and temperate origins,
including crop and medicinal plants, e.g., Coffea, Vitis, Musa, and Acorus (Nassar
2003; Sajid et al. 2006; Kulkarni and Ganapathi 2009; Quraishi et al. 2017), and rare
and endangered species (Thakur et al. 2015; Chauhan et al. 2016). However, if
in vitro conservation appears as a simple and practical option for long-term conser-
vation of various species and has extensive medium-term applications, its imple-
mentation still requires customization for any new species; continuous inputs are
mandatory, and a question remains in regard to the clonal fidelity of the stored
species. Moreover, it is not always possible to apply a single protocol for preserving
genetically diverse species. For example, slow-growth storage experimentation
performed with an in vitro collection of Ananas germplasm including 66 accessions
revealed a huge variability in the response of the accessions to the storage conditions
(Silva et al. 2016). Some of them showed somaclonal variation during storage, while
others did not show any erosion.

Plant species storage at non-freezing low temperatures has been very successful
(Koc et al. 2014). At lower temperature regime, the aging of the plant cells/tissues is
slowed down but not completely stopped. Consequently, successive transfer of the
plant material is necessary although very infrequently. Some examples where
shoots/plants have been stored with different strategies of slow growth for various
durations are listed in Table 1.

Preil and Hoffmann (1985) stored approx. 700 breeding lines of Chrysanthemum
at 2–3 �C in the diffused light of 10–15 lux. At this condition, few of the lines
survived up to 5 years, and the authors noticed that aeration of the cultures played a
crucial role in storage. In the poor gas exchange conditions, the shoots became
vitrified. Cold storage at a temperature of 10 �C in the diffuse light also induces
vitrification of Cheiranthera volubilis shoots and, thus, reduces survival too
(Williams and Taji 1987).
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The double-node cuttings of Drosophyllum lusitanicum could be kept alive for
8 months at 5 �C in growth-limiting condition (Gonçalves and Romano 2007).
Low-temperature storage has been applied with most promising results to in vitro
shoot/plantlet cultures and less successfully to undifferentiated cell cultures. Slow-
growth can retard the loss of totipotency of cultured cells/tissue and the ability to
synthesize secondary metabolites too in callus cultures stored for relatively short
periods (Seitz 1987). The storage temperature usually depends on the sensitivity of
the species. Whereas for temperate species it ranges from 5 to 9 �C, for tropical
species, it is often much higher (Kulkarni and Ganapathi 2009). Shoot tips of
Actinidia spp. could be maintained at 8 �C for 52 weeks with 100% survival
(Monette 1987). The shoots retrieved after a storage period appeared normal in
respect to growth and proliferation rates. Similarly, the cultures of Colocasia
esculenta, another tropical species, conserved for 3 years at 9 �C (Zandvoort and
Staritsky 1986). On the contrary, Musa cell suspension cultures were not able to
tolerate temperatures lower than 15 �C (Kulkarni and Ganapathi 2009). Few banana
cultivars that were stored below 15 �C suffered damage within 3 months (Withers
and Williams 1986). At 15 �C some of the accessions of banana survived up to
17 months with a viability of 92%, but in others, viability was sharply reduced to
50% within 13 months (Withers and Williams 1986). According to Watt et al.
(2009), the best condition for the storage of globular somatic embryos of Saccharum
spp. is to place them on ½-strength MS medium (Murashige and Skoog 1962)
supplemented with only 10 g L�1 of sucrose and incubate at 18 or 24 �C. Saccharum
spp. stored under these conditions for 8 months showed approx. 80% survival, and
most of the plants appeared normal. Similarly, cassava plantlets must be stored at
temperatures higher than 20 �C (Roca et al. 1984). The low-temperature storage
protocols of maintaining in vitro cultures hold great promise in the nursery industries
(Preil and Hoffmann 1985). During the periods of low demand for a particular
species or variety for which potential markets exist in the future, the in vitro cultures
may be efficiently shelved in normal refrigerators and the time and, consequently,
money required to maintain them by successive transfer or restarting fresh cultures
saved. This methodology may also apply to research stocks for further experimen-
tation. However, one of the expected limitations in low-temperature storage of plant
germplasm may be the gradual habituation of some materials to slow-growth
conditions (Withers 1991).

5 Minimal Medium

By modifying the medium composition usually by reducing the sugar content,
minerals, growth regulators, or osmotic agents such as sorbitol and mannitol,
inhibition of cell division can be achieved, which significantly limits both callus
formation and shoot development (Shibli et al. 2006; Lambardi and Ozudogru
2013). In this context, the in vitro slow-growth storage of Elettaria cardamomum
was achieved on the half-strength MS, fortified with 30 g L�1 of sucrose, of which
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about 70% of the cultures survived up to 18 months at 25 �C (Tyagi et al. 2009). A
regrowth potential of 96% was obtained by culturing nodal explants excised from
18-month-old conserved cultures of E. cardamomum.

Photinia sp. micro-shoots were able to store at 4 �C and up to 15 months in a
combination of sucrose and mannitol 15 g L�1 each containing QL medium (Quoirin
and Lepoivre 1977) with more than 90% of survival rate (Akdemir et al. 2010). The
stored materials were further recovered and found to proliferate normally in 1 mg L�1

BA supplemented QL medium. The micro-plants of six genotypes of Solanum
tuberosum could be preserved for up to 12 months, without any phenotypic abnor-
malities, and had enough nodes for further subculturing. The conservation was
conducted at 24 �C in the MS medium supplemented with 20 g L�1 sucrose along
with 40 g L�1 sorbitol at a photoperiod of 16/8 h, in which the survival rate was 77.8%
(Gopal et al. 2002). This approach was an effective alternative to low-temperature
(6–8 �C) storage, especially for the species of tropical and sub-tropical origins, where
summer temperature may reach up to 45–50 �C (Gopal et al. 2002).

The effects of osmotic doses along with different temperature regimes were found
efficient for tuber- or bulb-producing species. MS medium, comprising 3% (w/v)
sucrose, 4% (w/v) sorbitol, and 1 mg L�1 ancymidol, was seen to be the best suited
for slow-growth storage of in vitro cultured crowns of Asparagus officinalis
(Fletcher 1994), in which crowns were stored at 6 �C for 16 months and were
regrown with 100% survival. Similarly, Bonnier and van Tuyl (1997) successfully
stored the in vitro bulblet of Lilium spp. for a period of 28 months at 25 �C on
¼-strength MS medium supplemented with 9% (w/v) sucrose. Afterward, these
cultures were successfully regenerated with a survival rate of 92%.

Further, the combined effects of sucrose, mannitol, and photoperiod were
assessed at 6 �C of temperature for the conservation of micro-shoots of S. tuberosum
by Sarkar and Naik (1998). Their slow-growth media were comprised of 30, 40,
50, 60, 70, or 80 g L�1 sucrose along with 20, 40, or 60 g L�1 of mannitol. Over
30 months of storage, sucrose alone did not improve the viability of these cultures.
However, the addition of 20 g L�1 of mannitol in the storage medium increased the
survival rate (83%) of micro-shoots. Further, in order to in vitro conserve the
Saccharum officinarum germplasms, lateral buds onto the MS medium with an
osmoticum were screened (Sarwar and Siddiqui 2004). In the 2% mannitol (w/v)-
supplemented MS medium, the lateral buds were healthy up to 165 days and with
75% survival rate, while the cultures with 3% (w/v) mannitol showed 100% survival
up to 105 days only, at 17 �C of temperature; conducted study also suggested that
low temperature (10 �C) was unfavorable for in vitro storage of S. officinarum under
both light and dark conditions.

The in vitro shoot tips of Vanilla planifolia could successfully be maintained for
more than 1 year, without subculturing, on the MS medium supplemented with
15 g L�1 each of sucrose and mannitol, at 22 �C and with 90% recovery (Divakaran
et al. 2006). After few years of this report, the in vitro shoots of Saccharum sp. were
successfully stored in the½-strength MS medium amended with 30 g L�1 sorbitol, at
both 18 and 24 �C for a duration of 8 months (Watt et al. 2009). The highest survival
percentage and shoot regrowth (90%) were observed in cultures stored at 18 �C.
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Studies pertaining to in vitro preservations of Dianthus spiculifolius and
D. tenuifolius were performed (Mitoi et al. 2009), in which addition of 0.16 and
0.32 M mannitol in the MS medium, in combination with vitamin of B5 medium
(Gamborg et al. 1968), was found to be most suitable for their conservation and
regeneration after 6 months of storage at 25 �C. The addition of mannitol (58.4 mM)
in the MS medium was found best for 7 months’ storage at 5 �C of Prunus sp. with a
survival rate of 100% (Marino et al. 2010). In the case of Podophyllum peltatum,
storage of micro-shoots at 10 and 25 �C of temperatures revealed 100% survival after
the addition of mannitol (2%, w/v) or sorbitol (2%, w/v) to the MS medium (Lata
et al. 2010). However, a negative impact of both the osmoticum, in terms of shoot
proliferation rate, was there when stored micro-shoots were cultured on a recovery
medium (Lata et al. 2010). Likewise, the shoot tips of Pyrus sp. could be stored
successfully on the MS medium containing 2.5% (w/v) mannitol, with highest
survival (63.41%) and regeneration (58.81%) potentials at 25 �C (Ahmed and
Anjum 2010). The efficiencies of sucrose, mannitol, or sorbitol, in a series of
concentrations (3%, 6%, 9%, or 12%, w/v), were assessed for storage of Stevia
rebaudiana micro-shoots (Shatnawi et al. 2011). Afterward, a dose of 3–9% (w/v)
sucrose was found to favor higher survival (94.6%) of micro-shoots even after their
storage for 32 weeks. However, under dark storage, the survival rate of these cultures
was reduced significantly. The micro-shoots of two Pistacia vera cultivars were
maintained at 4 �C in the dark conditions for 12 months in the MS medium
containing 2% (w/v) of mannitol (Akdemir et al. 2013). More than 90% of prolif-
eration in the micro-shoots of both the cultivars was observed after 12 months of
storage.

6 Application of Growth Retardant

Growth retardants are natural/synthetic chemical compounds that can be applied in
the culture medium to change vital processes by modifying hormonal balance in a
plant in vitro (Espindula et al. 2009). Growth retardants act as signalling compounds
in the regulation of plant growth and development. They typically bind to receivers in
the plant and induce a series of cell changes that can affect the initiation/modification
of tissue development (Espindula et al. 2009). The augmentation of plant growth
inhibitors in the culture medium is also a significant measure to retard cell growth;
such inhibitors include abscisic acid (ABA), maleic hydrazide, paclobutrazol, and
few others (Renau-Morata et al. 2006; Sharma et al. 2012; Trejgell et al. 2015).

Kovalchuk et al. (2009) successfully conserved the micro-shoots of Malus
domestica for 21 months in the MS medium augmented with 1 mg L�1 of ABA at
4 �C, whileGlycyrrhiza glabra shoot apices cultures responded best for storage up to
6 months, when incubated at 10 �C under a dark condition in 5 mg L�1 ancymidol,
0.1 mg L�1 ABA, and 1 mg L�1 polyethylene glycol (Srivastava et al. 2013).
Addition of 9.5 μMABA and 1.5% (w/v) each of sucrose and sorbitol could enhance
survival and proliferation of 9-month-old micro-shoots of Senecio macrophyllus
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during their re-culture in optimal conditions, compared to those cultures stored on
the MS medium lacking ABA (Trejgell et al. 2015).

Recently, the subculture duration of Tetrastigma hemsleyanum micro-shoots was
significantly prolonged up to 10 months, by using 0.2 mg L�1 of maleic hydrazide
8 �C with 8/16 h photoperiod (Peng et al. 2015). In this study, the addition of growth
retardants such as ABA, chlormequat, and paclobutrazol did not improve
T. hemsleyanum micro-shoot survival at both 8 and 25 �C of temperatures.

7 Slow-Growth Storage of Elite Tree Species

In vitro propagation technique plays a key role in increasing the production of
woody plants and the re-establishment of threatened plant germplasms (Quraishi
2013). However, those techniques involve periodic subculturing of cultures to
change the gaseous state of the vessels and to refresh the components of a medium
(Ozden-Tokatli et al. 2010). Plant biodiversity comprises ample old mature tree
diversity having various featuring characteristics such as Ginkgo biloba: the living
fossil or the Taxus trees famous for their anti-cancer bioactive compound. For the
exploitation and conservation of such elite clones, slow-growth storage can be useful
as few hard-wood species efficiently conserved through these techniques.

Pistacia lentiscus can be efficiently stored in 6months at 4 �C in the dark (Koc et al.
2014). Further, the response of mannitol was examined for mid-term conservation of
Eucalyptus ventricosum (Negash et al. 2001). E. ventricosum could be effectively
conserved up to 6 months’ duration at 15 �C. Similarly, in vitro shoot tips of Malus
pumilawere stored at 4 �C on theMurashige and Tucker (1969) medium fortified with
2% (w/v) each of sucrose andmannitol, in which all the shoot tips were able to survive
up to 12 months of storage, revealing 100% recovery (Hao and Deng 2003). The
mid-term storage of Eucalyptus grandis shoot cultures was achieved for up to
10 months by the addition of 10 mg L�1 of ABA at 25 �C of temperature (Watt
et al. 2000). In this approach, reductions in the light intensity and addition of mannitol
to the MS medium were found to be less effective for the conservation of E. grandis.
Very recently, 45 or 60 g L�1 of sucrose fortified DKWmedium (Driver andKuniyuki
1984) was found to be suitable for in vitro conservation of Prunus avium shoots
(Ozudogru et al. 2017). At 4 �C and under dark condition, these cultures survived up to
16 months of time. However, the inclusion of mannitol in the storage medium did not
reveal any significant impact on shoot quality of P. avium.

8 Conclusion

For long-term storage, cryopreservation, i.e., storage at an ultra-low temperature,
usually that of liquid nitrogen (�196 �C), is the only method. At this temperature, all
cellular divisions and metabolic processes are stopped. The plant material can thus
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be stored without alteration or modification for a theoretically unlimited period of
time (Barraco et al. 2013). However, the main difficulties associated with long-term
maintenance of in vitro cultures are that the procedure is a bit problematic, highly
technical, and expensive as it involves the huge amount of resources and labor (Rao
2004; Capuana and Lonardo 2013). In vitro slow growth, therefore, represents a
possible solution for mid- to long-term storage of plant materials in limited space and
at reduced costs. Furthermore, slow-growth procedures allow clonal plant conser-
vation for several months to years (depending upon the species) under aseptic
conditions, requiring infrequent subculturing (Cha-um and Kirdmanee 2007). Of
the numerous methodologies tried for short-/medium-term conservation of
germplasms, lowering the temperature regime of culture has been most accepted
so far and is being used for routine maintenance of germplasm of a range of plant
species (Withers 1991).
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Synthetic Seeds: Prospects and Advances
in Cryopreservation

Débora de Oliveira Prudente, Lucas Batista de Souza, and Renato Paiva

Abstract Long-term storage of synthetic seeds can be accomplished using cryo-
preservation techniques. Cryopreservation allows the viability of encapsulated plant
material to be conserved and maintained over a long period without modifications or
genetic changes because the material is exposed to ultralow temperatures in liquid
nitrogen (�196 �C), which decreases or even halts cellular metabolism. Cryopres-
ervation has been found to be practical and efficient for the conservation of many
species due to the small volume of material needed for storage, the simplification of
transportation procedures and the minimal maintenance required compared to con-
ventional storage methods. The main cryopreservation techniques applied to syn-
thetic seeds are encapsulation-dehydration and encapsulation-vitrification. These
techniques have been shown to be highly applicable for small explants that are
sensitive to the conventional cryopreservation process, such as meristems and
somatic embryos. However, the success of cryopreservation techniques for synthetic
seeds depends on the type of encapsulated explant, on the capsule constitution and
consistency and on research on the different cryopreservation stages in order to
optimize the survival and regeneration of the plant material. Therefore, the present
chapter is based on studies of the different stages of cryopreservation related to
encapsulation techniques developed over time and on the major advances and
innovations in cryopreservation.

Keywords Long-term storage · Plant germplasm · Cryopreservation ·
Encapsulation-dehydration · Encapsulation-vitrification

1 Introduction

The problems associated with the difficulty of germinating and storing recalcitrant
species can be minimized through a plant tissue culture technique. This technique
consists of encapsulating somatic embryos, shoot apices and lateral buds, among
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other types of explants, in a matrix composed of gelling substances, giving rise to
synthetic seeds (Neal Stewart 2016).

The use of synthetic seed technology has increased significantly in recent years,
as it is a rapid and efficient asexual propagation method (Rai et al. 2009). Encapsu-
lation also facilitates the exchange of genetic material and has been gaining prom-
inence in germplasm conservation (Matsumoto 2017).

For the short term, synthetic seeds are stored under aseptic conditions and
reduced to a temperature of 4 �C for a maximum of 12 months (Javed et al. 2017).
For long-term storage, cryopreservation is recommended because it is a technique
for storing living biological material at an ultralow temperature (�196 �C). Under
these conditions, the occurrence of thermally driven metabolic reactions is low or
nonexistent, guaranteeing the viability of the biological material without modifica-
tion or genetic alteration over time (Engelmann 2011).

Cryopreservation can be applied for the conservation of different types of
explants such as protoplasts, cell suspensions, embryogenic calli, shoot apices,
lateral buds, seeds, zygotic embryos and somatic embryos (Benson 2008). Cryo-
genic collections, i.e., the set of cryopreserved samples from the various types of
explants, are kept in small spaces, remaining protected from contamination and
requiring minimal maintenance (Engelmann 2004; Wyse et al. 2018). In addition,
the cost of long-term storage in a cryogenic bank is lower than that of other available
genetic material conservation systems, such as field germplasm banks and slow-
growth in vitro conservation (Dulloo et al. 2009; Kushnarenko et al. 2018).

Themain cryopreservation techniques applied to synthetic seeds include encapsulation-
dehydration and encapsulation-vitrification. In encapsulation-dehydration, the encap-
sulated explants undergo physical dehydration, which rapidly removes large volumes
of water from the capsules (Panis et al. 2005). Encapsulation-vitrification is based on
osmotic dehydration, which is strictly dependent on the increased viscosity of the
dehydrating solution due to the high concentration of solutes in solution (Sakai and
Engelmann 2007).

In cryopreservation protocols, it is essential to avoid ice crystal formation in the
intracellular environment (Mazur 1984). Increasing viscosity reduces ice crystal for-
mation in plant cells, but the vitrification state of the cytoplasm is unstable, especially
during the capsule reheating step, which is necessary for thawing the material to be
regenerated. At this stage, large ice crystals may form when the cytoplasm begins to
pass from the vitrified to the liquid state, which is characterized by recrystallization
(Mazur 1984). To avoid recrystallization, the material must be removed from liquid
nitrogen and rapidly reheated (Benson 2008). The vitreous state may be induced by
using cryoprotective solutions or dehydration techniques (Sakai et al. 2008).

Ice crystal formation can be prevented by dehydrating the capsules, without
affecting the explants enveloped by these capsules (Engelmann 2011). Encapsula-
tion is mainly required for small explants, such as meristems, buds and somatic
embryos. In addition, encapsulation facilitates handling and protects structures that
will be immersed in liquid nitrogen against possible damage caused by cooling,
making the explants more resistant to potentially lethal treatments (Paulet et al. 1993;
Bachiri et al. 1995; Matsumoto 2017).
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In this context, it is evident that cryopreservation for conserving synthetic seeds
has high applicability. However, studies on capsule constitution and consistency,
in vitro culture conditions and adjustments to the different steps of synthetic seed
cryopreservation techniques are necessary to ensure high rates of survival and
regeneration of the plant material.

2 Modification of Cryopreservation Protocols of Synthetic
Seeds: Encapsulation-Dehydration and Encapsulation-
Vitrification

2.1 Type of Explants

The choice of the appropriate cryopreservation protocol for each type of explant
depends primarily on the physiological state of the cells and tissues that will be
cryopreserved. Explants from young and healthy plants should be prioritized
because they exhibit less oxidation throughout the process, although mature tissues
are also frequently used (Gulati 2018).

In general, small structures are more appropriate for cryopreservation, since their
dehydration and freezing occur more rapidly and uniformly and their cells have
reduced vacuoles and dense cytoplasm, resulting in decreased cell volume retraction
(Volk and Caspersen 2007).

Explants from species that propagate vegetatively have great applicability for the
conservation of selected varieties with characteristics of interest (Engelmann 2004).
However, this type of plant material tends to be more sensitive to cellular dehydra-
tion, since meristems, shoot apices, axillary buds and somatic embryos have high
water content. In these cases, it is necessary to prepare the plant material before
cooling with increased care to maintain the integrity of the cellular structure to be
cryopreserved and intensify the membrane protective mechanisms against excessive
dehydration (Prudente and Paiva 2017; Reed 2018).

The encapsulation of explants facilitates tolerance to solutions with high sucrose
concentrations and protects against dehydration in a low-moisture environment,
which would be highly detrimental or lethal for nonencapsulated samples (Reed
2018). This technique has been successfully applied to a wide variety of plant
species from temperate and tropical climates, encompassing different types of
explants, as listed in Table 1.

2.2 Preconditioning

The first step of cryopreservation in some protocols is called the preculture phase. It
consists of a preparatory phase where explants are subjected to the conditions
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Table 1 List of plant species cryopreserved using the encapsulation-dehydration and
encapsulation-vitrification techniques

Species Encapsulation-dehydration
Encapsulation-
vitrification

African violet (Saintpaulia
ionantha)

ST (Moges et al. 2004) ST (Moges et al. 2004)

Air potato (Dioscorea
bulbifera)

– C (Ming-Hua and
Sen-Rong 2010)

Ajania (Ajania pacifica) ST (Kulus and Abratowska 2017) –

Alder (Alnus glutinosa) – –

Algarve (Plantago
algarbiensis)

NS (Coelho et al. 2014) –

Apple (Malus spp.) R (Bettoni et al. 2018)
ST (Niino and Sakai 1992; Li et al.
2015; Wang et al. 2018a, b)

ST (Wang et al. 2018a)

Arabidopsis (Arabidopsis
thaliana)

ST (Bonnart and Volk 2010) –

Asian madder (Rubia
akane)

– HR (Shin et al. 2014)

Asparagus (Asparagus
officinalis)

R (Carmona-Martin et al. 2018) ST (Jeon et al. 2015)

Avocado (Persea
americana)

– –

Banana (Musa spp.) M (Panis et al. 1996) –

Beech (Fagus sylvatica) – –

Blueberry (Vaccinium
corymbosum)

ST (Uchendu and Reed 2008; Kami
et al. 2009)

ST (Kami et al. 2009)

Blushred Rabdosia
(Rabdosia rubescens)

ST (Ai et al. 2012) –

Cassava (Manihot
esculenta)

ST (Engelmann and Takagi 2000) ST (Charoensub et al.
2004)

Chrysanthemum (Chrysan-
themum morifolium)

ST (Kulus et al. 2018a, b) ST (Lia et al. 2019)

Citrus (Citrus spp.) SE (Gonzalez-Arnao et al. 2000)
O (Gonzalez-Arnao et al. 2003)
ST (Rohini et al. 2016)

EC (Souza et al. 2017)

Cocoa (Theobroma cacao) – –

Common box (Buxus
hyrcana)

ST (Kaviani and Negandar 2017) –

Cranberry (Vaccinium
macrocarpon)

ST (Uchendu and Reed 2008; Kami
et al. 2009)

ST (Kami et al. 2009)

Date palm (Phoenix
dactylifera)

EC (Subaih et al. 2007) C (Al-Qurainy
et al. 2017)

EC (Subaih et al. 2007)
C (Al-Qurainy et al.
2017)

Eucalyptus (Eucalyptus
spp.)

ST (Kaya et al. 2013) –

Felty germander (Teucrium
polium)

ST (Rabba'a et al. 2012) –

(continued)
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Table 1 (continued)

Species Encapsulation-dehydration
Encapsulation-
vitrification

Fern (Osmunda regalis) – G (Makowski et al. 2016)

Garlic (Allium sativum) NS (Lynch et al. 2016) –

Gentian (Gentiana spp.) – ST (Tanaka et al. 2004)

Grapevine (Vitis spp.) ST (Bi et al. 2017) ST (Bi et al. 2017)

Guinea hen weed (Petiveria
alliacea)

SE (Pettinelli et al. 2017) –

Hamlin sweet orange
(Citrus sinensis)

– –

Himalayan mulberry
(Morus laevigata)

NS (Choudhary et al. 2018) –

Hladnikia (Hladnikia
pastinacifolia)

ST (Ciringer et al. 2018) ST (Ciringer et al. 2018)

Horseradish (Armoracia
rusticana)

ST (Phunchindawan et al. 1997) ST (Phunchindawan et al.
1997)

Kiwifruit (Actinidia
chinensis)

– –

Maize (Zea mays) ZE (Thobunluepop et al. 2009) –

Mandevilla (Mandevilla
moricandiana)

NS (Cordeiro et al. 2014) –

Mangaba tree (Hancornia
speciosa)

– –

Mint (Mentha � piperita) ST (Martín et al. 2015; Gonzalez-
Benito et al. 2016)

–

Oak (Quercus robur) – –

Olive (Olea europaea) SE (Shibli and Al-Juboory 2000) SE (Shibli and
Al-Juboory 2000)

Orchids (Orchidaceae) P, ST (Popova et al. 2016) –

Papaya (Carica papaya) – –

Passion fruit (Passiflora
spp.)

– ST (Garcia et al. 2011;
Merhy et al. 2014)

Pineapple (Ananas
comosus)

ST (Gonzalez-Arnao et al. 1998) ST (Gamez-Pastrana
et al. 2004)

Potato (Solanum
tuberosum)

ST (Zarghami et al. 2008) M, B (Hirai and Sakai
1999; Li et al. 2017)

Red raspberry (Rubus
idaeus)

– –

Redwood (Sequoia
sempervirens)

ST (Halmagyi and Deliu 2011) B (Ozudogru et al. 2011)

Rose (Rosa hybrida) IFEs (Mubbarakh et al. 2014) –

Shih (Artemisia herba-
alba)

ST (Sharaf et al. 2012) ST (Sharaf et al. 2012)

Small murici (Byrsonima
intermedia)

– –

Soybean (Glycine max) – –

(continued)
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necessary for tolerance to critical stages such as cellular dehydration (Mathew et al.
2018). After water removal, the solutes become more concentrated in the intracel-
lular environment, which can result in an increased rate of destructive chemical
reactions, as the ionic potential and pH of the intracellular solution will change,
modifying the cell’s metabolic status (Kramer and Boyer 1995; Prudente and Paiva
2017).

The success of a cryopreservation protocol therefore depends on dehydrating the
cell to a water content low enough to prevent intracellular crystal formation but not
so low as to cause injury due to dehydration.

The hydroxyl groups of the sugars will bind via hydrogen bonds to the hydro-
philic groups of the polar heads of phospholipids and of the proteins in the cell
membrane bilayer to maintain the hydrophilic structures in their hydrated confor-
mation even after water has been removed (Crowe et al. 1987; Lynch et al. 2011).

In this phase, progressively increasing the concentration of sugars and/or
supplementing the culture medium with cryoprotective compounds, such as antiox-
idants, alcohols, amines and other substances, for a given period (hours to weeks,
depending on the culture) are essential procedures for the survival of the plant
material (Table 2).

Table 1 (continued)

Species Encapsulation-dehydration
Encapsulation-
vitrification

St John’s wort (Hypericum
spp.)

M (Brunakova and Cellarova 2016) –

Strawberry (Fragaria �
ananassa)

ST (Clavero-Ramirez et al. 2005) –

Sugarcane (Saccharum
officinarum)

ST (Barraco et al. 2011; Rafique et al.
2016)

ST (Kaya and Souza
2017)

Sweet potato (Ipomoea
batatas)

ST (Agbidinoukoun et al. 2018) –

Thyme (Thymus spp.) – ST (Ozudogru and Kaya
2012)

Tobacco (Nicotiana
tabacum)

– ST (Uchendu et al. 2013)

Todsen’s pennyroyal
(Hedeoma todsenii)

ST (Pence et al. 2017) ST (Pence et al. 2017)

Tomato (Solanum
lycopersicum)

ST (Al-Abdallat et al. 2017) –

Wasabi (Wasabia japonica) – M (Matsumoto et al.
1995)

Wheat (Triticum aestivum) S (le Roux et al. 2016) S (le Roux et al. 2016)

Yam (Dioscorea alata and
D. cayenensis)

ST (Uchendu and Keller 2016) –

C calli, EC embryogenic cultures,Mmeristems, NS nodal segments, P protocorms, R roots, S seeds,
SE somatic embryos, ZE zygotic embryos, ST shoot tips, G gametophytes, B buds, IFEs in vitro
fragmented explants
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Table 2 Cryoprotective compounds added to the preculture medium

Cryoprotectants References

Antioxidants

Ascorbic acid Wang et al. (2005), Gonzalez-Benito et al. (2016)

Citric acid Wang et al. (2005)

Glutathione Gonzalez-Benito et al. (2016)

Lipoic acid Uchendu et al. (2010)

Melatonin Ren et al. (2014), Uchendu et al. (2014)

Salicylic acid Pathirana et al. (2016), Volk et al. (2018)

Tocopherol Gonzalez-Benito et al. (2016)

Alcohols and derivatives

Ethylene glycol Paul et al. (2000), Kumar and Sharma (2005), Chandrabalan et al.
(2011)

Glycerol Bi et al. (2018), Chen et al. (2018), Salama et al. (2018)

Propylene glycol Fabian et al. (2008)

Sugars and sugar alcohols

Fructose Sipen et al. (2011)

Galactose Dumet et al. (1994)

Glucose Suzuki et al. (2008), Sipen et al. (2011)

Mannitol Van Eck and Keen (2009), Sipen et al. (2011)

Raffinose Bustam et al. (2016)

Sorbitol Fatima et al. (2009)

Sucrose Sipen et al. (2011), Prudente et al. (2017), Bi et al. (2018), Ciringer
et al. (2018)

Trehalose Sipen et al. (2011)

Polymers

Polyethylene glycol
(PEG)

Paques et al. (1996)

Polyvinylpyrrolidone
(PVP)

Wang et al. (2005), Uchendu et al. (2010)

Sulphoxides and amides

Dimethyl sulphoxide Suranthran et al. (2012), Zhang et al. (2014), Lineros et al. (2018)

Amines

Betaine Uchendu et al. (2010)

Glutamine Ryynahen and Haggman (1999), Uchendu et al. (2010)

Glycine betaine Uchendu et al. (2010), Prudente et al. (2017)

Phenylalanine –

Proline Lynch et al. (2011), Prudente et al. (2017), Lineros et al. (2018)

Others

Abscisic acid (ABA) Kulus et al. (2018a, b)

Coconut water Distabanjong et al. (2015)

Polyamines Ramon et al. (2002)
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The addition of these compounds, which have characteristics that allow greater
interaction with macromolecules such as DNA, RNA, proteins and phospholipids,
plays an active role in regulating the physical and chemical properties of membranes
and in modulating enzymatic activities (Galston and Sawhney 1990; Pieruzzi et al.
2011). Additionally, these compounds protect the cells against reactive oxygen
species (ROS) reactions capable of causing lipid peroxidation, a process responsible
for altering membrane integrity by denaturing proteins and causing nucleic acid
rupture (Baťková et al. 2008; Uchendu et al. 2010).

For Chrysanthemum ‘Lady Orange’ shoot tips, the composition of the culture
medium used during preculture had a significant influence on the survival and
regeneration potential of the plant material, with increased survival observed for
explants grown in medium supplemented with 0.06 M sucrose for 7 days (Zalewska
and Kulus 2013). Similar results were observed in the cryopreservation of encapsu-
lated and precultured Rabdosia rubescens shoot tips in medium containing a high
sucrose concentration (0.4 M) combined with 2.0 M glycerol, which produced a
regeneration rate of 85% (Ai et al. 2012).

However, for some types of explants, preculture directly in a culture medium with
high sucrose content may be toxic and cause tissue oxidation, leading to a very low
explant survival rate (Feng et al. 2013). Thus, the success of a cryopreservation
protocol may be associated with modifications made to specific steps of standard
protocols, according to the requirements of each explant and/or species under study.

2.3 Encapsulation and Dehydration

After preculturing the explants, the next step is to encapsulate them for subsequent
dehydration and cooling. Explant encapsulation facilitates tolerance to methods
employing low-moisture content, which would be highly detrimental or lethal for
nonencapsulated samples. Dehydration can be accomplished rapidly through phys-
ical dehydration by exposing the newly prepared capsules over a predetermined
period to conditions necessary for the abrupt withdrawal of water content from the
capsules. This method is called encapsulation-dehydration and was developed by
Fabre and Dereuddre (1990) (Fig. 1a). Osmotic dehydration, which is called
encapsulation-vitrification and was first used in 1995 by Matsumoto et al., is a
slower method than the former procedure. This technique consists of immersing
the capsules into one or more solutions that allow the cell to tolerate the physical and
chemical changes related to cooling and reheating, extracting water molecules from
the intracellular environment and replacing them with sugar and other vitrifying
compounds (Fig. 1b).

Physical dehydration of the encapsulated material occurs continuously and can be
achieved by exposing the material in an open container to continuous ventilation in a
laminar flow chamber. Generally, the temperature and relative humidity of the
environment are not controlled in this type of dehydration and may vary according
to locality and climatic conditions, but the decrease in water content should be
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controlled over the tested time for accuracy and repeatability of the protocol
(Pammenter et al. 2002).

The use of hermetically sealed containers containing silica gel or saturated salt
solutions is a relatively rapid method compared to laminar flow drying. The use of
chambers containing saturated salt solutions has the advantage of controlling the
relative humidity of the environment promoted by each salt at a given temperature,
thus promoting a relative humidity balance between the material to be desiccated and
the environment induced by the salt solution (Medeiros et al. 2006). Salts such as
sodium chloride (75% relative humidity at 25 �C), sodium nitrite (64% relative
humidity at 25 �C), calcium nitrate (52% relative humidity at 25 �C), magnesium
(53% relative humidity at 25 �C), potassium hydroxide (8% relative humidity at
25 �C) and others are used in the preparation of saturated salt solutions for desicca-
tion (Chen 2004).

Osmotic dehydration can be initiated by immersing the capsules in the loading
solution, typically consisting of 0.4 M sucrose and 2.0 M glycerol, for 20 min at

Fig. 1 Synthetic seed during osmotic dehydration (a) and physical dehydration with silica gel
beads and inside a laminar flow hood (b)
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room temperature, as a means of preparing the material for exposure to the vitrifi-
cation solution. After exposure to the loading solution, the explants are immersed in
cryoprotectants, such as plant vitrification solution 2 (PVS2: 3.26 M glycerol
+2.42 M ethylene glycol +1.9 M dimethyl sulphoxide (DMSO) + 0.4 M sucrose at
0 �C) or plant vitrification solution 3 (PVS3: 50% glycerol +50% sucrose, at 0 �C), to
promote the artificial vitrification of the cytoplasm and confer greater stability to the
cell membranes during dehydration, avoiding injury due to chemical toxicity or
excessive osmotic stress.

2.4 Cooling and Reheating

During rapid cooling, the dehydrated capsules may be directly immersed in liquid
nitrogen or vitrification solution in cryotubes before immersion of the cryotubes in liquid
nitrogen, reaching cooling rates of approximately�200 �C min�1 (Stanwood 1985).

Reheating must be performed quickly because when reheating material freshly
removed from liquid nitrogen, temperatures between �15 �C and � 60 �C are
considered critical, since they represent the range in which ice crystal nucleation
and formation occur (Fowler and Toner 2006). The capsules may be immersed in a
water bath at 37–40 �C for heating (heating rate of approximately 250 �C min�1) for
a given period of time.

2.5 Post-Thaw and Growth Recovery

Reestablishing growth after cryopreservation is a critical phase of the technique. At
this point, the resumption of metabolic processes interrupted during capsule cooling
should occur with minimal physical and osmotic disturbances.

Sample thawing significantly affects cell integrity, which may result in the degra-
dation of cell wall-bound compounds (Tomaz et al. 2018). Thus, the composition of
the postculture medium can be altered over the dwell time of the explants in this phase.

The addition of activated charcoal and antioxidants to the postculture medium
within the first hours after thawing may reduce the osmotic stress caused by the
transfer of the explants to amediumwith low osmotic pressure. The aim is to eliminate
the phenolic compounds produced by dead cells that intensify oxidation reactions
(Thomas 2008). The culture conditions are also important, because studies have
shown that incubating the plant material in a postculture medium in the dark for a
short period of time can optimize the recovery and regeneration of the cryopreserved
structures by decreasing the photo-oxidation of the material (Gonzalez-Arnao and
Engelmann 2006).

After the critical period, the addition of growth regulators to the regeneration
medium and transfer of the material to conditions with a photoperiod may stimulate
cell proliferation and organ development (Prudente et al. 2017).
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Previous studies have shown that cryopreservation alone did not cause the imme-
diate death of protocorm-like bodies (PLBs) of the hybrid orchid Bratonia but
triggered injuries that progressively worsened, resulting in the death of PLBs during
postculture without the addition of stabilizing compounds (Popova et al. 2010).

Beads containing raspberry (Rubus idaeus L.) shoot tips were precultured in solid
MS (Murashige and Skoog 1962) medium, and the cultures were kept in the dark at
22 � 2 �C for 3 days and then transferred to the light conditions described for the
standard culture. This condition was essential for the success of the encapsulation-
vitrification and encapsulation-dehydration techniques applied to seven raspberry
genotypes, which achieved mean survival and regeneration rates of 71% and 68%,
respectively (Wang et al. 2005).

The cryopreservation of Vitis spp. shoot tips using the encapsulation-dehydration
protocol resulted in regeneration values of 60% and 40% when the explants were
postcultured in MS medium supplemented with 1 mg L�1 of 6-benzyladenine
(BA) and 0.1 mg L�1 of 1-naphthaleneacetic acid (NAA).

These results reinforce the importance of the postculture conditions after
reheating the samples to resume the growth of cryopreserved explants. It is evident
that modifications to the different steps of the cryopreservation protocol are explant
specific, in addition to being highly necessary to achieve the maximum survival and
regeneration of the plant material (Fig. 2).

3 Other Uses of Synthetic Seed Cryopreservation

Cryopreservation may also be used for purposes other than germplasm conservation.
Recently, cryopreservation was evaluated as a means of eliminating viruses from
infected plants, a strategy called plant cryotherapy (Prudente et al. 2018).

In cryotherapy, the biological material is immersed in liquid nitrogen for a short
period of time, usually 90 min (Cejas et al. 2012). Under these conditions, the
infected cells are eliminated because their structures are weakened, with only
the cells in the meristematic region being conserved (Wang and Valkonen 2009).
The selected and uninfected cells remain alive due to the application of procedures
that prevent water crystallization in the intracellular environment (Silva et al. 2013).

Considering the results of a decade of research, cryotherapy may be considered a
rapid method capable of facilitating or even replacing some traditional methods used
to eradicate plant microorganisms (Wang and Valkonen 2009). The main advantage
of cryotherapy is the ability to treat a large number of samples simultaneously
(Bhojwani and Dantu 2013), which confers speed to the method, decreases costs
and increases the frequency of virus-free plants after regeneration (Wang and
Valkonen 2009; Feng et al. 2013). Before beginning cryotherapy experiments, it is
necessary to establish an adequate dehydration strategy for the plant material to
reduce harm to the tissues, since the content of intracellular water is a critical factor
for the efficiency of cryotherapy protocols (Engelmann 2011).
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Several cryopreservation techniques have been successfully applied for cryother-
apy, including both encapsulation-dehydration (Wang et al. 2000, 2003; Bayati et al.
2011) and encapsulation-vitrification (Jeon et al. 2015) techniques.

4 Conclusion

Encapsulation-vitrification and encapsulation-dehydration protocols are highly effi-
cient methods for the cryopreservation of a wide variety of species and explants
sensitive to conventional cryopreservation methods.

Fig. 2 General schematic representation of the complete protocol for the encapsulation-
dehydration and encapsulation-vitrification techniques. EM establishment medium, LS loading
solution, PVS plant vitrification solution, RS recovery solution, bold arrows ¼ steps only required
for encapsulation-vitrification; slow cooling is an alternative and optional method
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Progress in the development and application of cryopreservation techniques will
be made through a better understanding of the mechanisms involved in inducing
explant tolerance to dehydration and cryopreservation after cooling. An equally
important issue is the specific modifications made during each cryopreservation
step, especially the addition of cryoprotective and osmoprotective compounds in
the preculture phase, adequate dehydration of sensitive explants and improvements
in the incubation conditions appropriate for the postculture phase and plant material
regeneration.

5 Future Perspectives

The growing interest in improving cryopreservation techniques has led to an increase
in the number of studies on the subject worldwide, making it possible, based on the
current state of the art for some species, to store large amounts of delicate tissues
using encapsulation, which has advantages such as the ease of handling explants. In
the last 20 years, valuable studies have been published. Increasingly, the incorpora-
tion of new technologies has guaranteed the refinement of cryopreservation tech-
niques and represents an advance for amplifying the genetic base of future varieties
and for transporting and producing explants that may be regenerated at any time of
the year.

References

Agbidinoukoun A, Doussoh A, Soussou Dangou J, Ahanhanzo C, Engelmann F (2018) Used of
encapsulation-dehydration technique for short-term preservation of endangered sweet potato
(Ipomoea batatas) cultivars. In Vitro Cell Dev Biol Plant 54:S40–S41

Ai P-F, Lu L-P, Song J-J (2012) Cryopreservation of in vitro-grown shoot-tips of Rabdosia
rubescens by encapsulation-dehydration and evaluation of their genetic stability. Plant Cell
Tissue Organ Cult 108:381–387

Al-Abdallat AM, Shibli RA, Akash MW, Rabbaa M, Al-Qudah T (2017) In vitro preservation of
transgenic tomato (Solanum lycopersicum L.) plants overexpressing the stress-related SlAREB1
transcription factor. Int J Mol Sci 18:19. https://doi.org/10.3390/ijms18071477

Al-Qurainy F et al (2017) Assessing genetic fidelity in regenerated plantlets of date palm cultivars
after cryopreservation. Fresenius Environ Bull 26:1727–1735

Bachiri Y, Gazeau C, Hansz J, Morisset C, Dereuddre J (1995) Successful cryopreservation of
suspension cells by encapsulation-dehydration. Plant Cell, Tissue and Organ Cult 43
(3):241–248

Barraco G, Sylvestre I, Engelmann F (2011) Comparing encapsulation-dehydration and droplet-
vitrification for cryopreservation of sugarcane (Saccharum spp.) shoot tips. Sci Hortic
130:320–324. https://doi.org/10.1016/j.scienta.2011.07.003

Baťková P, Pospíšilová J, Synková H (2008) Production of reactive oxygen species and develop-
ment of antioxidative systems during in vitro growth and ex vitro transfer. Biol Plant
52:413–422. https://doi.org/10.1007/s10535-008-0085-5

Synthetic Seeds: Prospects and Advances in Cryopreservation 429

https://doi.org/10.3390/ijms18071477
https://doi.org/10.1016/j.scienta.2011.07.003
https://doi.org/10.1007/s10535-008-0085-5


Bayati S, Shams-Bakhsh M, Moini A (2011) Elimination of Grapevine virus A (GVA) by
cryotherapy and electrotherapy. J Agric Sci Technol 13:442–450

Benson EE (2008) Cryopreservation theory. In: Plant cryopreservation: A practical guide. Springer,
pp, pp 15–32

Bettoni JC, Dalla Costa M, Souza JA, Volk GM, Nickel O, da Silva FN, Kretzschmar AA (2018)
Cryotherapy by encapsulation-dehydration is effective for in vitro eradication of latent viruses
from ‘Marubakaido’ apple rootstock. J Biotechnol 269:1–7. https://doi.org/10.1016/j.jbiotec.
2018.01.014

Bhojwani SS, Dantu PK (2013) Production of virus-free plants. In: Plant tissue culture: an
introductory Text. Springer, pp 227–243

Bi WL et al (2017) Cryopreservation of grapevine (Vitis spp.)-a review. In Vitro Cell Dev Biol Plant
53:449–460. https://doi.org/10.1007/s11627-017-9822-9

Bi WL, Hao XY, Cui ZH, Volk GM, Wang QC (2018) Droplet-vitrification cryopreservation of
in vitro-grown shoot tips of grapevine (Vitis spp.). In Vitro Cell Dev Biol Plant 54:590–599.
https://doi.org/10.1007/s11627-018-9931-0

Bonnart R, Volk GM (2010) Increased efficiency using the encapsulation-dehydration cryopreser-
vation technique for Arabidopsis thaliana. CryoLetters 31:200–205

Bradaï F, Almagro-Bastante J, Sánchez-Romero C (2017) Cryopreservation of olive somatic
embryos using the droplet-vitrification method: the importance of explant culture conditions.
Sci Hortic 218:14–22

Brunakova K, Cellarova E (2016) Conservation strategies in the genus Hypericum via cryogenic
treatment. Front Plant Sci 7:12. https://doi.org/10.3389/fpls.2016.00558

Bustam BM, Dixon K, Bunn E (2016) A cryopreservation protocol for ex situ conservation of
terrestrial orchids using asymbiotic primary and secondary (adventitious) protocorms. In Vitro
Cell Dev Biol Plant 52:185–195. https://doi.org/10.1007/s11627-015-9732-7

Carmona-Martin E, Regalado JJ, Peran-Quesada R, Encina CL (2018) Cryopreservation of rhizome
buds of Asparagus officinalis L. (cv. Morado de Huetor) and evaluation of their genetic stability.
Plant Cell Tissue Organ Cult 133:395–403. https://doi.org/10.1007/s11240-018-1392-y

Cejas I, Vives K, Laudat T, González-Olmedo J, Engelmann F, Martínez-Montero ME, Lorenzo JC
(2012) Effects of cryopreservation of Phaseolus vulgaris L. seeds on early stages of germina-
tion. Plant Cell Rep 31(11):2065–2073

Chandrabalan DC, Clyde MM, Normah MN (2011) Two-step preconditioning – a feasible method
for cryopreservation of Fortunella polyandra shoot tips using vitrification Technique. In:
Panis B, Lynch P (eds) International symposium on cryopreservation in horticultural species,
vol 908. Acta Horticulturae. International Society of Horticultural Science, Leuven 1, pp
289–296

Charoensub R, Hirai D, Sakai A (2004) Cryopreservation of in vitro-grown shoot tips of cassava by
encapsulation-vitrification method. CryoLetters 25:51–58

Chen C (2004) Humidity in plant tissue culture vessels. Biosyst Eng 88:231–241
Chen HY, Liu J, Pan C, Yu JW, Wang QC (2018) In vitro regeneration of adventitious buds from

leaf explants and their subsequent cryopreservation in highbush blueberry. Plant Cell Tissue
Organ Cult 134:193–204. https://doi.org/10.1007/s11240-018-1412-y

Choudhary R, Malik SK, Chaudhury R (2018) Development of an efficient cryoconservation
protocol for Himalayan mulberry (Morus laevigata Wall. ex Brandis) using dormant axillary
buds as explants. Indian J Exp Biol 56:342–350

Ciringer T, Martin C, Sajna N, Kaligaric M, Ambrozic-Dolinsek J (2018) Cryopreservation of an
endangered Hladnikia pastinacifolia Rchb. by shoot tip encapsulation-dehydration and
encapsulation-vitrification. In Vitro Cell Dev Biol Plant 54:565–575. https://doi.org/10.1007/
s11627-018-9917-y

Clavero-Ramirez I, Galvez-Farfan J, Lopez-Aranda JM, Gonzalez-Benito ME (2005) Apex cryo-
preservation of several strawberry genotypes by two encapsulation-dehydration methods.
CryoLetters 26:17–24

Coelho N, Gonzalez-Benito ME, Romano A (2014) Approaches for the cryopreservation of
Plantago algarbiensis, a rare endemic species of the Algarve. CryoLetters 35:521–529

430 D. de Oliveira Prudente et al.

https://doi.org/10.1016/j.jbiotec.2018.01.014
https://doi.org/10.1016/j.jbiotec.2018.01.014
https://doi.org/10.1007/s11627-017-9822-9
https://doi.org/10.1007/s11627-018-9931-0
https://doi.org/10.3389/fpls.2016.00558
https://doi.org/10.1007/s11627-015-9732-7
https://doi.org/10.1007/s11240-018-1392-y
https://doi.org/10.1007/s11240-018-1412-y
https://doi.org/10.1007/s11627-018-9917-y
https://doi.org/10.1007/s11627-018-9917-y


Cordeiro SZ, Simas NK, Henriques AB, Sato A (2014) In vitro conservation of Mandevilla
moricandiana (Apocynaceae): short-term storage and encapsulation-dehydration of nodal seg-
ments. In Vitro Cell Dev Biol Plant 50:326–336. https://doi.org/10.1007/s11627-014-9600-x

Crowe JH, Crowe LM, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipid bilayers
and proteins by sugars. Biochem J 242:1

Distabanjong K, Distabanjong C, Jang SW (2015) Developing regeneration system for cryopres-
ervation in sugarcane (Saccharum officinarum L.). In: Canhoto JM, Correia SI (eds) Viii
international symposium on in vitro culture and horticultural breeding, vol 1083. Acta
Horticulturae. International Society Horticultural Science, Leuven 1, pp 427–433

Dulloo M et al (2009) Cost efficiency of cryopreservation as a long-term conservation method for
coffee genetic resources. Crop Sci 49:2123–2138

Dumet D, Engelmann F, Chabrillange N, Dussert S, Duval Y (1994) Effect of various sugars and
polyols on the tolerance to desiccation and freezing of oil palm polyembryonic cultures. Seed
Sci Res 4:307–313. https://doi.org/10.1017/s0960258500002348

Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant
40:427–433. https://doi.org/10.1079/ivp2004541

Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell
Dev Biol Plant 47:5–16

Engelmann F, Takagi H (2000) Cryopreservation of tropical plant germplasm: current research
progress and applications. JIRCAS, Tsukuba and IPGRI, Rome

Fabian A, Jager K, Darko E, Barnabas B (2008) Cryopreservation of wheat (Triticum aestivum L.)
egg cells by vitrification. Acta Physiol Plant 30:737–744. https://doi.org/10.1007/s11738-008-
0176-0

Fabre J, Dereuddre J (1990) Encapsulation-dehydration: a new approach to cryopreservation of
Solanum shoot tips. CryoLetters 11

Fatima S, Mujib A, Nasim SA, Siddiqui ZH (2009) Cryopreservation of embryogenic cell suspen-
sions of Catharanthus roseus L. (G) Don. Plant Cell Tissue Organ Cult 98:1–9. https://doi.org/
10.1007/s11240-009-9532-z

Feng C-H, Cui Z-H, Li B-Q, Chen L, Ma Y-L, Zhao Y-H, Wang Q-C (2013) Duration of sucrose
preculture is critical for shoot regrowth of in vitro-grown apple shoot-tips cryopreserved by
encapsulation-dehydration. Plant Cell Tissue Organ Cult 112:369–378

Fowler A, Toner M (2006) Cryo-injury and biopreservation. Ann N Y Acad Sci 1066:119–135
Galston AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94:406–410.

https://doi.org/10.1104/pp.94.2.406
Gamez-Pastrana R, Martinez-Ocampo Y, Beristain CI, Gonzalez-Arnao MT (2004) An improved

cryopreservation protocol for pineapple apices using encapsulation-vitrification. CryoLetters
25:405–414

Garcia R, Pacheco G, Vianna M, Mansur E (2011) In vitro conservation of Passiflora suberosa L.:
slow growth and cryopreservation. CryoLetters 32:377–388

Gonzalez-Arnao MT, Engelmann F (2006) Cryopreservation of plant germplasm using the
encapsulation-dehydration technique: review and case study on sugarcane. CryoLetters
27:155–168

Gonzalez-Arnao MT, Ravelo MM, Villavicencio CU, Montero MM, Engelmann F (1998) Cryo-
preservation of pineapple (Ananas comosus) apices. Cryo Lett 19:375–382

Gonzalez-Arnao M, Engelmann F, Urra V, Morenza M, Rios A Cryopreservation of citrus apices
using the encapsulation-dehydration technique. In: Cryopreservation of tropical plant germ-
plasm: current research progress and application. Proceedings of an international workshop,
Tsukuba, Japan, October, 1998a, 2000. International Plant Genetic Resources Institute (IPGRI),
pp 217–221

Gonzalez-Arnao M, Juarez J, Ortega C, Navarro L, Duran-Vila N (2003) Cryopreservation of
ovules and somatic embryos of citrus using the encapsulation-dehydration technique.
CryoLetters 24:85–94

Synthetic Seeds: Prospects and Advances in Cryopreservation 431

https://doi.org/10.1007/s11627-014-9600-x
https://doi.org/10.1017/s0960258500002348
https://doi.org/10.1079/ivp2004541
https://doi.org/10.1007/s11738-008-0176-0
https://doi.org/10.1007/s11738-008-0176-0
https://doi.org/10.1007/s11240-009-9532-z
https://doi.org/10.1007/s11240-009-9532-z
https://doi.org/10.1104/pp.94.2.406


Gonzalez-Benito ME, Kremer C, Ibanez MA, Martin C (2016) Effect of antioxidants on the genetic
stability of cryopreserved mint shoot tips by encapsulation-dehydration. Plant Cell Tissue Organ
Cult 127:359–368. https://doi.org/10.1007/s11240-016-1056-8

Gulati R (2018) Strategies for sustaining plant germplasm evaluation and conservation a review.
Life Sci Inform 4:313–320

Halmagyi A, Deliu C (2011) Cryopreservation of redwood (Sequoia sempervirens (D. Don.) Endl.)
shoot apices by encapsulation-dehydration. Contrib Bot 46

Hirai D, Sakai A (1999) Cryopreservation of in vitro-grown meristems of potato (Solanum
tuberosum L.) by encapsulation-vitrification. Potato Res 42:153–160

Javed SB, Alatar AA, Anis M, Faisal M (2017) Synthetic seeds production and germination studies,
for short term storage and long distance transport of Erythrina variegata L.: a multipurpose tree
legume. Ind Crop Prod 105:41–46

Jeon SM, Arun M, Lee S-Y, Kim CK (2015) Application of encapsulation-vitrification in combi-
nation with air dehydration enhances cryotolerance of Chrysanthemum morifolium shoots tips.
Sci Hortic 194:91–99

Kami D, Kikuchi T, Sugiyama K, Suzuki T (2009) Cryopreservation of shoot apices of cranberry
and highbush blueberry in-vitro cultures. Cryobiology 59:411–412. https://doi.org/10.1016/j.
cryobiol.2009.10.162

Kaviani B, Negandar N (2017) Propagation, micropropagation and cryopreservation of Buxus
hyrcana Pojark., an endangered ornamental shrub. S Afr J Bot 111:326–335. https://doi.org/
10.1016/j.sajb.2017.04.004

Kaya E, Souza FVD (2017) Comparison of two PVS2-based procedures for cryopreservation of
commercial sugarcane (Saccharum spp.) germplasm and confirmation of genetic stability after
cryopreservation using ISSR markers. In Vitro Cell Dev Biol Plant 53:410–417. https://doi.org/
10.1007/s11627-017-9837-2

Kaya E, Alves A, Rodrigues L, Jenderek M, Hernandez-Ellis M, Ozudogru A, Ellis D (2013)
Cryopreservation of eucalyptus genetic resources. CryoLetters 34:608–618

Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, San Diego
Kulus D, Abratowska A (2017) (Cryo)conservation of Ajania pacifica (Nakai) Bremer et

Humphries shoot tips via encapsulation-dehydration technique. CryoLetters 38:387–398
Kulus D, Abratowska A, Mikula A (2018a) Morphogenetic response of shoot tips to cryopreser-

vation by encapsulation-dehydration in a solid mutant and periclinal chimeras of Chrysanthe-
mum � grandiflorum/Ramat./Kitam. Acta Physiol Plant 40:13. https://doi.org/10.1007/s11738-
017-2593-4

Kulus D, Serocka M, Mikuła A (2018b) Effect of various preculture and osmotic dehydration
conditions on cryopreservation efficiency and morphogenetic response of Chrysanthemum
shoot tips. Acta Sci Pol Hortorum Cult 17:17

Kumar S, Sharma S (2005) Somatic embryogenesis and cryopreservation of walnut (Juglans regia
L.) and pecan (Carya illinoensis Koch). In: Chauhan JS, Sharma SD, Sharma RC, Sharma RC,
Rehalia AS, Kumar K (eds) Proceedings of the VIIth international symposium on temperate
zone fruits in the tropics and subtropics, Pt 2. Acta Horticulturae, vol 696. International Society
Horticultural Science, Leuven 1, pp 143–147. doi:https://doi.org/10.17660/ActaHortic.2005.
696.24

Kushnarenko SV, Romadanova NV, Zhumabaeva BA, Reed BM (2018) In vitro Storage and
cryopreservation of clonally propagated plant germplasm in Kazakhstan. Cryobiology
85:186–187

le Roux ML, Botha AM, van der Vyver C (2016) Somatic embryogenesis and cryopreservation of
South African bread wheat (Triticum aestivum L.) genotypes. S Afr J Bot 106:78–88. https://doi.
org/10.1016/j.sajb.2016.05.018

Li BQ, Feng CH, Wang MR, Hu LY, Volk G, Wang QC (2015) Recovery patterns, histological
observations and genetic integrity in Malus shoot tips cryopreserved using droplet-vitrification
and encapsulation-dehydration procedures. J Biotechnol 214:182–191. https://doi.org/10.1016/
j.jbiotec.2015.09.030

432 D. de Oliveira Prudente et al.

https://doi.org/10.1007/s11240-016-1056-8
https://doi.org/10.1016/j.cryobiol.2009.10.162
https://doi.org/10.1016/j.cryobiol.2009.10.162
https://doi.org/10.1016/j.sajb.2017.04.004
https://doi.org/10.1016/j.sajb.2017.04.004
https://doi.org/10.1007/s11627-017-9837-2
https://doi.org/10.1007/s11627-017-9837-2
https://doi.org/10.1007/s11738-017-2593-4
https://doi.org/10.1007/s11738-017-2593-4
https://doi.org/10.17660/ActaHortic.2005.696.24
https://doi.org/10.17660/ActaHortic.2005.696.24
https://doi.org/10.1016/j.sajb.2016.05.018
https://doi.org/10.1016/j.sajb.2016.05.018
https://doi.org/10.1016/j.jbiotec.2015.09.030
https://doi.org/10.1016/j.jbiotec.2015.09.030


Li J-W, Chen H-Y, Li X-Y, Zhang Z, Blystad D-R, Wang Q-C (2017) Cryopreservation and
evaluations of vegetative growth, microtuber production and genetic stability in regenerants of
purple-fleshed potato. Plant Cell Tissue Organ Cult 128:641–653

Lia JW, Hosokawa M, Nabeshima T, Motoki K, Yamada H, Wang QC (2019) Cryopreservation of
viroid-infected Chrysanthemum shoot tips. Sci Hortic 244:1–9. https://doi.org/10.1016/j.
scienta.2018.09.004

Lineros Y, Balocchi C, Munoz X, Sanchez M, Rios D (2018) Cryopreservation of Pinus radiata
embryogenic tissue: effects of cryoprotective pretreatments on maturation ability. Plant Cell
Tissue Organ Cult 135:357–366. https://doi.org/10.1007/s11240-018-1469-7

Lynch PT et al (2011) Effects of osmotic pretreatments on oxidative stress, antioxidant profiles and
cryopreservation of olive somatic embryos. Plant Sci 181:47–56. https://doi.org/10.1016/j.
plantsci.2011.03.009

Lynch PT, Souch GR, Zamecnik J, Harding K (2016) Optimization of water content for the
cryopreservation of Allium sativum in vitro cultures by encapsulation-dehydration. CryoLetters
37:308–317

Makowski D, Tomiczak K, Rybczynski JJ, Mikula A (2016) Integration of tissue culture and
cryopreservation methods for propagation and conservation of the fernOsmunda regalis L. Acta
Physiol Plant 38:12. https://doi.org/10.1007/s11738-015-2037-y

Martín C, Kremer C, González I, González-Benito ME (2015) Influence of the cryopreservation
technique, recovery medium and genotype on genetic stability of mint cryopreserved shoot tips.
Plant Cell Tissue Organ Cult 122:185–195

Mathew L, McLachlan A, Jibran R, Burritt DJ, Pathirana R (2018) Cold, antioxidant and osmotic
pre-treatments maintain the structural integrity of meristematic cells and improve plant regen-
eration in cryopreserved kiwifruit shoot tips. Protoplasma 255:1065–1077. https://doi.org/10.
1007/s00709-018-1215-3

Matsumoto T (2017) Cryopreservation of plant genetic resources: conventional and new methods.
Rev Agric Sci 5:13–20

Matsumoto T, Sakai A, Takahashi C, Yamada K (1995) Cryopreservation of in vitro-grown apical
meristems of wasabi (Wasabia-japonica) by encapsulation-vitrification method. CryoLetters
16:189–196

Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Phys Cell Phys 247:
C125–C142

Medeiros CD, Cavalcante J, Alsina O (2006) Estudo da desidratação osmótica da fruta da palma
(figo da Índia). Revista Brasileira de Produtos Agroindustriais 8:153–162

Merhy TSM, Vianna MG, Garcia RO, Pacheco G, Mansur E (2014) Cryopreservation of Passiflora
pohlii nodal segments and assessment of genetic stability of regenerated plants. CryoLetters
35:204–215

Ming-Hua Y, Sen-Rong H (2010) A simple cryopreservation protocol of Dioscorea bulbifera
L. embryogenic calli by encapsulation-vitrification. Plant Cell Tissue Organ Cult 101:349–358

Moges AD, Shibli RA, Karam NS (2004) Cryopreservation of African violet (Saintpaulia ionantha
Wendl.) shoot tips. In Vitro Cell Dev Biol Plant 40:389–395. https://doi.org/10.1079/
ivp2004536

Mubbarakh SA, Izhar NA, Rajasegar A, Subramaniam S (2014) Establishment of encapsulation-
dehydration technique for in vitro fragmented explants of Rosa hybrida L. cv. Helmut Schmidt.
Emir J Food Agric 26:565–576. https://doi.org/10.9755/ejfa.v26i6.18024

Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco
tissue cultures. Physiol Plant 15(3):473–497

Neal Stewart JRC (2016) Plant biotechnology and genetics: principles, techniques, and applica-
tions. Wiley

Niino T, Sakai A (1992) Cryopreservation of alginate-coated invitro-grown shoot tips of apple, pear
and mulberry. Plant Sci 87:199–206. https://doi.org/10.1016/0168-9452(92)90151-b

Ozudogru EA, Kaya E (2012) Cryopreservation of Thymus cariensis and T. vulgaris shoot tips:
comparison of three vitrification-based methods. CryoLetters 33:363–375

Synthetic Seeds: Prospects and Advances in Cryopreservation 433

https://doi.org/10.1016/j.scienta.2018.09.004
https://doi.org/10.1016/j.scienta.2018.09.004
https://doi.org/10.1007/s11240-018-1469-7
https://doi.org/10.1016/j.plantsci.2011.03.009
https://doi.org/10.1016/j.plantsci.2011.03.009
https://doi.org/10.1007/s11738-015-2037-y
https://doi.org/10.1007/s00709-018-1215-3
https://doi.org/10.1007/s00709-018-1215-3
https://doi.org/10.1079/ivp2004536
https://doi.org/10.1079/ivp2004536
https://doi.org/10.9755/ejfa.v26i6.18024
https://doi.org/10.1016/0168-9452(92)90151-b


Ozudogru EA, Kirdok E, Kaya E, Capuana M, Benelli C, Engelmann F (2011) Cryopreservation of
redwood (Sequoia sempervirens (D. Don.) Endl.) in vitro buds using vitrification-based tech-
niques. CryoLetters 32:99–110

Pammenter NW, Berjak P, Wesley-Smith J, Vander Willigen C (2002) Experimental aspects of
drying and recovery. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying
without dying. CABI Publishing, Wallingford, pp 93–110

Panis B, Totte N, VanNimmen K, Withers LA, Swennen R (1996) Cryopreservation of banana
(Musa spp) meristem cultures after preculture on sucrose. Plant Sci 121:95–106. https://doi.org/
10.1016/s0168-9452(96)04507-4

Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation
protocol applicable to all Musaceae. Plant Sci 168:45–55. https://doi.org/10.1016/j.plantsci.
2004.07.022

Paques M, Poissonnier M, Dumas E (1996) Monod V cryopreservation of dormant and non
dormant broad-leaved trees. In: III International symposium on in vitro culture and horticultural
breeding, vol 447, pp 491–498

Pathirana R, McLachlan A, Hedderley D, Panis B, Carimi F (2016) Pre-treatment with salicylic acid
improves plant regeneration after cryopreservation of grapevine (Vitis spp.) by droplet vitrifi-
cation. Acta Physiol Plant 38:11. https://doi.org/10.1007/s11738-015-2026-1

Paul H, Daigny G, Sangwan-Norreel BS (2000) Cryopreservation of apple (Malus � domestica
Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell
Rep 19:768–774. https://doi.org/10.1007/s002990000195

Paulet F, Engelmann F, Glaszmann J-C (1993) Cryopreservation of apices of in vitro plantlets of
sugarcane (Saccharum sp. hybrids) using encapsulation/dehydration. Plant Cell Rep
12:525–529

Pence VC et al (2017) Survival and genetic stability of shoot tips of Hedeoma todsenii RSIrving
after long-term cryostorage. In Vitro Cell Dev Biol Plant 53:328–338. https://doi.org/10.1007/
s11627-017-9854-1

Pettinelli JD, Soares BD, Cantelmo L, Garcia RD, Mansur E, Engelmann F, Gagliardi RF (2017)
Cryopreservation of somatic embryos from Petiveria alliacea L. by different techniques based
on vitrification. In Vitro Cell Dev Biol Plant 53:339–345. https://doi.org/10.1007/s11627-017-
9820-y

Phunchindawan M, Hirata K, Sakai A, Miyamoto K (1997) Cryopreservation of encapsulated shoot
primordia induced in horseradish (Armoracia rusticana) hairy root cultures. Plant Cell Rep
16:469–473. https://doi.org/10.1007/s002990050262

Pieruzzi FP, Dias LLC, Balbuena TS, Floh EIS, Santa-Catarina C, ALWd S (2011) Polyamines,
IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymno-
sperm) and Ocotea odorifera (Angiosperm). Ann Bot 108:337–345. https://doi.org/10.1093/
aob/mcr133

Popova E, Bukhov N, Popov A, Kim H-H (2010) Cryopreservation of protocorm-like bodies of the
hybrid orchid Bratonia (Miltonia flavescens � Brassia longissima). CryoLetters 31:426–437

Popova E, Kim HH, Saxena PK, Engelmann F, Pritchard HW (2016) Frozen beauty: The
cryobiotechnology of orchid diversity. Biotechnol Adv 34:380–403. https://doi.org/10.1016/j.
biotechadv.2016.01.001

Prudente D, Paiva R (2017) Plant cryopreservation: biochemical aspects. J Cell Dev Biol 1(1):1
Prudente DD, Paiva R, Nery FC, Paiva PDD, Alves JD, MaximoWPF, Silva LC (2017) Compatible

solutes improve regrowth, ameliorate enzymatic antioxidant systems, and reduce lipid peroxi-
dation of cryopreserved Hancornia speciosa Gomes lateral buds. In Vitro Cell Dev Biol Plant
53:352–362. https://doi.org/10.1007/s11627-017-9830-9

Prudente DO, Paiva R, Souza LB, Paiva PDO (2018) Cryotherapy as a technique for virus
elimination in ornamental species. Plant Cell Cult Micropropag 13:29–33

Rabba'a MM, Shibli RA, Shatnawi MA (2012) Cryopreservation of Teucrium polium L. shoot-tips
by vitrification and encapsulation-dehydration. Plant Cell Tissue Organ Cult 110:371–382.
https://doi.org/10.1007/s11240-012-0158-1

434 D. de Oliveira Prudente et al.

https://doi.org/10.1016/s0168-9452(96)04507-4
https://doi.org/10.1016/s0168-9452(96)04507-4
https://doi.org/10.1016/j.plantsci.2004.07.022
https://doi.org/10.1016/j.plantsci.2004.07.022
https://doi.org/10.1007/s11738-015-2026-1
https://doi.org/10.1007/s002990000195
https://doi.org/10.1007/s11627-017-9854-1
https://doi.org/10.1007/s11627-017-9854-1
https://doi.org/10.1007/s11627-017-9820-y
https://doi.org/10.1007/s11627-017-9820-y
https://doi.org/10.1007/s002990050262
https://doi.org/10.1093/aob/mcr133
https://doi.org/10.1093/aob/mcr133
https://doi.org/10.1016/j.biotechadv.2016.01.001
https://doi.org/10.1016/j.biotechadv.2016.01.001
https://doi.org/10.1007/s11627-017-9830-9
https://doi.org/10.1007/s11240-012-0158-1


Rafique T et al (2016) Cryopreservation of shoot-tips from different sugarcane varieties using D
cryo-plate technique. Pak J Agric Sci 53:151–158. https://doi.org/10.21162/pakjas/16.5018

Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit
plants – a review. Biotechnol Adv 27:671–679. https://doi.org/10.1016/j.biotechadv.2009.04.
025

Ramon M, Geuns J, Swennen R, Panis B (2002) Polyamines and fatty acids in sucrose precultured
banana meristems and correlation with survival rate after cryopreservation. Cryo Letters 23
(6):345–352

Reed B (2018) Culture conditions are as important as the protocol in successful cryopreservation.
Cryobiology 80:170. https://doi.org/10.1016/j.cryobiol.2017.10.065

Ren L, Zhang D, Shen XH, Reed BM (2014) Antioxidants and anti-stress compounds improve the
survival of cryopreserved Arabidopsis seedlings. In: Reed BM (ed) Ii international symposium
on plant cryopreservation, vol 1039. Acta Horticulturae, vol 1. International Society of Horti-
cultural Science, Leuven, pp 57–61

Rohini MR, Malik SK, Choudhary R, Kaur S, Uchoi A, Chaudhury R (2016) Storage behavior and
cryopreservation studies in Indian rough lemon (Citrus jambhiri): a promising rootstock for
long-term conservation. Turk J Agric For 40:865–873. https://doi.org/10.3906/tar-1511-94

Ryynahen L, Haggman H (1999) Substitution of ammonium ions during cold hardening and post-
thaw cultivation enhances recovery of cryopreserved shoot tips of Betula pendula. J Plant
Physiol 154:735–742. https://doi.org/10.1016/s0176-1617(99)80252-1

Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification: a
review. CryoLetters 28:151–172

Sakai A, Hirai D, Niino T (2008) Development of PVS-Based vitrification and encapsulation-
vitrification protocols. In: Plant cryopreservation: a practical guide. Corvalis, Springer, pp 33–58

Salama A, Popova E, Jones MP, Shukla MR, Fisk NS, Saxena PK (2018) Cryopreservation of the
critically endangered golden paintbrush (Castilleja levisecta Greenm.): from nature to cryobank
to nature. In Vitro Cell Dev Biol Plant 54:69–78. https://doi.org/10.1007/s11627-018-9888-z

Sharaf SA, Shibli RA, Kasrawi MA, Baghdadi SH (2012) Cryopreservation of wild Shih (Artemisia
herba-alba Asso.) shoot-tips by encapsulation-dehydration and encapsulation-vitrification.
Plant Cell Tissue Organ Cult 108:437–444

Shibli R, Al-Juboory K (2000) Cryopreservation of ‘Nabali’ olive (Olea europea l.) somatic
embryos by encapsulation-dehydration and encapsulation-vitrification. Cryo Letters
21:357–366

Shin DJ, Lee HE, Bae CH, Park SU, Kang HN, Kim HH (2014) Development of an encapsulation-
vitrification protocol for Rubia akane (Nakai) hairy roots: a comparison with non-encapsulation.
CryoLetters 35:377–384

Silva LC, Paiva R, Swennen R, Andrè E, Panis B (2013) Shoot-tip cryopreservation by droplet
vitrification of Byrsonima intermedia A. Juss.: a woody tropical and medicinal plant species
from Brazilian Cerrado. CryoLetters 34:338–348

Sipen P, Anthony P, Davey MR (2011) Cryopreservation of scalps of Malaysian bananas using a
pregrowth method. CryoLetters 32:197–205

Souza FVD et al (2017) Cryopreservation of Hamilin sweet orange (Citrus sinensis (L.) Osbeck)
embryogenic calli using a modified aluminum cryo-plate technique. Sci Hortic 224:302–305.
https://doi.org/10.1016/j.scienta.2017.06.042

Stanwood PC (1985) Cryopreservation of seed germplasm for genetic conservation. In: Kartha KK
(ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, FL, pp 199–226

Subaih WS, Shatnawi MA, Shibli RA (2007) Cryopreservation of date palm (Phoenix dactylifera)
embryogenic callus by encapsulation-dehydration, vitrification and encapsulation-vitrification.
Jordan J Agric Sci 3:156–171

Suranthran P, Gantait S, Sinniah UR, Subramaniam S, Alwee S, Roowi SH (2012) Effect of loading
and vitrification solutions on survival of cryopreserved oil palm polyembryoids. Plant Growth
Regul 66:101–109. https://doi.org/10.1007/s10725-011-9633-7

Synthetic Seeds: Prospects and Advances in Cryopreservation 435

https://doi.org/10.21162/pakjas/16.5018
https://doi.org/10.1016/j.biotechadv.2009.04.025
https://doi.org/10.1016/j.biotechadv.2009.04.025
https://doi.org/10.1016/j.cryobiol.2017.10.065
https://doi.org/10.3906/tar-1511-94
https://doi.org/10.1016/s0176-1617(99)80252-1
https://doi.org/10.1007/s11627-018-9888-z
https://doi.org/10.1016/j.scienta.2017.06.042
https://doi.org/10.1007/s10725-011-9633-7


Suzuki M, Tandon P, Ishikawa M, Toyomasu T (2008) Development of a new vitrification solution,
VSL, and its application to the cryopreservation of gentian axillary buds. Plant Biotechnol Rep
2:123–131. https://doi.org/10.1007/s11816-008-0056-5

Tanaka D, Niino T, Isuzugawa K, Hikage T, Uemura M (2004) Cryopreservation of shoot apices of
in-vitro grown gentian plants: comparison of vitrification and encapsulation-vitrification pro-
tocols. CryoLetters 25:167–176

Thobunluepop P, Pawelzik E, Vearasilp S (2009) Possibility of sweet corn synthetic seed produc-
tion. Pak J Biol Sci 12:1085

Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv
26:618–631

Tomaz I, Šeparović M, Štambuk P, Preiner D, Maletić E, Karoglan Kontić J (2018) Effect of
freezing and different thawing methods on the content of polyphenolic compounds of red grape
skins. J Food Process Preserv 42:e13550

Uchendu EE, Keller ERJ (2016) Melatonin-loaded alginate beads improve cryopreservation of yam
(Dioscorea alata and D. cayenensis). CryoLetters 37:77–87

Uchendu E, Reed B (2008) Desiccation tolerance and cryopreservation of in vitro grown blueberry
and cranberry shoot tips. In: IX International vaccinium symposium, vol 810, pp 567–574

Uchendu EE, Muminova M, Gupta S, Reed BM (2010) Antioxidant and anti-stress compounds
improve regrowth of cryopreserved Rubus shoot tips. In Vitro Cell Dev Biol Plant 46:386–393.
https://doi.org/10.1007/s11627-010-9292-9

Uchendu E, Shukla M, Reed B, Saxena P (2013) An efficient method for cryopreservation of St
John’s wort and tobacco: role of melatonin. In: II International symposium on plant cryopres-
ervation, vol 1039, pp 233–241

Uchendu EE, Shukla MR, Reed BM, Saxena PK (2014) An efficient method for cryopreservation of
St John’s wort and tobacco: role of melatonin. In: Reed BM (ed) Ii international symposium on
plant cryopreservation, vol 1039. Acta Horticulturae. International Society of Horticultural
Science, Leuven 1, pp 233–241

Van Eck J, Keen P (2009) Continued expression of plant-made vaccines following long-term
cryopreservation of antigen-expressing tobacco cell cultures. In Vitro Cell Dev Biol Plant
45:750–757. https://doi.org/10.1007/s11627-009-9231-9

Volk GM, Caspersen AM (2007) Plasmolysis and recovery of different cell types in cryoprotected
shoot tips of Mentha � piperita. Protoplasma 231:215–226. https://doi.org/10.1007/s00709-
007-0251-1

Volk GM, Shepherd AN, Bonnart R (2018) Successful cryopreservation of Vitis shoot tips: novel
pre-treatment combinations applied to nine species. CryoLetters 39:322–330

Wang QC, Valkonen JPT (2009) Cryotherapy of shoot tips: novel pathogen eradication method.
Trends Plant Sci 14:119–122. https://doi.org/10.1016/j.tplants.2008.11.010

Wang Q, Tanne E, Arav A, Gafny R (2000) Cryopreservation of in vitro-grown shoot tips of
grapevine by encapsulation-dehydration. Plant Cell Tissue Organ Cult 63:41–46

Wang Q, Mawassi M, Li P, Gafny R, Sela I, Tanne E (2003) Elimination of grapevine virus A
(GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L. Plant Sci
165:321–327. https://doi.org/10.1016/S0168-9452(03)00091-8

Wang Q, Laamanen J, Uosukainen M, Valkonen JP (2005) Cryopreservation of in vitro-grown
shoot tips of raspberry (Rubus idaeus L.) by encapsulation–vitrification and encapsulation–
dehydration. Plant Cell Rep 24:280–288

Wang MR, Chen L, da Silva JAT, Volk GM, Wang QC (2018a) Cryobiotechnology of apple
(Malus spp.): development, progress and future prospects. Plant Cell Rep 37:689–709. https://
doi.org/10.1007/s00299-018-2249-x

Wang MR et al (2018b) Cryopreservation of virus: a novel biotechnology for long-term preserva-
tion of virus in shoot tips. Plant Methods 14:10. https://doi.org/10.1186/s13007-018-0312-9

Wyse SV, Dickie JB, Willis KJ (2018) Seed banking not an option for many threatened plants. Nat
Plants 4:848–850. https://doi.org/10.1038/s41477-018-0298-3

Zalewska M, Kulus D (2013) Cryopreservation of in vitro-grown shoot tips of Chrysanthemum by
encapsulation-dehydration. Folia Hortic 25:133. https://doi.org/10.2478/fhort-2013-0015

436 D. de Oliveira Prudente et al.

https://doi.org/10.1007/s11816-008-0056-5
https://doi.org/10.1007/s11627-010-9292-9
https://doi.org/10.1007/s11627-009-9231-9
https://doi.org/10.1007/s00709-007-0251-1
https://doi.org/10.1007/s00709-007-0251-1
https://doi.org/10.1016/j.tplants.2008.11.010
https://doi.org/10.1016/S0168-9452(03)00091-8
https://doi.org/10.1007/s00299-018-2249-x
https://doi.org/10.1007/s00299-018-2249-x
https://doi.org/10.1186/s13007-018-0312-9
https://doi.org/10.1038/s41477-018-0298-3
https://doi.org/10.2478/fhort-2013-0015


Zarghami R, Pirseyedi M, Hasrak S, Sardrood BP (2008) Evaluation of genetic stability in
cryopreserved Solanum tuberosum. Afr J Biotechnol 7:2798–2802

Zhang JM et al (2014) Optimization of droplet-vitrification protocol for carnation genotypes and
ultrastructural studies on shoot tips during cryopreservation. Acta Physiol Plant 36:3189–3198.
https://doi.org/10.1007/s11738-014-1685-7

Synthetic Seeds: Prospects and Advances in Cryopreservation 437

https://doi.org/10.1007/s11738-014-1685-7


Progress and Challenges in the Application
of Synthetic Seed Technology for Ex Situ
Germplasm Conservation in Grapevine
(Vitis spp.)

Angela Carra, Francesco Carimi, Jean Carlos Bettoni,
and Ranjith Pathirana

Abstract Although grapevine (Vitis spp.) is one of the most ancient and important
fruit crops, there is no concerted international effort to conserve its genetic resources,
which are estimated to consist of 10–14,000 cultivars. Synthetic seed technology
offers opportunities to conserve clonal genetic resources either in the form of
quiescent somatic embryos or as encapsulated regenerable somatic tissue. Since
the first report of somatic embryogenesis in grapevine in 1976, much research has
been conducted into synchronising the process, maturation, dehydration, encapsu-
lation and testing longevity under cold storage. Since the development of
vitrification-based cryopreservation methods, both somatic embryos and other
somatic tissue with meristematic regions have been used in cryopreservation exper-
iments, and methods have been optimised to reach post-thaw regeneration percent-
ages that satisfy gene bank standards for implementing cryopreservation.
Nevertheless, improved protocols for ‘difficult’ genotypes are still needed for
induction of somatic embryos and synchronising their formation, maturation and
germination, as well as cryopreservation. As a result of these difficulties, conserva-
tion by cryopreservation has progressed using encapsulated shoot tips or axillary
buds of tissue culture plants. Some vitrification-based methods use a droplet of
vitrification solution to protect the shoot tips on an aluminium strip allowing faster
freezing of tissue, an important factor for post-cryo-survival. The novel V cryo-plate
method combines the advantages of both encapsulating the shoot tips in alginate
beads that then adhere to the aluminium of the V cryo-plate, meaning manipulations
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can be performed easily, and the high thermal conductivity of aluminium speeding
processed of freezing and thawing. Cryopreservation of somatic embryos has been
suggested as a way to conserve the diversity of wild V. vinifera ssp. sylvestris, and
limited results obtained to date are promising.

Keywords Somatic embryogenesis · Non-zygotic embryo · Cryopreservation ·
Encapsulation · Vitrification · Embryo maturation · Tissue culture · Genetic
resources

1 Introduction

Grapevine (Vitis vinifera L. ssp. vinifera) is a crop with great economic and cultural
significance. There is 7.5 million ha under cultivation producing 75.8 million tons
worldwide (OIV 2017). The genus Vitis belongs to the family Vitaceae and com-
prises about 60 inter-fertile species distributed through Europe, Asia and North
America under subtropical, Mediterranean and continental-temperate climatic con-
ditions (Carimi et al. 2011; Hancock 2004; Terral et al. 2010). While V. vinifera ssp.
vinifera contributed almost entirely to the diversity of cultivars grown for fruit, juice
and wine, other species such as the North American V. rupestris, V. riparia,
V. berlandieri or their hybrids are used as rootstock for V. vinifera varieties, mainly
due to their resistance to Phylloxera but also to other diseases such as Oidium and
mildews, and for better tolerance to biotic stresses as well (Carimi et al. 2011; Terral
et al. 2010). It is now established that grapevine as a crop originated independently in
multiple regions, with evidence for West Asian and Caucasian centres of origin
(Arroyo-Garcia et al. 2006; Imazio et al. 2013). It is also established that the
cultivated form originated from the wild forms of Vitis vinifera L. ssp. sylvestris
(Gmelin) Hegi (Bacilieri et al. 2013; Carimi et al. 2016; Myles et al. 2011).

Archaeobotanical and archaeological evidence for grape cultivation in the Cau-
casus region dates back to the sixth millennium BC (Imazio et al. 2013) and for the
Aegean and Mesopotamian regions and in Egypt dates back to at least 4000 BC
(Zohar and Horf 2000). Wild grapevine forms can be found from the South Atlantic
coast of Europe through to the Western Himalayas and from sea level to 1000 m
above sea level (Arnold et al. 1998). As grape cultivation spread to new areas, the
cultivars probably hybridised with local wild and other cultivated genotypes
resulting in selection of more adapted genotypes and cultivars with desirable fruit
traits. Selection over several millennia has led to the development of an estimated
10,000–14,000 cultivars that are currently held in field collections (Alleweldt and
Dettweiler 1994). Management of grapevine plants under field conditions is expen-
sive and has resulted in loss of material in field gene banks (Maletić et al. 2008).
Vegetative propagation adds another risk factor with potential for transfer of path-
ogens to new planting material. Therefore, development and application of plant
tissue culture-based biotechnological approaches such as synthetic seeds and
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cryopreservation are important for future conservation of Vitis germplasm. In this
chapter, we present research on somatic embryogenesis in Vitis and its potential
applications from an ex situ conservation perspective, with special reference to
cryopreservation as a long-term conservation option.

2 Somatic Embryogenesis in Grapevine

Somatic embryogenesis (SEg) is the first step towards synthetic seed technology.
The first successful induction of SEg was demonstrated in V. vinifera cv Cabernet
sauvignon more than 40 years ago using unfertilised ovules (Mullins and Srinivasan
1976). Absence of a protective seed coat and lack of surrounding nutritive tissue
make direct storage of somatic embryos (SE) difficult compared with zygotic
embryos enclosed within seeds. Moreover, SE develop asynchronously and lack
the quiescent resting stage of zygotic embryos (Gray et al. 1991). Therefore, research
in synthetic seed technology has been directed not only at optimising induction of SE
but also synchronising their induction (Jayasankar et al. 1999; Vasanth and Vivier
2011) and development, maturation (Vasanth and Vivier 2011), drying (McKersie
et al. 1989; Senaratna et al. 1990; Madakadze and Senaratna 2000) and coating them
to facilitate handling and supply of additional nutrients to the growing seedling
(Senaratna 1992). Successful induction of SEg and maintenance of embryogenic
cultures depend on a complex interaction between genotype, explant type used and
culture conditions. Moreover, results are influenced by differential responses due to
interaction of factors such as developmental stage of explants and nutrients and plant
growth regulators (PGR) included in culture media (Carra et al. 2016; Prado et al.
2010b). Producing mature and well-developed somatic embryos that are able to
grow into normal plants is challenging (Ji et al. 2017; Perrin et al. 2001).

2.1 Stages of Somatic Embryogenesis in Grapevine

SEg is the process by which somatic cells, under inductive conditions, generate
embryogenic cells, which go through a series of morphological and biochemical
changes that result in the formation of a SE. In grapevine, embryos pass through
recognisable globular, heart, torpedo and early cotyledon stages, finally resulting in
germinated embryos (Carimi et al. 2005).

Globular embryos usually appear on the surface of the embryogenic calli, and in
this stage the young embryo is circular or slightly oblong and is still in close contact
with the callus from which it was derived. Later, it detaches from the callus and the
elongation of axial cells marks the beginning of tissue differentiation. At the end of
the globular stage the two apical meristems are present and they persist through the
heart-shaped to the torpedo stages. During the transition from the torpedo stage to
the germinated embryo, grapevine somatic embryos undergo changes characteristic
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of germination, e.g. radicle growth, tannin accumulation in the central cylinder and
acquisition of an external suberin sheath (Faure et al. 1996; Ammirato 1987).

2.2 Explant, Genotype and Growth Regulator Effects
on Somatic Embryogenesis of Grapevine

The influence of genotype, explant and PGR on somatic embryogenesis in grapevine
including significant interactions between those factors have been demonstrated by
several authors (Table 1).

Genotype is considered to be one of the most important factors affecting plant
regeneration in vitro (Conde et al. 2008; Landi and Mezzetti 2006; Rodríguez et al.
2008). In grapevine, genotypes vary relatively widely in their embryogenic potential,
and although several protocols have been published, methods still need improvement
to optimise media and explant combinations to initiate embryogenic cultures from
recalcitrant genotypes (Carra et al. 2016; Gambino et al. 2011a). SEg has been
successfully achieved from different genotypes of Vitis latifolia, V. longifolia,
V. rupestris, V. rotundifolia, V. vinifera L. ssp. vinifera and V. vinifera L. ssp.
sylvestris starting from different explants (Carimi et al. 2013, 2016). Anthers have
been widely used and embryogenic callus has been obtained for a remarkable number
of genotypes (Martinelli and Gribaudo 2009). SEg has also been achieved from
different reproductive organs like ovaries (López-Pérez et al. 2005), stigmas and
styles (Carimi et al. 2005; Carra et al. 2016; Morgana et al. 2004), anthers (Gribaudo
et al. 2004; Kikkert et al. 2005), anther filaments (Acanda et al. 2013; Perrin et al.
2004) and whole flowers (Gambino et al. 2007). Even if less common, SE can be
induced from tissues derived from vegetative structures like tendrils (Salunkhe et al.
1997), leaf discs (Das et al. 2002), leaves and petioles (Martinelli et al. 1993) and stem
nodal explants (Maillot et al. 2006, 2016).

The most common tissue culture media for inducing SE are based on MS
(Murashige and Skoog 1962), NN (Nitsch and Nitsch 1969) or B5 (Gamborg et al.
1968) salts supplemented with different PGR. Usually auxins are the most important
PGR to induce SE, and the auxin most frequently used is 2,4-dichlorophenoxyacetic
acid (2,4-D). Indole-3-acetic acid (IAA), 2-naphthoxyacetic acid (NOA) and naph-
thalene acetic acid (NAA) are also used. When cytokinins are used in SEg induction
media, they are added to the culture medium together with auxins. The most used
cytokinin, 6-benzylaminopurine (BAP), supplemented at different concentrations
depending on the type of explant and genotype, is used to initiate embryogenic
cultures in combination with 2,4-D. Urea derivatives like thidiazuron (TDZ) or
N-(2-chloro-4-pyridyl)-N-phenylurea (4-CPPU) in combination with auxins were
effective when used in the induction phase in anther, pistil and ovary culture of
V. vinifera (Acanda et al. 2013; Bouamama-Gzara et al. 2017; Carra et al. 2016;
Kikkert et al. 2005). After embryogenic callus has been induced, in some cases
development of somatic embryos is achieved by reducing or removing auxin from
the culture medium (Coutos-Thevenot et al. 1992).
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Table 1 Successful somatic embryogenesis protocols in Vitis

Explant Species (cultivar/genotype) PGR References

Anther
filaments

Vitis vinifera (Hencha) 2,4-D 9 μM + TDZ 10 μM Bouamama-
Gzara et al.
(2017)

Anther
filaments

Rootstock (6 genotypes);
V. vinifera (13 cvs)

2,4-D 4.5 μM + BAP 9 μM Perrin et al.
(2004)

Anthers Vitis vinifera (6 cvs) NOA 5 μM + BAP 2 μM Vasanth and
Vivier
(2011)

Anthers Vitis berlandieri � Vitis
rupestris; V. vinifera (2 cvs)

NOA 5 μM + BAP 1 μM Ben-Amar
et al. (2013)

Anthers V. berlandieri x V. rupestris
(110 Richter)

2,4-D + TDZ combinations Forgács
et al. (2017)

Anthers V. vinifera x V. rupestris
(Gloryvine and other cvs)

2,4-D 5 μM + BAP 1 μM Rajasekaran
and Mullins
(1979)

Anthers V. rupestris, V. longii,
V. vinifera (Grenache)

2,4-D 5 μM + BAP 1 μM Mullins and
Rajasekaran
(1980)

Anthers V. vinifera (Cabernet
Sauvignon)

2,4-D 4.5 μM+BAP 1.1 μM Mauro et al.
(1986)

Anthers V. riparia 2,4-D 5 μM + BAP 0.9 μM Mozsar and
Sule (1994)

Anthers V. vinifera (4 cvs) 2,4-D 9 μM + BAP 0.9 μM Perl et al.
(1995)

Anthers V. vinifera (Grenache Noir) 2,4-D 4.5 μM+BAP 1.1 μM Faure et al.
(1996)

Anthers Vitis ssp. (10 cvs) 2,4-D 5 μM + BAP 1 μM Torregrosa
(1998)

Anthers V. vinifera (Sultana) 2,4-D 4.5 μM + BAP 9 μM Franks et al.
(1998)

Anthers V. latifolia 2,4-D 20 μM + BAP 9 μM Salunkhe
et al. (1999)

Anthers V. vinifera (15 cvs) 2,4-D 2.5 μM+BAP 0.8 μM Perrin et al.
(2001)

Anthers V. vinifera (9 cvs) 2,4-D 9 μM + TDZ
11.35 μM

Bouamama
et al. (2007)

Anthers V. vinifera (Macabeo and
Tempranillo)

2,4-D 5 μM + BAP 1 μM Cutanda
et al. (2008)

Anthers V. vinifera (16 cvs); Vitis
hybrids (11 cvs)

2,4-D 5 μM + TDZ 0.2 μM;
2,4-D 5 μM + BAP 0.4 μM;
2,4-D 2.5 μM + NOA
2.5 μM + 4-CPPU 5 μM

Oláh et al.
(2009)

Anthers Vitis vinifera (Pinot noir) 2,4-D 4.4 μM+BAP 4.4 μM Larrouy
et al. (2017)

Anthers and
gynoecia

Vitis vinifera (Manicure
Finger)

2,4-D 4.5 μM+BAP 4.4 μM Xu et al.
(2014)

(continued)
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Table 1 (continued)

Explant Species (cultivar/genotype) PGR References

Anthers and
ovaries

V. longii (microsperma) 2,4-D 5 μM + BAP 1 μM Gray and
Mortensen
(1987)

Anthers and
ovaries

V. vinifera (2 cvs);
V. berlandieri x V. rupestris
(110 Richter); V. berlandieri x
V. riparia (5BB)

2,4-D 9 μM + BAP 4.4 μM Martinelli
et al. (2001)

Anthers and
ovaries

V. vinifera (6 cvs); Vitis hybrid
(Chancellor); V. labruscana
(Concord and Niagara)

2,4-D 2.5 μM + NOA
2.5 μM + 4-CPPU 5 μM

Kikkert et al.
(2005)

Anthers and
ovaries

V. vinifera (7 cvs) 2,4-D 4.5 μM+BAP 8.9 μM Croce et al.
(2005)

Anthers and
ovaries

V. vinifera (Touriga Nacional) 2,4-D 4.5 μM+BAP 8.9 μM Pinto-Sintra
(2007)

Anthers and
pistils

Vitis vinifera L. ssp. sylvestris NOA 5 μM + BAP 4.4 μM Carimi et al.
(2016)

Anthers, ova-
ries and flower
buds

Vitis vinifera (Chardonnay) 2,4-D + BAP + picloram
several concentrations

Dai et al.
(2015)

Filaments V. vinifera; V. labruscana
(Bailey)

2,4-D 1 μM + TDZ 1 μM Nakajima
and Matsuta
(2003)

Floral explants V. vinifera (Albariño) 2,4-D 4.52 μM + BAP
4.4 μM;
2,4-D 4.52 μM + NOA
2.5 μM+
4-CPPU 5 μM

Saporta et al.
(2014)

Immature
anthers

Vitis vinifera (Mencía) 2,4-D 4.5 μM + BAP 9 μM Prado et al.
(2014)

Immature
anthers and
ovaries

V. vinifera (8 cvs) 2,4-D 4.52 μM + BAP
4.4 μM;
2,4-D 4.52 μM + NOA
2.5 μM+
4-CPPU 5 μM

Vidal et al.
(2009)

Immature
anthers and
ovaries

V. vinifera (6 cvs) 2,4-D 4.5-9 μM + BAP 4.5-
9 μM

Prado et al.
(2010a)

Immature
leaves

V. vinifera (Thompson
Seedless)

NOA 2.5 μM + BAP 5 μM+
2,4-D 2.5 μM

Tapia et al.
(2009)

Immature
leaves and
stamens

V. rotundifolia (2 cvs);
V. vinifera (4 cvs)

2,4-D + BAP + NOA several
combinations

Li et al.
(2014)

Immature seeds Vitis vinifera L (14 cvs) TDZ 0.90 μM San Pedro
et al. (2017)

Leaves
regenerated
in vitro

V. vinifera (Crimson Seedless) NOA 4.95 μM+ BAP
4.44 μM+ phenylalanine
5.0 mM

Nookaraju
and Agrawal
(2012)

(continued)
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Table 1 (continued)

Explant Species (cultivar/genotype) PGR References

Leaves
regenerated
in vitro

Vitis vinifera (Crimson
Seedless)

NOA 5 μM+ BAP
4.5 μM + several amino
acids

Nookaraju
and Agrawal
(2013)

Leaves
regenerated
in vitro

V. vinifera (Velika) 2,4-D 9 μM+ IAA
6 μM + BAP 4.4 μM + GA3

1.8 μM

Tsvetkov
et al. (2014)

Leaves V. vinifera (Koshusanjaku) 2,4-D 5-10 μM + TDZ or
4-CPPU 5-10 μM

Matsuta and
Hirabayashi
(1989)

Leaves Vitis hybrids (Seyval Blanc and
Chancellor); V. thunbergii

NOA 20 μM + BAP 40 μM
or TDZ 4 μM

Harst (1995)

Leaves V. rupestris (du Lot) 2,4-D 9 μM + BAP 9 μM Tsolova and
Atanassov
(1996)

Leaves V. vinifera (Podarok
Magaracha)

2,4-D 9 μM + BAP 4.4 μM
then NAA 5.4 μM + BAP
4.4 μM

Kuksova
et al. (1997)

Leaves V. vinifera (Pusa Seedless,
Beauty Seedless, Perlette and
Nashik)

2,4-D 0.45 μM + BAP
4.5 μM

Das et al.
(2002)

Leaves and
anthers

V. vinifera; V. rupestris (sev-
eral cvs)

NOA 5 μM + BAP
0.9–4.5 μM

Stamp and
Meredith
(1988b)

Leaves and
petioles

V. rupestris IAA 5.7 μM or IBA 0.5 μM Martinelli
et al. (1993)

Leaves and
petioles

V. rotundifolia (Regale and
Fry)

2,4-D 9 μM + BAP 4.4 μM,
then NAA 10.7 μM + BAP
0.9 μM

Robacker
(1993)

Ovaries V. labruscana (Fredonia and
Niagara)

2,4-D 9 μM + BAP
1 μM + IASP 17 μM then
2,4-D 2 μM or 2,4-D
2 μM + IASP 4 μM

Motoike
et al. (2001)

Ovaries, anther
filaments, stig-
mas and styles

Vitis vinifera (8 cvs) 2,4-D 5 μM + CPPU 5 μM;
NOA 20 μM + TDZ 4 μM;
NOA 5 μM + BAP 4.4 μM;
NOA 10 μM + BAP 4.4 μM

Carra et al.
(2016)

Ovules V. vinifera (Cabernet
Sauvignon and Grenache),
Vitis hybrid (Gloryvine)

2,4-D 5 μM + BAP 1 μM Srinivasan
and Mullins
(1980)

Ovules V. labruscana (Kyoto) 2,4-D 1 μM + TDZ 0.2 μM Nakajima
et al. (2000)

PEM from
anthers and
ovaries

V. vinifera (Chardonnay) 2,4-D 2 μM Jayasankar
et al. (2001)

Petioles V. vinifera; Vitis hybrid BAP 2.2 μM Zlenko et al.
(2002)

(continued)
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Table 1 (continued)

Explant Species (cultivar/genotype) PGR References

Protoplasts Vitis hybrids (Seyval Blanc) NOA 20 μM + TDZ 4 μM Reustle et al.
(1995)

Protoplasts V. vinifera (Koshusanjaku) NAA 10.7 μM + BAP
2.2 μM

Zhu et al.
(1997)

Seed
integuments

V. vinifera (Autumn Royal
Seedless)

2,4-D 9 μM + BAP 4 μM Xu and Lu
(2009)

Stamen
filaments

Vitis vinifera (Mencía) 2,4-D 1 μM+ TDZ 4.5 μM Acanda et al.
(2013)

Stamen
filaments

Vitis vinifera (Mencía) 2,4-D 1 μM+ TDZ 4.5 μM Acanda et al.
(2015)

Stamens V. vinifera L. (Thompson
Seedless)

2,4-D 2.25 μM + BAP
18 μM

Zhou et al.
(2014)

Stamens and
pistils

Vitis vinifera L. (4 cvs) 2,4-D 4.5 μM+BAP 8.9 μM Gambino
et al.
(2011b)

Stem segments
with a unique
axillary bud

Vitis vinifera (Chardonnay) 2,4-D + BAP at several
concentrations

Maillot et al.
(2016)

Styles and
stigmas

V. vinifera (Sugraone) NOA 5 μM + BAP 9 μM Morgana
et al. (2004)

Styles and
stigmas

V. vinifera (4 cvs) NOA 9.9 μM+ BAP 4.5 μM;
BAP 9 μM

Carimi et al.
(2005)

Tender stems V. amurensis Rupr NAA 0.5 μM + BAP 2.2 μM Sun et al.
(2016)

Tendrils V. vinifera (3 cvs) NAA 0.4 μM + BAP
10 μM + GA3 2.8 μM

Salunkhe
et al. (1997)

Unopened
leaves, petioles
and fully
opened leaves

Vitis rotundifolia (5 cvs) 2,4-D 9 μM + BAP 4.4 μM Dhekney
et al. (2011)

Whole flower
bud

Vitis vinifera (Thompson
Seedless)

NOA 2.5 μM + 2,4-D
2.3 μM +
4-CPPU 4 μM

Ji et al.
(2017)

Whole flowers,
anthers and
ovaries

V. vinifera (8 cvs);
V. berlandieri x V. rupestris
(110R)

2,4-D 4.5 μM + BAP 9 μM Martinelli
et al. (2003)

Whole flowers,
anthers and
ovaries

V. vinifera (8 cvs);
V. berlandieri x V. rupestris
(110R)

2,4-D 4.5 μM + BAP 9 μM Gribaudo
et al. (2004)

Whole flowers,
anthers and
ovaries

V. vinifera (8 cvs);
V. berlandieri x V. rupestris
(110R)

2,4-D 4.5 μM + BAP 9 μM Gambino
et al. (2007)

Whole flowers,
anthers and
ovaries

V. vinifera (8 cvs);
V. berlandieri x V. rupestris
(110R)

2,4-D 4.5 μM + BAP 9 μM Cadavid-
Labrada
et al. (2008)

Zygotic
embryos

V. vinifera (4 cvs); V. longii NOA 5 μM + BAP 0.9 μM Stamp and
Meredith
(1988a)

(continued)
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Physical culture conditions significantly influence the embryogenic response. By
manipulating light intensity and temperature, Das et al. (2002) developed an efficient
leaf-disc method for the regeneration of plants via SEg. Other workers incubate
cultures in total darkness until embryogenic callus is formed and then transfer cultures
to the light (Oláh et al. 2009; Prado et al. 2010a). Several parameters such as
composition of basal medium,mediumpH, type of gelling agent, presence of activated
charcoal, carbohydrate source and light intensity and spectral composition can influ-
ence culture success (Jittayasothorn et al. 2007). Type of culture, liquid or solid,
influences the final result, and the liquid culture is to be preferred in the induction
phase while structured embryogenic callus grows better on solid media (Jayasankar
et al. 2003; Mullins and Srinivasan 1976). Moreover, quality of SE affects regenera-
tion frequency, which varies depending on type of culture: SE cultured on solid media
often show dormancy, whereas in liquid media SE were not dormant and showed
higher regeneration efficiency (Jayasankar et al. 2003; Mullins and Srinivasan 1976).

SEg is significantly influenced by the developmental stage of explants, and
preconditioning treatments have been proved to be crucial in determining the final
result. Gribaudo et al. (2004) screened six different developmental stages of anthers
to initiate SEg cultures and identified a correlation between anther stage and SEg
efficiency. The optimal developmental stage is related to genotype, and for
V. vinifera ‘Chardonnay’ and ‘Barbera’, higher rates of SEg had been obtained
when explants were collected at early stages, while in the rootstock ‘110R’, later
stages proved to be more efficient. In V. lambruscana, the best results were obtained
with anthers collected 20 days before anthesis (Nakajima et al. 2000), while for eight
Tunisian cultivars of V. vinifera, the best performance was achieved with anthers at
the tetrad stage of microspore development (Bouamama et al. 2007). Similar results
were reported more recently also for V. vinifera ‘Sultana’, ‘Red Globe’ and ‘Merlot’
(Vasanth and Vivier 2017).

2.3 Synchronisation of Somatic Embryo Production
and Their Germination

The synchronisation of SE development is a critical step for taking advantage of SEg
for applications, such as micropropagation, germplasm conservation and genetic

Table 1 (continued)

Explant Species (cultivar/genotype) PGR References

Zygotic
embryos

V. rotundifolia (5 cvs) NOA 5 μM + BAP 0.9 μM Gray (1992)

2,4-D 2,4-dichlorophenoxyacetic acid, BAP 6-benzyladenine, 4-CPPU N-(2-chloro-4-pyridyl)-N-
0-phenylurea, cvs cultivars, IAA indole-3-acetic acid, IBA indole-3-butyric acid, IASP indole-3-
acetyl-L-aspartic acid, NAA 2-naphthaleneacetic acid, NOA 2-naphthoxyacetic acid, PEM
proembryogenic masses, PGR plant growth regulators, TDZ N-(1,2,3-thiadiazol-5-yl)-N-
0-phenylurea (thidiazuron)
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transformation, and for gene expression studies. Anatomical and developmental
studies towards this goal have been made, comparing SE development in solid
media with those in suspension cultures (Jayasankar et al. 2003). Developing SEs
on solid media had large cotyledons, little or no visible suspensor structure and a
relatively undeveloped concave shoot apical meristem, whereas those developing in
liquid media had smaller cotyledons, a distinct suspensor and a flat-to-convex shoot
apical meristem. Also, SEs derived from solid media exhibited physiological dor-
mancy and did not germinate without a dormancy-breaking treatment (Jayasankar
et al. 2003). Faure et al. (1996) observed asynchronous development of SEs when
embryogenic callus cultured in liquid media supplemented with 2,4-D and BAP was
transferred to the same liquid media devoid of PGR. They described developmental
stages of proembryos in PGR supplemented media, followed by development of
globular stage embryos in PGR-free media (Faure et al. 1996).

Jayasankar et al. (1999) reported a high degree of synchronisation of somatic
embryo production by alternating solid and liquid media for culture. However,
further development of somatic embryos was better achieved in semi-solid media.
Embryo germination was influenced by genotype and culture conditions. SEs
derived from suspension cultures of ‘Chardonnay’ did not have a dormant phase
and germinated precociously, whereas ‘Thompson Seedless’ SEs did not develop
beyond the heart stage in liquid medium (Jayasankar et al. 1999). In contrast, Zlenko
et al. (2002, 2005) successfully converted somatic embryos developed on liquid
induction media by subculturing them on liquid media supplemented with BAP and
GA3, or GA3 alone. Plant regeneration appears to be easier for SEs of Muscadine
grapes (Muscadinia rotundifolia), as Lu et al. (2007) were able to germinate more
than 95% of synchronously produced SEs using suspension cultures established in
woody plant medium (Lloyd and McCown 1980). In contrast, in some cultivars of
V. vinifera such as ‘Grenache noir’, the germination of somatic embryos is very poor
due to their inability to utilise the starch and lipids accumulated in cotyledons at the
torpedo stage (Faure and Aarrouf 1994). Another problem with suspension cultures
of grapevine is the browning of the suspension of cells and medium, due to
production of phenolic compounds. Jayasankar et al. (1999) overcame this problem
by sieving the larger cell masses, which contained differentiated somatic embryos.
After three subcultures, they managed to produce large numbers of cytoplasm-rich
proembryonic masses (PEM). Two cultivars used behaved quite differently: ‘Char-
donnay’ produced SEs from PEMs directly upon subculture onto hormone-free
media, whereas ‘Thompson Seedless’ did not advance beyond the heart stage. The
use of conditioned medium has been reported to facilitate embryo proliferation and
conversion. Supplementing liquid culture media with arabinogalactan-proteins has
been shown to facilitate cell proliferation of grapevine embryogenic cultures (Ben
Amar et al. 2007). Recently, an improved protocol based on the dynamic mainte-
nance of culture medium has been proposed. Forgács et al. (2017) stated that culture
density affects both the amount of differentiating embryos and their stage of
development in ‘Richter 110’. Results show that to achieve full synchrony, it is
essential to use low cell density obtained through readjusting it to the initial value
every week.
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2.4 Applications of Somatic Embryogenesis in Grapevine

SEg is the preferred method for cell to plant regeneration in V. vinifera L. and has
been reported for several important Vitis species. SEg has been widely applied in
crop genetic improvement and it was suggested as a specific tool to induce
somaclonal variation in grapevine and specifically to amplify clonal variability
(Acanda et al. 2015; Desperrier et al. 2003; Kuksova et al. 1997; Torregrosa et al.
2001). SEs have proven to be an excellent resource for mutations (Pathirana 2011)
even if this approach does not guarantee a good rate of SE induction and conversion
into plantlets, which is strictly genotype dependent. For this reason, mutagenesis has
not been extensively used for grapevine improvement even if physical and chemical
mutagens have been investigated. Recently, production of colchicine- and oryzalin-
induced polyploid mutants has been described starting from SEs of ‘Crimson
seedless’, ‘BRS Clara’ and ‘Mencia’ (Acanda et al. 2015; Sinski et al. 2014).
Currently, SEg is the most suitable tool for in vitro manipulation of the Vitis genus
(Kikkert et al. 2001; Martinelli and Mandolino 2001). For this reason, mutagenesis
of somatic embryos has become an interesting tool in genomics programs to assign
gene function, particularly since the availability of the draft genome sequence of
grapevine (Jaillon et al. 2007; Velasco et al. 2007).

Virus infections cause severe economic losses in grapevine with several viruses
known to negatively influence grape quality and yield. SEg has been proved to be highly
effective in eliminating some viruses, either alone or in combinationwith thermotherapy
(Gambino et al. 2006, 2009). Bouamama-Gzara et al. (2017) reported 100% elimination
of Grapevine leafroll-associated virus 3, Grapevine stem pitting-associated virus and
Grapevine virus A from the Tunisian cultivar Hencha through SEg.

Other applications include the isolation of natural somatic mutants (Boss and
Thomas 2002; Franks et al. 2002), and germplasm conservation through synthetic
seeds technology and cryopreservation (Brambilla 1999; Carimi et al. 2016; Gray
and Compton 1993; Gray et al. 1991; Jayasankar et al. 2005).

SEs have been tested as a resource for conservation of grapevine germplasm.
Jayasankar et al. (2005) cultured mature somatic embryos at low density
(250 embryos/40 ml liquid media) for 2 weeks, dried them in the laminar flow for
~4 h and sealed in Petri dishes. Ninety percent of these dehydrated SEs produced
plants after 42 months of storage at 4 �C in V. vinifera ‘Chardonnay’. V. vinifera
‘Autumn Seedless’ SEs were generally poor in germination from the beginning but
did not show any deterioration during the month storage trial, rather their conversion
rate increased from 30 to 40% over the storage period, a statistically significant
difference (Jayasankar et al. 2005).

Possible use of SEs for clonal propagation was demonstrated by Jayasankar et al.
(2001) using V. vinifera ‘Chardonnay’. They blot-dried mature SEs and germinated
directly in different sterilised agar-free potting media under aseptic conditions. Com-
mercial pottingmixture overlaid by sand produced the best results with 32%of the SEs
growing into normal plantlets ready for greenhouse acclimation. They proposed
encapsulating SEs for further improvements to the propagation methodology.
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2.5 Genetic Stability of Somatic Embryo-Derived Grapevine
Plants

Plantlets derived from an in vitro culture may exhibit somaclonal variations (Larkin
and Scowcroft 1981). There are two types of somaclonal variations: heritable and
epigenetic (Skirvin et al. 1994). Heritable changes in in vitro cultures occur at higher
frequency than occurs spontaneously in seeds or grafted plants (Prado et al. 2010b;
Sahijram et al. 2003). Therefore, somaclonal variations may constitute a serious
problem in clonal propagation systems aimed at the preservation of plant genetic
integrity (Sahijram et al. 2003). However, somaclonal variations may also be
exploited as a source of new genetic variability for crop improvement, especially
in trees and long-lived perennial species and vegetatively propagated plants (Karp
1995). Methods for detecting somaclonal variation were extensively reviewed by
Bairu et al. (2011). Somaclonal variants can be detected using various techniques
that are broadly categorised as morphological and molecular detection techniques.

Morphological variants can be easily detected based on characters such as
differences in plant stature, leaf morphology or pigmentation abnormalities (Israeli
et al. 1991). In grapevine, variation in leaf shape was reported for several somaclones
of ‘Grenache’ (Martinez et al. 1997). Variability in cropping level, berry weight and
vigour are also reported (Torregrosa et al. 2011). DNA-based techniques, such as
restriction fragment length polymorphism (RFLP), random amplified polymorphic
DNA (RAPD), microsatellite or inter-simple sequence repeat (ISSR) and amplified
fragment length polymorphism (AFLP) markers, are valuable tools for analysing the
genetic fidelity of in vitro propagated plants. Variations in tissue culture-derived
plants can also be generated by changes in methylation (Schellenbaum et al. 2008)
and ploidy (Martinelli and Gribaudo 2001). Genetic profiles determined by DNA
markers (ISSR, AFLP, RAPD, SSR) have shown that genetic fidelity is not
compromised during SE, except in very rare instances (Prado et al. 2010b; Yang
et al. 2006). Flow cytometry has been used in V. vinifera to verify the ploidy level
and ploidy stability of SE-derived plants (Leal et al. 2006; Prado et al. 2010b).
Researchers reported a low percentage of somaclonal variation, taking into account
that all the embryos were produced from callus tissue, which is prone to genetic
variability (Sato et al. 2011; Smulders and De Klerk 2011).

3 Conservation of High-Health Germplasm Through
Cryopreservation

Plant cryopreservation is the storage of structurally intact cells, tissues or organs in
liquid nitrogen (LN) or its vapour phase at ultra-low temperatures, mainly for
conservation of genetic resources. The temperature in LN (�196 �C) or its vapour
phase ensures the cellular activity is slowed to the point of cessation where vital
functions such as enzymatic activity, gene function and respiration cease, thus

450 A. Carra et al.



arresting the cell aging. Hence in theory, cryopreserved cells cannot age beyond the
physiological point at which they were placed in cryo storage (Benson 2008). Thus,
cryopreservation provides a means to conserve plant genetic resources in gene banks
that are otherwise under threat when maintained in the field, particularly in the case
of clonally propagated species such as grapevine that are expensive to duplicate in
different locations or to maintain as in vitro cultures.

3.1 Developing High-Health Plants for Industry
and Conservation

In addition to storage of genetic resources for future use, cryopreservation has been
used in recent years to eradicate infecting microorganisms in many horticultural
species including grapevine (Bettoni et al. 2016; Wang and Valkonen 2007, 2009; Bi
et al. 2018a; Wang et al. 2003). Table 2 gives details of the grapevine cultivars from
which different viruses were eradicated using cryopreservation techniques.

There are a number of advantages of using cryotherapy to obtain high-health
plants for the industry compared with traditional methods of virus eradication.
Among these advantages, the ability to treat a large number of samples and geno-
types simultaneously, higher frequency of virus-free plants and cost-effectiveness
are the major benefits of cryo-based technologies (Bettoni et al. 2016).

4 Methods Used for Grapevine Cryopreservation

Although the first method of cryopreservation of plant material developed using
winter dormant twigs of Salix, mulberry and poplar (Sakai 1960) may apply to frost
hardy grapevine, its wider application may be limited. Further manipulation of
freezing tolerance, for example, through exogenous abscisic acid (Rubio et al.
2018), may enable the use of the method in grapevine. Currently, the dormant bud
method is successfully used mainly in apple for long-term preservation (Höfer 2015;
Pathirana et al. 2018; Towill and Bonnart 2005). On the other hand, development of
vitrification-based methods applied to embryogenic masses, SEs, shoot tips and
axillary buds from tissue cultured plants has progressed rapidly.

Vitrification is freezing of a solution without crystallisation. The water molecules
are sparsely distributed in highly concentrated solutions, including cytoplasm of
highly dehydrated plant tissue, particularly in the non-vacuolar, highly cytoplasmic
meristematic tissue. Snap freezing of such tissue in LN will result in the solution
transitioning to a vitreous (glassy) state. In this state, the metabolic activity in cells
ceases and cells survive without aging, theoretically for eternity.

The vitrification method of cryopreservation involves dehydration of cells/tissues
in glycerol-based cryoprotective solutions such as plant vitrification solution
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2 (PVS2) (Sakai et al. 1990). Penetrative cryoprotectants such as ethylene glycol and
dimethyl sulphoxide (DMSO) in vitrification solutions are believed to prevent ice
formation by interfering with hydrogen bonding between water molecules (Best
2015), and they also displace water within the cytoplasm, thus supporting dehydra-
tion of tissue.

There are several methods of vitrification described for plant tissue:

(a) Two-Step Freezing
This older method was mainly used for ‘unprotected’ (Ezawa et al. 1989) and
protected shoot tips (Plessis et al. 1991, 1993) and axillary buds through encapsu-
lation in alginate beads (Miaja et al. 2000; Zhao et al. 2001), as well as for
embryogenic cell suspensions (Dussert et al. 1991, 1992; Ben-Amar et al. 2013).
Ezawa et al. (1989) used a freezing solution containing 10% DMSO and 60 g/L
sucrose to cryopreserve Vitis labrusca shoot tips (1–2 mm). After holding shoot tips
for 2 h in this solution at room temperature, they cooled the shoot tips in the same
solution at a rate of�0.5 �C per minute using a programmable freezer and found that
freezing to�30 �C followed by immersion in LN gave better regeneration than those
frozen to �20 �C or � 40 �C and immersed in LN. Also, shoot tips from twigs
harvested from the field in November and December from Hokkaido Research
Station fields in Japan responded better to freezing in LN than those harvested in
October (Ezawa et al. 1989).

Zhao et al. (2001) encapsulated axillary buds of four V. vinifera accessions and
treated them in increasing sucrose concentrations from 0.1 to 1 M and desiccated
with silica gel to 21% moisture content then slowly cooled to �40 �C at a rate of
�0.2 �C/min before immersion in LN. They found that plants maintained without
subculture for 3 or 4 months and those that received a cold-acclimation of 1 month at
5 �C were amenable to cryopreservation. Shoot tips from younger plants in tissue
culture did not regenerate after cryopreservation by this method.

Dussert et al. (1991) used anthers of rootstock ‘41B’ (V. vinifera ‘Chasselas’ x
V. berlandieri) to induce embryogenic callus from which they produced embryo-
genic cell cultures. These were used in their cryopreservation experiments. They
demonstrated that fast freezing is not effective for cryopreservation of embryogenic
cell suspensions and only two-step freezing allowed successful cryopreservation.
DMSO (5% w/v) and 0.25 M maltose in the freezing solution gave the highest
(>60%) regeneration rates after slow cooling to �40 �C at the rate of �0.5 �C/min
followed by immersion in LN. Another important step is the incubation of the cells
in the medium for 1 h at 0 �C as a pretreatment step before slow freezing. The
optimum post-thaw culture medium consisted of a semi-solid medium supplemented
with 2 mg/L naphthoxyacetic acid (Dussert et al. 1992). Activated charcoal (0.1%)
helped prevent browning of the cells after thawing, but regrowth was reduced in its
presence. A minimum of 6 days in the semi-solid medium was essential for recovery
of cells after cryopreservation (Dussert et al. 1992).

Ben-Amar et al. (2013) compared a two-step freezing method with direct freezing
for cryopreservation of embryogenic cell lines of three grapevine accessions: Root-
stock 110 Richter (V. berlandieri x V. rupestris) and V. vinifera cv. Riesling and
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cv. Tempranillo. For both procedures, they employed pre-culture of embryogenic
cell masses in increasing sucrose concentrations from 0.25, 0.5, 0.75 M through to
1 M over 4 days either before encapsulating in alginate beads (dehydration-
encapsulation) or after (encapsulation-dehydration). Then, the cells in beads were
treated for 3 days in a mixture of 2 M glycerol and 0.4 M sucrose before either being
dehydrated in the laminar flow hood airflow before direct immersion in LN or
maintained at 0 �C for 30 min, for 45 min at �20 �C or for 45 min at �80 �C before
transfer to LN. Direct freezing recorded significantly higher regeneration rates
(43.3–78%) than slow freezing (15.3–25.3%) in all three accessions. However, the
slow freezing method employed was different from that of previous workers who
demonstrated better results when a programmed freezer was used (Dussert et al.
1991, 1992; Zhao et al. 2001) to control the rate of temperature drop.

The method used by Plessis et al. (1993) and Miaja et al. (2000) involved sucrose
pre-culture of shoot tips in alginate beads followed by dehydration for 4 h in the
laminar hood airflow that resulted in 30% moisture content (Miaja et al. 2000),
followed by slow freezing at 0.5 �C/min to�80 �C and transfer to LN. While Plessis
et al. (1993) recorded 24% shoot tip survival in V. vinifera ‘Chardonnay’ by this
two-step encapsulation-dehydration procedure, Miaja et al. (2000) did not recover
whole plants in three cultivars (‘Nebbiolo’, ‘Barbera’ and ‘Brachetto’), although
cells of some explants showed viability when tested using fluorescent microscopy.

In the three-step vitrification method, explants are stepwise pre-cultured in tissue
culture media enriched with increasing sucrose concentrations over several days
followed by osmoprotection using a glycerol and sucrose mixture and finally PVS2
dehydration. In this method, after the final treatment in vitrification solution,
explants are held in a cryotube with vitrification solution and transferred directly
to LN. Researchers describe such vitrification methods as two-step or three-step
vitrification methods; however, this should not be confused with two-step freezing
method where the explants are first cooled slowly at a selected rate and then
transferred to LN after reaching a designated temperature such as �30 �C.

(b) Encapsulation-Dehydration
This method was first reported by Fabre and Dereuddre (1990) for cryopreservation
of Solanum shoot tips and is based on the technology developed for the production
of artificial seeds. Encapsulation-dehydration has been experimented with in well
over 70 different plant species (Engelmann et al. 2008). Plessis et al. (1991) were the
first to report this method to cryopreserve grapevine shoot tips. In this method,
explants are placed into alginate solution (3% Na-alginate (w/v), 2 M glycerol and
0.4 M sucrose in MS liquid medium with no CaCl2), and then individual explants in
alginate solution are transferred by pipette to a calcium chloride solution (0.1 M
calcium chloride, 2 M glycerol and 0.4 M sucrose in MS liquid medium) in a droplet.
The explant gets entrapped in beads by ionotropic gelation, with CaCl2 acting as the
crosslinking agent. Crosslinking is complete in about 30 min and produces beads of
4–5 mm diameter containing an explant. Then the beads are pre-cultured on basal
MS media supplemented with increasing sucrose concentrations of 0.25, 0.5, 0.75
and 1 M for 4 days, a step per day, before partial desiccation in the air current of a
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laminar flow hood or on silica gel to desiccate the beads to about 16 to 20% moisture
content (Markovic et al. 2013; Wang et al. 2000). The dehydration period can vary
depending on the ambient temperature and humidity, especially for air-drying in a
laminar flow hood. The two desiccation methods produce similar results with respect
to Vitis shoot regrowth as demonstrated in rootstock LN33 (Couderc 1613 � Vitis
vinifera ‘Thompson Seedless’). The highest survival (60%) was achieved when
beads were dehydrated for 7 h in laminar flow hood airflow or for 4.5 h on silica
gel, with a final bead moisture content of about 16% (Wang et al. 2000). However,
desiccation on silica gel is easier to reproduce than air-drying, since the room
conditions are variable among labs or even at different periods of the year within
the same lab. After desiccation, the beads are transferred to cryovials (~10 beads per
cryovial) and plunged into LN. For testing viability, cryovials are warmed in a 40 �C
water bath for 3 min and encapsulated shoot tips are cultured on recovery medium.
Encapsulation-dehydration procedures for different Vitis genotypes have been tested
using both direct immersion in LN after osmoprotection (Bayati et al. 2011; Bi et al.
2018a; Carimi et al. 2016; Dussert et al. 1991; Wang et al. 2000, 2002, 2004) and by
two-step freezing (Dussert et al. 1991, 1992; Ezawa et al. 1989; Miaja et al. 2000,
2004; Plessis et al. 1991, 1993; Zhao et al. 2001) focusing on several Vitis species.

(c) Encapsulation-Vitrification
This method is a combination of encapsulation-dehydration and vitrification pro-
cedures, where explants are encapsulated in alginate beads and dehydrated chemi-
cally using vitrification solutions; it combines the advantages of ease of
manipulation of encapsulated explants and the fast dehydration by vitrification
(Matsumoto and Niino 2017; Sakai and Engelmann 2007). The encapsulation-
vitrification method has been studied less than other cryopreservation procedures
for grapevine (Bettoni et al. 2016). In the study of Benelli et al. (2003), shoot tips
from rootstock Kober 5BB (Vitis berlandieri x Vitis riparia) were excised from cold
acclimated cultures (3-week at 4 �C) and encapsulated in 3% calcium alginate. The
beads were placed in cryovials and exposed to PVS2 at 0 �C for 90 min. Cryovials
containing shoot tips and PVS2 were then immersed in LN and stored. For recovery,
LN-stored cryovials were warmed in a 40 �C water bath and encapsulated shoot tips
were cultured on recovery medium. This protocol resulted in low regrowth levels,
not specified by the authors (Benelli et al. 2003).

(d) Droplet-Vitrification
This technique is a variant of vitrification-based cryopreservation and was derived
from the droplet-freezing technique developed by Kartha et al. (1982) for freezing
cassava shoot tips using slow cooling and then modified by Schafermenuhr et al.
(1994) for potato shoot tip cryopreservation. In this method, explants are
osmoprotected, exposed to vitrification solution, placed onto individual droplets or
a thin layer of PVS2 on aluminium foil strips and then transferred to LN (Bi et al.
2018b; Pathirana et al. 2016). The main advantage of this technique over the
traditional vitrification procedures is the possibility of achieving faster freezing
and warming rates due to the direct contact of explants with LN (Panis et al. 2011;
Sakai and Engelmann 2007). Aluminium, with its high thermal conductivity, further
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facilitates fast freezing of the shoot tips. Droplet-vitrification has been applied
successfully to in vitro grown shoot tips of diverse plant species, including grapes
(Bi et al. 2018b; Carimi et al. 2016; Hassan and Haggag 2013; Markovic et al. 2013;
Pathirana et al. 2016; Volk et al. 2018). So far, droplet-vitrification appears to be a
promising method to overcome species- and genotype-specific responses that have
been bottlenecks for the widespread use of Vitis cryopreservation (Bi et al. 2018b;
Volk et al. 2018). Recently, improvements in droplet-vitrification protocols for
cryopreservation of Vitis have been reported, and these are associated with improv-
ing the explant quality (Markovic et al. 2013) and pretreatment conditions, adding
antioxidants (Bi et al. 2018a) and elicitors of defence proteins such as salicylic acid
(Bi et al. 2018b; Pathirana et al. 2016; Volk et al. 2018). Volk et al. (2018) reported a
widely applicable Vitis droplet-vitrification method and applied it to nine species. In
their protocol, shoot tips were excised from nodal sections that were grown on MS
medium containing 0.2 mg L�1 N6-benzyladenine, 1 mM salicylic acid, 1 mM
glutathione (reduced form) and 1 mM ascorbic acid for 2 weeks. Then, the shoot
tips were pre-cultured on half-strength MS medium containing 0.3 M sucrose,
0.1 mM salicylic acid, 1 mM ascorbic acid and 1 mM glutathione (reduced form)
for 3 days, treated with loading solution (half-strength MS + 2 M glycerol +0.4 M
sucrose) for 20 min and then with half-strength PVS2 for 30 min at 22 �C followed
by full-strength PVS2 treatment for 90 min at 0 �C prior to immersion in LN. Shoot
tips were warmed in unloading solution (half-strength MS + 1.2 M sucrose) for
20 min and post-thaw cultured for shoot regrowth. This cryo-protocol resulted in
24–43% shoot regrowth and averaged 35 � 2% across nine Vitis species. Bettoni
et al. (2018) reported a similar Vitis droplet-vitrification method to that described by
Volk et al. (2018); in addition, they showed the possibility of cryopreserving Vitis
vinifera ‘Chardonnay’ shoot tips without first introducing the accession into tissue
culture, using plants from a growth chamber. Nodal sections were harvested from the
growth chamber plants, surface sterilised and plated on pretreatment medium for
2 weeks, and then shoot tips (1 mm) were dissected and pre-cultured for 3 days. The
pretreatment and pre-culture medium were those described above by Volk et al.
(2018), with addition of the plant preservation mixture (PPM®, 1.5% v/v) to reduce
microbial contamination. Pre-cultured shoot tips were treated with loading solution
for 20 min, followed by half-strength PVS2 for 30 min at 22 �C and then full-
strength PVS2 treatment for 30 min at 0 �C prior to immersion in LN. Following LN,
the shoot tips were warmed in unloading solution for 20 min and post-thaw cultured
for shoot regrowth. About 43% shoot regrowth was obtained for V. vinifera
‘Chardonnay’.

(e) V Cryo-plate Method
The recently developed V cryo-plate technique is an optimisation of the encapsula-
tion and droplet-vitrification methods and combines advantages of both (Yamamoto
et al. 2011). Explant handling is facilitated by droplet encapsulated plant tissues
adhering to the wells of aluminium cryo-plates, and at the same time, this process
aids fast cooling and warming rates, an important requirement for successful cryo-
preservation protocols (Niino et al. 2013; Panis et al. 2005; Yamamoto et al. 2011).
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The main advantages of the cryo-plate method, over the other vitrification-based
cryopreservation techniques, are simplicity and user-friendliness; samples can be
easily transferred between solutions with minimal risk of mechanical injuries
because all treatments can be carried out on cryo-plates with shoot tips attached,
i.e. the cryo-plate is manipulated only after the shoot tips have adhered onto it
(Rafique et al. 2015). The V cryo-plate method has been successfully applied to a
diverse range of species (Matsumoto and Niino 2017). Bettoni et al. (2019) reported
a practical and promising cryopreservation protocol for in vitro grapes shoot tips
using the V cryo-plate method. In this protocol, microcuttings were grown on MS
pretreatment medium supplemented with 0.2 mg L�1 N6-benzyladenine, 1 mM
salicylic acid, 1 mM glutathione (reduced form) and 1 mM ascorbic acid for
2 weeks, and then shoot tips (1 mm) were dissected from the shoots and
pre-cultured on half-strength MS medium containing 0.3 M sucrose, 0.1 mM
salicylic acid, 1 mM ascorbic acid and 1 mM glutathione (reduced form) for
3 days. Pre-cultured shoot tips were attached to wells of a cryo-plate with alginate
(2% Na-alginate (w/v)) and calcium (0.1 M calcium chloride) beads and treated with
loading solution for 30 min and then exposed to PVS2 at 22 �C for 40 min. The cryo-
plate was then immersed in LN for 1 h and warmed into unloading solution for
20 min, and the alginate beads were transferred onto the recovery medium. This
protocol resulted in 68–70% shoot regrowth in Vitis accessions V. aestivalis (DVIT
1408) and Vitis jacquemontii (PI 135726).

5 Conclusions and Future Perspectives

Since the first report of SEg in grapevine, much research has been conducted on
improving the conditions for inducing embryogenic cultures and on manipulating
those to obtain mature SEs synchronously. Lack of synchrony and consistency in SE
formation, poor maturation, lack of a quiescent stage resulting in autonomous
germination and inability to dehydrate them unlike zygotic embryos are problems.
There are only a few reports of attempts to store dehydrated SEs of grapevine, but
some accessions have stored well up to 2 years at 4 �C. Variability in response in
different genotypes requires optimising media and conditions for recalcitrant geno-
types. As a result of these difficulties, conservation by cryopreservation has
progressed using encapsulated shoot tips or axillary buds of tissue culture plants.
One vitrification-based method uses a droplet of vitrification solution to protect the
shoot tips on an aluminium strip allowing faster freezing of tissue, an important
factor for post-cryo-survival. The novel V cryo-plate method combines the advan-
tage of both encapsulation in alginate beads to adhere the explants, so manipulations
can be performed easily, and the high thermal conductivity of aluminium. Cryo-
preservation of SEs has been suggested as a way to conserve the diversity of wild
V. vinifera ssp. sylvestris, and the limited results are promising. Further research
towards incorporating dehydration tolerance in SEs would allow further progress in
using SEs as the clonal unit of conservation.
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Cryopreservation of Grapevine Shoot Tips
from In Vitro Plants Using Droplet
Vitrification and V Cryo-plate Techniques

Jean Carlos Bettoni, Ranjith Pathirana, Remi Bonnart, Ashley Shepherd,
and Gayle Volk

Abstract The availability of and easy access to Vitis genetic resources are essential
for future breeding program advances. Cryopreservation is currently considered an
ideal means for the long-term preservation of clonally propagated plant genetic
resources. When robust methods for cryopreservation of Vitis spp. are available,
there is an opportunity to preserve collections for extended lengths of time with
minimal cost and labor requirements and a low risk of loss. This chapter describes
the droplet vitrification and V cryo-plate protocols that have been shown to be
effective for the cryopreservation of multiple V. vinifera genotypes and other Vitis
species.

Keywords Vitis · Tissue culture · Conservation · Genetic resources · Germplasm

1 Introduction

Grapevine is among the most economically important fruit crops cultivated in all
continents with high cultural significance inmany countries. Grapevine has a rich genetic
diversity, with most of the globally important cultivars belonging to Vitis vinifera
L. subsp. vinifera. Other Vitis species, as well asMuscadinia rotundifolia, are important
to provide valuable genes for breeding new elite cultivars and rootstocks through
traditional and biotechnological approaches (Carimi et al. 2011; Eibach et al. 2009).
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Availability and easy access to Vitis genetic resources are essential for future breeding
program advances (Alleweldt andDettweiler 1994;Carimi et al. 2016;Wang et al. 2018).

Cryopreservation is a valuable technique for the safe, long-term conservation of
Vitis genetic resources that complements traditional field collections. Vitis genetic
resources are vulnerable to pathogens and environmental disasters in field genebanks,
which can lead to the depletion of germplasm that may be needed for future breeding
efforts (Bi et al. 2017; Markovic et al. 2013; Pathirana et al. 2016).

Cryopreservation is the storage of biological samples in liquid nitrogen (LN,
�196 �C) or liquid nitrogen vapor (LNV, �165 to �196 �C). Cryopreservation
methods have been used to securely conserve plant genebank collections for the
long term. In LN or LNV, viable explants are preserved in a state where cellular
division and metabolic processes are minimized, preserving the structure and function
of the biological system (Benelli et al. 2013; Benson 2008; Wang et al. 2014).
Materials are kept in a state that minimizes genetic drift. It is also cost-effective to
maintain collections for extended periods of time in LN compared to field or in vitro
collections (Benson 2008; Reed 2014).

Several cryopreservation protocols have been described for grapes (Bettoni et al.
2016; Bi et al. 2017, 2018a; Pathirana et al. 2016). Among these, droplet vitrification
has been demonstrated as the most effective across diverse Vitis species (Bettoni et al.
2019a, b; Bi et al. 2018b; Volk et al. 2018). Droplet vitrificationmakes use of ultra-fast
shoot tip cooling and warming rates, an important requirement for successful cryo-
preservation protocols based on vitrification (Benson and Harding 2012). Recently, a
novel cryopreservation protocol based on the V cryo-plate using Plant Vitrification
Solution 2 (PVS2) (Sakai et al. 1990) has been developed (Yamamoto et al. 2011).
This method simplifies handling of explants at different stages of cryopreservation by
vitrification maintaining the fast freezing and thawing rates of droplet vitrification,
over 4000 �C min�1 of treated explants (Yamamoto et al. 2011). The V cryo-plate
method was successfully applied to a diverse range of genetic resources, including
grapevine (Bettoni et al. 2019c).

Access to reliable cryopreservation methods is important for the widespread appli-
cation of cryopreservation technologies for Vitis genetic resources (Reed et al. 2004).
The aim of this chapter is to share the most successful protocols for cryopreserving
grapevine, based on droplet vitrification and V cryo-plate techniques. The described
protocols were effective for cryopreserving multiple Vitis species and genotypes.

2 Materials

2.1 Tissue Culture Facilities and General Equipment

1. Precision balance.
2. Magnetic stirrer.
3. pH meter.
4. Autoclave.
5. Laminar airflow cabinet.
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6. Glass bead sterilizer.
7. Stereomicroscope.
8. Refrigerator to store prepared media and solutions.
9. Culture room with controlled temperature (25 �C) and photoperiod (16 h).

10. Forceps, scalpels and scalpel blades, pruning shears.
11. Glass pipettes.
12. Sterile Petri dishes (∅ 90 mm).
13. Volumetric flasks.
14. Sterile plastic Petri dishes (100 � 25 mm; 60 � 15 mm).
15. Sterile glass containers (jars).
16. Plastic wrap.
17. Sterile aluminum cryo-plate n� 2 (37 � 7 � 0.5 mm) (Taiyo Nippon Sanso

Corp., Tokyo, Japan).
18. Sterile aluminum foil strips (~6 � 25 mm) (can be sterilized in glass Petri

plates).
19. Micropipette.
20. LN Dewar for cryopreservation (600 mL).
21. Sterile filter paper strips.
22. Cryotubes.
23. Long-term LN storage tank.

2.2 Culture Media and Solutions

Prepare all the media and solutions using distilled H2O and reagents with high
analytical purity grade, and store at 4 �C, except for vitamins that should be stored
at �20 �C. Murashige and Skoog (1962) (MS) salts formulation can be found in
Table 1.MSmedium can also be purchased from suppliers as powder mixture with all
salts or without ammonium.

2.2.1 Stock Solutions

Plant Growth Regulators All plant growth regulators (PGR) are prepared at a con-
centration of 0.1 mg mL�1. Dissolve the quantity of PGR in a small volume of 5 M
NaOH and distilled H2O to the desired volume, and store the PGR stock solutions at
4 �C.

Salicylic Acid Salicylic acid stock solution is prepared at a concentration of
0.1 mg mL�1. Dissolve the quantity of salicylic acid in a small volume of 95%
ethanol and distilled H2O to the desired volume and store at 4 �C.

Vitamins The stock solution of MS medium vitamins is prepared according to the
formulations given in Table 1. Vitis vitamins used in recovery media are composed of
100mgL�1 myo-inositol, 10mg L�1 thiamineHCl, 1 mgL�1 nicotinic acid, 1 mgL�1
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pyridoxine HCl, 1 mg L�1 calcium pantothenate, 0.01 mg L�1 biotin, and 2 mg L�1

glycine (Volk et al. 2018). Dispense both vitamins into aliquots, and store at �20 �C.

2.2.2 Shoot Initiation and Maintenance Medium

MS medium containing 30 g L�1 sucrose, 1.14 μM indole-3-acetic acid (IAA), and
2.5 g L�1 gellan gum at pH 5.7 (pH 6.4 prior to autoclaving) (see Note 1).

2.2.3 Pretreatment Medium

MS medium containing 30 g L�1 sucrose, 0.89 μM benzyladenine (BA), 0.1 mM
salicylic acid, 1 mM ascorbic acid, 1 mM glutathione (reduced form), and 3 g L�1

gellan gum at pH 5.7 (pH 6.8 prior to autoclaving) (see Note 2).

Table 1 Composition of the
Murashige and Skoog (1962)
culture medium

Macroelements mg L�1

NH4NO3 1650

CaCl2�2H2O 440

MgSO4�7H2O 370

KH2PO4 170

KNO3 1900

Microelements mg L�1

MnSO4�H2O 16.9

ZnSO4�7H2O 8.60

H3BO3 6.20

KI 0.83

Na2MoO4�2H2O 0.25

CuSO4�5H2O 0.025

CoCl2�6H2O 0.025

FeEDTA mg L�1

FeSO4�7H2O 27.8

Na2EDTA�2H2O 37.3

Vitamins g L�1

Glycine 2.0

Nicotinic acid 0.5

Pyridoxine-HCl 0.5

Thiamine-HCl 0.1

Myo-inositol 100.0

Sucrose 30,000

pH 5.7–5.8
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2.2.4 Pre-culture Medium

Half-strength MS medium containing 0.3 M sucrose, 0.1 mM salicylic acid, 1 mM
ascorbic acid, 1 mM glutathione (reduced form), and 8 g L�1 agar at pH 5.7 (pH 6.8
prior to autoclaving) (see Note 2).

2.2.5 Calcium Chloride Solution

MS medium containing 0.1 M calcium chloride and 0.4 M sucrose at pH 5.7 (pH 6.4
prior to autoclaving).

2.2.6 Sodium Alginate Solution

Calcium-free MS medium supplemented with 0.4 M sucrose and 2% (w/v) sodium
alginate (medium viscosity – 3500 cps; Sigma® A-2033) at pH 5.7 (pH 6.4 prior to
autoclaving).

2.2.7 Loading Solution

Half-strength MS medium containing 2 M glycerol and 0.4 M sucrose at pH 5.7
(pH 6.9 prior to autoclaving).

2.2.8 Half-Strength PVS2 Solution

Half-strength MS medium containing 15% (w/v) glycerol, 7.5% (w/v) ethylene
glycol (EG), 7.5% (w/v) dimethyl sulfoxide (DMSO), and 0.4 M sucrose at
pH 5.8 (see Note 3).

2.2.9 Full-Strength PVS2 Solution

Half-strength MS medium containing 30% (w/v) glycerol, 15% (w/v) EG, 15%
(w/v) DMSO, and 0.4 M sucrose at pH 5.8 (see Note 3).

2.2.10 Unloading Solution

Half-strength MS medium containing 1.2 M sucrose at pH 5.7 (pH 7.55 prior to
autoclaving).
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2.2.11 Recovery Medium 1

Half-strength MS macroelements without ammonium (NH4), MS microelements,
and Vitis vitamins supplemented with 0.6 M sucrose and 8 g L�1 agar at pH 5.7
(pH 7.0 prior to autoclaving) (see Note 2).

2.2.12 Recovery Medium 2

Half-strength MS macroelements without NH4, MS microelements, and Vitis vita-
mins supplemented with 30 g L�1 sucrose, 0.89 μM BA, and 8 g L�1 agar at pH 5.7
(pH 6.5 prior to autoclaving) (see Note 2).

2.2.13 Recovery Medium 3

Half-strength MS macroelements, MS microelements, and Vitis vitamins
supplemented with 30 g L�1 sucrose, 0.89 μM BA, and 8 g L�1 agar at pH 5.7
(pH 6.5 prior to autoclaving) (see Note 2).

3 Methods

The droplet vitrification and V cryo-plate procedures for cryopreserving in vitro
grapevine shoot tips given here were described by Volk et al. (2018) and Bettoni
et al. (2019c), respectively. In vitro plants must first be established using source plant
material from the field, greenhouse, or growth chamber. Once established, in vitro
stock plants serve as the source of nodal sections, from which shoot tips are excised.
The resulting shoot tips are then used for cryopreservation. An overview of the steps
involved in these two protocols is shown in Fig. 1.

3.1 Collection and Surface Sterilization of Explants

Materials

1. Source plant material.
2. Isopropanol 70% (v/v).
3. Sterile distilled water.
4. Sodium hypochlorite (NaOCl) with 5% active Cl.
5. Tween 20®.
6. Erlenmeyer flask (150 mL).
7. Dissecting scissors.
8. Laminar airflow hood.
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Fig. 1 Overview of the droplet vitrification (left) and V cryo-plate (right) procedures for cryopres-
ervation of in vitro grapevine shoot tips
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Methods

1. Select healthy source material without insects or diseases, preferably from plants
maintained under optimal conditions in a growth chamber, greenhouse, or fresh
flushes from the field.

2. Nodal sections approximately 2 cm long containing a single bud are harvested from
plants, and all the leaves are removed.

3. Place cut shoots into clean 150 mL Erlenmeyer flask containing distilled water with
three drops of Tween 20® (v/v).

4. In a laminar flow hood, drain water out of the Erlenmeyer flask, and sterilize nodal
sections with 70% isopropanol for 1 min; then rinse twice for 1 min with distilled
water. Treat nodal sections with 5% sodium hypochlorite and 0.1% Tween 20® (v/v)
for 5 min, and rinse three times in sterile distilled water (see Note 4).

3.2 Establishment and Maintenance of In Vitro Stock
Cultures

Materials

1. Tissue culture facilities and tools (laminar airflow cabinet, scalpel, forceps, tool
sterilizer, sterile Petri dishes (∅ 90 mm), plastic wrap, culture room).

2. Glass test tubes (16 � 100 mm).
3. Glass culture vessels (89 � 170 mm).
4. Shoot initiation and maintenance medium.

Methods

1. Undamaged explants are placed into glass test tubes containing 10 mL of shoot
initiationmedium.Autoclave any tubeswithmedia that appear cloudy or contaminated.

2. Place cultures in a growth room at 25 �C, under a photoperiod of 16 h light/8 h dark
day�1 with a photosynthetic flux density of 20–50 μM m�2 s�1.

3. Grow in vitro stock cultures in glass test tubes for 4 weeks, and then transfer new
shoots to glass culture vessels (89 � 170 mm) containing 180 mL of shoot mainte-
nance medium. Subculture every 8–12 weeks.

3.3 Pretreatment and Pre-culture of Shoot Tips
for Cryopreservation

Materials

1. Tissue culture facilities and tools (laminar airflow cabinet, scalpel, forceps, tool steril-
izer, sterile Petri dishes (∅ 90 mm), plastic wrap, stereomicroscope, culture room).

2. Plastic Petri dishes (100 � 25 mm, 60 � 15 mm).
3. Pretreatment and pre-culture medium.
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Methods

1. Cut nodal sections from 2- to 3-month-old in vitro stock plants, and place nodal
sections on 50 mL pretreatment medium in plastic Petri dishes (100 � 25 mm) at
a density of 40 nodal sections per plate.

2. Maintain cultures under the same conditions as the in vitro stock cultures for
2–3 weeks until shoots are 1–2 cm in length (see Note 5).

3. Excise shoot tips (1 mm) from nodal sections. Place excised shoot tips on
pre-culture medium (plastic Petri dishes 60 � 15 mm with 12 mL medium each
one) for 3 days at 25 �C in the dark (see Note 6).

3.4 Cryopreservation

3.4.1 Droplet Vitrification Cryopreservation Method

Materials

1. Tissue culture facilities and tools (laminar airflow cabinet, forceps, tool sterilizer,
pipette).

2. Plastic Petri dishes (60 � 15 mm).
3. Sterile aluminum foil strips (~6 � 25 mm).
4. Loading solution.
5. Half-strength and full-strength PVS2 solution.
6. LN Dewar for cryopreservation (600 mL).
7. LN.
8. Sterile cryotubes.
9. Long-term LN storage tank.

Methods

1. Remove dark-cultured shoot tips from pre-culture medium, and transfer to load-
ing solution in plastic Petri dishes for 20 min at room temperature.

2. Remove loading solution from plastic Petri dishes using a sterile 2 mL transfer
pipette, and add half-strength PVS2 to the shoot tips. Incubate at room temper-
ature for 30 min.

3. Remove half-strength PVS2 from plastic Petri dishes using a sterile 2 mL transfer
pipette, and add full-strength PVS2 at 0 �C for 90 min (see Note 7).

4. Two minutes before the end of PVS2 treatment, transfer shoot tips onto a thin
layer of PVS2 (1 μL per explant) on sterile aluminum foil strips at 0 �C.

5. Plunge foil strips containing the shoot tips into LN in a 600 mL open-top
container, and then place foil strips into pre-frozen sterile cryotubes.

6. For long-term storage, cryotubes containing foil strips with shoot tips are capped
and stored in LN or LNV in an LN storage tank (see Sect. 3.6).
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3.4.2 V Cryo-plate Cryopreservation Method

Materials

1. Tissue culture facilities and tools (laminar airflow cabinet, forceps, tool steril-
izer, micropipette).

2. Sterile Petri dishes (∅ 90 mm).
3. Sterile aluminum cryo-plates No 2 (37 � 7 � 0.5 mm).
4. Calcium chloride solution; sodium alginate solution; loading solution.
5. Full-strength PVS2 solution.
6. Sterile filter paper.
7. LN Dewar for cryopreservation (600 mL).
8. LN.
9. Sterile cryotubes.

10. Long-term LN storage tank.

Methods

1. Set the cryo-plates on the Petri dish.
2. Place droplets of the sodium alginate solution into each cryo-plate well (2 μL per

well), and place the pre-cultured shoot tips into each well (1 shoot tip per well).
Add 1.5 μL sodium alginate solution to cover the shoot tips completely.

3. Add the calcium chloride solution dropwise to each cryo-plate until all the wells
are covered. Polymerize for 20 min at room temperature (see Note 8).

4. Remove excess calcium chloride solution from the cryo-plate with a micropipette,
and place the cryo-plate with attached shoot tips in a Petri dish containing loading
solution. Incubate in loading solution at room temperature for 30min (seeNote 9).

5. Remove cryo-plate from loading solution, and use sterile filter paper to remove
excess solution before the PVS2 treatment. Place the cryo-plate in a Petri dish
with full-strength PVS2 at 22 �C for 40 min.

6. Remove cryo-plate from PVS2, and use sterile filter paper to remove excess PVS2.
Transfer cryo-plate with shoot tips into LN in a 600 mL open-top container, and
then insert cryo-plate with shoot tips into pre-frozen sterile cryotubes.

7. For long-term storage, cryotubes containing cryo-plates with shoot tips are
capped and stored in LN or LNV in an LN storage tank (see Sect. 3.6).

3.5 Warming and Culturing of Cryopreserved Shoot Tips

Materials

1. Tissue culture facilities and tools (laminar airflow cabinet, forceps, tool sterilizer,
pipette).

2. Sterile Petri dishes (∅ 90 mm).
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3. Unloading solution.
4. Recovery medium 1, 2, and 3.

Methods

1. The aluminum foil strips or cryo-plates should be removed from the cryotube and
warmed by inverting the foil strips or cryo-plates containing the shoot tips into
25 mL unloading solution in Petri dishes at 22 �C for 20 min (see Note 10).

2. Place the shoot tips onto recovery medium 1, and maintain overnight at 25 �C in
the dark (see Note 11).

3. Transfer the shoot tips to recovery medium 2, and culture for 2 weeks at 25 �C in
the dark (see Note 11).

4. Transfer the shoot tips to recovery medium 3, and maintain in the culture room
under conditions described for stock cultures.

3.6 Determining the Number of Shoot Tips to be Processed
in Cryobanks

In cryobanks, the number of samples processed per accession varies widely and is
dependent upon technical staff availability, material availability, security level desired,
etc. Additional cryovials of shoot tips should be processed to assess viability immedi-
ately after LN exposure to ensure the cryoprotective treatments were effective. Prob-
abilistic tools have been developed to assist in determining the predicted number of
shoot tips that should be cryopreserved, based on the number of explants processed
initially and regrowth level after LN exposure (Dussert et al. 2003; Volk et al. 2016).

4 Notes

1. In an appropriate beaker, add distilled water up to half the final medium volume,
add macro and micro salts of MS medium, with MS vitamins from the formu-
lations in Table 1, or use MS powder mixture according to manufacturer’s
instruction. Add sucrose and plant growth regulator(s) (stir well after each
addition). Bring to the desired volume with distilled H2O, add gelling agent,
mix well, and adjust the pH. Use test tubes for shoot initiation with 8–10 mL
medium in each and glass culture vessels (89 � 170 mm) for the maintenance
medium with 180 mL of medium in each one. Autoclave at 121 �C with time
dependent upon the culture vessels size and medium volume. Store the medium
at 4 �C, and use the culture medium within 1 month after its preparation.

2. After culture medium preparation, transfer it to an Erlenmeyer flask and seal;
then sterilize by autoclaving at 121 �C with time related to the culture vessel size
and volume of medium. In a laminar airflow hood, distribute the culture medium
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into plastic Petri dishes, and then let plates cool with lids partially open for
30 min to evaporate excess moisture before storing. Store the medium at 4 �C,
and use the culture medium within 1 month after preparation.

3. After pH adjustment, take the solution to the laminar flow hood, and carry out
ultrafiltration using a filter pore diameter smaller than 0.22 μm. Sterilized PVS2
is stored at 4 �C. Use the solution within 1 month after its preparation.

4. To reduce the risk of contamination, this step should be performed in a laminar
airflow hood.

5. This step provides uniform apical shoot tips.
6. Shoot tip size and uniformity is an important factor for the success of the

protocol.
7. Petri dishes containing the PVS2 solution are placed on ground ice or blocks of

sterile ice.
8. Avoid touching the alginate solution with the tip of the micropipette when

pouring the calcium chloride solution. Calcium chloride solution will cover
the cryo-plate through surface tension.

9. Remove the calcium chloride solution from the cryo-plate, and avoid touching
the polymerized gel.

10. Do not use too many cryo-plates or foil strips in a small volume of unloading
solution to ensure that the unloading solution temperature does not change. Use
25 mL unloading solution to thaw four cryo-plates or four foil strips.

11. Ammonium is eliminated from recovery media 1 and 2 to reduce explant
hyperhydricity.
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