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A 1IDVAR-Based Snowfall Rate Algorithm <z
for Passive Microwave Radiometers
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Abstract This chapter introduces an overland snowfall rate algorithm for passive
microwave radiometers. It relies on an embedded algorithm to detect the presence of
snowfall. The retrieval of cloud properties is the foundation of the snowfall rate
algorithm and is accomplished with a one-dimensional variational (IDVAR) model.
The snowfall rate derived with the physical algorithm is further adjusted based on
calibration against a ground radar and gauge combined precipitation product. Both
the snowfall detection and the snowfall rate algorithms have been validated respec-
tively against ground observations and radar and gauge combined analyses from the
contiguous United States with satisfactory results. Specifically, the correlation
coefficient of the validation data with the radar analyses reaches 0.50. Currently,
the snowfall rate product is operationally generated at near real-time at the US
National Oceanic and Atmospheric Administration.

Keywords Snow - Ice - Snowfall detection - Snowfall rate - NOAA - Logistic
regression - IDVAR - Microwave humidity sounders - Brightness temperature -
MRMS - GFS - Radiative transfer model - Particle distribution function - Ice water
content.

17.1 Introduction

Satellite remote sensing of snowfall is challenging due to the complexity of atmo-
spheric processes involved and the lack of both the understanding about these
processes and the information on the forcing variables. It is more difficult to estimate
snowfall rate than rainfall rate because more information, such as ice particle shape

H. Meng (P<) - R. R. Ferraro
NOAA/NESDIS/STAR, College Park, MD, USA
e-mail: huan.meng @noaa.gov

C. Kongoli
University of Maryland, College Park, MD, USA

© Springer Nature Switzerland AG 2020 297
V. Levizzani et al. (eds.), Satellite Precipitation Measurement, Advances in Global
Change Research 67, https://doi.org/10.1007/978-3-030-24568-9_17


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24568-9_17&domain=pdf
mailto:huan.meng@noaa.gov
https://doi.org/10.1007/978-3-030-24568-9_17

298 H. Meng et al.

and density, is required for developing physically based snowfall rate algorithm that
is generally unavailable. Consequently, snowfall retrieval algorithms have lagged
significantly behind the development of satellite rain rate algorithms (Ferraro et al.
2005; Kummerow et al. 2011). However, snowfall retrieval from passive microwave
(PMW) instruments has been gaining momentum in recent years. The observations
from PMW are uniquely suitable for snowfall detection and retrieval. PMW has the
ability to penetrate clouds, hence directly bearing the signature of snow particles.
High frequencies, such as window channels around 160 GHz and water vapor
sounding channels around 183 GHz, are particularly sensitive to the radiance
depressing effect of ice scattering (Bennartz and Bauer 2003). Some snowfall rate
algorithms have been developed utilizing this property (Noh et al. 2006; Kim et al.
2008; Liu and Seo 2013; Skofronick-Jackson et al. 2013; Kummerow et al. 2015;
Kidd et al. 2016; You et al. 2017; Meng et al. 2017; Kongoli et al. 2015, 2018). It is
noted that many microwave algorithms that retrieve precipitation (rainfall or snow-
fall) rely on the sensing of ice signatures.

The algorithm introduced in this chapter retrieves snowfall rate over land
(hereafter denoted as SFR). It consists of two components: snowfall detection
(SD) and snowfall rate estimation. The former is a statistical algorithm whiles
the latter employs a 1DV AR-based approach to retrieve snowfall rate. Owing to its
physically-based framework, the SFR algorithm can cover a wide range of snowfall
conditions. Currently, the SFR product is operationally produced at near real-time at
the US National Oceanic and Atmospheric Administration (NOAA).

17.2 Data and Models

17.2.1 Instruments and Data

The SFR algorithm utilizes measurements from two sets of PMW instruments:
Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity
Sounder (MHS) pair, and the Advanced Technology Microwave Sounder
(ATMS). AMSU-A and MHS are aboard four POES and Metop satellites, and
ATMS is aboard S-NPP and NOAA-20 satellites. These are cross-track scanning,
PMW sounders with channels ranging from 23.8 GHz to 190.31 (MHS)/183.31
(ATMS) GHz, i.e. a combination of window, temperature sounding and water vapor
sounding frequencies. The sensors have variable footprint sizes depending on
frequency and scan position. The nadir resolution is about 16 km for high frequen-
cies which is the resolution of the SFR product.

Some Numerical Weather Prediction (NWP) model data are also employed
where required environmental state observations are not available. The model data
employed are from the Global Forecast System (GFS) produced at NOAA National
Centers for Environmental Prediction (NCEP). The forecast data satisfy the latency
requirement of the SFR production at near real-time.



17 A 1IDVAR-Based Snowfall Rate Algorithm for Passive Microwave Radiometers 299

The SD algorithm was trained with in-situ weather observations. The ground data
were obtained from the Quality Controlled Local Climatology Data (QCLCD)
product. This dataset is generated from surface meteorological observations from
approximately 1600 U.S locations. The data undergo interactive and manual quality
control at NOAA National Centers for Environmental Information (NCEI) in addi-
tion to automated quality control. It provides direct measurement of present weather
including snowfall occurrence and other related variables at hourly intervals, making
it a valuable independent ground truth reference for satellite snowfall identification
studies.

The SFR algorithm was calibrated against the NCEP Stage IV precipitation
analysis. This dataset takes the Multi-Radar Multi-Sensor (MRMS) precipitation
data (Zhang et al. 2016) as input. It further incorporates gauge, model, and satellite
data, and applies human quality controls. The hourly Stage IV data has a 4 km
resolution over the contiguous United States (CONUS). It is a high-quality standard
radar-based precipitation analyses used by the US National Weather Service.

17.2.2 Logistic Regression

The SD algorithm applies a Logistic Regression (LR) technique to derive the
probability of snowfall (POS). LR estimates the probability of a binary outcome Y
as an exponential continuous function of a set of predictor variables:

__ep ot BXi+ 5K+ ... +B,Xn)
L+ exp (fo + biXa + foXa + ... + B, Xn)

(17.1)

where P is the probability of success of the binary variable Y; X is the vector of
independent variables; and p is the vector of regression coefficients. The logarithm
of the probability of Y, called the logit, can be expressed as linear combination of
independent variables as in multiple regression:

Logit(P) = Ln (%) = o+ BiXs + PoXa + .+ B X (17.2)

The inverse of the logit function is called the logistic function:

exp (B)
= 17.

1 + exp (B) (17.3)
where B is the logit function or the multiple linear regression term in Eq. (17.2). The
fitting procedure consists in iteratively finding the set of regression coefficients using
maximum likelihood estimation of the joint distribution of the response Y:
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where y; is an individual measured value of Y, and p; is the probability that y; takes
on a certain value. Note that p; is computed using Eq. (17.1). This differs from
ordinary least squares regression where a unique analytic solution can be found in
closed form.

17.2.3 Radiative Transfer Model and IDVAR

A 1DVAR approach (Yan et al. 2008) is used in the SFR algorithm to retrieve cloud
properties. The model retrieves ice cloud properties and snow emissivity at five
microwave window and water vapor sounding channels: 23.8, 31.4, 89.0/88.2,
157.0/165.5, and 190.31/183.31 4+ 7 GHz, respectively for AMSU-A and
MHS/ATMS. The inversion method involves a set of iterations where brightness
temperatures (Ty,s) at the five frequencies are simulated using an RTM (Weng et al.
2001) at each iteration with given atmospheric and surface parameters (i.e., control
vector). The differences between simulated and observed Ty,s (ATys) are compared
to preset thresholds. The iteration will terminate if the ATys fall below the thresh-
olds, i.e. the retrieval converges. Otherwise, the elements of the control vector are
adjusted and iteration will continue until it reaches the maximum allowed number of
iterations, indicating that the retrieval is nonconvergent. The threshold for the first
four frequencies is 1.5 K and for 190.31/183.31 £ 7 GHz is 3 K. The atmospheric
and surface parameters from a successful run become the retrieved properties using
the inversion method. The parameters include land surface emissivity at the five
frequencies, total precipitable water (TPW), ice water path (I,,), effective size of ice
particles (D,), surface temperature (T), and cloud temperature (T.).

The RTM utilized in this IDVAR algorithm is a two-stream, one-layer model
(Weng et al. 2001). The simulation error caused by the simplifications is mitigated
by a correcting procedure developed by Weng and Grody (2000). Simulated Ty,s are
corrected with a set of empirical equations that were derived from a data set of Ty
observations and the corresponding uncorrected simulations. According to Yan et al.
(2008), the standard deviations of the corrected Tys at frequencies 23.8, 31.4, 89, and
150 GHz are 0.21, 0.33, 0.72, and 0.68 K, respectively. Additional study shows that
the standard deviation for 190.31 GHz and 183 £+ 7 GHz are 4.06 and 2.62 K,
respectively.

This IDVAR model was adopted for the SFR algorithm for a few reasons. While
a simple assumption of one-layer atmosphere is made in the RTM, it allows the
model parameters, such as I, to be expressed in analytic forms and provides one
with both qualitative and quantitative understanding of the connection among model
parameters. The two-stream formula makes computation effective so retrieval can be
completed quickly even with full-orbit data. Computation efficiency and product
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latency can be important factors for operational applications such as weather fore-
casting. Lastly, the IDVAR model was developed for retrieving snow emissivity. Its
parameterization, such as bias correction and emissivity initialization, is consistent
with emissivity properties of cold conditions. The close connection between snow
emissivity and snowfall makes the IDV AR an appropriate model to use in a snowfall
rate algorithm.

17.2.4 Ice Particle Terminal Velocity

An important component of the SFR algorithm is the ice particle terminal velocity.
Heymsfield and Westbrook (2010) modified Mitchell’s (1996) formula for ice
particle fall speed and developed a new equation:

5 1/2 2
V( ):4'2% <1+5§f_&) —1] (17.5)

where V is the ice particle terminal velocity, D the maximum dimension of the
ice particle, n the dynamic viscosity of air, p, the air density, &, and C, the fitting
parameters (5o = 8.0 and Cy = 0.35), and the modified Best number X is defined as

8mgp,
X = 4 17.6
- (17.6)

where m is the mass, m = 7D’ p,/6 for spherical particles, p; the density of ice particle
and assumed to be 0.6 g cm ™, g the gravitational constant, A, the ice particle area
ratio (the area of the particle projected normal to the flow divided by the area of a
circumscribing disc) and is 1 for spherical particle. Heymsfield and Westbrook
(2010) computed terminal velocities of ice particles of various shapes using this
approach and compared them with measurements. Their results show that the
predicted and measured particle fall velocities agree well for all particle shapes
examined. This conclusion is the basis for selecting the Heymsfield and Westbrook
(2010) model to compute ice particle terminal velocity in the SFR algorithm.

17.3 Snowfall Detection

Snowfall detection is an integral part of the snowfall rate retrieval. Only when
snowfall is detected will the SFR algorithm be applied to retrieve snowfall rate.
The QCLCD hourly data from two winter seasons between 2012 and 2014 were
taken as ground truth to train the SD algorithm. The ‘present weather’ reported by
QCLCD contains information on the type of precipitation, which was used for
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classification of cases into falling snow or no-precipitation. When constructing
the training dataset, the maximum time offset between the satellite and station-
collocated pairs was set at 30 min with station time following satellite time. The
maximum separation distance between satellite footprint centroid and station loca-
tion was set at 25 km. Only the closest station within the 25 km distance from the
satellite footprint centroid was matched.

The SD model is a hybrid algorithm that combines the output from a statistical
model utilizing satellite passive microwave measurements with the output from a
statistical model using meteorological variable forecasts from GFS. Both models
were trained with the QCLCD in-situ data (Kongoli et al. 2018). Each module of the
combined algorithm is described below.

17.3.1 Satellite Module

The satellite SD module computes POS using the LR technique and the principal
components (PCs) of the five/seven high-frequency Tys at 89.0/88.2 GHz and above
for MHS/ATMS, respectively (Kongoli et al. 2015). PCs, instead of Tys, are utilized
as LR model predictors because the high frequency measurements are highly
correlated with each other which can cause instability in the regression coefficients.
Another predictor variable is the satellite local zenith angle (LZA) to account for the
scan angle effect in satellite observations. The limb-corrected oxygen absorption
channel at 53.6 GHz, Tys531., (AMSU-A channel 5 and ATMS channel 6) is utilized
as an atmospheric temperature proxy to define two retrieval regimes: cold and warm.
To optimize retrievals, the PC weights and logistic regression coefficients are trained
with in-situ station observations of snowfall and no-snowfall occurrence and
pre-computed separately for the warmer (Tys31. between 244 and 252 K) and colder
(Tps3., between 240 and 244 K) weather regimes. This approach is a major advance-
ment compared to the previous version of Kongoli et al. (2003) in that it allows
snowfall retrievals in much colder environments, down to near surface temperatures
of about —15 °C. In addition, the statistical probabilistic approach is a more robust
method than the previous decision tree approach.

17.3.2 Weather Module

A similar probabilistic LR approach was adopted for snowfall detection using GFS
meteorological variable forecasts as predictors. Experience with satellite PMW
instruments and theoretical investigations (e.g., Munchak and Skofronick-Jackson
2013) indicate that the detectability of precipitation over snow cover surfaces
deteriorates significantly compared to bare land. In addition, snowfall analysis and
estimation from physical parameters would be desirable in and of itself, for provid-
ing alternative retrieval strategies and insights into the relative importance of these
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parameters in snowfall processes. You et al. (2017) explored the influence of several
environmental parameters on both rain and snowfall estimations and found that
relative humidity and vertical velocity are related to the occurrence of snowfall,
more so than that of rainfall. On the other hand, experience with the AMSU-A/MHS
and ATMS satellite algorithms have shown that cloud thickness computed from
forecast data is an efficient filter in reducing false alarms (Meng et al. 2017).
Therefore, to develop the algorithm, the forecast variables considered include
relative humidity at 2-m, 1-km, 2-km and 3-km height, cloud thickness, and vertical
velocity at 2-km and 3-km height.

17.3.3 Hybrid Algorithm

The rationale for the hybrid algorithm (Kongoli et al. 2018) is to compute an output
as a weighted average of outputs from the satellite and the weather-based SD
algorithms:

Phyb = Wmt * Psat + Wwea * Pwea (177)

where P refers to POS, W refers to weight, and hyb, sat and wea refer to the hybrid,
satellite and the weather-based SD algorithms, respectively. Note that W, + W,,.., = 1.
Equation (17.7) may therefore be written as:

Phyb = Wsat * Psat + (l - Wsat) * Pwea (178)

where W, is between 0 and 1. Presented with a set of brightness temperatures and
ancillary data, POS for the satellite and the weather models are computed. The POS
for the hybrid algorithm is derived based on Eq. (17.8) for a specific weighting
parameter Wy, Next, the resulting probability value (Pjy;) is assigned to “snowfall”
if it is greater than an a priori threshold probability.

17.3.4 SD Filters

Rainfall and snow cover can exhibit similar characteristics as snowfall in PMW
measurements. Consequently, they can contaminate the outcome of the statistical SD
model. In addition, the SD algorithm does not exclude rainfall in its detection so
temperature-based screening is necessary to filter out rainfall. These considerations
led to the development of a set of filters to further screen the snowfall identified by
the SD model. Most filters use atmospheric and surface information from the GFS
forecasts. The meteorological variables considered include 2-m temperature, maxi-
mum atmospheric temperature, 2-m relative humidity, Tys31, and cloud thickness
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(CT). For instance, one of the filters checks 2 m temperatures at the two consecutive
GFS forecast times that encompass the satellite passing time. If both temperatures
are above 1 °C, it indicates a persistently warm environment at the surface that
generally cannot sustain snowfall (Meng et al. 2017). Another filter requires surface
relative humidity to be above 60% because analysis has shown that this condition is
almost always met during snowfall (Kongoli et al. 2015). The most important filter is
a check on CT. It requires CT to be at least 1500 m. While this requirement is likely
to remove shallow snowfall such as lake effect snow, it will not significantly lower
the Probability of Detection (POD). This is because the SFR algorithm is not
sensitive to very shallow snowfall due to the weak effect from the latter on PMW
measurements. The exertion of a CT threshold eliminates most of the confusions
between true snowfall and snow cover on the surface. Our analysis has shown that
this is a very effective filter that can significantly reduce false snowfall detection
(Meng et al. 2017).

17.4 Snowfall Rate

The SFR algorithm (Meng et al. 2017) is composed of three main elements:
(1) retrieval of cloud properties from a 1DVAR, (ii) derivation of initial SFR,
i.e. SFR;, and (iii) SFR; calibration to obtain the final SFR product. This section
details the theoretical basis of the algorithm and the calibration approach.

17.4.1 Methodology

The Particle Distribution Function (PDF) of ice particles adopts the modified gamma
distribution from Yan et al. (2008) and Weng et al. (2001):

NODyflefD/Dm
D)=——F7—— 17.
where D is the diameter of the ice particle (assuming spherical habit), D,, the
nominal diameter of the particle, N, the intercept parameter, v the shape parameter
for the gamma distribution, and I" the gamma function. Furthermore,

D,, =D, (17.10)

I'v—1)

and
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6L IP(v+1)
np, D30 (v + 3) (v)

(17.11)

where D, is the effective diameter of the ice particles and /,, ice water path. If the
shape parameter is assumed to be 1, the PDF in Eq. (17.9) reduces to an exponential
distribution:

-D/D,
ND) =D (17.12)

mp,D;

Assuming the number of ice particles follows the above exponential distribution,
the water equivalent snowfall rate, SFR;, can be expressed as (Meng et al. 2017):

o0 3
SFR; = MdD (17.13)
0 6p,,
or
SFR; — v / D¢ %V(D)dD (17.14)
6p,,D;

where p,, is the density of water.

An implicit assumption is made in the above equation, i.e. ice water content
(IWCQC) is uniformly distributed in the cloud column. It is consistent with the
one-layer RTM (Yan et al. 2008). However, this assumption is not a true represen-
tation of cloud physics. In snowing clouds, ice crystals grow in mass as they fall in
the cloud through two mechanisms: i) Bergeron process, i.e. supersaturated water
vapor deposition, and ii) accretion (riming), i.e. freezing of super cooled liquid
droplets onto the surface of ice crystals. These processes generally lead to higher
IWC at the lower portion of the cloud than in the upper portion. Figure 17.1 presents
ten randomly selected, normalized IWC estimate profiles retrieved from CloudSat
(Stephens et al. 2002). In general, these profiles show an increasing trend from cloud
top to cloud base, and supports the notion that IWC is not uniformly distributed in
most clouds. As a first step to mitigate the bias caused by the simple assumption
about IWC, it is assumed that IWC has a linearly distribution through the cloud
column. This effectively doubles the SFR; in Eq. (17.14) at cloud base through
simple trigonometric calculation.

By adopting Heymsfield and Westbrook’s (2010) model (Egs. 17.5 and 17.6) and
assuming spherical ice habit, SFR; can then be expressed as:

2 3/2 1/2 2
SFR; = —1%_ / Dt (1+8D2 g”’pa> —1
12p,,p,D; né; \ 3Co

dD  (17.15)
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The above equation does not have an analytical solution. It is solved numerically
using Romberg’s method.

17.4.2 Calibration

Since the IWC profile is not known from the PMW measurements or the GFS model,
SFR; was calibrated against Stage IV precipitation analysis to improve retrieval
accuracy. SFR; data was collocated with Stage IV data from large snowstorms in the
two winter seasons between 2015 and 2017. The spatial collocation was performed
by convoluting higher resolution Stage IV data to lower resolution satellite Field-of-
View (FOV). The SFR; estimates were matched with Stage IV analyses within 1 h of
the satellite overpass. The snowfall detected by the SD algorithm was utilized to
identify snowfall pixels for Stage IV since the latter does not include precipitation
phase.

The calibration adopts the histogram matching technique described in Kidder and
Jones (2007). This approach matches the cumulative probability distribution func-
tions (CDF) of two products (SFR; and Stage IV in this case) through lease square
method to achieve optimal overall agreement. The equation for estimating S-NPP
ATMS SFR is:
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SFR = 1.5813 SFR; — 0.2236 SFR? + 0.0216 SFR} (17.16)

Table 17.1 compares the S-NPP SFR statistics against Stage IV from before and
after calibration. It shows that the calibration significantly reduces the bias in the
initial SFR retrievals while largely maintaining the root mean square error (RMSE)
and correlation with Stage IV. It is noted that, with the simple assumption of linear
IWC distribution, the IDVAR-based SFR retrieval has already achieved a correla-
tion coefficient of 0.52 with Stage IV. It demonstrates the merit of this physical
algorithm.

Figures 17.2 and 17.3 respectively present the scatter plots and the probability
density functions (PDFs) for the same datasets as for Table 17.1. The underestima-
tion in SFR; below 1 mm h™~' is mitigated to a certain degree. So is the
overestimation above about 3.5 mm h™! (Fig. 17.2). The two PDFs also reach
much better agreement through the calibration (Fig. 17.3). A low limit of
0.05 mm h™! is set in the SFR product because false alarm rate (FAR) increases
drastically for very light snowfall. This low limit results in the slight dip at the low
end of the SFR PDF (Fig. 17.3).

Table 17.1 S-NPP SFR metrics before and after calibration

Before After

calibration calibration
Correlation Bias RMS Correlation Bias RMS
coefficient (mmh™") (mmh™") coefficient (mm/hr) (mm h’l)
0.52 —0.15 0.63 0.51 —-0.02 0.64
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Fig. 17.2 Stage IV vs. S-NPP SFR scatter plot from (a) before calibration, and (b) after calibration
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Fig. 17.3 PDFs of S-NPP SFR and Stage IV (a) before, and (b) after calibration

17.5 Validation

Separate validation studies were conducted to verify the performance of the SD and
the SFR algorithms, respectively, since they are independent of each other.

17.5.1 SD Validation

The QCLCD in-situ hourly ground data were employed for SD algorithm validation.
Periods during the three winter seasons between 2014 and 2017 were selected to
sample snowfall events over CONUS. The satellite, weather-based and hybrid SD
outputs at the satellite FOV scale were matched with in-situ data following the same
spatio-temporal collocation criteria as for constructing the SD training data.

Table 17.2 presents the statistical results of the S-NPP ATMS satellite and the
hybrid algorithm, the latter using a weighting coefficient f equal to 0.5, i.e., when
GFS-based and satellite outputs have the same uncertainty information. Compared to
the satellite-only algorithm, the hybrid algorithm has substantially improved POD,
FAR and the Heidke Skill Score (HSS). It is important to emphasize that the
statistical results reported here are computed from comparisons with in-situ mea-
surements where light snowfall cases (reported as ‘“trace” or with zero surface
accumulation) were dominant. Generally, light snowfall is much more difficult to
detect than heavier snowfall due to its weak impact on satellite measurements.

Figure 17.4 demonstrates the improvement of the hybrid model for a major
snowfall event hitting the Northeast US on 5 February 2014. As shown in
Fig. 17.4, a considerable snowfall area of this significant event was missed by the
satellite algorithm but captured by the hybrid algorithm.
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Table 17.2 S-NPP SD Model POD FAR HSS
Metrics from satellite-only :
. . Satellite 0.41 0.18 0.23
and hybrid algorithms
Hybrid 0.52 0.11 0.44
NPP ATMS Snowlall Rate (menfhr) 2014-02-05 Descending NFP ATMS Snowfall Rate (mm/hr) 2014-02-05 Dascending
T — T — y— T T T 0T T T T 7 T T T T
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Fig. 17.4 S-NPP ATMS SFR using (a) satellite-only SD algorithm, and (b) hybrid SD algorithm
during a major snowfall event on 5 February 2014 in the US Image (c) is the near coincident radar
reflectivity which covers both snowfall and rainfall (in the southern part of CONUS). The noted
oval areas in (a) and (b) show legitimate snowfall that was missed by the satellite-only algorithm but
captured by the hybrid algorithm

17.5.2 SFR Validation

The SFR algorithm was validated against the Stage IV analyses from October 2016
to April 2017. SFR was retrieved using the abovementioned algorithm (Egs. 17.15
and 17.16) for all snowfall FOVs over CONUS from this period. The data set was
collocated with Stage IV data via convolution over sensor footprints. Table 17.3 lists
the statistics of the S-NPP SFR validation data. The correlation and bias are
comparable to those of the calibration data. The RMSE is somewhat higher. The
scatter plot and PDF of the validation data are displayed in Fig. 17.5. As expected
from the RMSE, data can be observed to scatter more than the calibration data. It is
noted that, unlike the calibration dataset which is composed of data from large
snowstorm systems, the validation data include all SFR retrievals that could be
collocated with Stage IV from winter 2017. The fact that the validation data still
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Tz;p(;e }7.3 S—NPP SFR Correlation Coefficient Bias (mm/h) RMS (mm/h)
validation metrics 0.50 0.06 0.74
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Fig. 17.5 (a) Scatter plot of Stage IV vs. collocated S-NPP SFR validation data, and (b) PDFs of
the same data sets
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Fig. 17.6 Comparison of (a) S-NPP SFR 3-month average from January - March 2017 and (b) the
corresponding Stage IV data

perform reasonably well demonstrates the strength of the SFR algorithm for both
large-scale and localized snowfall.

As part of the validation study, the 3-month average S-NPP SFR from January ~
March 2017 was calculated and compared to the corresponding Stage IV average
from the same period (Fig. 17.6). The SD detected snowfall was again used to
determine snowfall for Stage IV. Stage IV does not cover most of the western US
due to poor radar coverage in this region. This reveals one of the advantages of
satellite snowfall rate product like SFR, i.e. satellite product can fill in radar gaps.
The overall intensity patterns between the two images in Fig. 17.6 are rather similar,
i.e. heavier snowfall in the Northeast of US, around the Great Lakes, and along the
Rocky Mountains; and lighter snowfall in between. It is stressed that the 3-month
snowfall average is based on the snowfall detected by the SFR algorithm. The
current algorithm has low detection rate for shallow snowfall such as lake effect
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Table 17.4 Metrics of S-NPP SFR 3-month (Jan—-Mar 2017) average

Correlation Coefficient Bias (mm/h) RMS (mm/h)
0.65 0.00 0.02

snow and shallow orographic snow. It is most likely that the snowfall represented in
Fig. 17.6 only includes a portion of such shallow snowfall. The statistics of the
3-month SFR average against the Stage IV data are given in Table 17.4. As expected,
the metrics of the seasonal average are superior to the validation and even the
calibration data.

17.6 Summary and Conclusions

An overland SFR algorithm has been developed for PMW radiometers (the AMSU-
A/MHS pair aboard the NOAA POES and EUMETSAT Metop satellites, and
ATMS aboard the S-NPP and NOAA-20 satellites). The algorithm relies on an
embedded SD model to detect snowfall. Only when snowfall is detected will the
SFR algorithm be applied to retrieve snowfall rate.

The SD model is a hybrid algorithm that combines the output from a satellite-
based statistical model and the output from a GFS model-based statistical model.
Both statistical algorithms were trained with QCLCD in-situ observations of snow-
fall and no-snowfall. The satellite model couples the PCs of PMW measurements at
high frequencies with LR to produce the satellite-based POS. The other statistical
model takes a set of meteorological variables from GFS forecast as predictors and
produces the weather-based POS with a LR model. The final POS is a weighted
average of the above two probabilities and is assigned to “snowfall” if it is greater
than an a priori threshold. The SD algorithm is further enhanced with a set of mostly
NWP model-based filters. These filters, especially the cloud thickness threshold, are
effective at removing false alarms in the SD model output.

The SFR algorithm is a physically-based model and is composed of three main
elements: retrieving cloud properties, estimating initial SFR, i.e. SFR;, and deter-
mining the final SFR with an adjustment. Cloud properties, I, and D, are retrieved
using a IDVAR approach that uses a two-stream RTM as the forward model to
simulate Tys at five window and water vapor sounding channels. An existing model
is adopted to calculate ice particle terminal velocity. The retrieved cloud properties
are used in the computation of the terminal velocity and IWC, and eventually SFR;.
Finally, SFR is determined by adjusting SFR; with a cubic regression function. The
adjustment function was derived from matching SFR; histogram with that of the
Stage IV precipitation data. The effect of the adjustment is to reduce the overall bias
in SFR; that is conceivably due to the uncertainty associated with the assumption
about IWC linear distribution. The adjustment has little impact on the RMS and the
correlation of SFR; with Stage IV analyses.
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The SD algorithm was validated against hourly in-situ ground data. Compared to
the satellite-only model, the hybrid SD algorithm exhibits much improved perfor-
mance in terms of POD, FAR, and HSS. For instance, the former has an HSS of 0.23
while the latter 0.44. The SFR product was validated using the Stage I'V precipitation
analyses. Both point and seasonal (January — March 2017) average SFR were
compared to the corresponding Stage IV data. While the calibration dataset is
composed of data from large snowstorm systems from winters 2015 and 2016, the
validation data include all SFR retrievals that could be collocated with Stage IV from
winter 2017. The validation data still perform well with correlation and bias com-
parable to the calibration data while have somewhat higher RMS. The results
demonstrate the strength of the SFR algorithm for both large-scale and localized
snowfall.
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