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Preface

This book is published 13 years after the bookMeasuring Precipitation from Space:
EURAINSAT and the Future (V. Levizzani, P. Bauer, and F. J. Turk, Eds., Springer,
ISBN 978-1-4020-5835-6), but it is not a revised edition of the previous. It is a new
book that aims to construct a quasi-complete picture of the science and applications
of satellite-derived precipitation measurements at the present time.

The book comes out at the end of a very exciting era of precipitation measure-
ments from space. The Tropical Rainfall Measuring Mission (TRMM), launched in
November 1997, ended its long life in space in April 2015 providing an unprece-
dented 17-year-long dataset of tropical precipitation and lightning. The Global
Precipitation Measurement (GPM) mission, launched in February 2014, is now in
space as TRMM’s natural successor with a more global perspective that extends
precipitation radar observations to the Arctic and Antarctic circles. At the same time,
the CloudSat mission, launched in April 2006, is in its 13th year in space and focuses
on cloud structure, which is essential for improving precipitation retrievals. These
are just a few examples of precipitation-oriented missions that continuously provide
data from geostationary and low Earth orbits in a truly cooperative effort worldwide.
This effort involves many agencies and a broad range of countries who collaborate in
a genuine way to observe global precipitation.

It is by realizing the significance of this historical moment and the need to think
about what is important for the future that the community joined in the effort of
writing a book with the goal of serving the precipitation community itself, the
scholars, the students, the stakeholders, the end users, and all the readers interested
in knowing the progress of satellite precipitation studies. The most recent achieve-
ments in precipitation monitoring from space drive us into the future of measuring
not only heavy rainfall but less intense rainfall, snowfall, and even hailfall. Such a
scientific framework would not have even been conceivable 13 years ago and is only
possible thanks to the relentless effort of the worldwide space and precipitation
communities.

Naturally, we realize that at the time of the printing of this book, the field will
already have made advances and thus part of the material may already be a bit
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outdated. However, in this era of rapidly evolving technological developments,
sensors that take years to design, build, and launch are already considered old.
This is particularly true nowadays when the progress in approaching new scientific
challenges is particularly fast.

Since 2007, science has made substantial progresses toward transforming satellite
rainfall “estimates” into accurate “measurements” and producing operational rainfall
products readily available for a wide field of applications ranging from climate
research and numerical weather prediction to hydrology, agriculture, health, civil
protection, and much more. Satellite-derived precipitation products are now being
considered as a valuable tool for a number of applications that benefit society and
save lives. This is perhaps the most important achievement of all.

This book represents a significant effort, and each author has provided high-
quality material in the topics of current and future mission contributions, observa-
tions of precipitation using the suite of precipitation satellites, retrieval techniques,
validation, and applications. The result is a book that not only photographs the state
of the art of the discipline but also projects it into the future.

Bologna, Italy Vincenzo Levizzani
Greenbelt, MD, USA Christopher Kidd
Greenbelt, MD, USA Dalia B. Kirschbaum
Fort Collins, CO, USA Christian D. Kummerow
Saitama, Japan Kenji Nakamura
Pasadena, CA, USA F. Joseph Turk
9 March 2020
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AMIE/DYNAMO ARM Madden-Julian Oscillation Investigation Experiment/

Dynamics of the Madden-Julian Oscillation
AMIP Atmospheric Model Intercomparison Project (WCRP)
AMMA African Monsoon Multidisciplinary Analysis experiment
AMO Atlantic Meridional Oscillation
AMPR Advanced Microwave Precipitation Radiometer (NASA)
AMS Annual Maximum Series (of rainfall)
AMSL Above Mean Sea Level
AMSR Advanced Microwave Scanning Radiometer (JAXA)
AMSR-E AMSR-EOS (NASA)
AMSU Advanced Microwave Sounding Unit (NOAA and

EUMETSAT)
AMW Active Microwave
APHRODITE Asian Precipitation—Highly Resolved Observational Data

Integration Towards Evaluation of Water Resources (Japan)
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APR-3 Airborne Third Generation Precipitation Radar (NASA)
APSIM Agricultural Production Systems sIMulator
AR Atmospheric River
ARC (1) Africa Rainfall Climatology (NOAA)
ARC (2) Active Radar Calibrator
ARM Atmospheric Radiation Measurement (DoE)
ARM-SGP ARM Southern Great Plains (DoE)
ARMAR Airborne Rain-Mapping Radar (NASA and JPL)
ASCAT Advanced SCATterometer (ESA)
ASCII American Standard Code for Information Interchange
ASI Italian Space Agency
ASL Above Sea Level (a.s.l.)
ASTRAIA Analyse Stereoscopique par Radar Aeroporte (CNRS)
ATBD Algorithm Theoretical Basis Document
ATMS Advanced Technology Microwave Sounder (NASA/NOAA)
AWARE ARM West Antarctic Radiation Experiment
AWIPS Advanced Weather Interactive Processing System (NWS and

UNIDATA)
BAECC Biogenic Aerosols-Effects on Clouds and Climate Experiment

(ARM)
BB Bright Band
BC British Columbia
BCS Bias Correction Scheme
BMKG Badan Meteorologi, Klimatologi, dan Geofisika (Indonesia)
BoM Bureau of Meteorology (Australia)
BRAIN Bayesian Rain Algorithm Including Neural Networks (Megha-

Tropiques)
BSA Backscatter Alignment
BUFR Binary Universal Form for the Representation of

Meteorological Data
BUI Buildup Index (FWI)
CAPE Convective Available Potential Energy
CAPRICORN Clouds, Aerosols, Precipitation, Radiation, and Atmospheric

Composition over the Southern Ocean
CARE Centre for Atmospheric Research Experiments (Environment

Canada)
CATDS Centre Aval de Traitement des Données SMOS
CC Correlation Coefficient
CCD Cold Cloud Duration
CCDF Complementary Cumulative Distribution Function
CCI Climate Change Initiative (ESA)
CCl Commission for Climatology (WMO)
CCP (1) Clouds, Convection, and Precipitation
CCP (2) Cloud and Precipitation Process Mission
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CCZ Continent-Climate Zone
CDD Consecutive Dry Days Index (ETCCDI)
CDF Cumulative Density Function
CDR Climate Data Record
CDRD Cloud Dynamics and Radiation Database
CEMADEN Centro Nacional de Monitoramento e Alertas de Desastres

Naturais (Brazil)
CEOS Committee on Earth Observation Satellites
CERES Clouds and the Earth’s Radiant Energy System (NASA)
CESM Community Earth System Model
CFAD Contoured Frequency by Altitude Diagram
CG Cloud-to-Ground Lightning
CGMS Coordination Group for Meteorological Satellites
CHC Climate Hazards Center (University of California, Santa

Barbara)
CHIRPS Climate Hazards center InfraRed Precipitation with Stations
CHPcli Climate Hazards Group’s Precipitation Climatology
CIMR Copernicus Imaging Microwave Radiometer Mission (EU)
CIndO Central Equatorial Indian Ocean index
CIRA Cooperative Institute for Research in the Atmosphere (CSU)
CLC Corine Land Cover
CLIVAR Climate Variability and Predictability (WMO)
CLW Cloud Liquid Water
CLWC Cloud Liquid Water Content
CMA China Meteorological Administration
CMAP CPC Merged Analysis of Precipitation
CMIP Coupled Model Intercomparison Project (WCRP)
CMIP-5 CMIP Phase 5
CMORPH CPC MORPHing algorithm
CMORPH-CRT CMORPH Bias Corrected
CMORPH-KF CMORPH-Kalman Filter
CM-SAF Climate Monitoring-SAF (EUMETSAT)
CNES Centre National D’Études Spatiales (France)
CNRM/GAME Centre National de Recherches Météorologiques—Groupe

d’études de l’Atmosphère Météorologique (Météo France)
CNR Consiglio Nazionale delle Ricerche (Italy)
CNR-IRPI CNR-Istituto di Ricerca per la Protezione Idrogeologica
CNR-ISAC CNR-Istituto di Scienze dell'Atmosfera e del Clima
CNRS Centre National de la Recherche Scientifique (France)
CNTL Control Run
COADS Comprehensive Ocean Atmosphere Data Set
ConQ Moisture Flux Convergence
CONUS Conterminous US
CORRA Combined Radar-Radiometer Product (GPM)
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CoSMIR Conical Scanning Millimeter-wave Imaging Radiometer
(NASA)

CPC Climate Prediction Center (NOAA)
CPI Convective Percent Index
CPL Cloud Physics Lidar (NASA)
CPR Cloud Profiling Radar (NASA)
CRS Cloud Remote Sensing Radar (NASA)
CrIS Cross-Track Infrared Sounder (NASA)
CRM Cloud-Resolving Model
CRS Cloud Radar System (NASA)
CRTM Community Radiative Transfer Model
CRU Climate Research Unit (Univ. of East Anglia)
CSA Climate Service for Agriculture (Rwanda)
CSH Convective and Stratiform Heating
CSI Critical Success Index
CSK COSMO-SkyMed (ASI)
CSP Climate Services Partnership
CSU Colorado State University
CSPP Community Satellite Processing Package
CT Cloud Thickness
CTH Cloud Top Height
CWD Consecutive Wet Days (ETCCDI)
CWV Columnar Water Vapor
CYGNSS Cyclone Global Navigation Satellite System (NASA)
DA Data Assimilation
DAR Differential Absorption Radar
DB Dark Band
DBNet Direct Broadcast Network
DC Drought Code (FWI)
DD Downward Decreasing
DDA Discrete Dipole Approximation
DDSCAT Discrete Dipole Scattering
DEM Digital Elevation Model
DFR Dual-Frequency Ratio
DI Downward Increasing
DJF December-January-February
DKRZ Deutsches Klimarechenzentrum (Germany)
DLR Deutschen Zentrums für Luft- und Raumfahrt (Germany)
DMC Duff Moisture Code (FWI)
DMIP2 Distributed Hydrologic Model Intercomparison Project–Phase

2 (NWS)
DMSP Defense Meteorological Satellite Program (US Navy)
DNN Deep Neural Network
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DoE Department of Energy
DO-Op Daylight Only Operations (CloudSat)
DoW Doppler on Wheels (Center for Severe Weather Research)
DP Dual Polarimetric Radar
DPC (1) Data Processing Center (CloudSat)
DPC (2) Department of Civil Protection of Italy
DPCA Displaced Phase Center Antenna
DPR Dual-frequency Precipitation Radar (GPM)
DRC Democratic Republic of the Congo
DryMOD Dryland hydrological MODel (University of Reading)
DSD Drop Size Distribution
DSI Drought Severity Index
DSSAT Decision Support System for Agrotechnology Transfer
DWR Dual-Wavelength Ratio
DYNAMO Dynamics of the MJO experiment
D3R Dual-Frequency Dual-Polarized Doppler Radar (NASA)
EA East Africa
EAF East Africa
EarthCARE Earth Clouds, Aerosols, and Radiation Explorer (ESA-JAXA)
EASE Equal-Area Scalable Earth
EBCM Extended Boundary Condition Method
EC European Commission
ECCC Environment and Climate Change Canada
ECDI Enhanced Combined Drought Index
ECMWF European Centre for Medium-Range Weather Forecasts
EDF Environmental Data Fusion
EDOP ER-2 Doppler Radar
EDR Environmental Data Record
EEA Eastern East Africa
EIA Earth Incident Angle
ELDORA Electra Doppler Radar (NCAR)
EM Electromagnetic
EMA Effective Medium Approximations
eMAs extended MODIS Airborne Simulator (NASA)
EMSR Electronically Scanning Microwave Radiometer (NOAA)
ENACTS Enhancing National Climate Services
ENSO El Niño Southern Oscillation
EOF Empirical Orthogonal Function
EOS Earth Observing System (NASA)
EPD2 Extreme Precipitation Day > 2 in day-1

EPD4 Extreme Precipitation Day > 4 in day-1

EPS EUMETSAT Polar System
EPSAT-SG Estimation of Precipitation by Satellite Second Generation

(CNRS-LMD)
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EPS-SG EPS Second Generation
ERA ECMWF Reanalysis
ESA European Space Agency
ESA-CCI ESA Climate Change Initiative
ESMR Electronically Scanned Microwave Radiometer (NOAA)
ESPC Environmental Satellite Processing Center (NESDIS)
ESSIC Earth System Science Interdisciplinary Center
ET Evapotranspiration
ETCCDI Expert Team on Climate Change Detection and Indices
EU European Union
EUMETCast EUMETSAT’s Multicast Distribution System
EUMETSAT European Organization for the Exploitation of Meteorological

Satellites
EVI-3 Earth Venture Instrument-3 program (NASA)
EVT Extreme Value Theory
EWFN Energy-Water-Food Nexus
EWS Early Warning System
EXRAD ER-2 X-band Radar (NASA)
FAO Food and Agriculture Organization (UN)
FAR False Alarm Rate
FAS Foreign Agricultural Service (USDA)
FB Frequency Bias
FCDR Fundamental Climate Data Record
FD Frost Days
FDRS Fire Danger Rating Systems
FEWS NET Famine Early Warning Systems Network
FFMC Fine Fuel Moisture Code (FWI)
FL Freezing Level
FLDAS FEWS NET Land Data Assimilation System
FLOR Forecast-oriented Low Ocean Resolution model (GFDL)
FMI Finnish Meteorological Institute
FNMOC Fleet Numerical Meteorology and Oceanography Center

(US Navy)
FoV Field of View
FP Forward Processing (GMAO)
FRMSE Fractional RMSE
FSOI Forecast Sensitivity Observation Impact
FWI Fire Weather Index
GAGES Geospatial Attributes of Gages for Evaluating Streamflow

(USGS)
GANAL Global Analysis (JMA)
GATE Global Atmospheric Research Program Atlantic Tropical

Experiment
GC Ground Clutter
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GCEM Goddard Cumulus Ensemble Model (NASA)
GCM General Circulation Model
GCOM Global Change Observation Mission (JAXA)
GCOM-W GCOM-Water
GCOS Global Climate Observing System (WMO)
GCPEx GPM Cold Season Precipitation Experiment
GDAP GEWEX Data and Assessment Panel
GDAS/GFS Global Data Assimilation System/Global Forecast System

(NOAA)
GEC Geocoded Ellipsoid Corrected
GEO (1) Geostationary orbit
GEO (2) Group on Earth Observations
GEOGLAM GEO Global Agricultural Monitoring
GEOS Goddard Earth Observing System (NASA)
GEOS FP Global Earth Observing System Forward Processing
GEOSS Group on Earth Observation System of Systems
GeoSTAR Geostationary Synthetic Thinned Aperture Radiometer

(NASA)
GES DISC Goddard Earth Sciences Data and Information Services Center
GEV Generalized Extreme Value Distribution
GEWEX Global Energy and Water Exchanges (WCRP)
GFCS Global Framework for Climate Services (WMO)
GFDL Geophysical Fluid Dynamics Laboratory (NOAA and

Princeton University)
GFS Global Forecast System (NCEP)
GFWED Global Fire Weather Database (NASA GISS)
GHA Greater Horn of Africa
GHCN-D Global Historical Climatology Network-Daily (NOAA)
GHM Global Hydrological Model
GHRC Global Hydrology Resource Center (NASA)
GIRAFE Global Interpolated RAinFall Estimation
GIS Geographic Information System
GISS Goddard Institute for Space Studies (NASA)
GLC Global Landslide Catalog (NASA)
GMa Gulf of Mexico area
GMAO Global Modeling and Assimilation Office (NASA)
GMI GPM Microwave Imager
GMM Generalized Multiparticle Mie-solution
GoAMAZON Green Ocean Amazon Experiment
GOES Geostationary Operational Environmental Satellite (NOAA)
GOSAT-3 Greenhouse Gases Observing Satellite (JAXA)
GOTM General Ocean Turbulence Model
GPC Global Precipitation Climatology Center (DWD)
GPCP Global Precipitation Climatology Project (GEWEX)
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GPI GOES Precipitation Index
GPM Global Precipitation Measurement mission (NASA and

JAXA)
GPM-CO GPM Core Observatory
GPP Gross Primary Production
GPROF Goddard Profiling Algorithm (NASA)
GPS Global Positioning System
GRACE Gravity Recovery and Climate Experiment (NASA and DLR)
GRACE-FO GRACE Follow-On
GRDC Global Runoff Data Centre
Grid-Sat Gridded Satellite Data (NOAA)
GRIP Genesis and Rapid Intensification Processes (NASA)
GRISO Rainfall Generator of Spatial Interpolation from Observation
GS Grain Size
GSFC Goddard Space Flight Center (NASA)
GSI Gridpoint Statistical Interpolation
GSM Global Spectral Model
GSMaP Global Satellite Mapping of Precipitation (Japan)
GSMaP-MVK GSMaP Motion Vector Kalman
GSMaP-NRT GSMaP Near Real Time
GSOD Global Surface Summary of the Day (NOAA)
GT Gaussian Transformation
GTC Geocoded Terrain Corrected
GTS Global Telecommunication System
GV Ground Validation
GW Global Warming
GWIS Global Wildfire Information System
GWP Graupel Water Path
G5NR GEOS-5 Nature Run (NASA)
HADS Hydrometeorological Automated Data System (NWS)
HAMSR High-Altitude MMIC Sounding Radiometer (JPL)
HDF Hierarchical Data Format
HEMT High Electron Mobility Transistor
HEPEX Hydrological Ensemble Prediction Experiment
HID Hydrometeor Identification algorithms
HIRS High-Resolution Infrared Radiation Sounder (NOAA)
HISA Hurricane Intensity and Structure Algorithm
HIWRAP High-Altitude Imaging Wind and Rain Airborne Profiler

(NASA)
HLM Hillslope-Link Model
HMA High Mountain Asia
HOAPS Hamburg Ocean Atmosphere Parameters and Fluxes from

Satellite Data (University of Hamburg)
HQPrecip High-Quality Precipitation (GPM)
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HR Hit Rate
HRPP High-Resolution Precipitation Product
HRWS High-Resolution Wide Swath
H-SAF Support to Operational Hydrology and Water Management

(EUMETSAT)
HSS Heidke Skill Score
HyMeX Hydrological Cycle in Mediterranean Experiment
IC Intra-cloud Lightning
ICDC Integrated Climate Data Center (University of Hamburg)
ICE-POP International Collaborative Experiment for the PyeongChang

Olympics and Paralympics Experiment 2018
ICHARM International Centre for Water Hazard and Risk Management
ICI Ice Cloud Imager (EUMETSAT)
ICO-LETKF Icosahedral LETKF
IDF Intensity-Duration-Frequency Curve
IDW Inverse Distance Weighting
IFAS Integrated Flood Analysis System
IFM Index Flood Method
IMERG Integrated Multi-satellitE Retrievals for GPM
IMERG_E IMERG Early Run (near real time with a latency of 6 h)
IMERG_F IMERG Final Run (gauged-adjusted with a latency of

4 months)
IMERG_L IMERG Late Run (reprocessed near real time with a latency of

18 h)
IOD Indian Ocean Dipole
IPHEx Integrated Precipitation and Hydrology Experiment (GPM)
IPS Institut Pierre Simon Laplace (CNRS)
IPWG International Precipitation Working Group (CGMS)
IR Infrared
IRI International Research Institute for Climate and Society

(Columbia University)
IRP Infrared Precipitation Estimate
ISI Initial Spread Index (FWI)
ISRO Indian Space Research Organisation
ISS International Space Station
ITCZ Intertropical Convergence Zone
IWP Ice Water Path
I&Q In-Phase and Quadrature Signal
JAXA Japan Aerospace Exploration Agency
JCOMM Joint Technical Commission for Oceanography and Marine

Meteorology (WMO)
JCSDA Joint Center for Satellite Data Assimilation (NOAA)
JERD JPSS NESDIS ESPC Requirements Document
JF January-February

Acronyms lxi



JJA June-July-August
JJAS June-July-August-September
JMA Japan Meteorological Agency
JPL Jet Propulsion Laboratory
JPSS Joint Polar Satellite System
JRA55 Japanese 55-year Reanalysis
JRC Joint Research Centre (EC)
KGE Kling-Gupta Efficiency
KMA Korea Meteorological Administration
KWAJEX Kwajalein Experiment
LACA&D Latin American Climate Assessment & Dataset
LDM Local Data Manager (UNIDATA)
LDR Linear Depolarization Ratio
LEGOS Laboratoire d'Études en Géophysique et Océanographie

Spatiales
LEO Low Earth Orbit
LETKF Local Ensemble Transform Kalman Filter (RIKEN)
LFM Local Forecast Model
LH Latent Heating
LHASA Landslide Hazard Assessment for Situational Awareness

(NASA)
LIA Local Incidence Angle
LLCF Low-Level Clouds and Fog
LL-LETKF Latitude-Longitude LETKF
LMD Laboratoire de Météorologie Dynamique (CNRS)
LMODEL Lagrangian Model (UC Irvine and University of Hull)
LPVEx Light Precipitation Validation Experiment (GPM)
LR Logistic Regression
LST Land Surface Temperature
LUT Lookup Table
LWP Liquid Water Path
LZA Local Zenith Angle
L1SR Level 1 Science Requirements (GPM)
MADRAS Microwave Analysis and Detection of Rain and Atmospheric

Structures (Megha-Tropiques)
MAE Mean Absolute Error
MAFF Ministry of Agriculture, Forestry and Fisheries (Japan)
MAM March-April-May
MARSOP Monitoring Agricultural ResourceS Operational (JRC)
MBE Mean Bias Error
MCS Mesoscale Convective System
MCTA Merged CloudSat, TRMM, and AMSR product
MC3E Mid-latitude Continental Convective Clouds Experiment
ME Mean Error
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Medicane Mediterranean hurricane
MERRA Modern-Era Retrospective analysis for Research and

Applications (NASA)
MGD Multilook Ground Detected
MGDSST Merged Satellite and In Situ Data Global Daily SST (JMA)
MHEMT Metamorphic HEMT
MHOPrEx Monsoon Himalaya Orographic Precipitation Experiment
MHS Microwave Humidity Sounder (EUMETSAT)
MicroMAS-2 Micro-sized Microwave Atmospheric Satellite-2
MIIDAPS Multi-instrument Inversion and Data Assimilation

Preprocessing System (NOAA)
MIR Middle IR
MIRA Microwave/Infrared Rainfall Algorithm
MIRAS Microwave Imaging Radiometer using Aperture Synthesis
MiRS Microwave Integrated Retrieval System (NOAA)
MISDc Modello Idrologico Semi-Distribuito in continuo (CNR-IRPI)
MLP Melting Level Precipitation
MLS Microwave Limb Sounder (EOS)
MMIC Millimeter-Wave Monolithic Integrated Circuits
MODIS Moderate Resolution Imaging Spectroradiometer (NASA)
MPE Multisensor Precipitation Estimator
MP-M Max-Planck-Institut für Meteorologie (Germany)
MRR Micro Rain Radar
MREA Modified Regression Empirical Algorithm
MRMS Multi-Radar/Multisensor Precipitation Data
MREA Modified Regression Empirical Algorithm
MRMS Multi-Radar Multisensor system (NOAA)
MS Multiple Scattering
MSG Meteosat Second Generation (EUMETSAT)
MSG-CPP MSG Cloud Physical Properties (EUMETSAT)
MSLP Mean Sea-Level Pressure
MSPPS Microwave Surface and Precipitation Products System

(NOAA)
MSU Microwave Sounding Unit (NOAA)
MSWEP Multisource Weighted-Ensemble Precipitation
MTSAT Multifunctional Transport Satellites (JMA)
MW Microwave
MWCC Microwave Cloud Classification
MWCOMB Combined MW Rainfall Retrieval (CPC)
MWHS-2 Microwave Humidity Sounder-2 (CMA)
MWI Microwave Imager (EUMETSAT)
MWR (1) Microwave Radiometer
MWR (2) Moving Window Regression

Acronyms lxiii



MWS Microwave Sounder
NAa North Atlantic Area
NAMMA NASA African Monsoon Multidisciplinary Analyses
NAS National Academies of Sciences (US)
NASA National Aeronautics and Space Administration
NCA North and Central America
NCAR National Center for Atmospheric Research
NCE National Centers for Environmental Information (NOAA)
NCEI National Centers for Environmental Information
NCEP National Centers for Environmental Prediction (NOAA)
NCEP-CFSR Climate Forecast System Reanalysis
NCL NCAR Command Language
NDVI Normalized Difference Vegetation Index
NESDIS National Environmental Satellite, Data, and Information

Service (NOAA)
netCDF Network Common Data Form
NEWS NASA Energy and Water Cycle Study
NEXRAD Next-Generation Weather Doppler Radar (NOAA/NWS)
NH Northern Hemisphere
NHM National Hydrometeorological Service
NICAM Nonhydrostatic Icosahedral Atmospheric Model (RIKEN)
NIR Near IR
NM National Meteorology Agency
NMAE Normalized Mean Absolute Error
NMHS National Meteorological and Hydrological Service
NMQ National Mosaic Quantitative Precipitation Estimation

(NOAA/NSSL)
NU-WRF NASA-Unified WRF
NPP Net Primary Production
NRCS Normalized Radar Cross Section
NOAA National Oceanic and Atmospheric Administration
NOP Numerical Ocean Prediction
NPOL NASA S-Band Dual Polarimetric
NRL Naval Research Laboratory (US Navy)
NRMSE Normalized Root Mean Square Error
NRT Near Real Time
NSE Nash-Sutcliffe Efficiency
NSMC National Satellite Meteorological Center (CMA)
NSSL National Severe Storms Laboratory (NOAA)
NTPa North Tropical Pacific Area
NUBF Nonuniform Beam Filling
NU-WRF NASA-Unified Weather Research and Forecasting
NWP Numerical Weather Prediction
NWS National Weather Service (NOAA)
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OBCT On-Board Calibration Target
OCE Oceania
OceanRain Ocean Rainfall And Ice-Phase Precipitation Measurement

Network
OE Optimal Estimation
OI Optimal Interpolation
OLYMPEX Olympic Mountains Experiment
OM Observatoire Midi-Pyrénées
OND October-November-December
OSCAR Observing Systems Capability Analysis and Review (WMO)
OSPO Office of Satellite and Product Operations (NOAA)
OSSE Observing Systems Simulation Experiment
OZA Observation Zenith Angle
PAW Percentage Available Water
PCT Polarization Corrected Temperature
PDF (1) Probability Density Function
PDF (2) Particle Distribution Function
PDO Pacific Decadal Oscillation
PDSI Palmer Drought Severity Index
PERHPP Program for the Evaluation of High-Resolution Precipitation

Products
PERSIANN Precipitation Estimation from Remotely Sensed Information

using Artificial Neural Networks (UC Irvine)
PERSIANN-CCS PERSIANN-Cloud Classification System
PERSIANN-CDR PERSIANN-Climate Data Records
PERSIANN-MSA PERSIANN-Multispectral Analysis
PF Precipitation Feature
PHEMT Pseudomorphic HEMT
PHIVOLCS Philippine Institute of Volcanology and Seismology
PIA Path-Integrated Attenuation
PICSA Participatory Integrated Climate Services
PIP Precipitation Imaging Package
PMA Probability Matching Algorithm
PMI Polarimetric Microwave Imager (CMA)
PMM (1) Precipitation Measurement Mission (NASA)
PMM (2) Probability Matching Method
PMP Probable Maximum Precipitation
PMW Passive Microwave
PNPR Passive Microwave Neural Network Precipitation Retrieval

(CNR-ISAC)
POD Probability of Detection
POES Polar Operational Environmental Satellites (NOAA)
POFD Probability of False Detection
PoP Probability of Precipitation

Acronyms lxv



POS Probability of Snowfall
PPI Plan Position Indicator
PPP Precipitation Per Person
PPS Precipitation Processing System (IMERG)
PQPE Probabilistic Quantitative Precipitation Estimation
PR Precipitation Radar (TRMM)
PRCPTOT Total Rainfall Amount (ETCCDI)
PRISM Parameter-Elevation Regressions on Independent Slopes

Model (Oregon State University)
PRPS Precipitation Retrieval and Profiling Scheme
PSD Particle Size Distribution
PSS Practical Salinity Scale
PTH Precipitation Top Height
PUSH Precipitation Uncertainties for Satellite Hydrology
PV Physical Validation (GPM)
PW Precipitable Water
PWC Precipitable Water Content
QA Quality Assurance
QC Quality Control
QCLCD Quality Controlled Local Climatological Data
QI Quality Index
QPE Quantitative Precipitation Estimation
RADAP Radar Data Processor (NOAA)
RADAR Radio Detection and Ranging
RADEX Radar Definition Experiment (OLYMPEX)
RCM Regional Climate Model
RCS Radar Cross Section
REA Regressive Empirical Algorithm
REFAME Rain Estimation Using Forward Adjusted-Advection of

Microwave Estimates (UC Irvine)
RFC River Forecast Center (NWS)
RFE Rainfall Estimate (FAO)
RFI Radio Frequency Interference
RGA Rayleigh-Gans Approximation
RGB Red Green Blue
RH Relative Humidity
RHI Range Height Indicator
RICO Rain in Cumulus over the Ocean
RIM Rain Impact Model (salinity)
RMS Root Mean Square
RMSD RMS Deviation
RMSE RMS Error
RoF Rain on Fog
RoFCC RoF and Cap Clouds
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ROI Region of Interest
RoLLC Rain on Low-Level Clouds
ROSA Radio Occultation Sensor for Atmosphere
RQI Radar Quality Index
RR Rain Rate
RRFA-S Regional Rainfall Frequency Analysis using Satellite

Precipitation
RSS Remote Sensing Systems Inc.
RTH Rain Top Height
RTM Radiative Transfer Model
RTTOV Radiative Transfer for TOVS
RV (or (R/V) Research Vessel
RWH Rainwater Harvesting
RW Rainwater Path
R2O/O2 Research-to-Operations/Operations-to-Research paradigm

(SPoRT)
SAa South Atlantic Area
SAF Satellite Application Facility (EUMETSAT)
SAM (1) System for Atmospheric Modeling
SAM (2) Southern Appalachian Mountains
SAPHIR Sondeur Atmosphérique du Profile d’Humidité Intertropicale

par Radiométrie (Megha-Tropiques)
SAR Synthetic Aperture Radar
SARRA-H Systéme d’Analyse Régional des Risques Agroclimatiques-

Habillé
SBA Split-Based Approach
SCA Scatterometer (ESA)
SCaMPR Self-Calibrating Multivariate Precipitation Retrieval

(NESDIS)
ScaRaB Scanner for Radiation Budget (Megha-Tropiques)
scPDSI Self-Calibrated PDSI
SCS Single-Look Complex Slant Products
SCSMEX South China Sea Monsoon Experiment
SCSMEX/NESA SCSMEX Northern Enhanced Sounding Array
SCSMEX/SESA SCSMEX Southern Enhanced Sounding Array
SD (1) Snowfall Detection
SD (2) Standard Deviation
SDCI Scaled Drought Condition Index
SDG Sustainable Development Goal
SDII Simple Daily Intensity Index (ETCCDI)
SEA Southeast and East Asia
SEAK Southeast Alaska
SEM Semiempirical Model
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SEVIRI Spinning Enhanced Visible and Infrared Imager
(EUMETSAT)

SFI Seeder-Feeder Interactions
SFR Snowfall Rate (NOAA)
SH Southern Hemisphere
SI Snow Index
SIA Sea Ice Age
SIC Sea Ice Concentration
SID Sea Ice Drift
SIDOC SAR Images Dark Object Classifier
SIT Sea Ice Thickness
SLH Spectral Latent Heating
SM Soil Moisture
SMA Soil Moisture Anomaly
SMAP Soil Moisture Active Passive (NASA)
SMMR Scanning Multichannel Microwave Radiometer (NOAA)
SMOS Soil Moisture and Ocean Salinity (ESA)
SM2RAIN Soil Moisture to Rain Algorithm (CNR-IRPI)
S-NPP Suomi National Polar-Orbiting Partnership (NASA/NOAA)
SNR Signal-to-Noise Ratio
SON September-October-November
SOS Start of Season
SPA Specific Power Attenuation
SPCZ South Pacific Convergence Zone
SPEI Standardized Precipitation Evapotranspiration Index
SPI Standardized Precipitation Index
SPICE Solid Precipitation Intercomparison Experiment (WMO)
SPoRT Short-term Prediction Research and Transition Center (NASA)
SPP (1) Satellite Precipitation Product
SPP (2) Seasonal Performance Probability
SPS Special Weather Statement (NWS)
SPURS Salinity Processes in the Upper Ocean Regional Study
SR Success Ratio
SRE Satellite-Based Rainfall Estimate
SREM2D Two-Dimensional Satellite Rainfall Error Model
SRI Surface Rainfall Intensity
SRT Surface Reference Technique
SSA (1) Space Situational Awareness
SSA (2) Sub-Saharan Africa
SSN Spatial Stream Network
SSM/I Special Sensor Microwave/Imager (DMSP)
SSMIS Special Sensor Microwave Imager Sounder (DMSP)
SSM/T Special Sensor Microwave Temperature (DMSP)
SSP Surface Salinity Profiler
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SSRGA Self-Similar Rayleigh-Gans Approximation
SSS Sea Surface Salinity
SST Sea Surface Temperature
SSU Stratospheric Sounding Unit (NOAA)
SSW Sea Surface Wind
STAR Center for Satellite Applications and Research (NOAA-

NESDIS)
STDV Standard Deviation
STH Storm-Top Height
STIa South Tropical Indian Area
STPa South Tropical Pacific Area
SWA South and West Asia
SWB Soil Water Balance
SWE Snow Water Equivalent
SWER Snow Water Equivalent Rate
SYNOP Surface Synoptic Observation (WMO)
TAMSAT Tropical Applications of Meteorology Using Satellite and

Ground-Based Observations
TAPEER Tropical Amount of Precipitation with an Estimate of Errors
TARCAT TAMSAT African Rainfall Climatology and Time Series
TB Brightness Temperature
TC Tropical Cyclone
TCA Triple Collocation Analysis
TCC TRMM Composite Climatology
TC4 Tropical Composition, Cloud and Climate Coupling

Experiment
TDTS Time-Dependent Two-Stream Method
TEMPEST Temporal Experiment for Storms and Tropical Systems
TEMPEST-D TEMPEST Technology Demonstration
TIR Thermal Infrared
TLC Tropical-Like Cyclone
TMD Thai Meteorological Department (Thailand)
TMI TRMM Microwave Imager
TMPA TRMM Multisatellite Precipitation Analysis (NASA)
TOOCAN Tracking Of Organized Convection Algorithm through a 3-D

segmentatioN
TOGA-COARE Tropical Ocean Global Atmosphere Coupled Ocean-

Atmosphere Response Experiment
TOVS TIROS Operational Vertical Sounder
TPW Total Precipitable Water
TQV Total Precipitable Water Vapor
TRMM Tropical Rainfall Measuring Mission
TROPICS Time-Resolved Observations of Precipitation structure and

storm Intensity with a Constellation of Smallsats (NASA)
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TSX TerraSAR-X (DLR)
TVA Tennessee Valley Authority
TWP-ICE Tropical Warm Pool – International Cloud Experiment
TWSA Terrestrial Water Storage Anomaly
T2M Two-Meter Temperature
UCA Urban Climate Archipelago
UCLM Universidad de Castilla-La Mancha
UH University of Helsinki
UHI Urban Heat Island
UMORA Unified Microwave Ocean Retrieval Algorithm
UN United Nations
UNEP United Nations Environment Programme (UN)
UNESCO United Nations Educational, Scientific and Cultural

Organization (UN)
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Chapter 1
The Global Precipitation Measurement
(GPM) Mission

Christopher Kidd, Yukari N. Takayabu, Gail M. Skofronick-Jackson,
George J. Huffman, Scott A. Braun, Takuji Kubota, and F. Joseph Turk

Abstract Water is a fundamental component of the Earth’s water and energy cycles
and is essential to our economic and social wellbeing. Since precipitation is the
primary input into these cycles and affects the availability of water resources over
land areas, the measurement of precipitation across the globe is of critical impor-
tance. The Global Precipitation Measurement (GPM) Core Observatory (CO), a joint
US and Japan mission launched in 2014, extends and enhances the legacy of the
Tropical Rainfall Measuring Mission (TRMM). The GPM-CO carries high-quality
passive and active microwave instruments designed to observe the structure and
intensity of falling rainfall and snowfall. The high standard of accuracy of these
sensors also provides a reference standard for other precipitation sensors in the GPM
constellation which comprises of a suite of satellites from international organisa-
tions, enabling global sampling from passive microwave (PMW) sensors at a
3-hourly interval better than 90% of the time. Together with geostationary (GEO)
infrared (IR) observations, these data enable global 30-min, 0.1� � 0.1� precipitation
products to be computed and posted in near real-time. Precipitation products are
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made available to, and utilized by, user communities ranging from numerical
weather prediction (NWP) organisations to water resources services.

Keywords Precipitation · Rainfall · Snowfall · Satellite · Microwave · Radar ·
Radiometers · TRMM · GPM · GPM-core observatory · GMI · DPR · Physical
principles · Merged sensor products · High space and time resolution · Applications

1.1 Introduction

The role of water is key to the Earth’s water and energy cycles and essential for life
on Earth. The availability of fresh water is driven largely by precipitation in the form
of rainfall or snowfall, governing the water resources and the environment around
us. The variability of precipitation across all scales, from short-duration storms to
climate-scale variations, and from local to global spatial scales, affects not only our
lives, but also the physical nature of the climate upon which we depend. The World
Climate Research Programme (WCRP) identified four water-related challenges:
clouds, circulation, and climate sensitivity; weather and climate extremes; water
for the food baskets of the world; and near-term climate prediction WCRP (2019).
The questions associated with these challenges are how the availability of fresh
water will change, how the frequency and intensity of the extremes of precipitation
(droughts and storms) will change, and what are the convection-cloud feedbacks.
Key to answering these questions is the better measurement of precipitation, rainfall
and snowfall across all scales, together with improving our understanding of the
microphysics of precipitation that underpin the formation of precipitation and
associated feedbacks.

The Global Precipitation Measurement (GPM) mission is an international satellite
mission to advance our knowledge and understanding of global precipitation. The
GPM Core Observatory (CO), a collaboration between NASA and the Japan Aero-
space Exploration Agency (JAXA), was launched on 28 February 2014 by an H-IIA
#23 rocket from the Tanegashima launch site in Japan, into a 65� inclination, 407 km
altitude orbit. The main goal of the GPM mission is to improve precipitation
measurements through understanding the physics and space-time variability of
precipitation across the Earth. The GPM-CO carries the most advanced precipitation
instrumentation currently in orbit: a Dual-frequency Precipitation Radar (DPR;
Chap. 11) and the GPM Microwave Imager (GMI; Draper et al. 2015b) (see
Fig. 1.1). The DPR is comprised of Ku and Ka-band radars that measure the
3-dimensional structure of precipitation through the atmosphere to the surface. The
GMI provides well-calibrated, multi-frequency, wide-swath observations across
13 channels. The two instruments on the GPM-CO are designed to measure rainfall
from 0.2-111.0 mm h�1 (Hou et al. 2014), to detect moderate to intense snowfall
events and to serve as a precipitation physics laboratory. Furthermore, due to the
accuracy of the instruments, the GPM-CO acts as a calibration reference standard for
unifying the observations from other satellite sensors (as listed in Table 1.1)
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provided by international partner organisations that form the GPM precipitation
constellation (Skofronick-Jackson et al. 2017).

The GPM mission follows the very successful Tropical Rainfall Measuring
Mission (TRMM; Kummerow et al. 1998, 2000). TRMM was placed in a non-sun
synchronous Low Earth Orbit (LEO) and was equipped with the first space-borne
Precipitation Radar (PR), the TRMM multi-channel Microwave Imager (TMI), and
three other cloud-system-related instruments. TRMM provided observations from
November 1997 to April 2015, including a precious one-year overlap of observa-
tions with GPM, enabling the inter-calibration of GPM and TRMM observations.
While the latitudinal range of TRMM observations was from 35�N to 35�S, GPM
expanded coverage to 65�N to 65�S to cover 91% of the globe. In order to increase
the capability of measuring frozen and light precipitation that is abundant in higher
latitudes, the GPM DPR consists of a 13.6 GHz Ku-band radar similar to the TRMM
PR and a new 35.5 GHz Ka-band radar, while the GMI consists of a 13-channel
microwave imager (which is the TMI complement) plus two additional high fre-
quency bands at 165.5 GHz and 183.31 GHz. Since frequent sampling of precipi-
tation at the global scale, a primary objective of GPM, cannot be achieved by the
single GPM-CO, an international constellation of space-borne passive microwave
(PMW) partner sensors is utilised. The non-sun synchronous nature of the GPM-CO
orbit allows the observations of these constellation sensors to be cross-calibrated
with the GPM-CO. By combining the observations from the GPM constellation,
aided by infrared (IR) observations from geostationary satellites, two representative
high temporal and spatial resolution mapped precipitation products, the Integrated
Multi-satellitE Retrievals for GPM (IMERG) and Global Satellite Mapping of
Precipitation (GSMaP) from the US and Japan, respectively, are publically available
for various applications.

Fig. 1.1 Schematic of the Global Precipitation Measurement (GPM) mission Core Observatory
(CO; left) and the GPM international partner constellation (right). Note that as of 21 May 2018 the
KaPR swath width has been increased to 245 km to match that of the KuPR. (Note that the
GPM-CO alternates flight directions to keep the canted solar panel towards the Sun: half the time
the flight direction is 180� from that shown)
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1.2 Satellite Sensors and Characteristics

The major roles for the GPM-CO are to provide observations of both rainfall and
snowfall, and to act as a calibrator for the other precipitation sensors in the constel-
lation. The higher inclination orbit with coverage from 65�N to 65�S extends the
latitudinal range of coincident PMW/active microwave (AMW) measurements to
cover more regions dominated by mid-latitude precipitation systems, including
snowfall. Like TRMM, it provides observations throughout the diurnal cycle, as
well as intersecting the orbital paths of the other GPM constellation satellites, which
allows co-temporal, co-located observations to take place.

The DPR instrument is the first dual-frequency precipitation radar to be flown in
space, and expands the capability of the TRMM PR. The Ku radar is an improved
version of the TRMM PR, increasing the sensitivity from 18 to 12 dBZ for the GPM
DPR, while the Ka radar provides observations at 35.5 GHz, providing greater
sensitivity to light precipitation. The DPR Ku-band radar provides a swath of
245 km with 250 m vertical resolution. At launch, the Ka-band radar provided a
narrower swath of 120 km and a combined Ku/Ka swath also of 120 km. More
recently, after 21 May 2018, the Ka-band radar was reconfigured operationally to
provide a broader 245 km swath that is coincident with the Ku swath.

As a result of the improved sensitivity, shallow and relatively light convective
precipitation may be observed, as shown in Fig. 1.2; here, lake effect precipitation
over the Japan Sea is clearly captured. The effect of the difference in the sensitivity
can be seen in Fig. 37.2 (Chap. 37 of volume 2) through comparison of the
sensitivity thresholds to the same organized systems in the Tropics; notice that in
addition to the improved detectability of very shallow precipitation found in the
centre, a large volume of anvil precipitation, above the melting level, is detected with

Fig. 1.2 An infrared image
from Himawari 8 of the
“lake effect” clouds over the
Japan Sea (top), and three-
dimensional snapshot of
shallow precipitation from
those clouds observed by the
effective radar reflectivity at
Ku band of the GPM/DPR at
0955 UTC 2 December
2014 (bottom)
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the improved sensitivity. The resultant enhancement of precipitation detection
between 40�N and 40�S compared to the PR, is 21.1% and 1.9%, in occurrence
and amount, respectively (Hamada and Takayabu 2016).

The use of dual-frequency radar data enables more physics-based rainfall retrieval
possibilities. Recently, various science studies have started to detail the precipitation
microphysics based on the dual-frequency radar observations. For example, utilizing
the difference in attenuation characteristics between Ku- and Ka-band radars. Iguchi
et al. (2018) successfully determined heavy ice precipitation from the Dual
Frequency Ratio method (DFRm ¼ Zm(Ku)-Zm(Ka)) as shown in Fig. 1.3.

The one-year overlap of the GPM DPR and the TRMM PR allowed comparison
and cross-calibration between the two instruments. Although the orbits of the DPR
and PR are different, limiting the number of precipitation cases for simultaneous
observations, the observed rain structure and estimated rain intensity matched well
with one another. From such comparisons, the accuracy of the DPR performance
was confirmed, with some deficiencies revealed in the TRMM PR data; this was the
first time that multiple space-borne precipitation radars had been assessed. During
the comparison, engineering calibration methods were improved, and a vicarious
calibration using the sea-surface signature has also been developed, along with a
comparison of rain totals. As an end-to-end calibration, DPR rain estimates were
compared with ground-based rain data (see Chap. 27 of volume 2), where data from
operational agencies, such as JMA and NOAA, were utilized.

The Ka-band radar on the DPR is a new space-borne instrument, requiring
additional initial investigations, not least since the scattering characteristics of
precipitation particles at Ka-band are different from those for Ku-band. The scatter-
ing is complicated, particularly, for melting particles. Because one of the DPR
objectives is to measure precipitation rates including solid particles, understanding
of the scattering characteristics is essential for the full utilization of the Ka-band

(a) Hydrometeor Identification

33.2°N

33.0°N

32.8°N

32.6°N
99.0°W 98.8°W 98.6°W 98.4°W 98.2°W

32.6°N
99.0°W 98.8°W 98.6°W 98.4°W 98.2°W

32.8°N

33.0°N

33.2°N

(b) Heavy Ice Precipitation Flag(DPR) 

BD

NA

WG

DG

VI

WS

DS

CR

RN

DZ

UC

Fig. 1.3 Hail detection in the thunderstorm near Fort Worth, Texas, on 26 May 2015. (a)
Hydrometeor identification by a ground-based polarimetric radar and (b) the output from the
“flagHeavyIcePrecip” from the DPR product. (Adapted from Iguchi et al. 2018; see the reference
for details)
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radar. JAXA has developed a ground-based dual Ka-band radar system for obser-
vation of precipitation on the ground. The system consists of two identical radars,
and they observe the same precipitation systems. From the difference of the range
profiles, scattering and attenuation can be estimated. From the observation, the
scattering tables used in DPR rain retrieval algorithms are found to be reasonable
(see Chap. 27 of volume 2).

The GMI instrument provides observations at the commonly used passive micro-
wave frequencies of 10.65, 18.7, 23.8, 36.5 and 89.0 GHz with dual polarization,
except at 23.8 GHz (see Table 1.1). In addition, GMI adds four high-frequency
channels at 165.5 (vertical and horizontal polarizations) and 183.31 � 3.0,
�7.0 GHz (vertical polarization). The high-frequency PMW channels (together
with the Ka radar) were specifically added to enable the observation and measure-
ment of frozen and light precipitation. It should also be noted that the resolution of
the GMI instrument is significantly better than most other passive microwave
instruments, with the highest frequency channels providing observations at
6 � 4 km2.

The GMI was designed to be an accurate reference standard for other PMW
radiometers, consequently a number of design features were included to eliminate
solar intrusions, minimize antenna emissivity issues, and improve calibration of the
window channels (Draper et al. 2013). The performance of the GMI instrument is
described in (Draper et al. 2015a, b), with subsequent work (Wentz and Draper
2016) noting a Tb accuracy for all channels to within 0.4 K and stability to within
0.2 K.

1.3 Products

Within the GPM mission, the NASA Precipitation Processing System (PPS) cap-
tures, processes, archives and distributes data from the GPM-CO and constellation
members. Ancillary data such as the GEO-IR and model data are also ingested to
provide inputs to the precipitation retrieval schemes. Incoming data are processed to
ensure consistency between the satellite data sets, including information content,
orbital data structure, common file name conventions and, most importantly, the
inter-calibration of the observed brightness temperatures. The GPM Intersatellite
Calibration Working Group (XCAL) is dedicated to the inter-calibration of the
GPM-CO and constellation observations to ensure consistency across the satellite
sensors (e.g., Kroodsma et al. 2017; Berg et al. 2016). The incoming GPM-CO data
at Level 1A are processed to standard Level 1B files containing brightness temper-
atures (Tb), and then to the Level 1C inter-calibrated brightness temperatures (Tc);
all constellation data are processed to Level 1C. Consistency between the different
international partner PMW sensors is achieved through the use of the GMI as a
calibration reference. Pre-screening of the individual sensor Tbs is performed in
order to identify and correct for calibration biases both along scans and between
scans. The XCAL uses a number of techniques (to lessen the flaws or limitations in
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any single technique) to adjust the calibration of the partner radiometers to ensure
consistency with GMI (Berg et al. 2016). Below 92 GHz, differences between the
radiometers were typically less than 2-3 K, while above 150 GHz, differences were
found to be about 2 K except for the SSMIS on the F19 satellite which showed
differences up to 11 K colder than GMI. Cross-track, or sounding, sensors exhibited
differences generally within 0.5 K for the Sondeur Atmospherique du Profil
d’Humidite Intertropicale par Radiometrie (SAPHIR) and the Microwave Humidity
Sounder (MHS) sensors, and within 1 K for the Advanced Technology Microwave
Sounder (ATMS). The coordination of data files of all the precipitation-capable
observations greatly simplifies the generation of multi-sensor precipitation retrievals
for the user community.

The precipitation products are generated in near real-time (and again after real-
time) by the NASA PPS. These Level 2 products provide the instantaneous precip-
itation retrievals and the retrieval resolution for each sensor on a swath basis for each
satellite orbit. Data from the microwave radiometers use the GPROF scheme (see
Kummerow et al. 2001, 2015; Chap. 8), the DPR product uses a scheme developed
by Masaki et al. (2015) and Seto et al. (2015), and the Combined Radar-Radiometer
Algorithm (CORRA) follows a scheme described in Grecu et al. (2016) and in
Chap. 14. Products from the GMI instrument are available within 1 h of the
observation time, while the DPR and CORRA products are available within 3 h
most of the time. The post real-time products are intended to provide research-
quality retrievals.

Mapped precipitation products are available as Level 3 data. The Level 2 prod-
ucts, together with GEO IR data, are used as input to the US GPM Science Team’s
IMERG scheme (see Chap. 19), which provides precipitation products at
0.1� � 0.1�, 30 min resolution. All of the microwave retrievals developed above,
based upon GPROF, are inter-calibrated to the CORRA estimate while the IR-based
estimates are calibrated to these microwave retrievals. Three IMERG products are
available at different latencies: an Early Run that includes all available data within
4 h, a Late Run that includes all available data within 14 h, and a Final Run that uses
all satellite data that is available and a global monthly gauge analysis, and is
generated 3 months later. The last product is considered to be the research-grade
product. In addition to the precipitation rate, each product contains information on
the provenance of the data, its quality, and the precipitation phase (liquid/solid)
determined diagnostically from numerical assimilation/forecast information.

Mapped precipitation datasets in high spatial and temporal resolution based on
satellite observations, using PMW sensors on multiple LEO satellites and GEO-IR
observations, as well as the GPM DPR, are also developed in Japan, namely the
GSMaP (Aonashi et al. 2009; Ushio et al. 2009; Chap. 20). The original GSMaP
algorithm was developed in the TRMM era, with PMW on LEO satellites, and TMI
and TRMM PR (Okamoto et al. 2005; Kubota et al. 2007). There are seven products
in GSMaP which are elaborated later in this book (see Kubota et al. 2007 and
Chap. 20). All products have spatial and temporal resolutions of 0.1� � 0.1� and
hourly, respectively. The standard products are GSMaP_MVK and GSMaP_Gauge
with 3 days latency, while GSMaP_NOW is a product with the shortest latency,
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available in real time. GSMaP is characterized by its careful treatment of precipita-
tion types in its algorithm, fully utilizing the TRMM/PR, GPM/DPR, TMI and GMI
observations. For example, GSMaP employs precipitation-regime classifications and
precipitation-profile information constructed from the TRMM/PR, GPM/DPR, and
ancillary meteorological data, in order to derive adequate LUTs for precipitation
retrievals in the PMW algorithm. Careful classification of land/coast/ocean surface
types and utilization of land surface emissivity obtained from TRMM data are
included. In addition, severe underestimation of orographic precipitation in the
original product is mitigated by incorporating an orographic rainfall scheme (Yama-
moto and Shige 2015). A recent improvement is an implementation of a snowfall
estimation scheme that significantly extended the estimated data availability to
higher latitudes. Details for the algorithm can be found in Chap. 20.

1.4 Validation

As part of the US GPM program, NASA includes a ground validation
(GV) component aimed at not only verifying and validating the precipitation prod-
ucts generated from the GPM observations, but also gaining a greater insight into the
precipitation processes that the GPM sensors observe. The GPM GV work can be
broken down into three main areas:

(i) Direct validation of the precipitation products through comparison of the
satellite estimates with routinely collected, large-scale precipitation measure-
ments as provided by national and international ground-based networks such as
the Multi-Sensor/Multi-Source radar data (see Zhang et al. 2011, 2016). Exam-
ples of this type of validation include Kidd et al. (2018), who validated the
Level-2 GPROF precipitation products over Europe and the US using surface
radar and gauge data, Tan et al. (2017a), who validated the Level-3 IMERG
precipitation product over different spatial and temporal scales, and Tan et al.
(2017b), who compared the DPR and GPROF products against dense gauge
networks. The International Precipitation Working Group (IPWG) also pro-
vides ongoing direct validation of satellite precipitation products over a number
of regions across the globe (see Chap. 25 of volume 2).

(ii) Physical validation through concerted field campaigns during which surface,
airborne, and spaceborne measurements are coordinated to provide multi-tiered
observations of precipitation systems. The GPM GV team has organised a
number of intensive GV campaigns covering a range of meteorological and
climatological regimes. These have included the Light Precipitation Validation
Experiment (LPVEx) centred on Helsinki, Finland (Iguchi et al. 2014; Huang
et al. 2015); the GPM Cold Precipitation Experiment (GCPEx) centred on the
Environment Canada Center for Atmospheric Research Experiments (CARE)
site at Egbert, north of Toronto (see Skofronick-Jackson et al. 2015; Colle et al.
2017); the Mid-latitude Continental Convective Clouds Experiment (MC3E) in
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Oklahoma (Tao et al. 2013; Jensen et al. 2016); and the Olympic Mountain
Experiment (OLYMPEX) over the NW US (Petersen et al. 2016; Houze et al.
2017).

(iii) An integrated approach whereby the precipitation products are related to
particular applications to ascertain the errors and uncertainties associated with
such products, particularly across multiple spatial and temporal scales. Exam-
ples include the estimation and measurement of the drop-size distribution
(DSD) by different sensors and trying to reconcile the differences, both from
the physical understanding of the precipitation and associated processes, and
from the differences in the observation techniques (e.g., Bringi et al. 2015; Liao
et al. 2014), and through identifying and reducing errors and uncertainties in
hydrological modelling using satellite-derived precipitation data products (see
Chap. 32 of volume 2).

The GV activities span a range of spatial and temporal scales, to assess a range of
different parameters, such as occurrence, accumulation, and phase (e.g., You et al.
2016; Chase et al. 2018). Further studies have concentrated upon the derivation of
DSDs from satellite and ground measurements to enable better radar-precipitation
measurements to be made, together with providing global maps of DSDs (e.g.,
Williams et al. 2014; Thurai et al. 2017). More detail on GV can be found in
Chap. 26 of volume 2. Validation over the oceans remains a significant problem.
Current efforts, such as the OceanRAIN data set (Chap. 34 of volume 2), provide
ship-based disdrometer measurements that are useful for research into DSDs as well
as the occurrence and accumulation of precipitation across a range of climatological
regimes.

In addition, the GV program was tasked with evaluating the performance of the
GPM-CO against the pre-launch science requirements (see Skofronick-Jackson et al.
2017). As such, the validation of the GPM products shows that the mission require-
ments have been met, with excellent (low) bias and uncertainty for instantaneous
rain rates (Skofronick-Jackson et al. 2017), typically less than 50% at 1 mm h�1 and
less than 25% at 10 mm h�1. The validation of snowfall retrievals is currently being
evaluated. Because the physical measurement of snowfall at the surface is difficult,
obtaining definitive and accurate surface data is crucial in establishing the accuracy
of satellite snowfall retrievals. At present, comparisons between the IMERG product
and surface radar data show agreement in the identification of snowfall.

1.5 Advancing Precipitation Science

The improved features of the GPM-CO together with the constellation partner
sensors and the GPM GV program have enhanced observations of precipitation
across the Earth’s surface and through its atmosphere. The greater extent of the
GPM-CO coverage over TRMM now means that different meteorological and
climatological regimes are observed by combined PMW/AMW observations.
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These regimes present new challenges and opportunities to advance precipitation
research; the inclusions of these regimes have led to new research leading to a greater
understanding of precipitation and its role in the Earth’s water and energy cycles.

1.5.1 Snowfall and Cold-Season Precipitation

While the Tropics are dominated by convective precipitation, the mid- and high-
latitudes tend to be dominated by stratiform precipitation, often light, shallow and of
mixed phase. This fact poses a number of problems for both the PMW and AMW
observations. Signals associated with light and shallow precipitation are often subtle,
and differentiating between precipitation and no-precipitation is difficult. The addi-
tion of high-frequency PMW channels helps due to their higher sensitivity to small
precipitation particles, while the increased sensitivity of the DPR allows lighter
precipitation to be observed and measured.

The estimation of snowfall (falling snow) has always been somewhat equivocal
due to the sensitivity of the observations coupled with inadequate relationships
between the observations and surface precipitation in snowfall situations. Although
improved multi-channel observations can improve the identification of snowfall,
advances have also been necessary in the modelling of the scattering signal associ-
ated with the ice particles of snowfall-related hydrometeors (see Chap. 15).
Improved modelling of scattering due to non-spherical hydrometeors at high fre-
quencies has enabled better retrievals of snowfall to be made, and opened up new
research opportunities (see Chaps. 17 and 36 of volume 2). GPM data have revealed
insights into the intensity and microphysical composition of cold-season precipita-
tion, and regions of predominantly light mixed-phase precipitation rates (see von
Lerber et al. 2018).

Very light precipitation remains challenging even for the GPM DPR instrument.
Some improvements to light precipitation incorporated in GPM observations have
combined DPR with W-band radar CloudSat Cloud Profiling Radar (CPR) observa-
tions (Panegrossi et al. 2015). However, despite the advances in the above measure-
ments, one significant drawback at present is the limitation of the AMW
measurements for both the DPR and CPR due to surface clutter that limits the lowest
altitude at which the radar can provide useful observations; at nadir this is about
1 km, so precipitation below 1 km may not be faithfully captured by any existing
AMW sensor.

1.5.2 Drop Size Distributions (DSDs)

Improving our knowledge and understanding of hydrometeor DSDs within precip-
itating systems is key for the estimation of precipitation using radar, through the use
of an appropriate Z–R relationship, together with understanding of the processes
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associated with the formation and evolution of precipitation within weather systems.
Current radar and combined (radar + radiometer) precipitation retrieval algorithms
for GPM are designed around the assumption of a gamma-shaped raindrop size
distribution, representing the number of raindrops per diameter interval per unit
volume. This DSD is described by three mathematical parameters relating to the
scale (i.e., number concentration), shape, and slope of the DSD. The DPR provides
two independent measurements to inform the GPM algorithms on these three
parameters. Using ground-based data, Williams et al. (2014) described efforts to
identify inter-relationships between these DSD parameters, to constrain all three
parameters in a manner consistent with independent ground validation gauges and
video disdrometers, while uncertainties within the GPM DPR rain estimates caused
by DSD parameterizations in the retrieval schemes are presented in Liao et al.
(2014). These relationships are central to the GPM algorithms to specify the DSD
in a physical way in precipitation retrievals, and central to ground validation pro-
grams such as OLYMPEX (Houze et al. 2017). Many of these efforts contribute to
the mapping of DSDs and their variability, such as the work of Bringi et al. (2015),
who investigate the spatial relationships between the DSDs and rain rates.

1.5.3 Latent Heating Products

Global estimates of convective latent heating profiles based on satellite observations
have been a major goal among tropical meteorologists since the design phase of
TRMM (Simpson et al. 1988). The capability of observing the three-dimensional
structure of precipitation from space by TRMM and GPM realized this dream.

There are two standard convective latent heating products utilizing TRMM and
GPM observations. One is the Spectral Latent Heating (SLH) product from Japan
(Shige et al. 2004, 2007, 2008, 2009), and the other is the Convective Stratiform
Heating (CSH) product from the US (Tao et al. 2001, 2006, 2010, 2016). Both
algorithms utilize the outputs from cloud system-resolving model simulations to
generate appropriate look-up tables (LUTs).

The SLH algorithm uses LUTs to obtain latent heating profiles from precipitation
profile data obtained from space-borne radar observations. These LUTs are
constructed in a spectral manner, in terms of either precipitation top heights or
cloud-base level precipitation intensity, depending on precipitation types. The
SLH algorithm was first developed for tropical precipitation in the TRMM era
with the aid of Goddard Cumulus Ensemble Model (GCEM) simulations for the
Tropics. In order to apply this algorithm to the high-latitude precipitation observed
by GPM, a mid-latitude scheme was added in the latest V05 and V06 versions, with
the aid of Local Forecast Model simulations by the Japanese Meteorological
Agency. The CSH algorithm was originally based on the convective-stratiform
precipitation ratio estimated from TRMM observations. The GPM version of the
CSH algorithm utilizes the GCE model to generate LUTs for various tropical

14 C. Kidd et al.



regions, and the NASA Unified Weather Research and Forecasting (NU-WRF)
model to generate LUTs for high-latitude regions.

The latest versions of SLH and CSH are distributed as GPM SLH V06 and GPM
CSH V06, respectively. For further details, see Chap. 46 of volume 2.

1.6 Applications and Outreach

The increasing time span of TRMM and GPM precipitation data, together with
improved (reduced) data latency and online distribution methods, have made pre-
cipitation datasets quickly and easily available for use in various cross-discipline
investigations and Earth science-related applications (Kucera et al. 2013;
Kirschbaum et al. 2017; Levizzani et al. 2018). With its grater latitudinal coverage
relative to the predecessor TRMM satellite, the increased GPM over-land coverage
expands or opens up additional land-related applications (Skofronick-Jackson et al.
2017). A review of these and many additional applications of GPM precipitation data
products is provided in Kirschbaum et al. (2017), as well as in Part VI of volume 2.

1.6.1 Precipitation Extremes, Food Security, and Health

One key role for satellite-derived precipitation products is the ability of observe,
monitor and measure precipitation on a (quasi-)global basis in near real-time.
Applications range from the assimilation of satellite observations into numerical
weather prediction (NWP) models (see Chaps. 48 and 49 of volume 2), to the use of
GPM data for monitoring tropical cyclone locations, to the use of precipitation
products to generate maps of accumulated rainfall from tropical cyclones to aid
disaster relief efforts (Skofronick-Jackson et al. 2018).

The hydrological community utilises many of the satellite-derived precipitation
products for hydrological modelling. Over poorly gauged or large river basins,
satellite-based precipitation datasets are often the only low-latency precipitation
data to allow flow predictions for downstream interests with sufficient lead time to
initiate response (Maggioni and Massari 2018). One of the great challenges is the
complexity of the hydrological system and relating the satellite surface rainfall
measurements to final river flow (see Chap. 32 of volume 2). Extremes of precipi-
tation are discussed in Chaps. 40 and 55 of volume 2, with the detection of hail
presented in Chap. 44 of volume 2. Flooding is not the only consequence of heavy
precipitation events; periods of sustained rain often trigger landslides and debris
flows. Near real-time GPM precipitation data are routinely used for initializing the
Landslide Hazard Assessment for Situational Awareness (LHASA) model
(Kirschbaum and Stanley 2018). JAXA has collaborated with the International
Centre for Water Hazard and Risk Management (ICHARM) since 2005. The
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GSMaP near-real-time data are used in a flood forecasting system by the ICHARM
Integrated Flood Analysis System (IFAS) in Asian regions such as Pakistan. JAXA
has also collaborated with the Philippine Institute of Volcanology and Seismology
(PHIVOLCS) as a “Sentinel Asia Success Story in the Philippines” project since
2009, studying the use of GSMaP for landslide warnings.

At the other extreme, the lack of precipitation causes drought, impacting food
security. Changing weather patterns and variability in precipitation under conditions
such as the El Niño Southern Oscillation (ENSO) affects many food-producing areas
of Africa and Central and South America. Over the past decade, the change of
rainfall patterns and weather over Africa has been extensively studied with TRMM
satellite precipitation products (Maidment et al. 2015). The Famine Early Warning
System Network (FEWS Net; Funk and Verdin 2010) utilises precipitation infor-
mation to help with determining the start of the growing season and drought metrics
(Kirschbaum et al. 2017). Shepherd et al. (2016) used GPM data to compare global
precipitation with population density to derive a metric of water stress. The role of
satellite observations in drought risk management is explored in Chap. 52 of volume
2. A consequence of drought is reduced food security; Chap. 56 of volume 2 provides
an overview of the use of satellite-derived precipitation products for agriculture and
food security. Because of the key role that water plays in the transmission of disease,
GPM precipitation data provide a vital element in addressing societal issues such as
outbreaks of malaria and cholera (Moore et al. 2017).

More recently the use of satellite precipitation data sets has been used to assess
the lack of precipitation in fire-prone regions, particularly along the Western sea-
board of the US and western Canada. Here, the lack of snowfall during the winter
season can have serious impacts on water availability during the following summer
when dry conditions can enhance the likelihood of forest fires (see Chap. 57 of
volume 2).

In Japan, JAXA provides agro-met data including the GSMaP to the Ministry of
Agriculture, Forestry and Fisheries in Japan (MAFF) for monitoring crop status
around the entire world. Through MAFF, Japan operationally utilizes this agro-met
information in their practical work.

1.6.2 Assimilation and Numerical Modelling

With recent assimilation techniques, GPM data are utilized in operational numerical
weather forecast routines. The Japan Meteorological Agency (JMA) started GPM
DPR assimilation in the meso-NWP system on 24 March 2016 (Ikuta 2016). This is
the world’s first operational assimilation of space-borne radar data in the NWP
system of meteorological agencies. Improvements in moisture analysis have resulted
in significant improvements in rainfall forecasts. Furthermore, improvements in
tropical cyclone position errors were verified by assimilation and forecast experi-
ments using GPM DPR and GMI data for Typhoon Halong (Okamoto et al. 2016).
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The NASA Global Modeling and Assimilation Office (GMAO) began assimilat-
ing all-sky GMI radiances into their Forward Processing (FP) System in real time on
11 July 2018. The addition of GMI radiances produced the largest impact per
observation of all radiance-type observations in the Tropics, significantly improving
the specific humidity in short term (0–72 h) forecasts, with similar improvements in
tropical middle and lower tropospheric temperature and winds. In particular, the total
impact of GMI is comparable to a single Microwave Humidity Sounder instrument.
Preliminary results demonstrate that assimilating microwave radiance data from
GPM and several MHS sounders adjusts precipitating snow during the winter storms
and makes Goddard Earth Observing System (GEOS) analyses closer to the obser-
vations. Other atmospheric parameters like water vapour and surface pressure are
also adjusted in a physically-consistent manner (Kim et al. 2016).

1.6.3 Outreach Activities

In addition to the important role of GPM in providing precipitation data to the user
community and the public, GPM also provides educational material through out-
reach activities. The number of users registered in the home page “JAXA Global
Rainfall Watch”, which visualizes and provides GSMaP data, has been expanding,
and there were 4261 independent users from 114 countries as of the end of October
2018. JAXA held a public GPM symposium in November 2017 in Tokyo, Japan. A
total of 160 participants attended the symposium, with active discussions among the
participants including students and company persons (e.g., civil engineering, agri-
culture, etc.). JAXA also held GPM Asia Workshops, to promote satellite precipi-
tation data utilization in Asia. The 6th Workshop was held in the Thai
Meteorological Department (TMD) in January 2017, and the 7th Workshop was
held in Badan Meteorologi, Klimatologi, dan Geofisika (BMKG), Jakarta, Indone-
sia, in January 2018.

The NASA PPS provides centralised access to all the GPM data sets for many
users. For example, in October 2018, it served over 700 unique users with more than
eight million files totalling more than 60 TB of data. In addition, GPM has a social
media presence, attracting more than 25,000 followers on Twitter and more than
52,000 on Facebook. The top Twitter post in October 2018 was an animation of a
GPM fly-over of Typhoon Yutu as it made landfall in the Northern Mariana Islands,
while the top Facebook post in October was a fly-through of Hurricane Maria
(https://www.facebook.com/NASARain/videos/2134322840143432/, last accessed
15 Dec. 2018). The use of Twitter and Facebook engages the general public in the
GPM mission. In addition, the GPM educational outreach team provide links
between the mission scientists, school-aged children, and the public in general (see
https://pmm.nasa.gov/education/, last accessed 15 Dec. 2018).
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1.7 Beyond GPM

In January 2018, the US National Academies of Sciences published the 2017-2027
Decadal Survey for Earth Science and Applications from Space (NAS 2018). The
purpose of this study was to help shape science priorities and to guide agency
investments into the next decade. Two Targeted Observables, “Clouds, Convection,
and Precipitation (CCP)” and “Aerosols” are directly relevant to precipitation
studies. The cloud and precipitation science communities and aerosol science com-
munity are currently working towards defining new mission architectures in
response to this study, with an emphasis on coupled aerosol-cloud-precipitation
processes. Future cloud-precipitation observing systems are being designed to better
understanding cloud and precipitation processes and potentially coupling them to
aerosols and to atmospheric dynamics through vertical motions.

In addition to a core research-science mission, the mapping of global precipitation
will require an on-going suite of sensors. At present, the current constellation of
precipitation sensors is comprised of a number of PMW and AMW sensors in LEO,
with IR observations provided by GEO satellites. Many of the LEO sensors are more
than 10 years old, with the majority of the PMW sensors now comprised of sounding
instruments, not specifically designed for precipitation retrievals (see Huffman et al.
2016). Nevertheless, schemes have been devised to extract precipitation from these
different sensors, and to ensure that there is long-term continuity and consistency
between them. It should be noted that the most direct measurements of precipitation
from space are from the DPR, although the limited coverage severely limits its
usefulness. The combination of multi-satellite, multi-sensor observations through
schemes like IMERG and GSMaP, therefore continues to be of great importance.

Development of new satellite systems is also looking towards new technologies,
such as the use of small-sats or cubesats, which by necessity operate with limited
PMW frequencies. Cubesats in LEO, such as the Time-Resolved Observations of
Precipitation structure and storm Intensity with a Constellation of Smallsats (TRO-
PICS, Blackwell et al. 2018) are currently, or will soon be, in operation and have the
potential to contribute to the precipitation constellation. The development of Geo-
stationary Synthetic Thinned Aperture Radiometer (GeoSTAR; Tanner et al. 2007)
is also being evaluated, although multiple GeoSTAR instruments in conjunction
with LEO sensors would be required for global measurements. Further discussion on
the future of precipitation sensors may be found in Chap. 6).

Acknowledgments The authors are grateful to Prof. Kenji Nakamura and the late Dr. Arthur Hou
for their dedications as the GPM project scientists who oversaw the GPM mission development.
Dr. Ramesh Kakar, and Dr. Riko Oki are acknowledged as the program scientists who have led the
mission. In addition, dozens of scientists in the US, Japan and other countries have taken part in the
key activities summarised in this article that make GPM the success that it is today.

18 C. Kidd et al.



References

Aonashi, K., Awaka, J., Hirose, M., Kozu, T., Kubota, T., Liu, G., Shige, S., Kida, S., Seto, S.,
Takahashi, N., & Takayabu, Y. N. (2009). GSMaP passive, microwave precipitation retrieval
algorithm: Algorithm description and validation. Journal of the Meteorological Society of
Japan, 87A, 119–136. https://doi.org/10.2151/jmsj.87A.119.

Berg, W., Bilanow, S., Chen, R. Y., Datta, S., Draper, D., Ebrahimi, H., Farrar, S., Jones, W. L.,
Kroodsma, R., McKague, D., Payne, V., Wang, J., Wilheit, T., & Yang, J. X. (2016).
Intercalibration of the GPM microwave radiometer constellation. Journal of Atmospheric and
Oceanic Technology, 33, 2639–2654. https://doi.org/10.1175/JTECH-D-16-0100.1.

Blackwell, W. J., Braun, S., Bennartz, R., Velden, C., DeMaria, M., Atlas, R., Dunion, J., Marks, F.,
Rogers, R., Annane, B., & Leslie, R. V. (2018). An overview of the TROPICS NASA Earth
venture mission. Quarterly Journal of the Royal Meteorological Society, 114(S1), 16–26.
https://doi.org/10.1002/qj.3290.

Bringi, V. N., Thurai, M., Tolstoy, L., & Petersen, W. A. (2015). Estimation of spatial correlation of
rain drop size distribution parameters and rain rate using NASA's S-band polarimetric radar and
2D-video disdrometer network: Two case studies from MC3E. Journal of Hydrometeorology,
16, 1207–1221. https://doi.org/10.1175/JHM-D-14-0204.1.

Chase, R. J., Finlon, J. A., Borque, P., McFarquhar, G. M., Nesbitt, S. W., Tanelli, S., Sy, O. O.,
Durden, S. L., & Poellot, M. R. (2018). Evaluation of triple-frequency radar retrieval of snowfall
properties using coincident airborne in-situ observations during OLYMPEX. Geophysical
Research Letters, 45, 5752–5760. https://doi.org/10.1029/2018GL077997.

Colle, B. A., Naeger, A. R., & Molthan, A. (2017). Structure and evolution of a warm frontal
precipitation band during the GPM Cold Season Precipitation Experiment (GCPEx). Monthly
Weather Review, 145, 473–493. https://doi.org/10.1175/MWR-D-16-0072.1.

Draper, D. W., Newell, D. A., Teusch, D. A., & Yoho, P. K. (2013). Global precipitation
measurement microwave imager hot load calibration. IEEE Transactions on Geoscience and
Remote Sensing, 51, 4731–4742. https://doi.org/10.1109/TGRS.2013.2239300.

Draper, D. W., Newell, D. A., McKague, D., & Piepmeier, J. (2015a). Assessing calibration
stability using the Global Precipitation Measurement (GPM) Microwave Imager (GMI) noise
diodes. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8,
4239–4247. https://doi.org/10.1109/JSTARS.2015.2406661.

Draper, D. W., Newell, D. A., Wentz, F. J., Krimchansky, S., & Skofronick-Jackson, G. (2015b).
The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument overview
and early on-orbit performance. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 8, 3452–3462. https://doi.org/10.1109/JSTARS.2015.2403303.

Funk, C., & Verdin, J. (2010). Real-time decision support systems: The famine early warning
system network. In M. Gebremichael & F. Hossain (Eds.), Satellite rainfall applications for
surface hydrology (pp. 3–22). Dordrecht: Springer, ISBN:978-90-481-2914-0.

Grecu, M., Olson, W. S., Munchak, S. J., Ringerud, S., Liao, L., Haddad, Z. S., Kelley, B. L., &
McLaughlin, S. F. (2016). The GPM combined algorithm. Journal of Atmospheric and Oceanic
Technology, 33, 2225–2245. https://doi.org/10.1175/JTECH-D-16-0019.1.

Hamada, A., & Takayabu, Y. N. (2016). Improvements in detection of light precipitation with the
Global Precipitation Measurement dual-frequency precipitation radar (GPM/DPR). Journal of
Atmospheric and Oceanic Technology, 33, 653–667. https://doi.org/10.1175/JTECH-D-15-
0097.1.

Hou, A. Y., Kakar, R. K., Neeck, S. A., Azarbarzin, A., Kummerow, C. D., Kojima, M., Oki, R.,
Nakamura, K., & Iguchi, T. (2014). The global precipitation measurement mission. Bulletin of
the American Meteorological Society, 95, 701–722. https://doi.org/10.1175/BAMS-D-13-
00164.1.

Houze, R. A., Jr., McMurdie, L. A., Petersen, W. A., Schwaller, M. R., Baccus, W., Lundquist,
J. D., Mass, C. F., Nijssen, B., Rutledge, S. A., Hudak, D. R., Tanelli, S., Mace, G. G., Poellot,
M. R., Lettenmaier, D. P., Zagrodnik, J. P., Rowe, A. K., DeHart, J. C., Madaus, L. E., Barnes,

1 The Global Precipitation Measurement (GPM) Mission 19

https://doi.org/10.2151/jmsj.87A.119
https://doi.org/10.1175/JTECH-D-16-0100.1
https://doi.org/10.1002/qj.3290
https://doi.org/10.1175/JHM-D-14-0204.1
https://doi.org/10.1029/2018GL077997
https://doi.org/10.1175/MWR-D-16-0072.1
https://doi.org/10.1109/TGRS.2013.2239300
https://doi.org/10.1109/JSTARS.2015.2406661
https://doi.org/10.1109/JSTARS.2015.2403303
https://doi.org/10.1175/JTECH-D-16-0019.1
https://doi.org/10.1175/JTECH-D-15-0097.1
https://doi.org/10.1175/JTECH-D-15-0097.1
https://doi.org/10.1175/BAMS-D-13-00164.1
https://doi.org/10.1175/BAMS-D-13-00164.1


H. C., & Chandrasekar, V. (2017). The Olympic Mountains experiment (OLYMPEX). Bulletin
of the American Meteorological Society, 98, 2167–2188. https://doi.org/10.1175/BAMS-D-16-
0182.1.

Huang, G., Bringi, V. N., Moisseev, D., Petersen, W. A., Bliven, L., & Hudak, D. (2015). Use of
2D-video disdrometer to derive mean density-size and Ze-SR relations: Four snow cases from
the light precipitation validation experiment. Atmospheric Research, 153, 34–48. https://doi.
org/10.1016/j.atmosres.2014.07.013.

Huffman, G. J., Ferraro, R. R., Kidd, C., Levizzani, V., & Turk, F. J. (2016, April 11–14).
Requirements for a robust precipitation constellation. In Proceedings of MicroRad 2016
(pp. 37–41). Espoo: IEEE. https://doi.org/10.1109/MICRORAD.2016.7530500.

Iguchi, T., Matsui, T., Tao, W.-K., Khain, A. P., Phillips, V. T. J., Kidd, C., L’Ecuyer, T., Braun,
S. A., & Hou, A. Y. (2014). WRF–SBM simulations of melting-layer structure in mixed-phase:
Precipitation events observed during LPVEx. Journal of Applied Meteorology and Climatology,
53, 2710–2731. https://doi.org/10.1175/JAMC-D-13-0334.1.

Iguchi, T., Kawamoto, N., & Oki, R. (2018). Detection of intense ice precipitation with GPM/DPR.
Journal of Atmospheric and Oceanic Technology, 35, 491–502. https://doi.org/10.1175/
JTECH-D-17-0120.1.

Ikuta, Y. (2016). Data assimilation using GPM/DPR at JMA. CAS/JSCWGNE. Research Activities
in Atmospheric and Oceanic Modeling, 1.11–1.13.

Jensen, M. P., Petersen, W. A., Bansemer, A., Bharadwaj, N., Carey, L. D., Cecil, D. J., Collis,
S. M., Del Genio, A. D., Dolan, B., Gerlach, J., Giangrande, S. E., Heymsfield, A., Heymsfield,
G., Kollias, P., Lang, T. J., Nesbitt, S. W., Neumann, A., Poellot, M., Rutledge, S. A.,
Schwaller, M., Tokay, A., Williams, C. R., Wolff, D. B., Xie, S., & Zipser, E. J. (2016). The
mid-latitude continental convective clouds experiment (MC3E). Bulletin of the American
Meteorological Society, 97, 1667–1686. https://doi.org/10.1175/BAMS-D-14-00228.1.

Kidd, C., Tan, J., Kirstetter, P., & Petersen, W. (2018). Validation of the version 05 precipitation
products from the GPM core observatory and constellation satellite sensors. Quarterly Journal
of the Royal Meteorological Society, 144(S1), 313–328. https://doi.org/10.1002/qj.3175.

Kim, M. J., Jin, J., McCarty, W., Todling, R., Gelaro, R., & Gu, W. (2016). All-sky microwave
radiance data assimilation in NASA GEOS-5 system: developments, impacts, and future plans.
In 20th Conference on integrated observing assimilation systems for the atmosphere, oceans,
and landsurface, AMS 2016, New Orleans, LA. Available at https://ams.confex.com/ams/. Last
accessed 16 Dec 2018.

Kirschbaum, D., & Stanley, T. (2018). Satellite-based assessment of rainfall-triggered landslide
hazard for situational awareness. Earth’s Future, 6, 505–523. https://doi.org/10.1002/
2017EF000715.

Kirschbaum, D. B., Huffman, G. J., Adler, R. F., Braun, S., Garrett, K., Jones, E., McNally, A.,
Skofronick-Jackson, G., Stocker, E. F., Wu, H., & Zaitchik, B. F. (2017). NASA’s remotely
sensed precipitation: A reservoir for applications users. Bulletin of the American Meteorological
Society, 98, 1169–1184. https://doi.org/10.1175/BAMS-D-15-00296.1.

Kroodsma, R. A., McKague, D. S., & Ruf, C. S. (2017). Vicarious cold calibration for conical
scanning microwave imagers. IEEE Transactions on Geoscience and Remote Sensing, 55,
816–827. https://doi.org/10.1109/TGRS.2016.2615552.

Kubota, T., Shige, S., Hashizume, H., Aonashi, K., Takahashi, N., Seto, S., Hirose, M., Takayabu,
Y. N., Ushio, T., Nakagawa, K., Iwanami, K., Kachi, M., & Okamoto, K. (2007). Global
precipitation map using satellite borne microwave radiometers by the GSMaP project: Produc-
tion and validation. IEEE Transactions on Geoscience and Remote Sensing, 45, 2259–2275.
https://doi.org/10.1109/TGRS.2007.895337.

Kucera, P. A., Ebert, E. E., Turk, F. J., Levizzani, V., Kirschbaum, D., Tapiador, F. J., Loew, A., &
Borsche, M. (2013). Precipitation from space: Advancing Earth system science. Bulletin of the
American Meteorological Society, 94, 365–375. https://doi.org/10.1175/BAMS-D-11-00171.1.

Kummerow, C. D., Barnes, W., Kozu, T., Shiue, J., & Simpson, J. (1998). The tropical rainfall
measuring Mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology,
15, 809–817. https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

20 C. Kidd et al.

https://doi.org/10.1175/BAMS-D-16-0182.1
https://doi.org/10.1175/BAMS-D-16-0182.1
https://doi.org/10.1016/j.atmosres.2014.07.013
https://doi.org/10.1016/j.atmosres.2014.07.013
https://doi.org/10.1109/MICRORAD.2016.7530500
https://doi.org/10.1175/JAMC-D-13-0334.1
https://doi.org/10.1175/JTECH-D-17-0120.1
https://doi.org/10.1175/JTECH-D-17-0120.1
https://doi.org/10.1175/BAMS-D-14-00228.1
https://doi.org/10.1002/qj.3175
https://ams.confex.com/ams/
https://doi.org/10.1002/2017EF000715
https://doi.org/10.1002/2017EF000715
https://doi.org/10.1175/BAMS-D-15-00296.1
https://doi.org/10.1109/TGRS.2016.2615552
https://doi.org/10.1109/TGRS.2007.895337
https://doi.org/10.1175/BAMS-D-11-00171.1
https://doi.org/10.1175/1520-0426(1998)0152.0.CO;2


Kummerow, C. D., Simpson, J., Thiele, O., Barnes, W., Chang, A. T. C., Stocker, E., Adler, R. F.,
Hou, A., Kakar, R., Wentz, F., Ashcroft, P., Kozu, T., Hong, Y., Okamoto, K., Iguchi, T.,
Kuroiwa, H., Im, E., Haddad, Z., Huffman, G., Ferrier, B., Olson, W. S., Zipser, E., Smith,
E. A., Wilheit, T. T., North, G., Krishnamurti, T., & Nakamura, K. (2000). The status of the
Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. Journal of Applied
Meteorology, 39, 1965–1982. https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.
0.CO;2.

Kummerow, C. D., Hong, Y., Olson, W. S., Yang, S., Adler, R. F., McCollum, J., Ferraro, R., Petty,
G., Shin, D.-B., & Wilheit, T. T. (2001). The evolution of the Goddard Profiling Algorithm
(GPROF) for rainfall estimation from passive microwave sensors. Journal of Applied Meteo-
rology, 40, 1801–1820. https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.
CO;2.

Kummerow, C., Randel, D. L., Kulie, M., Wang, N.-Y., Ferraro, R., Munchak, S. J., & Petkovic,
V. (2015). The evolution of the Goddard profiling algorithm to a fully parametric scheme.
Journal of Atmospheric and Oceanic Technology, 32, 2265–2280. https://doi.org/10.1175/
JTECH-D-15-0039.1.

Levizzani, V., Kidd, C., Aonashi, K., Bennartz, R., Ferraro, R., Huffman, G., Roca, R., Joseph,
T. F., & Wang, N.-Y. (2018). The activities of the international precipitation working group.
Quarterly Journal of the Royal Meteorological Society, 144, 3–15. https://doi.org/10.1002/qj.
3214.

Liao, L., Meneghini, R., & Tokay, A. (2014). Uncertainties of GPM DPR rain estimates caused by
DSD parameterizations. Journal of Applied Meteorology and Climatology, 53, 2524–2537.
https://doi.org/10.1175/JAMC-D-14-0003.1.

Maggioni, V., & Massari, C. (2018). On the performance of satellite precipitation products in
riverine flood modeling: A review. Journal of Hydrology, 558, 214–224, ISSN 0022-1694.
https://doi.org/10.1016/j.jhydrol.2018.01.039.

Maidment, R. I., Allan, R. P., & Black, E. (2015). Recent observed and simulated changes in
precipitation over Africa. Geophysical Research Letters, 42, 8155–8164. https://doi.org/10.
1002/2015GL065765.

Masaki, T., Kubota, T., Oki, R., Furukawa, K., Kojima, M., Miura, T., Iguchi, T., Hanado, H., Kai,
H., Yoshida, N., & Higashiuwatoko, T. (2015). Current status of GPM/DPR level 1 algorithm
development and DPR calibration. In Proceedings IEEE International Conference Geoscience
Remote Sensing Symposium 2015, Milan, pp. 2615–2618. https://doi.org/10.1109/IGARSS.
2015.7326348.

Moore, S. M., Azman, A., Zaitchik, B. F., Mintz, E. D., Brunkard, J., Legros, D., Hill, A., Mckay,
H., Luquero, F. J., Olson, D., & Lessler, J. (2017). El Niño and the shifting geography of cholera
in Africa. PNAS, 114(17), 4436–4441. https://doi.org/10.1073/pnas.1617218114.

NAS. (2018). Thriving on our changing planet: A decadal strategy for Earth observation from
space. Washington, DC: The National Academies Press. https://doi.org/10.17226/24938.

Okamoto, K., Iguchi, T., Takahashi, N., Iwanami, K., & Ushio, T. (2005). The global satellite
mapping of precipitation (GSMaP) project. In Proceedings of IGARSS 2005, Seoul,
pp. 3414–3416. https://doi.org/10.1109/IGARSS.2005.1526575.

Okamoto, K., Aonashi, K., Kubota, T., & Tashima, T. (2016). Experimental assimilation of the
GPM-Core DPR reflectivity profiles for Typhoon Halong. Monthly Weather Review, 144,
2307–2326. https://doi.org/10.1175/MWR-D-15-0399.1.

Panegrossi, G., Rysman, J.-F., Casella, D., Marra, A. C., Sanò, P., & Kulie, M. S. (2015). CloudSat-
based assessment of GPM microwave imager snowfall observation capabilities. Remote Sens-
ing, 9, 1263. https://doi.org/10.3390/rs9121263.

Petersen, W. A., Houze, R. A., McMurdie, L., Zagrodnik, J., Tanelli, S., Lundquist, J., & Wurman,
J. (2016). The Olympic Mountains Experiment (OLYMPEX): From ocean to summit. Meteo-
rological Technology International, 2016, 22–26.

Seto, S., Iguchi, T., Shimozuma, T., & Hayashi, S. (2015). NUBF correction methods for the
GPM/DPR level-2 algorithms. International geoscience and remote sensing symposium, IEEE,
Milan, pp. 2612–2614. https://doi.org/10.1109/IGARSS.2015.7326347.

1 The Global Precipitation Measurement (GPM) Mission 21

https://doi.org/10.1175/1520-0450(2001)0402.0.CO;2
https://doi.org/10.1175/1520-0450(2001)0402.0.CO;2
https://doi.org/10.1175/1520-0450(2001)0402.0.CO;2
https://doi.org/10.1175/1520-0450(2001)0402.0.CO;2
https://doi.org/10.1175/JTECH-D-15-0039.1
https://doi.org/10.1175/JTECH-D-15-0039.1
https://doi.org/10.1002/qj.3214
https://doi.org/10.1002/qj.3214
https://doi.org/10.1175/JAMC-D-14-0003.1
https://doi.org/10.1016/j.jhydrol.2018.01.039
https://doi.org/10.1002/2015GL065765
https://doi.org/10.1002/2015GL065765
https://doi.org/10.1109/IGARSS.2015.7326348
https://doi.org/10.1109/IGARSS.2015.7326348
https://doi.org/10.1073/pnas.1617218114
https://doi.org/10.17226/24938
https://doi.org/10.1109/IGARSS.2005.1526575
https://doi.org/10.1175/MWR-D-15-0399.1
https://doi.org/10.3390/rs9121263
https://doi.org/10.1109/IGARSS.2015.7326347


Shepherd, J. M., Burian, S., Lui, C., & Bernardes, S. (2016). Satellite precipitation metrics to study
the Energy-Water-Food Nexus within the backdrop of an urbanized globe. Earthzine. Available
at https://earthzine.org/satellite-precipitation-metrics-to-study-the-energy-water-food-nexus-
within-the-backdrop-of-an-urbanized-globe/. Last accessed 7 Dec 2018.

Shige, S., Takayabu, Y. N., Tao, W.-K., & Johnson, D. E. (2004). Spectral retrieval of latent heating
profiles from TRMM PR data. Part I: Development of a model-based algorithm. Journal of
Applied Meteorology, 43, 1095–1113. https://doi.org/10.1175/1520-0450(2004)043<1095:
SROLHP>2.0.CO;2.

Shige, S., Takayabu, Y. N., Tao, W.-K., & Shie, C.-L. (2007). Spectral retrieval of latent heating
profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over
tropical ocean regions. Journal of Applied Meteorology and Climatology, 46, 1098–1124.
https://doi.org/10.1175/JAM2510.1.

Shige, S., Takayabu, Y. N., & Tao, W.-K. (2008). Spectral retrieval of latent heating profiles from
TRMM PR data. Part III: Estimating apparent moisture sink profiles over tropical oceans.
Journal of Applied Meteorology and Climatology, 47, 620–640. https://doi.org/10.1175/
2007JAMC1738.1.

Shige, S., Takayabu, Y. N., Kida, S., Tao, W.-K., Zeng, X., Yokoyama, C., & L'Ecuyer, T. (2009).
Spectral retrieval of latent heating profiles from TRMM PR data. Part IV: Comparisons of
lookup tables from two- and three-dimensional cloud-resolving model simulations. Journal of
Climate, 22, 5577–5594. https://doi.org/10.1175/2009JCLI2919.1.

Simpson, J., Adler, R. F., & North, G. R. (1988). A proposed Tropical Rainfall Measuring Mission
(TRMM) satellite. Bulletin of the American Meteorological Society, 69, 278–295. https://doi.
org/10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2.

Skofronick-Jackson, G., Hudak, D., Petersen, W. A., Nesbitt, S. W., Chandrasekar, V., Durden, S.,
Gleicher, K. J., Huang, G.-J., Joe, P., Kollias, P., Reed, K. A., Schwaller, M., Stewart, R.,
Tanelli, S., Tokay, A., Wang, J. R., & Wolde, M. (2015). Global Precipitation Measurement
Cold Season Precipitation Experiment (GCPEx): For measurement sake let it snow. Bulletin of
the American Meteorological Society, 96, 1719–1741. https://doi.org/10.1175/BAMS-D-13-
00262.1.

Skofronick-Jackson, G., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F., Kirschbaum, D. B.,
Kakar, R., Braun, S. A., Huffman, G. J., Iguchi, T., Kirstetter, P. E., Kummerow, C., Meneghini,
R., Oki, R., Olson, W. S., Takayabu, Y. N., Furukawa, K., & Wilheit, T. (2017). The Global
Precipitation Measurement (GPM) mission for science and society. Bulletin of the American
Meteorological Society, 98, 1679–1695. https://doi.org/10.1175/BAMS-D-15-00306.1.

Skofronick-Jackson, G., Kirschbaum, D., Petersen, W. A., Huffman, G. J., Kidd, C., Stocker, E. F.,
& Kakar, R. (2018). The Global Precipitation Measurement (GPM) mission's scientific achieve-
ments and societal contributions: Reviewing four years of advanced rain and snow observations.
Quarterly Journal of the Royal Meteorological Society, 144(S1), 27–48. https://doi.org/10.
1002/qj.3313.

Tan, B.-Z., Petersen, W. A., Kirstetter, P., & Tian, Y. (2017a). Performance of IMERG as a function
of spatiotemporal scale. Journal of Hydrometeorology, 18, 307–319. https://doi.org/10.1175/
JHM-D-16-0174.1.

Tan, B.-Z., Petersen, W. A., Kirchengast, G., Goodrich, D. C., & Wolff, D. B. (2017b). Evaluation
of global precipitation measurement rainfall estimates against three dense gauge networks.
Journal of Hydrometeorology, 19, 517–532. https://doi.org/10.1175/JHM-D-17-0174.1.

Tanner, A. B., Wilson, W. J., Lambrigsten, B. H., Dinardo, S. J., Brown, S. T., Kangaslahti, P. P.,
Gaier, T. C., Ruf, C. S., Gross, S. M., Lim, B. H., Musko, S. B., Rogacki, S., & Piepmeier, J. R.
(2007). Initial results of the geostationary synthetic thinned array radiometer. IEEE Trans-
actions on Geoscience and Remote Sensing, 45. https://doi.org/10.1109/TGRS.2007.894060.

Tao, W.-K., Lang, S., Olson, W. S., Yang, S., Meneghini, R., Simpson, J., Kummerow, C., Smith,
E. A., & Halverson, J. (2001). Retrieved vertical profiles of latent heating release using TRMM
rainfall products for February 1998. Journal of Applied Meteorology, 40, 957–982. https://doi.
org/10.1175/1520-0450(2001)040<0957:RVPOLH>2.0.CO;2.

Tao, W.-K., Smith, E. A., Adler, R. F., Haddad, Z. S., Hou, A. Y., Iguchi, T., Kakar, R.,
Krishnamurti, T. N., Kummerow, C. D., Lang, S., Meneghini, R., Nakamura, K., Nakazawa,

22 C. Kidd et al.

https://earthzine.org/satellite-precipitation-metrics-to-study-the-energy-water-food-nexus-within-the-backdrop-of-an-urbanized-globe/
https://earthzine.org/satellite-precipitation-metrics-to-study-the-energy-water-food-nexus-within-the-backdrop-of-an-urbanized-globe/
https://doi.org/10.1175/1520-0450(2004)0432.0.CO;2
https://doi.org/10.1175/1520-0450(2004)0432.0.CO;2
https://doi.org/10.1175/JAM2510.1
https://doi.org/10.1175/2007JAMC1738.1
https://doi.org/10.1175/2007JAMC1738.1
https://doi.org/10.1175/2009JCLI2919.1
https://doi.org/10.1175/1520-0477(1988)0692.0.CO;2
https://doi.org/10.1175/1520-0477(1988)0692.0.CO;2
https://doi.org/10.1175/BAMS-D-13-00262.1
https://doi.org/10.1175/BAMS-D-13-00262.1
https://doi.org/10.1175/BAMS-D-15-00306.1
https://doi.org/10.1002/qj.3313
https://doi.org/10.1002/qj.3313
https://doi.org/10.1175/JHM-D-16-0174.1
https://doi.org/10.1175/JHM-D-16-0174.1
https://doi.org/10.1175/JHM-D-17-0174.1
https://doi.org/10.1109/TGRS.2007.894060
https://doi.org/10.1175/1520-0450(2001)0402.0.CO;2
https://doi.org/10.1175/1520-0450(2001)0402.0.CO;2


T., Okamoto, K., Olson, W. S., Satoh, S., Shige, S., Simpson, J., Takayabu, Y., Tripoli, G. J., &
Yang, S. (2006). Retrieval of latent heating from TRMM measurements. Bulletin of the
American Meteorological Society, 87, 1555–1572. https://doi.org/10.1175/BAMS-87-11-1555.

Tao, W.-K., Lang, S., Zeng, X., Shige, S., & Takayabu, Y. (2010). Relating convective and
stratiform rain to latent heating. Journal of Climate, 23, 1874–1893. https://doi.org/10.1175/
2009JCLI3278.1.

Tao, W.-K., Wu, D., Matsui, T., Peters-Lidard, C., Lang, S., Hou, A., Reinecker, M., & Petersen,
W. A. (2013). The diurnal variation of precipitation during MC3E: A modeling study. Journal
of Geophysical Research, 118, 7199–7218. https://doi.org/10.1002/jgrd.50410/asset/jgrd50410.

Tao, W.-K., Takayabu, Y. N, Lang, S., Olson, W., Shige, S., Hou, A, Jiang, X., Lau, W.,
Krishnamurti, T., Waliser, D., Zhang, C., Johnson, R., Houze, R., Ciesielski, P., Grecu, M.,
Hagos, S., Kakar, R., Nakamura, N., Braun, S., & Bhardwaj, A. (2016). TRMM latent heating
retrieval and comparison with field campaigns and large-scale analyses, American meteorolog-
ical society meteorological monographs – Multi-scale convection-coupled systems in the
tropics, Chapter 2. https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0013.1.

Thurai, M., Gatlin, P. N., Bringi, V. N., Petersen, W., Kennedy, P., Notaros, B., & Carey, L. D.
(2017). Towards completing the rain drop size spectrum: Case studies involving 2D-video
disdrometer, droplet spectrometer, and polarimetric radar measurements. Journal of Applied
Meteorology and Climatology, 56, 877–896. https://doi.org/10.1175/JAMC-D-16-0304.1.

Ushio, T., Kubota, T., Shige, S., Okamoto, K., Aonashi, K., Inoue, T., Takahashi, N., Iguchi, T.,
Kachi, M., Oki, R., Morimoto, T., & Kawasaki, Z. (2009). A Kalman filter approach to the
Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and
infrared radiometric data. Journal of the Meteorological Society of Japan, 87A, 137–151.
https://doi.org/10.2151/jmsj.87A.137.

von Lerber, A., Moisseev, D., Marks, D. A., Petersen, W. A., Harri, A., & Chandrasekar, V. (2018).
Validation of GMI snowfall observations by using a combination of weather radar and surface
measurements. Journal of Applied Meteorology and Climatology, 57, 797–820. https://doi.org/
10.1175/JAMC-D-17-0176.1.

WCRP. (2019). WCRP grand challenges. Available at https://www.wcrp-climate.org/grand-chal
lenges/grand-challenges-overview. Last accessed 3 Dec 2018.

Wentz, F. J., & Draper, D. (2016). On-orbit absolute calibration of the global precipitation
measurement microwave imager. Journal of Atmospheric and Oceanic Technology, 33,
1393–1412. https://doi.org/10.1175/JTECH-D-15-0212.1.

Williams, C. R., Bringi, V. N., Carey, L. D., Chandrasekar, V., Gatlin, P. N., Haddad, Z. S.,
Meneghini, R., Munchak, S. J., Nesbitt, S. W., Petersen, W. A., Tanelli, S., Tokay, A., Wilson,
A., &Wolff, D. B. (2014). Describing the shape of raindrop size distributions using uncorrelated
raindrop mass spectrum parameters. Journal of Applied Meteorology and Climatology, 53,
1282–1296. https://doi.org/10.1175/JAMC-D-13-076.1.

Yamamoto, M. K., & Shige, S. (2015). Implementation of an orographic/nonorographic rainfall
classification scheme in the GSMaP algorithm for microwave radiometers. Atmospheric
Research, 163, 36–47. https://doi.org/10.1016/j.atmosres.2014.07.024.

You, Y., Wang, N.-Y., Ferraro, R., & Rudlosky, S. (2016). Quantifying the snowfall detection
performance of the global precipitation measurement (GPM) microwave imager channels over
land. Journal of Hydrometeorology, 17, 1101–1117. https://doi.org/10.1175/JHM-D-16-
0190.1.

Zhang, J., Howard, K., Langston, C., Vasiloff, S., Kaney, B., Arthur, A., Van Cooten, S., Kelleher,
K., Kitzmiller, D., Ding, F., Seo, D. J., Wells, E., & Dempsey, C. (2011). National Mosaic and
multi-sensor QPE (NMQ) system: Description, results, and future plans. Bulletin of the Amer-
ican Meteorological Society, 92, 1321–1338. https://doi.org/10.1175/2011BAMS-D-11-
00047.1.

Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y. C., Tang, L., Grams, H., Wang, Y. D.,
Cocks, S., Martinaitis, S., Arthur, A., Cooper, K., Brogden, J., & Kitzmiller, D. (2016). Multi-
Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities.
Bulletin of the American Meteorological Society, 97, 621–638. https://doi.org/10.1175/BAMS-
D-14-00174.1.

1 The Global Precipitation Measurement (GPM) Mission 23

https://doi.org/10.1175/BAMS-87-11-1555
https://doi.org/10.1175/2009JCLI3278.1
https://doi.org/10.1175/2009JCLI3278.1
https://doi.org/10.1002/jgrd.50410/asset/jgrd50410
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0013.1
https://doi.org/10.1175/JAMC-D-16-0304.1
https://doi.org/10.2151/jmsj.87A.137
https://doi.org/10.1175/JAMC-D-17-0176.1
https://doi.org/10.1175/JAMC-D-17-0176.1
https://www.wcrp-climate.org/grand-challenges/grand-challenges-overview
https://www.wcrp-climate.org/grand-challenges/grand-challenges-overview
https://doi.org/10.1175/JTECH-D-15-0212.1
https://doi.org/10.1175/JAMC-D-13-076.1
https://doi.org/10.1016/j.atmosres.2014.07.024
https://doi.org/10.1175/JHM-D-16-0190.1
https://doi.org/10.1175/JHM-D-16-0190.1
https://doi.org/10.1175/2011BAMS-D-11-00047.1
https://doi.org/10.1175/2011BAMS-D-11-00047.1
https://doi.org/10.1175/BAMS-D-14-00174.1
https://doi.org/10.1175/BAMS-D-14-00174.1


Chapter 2
Status of the CloudSat Mission

Matthew D. Lebsock, Tristan S. L’Ecuyer, Norman B. Wood,
John M. Haynes, and Mark A. Smalley

Abstract This chapter provides an overview of the CloudSat mission as it relates to
precipitation remote sensing. We describe how the Cloud Profiling Radar (CPR)
contributes to the global observing system through precise precipitation detection,
quantification of snowfall rate, quantification of light rain fall, and stratiform/con-
vective delineation. We provide an overview of the mission operations, which have
changed at several points throughout the mission history, introducing sampling
artifacts in the diurnal cycle that need to be accounted for when using the data.
Finally, we describe the three operational precipitation products produced by the
CloudSat data system.

Keywords Precipitation · Rainfall · Light rainfall · Snowfall · Stratiform ·
Convective · Satellite · CloudSat · CALIPSO · Cloud radar · CPR

2.1 CloudSat Instrument and Measurements

CloudSat carries the Cloud Profiling Radar (CPR), the first ever spaceborne W-band
(94 GHz) radar. The satellite flies in a sun-synchronous orbit in the A-Train at an
altitude of 705 km with a fixed equator crossing time of 0130 AM/PM. Because the
primary mission science objective was determining the radiative effects of clouds,
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the CPR is overdesigned for the detection of precipitation. At launch the radar
sensitivity was ~ �30 dBZ and has degraded over time to ~ �27 dBZ, which is
sufficiently capable to detect even the lightest drizzle (Kollias et al. 2011). The
calibration accuracy is better than 1 dBZ (Tanelli et al. 2008) and the precision for
large reflectivity values associated with precipitation is ~0.16 dBZ.

The CPR operates in a nadir only sampling mode acquiring 2 dimensional
curtains of the radar reflectivity profile. The ground footprint is 1.4 km across
track and 1.7 km along track. The CPR range resolution is 480 m, which is
oversampled by a factor of 2 resulting in 240 m range bins throughout the tropo-
sphere. A well-known limitation of the CPR measurements is the contamination of
reflectivity near the Earth surface by ground clutter leaking into bins adjacent to the
surface (Marchand et al. 2008). A correction is made to reduce the clutter effect,
which is more effective over water surfaces than over irregular topography (Tanelli
et al. 2008). Because of this fact, over ocean surfaces precipitation signals can
generally be detected in the third bin above the surface (~720 m), while over land
and ice surfaces the fourth or fifth bin is used (~960–1200 m).

The CPR operating frequency of 94 GHz is much higher than those typically used
for precipitation remote sensing. With the high frequency comes the benefit of high
sensitivity but also several notable complications including the saturation of the
radar reflectivity signal due to Mie scattering and significant attenuation (Lhermitte
1990), and also non-negligible multiple scattering (Battaglia et al. 2008). These
limiting factors complicate the typical approach of using relatively simple
reflectivity-to-rate relationships to derive precipitation; they also make simple detec-
tion of precipitation more complicated since the signal may be completely attenuated
before reaching the near surface layers. On the other hand, while the attenuation
signal complicates the interpretation of the reflectivity, it provides powerful and
unique information to quantify moderate rain rates and classify convective and
stratiform precipitation. Specifically, the Path Integrated Attenuation (PIA) at
W-band is very sensitive to the integrated precipitation water path. Our exploitation
of this signal in the operational algorithms is outlined below in Sect. 2.4. Figure 2.1
highlights some of these important signatures in the radar reflectivity profile through
a tropical deep convective complex.

2.2 Limitations and Benefits of CloudSat for Precipitation
Sensing

CloudSat was not designed with precipitation remote sensing in mind. It lacks
several characteristics generally desired by the precipitation remote sensing com-
munity including (1) scanning, (2) diurnal-cycle sampling, and most notably (3) the
ability to quantify heavy rainfall. The lack of scanning capability is not an issue in
terms of long-term averages. For example, annual means and the seasonal cycle can
be calculated on the regional scale. However, sampling does become problematic at
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temporal resolution finer than seasonal. The fixed diurnal sampling time on the other
hand does significantly bias the precipitation statistics from CloudSat. Figure 2.2
demonstrates the influence of both of these effects on the observed Probability of
Precipitation (PoP) using data from the CPC Morphing algorithm (CMORPH)
dataset (Joyce et al. 2004) between 2007 and 2010. CMORPH offers a complete
gridded space-time coverage of precipitation occurrence and rate. By subsampling
the CMORPH to the CloudSat sampling mode we may estimate the influence of the
diurnal and scanning effects on the PoP. Panel (a) shows the difference between the
full CMORPH PoP and CMORPH sampled at the CloudSat diurnal sampling time
(0130 AM/PM). Panel (b) shows the difference between the CMORPH dataset at the
CloudSat sample times and a randomly selected nadir-only track at random longi-
tude emulating the CloudSat non-scanning sampling. Diurnal differences in PoP
(a) can be as large as 6%, whereas the non-scanning effect is an order of magnitude

Fig. 2.1 Highlights several of the unique features of the CloudSat data. The image shows an
example of a tropical deep convective system with obvious heavy attenuation and multiple
scattering effects. Attenuation can be so heavy at times that the surface reflection is not observed.
The convective core area is identifiable through the lack of a radar bright band and elevated
reflectivity maximum. Also notice the frequent detection of shallow isolated light showers with
reflectivity generally <8 dBZ
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smaller and randomly distributed geographically as might be expected. It is impor-
tant to remember that these results are sensitive to scale. Here an annual mean from
2007 to 2010 is considered at regional scales. The finer the scale in either space or
time the larger the biases may become.

Because of the inability to quantify heavy rainfall CloudSat data should not
generally be used for rainfall accumulations. The only exception to this rule is in
regions where the only rain that falls is extremely light such as the subtropical
stratocumulus regimes. Figure 2.3 shows a map of the occurrence of signal

Fig. 2.2 Panel (a) shows an estimate of effect of CloudSat fixed diurnal sampling on the annual
mean Probability of Precipitation (PoP). The map shows the difference of the full CMORPH dataset
from 2007 to 2010 from the CMORPH dataset subsampled at the CloudSat ground track. In most
regions the effect causes an underestimate of the PoP that can be as large as 6%. Panel (b) shows an
estimate of the effect of non-scanning sampling on the PoP again using CMORPH. The CMORPH
data is restricted to the CloudSat sampling times at each latitude and compared to that calculated
from a single cross section at a random longitude

CloudSat Signal Saturation Fraction
60

40

20

0

-20

-40
-60

0 60 120 180 -60-120 0

0.04

0.03

0.02

0.01

0.00

Fig. 2.3 The fraction of total (rain & no-rain) pixels in which the surface signal is saturated by
heavy attenuation
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saturation, defined as a loss of the surface reflection due to heavy attenuation.
Unsurprisingly this map looks like a map of rainfall rate. The highest occurrence
of saturation occurs in the tropical convergent regions with frequent heavy rains.
Note that saturation rarely occurs in the extratropics where the freezing level is
shallower and thus the column integrated liquid condensate path tends to be smaller
than in the tropics.

Despite its limitations, CloudSat data provide a valuable complement to data from
dedicated precipitation radars such as the GPM DPR. There are four areas where
CloudSat has made a significant contribution to the remote sensing of precipitation
from space.

• Precipitation detection: CloudSat provides the most accurate detection of pre-
cipitation of any phase over all surface types at very high spatial resolution. On a
global scale the fraction of CloudSat pixels containing surface rain is 5.9% and
surface snow is 2% (Stephens et al. 2018). An additional 1.3% of pixels, which
primarily occur over the midlatitude oceans have precipitation identified as mixed
phase, but which for all intents and purposes have uncertain phase. Figure 2.4
shows the PoP averaged annually using the 2007–2010 time period. These data
have allowed for precise quantification of the detection capabilities of other
sensors and algorithms. For example, the CloudSat data have demonstrated that
over land no more than 50% of the precipitation occurrence equatorward of 40�

and 20% poleward of 40� is identified by other precipitation measuring sensors
(Behrangi et al. 2014a). CloudSat has further been used to identify gaps in the
detection of precipitation by ground-based radar over the United States, which
has limited capability to detect snowfall in mountainous regions due to beam
blockages Smalley et al. (2014).

• Snowfall quantification: Studies using CloudSat snowfall data have improved
understanding of the role of different cloud types in global snowfall, examined
snowfall’s role in Antarctic ice sheet mass balance, and diagnosed observational
biases in ground-based radar estimates of snowfall at high latitudes. Using
2C-Snow-Profile and 2B-CldClass (Sassen and Wang 2008), Kulie et al. (2016)

Precipitation Occurence
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Fraction

Fig. 2.4 The frequency of
occurrence of surface
precipitation of any phase.
Occurrence is estimated
using the certain
precipitation flag in the
2C-Precip-Column product
described below using data
from 2007 to 2010

2 Status of the CloudSat Mission 29



identified significant contributions by shallow cumuliform cloud systems (typi-
cally associated with lake effect snow, but also with oceanic and other water
bodies and with orographic influence) to global snowfall occurrence and precip-
itation amounts. For CloudSat’s near-global observations, these shallow events
comprise about 36% of snowfall occurrence and 18% of the global snowfall
amount based on rates. Palerme et al. (2014) employed CloudSat snowfall
estimates to generate the first multi-year, model-independent climatology of
Antarctic precipitation and subsequently used these data to assess the perfor-
mance of climate models (Palerme et al. 2017a) and reanalyses (Palerme et al.
2017b) for quantifying Antarctic snowfall. By comparing CloudSat snowfall
estimates against matched observations by the Swedish national radar network,
Norin et al. (2015) identified ground-based radar biases that result due to the
decrease in sensitivity and overshooting with increasing range of shallow, snow-
producing cloud systems common at high northern latitudes.

• Light rainfall over oceans: CloudSat has been used to estimate how much
rainfall over oceans falls beneath the sensitivity threshold of other spaceborne
precipitation radars. A few papers have attempted to combine CloudSat observa-
tions of light precipitation to the heavier precipitation estimates from other
sensors in a statistical manner. The first study to do this by Berg et al. (2010)
estimated that the Precipitation Radar (PR) missed about 10% of the accumula-
tion over oceans within the tropical/subtropical sampling region of the Tropical
Rainfall Measurement Mission (TRMM). More recently Behrangi et al. (2014b)
estimate that the oceanic mean rain rate between 80�N and 80�S is 2.94mm day�1,
which is 8% higher than that of Climate Prediction Center (CPC) Merged
Analysis of Precipitation (CMAP) and 4% higher than that of the Global Precip-
itation Climatology Project (GPCP).

• Stratiform/convective classification: As already discussed, the PIA signal in
CPR observations is a powerful indicator of rainfall and drizzle presence. Aside
from depressed surface returns, the characteristic decay of reflectivity with
decreasing height owing to attenuation provides a unique method for identifying
convective cores in CloudSat observations. This is the premise behind a unique
convective core detection algorithm that is part of the 2C-Precip-Column product
(described below). The method can be thought of as a W-band analogue to
identifying bright band signatures in more traditional precipitation radar obser-
vations (e.g., Steiner et al. 1995) but, in this case, the characteristic feature of
interest is the inflection point in the reflectivity profile caused by attenuation from
significant quantities of liquid precipitation. An example of such a signature was
highlighted in Fig. 2.1. The level where attenuation becomes evident in the
column is identified as ‘rain top height’ (RTH) and forms the basis for identifying
the presence of convective updrafts at the 1.4 � 1.7 km2 CPR resolution. Strong
convective updrafts can loft raindrops to high altitudes causing RTH to exceed
the Freezing Level (FL) by several km and inducing large along-track reflectivity
gradients. Stratiform precipitation is characterized by RTH near or slightly below
the freezing level and often exhibits a bright band-like feature although its origins
are primarily rooted in attenuation as opposed to enhanced reflectivity from large
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melting ice particles (Sassen et al. 2007). Raining pixels with cloud and RTH
below the FL constitute warm rain. CloudSat’s rain type classification qualita-
tively agrees with bright band and convective features in TRMM PR reflectivity
profiles. While the associated strong attenuation generally prohibits accurate
rainfall intensity estimates in identified convective cores, the high resolution,
high sensitivity CPR allow cores to be identified at a resolution comparable to
ground-based radar providing a more precise depiction of updraft regions within
storms than coarser resolution radar or passive sensors. As a result, the fractional
area of convective cores identified by the CloudSat CPR is substantially lower
than convection maps produced using sensors with coarser fields of view that may
be only partially filled by convection (Fig. 2.5).

Fig. 2.5 The global frequency of occurrence of convective cores identified in CloudSat’s
2C-Precip-Column product using data from 2007 to 2010
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2.3 CloudSat Mission Operations History

CloudSat was launched into the A-Train on 28 April 2006, beginning operations
shortly thereafter on 2 June. Operations proceeded relatively smoothly for approx-
imately 5 years with only minor adjustments to the CPR pointing during the first few
months of operations. A minor 1.7� pointing error was corrected on 2 July 2006.
However, nadir pointing was found to increase specular reflection of the surface
increasing ground clutter and the CPR was pointed 0.16� in the forward direction on
15 August. In practice these changes have very minor effects on the precipitation
sensing capabilities of CloudSat.

In December 2009 a battery anomaly occurred that resulted in a prolonged period
of halted radar operations into early 2010. Continued declines in the health of the
battery led to small changes in the CPR pulse rate and reduced sensitivity in early
2010 and 2011, however the adjustments were far below the sensitivity required for
precipitation detection. However, on 17 April 2011 a serious battery anomaly caused
the CPR to power down and CloudSat to exit the A-Train. The compromised battery
was no longer able to operate through umbra so a new Daylight Only Operations
(DO-Op) had to be developed. The CPR was not turned back on in this DO-OP mode
until November 2011 at which point it was well outside of the A-Train and no longer
in a sun-synchronous orbit. A lengthy series of orbit maneuvers were begun to return
CloudSat to the A-Train, which it rejoined on 15 May 2012. An intricacy of DO-Op
is that it takes a finite amount of time for the spacecraft to require the sun and
stabilize pointing before it can begin acquiring data on each orbit. This results in a
gap in the sampling in the very high latitude southern hemisphere even during daylit
hours (Skofronick-Jackson et al. 2018).

DO-OP mode continued successfully until a failure of a reaction wheel on 4 June
2017. As a result of this failure, it was decided that CloudSat should exit the A-Train
to ensure the safety of the other constellation members. Very little science data was
taken between the failure and the eventual exit. DO-OP resumed on 8 May 2018.
The new CloudSat orbit is only slightly below the A-Train at 696 km altitude and
maintains the 0130 AM/PM equator crossing time for the time being. In the near
future CloudSat plans to begin to drift eastward (later in the day) to maintain
coincidence with its companion satellite CALIPSO, which will soon run out of
propellant.

The complicated operation history of CloudSat has little impact on the precipita-
tion algorithms and data products described below. However, there are significant
effects on the sampling in both the diurnal and annual cycle, which must be
considered carefully. Four main sampling artifacts are noted: (1) the loss of the
nocturnal sampling after 2011; (2) sampling outside of the 0130 AM/PM
sun-synchronous orbit during late 2011 and early 2012; (3) uneven distribution of
sampling across the annual cycle due to prolonged instrument down-time; and
(4) during DO-Op disproportionate sampling of the northern high-latitudes as
compared to the southern high latitudes through all seasons. Because of these
sampling issues we provide the following guidance for using CloudSat data.
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• Climatologies are best constructed using data from 2007 to 2010.
• Because there is a significant data loss during some winter months, annual

averages should be constructed from monthly mean climatologies.
• Data during the period when CloudSat was not in formation with the A-Train (late

2011-mid 2012) should be used only for case studies.
• Time series should examine only ascending (daylit) data. Care should be taken at

high-latitudes to ensure even sampling rates from month to month.

2.4 CloudSat Data Products

The CloudSat project produces three precipitation data products. The first is a
precipitation identification and classification algorithm called 2C-Precip-Column,
the second is a rain profiling algorithm called 2C-Rain-Profile, and the third is a
snow profiling algorithm called 2C-Snow-Profile. The most recent version of the
products is release 05, which is available as of June 2018. The data and associated
Algorithm Theoretical Basis Documents (ATBD) for each algorithm can be accessed
at the CloudSat data processing center (http://www.cloudsat.cira.colostate.edu/, last
accessed 17 Nov. 2018). Summaries of each algorithm are provided below.

2.4.1 Precipitation Identification and Classification

The 2C-Precip-Column product is the original CloudSat precipitation product, and
the theoretical basis is outlined in Haynes et al. (2009). The algorithm utilizes
surface backscatter returns to derive the PIA in the atmospheric column, and in
turn relates this PIA to the precipitation rate. Precipitation rate is assumed to be
constant with height in this retrieval, a restriction which is removed in the 2C-Rain-
Profile algorithm that will be described below. 2C-Precip-Column is run alongside
2C-Rain-Profile in today’s suite of CloudSat algorithms. While the former is now
used primarily for PIA estimation, precipitation flagging, and precipitation classifi-
cation, the latter is recommended for quantitative precipitation rate estimates.

At the heart of the algorithm is the estimation of PIA. As the CPR radar beam
intersects the ground, a great deal of energy is scattered back to the radar. The
strength of this surface return is given by σ0, which is the backscatter cross section of
the Earth’s surface normalized by the area of the radar footprint. Over land, σ0 varies
with surface type, roughness, and wetness; over ocean it is primarily a function of the
wind speed and, to a lesser extent, surface temperature (e.g., Li et al. 2005, Freilich
and Vanhoff 2003). Given a radar measurement of σ0, including any intervening
clouds, precipitation, and atmosphere; and a prediction of what that backscatter
would be without the presence of said clouds and precipitation (σclr), it is possible
to derive the PIA as
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PIA ¼ σclr � σ0 þ Gð Þ, ð2:1Þ

where G is the gaseous attenuation, primarily from water vapor in the atmospheric
column.

The key to retrieving PIA, therefore, is knowledge of the clear-sky surface
backscatter. In 2C-Precip-Column this is obtained in one of two ways. The first is
from the type of wind speed and sea-surface temperature relationships mentioned
above, and illustrated in Fig. 2.6. The figure shows the relationship between derived
surface wind speeds from the AMSR-E instrument (Advanced Microwave Scanning
Radiometer – Earth Observing System), and collocated surface backscatter for
oceanic scenes that the radar determined were clear of clouds. Note that the rela-
tionship is most useful for moderate wind speeds, as at low wind speeds the
variability in σclr can be quite large. The second method of determining PIA in a
cloudy scene is to interpolate the value of σclr from a set of nearby profiles that are
known to be clear (if available), using a distance-based weighting function (Lebsock
et al. 2011). Over ocean, 2C-Precip-Column uses this latter method when possible,
as the resulting PIA uncertainties are generally smaller; in practice, however, the
radar oftentimes observes large swaths of unbroken cloudiness, and in these cases
the wind speed method must be used. The determination of PIA over land is
considered experimental, as σ0 can vary greatly between surface types.

2C-Precip-Column only attempts to quantify precipitation rate over ocean. Hav-
ing determined the PIA, a series of predetermined lookup tables are used to relate the
observed PIA to rain rate within the column. The appropriate lookup table is selected
based on whether the profile is determined to be stratiform or convective/shallow,
and on various cloud height and reflectivity-based thresholds as described below.
Since multiple scattering can be significant when precipitation rates exceed more
than a few millimeters per hour (Battaglia et al. 2008), these lookup tables are based
on a forward model that simulates these effects (Hogan and Battaglia 2008).

Fig. 2.6 Variation of clear-
sky surface backscatter with
wind speed as derived from
matched AMSR-E and
CloudSat wind observations
over the ocean, for a multi-
month period and a fixed sea
surface temperature range of
15 to 25 �C. Colors indicate
normalized frequency of
occurrence; the red line is
the mean, and the dashed
black lines are one standard
deviation either side of
the mean
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For stratiform modes, a melting layer model is incorporated to better represent the
transition from snow to rain and the attenuation characteristics of melting snow-
flakes. Liquid or mixed precipitation layers are allowed to extend up to the height of
the lowest continuous cloud layer (not exceeding the height of the freezing level).
Attenuation due to purely frozen hydrometeors is neglected unless a significant
reflectivity core of 10 dBZ or greater extends above the freezing level. In the absence
of such a core, melting is considered to start at the freezing level. Surface precipi-
tation type is determined simply from the proximity to the freezing level and by
using an approximated lapse rate in the melting layer model.

For convective/shallow modes, precipitation is considered to be all liquid below
the freezing level. Above the freezing level, a core that includes supercooled liquid is
allowed to exist up to a height called the rain-top height (determined using reflec-
tivity gradients); ice is also mixed in linearly with the liquid between the freezing
level and the rain-top height. Above this level, up to the height of the 10 dBZ echo
level, precipitation is considering to be all snow. Although this treatment neglects
the preferential growth of ice particles dictated by the Bergeron-Findeisen process, it
is probably a considerably better approximation of attenuation due to convective
processes than the gradual melting of ice particles considered by the stratiform
portion of the retrieval.

The occurrence of precipitation over ocean is determined by evaluating the
unattenuated reflectivity, Zu (i.e. the reflectivity that would be observed if there
were no attenuation due to clouds and water vapor), at a height of several range gates
above the Earth’s surface. The reason a near-surface range gate is used is that there is
considerably noise in the lowest several range gates above the surface. Given an
observation of the attenuated near-surface reflectivity Zns, Zu is given by

Zu ¼ Zns þ PIA ∙ χ þ G, ð2:2Þ

where χ is a rain-rate dependent factor that removes attenuation affects in the radar
column below the height of the near-surface range gate. Precipitation type-
dependent reflectivity thresholds are used to translate Zu into a precipitation mask.
For example, for rain, values of Zu between �15 and �7.5 dBZ indicate “rain
possible”, values between �7.5 and 0 dBZ indicate “rain probable”, and larger
values indicate “rain certain”. Over land, where PIA cannot easily be determined,
reflectivity thresholds at the near-surface are used to determine precipitation occur-
rence. The atmospheric column is also checked for large reflectivity values that may
indicate that total attenuation has occurred, as in this case small values of reflectivity
at the near-surface are also indicative of precipitation.

2.4.2 Quantifying Snowfall

The CloudSat product 2C-Snow-Profile (2CSP; Wood and L’Ecuyer 2018) estimates
vertical profiles of snow water content along with snow size distribution parameters
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and snowfall rate for radar reflectivity profiles observed by the CPR which, based on
an evaluation of the profile and ancillary data, appear to coincide with snow aloft
producing precipitation (snow, mixed-phase, or rain) at the surface. If the surface
precipitation type appears to be dry snow or snow with only a small melted fraction
as assessed by 2C-Precip-Column, the product also estimates the snowfall rate at the
surface. The key features of the product are that it:

• provides vertically-resolved information about snowfall and snow properties
extending to 82�N and 82�S latitudes,

• provides explicit estimates of uncertainties in retrieved and derived quantities,
and

• treats complications due to radar attenuation and multiple scattering that can be
significant in heavier snowfall, including allowing for increased retrieval
uncertainty.

As is true for lower-frequency precipitation radars, radar backscattering at
94 GHz is sensitive to particle size distribution (PSD) and particle masses; however,
at this higher frequency, backscattering by precipitation-sized particles is also
strongly sensitive to particle shape. With even simple models for the PSD, the
particle masses, and the particle shapes, reflectivity observations alone at 94 GHz
are insufficient to constrain the models sufficiently to determine snow properties. As
a result, the retrieval method used by 2CSP employs significant and explicit a priori
information about PSD, mass, shape, and scattering properties and their uncertainties
(Wood et al. 2013, 2014, 2015).

The retrieval uses an optimal estimation method (Rodgers 2000). The method
minimizes a cost function which represents differences between simulated and
observed reflectivity profiles and also differences between estimated and a priori
values for the snow microphysical properties. The retrieval is applied to individual
profiles of CPR reflectivity observations. For each profile, each of which contains a
vertically-resolved vector of radar reflectivities, the retrieval estimates a vertically-
resolved array of size distribution parameters for assumed exponential size distribu-
tions. These estimated parameters are then used along with the a priori assumptions
about snow microphysical properties to derive vertical profiles of properties such as
snow water content and snowfall rate.

In heavier snowfall, radar beam propagation at 94 GHz may be influenced by both
attenuation by hydrometeors and multiple scattering. In 2CSP, propagation is modeled
to include the effects of both attenuation and multiple scattering using a parameteriza-
tion derived fromMatrosov andBattaglia (2009). In this parameterization, themodeled
multiply-scattered radar reflectivity and its uncertainty is estimated as a simple function
of the modeled singly-scattered attenuated and unattenuated reflectivities.

The optimal estimation treatment allows the various sources of the retrieval
uncertainties to be propagated explicitly into estimates of uncertainties in retrieval
products such as snowfall rate. The snowfall retrieval represents retrieved quantities
as Gaussian probability density functions (PDFs). These PDFs incorporate estimates
of the uncertainties in the a priori information, in the model used to simulate the radar
observations (the forward model), and in the observations. These PDFs define the
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expected values and uncertainties for the retrieved quantities. When these expected
values are then used to derive quantities such as snowfall rate and snow water
content, the uncertainties are propagated as well. In this way, the retrieval provides
explicit estimates for the uncertainties in the instantaneous retrieved and derived
variables.

Aside from uncertainties related to a priori snow properties and radar forward
model assumptions, a number of other issues may influence the accuracy of products
like 2CSP developed from satellite-borne radar observations. First, determining the
phase of precipitation particles both aloft and at the surface generally requires coinci-
dent information about atmospheric temperatures. 2CSP uses temperature profiles
from European Centre for Medium-range Weather Forecasts medium-range forecasts
collocated to theCPR radar profiles from theCloudSat ECMWF-AUXproduct. Due to
the narrow temperature range of about 0–4 �C over which the transition from solid to
liquid occurs (Liu 2008), small variations in temperature could lead to pronounced
changes in precipitation phase classification and the associated precipitation.

Second, due to near-surface ground clutter mentioned earlier, snowfall rates at the
surface have to be estimated based on retrieval results just above the clutter-affected
radar range bins. For the CPR, this gap between the height of the retrieval results in
the near-surface uncluttered bin and the actual surface ranges from about 700 to
1300 m, depending on the surface characteristics. This gap has two effects. First,
microphysical and advective processes may cause the surface snowfall properties to
vary in uncertain ways from those in the near-surface uncluttered bin. This is
especially significant for snowfall, where particle fall speeds are generally about
1 m s�1 or smaller. Second, shallow snowfall events may be completely obscured by
the ground clutter and go undetected.

Finally, in 2CSP snowfall rates at the surface and aloft are determined using
estimated fall speeds for snow particles. These snowfall rates represent mass fluxes
that transport water in and remove it from the atmosphere. 2CSP uses a parameter-
ization for particle terminal velocities (Mitchell and Heymsfield 2005), and fall
speeds are assumed to equal terminal velocities; however, clearly this assumption
is accurate only for environments with no vertical air motion.

These issues represent opportunities for ongoing work and improvements in both
retrieval approaches and in satellite-borne radar observational capabilities. Fall
speed constraints from Doppler measurements, enhanced radar spatial resolution to
reduce clutter, and increased employment of model-based atmospheric state infor-
mation in retrievals may allow these limitations to be overcome to a greater degree
than now possible.

2.4.3 Quantifying Rainfall

The 2C-Rain-Profile product produces profiles of rain water content and surface rain
rate over ocean surfaces. The theoretical basis for the algorithm has been outlined in
L’Ecuyer and Stephens (2002), Mitrescu et al. (2010) and Lebsock and L’Ecuyer
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(2011). The algorithm uses the observed reflectivity profile and a measure of the Path
Integrated Attenuation (PIA) to derive the rain water profiles using an optimal
estimation framework. The PIA is derived in the 2C-Precip-Column algorithm
described above. The utility of the PIA lies in the fact that it is primarily sensitive
to the integrated rain water path through the column, and therefore provides a strong
integral constraint on the rain profile retrievals.

The algorithm uses the optimal estimation approach to derive profiles of the rain
water content. The true utility of the optimal estimation retrieval framework lies in
careful error characterization, the details of which are buried in the process of
defining the elements of the measurement and a priori error covariance matrices. A
detailed description of the error characterization is provided in Lebsock and
L’Ecuyer (2011) and the ATBD. There are two key aspects to the error covariances.
First, the a priori error covariance is used not to constrain the estimated value of the
rain water content but instead to impose rather tight correlations in the vertical from
bin to bin so that the a priori acts as a smoothing constraint. Second the retrieval is
strongly influenced by and exploits the attenuation signal. To account for attenuation
in the measurement error the measurement error covariance matrix includes cumu-
lative contributions from uncertainty within each bin along with uncertainty in the
attenuation from all of the bins above it. A central focus of this process was to ensure
a tight constraint on the retrieval from the integrate PIA relative to the reflectivity
profile. This was done through inflating the reflectivity errors and introducing the
correlations each of which decreases the contribution of the N reflectivity observa-
tions overwhelming a single PIA observation.

Both attenuation and multiple scattering must be accounted for in the radar
forward model. Simulated radar reflectivities PIA are both corrected for the multiple
scattering effects. Multiple scattering is modeled using the fast Time-Dependent
Two-Stream (TDTS) method of Hogan and Battaglia (2008). The TDTS model has
been shown to compare favorably with benchmark Monte Carlo simulations while
being significantly more computationally efficient. The TDTS model is used to
correct both the reflectivities and the observed PIA for multiple scattering effects.
Multiple scattering always increases the apparent reflectivity therefore these correc-
tions always reduce the single scattering reflectivity values while increasing the PIA
estimate.

The problem of estimating the rain rate from the observations is incompletely
defined as posed and requires a number of simplifying assumptions. These assump-
tions take the form of simple physical models that are imposed upon the problem to
make the necessary radiative calculations possible. These models include: (1) a
model to distribute cloud water in the vertical and determine the cloud DSD; (2) a
model of evaporation of rain below cloud base; (3) a model of the precipitation DSD;
and (4) a description of the thermodynamic phase of the hydrometeors in each radar
bin. These models are described in this sub-section.

Cloud water must be modeled not because of its influence on the reflectivities
themselves but rather due to its influence on the PIA. As a result, the location of the
cloud water within the vertical profile is of second order importance. It is assumed
within the algorithm that the cloud water content is uniform with height below the

38 M. D. Lebsock et al.



freezing level and the cloud water path is given by a parameterization based on
Lebsock and L’Ecuyer (2011).

A model of evaporation of rain water from cloud base to the surface is taken from
Comstock et al. (2004). The evaporation fraction is based on the distance below
cloud base and the mean radius of the drop size distribution. Based on a large sample
of in-situ data in marine stratocumulus and cumulus Kalmus and Lebsock (2017)
have reformulated the parameters in the original formulation to be representative of a
diverse set of shallow precipitating regimes. This modified parameterization tends to
increase evaporation in shallow cumulus and eliminates bias relative to in-situ
observations.

We implement a single moment parameterization of the DSD as a function of the
rain liquid water content taken from Abel and Boutle (2012) that was originally
developed to improve model simulations of rainfall intensity but has much broader
applicability. Through an analysis of a large amount of aircraft data they define this
parameterization which provides the best fit to a diversity of rain types from heavy
deep convective rain to stratocumulus drizzle. The parameterization assumes an
exponential size distribution with a power law relationship between the slope and
intercept parameters.

The vertical structure of thermodynamic phase is based on the stratiform/convec-
tive flag input from 2C-Precip-Column. For convective clouds liquid is assumed
from the surface to the freezing level at which point there is a linear mixing of liquid
and ice up to the rain top height, above which the profile is entirely ice. Stratiform
profiles are ice from the top down to the freezing level at which point there is a linear
ramp between ice and liquid (to represent the melting layer) below which the profile
is assumed to be entirely liquid. Cloud liquid water is distributed uniformly through-
out the liquid portion of the profile.

The optical properties of the liquid region are modeled assuming spherical drops
and Mie theory. The optical properties of the mixed phase regions are modeled again
assuming spherical drops as a mixture of liquid and ice using a Maxwell-Garnett
mixing formulation (Meneghini and Liao 1996). The ice particle scattering proper-
ties are from the dataset of Leinonen and Szyrmer (2015). The properties are
calculated using the discrete dipole approximation (DDA) for three-dimensional
models of unrimed snowflake aggregates consisting of dendrite ice crystals. Due
to the limited range of snowflake diameters available in the dataset, the cross sections
for the smallest particles are instead derived with the T-matrix method. This is
applied to oblate spheroids with the aspect ratio and the mass-dimension relation
equivalent to the snowflakes in the dataset.

In the heaviest precipitation, the surface return may be completely saturated
making an estimate of the surface cross section impossible. In this situation, only
an estimate of the lower bound on the PIA may be made and the retrieval will be
biased low. Figure 2.3 shows a map of the frequency of occurrence of this condition.
Because these pixels likely have the heaviest rain rates that contribute dispropor-
tionately to rainfall accumulations, this scenario causes a rather severe bias in the
data product. The results of this bias are seen clearly in Fig. 2.7, which compares the
CPR accumulated rainfall over oceans with the DPR Ku band accumulations. Those
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differences are quite clearly associated with the occurrence of saturated CPR pixels,
in which case the CPR underestimates the DPR. Note that different time periods are
used for the two products and the figure is not meant as a comprehensive comparison
between the two products.

Acknowledgements Part of this work was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Administration.

References

Abel, S. J., & Boutle, I. A. (2012). An improved representation of the raindrop size distribution for
single-moment microphysics schemes. Quarterly Journal of the Royal Meteorological Society,
138, 2151–2162. https://doi.org/10.1002/qj.1949.

Battaglia, A., Haynes, J. M., L’Ecuyer, T., & Simmer, C. (2008). Identifying multiple-scattering-
affected profiles in CloudSat observations over the oceans. Journal of Geophysical Research,
113, D00A17. https://doi.org/10.1029/2008JD009960.

Fig. 2.7 (panel a) the accumulate rainfall from the CloudSat 2C-Rain Profile product for the years
2007–2010; (panel b) the same from the DRP Ku band algorithm for a 2-year period from 2014 to
2016; (panel c) the difference between panels a and b; (panel d) the scatter plot of the rate difference
shown in panel c with the saturation occurrence fraction from CloudSat

40 M. D. Lebsock et al.

https://doi.org/10.1002/qj.1949
https://doi.org/10.1029/2008JD009960


Behrangi, A., Tian, Y., Lambrigtsen, B. H., & Stephens, G. L. (2014a). What does CloudSat reveal
about global land precipitation detection by other spaceborne sensors? Water Resources
Research, 50, 4893–4905. https://doi.org/10.1002/2013WR014566.

Behrangi, A., Stephens, G. L., Adler, R. F., Huffman, G. J., Lambrigtsen, B., & Lebsock, M. D.
(2014b). An update on the oceanic precipitation rate and its zonal distribution in light of
advanced observations from space. Journal of Climate, 27, 3957–3965. https://doi.org/10.
1175/JCLI-D-13-00679.1.

Berg, W., L’Ecuyer, T. S., & Haynes, J. M. (2010). The distribution of rainfall over oceans from
spaceborne radars. Journal of Applied Meteorology and Climatology, 49, 535–543. https://doi.
org/10.1175/2009JAMC2330.1.

Comstock, K. K., Wood, R., Yuter, S. E., & Bretherton, C. S. (2004). Reflectivity and rain rate in
and below drizzling stratocumulus. Quarterly Journal of the Royal Meteorological Society, 130,
2891–2918. https://doi.org/10.1256/qj.03.187.

Freilich, M. H., & Vanhoff, B. A. (2003). The relationship between winds, surface roughness, and
radar backscatter at low incidence angles from TRMM precipitation radar measurements.
Journal of Atmospheric and Oceanic Technology, 20, 549–562. https://doi.org/10.1175/1520-
0426(2003)20<549:TRBWSR>2.0.CO;2.

Haynes, J. M., L’Ecuyer, T. S., Stephens, G. L., Miller, S. D., Mitrescu, C., Wood, N. B., & Tanelli,
S. (2009). Rainfall retrieval over the ocean with spaceborne W-band radar. Journal of Geo-
physical Research, 114, D00A22. https://doi.org/10.1029/2008JD009973.

Hogan, R. J., & Battaglia, A. (2008). Fast lidar and radar multiple-scattering models. Part II: Wide-
angle scattering using the time-dependent two-stream approximation. Journal of the Atmo-
spheric Sciences, 65, 3636–3651. https://doi.org/10.1175/2008JAS2643.1.

Joyce, R. J., Janowiak, J. E., Arkin, P. A., & Xie, P. (2004). CMORPH: A method that produces
global precipitation estimates from passive microwave and infrared data at high spatial and
temporal resolution. Journal of Hydrometeorology, 5, 487–503. https://doi.org/10.1175/1525-
7541(2004)005<0487:CAMTPG>2.0.CO;2.

Kalmus, P., & Lebsock, M. D. (2017). Correcting biased evaporation in CloudSat warm rain. IEEE
Transactions on Geoscience and Remote Sensing, 1–11. https://doi.org/10.1109/TGRS.2017.
2722469.

Kollias, P., Rémillard, J., Luke, E., & Szyrmer, W. (2011). Cloud radar Doppler spectra in drizzling
stratiform clouds: 1. Forward modeling and remote sensing applications. Journal of Geophys-
ical Research, 116, D13201. https://doi.org/10.1029/2010JD015237.

Kulie, M. S., Milani, L., Wood, N. B., Tushaus, S. A., & Bennartz, R. (2016). A shallow
cumuliform snowfall census using spaceborne radar. Journal of Hydrometeorology, 17,
1261–1279. https://doi.org/10.1175/JHM-D-0123.1.

Lebsock, M. D., & L’Ecuyer, T. S. (2011). The retrieval of warm rain from CloudSat. Journal of
Geophysical Research, 116, D20209. https://doi.org/10.1029/2011JD016076.

Lebsock, M. D., L’Ecuyer, T. S., & Stephens, G. L. (2011). Detecting the ratio of rain and cloud
water in low-latitude shallow marine clouds. Journal of Applied Meteorology and Climatology,
50, 419–432. https://doi.org/10.1175/2010JAMC2494.1.

L’Ecuyer, T. S., & Stephens, G. L. (2002). An estimation-based precipitation retrieval algorithm for
attenuating radars. Journal of Applied Meteorology, 41, 272–285. https://doi.org/10.1175/1520-
0450(2002)041<0272:AEBPRA>2.0.CO;2.

Leinonen, J., & Szyrmer, W. (2015). Radar signatures of snowflake riming: A modeling study.
Earth and Space Science, 2, 346–358. https://doi.org/10.1002/2015EA000102.

Lhermitte, R. (1990). Attenuation and scattering of millimeter wavelength radiation by clouds and
precipitation. Journal of Atmospheric and Oceanic Technology, 7, 464–479. https://doi.org/10.
1175/1520-0426(1990)007<0464:AASOMW>2.0.CO;2.

Li, L. H., Heymsfield, G. M., Tian, L., & Racette, P. E. (2005). Measurements of ocean surface
backscattering using an airborne 94-GHz cloud radar - implication for calibration of airborne
and spaceborne W-band radars. Journal of Atmospheric and Oceanic Technology, 22,
1033–1045. https://doi.org/10.1175/JTECH1722.1.

2 Status of the CloudSat Mission 41

https://doi.org/10.1002/2013WR014566
https://doi.org/10.1175/JCLI-D-13-00679.1
https://doi.org/10.1175/JCLI-D-13-00679.1
https://doi.org/10.1175/2009JAMC2330.1
https://doi.org/10.1175/2009JAMC2330.1
https://doi.org/10.1256/qj.03.187
https://doi.org/10.1175/1520-0426(2003)202.0.CO;2
https://doi.org/10.1175/1520-0426(2003)202.0.CO;2
https://doi.org/10.1029/2008JD009973
https://doi.org/10.1175/2008JAS2643.1
https://doi.org/10.1175/1525-7541(2004)0052.0.CO;2
https://doi.org/10.1175/1525-7541(2004)0052.0.CO;2
https://doi.org/10.1109/TGRS.2017.2722469.
https://doi.org/10.1109/TGRS.2017.2722469.
https://doi.org/10.1029/2010JD015237
https://doi.org/10.1175/JHM-D-0123.1
https://doi.org/10.1029/2011JD016076
https://doi.org/10.1175/2010JAMC2494.1
https://doi.org/10.1175/1520-0450(2002)0412.0.CO;2
https://doi.org/10.1175/1520-0450(2002)0412.0.CO;2
https://doi.org/10.1002/2015EA000102
https://doi.org/10.1175/1520-0426(1990)0072.0.CO;2
https://doi.org/10.1175/1520-0426(1990)0072.0.CO;2
https://doi.org/10.1175/JTECH1722.1


Liu, G. (2008). Deriving snow cloud characteristics from CloudSat observations. Journal of
Geophysical Research, 113, D00A09. https://doi.org/10.1029/2007JD009766.

Marchand, R., Mace, G. G., Ackerman, T., & Stephens, G. L. (2008). Hydrometeor detection using
CloudSat—an Earth-orbiting 94-GHz cloud radar. Journal of Atmospheric and Oceanic Tech-
nology, 25, 519–533. https://doi.org/10.1175/2007JTECHA1006.1.

Matrosov, S. Y., & Battaglia, A. (2009). Influence of multiple scattering on CloudSat measurements
in snow: A model study. Geophysical Research Letters, 36, L12806. https://doi.org/10.1029/
2009GL038704.

Meneghini, R., & Liao, L. (1996). Comparisons of cross sections for melting hydrometeors as
derived from dielectric mixing formulas and a numerical method. Journal of Applied Meteo-
rology, 35, 1658–1670. https://doi.org/10.1175/1520-0450(1996)035<1658:COCSFM>2.0.
CO;2.

Mitchell, D. L., & Heymsfield, A. J. (2005). Refinements in the treatment of ice particle terminal
velocities, highlighting aggregates. Journal of the Atmospheric Sciences, 62, 1637–1644.
https://doi.org/10.1175/JAS3413.1.

Mitrescu, C., L’Ecuyer, T. S., Haynes, J. M., Miller, S., & Turk, F. J. (2010). CloudSat precipitation
profiling algorithm—model description. Journal of Applied Meteorology and Climatology, 49,
991–1003. https://doi.org/10.1175/2009JAMC2181.1.

Norin, L., Devasthale, A., L’Ecuyer, T. S., Wood, N. B., & Smalley, M. (2015). Intercomparison of
snowfall estimates derived from the CloudSat cloud profiling radar and the ground-based
weather radar network over Sweden. Atmospheric Measurement Techniques, 8, 5009–5021.
https://doi.org/10.5194/amt-8-5009-2015.

Palerme, C., Kay, J. E., Genthon, C., L’Ecuyer, T. S., Wood, N. B., & Claud, C. (2014). How much
snow falls on the Antarctic ice sheet? The Cryosphere, 8, 1577–1587. https://doi.org/10.5194/
tc-8-1577-2014.

Palerme, C., Genthon, C., Claud, C., Kay, J. E., Wood, N. B., & L’Ecuyer, T. S. (2017a). Evaluation
of current and projected Antarctic precipitation in CMIP5 models. Climate Dynamics, 48,
225–239. https://doi.org/10.1007/s00382-016-3071-1.

Palerme, C., Claud, C., Dufour, A., Genthon, C., Wood, N. B., & L’Ecuyer, T. S. (2017b).
Evaluation of Antarctic snowfall in global meteorological reanalyses. Atmospheric Research,
190, 104–112. https://doi.org/10.1016/jatmos.res.2017.02.015.

Rodgers, C. D. (2000). Inverse methods for atmospheric sounding: Theory and practice. Singapore:
World Scientific, 240 pp.

Sassen, K., &Wang, Z. (2008). Classifying clouds around the globe with the CloudSat radar: 1 year
of results. Geophysical Research Letters, 35, L04805. https://doi.org/10.1029/2007GL032591.

Sassen, K., Matrosov, S., & Campbell, J. (2007). CloudSat spaceborne 94 GHz radar bright bands
in the melting layer: An attenuation-driven upside-down lidar analog. Geophysical Research
Letters, 34, L16818. https://doi.org/10.1029/2007GL030291.

Skofronick-Jackson, G., Kulie, M. S., Milani, L., Munchak, J., Wood, N. B., & Levizzani,
V. (2018). Satellite estimation of falling snow: A global precipitation measurement (GPM)
Core Observatory perspective. Journal of Applied Meteorology and Climatology, 58,
1429–1448. https://doi.org/10.1175/JAMC-D-18-0124.1.

Smalley, M., L’Ecuyer, T. S., Lebsock, M. D., & Haynes, J. M. (2014). A comparison of
precipitation occurrence from the NCEP stage IV QPE product and the CloudSat cloud profiling
radar. Journal of Hydrometeorology, 15, 444–458. https://doi.org/10.1175/JHM-D-13-048.1.

Steiner, M., Houze, R. A., & Yuter, S. E. (1995). Climatological characterization of three-
dimensional storm structure from operational radar and rain gauge data. Journal of Applied
Meteorology, 34, 1978–2007. https://doi.org/10.1175/1520-0450(1995)034<1978:
CCOTDS>2.0.CO;2.

Stephens, G. L., Winker, D., Pelon, J., Trepte, C., Vane, D., Yuhas, C., L’Ecuyer, T. S., & Lebsock,
M. D. (2018). CloudSat and CALIPSO within the A-train: Ten years of actively observing the
Earth system. Bulletin of the American Meteorological Society, 99, 569–581. https://doi.org/10.
1175/BAMS-D-16-0324.1.

42 M. D. Lebsock et al.

https://doi.org/10.1029/2007JD009766
https://doi.org/10.1175/2007JTECHA1006.1
https://doi.org/10.1029/2009GL038704
https://doi.org/10.1029/2009GL038704
https://doi.org/10.1175/1520-0450(1996)0352.0.CO;2
https://doi.org/10.1175/1520-0450(1996)0352.0.CO;2
https://doi.org/10.1175/JAS3413.1
https://doi.org/10.1175/2009JAMC2181.1
https://doi.org/10.5194/amt-8-5009-2015
https://doi.org/10.5194/tc-8-1577-2014
https://doi.org/10.5194/tc-8-1577-2014
https://doi.org/10.1007/s00382-016-3071-1
https://doi.org/10.1016/jatmos.res.2017.02.015
https://doi.org/10.1029/2007GL032591
https://doi.org/10.1029/2007GL030291
https://doi.org/10.1175/JHM-D-13-048.1
https://doi.org/10.1175/1520-0450(1995)0342.0.CO;2
https://doi.org/10.1175/1520-0450(1995)0342.0.CO;2
https://doi.org/10.1175/BAMS-D-16-0324.1
https://doi.org/10.1175/BAMS-D-16-0324.1


Tanelli, S., Durden, S. L., Im, E., Pak, K. S., Reinke, D. G., Partain, P., Haynes, J. M., &Marchand,
R. T. (2008). CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration,
and processing. IEEE Transactions on Geoscience and Remote Sensing, 46, 3560–3573. https://
doi.org/10.1109/TGRS.2008.2002030.

Wood, N. B., & L’Ecuyer, T. S. (2018). Level 2C snow profile process description and interface
control document, Product Version P1_R05, NASA JPL CloudSat project document revision
0, 26 pp. Available from http://www.cloudsat.cira.colostate.edu/sites/default/files/products/
files/2C-SNOW-PROFILE_PDICD.P1_R05.rev0_.pdf, last accessed 5 Oct 2018.

Wood, N. B., L’Ecuyer, T. S., Bliven, F. L., & Stephens, G. L. (2013). Characterization of video
disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity.
Atmospheric Measurement Techniques, 6, 3635–3648. https://doi.org/10.5194/amt-6-3635-
2013.

Wood, N. B., L’Ecuyer, T. S., Heymsfield, A. J., Stephens, G. L., Hudak, D. R., & Rodriguez,
P. (2014). Estimating snow microphysical properties using collocated multisensor observations.
Journal of Geophysical Research, 119, 8941–8961. https://doi.org/10.1002/2013JD021303.

Wood, N. B., L’Ecuyer, T. S., Heymsfield, A. J., & Stephens, G. L. (2015). Microphysical
constraints on millimeter-wavelength scattering properties of snow particles. Journal of Applied
Meteorology and Climatology, 54, 909–931. https://doi.org/10.1175/JAMC-D-14-0137.1.

2 Status of the CloudSat Mission 43

https://doi.org/10.1109/TGRS.2008.2002030
https://doi.org/10.1109/TGRS.2008.2002030
http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P1_R05.rev0_.pdf
http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P1_R05.rev0_.pdf
https://doi.org/10.5194/amt-6-3635-2013
https://doi.org/10.5194/amt-6-3635-2013
https://doi.org/10.1002/2013JD021303
https://doi.org/10.1175/JAMC-D-14-0137.1


Chapter 3
The Megha-Tropiques Mission After Seven
Years in Space

Rémy Roca, Michel Dejus, Philippe Chambon, Sophie Cloché,
and Michel Capderou

Abstract The Megha-Tropiques mission is operating since 12 October, 2011 and
serves research and operational objectives related to the tropical water and energy
cycle. The satellite is on a low inclination orbit that enhances the sampling over
the intertropical belt. The original payloads were dedicated to the estimation of the
radiation budget at the top of the atmosphere, the water vapor profiles and the
instantaneous precipitation rate. The original suite of geophysical products that
was developed permitted to demonstrate the proof of concept of the mission in the
early part of its operation. Following an unfortunately expedited exploitation of the
conically scanning multispectral radiometer (16 months), efforts have been geared to
mitigate the loss by extending the use of the 183 GHz sounder towards the precip-
itation objectives. This induced some delays in the setting of the current set of
products that are now being used for research investigations. Despites not being an
operational meteorological satellite, the real time capability of the mission has
shown its usefulness with a large and growing set of Numerical Weather Prediction
centers assimilating the Megha-Tropiques data, in clear and total skies. After 7 years
in space, the satellite and operating instruments are in excellent shape and sustain
their very good initial performances. The mission has acquired a large and unique set
of observations of the tropical water and energy cycle which is only at the beginning
of its exploitation.
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3.1 Introduction

The water and energy cycle is central to the functioning of the Earth system. The
strong coupling between water and energy is at the core of the process that regulates
the temperature of the planet (Stephens and Ellis 2008; Roca et al. 2010). The water
and energy climatic feedbacks are the dominant source of warming associated with
the anthropogenic increase greenhouse gas concentration (Ramanathan 1981). In the
tropics, the tight link between the hydrological cycle and the large-scale dynamics
further complicates the understanding of these feedbacks and the estimation of their
magnitude (Ma et al. 2018; Stephens et al. 2018). At the heart of the complexity is
the deep convection process that has been under investigation for over a century and
is still not fully understood (Houze 2018). The convective systems that influence
both the radiation and the hydrological cycle are ubiquitous in the tropics and happen
at the meso- and sub-daily scale making their observations a challenge (see Chap. 38
of volume 2). In complement to the existing space-based effort to monitor precip-
itation (Hou et al. 2014) and the radiation budget (Loeb et al. 2018), an enhanced
sampling of the tropical region in line with the underlying tropical phenomenon is
needed.

Megha stands for clouds in Sanskrit and Tropiques for tropics in French. The
Megha-Tropiques mission is an Indo-French mission dedicated to the surveillance of
the atmospheric water and energy cycle of the intertropical belt. Within the large
questions mentioned above, the specific scientific objectives of the mission are:

• The monitoring of the water and energy budget of the intertropical belt.
• The understanding of the life cycle of tropical convective systems.
• The functioning of tropical surface hydrometeorology.
• The improvements of tropical weather forecasts.

The three first objectives are related to research questions and the fourth one is
associated with operational numerical weather prediction.

The mission has been built and operated jointly by the Indian Space Research
Organization (ISRO) and the Centre National d’Etudes Spatiales (CNES). The
satellite was successfully launched in October 2011 from the ISRO pad in
Sriharicota using a PSLV rocket. The mission is characterized by a unique orbit
with a low inclination on the equator that permits a high repetition of the measure-
ments (up to 6 times a day). A suite of complementary payloads is carried on board: a
scanning broad band radiometer for Earth radiation budget measurements: SCARAB
(Viollier and Raberanto 2010; Chomette et al. 2012), a radio-occultation GPS
receiver (ROSA, Radio Occultation Sensor for Atmosphere, Karouche and Raju
2010) and of more importance to the present paper, a conical scanning multispectral
microwave imager MADRAS (Microwave Analysis and Detection of Rain and
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Atmospheric Structures) and a cross scanning microwave sounder, SAPHIR that
stands for Sondeur Atmosphérique du Profile d’Humidité Intertropicale par
Radiométrie (Eymard et al. 2002).

A number of publications are describing the Megha-Tropiques mission (Desbois
et al. 2003). Desbois et al. (2007) provides a historical account on the genesis of the
mission, Roca et al. (2010) elaborates on the scientific objectives of the mission
while Roca et al. (2015) report the status of the mission after 3 years in operation.
The Handbook of the mission is also a useful resource (CNES 2015). Here we focus
on the salient features of the mission and on the incremental new information since
this last status publication with emphasis on the two latter instruments that contrib-
utes to the rainfall related objectives.

3.2 The Status of the Mission

3.2.1 Orbital Aspects

The originality of the MT orbit lies in the sampling. The orbit of the mission is a
quasi-circular orbit with a flight altitude of 865.5 km and a low inclination on the
Equator (Capderou 2009). This unique orbit was selected after various discussions
during the development phase and also to avoid the 1-day phasing trap that would
otherwise occur at the ~820 km initially selected altitude. Under such orbital
configuration, the tropical regions are seen, by on-board instruments, about
6 times a day. Near the tropics, the passages are made in a single pack of 6 consec-
utive overpasses (each overpass being separated by a time equivalent to the satellite
period of 100 min). Near the equator, they are made in two disjointed packs, of
2 passages each, separated by half a day (Roca et al. 2015).

Another consequence of this orbit is that the cycle in relation to the Sun is
53 days. This means that when the satellite overpasses at a given time at a given
location, it will be 53 days before it returns to the same time. In other words, the
satellite’s overpass to the equator is made each day with an advance of (1440 min/
53) or 27 min. This advance is therefore roughly half an hour a day. In addition, this
cycle requires the position of the satellite’s solar panels to be adapted with the
direction of the Sun rays. It must be carried out several times a year, a so-called “flip”
maneuver: the satellite makes a U-turn on itself (the front passes to the back).
Figure 3.1 shows an illustration of the change in the satellite-sun geometry over a
2-year period. The 53 days’ precession cycle is also clearly seen in using this metric.

While strict maintenance at this altitude was not specified by the scientists, since
October 2011, the MT altitude has been remarkably well maintained by ISRO
between 865.37 and 865.57 km, an amplitude of 100 m relative to the nominal
mean value, which is the standard for satellites like Aqua, Terra and remote sensing
satellites like Pleiades or Landsat (Vijayasree et al. 2014). All the checks have shown
that the flight segment (satellite and instrument) is in good health and fully within the
specifications. Despite that, the satellite control center decided not to control the yaw
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of the satellite in the future in the same exact way as it was done till now. The yaw
angle can change in the window �10� (Fig. 3.2). An analysis based on that
assumption shows that the effect is minor. This does not affect the localization of

Fig. 3.1 Two-years times series of the flip maneuver schedule based on the beta solar angle (the
angle between the sun direction and the orbital plan; see Capderou 2014 for details)

MGT platform axe

Effective swath

yaw Satellite path

swath

Fig. 3.2 Schematic of the effect of the relaxed control of the yaw
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the product because the restitution of this parameter will still lie within the specifi-
cation. Moreover, the quality of the products will not degrade as the swath will rotate
of the same value as the yaw does and the revisit time will thus change only
negligibly.

3.2.2 The MADRAS Radiometer

The MADRAS radiometer is a five-frequency, nine-channel conical scanning pas-
sive microwave imager. The radiometer observes the Earth with a 53.5� angle in
both horizontal and vertical polarizations. The radiometer is presented at length in
various earlier publications (Desbois et al. 2003; Karouche and Raju 2010; Karouche
et al. 2012; Raju 2013; Roca et al. 2015) and here we only present its salient features.
Table 3.1 summarize the channel frequency and performances.

After a few months in operation the MADRAS data showed signs of electric
perturbations that altered the multiplexing of the multispectral observations
preventing any scientific use of the data flow. This early contamination was termed
the “glitch” effect and was a sign of early aging of the instrument and eventually
MADRAS stopped data acquisition on 26 January, 2013 after a little less than
1.5 years of data acquisition. Wendt et al. (2016) further investigated the conse-
quence of the glitch and proposed a very efficient patch to recover the channel
multiplexing errors and allowing the scientific exploitation of the dataset to be
pursued. CNES and ISRO eventually made 16 months of corrected data available
to the public in November 2015.

3.2.3 The SAPHIR Sounder

The SAPHIR sounders consists in a 6-channel microwave sounder operating near
the absorption band of water vapor at 183 GHz (Eymard et al. 2002). The nadir pixel
dimension is 10� 10 km2 along and across track and varies respectively up to 23 km
and 16 km at the end of the scan. The swath is close to 1700 km across.

Investigators from the NASA GPM science team (Personal communication)
pointed out a shift in the geometry of the instrument on the ground. Indeed, it was
confirmed by CNES that the nadir pixel is not at the center of the swath of the scan
but the true nadir is shifted. This shift is illustrated in Fig. 3.3 that shows the
maximum latitude of the scan as a function of time. The figure reveals a very

Table 3.1 MADRAS channel frequency and noise levels

Frequency
Polarization

18.6
H

18.6
V

23.8
V

36.5
H

36.5
V

89.0
H

89.0
V

157.0
H

157.0
V

NEΔT 0.57 0.7 0.67 0.58 0.67 0.93 0.89 2.07 2.16

Adapted from Karouche et al. (2012) and Goldstein and Karouche (2013)
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weak random variation (~0.01�) which was confirmed by the instrument commis-
sioning as well as a sinusoidal 33 days’ variation (~0.2�) due to the slight departure
from circular orbit (e ¼ 0.00102). The larger changes are related to the flip-flop
maneuver and provide an estimate of the shift to ~1 pixel (0.1� on Earth). SAPHIR
dissymmetry is explained by the accommodation done on the platform.

While it is an important aspect of the geometry of scan, it should be noted that the
actual location of each individual pixel in level 1 data are not affected by the shift
and that the dissymmetry is taken in account in ground segment parameters and
guaranty the perfect location of the products well within the specifications (<5 km).

The absolute accuracy of the calibration of the radiometer has been investigated
in details. The post-launch estimation of the calibration sustained a better behavior
than the specifications (Table 3.2) in lines with intercomparisons with other similar
radiometers (Moradi et al. 2015). Independent evaluation of the calibration using
high quality radiosondes confirmed the good accuracy of the sounder and revealed a
2 K warm anomaly on the 183�11 GHz channel (Clain et al. 2015). This was further
shown to likely be attributable to the lack of representation of the water vapor
continuum in the radiation simulations (Brogniez et al. 2016) although this is still
under investigation and debate (Bobryshev et al. 2018).

The stability of the radiometer, both mechanically and radiometrically, is moni-
tored by CNES using a suite of automated diagnostics. More than 150 parameters are
surveyed daily. The instrument has reached more than 136 million rotations (as of

Fig. 3.3 Time series of maximum (red) and minimum (blue) latitude of the scan of the SAPHIR
instrument

Table 3.2 Noise and difference with simulations in K for each SAPHIR channels

Channel # Frequency(GHz) NEΔT specifications NEΔT In flight RS-data(K)

1 183 � 0.2 2.4 1.4 +0.2

2 183 � 1.1 1.8 1.0 +0.7

3 183 � 2.8 1.8 0.9 +1.3

4 183 � 4.2 1.5 0.8 +1.6

5 183 � 6.6 1.5 0.6 +1.5

6 183 � 11 1.2 0.5 +2.3

Adapted from Karouche et al. (2012) and Clain et al. (2015)
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14 June 2018) and no sign of aging on the mechanics is found. An example of such
monitoring is shown in Fig. 3.4 where the time series of the noise of the channels is
plotted against time. The monitoring shows the flat steady behavior of the radiom-
eter. The data availability is close to 99.99% over the course of the last 7 years. The
few missing observations and orbits are due to Space Situational Awareness (SSA)
and technical issues at ground segment and some links cut that occurred only before
2016 and the implementation of backup link for the stations.

This overall good behavior has prompted many users to make benefit of the
SAPHIR data, including its use as a calibration reference for the sounders of the
GPM constellation (Berg et al. 2016) and various research and applications illus-
trated in the next sections.

3.3 Addressing the Scientific Objectives

3.3.1 Precipitation Related Remote Sensing Products from
MT Payloads

A suite of operational geophysical products has been developed in support of the
scientific objectives and are discussed in Gohil et al. (2013), Kidd et al. (2013) and
Roca et al. (2015). These operational products concern the instantaneous rainfall
estimation from MADRAS and a large spectrum of non-scattering skies water vapor

0.4

0.6

0.8

1

1.2

1.4

1.6

13/10/2011 13/10/2012 13/10/2013 13/10/2014 13/10/2015 13/10/2016 13/10/2017 13/10/2018

SAPHIR Channel 1 to 6 NEDT (sensibility)

SAP_SENSIBILITE_RADIO_CH1_MEAN_DAY SAP_SENSIBILITE_RADIO_CH2_MEAN_DAY SAP_SENSIBILITE_RADIO_CH3_MEAN_DAY

SAP_SENSIBILITE_RADIO_CH4_MEAN_DAY SAP_SENSIBILITE_RADIO_CH5_MEAN_DAY SAP_SENSIBILITE_RADIO_CH6_MEAN_DAY

Fig. 3.4 Time series of the noise (NEΔT) for each channel of the SAPHIR sounder
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profiles retrievals. Research efforts have also yield to experimental products ranging
from land emissivity estimation (Raju et al. 2013) to ice water content (Piyush et al.
2017). More recently, the SAPHIR data are being used for instantaneous rainfall
detection and estimation (Balaji et al. 2014; Goyal et al. 2014; Varma et al. 2016)
allowing for a mitigation of the loss of MADRAS to the scientific objectives of the
mission. Efforts to adapt the sounder retrievals designed for MHS and AMSU-B
(Kidd et al. 2016) to SAPHIR is also underway (Chap. 24; merging IR and MW
datasets). The Megha-Tropiques data are not used in a standalone approach but also
merged with the GPM constellation data (Hou et al. 2014) to estimate the accumu-
lated precipitation at the 1�� 1� daily scale (Chambon et al. 2012). The SAPHIR
detection capability are used to bring in the constellation based the tropical enhanced
sampling of the mission as discussed in Chap. 24 on the Merging of IR data with
MW observations. The evaluation of this product is shown to outperform the
currently existing product over West Africa (Gosset et al. 2018).

This is by large attributable to the enhanced sampling of the mission as detailed in
Roca et al. (2018). Figure 3.5 shows the number of days for which including the
SAPHIR sampling in the constellation do alter by more than 50% the estimated daily
accumulation. It is a convolution of the sampling pattern of SAPHIR with the actual
rain distribution. During summer over the 10–15� latitude band, the impact can reach
up to 30%.

3.3.2 Tropical Science

Following the demise of MADRAS and the shift to using SAPHIR towards precip-
itation related objectives to mitigate the loss of the conical radiometer, the commis-
sioning of the geophysical operational product was substantially delayed from the
original plan. Yet tropical science studies based on the suite of geophysical products
are now emerging along the different research objectives.

Fig. 3.5 Zonal mean of the
fraction of time for which
the baseline product and the
No-meghatropiques
products differs by more
than 50% of the daily
accumulation. Summer
2012 conditions are
considered. (Adapted from
Roca et al. 2018)
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3.3.2.1 Hydrometeorology

Tropical hydrometeorology investigations strongly rely on satellite derived precip-
itation estimate owing to the scarcity of the conventional observation networks over
tropical land. The potential for the use of the GPM/Megha-Tropiques accumulation
product was demonstrated over the Niger basin and shown to fulfill the accuracy
expectation for flood forecasts there (Casse et al. 2015) allowing more hydromete-
orological investigations (see Chap. 24). The information content of the satellite
products is also shown to be scale dependent, with low to null correlation between
the ground-based radar observations and various satellite products detection at scale
lower than 50 km/3 h (Guilloteau et al. 2016) prompting the need to build upon
downscaling approaches to provide precipitation estimation at these fine hydrolog-
ical sensitive scales (Guilloteau et al. 2016). The consequence of these recent
analysis on the development of the next generation of precipitation products is
discussed in Chap. 24.

3.3.2.2 Deep Convection

Deep convective clouds observations by MADRAS have been used, in particular the
157 GHz polarized channels to explore the microphysics of the storms and the
crystal orientation that is found to be mainly horizontal (Defer et al. 2014).
AMSU-B 3 channel deep convection identification method has been extended to
the 6 channels of SAPHIR revealing the exceedance occurrence of very deep
convective clouds (overshooting) in the northern most part of the Bay of Bengal
compared to the very active environment all through the Bay (Mathew et al. 2016).
Intra-seasonal variability of precipitation in the ITCZ over Eastern Pacific is shown
to be impacted by the organization of mesoscale convective systems and not only by
the variability of their occurrence (Berthet et al. 2017).

Efforts to revisit the conceptual model of the life cycle of tropical MCS are also
on going where IR observations are merged with microwave observations to explore
the scaling of deep convective regions to the fuller extent of the anvil clouds of the
systems along its life cycle (Fiolleau and Roca 2013; Bouniol et al. 2016; Roca et al.
2017).

3.4 Addressing the Operational Objective

SAPHIR was proven useful for operational Numerical Weather Predictions by
several weather services across the globe. In particular, four-dimensional data
assimilation systems like 4D-Var are well adapted tools to benefit from Megha-
Tropiques low-inclined orbit. Figure 3.6 illustrates its high temporal sampling of the
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Fig. 3.6 Brightness temperatures from SAPHIR channel 6 over the Tropical Atlantic on
6 September, 2017. The four scans correspond to consecutive orbits and show the developments
of the two hurricanes IRMA and JOSE. These two hurricanes were observed within the same orbit,
illustrating the unique feature of this observing system
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same meteorological scene, like hurricanes Irma and Jose in September 2017 and
caused major losses and damages on several of the Caribbean Islands.

3.4.1 Upstream Investigations

A number of SAPHIR data assimilation studies have been performed in the past
years, either in operational centers or in research laboratories. They focused both on
global (e.g., Chambon et al. 2015; Prasad and Singh 2016; Krishnamoorthy and
Balaji 2016; Chambon and Geer 2017; Jones et al. 2017; Singh and Prasad 2017;
Dhanya and Chandrasekar 2018; Doherty et al. 2018; Kumar et al. 2018) and
regional models (e.g., Singh et al. 2013; Chandramouli and Balaji 2018) with a
particular focus on tropical cyclone forecasting (e.g., Dhanya et al. 2016; Guerbette
et al. 2016; Dhanya and Chandrasekar 2018).

All the studies mentioned above have been investigating the impact of clear sky
SAPHIR observations onto NWP analyses and forecasts. Within these clear-sky
frameworks, positive impacts have been demonstrated onto forecasts of tropical
winds and humidity up to several days ahead, as well as a positive synergy with the
rest of the observing system. In particular, an improvement of the innovation
statistics (observations – model first guess) of infrared geostationary satellites as
well as humidity channels of hyperspectral infrared instruments was shown in these
different numerical weather prediction systems.

Another move forward toward the usage of SAPHIR observations was the inves-
tigation conducted at the European Center for Medium-range Weather Forecast
(ECMWF) with the so-called all-sky system which take benefit from both clear and
cloudy observations of SAPHIR (Chambon and Geer 2017). The all-sky assimilation
experiments of SAPHIR observations was made possible thanks to the recent
improvements of the radiative transfer model RTTOV-SCATT, using non-spherical
particle shapes for the radiative properties of snowfall (Geer and Baordo 2014) of
particular importance at the SAPHIR frequencies. These studies performed by
Chambon and Geer (2017) showed that assimilating SAPHIR data have a similar
impact than assimilating the data from 2 to 3 MHS sounders within the Tropics.

At Météo-France, developments are also ongoing for assimilating SAPHIR
observations in cloudy and rainy areas to complement the clear-sky assimilation
with an original Bayesian framework (Wattrelot et al. 2014). A feasibility study was
first performed by Guerbette et al. (2016), then a full assimilation framework was
implemented in the Météo-France system to perform assimilation tests of SAPHIR
observations in a context close to the operational framework (Duruisseau et al.
2017). The impacts onto tropical winds and temperature forecasts, obtained by
only adding the cloudy and rainy observations of SAPHIR within the Météo-France
global model are very encouraging and may lead to the operational implementation
of this framework in a few years from now.

Some of the upstream investigations mentioned above led to the operational
assimilation of SAPHIR observations in several numerical weather predictions
centers which are listed in the next section.
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3.4.2 Operational Applications

The Megha-Tropiques ground component is complex and extensive. It consists of a
ground component aggregate having also other functions. Roles are shared between
France and India, mainly CNES and ISRO. ISRO is in charge of the mission center,
located in Bangalore, which manages the satellite and processes the raw data to
Level 1 based on CNES specifications. The data are collected by a network of three
stations: Bangalore (ISRO), Kourou (CNES) and Hartbeesthoek (CNES). SAPHIR
NRT data (L1 DUMP) are produced and sent to EUMETSAT for further dissemi-
nation via EUMETCAST to meteorological agencies, all in less than 3 h. Thanks to
this broadcasting system users can have access to the SAPHIR Level 1 data, into
both HDF and BUFR formats, with a latency compatible with NWP applications.
Indeed, a large fraction of the data arrives in less than 4 h after acquisition. Figure 3.7
below shows an example of the fraction of the SAPHIR dataset than have been used
for the period June 2015 to June 2018 within the Météo-France global data assim-
ilation system which is characterized by a 4-h cutoff for its 6-h assimilation cycle.
Apart from two “outliers” in these statistics (May and December 2017), this aver-
aged fraction reaches 66% which is a high fraction for a satellite mission which was
not originally designed to fulfill NWP operational requirements.

Météo-France and the JapanMeteorological Agency started assimilating SAPHIR
observations operationally in 2015 (e.g., Chambon et al. 2015). The positive impacts
demonstrated on tropical forecasts with their clear sky assimilation frameworks were
confirmed by the Met Office which started assimilating SAPHIR data in 2016
(Doherty et al. 2018) as well as by the Joint Center for Satellite Data Assimilation
(JCSDA) which extended the National Oceanic and Atmospheric Administration
(NOAA) Global Data Assimilation System/Global Forecast System (GDAS/GFS) to
assimilate SAPHIR brightness temperatures (Jones et al. 2017). This latter work
performed by JCSDA led to the operational assimilation of SAPHIR data within

Fig. 3.7 Fraction of SAPHIR observations per month which have been received and used a Météo-
France before the cutoff times of the Météo-France global data assimilation system (4–5 h
depending on the assimilation cycle) (Courtesy of Hervé Benichou, Météo-France DIROP/COM-
PAS/COM). The period starts in June 2015, which corresponds to the beginning of the operational
assimilation of Megha-Tropiques data at Météo-France. The dashed red line refers to the averaged
fraction over this 4-year period

56 R. Roca et al.



the 2018 parallel suite of the National Centers for Environmental Prediction (NCEP)
global model at NOAA as well as Fleet Numerical Meteorology and Oceanography
Center (FNMOC) of the United States Navy (Karpowicz et al. 2017).

Table 3.3 summarizes the agencies which are, to the knowledge of the authors,
assimilating SAPHIR observations operationally.

These efforts of the international community to bring SAPHIR data within their
operational system showcase, if needed, the proof of concept of a low inclination
orbit mission and its high added value to the operational observing system. It is also a
good indicator for future satellite missions onto tropical orbits providing enhanced
sampling of these regions, like the TROPICS mission (Blackwell et al. 2018) which
will provide microwave observations at a frequency close to geostationary satellite.

The various research and operational use of the SAPHIR instruments by different
numerical weather prediction systems confirming, if needed, the proof of concept of
a low inclination orbit mission and its high added value to the operational observing
system.

3.5 Conclusions and Outlook

After a long commissioning phase, the Megha-Tropiques observations and products
have been made widely available for both research investigations and operational
use. The demise of the MADRAS instrument required an enhanced effort to mitigate
the loss using the sounder instead, to address the precipitation related objective of the
mission. The proof of concept of a water and energy tropical mission has been
demonstrated. In the era of GPM, the tropical precipitation estimation as well as the
tropical weather forecasts both benefit significantly from the sampling of the

Table 3.3 List of weather prediction agencies which are assimilating SAPHIR observations within
an operational framework

Numerical Weather Prediction Center

Assimilation
method for
SAPHIR References

European Centre for Medium-range Weather
Forecasts (ECMWF)

All-sky Chambon and Geer (2017)

Fleet Numerical Meteorology and Oceanography
Center (FNMOC) – US Navy

Clear-sky Jones et al. (2017) and
Karpowicz et al. (2017)

Japan Meteorological Agency (JMA) Clear-sky

Joint Center for Satellite Data Assimilation
(JCSDA)

Clear-sky Jones et al. (2017)

Korea Meteorological Administration (KMA) Clear-sky

Météo France Clear-sky Chambon et al. (2015)

National Center for Environmental Predictions
(NCEP)

Clear-sky Jones et al. (2017)

UK Met Office Clear-sky Doherty et al. (2018)

3 The Megha-Tropiques Mission After Seven Years in Space 57



mission. The excellent performances of the two sensors SAPHIR (and SCARAB)
after 7 years in space grants further success for the mission. The legacy of the
Megha-Tropiques mission, instrument or orbit wise, is already at play in upcoming
missions like MetOP-SG/MWI and TROPICS, or emerging mission concept like
D-TRAIN (Haddad et al. 2018).
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Chapter 4
Microwave Sensors, Imagers and Sounders

Kazumasa Aonashi and Ralph R. Ferraro

Abstract Passive microwave sensors flown on low Earth orbiting satellites are the
cornerstones to precipitation retrieval because of their strong connection to the
physical processes related to rain and snow. They penetrate through cirrus clouds
and respond to both liquid and frozen hydrometeors which are highly correlated to
surface precipitation rates. Despite their rather coarse spatial resolution and less
frequent temporal sampling as compared to geostationary based visible and infrared
measurements, the evolution of the microwave sensors through both research and
operational missions have led to their important role in global precipitation retrieval.
This chapter summarizes the primary microwave sensors and their attributes for the
past 40 years.

Keywords Precipitation · Rainfall · Snowfall · Satellite · Microwave · Radiometers ·
Imagers · Sounders · Polarization · Cross-track scan · Conical scan · Precipitable
water · Cloud liquid water

4.1 Introduction

Passive microwave sensors have flown on both research and operational missions for
over 40 years. They have evolved from research missions in their early stages, to
operational missions that supported weather forecasting. Over time, newer technol-
ogy was developed, tested and advanced through a number of international research
missions focusing on Earth science applications, with a growing emphasis on
instrument stability for tracking climate variability and change.
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Because of antenna size constraints, to date, all passive microwave sensors have
been flown on low-Earth orbiting satellites. This then provides the best spatial
resolution opportunities as opposed to flying it on a geostationary platform, although
this option is being discussed by several agencies through the use of synthetic
aperture antennas and will someday become a reality. As a general rule, the
operational sensors are placed on satellites that are in a sun-synchronous orbit
whereas several of the research satellites are orbited in different inclination planes
to provide for a much broader sampling of the diurnal cycle.

Figure 4.1 provides a time sequence of the super-typhoon NANGKA images
from 0540 to 1731 UTC 12 July 2015, observed by various microwave sensors
around 89 GHz, except 36 GHz for WindSat. Note the general similarity in the
features related to the storm, however, sensor resolution differences can be seen,
where the AMSR2 and GMI show more detailed structure whereas AMSU-B shows
less because of its coarser spatial resolution. Each of these sensors will be described
in more detail in the sections that follow.

Fig. 4.1 A time sequence of the microwave images of the super-typhoon NANGKA from 0540 to
1731 UTC 12 July 2015, superimposed on MTSAT IR images. (From NRL Tropical Cyclone
page – https://www.nrlmry.navy.mil/TC.html, last accessed 21 Oct 2018)
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4.2 Characteristics of Microwave Imagers

Microwave Imagers (MWIs) observe brightness temperatures (TBs) mainly in
microwave window regions to monitor atmospheric water subsistence, surface vari-
ables over ocean and land. Some MWIs also have channels near the weak H2O
absorption band (22.3 GHz) to see Precipitable Water Content (PWC). Table 4.1
shows typical satellite MWI channels used for the retrieval of the physical variables.
PWC and Cloud Liquid Water Content (CLWC) retrievals over sea mainly employ
23 and 37 GHz. 10–19 GHz provide valuable information about rain over ocean,
while 89 GHz and higher frequencies are sensitive to frozen precipitation. Low
frequency channels (�10 GHz) are necessary for Sea Surface Temperature (SST)
and over-land soil moisture retrievals. 37 GHz channels are mainly used for Sea
Surface Wind (SSW) retrievals. Sea ice and over-land snow depth are retrieved
based on the sensitivity differences between 19 GHz and higher frequencies. Surface
reflectivity in the microwave spectrum greatly varies in terms of the incident angle
and polarization. Hence, most MWIs except for earliest sensors scanned conically to
observe TBs at constant surface incident angles and polarizations (horizontal and
vertical).

Early MWIs adopted Dicke radiometer design which switched the receiver input
between the antenna and reference load in order to calibrate TBs. The Special Sensor
Microwave Imager (SSM/I) demonstrated a new design, combination of total-power
radiometer and rotary-scanning for direct calibration of the whole system including
its feed horn. The success of the SSM/I has made this design the standard for
later MWIs.

Recent MWIs have installed large antenna in order to alleviate lower spatial
resolution compared with infrared or visible radiometers. The following sections
introduce the major satellite MWI’s data from the 1970’s to the present (see
Table 4.2).

Table 4.1 Typical MWI channels used for the retrieval of the physical variables ◎ and 〇 denotes
necessary and important channels, respectively. S and L denotes over-sea and over-land retrievals,
respectively

7 GHz 10 GHz 19 GHz 23 GHz 37 GHz 89 GHz 183 GHz

PWC (S) 〇 ◎ 〇

CLWC (S) 〇 〇 ◎
Rain (S) 〇 ◎ 〇

Frozen precipitation
(S/L)

〇 ◎ 〇

SST (S) ◎ ◎ 〇 〇

Sea surface wind (S) 〇 〇 〇 ◎
Sea ice (S) 〇 ◎ ◎ 〇

Snow (L) ◎ ◎ 〇

Soil moisture (L) ◎ ◎ 〇
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4.2.1 The Electrically Scanning Microwave Radiometers
(ESMRs)

The first ESMR was on Nimbus-5 launched in 1972. This sensor was an electrically
cross-tracked Dicke radiometer which observed linearly polarized TBs at 19.35 GHz
(Wilheit 1972). The second ESMR was flown aboard Nimbus-6 in 1975. This
electrically scanning Dicke radiometer was designed to observe dual polarized,
37 GHz TBs at a nearly constant surface incident angle (~50�) (Wilheit 1975).
Tables 4.3 and 4.4 illustrate radiometric performance characteristics of the ESMRs.
Studies using the ESMR TBs (Wilheit et al. 1977, Weinman and Guetter 1977)
indicated that the TBs were valuable for rain retrieval over sea.

4.2.2 The Scanning Multichannel Microwave Radiometer
(SMMR)

The SMMR was on Nimbus-7 and SEASAT launched in 1978. The Nimbus-7
sensor operated for many years while the SMMR on SEASAT failed after a few
years of operation. The SMMR sensor was a Dicke radiometer which observed dual-
polarized TBs at 5 frequencies from 6.6 to 37 GHz. The SMMR scanned conically
with surface incident angle of 50� for Nimbus-7, and 49� for SEASAT (Gloersen and
Barath 1977) . Table 4.5 provides the radiometric performance characteristics of the
SMMR (Gloersen and Hardis 1978). Studies using SMMR multi-frequency TBs
(e.g., Wilheit and Chang 1980) proposed retrieval algorithms for various atmo-
spheric and surface variables.

Table 4.2 Major satellite MWIs from the 1970s to the present

Satellite/Launch
year Sensor Frequencies (GHz)

Swath
width
(km)

Highest horizontal
resolution (km)

Nimbus5/1972 ESMR 19.35 3000 25 � 25

Nimbus6/1975 ESMR 37 1300 20 � 40

Nimbus7/1978 SMMR 6.6, 10.69, 18, 21, 37 800 18 � 27

SEASAT/1978 SMMR 6.6, 10.69, 18, 21, 37 600 14 � 21

DMSP5D2/1987 SSM/I 19.35, 22.235, 37, 85.5 1394 13 � 15

TRMM/1997 TMI 10.65, 19.35, 21.3, 37, 85.5 759 5 � 7

Coriolis/2003 WindSat 6.8, 10.7, 18.7, 23.8 950 8 � 13

Aqua/2003 AMSR-E 6.925, 10.65,18.7, 23.8, 36.5,
89

1445 4 � 6

GCOMW1/2012 AMSR2 6.925, 7.3, 10.65, 18.7, 23.8,
36.5, 89

1450 3 � 5

GPM/2014 GMI 10.65, 18.7, 23.8, 36.5,
89, 165.5, 183 � 3, 183 � 7

885 4 � 6
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4.2.3 The Special Sensor Microwave Imager (SSM/I)

The SSM/I was aboard the Defense Meteorological Satellite Program (DMSP) 5D
satellites. Since the first SSM/I launch in 1987, six sensors have become operational.
The SSM/I was a 4-frequency 7-channel MWI which observed vertical TBs at
22.235 GHz and dual polarized TBs at other 3 frequencies (19.35, 37.0, and
85.5 GHz). The SSM/I scanned conically with a surface incident angle of 53.2�

(see Fig. 4.2). The SSM/I was a rotary-scanning total power radiometer which
directly calibrated the whole system by measuring hot and cold reference loads
with its feed horn. This design achieved high sensitivities and absolute accuracy.
Table 4.6 illustrates radiometric performance characteristics of the SSM/I (Hollinger
et al. 1990). The success of the SSM/I boosted new precipitation retrieval algo-
rithms, in particular, using TBs at 85.5 GHz over land (Spencer et al. 1989).

Table 4.4 Radiometric performance characteristics of ESMR on NIMBUS-6

Central frequency
(GHz)

RF band width
(MHz) Polarization

Antenna beam
width

IFOV
(km)

Sensitivity
(K)

19.35 300 Linear 1.4� � 1.4�~
2.4� � 1.4�

25� 25 ~
45 � 160

1.5

Table 4.5 Radiometric performance characteristics of SMMR on NIMBUS-7, SEASAT

Central
frequency (GHz)

RF band width
(MHz) Polarization

Antenna
beam width

IFOV (km)
Nimbus7(N)
SEASAT(S)

Sensitivity
(K)

6.6 220 H&V 4.2� 148 � 95 (N)
121 � 79 (S)

0.9

10.69 220 H&V 2.6� 91 � 59 (N)
74 � 49 (S)

0.9

18 220 H&V 1.6� 55 � 41 (N)
44 � 29 (S)

1.2

21 220 H&V 1.4� 46 � 30 (N)
38 � 25 (S)

1.5

37 220 H&V 0.8� 27 � 18 (N)
21 � 14 (S)

1.5

Table 4.3 Radiometric performance characteristics of ESMR on NIMBUS-5

Central frequency
(GHz)

RF band width
(MHz) Polarization

Antenna beam
width

IFOV
(km)

Sensitivity
(K)

19.35 300 Linear 1.4� � 1.4�~
2.4� � 1.4�

25� 25 ~
45 � 160

1.5
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4.2.4 The TRMM Microwave Imager (TMI)

The TMI was on the Tropical Rainfall Measuring Mission (TRMM) satellite
launched in 1997. The TMI was a 5-frequency 9-channel MWI which observed
vertical TBs at 21.3 GHz and dual polarized TBs at other 4 frequencies (10.65,
19.35, 37.0, and 85.5 GHz). The TMI scanned conically with a surface incident
angle of 52.88�. The TMI was a rotary-scanning total power radiometer which
adopted the “SSM/I design”. Table 4.7 illustrates radiometric performance charac-
teristics of the TMI (Kummerow et al. 1998).

Figure 4.3 displays scan geometries of the TRMM precipitation radar (PR), TMI,
and infrared imager (IR) (Kummerow et al. 1998). The TRMM enabled the global
validation of MWI and IR retrievals by the radar, and encouraged projects for near-
real-time global precipitation data sets.

Fig. 4.2 Scan geometries of the SSM/I sensors. (The COMET Program – https://www.meted.ucar.
edu/index.php, last accessed 21 Oct. 2018)

Table 4.6 Radiometric performance characteristics of SSM/I on DMSP 5D satellites

Central
frequency (GHz)

RF band width
(MHz) Polarization

Antenna
beam width

IFOV
(km) Sensitivity (K)

19.35 500 H&V 1.87� 43 � 69 0.42(H) 0.45(V)

22.235 500 V 1.65� 50 � 40 0.74

37 2000 H&V 1.10� 28 � 37 0.37(H) 0.38(V)

85.5 3000 H&V 0.43� 13 � 15 0.73(H) 0.69(V)
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4.2.5 WindSat

WindSat was launched on Coriolis satellite in 2003, designed to measure sea surface
wind vectors. WindSat was a 5-frequency polarimetric MWI which had horizontal
and vertical polarizations for all frequencies, and +45, �45, left-hand circular, and
right-hand circular polarizations for 10.7, 18.7 and 37.0 GHz (Gaiser et al. 2004).
While WindSat is a conical scanning radiometer, the surface incident angles were
not the same for different frequencies. Table 4.8 illustrates radiometric performance
characteristics of the WindSat.

Table 4.7 Radiometric performance characteristics of TMI on TRMM

Central
frequency
(GHz)

RF band
width (MHz) Polarization

Antenna beam
width

IFOV
(km) Sensitivity (K)

10.65 100 H&V 3.7�(H) 3.8�(V) 63 � 37 0.63(H) 0.54(V)

19.35 500 H&V 1.9� 30 � 18 0.50(H) 0.47(V)

21.3 200 V 1.7� 23 � 18 0.71

37 2000 H&V 1.0� 16 � 9 0.36(H) 0.31(V)

85.5 3000 H&V 0.42�(H) 0.43�(V) 7 � 5 0.52(H) 0.93(V)

Fig. 4.3 Scan geometries of the TRMM PR, TMI and VIRS. (Adapted from Kummerow et al.
1998)
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4.2.6 Advanced Microwave Scanning Radiometer (AMSR)
Series

The AMSR-E was on the Aqua satellite launched in 2002. The AMSR-E was an
“SSM/I design” MWI which observed dual polarized TBs at 6 frequencies
(6.9–89.0 GHz). The AMSR2 is aboard the Global Change Observation Mission-
Water 1 (GCOM-W 1) launched in 2012. The AMSR2 is a “SSM/I design” MWI
which observes dual polarized TBs at 7.3 GHz in addition to the AMSR-E channels
in order to address radiofrequency interference over land. The AMSR-E and the
AMSR2 scan conically with a surface incident angle of 55�, except 54.5� for 89 GHz
B channels. The AMSRs improved horizontal resolution of their FOVs by installing
large antennas (1.6 m for AMSR-E, 2.0 m for AMSR2). Tables 4.9 and 4.10
illustrate radiometric performance characteristics of the AMSR-E and the AMSR2
(Imaoka et al. 2010).

4.2.7 GPM Microwave Imager (GMI)

The GMI is on the Global Precipitation Measuring mission (GPM) satellite launched
in 2014. The GMI is an 8-frequency 13-channel “SSM/I design” MWI which
observed vertical TBs at 21.3, 183 � 3, and 183 � 7 GHz and dual polarized TBs
at other 5 frequencies (10.65, 19.35, 37.0, 85.5, and 165.5 GHz). The GMI scanned
conically with a surface incident angle of 52.88�, with its 1.2 m antenna. Table 4.11
illustrates radiometric performance characteristics of the GMI. The addition of the
higher-frequency channels (>165.5 GHz) improves the detection capability of frozen
precipitation over land.

Table 4.8 Radiometric performance characteristics of WindSat on Coriolis

Central frequency (GHz)
/Surface incident angle

RF band
width (MHz) Polarization

Antenna
beam width

IFOV
(km)

Sensitivity
(K)

6.8/53.5� 125 H&V 1.78� 60 � 40 0.48

10.7/49.9� 300 H&V
�45, L, R

1.13� 38 � 25 0.37

18.7/55.4� 750 H&V
�45, L, R

0.65� 27 � 16 0.39

23.8/53.0� 500 H&V 0.54� 20 � 12 0.55

37.0/53.0� 2000 H&V
�45, L, R

0.33� 13 � 8 0.45
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4.3 Characteristics of Microwave Sounders

Microwave Sounder (MWSs) are designed primarily to measure and infer the
vertical distribution of temperature and water vapor across the globe. Their TB’s
are widely used by all of the major Numerical Weather Prediction (NWP) centers in
the world, as this data complements the much sparser radiosonde network. As such,
the majority of channels that are on MWSs are in the 50–60 GHz O2 and 183 GHz

Table 4.9 Radiometric performance characteristics of AMSR-E on Aqua

Central frequency
(GHz)

RF Band width
(MHz) Polarization

Antenna beam
width

IFOV
(km)

Sensitivity
(K)

6.925 350 H&V 2.2� 74 � 43 0.34

10.65 100 H&V 1.5� 51 � 29 0.7

18.7 200 H&V 0.8� 27 � 16 0.7

23.8 400 H&V 0.92� 32 � 18 0.6

36.5 1000 H&V 0.42� 14 � 8 0.7

89.0A 3000 H&V 0.19� 6 � 4 1.2

89.0B 3000 H&V 0.19� 6 � 4 1.2

Table 4.10 Radiometric performance characteristics of AMSR2 on GCOMW1

Central frequency
(GHz)

RF Band width
(MHz) Polarization

Antenna beam
width

IFOV
(km)

Sensitivity
(K)

6.925 350 H&V 1.8� 62 � 35 0.34

7.3 350 H&V 1.7� 62 � 35 0.43

10.65 100 H&V 1.2� 42 � 24 0.70

18.7 200 H&V 0.65� 22 � 14 0.70

23.8 400 H&V 0.75� 26 � 15 0.60

36.5 1000 H&V 0.35� 12 � 7 0.70

89.0A 3000 H&V 0.15� 5 � 3 1.2

89.0B 3000 H&V 0.15� 5 � 3 1.4

Table 4.11 Radiometric performance characteristics of GMI on GPM

Central frequency
(GHz)

RF band width
(MHz) Polarization

Antenna beam
width

IFOV
(km)

Sensitivity
(K)

10.65 100 H&V 1.73� 32 � 19 0.96

18.7 200 H&V 0.98� 18 � 11 0.82

23.8 400 V 0.86� 16 � 10 0.82

36.5 1000 H&V 0.84� 16 � 9 0.56

89.0 6000 H&V 0.39� 7 � 4 0.40

165.5 4000 H&V 0.40� 6 � 4 0.81

183 � 3 2000 V 0.36� 6 � 4 0.87

183 � 7 2000 V 0.36� 6 � 4 0.81
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H2O absorption bands. The earlier built sensors generally made observations in the
O2 bands; however, more recent sensors focus on the H2O bands. Additionally,
because atmospheric contamination by clouds and precipitation can affect the
vertical profiles of temperature and humidity, the current class of MWSs generally
contains some window channels to edit out precipitation. These channels provide
valuable information on the surface emissivity which can vastly improve the tem-
perature and moisture information over land. Because of these additional channel
compliments, the MWSs have shown to be useful in retrieving several physical
variables similar to their MWI counterparts (Table 4.1), but with some limitations
described shortly. The addition of the high frequency channels, above 89 GHz, has
shown great utility in improving precipitation over land and also snowfall (Ferraro
et al. 2005, Skofronick-Jackson et al. 2004). Many of the current MWSs are
incorporated within the GPM precipitation constellation.

In terms of typical design features, MWSs are usually cross-track scanning
sensors (i.e., they have a variable Earth incidence angle, usually ranging from 50�

either side of nadir) which leads to a wider swath width than MWI’s. But this
geometry leads to varying FOV sizes across the scan and varying incidence angle,
posing retrieval problems with surface and atmospheric affects. Table 4.12 provides
a list of the primary MWSs flown to date.

Table 4.12 Major MWS satellite and instruments from the 1970’s to present

First satellite/
Launch year Sensor Frequencies

Swath
width
(km)

Highest
horizontal
resolution
(km)

TIROS-N/1978
and NOAA-6/
1979

MSU 50.3, 53.74, 54.96, 57.95 2000 110

DMSP-F4/1979 SSM/T1 50.5, 53.2, 54.35, 54.9, 58.4, 58.83,
59.4

1500 200

DMSP-F11/
1992

SSM/T2 91.7, 150.0, 183.3 (3 channels) 1500 48

DMSP-F16/
2003

SSMIS 19.35, 22.235, 37, 50.3, 52.8, 53.6,
54.4, 55.5, 57.3, 59.4, 60.793
(5 channels), 91.65, 150.0, 183.3
(3 channels)

1700 12

NOAA-15/1998 AMSU-A 23.8, 31.4, 50.3, 52.8, 53.6, 54.4,
54.9, 57.29 (6 channels), 89.0

2200 48

NOAA-15/1998 AMSU-B 89.0, 150.0, 183.3 (3 channels) 2200 16

NOAA-18/2005
and MetOp-A/
2006

MHS 89.0, 157.0, 183.3 (two channels),
190.3

2200 16

Megha-
Tropiques/2011

SAPHIR 183.3 (6 channels) 1700 10

S-NPP/2011 and
NOAA-20/2017

ATMS 23.8, 31.4, 50.3, 51.8, 52.8, 53.6,
54.4, 54.9, 55.5, 57.29 (6 channels),
89.5, 165.5, 183.3 (5 channels)

2200 16
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4.3.1 Microwave Sounding Unit (MSU)

The Microwave Sounding Unit (MSU) was the first operational microwave sensor
and was designed for temperature profiling in the atmosphere (Mo 1995). It was part
of a package of sensors known as the TOVS – Tiros Operational Vertical Sounder –
and was comprised of two additional sensors – the High Spectral Infrared Radiation
Sounder (HIRS) and the Stratospheric Sounding Unit (SSU). These were infrared
(IR) sensors. MSU was to aid in the profile retrievals under cloudy conditions.

The MSU was first launched aboard the TIROS-N satellite in late 1978 and
provided global coverage (from Pole to Pole). It is 4-channel Dicke microwave
radiometer, operating between 50 and 60 GHz. Spatial resolution varies from
approximately 110 km at nadir to about 250 km at the edge of the scan at +47.5�.
There were 9 different MSUs launched; the most recent one on NOAA-14. They
provided measurements of the temperature of the troposphere and lower stratosphere
until 1998, when the first Advanced Microwave Sounding Unit (AMSU) was
deployed. AMSU provides many more channels and finer resolution (about
50 km). Table 4.13 provides more details on the MSU sensor.

It should be noted that although the MSU was designed for weather forecasting
applications, the length of record has led to several studies using the time series to
explore temporal and spatial variations in the Earth tropospheric temperature
(Christy et al. 1998; Zou et al. 2006). Special care is needed to intercalibrate the
data across all nine satellites.

4.3.2 Special Sensor Microwave Temperature
and Temperature-2 (SSM/T and SSM/T2)

Beginning with DMSP-F07 in 1983, the first SSM/T was placed into operation, and
the SSM/T continued through the DMSP-F15 satellite (launched in 1999). The
SSM/T has similar heritage to the MSU in terms of its channel range and cross
track scan geometry, however, it has seven channels as opposed to four on MSU
(Grody et al. 1985). Details are provided in Table 4.14.

To compliment the temperature sounding capability of the SSM/T, the SSM/T-2
sensor was deployed starting on DMSP F-14 (launched in 1997); this sensor was
flown to retrieve water vapor profiles. The SSM/T2 is a five-channel radiometer,

Table 4.13 Radiometric performance of the MSU sensor on NOAA satellites

Central
frequency (GHz)

RF band width
(MHz) Polarization

Antenna beam
width (Deg)

IFOV at
nadir (km)

NEDT
(K)

50.30 220 V 7.5 105 0.3

53.74 220 V 7.5 105 0.3

54.96 220 V 7.5 105 0.3

57.95 220 V 7.5 105 0.3

4 Microwave Sensors, Imagers and Sounders 73



with two window channels at 91 and 150 GHz, and three channels at 183 GHz
(Falcone et al. 1992). Details are provided in Table 4.15.

4.3.3 Special Sensor Microwave Imager Sounder (SSMIS)

The Special Sensor Microwave Imager/Sounder (SSMIS) continues the legacy of
passive microwave instruments carried aboard the DMSP satellites (Kunkee et al.
2008). Beginning with the launch of the DMSP F-16 satellite on 18 October 2003,
the SSMIS marked the beginning of a new series of passive microwave conically
scanning imagers and sounders planned for operation for approximately 20 years
(Sun and Weng 2008). SSMIS improves upon the surface and atmospheric retrievals
of the SSM/I, and upon the atmospheric temperature and water vapor sounding
capabilities of both the SSM/T and SSM/T2. Furthermore, the SSMIS imaging and
sounding sensors share the same viewing geometry, thereby allowing surface
parameters to be retrieved simultaneously (Yan and Weng 2009).

The SSMIS operates at frequencies between 19 GHz and 183 GHz with a swath
width of 1700 km. (details in Table 4.16). It has flown on four DMSP satellites: F-16
(October 2003); F-17 (November 2006); F-18 (October 2009) and F-19 (April
2014). The planned launch of DMSP F-20 was canceled and the SSMIS on F-19
stopped operating in February 2016. There are no immediate plans to develop a

Table 4.14 Radiometric performance of the SSM/T sensor on DMSP satellites

Central
frequency (GHz)

RF band width
(MHz) Polarization

Antenna beam
width (Deg)

IFOV at
nadir (km)

NEDT
(K)

50.50 400 H 14.5 175 0.6

53.20 400 H 14.5 175 0.4

54.35 400 H 14.5 175 0.4

54.90 400 H 14.5 175 0.4

58.40 115 H 14.5 175 0.5

58.825 400 H 14.5 175 0.4

59.40 250 H 14.5 175 0.4

Table 4.15 Radiometric performance of the SSMT/2 sensor on DMSP satellites

Central
frequency (GHz)

RF band width
(MHz) Polarization

Antenna beam
width (Deg)

IFOV at
nadir (km)

NEDT
(K)

91.65 3000 H 6.0 84 0.6

150.0 1500 H 3.7 54 0.6

183.31 � 7 500 H 3.3 48 0.6

183.31 � 3 1000 H 3.3 48 0.6

183.31 � 1 1500 H 3.3 48 0.8
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continuity mission, thus, once the current sensors cease operation, there will be no
replacement.

4.3.4 Advanced Microwave Sounding Unit–A and –B
(AMSU-A and AMSU-B) and the Microwave Humidity
Sounder (MHS)

The AMSU-A sensor is designed to enhance the vertical profiling of temperature to
support NOAA’s operational mission. In this manner, it is used in conjunction with
the AMSU-B (later on Microwave Humidity Sounder, MHS) and HIRS/4 sensor as
part of the ATOVS system; this is substantial upgrades to their predecessors, the
HIRS, MSU and SSU sensors. The first AMSU-A was flown on the NOAA-15
satellite in July 1998; subsequent sensors have been flown on NOAA-16 (September
2000), -17 (June 2002), -18 (May 2005) and -19 (February 2009) satellites, as well as

Table 4.16 Radiometric performance of the SSMIS sensor on the DMSP satellites

Central frequency (GHz) RF band width (MHz) Polarization IFOV (km) NEDT (K)

19.35 356 V, H 42 � 70 0.34

22.235 407 V 42 � 70 0.45

37.0 1580 V, H 28 � 44 0.24

50.3 380 H 18 � 26 0.21

52.8 389 H 18 � 26 0.20

53.60 380 H 18 � 26 0.21

54.4 382 H 18 � 26 0.20

55.5 391 H 18 � 26 0.22

57.29 330 RC 18 � 26 0.26

59.40 239 RC 18 � 26 0.25

60.793 � 0.3579 � 0.050 106 RC 18 � 26 0.38

60.793 � 0.3579 � 0.016 29 RC 18 � 26 0.37

60.793 � 0.3579 � 0.006 10 RC 18 � 26 0.58

60.793 � 0.3579 � 0.002 5 RC 18 � 26 0.86

60.793 � 0.3579 3 RC 18 � 26 1.18

63.283 � 0.2853 3 RC 18 � 26 1.23

91.65 2829 V,H 13 � 14 0.19

150.0 3284 H 13 � 14 0.53

183.31 � 6.6 1025 H 13 � 14 0.56

183.31 � 3 2038 H 13 � 14 0.39

183.31 � 1 3052 H 13 � 14 0.38

Note it is a conical sounder
RC denotes right-hand circular polarization
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the MetOp-A (October 2006) and MetOp-B (September 2012) satellites. Several are
still in operation today. AMSU-A also was flown on the EOS Aqua satellite (May
2002) to work synergistically with the AIRS sensor. The final AMSU-A and MHS
will be flown on the MetOp-C satellite, scheduled for the fall of 2018.

In addition to the legacy TOVS products and MSU climate time series which
primarily utilize “sounding” channels in the oxygen (50–60 GHz) and water vapor
(183 GHz) absorption bands, NOAA began to use the AMSU-A and -B window
channels (initially included for surface and precipitation screening) generating
“Hydrological Products” (e.g., rain rate, snow cover, sea-ice concentration, etc.)
from NOAA-15 through the Microwave Surface and Precipitation Products System
(MSPPS; Ferraro et al. 2005) and the Microwave Integrated Retrieval System
(MiRS) (Boukabara et al. 2011). These products have gained increasing popularity
in both the operational weather and climate communities, thus, the motivation for
this project.

AMSU-A, AMSU-B and MHS are cross-track scanning sensors that scan to
approximately 50� of nadir. Nadir spatial resolution is 48 km for AMSU-A and
16 km for AMSU-B/MHS (see Fig. 4.4). Twenty microwave channels are
combioned there as opposed to five of the MSU. Tables 4.17, 4.18 and 4.19 provide
details on each of these sensors.

Fig. 4.4 Scan geometries of the AMSU-A and AMSU-B sensors. (The COMET Program – https://
www.meted.ucar.edu/index.php, last accessed 21 Oct 2018)
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Table 4.17 Radiometric performance of the SAPHIR sensor on the M-T Satellite

Central frequency
(GHz)

RF band width
(MHz) Polarization

IFOV at nadir
(km)

NEDT
(K)

183.31 � 0.2 200 H 10 2.0

183.31 � 1.1 350 H 10 1.5

183.31 � 2.7 500 H 10 1.5

183.31 � 4.2 700 H 10 1.3

183.31 � 6.6 1200 H 10 1.3

183.31 � 11 2000 H 10 1.0

Table 4.18 Radiometric performance of the AMSU-A sensor on NOAA and MetOp satellites

Central frequency
(GHz)

RF band
width
(MHz) Polarization

Antenna beam
width (Deg)

IFOV at
nadir (km)

NEDT
(K)

23.8 270 V 3.3 48 0.30

31.4 180 V 3.3 48 0.30

50.3 180 V 3.3 48 0.40

52.8 400 V 3.3 48 0.25

53.60 170 H 3.3 48 0.25

54.4 400 H 3.3 48 0.25

54.94 400 V 3.3 48 0.25

55.50 330 H 3.3 48 0.25

F0 ¼ 57.290 330 H 3.3 48 0.25

F0 � 0.217 78 H 3.3 48 0.40

F0 � 0.3222 � 0.048 36 H 3.3 48 0.40

F0 � 0.3222 � 0.022 16 H 3.3 48 0.60

F0 � 0.3222 � 0.010 8 H 3.3 48 0.80

F0 � 0.3222 � 0.00045 3 H 3.3 48 1.20

89.0 6000 V 3.3 48 0.50

Table 4.19 Radiometric performance of the AMSU-B sensor on NOAA satellites

Central
frequency (GHz)

RF band width
(MHz) Polarization

Antenna beam
width (Deg)

IFOV at
nadir (km)

NEDT
(K)

89.0 1000 V 1.1 16 0.37

150.0 1000 V 1.1 16 0.84

183.31 � 7 2000 V 1.1 16 0.60

183.31 � 3 1000 V 1.1 16 0.70

183.31 � 1 500 V 1.1 16 1.00
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4.3.5 Sondeur Atmosphérique du Profil d’Humidité
Intertropicale par Radiométrie (SAPHIR)

Megha-Tropiques (M-T), launched in Nov 2011, is a low-inclination satellite that
observes the tropical band between 30�S and 30�N, was designed to study the
tropical water cycle (Raju and Shivakumar 2012) with two MW instruments:
MADRAS (Microwave Analysis and Detection of Rain and Atmospheric Systems),
and Sondeur Atmosphérique du Profil ďHumidité Intertropicale par Radiométrie
(SAPHIR). MADRAS (MWI), designed primarily to measure atmospheric temper-
ature, surface properties, and precipitation, experienced several malfunctions and
ceased to function after �1 year of sporadic operation. So, the SAPHIR is currently
the only MW instrument onboard M-T.

The characteristics of SAPHIR channels are shown in Table 4.20. They all have
horizontal polarization, swath width 1700 km, and resolution 10 km at nadir. The
SAPHIR and ATMS channels operate at slightly different frequencies and SAPHIR
also has a few additional water vapor channels.

ATMS is a cross-track MW sounder with 22 channels operating at frequencies
from 23.8 to 190.31 GHz (Weng et al. 2013; see Table 4.21). It continues the legacy
of the AMSU-A/MHS sensors, combining all channels into a single sensor optimiz-
ing size, weight and operation efficiency. It is designed to work synergistically with
the Crosstrack Infrared Sounder (CrIS). Measurements from ATMS can be used to
extend the long-standing time series of O2 bands that started from MSU.

4.3.6 Advanced Technology Atmospheric Sounder (ATMS)

As was the case with AMSU and MHS, it also has several window channels that can
be utilized for hydrological parameters. Additional bands at 183 GHz provide
additional capability for precipitation retrieval, including snowfall (Ferraro et al.
2018). ATMS is currently flying on S-NPP (October 2011) and NOAA-20
(November 2017) satellites. It will also be flown in the NOAA-21 satellite, sched-
uled for launch around 2020.

Table 4.20 Radiometric performance of the MHS sensor on NOAA satellites

Central
frequency (GHz)

RF band width
(MHz) Polarization

Antenna beam
width (Deg)

IFOV at
nadir (km)

NEDT
(K)

89.0 2800 V 1.11 16 0.22

157.0 2800 V 1.11 16 0.38

183.31 � 3 2000 H 1.11 16 0.42

183.31 � 1 1000 H 1.11 16 0.57

190.311 2000 V 1.11 16 0.45
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4.4 Summary and Future

This chapter has described the primary passive microwave sensors (MWIs and
MWSs) and their attributes for the past 40 years. These sensors are the cornerstones
to global precipitation retrievals, in particular, over oceans where other observations
are rare. This is because they penetrate through clouds and respond to both liquid and
frozen precipitation.

It is critical to maintain the constellation of passive microwave sensors in order to
ensure quality satellite precipitation products for weather, climate, and hydrological
applications. Maintaining a sufficient number of satellites that are properly spaced
around the diurnal cycle is extremely important. However, in the near term, there
may be a gap in coverage of the MWIs because of the end of the DMSP and
potentially, the GCOM mission. However, there are other sensors (not described
in this section) that could be considered if the data were freely available in real-time,
such as missions operated by China and Russia. In addition, new missions are
anticipated, such as the Meteosat second generation, that will contain both MWI
and MWS. Additionally, Korea is planning its own polar satellite program, that will

Table 4.21 Radiometric performance of the ATMS sensor on the S-NPP and NOAA-20 satellites

Central frequency
(GHz)

RF band
width
(MHz) Polarization

Antenna beam
width (Deg)

IFOV at
nadir (km)

NEDT
(K)

23.8 270 V 5.35 75 0.90

31.4 180 V 5.35 75 0.90

50.3 180 H 2.20 32 1.20

51.76 400 H 2.20 32 0.75

52.8 400 H 2.20 32 0.75

53.6 170 H 2.20 32 0.75

54.4 400 H 2.20 32 0.75

54.94 400 H 2.20 32 0.75

55.5 330 H 2.20 32 0.75

F0 ¼ 57.29 330 H 2.20 32 0.75

F0 � 0.217 78 H 2.20 32 1.2

F0 � 0.3222 � 0.048 36 H 2.20 32 1.2

F0 � 0.3222 � 0.022 16 H 2.20 32 1.5

F0 � 0.3222 � 0.010 8 H 2.20 32 2.4

F0 � 0.3222 � 0.00045 3 H 2.20 32 3.6

88.2 5000 V 2.05 16 0.5

165.5 3000 H 1.16 16 0.60

183.31 � 7 2000 H 1.10 16 0.80

183.31 � 4.5 2000 H 1.10 16 0.80

183.31 � 3 1000 H 1.10 16 0.80

183.31 � 1.8 1000 H 1.10 16 0.80

183.31 � 1 500 H 1.10 16 0.90
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operate a MWS and potentially, a MWI. It is also hopeful that there will be a GCOM
W1 follow on mission.
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Chapter 5
Microwave and Sub-mm Wave Sensors: A
European Perspective

Christophe Accadia, Vinia Mattioli, Paolo Colucci, Peter Schlüssel,
Salvatore D’Addio, Ulf Klein, Tobias Wehr, and Craig Donlon

Abstract The EUMETSAT Polar System (EPS) will be followed by a second
generation system, EPS-SG, in the 2020–2040 timeframe and is the European
contribution to the Joint Polar System being jointly set up with the National Oceanic
and Atmospheric Administration (NOAA) of the United States. Among the various
missions which are part of EPS-SG, there are the Microwave Imager (MWI) and the
Ice Cloud Imager (ICI). The MWI frequencies are from 18 up to 183 GHz. All MWI
channels up to 89 GHz measure both V and H polarizations. The primary objective
of the MWI mission is to support Numerical Weather Prediction at regional and
global scales, and to support the retrieval of precipitation and provide information on
surface characteristics. The ICI has channels from 183 up to 664 GHz. The ICI’s
primary objectives are to support climate monitoring and validation of ice cloud
models and the parameterization of ice clouds in weather and climate models
through the provision of ice cloud products. The Copernicus Imaging Microwave
Radiometry (CIMR) Mission is also described, which is currently being studied at
Phase A/B1 as a candidate for the future Copernicus High Priority Candidate
Mission expansion missions. This has a focus on high-latitude regions in support
of European Union (EU) Integrated Arctic Policy. Benefits from synergy with MWI
and ICI in support to characterization of hydrometeors are briefly discussed.
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5.1 Introduction

The EUMETSAT Polar System – Second Generation (EPS-SG) will provide oper-
ational continuity and service enhancements to missions carried by the Metop
satellites of the current EUMETSAT Polar System (EPS). This development is the
result of the long and successful collaboration and partnership between EUMETSAT
and the European Space Agency (ESA). The EPS-SG satellites will further enhance
the services provided by the EPS as a consequence of the new missions embarked,
such as the Ice Cloud Imaging (ICI) and the Microwave Imaging (MWI) missions
(see Fig. 5.1). The EPS-SG system is planned for operation in the 2020–2040
timeframe and will contribute to the Joint Polar System being jointly set up with
NOAA. The satellites will fly, like Metop, in a sun synchronous, low Earth orbit at
around 830 km altitude with an equator crossing time at 09:30 in descending node.
Two different EPS-SG satellites (A and B) are planned and will carry the instruments
presented in Table 5.1. Table 5.1 also shows the instrument payload currently carried
by Metop.

The MWI and ICI missions will be described in the following sections of this
chapter, illustrating the most relevant mission requirements, the expected impact on
the relevant applications and the mission implementation.

The Copernicus Imaging Microwave Radiometry (CIMR) Mission is also
described, which is currently being studied at Phase B2 as one of the future High
Priority Copernicus expansion missions. CIMR has a focus on high-latitude regions
in support of European Union (EU) Integrated Arctic Policy. Benefits from comple-
mentarity and synergy with MWI and ICI in support to characterization of hydro-
meteors and surface geophysical parameters are briefly discussed.

Fig. 5.1 MWI and ICI
accommodation on
Metop-SG
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5.1.1 EPS-SG Microwave Imaging (MWI) Mission

The MWI mission is implemented as a conically scanning imaging radiometer with
distinct spectral bands in the microwave region of the electromagnetic spectrum. The
MWI has a direct heritage from instruments including the Special Sensor Micro-
wave/Imager (SSM/I) on the Defence Meteorological Satellite Program (DMSP), its
successor, the Special Sensor Microwave Imager Sounder (SSMIS), the Tropical
Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), the Advanced
Microwave Scanning Radiometer-EOS (AMSR-E) and the Global Precipitation
Mission – GPM – Microwave imager (GMI). All of these missions have provided,
or provide global microwave imaging data useful to retrieve information on precip-
itating and non-precipitating liquid and frozen hydrometeors, information on water
vapour content and relevant surface characteristics (e.g., wind speed over ocean and
sea-ice coverage).

The MWI spectral bands are presented in Table 5.2, together with other relevant
requirements.

MWI-1 to MWI-3 and MWI-8 can be considered as SSM/I legacy channels.
These channels provide information on total column water vapour, liquid and frozen
hydrometeors, sea ice and snow coverage, windspeed information over ocean, land
surface emissivity. Channels in the oxygen absorption complexes near 50–60 GHz
and 118 GHz are also included (MWI-4 to MWI-7, MWI-9 to MWI-12). These
channels are one of the innovative features of MWI, enabling the retrieval of
information on weak precipitation and snowfall, typically affecting the weather at

Table 5.1 Payload complement of EPS and EPS-SG satellites

Metop payload Metop-SG payload
Metop-SG
satellite

Infrared atmospheric sounding
interferometer (IASI)

Infrared atmospheric sounding
interferometer – New generation (IASI-NG)

A

Advanced very high resolution
radiometer (AVHRR)

Visible-infrared imager (METimage) A

Advanced microwave sounding
unit A (AMSU-A1/A2), micro-
wave humidity sounder (MHS)

Micro-wave sounder (MWS) A

Global ozone monitoring
experiment 2 (GOME-2)

UV-VIS-NIR-SWIR sounder (Sentinel-5) A

Advanced scatterometer (ASCAT) Scatterometer (SCA) B

Global navigation satellite system
receiver for atmospheric sounding
(GRAS)

Radio occultation (RO) A and B

– Micro-wave imager (MWI) B

– Sub-mm wave ice cloud imager (ICI) B

– Multi-viewing, -channel, -polarisation Imager
(3MI)

A
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high latitudes (Gasiewski et al. 1990; Bauer and Mugnai 2003; Bauer et al. 2005).
Channels MWI-13 to MWI-18 can provide information on water vapour profiles and
precipitation (Laviola and Levizzani 2011).

The instrument collects radiation emitted from the Earth by means of a rotating
antenna assembly, composed of an offset parabolic reflector antenna and feed-horn
cluster rotating together. The rotation of the offset antenna rotation results in a
conical scan having a wide swath and constant observation zenith angle. The same
observation geometry is applicable to ICI. However, ICI is counter-rotating with
respect to MWI.

The offset angle of the offset parabolic antenna is adjusted in order to have the
antenna mechanical boresight pointing in a direction providing an observation zenith
angle (OZA) close to 53� � 2� (also known as incidence angle). Assuming the
nominal EPS-SG orbit altitude of 830 km, the offset angle θ is 44.817�. It must be
noted however that the OZA will be different for the various channels because
channel feedhorns are necessarily located in different positions on the focal plane.

The observations are acquired within an angle of �65� in azimuth in the flight
direction, equivalent to a swath of about 1700 km from the altitude of the nominal
orbit. The baseline scan rate is 45 rpm, implying an along-track footprint overlap of
at least 20%. Every rotation, two other angular sectors are used to calibrate the
receivers. In the initial part of the calibration cycle the horns look at a fixed
calibration reflector, collecting the energy coming from the cold sky, and then at a
fixed microwave hot calibration target providing the receivers with a known input
noise power.

Table 5.2 Required MWI performance

Channel
Frequency
(GHz)

Bandwidth
(MHz)

NEΔT
(K)

Bias
(K) Polarisation

Footprint Size
at 3 dB (km)

MWI-1 18.7 200 0.8 1.0 V, H 50

MWI-2 23.8 400 0.7 1.0 V, H 50

MWI-3 31.4 200 0.9 1.0 V, H 30

MWI-4 50.3 180 1.1 1.0 V, H 30

MWI-5 52.7 180 1.1 1.0 V, H 30

MWI-6 53.24 400 1.1 1.0 V, H 30

MWI-7 53.750 400 1.1 1.0 V, H 30

MWI-8 89.0 4000 1.1 1.0 V, H 10

MWI-9 118.7503 � 3.20 2 � 500 1.3 1.0 V 10

MWI-10 118.7503 � 2.10 2 � 400 1.3 1.0 V 10

MWI-11 118.7503 � 1.40 2 � 400 1.3 1.0 V 10

MWI-12 118.7503 � 1.20 2 � 400 1.3 1.0 V 10

MWI-13 165.5 � 0.75 2 � 1350 1.2 1.0 V 10

MWI-14 183.31 � 7.0 2 � 2000 1.3 1.0 V 10

MWI-15 183.31 � 6.1 2 � 1500 1.2 1.0 V 10

MWI-16 183.31 � 4.9 2 � 1500 1.2 1.0 V 10

MWI-17 183.31 � 3.4 2 � 1500 1.2 1.0 V 10

MWI-18 183.31 � 2.0 2 � 1500 1.3 1.0 V 10
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Noise diodes are implemented as part of the calibration system for channels
MWI-1, MWI-2 and MWI-3. These control the calibration stability and correct
transfer function non-linearity. An additional advantage is that it provides a backup
calibration method in case of anomalies on the hot calibration target. Noise diodes
will be active every two scan cycles. Hence two consecutive calibration cycles will
be needed to perform a continuous computation of the non-linearity for these
channels in flight. Additionally, it would be possible to perform a calibration cycle
considering the hot and cold calibration targets together with noise diodes.

The MWI-1 channel at 18.7 GHz also includes a radio frequency interference
(RFI) resistant receiver to mitigate observed RFI in this spectral region (Draper
2016, 2018). MWI will downlink the corrected and uncorrected measurements. RFI
is a growing problem that is best addressed using on-board hardware solutions
because a spectral decomposition of the signal in the time domain is required to
identify and remove RFI contaminated samples. This requires high data sampling
rates resulting in data volumes that could not be sent to ground if no on-board
capability is provided.

5.1.2 EPS-SG Ice Cloud Imaging (ICI) Mission

The EPS-SG Ice Cloud Imager (ICI) mission is implemented as a sub-millimetre
(sub-mm) wave conical imager.

The use of sub-mm frequencies for observation of cloud ice properties was
initially investigated and proposed by Evans and Stephens (1995a, b), and Evans
et al. (1998), while Buehler et al. (2007, 2012) and Jiménez et al. (2007) provided a
broad overview and justification for a similar concept proposed as potential ESA
Earth Explorer mission. Sub-millimetre channels have also been proposed for water
vapour and temperature profiling (Klein and Gasiewski 2000) and the retrieval of
precipitation (Staelin et al. 1998; Bizzarri et al. 2007).

The sub-millimetre frequency range offers unique capability for the observation
of ice clouds. This because, in the sub-mm, the interaction of radiation with cloud ice
particles is significantly stronger than in the mm-wave range, and it is dominated by
scattering mechanisms. As the atmospheric opacity increases because of the water
vapour absorption, the information from channels above roughly 1 THz becomes
limited.

Current existing satellite submillimetre instruments for Earth observation, e.g. the
Earth Observing System (EOS) Microwave Limb Sounder (MLS) on the Aura
satellite (Waters et al. 2006) and the Odin submillimetre radiometer (Murtagh
et al. 2002) have provided valuable information for cloud ice retrieval (Eriksson
et al. 2007; Wu et al. 2008), but are primarily intended for measuring atmospheric
composition and channels were not specifically selected for ice cloud. The limb-
sounding viewing, combined with high gaseous absorption, also results in having
poor horizontal resolution and limits the measurements to the upper troposphere and
above with only relatively high clouds detectable.
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The potential of compact CubeSat radiometers for validating sub-mm-wave
technology has been also demonstrated with missions as NASA IceCube
(Wu et al. 2015), and it is expected that miniaturized radiometer constellations
operating at high microwave frequency channels will become available. In this
respect, having a reference instrument against which measurements are compared
is of high relevance.

ICI is the first radiometer of this type designed with the objective of remote
sensing of cloud ice. It will perform observations over a wide range of sub-mm
wavelengths with 11 channels from 183.31 up to 664 GHz, providing good cloud
penetration capability and sensitivity to a significant portion of particle size range
that not covered either in the optical/thermal IR or in the mm-wave range (Evans
et al. 1998; Eriksson et al. 2007; Buehler et al. 2007, 2012).

The ICI spectral bands are presented in Table 5.3 together with other relevant
requirements. The instrument has several channels selected in three different absorp-
tion lines of water vapour (around 183, 325 and 448 GHz) and are in V polarization.
Two window channels (243 and 664 GHz) provide measurement at both V and H
polarization. ICI has a 16-km on-ground footprint at all frequencies.

Channels ICI-1 to ICI-3 around 183.3 GHz also provide information on water
vapour profiles. They supply information on the upwelling atmospheric emission
background, useful to retrieve the cloud properties (e.g., Evans et al. 2002, 2012;
Rydberg et al. 2007). The use of a combination of sounding channels measurements
along the various water vapour lines sensed by ICI allows sampling of clouds at
different heights and with different particle sizes. The availability of channels
measuring radiances with both horizontal and vertical polarisation (ICI-4 and
ICI-11) provides information on different ice crystal characteristics, with
polarisation effects increasing with frequency (Evans et al. 2002).

ICI collects radiation emitted from the Earth by means of a rotating antenna
assembly, composed of an offset parabolic reflector antenna and feed-horn cluster
rotating together. The rotation of the offset antenna rotation results in a conical scan

Table 5.3 Required ICI performance

Channel
Frequency
(GHz)

Bandwidth
(MHz)

NEΔT
(K)

Bias
(K) Polarisation

Footprint size
3 dB (km)

ICI-1 183.31 � 7.0 2 � 2000 0.8 1.0 V 16

ICI-2 183.31 � 3.4 2 � 1500 0.8 1.0 V 16

ICI-3 183.31 � 2.0 2 � 1500 0.8 1.0 V 16

ICI-4 243.2 � 2.5 2 � 3000 0.7 1.5 V, H 16

ICI-5 325.15 � 9.5 2 � 3000 1.2 1.5 V 16

ICI-6 325.15 � 3.5 2 � 2400 1.3 1.5 V 16

ICI-7 325.15 � 1.5 2 � 1600 1.5 1.5 V 16

ICI-8 448 � 7.2 2 � 3000 1.4 1.5 V 16

ICI-9 448 � 3.0 2 � 2000 1.6 1.5 V 16

ICI-10 448 � 1.4 2 � 1200 2 1.5 V 16

ICI-11 664 � 4.2 2 � 5000 1.6 1.5 V, H 16
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having a wide swath and constant observation zenith angle. ICI scans in clockwise
rotation when viewed from the nadir side of the platform, where it is located.

As for MWI, the observations are acquired within an angle of�65� in azimuth for
the fore view (flight direction), equivalent to a swath of about 1700 km at nominal
orbit altitude. Every rotation, two other angular sectors are used to calibrate the
receivers. In the initial part of the calibration cycle the horns look at a fixed
calibration reflector, collecting the energy coming from the cold sky, and then at a
fixed microwave hot On Board Calibration Target (OBCT) providing the receivers
with a known input noise power.

The basic ICI observation cycle includes the direct observation of the OBCT
providing the receivers with a known input noise power, observation of the cold
space through the space view reflector and observation of the Earth view. The
baseline scan rate is 45 rpm, implying an along-track footprint overlap of at least
40%.

The offset angle of the offset parabolic antenna is adjusted in order to have the
antenna mechanical boresight pointing in a direction providing an OZA close to
53� � 2�. Assuming the nominal EPS-SG orbit altitude of 830 km, the offset angle θ
is 44.767�. Also for ICI the OZA will be different for the various channels due to the
different feedhorn positions on the focal plane.

5.2 MWI and ICI Data Processing and Products

The sensor Level 1B products obtained from the processing of raw data from MWI
and ICI will be calibrated, geo-located, and quality-controlled Earth-view spectral
radiances.

Various geophysical products can be derived from MWI L1B data: cloud and
precipitation products including bulk microphysical variables, total column water
vapour over ocean, water vapour and temperature gross profiles. Furthermore, MWI
can provide all weather surface imagery including: sea ice coverage (and type), snow
coverage and water equivalent, sea surface wind speed (complementary and even-
tually in synergy with the scatterometer SCA on the same platform).

The core geophysical products of ICI will be data characterising the bulk mass of
ice particles and their size. These can be retrieved as global columns, or as vertical
profiles, albeit with a limited vertical resolution. ICI will also provide observations
related to snowfall detection, precipitation content (frozen; total column and gross
profile), snowfall rate near the surface, and water vapour profiles.

Considering MWI and ICI, the following products will be produced at the
EUMETSAT Central Facilities and delivered in Near Real Time:

• Level 1B: Spectral radiances from MWI and ICI;
• Level 2: Liquid Water Path (LWP) fromMWI and Ice Water Path (IWP) mean ice

particle size by mass and mean mass height from ICI.
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5.3 Applications

MWI has to be viewed as the European contribution to an international partnership
supporting global precipitation observations, like the Global Precipitation Mission
(GPM), providing adequate sampling of precipitation over the oceans from a variety
of orbits (Neeck et al. 2010). Considering the orbit of the EPS-SG platforms, both
MWI and ICI will support the observations of the polar regions where information
from geostationary imagers is generally unavailable. This is particularly relevant in
the case of polar lows, for example.

The 54–118 GHz sounding channel pairs carry information on light rain and
precipitating snow over land. This is particularly relevant at mid- to high-latitudes,
where frontal and stratiform precipitation systems are a significant source of light
precipitation (Mugnai et al. 2007). Information on the solid or liquid phase precip-
itation is the primary input to any system aimed to hydrological applications.

MWI can support the retrieval of important surface variables, such as sea surface
wind speed, sea ice extent, concentration, type, and motion as well as snow cover,
snow water equivalent, and wet/dry-status. These surface parameters are used by
NWP systems as important boundary conditions, which cannot be obtained from
measurements other than micro-wave imagery.

ICI will provide global information on ice clouds, with continuous coverage and
good horizontal resolution, comparable to current numerical weather prediction
(NWP) and high-resolution climate models, with continuous delivery for long-
term data record and climate model evaluation.

Numerical weather and climate models are not yet fully able to represent the
radiative and thermodynamic effects of ice clouds, which is especially problematic
because these effects couple to the circulation in various ways that are still poorly
understood. Clouds and their interaction with the circulation therefore are one of the
biggest sources of uncertainty in climate predictions. But it is not only model
understanding that is lacking, there is also a lack of ice cloud data with global
coverage. Thus, a particularly important aim of ICI is the provision of such global
measurements related to ice clouds, including bulk microphysical variables, in order
to improve the representation of ice clouds in NWP and climate models.

Being on the same platform, the MWI and ICI radiometers will provide an
unprecedented set of microwave passive measurements from 18.7 up to 664 GHz.
Synergy of use of MWI and ICI observations will surely provide an improved
description of precipitating and non-precipitating systems (e.g., Wang et al. 2017;
Brath et al. 2018).

5.3.1 Numerical Weather Prediction

Assimilation of all-weather information from microwave imagers like MWI has
demonstrated its beneficial impact in the most advanced NWP systems (Bauer
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et al. 2010; Geer et al. 2010), being complementary to clear air temperature and
humidity soundings to support quantitative precipitation forecasting. Information
related to the integrated total column water vapor as well as near-surface wind speed
derived from MWI data is considered critical in operational NWP analyses, and is
not adequately covered by infra-red or microwave sounder observations alone.

Considering its novelty, it is expected that ICI data will be initially monitored by
NWP centres after launch. It is expected however that after a physiological devel-
opment, ICI data will be considered for assimilation, since ICI observations will
provide information on non-precipitating ice, which is neither accessible in the
micro-wave region nor in the infrared domain (Buehler et al. 2007, 2012). In
addition, ICI will provide information on vertical humidity profiles and vertical
profiles of hydrometeors. Furthermore, the inclusion of vertical and horizontal
polarization measurements at 243 and 664 GHz will provide information on particle
habit and intensity of convection.

Availability of data from the ICI mission will allow NWP model developers to
improve descriptions of diabatic forcing in forecast models, particularly latent heat
release and radiative forcing. This is particularly critical at high latitudes where small
energetic polar lows develop and evolve within short time periods. ICI data will
provide information on three-dimensional cloud fields, with particular focus on ice
clouds. Different altitudes of clouds can be retrieved, that can be used to estimate ice
mass and mean particle size within the non-precipitating clouds. Ice-cloud micro-
physics will need data for validation and model initialization, and will benefit from
ICI data.

5.3.2 Climate Monitoring

MWI will ensure long term continuity and consistency of measurements in key
microwave imager channels, with three planned instruments over a time range of
more than 20 years, considering observation of sea ice concentration or precipitation
detection, for example. MWI will also be important for intercalibration and compar-
ison with other instruments (e.g., GMI), including microwave radiometers on
cubesats.

An important aspect to underline is that EPS-SG platforms will be on controlled
orbits over all their operational life, greatly reducing the risk of introducing artificial
geophysical trends in long time data series due to orbital drift or decay.

Precipitation retrievals from MWI (and ICI) data will continue to support projects
as the Global Precipitation Climatology Project (GPCP, Huffman et al. 1997) as part
of the WMO/WCRP GEWEX (World Climate Research Programme/Global Energy
and Water EXchanges) project.

The main aim of GPCP is the quantification of the long-term distribution of
precipitation around the globe. Microwave observations are a fundamental source of
information since they provide data mainly over oceans where no in situ or ground-
based radar observations are available.
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MWI provides significant enhancements over SSM/I and SSMIS in terms of
spatial resolution and inclusion of sounding and high frequency channels above
89 GHz. High frequency channels will be relevant to characterize frozen precipita-
tion at high latitudes (GPM Microwave Imager – GMI, reaches about 60� latitude),
with further benefit from synergy with ICI. Observations of cloud ice will also
benefit climate modelling as ice clouds play an important role in cloud radiative
forcing and the prediction of climate change. Climate models could capitalise upon
the experience matured in the NWP framework.

In this respect, the primary objective of the ICI mission is to support climate
monitoring providing information on IWP on a global scale. IWP is an essential
climate variable that is currently known with highly uncertainty. Availability of
accurate observations to derive global IWP estimates will support the development
of advanced cloud schemes better representing the radiative and dynamic effects of
ice clouds in climate models (Buehler et al. 2012). This is very relevant to better
estimate the impact of ice clouds on the Earth’s radiative balance, and can further
benefit hydrological applications, especially at high latitudes. The high resolution of
MWI and ICI measurements will support provision of small-scale information in
cloudy and precipitating situations. This will be in line with the anticipated increase
in spatial resolution of numerical forecast and climate models and the expected
advances of cloud schemes able to better represent the fast components of the
hydrological cycle, i.e. cloud formation and precipitation.

5.3.3 Nowcasting

The frequent overpasses of the EPS-SG platforms provide further support to
nowcasting services at high latitudes, where few conventional observations are
available. The availability of high-quality information from MWI and ICI related
to cloud and precipitation will contribute to fulfil key requirements common to
nowcasting and very short-range forecasting at regional scales of relevant phenom-
ena like heavy snow or polar lows.

5.4 Copernicus Imaging Microwave Radiometry (CIMR)
Mission

The frequent observations of sea-ice extent and other sea ice variables in Arctic and
Antarctic Oceans are only possible via microwave imaging instruments, as polar
nights and persistent cloud cover prevent complete coverage by optical imagers.
Other observations of sea ice (airborne, naval) are scarce. These measurements are
crucial to describe the seasonal and long-term variation of the polar sea ice caps. The
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long-term decline of sea ice has been monitored and quantified by satellite micro-
wave radiometer measurements over the past 30 years.

While MWI and ICI provide a world-class capability for microwave imaging of
the Earth, access to measurements in frequencies from 1.4 to 10.65 GHz is not
possible due to the need for a large antenna system. The sensitivity of low-frequency
channels to parameters of great importance in a changing Arctic environment for
example:

• Sea Ice Concentration (SIC) can be retrieved using 6–7 GHz channels where the
separation of open water and sea ice is readily derived from polarisation
differences.

• Sea Surface Temperature (SST) – in all weather conditions except precipitation –
can be derived from 6 to 10 GHz channels.

• Thin Sea Ice Thickness (SIT) can be derived from channels in the 1.4 to 7 GHz
regime up to SIT depths of ~0.5 m providing important information for tactical
navigation.

• Sea Ice Drift (SID) can be derived from a combination of channels where
low-frequency measurements are used as a background field.

• Estimates of snow depth on sea ice can be derived using a combination of
channels.

• Sea surface salinity (SSS) can be measured using L-band (~1.4 GHz) measure-
ments, dominates ocean circulation at high latitudes and is a fundamental prop-
erly of sea ice evolution.

• Extreme winds (including hurricane force, also typical of polar lows) can be
derived from L-band measurements.

However, the challenge is to provide such measurements at high spatial resolu-
tion and with high radiometric fidelity to serve modern operational sea ice, Numer-
ical Ocean Prediction (NOP) and NWP systems. The need for these measurements
was recognised by Stammer et al. (2007) as part of the requirements setting process
for ocean observations relevant to EPS-SG activities. This important aspect has been
considered in the Integrated European Union (EU) Arctic Policy that is served by
Copernicus, the largest European Earth Observation system in the world, which is
now in place. Of particular concern is the future loss of L-band capability provided
by ESA Soil Moisture Ocean Salinity (SMOS) and NASA Soil Moisture Active
Passive (SMAP) missions that have no follow-on mission. The successor research
mission to the JAXAGCOM-WAMSR/2 provides a large (32 km x 64 km) footprint
C-band capability serving gridded 25 km resolution SST products to the global
community.

Recognising these issues, a Copernicus Imaging Microwave Radiometry (CIMR)
mission is currently being studied at Phase B2, led by ESA, as a High Priority
Copernicus Mission. These missions are responding to the urgent and immediate
need to expand the Copernicus satellite fleet driven by user needs (in this case
monitoring of the rapidly changing Arctic environment and providing evidence to
underpin the European Union (EU) Integrated Arctic Policy). The mission concept is
based on a multi-frequency conically-scanning imaging microwave radiometer. The
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baseline flight configuration considers to fly CIMR in a dawn-dusk orbit. The
mission design includes a large rotating reflector (about 8 m) with a swath larger
than 1900 km providing ~95% global coverage every day with a single satellite. The
dawn-dusk orbit will insure synergy with the EPS-SG missions so that in the polar
regions (latitude greater than 65�N and S) collocated measurements between CIMR
and MWI/ICI and SCA measurements would be available within �10 min. More-
over, it must be noted that the orbit phasing of AMSR/3 (13:30 Local Time of
Ascending Node – LTAN) and CIMR (06:00 LTAN) are very complementary,
allowing CIMR to retrieve an estimate of the pre-dawn sea surface foundation
temperature for the first time complemented by AMSR/3 that will measure close
to the peak of diurnal warming. Sub-daily coverage of the polar regions (with no
hole at the pole) is required to serve the EU Integrated Arctic policy and is achieved
in the concept. Measurements are made at an observation zenith angle of 55� in both
H and V polarisation at high spatial resolution (compared to other sensors carrying
these channels) and high radiometric fidelity. Its main objective is to provide
improved continuity of sea ice variables (concentration, extent, drift, thin sea ice
thickness at a spatial resolution of ~4–5 km and SST at ~15 km) with a sub-daily
temporal resolution in the Arctic. An L band (1.4135 GHz) channel (CIMR-1, see
Table 5.4) will be implemented for measurement of thin SIT, SSS and an additional
capability to determine soil moisture. Measurements of the geophysical parameters
of interest to the CIMR mission can be improved considering a strong synergy with
MWI and SCA on board of EPS-SGB platform. SCA scatterometer data are
extremely valuable to independently estimate the ocean surface roughness (inputs
to emissivity estimates for SST and SSS algorithms) and for sea ice type.

Synergistic use of CIMR, MWI, SCA, and eventually ICI, has an enormous
potential to improve the capability to retrieve precipitation, surface and cloud
information at high spatial resolution and over an unprecedented spectral range
from L band up to the sub-mm wave range. MWI and CIMR measurements would
provide observations of a wide range of meteorological situations including heavy
precipitation in tropical storms and in mid-latitude cyclones over ocean with
improved horizontal resolution and higher linearity, while ICI is providing informa-
tion on ice cloud. Synergy between SCA and CIMR (beyond surface roughness
characterisation) will provide an extension of wind speed measurements up to and
including hurricane force. The synergy among MWI, ICI, SCA and CIMR would

Table 5.4 CIMR channels complement and required performance according to current require-
ments (2019). See https://cimr.eu/documents

Channel
Frequency
(GHz)

Bandwidth
(MHz)

NEΔT
(K)

Bias
(K) Polarisation

Footprint size
3 dB (km)

CIMR-1 1.4135 27 �0.3 �0.5 V, H �60

CIMR-2 6.925 825 �0.2 �0.5 V, H �15

CIMR-3 10.65 100 �0.3 �0.5 V, H �15

CIMR-4 18.7 200 �0.4 �0.6 V, H �5.5

CIMR-5 36.5 1000 �0.7 �0.8 V, H �5

94 C. Accadia et al.

https://cimr.eu/documents


benefit NOP, NWP and nowcasting services through observation of some of the
most important and difficult to predict meteorological variables serving the Coper-
nicus services, National Meteorological and Oceanographic Services and Sea Ice
Services.

5.5 Summary

The EPS-SG MWI and ICI missions will continue and enhance important measure-
ments of cloud and precipitation, which need frequent observations that can only be
obtained by a constellation system like GPM. These missions will contribute to long
term projects and provide new observations of precipitating and non-precipitating
hydrometeors in liquid and solid phase in the 2020–2040 time frame. Combined use
of MWI and ICI observations will lead to improved retrieval of cloud parameters.
Further complementarity with observations from the CIMR mission would signifi-
cantly enhance the capability to observe and retrieve heavy precipitation in tropical
and mid-latitude cyclones. Most importantly, in the rapidly changing Arctic, the
CIMR and Metop-SG missions will provide unique synergistic measurements
to monitor the impact of European Policies, provide essential information to better
predict weather systems in European countries and monitor planetary climate
change.
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Chapter 6
Plans for Future Missions

Christian D. Kummerow, Simone Tanelli, Nobuhiro Takahashi,
Kinji Furukawa, Marian Klein, and Vincenzo Levizzani

Abstract This chapter speculates on the future, and as such, is highly uncertain
given the fluid nature with which specific satellite missions are selected and
deselected as budgets fluctuate and priorities are modified to suit political expedi-
encies. To reduce some of this uncertainty, the chapter focuses instead on the
evolving needs from an application as well as climate understanding perspective.
While it is difficult to associate such needs or requirements with individual missions,
it nonetheless point in the direction that the field must evolve towards. The other
determinant for future missions that cannot be ignored are the expected technical
advances to improve both instruments, satellites, and associated technology. Only
then do we discuss future missions which are also divided into the immediate future,
for which missions and sensors have already been defined, followed by a review of
ongoing discussion to define the next generation of missions designed to address
some the needs tied to improved weather and climate forecasts, as well as “process
understanding” discussed in the first section.
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6.1 Requirements of Future Global Precipitation
Measurement

Irrespective of missions, there are continuing needs and challenges to better under-
stand and predict precipitation changes in weather, hydrology, and the climate
system. While all interconnected, they differ in their need for the frequency of
observations, their timeliness, their resolution and their uncertainty. As such, it is
best to examine these needs separately with the notion that they may be combined
when specific missions are designed.

Weather monitoring and forecasting is a complex task that does not easily reduce
to a unique set of requirements, as there is great dependence on the application area:
global numerical weather prediction (NWP), high-resolution NWP, nowcasting,
agricultural meteorology, and ocean state forecasts. The World Meteorological
Organization (WMO) Observing Systems Capability Analysis and Review
(OSCAR, https://www.wmo-sat.info/oscar/observingrequirements) is the reference
for the requirements that are expressed in terms of six criteria: uncertainty, horizontal
resolution, vertical resolution, observing cycle, timeliness and stability. For each
criterion three values are indicated: threshold (minimum value to be met for the data
to be useful), breakthrough (intermediate level representing a significant improve-
ment for the targeted application), and goal (requirement above which no further
improvements are necessary). If one examines the OSCAR tables for surface
precipitation intensity (liquid or solid), the values associated with “goal” capabilities
vary in the following way: horizontal resolution (from 0.25 km of agricultural
meteorology to 5 km of global NWP), observing cycle (from 5 min for nowcasting
and ocean to 60 min of global NWP), timeliness (from 5 min of nowcasting and
ocean to 15 min of high resolution NWP), uncertainty (0.1 mm h�1 for all applica-
tions). The confidence level for liquid precipitation in all these cases is between firm
(result of impact studies on actual data used in actual applications) and reasonable
(not firm, but based on a strong heritage of experiments with similar data). In the case
of solid precipitation intensity at the surface, the confidence level for high resolution
NWP is only tentative (positive impact expected but not yet validated due to lack of
suitable data). From this analysis, it is clear that the improvement of future precip-
itation missions with regard to observing cycle, resolution, timeliness and uncer-
tainty level are deemed necessary. Because requirements focus on parameters rather
than on individual missions, the overarching goals in the case of precipitation tend to
focus both on high quality individual products as well as merged products as
discussed in Parts II and III. The International Precipitation Working Group
(IPWG; Levizzani et al. 2018) is helping WMO and the Coordination Group for
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Meteorological Satellites (CGMS) to meet these goals in the near future with the
clear notion of making available operational products for specific user needs. Note
that robustness of the constellation of passive and active sensors in orbit is a key
issue for ensuring the necessary continuity of products (Huffman et al. 2016).

Hydrologic predictions try to meet the fundamental societal need for water, which
remains insecure in large portions of the Earth. Needs vary from monitoring and
predicting water availability in water-scarce areas (especially developing countries)
to ensuring an efficient use of water where it is often used without adequate plans
(most of the industrialized countries). Accurate observations are thus a key element
of hydrologic predictions (e.g., Lettenmaier 2017). The US Decadal Survey (2017)
underlines the importance of monitoring and modeling the water cycle “. . .from the
accurate quantification of water and energy fluxes at the river basin scale, to accurate
snow water equivalent measurements for water supply forecasting, to improved
drought monitoring, to flash flooding hazard prediction, to changes in land use and
water quality in highly coupled human-natural systems”. And it stretches from
recommendations to extend ongoing measurements, to new endeavors in detecting
the phase (rain or snow) of precipitation, to measuring snow water equivalent and
evapotranspiration, to new fields for application of remotely sensed data, such as
water quality, groundwater recharge, effects of urbanization, water-modulated bio-
geochemical cycling, and prediction of hazard chains. Improvements in our observ-
ing capabilities from space relate not only to precipitation (rainfall and snowfall), but
snow water equivalent (still quite elusive especially in mountain areas in spite of our
ability to estimate snow cover), evapotranspiration, snow and ice melt, and recharge
and withdrawal of groundwater. Advances are planned in the areas of precipitation,
river discharge, evapotranspiration, total storage estimates, soil moisture, and sur-
face water storage (lakes, wetlands and reservoirs) (Lettenmaier et al. 2015), while
the US Decadal Survey (2017) further highlights the need for snow water equivalent
measurements. It is thus very relevant to conceive new precipitation missions along
a future refinement of other present key hydrology-related missions such as the
Gravity Recovery and Climate Experiment (GRACE), and the Soil Moisture and
Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP), or even the
Snow Water Equivalent mission that is possible from the Decadal Survey recom-
mendations. This will allow for a much more integrated view of precipitation in the
Earth System, as well as monitoring of extreme precipitation in the context of its
causes and consequences.

A better understanding of the climate system is critical for long term decision
making. To that end, the World Climate Research Program (WCRP) Grand Chal-
lenges have identified seven challenges in climate science (https://www.wcrp-cli
mate.org/grand-challenges/grand-challenges-overview, last accessed 8 Feb. 2019),
including three that are directly related to observations of precipitation. These
include “understanding and predicting the extreme weather”, “clouds, circulation
and climate sensitivity” and “water for the food baskets of the world”. Each of these
challenges, in turn, can be addressed in three steps: monitoring the Earth, under-
standing the process, and improving predictions (Weatherhead et al. 2017). For the
first two of them, the contribution of satellite observations is expected to be
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paramount, while further combination of observation and numerical model research
is important for the third step. These scientific/societal demands are broken down
into specific science questions, such as: How does climate change affect precipita-
tion, i.e. “is the total rainfall amount increasing?” or “is the extreme rainfall event
increasing?” Another question is: “how climate change affects the global water
cycle?” To answer these questions, a deeper understanding of each element of the
atmospheric water budget (e.g., water vapor, clouds and precipitation), hydrological
processes (e.g., runoff, floods and droughts, and biogeoscience aspects such as
vegetation and forest), must be combined into a unified view. In particular, it will
become necessary to better understand cloud-precipitation processes, which will, in
turn, require observations of the process of changes clouds to precipitation, as well as
coincident three-dimensional kinematic observation of convective processes. At
the same time future observations will need to address fundamental questions that
are still not completely answered on: frequency of rain and snow episodes (e.g.,
Trenberth and Zhang 2018); intensity and phase (e.g., Trenberth et al. 2003);
frequency and distribution of extremes (see Chap. 40 of volume 2). Naturally, not
all global precipitation products are suitable for each of the tasks described above.
Guidance is needed by the satellite precipitation community on the use of such data
sets in data assimilation, model validation and verification and for improving
physical parameterizations (e.g., Tapiador et al. 2017, 2019).

One key aspect that underlies all aspects of climate and climate change is the need
for long-term precipitation records that have been collected for more than 20 years
by the Tropical Rainfall Measuring Mission-Global Precipitation Measurement
mission (TRMM-GPM). To extract changes in precipitation due to climate change
by observation, accurate long-term (more than 30 years) data are necessary to reduce
the effect of long-term variation of the earth (El Niño Southern Oscillation-ENSO,
solar cycle, Arctic oscillation, etc.). Given the time series that is available today, a
significant requirement is thus to maintain and extend this time series of high-quality
precipitation observations. The plan for the proposed implementation of a global
observing system for climate was devised by the Global Climate Observing System
(GCOS 2016) guiding the development of such a system and setting out what is
needed to meet increasing and more diverse needs for data and information, includ-
ing for improved management of the impacts and consequences of climate variabil-
ity and current and future climate change.

In recent years it has become increasingly clear that direct contributions to
societal needs other than meteorology, hydrology and climate are also required
(e.g., Kucera et al. 2013; Kirschbaum et al. 2017; Skofronick-Jackson et al. 2017)
as the mission of the Earth observation satellite, and construction of a data system for
precipitation information on a real time basis is also required for the future mission.
At the same time, the development plan should fit the 2030 Agenda for Sustainable
Development and the Sustainable Development Goals (SDGs) set up by the Com-
mittee on Earth Observation Satellites (CEOS) towards a sustainable society (Paga-
nini et al. 2018). Each goal includes a set of targets that countries are working to
achieve by 2030. Each target in turn includes a set of indicators that define the
quantitative measurement for the targets. Satellites, small satellites in particular,
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contribute to reaching the goals and to monitor the progress towards the targets
(Wood and Stober 2018; Madry et al. 2018). In order to significantly help reaching
the goals of sustainable development satellite data need to become even more
accessible without barriers. In the case of precipitation this is already a reality and
datasets are freely available thus meeting the concept of “open access” satellite
observations (Wulder and Coops 2014). The problem still remains for the observa-
tion of other variables and thus more work towards reaching an international
agreement of data availability is ahead of us.

Outstanding examples of societal needs met by precipitation products are detailed
in Part VI. Among them, we will mention landslide potential, fire monitoring, high-
resolution estimates of terrestrial surface heat and moisture, pests and disease control
(vector- and water-borne), agriculture and food production (fight against famine),
influence on ocean salinity, and atmospheric aerosol scavenging.

6.2 Technical Developments

Current satellite estimates of global precipitation, as captured in Parts II and III, rely
fundamentally on a hierarchy of sensors from spaceborne radars – the most capable
but with currently the least sampling density, to microwave (MW) radiometers with
lower information content but larger numbers and swaths due to their use in
numerical weather forecasts, to geostationary infrared (IR) observations which are
available continuously for weather applications but provide only limited information
about precipitation. Imminent and potential advances in each of these is addressed
separately.

6.2.1 Radar

Future needs, and the perhaps limited information content inherent in passive MW
and infra-red sensors points to a future in which precipitation radars will play
a greater role. They will likely have any combination of higher sensitivity, wider
swath, higher spatial resolution and reduced surface clutter extent than the current
systems to meet the evolving requirements described above. The need for identifying
more particle types and cloud processes also points to the desirability of simulta-
neous multi-frequency, polarization and Doppler velocity measurement.

High sensitivity is essential for understanding the cloud-precipitation processes
and observation of snowfall at high latitudes. Although the introduction of cloud
radars is indispensable to detect drizzle and light precipitation, it is important to
overlap the sensitivity ranges of radars to obtain more independent pieces of
information, which are needed to better constrain largely underconstrained retrievals
of cloud and precipitation properties. For very small drops, this may even require
higher frequencies than are used today in order avoid having all radars observed
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drops in the Rayleigh regime. The technologies necessary to enable such radars are
being developed and demonstrated (e.g., Battaglia et al. 2014; Roy et al. 2018). As
drizzle intensifies, however, W-band cloud radars such CloudSat (Stephens et al.
2002; Tanelli et al. 2008) have more than enough sensitivity and begin to operate in
the Mie scattering regime. A lower frequency such as Ka-band with enough sensi-
tivity to detect light drizzle is therefore warranted. The GPM Dual Frequency
Precipitation radar Ka band channel has a minimum detectable signal of 12 dBZ in
its High Sensitivity mode (range resolution of 500m) which is insufficient for drizzle.
Nonetheless, currently available technology has enabled the development of
spaceborne radar concepts with Ka-band channels capable of achieving sensitivities
around -10 dBZ, and electronic scanning radars operating at Ku-, Ka- and W-band
(e.g., ACE 2016; Tanelli et al. 2018 and references cited therein). This will allow
multiple frequency radars such as the airborne Airborne Third Generation Precipita-
tion Radar (APR-3; Ku-, Ka- and W-band) flown in the OLYMPEX Campaign (e.g.,
Chase et al. 2018; Houze et al. 2017), to be available on space platforms.

Wide swath observation is an effective means of simply increasing the observa-
tion area by radar to meet some of the sampling requirements laid out in the previous
section. The feasibility of achieving a wider swath using current designs from
GPM’s DPR is partly confirmed by the TRMM end-of-mission experiment
(Takahashi et al. 2016; Takahashi 2017). This experiment was conducted during
the period when the TRMM satellite descended below the nominal observation
altitude. Three kinds of experiments were conducted: wide swath observation, 90�

yaw observation (rotating the satellite yaw angle by 90�), and 3- and 4-times dense
sampling observations. In the wide swath width experiment, scan angle was set up to
32� (usually 17� for observation). This experiment increased the swath width from
220 to 400 km which is nearly twice as wide as normal observations. For wide-angle
observations, the clutter height range is of concern. From the experimental results, it
was confirmed that the clutter altitude linearly increased with the incident angle as
expected. Smaller FOV would mitigate this issue. A drawback of wide-swath pencil
beam scanning radars is that the dwell time available for each footprint is reduced
linearly with the number of cross-track beams: this in turn reduces the number of
independent samples and consequently not only the radar sensitivity but also its
precision. Methods to mitigate such drawback exist (e.g., frequency diversity,
orthogonal waveforms) but in general they result in either increased power demands,
increased data rates, increased system complexity or a combination of the above. As
such the design of a scanning radar and the definition of its data acquisition
configuration must carefully balance specific performance requirements with size,
power, mass and data rate demands.

Alternative approaches to increase the global sampling of clouds and precipita-
tion by spaceborne radars include the deployment of multiple compact radars on
small platforms (e.g., Peral et al. 2019; Muraki 2017). The Ka-band nadir-pointing
radar on the RainCube 6U CubeSat (Peral et al. 2019) demonstrated in August 2018
that state-of-the-art technology, careful design of high-performance pulse compres-
sion approaches, and innovative architectural solutions can provide precipitation
detection and profiling capabilities previously achievable only by a much larger class
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of radars with a fraction of the resources. Such a simplification and reduction in cost
allows to one to conceive launching multiple copies either on different orbits
(to provide effective and rapid global sampling of the diurnal cycle of precipitation)
or in a train formation (similar to the A-Train) where the same storm is observed
within minutes by multiple sensors in order to provide measurements of the evolu-
tion of the storm itself (e.g., Haddad et al. 2017; Sy et al. 2017). The same
architecture can be applied to other wavelengths.

Combinations of these two approaches (i.e., one or few very capable
radars vs. many simple radars) are currently being considered not only to increase
global sampling and mapping, but also to provide three dimensional datasets at the
meso-gamma scale, necessary to properly interpret the observed vertical profiles.

For both increased sampling, as well as physical insight into clouds and convec-
tion, it is necessary to increase the spatial resolution of the radar both in both
the horizontal and vertical dimension. The high horizontal resolution is important
so that individual cloud and convective processes occurring at cloud-scale can be
properly resolved. While for specific investigations horizontal resolutions as small as
a few tens of meters are necessary, such level of performance is currently considered
only for airborne and ground-based instruments, while the key contributions by
spaceborne radars are expected to address processes occurring at scales between a
few hundred meters and a couple of kilometers. For example, the Cloud Profiling
Radar (CPR) onboard the Earth Cloud Aerosol and Radiation Explorer
(EarthCARE) satellite (Illingworth et al. 2016), which is supposed to launch in
2021, is designed to provide a horizontal resolution of ~700 m. For scanning real-
aperture radar solutions, a small beamwidth is also necessary to prevent the FOV
from interacting with the surface at off-nadir angles and therefore elevating the
region affected by surface clutter (which masks the echo from precipitation) in the
Planetary Boundary Layer. These needs however push either towards larger antenna
sizes, which typically result in more onerous accommodation and development
requirements, or lower orbital altitudes (which impose additional requirements on
the platform to achieve equal mission duration). Therefore, larger deployable anten-
nas are being developed and may well have a role in the future. The first spaceborne
deployable antenna was launched with RainCube in 2018 (Chahat et al. 2016), but
other designs are currently in development. With large enough antennas, even
geostationary radars as proposed by Im et al. (2004) may someday be feasible.

For Doppler velocity measurements (e.g., Amayenc et al. 1993; Meneghini and
Kozu 1990; Tanelli et al. 2008), the CPR onboard the EarthCARE satellite has
Doppler velocity measurement functions. EarthCARE/CPR is a nadir pointing radar
with a frequency of 94 GHz. The largest factor deteriorating the Doppler velocity
measurement accuracy is degradation of the coherence between the pulses because
of the movement of the satellite. The movement of the platform (7 km s�1) combined
with the finite size of the single antenna directly degrades the coherence. For
example, the EarthCARE/CPR will use a 2.6 m diameter antenna with a wavelength
of about 3 mm to achieve a Doppler velocity error of about 1.0 m s�1 at �19 dBZ in
most cloud scenarios (e.g., Kollias et al. 2014). Additional issues regarding the
Doppler velocity measurement are: effect of non-uniform beam filling and pointing
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uncertainty (e.g., Sy et al. 2014; Tanelli et al. 2005 and references cited therein). In
general, for single antenna radar systems in Low Earth Orbit (LEO), the larger the
antenna size (in the along-track direction) the higher the quality of Doppler mea-
surements: therefore, the most stringent horizontal resolution requirements result
intrinsically in better Doppler accuracies (all other parameters being the same), while
coarser horizontal resolutions can be achieved by radars that would produce essen-
tially uncorrelated pulses with the classical configurations. To mitigate the
decorrelating effect of the high platform velocity without having to adopt a very
large antenna, several techniques that have been developed and demonstrated
on airborne platforms in the last decades are viable to achieve accurate Doppler
measurements (e.g., polarization diversity techniques such as in Pazmany et al. 1999
and Battaglia et al. 2018; or Displaced Phase Center Antenna – DPCA approaches as
in Durden et al. 2007 and Tanelli et al. 2016). Doppler measurements have also been
proposed for systems operating at angles significantly off-nadir to provide measure-
ments of the horizontal wind components in clouds and precipitation (e.g., Amayenc
et al. 1993; Illingworth et al. 2018).

In recent years, mm-wave technology advances have enabled the development
and demonstration of instruments in the G-band. Within this broad band, two
specific frequency ranges have been investigated: the flanks of the 183 GHz water
vapor absorption line where multiple frequencies can be used to implement differ-
ential absorption techniques to profile the water vapor content in cloud (e.g., Cooper
et al. 2018; Battaglia and Kollias 2019; Roy et al. 2018), and the window region
around 239 GHz to further extend the differential backscattering approaches to
size particles down to a 200 μm (Battaglia et al. 2014). Inclusion of such capabilities
in future radar systems that also operate at W-band (or lower) would allow mea-
surement relative humidity and particle size in ice clouds and thus provide essential
information for determining ice crystal growth processes and rates.

In addition to the advances needed to address ongoing requirements, significant
effort has been paid to ensure the continuity of data between TRMM/PR and
GPM/DPR. The most important point is the radar calibration. External calibration
using active radar calibrator (ARC) is introduced for the overall calibration of
TRMM/PR and GPM/DPR as well as the receiver calibration. Careful treatment is
needed to guarantee the continuity of radar performance such as the calibration of
ARC itself including temperature monitoring, power monitor procedure as well as
the radar characteristics such as pulse shape and antenna pattern. Since it is difficult
to perform the external calibration frequently, the normalized radar cross section
(NRCS) of the sea surface has been utilized for routine monitoring (e.g., Tanelli et al.
2008; Furukawa et al. 2015). For future missions, it is necessary to establish the
traceability of the calibration method based on these experiences.

An additional point is the use of radar as a radiometer to obtain overlapped fields
of view (FOV) between the two instruments on one side and also to make use of the
potential of the radar in radiometry mode as a method for constantly monitoring the
performance of the radar receiver system (e.g., Fabry 2001). Moreover, this kind of
technique enables the application of combined radar-radiometer approaches with the
additional advantage provided by the fact that the two measurements share the
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observing geometry (hence reducing the impact of the different footprint sizes and
orientation typically affecting the same approaches when a near-nadir radar mea-
surement is combined with a conically scanning radiometer). This approach has been
demonstrated by early uses of the CloudSat brightness temperature product (e.g.,
Mace et al. 2016).

6.2.2 Microwave Radiometer

A number of radiometer advances have occurred or are occurring. Chief among these
is the miniaturization of radiometer receivers. In particular, Millimeter-wave Mono-
lithic Integrated Circuits (MMIC) (e.g., Marsh 2006; Robertson and Lucyszyn 2001)
allow for MW mixing, power amplification, low-noise amplification, and high-
frequency switching, all down to dimensions from 1 to 10 mm2. Jet Propulsion
Laboratory’s (JPL) High-Altitude MMIC Sounding Radiometer (HAMSR, Brown
et al. 2011), a 25-channel cross-track scanning MW sounder with channels near the
60- and 118-GHz oxygen lines and the 183-GHz water-vapor line is an example of
this technology.

This kind of circuit also makes it feasible to build very small radiometers suitable
for launch as small satellite constellations. Coupled with generally available
CubeSats, this has led to a number of spaceborne MW radiometers to be flown
recently as well as manifested for the near future. Such small satellites can be
launched and separated to form constellations that can increase sampling signifi-
cantly at a reasonable cost. Yet, the requirement that the satellite remains small also
points to small antenna system and thus limited spatial resolution.

The recent development of High Electron Mobility Transistors (HEMT) promise
an economical hardware solution for radiometers operating within the MW and
millimeter wave spectrum (Ajayan and Nirmal 2015; Deal et al. 2011; Leong et al.
2017; Samoska 2011; Liu et al. 2011). Deal et al. (2016) describe a direct detection
radiometer operating at 670 GHz with a 9.6 dB noise figure. Such MW chips and
radiometer receivers are extremely expensive now, but the technology is, in princi-
ple, well suited for mass production. Very promising technology for MW radiometry
is metamorphic HEMT (MHEMT) developed by, for example, BAE Systems,
(Smith et al. 2016), see Fig. 6.1. The plot illustrates continuous development of
low noise amplifiers with low noise figures operating at increasingly higher frequen-
cies. An advantage of the MHEMT technology for radiometry is its gain temperature
stability with temperature. The MHEMT gain variations are 0.0031 dB/K/stage,
about a half of the PHEMT (pseudomorphic) low noise amplifier (Smith et al. 2016).

Microwave sensors spatial resolution is a function of frequency of operation, orbit
altitude, and antenna aperture size. The largest antenna currently deployed is used by
AMSR2 with 2 m diameter. The solid parabolic reflector antennas are very large,
heavy, and very expensive to launch to orbit. Deployable antennas for small
satellites, e.g. CubeSats, are under development (Hohmann et al. 2019). An antenna
concept is shown in Fig. 6.2. Such antenna, together with integrated MW electronics
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could significantly reduce the size and mass of future satellite active (radar) and
passive (MW radiometer) sensors. Using the same technology, a reflector with 2 m
aperture and ~500 g mass could be stowed into a 102 mm diameter cylinder 323 mm
long, thus fitting into a 3U volume of a CubeSat.

A final requirement that is evident from Sect. 6.1 is the need for calibration
stability and either absolute knowledge or lacking that, methods to more easily
intercalibrate existing satellites for use in long term trend analyses. These advances
too, are coming, so that in the future it may be possible to have large fleets of
CubeSat-based radiometers with stable calibration and high spatial resolution meet-
ing most of the high spatial and temporal resolution requirements that today require
geostationary IR sensors to achieve.

The first CubeSat to provide cross-track scanning MW observations relevant
to precipitation sensing is the Micro-sized Microwave Atmospheric Satellite

Fig. 6.1 State-of-the-art microwave monolithic integrated circuits low noise amplifiers’ noise
figure

Fig. 6.2 A deployable reflector antenna concept for the small satellites. The antenna reflector
surface can fit to less than 1.5 U volume and it is designed to operate up to ~100 GHz
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(MicroMAS-2) launched in Jan 2018 (Blackwell et al. 2012). MicroMAS-2 has
provided excellent on-orbit temperature and moisture profiling measurements in
10 channels spanning 90–205 GHz, and data of this type is expected to provide
improved weather forecasts (Li et al. 2019).

6.2.3 Infrared Radiometer

Many advances are occurring in the field of hyperspectral IR sensing (e.g., Bernard
et al. 2017) with foreseen substantial impacts on NWP (e.g., Andrey-Andrés et al.
2018) while sensors are subject to the same miniaturization as is ongoing for MW
radiometers. However, the IR information content for precipitation retrieval is
limited and probably well served by the latest generation of Geostationary Imagers.
With 2 km resolution and 15 min global refresh rates, these sensors, together with
existing polar orbiting systems, are likely to constitute the bulk of the high frequency
observations needed for precipitation estimation. The one unknown in this scheme
may be the ability to construct precipitation products directly from rapid changes in
cloud cover, perhaps even constrained by dynamical models, and how these may be
used for quantitative rainfall estimation.

6.3 Proposed Mission Concepts

6.3.1 Missions and Sensors Moving Ahead

The European Organization for the Exploitation of Meteorological Satellites
(EUMETSAT) is currently finalizing its EUMETSAT Polar System-Second Gener-
ation (EPS-SG), which represents the European contribution to meteorological
observations from polar orbit in the 2022–2043 time frame. Three cloud and
precipitation-related MW instruments will be launched (see Chap. 5 for details):
the Microwave Sounder (MWS), the Microwave Imager (MWI) and the Ice Cloud
Imager (ICI). MWS and MWI are conventional heritage instruments for sounding
and imaging (Kangas et al. 2012). MWS is a cross-track scanning instrument
conceived for atmospheric temperature and humidity profiling and for the total
liquid water column, with 24 channels between 23 and 230 GHz. MWI is a conically
scanning imager for precipitation and water vapor, with 18 channels between 18 and
183 GHz. The ICI is a millimeter and sub-millimeter wave conically scanning
radiometer, with 13 channels between 183 and 664 GHz (Buehler et al. 2012;
Kangas et al. 2014). While these frequencies have been flown on aircraft missions,
this set of frequencies has not previously been observed from space. The three
sensors represent a unique opportunity to observe clouds using conventional MW
sensors (conically and cross-tracking scanning) with the unprecedented addition of
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the very-high-frequency ICI data that will play a relevant role in ice cloud structure
characterization via retrieval of ice hydrometeor profiles (e.g., Liu et al. 2018).

The National Oceanic and Atmospheric Administration (NOAA) has manifested
its Advanced Technology Microwave Sounder (ATMS) sensor on its Suomi
National Polar-orbiting Partnership (S-NPP, launched 2011), NOAA-20 (launched
2017) and Joint Polar Satellite System-2 (JPSS-2) through JPSS-4 spacecraft
for operations through 2038. ATMS is a conventional MW cross-track sounding
radiometer with 22 channels from 23 to 183 GHz. While not as concrete as the
above plans, the Japanese Space Exploration Agency (JAXA) continues with plans
to launch an Advanced Microwave Scanning Radiometer (AMSR2) follow-on
(AMSR3) mission aboard its Greenhouse gases Observing SATellite (GOSAT-3)
platform as part of its commitment to continue monitoring the global water cycle.

The Chinese meteorological Agency (CMA) has concrete plans to continue flying
the MW sounder (MWHS-2) which is a conventional cross-track sounding radiom-
eter operating from 50 to 183 GHz. In addition, it will fly the conically scanning
MWRI radiometer with 5 frequencies (10.65–89 GHz), at horizontal and vertical
polarization on its FY-3 series of satellites through 2022.

While more “traditional” missions will continue to contribute essential observa-
tions for global precipitation retrievals, the design of small satellite constellations for
precipitation monitoring is subject to rapid development. These new missions are
based on the technology of CubeSats (U-class spacecrafts), miniaturized satellites
made up of multiples of 10 cm � 10 cm � 10 cm units with a mass around 1.33 kg
per unit. The CubeSats are normally deployed in orbit either from the International
Space Station (ISS) or launched as secondary payloads on a launch vehicle. These
characteristics contribute to substantial cost reduction by using commercial off-the-
shelf components and thus increasing the feasibility of new constellations.

One of the missions in advanced planning stages is the Time-Resolved Observa-
tions of Precipitation structure and storm Intensity with a Constellation of Smallsats
(TROPICS) mission selected by NASA as part of the Earth Venture-Instrument
(EVI-3) program (Blackwell et al. 2018). TROPICS aims at providing observations
of 3-D temperature and humidity, as well as cloud ice and precipitation horizontal
structure, at high temporal resolution for investigating tropical cyclones. The median
refresh rate of the measurements will be better than 60 min for the baseline mission;
this will allow to observe the thermodynamics of the troposphere and precipitation
structure for storm systems at the mesoscale and synoptic scale over the entire storm
life cycle. TROPICS comprises six CubeSats in three LEO planes. Each constella-
tion member will host a high-performance radiometer to provide temperature pro-
files using a total of 12 channels: seven channels near the 118.75 GHz oxygen
absorption line, water vapor profiles using three channels near the 183 GHz water
vapor absorption line, imagery in a single channel near 90 GHz for precipitation
measurements (when combined with higher-resolution water vapor channels), and a
single channel near 205 GHz more sensitive to precipitation-sized ice particles. The
launch is currently foreseen for no earlier than 2020 at the time of writing. A single
technology demonstration satellite for the Temporal Experiment for Storms and
Tropical Systems (TEMPEST) constellation was successfully launched in 2018
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(Reising et al. 2018b) and was operating well in its first year in orbit. It successfully
demonstrates the calibration characteristics of this new class of radiometers for use in
the TEMPEST mission consisting of a constellation of eight identical 6U-Class
Cubesats observing at 5 millimeter-wave frequencies with three-minute temporal
sampling to observe the time evolution of clouds and their transition to precipitation
(Reising et al. 2017, 2018a).

A novel concept is also the Radar in a CubeSat (RainCube), a technology
demonstration mission designed to enable Ka-band precipitation radar technologies
on a low-cost 6U CubeSat platform (Peral et al. 2017, 2018, 2019). Like
TEMPEST D, it was launched in May 2018 through a resupply mission launched
by NASA’s Wallops Flight Facility. A novel architecture compatible with the 6U
class (or larger) has been developed at the Jet Propulsion Laboratory (JPL) through a
simplification and miniaturization of the radar subsystems to reduce power con-
sumption and the design of a new deployable small size antenna. The RainCube
architecture reduces the number of components, power consumption and mass by
over one order of magnitude with respect to the existing spaceborne radars. The
RainCube radar is a fixed nadir-pointing profiler at Ka-band with a minimum
detectable reflectivity factor better than +20 dBZ at 250 m range resolution. The
footprint size, determined by the antenna size, at a nominal orbital altitude of 400 km
is approximately 8.5 km.

A final mission worth noting here is the Chinese Meteorological Administration
(CMA) Water Cycle Observation Mission (WCOM) currently scheduled for flight
around 2020. Built around its key science question of understanding the spatial-
temporal distribution characteristics of water cycle components and processes, and
whether these are accelerating, the mission nominally consist of a fully polarized
interferometric radiometer at L, S and C bands for soil moisture and salinity; a dual
frequency polarized scatterometer at X and Ku band for snow water equivalent
and monitoring of the freeze/thaw cycle; and a Polarimetric Microwave Imager
(PMI) with frequencies between 6.8 and 89 GHz for temperature, water vapor and
precipitation.

6.3.2 Missions in Planning Stages

JAXA is examining a proposed mission named DPR-2, which is a precipitation radar
mission to satisfy the need for Doppler velocity in addition to higher sensitivity,
wider swath and higher resolution than the current DPR instrument on the GPM
satellite. DPR-2 follows the basic technology of DPR, but introduces the latest
technology to greatly improve the radar performance. The basic design of DPR-2
is the same as DPR, but the sensitivity is improved by about 10–20 dB, and the swath
width is doubled. Higher spatial resolution is achieved by oversampling with the
footprint interval being less than half the FOV. Doppler velocity measurement is a
new challenge for DPR technology.
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Other than DPR-2, inexpensive and compact radar constellation satellites apply-
ing the technology cultivated in TRMM/PR and GPM/DPR are another option of
future mission. Radar constellations will make it possible to dramatically improve
the accuracy of the precipitation map such as the ones from the Integrated Multi-
satelliE Retrievals for GPM (IMERG) and from GSMaP.

The planning of precipitation-related missions at the geostationary orbit (GEO)
need to be mentioned as well, since it would ensure unprecedented coverage for
a vast number of applications. However, technological obstacles are still not
completely overcome. Several advancements were made since the first proposed
efforts for a GEOMW imager (e.g., Savage et al. 1995), to include an interferometric
antenna design described by Tanner et al. (2007). The interferometric array antenna
concept has made it possible to build sensors whose antenna aperture is in excess of
2 m (e.g., Gaier et al. 2016). Several investigations were carried out at JPL and the
European Space Agency (ESA), but the proposed missions have not been approved
at the time of writing. The GEO MWmission project that currently appears closer to
launch is the one of the CMA National Satellite Meteorological Center (NSMC)
planned for 2021 onboard the FY-4M satellite. The Chinese mission is oriented
towards tropical storm monitoring and for nowcasting of severe weather in general.

The ultimate goal for spaceborne observations of precipitation is probably a radar
constellation operating from GEO orbit (Fig. 6.3). It would lead to great advances in
studying severe precipitation system such as typhoon/hurricane and mesoscale
convective system especially over the ocean by the continuous observation and
Doppler velocity observations (which are relatively easier than from LEO orbiting
satellites). The biggest problem of radar observation from GEO is the footprint size
(i.e., antenna diameter). Current technology can achieve the footprint size of about
30 km, which may not be enough for practical use. Further investigation is needed to
realize the radar observation from GEO (e.g., Okazaki et al. 2019).

Alternative designs are being studied by the National Aeronautics and Space
Administration (NASA) for the Cloud and Precipitation Process (CPP) mission
which focuses, as its name implies, on processes needed to elucidate cloud responses
to climate forcing. It will therefore likely focus more on detailed measurements of

Fig. 6.3 Roadmap of spaceborne precipitation radar
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clouds while leaving sampling to more weather-oriented endeavors led by the
National Weather agencies, or potentially even the private sector as smaller and
cheaper satellites become available.

Stephens and Kummerow (2007) articulated the need for a better definition of the
atmospheric state and the vertical structure of clouds and precipitation to improve the
information extracted from satellite observations. This has been the overarching
reason for combining multiple frequency active and passive measurements that
offers some hope for constraining the atmospheric states needed to derive unique
rain and snow rate signals. Radar improvements and the launch of constellations of
high-quality radiometers for an adequate space-time sampling are likely to provide
the observations needed for a substantial step forward in the quality of the retrieval
algorithms.

This framework will surely evolve from the above concepts to meet JAXA’s
needs, NASA’s Decadal Survey (2017) needs, as well as the WCRP research needs,
and the World Meteorological Organization (WMO) constellation of sensors. While
the missions may not be fully mature (or at least not mature enough to have a
timeline associated with them), the goals are well defined, and the community is
moving forward from the scientific and technological points of view.
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Part II
Retrieval Techniques, Algorithms and

Sensors



Chapter 7
Introduction to Passive Microwave
Retrieval Methods

Christian D. Kummerow

Abstract This chapter introduces the reader to the basic concepts behind the remote
sensing of precipitation from passive microwave radiation. Distinctions are drawn
between emission-based frameworks that work well over radiometrically cold
oceans, scattering methods that work better over land, and the newer optimal
estimation methods that incorporate both of these concepts as well as principles
adopted from the atmospheric sounding community. The reader is introduced
simultaneously to the basic spaceborne sensors, and their evolution, to show how
sensors and algorithms have evolved over time, leading to the current GPM satellite
concept. This chapter is not a comprehensive review of all the algorithms that have
been developed. Instead, it highlights individual algorithms that represent the spec-
trum of algorithm being employed.

Keywords Precipitation · Rainfall · Satellite · Microwave · Radiometers ·
Retrievals · Physical principles · Plank function · Surface properties · Hydrometeors ·
Radiative transfer · Emission · Scattering · Emissivity · Rayleigh regime · Mie
regime · DDA · PCT · Regressions · Optimal estimation · Bayesian technique ·
SMMR · ESMR · SMMR · SSM/I · TRMM · GPM

7.1 Theory

The Earth emits and absorbs microwave radiation according to the Planck formula
given by
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Iν Tð Þ ¼ 2hν3

c2 ehν=kT � 1ð Þ Wm�2sr�1Hz�1
� � ð7:1Þ

where v is the frequency, T is the temperature of the emitting body, h is the Planck
constant, c is the speed of light and k is Boltzmann’s constant. In the microwave
regime, the relatively low frequencies between 1 and 300 GHz result in hν being
much smaller than kT for terrestrial temperatures. This allows Eq. (7.1) to be
simplified as

IνðTÞ ¼ 2kν2

c2
T Wm�2sr�1Hz�1

� � ð7:2Þ

Thus, in microwave remote sensing at a given wavelength, the radiance of a black
body is directly proportional to the physical temperature of the object in question.
The only caveat to this equation is that the Earth itself has a wavelength dependent
emissivity, which changes the emitted radiation according to:

Iν,obsðTÞ ¼ εν
2kν2

c2
TSf c Wm�2sr�1Hz�1

� � ð7:3Þ

where εv is the Earths’ emissivity at the specified frequency, ν, and TSfc the surface
skin temperature. The brightness temperature, or physical radiating temperature of a
black body (ε ¼ 1), is thus linearly related to the radiance itself. The emissivity, in
turn, depends primarily on the dielectric properties of the material and the roughness
of the surface. Dielectric properties for water, ice as well as wet and dry soil can be
found in numerous publications, including Ulaby et al. (1986). To first order, one
sees very large distinctions between ocean, land, and ice/snow covered surfaces. In
particular, oceans have relatively low emissivities across the microwave spectrum
(typically around 0.5) while land is considerably higher (closer to unity) but sensitive
to soil moisture, particularly at lower frequencies (i.e., <10 GHz). Snow- and
ice-covered surface can vary significantly based on the snow and ice properties.

Emission and scattering by gases and hydrometeors in the atmosphere occur
when the incident radiation interacts with the dipoles in the material. While emission
and scattering are distinct manifestations of the same interaction, it is convenient
here to treat them as separate phenomena given that scattering by individual water
vapor molecules in the microwave regime is so small as to be entirely negligible.
That leaves only absorption by gases that are shown in Fig. 7.1. There is a weak
water vapor absorption line at 22.235 GHz, followed by a strongly absorbing
complex of oxygen lines between 54 and 60 GHz, another oxygen line at
118 GHz and a second, stronger water vapor absorption line at 183 GHz.

Water vapor sounders focus on the stronger 183 GHz line while temperature
sounders, relying on well mixed oxygen, have historically employed the 54–60 GHz
complex. Some sensors are planned to exploit the 118 GHz line in the near future. In
addition to the lines noted above, there is some continuum absorption but it is modest
for frequencies below 100 GHz.
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For water drops, the dielectric properties of liquid water are responsible for very
broad absorption across the microwave frequency range due to Debye relaxation,
with absorption increasing with frequency. Ice, on the other hand, responds quite
different as the ice crystal lattice structure is not easily able to resonate with the
incoming frequency. Ice thus exhibits relatively little absorption, particularly at the
lower end of the commonly used frequencies (typically <10 GHz).

As long as water droplets are small compared to the wavelength (generally true
for cloud drops in the microwave regime), Rayleigh absorption and scattering apply
and the absorption and scattering cross section of droplets, σabs, and σsca, respec-
tively, can be expressed as:

σabs,ν ¼ 8π2a3ν
c

Im
~n2 � 1
~n2 þ 2

� �
ð7:4Þ

σsca,ν ¼ 128π5a6ν4

c4
~n2 � 1
~n2 þ 2

����
����
2

ð7:5Þ

where a is the particle radius, ν is the frequency of the radiation and ñ is the complex
refractive index of water at the specified wavelength. Noteworthy in Eq. 7.4, is that
the absorption is related the third moment of the drop diameter. This implies that
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Fig. 7.1 Demonstrative atmospheric transmittances (total, H2O and O2) as a function of frequency
and wavelength in the microwave region. (Adapted from Liou 2002, p. 415)
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absorption is directly proportional to the liquid water content of the cloud with no
sensitivity to drop sizes. While this makes the retrieval of cloud liquid water content
over radiometrically cold oceans relatively straightforward, it also implies that it is
difficult to separate small non-precipitating drops from larger precipitating ones.
Scattering is sensitive to the cloud drop sizes but is relatively small for cloud- and
rain-drops at frequencies below 30 GHz. Higher frequencies are needed before the
scattering signal can be differentiated from instrument or surface noise. The back-
ground noise makes it difficult to distinguish different drop sizes from their scatter-
ing signal even if the equation indicates some sensitivity. For ice particles, the
imaginary component of the refractive index is quite small and absorption is
negligible. The scattering behavior is similar to that of water which implies little
scattering below 30 GHz but increased effects as the frequency increases.

Once particles get larger, they enter into the Mie (1908) regime. Here, the
absorption and scattering relations become more complex. Details of the particle
shape also become important. For spheres, many public sites offer codes to compute
scattering parameters using the Lorentz-Mie formulation. For larger drops that
become flattened as they fall through the atmosphere, many applications use oblate
spheroids that can be dealt with using a T-Matrix (Mishchenko et al. 1996). For ice
particles, not only the size, but shape and variations in the density become important.
A number of approaches have been used to compute absorption and scattering
parameters for ice particles. Liu (2004) provides tabulated scattering parameters
from a Discrete Dipole Approximation (DDA) for bullet rosettes, sector snowflakes,
and dendrite snowflakes for frequencies between of 85 and 220 GHz. Kuo et al.
(2016) also relies on a DDA method but uses a 3D growth model to simulate pristine
ice crystals, which are aggregated using a collection algorithm to create larger,
multicrystal particles. Kuo et al. (2016), in particular, make it clear that the propor-
tion of forward scattering at 89 GHz and higher microwave frequencies is generally
overestimated if complex particles are replaced by their spherical equivalent. Much
more detail on ice particle scattering is provided in Chap. 15, while Bohren and
Huffmann (2010) is useful as the book covers the broad subject of single particle
scattering.

7.2 Sensors and Algorithms

7.2.1 The ESMR Era

The earliest attempts to retrieve precipitation from passive microwave sensors in
space can be traced back to the Electronically Scanning Microwave Sensor (ESMR,
Wilheit 1972) aboard the Nimbus-5 Satellite launched in 1972. This ESMR operated
at 19.35 GHz. At this frequency, the ocean appears quite cold, and, as described in
Sect. 7.1, water vapor, clouds, and precipitation all act to increase the observed
radiances, or warm the brightness temperatures. Water vapor, which has a weak
absorption line at 22.235 GHz, still has a fairly moderate effect on this frequency.
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A number of groups, including Savage and Weinman (1975) began demonstrating
that brightness temperatures could be reliably calculated using radiative transfer
methods for a broad range of atmospheric constituents, including cloud and precip-
itation water content. The calculations hinted that quantitative approaches were
possible over oceans. With a single channel, however, it is next to impossible to
determine the relative contribution of cloud- and rain-water, let alone the other
parameters, such as sea surface temperature and roughness, as well as water vapor,
that all affect the brightness temperature. Nonetheless, when rainfall gets sufficiently
intense, it tends to overwhelm cloud water and the other parameters and thus can be
estimated with some success. The theoretical basis for estimating rainfall from the
ESMR emission signal was laid out by Wilheit et al. (1977). Theoretically derived
brightness temperatures as a function of rainfall rate and freezing level height were
simply matched to observations in that work. Results compared very favorably to
independently obtained rainfall rates from a WSR-57 radar over coastal Florida.

Because of the increased focus on quantitative rainfall rates over oceans, the issue
of non-homogeneous beamfilling also became important. A schematic of the prob-
lem is presented in Fig. 7.2. The figure illustrates the typical shape of 19 GHz
brightness temperatures for a 4 km tall, horizontally homogeneous rain cloud as a
function of the mean column rain rate. The figure illustrates quite clearly that a
homogeneous rain cloud with 5 mm h�1 rain and a Tb of 212 K is significantly
warmer than an inhomogeneous cloud consisting of 50% no rain and 50% at
10 mm h�1. The footprint averaged temperature in the latter case would be roughly
200 K which corresponds to only a 2 mm h�1 under a homogeneous FOV assump-
tion. A number of different approaches to overcome this issue are discussed later in
this chapter as well as in the literature of that period.

While the Nimbus-5 ESMR work did not focus very much on trying to estimate
precipitation over land (due to its already warm background), encouraging results
over ocean facilitated the launch of a new ESMR with a slightly higher frequency on
Nimbus-6.

Fig. 7.2 Example of
brightness temperatures as a
function of column averaged
rain rate at 19 GHz used to
illustrate the “beamfilling”
or non-homogeneous rain
distribution effect
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ESMR on Nimbus-6 was launched in 1975 (Wilheit 1975), and operated at
37 GHz. At this frequency, Eqs. (7.4) and (7.5) suggest that absorption is linearly
larger than at 19.35 GHz due to the shorter wavelength. More importantly, however,
scattering increases by ν4 and can become significant. Thus, while work continued to
improve the emission-based methods cited above, observations of ice scattering seen
in airborne radiometers operating at 19.35, 92 and frequencies around 183 GHz
(Wilheit et al. 1982), led Rodgers and Siddalingaiah (1983) to search for, and find
scattering signals in the 37 GHz ESMR data as well. These scattering signals were
fairly evident in the data but it was difficult to quantitatively separate ice scattering
from wet surfaces that also lowered the observed brightness temperatures. Work was
thus confined primarily to identifying precipitating areas.

7.2.2 The SMMR Era

The next milestone in the development of rainfall algorithms came with the launch of
the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7 (Gloerson
and Hardis 1978). SMMR was a 5-channel instrument, with frequencies at 6.6, 10.7,
19.35, 23 and 37 GHz, measuring both horizontal and vertical polarizations at a
constant incidence angle of approximately 49� from nadir. Multiple channels on
SMMR made it possible to simultaneously retrieve a number of geophysical param-
eters. The addition of polarization, in particular, made it feasible to retrieve the ocean
surface wind speed as the surface roughness affects the emissivity quite differently in
the horizontal and vertical polarizations. With a better surface characterization, and
water vapor information from the 23 GHz channel, more physically based retrievals
of clouds and precipitation were now possible over oceans.

With multiple channels and polarizations, Chang and Milman (1982) showed that
it was possible to retrieve sea surface temperature, wind speed, and rain rate from
SMMR. They constructed a large number of models of microwave emission over the
ocean for different rain rates, freezing levels, surface wind speeds, ocean temperature
and non-precipitating cloud water. Other parameters, like the water vapor and
atmospheric lapse rate, were held fixed. They then utilized a simple liner regression

pi ¼
X
j

ai,jTbj ð7:6Þ

were the three parameters pi (sea surface temperature, wind speed, and rain rate) are
fitted to the SMMR Tb vector via coefficients ai,j. The study made explicit mention
of the impacts of non-homogeneous rain, particularly at the large FOV of SMMR at
10.7 GHz (156 km). Their solution at this point in time was to use locally liner
regressions partitioned by 6 mm h�1 intervals below 24 mm h�1 and 12 mm h�1

intervals above the 24 mm h�1 threshold. The algorithm was then allowed to iterate
to the correct interval. The method was quite robust and applicable to oceanic rain in
general.
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In an attempt to focus on rainfall retrievals in tropical cyclones, Alishouse et al.
(1990) used a more empirical approach in which they used data from three hurri-
canes in addition to convective storms around the Tampa Bay, Florida, area to
regress brightness temperatures against ground-based radar reflectivities obtained
from NOAA’s RADAP-II project (Green et al. 1983). They then correlated 37 GHz
observed brightness temperatures and polarization differences to radar data at 18 km
scales and computed liner regression against a number of channel combinations.
Channel combinations, and their correlation against the radar-observed reflectivity
(in dBZ) are summarized in Table 7.1.

Using the same channels, they also regressed the brightness temperatures against
the fraction of the FOV filled with rain. This produced higher correlations (approx.
0.88) but they speculated and then confirmed that the mean reflectivity and fractional
area of the FOV covered by rain are highly correlated. In general, they found that
while the correlations were quite high, there was a general overestimation of light
rain rates and an underestimation of the heavier ones.

From the scattering perspective, Rodgers and Siddalingaiah (1983) used the
37 GHz channels together with theoretical computations performed earlier by
Savage and Weinman (1975) to develop a rain classification algorithm over land.
It used the polarization difference over land which is large for wet or water covered
surfaces, while being small or zero when the emission is due to rain drops. While not
a quantitative rainfall algorithm, they did successfully classify 77% of raining cases
over land, while also correctly identifying 94% as dry land and 79% as wet land
cases.

Spencer (1986) correctly noted that the 37 GHz of SMMR had a non-unique
relationship with precipitation – increasing first as cloud water and light precipitation
filled the field of view, and then decreasing again as more and more ice scattering
associated with convection filled the field of view. The polarization difference,
however, continued to decrease as the rainfall increased. A liner transformation to
variables that contained the sum and difference of the two channels, however, could
be shown to linearize the problem. It was also independent of any non-homogeneous
rainfall issues that plagued the emission methods. Based upon comparisons with
ground-based radar data from different parts of the world, Spencer (1986) derived
the equation for rainfall given by:

Table 7.1 Channel combinations and correlations against radar reflectivity (dBZ) (Alishouse
et al. 1990)

Regression equation Correlation coefficients A B C

dBZ ¼ A•TH + B 0.71 0.2222 �27.4222

dBZ ¼ A•TV + B 0.69 0.4522 �89.3542

dBZ ¼ A•TV + A•TH + C 0.72 �0.4309 0.4252 33.5698

dBZ ¼ A•TC + B 0.71 0.2995 �48.1846

dBZ ¼ A•TC + B•TC
2+ C 0.71 1.1123 �0.0018 �138.6212

TC ¼ 0.5•TV + 0.5•TH
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R ¼ a b � Tb37H � Tb37V þ cð Þ ð7:7Þ

with a value of a� 2.9, b� 0.5, and c� 138. While this is perhaps a bit reminiscent
of the liner equations derived by Alishouse (1990) discussed above, that work used
only the sum of the channels, and thus did not make explicit use of the scattering
signal dealt with here.

Starting with the SMMR era, more physical algorithms were also being devel-
oped to fully match observed Tb to theoretically derived ones. Olson (1989) used the
parameters that had the greatest impact upon SMMR radiances (rainfall, the hori-
zontal and vertical dimension of the rain cell, the height of the rain to ice transition
and the surface wind speed), together with the SMMR antenna response function, to
build a physical model that could be directly inverted. As with Chang and Milman
(1982), the remaining geophysical parameters were held fixed. Unlike the Chang and
Milman (1982) approach, however, a solution was sought that minimized the cost
function ζ,

ζ ¼ min
XNchannels

i¼1

eiðp1, p2, . . . , pmÞ2
h i

ð7:8Þ

where Nchannels for SMMR was set to 10, ei is the difference in Tb space between the
observed and simulated Tb for the m parameters being retrieved. The steepest
descent method, or the conjugate gradient procedure utilized in the Olson (1989)
study, was used to find the minimum with reasonable computational efficiency.
Much of this early work focused its effort on representing cloud and precipitation
morphology as realistically as possible, as well as dealing with microphysical
parameters needed in the radiative transfer computations.

7.2.3 The SSM/I Era

Following SMMR, the US Department of Defense launched the Special Sensor
Microwave/Imager (SSM/I) in 1987 (Hollinger et al. 1987). SSM/I was a conically
scanning radiometer with channels at 19.35, 22.235, 37.0 and 85.5 GHz. All
channels, except 22.235 GHz, measured both the horizontal and vertical polariza-
tions. Only the vertical polarization was measured at the 22.235 GHz water vapor
absorption line. The SSM/I instrument generated great interest because of its relative
calibration stability, and broad access to the data provided by NOAA. On the
precipitation side, the various algorithms developed for SMMR were refined and
adapted to SSM/I. Newer approaches were developed not only to exploit the higher
frequency channels, but also the stability of the instrument that allowed for more
quantitative approaches. Several studies were dedicated to demonstrate SSM/I’s
potential for quantitative precipitation estimates (e.g., Mugnai et al. 1990; Smith
et al. 1992; Wilheit et al. 1994). The SSM/I ushered in the modern era of the
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microwave remote sensing of precipitation to a great degree because of its long, and
stable time series over the next 20 years. Instead of reviewing all algorithms that
were developed in this era, only a few select examples are presented here that
represent the different types of algorithms that were developed. They are largely
chosen because they were in operational use for significant periods of time or served
as a basis for operational algorithms.

Algorithms using only emission suffered from a great deal of uncertainty due to
inhomogeneous rainfall in satellite FOVs, unknown water vapor, as well as uncer-
tainties in the heights of the liquid to ice transition. The latter was necessary to
convert the total liquid water into a rainfall rate. Wilheit et al. (1991) partially solved
the problem by focusing on histograms of brightness temperatures in 5� � 5� cells at
monthly time scales instead of individual pixels. Histograms were constructed of
Tb19 V, Tb22 V, and (2� Tb19 V – Tb22 V). Because the difference in the Tb19 V
and Tb22 V channels is related to the total water vapor, and water vapor is in turn
closely coupled to the atmospheric temperature structure, this technique was statis-
tically quite robust in raining conditions. The rain rate itself was obtained by plotting
a probability density function of the (2 � Tb19 V – Tb22 V). This channel
combination showed a well-defined peak corresponding to non-raining conditions,
followed by a more or less linear portion (in log space) corresponding to precipitat-
ing pixels. The rainfall retrieval itself, was accomplished by computing a PDF of
brightness temperatures for a given log-normal distribution for rainfall and adjusting
the log-normal distribution parameters until a good fit between theoretical and
observed Tb histograms was achieved. While the technique only worked over
oceans where the emission signal was evident, it required data aggregated at
monthly, 5� � 5�, scale to ensure robust pdfs of rain and brightness temperatures.
Versions of this algorithm formed the basis for the Global Precipitation Climatology
Project (Adler et al. 2003) for the entire lifecycle of the SSM/I and future SSMIS
instrument series, as well as early TRMM and AMSR-E products.

Early scattering-based methods tested on ESMR on Nimbus-6 and SMMR grew
significantly in the SSM/I era due to the addition of the 85 GHz channels that exhibit
much greater scattering signals. Ice scattering processes at 85 GHz in deep convec-
tion cause brightness temperatures to fall below 100 K and even below 50 K on rare
occasions. To exploit this scattering signal, Spencer (1989) defined the Polarization
Corrected Temperature (PCT) that remains broadly in use today. PCT is defined as:

PCT ¼ β � Tb85H � Tb85Vð Þ
β � 1

ð7:9Þ

where β ¼ (Tbc,V – Tb0,V)/ (Tbc,H – Tb0,H), and TbV is the vertically polarized
brightness temperature of the precipitating scene at 85 GHz, Tbc,V is the 85 GHz
brightness temperature of a nearby clear scene, and Tb0,V is the 85 GHz predicted
temperature emanating from the surface without an overlying atmosphere. He then
found that a value of β ¼ 0.45 worked well to produce PCT values between 275 and
290 K for non-raining atmospheres. With that value of β, the PCT reduces to the
value that is commonly used:
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PCT ¼ 1:818TbV � 0:818TbH ð7:10Þ

The relationship between rain rate and PCT was left for the community to adjust,
and a series of algorithms quickly emerged (e.g., Ferraro et al. 1996; Kidd 1998;
Conner and Petty 1998). Instead of using the single channel, Grody (1991) had
derived a scattering index to accomplish the same objective of discriminating cold
brightness temperatures due to land features from those due to ice scattering. That
approach used the 19 and 22 GHz channels of SSM/I over land to predict the 85 GHz
brightness temperatures for non-raining conditions. By comparing that to the
observed 85 GHz channel, the ice scattering signal from precipitating ice could be
extracted. Ferraro et al. (1994, 1998) used this technique to derive a scattering index
defined by

SI85V ¼ aþ b � Tb19V þ c � Tb22V þ d � Tb222V � Tb85V ð7:11Þ

While these algorithms all tend to use more than one channel to discriminate
raining scenes or to provide additional information about the background state, the
rainfall determination remained largely a function of the 85 GHz channel.

Another category of algorithms were the physically based retrieval approaches
such as used by Wentz and Spencer (1998). The algorithm simultaneously retrieves
near-surface wind speed, column water vapor, column integrated cloud water, and
rain rate over water. It does so by relying on the fact that the brightness temperature
is directly related to the transmittance of water in the atmosphere. The first step in the
retrieval is thus to simultaneously retrieve this atmospheric transmittance, along with
the water vapor, and surface properties - wind speed, and effective radiating tem-
perature. This is possible as each of the individual parameters has a unique radio-
metric signature in the 19- through 37-GHz range. Once this is accomplished, the
difference between 19- and 37-GHz channels is used to determine the beamfilling, or
inhomogeneous rain effect. A correction is applied for the total attenuation due to
liquid. The formulation then used Mie theory and an assumed relationship between
cloud- and rain-water to derive a column rain water and, together with an assumed
rain column height based upon the SST, a surface rainfall rate.

The simultaneous inversion work that was started by Olson (1987) continued into
the SSM/I era, but the minimum variance solution was more or less supplanted by
Bayesian schemes. The overarching difficulty with the minimum variance schemes
was ultimately the severely under-constrained nature of the retrieval (Stephens and
Kummerow 2007). There are simply far too many variables in a precipitating cloud
related to the hydrometeor types and their vertical distribution, than can be uniquely
retrieved with radiometers carrying a limited number of frequencies. This led more
investigators to adopt Bayesian schemes (e.g., Kummerow and Giglio 1994; Evans
et al. 1995; Marzano et al. 1999). In Bayes’ formulation, the probability of a
observing a particular hydrometeor profile, R, given an observed Tb vector, Pr(R|
Tb), can be written as:
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Pr RjTbð Þ ¼ Pr Rð Þ � Pr TbjRð Þ ð7:12Þ

where R is the rainfall profile, Pr(R) is the probability that a given profile, R, is
observed, and Pr(Tb|R) is the probability of observing the brightness temperature
vector, Tb, given the rainfall profile R. The greatest challenge to implementing the
Bayesian scheme was a way to find the correct distribution of observed rainfall rates.
Absent any global observations, this generation of Bayesian schemes all relied on
various cloud resolving model (CRM) outputs to represent hydrometeor profiles that
would be observed in nature. CRMmodel-based approaches had to tackle the critical
issue of being representative of actual observations and to ensure that Bayesian
schemes accounted for uncertainties in both the modeled microphysical profiles and
the radiative transfer modeling used to simulate multi-channel brightness tempera-
tures (Panegrossi et al. 1998). However, since cloud resolving models of that era
were regional and typically simulated only individual precipitating cloud systems,
the Bayesian scheme needed to first screen non-raining pixels so that these would not
be included in the statistics. Much of the early work was thus focused on producing
realistic cloud model simulations and screening of non-raining pixels, particularly
over complex coasts and topography. Once the profiles were identified, however,
radiative transfer could be used to compute Pr(Tb|R). Uncertainties had to be
estimated as they include many of the assumptions in the cloud resolving models
and radiative transfer computations and remain an area of research 20 years after the
first Bayesian schemes were introduced. These early radiative transfer computations
formed the basis for most of today’s “satellite simulators” in the microwave regime
(e.g., Matsui et al. 2013) that simulate observable radiances from cloud resolving
model output.

7.2.4 The TRMM and GPM Era

The TRMM era continued to see emission-based algorithm such as Wilheit et al.
(1991) be used for monthly rain estimates. Given that TMI was quite similar to the
SSM/I, the algorithms could be adapted rather easily not only to TRMM’s TMI, but
also the SSMIS instrument that succeeded the SSM/I in late 2005. In effect, because
there was no longer simply an SSM/I, but new instruments such as TMI, launched in
1997, the Advanced Microwave Sounding Radiometers on EOS (AMSR-E), and the
SSMIS series, the focus turned more on the physical algorithms such as Wilheit et al.
(1991) that could produce uniform results across the entire constellation of passive
microwave sensors.

Remote Sensing Systems (RSS) also continued developing the over-ocean rain-
fall retrieval algorithm from Wentz and Spencer (1998), later re-named the Unified
Microwave Ocean Retrieval Algorithm (UMORA) (Hilburn and Wentz 2008). The
algorithm uses the 19 and 37 GHz observations common to a wide variety of
microwave sensors (AMSR, GMI, SSM/I, SSMIS, TMI, and WindSat). The small
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differences in frequency and incidence angle present between these sensors are
removed using the RSS radiative transfer model (Meissner and Wentz 2012;
Wentz and Meissner 2016). As before, atmospheric transmittance is estimated
from the difference between the vertically and horizontally polarized brightness
temperatures (Tbs), while beamfilling effects are corrected for by using the ratio of
19 and 37 GHz to infer the sub-pixel variance of absorption. Improvements (Hilburn
and Wentz 2008) also incorporated the effects of footprint size, in order to remove
systematic biases among rain retrievals from the various sensors. The resulting
estimate of absorption is directly related to the total amount of liquid water path
(LWP) in the footprint, but is indirectly related to the surface rain rate (RR). To
estimate the RR, the contribution of cloud water to the LWP is removed using a
global relationship between rain and cloud water. Then the algorithm estimates RR
from the rain water by assuming that the liquid is distributed uniformly between the
surface and the freezing layer estimated from the sea surface temperature.

JAXA’s microwave algorithm developed for their GSMAP algorithm (Aonashi
et al. 2009) made direct use of TRMM’s precipitation radar data to deal with some of
the non-uniqueness problems in passive microwave inversions. In their case, mean
rainfall profiles were constructed from TRMM’s precipitation radar observations and
radiative transfer calculations were used to predict observed radiances not only for
TRMM’s TMI but for all other orbiting radiometers as well. The inversion then tried
to find the closest match to the observations but more details of that method can be
found in Chap. 20.

The Bayesian approaches that relied heavily on cloud resolving models to
provide a-priori information on cloud structures also began using the cloud hydro-
meteor profiles provided by TRMM’s radar. The Goddard profiling algorithm,
GPROF (Kummerow et al. 2015), in particular, was adapted for the TRMM and
later the GPM imagers and constellation satellites. The a-priori database needed to
describe Pr(R) came directly from the radar retrievals (Kummerow et al. 2010).
Because the TRMM radar observed raining and non-raining pixels in the correct
proportions, the GPROF scheme no longer needed to screen pixels for rainfall before
applying the Bayesian scheme. While the early versions of GPROF developed for
TRMM and AMSR-E (Kummerow et al. 2001) still used scattering algorithms over
land, that aspect was eventually replaced by a fully parametric Bayesian scheme in
the GPM era. The fully parametric approach can also be coupled, as was done by
Casella et al. (2013, 2017) to more fully exploit meteorological data to help
minimize the non-uniqueness of solutions, particularly over land areas.

The above schemes all share the property that they are physically based and thus
capable of being adapted very quickly to different sensors with no need to recalibrate
or tune the algorithm to account for channel differences, footprint sizes or other
instrument differences. The main advantage of the approaches is that they can be
used across sensors to construct long time series needed to study climate and climate
variability. Together with the algorithms being constructed for sounding radiome-
ters, they are also very useful for weather applications which require consistent
rainfall retrievals with the highest possible sampling rate.
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7.2.5 The NOAA AMSU/ATMS Sensor Era

While the approaches discussed in the previous sections where generally motivated
and developed for microwave imagers, there is a long history of microwave sounders
that also contain information about precipitation. Operational sounders have typi-
cally operated in the 50–60 GHz oxygen complex, and the 183 GHz water vapor
absorption line to retrieve temperature and water vapor profiles. They often also
carried lower frequency channels to correct for surface radiation.

An early algorithm is due to Spencer (1993) who used relative warming in the
histograms of channels 1 & 2 (50.3 and 53.74 GHz) of the Microwave Sounding
Unit (MSU) to infer the total cloud and rain water content of clouds at 2.5� grid
scales – the approximate footprint size of those channels. The background temper-
ature fluctuations from the air mass itself were corrected for by channel
3 (54.96 GHz) that is sensitive to the temperature itself. By using a series of seven
satellites, he was able to produce a climatology of oceanic precipitation from
1978–1991.

With the advent of the Advance Microwave Sounding Unit (AMSU), much
higher spatial resolutions were available than with its predecessor. This made
scattering approaches feasible. Ferraro et al. (2000) used NOAA-15’s AMSU
instrument to detect the scattering signal from precipitation sized particles at the
89 and 150 GHz channels. This algorithm used the scattering indices that have been
described earlier but separated convective from stratiform rainfall in order to account
for the difference in the vertical hydrometeor structures of these two types systems.
Scattering indices were converted to surface precipitation by matching the index to
ground based observations over the United States.

Other approaches were developed to exploit channels around 183.31 GHz, orig-
inally designed to retrieve water vapor profiles, but showing great potential for
precipitating cloud characterization (Hong et al. 2005) and for precipitation retrieval
(Laviola and Levizzani 2011). Among these, approaches based on artificial neural
networks, successfully applied to microwave sounders (Surussavadee and Staelin
2008), are also used for NRT applications within European operational programs
(Sanò et al. 2015, 2016).

Both emission and scattering algorithms were refined over time but the more
physical approaches being developed for the microwave imagers were slower to
develop in the sounding community because the information content pertaining to
precipitation was more limited in sounders – particularly over oceans where imagers
had good information from the emission channels The GPROF algorithm
(Kummerow et al. 2015) mentioned above, and described more fully in the next
chapter, was nonetheless able to adapt the Bayesian methodology to sounders as
well. An alternative approach that was developed for use with imagers, sounders, or
their combination, is MIRS algorithm (Boukabara et al. 2011). MiRS, more fully
described in Chap. 9, is a 1-D Optimal Estimation (OE) solution that inverts the
radiative transfer equation by finding radiometrically appropriate profiles of temper-
ature, moisture, liquid cloud, and hydrometeors, as well as the surface emissivity
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spectrum and skin temperature. Like earlier minimum variance solutions, the OE
approach minimizes the difference between observed and simulated brightness
temperatures but includes an a-priori term that prevents the solution from deviating
too far from expected values. The formal solution is given by:

Φ ¼ y� f x, bð Þ½ �TS�1
y y� f x, bð Þ½ � þ x� xað ÞS�1

a x� xað Þ ð7:13Þ

where x are the geophysical parameters being retrieved, y is the brightness temper-
ature vector, b are assumed parameters needed for the radiative transfer simulations,
and xa are the a-priori values of the geophysical parameters. While optimal estima-
tion procedures, particularly if clouds and precipitation are included, usually suffer
from insufficient constraints on the solution as described earlier, MiRS’s approach to
tackle this problem is to constrain the inversion problem by using Eigenvalue
decomposition and employing a limited number of eigenvectors that is consistent
with the information content present in the observations. It also has the option to use
a forecast model to provide good a-priori information, instead of the default clima-
tology background. Because of the variable reduction approach, MiRS is highly
flexible, and it could be used as a retrieval tool, independent of numerical weather
prediction. The MiRS system was implemented operationally at the US National
Oceanic and Atmospheric Administration (NOAA) in 2007 for the NOAA-18
satellite. Since then, it has been extended to the microwave sensors onboard
Metop-A and B (AMSU/MHS), DMSP (SSMIS), S-NPP and JPSS (ATMS), as
well as to research missions such as Megha-Tropiques (SAPHIR).
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Chapter 8
The Goddard Profiling (GPROF)
Precipitation Retrieval Algorithm

David L. Randel, Christian D. Kummerow, and Sarah Ringerud

Abstract Early in the 1990s, the Goddard Profiling Algorithm (GPROF) was
created to retrieve both surface rainfall and hydrometeor vertical profiles from
satellite passive microwave sensors. Over the last 25 years it has been the primary
algorithm for the TRMM Microwave Imager (TMI) and the follow-on sensor – the
Global Precipitation Measurement (GPM) Microwave Imager (GMI). To meet the
objectives of these missions, GPROF has been designed not just for single sensors,
but to consistently retrieve rainfall from the full suite of passive sensors in the GPM
constellation. These include Advanced Microwave Scanning Radiometer-2
(AMSR2), Special Sensor Microwave Imager/Sounder (SSMIS), Microwave
Humidity Sounder (MHS), Advanced Technology Microwave Sounder (ATMS),
and the historical sensors, Special Sensor Microwave Imager (SSM/I), and the
Advanced Technology Microwave Sounder (AMSR-E).

Keywords Precipitation · Rainfall · Satellite · Microwave · Radiometers ·
Brightness temperature · Retrievals · GPM · TRMM · GPROF · TMI · SSMIS ·
AMSR2 · Sounders · Bayesian technique · Hydrometeor profile · A priori database

8.1 Introduction

The GPROF algorithm in founded in Bayes’ theorem. In Bayes’ formulation, the
probability of a particular hydrometeor profile R, given an observed Tb vector, can
be written as:
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Pr R j Tbð Þ ¼ Pr Rð Þ � Pr Tb j Rð Þ ð8:1Þ

where Pr(R) is the probability that a the profile R will be observed and Pr(Tb | R) is
the probability of observing the brightness temperature vector, Tb, given a particular
rain profileR. The probability that a certain profileRwill be observed can be derived
directly from the GPM core satellite, while the Tb corresponding to that profile, R,
can be observed directly for GMI and computed for other sensors based upon the
observed hydrometeor profiles.

The expected value of R, Ê(R) of each model profile, R, in the Bayesian formu-
lation is given by:

bE Rð Þ ¼
X

j

Rj

exp �0:5 Tb0 � Tbs Rj

� �� �T
Oþ Sð Þ�1 Tb0 � Tbs Rjð Þ

� �n o

bA
ð8:2Þ

Here, Rj is a vector of model profile values, Tbo is the set of observed brightness
temperatures, Tbs(Rj) is the corresponding set of brightness temperatures computed
from profiles. The variables O and S are the observational and model error covari-
ance matrices, respectively, and Â is a normalization factor. The distribution of
profiles Rj, has evolved over time, but in the latest version it is supplied by the GPM
Combined radar/radiometer algorithm. The computed brightness temperatures, Tbs
correspond to the hydrometeor profiles from the Combined algorithm. This defines
the a priori cloud structure database. The formal solution to the above problem is
presented in detail in Kummerow et al. (2015). In summary, the Bayesian retrieval
procedure can be said to create a new hydrometeor profile (with surface precipita-
tion) by taking the weighted sum of structures in the a priori database that are
radiometrically consistent, Pr(Tb,R), with the observations.

The current version of GPROF has evolved from a pseudo-parametric algorithm
used for TRMM to a fully parametric approach used operationally in the GPM era
(Kummerow et al. 2015). The fully parametric approach now uses the above
Bayesian inversion scheme for all Earth surface types. The algorithm thus abandons
previous rainfall screening procedures used in all early implementations, and instead
uses the full brightness temperature vector to obtain the most likely precipitation.

Using this approach, where we rely on R from the Combined radar/radiometer
algorithm, and radiative transfer computations to obtain Tb(R), the GPROF algo-
rithm can be applied equally to all sensors in the GPM constellation. Results show
that GPROF retrievals are quite consistent among different GPM sensors with
agreement over ocean usually within 1–2%. Over vegetated land surfaces, the
inter-sensor consistency is also quite good after one accounts for the diurnal precip-
itation variability. However, the total precipitation retrieved over snow-covered
surfaces, for monthly global estimates, exhibit differences of up to 25% between
sensors which is traceable to the availability of high-frequency (166–183 GHz)
channels (see Fig. 8.4).
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For computational efficiency, the GPROF retrieval algorithm does not examine
every a priori database pixel for each observation as implied by Eq. (8.1). Instead,
during the formation of the database, profiles are categorized in three dimensions:
14 surface types, total precipitable water (TPW) in 1 mm increments and two-meter
temperature (T2 m) in 1 K increments. Bayesian weighted averaging occurs only
within database pixels that match these three parameters to those assigned to the
observed satellite pixel. A more thorough description of the database construction is
provided in Sect. 8.2. Figure 8.1 highlights the operational GPROF process scheme,
including the “Preprocessor” which does the dimensional assignment, and whose
description is provided in Sect. 8.3.

The GPROF GPM processing engine produces the surface rainfall amounts of
both freezing and liquid states, and the vertical profiles of hydrometeors. The full
description of this component is described in Sect. 8.4.

8.2 GPROF a priori Database

8.2.1 Hydrometeor Profiles and Surface Precipitation

The GPROF a priori databases constructed for each of the constellation radiometers
are based on precipitation data from two sources. First and primary, are retrievals
from the GPM Combined radar/radiometer algorithm. The Combined algorithm,
described in Grecu et al. (2016), retrieves hydrometeor profiles optimized to be
consistent with observations from both GPM radar frequencies (Ku and Ka) as well
as GMI observed Tbs, making this an ideal basis for a Bayesian approach.

Fig. 8.1 Schematic for the GPROF Processing Algorithm. The three main components are the
Sensor Profile Database, the Preprocessor, and the GPROF 2017 Processing Engine
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From the Combined algorithm, hydrometeor profiles, and surface precipitation
are utilized. Additional data, supplied with the Combined retrievals, include those
parameters necessary to perform the forward model calculations for all GPM
instrument channel sets. These include GANAL model profiles of temperature,
vapor density, air pressure, cloud liquid water and surface temperature. Furthermore,
the Combined product effective emissivity, calculated directly from observations, is
utilized. Additionally, information is also required in non-precipitating areas. These
come from the CSU 1Dvar (Duncan and Kummerow 2016) and include integrated
liquid water path (for the cloud water profile), TPW, and surface winds. The GPROF
databases are constructed using 1 year of Combined data, totaling approximately
400 million profiles. In order to create the databases for other sensors in the GPM
constellation, a forward radiative transfer model is implemented which uses all
geophysical and profile information to derive the Tbs for each sensor’s set of channel
frequencies, footprint sizes and view angles.

The second source of precipitation in the a priori database was added due to the
lack of sensitivity of the GPM core radars (minimum detectable signal is approx.
12 dBZ) to light and moderate snowfall events. The solution implemented was to
supplement the combined retrievals with precipitation derived from the Multi-Radar
Multi-Sensor (MRMS) dataset (Kirstetter et al. 2012) over snow covered surfaces.
This version of MRMS included only surface precipitation amounts, and did not
include the hydrometeor profile information, therefore no profile information is
available over these snow-covered surfaces. Two years of hourly MRMS precipita-
tion are matched with coincident overpasses from GMI and each GPM constellation
sensor to create observational databases of surface precipitation and associated
sensor Tbs.

A second issue related to the sensitivity of the DPR radar, was the deficit of
precipitation in high latitude ocean areas where drizzle is known to occur frequently.
This was addressed in the a priori database by setting a threshold in the 1Dvar cloud
liquid water retrieval from GMI (done before the DPR or Combined rainfall was
inserted into the scene), so as to match light rainfall observed by CloudSat (Haynes
et al. 2009). There is a reasonable assumption here that high cloud liquid water
amounts are the most likely pixels to be raining. Cloud water beyond the CloudSat
determined threshold was partitioned between cloud water and rain water similar to
the procedure used by Hilburn and Wentz (2008). Though slightly increasing
precipitation in drizzle areas, the retrievals continue to be low relative to other
estimates and more work is needed to assess high latitude drizzle from different
sources.

In the first 3 years post-launch as well as throughout the TRMM era, ice particles
in the GPM Combined retrieval and constellation databases were represented in the
radiative transfer as “fluffy spheres”, with single scattering parameters calculated
using Mie theory. Resulting simulated Tbs agreed reasonably well at frequencies up
to 89 GHz (TRMM’s highest frequency), but showed significant biases compared
with observed Tb at higher frequencies. The large differences between observed and
computed Tbs implied large error covariances, S, in Eq. (8.2) which led to the higher
frequency channels receiving little of no weight. In an effort to improve database
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accuracy in these higher frequency channels, an ensemble of non-spherical ice
particles was substituted for the “fluffy spheres”. For radiometric consistency, ice
water content profiles from the GPM Combined Retrieval optimizing the full suite of
active and passive core satellite observations are used as a first guess, and adjusted
iteratively for optimal radiometric agreement with observed 166 GHz H-pol Tbs.
This channel was chosen for its sensitivity to ice scattering. The ice particle database
of Liu (2008) was used with single scattering properties calculated via the discrete
dipole method. Resulting Tbs showed significantly decreased bias and increased
correlations compared to observed values at the higher frequency channels. There
were also corresponding improvements in final retrievals, particularly over land
surfaces (Ringerud et al. 2019).

The constellation retrieval database was assembled combining liquid hydrome-
teors with the iteratively adjusted ice profiles. Radiative transfer simulations, using
the Eddington approximation and slant path geometry appropriate to each instru-
ment, were then performed to calculate each database Tb. Tb were convolved to the
native footprint size of each individual constellation sensor. Light precipitation
below the sensitivity of the GPM radar was added as well in non-raining pixels
when retrieved cloud water path exceeded a local threshold as determined by drizzle
onset observed by the NASA CloudSat cloud profiling radar. The result of this
process was a set of databases relating Tb to geophysical parameters, representative
of 1 year of observed precipitation, with appropriate Tb associated with the obser-
vations calculated for each GPM constellation sensor in a parametric retrieval
scheme.

8.2.2 Ancillary Datasets

While the mechanics of Bayesian inversions are fairly well understood (Kummerow
et al. 2015), creating an algorithm to run operationally, in a timely manner, creates a
variety of problems which necessitates creative solutions. An example is the use of
ancillary data such as surface temperature and total precipitable water (TPW) to
search only appropriate portions of the a priori database. Previous studies such as
Berg et al. (2006) have shown that searching only over the appropriate SST and
TPW over oceans constrains the solution in a significant and positive manner. An
important step is, therefore, to select the appropriate a priori profiles for the Bayesian
inversion. In the current version of the algorithm, which retrieves over all surface
types, the SST was replaced by model derived 2-meter temperature (T2m). The T2m
showed much less variability between different model re-analyses and is therefore
more robust.

GPM surface types are defined by using monthly averaged self-similar emissiv-
ities originally classified by Aires et al. (2011). Daily sea ice and land cover snow
maps from NOAA’s Auto Snow dataset (Romanov et al. 2000) are added to the
monthly databases, and a coastline surface class is assigned which is dependent on
each sensor footprint resolution. Finally, the two-meter temperature and TPW, are
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added to each profile from two global analyses products: Japanese Global Analysis
(GANAL) and ECMWF Interim or ERA-5 datasets. Using other global analyses is
possible as versions using MERRA/GEOS5 have been also successfully created.

The profile quantity and their distribution for three surface types are shown in
Fig. 8.2. One year of profiles over oceans has as many as 500,000 profiles in a single
category, while over land the numbers are an order of magnitude less. The number of
profiles is simply too large to operationally run GPROF, but it’s critical to have an
entire year of profiles in order to sample all areas geographically and seasonally.
Therefore, for operational GPROF processing, a k-means clustering routine was
implemented to decrease the number of profiles in each T2 m/TPW/Surface Type
grouping. A maximum of 800 profiles were kept along with a frequency of precip-
itation occurrence of the profiles within a given cluster. The clustering algorithm also
does a broadening of the TPW range up to �4 mm. This has the intended effect of
smoothing the profiles in each clustered bin, and also increasing the total number of
profiles in each bin. The TPW broadening happens gradually until a maximum of
300,000 profiles is included in each of the 800 profile clusters within the bin. The
clustering results in 14 individual sensor GPROF databases, made up of 14 files –
one for each surface type. GPROF uses these 14 files to run the final the Bayesian
rainfall retrieval, one surface type at a time.

The process for creating the databases for the cross-track sounding instruments,
MHS, AMSU-B, and ATMS is very similar to the above description of the conical
databases, however there are some significant differences. The conical imagers have
a constant Earth Incident Angle (EIA) – defined as the angle between nadir and the
instrument view angle at the Earth’s surface. Therefore, when running the forward
model radiative transfer, only a single EIA needs to be included for the path through
the atmosphere. The cross-track instruments have a variable EIA for each of the
90 (MHS and AMSU-B), or 96 (ATMS) scan positions. To most accurately calculate
the top of the atmosphere Tbs, the forward model would need to run using the EIA of
each of the scan positions.

Fig. 8.2 GPROF database distribution of Total Precipitable Water (TPW) and Two-Meter Tem-
perature (T2M) profiles included in the a priori database year. These represent the number of
database profiles in each TPW/T2 m and Surface Type category
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This is computational expensive and not necessary for the operational GPROF
retrieval. Instead the forward model was run at 10 scan angles and these were used as
tie-points for interpolating the other scan position Tbs. At very high scan angles
(generally the last 5 scan positions on each side), the errors in the radiative transfer
become large, and the error covariances become correspondingly larger. This causes
the retrieved rain rates to be less reliable and therefore the Tbs at these scan positions
are set to missing and no rainfall retrieval is performed.

8.3 Satellite Sensor Pixel Preparation: GPROF
Preprocessor

The GPROF retrieval is a simple Bayesian engine that compares the satellite
observed brightness temperatures (Tbs) against Tbs in the a priori databases. In
order to prepare the satellite pixels, additional data is added as described above. This
is the function of the GPROF Preprocessor. While the GPROF databases are static
and created from 1 year of DPR/GMI observations, the preprocessor routine takes
the real-time satellite observations and adds the most current and also forecast (for
real-time retrievals) ancillary data fields available. Often these are model analysis
fields both of surface and profile data. For the first 5 years of GPM, the near-real time
retrievals use JMA model analyses and forecast fields. A more accurate version of
the retrieval is run 1–2 days after real-time using the GANAL products. Two to three
months after real-time, the Climatology version of GPROF is created using the
ECMWF Interim or ERA-5 model products. This last processing using the
ECMWF data enables a stable product set for historical or multi-year retrieval
datasets. From each of the input model analyses, the TPW, T2 m, and surface
moisture are attached to each satellite pixel. An additional ancillary parameter, the
surface wet bulb temperature is added for use within GPROF to discriminate
between the phase of the precipitation (snow vs. rain).

Finally, the daily GPROF surface type map is created and used to assign one of
the 14 surface types to the satellite pixel. Once again, this will be used in the
GPROF algorithm to limit the a -priori database pixels within the Bayesian
averaging.

8.4 The GPROF Bayesian Retrieval Algorithm

The GPROF algorithm begins by ingesting a standard input file produced from the
each of the unique sensor preprocessors. This includes all the ancillary data needed
to match the T2 m/TPW/Surface Type in the profile databases. This 3-dimensional
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matching is used to subset the entire set of database profiles for the Bayesian
precipitation and profile retrieval. The width of the search in T2 m/TPW space is
variable in TPW space in the database creation depending on the number of binned
profiles, in the retrieval �1 K is used in the T2 m bin space. All the conical imager
sensors use identical GPROF code.

If vertical profile retrieval of the hydrometeor species is implemented, then the
Bayesian averaging is executed for all the layers in each of the hydrometeor profiles.
This approximately triples the run time. After the Bayesian profile is computed they
are matched to the closest profile from a database of 960 representative profiles for
each hydrometeor species. These were created from a clustering process of 1 year of
full profile GPROF retrievals. This step greatly reduces the data volume of the output
files while adding little additional error. The cross-track sensors have a different
executable for GPROF 2017 to account for the changing incident angle in the
observations and the database.

As part of the Bayesian formulation the uncertainty for each sensor’s channels
must be defined. Uncertainties in physical inversions come from a combination of
sensor noise and forward assumptions and errors. As described in Stephens and
Kummerow (2007), channel uncertainties tend to be dominated by the forward
model assumptions. That is the case here as well, and is particularly true when
surface characteristics are not well known. In the GPROF 2017 retrieval, the
uncertainty is determined from the fit between the observed dataset and the com-
puted forward model Tbs that ultimately make the a priori database. Because errors
are simplistically assumed uncorrelated, larger FOV have smaller error characteris-
tics. An additional and very important source of error comes from the incomplete-
ness of the database. This is particularly evident if only a few thousand profiles are
used to characterize rainfall as seen from 13 different channels, as is the cases with
GMI. An example here might be that in the 1 year of profiles from the Combined
product, there are very few overpasses of the narrow DPR directly over tropical
storms. Whenever GPROF attempts to retrieve rain rates around tropical storms,
there are an inadequate number of profiles in the a priori database to describe the
variability of rain rates with similar Tbs. This problem was explored with a separate
hurricane version of the retrieval (Brown et al. 2016) where 10 years of TRMM PR
profiles, only over tropical storms, were used to construct the a priori databases. This
“Hurricane GPROF” algorithm, showed less bias for both high and low rain rates
and less overall RMS when directly comparing the TMI retrieval to the TRMM
PR. An example of the retrieval is shown in Fig. 8.3.

Petty and Li (2013) have presented a channel reduction procedure to define the
importance and uniqueness of each sensors frequencies to the rain rate retrieval. The
goals, as they stated were to, “decorrelate geophysical background noise while
retaining the majority of radiometric information concerning precipitation”. This
effectively reduced the error introduced by sparsely populating the 13-channel
dimensional space. A full solution to this problem, applicable to GMI and all the
constellation sensors has not been implemented.
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The current version of GPROF applies a probability of precipitation (PoP)
directly to the retrieved precipitation values. The PoP thresholds for rain/no-rain
are calculated for each sensor, are bin (T2m/TPW/Surface class) dependent. The
process as it’s currently implemented, is described as follows. For each of the bins in
the database, the number of raining and non-raining profiles, as well as the rain
fraction was calculated. An example is that in warm/moist bins the rain/(rain +
no-rain) ratio is near 70% while in cooler dryer climates it might be 5%. One year of
GPROF rain retrieval was created without any probability thresholds applied. The
frequency of rain was collated, and a histogram of PoP for each bin was made. Next,
the required POP threshold was calculated that matched the database rain frequency,
and this sets a POP threshold for that bin. Finally, the fraction of rain is computed
that was removed using this PoP threshold. The PoP threshold, and the fractional
rain that is removed by the threshold was output and saved in a file that is read into
the GPROF retrieval.

During the GPROF retrieval process, precipitation with probability below the
threshold is set to 0.0. Retrieved Precipitation about the threshold is increased by the
fraction of removed precipitation. This method conserves the total precipitation of
the retrieval, an important step in the Bayesian statistical scheme.
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Fig. 8.3 GPROF GMI retrieval of surface rain for hurricane Harvey, 25 August 2017 shortly
before making landfall on the Texas coast. Over 60 inches (1500 mm) of precipitation was recorded
near Houston over the next 5 days
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The GPROF 2017 algorithm retrieves the total surface precipitation, not its phase.
In order to make this rain/snow separation, an additional piece of information is
needed, the surface dew point temperature. From Sims and Liu (2015) a lookup table
was used of the fractional precipitation that is liquid/solid at certain dew point
temperatures. As noted earlier, the surface dew point temperature was attached to
each satellite pixel in the GPROF preprocessor. At �6.5 �C and below, 100% of the
precipitation is frozen, while above 6.5 �C the precipitation is all liquid. Between
these extremes, the precipitation is mixed and each type is output in the GPROF
output file. There are two different lookup tables, one for ocean and one for land. The
lookup tables which use the surface wet bulb temperature and used in GPROF are
graphically described in Fig. 8.4.

The GPROF algorithm is run on all the sensors of the GPM constellation.
Zonal averages of the results are shown in Fig. 8.5 for total annual averaged surface
precipitation (left) and for frozen precipitation in the Northern Hemisphere winter
season (right). The average and spread of values are for five the sensors: GMI,
SSMIS, AMSR2, MHS and ATMS. Results show that the total precipitation can be
retrieved with great agreement between the sensors – striking considering the
different frequencies in the channel set for each sensor. However, the greater
variance in the frozen precipitation is most likely caused by the lack of some sensor
frequencies above 89 GHz (AMSR2) which greatly affect the snow retrieval.
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8.5 Conclusions

GPROF 2017 represents the most recent iteration of a parametric retrieval scheme
for precipitation from space borne passive microwave radiometers. By utilizing a
physically-based a priori database created from the GPM Combined radar/radiom-
eter retrievals, coupled with full column radiative transfer and a Bayesian retrieval,
the algorithm is consistently applied for sensors of varying frequency, observing
angle, and footprint size. The result is global, consistent precipitation retrievals
across a diversity of sensors for real-time analysis. The nature of the scheme also
allows for the ability to process retrospectively for consistent climatological-scale
retrievals from the global constellation.

Future development of GPROF will occur as GPM’s Combined algorithm
improves, ancillary data becomes more consistent, and uncertainty estimates in the
forward model, a difficult parameter to estimate from first principles, improves over
time. In addition, there are still situations, such as high latitude drizzle, and oro-
graphic precipitation, where the brightness temperatures and current ancillary data
may not be sufficient to retrieve an unambiguous rain signal. Here, it is likely that the
algorithm may use additional ancillary data to help constrain the potential solution
space.
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Chapter 9
Precipitation Estimation from
the Microwave Integrated Retrieval System
(MiRS)

Christopher Grassotti, Shuyan Liu, Quanhua Liu, Sid-Ahmed Boukabara,
Kevin Garrett, Flavio Iturbide-Sanchez, and Ryan Honeyager

Abstract The Microwave Integrated Retrieval System (MiRS) has been the NOAA
official operational microwave retrieval algorithm since 2007 and is run operation-
ally on multiple microwave satellite/sensor systems. The algorithm is based on a
1-dimensional variational (1-DVAR) methodology, in which the fundamental phys-
ical attributes affecting the microwave observations are retrieved physically, includ-
ing the profile of atmospheric temperature, water vapor, hydrometeors, as well as
surface emissivity and temperature. A description of the mathematical basis and
algorithm components are presented here, followed by examples of retrieved hydro-
meteorological parameters. Examples presented show that global estimates of
surface rain rate from different satellites are generally consistent, and that the explicit
treatment of both surface (e.g., emissivity) and atmospheric parameters in the
forward radiative transfer model allows for accurate and consistent estimates over
a variety of surfaces (e.g., ocean, land with different vegetation types, coastal
regions). Validation and performance metrics using independent reference data
indicate that the rainfall rates meet most NOAA operational requirements. Suggested
avenues for future development and enhancements are also presented including an
example of one planned operational enhancement that has led to improved light rain
detection over land.
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9.1 Background

The Microwave Integrated Retrieval System (MiRS, https://www.star.nesdis.noaa.
gov/mirs, last accessed 31 Oct. 2018) has been the NOAA official operational
microwave retrieval algorithm since 2007 (Boukabara et al. 2011) and has been
or is currently run operationally on microwave data from NOAA (�18,�19), Metop
(�A, -B)/AMSUA-MHS, DMSP (F-16, F-17, F-18)/SSMIS, Suomi-NPP polar
orbiting satellites, and on data from Megha-Tropiques/SAPHIR. In addition, MiRS
also processes operationally GPM/GMI data (Liu et al. 2017). In 2018 MiRS began
processing at NOAA/NESDIS/STAR ATMS data from NOAA-20 (launched
in November 2017); following calibration and validation activities MiRS NOAA-
20/ATMS capability was delivered to NOAA operations in 2019. It has also been
run experimentally on data from TRMM/TMI, Aqua/AMSR-E, and GCOM-W1/
AMSR2. Extension of MiRS to data from Metop-C (launched in late 2018) was
also completed in 2019.

The inversion within MiRS follows a 1-dimensional variational (1DVAR) meth-
odology, in which the fundamental physical attributes affecting the microwave
observations are retrieved physically, including the profile of atmospheric tempera-
ture, water vapor, hydrometeors, as well as surface emissivity (Boukabara et al.
2018) and temperature. The Community Radiative Transfer Model (CRTM) is used
as the forward and Jacobian operator to simulate the radiances at each iteration prior
to fitting the measurements to within the combined instrument and forward model
noise level. The retrieved surface properties are then used to determine surface
physical characteristics, including, when appropriate, cryospheric parameters such
as sea ice concentration, ice age, and snow water amount, and snow grain size, using
pre-determined relationships that link emissivity and effective skin temperature to
these parameters. These links are based, in part, on physical modeling of snow and
ice radiative properties. In the case of the surface precipitation rate the determination
is sensor-independent in that the same relationships (determined off-line using
numerical weather prediction model simulations) between the surface precipitation
rate and the core retrieved vertical hydrometeor profiles are used. MiRS has also
been integrated into the Community Satellite Processing Package (CSPP), devel-
oped at the University of Wisconsin/Space Science and Engineering Center for users
in the Direct Broadcast/Readout community. The MiRS software package is avail-
able publicly for download, and more than 30 institutions and/or individuals have
installed and run MiRS locally. MiRS retrieval products are used routinely in
operational weather analyses and forecasts, and also serve as inputs to downstream
applications that are also used in operations. For example, MiRS water vapor pro-
files, and total precipitable water (TPW) are used to generate the multi-satellite
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blended layer precipitable water, and blended TPW products (Forsythe et al. 2015).
MiRS profiles of temperature and water vapor are also used as inputs to the tropical
cyclone (TC) intensity estimation algorithm (HISA) developed at CIRA (Chirokova
et al. 2015) and is used operationally at the National Hurricane Center. Finally,
MiRS precipitation rates are used as one of several satellite-based precipitation
inputs to the NOAA Climate Prediction Center (CPC) Morphing Technique Algo-
rithm (CMORPH) (Joyce and Xie 2011; Joyce et al. 2004).

9.2 Algorithm Description

A schematic of the MiRS algorithm processing components and data flow is shown
in Fig. 9.1. The 1DVAR algorithm used by MiRS (Rodgers 2000; Liu and Weng
2005) is an iterative approach finding the optimal solution that fits the observed
satellite radiance, subject to other constraints. The cost function to be minimized is:

J Xð Þ ¼ 1
2

X � X0ð ÞT � B�1 � X � X0ð Þ
h i

þ 1
2

Ym � Y Xð Þð ÞT � E�1 � Ym � Y Xð Þð Þ
h i

ð9:1Þ

where X is the retrieved state vector. The first term on the right represents the penalty
for departing from background X0 weighted by the background error covariance

Fig. 9.1 Schematic of MiRS processing components and data flow showing MiRS core retrieval
and post-processing components. Core products are retrieved simultaneously as part of the state
vector. Post-processing products are derived through vertical integration (water vapor, hydrome-
teors), catalogs (SIC, SWE), or fast regressions (rain rate). Post-processed hydrometeor retrieval
products are indicated in red: Rain Rate, Graupel Water Path, Rain Water Path and Cloud Liquid
Water
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matrix B. The second term represents the penalty for the simulated radiances
Y departing from the observed radiances Ym, weighted by instrument and modeling
error E.

Assuming local linearity,

y xð Þ ¼ y x0ð Þ þ K x� x0½ � ð9:2Þ

leads to an iterative solution,

ΔXnþ1 ¼ BKT
n KnBK

T
n þ E

� ��1
n o

Ym � Y Xnð Þ½ � þ KnΔXnf g ð9:3Þ

where ΔX is the increment of the state vector iteration n + 1, and K is the matrix of
Jacobians which contains the sensitivity of the radiances to changes in X (parameters
to retrieve).

The departure from measured radiances normalized by the noise level and
the specification of uncertainty in the forward modeling make it possible to use the
signal of a particular channel when the geophysical signature is stronger than the
noise. Conversely, at other times it may be possible to de-weight the information
from same channel when the signal in question is within the noise level. The
departure from the background scaled by the uncertainty assigned to the background
result in retrievals closer to an a priori background estimate if it is assumed accurate.
MiRS currently uses a “dynamic background” as an a priori constraint, for temper-
ature, water vapor, and skin temperature, which varies with latitude, longitude,
season and time of day. Empirical orthogonal functions (EOFs) are used as basis
functions to further reduce the degrees of freedom in the solution and stabilize the
retrieval. The criterion for convergence is satisfied when the fit over all channels of
simulated to observed brightness temperatures (normalized by the combined instru-
ment and forward model uncertainty) is less than 1.

CRTM (Weng et al. 2005; Han et al. 2006) produces radiances and the
corresponding Jacobians under clear, cloudy, and precipitating conditions. MiRS
currently uses CRTM version 2.1.1. The model has been validated against various
satellite measurements (Chen et al. 2008; Ding et al. 2011). MiRS uses CRTM as the
forward operator to perform retrievals under all sky conditions. Given a set of
radiances, and an a priori (background) estimate of the geophysical mean and its
associated covariance matrix, and assuming the hypotheses for its mathematical
basis are satisfied, MiRS produces a set of self-consistent parameters that are also
consistent with the measured parameters. When processing satellite sensor data with
a full complement of temperature, water vapor and surface-sensitive channels,
the official MiRS products generally include temperature (T) and water vapor
(WV) vertical profiles, cloud and precipitation vertical profiles (non-precipitating
cloud amount, rain, and graupel, pCLW, pRWP, pGWP, respectively) all defined on
100 pressure layers, skin temperature (Tskin), and the surface emissivity spectrum
(Em). Post-processing of elements within the retrieved state vector yield additional
retrieval products such as rain rate, total precipitable water (TPW), sea ice
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concentration and age (SIC, SIA), snow water equivalent (SWE) and grain size (GS).
In the case of TPW, simple vertical integration of the retrieved water vapor profile
is done.

Post-processing to determine a surface precipitation rate (RR) is done by first
vertically integrating each of the cloud, as well as the precipitation-related profiles
of rain water and graupel water to obtain total cloud liquid water (CLW), rain water
(RWP), and graupel water (GWP) path, respectively. Off-line relationships between
surface RR and RWP, GWP, and CLW were developed from mesoscale forecast
model simulations. The precipitation rate is then computed from the following
equations

RR CLW ,RWP,GWPð Þ ¼ RRCLW þ 3:879� RWPþ GWPð Þ1:103 ð9:4Þ

where

RRCLW ¼ 2:339� CLWð Þ1:156 ð9:5Þ

The same equation is applied for all operational satellites, and over all surface
types, with the exception that over land the CLW-based term is set to zero, since it
had been previously determined that the CLW microwave signal over land was low
relative to variations in the higher background surface emissivity. However, recent
testing indicates that CLW can be retrieved with sufficient accuracy so that use of
CLW can improve light rain detection and estimation over land (see Sect. 9.7).

Finally, for sea ice and snow water, external catalogs that relate the surface
emissivity spectrum to ice and snow amounts are used. In the case of snow water,
a single-layer physical snow model developed at NOAA is used to build the
catalogs. An important feature of MiRS is that, as currently configured, retrievals
do not require real-time ancillary data such as those coming from numerical weather
prediction model forecasts. MiRS products based on various satellite/sensors have
been examined, including precipitation, for example (Boukabara et al. 2013;
Iturbide-Sanchez et al. 2011).

9.3 Algorithm Components

As noted, the MiRS algorithm has been running in operations for over 10 years and
has been extensively validated using a variety of reference data sets. Additionally,
several updates to the algorithm have been delivered to operations which have led
to improved performance. The current version of MiRS is v11.4 which has been
running operationally since July 2019. Global performance characteristics generally
meet NOAA operational requirements, for example as specified in the JPSS NESDIS
ESPC Requirements Document (JERD) (NOAA 2015). Key features of the opera-
tional MiRS are:
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• Use of a “dynamic” climatology for the a priori background and first guess T,
WV, Tskin, and CLW profiles that is stratified by latitude, longitude, time of year,
and time of day. This climatology was derived from 1 year of ECMWF analyses.

• A priori background covariances of T, WV, CLW, and all hydrometeor profiles
derived from a global set of atmospheric profiles chosen to span a large range of
climate regimes.

• Empirical Orthogonal Function basis functions for all elements of the retrieved
state vector (T, WV, CLW, hydrometeors, surface emissivity), which, with
the exception of emissivity are computed from the previously mentioned
covariances.

• Use of all available microwave channels, which generally consist of temperature,
and water vapor sounding channels, in addition to surface sensitive channels.

• Use of the CRTM fast forward radiative transfer model which, given an estimate
of the atmospheric and surface state, will compute both satellite-observed radi-
ances, and their sensitivities with respect to each of the atmospheric/surface state
variables (i.e., Jacobians).

• Post-processing modules that convert the elements of the core retrieved state
vector to derived quantities such as surface rain rate, snow water equivalent, and
sea ice concentration.

9.4 Treatment of Hydrometeors

Hydrometeor representation in MiRS is largely driven by corresponding represen-
tation in the CRTM forward model which contains a total of five cloud types (i.e.,
non-scattering cloud droplets, and larger particles for rain, ice, graupel, and snow).
The MiRS state vector contains three types of hydrometeors: non-scattering cloud
droplets, and larger precipitation-sized scattering particles of rain water and graupel
water. In the retrieval system, the particle size effective radius is assumed fixed at
30 microns for cloud droplets, and 500 microns for both rain and graupel water.
Pre-computed scattering coefficient tables are generated off-line for CRTM and
assume all particles are spherical in shape for rain droplets and cloud droplets of
small particle sizes. Non-spherical particles are used for solid clouds: ice, snow,
graupel and hail. (Liu and Lu 2016) The distinction between non-scattering and
scattering particles leads to a retrieval approach within MiRS that consists of two
attempts: (1) In the first attempt only non-scattering droplets are contained within the
atmospheric state vector. If the retrieval successfully converges (i.e., simulated
brightness temperatures fit observed measurements to within the assumed combined
noise plus forward model uncertainty) then the retrieval is completed and the
associated atmospheric profile is the final retrieval (a minimum threshold of
0.275 mm is used to identify a retrieved scene as containing rain); (2) If the retrieval
does not converge, then a second attempt is made in which rain and graupel water are
added to the atmospheric state vector, and cloud droplets are removed. Since the
scattering simulations in CRTM are computationally costly, the partitioning of
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attempts into non-scattering and scattering has the advantage of limiting CRTM
scattering calculations to only those scenes in which scattering is likely.

A retrieval example from a single scene (field of view) of data from NOAA-18
AMSUA-MHS is shown in Fig. 9.2 to highlight the evolution by iteration of
retrieved rain and graupel water and associated Jacobians. The figure shows
(1) non-linear behavior in that Jacobian profile changes with hydrometeor amount,
and (2) the final retrieved profile can have a different shape than an a priori

Fig. 9.2 Example of rain water (left) and graupel water (right) retrieval evolution for a single
vertical profile based on NOAA-18 AMSU-MHS measurements. Top panels show rain and graupel
water profile retrieval as function of iteration (3 iterations total). The remaining panels show the
CRTM Jacobians with respect to rain and graupel at channels 15, 17, 18, 19, 20 (89, 157, 183 � 1,
183 � 3, and 190 GHz), for each iteration. In this case, the retrieval converged in 3 iterations. Rain
and graupel particle effective radii were assumed to be 500 microns
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background/first guess. Generally speaking, retrievals of the total integrated amounts
of rain and graupel will have lower uncertainty, while the vertical structure or
distribution will have larger associated uncertainty. Additionally, assumptions
built into the scattering simulations related to effective particle size, size distribution
and orientation, and particle shape will all impact the final retrieved amounts. As
currently configured, these parameters that describe the scattering particles are fixed
and not part of the retrieval state vector. However, results shown in Chap. 48 indicate
that there may be a benefit in explicitly accounting for these parameters. For
example, several of their experiments show clear sensitivity of simulated brightness
temperatures to both hydrometeor (rain and graupel) size and total amount and that
this sensitivity is frequency dependent.

9.5 Retrieval Examples

As noted, the MiRS algorithm is run on passive microwave data generated by a
number of different operational satellite systems. Figure 9.3 shows an example of
MiRS global retrieved rain rates from the GPM/GMI and S-NPP/ATMS instruments
on 21 June 2016. Although the temporal and spatial coverage of the two satellite data
sets are different, the location and intensity of the primary precipitation systems are
captured in both retrieval sets. This is noteworthy since the estimates are from two
different passive microwave instruments (i.e., ATMS: cross-track scanning, with
changing zenith angle across each scan, and mixed horizontal/vertical polarizations
that change with scan angle; GMI: conical scanning, with fixed zenith angle across
each scan, and separate horizontal/vertical polarizations). Consistency in the
retrieved rainfall between the two satellites is due, in part, to the explicit accounting

Fig. 9.3 Comparison of global rain rate maps on 21 June 2016 from MiRS when applied to
GPM/GMI (left) and SNPP/ATMS measurements (right). Examples of weather systems detected by
both satellites are circled
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for angular dependence of surface emissivity, and atmospheric attenuation/
scattering.

One of the features of MiRS is that it simultaneously retrieves the atmospheric
profiles of temperature and water vapor, rain water, graupel and cloud, making it
possible to reconstruct the 3-dimensional structure of tropical storms and severe
weather systems. Figure 9.4 shows an example of S-NPP/ATMS retrievals in the
environment of Typhoon Soudelor which struck both Taiwan and the mainland of
China in August 2015 causing significant damage and loss of life due to high winds,
heavy rainfall and flooding (Guardian 2015). Results show that the structure of
atmospheric rain and ice, as well as the surface rain rate are realistically retrieved,
with maximum rain rates of 16 mm h�1, and the storm core feature present in both
rain and graupel fields.

9.6 Validation Results

Quantitative assessment and validation of the MiRS precipitation is done through
comparisons with other standard reference data sets. Most commonly, validation is
done using the operational National Weather Service (NWS) Stage IV hourly
blended radar-rain gauge analyses which are produced at a resolution of 4 km over
the conterminous US (CONUS) (Baldwin and Mitchell 1998; Lin and Mitchell

Fig. 9.4 MiRS retrievals of hydrometeor and temperature structure around Typhoon Soudelor from
Suomi-NPP/ATMS valid 0445 UTC on 6 August 2015. Panels show surface rain rate (top left), rain
water 0.01 mm isosurface with temperature profile superimposed (top right), graupel water 0.05 mm
isosurface with temperature profile superimposed (bottom left), and a vertical cross-section along
21�N of both rain and graupel water (bottom right)
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2005). The Stage IV data are based on the Multisensor Precipitation Estimator
(MPE) analyses known as Stage III which use multi-sensor data (WSR-88D radar
and gauges) and are specified on 4-km polar-stereographic grids produced by the
12 NWS River Forecast Centers.

Figure 9.5 shows an example of MiRS and Stage IV rain rates on two different
dates, 31 March 2016 and 28 July 2016, indicating good agreement between the
MiRS and Stage IV estimates. Closer inspection of the results shows that while the
overall agreement is high with the Stage IV estimates, the agreement is not uniform.
In particular, there is higher agreement in areas with heavier rainfall, especially
convective systems. This is because these rain systems contain larger amounts of
rain water, and most likely ice crystals which enhance the scattering signal over the
higher and variable land emissivity background. Generally, direct accounting of the
surface emissivity spectrum and land surface temperature (via information present in
lower frequency channel measurements less affected by clouds and rain) allows the
retrieval system to accommodate natural variations in these parameters and tends to
reduce the occurrence of precipitation false alarms. Conversely, areas of lighter –
possibly stratiform – rain, for example as seen over the Northern Plains and Upper

Fig. 9.5 Comparison of MiRS SNPP/ATMS instantaneous rain rate (mm/h) (top) with operational
NWS Stage IV rain rate (bottom) over the conterminous US for two different dates, 16 March 2016
(left), and 28 July 2016 (right)
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Midwest (descending pass, left hand panels), are underdetected and underestimated.
In these cases, there is a much weaker hydrometeor signal, which is difficult to
separate from variations in either surface emissivity or water vapor. Nevertheless, as
shown in Sect. 9.7 planned operational enhancements of MiRS should lead to better
detection and estimation of lighter rainfall over land.

Validation statistics using Stage IV have also been computed for longer term
periods. Tables 9.1 and 9.2 contain summary performance statistics for March and
July 2016, respectively, and stratified into land and ocean (i.e., coastal) points. These
statistics are based on the daily collocations of MiRS instantaneous rainfall with the
Stage IV estimates. The statistics shown in the tables are the bias (MiRS – Stage IV)
and standard deviation (STDV, mm h�1), along with the categorical scores Proba-
bility of Detection (POD), Probability of False Detection (POFD), and the Heidke

Table 9.1 Summary of MiRS precipitation rate performance relative to Stage IV measurements
over the CONUS for the period 1–30 March 2016

Sfc Performance parameter MiRS JPSS requirement

Sea Bias (mm h�1) 0.07 0.10

STDV (mm h�1) 0.92 1.0

Probability of detection (%) 80 50

Prob. of false detection (%) 4.0 5.0

Heidke skill score 0.53 0.30

Land Bias (mm h�1) 20.01 0.05

STDV (mm h�1) 0.58 1.5

Probability of detection (%) 46 50

Prob. of false detection (%) 1.0 6.0

Heidke skill score 0.51 0.30

For reference, the JPSS program environmental data record (EDR) performance requirements are
also shown

Table 9.2 Summary of MiRS precipitation rate performance relative to Stage IV measurements
over the CONUS for the period 1–31 July 2016

Sfc Performance parameter MiRS JPSS requirement

Sea Bias (mm h�1) 0.00 0.10

STDV (mm h�1) 0.78 1.0

Probability of detection (%) 69 50

Prob. of false detection (%) 2.6 5.0

Heidke skill score 0.55 0.30

Land Bias (mm h�1) 0.02 0.05

STDV (mm h�1) 0.95 1.5

Probability of detection (%) 62 50

Prob. of false detection (%) 2.6 6.0

Heidke skill score 0.51 0.30

For reference, the JPSS program Environmental Data Record (EDR) performance requirements are
also shown
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Skill Score (HSS). Description and definition of these and other categorical scores
are presented in Doswell et al. (1990). For comparison, the JPSS program Environ-
mental Data Record (EDR) product requirements are also shown, and indicate that
the retrieval performance exceeds the threshold requirements in both months.

9.7 Planned Operational Improvements

As discussed in Sect. 9.2 above, retrieval of non-scattering liquid water clouds
(represented as cloud droplets of 30 micron effective radius) over land was consid-
ered to have much larger errors than over ocean surfaces, due in part to the difficulty
of distinguishing the signal of such clouds over the more emissive and variable land
surface (Jones and Vonder Haar 1990; Aires et al. 2001). However, recent tests have
indicated that, while displaying higher noise levels, the signal of light rain in the
microwave satellite measurements and in the corresponding CLW retrievals is
sufficient to detect and estimate lighter rain amounts.

Figure 9.6 shows an example from 1 May 2016. Panels (d) and (e) show the
MiRS retrieved cloud plus rain water, and the coincident GOES visible imagery
valid at the same time, indicating fairly close agreement in terms of cloud cover.
Panels (a) and (b) show the baseline operational (v11.3) rain rate and the experi-
mental rain rate that exclude and include CLW, respectively, within the rain rate
estimation equation. Comparison with the MRMS operational gauge adjusted

Fig. 9.6 Example of impact of using retrieved CLW over land in the land precipitation estimation
from SNPP/ATMS on 01 May 2016. Shown are (a) MiRS operational v11.3 rain rate (mm/h), (b)
MiRS rain rate using CLW, (c) MRMS Q3 radar-gauge analysis valid at 1900 UTC (units in
inches), (d) MiRS Liquid Water Path (LWP ¼ RWP + CLW, mm), and (e) visible satellite image
from GOES-East valid at 1915 UTC
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analysis (panel c) shows that the experimental rain rates have much better agreement
than the operational estimates, due mainly to improved detection of the lighter rain
rates. The incorporation of CLW into the S-NPP/ATMS rain rate estimate clearly
improves the detection and estimation of light rainfall over land in this case.

Further quantitative analysis also supports this conclusion. MiRS operational and
experimental rain rate retrievals for a 3-month period, September–November 2016,
were collocated with operational Stage IV analyses over the US. Figure 9.7 shows
the probability distribution functions of MiRS and Stage IV rainfall during this
period, and indicate that the experimental rain rates more closely match the Stage IV
analyses, at nearly all rain rate intensities. In addition, when considering all points
where Stage IV rain rates were greater than zero, the mean rain rate for the
experimental retrievals (1.24 mm h�1) is in better agreement with the mean Stage
IV rain rate (1.34 mm h�1) than the operational value (0.99 mm h�1).

Additional analyses of this time period is shown in Tables 9.3 and 9.4 which
contain the categorical scores POD, POFD and HSS, corresponding to two different

Fig. 9.7 Probability distribution functions of MIRS ATMS vs. Stage IV baseline (opera-
tional v11.3, no CLW included in rain rate estimation) and experimental rain rate (CLW included)
over land during September–November 2016. Note improved frequency distribution and agreement
with Stage IV in experimental rain rate. Distributions are for all points with Stage IV rain rate
greater than 0 mm h�1

Table 9.3 Categorical scores (Probability of Detection (%), Probability of False Detection (%),
and Heidke Skill Score) of MiRS ATMS (Oper: operational version v11.3; Test: experimental test
version) rain rates relative to Stage IV for a rain rate threshold of 0.5 mm h�1

Time period

POD (0.5) POFD (0.5) HSS (0.5)

NptsOper Test Oper Test Oper Test

Sept 2016 56.0 79.5 2.1 4.0 0.510 0.536 28,329

Oct 2016 44.6 72.3 1.1 2.8 0.448 0.458 21,344

Nov 2016 38.4 66.1 0.8 2.2 0.411 0.431 11,190

Performance for individual months of September, October, and November 2016 is shown. Total
number of samples (Npts) is also indicated
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rain rate thresholds, 0.5 and 3.0 mm h�1. For both operational and experimental rain
rates, categorical scores generally show best performance in September, when higher
rain rates associated with warm season convection are better detected and estimated.
For both rain rate thresholds, categorical scores for experimental (test) rain rates are
better than the operational rain rates. Larger improvements in POD and HSS are seen
for a threshold of 0.5 mm h�1, consistent with the fact that most of the improvement
in the experimental retrievals is for very light – probably stratiform – rainfall. Further
testing has shown this improvement is also seen in other seasons, and consequently
this enhancement was included in version v11.4 of MiRS.

9.8 Conclusions and Future Work

MiRS is a robust, flexible satellite retrieval system designed for rapid, physically-
based atmospheric and surface property retrievals from passive microwave measure-
ments. The MiRS algorithm has been running operationally at NOAA since 2007
and routinely distributing satellite derived products through the NOAA Office of
Satellite and Product Operations (OSPO). Assessment and validation of the hydro-
meteor products, and in particular the precipitation rate, are done routinely via
comparison with ground-based as well as other satellite-based references. One of
the strengths of the MiRS system is the capability to retrieve simultaneously not just
precipitation rates, but associated atmospheric profiles of temperature, water vapor,
as well as liquid and frozen hydrometeors in a manner consistent with satellite
measurements, a physically-based radiative transfer model (i.e., CRTM), and
assumed a priori constraints. This provides an opportunity for potential improve-
ments. Several avenues are listed here: (1) evaluating the impact of assumed
radiometric uncertainty (instrument plus forward model) in each channel,
(2) assessing the influence of assumed a priori hydrometeor background constraints,
(3) possible implementation of an a priori temperature and water vapor error
covariance matrix specific to rainy conditions, (4) exploring methods to distinguish
convective and stratiform (or mixed) precipitation types using, when available,
signal differences between measurements in vertical and horizontal polarization,
(5) direct or indirect incorporation of assumed effective hydrometeor particle size in
the retrieval state vector, (6) evaluating the impact of updated scattering tables (to be

Table 9.4 Categorical scores (Probability of Detection (%), Probability of False Detection (%),
and Heidke Skill Score) of MiRS ATMS (Oper: operational version v11.3; Test: experimental test
version) rain rates relative to Stage IV for a rain rate threshold of 3.0 mm h�1

Time period

POD (3.0) POFD (3.0) HSS (3.0)

NptsOper Test Oper Test Oper Test

Sept 2016 48.7 49.9 0.7 0.5 0.451 0.491 8010

Oct 2016 45.5 46.0 0.3 0.3 0.372 0.405 3423

Nov 2016 36.8 34.3 0.1 0.1 0.382 0.377 1579

Performance for individual months of September, October, and November 2016 is shown. Total
number of samples (Npts) is also indicated
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available in upcoming versions of CRTM) that account for the effects of
non-spherical particles, and (7) extension to use of infrared sensor measurements
which, when combined with microwave measurements, should provide a more
complete view of cloud structures and precipitating weather systems. Finally, one
of the important features of MiRS is that, when run in operations, it does not use any
real-time ancillary data. External data for the surface (especially emissivity) from a
time-varying climatology or for the atmosphere (water vapor, temperature) from
numerical weather prediction systems is anticipated to be beneficial to the retrieval
products, but needs to be quantified and balanced against the needs of some users for
satellite products that are independent of the numerical models.
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Chapter 10
Introduction to Radar Rain Retrieval
Methods

Toshio Iguchi and Ziad S. Haddad

Abstract This chapter describes basic principles of precipitation measurement with
radar and algorithms to retrieve precipitation rate from the data obtained. The
emphasis is on the space-borne radar measurement of precipitation. It concerns
peculiar characteristics of spaceborne precipitation radar and algorithms that retrieve
precipitation parameters such as rainfall rate. A formulation of radar equation is
made in a general form in which the effect of inhomogeneous distribution of rain
within a scattering volume can be traced. A coupled equation that can retrieve two
drop size distribution parameters from dual-frequency measurement is given. Major
error sources in precipitation retrieval with space-borne radar are described.

Keywords Precipitation · Rainfall · Satellite · Radar · Reflectivity · Range · Drop
size distribution · GPM · DPR · Backscattering · Refractive index · Hitschfeld-
Bordan solution · Surface reference technique · Attenuation · Path integrated
attenuation · Non-uniform beam filling · Uncertainty estimation

10.1 Introduction

Radar is an acronym for RAdio Detection And Ranging. A radar is an active sensor
that transmits radio signals, and receives and processes the backscattered radiation to
detect the targets that produced it and to quantify the parameters of these
backscattered signals. From the backscattered signals for the known transmitted
signal, some properties of the targets can be estimated together with their locations.
In the case of weather radar, the targets are precipitation particles that form rain,
snow, graupel and hail. Wind profilers and other kind of weather radars are excluded
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in this article. Recent radars are often equipped with capability of measuring not only
the amplitude of received echo power but also other electromagnetic properties such
as the phase relative to the transmitted signal, Doppler shift and polarization.
However, since no spaceborne weather radar equipped with Doppler or polarimetric
capabilities has been realized yet, this article does not concern itself with such
functions.

The wavelength of radar is chosen according to the purpose of measurement. In
the case of ground-based radar for rain measurement, microwaves in the range from
3 GHz (S band) to 10 GHz (X band) are generally used. In the case of space-borne
radar, however, much higher frequencies are used because of the peculiarities of
observation geometry and the constraints on the dimensions of the system. For
example, the Dual-frequency Precipitation Radar (DPR) onboard the Global Precip-
itation Measurement (GPM’s) core observatory uses Ku band (13.6 GHz) and Ka
band (35.5 GHz) to realize the required footprint diameter of about 5 km at nadir
from the nominal altitude of 407 km with the antenna aperture dimensions of
2.1 m � 2.1 m and 0.81 m � 0.81 m, respectively.

There are a few issues in the retrieval of rainfall rate from precipitation echo data
obtained with a space-borne radar. The first is the difficulty of converting the
measured radar reflectivity factors into rainfall rates, which is a common issue
with ground-based weather radars. As described in detail below, the precipitation
echo power is not a simple function of the rainfall rate, but varies substantially for a
given rainfall rate if the size distribution of precipitating particles changes.

The second issue is the attenuation correction. High frequency microwaves used
in space-borne radar suffer from attenuation when they propagate through rain. The
magnitude of attenuation depends on the intensity of rain and the radio frequency
used. The higher the frequency, the larger the attenuation. As a result, attenuation
correction is imperative to estimate the reflectivity of rain. In fact, the attenuation
correction is the most important part of the rain retrieval algorithm for space-borne
weather radar.

The third issue is the inhomogeneity of rain distribution within a scattering
volume of radar. Non-uniformity of rain distribution within a footprint of radar
complicates the attenuation correction and the conversion of radar reflectivity into
rainfall rate when rain is heavy (Nakamura 1991).

There are, of course, several other minor issues. In this article, however, rain
retrieval algorithms are described with these three issues emphasized. We first
formulate the radar equation with the non-uniform distribution of scatterers in
mind, and show how the non-uniformity of rain will modify the apparent relation-
ships among the radar reflectivity factor, rainfall rate, specific attenuation and other
quantities averaged in the scattering volume or the footprint dimensions.
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10.2 Formulation of Radar Measurement of Rain

In a single-frequency non-Doppler radar measurement of rain, the measurable
quantity is the received echo power Pr of the electromagnetic waves scattered by
rain drops as a function of time t. If we assume that the propagation of electromag-
netic waves follows ray optics and that the multiple scattering effect can be ignored,
the expected value of the received power E(Pr) is given by

E Pr tð Þð Þ ¼
Z
V

Pt t � 2r=cð ÞGt θ,ϕð ÞGr θ,ϕð Þλ2η r, θ,ϕð Þ
4πð Þ3r4

exp �2q
Z r

0
k s, θ,ϕð Þds

� �
dV ,

ð10:1Þ

where the position relative to the radar is expressed in a standard polar coordinate
system (r,θ,ϕ) with the radar at the origin, c is the speed of light, Pt(t) is the
transmitting power at time t, Gt(θ,ϕ) and Gr(θ,ϕ) are respectively the transmitting
and receiving antenna gains in the direction specified by angles θ and ϕ, λ is the
wavelength, η is the radar reflectivity or volume scattering cross section per unit
volume, k is the specific attenuation expressed in dB per unit length, V is the volume
over which the integral is calculated, and q¼ 0.1 ln 10 (Meneghini and Kozu 1990).
dV can be written as r sin(θ) dr dθ dϕ. The actual received power fluctuates around
this expected value because of Rayleigh fading.

When the scatterers are rain drops, the radar reflectivity η consists of the radar
backscattering cross sections of all particles (σj, j ¼ 1,. . .,n) in a unit volume dV
around the position r ¼ (r,θ,ϕ):

ηðτ, θ,ϕÞ ¼ 1
dV

Xn
j¼1

σjδðr� rjÞ: ð10:2Þ

Here, δ(r) is the three-dimensional delta function, and rj ( j ¼ 1,. . .,n) is the position
of the j-th particle. We assume that the unit volume is much smaller than the
dimensions that correspond to the radar resolution, but sufficiently large so that η
can be treated as a continuous function of position. With this approximation, η can be
expressed in terms of the effective radar reflectivity factor Ze:

η r, θ,ϕð Þ ¼ π5 Kwj j2
λ4

Ze r, θ,ϕð Þ, ð10:3Þ

where
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Ze r, θ,ϕð Þ ¼ λ4

π5 Kwj j2
Z
D
σb D; T r, θ,ϕð Þ, psð ÞN D; r, θ,ϕð ÞdD, ð10:4Þ

and Kw is the dielectric factor defined by

Kw ¼ m2 � 1
m2

: þ 2
: ð10:5Þ

Here, σb(D; T, ps) is the backscattering cross section of a precipitating particle with
diameter D and temperature T, m is the complex refractive index of water, and N(D;
r, θ, ϕ) is the raindrop size distribution function and N(D)ΔD expresses the number
concentration of rain drops with diameter between D and D + ΔD in the unit volume
at (r, θ, ϕ). ps is a parameter that specifies the kind and state of precipitation particles.

Rainfall rate R can be expressed by using N(D) and the terminal velocity vðDÞof a
rain drop with diameter D.

R r, θ,ϕð Þ ¼ π
6

Z
D
v D; r, θ,ϕ, psð ÞD3N D; r, θ,ϕð ÞdD: ð10:6Þ

The specific attenuation k consists of attenuation by precipitation (kp) and that by
other media (ko) such as cloud water droplets and water vapor. The effect of ko can be
ignored at the Ku band in most cases. kp is expressed in terms of N(D) and extinction
cross section σe:

kp r, θ,ϕð Þ ¼ 1
q

Z
D
σe D;T r, θ,ϕð Þ, psð ÞN D; r, θ,ϕð ÞdD: ð10:7Þ

If the precipitation consists not only of rain but also of snow, graupel or other
forms of water, the backscattering cross section σb and the extinction cross section σe
also depends upon another parameter ps that specifies the state of precipitating
particles. The fall velocity v(D) depends very much on ps as well as the air density
and vertical wind speed. If the particles are not melted water, we have to multiply
(10.6) by the ratio of the effective density of the particles to the melted water density
to calculate the equivalent rainfall rate. To simplify the equations, however, we will
not express this dependence explicitly, but include it in ps.

The fundamental question of radar meteorology is how to estimate R(r,θ,ϕ) from
Pr(t). If we have a large number of independent samples of radar echo from the same
scattering volume in a short time in which the distribution of rain drops is essentially
the same, we can estimate the expectation E(Pr(t)) from the average of samples. In
the case of GPM’s DPR, about 100 samples are taken at each range bin and the
magnitude of fluctuation due to Rayleigh fading after averaging the log-detected
signal is approximately 0.56 dB. Since this fluctuation is relatively insignificant
except when the echo power is close to the noise level, we do not concern ourselves
with the difference between E(Pr) and the sample average of Pr in the following.

172 T. Iguchi and Z. S. Haddad



Let us define the apparent radar reflectivity factor Zm by

Zm r, θ,ϕð Þ ¼ Ze r, θ,ϕð Þ exp �2q
Z r

0
k s, θ,ϕð Þds

� �
: ð10:8Þ

If the transmitting pulse has a short duration (τ) and peaks at t ¼ 0, we generally
regard Pr(2r/c) as the echo power from range r. In fact, (10.1) can be rewritten as a
convolution integral with respect to r of Pt(2r/c) and Zm(r)/r

3:

E Pr 2r=cð Þð Þ ¼ π2 Kwj j2
43λ2Z

V

Pt 2 r � r0ð Þ=cð ÞGt θ,ϕð ÞGr θ,ϕð ÞZm r0, θ,ϕð Þ
r04

r0 sin θð Þdr0dθdϕ:
ð10:9Þ

As long as the pulse width (cτ) is much shorter than the range r, we can treat the
denominator in the integrand constant over the range in which Pt(2(r�r0)/c) is
non-zero, and take the range dependence of (1/r04) from inside the integral to the
outside.

The antenna pattern is often expressed in terms of two orthogonal directions from
the maximum direction of antenna gain instead of θ and ϕ. If we denote these two
directions θ1 and θ2, and if both the transmitting and receiving antenna gains have a
Gaussian shape, and if their beam widths are very small, we can express the antenna
gain function, for example of the transmitting antenna gain, as

Gt θ1, θ2ð Þ ¼ Gt0 exp �4 ln 2ð Þ θt1 � θt10ð Þ2
θ2tw1

þ θt2 � θt20ð Þ2
θ2tw2

 !" #
ð10:10Þ

where Gt0 is the maximum gain and θt10 and θt20 are the maximum gain direction
expressed in the (θt1, θt2) coordinates. θtw1 and θtw2 are the beam width (full width at
half maximum) in the respective directions. The receiving antenna gain function is
similarly expressed.

If Zm(r0, θ, ϕ) does not depend on θ and ϕ where the antenna gain factor GtGr is
significant, which means if the rain distribution at a given range is uniform within the
radar beam, assuming the transmitting and receiving antenna directions are the same
(θt10 ¼ θr10 and θt20 ¼ θr20), we obtain the following equation after integration with
respect to θ and ϕ.

E Pr 2r=cð Þð Þ ¼ π3 Kwj j2
λ229 ln 2

Pt0Gt0Gr0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θtw1θtw2θrw1θrw2

p
r2Z

ut 2 r � r0ð Þ=cð ÞZe r0ð Þ exp �q

Z r0

0
k sð Þds

 !
dr0:

ð10:11Þ
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where ut(2(r�r0)/c) is the pulse shape of transmitted radio waves expressed as a
function of r. If the attenuation term exp ð�q

R r0
0 kðsÞdsÞ does not change much over

the distance corresponding to the pulse width, and if the pulse shape is rectangular
with duration τ, (10.10) can be further simplified to

E Pr 2r=cð Þð Þ ¼ π3 Kwj j2
λ2210 ln 2

Pt0Gt0Gr0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θtw1θtw2θrw1θrw2

p
cτ

r2

Ze rð Þ exp �q

Z r

0
k sð Þds

� �
:

ð10:12Þ

In the case of the DPR, the transmitting and receiving antennas have the same
gains and patterns. As a result, (10.11) becomes

E Pr 2r=cð Þð Þ ¼ π3 Kwj j2
λ2210 ln 2

Pt0G2
0θw1θw2cτ
r2

Ze rð Þ exp �q

Z r

0
k sð Þds

� �
:

ð10:13Þ

This equation is the one often used in radar meteorology. The current DPR algorithm
also uses this equation as the starting point.

A few assumptions are used to derive this equation. The homogeneity assumption
is a serious assumption for space-borne radar because a relatively large footprint of a
few km may invalidate it. Nevertheless, without knowing the actual fine-scale
distribution of precipitation, it is impossible to retrieve Ze(r,θ,ϕ) or an average of
it over the resolution volume without any bias.

Among the parameters in (10.13), Pt0, G0, θw1, θw2 and λ are determined by
calibration of the instrument. r is determined by the sampling time. |Kw|

2 depends on
the dielectric constant of scattering particles, and hence on the particles’ temperature
and the wavelength of radar to some extent. In practice, a fixed value of |Kw|

2is used
irrespective of the temperature of the particles for a given wavelength. In the DPR
data processing, |Kw|

2¼0.9255 is used for KuPR and |Kw|
2¼ 0.8989 for KaPR. With

these parameters defined, Zm(r) is calculated as

Zm rð Þ ¼ Pr 2r=cð Þ � r2

Cr
ð10:14Þ

where Cr is

Cr ¼ π3 Kwj j2
λ2210 ln 2

Pt0G
2
0θw1θw2cτ ð10:15Þ
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10.3 Rain Retrieval Algorithm

The main purpose of rain retrieval algorithm is to estimate the rainfall rate or
precipitation rate R from measured Zm. This process can be divided into two parts;
conversion from Zm to attenuation corrected radar reflectivity factor Ze, and conver-
sion from Ze to R. As shown in Eqs. (10.4), (10.6) and (10.7), all kp, Ze and R depend
on the integral of the drop size distribution (DSD) function with different weighting
functions σe(D), σb(D) and v(D)D

3, respectively. As long as precipitation is rain and
not solid precipitation particles, these weighting functions are relatively well defined
as functions of D.

Since raindrops tend to be oblate spheroids, with a symmetry axis near the
vertical, σe(D), σb(D) depend on the polarization of the electromagnetic
(EM) waves used. For most space-borne radars, however, that operate at near-
nadir incidence, the polarization state of the EM field is not a critical factor. In the
case of vðDÞ, the vertical wind speed must be taken into account if the true rainfall
rate as a flux must be calculated. The DSD function N(D) has an infinite number of
degrees of freedom, but if the variation of N(D) in nature can be expressed in terms
of a small number of parameters, the variations of kp, Ze and R can also be expressed
in terms of these parameters. In fact, N(D) is often approximated by a model function
with one, two or three parameters. For example, in the case of the TRMM/PR and
GPM/DPR algorithms, a Gamma distribution model is adopted.

N Dð Þ ¼ N0D
μ exp �ΛDð Þ ¼ N0D

μ exp � 4þ μð ÞD=Dmð Þ ð10:16Þ

In this case, DSD is uniquely determined by three parameters (N0, Λ, μ) or (N0, Dm,
μ). Here, Dm is the volume weighted diameter of DSD.

Dm ¼
R
D4N Dð ÞdDR
D3N Dð ÞdD ¼ 4þ μ

Λ ð10:17Þ

If the Gamma distribution model represents the true DSD well, and if the natural
variations of the DSD parameters follow a certain model and if their effects on kp, Ze
and R can be represented by a single parameter pdsd(N0,Dm,μ), then all kp( pdsd),
Ze( pdsd) and R( pdsd) are related to each other without any uncertainty. In this case, if
the effect of attenuation due to non-precipitation particles are already corrected,
since both Ze(r) and kp(r) can be expressed in terms of pdsd (r),

Zm rð Þ ¼ Ze rð Þ exp �2q
Z r

0
kp sð Þds

� �
ð10:18Þ

becomes an integral equation of pdsd (r) for given Zm(r) and its solution gives Ze(r)
and kp(r).

In reality, however, the relations among kp , Ze and R cannot be expressed by a
single parameter very well. It is empirically known that two independent DSD
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parameters are necessary to express the variations of kp, Ze and R well. Nevertheless,
in the case of retrieving R from data obtained with a single frequency radar, the use
of a single DSD parameter model is unavoidable. For example, in the rain retrieval
algorithm for TRMM/PR, a fixed value of μ¼ 3 and a particular relation between N0

and Dm are assumed for each type of storm so that the DSD change can be expressed
in a single parameter effectively (Iguchi et al. 2009). In the case of the GPM/DPR
algorithm, the same Gamma DSDmodel with μ¼ 3 is adopted, but the R-Dm relation
is used to define the N0-Dm relation indirectly. The advantage of the use of the R-Dm

relation is that both R and Dm can be measured directly by a disdrometer and enables
the comparisons with other kinds of measurements easily.

Note that variables kp, Ze and R are dependent only on the local variables and
parameters in the scattering volume, whereas Zm depends on the variables in the
volume that extends from the radar to the scattering volume because of the attenu-
ation term in (10.8). In a single parameter DSD model, kp becomes a function of Ze.
If this relation can be approximated by a power law,

kp ¼ αZβ
e ð10:19Þ

then Eq. (10.18) can be solved analitically.

Ze rð Þ ¼ Zm rð Þ
C � 2qβ

R r
0α sð ÞZβ

m sð Þds� �1=β ð10:20Þ

This solution is called the Hitschfeld-Bordan solution (Hitschfeld and Bordan 1954).
Here, α can be a function of range r, but β must be a constant. The denominator of
the right-hand side corresponds to the attenuation factor. C is an integral constant
and can be determined by an initial condition. A natural choice of C is C¼ 1 because
at r¼ 0 (or at the first range where echo is detected) there must be no attenuation and
hence Ze ¼ Zm there if the radar is well calibrated. If the radar is not well calibrated
and if Zm includes some bias, C can be different from unity (Iguchi and Meneghini
1994).

The Hitschfeld-Bordan solution is known to give a reasonable correction if the
attenuation is small, but when the attenuation is significant, its performance becomes
very poor. The denominator often becomes an imaginary number. If the attenuation
to a certain range is known, the denominator can be equated to the value
corresponding to that attenuation. In this case, the attenuation correction up to this
range is always stable.

In the TRMM/PR case, C ¼ 1 is used, but α is adjusted by a factor E over the
entire path so that

� 10
β

log 10 1� 2qβ
Z r

0
Eα sð ÞZβ

m sð Þds
� �

ð10:21Þ
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is equal to the given attenuation. The surface reference technique that will be
explained below gives an estimate of the path-integrated attenuation to the surface.
By using this estimate of attenuation at the farthest range of radar echo, E can be
determined and the solution becomes stable over the entire range of measurement.

Since Eq. (10.19) is derived from a single parameter DSD model, if α is modified
by E, the DSD parameter must be modified accordingly. When Ze is converted into R,
the Ze-R relation defined by the modified DSD model must be used for consistency.

In the case of dual-frequency radar, Zm can be obtained from the same scattering
volume at two frequencies. If the propagation and scattering properties of radar
waves for precipitation particles are different at two frequencies, Zm at two frequen-
cies give two pieces of information at each sampling volume. This fact implies that
two independent DSD parameters can, in principle, be estimated from acquired data.
In fact, it is possible to formulate the deterministic equations that must be satisfied by
two DSD parameters for given Zm at two frequencies (Iguchi 2005). For example, if
the frequency dependent variables such as kp, Ze and Zm at two frequencies are
distinguished by subscript f ( f ¼ 1,2), and if the DSD model function is parameter-
ized by two parameters pdsd1 and pdsd2, Eq. (10.18) becomes

Zmf rð Þ ¼ Zef rð Þ exp �2q
Z r

0
kp f sð Þds

� �
, f ¼ 1, 2ð Þ ð10:22Þ

where Ze and kp can be expressed as functions of DSD parameters pdsd1 and pdsd2.

Ze f pdsd1, pdsd2ð Þ ¼ CZ f

Z
σb f Dð ÞNmodel D; pdsd1, pdsd2ð ÞdD ð10:23Þ

and

kp f pdsd1, pdsd2ð Þ ¼ 1
q

Z
σe f Dð ÞNmodel D; pdsd1, pdsd2ð ÞdD ð10:24Þ

where CZf ¼ λ4/(π5|Kf|
2) with Kf ¼ m2

f � 1
� �

= m2
f þ 2

� �
. If we define

Xmf ¼ 10log10(Zmf) and Xef ¼ 10log10(Zef) for brevity, and express Zef and kpf in
terms of the DSD parameters, (10.22) becomes a pair of integral equations for these
DSD parameters which are equivalent to a set of the following differential equations.

dpdsd1 rð Þ
dr

dpdsd2 rð Þ
dr

0
B@

1
CA ¼ A�1

dXm1 rð Þ
dr

þ 2k1 pdsd1 rð Þ, pdsd2 rð Þð Þ
dXm2 rð Þ

dr
þ 2k2 pdsd1 rð Þ, pdsd2 rð Þð Þ

0
B@

1
CA ð10:25Þ

where
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A ¼
∂Xe1

∂pdsd1

∂Xe1

∂pdsd2
∂Xe2

∂pdsd1

∂Xe2

∂pdsd2
:

0
BB@

1
CCA ð10:26Þ

For given Zmf(r) ( f ¼ 1,2), it is theoretically possible to solve a set of Eq. (10.25)
numerically. Once pdsd1(r) and pdsd2(r) are obtained, R(r) can be calculated easily.
Essentially the same, but seemingly different formulation can be found in Meneghini
et al. (1992).

In practice, however, it turns out that the solutions become rather unstable even if
the total path-integrated attenuations at two frequencies are given as constraints
when the method is applied to real GPM/DPR data. In the case of DPR, f ¼ 1
corresponds to the Ku band, and f¼ 2 to the Ka band. Possible error sources may be
fluctuation of data, deviation of the actual DSD from the model function, errors
associated with discretization of continuous data in range and non-uniform beam
filling effect. Another source of error comes from the fact that the DFR-Dm (DFR,
Dual-Frequency Ratio) relationship is not single-valued when DFR < 0 where DFR
is defined as DFR¼10log10(Ze1) � 10log10(Ze2). The theoretical relationship
between Dm and DFR takes a minimum value at a certain Dm at which dDFR

dDm
¼ 0

and A becomes singular there. At this point, the inverse A�1 does not exist and a
numerical solution of the discretized equation becomes unstable in the vicinity of
this point. This fact can be checked by taking pdsd1 ¼ N0 and pdsd2 ¼ Dm. A different
selection of the DSD parameters does not remove the singularity of A.

10.4 Surface Reference Technique (SRT)

As explained in the previous section, attenuation correction is essential in the rain
retrieval algorithm for space-borne radar data. When the Ze profile is estimated from
the measured Zm profile, it is necessary to relate kp with Ze regardless of the
correction method employed. In any case, the error in attenuation estimate increases
with range simply because the error in Zm is amplified by the factor of attenuation
correction and the errors at different ranges are accumulated recursively as the range
increases (Hitschfeld and Bordan 1954).

If the total attenuation to the farthest range of measurement is known, however, it
is possible to use it as a constraint not only to avoid the explosion of error but also to
stabilize the solution over the entire range.

In the case of space-born radar, surface echoes can be measured in addition to
echoes from precipitation. In fact, surface echoes are much stronger than precipita-
tion echoes except when the attenuation due to heavy rain decreases the surface echo
substantially. The strength of surface echo is a function of the surface radar cross
section and the attenuation of radar signal through precipitation. Therefore, if we
know the surface radar cross section behind the precipitation echo, the difference
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between the true and apparent measured cross sections corresponds to the path-
integrated attenuation to surface. A technique that uses this attenuation estimate to
correct for the attenuation in Zm is called the Surface Reference Technique (SRT)
(Meneghini et al. 1983, 2000, 2004).

Since the true radar cross section of the surface behind rain is not known exactly,
it is estimated from its statistics of nearby surrounding area without precipitation, or
the cross-section data at the same area measured and accumulated under the no
precipitation condition previously. These two kinds of reference data are called
spatial reference and temporal reference, respectively. In the actual algorithm, a
combination of these two types of reference is used.

10.5 Errors in Retrievals

There are several error sources in the retrieval of precipitation. Calibration error
affects almost all estimates in the retrieval. One exception may be the attenuation
estimate obtained by the SRT because taking the difference between the surface
cross sections measured under rain and without rain cancels the bias in
measurements.

The difference between the actual DSD and the DSD model creates the errors in
the relations among kp, Ze and R. It is known that a single parameter DSD model,
which is equivalent to the use of fixed Ze�R and kp�Ze relations, gives only
mediocre performance. As mentioned above, a fixed kp�Ze relation often gives
unreliable estimates when it is used in the Hitschfeld-Bordan method for attenuation
correction if the attenuation is large.

A DSD model with two adjustable parameters may improve the situation. Nev-
ertheless, it may still not be good enough for accurate rain retrieval. For example, in a
dual-frequency retrieval, if the DSD is modeled by a function (10.16) with two
adjustable parameters N0 and Dm and a fixed μ, since both Ze1 and Ze2 are propor-
tional to N0, the ratio Ze1/Ze2 becomes a function of only Dm. Therefore, once
attenuation correction is reliably carried out and Ze1/Ze2 is given, then Dm should
be able to be estimated. When actual data of Ze1/Ze2 is plotted against Dm, however,
data points spread around the theoretical curve so that it is obvious that Dm cannot be
determined accurately by using the model relation. Another important problem is
that the theoretical relationship between Dm and Ze1/Ze2 becomes a double-value
function if Dm is treated as a function of Ze1/Ze2.

Up to this point, precipitation particles are assumed to be liquid water or rain. If
they are solid particles such as snow, graupel and hail, cross sections σb in (10.4), σe
in (10.7) and fall speed v in (10.6) depend not only on the particle size D but also on
their melting fraction and shape. All such dependence is included in multi-
dimensional parameter ps in (10.4), (10.6) and (10.7). If the phase state and kind
of particles are known, the same retrieval algorithm for rain can be used with
modification of some constants and parameters to estimate the precipitation rate.
In practice, however, the state of precipitation particles is not known. In a stratiform
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rain system, a bright band is often observed in radar echo and it is possible to define
the height at which ice particles melt into liquid particles. In a convective system,
however, it is known that supercooled liquid particles often exist above the 0 �C
height lifted by a strong updraft. Even with dual-frequency measurement, identifying
the phase transition height is impossible in most convective cases. We need to rely
on some empirical fact to choose the transition height and retrieve the precipitation
rate. Errors in the identification of the transition height results in the error in the
attenuation correction because the extinction cross section σe for ice differs signif-
icantly from that for water for the same dimension. Consequently, the error will
propagate into all kinds of estimates.

The error in SRT will affect the attenuation estimate. There are a few possible
error sources in SRT. Non-uniformity of rain is the most serious error source when
the attenuation is large. For example, if a fraction f of the whole footprint is clear of
rain, no matter how heavy the rain is in the remaining part of the footprint and no
matter how significantly the echo from the surface is attenuated, the surface echo
does not decrease to a value less than the fraction f.

The second source of error in SRT is the change of the surface condition. For
example, surface canopy or vegetation changes with season and snow accumulation
alters the cross section substantially. Winds over sea surface affect the wave
conditions and hence the surface cross section. Since the winds within a storm
may differ substantially from those outside the storm, the reference data taken
outside the storm or taken at different time may not give the correct attenuation
estimates. Rain itself may change the surface conditions (Seto and Iguchi 2007). In
fact, it is known that the same land surface has generally larger radar cross section
when it is wet than when it is dry. Over ocean, small ripples are created by rain drops
hitting the surface. These ripples modify the backscattering cross section slightly.
They decrease the cross section near nadir but increase it at incidence angles larger
than a few degrees.

In the case of the dual-frequency radar, surface echoes are obtained at two
frequencies. Since the variation of the surface cross section affects the scattering
cross sections at two frequencies in the same way, if we take the difference of the two
attenuation estimates at these frequencies, common errors caused by the variation of
surface conditions are cancelled out substantially (Meneghini et al. 2012). This PIA
difference between two frequencies can be used as a reliable constraint in the DPR
retrieval algorithm.

The retrieval algorithm described above ignores the effect of attenuation caused
by non-precipitation particles. They include cloud liquid water, water vapor and
atmospheric oxygen molecules. The distribution of oxygen molecules is well known
and very stable so that the correction for them is not an issue. The total attenuation to
the surface is about 0.4 dB at the Ka band and is less than 0.1 dB at the Ku band.
Attenuation due to cloud liquid water and water vapor cannot be ignored for radar
that uses high-frequency microwaves, in particular, the Ka band and above. Since
the scale height of water vapor is rather small and of the order of 2 km, and its
concentration can be assumed to be nearly 100% in rain, as long as the temperature
profile is well known, the attenuation due to water vapor can be estimated pretty
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well. The attenuation to the surface is about 1.5 dB at the Ka band at most. The most
difficult component for attenuation correction is cloud liquid water. Its distribution
may extend to near the top of troposphere with a concentration that varies signifi-
cantly in space and time. The absolute value of attenuation by cloud liquid water in
an intense convective storm may exceeds a few dB at the Ka band. Note that the
attenuation estimates given by the SRT includes the excess attenuation caused by
those non-precipitation components.

The assumption of homogeneous distribution of precipitation particle within each
scattering volume is critical. Without it, Eq. (10.9) could not be simplified to
Eq. (10.13), which depends only on the variations in Ze and k with range r. If we
denote the average quantity of a variable x over the scattering volume by an overbar
as x , the relation between Ze and R does not change significantly even if the
precipitation is spatially non-uniform. In fact, for example, if the DSD is represented
by the Gamma model (10.16), and if the non-uniformity is caused by only the change
in N0, then since both Ze and R are linearly proportional to N0, the Ze � R relation
remains the same. The effect of non-uniform beam filling (NUBF) on the attenuation
is very serious. As can be expected from (10.8), the dependence of kp on the location
within the beam affects the distribution of Zm in a complicated way. Its magnitude
depends exponentially on the distribution of kp over the entire volume within the
beam up to the range in question. As a result, the correction for the NUBF effects
remains a difficult issue. Some attempts to account for it can be found in Iguchi
et al. (2009).

The formulation in this article assumes that the effect of multiple scattering can be
totally ignored. This assumption is valid in the Ku-band radar except for very intense
storms that are associated with graupel or hail. In the Ka band or a higher frequency
band, however, multiply-scattered echoes are not necessarily insignificant in intense
storms with graupel or hail. Ignoring the multiple scattering effect creates some
errors in rain retrievals.

The formulation also assumes that received signal is available at continuous range
of r. In an actual system, the received signal is sampled at discrete ranges. Integrals
used in equations for retrieval may be approximated by summations. An echo signal
sampled at range r is assumed to represent the average of Zm not only in the lateral
directions of the radar beam, but also along the range direction within the pulse
length. The effect of attenuation within the range resolution must be taken into
account in intense rain when it is significant. Such is often the case in the Ka band.

10.6 Summary

Rain retrieval algorithms have been described in general terms with special attention
to applications to spaceborne radar data. The measurement equation is formulated in
a way to facilitate an understanding of the NUBF effect. The various forms of the
meteorological radar equation show the relationship between the measured signal
and the characteristics of the rain, including the drop size distribution (DSD). The
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parameters to specify the DSD are treated in a general way so that the discussion can
be applicable to different models of DSD. Several possible error sources in the
current algorithms are described. A more specific algorithm used in the precipitation
retrieval algorithm for the GPM/DPR is described in Chap. 11.
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Chapter 11
Dual-Frequency Precipitation Radar (DPR)
on the Global Precipitation Measurement
(GPM) Mission’s Core Observatory

Toshio Iguchi

Abstract This chapter describes major specification of the Dual-Frequency Precip-
itation Radar (DPR) onboard the Global Precipitation Measurement (GPM)
Mission’s core observatory, and the specific algorithm that is used to retrieve
precipitation rate from its data. Emphasis is on the level 2 algorithm that retrieves
instantaneous rainfall profiles. Major functions of the six modules that form the level
2 algorithm and special features in the dual-frequency algorithm are described.

Keywords Precipitation · Rainfall · Hydrometeors · Phase · Satellite · Radar ·
Reflectivity · Range · Bright band · Drop size distribution · GPM · TRMM · PR ·
DPR · Path integrated attenuation · Surface reference technique

11.1 Dual-Frequency Precipitation Radar

The Dual-Frequency Precipitation Radar (DPR) on the Global Precipitation Mea-
surement (GPM) mission’s core satellite is the second space-borne precipitation
radar, following the first such radar, the Precipitation Radar (PR), launched on the
Tropical Rainfall Measuring Mission (TRMM) satellite in November, 1997. The PR
was a single frequency radar that operated at Ku-band (13.8 GHz), whereas the DPR
consists of Ku-band (13.6 GHz) and Ka-band (35.5 GHz) channels. They are
abbreviated as KuPR and KaPR, respectively, in this chapter. The addition of the
Ka-band radar to the Ku-band radar enables the use of dual-frequency algorithms
that improve the estimates of rainfall rates and other quantities. Since radar is an
active sensor, these Earth-pointing KuPR and KaPR instruments provide precipita-
tion echoes over land and ocean, and day and night with essentially the same quality.

The GPM’s core satellite was launched on 28 February 2014 and has been flying
at a nominal altitude of 407 km with the inclination angle of 65�. Both KuPR and
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KaPR are designed to have the same beam widths so that they can measure the
precipitation echoes from the same volume simultaneously. KuPR scans the full
swath of 250 km with 49 beams. KaPR also has 49 beams in one scan, but 25 of them
have the same range resolution, 250 m, as the KuPR, and their scattering volumes are
adjusted to match the corresponding KuPR’s scattering volumes at the central
25 beams of KuPR, which makes the inner swath of 125 km. The KaPR data
acquired with these 25 beams are designated as KaMS, where MS denotes “Matched
Scan”. The remaining 24 beams of KaPR have a range resolution of 500 m. The
KaPR data acquired with these 24 beams are designated as KaHS, where HS denotes
“High Sensitivity”, because the signal-to-noise ratio of KaHS is about 5.5 dB better
than that of KaMS. From the launch of the satellite until May 21, 2018, the scan
pattern of the KaHS channel was interleaved in the inner swath with that of the
KaMS scan pattern to provide information on non-uniform beam filling (Fig. 11.1,
left-hand side). Beginning on May 21, 2018 the KaHS beams were shifted to the
outer swath to provide coincident Ku/Ka-band data over the full 245 km swath
(Fig. 11.1, right-hand side).

The diameter of the footprint is about 5 km at nadir for both KuPR and KaPR
when the satellite is at the nominal altitude of 407 km. Off-nadir, the footprint is an
ellipse with an eccentricity that increases with incidence angle so that at the swath
edge (�18�) the semi-major and semi-minor axes, in the cross-track and along-track
directions, are about 5.9 and 5.2 km, respectively, Since the Earth is slightly oblate,
the actual altitude of the satellite varies from the nominal altitude by about �10 km
or about �2.5%. The footprint dimensions change accordingly.

The echo data are over-sampled at every 125 m for KuPR and KaMS and 250 m
for KaHS. Sampled data from the DPR cover, at minimum, heights from 0 to 19 km
above sea level. Received echo signals are log-detected and averaged. Data at each
range bin is an average of about 100 independent samples. The exact number of
samples depends on the scan angle and the satellite altitude because of the use of
variable pulse repetition rate. The received signal fluctuates according to Rayleigh

Fig. 11.1 DPR’s scan pattern before May 21 2018 (left) and after May 21 2018 (right). KaHS
beams scan in the inner swath before May 21 2018, but now they scan in the outer swath and match
with KuPR’s beams. Numbers in color indicate angle bin numbers for KuPR (blue), KaMS
(yellow), and KaHS (red)
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fading which follows an exponential power distribution with a standard deviation in
the received power that is equal to the mean. Averaging N independent samples of
the log-detected signal gives a standard deviation of 5:57=

ffiffiffiffi
N

p
dB. As a result, when

the radar echo is much larger than the noise level, the error in the echo power, and
hence in radar reflectivity measurement, is about 0.56 dB.

Note, however, that when the echo power is close to the noise level, the relative
error after noise subtraction increases as the echo power decreases. As explained in
Chap. 10, if the threshold for rain detection is set to 2.5 σrn, where σrn is the standard
deviation of signal fluctuation, the error in estimated measured radar reflectivity
factor Zm becomes about �2 dB near the threshold. Details of other design specifi-
cations can be found in Kojima et al. (2012).

11.2 Outline of the DPR Data Processing Algorithm

The data processing algorithm for DPR consists of Level 1 (L1), Level 2 (L2) and
Level 3 (L3) processing. The major role of L1 processing is to convert the received
signals from KuPR and KaPR that are recorded in count values into the received
power in engineering units by combining various radar parameters. Some of the
parameter values and the overall conversion factors are determined according to the
calibrations after launch.

The L2 algorithm consists of three sets of algorithms (Iguchi et al. 2017). They
are the two single frequency algorithms for KuPR and KaPR, and the dual frequency
algorithm. The flows of the three algorithms are basically the same, and their
common framework is shown in Fig. 11.2. It consists of 7 modules: Main module,
Preparation (PRE) module, Vertical (VER) module, Classification (CSF) module,
Surface Reference Technique (SRT) module, Drop Size Distribution (DSD) module,
and Solver (SLV) module. The main module controls the flow of the overall
processing: it will open and close files, call other modules, and read/write all the
input and output files and variables. The roles and functions of each module in the L2
algorithm are described in the next section.

The L3 algorithm collects various output variables of L2 products, and takes their
monthly statistics at each grid box defined over the globe. There are two kinds of grid
boxes: one is 5� � 5� boxes and the other is 0.25� � 0.25� boxes. Statistics of more
than 30 variables are taken. For each variable, the number of measurement counts,
the mean, and the standard deviation in the box are stored in the output. Histograms
are also created for the coarse grid boxes of 5� � 5�. The statistics are taken
separately for the algorithm used (Ku, KaMS and KaHS single frequency products
and dual-frequency products), rain type (stratiform, convective, other), and surface
type (ocean, land, all). Statistics of some variables are further categorized by height
and angle bins when applicable.
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11.3 Outline of the DPR L2 Algorithm Modules

The preparation (PRE) module reads the received power data from L1 products,
classifies each footprint into either rain or no-rain, and converts the received power
Pr into measured reflectivity factor Z0m at each range bin and into apparent normal-
ized surface cross section σ00m. When Z0m and σ00m are calculated, the background noise
Pn is subtracted in linear scale from the received power Pr. No attenuation correc-
tions are applied at this stage. The rain/no-rain judgment is carried out at each angle
bin by comparing Pr and Pn in logarithmic scale because these powers are
log-detected and averaged. If 10log10(Pr)� 10log10(Pn) is larger than the predefined
threshold a � σrn for m consecutive range bins, the beam in question is judged to
contain precipitation echoes. Here a is a constant and σrn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2r þ σ2n

p
where σ2r and

σ2n are the variances of received signal and noise in dB, respectively. The actual
values of σrn are 0.58, 0.57 and 0.60 dB for KuPR, KaMS and KaHS, respectively.
Constants a and m are selected as small as possible to detect light rain but large
enough to avoid misjudging a no-rain pixel as a rain pixel. In version 05 of the
algorithm, a is set to 2.5 and m, which depends on the sample bin size, is set to a
number that corresponds to 750 m. Since the magnitude of 10log10(Pn) over land
corresponds to about 19.5, 23.3 and 17.6 dBZ for KuPR, KaMS and KaHS, the
thresholds for rain detection are approximately 15, 19 and 14 dBZ, respectively.
Note that the background noise changes depending on the surface type and the
existence of rain itself to a small extent. Sidelobe clutter is removed in this module,

Fig. 11.2 DPR L2 algorithm flow
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too (Kubota et al. 2016). This module also converts the satellite coordinates used in
L1 data into the coordinates relative to the Earth’s geoid surface that are used in L2
data, and defines several geometrical and geophysical parameters such as storm
height, surface height, surface type and clutter-free bottom range bin.

The vertical (VER) module reads ancillary atmospheric profile data to calculate
the temperature profile and the attenuation due to cloud and atmospheric gases. As
described in the previous chapter, the specific attenuation k consists of the specific
attenuation by precipitation kp and that by cloud and atmospheric gases ko, i.e.,
k¼ kp + ko. The VER module calculates the vertical profile of ko by assuming model
profiles of water vapor, molecular oxygen and cloud liquid water. It then gives
measured reflectivity factor Zm as a function of range r and the apparent normalized
surface cross section σ0m, both corrected for the attenuation by cloud and atmospheric
gases:

Zm rð Þ ¼ Z 0
m exp 2q

Z r

0
ko sð Þds

� �
¼ Ze exp �2q

Z r

0
kp sð Þds

� �
ð11:1Þ

σ0m ¼ σ0m
0
exp 2q

Z rs

0
ko sð Þds

� �
¼ σ0 exp �2q

Z rs

0
kp sð Þds

� �
ð11:2Þ

where q ¼ 0.1 ln (10), σ0 is the true surface cross section, and rs is the range to
surface.

The classification (CSF) module classifies rain pixels into three major classes;
stratiform, convective, or other. These classes are further divided into several
sub-classes. Classification is carried out by two different methods; a vertical profil-
ing method (V-method) and a horizontal pattern method (H-Method). The V-method
classifies the rain as stratiform if it detects a bright-band in the profile. If it detects an
intense echo that exceeds a certain threshold, the rain type is judged to be convective.
The H-method looks at a horizontal pattern of radar reflectivity factor and classifies
the rain types. These methods used in the DPR algorithm are basically the same as
those used in the TRMM PR algorithm (Awaka et al. 2009). The results from these
methods are merged to create unified output rain types. The classification module
also outputs a few other parameters that include bright-band parameters and flags for
anvil, shallow rain and intense ice precipitation.

The surface reference technique (SRT) module computes the path-integrated
attenuation (PIA) from the change in the apparent surface cross section σ0m in rain.
The SRT rests on the assumption that the difference between the measured values of
σ0m in dB, within and outside rain provides an estimate of the PIA. The normalized
radar cross section in no-rain condition is taken from areas in the vicinity of the
raining area in question in the same orbit or from the same area with the same
incidence angle in the same season of previous years under no-rain condition. The
former reference is called the spatial reference and the latter the temporal reference.
The spatial reference data are created by looking at σ0m in no-rain either at the same
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incidence angle along the track before the rain area (forward along-track) or after it
(backward along-track), or estimating the true surface cross section σ0 at the
incidence angle in question by fitting a model curve to no-rain pixel data across
the scan direction (cross-track direction) before the rain area or after it. Variances of
all these reference data are compared and a weighted average is used to give the best
estimate of PIA (Meneghini et al. 2004, 2012, 2015).

The DSD module defines the phase state as a function of range and provides at
each range bin various variables that depend on the DSD parameters. It uses the
environmental temperature data to define the phase state unless a bright band is
detected. If a bright band is detected, a certain bright-band model is used to define the
phase state as a function of height within the bright band. The drop size distribution
model is expressed in terms of the R-Dm relation at one atmospheric pressure with an
adjustable parameter E. Here, R denotes the rainfall rate and Dm is the volume
weighted mean diameter of precipitation particles. Parameter E can be regarded as
a second DSD parameter. SpecifyingDmwith a given Ewill determine not only R but
also other necessary variables that include effective radar reflectivity factor Ze and
specific attenuation k at both Ku and Ka bands. All such variables at various
temperatures are pre-calculated and stored in a table. Once the phase state and the
temperature are given, the values of Ze and k needed for attenuation correction can be
picked up from the table. Unlike the TRMMPR algorithm, the attenuation correction
algorithm in the solver module does not assume a power law relationship between
k and Ze because there are no consistent power law relations at both Ku and Ka bands
that can be derived from a single-parameter DSD model.

The solver module is the core of the rain retrieval algorithm. It estimates Dm at
each range bin that can best reproduce the measured profiles of Zm at both Ku and Ka
bands with constraints that include: agreement between the computed PIA and the
SRT-derived estimate; restrictions on how large E can deviate from its nominal value
of one. Note that E is not adjusted at each range bin but is common at all range bins in
a beam. The basic idea of the attenuation correction is described in the Chap. 10.
Since no power law is assumed between k and Ze in the DPR algorithm, however, the
attenuation correction is made at each range bin numerically by using the k- Ze
relations stored in the look-up table. Since the actual echo data have a finite range
resolution and are sampled at discrete ranges, the attenuation within the range bin is
also taken into account in this process (Seto et al. 2013). The effect of NUBF is
considered and corrected for (Seto et al. 2015). Once the best combination of E and
Dm profile are chosen, all other variables such as R, Ze and k are calculated and
written in the output file.

11.4 Special Features in the DPR Algorithm

The algorithm flow described in the previous section is applicable to both single-
frequency and dual-frequency L2 algorithms. The single-frequency algorithms for
KuPR and KaPR are developed not only because KuPR and KaPR have unmatched
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beams along which data from only one of them are available, but also because the
mission requires output data even if one of the radars stops its measurement for some
unexpected operational reasons or accidents. Before 21 May 2018, the dual-
frequency algorithm was applicable only to the data from the matched beams of
the inner swath. Estimates of rain parameters derived from these data are presumed
to be more accurate than single-frequency estimates because of the availability of
more information obtained simultaneously at the same resolution cell.

As mentioned in Chap. 10, attenuation correction is the major issue in rain
retrieval with a spaceborne radar. Instead of using the Hitschfeld-Bordan solution
that requires a power law relation between k and Ze, the attenuation correction in the
DPR algorithm is carried out successively along the range direction by numerically
solving the equation that relates Zm, Ze, and k by assuming an R-Dm relation with
adjustable parameter E. The PIA estimate provided by the SRT is used as a con-
straint. Since the PIA estimates by SRT include some errors whose relative magni-
tude increases when the PIA becomes small, there is a minimum PIA above which
the SRT is applicable (Seto et al. 2015). This minimum level is much higher for
KuPR than for KaPR because the attenuation in the Ka-band is about 6 times larger
than that in the Ku-band. As a result, SRT can be used in KuPR only for rain rates
larger than approximately a few mm h�1 whereas it can be used in KaPR for rain
rates larger than about 1 mm h�1 if rain extends from surface to a few km in height.
The exact level of the threshold depends on the incidence angle, surface type, storm
height and other conditions. On the other hand, if rain is quite heavy and if the
attenuation is so large that the surface echo disappears, SRT cannot be used either.
This latter condition often happens in KaPR measurement. In such a case, echoes
from rain near the surface disappear because their powers become much smaller than
the noise level of the radar receiver. As a result, KaPR often fails to estimate the
rainfall rate near surface in heavy rain. These facts imply that the accuracy of rain
estimates from KuPR and KaPR depends on the intensity of rain and other condi-
tions, but their dependence on the rain rate differs substantially between KuPR and
KaPR. By combining information from KuPR and KaPR, it is possible not only to
extend the usable range of SRT, but also to improve the accuracy of PIA estimates
over the PIA range where both Ku and Ka PIA can be estimated by SRT. The
differential PIA that is defined as the difference between Ku and Ka band PIAs can
be estimated with a smaller error than the errors associated with individual PIA
estimates. A major error in PIA estimates by the single-frequency SRT generally
originates because of differences between the actual surface cross section in rain and
the reference value constructed from rain-free surface cross sections. In the dual-
frequency case, the variance of the difference in the surface cross sections σ0(Ka) –
σ0 (Ku) is typically smaller than in the single-frequency case so the errors in the
estimate of differential path attenuation tend to be smaller than those associated with
the path attenuation derived from single-frequency data (Meneghini et al. 2015). In
version 05 of the DPR’s dual-frequency algorithm, this differential PIA estimates by
SRT is used as a constraint in the solver module.

As described in Chap. 10, a dual-frequency algorithm that tries to retrieve two
DSD parameters at each range bin becomes unstable in many cases. Because of this
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problem, the current solver module adopts a different approach to effectively use the
dual-frequency information. The new dual-frequency algorithm is an extension of
the Ku-only algorithm. The parameter called E, which corresponds to the second
adjustable DSD parameter and is common over the entire vertical profile, is adjusted
to correct for the attenuation in such a way that the retrieved vertical profile of Dm

and hence the precipitation profile will reproduce both the measured vertical profiles
of KuPR and KaPR as close as possible and also make the differential PIA calculated
from it agree with the differential PIA given by SRT in a probabilistic way.

Dual-frequency information is used in other parts of the algorithm as well. The
measured dual-frequency ratio defined by

DFRm ¼ 10 log 10Zm Kuð Þ � 10 log 10Zm Kað Þ ð11:3Þ

is used in three places in version 05 of the DPR L2 algorithm. It is used to estimate
the melting top and bottom in the vertical profile of stratiform rain with a bright
band (Le and Chandrasekar 2013). This method is a kind of vertical profiling
method and classifies each angle bin into either stratiform, convective or transi-
tional. The output is merged in the classification output as a subcategory of rain
types. These parameters provide additional information about the precipitation
structure.

DFRm is also used to set a flag in flagHeavyicePrecip which indicates the
existence of intense ice precipitation above the �10 �C isotherm (Iguchi et al.
2018). Finally, it is used to calculate the snow index that defines a flag called
flagSurfaceSnowfall which indicates the phase state of precipitation at surface
(Le et al. 2017).

11.5 Future of the DPR Algorithm

The parameters and flags derived by the use of DFRm turn out to be very useful.
Because of the advantage of accurate estimation of rainfall rate with the dual-
frequency data together with additional useful information derived from the use of
DFRm, the GPM project decided to change the scan pattern of KaHS so that dual-
frequency matched beam data can be obtained over the full swath even though the
information about the non-uniformity of rain distribution provided by using KaHS’s
interlaced scan would be sacrificed. The new scan pattern of KaHS is also expected
to improve rain/no-rain judgement in the outer swath where KuPR profiles are often
contaminated by sidelobe surface clutter at certain ranges. The classification of rain
types may also be improved by using the dual-frequency information.

At the same time, some effort has been made to improve the DPR algorithm in
several aspects. In the current algorithm, for example, the PIA estimates by SRT is
the only additional constraint to the attenuation correction. But the increase of the
background noise of KuPR due to rain over ocean should be usable for attenuation
correction. Since the radar’s receivers are not designed for radiometric use, the
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radiometric information provided by the radar can be used only for heavy rain or in
limited cases. However, it can improve the reliability of the output especially when
the SRT fails to estimate the PIA correctly under some exceptional conditions where
the distribution of σ0 is unusual. Such an unusual surface return occurs, for example,
when the sea is very calm and σ0 as a function of incidence angle changes substan-
tially, or when a part of the ocean surface has very different surface winds due to the
existence of an island. Attenuation estimates inferred with DFRm are implicitly used
in the current algorithm when it adjusts the DSD parameters so that the retrieved Ze
and k profiles at both Ku and Ka bands will reproduce the measured Zm profiles at
these frequencies. But, there may be a more explicit use of DFRm near surface in
attenuation correction if two DSD parameters are not estimated at each range bin
(Seto and Iguchi 2015).

Research is also going on to improve the reliability of reference data of the
surface cross section used in SRT by combining different sizes and different areas
of statistics of σ0 (Meneghini and Kim 2017). Multiple scattering effects appear,
especially in Ka-band echoes, in heavy convective rain system that contains a large
amount of ice particles (Battaglia et al. 2015). Such effects are not taken into account
in the current retrieval algorithm. Correction of multiple scattering effects is a very
difficult issue together with the non-uniform beam filling effects. Some efforts to
alleviate these effects are under way.
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Chapter 12
DPR Dual-Frequency Precipitation
Classification

V. Chandrasekar and Minda Le

Abstract Profile classification is a critical module in the microphysics retrieval
algorithm for the dual-frequency precipitation radar (DPR) that on board the global
precipitation measurement (GPM) core satellite. It does rain type classification,
hydrometeor profile characterization, and surface snowfall identification at each
Ku- and Ka- band matched footprint of DPR. Vertical characteristics of measured
dual-frequency ratio (DFRm), defined as the difference between measured reflectiv-
ity at two frequency channels (Ku- and Ka- band) in dB scale, were key information
that extensively used in various algorithms. This chapter introduces the theoretical
basis of these algorithms. Validation activities are illustrated as well.

Keywords Precipitation · Radar · Rainfall · Dual frequency ratio · Convective/
stratiform classification · Snow · Crystals · Dendrites · Hail · Graupel · Melting layer ·
Bright band · Reflectivity · GPM · TRMM · PR · DPR · Linear depolarization ratio ·
Surface snowfall · Validation

12.1 Introduction

The Dual-frequency precipitation radar (DPR) on board the GPM core satellite
operates at Ku- (13.6 GHz) and Ka- (35.5 GHz) band. DPR improves our knowledge
of precipitation relative to the single-frequency (Ku- band) radar used in TRMM
(Tropical Rainfall Measurement Mission). New Ka-band observation of DPR helps
improve the detection thresholds for light rain and snow (Hou et al. 2014). Mea-
surements from both frequency bands suffer from attenuation when a radar beam
propagates through precipitation such as the melting layer and moderate to heavy
rain. However, attenuation from the Ka-band is larger than from the Ku- band.
Non-Rayleigh scattering occurs in precipitation at both Ku- and Ka-bands.
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Meanwhile, non-Rayleigh scattering is more severe at Ka-band than at Ku-band.
This makes the difference between these two DPR measurements a viable parameter
for making inferences about the profile.

The difference in the measured radar reflectivity at the two frequencies is a
quantity often called the measured dual-frequency ratio (DFRm). It is defined as

DFRm ¼ 10 log 10 Zm Kuð Þð Þ � 10 log 10 Zm Kað Þð Þ ð12:1Þ

Zm is the measured equivalent radar reflectivity factor in linear scale. DFRm is in dB
scale.

Figure 12.1 shows a schematic plot of a typical DFRm profile with key points A,
B, C, and D marked. These key points are DFRm slope peak where the gradient of
DFRm profile reaches its maximum magnitude (point A); DFRm local maximum
(point B); DFRm local minimum (point C), and DFRm value toward surface (point
D).

Dual-frequency classification module is a module in the GPM DPR level 2 algo-
rithms. The module is developed using observations from both Ku- and Ka-bands.
The outputs of the module follow the legacy format used for TRMM precipitation
radar. It includes two parts, namely precipitation type classification and melting layer
detection. The flow chart of GPM-DPR level 2 algorithm is shown in Fig. 11.2 of
Chap. 11. From the figure, the outputs of the classification module determine the
nature of microphysical models and algorithms to be used in the retrievals (Iguchi
et al. 2017).
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DFRm profile with key
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12.2 Precipitation Type Classification

The measured dual-frequency ratio (DFRm) and its vertical variation compose the
main parameters used in the model. In order to quantify the features of DFRm, a set
of indices are defined. Let V1 be

V1 ¼ DFRml maxð Þ � DFRml minð Þ
DFRml maxð Þ þ DFRml minð Þ ð12:2Þ

DFRm (max) and DFRm (min) are shown in Fig. 12.1. DFRml used in (12.2) means
DFRm in linear scale. Let V2 be the absolute value of the mean slope for DFRm

below the local minimum point

V2 ¼ abs mean DFRm, slopeð Þð Þ ð12:3Þ

The DFRm slope is defined as the difference of DFRm values between two
successive DPR range bins, divided by range resolution. The parameters of V1 and
V2 are normalized and are not dependent on the height or depth of the melting layer.
In general, stratiform rain has larger V1 value than convective rain.While, convective
rain has larger V2 value than stratiform rain. To further enlarge the difference
between stratiform and convective rain types, a third index V3 is defined as

V3 ¼ V1
V2

ð12:4Þ

The index V3 is an effective parameter and provides a separable threshold for
performing precipitation type classifications.

Statistical studies are performed on V3 using GPM DPR real data. Cumulative
Density Function (CDF) of index V3 is calculated for convective rain. 1-CDF of
index V3 is calculated for stratiform rain. Different rain type databases are separated
using Ku only classification algorithm (Awaka et al. 1997). Separable thresholds
of C1 and C2 can be found on index V3 for two rain types with around 70% of
CDF. Here C1 ¼ 0.18 and C2 ¼ 0.2. In other words, for stratiform rain: V3 > C2;
convective rain: V3 < C1; transition: C1 � V3 � C2. C1 is smaller than C2.
“Transition” is neither a stratiform, nor a convective rain type. The histogram of
index V3 and its cumulative density functions are shown in Fig. 12.2. The calcula-
tion is based on data from 73 storms with 121,859 vertical profiles in total. Fig. 12.3
illustrates the flowchart of precipitation type classification method in the dual-
frequency classification module. Details of algorithms can be found in Le and
Chandrasekar (2013a).
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12.3 Melting Layer Detection

In the GPMDPR dual-frequency classification module, melting layer top and bottom
heights for each qualified vertical profile are detected. The main information used in
the model is the DFRm profile and its vertical variation. Referring to Fig. 12.1, we
consider “DFRm pair” exists when both point B and C are detected. Then the melting
layer top is defined as the height at which the slope of the DFRm hits a peak value.
The melting layer bottom is defined as the height at which the DFRm has a local
minimum value. Two horizontal dashed lines in Fig. 12.1 illustrate the melting layer
top and bottom height for the profile using the above definition.

Fig. 12.2 Histogram of DFRm index V3 and CDFs (cumulative density function) using total of
121,859 vertical profiles from GPM real data. (a) Histogram and 1-CDF of V3 for Stratiform rain.
Red dashed line represents 1-CDF. (b) Histogram and CDF of V3 for Convective rain. Red dashed
line represents CDF
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The criteria described above have been compared with other existing criteria in
the literature using different radar parameters. Tilford et al. (2001) used the gradient
of reflectivity (Zm) to detect the bright band top and bottom for stratiform rain type.
The linear depolarization ratio (LDR) has been pointed out by many researchers as
an important signature in melting phase detection, with certain thresholds deter-
mined for different hydrometeor particles (Smyth and Illingworth 2006; Bandera
et al. 1998; Tan and Goddard 1995; Hines 1983). Typical vertical profiles of
reflectivity as well as the corresponding velocity for stratiform and convective type
were extensively studied by Fabry and Zawadzki (1995). Baldini and Gorgucci
(2006) mentioned that the rapid change of the hydrometeor fall velocity is an
implication of the melting layer. The curvature of velocity was used by Zrnić et al.
(1994) in characterizing the melting boundaries. Klaassen (1988) found that the
melting bottom can be detected by maximum of velocity. Table 12.1 summarize the
comparison of melting layer detections between criteria in DFRm method and other
existing criteria. The comparison results using airborne radar data (NAMMA, GRIP
and Wakasa Bay experiment). From the table, estimations from the DFRm method
match best with velocity-based criteria with normalized bias of 1.3% and 2.2% for
melting layer top and bottom respectively. The DFRm method also compares well
with the LDR criteria, with a�28 dB threshold, the bias between these two criteria is
around�2.8%. Details can be found in Le and Chandrasekar (2013b). Figure 12.4 is
the block diagram of melting layer detection used in the most updated version of
dual-frequency classification module.

Fig. 12.3 Block diagram of precipitation type classification model
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Fig. 12.4 Block diagram of melting layer detection for DFRm method

Table 12.1 Comparisons of melting layer boundaries between different criteria for NAMMA,
GRIP and Wakasa Bay data

Criteria

DFRm slope peak
(NAMMA)

DFRm slope
peak (GRIP)

DFRm slope
peak (Wakasa
Bay)

NB NSE NB NSE NB NSE

Melting layer
top comparison

Zm slope
peak

�2.6% 3.6% �2.5% 3.6% �4.9% 6.6%

Zm curvature
peak

1.6% 3.3% 1.5% 3.0% 2.8% 5.2%

LDR �2.8% 4.5% �3.3% 4.2% �6.0% 7.2%

Velocity cur-
vature peak

�1.3% 3.6% �1.4% 3.7% �1.9% 5.6%

Melting layer
bottom
comparison

Zm curvature
peak

4.3% 5.5% 3.7% 5.0% 4.3% 6.9%

LDR 4.5% 5.9% 4.0% 5.4% 5.4% 11.2%

Velocity cur-
vature min

2.2% 4.9% 1.7% 4.4% �0.08% 7.0%

Velocity
max

1.6% 5.9% 1.9% 4.3% �2.6% 13.9%
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12.4 Evaluation of the Dual-Frequency Classification
Module

Extensive evaluations have been conducted of the dual-frequency classification algo-
rithm ever since GPM’s launch. Results from the dual-frequency classification algo-
rithm are compared with both space radar algorithm and ground radar methods. The
single frequency (Ku-band) algorithm from TRMM legacy is applied to the full swath
of DPR overpass, while the dual-frequency algorithm is applied to the inner swath. It is
critical to show consistency of classification results from two different algorithms. We
compare different rain type counts using both algorithms and perform statistical
studies on the melting layer top and bottom heights using tropical storm datasets.

12.4.1 Comparison Between Dual-Frequency and TRMM
Legacy Single Frequency Methods

Table 12.2 is a contingency table summarizing a comparison of rain type counts between
dual-frequency classification method and TRMM legacy Ku only method using GPM
data from total of 15 orbits. ‘S’, ‘C’ and ‘O’ in the table represent stratiform, convective
and other rain types. The count of stratiform rain that is detected by both methods is
73,190. The count of convective rain and other rain type is 14,094 and 9414 respectively.
With a total of 110,794 rain type counts in this comparison, the percentage of matches
between dual-frequency method and TRMM legacy Ku only method is around 87.3%.
In addition to general profile comparisons, the evaluation is also performed on tropical
storms. A total of 61 tropical storms with 7 from cyclones, 27 from hurricanes and
27 from typhoons are used in the evaluation ofmelting layer top and bottom between the
dual-frequency classification method and the single frequency approach.

In Fig. 12.5, histograms for melting layer top and bottom for these three storm
types illustrate similar ranges. Median value for melting layer top and bottom are the
same for dual-frequency classification method and Ku only method for hurricanes
and typhoons. For cyclones, median value of melting layer bottom from the
dual-frequency classification method is slightly lower than the estimations from

Table 12.2 Comparison of stratiform, convective and other rain types between dual-frequency
classification method and Ku only method

Count Dual-frequency method

Ku only method S C O Total

S 73,190 4364 303 77,857

C 2914 14,094 45 17,053

O 6095 375 9414 15,884

Total 82,199 18,833 9762 110,794

A total of 15 GPM DPR orbits data are used in comparison
‘S’ represents for stratiform rain; ‘C’ for convective rain and ‘O’ for other type
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Ku only method. We assume the results from both methods match if the absolute
difference of the melting layer top (or bottom) between two methods is within
0.25 km. We counted the number of profiles that have melting layer top (or bottom)
match (or not match) for cyclone, typhoon and hurricane storms. Tables 12.3 and
12.4 summarize this comparison for melting layer top and melting layer bottom,

Fig. 12.5 Left column (from top to bottom): comparison ofmelting layer top height (in km) between
dual-frequency classification method and Ku only method for cyclone, hurricane and typhoons
shown in Table 12.2. Right column illustrates similar results for melting layer bottom height (in km)

Table 12.3 Count of melting layer top match between dual-frequency method of DPR and Ku only
method using GPM DPR data from tropical storms including cyclones, typhoons and hurricanes

Count

Match of MLT (Δ � 0.25 km)?

Yes No Total

Cyclone 7234 173 7407

Typhoon 37,137 832 37,969

Hurricane 19,278 469 19,747
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respectively. Tables 12.3 shows that there are 7234 matched melting layer tops
detected out of 7407 cyclone profiles, while there are 37,137 matched melting layer
top detections out of 37,969 typhoon profiles and 19,278 matched detections out of
19,747 hurricane profiles. The percentage of melting layer top matches between the
dual-frequency method and the TRMM legacy Ku only method is higher than 97%
for different tropical storm types. Table 12.4 shows the similar results for melting
layer bottom detection. The percentage of matches for melting layer bottom is more
than 99%.

From histogram plots and tables shown below, results from the dual-frequency
classification method match well with Ku only method, which is the TRMM legacy
method. In this way, consistency can be expected between the inner swath (where
dual-frequency classification method is applied) and the outer swath.

12.4.2 Surface Snowfall Identification

The GPM mission extends observation coverage from the tropical regions to the
whole globe including cold regions compared to TRMM mission. In those cold
regions, snow is the dominant precipitation type. It is important to study snowfall
precipitation and provide a surface snowfall flag to each vertical profile in the GPM
products. In this section, we describe an algorithm to identify surface snowfall using
information from vertical observations from radar such as the dual-frequency ratio.

This is a new approach to detect snow because traditional methods rely on surface
temperature or surface echo to detect snow. This algorithm has been implemented as
an experimental version in the dual-frequency classification module. Adding this
surface snowfall identification function is considered as an enhancement of the
current classification module. It should be pointed out that this method is not for
detecting snow aloft.

Figure 12.6a shows the first snow observation caught by GPM DPR with
overpass #272 on 17 March 2014. Within that overpass, there is snow, stratiform
and convective rain precipitation within a 160 scan (around 800 km) range. A, B and
C indicate the locations of snow, stratiform and convective rain. Figure 12.6b shows
the averaged reflectivity profile for snow at Ku-, Ka- band and the measured dual-
frequency ratio. As expected, reflectivity at Ku- band is, most of the time, below
25 dBZ. However, the difference between Ku- and Ka- band (indicated by DFRm) is

Table 12.4 Count of melting layer bottom match between dual-frequency method and Ku only
method using GPM DPR data from tropical storms including cyclones, typhoons and hurricanes

Count

Match of MLB (Δ � 0.25 km)?

Yes No Total

Cyclone 7406 1 7407

Typhoon 37,950 19 37,969

Hurricane 19,736 11 19,747
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several dBs, even when reflectivity at Ku- band remains a relatively small value.
Figure 12.6c shows an averaged vertical profile for stratiform rain. The bright band is
obvious from Ku- band reflectivity. Values of DFRm below the melting region
(or the bright band) are very small indicating that attenuation at Ka- band is very
small when reflectivity at Ku- band is less than around 25 dBZ in the rain region. In
contrast, DFRm values above the melting layer is several dBs, with values similar to
the snow in Fig. 12.6b. For convective rain, from Fig. 12.6d, the maximum of
reflectivity at Ku- band is equal or larger than 35 dBZ, while DFRm values are
considerable in the rain region. Large DFRm values in rain are contributed from both
the attenuation difference and the non-Rayleigh scattering effect, while the former
factor plays a more important role. Comparing Fig. 12.6b, c, DFRm values are larger

ZmKu ZmKu

ZmKu

ZmKa ZmKa

ZmKa

DFRm DFRm

DFRm

[mm/h]
Rain rate from Ku on GPM/DPR
March 17,2014, orbit 000272

6
5.5

5
4.5

4
3.5

3
2.5

2
1.5

1

H
ei

gh
t (

km
)

Stratiform rain

a

b

c d

6
5.5

5
4.5

4
3.5

3
2.5

2
1.5

1
-10 0 10 20 30 40 -10 0 10 20 30 40

Averaged Zm (dBZ) & DFRm Averaged Zm (dBZ) & DFRm

H
ei

gh
t (

km
)

Convective rain

Snow

-10 0 10 20 30 40

Averaged Zm (dBZ) & DFRm
H

ei
gh

t (
km

)

6
5.5

4.5

3.5

2.5

1.5
1

2

3

4

5

Longitude

0 1 5 10 20 30 50 80

La
tit

ud
e

40

38

36

34

32

30

28
276 278 280 282 284 288

Fig. 12.6 (a) GPM DPR overpass of rainfall rate on March 17, 2014 (#000272). Circled A, B and
C represents snow, stratiform rain, and convective rain. (b) Averaged reflectivity profiles as well as
dual-frequency ratio profile for snow. (c) Same as (b) for stratiform rain. (d) Same as (b) for
convective rain
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for snow than stratiform rain even when reflectivity values are of similar magnitude.
This is a useful indication to help perform snow- and rain-fall separation. Comparing
Fig. 12.6b, d, DFRm values for snow are in the similar range compared to convective
rain. However, reflectivity at Ku- band is much smaller for snow than convective
rain. One of the features of a convective storm is that it is normally formed at a higher
altitude in the atmosphere (except for some warm rain or orographic rain) compared
to stratiform and snow precipitation (Houze 1997). Figure 12.7 shows the vertical
cross section at nadir for the DPR overpass shown in Fig. 12.6a. Red, blue and black
circles indicate snow, stratiform and convective precipitation, which correspond to
Fig. 12.6a. It is straightforward that storm top height is lower for snow and
stratiform, which is around 5 km. In contrast, storm top height is around 10 km for
convective precipitation.

Based on the above analysis, three ingredients including DFRm, the maximum
value of reflectivity at Ku- band, as well as the storm top height become important,
are then used in the development of the algorithm to identify surface snowfall. To
avoid calibration issues, we use the slope of DFRm instead of DFRm itself.
Figure 12.8a–c illustrate histograms of DFRm mean slope (absolute value), maxi-
mum of reflectivity at Ku-band, and storm top height for snow, stratiform and
convective rain using DPR overpass #000272 (scan # 4980–5140). In Fig. 12.8a,
the mode value is around 5, 3 and 3.5 dB km�1 for snow, stratiform and convective
rain, respectively. In Fig. 12.8b, the mode value of Zmkumax is less than 15 dBZ with
the mean value around 20 dBZ for snow. For stratiform rain, the mode value is
around 30~35 dBZ, and 35~40 dBZ for convective rain. Storm top height value is
much larger for convective rain compared to snow and stratiform rain, shown in
Fig. 12.8c. All these findings from the histogram plots match the features we observe
from averaged vertical profiles shown in Fig. 12.6.

A closer inspection of DPR profiles shows some features: (i) DFRm slope is
appreciable for snow compared to stratiform rain; (ii) maximum of reflectivity for
snow is less than 30 dBZ, while for convective rain is around 35–40 dBZ; (iii) storm
top height for snow is lower than convective rain in a general sense. Combining

Fig. 12.7 Vertical cross section at nadir of DPR overpass shown in Fig. 12.6a
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these features, a snow index to perform effective separation between snowfall and
rain (includes stratiform and convective) is designed. The snow Index (SI) is care-
fully chosen from the features discussed above. The definition of SI is

SI ¼ mean abs DFRmslope

� �� �

Zmkumax � Storm top height
ð12:5Þ

where the DFRm slope (in dB km�1) is used instead of the DFRm value due to its
immunity to calibration change. Zmku_max (in dBZ) represents maximum of
reflectivity at Ku- band along the profile. Storm_top_height represents the altitude
of the storm top in km. In general, the absolute value of DFRm slope in the numerator
of (12.5) is larger for snow than for stratiform rain. Zmku_max value in the
denominator is larger for convective rain than for snow, while storm top height in
the denominator is lower for snow and stratiform rain than for convective rain.

Fig. 12.8 GPM DPR overpass of rainfall rate on March 17, 2014. Scan # from 4894 to 5142. (a)
Histogram of mean DFRm slope in absolute value. (b) Histogram of maximum reflectivity at Ku
band. (c) Histogram of storm top height
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Therefore, SI is expected to be a larger value for snow profile than for rain. In the
algorithm, we use the normalized value of Zmku_max and Storm_top_height.

A total of 353,166 rain profiles and 4935 snow profiles are used in the statistical
study of the snow index. Rain profiles are chosen from tropical regions during the
summer season and snow profiles are chosen from northern Europe and the northern
US in the winter season. Information of 0 �C isotherm is used in profile selection.
Fig. 12.9 shows the histogram of the snow index (SI) defined in (12.5) for snow and
rain profiles respectively. In general, as expected, snow index is larger for snow
profiles. The cumulative density function (CDF) is calculated for rain, and illustrated
as a blue dashed curve in Fig. 12.9, while the red dashed curve represents 1-CDF for
snow profiles. At around 97% of the CDF (or 1-CDF), the SI index can separate
snow and rain profiles. In other words, 97% of snow profiles have SI > 17, while
97% of rain profiles have SI � 17.

Figure 12.10 shows a flow chart of the surface snowfall identification algorithm
that uses the snow index. Besides snow index, other auxiliary information such as
0 �C isotherm and clutter free height are used in the algorithm. Although the 0 �C
isotherm (or surface temperature) plays an important role in snowfall detection, its
accuracy is a challenge for space-borne weather radars such as GPM. Therefore, in
this algorithm, the 0 �C isotherm is not the dominant parameter but rather a
constraint parameter. In many research efforts, snowfall detection is associated
with near surface reflectivity values (Kulie and Bennartz 2009). However, for
DPR radar, surface reflectivity at Ku- and Ka- bands is easily falls below the GPM
noise level (~18 dBZ) due to attenuation, which limits the detectability of snowfall.

Fig. 12.9 Large scale study of the snow index using GPM DPR profiles. Histograms of the snow
index are shown for rain (blue) and snow (red). The blue dashed curve is the cumulative density
function (CDF) for rain. The red dashed curve is 1-CDF for snow
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However, the current snowfall identification algorithm uses profile information to
detect snow rather than the information solely from the surface, which is considered
as another advantage. More details of the surface snowfall identification algorithm
can be found in Le et al. (2017).

12.4.3 Ground Validation for the Surface Snowfall
Identification Algorithm

The surface snowfall identification algorithm has been gone through extensive
validations with ground observations. Ground observations include ground-based
validation radars and in situ instruments. Among various validation instruments,
ground-based dual-polarization radar has shown great advantages to conduct pre-
cipitation observation over a wide area in a relatively short time span. Therefore,
radar is always a key component in all the validation field experiments. Validation
cases are carefully selected to demonstrate the algorithm’s stability under different

Fig. 12.10 Flowchart to perform surface snowfall identification in profile classification module of
GPM DPR level 2 algorithm
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geophysical conditions including mountain, lake, flat land and coastline at different
season of the year. Table 12.5 contains a list of radars and events we have success-
fully done validation with.

In the validation process, precipitation events that were simultaneously captured
by both GPM DPR and ground radar are chosen first. Then, the hydrometeor type is
classified using ground radar for choosing snow events. Third, the surface snowfall
identification algorithm is applied to DPR observations during these events. Finally,
comparisons are done between hydrometeor type results from two radars. The output
of the surface snowfall algorithm is a snow flag (0 or 1), where “1” means that there
is surface snowfall, while “0” means there is no surface snowfall. No snowfall could
be rain, wet snow, graupel or hail etc. The algorithm used to perform hydrometeor
identification for the ground radar is described in Bechini and Chandrasekar (2015).
The match ratio between DPR and ground radar is calculated within the overlapped
region. Whenever DPR footprint has a valid “0” or “1” value from the surface
snowfall flag, we search the ground radar hydrometeor type at the closest latitude
and longitude data point. When the snow flag is “1” (surface snowfall exists), we
consider hydrometeor types of dendrite (“DN”), crystal (“CR”) and dry snow (“DS”)
from ground radar to be a match. When the snow flag is “0” (surface snowfall does
not exist), the other hydrometeor types from the ground radar identification algo-
rithm are considered a match. The hydrometeor type identified from the ground radar
is summarized in Table 12.6 (details can be found in Bechini and Chandrasekar
2015). The match ratio is calculated as

Table 12.5 Information on snow validation cases

Radar Date Surface type GPM DPR orbit#

KILX (Lincoln, IL) 2014-12-22 Flat land 4638

KOKX (Upton, NY) 2015-01-09 Coastline 4914

KEAX (Kansas, MO) 2015-01-31 Flat land 5263

KBUF (Buffalo, NY) 2015-03-14 Lake 5908

KIWX (North Webster, IN) 2015-03-23 Lake 6052

NPOL (Olympic peninsula, WA) 2015-11-14 Coastline 9722

KDVN (Davenport, IA) 2015-11-21 Flat land 9828

NPOL (Olympic peninsula, WA) 2015-12-03 Coastline 10,019

KAKQ (Wakefield, WA) 2016-02-05 Coastline 11,011

KAPX (Gaylord, MI) 2016-02-25 Lake 11,319

KARX (La Crosse, WI) 2016-03-24 Flat land 11,755

CSU-CHILL (Greeley, CO) 2016-04-16 Mountain 12,119

KGRR (Grand Rapids, MI) 2017-11-18 Lake 21,160

KCLE (Cleveland, OH) 2017-12-14 Lake 21,554

KOTX (Spokane, WA) 2017-12-20 Flat land 21,648

KDOX (Dover, AFB, DE) 2018-01-04 Coastline 21,882

Table 12.6 Meaning of abbreviation used for ground radar hydrometeor identification

Type RH HA GR DS RA DRZ WS

Rain and hail Hail Graupel Dry snow Rain Drizzle Wet snow
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Match Ratio ¼ of match points
of valid points of DPR

ð12:6Þ

If the match ratio equals 1, it means all DPR footprints can find a match of snow/
no snow with ground radar. DPR has limited detectability due to its attenuation at
higher frequencies compared to ground radar. It is therefore normal that DPR
observes fewer valid points than the ground radar.

Figure 12.11 shows the match ratio for all 16 cases in Table 12.5. The validation
radars are NPOL, NEXRAD and CSU-CHILL. Validation cases are chosen from
different surface types, including 5 from flat land, 5 from lake, 5 from coastline and
1 from mountain. In the figure, 11 out of 16 cases have a match ratio above 85%. The
rest are all above 70%. In Table 12.7, we illustrate the total number of data points in
the comparison and the averaged match ratio for each surface type. Lake and
mountain cases have higher match ratio above 90%, although there is only 1 avail-
able mountain case in this study so far. The average ratio for flat land is the lowest
but still above 85%. Averaged match ratios among all 16 cases is 87.8%, which is a
promising result. More details on the validation of the surface snowfall algorithm
can be found in Le and Chandrasekar (2019).

Fig. 12.11 Match ratio for 16 validation cases during the years 2014–2018

Table 12.7 Average match ratio for validation cases under different surface types

Surface type Flat land Coastline Lake Mountain All

Total valid points 2498 3338 2668 298 8802

Average match ratio (%) 85.6 86.5 90.8 98.5 (1 case) 87.8
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Chapter 13
Triple-Frequency Radar Retrievals

Alessandro Battaglia, Simone Tanelli, Frederic Tridon, Stefan Kneifel,
Jussi Leinonen, and Pavlos Kollias

Abstract With triple frequency radars becoming more and more popular both at
ground-based facilities and on airborne platforms and with the prospect of a space
mission with a triple-frequency radar payload on the horizon, triple-frequency radar
retrievals are becoming fertile areas of active research. In this chapter the benefits
and potentials of a triple-frequency radar approach for retrieving rain and ice
microphysics will be discussed first on a theoretical basis and then demonstrated
for a stratiform case study extracted from the OLYMPEX field campaign with Ku-
Ka-W band radar observations. Challenges and recommendations for future work
are included in the chapter.
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13.1 Introduction

In order to adequately understand the role of clouds and precipitation and improve
their representation in numerical models, global-scale satellite measurements of
cloud microphysics and dynamics are required to complement detailed ground-
based process studies on all scales important to cloud formation, evolution and
dissipation (Bony et al. 2006). Contrary to the case for infrared and visible, micro-
wave radiation can penetrate deep convective systems and profile the interior of a
precipitating system. Multi-frequency radars are considered the gold standard for
clouds and precipitation observations because they offer unmatched vertical profil-
ing capabilities and they have the potential to provide a holistic view of cloud-
precipitation processes. In addition, by providing improved microphysical charac-
terization of the different hydrometeors in the column, they promise to shed light
into the “processes” operating within the atmosphere which link clouds to precipi-
tation. For instance, accurate measurements of Drop Size Distributions (DSD) are
fundamental for understanding the processes (e.g., coalescence, evaporation and
droplet breakup) governing cloud microphysics and improving liquid precipitation
representation in numerical models. Similarly, Cloud Resolving Models (CRM) tend
to incorrectly represent ice microphysical processes (e.g., deposition, aggregation
and riming), inducing significant inaccuracies in the partitioning between liquid and
ice water species, the depth of the mixed-phase cloud region, the vertical redistri-
bution and location of ice and liquid water, and upper-level detrainment of water
vapor. A huge effort has been dedicated by modelers to better describing such
processes in CRMs by using two-moment or spectral microphysics schemes (e.g.,
Seifert and Beheng 2001; Morrison and Grabowski 2007; Kumjian and Prat 2014).
Improved observations and retrievals are required for evaluating the enhanced
complexity of microphysics schemes both from the ground and from space. This
premise calls for a paradigm shift away from current systems that largely observe
microphysical variables to future observing systems that can in addition capture
snapshots of “processes”. Triple-frequency radar systems can play a key role in this
area by providing unique observations that can be used to verify models of cloud-
precipitation processes.

13.1.1 Why Triple-Frequency Radars?

Figure 13.1, which depicts almost coincident observations from the CloudSat CPR
(see Chap. 2) and the GPM DPR (see Chap. 1), epitomizes the potential of
spaceborne multi-frequency radar observations of the same precipitating system.
Two aspects of the multi-frequency approach are paramount.

Complementarity: cm and mm-radars are effective in mapping different parts of the
precipitating system. Thanks to its better sensitivity compared to the GPM DPR,
the CloudSat CPR is capable of detecting the high cloud structure, the anvil
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outflow and the region of lighter stratiform precipitation (black circles). On the
other hand, because of its much higher attenuation, the CPR signal is strongly
affected by attenuation and multiple scattering1 in the most intense part of precip-
itation (i.e., where even the Ka-GPM observations are fully attenuated, red circle).

Synergy: in the regions where they all produce detectable signals cm and mm radars
can be used synergistically in order to better retrieve cloud microphysical
properties. For instance, in Fig. 13.1 the large-ice and low-precipitation regions
are detected both by the DPR and by the CPR. The signal detected by these radars
is the result of the complex interplay between non-Rayleigh and attenuation
effects. If the attenuation of the signal from one of the radars becomes too strong2

then the signal vanishes below the minimum detection threshold.

Fig. 13.1 CloudSat and GPM coincident overpass observations of a convective precipitation
system developed over the Banda Sea in the Maluku Islands of Indonesia. Measurements from a
suite of microwave sensors are shown. Top row: CloudSat W-band reflectivity; second row: GPM
Ka-band reflectivities for the high sensitivity (HS) scan; third row: GPMKu-band reflectivity for the
normal scan (NS). The dataset of coincident overpasses is from the GPM product 2B-CSATGPM
from the NASA Precipitation Processing System developed by J. Turk, JPL

1This effect is identified by the absence of a detectable surface peak, see detailed discussion in
Battaglia and Simmer (2008), Battaglia et al. (2010).
2In a retrieval study Battaglia et al. (2016a) identified as a rule of thumb the condition that the
optical thickness from the radar to the target whose properties must be retrieved should not exceed
three units (i.e., a two-way attenuation of less than �25 dB). Above such levels, attenuation
corrections become prohibitive.
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Unfortunately, such observations are currently available only during “coinci-
dent overpasses” of the CloudSat and GPM-core satellites (e.g., for the example
shown in Fig. 13.1 there is a 319 s gap between the two satellite observations).
Since the latest Decadal Survey (2017) conducted by the US National Academy of
Sciences adopts Ku-Ka and W band frequencies as a baseline for the Cloud and
Precipitation Process (CCP) mission, these three frequency bands will be the focus
of this chapter.

Leinonen et al. (2015) studied in detail the complementarity and synergy of a
triple-frequency radar for global cloud and precipitation observations with detection
levels enhanced with respect to current capabilities (see also discussion in Sect.
13.1.1.1). They found (see their Fig. 4) that for a 450-km orbit a third of the whole
system is only detected by W-band, a quarter by the Ka-W and 38.5% by the triple-
frequency Ku-Ka-W. This latter percentage tends to increase when moving away
from the top of the cloud, e.g. it is 49% at 3 �C and 54% at �15 �C. This highlights
the potential benefit of retrievals techniques capable of fully exploiting triple-
frequency observations.

The premise of all multi-wavelength retrievals is that the scattering properties of
mm- and cm-size particles strongly depend on the wavelength of the impinging
electromagnetic radiation. Radar-measured reflectivity factors (Zm) at range r and at
frequency f are the result of intrinsic effective reflectivity factors3 (Ze) within the
backscattering volume and of attenuation (α) between the radar transmitter/receiver
and the target:

Zm,f rð Þ ¼ Ze,f rð Þ � 2
Z r

0
αf sð Þ� �

ds: ð13:1Þ

where reflectivities are in dBZ and attenuation in dB units. Thus, Zm at different
frequencies may differ because of:

(a) the effective reflectivity factors of the targets; this becomes relevant when the
hydrometeor sizes are comparable to the radar wavelength (i.e., in the presence
of “non-Rayleigh effect”, (Bohren and Huffman 1983; Lhermitte 1990);

(b) the attenuation properties of the medium, with higher attenuation produced at
higher frequencies (Lhermitte 1990).

The contribution of these two sources in dual frequency ratios (DFR), defined as
the ratio of reflectivity factor measurements in linear units (or, like here, their
difference in logarithmic units) from two radars operating at different frequencies
f1 and f2 ( f1 < f2), can be written as:

3Hereafter we use the following convention of effective reflectivity factor:

Ze,λ rð Þ ¼ λ4

π5 Kj j2 η rð Þ
where η is the radar reflectivity, λ is the radar wavelength and |K|2 ¼ 0.93. With this definition

small ice particles have the same Ze (e.g., Hogan et al. 2006).
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DFRf 1,f 2ðrÞ½dB� � Zm,f 1ðrÞ � Zm,f 2ðrÞ ¼ Ze,f 1ðrÞ � Ze,f 2ðrÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Non�Rayleigh effect

þ 2
Z r

0
ðαf 2ðsÞ � αf 1ðsÞÞds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Attenuation effect

:

ð13:2Þ

The two differential terms on the right-hand side can provide PSD information
beyond the simple Rayleigh radar reflectivity factor (which is proportional to the
sixth moment of the PSD) of a profoundly different nature, with non-Rayleigh
effects, useful in gauging intensive quantities (e.g., characteristic size) and attenua-
tion effects, useful for deducing extensive quantities (e.g., rain rate or water content).
Because of the complexity of disentangling non-Rayleigh and attenuation effects,
dual-frequency retrieval algorithms typically have been developed for regimes
where one effect is dominant. For instance, Hogan et al. (2005) and Ellis and
Vivekanandan (2011) have proposed dual-wavelength differential attenuation
methods for the estimation of the cloud, drizzle, or light rain liquid water content
while Matrosov (1998), Wang et al. (2005) and Liao and Meneghini (2011) have
exploited non-Rayleigh effects for sizing and for hydrometeor classification in snow
and ice clouds. Radar observations at three (or more) frequencies have the potential
to be effective in retrieving microphysical properties for a larger gamut of cloud and
precipitation regimes where the simultaneous presence of both attenuation and
non-Rayleigh effects can substantially complicate the inversion process.

13.1.1.1 Why a Triple-Frequency Approach for Rain?

Raindrops increasingly behave as non-Rayleigh targets when moving from Ku to W
band (see Fig. 2 in Tridon and Battaglia 2015) with the single particle backscattering
cross sections deviating from Rayleigh dependence (proportional to the sixth power
of the diameter) and exhibiting consecutive maxima and minima. At Ka the first
maximum (minimum) is localized close to a radius of 1.8 mm (2.3 mm) while at
W-band the first maximum (minimum) appears at 0.6 mm (0.85 mm) followed by a
second maximum (minimum) at 1.2 mm (1.45 mm). Radar reflectivities tend to
decrease with increasing frequency with the only exception being the Ku-Ka pair for
raindrops with radii lower than 1.1 mm. This implies that increasing DFRs corre-
spond to larger sizes (e.g., see Figure 1 in Gaussiat et al. 2003, or Figure 8 in
Battaglia et al. 2016a). The left panel in Fig. 13.2 demonstrates the possibility of
retrieving a characteristic size (mean mass-weighted diameter) and the shape param-
eter, μ, of Γ-parameterized DSD (Ulbrich 1983) if triple-frequency radar measure-
ments are available and effective DFRs for the pair Ku-Ka and Ka-W can be derived.
Clearly having only knowledge of DFRKu-Ka leaves ambiguities relating to the
bifurcation of the curves for different shape parameter at Dm > 1 mm but also in
the region where DFRKu-Ka < 0 (see Chap. 11). The addition of W-band helps in
disentangling such ambiguities, particularly in the region of Dm < 1.5 mm.
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The main obstacle to performing such a triple-frequency retrieval resides however
in the assumption that effective DFR can be derived from the measurements, i.e. that
the attenuation term on the right-hand side of Eq. 13.3 can be corrected for. In fact, as
shown in the right panel of Fig. 13.2, attenuation increases rapidly with frequency
and with rain rate and can be challenging to account for, not to say that it can drive
the radar received power from ranges beyond heavy rain layers into the noise level
(e.g., for the Ka band in correspondence with the red arrow in Fig. 13.2). Additional
sources of attenuation (e.g., caused by cloud liquid droplets or melting particles,
Matrosov 2008) can further add complication to the problem. Though the Ku-band
radar reflectivity can be used to correct the Ka- and W-band signals, integral
constraints are highly desirable to stabilize the inversion problem (L’Ecuyer and
Stephens 2002; Haynes et al. 2009). Examples of these are provided by radar path-
integrated attenuations (PIA), typically derived by the surface reference technique,
and by radiometer brightness temperatures (TBs). Of course, attenuation itself,
which often dominates the vertical gradient of reflectivity observed in rain at
mm-wavelengths, can be used as a source of information, e.g. for estimating rainfall
rate. In fact, especially at Ka-band (green lines in Fig. 13.2), attenuation is almost
linearly proportional to rain rate (Matrosov 2005; Matrosov et al. 2006; Giangrande
et al. 2010).

13.1.1.2 Why a Triple-Frequency Approach for Ice?

The basic idea of using multi-frequency for ice and snow is similar to the concept
described for rain: when combining frequencies for which different parts of the size
distribution transition from the Rayleigh to the non-Rayleigh scattering regime, Ze of
the frequency which is more affected by non-Rayleigh scattering will be reduced.
While for Rayleigh scattering all components of the particle experience the same

Fig. 13.2 Left: effective DFRKa-W vs DFRKu-Ka for population of raindrops at 15 �C with Γ DSDs
with different μ as indicated in the legend and with color-coded mean mass-weighted diameter.
Right: extinction coefficient vs rain rate for exponential DSDs with intercept parameters as
indicated in the legend. Scattering properties are computed using T-matrix
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electric field of the impinging wave, in the non-Rayleigh scattering regime, reso-
nance effects inside the particle lead in general to a less than the square of the particle
mass increase of the backscattering cross section. For rain drops, the shape as
function of size as well as the refractive index of liquid water is well defined.
Hence, the effective DFR is mainly dependent on the PSD parameters. For ice and
snow particles, neither the shape nor the overall effective refractive index of the
ice-air mixture is well defined. Early studies (Matrosov 1992, 1998) approximated
snowflakes with a spheroidal shape and calculated the effective refractive index of
the ice-air mixture with an effective medium approximation (see also Chap. 15).
Interestingly, this leads to a very small sensitivity of the DFR to density and aspect
ratio so that the DFR should be usable to infer the characteristic size of the PSD.
Unfortunately, this insensitivity to density and shape seems to disappear once more
realistic representations of snowflakes are used (Kneifel et al. 2011). In their
theoretical analysis of aggregates (Petty and Huang 2010), single ice crystals (Liu
2008) and spheroidal scattering approximations for Ku, Ka, andW-Band, they found
large uncertainties introduced in the PSD parameters derived from standard DFR.
However, once three frequencies are combined, a separation between aggregates and
the more spheroidal shapes appears. The typical hook signature of low-density
aggregates in combination with the more slowly increasing signature of denser and
more spherical particles (e.g., graupel) was confirmed by other theoretical studies
using a large variety of snowflake scattering computations (Leinonen et al. 2012;
Tyynelä and Chandrasekar 2014; Leinonen and Moisseev 2015; Leinonen and
Szyrmer 2015; Stein et al. 2015). First triple-frequency observations from airborne
platforms (Leinonen et al. 2012; Kulie et al. 2014) confirmed the existence of the
main signatures predicted by the scattering models. The first observational evidence
of a direct link between these triple-frequency signatures and snow particle proper-
ties was provided by a comparison of ground-based triple-frequency observations
and collocated in-situ observations (Kneifel et al. 2015). The triple-frequency
signatures revealed the expected dependence on characteristic size of the PSD but
also a sensitivity to the overall particle density. It is important to note that shape
(an intrinsically ambiguous defined property) and overall density are often connected
(e.g., in case of riming). Currently, the available scattering datasets (see Chap. 15 for
a detailed overview) are still unable to fully cover the observed range of triple-
frequency signatures (see for instance Fig. 13.3 where several scattering models
have been used, details in Tridon et al. (2019). However, in order to quantify the
sensitivity and added value of triple-frequency observations for PSD and density
retrievals using e.g. optimal estimation methods, a representative set of scattering
computations is key.

13.2 Triple-Frequency Datasets

Airborne cloud and precipitation radar data have been acquired since the 1980s in
support of mission concepts such as TRMM, CloudSat and then GPM. A majority of
these datasets were acquired by single-band or dual-band radar systems in such as
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ARMAR, ELDORA/ASTRAIA, EDOP, CRS, ACR, and others (e.g., Durden et al.
1994; Hildebrand et al. 1993; Heymsfield et al. 1996). In a few experiments some of
these instruments were positioned on the same airborne platform, and one experi-
ment in particular received significant attention in the last decade for the specific
purpose of exploring the value of triple-frequency radar measurements: the Wakasa
Bay experiment conducted in 2003 as part of a joint campaign by NASA and JAXA
to validate the Aqua products. In that experiment the APR-2 (Ku- and Ka-band,
Sadowy et al. 2003) and the ACR (W-band (Sadowy et al. 1997) were installed in the
forward and aft sections of the NASA P-3, respectively. The resulting dataset, has
been analyzed in the context of triple-frequency retrievals mainly to investigate the
value of such measurements in reducing the ambiguities associated with the retrieval
of frozen hydrometeors (e.g., the previously mentioned “hook feature” in theDFRKa-

W vs DFRKu-Ka plane). While small airborne datasets of 3 or even 4 radar frequencies
were acquired during other field experiments (e.g., TC4, Costa Rica 2007; see Toon
et al. 2010; Jensen et al. 2009) by flying in formation two aircrafts carrying cloud or
precipitation radars operating at different bands, the community had to wait until
IPHEX/RADEX14 for the next extensive dataset of multi-frequency airborne radar
data. IPHEX (Integrated Precipitation and Hydrology Experiment, https://pmm.
nasa.gov/iphex, last accessed 11 Oct. 2018) was planned for 2014 as part of the
GPM Ground Validation program with a primary complement of ground-based

Fig. 13.3 Effective DFRKa-W vs DFRKu-Ka for population of ice crystals computed different
scattering tables. The density plots show the distribution measured by a triple-frequency radar
during one of the GPM field campaigns
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radars and airborne in situ instruments. During its early definition phases, the ACE
(Aerosol/Clouds/Ecosystem) mission concept Science Working Group identified it
as an excellent opportunity to synergistically pursue overlapping needs linking cloud
and precipitation science and supported its augmentation (as RADEx’14, the first
ACE Radar Definition Experiment) that enabled acquisition of a new extensive
dataset of multi frequency radar data by including on the ER-2 payload three radars:
EXRAD (X-band), HIWRAP (Ku- and Ka-band in nadir pointing configuration) and
CRS (W-band) and a number of other active and passive sensors to simulate
candidate measurements by the ACE mission concept. Two key new elements
were introduced by this dataset with respect to Wakasa Bay: the completely different
range of cloud and precipitation systems, and the addition of X-band data to the
collocated measurements. As a result, the focus of this dataset insofar has been
mostly on deep convective systems (e.g., Battaglia et al. 2016a) and warm rain or
cumulus congestus. The collaboration between GPM GV and ACE SWG continued
to grow even as IPHEX/RADEX’14 was still in its planning stages, and a second
major joint effort was conducted in November/December 2015 when the
OLYMPEX field experiment (Houze et al. 2017) originally selected within the
GPM GV was also augmented by ACE to deliver what is the most extensive
(to date) dataset of triple-frequency airborne cloud and precipitation radar data.
Three aircraft participated in OLYMPEX/RADEx’15 (Radar Definition Experi-
ment): the NASA DC-8 carrying the APR-3 triple-frequency scanning radar (Ku-,
Ka- and W-band), the NASA ER-2 carrying the EXRAD, HIWRAP and CRS, and
the University of North Dakota Citation flying under them with cloud probes. The
DC-8 and ER-2 also included a number of passive sensors for microwave and
polarimetric observations of clouds and precipitation. This dataset includes a large
amount of airborne observations of clouds and precipitation in prefrontal, frontal and
post-frontal regimes, either over ocean or in the context of significant orographic
effects induced by the Olympic mountains. Many instances of multi-frequency
airborne radar observations are augmented with collocated and simultaneous in
situ sampling by the Citation. The dataset is also characterized by the availability
of a vast amount of ground-based data spanning from radars to in situ measurements,
and is actively studied by several research groups on a number of topics (e.g.,
Heymsfield et al. 2018; Chase et al. 2018; Tridon et al. 2019). Extensive ground-
based datasets of triple frequency observations have also been collected in several
ARM field campaigns such as the Biogenic Aerosols – Effects on Clouds and
Climate (BAECC) campaign (Petäjä et al. 2016) with comprehensive in-situ ground
observations, and the ARMWest Antarctic Radiation Experiment (AWARE, https://
www.arm.gov/research/campaigns/amf2015aware, last accessed 11 Oct. 2018), with
the first triple frequency dataset in Antarctica. Other supersites (e.g., Chilbolton and
Jülich) conducted several measurement campaigns and plan to continuously record
triple frequency data (Stein et al. 2015). These long-term datasets could shed more
light on certain aspects that cannot be monitored by airborne data.
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13.3 Triple-Frequency Retrievals

The development and testing of triple-frequency retrieval are relatively new because
of the only recent availability of triple-frequency airborne radar observation datasets.
When attenuation severely affects the higher frequency channels (as in the presence
of supercooled liquid or heavily rimed precipitation and/or when the microphysical
retrieval is run for the entire precipitation column) triple-frequency retrievals are
based on optimal estimation (L’Ecuyer and Stephens 2002; Grecu et al. 2011; Mason
et al. 2017) approaches, which disentangle non-Rayleigh and attenuation effects by
optimizing a cost function via an iterative process based on a forward model radar
operator (e.g., Haynes et al. 2007; Hogan and Battaglia 2008; Battaglia et al. 2016a).
Bayesian approaches have also been recently developed for retrieving ice only
microphysics under the assumption that effective reflectivities can be recovered
(Leinonen et al. 2018)). But to date only few have been applied to three (or more)
frequency radar observations (Battaglia et al. 2015, 2016a, b; Leinonen et al. 2018).

An example of an optimal estimation retrieval applied to the data collected by the
Airborne Third Generation Precipitation Radar (APR-3; Sadowy et al. 2003) flown
on board the NASA DC-8 aircraft during the OLYMPEX field campaign (details in
Houze et al. 2017) and shown in Fig. 13.4 is depicted in Fig. 13.5. Results are
presented for two different retrieval methodologies. The first is the method proposed

Fig. 13.4 Left: gas-corrected Ka-band reflectivity (top), DFRKu-Ka (center) and DFRKa-W (bottom)
for a flight on the 1 December 2016. Right top: flight tracks across the Olympic Peninsula from the
Olympic Mountains range toward and beyond the NPOL radar (black dot) on the Pacific coastline.
The UTC time of DC-8 (external contour) and Citation (internal contour) aircraft paths are
modulated in color (see color bar). The position of the Citation is shown in the top left panel.
Right bottom: hydrometeor classification according to the multi-frequency method of Tridon et al.
(2019)
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in Tridon et al. (2019) (referred as “TRI18”) and it is applicable to the whole
precipitation column (left column panels) with the only exception of the melting
layer (white band). A preliminary classification mask allows the identification of ice,
melting and rain region (bottom right panel in Fig. 13.4) and a rough categorization
of the different types of ice. Only results for one scattering model, the lightly rimed
B-model with LWP ¼ 100 g m�2 proposed by Leinonen and Szyrmer (2015), are
shown here (left panels). Such model was found to be the best one for reconciling
in-situ and radar remote sensing measurements for the whole campaign. The second
is the retrieval described in Leinonen et al. (2018) (referred as “LEI18”), which is
applicable only for the ice phase and uses lookup tables mapping the measurement
space to the state space (right column). Microphysics are illustrated in terms of mean
mass weighted particle size (top panels) and equivalent water content (center
panels). The bulk ice density as defined in Leinonen et al. (2018) (bottom right)
clearly shows a vertical evolution of ice particles from bulk ice density at the top of
the cloud (small ice crystals) to much smaller densities corresponding to fluffier
snowflakes close to the freezing level. From a direct comparison of the two retrievals
it is clear that LEI18 is producing ice particles smaller than TRI18 and slightly larger
ice water contents. Figure 13.5 also shows that for the full-column retrieval (left)
there is reasonable flux continuity between the top and the bottom of the melting
level (bottom panel).

In situ validation data are provided by the Citation that was flying below the DC-8
(track highlighted in the top panels of Fig. 13.4). An intercomparison between in-situ
and retrieved microphysical properties in the ice part for the upper leg is shown in
Fig. 13.6. The retrieved values are comparable but it remains challenging, given the

Fig. 13.5 Retrieved parameters for the leg shown in Fig. 13.4: mean mass-weighted maximum size
(top), IWC (center) and flux (bottom). The right bottom panel shows the bulk ice density as defined
in Leinonen et al. (2018)
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uncertainties in the in-situ measurements and the co-location/sampling issues, to
draw definitive conclusions about the quality of the two retrievals.

13.4 Critical Issues and Open Questions

As discussed in previous sections, there is a growing body of literature that deals
with the numerical computation and evaluation of the appropriate scattering libraries
especially for non-spherical particles, the development of appropriate a priori con-
ditions and the introduction of physically-based parameterizations that connect the
radar observables to the microphysical parameters of interest. However, conducting
dual- and triple-wavelength radar observations from spaceborne (GPM-DPR), air-
borne (Battaglia et al. 2016a) and ground-based (Kneifel et al. 2015; Stein et al.
2015) platforms requires trades-off that can affect quality and information content of
the multi-wavelength radar observations. High quality multi-wavelength radar
observations require matched sampling volumes to address the large natural vari-
ability of precipitation microphysics and sufficient number of samples and signal-to-
noise conditions to reduce the error in the reflectivity measurements for all the
radars.

Although we have seen synergistic data products from radar and lidar observa-
tions performed from different spaceborne platforms (CloudSat-Calipso, Delanoë

Fig. 13.6 Comparison between in-situ and retrieved microphysical properties as sample by the
Citation aircraft in the ice part corresponding to the upper leg as shown in Fig. 13.4. Left column:
mean mass weighted particle size (top) and ice water content (bottom) for the in-situ and for the two
retrievals considered in this paper. The blue lines and the blue bands correspond to the a-priori and
its standard deviation. Right panel: scatterplot of IWC vs Dm for the in-situ and for the two
retrievals. Note that the in-situ Dm and IWC are derived from the PSD measurements based on
the assumption that the mass-size follows that of lightly rimed B-model of Leinonen and Szyrmer
(2015)
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and Hogan 2010), multi-wavelength radar observations should be conducted from
the same platform using the same antenna. The error in Dual-Wavelength Ratio
(DWR) from radars that use noncoincident footprints can be very large (2–3.5 dB),
thus significantly affecting the interpretation of the multi-wavelength radar obser-
vations for deriving particle size information (Hogan et al. 2000). The DPR offers an
example of volume matched dual-wavelength radar observations. Due to size
restrictions in space, the matched antenna beamwidth (0.71�) is controlled by the
lower radar frequency (Ku-band) and results to a 5-km footprint in the troposphere.
Furthermore, the vertical resolution (250 m) is also controlled by the minimum
detectable signal requirement for the Ku-band radar. Thus, the requirement for
matched sampling volumes comes at the expense of reducing the performance of
the higher frequency radar. In addition, the large DPR matched sampling volume
(250 m vertical, 5000 m horizontal) is inherently a problem because of the large
variability in the radar reflectivity field (the so called non-uniform beam filling
(NUBF) conditions). Hogan et al. (2000) attempted to assess the impact of the
selected sampling volume on the quality of the DWR measurements using the
horizontal structure function of the radar reflectivity field as estimated from
ground-based observations and their conclusion was that the error in ice clouds
can be �0.2 dB for frequency combinations that include 35-GHz and higher
frequencies. One way to demonstrate the NUBF conditions for different sampling
volumes is to estimate the single radar frequency (Ka-band) standard deviation
within different sampling volumes as depicted by high spatiotemporal observations
from ground- and air-based observations using higher resolution observations. As
expected, at coarser resolution, the standard deviation increases. The averaging
effect of the sampling volume affects also the observed pdfs of radar reflectivity at
different wavelengths and of the DFR. This change on the absolute magnitude of the
DFR translates into an error in the retrieval of the particle size: on average, the
simultaneous sampling of high and low radar reflectivity areas causes a shift of the
radar DFR pdfs towards lower values, thus, shifting the retrieved particle size
distributions towards lower sizes, as demonstrated in Fig. 13.7.

Another factor to consider that affects the quality of DFR measurements is the
uncertainty in the radar reflectivity estimate at low signal-to-noise ratio (SNR)
conditions and/or at small number of independent samples MI. The uncertainty of
radar reflectivity measurement (ΔZ ), Hogan et al. (2000), is approximately equal to:

ΔZ dB½ � ¼ 4:343ffiffiffiffiffiffi
MI

p 1þ 1
SNR

� �
ð13:3Þ

Assuming that the random error in Zf 1 and Zf 2 is independent, the uncertainty of

DFR can be estimated as:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔZ2

f 1
þ ΔZ2

f 2

q
. Thus, the error in the DFR measurements

is controlled by the radar with lower sensitivity. Let’s assume a single pulse noise
level of �10 dBZ for a future Ka-band spaceborne radar system and M ¼ 200
averaging samples. At typical PRFs, due to the large Doppler fading introduced by
platform motion, all the samples are independent (M¼MI), so that the uncertainty in
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the radar reflectivity measurements (ΔZ ) is 3.3781, 0.6142, 0.3378, and 0.3102 dB
for SNR values of �10, 0, 10, 20 dB. Thus, SNR values of +10 dB or higher (i.e.,
reflectivities higher than 0 dBZ) are required to reduce the DFR error below 0.35 dB.

Apart from the impact of NUBF and of the noise into triple-frequency retrievals
other questions remain to be answered.

1. Doppler capabilities could be added to the next generation of multi-frequency
space-borne radars. This will enable a direct link to the cloud dynamics (e.g., via
mass fluxes) and should allow a deeper understanding of precipitation processes
like riming, aggregation or evaporation/sublimation, a key leap forward for the
improvement of cloud models.

2. Though Ku-Ka-W are generally recognized as the most comprehensive way
forward for a holistic monitoring of cloud-precipitation processes from space
other frequencies can offer unique insights in studying specific regimes. X-band
space-borne radars, though presenting challenges due to increased antenna size
and coarser spatial resolution, can enhance observations in deep convection cores
and extreme precipitation where Ku systems can suffer from severe attenuation
and multiple scattering (Battaglia et al. 2016a; Heymsfield et al. 2013). Similarly,
ice and mixed-phase clouds can be better characterized if frequencies in the
G-band are exploited (Hogan et al. 2000; Battaglia et al. 2014). Technological
challenges (large antennas for X-band and larger transmitted powers for G-band)
need to be overcome to accomplish these ideas.

13.5 Recommendations for Future Work

Triple-frequency retrievals are in their infancy. Progress can be made in several
directions along these proposed research avenues.

Fig. 13.7 Shift of the
retrieved particle size
distributions towards lower
sizes. Figure prepared by
L. Pfitzenmaier (see
Pfitzenmaier et al. 2019 for
details)

224 A. Battaglia et al.



1. Intercomparison studies between retrieval techniques developed by different
research groups should be performed for golden cases (i.e., with in-situ valida-
tion). This could help to better assess the relevance of different a-priori assump-
tions, the validity of the scattering tables utilized in the retrieval, the uncertainties
introduced by using different single scattering properties (see Chap. 15) and the
impact of the uncertainties in the calibration and cross calibrations of the radars.
This will implicitly establish whether retrieval errors are properly estimated.

2. In-situ validation studies are key to assess the performances of triple-frequency
retrievals. New datasets are needed particularly in regions where the
multifrequency signal is present, e.g. in rain or in presence of ice particles
exceeding 1 mm, as typically found in the aggregation areas close to the melting
level. Such in-situ measurements could also contribute in refining a-priori
assumptions (e.g., how ice Dm and IWC at a given temperature are related to
reflectivities and how they co-vary). In-situ measurements below the freezing
level remain essential to validate full-column retrievals.

3. The effective benefits, potentials and limitations of triple- vs double- and single-
frequency retrievals have not yet been fully unfolded, e.g. the improved accuracy
of precipitation retrievals for triple-frequency systems in different regimes (light/
moderate/heavy rain rain, snow,...) must be properly quantified. Moreover, the
impact and added value of additional information like Doppler velocities and
co-located brightness temperatures and/or PIA must be better understood.
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Chapter 14
Precipitation Retrievals from Satellite
Combined Radar and Radiometer
Observations

Mircea Grecu and William S. Olson

Abstract This chapter provides a unified perspective on a broad class of approaches
to derive precipitation estimates from satellite combined radar and radiometer
observations based on the optimal estimation theory. These approaches are based
on the optimal estimation theory and are numerical equivalent to an optimization
problem. Irrespective of the procedure used to address the optimization, challenges
related to mismatch between the large mismatches between the radar and radiometer
footprint sizes, the ill-posed character of the mathematical problem and errors in the
forward models need to be effectively mitigated. Approaches used in the TRMM and
GPM combined algorithms as well as their benefits and limitations are discussed in
the chapter. Aspects requiring improvement and potential solutions are also
presented in the chapter.
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14.1 Introduction

Space-borne weather radar observations may be subject to significant attenuation
due to precipitation and clouds. To derive precipitation estimates from such obser-
vations, it is, therefore, necessary to incorporate an attenuation correction procedure
in the estimation methodology. While efficient attenuation correction procedures
exist (Iguchi and Meneghini 1994), they are affected by the same type of uncer-
tainties that usually affect the precipitation estimation from un-attenuated ground
radar observations. The inclusion of reliable independent estimates of the Path
Integration Attenuation (PIA) in the attenuation correction has been shown to
mitigate uncertainties in the attenuation correction process and improve the accuracy
of associated precipitation estimates (Iguchi and Meneghini 1994; Ferreira et al.
2001). However, although estimates of the PIA from space borne radar observations
using a Surface Reference Technique (SRT, Meneghini et al. 2000) are in many
instances sufficiently accurate to have a positive impact on the precipitation estima-
tion process, they are not always reliable enough to be usable in the attenuation
correction procedure (Meneghini et al. 2000). Alternative PIA estimates are there-
fore beneficial in mitigating uncertainties in the attenuation correction procedure.
Early studies determined that radiometer observations at frequencies lower than
10-GHz are strongly related to the PIA at X-band and Ku-band (Weinman et al.
1990) and can be used to derive information that can be incorporated into radar
precipitation profiling algorithms. Motivated by the work of Weinman et al. (1990)
Smith et al. (1997) developed a relationship to estimate the PIA at Ku-band
(13.8 GHz) from 10.7-GHz radiometer observations. This relationship was used in
the first Tropical Rainfall Measuring Mission (TRMM) (Kummerow et al. 1998;
Grecu and Bolvin 2018) combined radar-radiometer algorithm (Haddad et al. 1997).

The main challenge in deriving PIA estimates from satellite radiometer observa-
tions is that the typical footprints of low frequency radiometer channels are signif-
icantly larger than the typical footprints of space-born radars. This makes the direct
application of the formulations derived by Weinman et al. (1990) and Smith et al.
(1997) problematic. To circumvent this difficulty, the TRMM Day-1 combined
algorithm (Haddad et al. 1997) made use of a procedure to simultaneously perform
the attenuation correction and precipitation estimation for all radar profiles falling
within the intersection of four adjacent 10.7-GHz radiometer footprints. Alternative
approaches were developed by Grecu et al. (2004), Masunaga and Kummerow
(2005), and Munchak and Kummerow (2011), but, irrespective of the approach,
the radar-footprint PIA was not directly estimated from the radiometer observations.
Instead, radar estimates were derived to maximize the agreement between model
predicted radiometer observations and actual radiometer observations.

Despite discrepancies between radar and radiometer footprint sizes that make the
direct investigation of the impact of the radiometer observations on the accuracy of
the PIA estimates difficult, the estimation of precipitation from satellite combined
radar-radiometer observations has been an area of active research in recent years due
to the benefits that combined approaches provide in the development of satellite
radiometer precipitation estimation algorithms. Specifically, given that combined
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radar radiometer precipitation estimates are optimized to maximize the agreement
between simulated and actual satellite radiometer observations, they can be used to
derive large databases of precipitation and associated radiometer observations for the
development of “Bayesian” precipitation estimation algorithms from satellite
radiometer-only observations (Grecu and Olson 2006; Kummerow et al. 2011;
Hou et al. 2014). As a consequence, combined precipitation estimates have been
adopted as the optimal solution to develop unified precipitation retrievals from the
constellation of satellite microwave radiometers that comprise the Global Precipita-
tion Mission (GPM) (Hou et al. 2014). Given the increased focus on the develop-
ment of radiometer algorithms, the potential of combined radar-radiometer
algorithms to mitigate uncertainties in satellite radar precipitation estimates has
been somewhat less intensively studied since the deployment of the main GPM
core observatory. However, given the quality of the radar and radiometer instru-
ments aboard the GPM core observatory (Hou et al. 2014; Skofronick-Jackson et al.
2017), the problem of how well the PIA can be estimated from collocated radiometer
observations and how effective such estimates are in mitigating uncertainties in
precipitation estimates derived from space-borne radar observations needs to be
revisited.

The chapter is organized as follows. In the next section, we will briefly describe
the GPM combined radar-radiometer algorithm (Grecu et al. 2016). The GPM
combined algorithm incorporates several ideas and techniques developed over the
previous 3 years, and can therefore serve as a basis for a discussion on the compo-
nents that any current or future algorithm is likely to require to effectively address
the challenges associated with the estimation of precipitation from satellite combined
radar and radiometer observations. We also discuss some deficiencies in the current
GPM combined algorithm and avenues to overcome them in Sect. 14.2.2. In Sect.
14.3, we provide an analysis of the statistical relationships between the GPM
Microwave Imager (GMI) observations and the differential Ku-band and Ka-band
PIA derived from the application of the SRT technique (Meneghini et al. 2015) to
observations from the Dual-Frequency Precipitation Radar (DPR) onboard the GPM
core satellite. The differential PIA has been found to be significantly more accurate
than single frequency SRT PIA estimates (Meneghini et al. 2015). This is because
the differences between normalized radar cross sections (NRCS) of the surface at the
two DPR frequencies is less variable in clear sky regions than the individual surface
NRCSs. This makes the differential SRT PIA estimates significantly more accurate
than single frequency SRT PIA estimates. However, differential SRT PIA estimates
are not always available for inclusion in the estimation process. From this perspec-
tive, it is useful to quantify how well the differential SRT PIA can be estimated
exclusively from GMI observations. In addition to providing direct insight into how
brightness temperature information can impact a radar-only retrieval procedure, the
explicit estimation of the PIA from observed brightness temperatures leads to partial
mitigation of the underestimation of precipitation that is too light or shallow to be
detected by the DPR. This aspect is also discussed in Sect. 14.3. A summary and
conclusions are provided in Sect. 14.4.
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14.2 The GPM Combined Algorithm

As previously mentioned, a significant challenge in the development of satellite
combined radar radiometer algorithms is that the footprints of low frequency radi-
ometer channels are significantly larger than the typical footprints of space-borne
radars. This makes the direct application of the approach developed by Weinman
et al. (1990) impossible. To circumvent this problem, the agreement between the
radar and radiometer observations is evaluated in terms of brightness temperatures
(Grecu et al. 2004; Munchak and Kummerow 2011; Grecu et al. 2016). That is,
brightness temperatures computed from the radar retrievals are either convolved to
the radiometer footprint size resolution (Grecu et al. 2004, 2016; Munchak and
Kummerow 2011) or the radiometer observations are deconvolved to the radar
footprint resolution as shown in Fig. 14.1 (Grecu et al. 2016). The work flow
associated with the evaluation of the agreement between simulated and observed
brightness temperatures at radiometer resolution is shown in blue, while the work
flow associated with the brightness temperatures evaluation at radar resolution is
shown in green. To maximize the agreement between the simulated and observed
brightness temperatures, an optimization procedure is used. This procedure itera-
tively updates assumptions about the Particle Size Distributions (PSD) associated
with the radar observations. Specifically, it was shown by (Willis 1984; Testud et al.
2001) that two parameters are generally sufficient to capture most of the PSD
variability. One of these parameters is the normalized PSD intercept, while the
other is a bulk size-related parameter. At the same time, the relationships between
Ku-band radar-reflectivity and the associated specific attenuation were shown to
depend mostly on the PSD intercept (Ferreira et al. 2001). Since single frequency
radar observations cannot be used to reliably estimate both the PSD intercept and the
bulk size-related parameter in a space-borne radar profiling algorithm, it is conve-
nient to express the bulk size-related parameter as a function of the intercept and the
radar reflectivity profile, and then tune the intercept based on other considerations

Fig. 14.1 Illustration of
two possible strategies to
mitigate the large
mismatches between the
radar and radiometer
footprint sizes in satellite
combined retrievals
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such as the agreement of calculated PIA with SRT PIA (Ferreira et al. 2001) or the
agreement between simulated and observed brightness temperatures (Grecu et al.
2004). This is the reason why an optimal estimation component is generally required
in combined radar-radiometer estimation algorithms; see Fig.14.1.

14.2.1 Formulation

The GPM combined algorithm is based on a Ku-band radar profiling algorithm
(Grecu et al. 2011) and physical models that simulate satellite Ka-band radar and
multichannel radiometer observations as a function of the Ku-band radar estimates
and relevant geophysical variables (Grecu et al. 2016). A detailed description is
given in Grecu et al. (2016). Numerically, it requires the minimization of a function
defined as

J ¼ 1
2

ysim xð Þ � yobsð ÞTW�1
T ysim xð Þ � yobsð Þþ

1
2

x� xNð ÞTW�1
T x� xNð Þ

ð14:1Þ

where x is the set of geophysical variables to be estimated, ysim(x) is the physically-
based forward model, yobs are the satellite Ka-band radar and multichannel radiom-
eter observations, WT is the covariance matrix of forward model errors and noise in
the observations, xN is the a priori mean of x and WX is its covariance matrix. The
first term in Eq. 14.1 quantifies the agreement between simulations and observations,
while the second term penalizes the departure of the estimated values from their
climatological values. The purpose of the second term is to prevent the derivation of
highly inaccurate estimates that fit well the observations, i.e. minimize to 0.0 the first
term of Eq. 14.1. Such estimates are possible because although the GPM core
observatory features a Ka-band radar and a microwave radiometer in addition to a
Ku-band radar, the information provided by the combined radar and radiometer
observations is not sufficient to uniquely determine the properties of the underlying
precipitation PSDs. The inclusion of the second term, usually referred to as the
regularization term (Doicu et al. 2011), makes the estimates derived through the
minimization of Eq. 14.1 better determined, less noisy and consistent with an
independent climatology.

Despite its conceptual simplicity, the optimal estimation approach outlined in the
above paragraph is computationally intensive and requires efficient practical
implementations. To minimize the number of iterations required to determine the
minimum of J, the GPM combined algorithm makes use of an elimination technique
(Fletcher 2013) to reduce the size of the optimization problem. Specifically, instead
of including all the PSD parameters in x and estimate them through the minimization
of J, only the PSD intercepts (Testud et al. 2001) are optimized, and the other PSD
parameters are derived as a function of the Ku-band GPM radar observations using
the radar profiling method of Grecu et al. (2011). In addition to reducing the number
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of variables in x, this approach makes the optimization problem simpler than that
associated with a full-rank formulation, because the Ku-band radar algorithm nar-
rows the space of PSD parameters that can explain a given set of combined GPM
radar and radiometer observations. In addition to the PSD intercept, variables
describing the vertical distribution of water vapor and cloud water for each profile
of observed reflectivities and the sea surface wind over oceans (and surface emis-
sivities over land) are included in x (Grecu et al. 2016). The minimization of J is
achieved using an ensemble filtering technique (Evensen 2006). Specifically, a
formula to update the estimates x based on the agreement between the model
predictions ysim(x) and actual observations yobs is derived from the equation
rJ ¼ 0. Ensemble methodologies in general have the advantage of not requiring
the explicit calculation of the forward model’s Jacobian, i.e. H¼ ∇ ysim(x) (Evensen
2006; Grecu et al. 2016). Instead, the H-dependent matrices involved in the deriva-
tion of the optimal estimates are statistically estimated from an ensemble of simu-
lations of observations ysim associated with a set of potential solutions x.

As illustrated in Fig. 14.1 and discussed in the previous paragraphs, to reconcile
the mismatches between the radiometer and radar footprint sizes, special operations
(either convolution or deconvolution) are required. The GPM combined algorithm
relies on statistical procedure to deconvolve the GMI brightness temperatures to the
radar footprint resolution. Thus, simulated brightness temperatures at the radar
resolution are evaluated against deconvolved GMI brightness temperature in
Eq. 14.1. In addition to the radar-resolution brightness temperatures, Ka-band
radar observations and PIAs at two frequencies are included in y. This is because
a dual-frequency precipitation radar (DPR) (Skofronick-Jackson et al. 2017) is
deployed on the GPM satellite observatory. The first DPR frequency is 13.6 GHz
(Ku-band), which is the operating frequency of the TRMM radar (13.8 GHz)
(Kummerow et al. 1998; Grecu and Bolvin 2018). The second frequency is
35.0 GHz (Ka-band) (Skofronick-Jackson et al. 2017). GPM Ka-band observations
were collected only within 12 rays from nadir before 28 May 2018. A new scan
pattern permitting the collection of Ka-band observations across the entire Ku-band
swath was implemented after 28 May 2018.

The benefit of dual-frequency radar observations is that they allow for the
derivation of more accurate precipitation estimates relative to those derived from
single frequency radar observations. It should be noted that the Ka-band radar
observations and the PIA estimates derived from the Surface Reference Techniques
(SRT) can be significantly impacted by Multiple Scattering (MS) (Battaglia et al.
2006; Grecu et al. 2016) and Non-Uniform Beam Filling (NUBF) effects (Short et al.
2015; Grecu et al. 2016). Specifically, MS, i.e. the scattering of radar pulse energy
several times off atmospheric targets before returning to the receiver, can signifi-
cantly enhance the observed GPM Ka-band radar observations and may be
misinterpreted as reduced attenuation (Battaglia et al. 2006; Grecu et al. 2016).
Similarly, NUBF can significantly distort the interpretation of the average extinction
associated with an observed reflectivity profile. This is because electromagnetic
energy originating in an unattenuated sub-volume of radar observing volume may
still reach the radar and be interpreted as an indication of low PIA, even though the
energy originating in the remaining portion of the observing volume is completely
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attenuated. For example, a column of very intense precipitation that fills half of the
radar’s field of view (FOV) may be associated with a total SRT PIA of only 3-dB,
because the normalized radar cross section of the surface decreases only by half
(in natural units) when half of the FOV is precipitation free. However, 3-dB
attenuation is rather weak at Ka-band and is suggestive of light precipitation in the
case of uniform beam filling. To prevent MS and NUBF effects from biasing the
estimates, an advanced multiple scattering model (Hogan and Battaglia 2008) and a
simple downscaling procedure (Grecu et al. 2016) are included in the GPM com-
bined algorithm. The downscaling procedure statistically generates, for every
Ku-band reflectivity profile, a set of Ku-band reflectivity profiles whose average is
equal to the profile from which they are generated. The Ku-band radar profiling
algorithm is applied to each sub-profile and the resulted PIAs are aggregated to the
original radar resolution. The statistical parameter used to describe the variability
of generated observations with every radar FOV has been tuned to improve the
long-term consistency between single and dual-frequency combined estimates
(Grecu et al. 2016). The MS model is applied at the original resolution of the data
because it is one-dimensional, making it questionable for applications at very high
horizontal spatial resolution. The inclusion of the MS model and NUBF parameter-
ization significantly improved the consistency between single and dual-frequency
retrievals (Grecu et al. 2016). Although the evaluation of the GPM combined
precipitation estimates is still work in progress, several studies suggests that, as
expected, estimates incorporating the Ka-band observations are more accurate than
those based exclusively on Ku-band and GMI observations (Grecu et al. 2016; Naud
et al. 2018).

14.2.2 Areas Requiring Improvement

As apparent from the previous section, the accuracy of the simulation models in
Eq. 14.1 is of paramount importance in the derivation of unbiased, minimum
variance precipitation estimates from combined radar and radiometer observations.
While some of these models can be improved through theoretical work, e.g. the
attenuation correction procedure (Grecu et al. 2011) and the multiple scattering
model (Hogan and Battaglia 2008) (whose performance depends on the accurate
quantification of electromagnetic scattering properties), others, i.e. the NUBF
parameterization, will require empirical evidence and validation for further improve-
ments. In this respect, a particularly useful product has been the Multi-Radar Multi-
Sensor (MRMS) (Zhang et al. 2016) precipitation rate product. The MRMS product
is a quality-controlled, rain gauge-calibrated radar precipitation product. The MRMS
surface precipitation rate estimates are gridded at 0.01-degree resolution every 2 min
and are provided along with a Radar Quality Index (RQI) that can be used to filter out
unreliable estimates. An example of GPM combined surface precipitation estimates
and associated MRMS estimates are shown in Fig. 14.2. It may be inferred from the
figure that there is a good agreement between the GPM combined and MRMS
estimates. In addition to the MRMS estimates being smoother, which is most likely
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a consequence of how the gauge information is incorporated in the estimation
procedure, an obvious difference between the combined and MRMS surface precip-
itation is the extent of light precipitation (below 0.2 mm h�1) area. This is the
consequence of the DPR not being able to reliably detect precipitation with a radar
echo below 12.0 dBZ. The convective precipitation estimates appear to be in good
agreement with no obvious systematic differences. It should be noted that although
rigorous statistical analyses of the differences between combined and MRMS
estimates can be carried out at DPR resolution, such analyses may be biased by
temporal and spatial mismatches between the two types of estimates. Specifically,
the combined precipitation estimates are derived from ground-clutter-free radar
observations that can be as much as 2.0 km from the ground. However, reflectivity
observations not very close to the ground are likely to be better correlated with
surface precipitation that is horizontally displaced relative to their projection on the
ground (Lauri et al. 2012). Therefore, unless such displacements are accounted for
using numerical weather prediction model (NWP) (Lauri et al. 2012) or 3D dimen-
sional time-dependent radar observations (Anagnostou and Krajewski 1999), the
conditional distribution of combined precipitation estimates, given the MRMS
precipitation, is likely to exhibit features that have nothing to do with the perfor-
mance of the combined algorithm. This is because convective precipitation, in
particular, exhibits large spatial gradients and significant displacement errors that
result in low precipitation estimates in one dataset being systematically associated
with high precipitation estimates in the other dataset and vice-versa.

To overcome this behavior, which is apparent in combined-MRMS comparisons
at the footprint level, while avoiding the use of intensive NWP or reflectivity
tracking methodologies (Lauri et al. 2012; Anagnostou and Krajewski 1999), one
can aggregate the combined and MRMS estimates at spatial scales that reduce the
spatial displacement artifacts, while retaining information about the physical context
in which large discrepancies between the two estimates are observed. For example,
while large discrepancies between combined and MRMS estimates of convective
precipitation at the DPR footprint resolution are always expected, discrepancies
between the means of large contiguous areas of convective precipitation are
expected to be indicative of systematic differences in the two estimates.

Fig. 14.2 (Left) Example of combined surface precipitation estimates for GPM orbit 605 on
1 October 2014. (Right) The associated Multi-Radar/Multi-Sensor (MRMS) estimates
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A direct comparison between MRMS surface precipitation and combined con-
vective surface precipitation estimates at the DPR footprint resolution is shown in
Fig. 14.3. Although the overall agreement between the two sets of estimates is fairly
good, the number of combined precipitation estimates with values >10 mm h�1

appears to be smaller than that of MRMS estimates >10 mm h�1. As explained in the
previous paragraph, due to displacements, a profile by profile analysis is not likely to
allow for a robust identification of underestimated GPM combined convective
precipitation. However, using the contiguous area aggregation strategy described
in the previous paragraph, it is possible to identify orbits that exhibit significant
underestimation relative to the MRMS product. Several such orbits in the period
1 April – 31 October 2014 have been identified in the Version 6 (V6) of the GPM
combined product, and the extension of this analysis to the entire GPM-MRMS
record is expected to identify a significant number of additional orbits that exhibit
underestimation relative to the MRMS product. The causes of this apparent defi-
ciency are not yet clear. As discussed in Grecu et al. (2016), NUBF-related param-
eterizations and the a priori distribution of particle size intercepts have a significant
impact on the combined estimates and, most likely, their representation in V6 is still
sub-optimal. A detailed analysis based on the GPM-MRMS coincident dataset, as
described above, is expected to lead to the resolution of this issue.

In addition, the underestimation of precipitation due to the DPR’S sensitivity can
be effectively mitigated over ocean surfaces. Shown in Fig. 14.4 are estimates of
liquid water path (LWP) derived from GMI observations using the formulation of
Weng et al. (1997) and associated combined near-surface precipitation estimates.
While some of the non-zero precipitation areas also exhibit non-zero LWP, there are
also areas with significant LWP but no precipitation. This is likely a consequence of
the limited DPR sensitivity. An analysis of the CloudSat-GPM coincidence Dataset
(Turk 2016) (not shown in the chapter) reveals that, indeed, a large fraction of the
precipitation at high latitudes over oceans is associated with echo not detected by the
DPR. The current formulation of the combined algorithm provides precipitation

Fig. 14.3 Density
scatterplot of GPM
combined V06 vs reference
MRMS convective
precipitation (mm h�1) at
the footprint scale over the
period April 2014–
October 2014
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estimates only for the DPR pixels deemed as precipitating by the DPR rain/no rain
discrimination algorithm (Iguchi et al. 2010). However, the inclusion of a
radiometer-only component to provide estimates for precipitation systems too light
or too shallow to be detected by the DPR is possible. A relatively simple approach
may be derived, based on the premise that the joint distribution of the precipitation
and associated brightness temperatures derived by the current version of the com-
bined algorithm is a truncated distribution (Rao 1997). That is, while only the
portion of the joint distribution characterized by radar echo above the DPR noise
level is quantified in terms of precipitation intensity by the combined algorithm, a
robust statistical methodology may be used to extrapolate the truncated distribution
for echoes below the DPR noise level. This methodology draws upon an analysis of
the relationships between observed radiometer brightness temperatures and the
differential PIA derived from a dual surface reference technique (Meneghini et al.
2015), as explained in the next section.

14.3 Brightness Temperature – PIA Relationships,
Revisited

As described in Sect. 14.1, direct relationships between brightness temperatures and
path integrated attenuation are conceptually appealing because they permit the
straightforward integration of radiometer information into space-borne radar
retrievals (Weinman et al. 1990; Smith et al. 1997, Grecu et al. 2004). From a
practical perspective, however, such relationships are problematic, as the typical
footprint of a 10-GHz satellite radiometer channel is much larger than that of a
satellite radar footprint (Kummerow et al. 1998; Skofronick-Jackson et al. 2017).
This does not necessarily mean that relationships between satellite radiometer
observations and radar resolution PIA are weak, but rather than the derivations of

Fig. 14.4 (Left) Example of liquid water path (LWP) derived from GMI observations over oceans
for orbit 003351 on 1 October 2014. (Right) The associated combined surface precipitation. The
magnitude of the LWP suggests that light precipitation is undetected by the DPR
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accurate relationships are difficult. Formulations derived by radiative transfer cal-
culations (Weinman et al. 1990; Smith et al. 1997) require the radiometer’s footprint
size be the same as the radar’s footprint size. Although more general (and accurate)
relationships may be derived, using, for example, cloud resolving models, such
relationships are likely to be biased if the variability of precipitation and associated
geophysical variables with the radiometer’s field of view is not properly captured.
These challenges may be circumvented by constructing a database of radiometer
brightness temperatures and associated PIAs directly from GPM observations. As
shown by Meneghini et al. (2015), the differential (Ku-Ka) surface normalized radar
cross section (NRCS) exhibits significantly smaller variability in clear sky regions
over oceans, which allows for the derivation of accurate differential (as well as single
frequency) PIA estimates from the analysis of the surface return. To investigate the
relationships of differential Surface Return Technique (SRT) PIA to brightness
temperatures, a database of deconvolved GMI brightness temperature and coincident
differential SRT PIA estimates is derived from 1 month (October 2014) of observa-
tions over mid-latitude oceans in the northern hemisphere. It should be noted that for
global evaluation and application, a global database needs to derived and stratified as
a function of geophysical parameters (e.g., sea surface temperature, total precipitable
water) that are likely to have a strong impact on the relationships between brightness
temperatures and associated PIAs. For simplicity, in this study, only a regional
database is considered. The deconvolution procedure is based on a simple regression
procedure derived from simulations of brightness temperatures at GMI resolution
(Grecu et al. 2016). For evaluation purposes, this database is randomly split into two
disjoint, equal-size, subsets and one set is used for deriving a statistical relationship
between deconvolved brightness temperatures and PIA, while the other is used for
evaluation. From a practical perspective, a simple analytical brightness temperature –
PIA relationship is preferable to more complex non-parametric statistical relation-
ships such as those available in open machine learning libraries (e.g., Pedregosa et al.
2011), because, as previously explained, the brightness temperature-PIA joint dis-
tribution is truncated, and its extrapolation to brightness temperatures characterized
by Ku-radar echo below 12.0 dBz is problematic in the case of non-parametric
models.

A very simple approach that works satisfactorily can be developed by extending
the formulation of Smith et al. (1997) to two radiometer channels (i.e., 10-GHz V and
19-GHzV) and statistically estimating the three associated parameters in PIA¼ a0 + a1
� TB10 + a2 � TB19. The cross-validation analysis described above indicates a
good performance. Specifically, the correlation coefficients between estimated values
and those in the evaluation datasets are about 0.8 for both the differential and
Ku-band PIAs, while the root mean squared error is 3.0 dB for the differential PIA
and 0.6 dB for the Ku-band PIA. The Ku-PIA is derived by assuming that the average
ratio of the Ka-band PIA to the Ku-band PIA is 6.0, which is what the analysis of the
surface Ku-band and Ka-band NRCSs suggest (Meneghini et al. 2015). The Ku-band
PIA estimates derived from the analysis of Ku-band surface echo are in greater
disagreement, i.e. correlation coefficient of 0.5 and root mean squared error of
0.9 dB, with the dual frequency SRT PIA estimates, relative to the PIA values
derived from brightness temperatures. This is not surprising, given that Ku-band
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surface NRCSs exhibit significant variations that are not necessarily related to
attenuation, making only large-value estimates (i.e., significantly larger that the
clear sky NRCS variability) reliable. However, a significant fraction of large value
SRT PIA estimates derived from Ku-band-only observations, although deemed
reliable (because of their value relative to the clear sky NRCS variability), are actually
erroneous rather than a measure of strong attenuation in the associated radar fields of
view. This results in medium to low correlation and increased root-mean-squared
error in relation to the differential SRT PIA estimates. Regarding the use of PIA in the
radar retrieval process, the PIA uncertainties need to be correctly specified and,
consequently, the more uncertain the Ku-band only SRT PIA estimates are, the less
likely they are to have a significant impact on the final precipitation estimates. It
should be mentioned, however, that the dual-frequency SRT cannot generally be used
to estimate dual frequency PIA greater than 40.0 dB, because, beyond this value, the
Ka-band surface return tends first to become insensitive to changes in PIA and
eventually becomes undetectable. From this perspective, a good strategy for future
versions of the GPM combined is to quantify the uncertainties in the brightness-
temperature-based and single-frequency SRT PIA estimates as a function of their
actual values, which will allow for the optimal use of the information in both types of
PIA estimates. The brightness-temperatures PIA estimates are also expected to
supplement dual-frequency SRT PIA estimates simply because the differential SRT
PIA estimates are deemed not reliable about 30% of the time. Moreover, before
28 May 2018, dual frequency radar observations were only available in the inner half
of the DPR swath. Therefore, without the brightness temperature derived PIA
estimates, Ku SRT PIA estimates provide the only PIA information in the outer
portions of the swath that can be used in the radar profiling algorithm.

Shown in Fig. 14.5 are the Ku-band PIA derived by the GPM combined algo-
rithm (left panel) and directly estimated from the observed brightness temperatures

Fig. 14.5 (Left) Example of Ku-band PIA derived by the combined algorithm for orbit 003539 on
13 October 2014. (Right) The associated Ku-band PIA estimated exclusively from GMI
observations
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using the approach described in the previous paragraphs. As seen in the figure, there
is very good correlation between the two estimates. However, some differences are
also apparent. Specifically, there are areas of PIA between 0.3 and 1.0 dB in the
brightness temperature-based estimates that correspond to very low values of the
combined estimates. This may be an indication of missed precipitation due to the
DPR’s limited sensitivity. Some differences are also apparent in the mostly strati-
form precipitation region defined by the 40�–35�W and 45�–50�N window, but their
potential impact on final PIA and precipitation estimates, had the brightness-
temperature-based PIAs been included in the combined algorithm, is difficult to
assess. Future work that explicitly investigates the differences between combined
retrievals including and not including the brightness-temperature-based PIAs is
expected to provide insight into this issue.

As previously mentioned, one advantage of the extended Smith et al. (1997)
formulation is that it can be applied even to brightness temperatures that are not
associated with radar echoes above the noise level. Non-negligible brightness-
temperature PIA estimates may then be an indication of precipitation not detected
by the space-borne radar. The incorporation of such an approach in an operational
algorithm obviously requires a reliable methodology to determine whether the
brightness-temperature PIA estimates (associated with radar echo below the noise
level) are more likely to be the result of not-detected precipitation than not. A χ2

approach (Elsaesser and Kummerow 2008) applied to clear sky retrievals may be
used to provide such a methodology. Specifically, a physical clear sky retrieval
procedure may be applied to all brightness temperatures associated with radar echo
below the noise level, and the discrepancy between simulated and observed bright-
ness temperature may then be used to quantify the probability of precipitation
(Elsaesser and Kummerow 2008). Large discrepancies would be an indication that
the underlying physical models (which do not account for precipitation) are unable
to explain the observed brightness temperatures, which further implies that precip-
itation is a variable required to explain the observed brightness temperatures.
Another possibility is to apply more ad-hoc, data-driven, approaches (Ferraro et al.
1998) to identify precipitation-affected footprints and apply the brightness-
temperature-based PIA estimator to all those footprints. The application of the latter
approach to observations from a GMI orbit on 1 October 2014 is illustrated in
Fig. 14.6. As seen in the figure, there are significant differences between the
combined derived Ku-band PIA and the Ku-band PIA estimated directly from the
brightness temperatures. In particular, there is band of precipitation in the region
between 10�–5�W and 40�–45�S that produces only a few DPR profiles above the
noise level. The brightness-temperature-based PIA estimates can be converted into
surface precipitation estimates using simple, but realistic, parameterizations and thus
provide a relatively direct solution to the DPR precipitation detection problem at
high latitudes. The accuracy of such a solution depends on the accuracy of brightness
temperature – PIA relationships (as previously described) and the performance of the
rain discrimination procedure. Fortunately, both of these can be investigated using
the CloudSat GPM coincidence dataset (Turk 2016). This is because the coincidence
dataset includes estimates of W-band PIA associated with observed GPM brightness
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temperatures. The W-band PIA estimates can be converted into Ku-band PIA and
compared to the values derived from the GMI brightness temperatures in the
coincidence data. A direct comparison indicates the Ku-band PIA’s derived from
GMI observations using the extended Smith et al. (1997) are practically unbiased
relative to the estimates derived from the coincident W-band estimates. Similarly,
the rain discrimination procedure derived by Ferraro et al. (1998) can be adjusted to
be unbiased relative to CloudSat rain/no rain discrimination.

14.4 Summary and Conclusions

In this chapter, topics relevant to the estimation of precipitation from combined
space-borne radar and radiometer observations are discussed. The discussion is
mostly driven by challenges and questions raised during the development and
refinement of the GPM combined algorithm (Grecu et al. 2016). This is not meant
to imply that the approached formulated in Grecu et al. (2016) has greater merit than
other combined satellite radar-radiometer approaches, but rather that many of the
challenges and questions relevant to the approach, and the GPMmission more badly,
are also relevant to other approaches and missions.

Section 14.2 contains a brief description of the GPM combined algorithm. Some
of the components the GPM combined algorithm, i.e. the multiple scattering model
and the non-uniform beamfilling (NUBF), are likely to be required in other formu-
lations or for other missions featuring different radars. While the resolution of future
space borne radars is expected to increase, the emphasis on higher frequencies,

Fig. 14.6 (Left) Ku-band PIA derived by the combined algorithm for orbit 003351 on 1 October
2014. (Right) The associated Ku-band PIA derived from GMI brightness temperatures using the
extended formulation described in the text
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which make it possible to detect smaller particles, is likely to result in the develop-
ment of radar systems that are subject to the effects of multiple scattering. Moreover,
while traditionally it is believed that matched beams are essential in the development
of multiple-frequency radar retrievals (Bringi and Chandrasekar 2001), the GPM
DPR experience suggests that a new paradigm driven by the overall information
content is needed. Specifically, since one-dimensional multiple scattering and NUBF
models and parameterizations are necessary to interpret multiple frequency radar
observations at a given (apparent) range, the requirement that the beams be matched
does not simplify the problem at hand and does not necessarily improve the
informational content. At the same time, higher resolution observations, although
less affected by multiple scattering and NUBF, are inherently going to be charac-
terized by poorer spatial sampling (i.e., smaller areal coverage). To achieve a trade-
off between accuracy and areal coverage, future space-borne systems may, therefore,
may need to rely of a combination of radars with different measurement resolutions
and operating at different frequencies. As a consequence, multiple scattering and
NUBF may still affect the observations, but from the technological standpoint,
space-borne radars can be built to minimize multiple scattering and NUBF effects.

The complexity of spaceborne measurements and estimation methods makes
performance evaluation strategies such as those based on the MRMS product
presented in Sect. 14.2 very import for the refinement of satellite combined precip-
itation retrievals. The challenge in making use of collocated high-quality ground
estimates, such as the MRMS products, is that due to spatial displacements (Lauri
et al. 2012) between near-surface satellite estimates and the ground, the combined
algorithm estimated precipitation distributions are intrinsically biased relative to that
of the ground product. Nevertheless, ground products may still be used to identify
and correct deficiencies in the satellite estimates of precipitation. The evaluation of
the GPM precipitation estimates over oceans is not discussed in this chapter, but the
methodology based on independent, climatologically-accurate products such as the
GPCP product (Adler et al. 2003) can be used to credibly assess future versions of
the combined algorithm (Grecu et al. 2016).

An analysis of the relationships between GMI observed brightness temperatures
and associated PIA over oceans is presented in Sect. 14.3. The PIA estimates are
derived using a differential surface reference technique (SRT) procedure (Meneghini
et al. 2015), which makes the analysis model-free. Strong relationships between the
observed brightness temperatures and associated PIA are found. These relationships
make it possible to derive PIA estimates more accurately than those derived from the
application the SRT procedure to Ku-band observations (for Ku-band PIA below
7–8 dB), and brightness-temperature-based PIA estimates may be used to supplement
both single frequency and differential PIA estimates. It is anticipated that the inclusion
of these estimates in the combined estimation framework will have a positive impact,
although rigorous quantification necessitates a systematic analysis not undertaken in
this chapter. Moreover, the application of the derived brightness temperature – PIA
relationships to observations with radar echo below noise level is expected to improve
the detection and quantification of light precipitation over oceans.
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Chapter 15
Scattering of Hydrometeors

Stefan Kneifel, Jussi Leinonen, Jani Tyynelä, Davide Ori,
and Alessandro Battaglia

Abstract A profound understanding of the scattering properties of hydrometeors is
key to extract information from passive and active MW observations. The natural
variety of hydrometeor properties also leads to the complexity of how they interact
with electromagnetic radiation. The challenge of calculating hydrometeor scattering
properties is not only the scattering method itself but starts with an accurate
characterization of the hydrometeors themselves. The number and sophistication
of those hydrometeor models has rapidly grown during recent years, as has the
number of publicly available databases of their scattering properties. This develop-
ment opens up new possibilities to improve the quality of retrievals but also raises
new questions on how to best coordinate the scattering community efforts in the
future. While sufficient confidence exists for liquid hydrometeor scattering proper-
ties, frozen hydrometeors remain challenging and the questions of how to best model
their physical properties and how to derive average properties representative for
global applications are still under discussion.
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15.1 Scattering Methods

Microwave remote sensors are well suited to observe liquid and frozen hydrometeors
because in most regions in the MW, radiation is able to penetrate even thick clouds.
In order to utilize the “cloudy” MW observations for retrievals or data assimilation,
the absorption and scattering properties of the hydrometeors must be accurately
characterized. In this chapter, we will mainly focus on the hydrometeors’ scattering
properties.

The structure of this chapter mirrors the three major challenges of characterizing
the scattering properties of the multitude of hydrometeors present in clouds. First, a
suitable scattering method has to be found. A number of scattering approximations
exists which have been widely used in the past because they allow a fast and cost-
effective calculation of the scattering properties. As computing power drastically
increased during the last decades, more numerically expensive methods have been
applied to a quickly increasing number of more and more complex particle shapes
(Kneifel et al. 2018). These more recent calculations revealed limitations of com-
monly used scattering approximations particularly for higher frequencies and larger
and more complex hydrometeors. On the other hand, the availability of scattering
simulation tools which can handle very complex structures, motivated the develop-
ment of more realistic hydrometeor models. Hydrometeor models are inevitably
important in order to ensure that the physical properties (for example mass-size
relation of ice particles) of the hydrometeors used for the scattering computations
match the properties found for example in in-situ observations. Finally, once the
scattering properties of a representative ensemble of realistic hydrometeor structures
has been calculated, the question remains as to which snow particle or ensemble
average to choose as representative for the scattering properties of a particular
snowfall event or for satellite retrievals applied on a global scale.

The scattering behavior of hydrometeors is often assigned to certain regimes such
as Rayleigh or Mie scattering regime. In fact, this grouping mainly indicates which
approximations might be applicable to certain hydrometeors depending on the
frequency range being considered. The most widely used parameter, which describes
the “electrical size” of the particle is the size parameter x ¼ 2πr/λ; it simply relates
the characteristic dimension of a particles such as a sphere’s radius r to the wave-
length λ of the electromagnetic wave. For x� 1, the wavelength is much larger than
the particle and hence all parts of the particle experience nearly the same electric
field. As will be briefly discussed in the next section, the Rayleigh approximation
can be applied to scattering problems with low size parameter.

This chapter shall provide a broad overview of hydrometeor scattering properties
rather than going into details of scattering theory; the interested reader is referred to
common textbooks such as the ones by Bohren and Huffman (1983) or Mishchenko
et al. (2002). A common way (Bohren and Huffman 1983) to describe the scattering
interactions of an incident and scattered electric field is to use the complex amplitude
scattering matrix

250 S. Kneifel et al.



S θ,ϕð Þ ¼ S2 S3
S4 S1

� �
ð15:1Þ

with the azimuth angle ϕ and the scattering angle θ. Commonly used scattering
variables, such as backscattering σbsc, scattering σsca, absorption σabs cross section,
or asymmetry parameter g can be directly calculated from S

σbsc ¼ 2π
k2

S1 π, 0ð Þj j2 þ S2 π, 0Þð j2�� ��
ð15:2Þ

σsca ¼ 1
2k2

Z 2π

0

Z π

0
S1 θ,ϕð Þj j2 þ S2 θ,ϕÞð j2�� �

sin θdθdϕ
�

ð15:3Þ

σabs ¼ 2π
k2

Re S1 0, 0ð Þ þ S2 0, 0ð Þ½ �ð Þ ð15:4Þ

g ¼ 1
2k2Csca

Z 2π

0

Z π

0
S1 θ,ϕð Þj j2 þ S2 θ,ϕÞð j2�� �

sin θ cos θdθdϕ
�

ð15:5Þ

It should be noted that there exists a large number of numerical methods to calculate
scattering of complex particles (see for example the overview given in Kahnert
(2003); a large number of scattering software is also available from http://www.
scattport.org (last accessed 12 Oct. 2018). We will focus in the following on the most
common methods used to calculate scattering properties of hydrometeors in the MW.

15.1.1 Rayleigh, Mie, and T-Matrix Methods

If the particle is small compared with the wavelength of the incident radiation, the
Rayleigh approximation can be applied which simplifies the calculation of S to

S ¼ S2 0

0 S2 cos θð Þ

� �
ð15:6Þ

S2 ¼ 3k2

4π
KCMV ð15:7Þ

KCM ¼ ε� 1
εþ 2

ð15:8Þ

where k ¼ 2π/λ is the wavenumber, V is the volume of the spherical hydrometeor,
and KCM is the Clausius-Mossotti factor with the complex dielectric constant of the
particle ε. In (15.8) it is assumed that the polarizability of the particle is the same in
all direction as it is the case for a homogeneous sphere. For nonspherical ice particles
(even with x � 1), modified formulas for KCM have to be applied which have been
derived for idealized ice particle shapes (Westbrook 2014, Hogan et al. 2017). This
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adjustment of the KCM factor is also necessary for approximations derived for
aggregates composed of different ice monomers such as the Self-Similar Rayleigh
Gans Approximation (SSRGA, Sect. 15.1.3). The definition of the radar reflectivity
factor Z as the sixth moment of the particle size distribution (PSD) is closely
connected to the Rayleigh approximation. Since the early days of radar meteorology,
low frequencies (for example at C or S band) were used for precipitation radars
focusing on the detection and quantification of nearly spherical rain drops for which
the Rayleigh approximation holds. As one can see from (15.2) and (15.7), in the
Rayleigh approximation, the backscattering cross sections σbsc of the rain drops in a
certain volume are directly related to the square of their volumes and hence to the
sixth power of their diameters.

For spherical particles which cannot be treated as Rayleigh scatterers, an analyt-
ical solution for their scattering properties has been derived by Mie (1908) using
spherical wave vector functions to describe the incident, scattered, and internal field.
A full derivation of the Mie theory can be found in scattering textbooks such as that
of Bohren and Huffman (1983). Mie theory has been widely applied for raindrops
and also ice and snow particles because it allows a very fast computation of the
scattering properties. An important parameter for the calculation of Mie scattering is
the definition of the particle’s complex dielectric constant which can be challenging
for particles consisting of mixtures of different materials (see Sect. 15.1.2). The Mie
theory and associated software has been also expanded to multi-layer spheres where
individual dielectric properties can be defined for the different layers (Aden and
Kerker 1951).

Extended boundary condition method (EBCM), which is a scattering formulation
for non-spherical particles using spherical wave vector functions to describe the
electromagnetic fields has been developed by Waterman (1965). The coefficients
used for the expansions of the basis functions, which relate incident and scattered
fields, are combined in a so-called transition matrix or T-matrix (for a complete
derivation see Mishchenko et al. 2002). A particular advantage of the T-matrix
formalism is that the T-matrix only has to be calculated once for a particular particle
size and shape. The scattering properties can then be derived from it for any
orientation of the scatterer and observation geometry. EBCM is theoretically appli-
cable to any homogeneous particle having a radially single-valued surface. How-
ever, shapes that are numerically convergent, are more restricted due to the boundary
conditions. Also, symmetries in the particle shapes can be utilized to make the
method more efficient. Due to this, most of the available codes assume some
symmetries in the shapes, such as spheroids, cylinders and Chebyshev particles
(Mishchenko and Travis 1998); polyhedral (Kahnert et al. 2001) and more arbitrary
shapes (Petrov et al. 2011) are also available. The method of discrete sources by
Wriedt and Doicu (1998) also uses the T-matrix formalism for more arbitrary shapes.
In atmospheric sciences, it became common to denote the use of spheroidal shapes
which are often calculated with code provided by Mishchenko and Travis (1998) as
T-matrix method (a convenient python interface based on the same source code has
recently been made available, Leinonen 2014).
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15.1.2 Effective Medium Approximation

Only cloud, drizzle, and raindrops can be considered to be composed of a homoge-
neous medium. Ice particles, dry and melting snowflakes, graupel, and even hail-
stones, if they contain air inclusions or have a liquid coating, are characterized by a
complex structure of different materials such as ice, air, or liquid water. Some
scattering methods, for example the Discrete Dipole Approximation (DDA, Sect.
15.1.4) or the Generalized Multiparticle Mie-solution (GMM, Sect. 15.1.5), allow
for the explicit treatment of this complex structure if the detailed hydrometeor
models provide this information. Scattering approximations such as Mie theory or
T-matrix, usually approximate the hydrometeor structure with a simplified, often
spheroidal geometry. They require the user to assign a specific complex dielectric
constant to the particle, which in the case of heterogeneous materials can be
calculated with so-called effective medium approximations (EMA) or dielectric
mixing formulas.

The most widely used EMAs are those of Maxwell-Garnett (1904) and
Bruggeman (1935). In both formulations the average or effective dielectric constant
εeff is calculated with dielectric constants of the particle’s components and their
volume fractions f. The differences between the methods are illustrated and thor-
oughly discussed in Bohren and Battan (1982) and Bohren (1986). In the Maxwell-
Garnett formulation, it is assumed that one material is present as small, disconnected,
spherical inclusions (εi,fi) embedded in a continuous, homogeneous matrix (εm).

f i
εi � εm
εi þ 2εm

¼ εeff � εm
εeff þ 2εm

ð15:9Þ

As the Maxwell-Garnett relation (15.9) is non-symmetric, the result depends on
whether the snowflake is assumed as air with “grains” of ice or vice versa. Obvi-
ously, one or the other might seem more appropriate depending on whether εeff is
needed for a fluffy, low-density snowflake or a lumpy graupel particle.

In the symmetric Bruggeman relation, the two components are indistinguishable
and hence an arbitrary decision when to use ice or air as the matrix or the inclusions
is not necessary. A generalized EMA combining the Maxwell-Garnett and
Bruggeman formulation is provided by Shivola (1989)

εeff � ε1
εeff þ 2ε1 þ v εeff � ε1

� �� f 2
ε2 � ε1

ε2 þ 2ε1 þ v εeff � ε1
� � ¼ 0: ð15:10Þ

The parameter ν is a positive number. Setting ν¼ 0 in (15.10) gives the Maxwell-
Garnett relation while ν ¼ 2 yields the Bruggeman formula. Comparisons of DDA
simulations of ice-air spheres of various densities with εeff calculated with different
EMA and applied to Mie theory revealed the best agreement for ν ¼ 0.85 which is
neither of the “classical” EMAs (Petty and Huang 2010).
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15.1.3 Rayleigh Gans and Self-Similar Rayleigh Gans
Approximation

It is possible under certain conditions to simplify the scattering problem by assuming
that the single scattering elements of a particle only interact with the incident wave.
The resulting scattered wave is then simply the superposition of the scattering
contributions by the single elements. This so-called Rayleigh-Gans approximation
(RGA, Bohren and Huffman 1983) extends the Rayleigh formulation (15.7) by
introducing a form factor f,

S2 ¼ 3i
4π

KCMk
3Vf ð15:11Þ

with i being the imaginary unit. The form factor is a dimensionless number and can
be interpreted as a description of the deviation from Rayleigh scattering ( f ¼ 1
reduces (15.11) to the Rayleigh approximation (15.7)). The form factor can be
calculated for a particular particle structure by integrating the phase of the electro-
magnetic wave over the particle volume V

f ¼ 1
V

Z
V
exp iδ Rð Þð ÞdR ð15:12Þ

δ Rð Þ ¼ R � kinc � kscað Þ ð15:13Þ

where R describes the position within the particle and δ is related to the difference of
the phases between the incident wave vector kinc and the scattered wave vector ksca.
If all waves from the scattering elements of the particle are in phase, δ becomes 0 and
the form factor is equal to unity. This situation can be expected if the particle is small
compared to the wavelength as assumed in the Rayleigh approximation. It is worth
noting that in (15.12) the integral is done only over the ice elements of the particle.
Therefore, no EMA as for Mie or T-matrix method is needed which eliminates a
potential source of uncertainty.

A particularly interesting aspect of the RGA is that the form factor can be
calculated with the Fourier transform of the mass distribution along the propagation
direction of the incident wave (a detailed discussion is given in Sorensen 2001). The
inherent mass fluctuations present in a snowflake – no matter how complex the shape
might be – can thus be taken into account in the RGA while in methods requiring an
EMA, these fluctuations are represented by an average value. In fact, Leinonen et al.
(2013) showed that these missing mass fluctuations in Mie or T-matrix methods are
mainly responsible for their deficiencies in representing the scattering properties of
larger, low-density complex particles. The direct connection of mass distribution and
scattering properties in the RGA thus provides an interesting opportunity to link
microphysics and scattering properties.

The formal conditions for the applicability of RGA are provided by Bohren and
Huffman (1983).
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j m� 1 j� 1 ð15:14Þ
2kD j m� 1 j� 1 ð15:15Þ

with m ¼ ffiffiffi
ε

p
is the complex index of refraction of the particle material and D is the

particle’s maximum dimension. A heuristic interpretation provided in Bohren and
Huffman (1983) of these conditions is that (15.14) ensures that reflections of the
incident wave on the particle-medium interface are small; this is the case if m of the
surrounding medium and the particle are similar. The condition (15.15) requires that
the phase and amplitude of the incident wave is not changing significantly while
passing through the particle. The RGA appears to be well applicable to snowflakes
considering the low refractive index of ice in the microwave and assuming a “fluffy”
structure of the particle which limits the coupling between the different scattering
elements.

During recent years, the RGA was increasingly applied to single, complex
snowflake shapes. Its ability to accurately predict radar backscattering cross sections
has been intensively studied (Matrosov 1992; Westbrook et al. 2006; Tyynelä et al.
2013; Leinonen et al. 2013, 2018a, b; Hogan et al. 2012). The RGA results can be
validated with accurate numerical methods, such as the Discrete Dipole Approxi-
mation (DDA, Sect. 15.1.4), which takes all internal and external scattering interac-
tions of the particle and the incident wave into account. Good agreement between
RGA and DDA has been found for various low-density snow aggregates and
different scattering parameters (Tyynelä et al. 2013). The differences are larger for
σbsc than for integrated quantities such as σsca or single scattering albedo. Some of
the biases found in Tyynelä et al. (2013) are likely to be caused by using the classical
Clausius-Mossotti factor for spheres (15.8) instead of a modified KCM which better
represents the non-symmetric polarizability of the aggregate monomers (Hogan et al.
2017). In order to better understand the limits of the applicability of the RGA for
snow, Leinonen et al. (2018a, b) performed a similar validation study for various
rimed aggregates. As expected, the deviations from single particle scattering prop-
erties increase with higher degrees of riming due to increasing internal scattering
interactions. Interestingly, the average scattering properties of an ensemble of
particles for a given degree of riming and size were found to be in good agreement
between DDA and RGA except for the most heavily rimed particle category.

For a radar, the backscattered wave is indeed the superposition or average of
many individual hydrometeor backscattering signals rather than the response of a
single particle. In case of aggregates, a number of studies found that their structure
can be described as being self-similar or fractal (Sorensen 2001; Westbrook et al.
2004; Ishimoto 2008, among others). The self-similarity assumption was the basis
for Hogan and Westbrook (2014) to derive an analytical expression for the ensemble
backscattering cross section of snow aggregates with similar fractal properties. The
SSRGA requires five parameters which describe the average mass distribution and
the individual fluctuations from this average distribution along a certain direction. In
order to derive the coefficients, only an ensemble of discretized snowflake structures
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(similar to the input structure files required by many DDA methods) is needed. The
method has been recently extended (Hogan et al. 2017) by the calculation of the
scattering phase function without need for additional coefficients. As long as polar-
imetric quantities can be neglected (they inherently depend on the interaction of the
particle’s scattering elements which are neglected in RGA and SSRGA), the SSRGA
can be used for active and passive MW radiative transfer. The same coefficients can
be used to calculate scattering properties for any frequency as long as the formal
criteria (15.14) and (15.15) for the applicability of the RGA are valid. SSRGA
coefficients have been derived for different aggregate models (Hogan and
Westbrook 2014; Hogan et al. 2017) and also for rimed aggregates (Leinonen
et al. 2018a, b). It should be noted that the classical RGA formulation (15.11)
does not produce depolarization due to the lack of multiple scattering between the
volume elements. Without rigorously including the mutual interactions between the
elements as in DDA, this contribution can be estimated in a mean-field sense (Berry
and Percival 1986) or by computing the second-order scattering (Acquista 1976).

15.1.4 Discrete Dipole Approximation (DDA)

The Discrete Dipole Approximation is a popular technique to compute the scattering
and absorption properties of particles with arbitrary shape and composition. The first
derivation of this method (Purcell and Pennypacker 1973) followed the intuitive idea
of substituting the scatterer shape with a cluster of point dipoles. Those dipoles
interact with the incident wave and with each other modifying their own polarization
state. The scattered field is computed by the superposition of the field radiated by
those polarized dipoles. A more mathematically rigorous way of deriving the DDA
technique comes from the discretization of the integral volume equation of the
electric field. This approach shows the equivalence of DDA to other scattering
method based on the same mathematical background (Kahnert 2003; Petty and
Huang 2010; Piller and Martin 1998).

The subdivision of the scatterer volume into n polarizable dipoles makes the
DDA formulation a set of n linear equations to be solved with respect to the dipole
polarization states. This formulation leads to a memory occupancy and a computa-
tional complexity that scales as O n2ð Þ . The computational cost of the algorithm
makes it only feasible for targets that are either small or very sparse (i.e., with a large
number of internal cavities). The computational cost of DDA can be greatly reduced
if it is assumed that the discrete dipoles belong to a regular lattice grid. With this
restriction, the system of n equations can be solved in the dual space in O N logNð Þ
by applying a combination of Fast Fourier Transform and an iterative solver
(Goodman et al. 1991). Here N is the number of cells in the lattice bounding box.
This accelerated algorithm comes with the drawback of increasing the memory
occupancy scaling to O n3ð Þ and because of that the DDA algorithm is well known
to be memory bounded.

256 S. Kneifel et al.



The popularity of DDA is certainly related to the increasingly available compu-
tational resources but also to the availability of publicly available software packages.
The Discrete Dipole Scattering (DDSCAT, Draine and Flatau 1994) and Amsterdam
DDA (ADDA, Yurkin and Hoekstra 2011) software packages are probably the most
widely used DDA implementations. Both algorithms are actively developed and
include several options for the DDA formulation. These codes can also scale well on
large parallel computer clusters, which mitigates the memory restrictions imposed by
the DDA formulation.

The accuracy of DDA has been repeatedly tested against analytic expressions
such as the Mie solution for homogeneous and layered spheres and the T-matrix (Ori
and Kneifel 2018; Yurkin et al. 2006; Tyynelä et al. 2009; Petty and Huang 2010).
The results of these tests show how strongly the DDA accuracy depends on particle
shape, size, dielectric properties and DDA formulation. However, it is possible to
derive two general criteria for the validity of the DDA solution. The first requires that
the scatterer shape is well represented by the cluster of polarizable dipoles, i.e. the
size of each dipole should be much smaller than any constitutive length of the
scattering target. The second criterion ensures that the electric field within the
scatterer is well represented by the superposition of the electric fields radiated by
the oscillating electric dipoles. The latter requirement is usually summarized by
ensuring that |m|kd � 1, where |m|k is the wavenumber within the scatterer and d is
the size of the dipoles. This last requirement is generally assumed as the only
criterion to be checked to ensure the validity of DDA. However, especially if the
value of the refractive index of the scattering particle is high, additional criteria for
the DDA accuracy have to be applied (Ori and Kneifel 2018).

DDA has been used in a wide range of scattering applications ranging from the
characterization of interstellar dust to blood cells. Particularly, after the publication
of a first publicly available database of ice particles by Liu (2008), DDA has been
increasingly used to compute scattering properties of various non-spheroidal hydro-
meteors; an overview of recently available scattering databases if provided in
Table 15.1.

As an example of single particle scattering properties, extinction and backscat-
tering efficiency for raindrops at X, Ka and W band are shown in Fig. 15.1.
Scattering properties are computed for spheres and for perfectly oriented spheroids
with axial ratios parameterized according to Andsager et al. (1999) at vertical
illumination. Rayleigh approximation is also plotted as a reference. Generally
speaking, the spheroid approximation produces slightly larger extinction (but only
for large raindrops); the same applies for the backscattering for raindrops with
equivalent volume radii larger than 1.2, 1.5 and 2 mm at 94, 35.5 and 9.6 GHz,
respectively. These differences tend to be smoothed out when bulk scattering
properties are computed by averaging the single scattering properties over a particle
size distribution. As an example, the reflectivity expected for an exponentially
distributed population of raindrops with a water content of 1 g m�3 and different
mean mass-weighted equi-volume diameters (Dm) is plotted in Fig. 15.2. Clearly,
there is no large difference between spheres and perfectly oriented spheroids. The
non-Rayleigh scattering effects tend to strongly reduce the reflectivity when moving

15 Scattering of Hydrometeors 257



T
ab

le
15

.1
D
at
ab
as
es

of
sc
at
te
ri
ng

pr
op

er
tie
s
fo
r
sn
ow

pa
rt
ic
le
s
at
m
ic
ro
w
av
e
fr
eq
ue
nc
ie
s

P
ub

lic
at
io
n

P
ar
tic
le
ha
bi
ts

M
or
ph

ol
og

y
S
iz
e
ra
ng

e
(μ
m
)

F
re
qu

en
cy

ra
ng

e
(G

H
z)

O
ri
en
ta
tio

ns
S
ca
tte
ri
ng

M
et
ho

d
A
va
ila
bi
lit
y

L
iu

(2
00

8)
N
1e
,C

1e
,C

1g
,C

2a
,

P
1a
,P

1c
,P

1f
P
ri
st
in
e

50
–
10

00
0

13
.4
–
34

0
R
an
do

m
D
D
A

ht
tp
s:
//g

ith
ub

.c
am

/r
ho

ne
ya
ga
r/

sc
at
db

P
el
ty

an
d
H
ua
ng

(2
01

0)
N
1e
,P

1e
A
gg

re
ga
te
d

12
5–

10
00

0
13

.4
–
89

R
an
do

m
D
D
A

A
ut
ho

r

B
ot
ta
et
al
.(
20

10
)

N
1e

A
gg

re
ga
te
d,

m
el
te
d

50
0–

11
00

0
3,

35
.6

H
or
iz
on

ta
l

G
M
M

A
ut
ho

r

T
yy

ne
lä
et
al
.

(2
01

1)
P
1e
,P

1f
A
gg

re
ga
te
d

20
0–

24
00

0
5.
6–
94

H
or
iz
on

ta
l

D
D
A

ht
tp
://
he
lio

s.
fm

i.fi
/~
ty
yn

el
aj
/

T
yy

ne
lä
et
al
.

(2
01

3)
N
1e
,P

1a
,P

1d
,C

2a
P
ri
st
in
e,

ag
gr
eg
at
ed

45
0–

85
00

3–
22

0
H
or
iz
on

ta
l

D
D
A

ht
tp
://
he
lio

s.
fm

i.fi
/~
ty
yn

el
aj
/

N
ow

el
le
ta
l.
(2
01

3)
C
2a

A
gg

re
ga
te
d

80
0-
12

00
0

10
.7
-1
83

.3
R
an
do

m
D
D
A

ht
tp
s:
//g

ith
ub

.c
om

/r
ho

ne
ya
ge
r/

sc
at
db

O
ri
et
al
.(
20

14
)

C
le

A
gg

re
ga
te
d,

m
el
te
d

10
00

–
15

00
0

5.
6–
15

7
R
an
do

m
D
D
A

A
ut
ho

r

T
yy

ne
lä
an
d

C
ha
nd

ra
se
ka
r

(2
01

4)

N
le
,C

le
,P

la
,P

1e
,

P
1f
,C

2a
,R

4b
P
ri
st
in
e.

ag
gr
eg
at
ed

10
0–

24
00

0
2.
7–
22

0
H
or
iz
.,

ra
nd

om
D
D
A

ht
tp
://
he
lio

s.
fm

i.fi
/~
ty
yn

el
aj
/

258 S. Kneifel et al.

https://github.cam/rhoneyagar/scatdb
https://github.cam/rhoneyagar/scatdb
http://helios.fmi.fi/~tyynelaj/
http://helios.fmi.fi/~tyynelaj/
http://helios.fmi.fi/~tyynelaj/
http://helios.fmi.fi/~tyynelaj/
https://github.com/rhoneyageir/scatdb
https://github.com/rhoneyageir/scatdb
http://helios.fmi.fi/-tyynelaj/
http://helios.fmi.fi/-tyynelaj/


L
ei
no

ne
n
an
d

S
zy
rm

er
(2
01

5)
P
1e

A
gg

re
ga
te
d,

ri
m
ed

70
0–

20
00

0
9.
7–
94

G
au
ss
ia
n

D
D
A

A
ut
ho

r

L
ei
no

ne
n
an
d

M
oi
ss
ee
v
(2
01

5)
N
le
,P

la
,P

1e
,C

2a
A
gg

re
ga
te
d

20
0–

10
00

0
13

.6
–
94

G
au
ss
ia
n

D
D
A

A
ut
ho

r

L
u
et
al
.(
20

16
)

N
le
,C

le
,P

la
,P

lc
,

P
ld
,R

4c
P
ri
st
in
e,

ag
gr
eg
at
ed

10
0–

62
00

0
9.
4–
94

H
or
iz
on

ta
l

G
M
M
,

D
D
A

ht
tp
s:
//w

w
w
.a
rm

.g
ov

/d
at
a/
da
ta
-

so
ur
ce
s/
ic
ep
a.
rt
-m

od
-1
20

K
uo

et
al
.(
20

16
)

N
1e
,P

1a
,P

1c
,P

1d
,

P
1e
,P

1f
,P

2c
P
ri
st
in
e,

ag
gr
eg
at
ed

26
0–

14
00

0
3–
19

0
R
an
do

m
D
D
A

ht
tp
s:
//s
to
rm

.p
ps
.e
os
di
s.
na
sa
.

go
v/
st
or
m
/O
S
S
P
T
es
t.j
sp

Jo
hn

so
n
et
al
.

(2
01

6)
N
1e
,P

1e
A
gg

re
ga
te
d,

m
el
te
d

10
0–

14
00

0
13

.4
–
18

3
R
an
do

m
D
D
A

A
ut
ho

r

D
in
g
et
al
.(
20

17
)

C
le
,C

1f
,P

la
,C

2a
P
ri
st
in
e,

ag
gr
eg
at
ed

2–
10

00
0

1–
87

4
R
an
do

m
II
-T
M
,

IG
O
M

A
ut
ho

r

E
ri
ks
so
n
et
al
.

(2
01

8)
N
1e
,C

le
,C

1g
,P

1a
,

C
2a
,P

1c
,P

1f
P
ri
st
in
e,

ag
gr
eg
at
ed

10
–
22

00
0

1–
88

6
R
an
do

m
D
D
A
,M

ie
ht
tp
s:
//d

oi
.o
rg
/1
0.
52

81
/z
en
od

o.
11

75
57

2

P
ar
tic
le
ha
bi
ts
ar
e
lis
te
d
ac
co
rd
in
g
to

th
e
cl
as
si
fi
ca
tio

n
by

M
ag
on

o
an
d
L
ee

(1
96

6)
N
ot
e
th
at
so
m
e
of

th
e
da
ta
ba
se
s
in
cl
ud

e
al
so

pa
rt
ic
le
ty
pe
s
th
at
ar
e
no

tc
la
ss
ifi
ed
,s
uc
h
as

so
ft
/s
ol
id

sp
he
ro
id
s

15 Scattering of Hydrometeors 259

https://www.arm.gov/data/data-sources/icepa.rt-mod-120
https://www.arm.gov/data/data-sources/icepa.rt-mod-120
https://storm.pps.eosdis.nasa.gov/storm/OSSPTest.jsp
https://storm.pps.eosdis.nasa.gov/storm/OSSPTest.jsp
http://0.0.0.81/zenDdo.1175572
http://0.0.0.81/zenDdo.1175572


to higher frequency. The only exception is represented by the 9.6–35.5 GHz pair
when considering Dm smaller than 1.4 mm (see also the related discussion about the
Dual Precipitation Radar on GPM, Chap. 11).

15.1.5 Generalized Multiparticle Mie-Solution (GMM)

A generalization of the Mie theory to two spheres was introduced by Liang and Lo
(1967) and Bruning and Lo (1971). Later, Borghese et al. (1979), Wang and Chew
(1983), Mackowski (1991) and Xu (1995) generalized the method for an arbitrary
number of spheres and improved its numerical efficiency. They also used the

Fig. 15.1 Extinction (left) and backscattering (right) cross sections for spheres (continuous lines),
perfectly oriented spheroids (dashed) and Rayleigh spheres (dotted) for single raindrops at 9.6 (red),
35.5 (green) and 94 (blue) GHz

Fig. 15.2 Reflectivity per
unit mass for an exponential
drop size distribution vs
mean mass-weighted equi-
volume diameter for spheres
(continuous lines), perfectly
oriented spheroids (dashed)
at 9.6 (red), 35.5 (green) and
94 (blue) GHz
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T-matrix formalism for computing the scattering properties of the particles. The only
restriction in these methods is that the sphere surfaces are not allowed to overlap.
However, some of the publicly available codes, such as the one by Mackowski and
Mishchenko (2011), allow the spheres to be inside each other.

GMM has been used mainly for modeling light scattering by dust and soot
particles, but Botta et al. (2010) applied it to partially melted snow particles at
microwave frequencies. They approximated long columns by a chain of spheres and
aggregated these chains together in a random way. Recently, Lu et al. (2016)
published a comprehensive database, which includes these aggregates as well as
single dendrites also modeled as a regular grid of spheres. The database described in
Lu et al. (2016) is the first which includes the full scattering matrix for the full sphere
of incident angles. Due to the air between the spheres, the dielectric constant had to
be modified in order to match that of a solid ice particle. A limitation in GMM is the
maximum number of spheres that can be used to approximate the shapes, which is
more limited than the number of dipoles in DDA.

15.2 Hydrometeor Models

Without being able to accurately characterize the physical properties of real hydro-
meteors, even a perfectly accurate scattering method would be useless for realisti-
cally characterizing their scattering properties. Hydrometeor models are therefore
needed to realistically reproduce key hydrometeor properties such as size, mass,
shape, internal structure, mixture of different components, or falling behavior. For
some hydrometeors, those models have been available for a long time but for more
complex particles, such as melted or rimed particles, accurate hydrometeor models
are still under development.

15.2.1 Liquid Hydrometeors

While cloud droplets are perfectly spherical, raindrops with size exceeding �
1.0 mm in radius and falling at terminal velocity in air tend to have shape similar
to asymmetric oblate spheroids with a flattened base. The shapes of water drops were
first described by Pruppacher and Pitter (1971) using a series of Chebyshev poly-
nomial but they can also be well described by oblate spheroids with size-dependent
axial ratios (e.g., Mishchenko and Travis 1998, their chapter 16). Raindrops tend to
be horizontally aligned with the major axis on the horizontal plane. In the presence of
turbulence, small canting angles are observed with a Gaussian probability distribu-
tion about a mean value of zero and with standard deviation less than 5� (Beard and
Jameson 1983). The refractive index of liquid water is also well known, (e.g., Ellison
2007). Recent studies (Turner et al. 2016) have also thoroughly characterized its
behavior at very cold temperatures (which are relevant for supercooled droplets).
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15.2.2 Ice and Snow

In contrast to liquid water drops, icy hydrometeors found in nature exhibit diverse
shapes, structures and densities owing to the interaction of three growth processes:
ice crystal growth by vapor deposition, aggregation, and riming. Deposition growth
alone creates widely variable shapes depending mainly on temperature and ice
supersaturation (Magono and Lee 1966). This complexity is further compounded
by aggregation and riming. Ice crystals have been grown in diffusion chambers
under different atmospheric conditions (e.g., Bailey and Hallet 2004; Libbrecht
2005; Libbrecht and Rickerby 2013), but it is difficult to simulate the full complexity
of the natural environment in the laboratory. Consequently, properties of icy hydro-
meteors have been mostly derived from field measurements on the ground or from
aircraft. The downside of these is that the conditions can vary a great deal between
campaigns and even during the measurements, which can limit their utility. More-
over, some properties like the mass and 3D structure of the particle are difficult to
measure directly, and need to be estimated. Some new in situ measurement devices
try to solve this problem by using multiple cameras Garrett et al. (2012) or holog-
raphy Kaikkonen et al. (2014).

Due to the relative complexity of snowflakes, developers of scattering models
have often tried to simplify the shape to a degree that still gives acceptable scattering
properties. The approximation of snowflakes as spheres in the Rayleigh scattering
regime was already used by Marshall and Gunn (1952). Due to its simplicity and fast
computation, the T-matrix method with spheroidal shapes has also been utilized for
snow (e.g., Matrosov 2007; Hogan et al. 2012; Liao et al. 2013). To simulate the
variable density of icy hydrometeors, EMA is typically used to calculate the dielec-
tric properties of an air–ice mixture. This “soft” spheroidal model has only a few free
parameters, and can therefore be easily fitted to empirical formulas. For some
scattering properties, the lack of irregularity in the particle shape can be partly
compensated by a distribution of orientations.

The study of Evans and Vivekanandan (1990) was among the first to model
scattering by non-spheroidal ice particles at the microwave frequencies. The shapes
they used for the ice crystals were hexagonal plates, columns and needles. This
development was motivated mainly by the availability of high frequency cloud radar
and radiometer data at that time. DDA also had become feasible to utilize as
computing resources had increased. Later, e.g., Dungey and Bohren (1993), Evans
and Stephens (1995) and Tang and Aydin (1995) extended these studies to even
higher frequencies up to 340 GHz. Note that many of these models assumed
horizontally oriented particles due to the observations made by, e.g., Cho et al.
(1981) and Thomas et al. (1990). More recent efforts to systematically compute
scattering by complex ice crystals at high microwave frequencies have been
performed by Kim (2006), Liu (2008), Hong et al. (2009) and Kuo et al. (2016).
In these studies, however, particles were assumed to be in random orientations.

It was shown by Westbrook et al. (2006), Ishimoto (2008), Petty and Huang
(2010), Botta et al. (2010) and Tyynelä et al. (2011) that for higher radar frequencies,
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especially at Ka and W bands, the soft spheroidal models for snow significantly
underestimates the backscattering cross sections when compared to more complex
shapes. The underestimation is caused by the resonance behavior of the symmetric
shape and homogeneous structure of the soft spheroid model in the Mie resonance
region (see examples in Fig. 15.3). This is a concern particularly with aggregates,
which can reach sizes of the order of 1 cm, comparable to or larger than the radar
wavelengths. In recent years, studies that also include aggregates of ice crystals, as
well as rimed snowflakes, have become more common. This has driven the need to
develop detailed models of snowflake growth that produce shapes that can be used as
input to scattering calculations.

In remote sensing measurements, precise information of atmospheric conditions
is rarely known. Air motion in clouds and precipitation can be turbulent such that
particle orientation is also uncertain, and the volumes observed are large enough to
entail thousands of differently shaped particles. It is therefore not practical to model
ice crystals in a deterministic way by using detailed physical models. Instead,
researchers have tried to find a compromise between theoretical and empirical
information of ice particles in many different ways, which can be roughly divided
into two categories: physical and empirical modeling.

The physical simulation of ice crystal growth by deposition is complicated by the
continuing lack of detailed knowledge of the physics involved, and its dependence
on temperature, pressure and vapor density (Libbrecht 2005). Mathematical or semi-

Fig. 15.3 Backscattering (Qbk, left) and extinction (Qext, right) efficiencies defined as Q ¼ σ=πr2eff
with reff being the radius of the equal mass ice sphere and σ the corresponding cross section. The
size parameter x combines the dependence of the scattering variables on particle mass and
wavelength. Spheroid approximations include spheres of solid ice (continuous black line), spheres
with an ice-air mixture (black long-dashed) representing the mass-size relation of Brown and
Francis (1995), and spheroids with the same mass-size relation but with an aspect ratio of 0.6
(black dotted). Scattering properties for unrimed (gray dots) and rimed (black dots) calculated with
DDA in Leinonen and Szyrmer (2015) (results shown are for particle model B and the second most
rimed particles). The SSRGA (gray solid line) has been derived for the same ensemble of unrimed
aggregates (Leinonen et al. 2018a). The vertical lines denote the size parameter for X, Ka and W
band assuming a particle mass of 10 mg which corresponds for example for the unrimed aggregates
to a maximum snowflake size of 3 cm
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physical models approximating the growth in 2D (Reiter 2005) and 3D (Gravner and
Griffeath 2009) have been developed, but purely physical models have not yet been
achieved, owing to the uncertainties in molecular scale physics of ice surfaces. The
physics-based modeling of aggregation was formulated by Westbrook (2004) and
Maruyama and Fujiyoshi (2005) and later extended to riming by Leinonen and
Szyrmer (2015). These methods are stochastic and take into account the mutual
probabilities of particle collisions, which depend on particle sizes and velocities.
This method also produces fractal-like structures for the aggregates with the fractal
dimension close to 2, while the dimensions for purely rime-grown particles are
closer to 3. The aggregating particles are usually frozen in place at the contact
point, but some methods allow some overlap. Rimed droplets were also assumed
to freeze immediately on contact with ice in Leinonen and Szyrmer (2015). The
results of these models are typically only semi-physical in practice because the
complexity of the physics and the variability of environmental conditions require
simplifying assumptions and approximations to be made. Many of the models also
use empirical formulas for the dimensions of the original ice crystals, although Kuo
et al. (2016) used the 3D-crystal growth algorithm of Gravner and Griffeath (2009).
The shapes produced with the physical approach are qualitatively realistic, but may
demand a lot of computer resources. Further examples of studies using this method
are those by Tyynelä et al. (2011), Tyynelä and Chandrasekar (2014), Leinonen and
Moisseev (2015), Kuo et al. (2016) and Ekelund et al. (2018).

In empirical growth models, the particles are generated in an ad hoc way by fitting
the particle models to empirical formulas. As size and shape are the two most easily
measured physical properties of snowflakes, other properties (e.g., mass) tend to be
defined with respect to these in simple mathematical forms, such as the power law
αDβ, where α and β are empirically fitted constants for a given type of snowflake.
There have been many studies that give different values for the constants
(Pruppacher and Klett 1997). The shapes of ice crystals are often fairly simple,
while the physics that they arise from is not, so the empirical approach is well suited
for generating these models. Empirical models of aggregates have also been devel-
oped. In these, the shape models themselves are not necessarily qualitatively realis-
tic, but only incorporate some kind of randomness. Even though the shapes may not
be realistic, the other properties (typically mass and aspect ratio) are guaranteed to
obey the formulas that were used during the fitting. Common formulas that are used
for mass are by Mitchell (1996) and Brandes and Ikeda (2007). When compared to
the physical-based models, the properties of empirically generated particles show
much less variance. The models are computationally fast, but the downside of this
approach is that the results may not be generally usable due to the fitting. Examples
of such studies include Botta et al. (2010), Nowell et al. (2013), Ori et al. (2014),
Johnson et al. (2016), and Lu et al. (2016).

There are also studies that incorporate both of these approaches, such as the
fractal model by Ishimoto (2008). The fractal model is a mathematical model that
mimics the fractal nature of natural snowflakes, but is not necessarily realistic in any
other way. The fractal size can be scaled arbitrarily and its mass can be fitted to
empirical formulas.
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15.2.3 Melting Ice

Creating realistic, detailed scattering models of melting snowflakes remains partic-
ularly challenging. These bodies combine the physical phenomena of both liquid and
solid hydrometeors, and consequently many of the simplifying assumptions appli-
cable to those cannot be used with melting particles. Most importantly, unlike frozen
hydrometeors, melting particles cannot be well approximated as rigid bodies, nor do
they assume smooth, near-spherical shapes like liquid ones. The surface tension
between liquid and ice plays a major role in the determination of the shape of melting
particles, and leads to a very inhomogeneous mixture of liquid water and ice (Knight
1979; Fujiyoshi 1986; Mitra et al. 1990; Oraltay and Hallett 2005). Nevertheless,
understanding the microwave scattering properties of melting snowflakes remains
important because of their unique characteristics: most notably, they are responsible
for the bright band, a horizontal layer near the 0 �C isotherm where radar reflectivity
is higher than either in the snow above or the rain below it (Austin and Bermis 1950;
Battan 1973; Fabry and Zawadzki 1995). The melting layer also has a distinct effect
on the observations of both polarimetric radars (Brandes and Ikeda 2004;
Giangrande et al. 2008) and passive microwave radiometers (Bauer et al. 1999;
Olson et al. 2001), and attenuates microwave signals strongly (Klaassen 1990;
Kharadly and Hulays 1994). The melting layer attenuation can strongly affect
radar signals crossing it, and properly correcting for it is important to satellite-
based radar estimates of rain rate, as well as ground-based radar observations
where the shallow elevation angle of the radar beam may require the signal to travel
for a long distance inside the melting layer (von Lerber et al. 2015).

Because of the complexity of the physics of melting snowflakes, they were long
modeled as spheres whose air–liquid water–ice mixture was treated using an EMA
(Bohren 1986; Klaassen 1988). In some studies, these spheres were layered, each
layer having a different mixture of the constituents, reflecting the initial formation of
meltwater preferentially on the outer edges of the snowflake (Fabry and Szyrmer
1999).

At wavelengths much larger than the scatterer diameter, the sphere models,
combined with Mie scattering calculations, can simulate the radar reflectivity in
the melting layer quite accurately (Fabry and Szyrmer 1999). However, they dras-
tically underestimate the cross-polarized signal from the scatterers. Moreover, at
shorter wavelengths they suffer from the same fundamental problems as similar
models of dry snow: the microstructure of the snowflake affects the scattering signal
in a manner that cannot be simulated by the homogeneous or layered spherical
approximations. Thus DDA, and other numerical scattering methods that work with
arbitrary shapes, are also attractive for simulating the scattering from melting snow.

DDA and GMM simulations of melting snow follow the same principles as those
of dry snowflakes. With DDA, the higher refractive index of liquid water compared
to ice requires the use of smaller dipoles, leading to higher computational and
memory requirements. Nevertheless, performing the scattering simulations for a
given shape model is reasonably straightforward. The main challenge, then, is
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producing appropriate shape models, which is particularly complicated for the
reasons outlined above.

A few studies have investigated the scattering properties of melting snowflakes
using DDA or GMM. The study of Tyynelä et al. (2014) used an uneven distribution
of meltwater within spheroids to investigate its effect on polarimetric ground-based
weather radar signals, but found little difference between this approach and homo-
geneous spheroids. On the other hand, Botta et al. (2010), Ori et al. (2014) and
Johnson et al. (2016) used a heuristic model to imitate melting of detailed aggregate
snowflake models, and found substantial differences to bulk models. Recently,
Leinonen and von Lerber (2018) used a physical model to simulate snowflake
melting at a detailed level, but as of this writing, this has not yet been used for
scattering studies. Thus, considerable work remains to be done in fully understand-
ing the scattering properties of melting hydrometeors in simulations.

15.3 Scattering Properties and Scattering Databases

Rather than providing an in-depth comparison of the scattering properties included
in the growing number of scattering databases, which would certainly be out of the
scope of this chapter, we aim to provide a basic overview of the main scattering
characteristics of the different hydrometeor classes illustrated with examples from
different hydrometeor models and scattering methods. We also hope to provide the
reader a useful overview of currently available scattering databases for ice and snow
particles which usually requires a laborious literature and internet research.

15.3.1 Liquid Hydrometeors

Due to the impact of raindrop non-sphericity on radar polarimetry and microwave
radiometry, the modeling of raindrops scattering properties has been extensively
investigated. Typically, the Rayleigh ellipsoidal approximation or T-matrix meth-
odology has been adopted for computing the scattering matrix (Oguchi 1973;
Mishchenko et al. 2008; Bringi and Chandrasekar 2001; Battaglia and Simmer
2007). These computations have been historically performed for low incidence
angles and at the frequency characteristic of precipitation radars (i.e., S, C, X
band); more recently, with the advent of spaceborne cloud radars, more attention
has been paid to Ka and W bands. Differently from ground-based applications, for
space-borne applications the interest resides mainly at vertical incidence where,
unfortunately, polarimetric signatures tend to disappear.
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15.3.2 Ice Crystals, Aggregates, and Rimed Particles

The number of scattering databases and the complexity of the particles included
largely increased during recent years (see Table 15.1 or also Figure 1 in Kneifel et al.
2018). Rather than comparing the scattering properties of all published particles – a
task which we leave to an extensive review study – we show in Fig. 15.3 an
exemplary selection of particles for the different (non-melted) ice hydrometeor
categories. The scattering efficiencies are plotted as function of the size parameter
defined with the radius of the mass-equivalent ice sphere reff.

The solid ice sphere represents the high density extreme, potentially only appli-
cable to simulate scattering properties of spherical hail. The ‘soft’ sphere and the soft
spheroid results were calculated with a widely used mass-size relation provided by
Brown and Francis (1995) and using the Maxwell-Garnett EMA (15.9); for the
spheroid we also assume a commonly used constant aspect ratio of 0.6 (e.g., Hogan
et al. 2012). Typical characteristics of the spheroidal approximations are the oscil-
lating behavior of the scattering properties, as a function of size, caused by the
internal reflection of the electromagnetic wave outside the Rayleigh regime. The
high symmetry of the spheroids causes these ‘dips’ – a result of destructive
interferences – to be particularly pronounced especially for backscattering. These
resonance effects are averaged out for scattering efficiency which is an integrated
quantity over the scattering angle. The multiple orders of magnitude difference in the
backscattering efficiencies for the solid and the soft sphere are a result of the very
different refractive indices. For the soft sphere calculations, mass-size relations are
often used which have been empirically derived from in-situ observations. This ice
mass is then homogeneously distributed in the spheroidal volume which leads to a
rapid decrease of the average density and consequently also of the effective refrac-
tive index. As a result, the backscattering efficiency is drastically decreasing with
larger size parameters. For an illustration of the problem, imagine a sphere
(or spheroid) circumscribed to a long ice needle. A large fraction of the sphere’s
volume is filled with air and only a very small fraction of the volume is filled with
solid ice. This extreme example illustrates the main inconsistency of the sponge-like
assumption of a homogeneous ice-air mixture in the spheroidal approximation. In
fact, the mass fluctuations inside the particle volume seem to be key for an accurate
calculation of the particles scattering properties (e.g., Sorensen 2001) especially
when approaching large size parameters. An increasing number of studies related to
RGA and SSRGA indicate that their main advantage is the ability to better account
for these mass fluctuations.

Scattering calculations by the computationally costlier methods such as DDA or
GMM are nowadays the basis of most scattering databases (Table 15.1). Most
datasets include a large number of particle shapes and their associated single particle
scattering properties. However, the databases still differ even in key assumptions
such as whether calculations include the results for single particle orientations or
whether averaging over random orientations is applied. While for single ice crystals
there is little debate that they have a preferential orientation during fall, this is still
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less clear for aggregates. Other differences are, for example, the range of particle size
and frequencies included, definition of scattering variables, consideration of polar-
ization, ice refractive index model used, or simply the question whether the full
scattering matrix or only scattering cross sections are included. Very recently,
database developers also started to include rimed snow particles in addition to single
crystals and aggregates.

As an example of single-particle DDA calculations, the results for unrimed and
strongly rimed snow aggregates from Leinonen and Szyrmer (2015) are plotted in
Fig. 15.3. The range of variability found for a particular size parameter illustrates the
inherent uncertainty of scattering properties for single ice particles. The uncertainty
for individual particles is much larger for backscattering than for extinction due to
the relation of the backscattering to one particular scattering angle. The rimed
particles tend to populate more towards the solid sphere curve than the unrimed
aggregates. This is mainly an effect of the overall larger refractive index. Usually, a
remote sensor receives the scattered radiation of a large ensemble of ice particles.
One unsolved question is thus, how to generate a reasonable average of the scattering
properties. For particles, which are not too rimed and for applications where
polarimetric information is not needed, the SSRGA approach seems to be a reason-
able solution (Leinonen et al. 2018a). Several comparisons with DDA results
(Leinonen et al. 2018a; Hogan et al. 2017; Hogan and Westbrook 2014) reveal
that SSRGA provides a sufficiently accurate ensemble average of the scattering
properties (see also DDA and SSRGA results for unrimed aggregates in Fig. 15.3).
Especially for backscatter, the overall behavior of the SSRGA is much closer to
DDA as compared to the strongly deviating soft spheroidal approximation.

Many databases also include scattering computations for single ice crystals of
various shapes such as columns, plates, bullet rosettes, sector snowflakes, or den-
drites. Due to their smaller sizes (less than 5 mm) and relatively small size param-
eters, their curves would be difficult to see in Fig. 15.3. Their scattering properties
would populate within the range presented in Fig. 15.3 with individually large
differences especially if no orientation averaging is applied (e.g., Eriksson et al.
2018). It is obvious from Fig. 15.3 that different scattering variables show different
sensitivity to varying particle properties. Any approximation or average needs
therefore to be carefully tested with respect to how well it is able to approximate
the different scattering variables over a wide frequency range.

15.3.3 Melting Ice

As discussed in Sect. 15.2.3, only a limited number of scattering databases include
partially melted snowflakes (Botta et al. 2010; Ori et al. 2014; Johnson et al. 2016).
The available databases still have several limitations in terms of particle size range,
number of orientations, melted fractions and frequencies. Nevertheless, they already
provide some interesting information about melting snow scattering properties.
Figure 15.4 shows the extinction and backscattering characteristics of melted snow
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as a function of the radius of the corresponding melted sphere. As the particle melted
fraction increases, its scattering properties increase in response of the larger value of
the water refractive index with respect to ice. The differences are largest at the lowest
frequencies (below 30 GHz) since this is the region of the microwave spectrum
where the differences in ice and water dielectric properties are largest. At 9.6 GHz,
increasing snowflake melted fraction from 10% to 50% leads to a fivefold increase of
backscattering and one order of magnitude in the extinction cross section. This
translates into a 7 dB increase in the unattenuated radar reflectivity due to melting.

15.3.4 Future Directions

Significant progress has been achieved during recent years with respect to our
general understanding of MW scattering of ice and snow particles but still a number
of open questions remain. Several particle classes such as rimed particles, aggregates
of mixed monomers, melting particles, or secondary ice are still underrepresented or
even completely missing in currently available databases. While there is much
confidence in the scattering methods themselves (i.e., if computational resources
are available DDA can be readily applied), the hydrometeor modeling needs to be
more tightly linked to in-situ studies. Developers of hydrometeor models should also
communicate more with developers of microphysical parametrizations. In this way,
a larger consistency between radiative transfer calculations and numerical weather
and climate prediction models could be achieved. Another urgent aspect which has
been discussed at the meetings of the International Precipitation Working Group
(Levizzani et al. 2018) and also during the last International Summer Snowfall
Workshop (Kneifel et al. 2018) is to develop standards and conventions how to
store the growing number of scattering databases. Such conventions would help to
make the datasets easier to compare, would simplify the combined use of several

Fig. 15.4 Extinction (left) and backscattering (right) cross sections for partially melted snow
aggregates at 10% (dark) and 50% (gray) melted fractions. Results are from DDA scattering
simulations (Ori et al. 2014) at 9.6 (continuous), 35.5 (dashed) and 94 (dash-dotted) GHz

15 Scattering of Hydrometeors 269



datasets, and would help to reproduce results or to extend existing datasets with
calculations of e.g. new particles or frequencies.
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Chapter 16
Radar Snowfall Measurement

Guosheng Liu

Abstract Measuring snowfall by radars faces many extra challenges compared to
radar rainfall measurements due to the facts that snow particles have low density and
are non-spherical in shape. The low density makes their scattering intensity weak,
therefore only detectable by highly sensitive radars. The non-sphericity of the snow
particle, on the other hand, makes the conversion from radar reflectivity to snowfall
rate extremely uncertain. Because of these difficulties, global snowfall maps were
not available until the availability of CloudSat Cloud Profiling Radar (CPR) mea-
surements, which operates at 94 GHz and has a minimum detectability better than
�26 dBZ. In this article, using CPR measurements as an example, we first describe
the theory and methods of measuring snowfall by space-borne radars, followed by
new findings that have resulted from CloudSat observations and ideas on how to use
CloudSat to guide passive microwave sensors for snowfall retrievals.

Keywords CPR · CloudSat · GPM · DPR · Snow · Snowfall · Snowflake ·
Dendrites · Rosettes · Aggregates · Rainfall · Radar · Reflectivity · Backscattering
cross section · Particle size distribution · Power law · Attenuation · Radiometer

16.1 Introduction

Measuring snowfall is important for forecasting hazardous weather, understanding
the hydrological cycle and evaluating the cooling and freshening effects of snow
onto ocean. Over land, accumulated snow may stay on the ground for months,
resulting in very different hydrological and radiative consequences from those
from rain (e.g., Barnett et al. 1989; Walsh 1995). Over ocean, falling snow has
complex interaction with the ocean because it both freshens and cools (through snow
melting) the ocean surface water. Despite the importance of snow precipitation, there
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have been no global climatologies of snowfall distributions produced on the basis of
observational data until very recently when CloudSat Cloud Profiling Radar (CPR)
observations became available.

Compared to rainfall measurements, measuring snowfall from space radars faces
many extra challenges. First, snowflakes generally have very low and quite variable
values of density, which leads to the intensity of their radar returns to be low and
uncertain; detecting the low backscatter intensity requires that the radar have a very
low value of minimum detection. Second, unlike raindrops, snowflakes are
nonspherical and have countless types of shapes. The radar reflectivity depends on
particles shapes, orientation and size distribution. Therefore, the nonspherical nature
of snowflakes adds many dimensions of difficulty to the problem of converting radar
reflectivity to snowfall intensity. Third, there are few surface-based reliable snowfall
measurements; snow gauge measurements are spotty and the technique itself
remains challenging (e.g., Rasmussen et al. 2012). This lack of ground truth
makes it hard to validate snowfall retrievals, which in turn, does not help improve
retrieval algorithms. Owing to these challenges, space-borne sensors that are suitable
for use to estimate snowfall distributions have not been available until CloudSat
CPR (Stephens et al. 2002).

In the following sections, using CloudSat CPR as an example, we first describe
the theory and methods for estimating snowfall intensity from radar reflectivity
factors, followed by introducing some applications of using CloudSat measurements
to understand the characteristics of snowing clouds. Finally, an idea of using radar
snowfall estimates as guide to train passive microwave radiometer snowfall obser-
vations is explained.

16.2 Radar Snowfall Retrieval Method

Ignoring the attenuation by atmospheric gases, cloud liquid drops and ice particles,
the equivalent radar reflectivity factor, Z, derived from the returned power from a
unit volume of snow particles may be expressed by

Z ¼ λ4

π5 Kj j2
Z 1

0
n Dð Þσb Dð ÞdD, ð16:1Þ

where D is the dimension of the snowflake, n(D) the particle size distribution, λ the
wavelength, K a function of dielectric constant of water, and σb(D) the backscatter-
ing cross section. Meanwhile, snowfall rate (liquid water equivalent) is the volume
flux of snowflakes, and is expressed by

S ¼ 1
ρw

Z 1

0
n Dð Þm Dð Þv Dð ÞdD, ð16:2Þ
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where v(D) is terminal velocity,m(D) the particle’s mass, and ρw the density of liquid
water. The task of converting radar reflectivity measurement to snowfall rate then
comes down to how to linking Eqs. (16.1) and (16.2).

16.2.1 Factors Impacting Z – S Relations

From the equations above, the accuracy of radar snowfall retrievas is thus impacted
primarily by the uncertainties in the following three factors: (1) the particle size
distribution, (2) the particle terminal velocity and (3) the backscatter of the
nonspherical particles. If dual-wavelength (e.g., Matrosov 1998) or additional
Doppler spectrum measurements (e.g., Mace et al. 2002) are available, the uncer-
tainties in the snowfall retrievals could be reduced by taking those additional pieces
of information into account. However, since the current CloudSat CPR is a single
wavelength radar without Doppler spectrum measurements, the retrieval uncertainty
can only be reduced by introducing additional constraints using ancillary informa-
tion. For example, Wood et al. (2013, 2014) introduced microphysical properties
observed from field experiments to constrain ice particle shapes and densities.

Results from in situ observations showed that the snow particle size distributions
generally follow an exponential form, while the intercept and slope vary, among
other things, with the intensity of snowfall (e.g., Houze et al. 1979; Brandes et al.
2007). Observational data also indicated that the intercept and slope in the size
distribution vary with air temperature (Brandes et al. 2007). Terminal velocity of
snowflakes has been observed by many investigators (e.g., Locatelli and Hobbs
1974; Heymsfield et al. 2007; Brandes et al. 2008; Heymsfield and Westbrook 2010)
and is customarily parameterized in the form v(D) ¼ αDβ, where α and β are
parameters empirically determined by in situ measurements. For aggregates, the
terminal velocity generally ranges from 0.5 to 2 m s�1, depending on the density of
the particles and the degree of riming. A study by Brandes et al. (2008) suggests that
the terminal velocity of snowflakes increases with air temperature in the range of
�10 �C to 0 �C, presumably due to the increase of riming at warmer temperatures.

The third factor governing the Z-S relation is the backscattering cross section for
nonspherical snowflakes. Atlas et al. (1953) showed that if particle sizes are suffi-
ciently small (in the Rayleigh regime), the backscattered intensity by a nonspherical
snowflake could be approximated by that of an equivalent low-density sphere having
the same mass. Many investigators have so far used this approximation (e.g.,
Braham et al. 1992; Liu and Illingworth 2000). However, as wavelength becomes
shorter (such as the 3 mm of CloudSat CPR), this approximation becomes invalid. In
fact, as shown by Liu (2004), single scattering properties differ substantially from
those of equivalent low-density spheres as the particles’ size parameter becomes
larger than 0.5. To evaluate the backscattering cross section of snowflakes, several
investigators modeled the scattering properties at microwave frequencies using
discrete dipole approximation techniques (e.g., Liu 2008a; Tyynelä et al. 2009;
Petty and Huang 2010; Kuo et al. 2016) for various types of particles (see also
Chap. 15).
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In radar meteorology, it is customary to relate Z and S by a power-law relation, i.e.,

Z ¼ aSb ð16:3Þ

Clearly, the values of a and b strongly depend on the three factors discussed above.
To illustrate the spread of this relation solely due to the assumption of particle
shapes, Hiley et al. (2011) computed this relation using 20 ice particle shapes with
Field et al. (2005) particle size distribution at 3 different air temperatures. As shown
in Fig. 16.1, even without considering the uncertainties of particle size distributions
and terminal velocities, the spread can be an order of magnitude among the Z-S
relations assuming different particle shapes. Sims (2017) examined this problem by
including the variation of particle size distribution and terminal velocity. In her
study, 3 particle size distributions (Sekhon and Srivastava 1970; Field et al. 2007;
Brandes et al. 2007), 3 terminal velocity relations (fitting the upper, middle and
lower portion of the results of Locatelli and Hobbs 1974), and 4 types of ice particles
(6-bullet rosettes, sectors, and dendrite from Liu 2008a, and aggregates from Nowell
et al. 2013), were examined. The study concluded that the greatest uncertainty arises
from the variability of particle shapes. Given the same snowfall rate, the low-density
dendrite type snowflakes produce the weakest radar reflectivity while the rosettes
produce the strongest. Therefore, better knowledge of weather dependent ice particle
types and their scattering properties is the key to improve the accuracy of radar
snowfall retrievals.

Fig. 16.1 The spread of Z-S relations under different assumptions of particle shapes. (Adapted
from Hiley et al. 2011)
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16.2.2 A Z-S Relation

Keeping these uncertainties in mind, Liu (2008b) derived a Z-S relation for CloudSat
radar frequency (94 GHz) based on the averaged results of several particle shapes
(Fig. 16.2). In his study, an exponential form of particle size distribution, n
(D) ¼ n0 exp (�ΛD), was used with the values of n0 and Λ taken from observational
data published by Braham (1990) and Lo and Passarelli (1982). For terminal
velocity, the 15 relations given by Locatelli and Hobbs (1974) for various types of
ice particles are used. To be consistent with their observations, the size range of ice
particles corresponding to these terminal velocity relations are also adopted from the
Locatelli and Hobbs study. Figure 16.2 shows the Z-S relations computed using
Eqs. (16.1) and (16.2) for rosettes, sectors and dendrites (Liu 2008a). A least square
fitting of the data points in Fig. 16.2 gives a ¼ 11.5 and b¼ 1.25 for the Z-S relation
form given in Eq. (16.3), in which Z is in mm6 m�3, and S in mm h�1 (liquid water
equivalent). This relation is coincidentally quite similar to that of Matrosov (2007),
which is also shown in Fig. 16.2 by a dashed line. Again, the spread of S values is
quite large at any given Z (about an order of magnitude), indicating that not knowing
the particle shape will introduce large uncertainties (random error) into the snowfall
rate retrievals. On a logarithm scale, the correlation coefficient of the fitted line in
Fig. 16.2 is 0.92 while the r.m.s difference of ln(S) between data points and
computed by Eq. (16.3) is 0.47. Because of dln(S) ¼ dS/S, it is estimated that the
relative error (ΔS/S) solely due to the spreading of data points around the fitting
curve is about 50%.

Fig. 16.2 Z-S relation for three nonspherical snowflakes. A least square fitting curve and relation
by Matrosov (2007) are also shown. (Adapted from Liu 2008b)
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16.2.3 Issues Related to Detectability and Attenuation

As discussed in the Introduction, snowfall can only be detected by radars that have a
high detectability because the scattering intensity by low-density ice particles is
weak. To illustrate this point, Fig. 16.3 shows a scatterplot of radar reflectivities from
coincident observations by CloudSat CPR and GPM DPR (Global Precipitation
Measurement Dual-frequency Precipitation Radar). The DPR operates at Ku- and
Ka-band, with a minimum detection of 13 dBZ (Toyoshima et al. 2015); only data
from Ku-band are shown in the plot. Below 13 dBZ, there is no meaningful
information from DPR Ku radar (i.e., its reflectivity does not vary as CPR reflectivity
changes). Above this level, Ku reflectivity varies in correspondent with CloudSat
CPR variations, while the value of CPR reflectivity is several dBZ lower than that of
Ku radar. This is consistent to our numerical calculations based on nonspherical ice
scattering. Additionally, CPR reflectivity shows clear sign of attenuation for cases
with Ku reflectivity higher than 20 dBZ (i.e., CPR reflectivity leveling off or
decreasing as DPR reflectivity increases). Using estimates from Z-S relations
described above for CPR and a similarly derived relation for DPR Ku-band, it was
found that the ratio of the averaged snowfall rate by DPR Ku radar to that by CPR is
3:1 for the points shown in the green box in the figure, indicating that CloudSat
underestimates snowfall rate for those cases that both DPR and CPR can detect.

Fig. 16.3 Scatterplot of coincident CloudSat CPR and GPM/DPR Ku-band reflectivities for
snowing cases. Data in the green box are those above the minimum detection for both Ku and
CPR radars
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To estimate how much snowfall have been missed by the limited-detectability of
the DPR radar, we analyzed the probability distribution functions (PDF) of occur-
rence and snowfall rate (estimated by Z-S relations) for both CPR and DPR
observations for snowfall possible conditions (Sims and Liu 2015) for a period of
March 2014 to December 2015. The results are shown in Fig. 16.4 with both PDFs
and cumulative PDFs of snowfall occurrence and snowfall amount. The cumulative
PDFs are computed using DPR data when DPR Ku-band reflectivity is >13 dBZ and
CPR reflectivity is greater than 0 dBZ (within the green box). Otherwise, CPR data
are used for the computation. From the cumulative PDFs, it is estimated that DPR
misses ~50% of the snowfall amount while missing ~90% of snowfall occurrences
detected by CloudSat CPR. Note that this result is based on coincident CPR and
DPR data, which excludes the regions of 65� poleward since GPM satellite does not
observe higher latitudes. Because there are more light snowfall events in higher
latitudes, globally the proportion that DPR misses would be greater if the satellite
were to cover entire the globe. Therefore, for snowfall observations, high detect-
ability radars such as CPR are clearly necessary.

16.3 Results from CloudSat Measurements

Launched in April 2006, CloudSat is in the A-Train orbit. Its 94 GHz CPR makes
nearly simultaneous Earth observations with various sensors onboard other satellites
in the constellation (Stephens et al. 2002). Its pre-launch minimum detectable radar

Fig. 16.4 PDFs and cumulative PDFs of snowfall occurrence and snowfall rate derived by
coincident CPR and DPR observations using Z-S relations as discussed in the text. Data period
for these plots is from March 2014 to December 2015
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reflectivity factor was designed to be�26 dBZ, although analysis of in-orbit data has
shown that the sensitivity is better than the specification at about �30 dBZ. It has
500 m vertical resolution although the reflectivity data are sampled every 240 m in
the archived standard products. The footprint size of radar reflectivity profiles is
1.4 km cross- and 2.5 km along-track. To avoid surface contaminated data, reflec-
tivity data of the lowest 3 bins (~0.75 km) need to be excluded in the data analysis. In
the following, the snowfall rate derived from radar reflectivity at the 4th bin above
surface is used as “near surface snowfall”.

Figure 16.5 shows two cases of CloudSat CPR observations of snowing clouds.
Both are in the southern Hemisphere between 50 and 60�S. Using the rain-snow
separation scheme of Sims and Liu (2015), it is determined that both cases corre-
spond to conditions of snowfall at the surface. In the first case (top panel), snowing
clouds associated with a frontal system have echo tops as high as 10 km and the
maximum radar reflectivity reaches 15 dBZ. In the second case (bottom panel),
shallow convective snowing cells can be seen between 50 and 56�S, with echo tops
only reaching 2 km, but the maximum radar reflectivity can be over 10 dBZ.

Fig. 16.5 CloudSat CPR radar reflectivity for 2 snowfall cases on 21 August 2007 (top) and
17 July 2006 (bottom) over 50–60�S. The top case is associated with deep snowing clouds cross a
frontal system and the bottom case is associated with very shallow snowing cloud cells next to
moderate deep snowing clouds
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16.3.1 First Global Snowfall Map

Using CloudSat data over a 2-year period (July 2006 through June 2008), the global
distributions of the frequency of total precipitation (rainfall and snowfall), the
frequency of snowfall, and the averaged snowfall rate (Fig. 16.6) was analyzed. In
generating these maps, it was assumed that the precipitation threshold for CPR is
�15 dBZ and the rain-snow separation scheme of Sims and Liu (2015) was used.
The results show that in the southern hemisphere, there is an almost zonally
orientated high snowfall zone centered around 60�S, where both snowfall frequency
and rate are high. In the northern hemisphere, however, heavy/frequent snowfall
areas are mostly locked to geographical locations associated with storm tracks. The
zonal averages of these quantities are shown in Fig. 16.7 (with snowfall frequencies
shown stacked over rainfall frequencies to display the total precipitation frequen-
cies). In the regions poleward of 60�, the majority of the precipitation is in the form
of snowfall. The still significant values of mean precipitation show the importance of
snowfall in the hydrologic cycle.

Another way to look at the snowfall statistics is to show how the number and
volume (number times rate) fractions are distributed in the whole snowfall rate
spectrum, which is shown in Fig. 16.8. The frequencies are calculated in the

Fig. 16.6 Frequency of total precipitation (rain and snow, left), frequency of snowfall (middle) and
mean snowfall rate (right) for northern (top) and southern (bottom) hemispheres derived from
CloudSat observations from July 2006 to June 2008. The diagrams cover the area from the Poles to
40�N/S. Detailed descriptions of the retrieval method can be found in Liu (2008b)
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logarithm of snowfall rate (i.e., the number and volume fractions are computed
within a ln(S) interval). From this figure, it can be seen that for number frequency
(or areal fraction) the largest contribution is by those snowfall events with lightest
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Fig. 16.7 Zonally averaged frequency of occurrence of rainfall (blue), frequency of snowfall (gray,
stacked above blue) and snowfall rate (red). Derived using CPR �15 dBZ as precipitation
threshold, rain-snow separation scheme of Sims and Liu (2015), and Z-S relation of Liu (2008b)

Fig. 16.8 Number and volume frequency distributions of snowfall rate derived from CloudSat
observations. Note the frequencies are calculated in a snowfall rate interval on logarithm scale
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intensities. For snowfall volume, the greatest contribution comes from those events
with snowfall rate ~0.5 mm h�1. Snowfall events over southern oceans seem to be
somewhat different from those over other regions with a narrower snowfall volume
frequency distribution (also peaked near 0.5 mm h�1).

16.3.2 Snow Cloud Structures

The section focuses on the vertical distribution of snowfall for a given surface
snowfall rate. Observed profiles from July 2006 to June 2007 were divided into
several groups according to their near surface snowfall rate, partitioned between over
ocean and over land. The mean profile was computed for each group. The averaged
snowfall rate profiles are shown in Fig. 16.9. The averaged profiles for over-ocean
and over-land environments are quite similar except that the over-land profiles are
somewhat shallower than over-ocean profiles when surface snowfall rates are low.

Fig. 16.9 Mean profiles for
a given near surface
snowfall rate for (a) over
ocean and (b) over land
environments. CloudSat
observations from July 2006
to June 2007 are used.
(Adapted from Liu 2008b)
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From profiles 1–7, as surface snowfall rate increases, the snow layer grows deeper,
manifesting that heavier snowfall is generally associated with a thicker cloud layer.
However, profiles 8 and 9 do not follow the same trend, indicating that the heaviest
surface snowfalls are produced by rather shallow clouds. The explanation to this
exception of trend is not immediately clear to the author although it is speculated that
the last two groups may correspond to shallow convective clouds associated with
“lake effect” (cold air overpasses warm water surfaces creating strong shallow
convections), which, while shallow, often produce heavy snowfalls. The prevalence
of the two different snow cloud regimes is supported by Fig. 16.10, which shows the
2-dimensional PDFs of CloudSat echoes in a cloud top height (as defined by
Z ¼ �24 dBZ) versus near surface snowfall rate diagram. It is seen that while near
surface snowfall rate increases in response to increasing cloud top heights, there
seem to exist two groups of clouds that have different growth rate, particularly for
those profiles over oceanic environment. When surface snowfall rate increases to
~2 mm h�1, one group has cloud top height around 10 km while the other group has
cloud top height below 3 km. The abundance of shallow snowing clouds has been
reported in detail by Kulie et al. (2016).

Although snowing clouds exist in cold environments, mostly below 0 �C, cloud
liquid water is commonly found in these clouds in abundant amounts. To study the
magnitude and feature of cloud liquid water in snowing clouds, Wang et al. (2013)
retrieved liquid water path from the Advanced Microwave Scanning Radiometer for
Earth Observing System (AMSR-E) observations on the Aqua satellite that are
collocated with CloudSat CPR pixels. Figure 16.11 shows the averaged liquid
water path as a function of near surface radar reflectivity and cloud top height are
shown for different types of clouds. In the cloud classification, the term “isolated” is
for continuous radar returns horizontally shorter than 40 km, otherwise it is called

Fig. 16.10 Relation between near surface snowfall rate and cloud top height as expressed by
snowfall profiles frequency distributions for snowfall events over (a) ocean and (b) land. The
frequency values are normalized so that the maximum frequency is 100. (Adapted from Liu 2008b)
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“extended”. Likewise, the term “shallow” is used for clouds with radar echo top
height lower than 5 km, otherwise it is called “deep”. Except for isolated deep
clouds, in which the number of data samples appears too low to show a clear
distribution pattern, liquid water path seems to show greater values when near

Fig. 16.11 Mean liquid water path as a function of cloud top temperature and near surface radar
reflectivity for different snowing cloud types: (a) Isolated shallow clouds, (b) Isolated deep clouds,
(c) extended shallow clouds, and (d) Extended deep clouds. Coincident CloudSat CPR and Aqua
AMSR-E observations from June 2006 to June 2010 are used. Note that the LWP color scales for
isolated and extended clouds are different. (Adapted from Wang et al. 2013)
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surface radar reflectivity ranges from �10 to 0 dBZ, corresponding to a weak
snowfall of approximately 0.02 to 0.15 mm h�1. Heavy snowfalls are commonly
not accompanied by large values of cloud liquid water. Additionally, the diagram
shows that larger values of liquid water paths often appear at several “favorite” cloud
top temperature ranges, e.g., around 0 �C (extended deep clouds),�10 �C (263 K, all
except for isolated deep clouds), and �19 �C (254 K, isolated shallow clouds). To
the author’s best knowledge, this result does not seem to have an obvious
explanation.

16.4 Guiding Passive Sensors for Snowfall Estimation

As shown in previous sections, the CloudSat CPR measurements provide the first
opportunity to survey the horizontal and vertical snowfall (snowing cloud) structures
in a globally complete manner. The usage of CPR data for snowfall studies can be
two-fold. First, the CPR radar reflectivity can be converted into snowfall rate. The
CPR snowfall retrieval has provided the first global snowfall distribution, although
its representativeness for snowfall climatology is still questionable due to its narrow
spatial sampling (~1.5 km per orbit) and its inability to resolve the diurnal cycle.
Second, by combining CPR with high-frequency passive microwave satellite data,
one can use the CPR snowfall retrievals as truth to “teach” the passive microwave
sensors, which alone have several deficiencies in measuring snowfall such as surface
contamination and cloud liquid water masking of ice scattering signature, so that
snowfall retrievals can be performed in much greater spatial coverage and temporal
frequency. Currently, there are multiple polar-orbiting satellites in operation that
carry high-frequency (>85 GHz) passive microwave sensors; the swath width of
these measurements is generally over one thousand kilometers. Given the fact that
CPR only observes a 1.5 km width swath along the orbit, the second usage is
unarguably important for deriving global snowfall climatologies.

Following the above strategy, Liu and Seo (2013) studied the possibility of using
CloudSat to train high-frequency microwave observations of Microwave Humidity
Sounder (MHS) over land for snowfall retrievals. Their results indicate that while it
is difficult to isolate snowfall signatures at any single channel, the collective
variation of brightness temperatures do contain signatures of snow precipitation.
Accordingly, they extracted the primary information from brightness temperatures
by using the 3 leading principle components derived by Empirical Orthogonal
Function analysis, and developed a lookup table of snowfall probability and snow-
fall rate in the 3-dimensional principle component space based on coincident radar
and radiometer observations. A similar approach has also been used by Kongoli et al.
(2015) for Advanced Technology Microwave Sounder (ATMS) observations. This
method recently advanced to train GPM Microwave Imager (GMI) observations
using combined CloudSat CPR and GPM/DPR data to minimize the impact due to
attenuation in CPR data (see Fig. 16.12).

290 G. Liu



Using this radar-guided method, the mean global snowfall maps based on mul-
tiple years of CloudSat, GMI and MHS data are derived and shown in Fig. 16.12. In
developing these mean snowfall maps, the GMI algorithm is trained by both
CloudSat CPR and GPM DPR, while the MHS algorithm is trained by CloudSat
CPR alone since there are very few coincident CloudSat CPR, GPM DPR and MHS
observations. First, the patterns of the 3 maps are very consistent, which confirms
that the active sensor trained passive microwave snowfall algorithms have captured
the primary signature of snowfall and produced reasonable snowfall rate estimates.
However, the estimates by GMI, which is trained by combined CloudSat CPR and
GPM DPR, are clearly higher than the other 2 estimates, which relied on CloudSat
radar alone. Recalling earlier discussions related to Fig. 16.3 that CloudSat under-
estimates snowfall rate for heavy snowfall cases, it can be argued that the GMI
retrievals are more accurate. Although the accuracy of these snowfall algorithms
needs further investigation, their ability to capture the primary pattern of global
snowfall distribution offers a solid promise of this strategy.

Fig. 16.12 Mean snowfall rate maps derived from multiple years of CloudSat (2007–2010), GMI
(March 2014–Feb 2018), and MHS (2007–2010). GMI algorithm is trained by combined CloudSat
and DPR radar data. No observations in blank areas. MHS algorithm is trained by CloudSat CPR
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16.5 Concluding Remarks

This article briefly summarized the theory and techniques used to derive snowfall
from spaceborne radars. In particular, it discussed how to retrieve snowfall rate and
global snowfall distributions from CloudSat observations. Compared to rainfall
estimations, radar snowfall measurements face at least two extra challenges: the
weak scattering intensity due to the low density of snow, and the uncertainty of
scattering magnitude due to the nonsphericity of snow particles. The first challenge
can be addressed by developing high sensitivity radars, such as CloudSat CPR
(Stephens et al. 2002) and future EarthCare cloud profiling radar (EC-CPR,
Kobayashi et al. 2002) both with a minimum detectability better than �26 dBZ.
CloudSat opened the door for measuring snowfall globally and the “first look” of
global snowfall has since been developed. To overcome the second challenge, a
collective effort is required from a community consisting of scientists specializing in
in situ microphysical measurement, electromagnetic wave scattering theory, and
radar meteorology. Recently, a group of scientists (Kneifel et al. 2018) took this
initiative and started to assemble existing nonspherical particles’ scattering data-
bases (see Chap. 15). It is hoped that this community effort will bear fruits in tackling
the second challenge in coming years. As in radar rainfall estimations, particle size
distributions are also a large factor of uncertainty for radar snowfall retrievals.
Further technology development, such as dual-frequency radars and/or Doppler
measurements are certainly helpful in alleviating this problem.

Combining active and passive sensors has shown great potentials for understand-
ing microphysical processes of snowing clouds and advancing satellite snowfall
remote sensing. Today, satellite radar observations have better sensitivity to snowfall
while microwave radiometers have better spatial and temporal coverages. By skill-
fully combing the two, we can greatly increase the utility of satellite remote sensing
in snowfall measurements. In this article, we only demonstrated some preliminary
examples of this combination, i.e., understanding the abundance of supercooled
cloud water in snowing clouds and training high-frequency microwave observations
for snowfall retrievals. Other problems can also be investigated following this
approach. For example, cloud ice is an important, yet poorly observed variable in
determining global energy balance. CloudSat CPR can retrieve cloud ice water
contents (Deng et al. 2010; Delanoë and Hogan 2010), but with narrow sampling
coverage. In particular, its observations miss the diurnal cycle of cloud ice, which is
extremely important for understanding cloud ice’s radiative effect. If the diurnal
cycle information can be provided by currently operational high-frequency passive
microwave observations, this uncertainty can be significantly reduced.
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Chapter 17
A 1DVAR-Based Snowfall Rate Algorithm
for Passive Microwave Radiometers

Huan Meng, Cezar Kongoli, and Ralph R. Ferraro

Abstract This chapter introduces an overland snowfall rate algorithm for passive
microwave radiometers. It relies on an embedded algorithm to detect the presence of
snowfall. The retrieval of cloud properties is the foundation of the snowfall rate
algorithm and is accomplished with a one-dimensional variational (1DVAR) model.
The snowfall rate derived with the physical algorithm is further adjusted based on
calibration against a ground radar and gauge combined precipitation product. Both
the snowfall detection and the snowfall rate algorithms have been validated respec-
tively against ground observations and radar and gauge combined analyses from the
contiguous United States with satisfactory results. Specifically, the correlation
coefficient of the validation data with the radar analyses reaches 0.50. Currently,
the snowfall rate product is operationally generated at near real-time at the US
National Oceanic and Atmospheric Administration.

Keywords Snow · Ice · Snowfall detection · Snowfall rate · NOAA · Logistic
regression · 1DVAR · Microwave humidity sounders · Brightness temperature ·
MRMS · GFS · Radiative transfer model · Particle distribution function · Ice water
content.

17.1 Introduction

Satellite remote sensing of snowfall is challenging due to the complexity of atmo-
spheric processes involved and the lack of both the understanding about these
processes and the information on the forcing variables. It is more difficult to estimate
snowfall rate than rainfall rate because more information, such as ice particle shape
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and density, is required for developing physically based snowfall rate algorithm that
is generally unavailable. Consequently, snowfall retrieval algorithms have lagged
significantly behind the development of satellite rain rate algorithms (Ferraro et al.
2005; Kummerow et al. 2011). However, snowfall retrieval from passive microwave
(PMW) instruments has been gaining momentum in recent years. The observations
from PMW are uniquely suitable for snowfall detection and retrieval. PMW has the
ability to penetrate clouds, hence directly bearing the signature of snow particles.
High frequencies, such as window channels around 160 GHz and water vapor
sounding channels around 183 GHz, are particularly sensitive to the radiance
depressing effect of ice scattering (Bennartz and Bauer 2003). Some snowfall rate
algorithms have been developed utilizing this property (Noh et al. 2006; Kim et al.
2008; Liu and Seo 2013; Skofronick-Jackson et al. 2013; Kummerow et al. 2015;
Kidd et al. 2016; You et al. 2017; Meng et al. 2017; Kongoli et al. 2015, 2018). It is
noted that many microwave algorithms that retrieve precipitation (rainfall or snow-
fall) rely on the sensing of ice signatures.

The algorithm introduced in this chapter retrieves snowfall rate over land
(hereafter denoted as SFR). It consists of two components: snowfall detection
(SD) and snowfall rate estimation. The former is a statistical algorithm whiles
the latter employs a 1DVAR-based approach to retrieve snowfall rate. Owing to its
physically-based framework, the SFR algorithm can cover a wide range of snowfall
conditions. Currently, the SFR product is operationally produced at near real-time at
the US National Oceanic and Atmospheric Administration (NOAA).

17.2 Data and Models

17.2.1 Instruments and Data

The SFR algorithm utilizes measurements from two sets of PMW instruments:
Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity
Sounder (MHS) pair, and the Advanced Technology Microwave Sounder
(ATMS). AMSU-A and MHS are aboard four POES and Metop satellites, and
ATMS is aboard S-NPP and NOAA-20 satellites. These are cross-track scanning,
PMW sounders with channels ranging from 23.8 GHz to 190.31 (MHS)/183.31
(ATMS) GHz, i.e. a combination of window, temperature sounding and water vapor
sounding frequencies. The sensors have variable footprint sizes depending on
frequency and scan position. The nadir resolution is about 16 km for high frequen-
cies which is the resolution of the SFR product.

Some Numerical Weather Prediction (NWP) model data are also employed
where required environmental state observations are not available. The model data
employed are from the Global Forecast System (GFS) produced at NOAA National
Centers for Environmental Prediction (NCEP). The forecast data satisfy the latency
requirement of the SFR production at near real-time.
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The SD algorithm was trained with in-situ weather observations. The ground data
were obtained from the Quality Controlled Local Climatology Data (QCLCD)
product. This dataset is generated from surface meteorological observations from
approximately 1600 U.S locations. The data undergo interactive and manual quality
control at NOAA National Centers for Environmental Information (NCEI) in addi-
tion to automated quality control. It provides direct measurement of present weather
including snowfall occurrence and other related variables at hourly intervals, making
it a valuable independent ground truth reference for satellite snowfall identification
studies.

The SFR algorithm was calibrated against the NCEP Stage IV precipitation
analysis. This dataset takes the Multi-Radar Multi-Sensor (MRMS) precipitation
data (Zhang et al. 2016) as input. It further incorporates gauge, model, and satellite
data, and applies human quality controls. The hourly Stage IV data has a 4 km
resolution over the contiguous United States (CONUS). It is a high-quality standard
radar-based precipitation analyses used by the US National Weather Service.

17.2.2 Logistic Regression

The SD algorithm applies a Logistic Regression (LR) technique to derive the
probability of snowfall (POS). LR estimates the probability of a binary outcome Y
as an exponential continuous function of a set of predictor variables:

P ¼ exp β0 þ β1X1 þ β2X2 þ . . .þ βnXnð Þ
1þ exp β0 þ β1X1 þ β2X2 þ . . .þ βnXnð Þ ð17:1Þ

where P is the probability of success of the binary variable Y; X is the vector of
independent variables; and β is the vector of regression coefficients. The logarithm
of the probability of Y, called the logit, can be expressed as linear combination of
independent variables as in multiple regression:

Logit Pð Þ ¼ Ln
P

1� P

� �
¼ β0 þ β1X1 þ β2X2 þ . . .þ βnXn ð17:2Þ

The inverse of the logit function is called the logistic function:

P ¼ exp Bð Þ
1þ exp Bð Þ ð17:3Þ

where B is the logit function or the multiple linear regression term in Eq. (17.2). The
fitting procedure consists in iteratively finding the set of regression coefficients using
maximum likelihood estimation of the joint distribution of the response Y:
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g y1, y2, . . . , ynð Þ ¼
Yn
i¼1

Pyi
i 1� pið Þyi ð17:4Þ

where yi is an individual measured value of Y, and pi is the probability that yi takes
on a certain value. Note that pi is computed using Eq. (17.1). This differs from
ordinary least squares regression where a unique analytic solution can be found in
closed form.

17.2.3 Radiative Transfer Model and 1DVAR

A 1DVAR approach (Yan et al. 2008) is used in the SFR algorithm to retrieve cloud
properties. The model retrieves ice cloud properties and snow emissivity at five
microwave window and water vapor sounding channels: 23.8, 31.4, 89.0/88.2,
157.0/165.5, and 190.31/183.31 � 7 GHz, respectively for AMSU-A and
MHS/ATMS. The inversion method involves a set of iterations where brightness
temperatures (Tbs) at the five frequencies are simulated using an RTM (Weng et al.
2001) at each iteration with given atmospheric and surface parameters (i.e., control
vector). The differences between simulated and observed Tbs (ΔTbs) are compared
to preset thresholds. The iteration will terminate if the ΔTbs fall below the thresh-
olds, i.e. the retrieval converges. Otherwise, the elements of the control vector are
adjusted and iteration will continue until it reaches the maximum allowed number of
iterations, indicating that the retrieval is nonconvergent. The threshold for the first
four frequencies is 1.5 K and for 190.31/183.31 � 7 GHz is 3 K. The atmospheric
and surface parameters from a successful run become the retrieved properties using
the inversion method. The parameters include land surface emissivity at the five
frequencies, total precipitable water (TPW), ice water path (Iw), effective size of ice
particles (De), surface temperature (Ts), and cloud temperature (Tc).

The RTM utilized in this 1DVAR algorithm is a two-stream, one-layer model
(Weng et al. 2001). The simulation error caused by the simplifications is mitigated
by a correcting procedure developed by Weng and Grody (2000). Simulated Tbs are
corrected with a set of empirical equations that were derived from a data set of Tb

observations and the corresponding uncorrected simulations. According to Yan et al.
(2008), the standard deviations of the corrected Tbs at frequencies 23.8, 31.4, 89, and
150 GHz are 0.21, 0.33, 0.72, and 0.68 K, respectively. Additional study shows that
the standard deviation for 190.31 GHz and 183 � 7 GHz are 4.06 and 2.62 K,
respectively.

This 1DVAR model was adopted for the SFR algorithm for a few reasons. While
a simple assumption of one-layer atmosphere is made in the RTM, it allows the
model parameters, such as Iw, to be expressed in analytic forms and provides one
with both qualitative and quantitative understanding of the connection among model
parameters. The two-stream formula makes computation effective so retrieval can be
completed quickly even with full-orbit data. Computation efficiency and product
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latency can be important factors for operational applications such as weather fore-
casting. Lastly, the 1DVAR model was developed for retrieving snow emissivity. Its
parameterization, such as bias correction and emissivity initialization, is consistent
with emissivity properties of cold conditions. The close connection between snow
emissivity and snowfall makes the 1DVAR an appropriate model to use in a snowfall
rate algorithm.

17.2.4 Ice Particle Terminal Velocity

An important component of the SFR algorithm is the ice particle terminal velocity.
Heymsfield and Westbrook (2010) modified Mitchell’s (1996) formula for ice
particle fall speed and developed a new equation:

V Dð Þ ¼ ηδ20
4ρaD

1þ 4
ffiffiffiffi
Χ

p

δ20
ffiffiffiffiffiffi
C0

p
� �1=2

� 1

" #2

ð17:5Þ

where V is the ice particle terminal velocity, D the maximum dimension of the
ice particle, η the dynamic viscosity of air, ρa the air density, δ0 and C0 the fitting
parameters (δ0 ¼ 8.0 and C0 ¼ 0.35), and the modified Best number X is defined as

X ¼ 8mgρa
πη2

ffiffiffiffiffi
Ar

p ð17:6Þ

wherem is the mass,m¼ πD3ρI/6 for spherical particles, ρI the density of ice particle
and assumed to be 0.6 g cm�3, g the gravitational constant, Ar the ice particle area
ratio (the area of the particle projected normal to the flow divided by the area of a
circumscribing disc) and is 1 for spherical particle. Heymsfield and Westbrook
(2010) computed terminal velocities of ice particles of various shapes using this
approach and compared them with measurements. Their results show that the
predicted and measured particle fall velocities agree well for all particle shapes
examined. This conclusion is the basis for selecting the Heymsfield and Westbrook
(2010) model to compute ice particle terminal velocity in the SFR algorithm.

17.3 Snowfall Detection

Snowfall detection is an integral part of the snowfall rate retrieval. Only when
snowfall is detected will the SFR algorithm be applied to retrieve snowfall rate.
The QCLCD hourly data from two winter seasons between 2012 and 2014 were
taken as ground truth to train the SD algorithm. The ‘present weather’ reported by
QCLCD contains information on the type of precipitation, which was used for
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classification of cases into falling snow or no-precipitation. When constructing
the training dataset, the maximum time offset between the satellite and station-
collocated pairs was set at 30 min with station time following satellite time. The
maximum separation distance between satellite footprint centroid and station loca-
tion was set at 25 km. Only the closest station within the 25 km distance from the
satellite footprint centroid was matched.

The SD model is a hybrid algorithm that combines the output from a statistical
model utilizing satellite passive microwave measurements with the output from a
statistical model using meteorological variable forecasts from GFS. Both models
were trained with the QCLCD in-situ data (Kongoli et al. 2018). Each module of the
combined algorithm is described below.

17.3.1 Satellite Module

The satellite SD module computes POS using the LR technique and the principal
components (PCs) of the five/seven high-frequency Tbs at 89.0/88.2 GHz and above
for MHS/ATMS, respectively (Kongoli et al. 2015). PCs, instead of Tbs, are utilized
as LR model predictors because the high frequency measurements are highly
correlated with each other which can cause instability in the regression coefficients.
Another predictor variable is the satellite local zenith angle (LZA) to account for the
scan angle effect in satellite observations. The limb-corrected oxygen absorption
channel at 53.6 GHz, Tb53L, (AMSU-A channel 5 and ATMS channel 6) is utilized
as an atmospheric temperature proxy to define two retrieval regimes: cold and warm.
To optimize retrievals, the PC weights and logistic regression coefficients are trained
with in-situ station observations of snowfall and no-snowfall occurrence and
pre-computed separately for the warmer (Tb53L between 244 and 252 K) and colder
(Tb53L between 240 and 244 K) weather regimes. This approach is a major advance-
ment compared to the previous version of Kongoli et al. (2003) in that it allows
snowfall retrievals in much colder environments, down to near surface temperatures
of about �15 �C. In addition, the statistical probabilistic approach is a more robust
method than the previous decision tree approach.

17.3.2 Weather Module

A similar probabilistic LR approach was adopted for snowfall detection using GFS
meteorological variable forecasts as predictors. Experience with satellite PMW
instruments and theoretical investigations (e.g., Munchak and Skofronick-Jackson
2013) indicate that the detectability of precipitation over snow cover surfaces
deteriorates significantly compared to bare land. In addition, snowfall analysis and
estimation from physical parameters would be desirable in and of itself, for provid-
ing alternative retrieval strategies and insights into the relative importance of these
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parameters in snowfall processes. You et al. (2017) explored the influence of several
environmental parameters on both rain and snowfall estimations and found that
relative humidity and vertical velocity are related to the occurrence of snowfall,
more so than that of rainfall. On the other hand, experience with the AMSU-A/MHS
and ATMS satellite algorithms have shown that cloud thickness computed from
forecast data is an efficient filter in reducing false alarms (Meng et al. 2017).
Therefore, to develop the algorithm, the forecast variables considered include
relative humidity at 2-m, 1-km, 2-km and 3-km height, cloud thickness, and vertical
velocity at 2-km and 3-km height.

17.3.3 Hybrid Algorithm

The rationale for the hybrid algorithm (Kongoli et al. 2018) is to compute an output
as a weighted average of outputs from the satellite and the weather-based SD
algorithms:

Phyb ¼ Wsat � Psat þWwea � Pwea ð17:7Þ

where P refers to POS, W refers to weight, and hyb, sat and wea refer to the hybrid,
satellite and theweather-basedSDalgorithms, respectively.Note thatWsat +Wwea¼1.
Equation (17.7) may therefore be written as:

Phyb ¼ Wsat � Psat þ 1�Wsatð Þ � Pwea ð17:8Þ

where Wsat is between 0 and 1. Presented with a set of brightness temperatures and
ancillary data, POS for the satellite and the weather models are computed. The POS
for the hybrid algorithm is derived based on Eq. (17.8) for a specific weighting
parameter Wsat. Next, the resulting probability value (Phyb) is assigned to “snowfall”
if it is greater than an a priori threshold probability.

17.3.4 SD Filters

Rainfall and snow cover can exhibit similar characteristics as snowfall in PMW
measurements. Consequently, they can contaminate the outcome of the statistical SD
model. In addition, the SD algorithm does not exclude rainfall in its detection so
temperature-based screening is necessary to filter out rainfall. These considerations
led to the development of a set of filters to further screen the snowfall identified by
the SD model. Most filters use atmospheric and surface information from the GFS
forecasts. The meteorological variables considered include 2-m temperature, maxi-
mum atmospheric temperature, 2-m relative humidity, Tb53L, and cloud thickness
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(CT). For instance, one of the filters checks 2 m temperatures at the two consecutive
GFS forecast times that encompass the satellite passing time. If both temperatures
are above 1 �C, it indicates a persistently warm environment at the surface that
generally cannot sustain snowfall (Meng et al. 2017). Another filter requires surface
relative humidity to be above 60% because analysis has shown that this condition is
almost always met during snowfall (Kongoli et al. 2015). The most important filter is
a check on CT. It requires CT to be at least 1500 m. While this requirement is likely
to remove shallow snowfall such as lake effect snow, it will not significantly lower
the Probability of Detection (POD). This is because the SFR algorithm is not
sensitive to very shallow snowfall due to the weak effect from the latter on PMW
measurements. The exertion of a CT threshold eliminates most of the confusions
between true snowfall and snow cover on the surface. Our analysis has shown that
this is a very effective filter that can significantly reduce false snowfall detection
(Meng et al. 2017).

17.4 Snowfall Rate

The SFR algorithm (Meng et al. 2017) is composed of three main elements:
(i) retrieval of cloud properties from a 1DVAR, (ii) derivation of initial SFR,
i.e. SFRi, and (iii) SFRi calibration to obtain the final SFR product. This section
details the theoretical basis of the algorithm and the calibration approach.

17.4.1 Methodology

The Particle Distribution Function (PDF) of ice particles adopts the modified gamma
distribution from Yan et al. (2008) and Weng et al. (2001):

N Dð Þ ¼ N0Dν�1e�D=Dm

Γ νð ÞDν
m

ð17:9Þ

where D is the diameter of the ice particle (assuming spherical habit), Dm the
nominal diameter of the particle, N0 the intercept parameter, ν the shape parameter
for the gamma distribution, and Γ the gamma function. Furthermore,

Dm ¼ De
Γ νð Þ

Γ ν� 1ð Þ ð17:10Þ

and
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N0 ¼ 6IwΓ3 νþ 1ð Þ
πρID3

eΓ νþ 3ð ÞΓ2 νð Þ ð17:11Þ

where De is the effective diameter of the ice particles and Iw ice water path. If the
shape parameter is assumed to be 1, the PDF in Eq. (17.9) reduces to an exponential
distribution:

N Dð Þ ¼ Iwe�D=De

πρID4
e

ð17:12Þ

Assuming the number of ice particles follows the above exponential distribution,
the water equivalent snowfall rate, SFRi, can be expressed as (Meng et al. 2017):

SFRi ¼
Z 1

0

πρID
3N Dð ÞV Dð Þ
6ρw

dD ð17:13Þ

or

SFRi ¼ Iw
6ρwD

4
e

Z 1

0
D3e�

D
DeV Dð ÞdD ð17:14Þ

where ρw is the density of water.
An implicit assumption is made in the above equation, i.e. ice water content

(IWC) is uniformly distributed in the cloud column. It is consistent with the
one-layer RTM (Yan et al. 2008). However, this assumption is not a true represen-
tation of cloud physics. In snowing clouds, ice crystals grow in mass as they fall in
the cloud through two mechanisms: i) Bergeron process, i.e. supersaturated water
vapor deposition, and ii) accretion (riming), i.e. freezing of super cooled liquid
droplets onto the surface of ice crystals. These processes generally lead to higher
IWC at the lower portion of the cloud than in the upper portion. Figure 17.1 presents
ten randomly selected, normalized IWC estimate profiles retrieved from CloudSat
(Stephens et al. 2002). In general, these profiles show an increasing trend from cloud
top to cloud base, and supports the notion that IWC is not uniformly distributed in
most clouds. As a first step to mitigate the bias caused by the simple assumption
about IWC, it is assumed that IWC has a linearly distribution through the cloud
column. This effectively doubles the SFRi in Eq. (17.14) at cloud base through
simple trigonometric calculation.

By adopting Heymsfield and Westbrook’s (2010) model (Eqs. 17.5 and 17.6) and
assuming spherical ice habit, SFRi can then be expressed as:

SFRi ¼ Iwηδ
2
0

12ρwρaD
4
e

Z 1

0
D2e�

D
De 1þ 8D3=2

ηδ20

ffiffiffiffiffiffiffiffiffiffiffi
gρIρa
3C0

r� �1=2

� 1

" #2

dD ð17:15Þ
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The above equation does not have an analytical solution. It is solved numerically
using Romberg’s method.

17.4.2 Calibration

Since the IWC profile is not known from the PMWmeasurements or the GFS model,
SFRi was calibrated against Stage IV precipitation analysis to improve retrieval
accuracy. SFRi data was collocated with Stage IV data from large snowstorms in the
two winter seasons between 2015 and 2017. The spatial collocation was performed
by convoluting higher resolution Stage IV data to lower resolution satellite Field-of-
View (FOV). The SFRi estimates were matched with Stage IV analyses within 1 h of
the satellite overpass. The snowfall detected by the SD algorithm was utilized to
identify snowfall pixels for Stage IV since the latter does not include precipitation
phase.

The calibration adopts the histogram matching technique described in Kidder and
Jones (2007). This approach matches the cumulative probability distribution func-
tions (CDF) of two products (SFRi and Stage IV in this case) through lease square
method to achieve optimal overall agreement. The equation for estimating S-NPP
ATMS SFR is:
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Fig. 17.1 CloudSat derived
ice water content (IWC)
profiles. The values have
been normalized
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SFR ¼ 1:5813 SFRi � 0:2236 SFR2
i þ 0:0216 SFR3

i ð17:16Þ

Table 17.1 compares the S-NPP SFR statistics against Stage IV from before and
after calibration. It shows that the calibration significantly reduces the bias in the
initial SFR retrievals while largely maintaining the root mean square error (RMSE)
and correlation with Stage IV. It is noted that, with the simple assumption of linear
IWC distribution, the 1DVAR-based SFR retrieval has already achieved a correla-
tion coefficient of 0.52 with Stage IV. It demonstrates the merit of this physical
algorithm.

Figures 17.2 and 17.3 respectively present the scatter plots and the probability
density functions (PDFs) for the same datasets as for Table 17.1. The underestima-
tion in SFRi below 1 mm h�1 is mitigated to a certain degree. So is the
overestimation above about 3.5 mm h�1 (Fig. 17.2). The two PDFs also reach
much better agreement through the calibration (Fig. 17.3). A low limit of
0.05 mm h�1 is set in the SFR product because false alarm rate (FAR) increases
drastically for very light snowfall. This low limit results in the slight dip at the low
end of the SFR PDF (Fig. 17.3).

Table 17.1 S-NPP SFR metrics before and after calibration

Before
calibration

After
calibration

Correlation
coefficient

Bias
(mm h�1)

RMS
(mm h�1)

Correlation
coefficient

Bias
(mm/hr)

RMS
(mm h�1)

0.52 �0.15 0.63 0.51 �0.02 0.64

Fig. 17.2 Stage IV vs. S-NPP SFR scatter plot from (a) before calibration, and (b) after calibration
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17.5 Validation

Separate validation studies were conducted to verify the performance of the SD and
the SFR algorithms, respectively, since they are independent of each other.

17.5.1 SD Validation

The QCLCD in-situ hourly ground data were employed for SD algorithm validation.
Periods during the three winter seasons between 2014 and 2017 were selected to
sample snowfall events over CONUS. The satellite, weather-based and hybrid SD
outputs at the satellite FOV scale were matched with in-situ data following the same
spatio-temporal collocation criteria as for constructing the SD training data.

Table 17.2 presents the statistical results of the S-NPP ATMS satellite and the
hybrid algorithm, the latter using a weighting coefficient f equal to 0.5, i.e., when
GFS-based and satellite outputs have the same uncertainty information. Compared to
the satellite-only algorithm, the hybrid algorithm has substantially improved POD,
FAR and the Heidke Skill Score (HSS). It is important to emphasize that the
statistical results reported here are computed from comparisons with in-situ mea-
surements where light snowfall cases (reported as “trace” or with zero surface
accumulation) were dominant. Generally, light snowfall is much more difficult to
detect than heavier snowfall due to its weak impact on satellite measurements.

Figure 17.4 demonstrates the improvement of the hybrid model for a major
snowfall event hitting the Northeast US on 5 February 2014. As shown in
Fig. 17.4, a considerable snowfall area of this significant event was missed by the
satellite algorithm but captured by the hybrid algorithm.

Fig. 17.3 PDFs of S-NPP SFR and Stage IV (a) before, and (b) after calibration
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17.5.2 SFR Validation

The SFR algorithm was validated against the Stage IV analyses from October 2016
to April 2017. SFR was retrieved using the abovementioned algorithm (Eqs. 17.15
and 17.16) for all snowfall FOVs over CONUS from this period. The data set was
collocated with Stage IV data via convolution over sensor footprints. Table 17.3 lists
the statistics of the S-NPP SFR validation data. The correlation and bias are
comparable to those of the calibration data. The RMSE is somewhat higher. The
scatter plot and PDF of the validation data are displayed in Fig. 17.5. As expected
from the RMSE, data can be observed to scatter more than the calibration data. It is
noted that, unlike the calibration dataset which is composed of data from large
snowstorm systems, the validation data include all SFR retrievals that could be
collocated with Stage IV from winter 2017. The fact that the validation data still

Fig. 17.4 S-NPP ATMS SFR using (a) satellite-only SD algorithm, and (b) hybrid SD algorithm
during a major snowfall event on 5 February 2014 in the US Image (c) is the near coincident radar
reflectivity which covers both snowfall and rainfall (in the southern part of CONUS). The noted
oval areas in (a) and (b) show legitimate snowfall that was missed by the satellite-only algorithm but
captured by the hybrid algorithm

Table 17.2 S-NPP SD
Metrics from satellite-only
and hybrid algorithms

Model POD FAR HSS

Satellite 0.41 0.18 0.23

Hybrid 0.52 0.11 0.44
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perform reasonably well demonstrates the strength of the SFR algorithm for both
large-scale and localized snowfall.

As part of the validation study, the 3-month average S-NPP SFR from January ~
March 2017 was calculated and compared to the corresponding Stage IV average
from the same period (Fig. 17.6). The SD detected snowfall was again used to
determine snowfall for Stage IV. Stage IV does not cover most of the western US
due to poor radar coverage in this region. This reveals one of the advantages of
satellite snowfall rate product like SFR, i.e. satellite product can fill in radar gaps.
The overall intensity patterns between the two images in Fig. 17.6 are rather similar,
i.e. heavier snowfall in the Northeast of US, around the Great Lakes, and along the
Rocky Mountains; and lighter snowfall in between. It is stressed that the 3-month
snowfall average is based on the snowfall detected by the SFR algorithm. The
current algorithm has low detection rate for shallow snowfall such as lake effect

Fig. 17.5 (a) Scatter plot of Stage IV vs. collocated S-NPP SFR validation data, and (b) PDFs of
the same data sets

Fig. 17.6 Comparison of (a) S-NPP SFR 3-month average from January - March 2017 and (b) the
corresponding Stage IV data

Table 17.3 S-NPP SFR
validation metrics

Correlation Coefficient Bias (mm/h) RMS (mm/h)

0.50 0.06 0.74
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snow and shallow orographic snow. It is most likely that the snowfall represented in
Fig. 17.6 only includes a portion of such shallow snowfall. The statistics of the
3-month SFR average against the Stage IV data are given in Table 17.4. As expected,
the metrics of the seasonal average are superior to the validation and even the
calibration data.

17.6 Summary and Conclusions

An overland SFR algorithm has been developed for PMW radiometers (the AMSU-
A/MHS pair aboard the NOAA POES and EUMETSAT Metop satellites, and
ATMS aboard the S-NPP and NOAA-20 satellites). The algorithm relies on an
embedded SD model to detect snowfall. Only when snowfall is detected will the
SFR algorithm be applied to retrieve snowfall rate.

The SD model is a hybrid algorithm that combines the output from a satellite-
based statistical model and the output from a GFS model-based statistical model.
Both statistical algorithms were trained with QCLCD in-situ observations of snow-
fall and no-snowfall. The satellite model couples the PCs of PMW measurements at
high frequencies with LR to produce the satellite-based POS. The other statistical
model takes a set of meteorological variables from GFS forecast as predictors and
produces the weather-based POS with a LR model. The final POS is a weighted
average of the above two probabilities and is assigned to “snowfall” if it is greater
than an a priori threshold. The SD algorithm is further enhanced with a set of mostly
NWP model-based filters. These filters, especially the cloud thickness threshold, are
effective at removing false alarms in the SD model output.

The SFR algorithm is a physically-based model and is composed of three main
elements: retrieving cloud properties, estimating initial SFR, i.e. SFRi, and deter-
mining the final SFR with an adjustment. Cloud properties, Iw and De, are retrieved
using a 1DVAR approach that uses a two-stream RTM as the forward model to
simulate Tbs at five window and water vapor sounding channels. An existing model
is adopted to calculate ice particle terminal velocity. The retrieved cloud properties
are used in the computation of the terminal velocity and IWC, and eventually SFRi.
Finally, SFR is determined by adjusting SFRi with a cubic regression function. The
adjustment function was derived from matching SFRi histogram with that of the
Stage IV precipitation data. The effect of the adjustment is to reduce the overall bias
in SFRi that is conceivably due to the uncertainty associated with the assumption
about IWC linear distribution. The adjustment has little impact on the RMS and the
correlation of SFRi with Stage IV analyses.

Table 17.4 Metrics of S-NPP SFR 3-month (Jan–Mar 2017) average

Correlation Coefficient Bias (mm/h) RMS (mm/h)

0.65 0.00 0.02

17 A 1DVAR-Based Snowfall Rate Algorithm for Passive Microwave Radiometers 311



The SD algorithm was validated against hourly in-situ ground data. Compared to
the satellite-only model, the hybrid SD algorithm exhibits much improved perfor-
mance in terms of POD, FAR, and HSS. For instance, the former has an HSS of 0.23
while the latter 0.44. The SFR product was validated using the Stage IV precipitation
analyses. Both point and seasonal (January – March 2017) average SFR were
compared to the corresponding Stage IV data. While the calibration dataset is
composed of data from large snowstorm systems from winters 2015 and 2016, the
validation data include all SFR retrievals that could be collocated with Stage IV from
winter 2017. The validation data still perform well with correlation and bias com-
parable to the calibration data while have somewhat higher RMS. The results
demonstrate the strength of the SFR algorithm for both large-scale and localized
snowfall.
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Chapter 18
X-Band Synthetic Aperture Radar Methods

Saverio Mori, Frank S. Marzano, and Nazzareno Pierdicca

Abstract Spaceborne Synthetic Aperture Radars (SARs), operating at L-band and
above, offer microwave observations of the Earth at very high spatial resolution in
almost all-weather conditions. Nevertheless, precipitating clouds can significantly
affect the signal backscattered from the ground surface in both amplitude and phase,
especially at X band and beyond. This evidence has been assessed by numerous
recent efforts analyzing data collected by COSMO-SkyMed (CSK) and TerraSAR-X
(TSX) missions at X band. This sensitivity can be exploited to detect and quantify
precipitations from SARs at the spatial resolution of a few hundred meters, a very
appealing feature considering the current resolution of precipitation products from
space. Forward models of SAR response in the presence of precipitation have been
developed for analyzing SAR signature sensitivity and developing rainfall retrieval
algorithms. Precipitation retrieval algorithms from SARs have also been proposed
on a semi-empirical basis. This chapter will review experimental evidences, model-
ling approaches, retrieval methods and recent applications of X-band SAR data to
rainfall estimation.

Keywords Synthetic aperture radar · High resolution · Clouds · Rainfall ·
Precipitation · Raindrops · Snowflakes · Reflectivity · Normalized radar cross
section · Particle size distribution · Polarization · Regressive empirical algorithm ·
Probability matching algorithm · COSMO-SkyMed · TerraSAR-X

18.1 Introduction

The importance of monitoring global precipitations and their associated extreme
events, such as floods, landslides, hurricanes, and droughts, is crucial for the
management of daily life and environmental crises (Skofronick-Jackson et al.
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2017). Global-scale precipitation measurements are essential for the development
and validation of both weather and climate models (Ebert et al. 2007). Cloud-
resolving models require global, kilometer-scale observations to provide diagnoses
of their performance and to develop adequate data assimilation procedures (e.g.,
Masunaga et al. 2008).

Since the 1980s much of our understanding of global precipitation has been
provided by spaceborne passive microwave radiometers (e.g., Kummerow et al.
1998; Marzano et al. 2002; Skofronick-Jackson et al. 2017). Precipitation retrievals
from microwave radiometer data over land is affected by a low spatial resolution,
typically larger than tens of kilometers. Spaceborned infrared radiometers can offer
an adequate resolution of few kilometers, but they are nearly saturated by the
presence of precipitating clouds within the observed scene. Space-based weather
radars, operating at Ku band (i.e., about 2-cm wavelength) and beyond, have
represented a key advance in satellite precipitation monitoring. The Ku-band Pre-
cipitation Radar (PR) aboard the Tropical Rainfall Measurement Mission (TRMM)
satellite has provided unprecedented and unique precipitation measurements over
land, even though limited by a swath smaller than microwave radiometers
(Kummerow et al. 1998). The development and launch of the Global Precipitation
Measurement (GPM) mission has further advanced spaceborne radar technology by
means of the Dual-Frequency Precipitation Radar (DPR) at Ku and Ka band (Hou
et al. 2014). However, if significant shallow precipitation or rain cells smaller than
few kilometers occur over land, then both PR and DPR may miss or underestimate
the intensity of such precipitation fields (e.g., Marzano et al. 2011; Durden et al.
1998).

The high spatial resolution of Synthetic Aperture Radars (SARs) at X band (i.e.,
about 3 cm wavelength) and beyond can provide new insights into the structure of
precipitating clouds and permit the observation of small precipitation cells at micro-
alpha scale (between 0.2 and 2 km). Indeed, the nominal spatial resolution of SAR is
of the order of meters, but it is degraded to hundreds of meters by the turbulent
motion of the hydrometeors due the random broadening of the Doppler-frequency
spectra with respect to fixed-target surface imaging (Atlas and Moore 1987).
Spaceborne SARs at C-band and L-band (i.e., about 5 and 21 cm wavelengths,
respectively) have a long heritage for Earth observation, but these space radars are
relatively insensitive to rainfall. Space Shuttle missions in 1994 and 2000 carried the
first X-band SAR (X-SAR) along with L-band and C-band SARs (Jordan et al.
1995). Since then, the possibility of detecting and quantifying precipitation from
SARs has received more attention (e.g., Alpers and Melsheimer 2004; Atlas and
Moore 1987; Ferrazzoli and Schiavon 1987; Melsheimer et al. 1998; Moore et al.
1997). In the last decade, new X-SARs such as four COSMO-SkyMed (CSK)
satellites (ASI 2009) and two TerraSAR-X (TSX) satellites (Fritz and Eineder
2013) followed by other missions such as TecSAR and KOMPSAT-5 have been
succesfully launched. First analyses of X-band SAR influence of precipitating clouds
date back to the ‘80s (Atlas and Moore 1987).

Precipitating clouds can significantly alter the specabeorne backscattered SAR
signal, introducing path attenuation and scattering as well as depolarization and
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tropospheric scintillation (Ferrazzoli and Schiavon 1987; Quegan and Lamont 1986;
Alpers and Melsheimer 2004). An extensive review of the atmospheric impacts on
the retrieved TSX data, can be found in Weinman and Marzano (2008) and
Danklmayer et al. (2009). The latter analyze a large dataset of TSX acquisitions
finding evident precipitations effects in only 0.8% of cases. The analyzed cases
confirm the effect of precipitation on X Band SAR data, but also have provided
evidence that only intense events can produce significant effects at X band. Synergy
and complementarity of X-band SAR with ground-based weather radars have been
investigated in Marzano et al. (2010) and Fritz and Chandrasekar (2010, 2012). A
forward model is generally needed to convert weather radar reflectivity into
spaceborne SAR path attenuation and signal, taking into account polarimetric
features as well (Marzano et al. 2012). Several steps are necessary to simulate a
X-band SAR precipitation signature using weather radar (WR) reflectivity: (1) esti-
mation of the specific differential phase; (2) path attenuation correction
(if necessary); (3) gridding on an Earth-centric Cartesian grid; (4) hydrometeor
classification, in order to use the correct particle distribution model; (5) scale
frequency and look angle; (6) SAR geometry resampling and (7) integration to
SAR observations. Obtainable polarimetric products include the differential reflec-
tivity, and the differential phase, simulated at both X band and Ku band. Baldini
et al. (2014) have carried out a review of the model of Fritz and Chandrasekar (2012)
adding formulas for simulating X-band SAR observables from ground weather radar
reflectivity at C and S band. An analysis of the CSK Ping-Pong mode (alternate
HH-VV) was also carried out, showing some interesting features. Roberto et al.
(2014) extend this model approach to marine environments, a fairly challenging goal
due to the difficulties in modelling the SAR response of the sea surface background.
The detection of the hurricane eye, hurricane tracking, and the estimation of wind
fields from SAR data has also been recently attempted (Li 2017). Hydrological
applications of X-band SARs are typically oriented to flood monitoring (e.g.,
Landuyt et al. 2018; Refice et al. 2018), but precipitation effects can be quantified
as well (Marzano et al. 2011).

This chapter aims to provide an overview of X-band SAR techniques for precip-
itation signature characterization and detection, introducing both precipitation
response simulations (forward models) and precipitation retrieval methods (inverse
models). Sect. 18.2 shows an example of precipitation signatures on SAR imagery,
whereas Sect. 18.3 describes a forward model of SAR response in the presence of
precipitation. Section 18.4 illustrates some precipitation retrieval techniques used in
literature, whereas Sect. 18.5 deals with an advanced approach and the applications
of validation techniques. Finally, Sect. 18.6 contains a discussion on high-frequency
SAR for hydrological applications and future perspectives.
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18.2 Evidence of Precipitation Signatures on X-SAR
Imagery

In Marzano et al. (2010) several examples of precipitation SAR signatures at X band
are discussed. A very good example is represented by Hurricane Gustav, observed
by TerraSAR-X (TSX) on 2 September 2008, from 11:58:44 to 11:59:06 UTC, a few
hours after landfall on the US coast. The selected case study refers to the passage of
Hurricane Gustav over Louisiana and Mississippi northwestward, moving at an
average velocity of 24 km h�1 and delivering torrential rains to the central gulf
coast of the US (e.g., Larto Lake, LA, reported a rainfall total accumulation of
533.4 mm). Ideally speaking, atmospheric effects could be detected, or at least
appreciated, using a clear-sky image acquired by the same instrument in the same
transmitting and receiving polarization and the same acquisition mode, and orbit
direction, during a recent date. Such images are referred to as “SAR background
images”. Unfortunately, in this case no background image was available.

Figure 18.1 shows the synoptic view of an outer rain band of Hurricane Gustav
over south-eastern Louisiana taken from the NEXRAD ground Weather Radar
(WR) located in Mobile (Alabama) (e.g., Fulton et al. 1998). WR acquisition started
at 11:59:44 UTC so the time difference with TSX is about 1 min. From the
radiosonde available from Birmingham (AL) at 12:00 UTC, the freezing level height
was about 4.5 km. The white box shows precipitation around 30.5� N � 89.5�

W. The near-surface conical scan at 0.86� elevation angle and HH-polarized of
NEXRAD rainfall data is compared to the ScanSAR map of TSX HH-polarized
Normalized Radar Cross Section (NRCS) observation. Note that TSX ScanSAR
product has a ground coverage of 154 � 105 km2 and a ground resolution of about
18 � 18 m2. WR reflectivity has a spatial resolution of about 0.25 km in range and
0.5� in azimuth and nominal coverage radius of about 209 km. In the previous figure
it is evident that the correspondence over land between WR higher reflectivity areas
and TSX dark ones. TSX returns over ocean are also detectable by a brighter
incoherent feature with respect to the darker quasi-specular NRCS response, due
to the sea surface. The southern portion of the rain band over ocean corresponds to
WR reflectivity of about 20 dBZ. Values of Z are as high as 59.1 dBZ, indicating
torrential convective rainfall connected to Hurricane Gustav, probably mixed with
some hail.

The correlation between NRCS values σSAR [dB] (filtered and resampled) against
co-located and co-registered WR reflectivity Z [dBZ] for a central Region of Interest
(ROI) is shown in Fig. 18.2. The co-polar radar reflectivity factor Z is proportional to
the radar reflectivity η of the WR through Ζ¼ ηλ4/(π5|K|2)with λ the wavelength and
|K|2 the dielectric factor equal to 0.93 for water (Bringi and Chandrasekar 2001). A
significant negative correlation is present between X-Band σSAR and S-band Z,
demonstrating that the X-SAR NRCS tends to decrease as the S-band WR reflec-
tivity increases, mainly due to the increase of two-way rain path attenuation. The
dynamic range of X-SAR NRCS due to rainfall is about 12 dB. Moreover, X-SAR
NRCS tends to saturate for values of S-band Z of about 25 dBZ and below.
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The dispersion between σSAR and Z is mainly due to the slant-view observation
geometry, surface NRCS variability and the spatial inhomogeneity of hydrometeor
distribution. The trend of this curve is similar to the one indicated in Fritz and
Chandrasekar (2010).

The Tropical Rainfall Measuring Mission (TRMM) satellite observed the area at
about 15:30 UTC of 2 September 2008. The significant time-difference makes a
direct comparison with TSX data impractical. Nevertheless, the TRMM acquisition
allows a qualitative comparison with MW radiometric and radar spaceborne imagers.
In this respect, the principal TRMM instruments are the TRMM Microwave Imager
(TMI), a passive microwave sensor, and the Precipitation Radar (PR), an active one.
Figure 18.3 shows the acquired horizontally polarized TMI brightness temperatures
(TB) at 37 GHz and 85.5 GHz (obtained from TRMM 1B11 product). The TMI
image swath is about 760 km wide, while the ground resolution is about 16 � 9 km2

at 37 GHz and 7 � 5 km2 at 85.5 GHz. The hurricane signature is quite evident, but

Fig. 18.1 (Lower left image) Synoptic view of Hurricane Gustav over south eastern Louisiana on
September 2, 2008 12:00 UTC taken from NEXRAD weather radar reflectivity mosaic. The white
box shows an outer rain band around 30.5� N � 89.5� W. (Central image) Geographic represen-
tation of the NEXRAD image at 0.86� elevation, acquired by the S-band radar (KMOB, in figure)
near Mobile (Alabama). The semi-transparent rectangular box represents the scene of interest,
acquired by TSX X-SAR on 2 September 2008 12:00 UTC in HH polarization and ScanSAR mode
(100 km swath). (Upper right image) TSX quicklook of the acquisition in arbitrary units at 100-m
resolution; flight direction is indicated. (Adapted from Marzano et al. 2010)
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the impact of the different spatial resolution between the two radiometric channels is
also striking. Figure 18.3 also illustrates the PR reflectivity factor (dBZ) at 14 GHz
closest to the surface for both the “normal sampled” range bin 75 and the “rain
oversampled” range bin 16 (as obtained from TRMM 1C21 product). The PR swath
is 220 km for the “normal sampled” product, but it is reduced for the “rain
oversampled” one due to oversampling; the height resolution is about 250 m. The
“rain oversampled” product aims at registering the detailed vertical profile of the
rain. The spiral bands of the hurricane are detectable with a moderate spatial
resolution, but only the combination with TMI can provide the general features of
the hurricane due to the relatively smaller swath. Spaceborne microwave radiometers
(passive instruments) allow a wider swath, but with a rougher resolution with respect
to radars (active instruments). Note that the radar resolution is coarser than the SAR,
but the vertical ranging allows for atmospheric profiling, a feature not possible for
SAR due to their slant observing geometry and surface-tuned receiving time-
window (Marzano et al. 2011).

Fig. 18.2 Correlation diagram between NRCS values X-band σSAR against co-located and
co-registered S-band NEXRAD weather-radar reflectivity Z, for a selected region of interest
(ROI) of the scene. The upper axis provides the estimated rain-rate from NEXRAD data using
the Marshall-Palmer relation (Bringi and Chandrasekar 2001). The best-fitting curve is also plotted.
(Adapted from Marzano et al. 2010)

320 S. Mori et al.



18.3 Forward Model of SAR Response to Rainfall

Polarimetric radars are powerful tools for quantitative studies of the properties of
atmospheric hydrometeors (e.g., Bringi and Chandrasekar 2001; Doviak and Zrnić
1993). Conventional radars measure the backscattered intensity from hydrometeors
in a scattering volume defined by the antenna-beam width and the transmitted-pulse
width. For a polydispersion of oblate ellipsoidal particles, with a random distribution
of spherical volume-equivalent diameter D and zenithal canting angle ϕ, being λ the
wavelength corresponding to a frequency f, we can define several RADAR observ-
ables related to the incoming signal power. In particular, ηpq is the pq-polarized radar
reflectivity (in km�1, or backscattering cross section per unit of volume) and can be
expressed in terms of Particle Size Distribution (PSD) N(D), particle orientation
density po(ϕ) and the complex backscattering matrix element Spq(D, ϕ). Instead of

Fig. 18.3 TRMM observations, at 15:30 UTC, for the case study of Hurricane Gustav. (Top
panels) TRMM 1B11 brightness temperature (TB) product relative to TMI channel 7 (37 GHz
horizontal polarization, left), beam effective field-of-view (EFOV) of 16� 9 km2, and TMI channel
9 (85.5 GHz horizontal polarization, right) with a main-beam EFOV of 7� 5 km2. The cyclonic cell
indicated in Fig. 18.2 is well captured. (Bottom panels) The TRMM 1C21 radar reflectivity (dBZ)
product, relative to PR normal sample (left) range bin 75, and PR rain oversampled (right), range
bin 16. Note that the PR swath is 220 km wide (reduced in the oversampled product) and the range
resolution is 0.25 km; TMI swath is 760 km wide. (Adapted from Marzano et al. 2011)
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reflectivity, radar reflectivity factors Zhh, Zvv and Zvh (in mm6 m�3 or dBZ) can be
used. Note that the double subscript stands for the received (first index) and
transmitted (second index) polarization state, which can be either horizontal (h) or
vertical (v). Kdp is the specific differential phase shift (in � km�1) due to the forward
propagation phase difference between the two polarizations. kpp is the specific power
attenuation at polarization p in km�1 (or App if expressed in dB km�1) and is the
counterpart of Kdp in terms of power attenuation per unit length.

Given a volumetric distribution of atmospheric water particles, radar observables
can be used to estimate the SAR signal when observing ground targets in the
presence of atmospheric effects by means of a SAR response forward model. The
next section illustrates the model proposed in Marzano et al. (2012) and Mori et al.
(2017a).

18.3.1 SAR Observing Geometry and Response Model

The fundamental parameter, imaged by SARs, is the Radar Cross Section (RCS) σpq
of the target, defined by Pp ¼ σpq�Sqi/4π, where Pp is the power re-irradiated by the
target at polarization p and Sq

i is the incident power density at polarization q (Ulaby
and Long 2014). While the previous definition corresponds to point targets, NRCS
(also indicated as backscattering coefficient σpq

0) is usually defined as the RCS
normalized to the target area A for distributed targets, that is σpq

0 ¼ σpq/A.
In the presence of precipitation, the SAR backscattering response has to account

for the two-way attenuation of the surface echo due to the atmospheric particles, the
atmospheric volume reflectivity and phase shift.

We can express the spaceborne SAR co-polar and cross-polar NRCS for a given
pixel with coordinates (x,y) on the Earth surface, using a simplified model where the
forward depolarization is neglected and the isorange lines, actually spherical, are
supposed to be planar as shown in Fig. 18.4:

σ0SARpq x, yð Þ ¼ 4π SSARpq
�� ��2D E

¼ σ0SRFpq x, yð Þ þ σ0VOLpq x, yð Þ ð18:1Þ

σ0SRFpq x, yð Þ ¼ σ0groundpq x, yð Þ exp �
Z

Δl x, yð Þ

kqq lð Þdl�
Z

Δl x, yð Þ

kpp lð Þdl

0
B@

1
CA

σ0VOLpq x, yð Þ ¼ sin θð Þ
Z

Δt x, yð Þ

ηpq tð Þ exp �
Z

Δl tð Þ

kqq lð Þdl�
Z

Δl tð Þ

kpp lð Þdl

0
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1
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where θ is the local incident angle, and SSARpq are the elements of the SAR received
backscattering matrix. σ0SRFpq(x,y) (in m2 m�2) is the “surface-driven” backscatter-
ing coefficient, that is the surface target NRCS σ0groundpq (superscript “ground” here
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refers to the surface target property) attenuated by the two-way path through the
precipitating atmosphere, whereas the term σ0VOLpq(x,y) (m

2 m�2) is the “volume-
driven” backscattering due to hydrometeor reflectivity, weighted by the two-way
path through the precipitating atmosphere. The spatial transverse coordinates l and
t along the atmospheric path (in km), inherently depend on the Cartesian coordinate
in the volume (x,y,z). The path from the radar to the surface target at (x,y) is Δl(x,y).
Note that the volume term accounts for the contributions to the SAR echo due to the
atmospheric hydrometeors encountered by the path-attenuated SAR wave front
aligned along the transverse coordinate t and in the same resolution cell Δr. The
scattered wave from hydrometeors, encountered at position t along the transverse
line, experiences an attenuation along the path Δl(t) when propagating back to the
radar. The SAR model geometry, shown in Fig. 18.4, depicts a possible enhance-
ment of the background response at near range, due to frozen particle scattering at
high altitudes, followed by an intense attenuation of the background signal, due to
the path attenuation through the rain cloud. This pattern is evident in the case of
Fig. 18.4.

Spaceborne satellite SARs usually allow the observation of the co-polar elements
of the 3 � 3 ensemble-average scattering covariance matrix CSAR. Operational SAR
systems may allow the measurement of the cross-polar elements, whereas co-polar
backscattering coefficients are always available. We can define the following SAR

Fig. 18.4 Schematic SAR NRCS (in dB) as a function of cross-track scanning distance x, showing
enhanced values on the left of the cross-over point caused by scattering from the cloud top and
attenuation from rain in the lower cloud on the right. The viewing angle with respect to nadir
(incidence angle) is θ, while the cloud extension is w. The symbol Δr indicates the width of the slant
slice of the atmosphere representing the SAR side-looking resolution volume. The figure also shows
the energy fluxes and the e.m. parameters of the model according to Marzano et al. (2012) and Mori
et al. (2017a)
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polarimetric observables (e.g., Bringi and Chandrasekar 2001; Marzano et al. 2012;
Ulaby and Elachi 1990):

σSARppqq x, yð Þ ¼ 4π SSARpp x, yð ÞS�SARqq x, yð Þ
D E

ð18:2Þ

σSARpq x, yð Þ ¼ 4π SSARpq x, yð ÞS�SARpq x, yð Þ
D E

ð18:3Þ

ZSARco x, yð Þ ¼ σSARhh x, yð Þ
σSARvv x, yð Þ ð18:4Þ

ρSARco x, yð Þ ¼ SSARvv x, yð ÞS�SARhh x, yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSARhh x, yð Þj j2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSARvv x, yð Þj j2

q ¼

ρSARco x, yð Þj j exp jΨSARco x, yð Þð Þ
ð18:5Þ

where σSARpq is the pq-polarized NRCS (or backscattering coefficient,
adimensional), and σSARhv the cross-polarizations and σSARhh, σSARvv the
co-polarizations. The term σSARppqq describes the cross term among orthogonal
polarizations. ZSARco is the co-polar ratio (or difference, if expressed in decibels),
whereas ρSARco is the complex correlation coefficient (or degree of correlation,
adimensional), expressed by an amplitude |ρSARco| and a phase Ψ SARco.

When dealing with the co-polar differential phase, the SAR polarimetric phase
model needs to account for the slant observing geometry within a precipitation
medium (see Fig. 18.4). In clear sky the SAR phase response is given by the ground
polarimetric differential phase, indicated by δ0co(x,y), due to the surface interaction.
The path through the hydrometeors adds a two-way rotation along the incident path,
given by the path integral of the specific differential phase Kco(x,y,z) (propagation
phase shift). The precipitation-cell backscatter also introduces a differential phase,
δco(t), i.e. the phase rotation between Shh and Svv of the scattering volume (depending
on the cell position, t), additionally affected by the 2-way path from the same volume
to the radar (Bringi and Chandrasekar 2001; Marzano et al. 2012). According to
Matrosov et al. (1999), values of δco are small for S-band wavelengths even for
intense rainfall rates; however, at X band it is negligible only for modest precipita-
tion rates, wheras at Ka band values, δco can be very significant even for modest
rainfall rates. A formulation of the observable SAR complex correlation coefficient
for a ground point (x,y) is presented in Marzano et al. (2012) and revised in Mori and
Marzano (2017a) in the form:

ρSARcoðx, yÞ ¼
f ðσ0groundvv , σ0groundhh , ρ0coÞ � Lðkhh, khh,KcoÞ þ sinðθÞR

Δt
CvolðtÞdt

f 0ðσSARhh, σSARvvÞ ð18:6Þ

CvolðtÞ ¼ f 00ðηhh, ηhh, ρcoÞ � Lðkhh, khh,KcoÞ
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where ρ0co x, yð Þ ¼ ρ0co x, yð Þ�� �� exp jδ0co x, yð Þ� �
is the complex correlation coefficient of

the ground target and ρco(x, y) ¼ |ρco(x, y)| exp ( jδco(x, y)) is the complex correlation
coefficient of the atmospheric volume. L(�) is a functional term accounting for the
two-way path attenuation and f(�), f’(�), f”(�) are complex functions of the surface
and volume scattering matrix elements, depending respectively on ground target,
SAR received signal and atmospheric volume. Note that in the literature, the
computation of δco(x,y) is simplified as it is assumed equal to δco ¼ arg(ρco) of the
scattering cell in position x,y (Marzano et al. 2012), or ignored as in Fritz and
Chandrasekar (2012).

Marzano et al. (2012) suggest a significant correlation between the SAR NRCS
and the slant-integrated water contents. The SAR response seems to be mainly
governed by the surface contribution σSRF, except when the two-way path within
precipitation is relatively long and medium attenuation is sufficiently strong. In the
latter case, the volume contribution σVOL tends to saturate and the relation between
SAR NRCS and integrated water contents is much more dispersed. Moreover, the
SAR response appears strongly affected by ground surface response and, to a limited
extent, by the observing incident angle. The analysis at different bands suggests
different SAR responses, with the X-band NRCS not being strongly influenced by
frozen hydrometeors, while this is not necessarily true for Ka-band NRCS.

The polarimetric modelling of SAR response requires knowledge of the electro-
magnetic signatures of each water particle class affecting the wave propagation. We
can define a particle class as a group, such as “moderate rain” drops or “dry snow”
flakes, characterized in terms of shape, radius, PSD, temperature, composition (e.g.,
Marzano et al. 2008). The complexity of this approach can be simplified using an
approximate but reasonable approach where the electromagnetic signature of each
class is expressed through semi-empirical models of a bulk parameter, such as the
water content W(x,y,z) (in g m�3), defined for each classes. This is the approach
followed in Marzano et al. (2012) at X-Band where the power-law formula has been
used to model specific attenuation kpq(x,y,z) (in dB km�1), equivalent reflectivity
Zepq(x,y,z) (in mm6 m�3), differential phase Kco(x,y,z) (in � km�1), modulus and
argument of the co-polar correlation coefficient ρco(x,y,z) (adim). A typical paramet-
ric expression has the form of kpq x, y, zð Þ ¼ apqW x, y, zð Þbpq .

18.3.2 Example of Precipitation-Affected SAR Scene

The model proposed in Sect. 18.3.1 can be used in order to numerically simulate the
SAR response for a given scene. This requires a SAR ground response model and
simulations of atmospheric water particle distributions. Realistic clouds are difficult
to retrieve from in situ and remote measurements and, in this respect, synthetic
clouds can be simulated more easily by cloud-resolving models. For sensitivity
analysis, canonical clouds with a rectangular shape on the x-z plane and stratified
in the vertical direction, composed by 1 or 2 uniform constituents (e.g., clouds,
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moderate rain drops or dry snowflakes), can be also employed, as in Weinman and
Marzano (2008) and Marzano and Weinman (2008).

Clouds can be simulated using the Weather Research and Forecasting (WRF)
model (Michalakes et al. 2005) or the System for Atmospheric Model (SAM) Cloud
Resolving Models (CRMs), as well as other Numerical Weather Prediction (NWP)
models. SAM is a high-resolution (250 m) model, which simulates the 3-D water
content distribution (g m�3) of several kinds of hydrometeors, both precipitating
(snow, graupel and rain) and non-precipitating (cloud ice, cloud liquid) (Blossey
et al. 2007). A simulated SAM vertical section is given in Fig. 18.5 as an example.

A relatively simple surface target within the SAR response model is represented
by bare soil. The Semi-Empirical Model (SEM) of Oh et al. (2002) allows simulation
of the complete SAR polarimetric response of a realistic bare soil with a root mean
square (RMS) height (ks), a correlation length (kl) and a volumetric soil moisture
content (mv). The simulation of Fig. 18.6 uses 1.5 cm, 5.0 cm and 0.25 cm3 cm�3 as
values of the three parameters, respectively. Other effective surface targets,
representing many other targets and their combination, are represented by canonical
targets including spheres, cylinders and dihedrals. Their combination may represent

Fig. 18.5 Example of System for Atmospheric Model (SAM) vertical slice for a Compact Medium
Single Cell cloud. Values indicate water contentW in g m�3 of the simulated distributions of snow,
rain, ice and cloud particles
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many natural targets according to the Freeman-Durden polarimetric decomposition
(e.g., Cloude 2010). Their scattering matrix in BSA (BackScatter Alignment) con-
vention is reported in Ulaby and Elachi (1990). The simulation of Fig. 18.6 considers
spheres of 0.3 m, dihedrals of 0.025 m and cylinders of 0.030 m and 0.002 m radius,
at 45� rotation. Note that NRCSs are function of target dimensions, differently from
target complex correlation coefficients that are independent of dimension. In this
simplified scenario, canonical targets are supposed to fill the ground scene, one
target per ground cell.

Fig. 18.6 shows an example of realistic SAR responses in the presence of
precipitation, for different ground targets and frequency using the model of Sect.
18.3.1. For NRCS the signal is sensitive to precipitation and frequency, as well as the
precipitation pattern described in Sect. 18.3.1. At C band ground targets could be
easily recognized, while at Ka band their response is similar; on the other hand,
Ka-band response appears more sensitive to ice (the small peak at around km 48).
Polarimetry can give useful information only at C Band. The interpretation of the
complex correlation coefficient is more difficult, even if the volumetric effects is
present in all bands as well as the sensitivity to different targets. The dihedral-type
surface always allows the detection of clouds, whereas sphere-type surface rarely
permit it. In terms of phase, the presence of a cloud introduces a significant phase
rotation.

Fig. 18.6 SAR simulated response in terms of normalized Radar cross section σSARhh (horizontal
transmitted and received), co-polar ratio ZSARco and complex correlation coefficient ρSARco for the
SAM realistic cell of Fig. 18.5. Four SAR frequencies are evaluated (5.4, 9, 14 and 35 GHz).
Considered background are Spheres, Dihedrals, Cylinders, and a semi-empirical bare soil scattering
model (SEM)
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18.4 SAR Precipitation Retrieval Techniques

In order to convert X-SAR measurements into near-surface rain-rate R(x,y) (in mm
h�1), it is necessary to apply an inversion algorithm, such as the ones proposed in
Marzano and Weinman (2008) and Weinman and Marzano (2008), starting from the
intuition of Pichugin and Spiridonov (1991). Other easier approaches have been
proposed, based on the difference (in dB) between the background NRCS
σpp

0ground(x,y) and the retrieved NRCS σ0SARpp(x,y):

ΔσSARdB x, yð Þ ¼ σ0groundpp x, yð Þ � σ0SARpp x, yð Þ ð18:7Þ

Note that ΔσSARdB is usually positive for rainfall observations and tends to be
negative for significant backscattering effects due to edge effects from the upper
rain-cloud, as discussed in Sect. 18.3.

18.4.1 Data Pre-processing

X-Band SAR products, distributed by space agencies, differ in their ground resolu-
tion and areal extent, usually with an inverse relation, depending on the observing
method (e.g., Ulaby and Long 2014). Usually Spotlight, Stripmap or Scansar modes
are available, whereas SAR products can vary with the processing level. Using the
COSMO-SkyMed notation (but similar to TerraSAR-X), the Single-look Complex
Slant (SCS) outputs are the basic product available for users. Multilook Ground
Detected (MGD) products are obtained through a further processing where the
focused SCS is detected, radiometrically equalized and projected in range-azimuth.
Further data processing envisages the correction for ellipsoid (Geocoded Ellipsoid
Corrected, GEC) or terrain (Geocoded Terrain Corrected, GTC) and consequent
projection on a cartographic reference system (Fritz and Eineder 2013; ASI 2009).
SCS, MGD, GEC and GTC are usually indicated as Level-1 products.

For X-SAR precipitation estimation the GTC product can be used, directly
dowloadable from the archives or self-produced from a SCS product using a proper
processing tool (such as ENVI-SARSCAPE®). GTC product has a reduced speckle,
due to 6-look averaging and approximately a square resolution on the ground of
about 18 � 18 m2 with a pointing knowledge error of less than 20 m. Both Stripmap
and Scansar acquisition modes are suitable for precipitation analysis. The Stripmap
mode has a ground coverage of about 30 � 30 km2 with a resolution of about 15 m/
pixel, whereas Scansar has a coverage of 200 � 200 km2 with a resolution of about
30 m/pixel. These numbers refer to CSK, but they are similar in TSX.With respect to
the polarization, the horizontally transmitted and horizontally received (HH) signal
is preferable, being more sensitive to raindrop oblate shapes.

Several of the proposed SAR-based retrieval methods require a calibration with
ground measurements. Doppler weather radar data, which allows relatively wide
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coverage, continuous monitoring and a suitable range resolution, is the most suitable
one. The overlapping SAR/WR data is affected by the difference in acquisition
geometry and frequency band (Fritz and Chandrasekar 2010). Weather radar
co-polar horizontally-polarized (HH) reflectivity factor Z can be converted into
rain rates using empirical relationships which generally have the form of a power
law. The suggested retrieval relation for the rainfall field RWR(x,y) in the x-y
horizontal plane is:

bRWR x, yð Þ ¼ Z x, yð Þ
an

� �1=bn
ð18:8Þ

with an ¼ 300 and bn ¼ 1.4 for S-band NEXRAD and an ¼ 200 and bn ¼ 1.6 for a
standard Marshall-Palmer formula where R is in mm h�1 and Z is in linear units
mm6 m�3 (e.g., Bringi and Chandrasekar 2001). For Z corresponding to 59.1 dBZ
(such as the case presented in Sect. 18.2), the NEXRAD Z-R and Marshall-Palmer
yield R of about 283 and 180 mm h�1, respectively. Strictly speaking, it is not correct
to invert a statistical relation Z-R to get R-Z as in (18.8) due to different error
minimization; however, this approximation is a common practice in operational
radar meteorology.

In order to make SAR observation comparable with WR data, both WR and
X-SAR images have to be co-registered and X-SAR images degraded through an
appropriate moving-average filter at the resolution of about 0.5-km size and down-
sampled at about 0.5 km ground resolution. This resolution is an upper-limit estimate
consistent with the effective resolution of SAR data processing applied to incoherent
moving targets such as precipitation (Marzano et al. 2010).

18.4.2 Regressive Empirical Algorithm (REA)

An effective model for radar precipitation analysis is the power-law expression to
estimate of the rain-rate profile RREA(x,y) (in mm h�1), expressed by:

bRREA x, yð Þ ¼ ae ΔσSARdB x, yð Þ½ �be ð18:9Þ

where X-band ΔσSARdB � 0 and the empirical coefficients ae and be may be
geographically and climatologically dependent as it happens for WRs in terms of
reflectivity and rain-rate. The X-SAR side-viewing geometry introduces a charac-
teristic pattern of the observed NRCS due to the increasing attenuation path as the
incident radar ray moves within the precipitation cell from near to far ranges (e.g.,
Weinman and Marzano 2008). This deformation is such that the X-SAR tends to
underestimate rainfall intensity at the near-range edges and to overestimate it at the
far-range edges with an apparent broadening of the rainfall footprint. In order to take
these geometrical effects into account, Eq. (18.9) can be modified by introducing a
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factor fG(x) that accounts for the location of a pixel with respect to the edge cell. For
heavy rainfall intensity, the model of (18.9) tends to underestimate the volumetric
backscattering contribution σ0VOLhh, but this effect may be partially corrected by a
first-order approach. The derived formulation of (18.9), proposed in Marzano et al.
(2011) and called Modified Regression Empirical Algorithm (MREA), is:

bRMREA xð Þ ¼
ΔσSARdB xð Þ þ bvΔσSARdB xð Þcv

a

� �1
b 1
x� x0

� �ce
x0 þ E 	 x 	 x0 þ w

0 otherwise

8>><
>>:

ð18:10Þ

where the parameters a, b, bv, cv and ce are empirical coefficients. Using WR
reflectivities Z, Eq. (18.8) with Marshall-Palmer coefficients and corresponding
SAR ΔσSARdB with an average background σhh

0ground ¼ �7.9 dB, estimated coeffi-
cients are, respectively, 0.0089, 2.4595, 0.1216, 3.8979 and �0.0230 through a
linear regression (Marzano et al. 2011). In (18.10) the along-track variable y has been
omitted, since the formual is intended for across-track corrections only. The param-
eter x0 is the near-range edge of the rain cloud with w its estimated across-track
width. The parameter ε in (18.10) is introduced to prevent the singularity in x ¼ x0
and is usually equal to few pixels in the ground range. Eq. (18.10) applies to all the
X-SAR pixels where ΔσSARdB � 1 taking into account the σhh

0ground background
uncertainty.

Applying (18.10) to the Hurricane Gustav case of Sect. 18.2, a quantitative
analysis of the error with respect to WR-based estimates shows that the correlation
coefficient is 0.75, the error bias�0.66 mm h�1, the root mean square error (RMSE)
22.28 mm h�1 and the Fractional RMSE (FRMSE) of about 0.98 (where FRMSE is
defined as the ratio between estimation RMSE and root-mean-square value of RWR

over the whole dataset).

18.4.3 Probability Matching Algorithm (PMA)

A second approach, described in Marzano et al. (2010), employs a probability
matching approach over a given target area (Calheiros and Zawadzki 1987). Once
estimated the probability density function pWR(RWR) of WR-based rain rate RWR,
and the probability density function pSAR(ΔσSARdB) of measured X-SAR differential
NRCS ΔσSARdB, the PMA method can be simply written as follows:

330 S. Mori et al.



Z bRPMA

Rt

pWR RWRð ÞdRWR ¼
Z ΔσSARdB

ΔσdBt

pSAR ΔσSARdBð ÞdΔσSARdB ð18:11Þ

where Rt and ΔσdBt are rain-rate and differential σSARdB lower threshold values (e.g.,
equal to 0.1 mm h�1 and 0.5 dB, respectively). The integrals in (18.11) represent a
probability (or cumulative distribution function) and if computed for increasing
values of the extremes, yield an expression for PMA:

bRPMA x, yð Þ ¼ f PM ΔσSARdB x, yð Þð Þ ð18:12Þ

where fPM is a functional which can be either implemented as a look-up table of
RPMA and NRCS records or as a polynomial regressive curve. Applying PMA to
the case of Sect. 18.2, yields an estimated mean error of 3.1 mm h�1, an RMSE of
about 13.2 mm h�1 and a correlation coefficient of 0.64.

18.5 Applications

18.5.1 Improving SAR Retrieval Using Background
Estimation

The MREA methodology, described in Sect. 18.4.2, requires the knowledge of
background NRCS in the absence of precipitating clouds. Moreover, MREA applies
to the entire scene, including flooded areas, permanent water bodies and orographic
shadows. These limitations can lead to severe estimation errors or misinterpretations
of the scene. Improvements to MREA estimations can arise from a pre-processing
step to select only areas affected by precipitations and trying to estimate the clear-sky
background NRCS of these areas.

Pulvirenti et al. (2014) propose the classification methodology indicated as SAR
Images Dark Object Classifier (SIDOC) that allows the differentiation of “water
surfaces” from areas affected by precipitation, both appearing dark in X-SAR
imagery. Water surfaces may include both permanent water bodies, such as lakes
or rivers, and flooded areas and, in this respect, SIDOC shows its usefulness in both
detecting areas affected by precipitations and in detecting flooded areas. SIDOC uses
several ancillary data, such as Digital Elevation Model (DEM), static land cover and
Local Incident Angle (LIA) maps. SIDOC consist of several steps, summarized in
Fig. 18.7.

The SIDOC first step detects low backscatter areas in the input image, using a
supervised Split Based Approach (SBA) and fuzzy logic that lead to determining a
mean threshold, more or less suitable for the whole scene. Output of this step is a
segmented map, in which the detected areas are distinguished and labelled as
contiguous pixels, and a raw classification map, where pixel with high LIA (that
clearly cannot be plain surfaces) are distinguished from the others. In the SIDOC
second step, the remaining pixel are processed to extract shape features, such as area,
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perimeter and complexity (weighted ratio between area and perimeter): these fea-
tures and fuzzy logic (together with land cover) are used to distinguish flooded areas
from areas affected by precipitations.

In order to produce precipitation maps, two further steps are necessary (Mori et al.
2016). The first one consists of estimates the X-SAR ground surface response for
those pixels detected as dark by SIDOC. The reconstructed σpp

0ground is estimated as
the mean value of the pixel near the outer border of the cloudy ones, belonging to the
same land cover class and not affected by cloud or water effects. This realistic cloud-
free image of the observed scene is then ingested in the MREA precipitation
estimation procedure.

18.5.2 Statistical Approaches for Retrieval Validation

X-SAR precipitation detection and estimation errors should be ideally verified
through ground-truth data of the analyzed area at the same time and at a similar
resolution as the SAR acquisition. Unfortunately, this goal can rarely be achieved,
due to the SAR high spatial resolution and relative wide coverage area and SAR near
instantaneous acquisition time. A good compromise is available through the use of
ground-based weather radars, that ensure a wide and uniform coverage, at a com-
parable ground resolution. WR volume acquisition time is quite long (about 5 min to
complete a volume production) as compared to SAR, causing possible misalign-
ments between the two data series. Moreover, the two acquisition geometries, the
image formation and often the scanning frequency are quite different, resulting in
another source of error. Note that WR precipitation real-time rain products can be
affected by numerous sources of errors such as wet radome, spatial variability of
particle size distribution, and system miscalibration (e.g., Bringi and Chandrasekar
2001).

Statistical approaches can be also considered for SAR-based retrieval analysis.
The first and second order statistics of these errors can be evaluated (e.g., Stein et al.
2002). First-order statistics indicates a comparison of the spatial distribution of the
retrieved rain values regardless the spatial organization of the retrieved rain fields.
For this purpose, we can use the Complementary Cumulative Distribution Function
(CCDF) defined as follows:

MREASIDOCSAR image

Local Incident Angle

Digital Elevation Model

Land Cover

Dark Detection
and segmentation

- Raw Classification

Shape feature
extraction - Fine

Classification

X-SAR ground
surface

estimation

Precipitation
Rate

estimation

Classification
map

Estimated
clear-sky

NRCS image

Precipitation
map

Fig. 18.7 Flowchart of the procedure described in Mori et al. (2016) for detecting flooded and
cloud areas in X-SAR images and estimating the relative precipitation rate
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CCDF Xthð Þ ¼ 1� P X sð Þ > Xthð Þ 8s 2 D ð18:13Þ

In (18.13) P denotes probability, Xth is a threshold, D the spatial domain where
the rain retrieval is carried out and X(s) is a variable sampled at spatial and temporal
position s ¼ (x,y,t). Second-order statistics characterizes the spatial correlation
structure of the rain fields, describing the spatial variability of the variable under
investigation at different spatial scales. In this respect, we can use a semi-variogram
γX(l) of the variable X, defined as:

γX lð Þ ¼ 1
2

X sþ lð Þ � X sð Þj j2
D E

s
ð18:14Þ

where l is the lag distance and s a generic position. These statistical approaches allow
a comparison between WR and X-SAR data in terms of precipitation structure even
though it reduces the SAR precipitation map to the resolution of the WR (Mori et al.
2016).

18.5.3 Case Study

The whole processing and validation chain of Sects. 18.5.1 and 18.5.2 is applied in
Mori et al. (2016) to a couple of COSMO-SkyMed case studies. We have selected
one of these cases as an application example, also for the geographical, spatial and
instrumental differences with respect to the example of Sect. 18.2. The selected case
is a CSK Ping-Pong acquisition over Italy (Voghera area), which occurred on 7 July
2007 at 05:18 UTC during a mid-latitude intense precipitation. The area is centered
at 44.99�N – 8.94�E and covers 30 � 30 km2 (Fig. 18.8).

Only the SCS HH channel has been processed in ENVI-SARSCAPE® in order to
produce a calibrated multilooked product at 20-m pixel resolution together with
DEM correction using SRTM data and UTM projected using WGS84 ellipsoid.
Ground WR data are C-Band Vertical Maximum Intensities (VMI, in dBZ) obtained
by the Italian national mosaic, with an acquisition frequency of 15 min and a ground
resolution of about 1 km2.

The precipitation maps, derived from SAR and WR data, are shown in Fig. 18.9.
The land cover, used by SIDOC, is the Corine Land Cover (CLC) 2012, ensuring a
minimum spatial resolution of 25 ha/100 m and 15 classes (at Level-II). The SARmap
has been filtered with a texture filter and degraded to WR resolution in order to extract
the map feature. WR precipitation map has been obtained using the standardMarshall-
Palmer formula. Even if the SAR is sensitive only to moderate-to-intense precipita-
tions areas, the geographic correspondence betweenWR and SAR precipitation map is
fairly good with a displacement mainly due to the significant time difference between
the two acquisitions (Fig. 18.10). In terms of accuracy, the mean error is
�2.64 mm h�1 and RMSE is 15.78 mm h�1. The CCDF comparison in Fig. 18.10
shows a tendency to overestimation, mainly due to the sensitivity of X-SAR to the
intense portion of the rain event (leading to select only a part of the WR retrievals).

18 X-Band Synthetic Aperture Radar Methods 333



Fig. 18.8 Voghera case study. Left image is a geocoded quicklook of the CSK acquisition (at 05:18
UTC). Right figure shows the corresponding Italian National Mosaic Vertical Maximum Intensities
(VMI) at 05:30 UTC (~15 min acquisition time); the ellipse approximately encloses the case study
area. (Adapted from Mori et al. 2017b)
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Fig. 18.9 Precipitation maps for the case study of Fig. 18.8. Left map is obtained from X-SAR data
with the procedure of Sect. 18.5.1 (filtered and smoothed to WR resolution), right map is obtained
by WR VMI data and a Marshall-Palmer formula. (Adapted from Mori et al. 2017b)
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18.6 Conclusion

Hydrometeorological applications can represent an appealing goal for spaceborne
SAR missions, especially if high spatial resolution is requested. Forward and inverse
models for SAR precipitation retrieval at X-band have been presented and discussed
in this chapter. The SAR use at C band for flood monitoring is well established, but
SAR observations can be also exploited for detecting marine winds and hurricanes.
The use of Ku and Ka-band SARs for cryosphere applications has been also
proposed, as in the CoRe-H2O mission concept (ESA 2012), but these SAR
frequencies can be also exploited for precipitating cloud observation.

Spaceborne SARs can ensure a global coverage whose orbit duty cycle can be
improved by satellite constellations, such as for COSMO-SkyMed, or operating in
quasi-continuous acquisition mode, such as for Sentinel-1 satellites. Their ground
spatial resolution remains unparalleled by other satellite microwave instruments. A
multi-frequency SAR system can probe precipitating clouds with high-frequency
sensors sensitive to stratiform rainfall and low-frequency sensors capable to sensing
more intense near-surface precipitation. Most of the work to date has focused on
rainfall retrievals over land while retrievals over the ocean are a future objective for
X-SAR rain estimation at high spatial resolution. SAR slant-viewing geometry and
precipitation retrieval processing still present several open issues to be explored in
order to refine the physical-statistical retrieval approaches.

SAR future is characterized by the proposal of new space mission concepts and
technologies. Recent studies exist for a geostationary SAR (e.g., Monti Guarnieri
and Hu 2016) with possible hydrometeorological applications. The increasing of
swath width without losing spatial resolution is under investigation by means of
High Resolution Wide Swath (HRWS) SARs. Other researches explore the

Fig. 18.10 Right plot shows the analysis of the position error between the WR precipitation map
(shaded background) and the SAR one (foreground) for the case study of Fig. 18.8. Values have
been normalized to the maximum of the dataset. Note that the WR data precedes the SAR data by
~12 min. Left plot shows Complementary Cumulative Distribution Function (CCDF) for the same
case study. Blue lines represent SAR data degraded at WR resolution (1000 m); red lines represent
WR data. (Adapted from Mori et al. 2017b)
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feasibility and opportunity of SAR operating at Ka band for single pass interferom-
etry, but also addressing the atmospheric influence. The KydroSAT mission concept
(Mori et al. 2017b) proposes a SAR space mission entirely devoted to hydrology and
cryology. KydroSAT mission concept foresees a miniaturized fully-digital SAR at
Ku and Ka band (KydroSAR), specifically devoted to detecting and estimating
atmospheric precipitation and surface snow; its baseline includes dual-polarization
capability, high orbit duty cycle (>75%), flexible ground resolution (5–150 m), and a
large variable swath (50–150 km), doubled by formation of two mini-satellites both
carrying a KydroSAR. Moreover, the KydroSAT mission concept foresees the
along-track convoy with the COSMO-SkyMed and SAOCOM SAR platforms,
allowing the observation of the same scene at L, X, Ku and Ka bands. The
challenging requirements of this architecture require the development of new tech-
nologies such as Digital Beam Forming and direct digital-to-radiofrequency conver-
sion, which are current frontiers in SAR research. These candidate missions can
effectively contribute and extend the capability to observe the precipitating clouds at
high resolution, according to the principles and techniques discussed in this chapter.
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Chapter 19
Integrated Multi-satellite Retrievals
for the Global Precipitation Measurement
(GPM) Mission (IMERG)

George J. Huffman, David T. Bolvin, Dan Braithwaite, Kuo-Lin Hsu,
Robert J. Joyce, Christopher Kidd, Eric J. Nelkin, Soroosh Sorooshian,
Erich F. Stocker, Jackson Tan, David B. Wolff, and Pingping Xie

Abstract The Integrated Multi-satellitE Retrievals for the Global Precipitation
Measurement (GPM) mission (IMERG) is a US GPM Science Team precipitation
product. IMERG uses inter-calibrated estimates from the international constellation
of precipitation-relevant satellites and other data, including monthly surface precip-
itation gauge analyses, to compute half hour, 0.1� � 0.1� gridded datasets over
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60�N-S (and partially outside of that latitude band) in three “Runs”—Early (4 h after
obs time), Late (14 h after obs time), and Final (3.5 months after obs time). The
concepts behind IMERG are briefly reviewed, together with major shifts related to
changes in versions from the at-launch Version 03 to Version 05, and an outline of
Version 06, which was released in late 2019.

Keywords Precipitation · Rainfall · Snowfall · IMERG · GPM · TRMM · TMPA ·
Microwave · Infrared · GEO · LEO · Raingauges · GPCC · NASA · CMORPH-KF
weighting · PERSIANN-CCS estimates · Uncertainties

19.1 Introduction

The critical role of fresh water for life on Earth, and the necessity of using satellite
data to estimate its ultimate source, precipitation, is a repeated theme throughout this
book. Most of the relatively accurate satellite-based precipitation estimates are
provided by passive microwave (PMW) sensors flying on low Earth orbit (LEO)
platforms. Figure 19.1 shows the entire history of “modern” PMW sensors, which
started in mid-1987 with the Special Sensor Microwave/Imager (SSM/I). It is also
possible to estimate precipitation from infrared (IR) sensors, with geosynchronous
Earth orbit (GEO) satellites providing convenient and relatively complete global
coverage, except in polar latitudes, albeit with lower quality.

The proliferation of LEO-PMW satellites around the start of the millennium made
it possible to create multi-satellite precipitation data sets that had uniform and
increasingly finer-scale time/space grids. Typically, the focus has been on providing
the best short-interval estimates (at the expense of less homogeneity in the data
record), referred to as High Resolution Precipitation Products (HRPP). Examples
include the Climate Prediction Center (CPC) Morphing algorithm (CMORPH; Joyce
et al. 2004), the Global Satellite Mapping of Precipitation (GSMaP; Kubota et al.
2007), and the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Pre-
cipitation Analysis (TMPA; Huffman et al. 2007, 2010).

With the launch of the Global Precipitation Measurement (GPM) mission Core
Observatory (GPM-CO) in February 2014, the US GPM science team instituted the
Integrated Multi-satellitE Retrievals for GPM (IMERG) merged precipitation prod-
uct. This algorithm is intended to inter-calibrate, merge, and interpolate all available
satellite PMW precipitation estimates, together with microwave-calibrated infrared
(IR) satellite estimates, precipitation gauge analyses, and other precipitation estima-
tors, to produce fine time- and space-scale estimates spanning the TRMM and GPM
eras for the entire globe. IMERG is computed three times for each observation time,
first providing an initial estimate and then successively better estimates as more data
arrive. The final step uses monthly gauge data to create research-level products. The
at-launch Version 03 and subsequent Versions 04 and (current) 05 only covered the
GPM era, while Version 06 extends back through the TRMM era.
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Focusing on the current Version 05, Sect. 19.2 describes the input data sets, while
Sect. 19.3 describes the IMERG processing and Sect. 19.4 provides the status of the
data sets. Section 19.5 describes some tests of the algorithm performance with
examples of IMERG applied to typical applications. Section 19.6 presents the status
for Version 06 and concluding remarks.

19.2 Input Data Sets

The precipitation-relevant satellites mentioned above all enter the IMERG compu-
tation as single-sensor precipitation estimates. Subsequently, inter-calibration is
performed to ensure that these are as consistent as possible. The main groupings are:

Fig. 19.1 PMW sensor Equator-crossing times for 12-24 Local Time (LT; 0000-1200 LT is the
same) for the modern PMW sensor era. These are all ascending passes, except F08 is descending.
Shading indicates that the precessing TRMM, Megha-Tropiques, and GPM cover all times of day
with changes that are too rapid to depict at this scale. (Image by Eric Nelkin (SSAI; GSFC), 12 July
2018; https://pmm.nasa.gov/sites/default/files/imce/times_allsat.jpg holds the current version, last
accessed 1 Apr. 2019)
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1. GPM-CO: The GPM Microwave Imager (GMI) is a well-calibrated conical-scan
multi-channel, dual-polarization PMW sensor, and is considered the standard for
the other PMW sensors. Its precipitation retrievals (Kummerow et al. 2015 are
used in IMERG as direct estimates, as well as contributing to the inter-calibration
process. The GPM-CO also carries the scanning Dual-frequency Precipitation
Radar (DPR) which is key to the inter-calibration process as part of the Combined
Radar-Radiometer Algorithm (Olson et al. 2011 and Chap. 14) estimates.

2. PMW constellation: The rest of the GPM era constellation (cf. Figure 19.1) is
composed of satellites of opportunity. The US Defense Meteorological Satellite
Program (DMSP) F16, F17, F18, and F19 Special Sensor Microwave Imager/
Sounder (SSMIS); the Japanese Global Change Observation Mission-Water
(GCOM-W1) Advanced Microwave Scanning Radiometer (AMSR2); and
TRMM Microwave Imager (TMI) are conically scanning imagers, while the
Joint Polar Satellite System (JPSS-1) and Suomi National Polar-orbiting Partner-
ship (SNPP) Advanced Technology Microwave Sounder (ATMS); and European
Meteorological operational satellites (METOP-A and, METOP-B), and the US
National Oceanic and Atmospheric Administration (NOAA-18 and NOAA-19)
Microwave Humidity Sounder (MHS) are cross-track scan sounders. Observa-
tions from all of these sensors are processed using the Goddard Profiling
(GPROF; Kummerow et al. 2015) algorithm to provide precipitation estimates.

3. GEO-IR constellation: IR data from the US Geostationary Operational Environ-
mental Satellite (GOES), the Japanese Himawari, and the European Meteosat
satellite series cover the central Atlantic through to the central Pacific, from there
to the Indian Ocean, and from there to the central Atlantic, respectively. The data
are processed into precipitation retrievals using Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Networks – Cloud Classi-
fication System (PERSIANN-CCS; Hong et al. 2004).

4. Work with previous datasets has shown that incorporating a uniform precipitation
gauge analysis, even at the monthly scale, is important for controlling the biases
that satellite precipitation estimates typically contain. We use the Deutscher
Wetterdienst (DWD) Global Precipitation Climatology Centre (GPCC) V5 Mon-
itoring Product (Becker et al. 2013; Schneider et al. 2014, 2017) through March
2018, and the V6 thereafter.

5. Ancillary products: The IMERG algorithm also accesses surface type (the stan-
dard static map of percent water coverage from the Precipitation Processing
System [PPS]); snow/ice surface extent (AUTOSNOW from NOAA); and sur-
face temperature, relative humidity, and surface pressure (Japan Meteorological
Agency forecasts [for Early and Late] of meteorological data; and the European
Centre for Medium-range Weather Forecasts [ECMWF] analysis [for Final, for
consistency with the GPROF “climatological” run]).
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19.3 IMERG Processing

The input data from the various satellite PMW sensors are assembled, received at
PPS as Level 1 brightness temperatures (Tb) from the relevant providers,
intercalibrated to GMI as GPM Level 1C brightness temperatures (Tc), then
converted to Level 2 precipitation estimates using the V05 GPROF scheme. All
estimates are gridded, inter-calibrated to the Ku swath Combined Radar-Radiometer
(CORRA) product on a rolling 45-day basis using probability matching, and clima-
tologically calibrated to the Global Precipitation Climatology Project (GPCP)
monthly Satellite-Gauge estimates with a simple ratio in high latitude oceans
(where GPM-CO Version 05 products are deficient in precipitation) and over all
land areas (where the CORRA tends to be high). These “high quality” (HQ) data are
combined into half-hourly fields, masked for surface snow and ice (due to uncertain
quality in the GPM-CO products), and provided to both the recalibration of
PERSIANN-CCS infrared estimates and to the semi-Lagrangian time interpolation
scheme adapted from CMORPH-Kalman Filter (CMORPH-KF; Joyce et al. 2011).
In parallel, CPC assembles the zenith-angle-corrected, inter-calibrated “even-odd”
and merged geo-IR fields and forwards them to the PPS for use in the CMORPH-KF
semi-Lagrangian time interpolation scheme and the PERSIANN-CCS computation
routines, respectively. The PERSIANN-CCS estimates are computed (supported by
an asynchronous 30-day re-calibration cycle) and sent to the CMORPH-KF
weighting scheme. The CMORPH-KF weighting scheme (supported by an asyn-
chronous KF weights 3-monthly updating cycle) uses the PMW and IR estimates to
create half-hourly estimates. Note that various intermediate fields are carried through
the processing as necessary to populate the fields in the output file (Table 19.1).
Precipitation phase is computed in the PMW merger step as a diagnostic using
surface type, surface pressure, surface temperature, and surface humidity (after
Sims and Liu 2015). Finally, user requests for a simple Quality Index (QI) led to
two distinctly different QI definitions for the half-hourly and monthly data sets in
Version 05 (https://pmm.nasa.gov/sites/default/files/document_files/IMERG_QI.pdf,
last accessed 17 Nov. 2018).

IMERG is processed twice in near-real time:

• “Early” multi-satellite product ~ 4 h after observation time and
• “Late” multi-satellite product ~ 14 h after observation time, and once after the

monthly gauge analysis is received
• “Final” satellite-gauge product ~ 3.5 months after the observation month.

For the Final product the half-hour multi-satellite estimates are adjusted to equal
the monthly satellite-gauge combination computed in a monthly IMERG estimate
(following the TMPA approach). In all Runs, the output contains multiple fields that
provide information on the input data, selected intermediate fields, and estimation
quality (Table 19.1).

To ensure a consistent archive of data for all users, all three runs of IMERG are
retrospectively processed, including for Version 05. In practice, IMERG is first
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retrospectively processed as the Final Run, then again with calls that mimic the
processing for Early and Late, but using the data available to the Final. Specifically,
the selection of input data available to the retrospective Early Run is approximated
by limiting the forward time span of data to the typical latency time (~3 h) before the
Early run time (currently 4 h after observation time). The Late uses both backward-
and forward-morphing, but neither the Early nor Late Runs are given gauge data.
These choices cause the Early and Late Runs to be reprocessed with a superset of
input data covering the original runs, and the input data from a particular sensor are
produced by the climatological GPROF estimates (computed with more-carefully
prepared reanalysis data). Retrospective processing for both the Early and Late Runs
is carried out after retrospective processing for the Final Run.

All output data files have multiple data fields with project-mandated metadata and
are written in HDF5, which is compatible with NetCDF4. All fields are produced for
all Runs, as listed in Table 19.1. Since the PPS provides interactive data subsetting
by time, region, and parameter, users are not required to download the entire file.
Furthermore, both the PPS and the Goddard Earth Science Data and Information
Services Center (GES DISC) create value-added products that give the user addi-
tional formats and/or periods of accumulation (https://pmm.nasa.gov/data-access/
downloads/gpm, last accessed 17 Nov. 2018, provides a current summary).

Table 19.1 Lists of data field variable names and definitions to be included in each of the output
datasets. Primary fields for users are in italics

Half-hourly data file (Early, Late, Final)

precipitationCal Multi-satellite precipitation estimate with gauge calibration
(recommended for general use)

precpitationUncal Multi-satellite precipitation estimate

randomError Random error for gauge-calibrated multi-satellite precipitation

HQprecipitation Merged microwave-only precipitation estimate

HQprecipSource Microwave satellite source identifier

HQobservationTime Microwave satellite observation time

IRprecipitation IR-only precipitation estimate

IRkalmanFilterWeight Weighting of IR-only precipitation relative to the morphed
merged microwave-only precipitation

probabilityLiquidPrecipitation Probability of liquid precipitation phase

PrecipitationQualityIndex Quality Index for precipitationCal field

Monthly data file (Final)

precipitation Merged satellite-gauge precipitation estimate (recommended
for general use)

randomError Random error for merged satellite-gauge precipitation

gaugeRelativeWeight Weighting of gauge precipitation relative to the multi-satellite
precipitation

probabilityLiquidPrecipitation Accumulation-weighted probability of liquid precipitation
phase

PrecipitationQualityIndex Quality Index for precipitationCal field
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19.4 IMERG Data Set Status

The at-launch IMERG V03 was processed using pre-launch calibrations, as were all
the other GPM products such as GPROF. The cross-track sounder PMW precipita-
tion retrievals computed from the MHS were processed using an alternative scheme
(Kidd et al. 2016). Version 04 used initial GPM-based calibrations, as well as V04
GPROF for all PMW data, including the cross-track sounder retrievals. Among other
changes, in this version we started dynamically calibrating PERSIANN-CCS to the
HQ merged PMW data, and HQ was extended to cover the entire globe.

IMERG was upgraded to V05 in November 2017, with retrospective processing
occurring over the following 2.5 months. In this version the fully global GPROF
estimates were inserted into the complete precipitation fields (precipitationCal,
precipitationUncal) outside the standard IR domain (60�N-S), although without
morphing or IR fill-in. Recall that GPROF estimates over snowy/icy surface types
are set to missing, so data coverage outside 60�N-S is quite limited. Version 05 also
marked the introduction of the Quality Index. Because the Version 05 GPROF-TMI
estimates had not been computed for the GPM era when the IMERG Runs were
retrospectively processed, TMI retrievals are not included in the V05 IMERG
datasets.

The Early, Late, and Final Runs all cover the practically useful data record from
GPM, starting in March 2014. The Early and Late Runs occasionally suffer data
dropouts and faults in the input data that are transient, but are not corrected until after
processing. PPS consults with the IMERG team in such cases, usually allowing the
deficiency to stand, but occasionally reprocessing the datasets. Such cases are
recorded in the IMERG Technical Documentation (see the link to this document at
https://pmm.nasa.gov/data-access/downloads/gpm, last accessed 17 Nov. 2018, for
the latest listing).

One easy way to get a quick qualitative review of recent IMERG performance
is by viewing the “last week of IMERG” visualization provided by the
Goddard Science Visualization Studio (https://svs.gsfc.nasa.gov/cgi-bin/details.
cgi?aid¼4285, last accessed 17 Nov. 2018).

19.5 IMERG Performance and Examples

A number of studies are available that document IMERG performance, including
the “V05 IMERG Final Run Release Notes” (https://pmm.nasa.gov/sites/default/
files/document_files/IMERG_FinalRun_V05_release_notes-rev3.pdf, last accessed
17 Nov. 2018), various hydrological assessments (e.g., Sharif et al. 2017; Yuan
et al. 2018), and more-general statistical analyses (e.g., Beck et al. 2019; Kim et al.
2017). Additional studies are listed in the GPM citation list (https://pmm.nasa.gov/
resources/gpm-publications, last accessed 17 Nov. 2018).
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One interesting example of IMERG (Late) performance occurred during Hurri-
cane Harvey, which deposited significant, and even all-time record rainfall in the
Houston, Texas area in August 2017. The initial analysis showed that IMERG Late
underestimated precipitation in the Houston area (just west of, and extending
through, Area 1 on Fig. 19.2). However, as the figure shows, Area 2, inland to the
north, showed IMERG overestimates. Furthermore, the time series of area-averages
in Fig. 19.3 demonstrates that these under- and over-estimates occurred simulta-
neously. Clearly, the details of the meteorological setting in the two regions are
driving systematic and different retrieval errors by GPROF. The IR-based precipi-
tation (Fig. 19.3) is systematically low, a fact we ascribe to its trailing calibration to
microwave data: if rain events similar to those in hurricanes have not occurred in the
previous 45 days, the calibrations will very likely lead to weaker estimates than are
needed to match the hurricane’s rainfall.

19.6 Status for Version 06 and Concluding Remarks

The upgrade to Version 06 for IMERG computed in Fall 2019, after this manuscript
went to press. The first major change in this version is carrying the retrospective
processing back into the TRMM era. For dates before the launch of GPM, the
TRMM satellite products will serve as the calibration standard, although some
adjustments are necessary to ensure compatibility with GPM-CO products. For
example, TRMM’s orbital inclination is 35�, so calibration to CORRA must be
approximated in the latitudinal band from that point to 65� (GPM’s inclination) in
both hemispheres. The initial start date is June 2000 to accommodate data

Fig. 19.2 Rainfall accumulations for the week of 25-31 August 2017 over the US Gulf Coast for
NOAA Multi-Radar Multi-Sensor (MRMS) data (left) and IMERG V05 Late estimates (right).
Houston, Texas is just west of Area 1
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availability, but the plan is to extend back to January 1998 when the necessary data
are made available.

Another significant change in Version 06 is shifting the source of the motion
vectors from IR to vertically integrated vapor (TQV) as depicted in the Modern-Era
Retrospective analysis for Research and Applications, Version 2 (MERRA-2) for the
Final Run, and in the Global Earth Observing System Forward Processing (GEOS
FP) for the Early and Late Runs. This change was necessitated by data availability
issues and our intent to extend the morphing technique beyond the 60� N-S latitude
extent of the GEO-IR. Testing indicates that the TQV-based vectors have skill that
equals or slightly exceeds the skill of the IR-based vectors.

Fig. 19.3 Time series of area-average rainfall for the week of 25-31 August 2017 over the US Gulf
Coast for the near-coastal Area 1 (top) and the more inland Area 2 (bottom). Houston, Texas is just
west of Area 1. The IMERG Late averages are labeled precipitationCal, and the IR-based precip-
itation time series is IRprecipitation
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The new TQV-based vectors are computed over the entire globe, so V06
includes morphed PMW estimates wherever the PMW GPROF estimates are con-
sidered reliable. Specifically, in the time available, the IMERG team was not able to
develop the adjustments necessary to tune GPROF over ice and snow surface types,
so areas with ice or snow cover continue to default to IR precipitation (as in previous
versions) in the latitude band 60�N-S, and are set to missing at higher latitudes.
Nonetheless, providing morphed PMW estimates at higher latitudes will provide a
welcome increase in coverage, in summertime land areas, and year-round for open
ocean water.

IMERG V06 processing was pursued during summer 2019, and all runs were
processed for the complete long-record dataset in fall 2019. That milestone started
the countdown to end the computation of the TMPA datasets, which had continued
to be produced, even after the demise of TRMM using climatological calibrations, to
support users who require a long, relatively homogeneous record. Production of the
TMPA datasets was carried to the end of 2019 and ended.
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Chapter 20
Global Satellite Mapping of Precipitation
(GSMaP) Products in the GPM Era

Takuji Kubota, Kazumasa Aonashi, Tomoo Ushio, Shoichi Shige,
Yukari N. Takayabu, Misako Kachi, Yoriko Arai, Tomoko Tashima,
Takeshi Masaki, Nozomi Kawamoto, Tomoaki Mega,
Munehisa K. Yamamoto, Atsushi Hamada, Moeka Yamaji,
Guosheng Liu, and Riko Oki

Abstract As the Japanese Global Precipitation Measurement (GPM) product, the
Global Satellite Mapping of Precipitation (GSMaP) has been provided by the Japan
Aerospace Exploration Agency (JAXA) to distribute hourly global precipitation map
with 0.1� � 0.1� lat/lon grid. Since JAXA started near-real-time processing of the
GSMaP on November 2007, there have been various significant improvements to
the GSMaP. This paper summarizes GSMaP products and related algorithms in the
GPM era and shows validation results in Japan and the United States.
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20.1 Introduction

Satellite-based precipitation datasets have been developed to achieve higher spatial
and temporal resolutions using combined data from passive microwave (PMW)
sensors in low Earth orbit and infrared (IR) radiometers in geostationary Earth
orbit. Global Satellite Mapping of Precipitation (GSMaP) is a blended PMW–IR
precipitation product and has been developed in Japan for the Global Precipitation
Measurement (GPM) mission (Hou et al. 2014; Skofronick-Jackson et al. 2017) as
the Japanese GPM standard product.

The GSMaP algorithms have been improved based on various attributes derived
from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR),
which was the first spaceborne precipitation radar and operated during 1997–2015
(Kummerow et al. 1998; Kozu et al. 2001). The combined use of PR and the TRMM
microwave imager (TMI) has greatly improved rainfall estimation technique. Fur-
thermore, the GPM Core Observatory was launched in Feb. 2014, carrying the Dual-
frequency Precipitation Radar (DPR) and the GPM Microwave Imager (GMI). The
DPR and the GMI have further advanced techniques by expanding the coverage of
observations to higher latitudes than those obtained by the TRMM. Moreover,
precipitation information based on differential scattering properties of the dual
frequencies by the DPR can be helpful for improving the PMW algorithms.

The GSMaP project was initiated and sponsored by the Japan Science and
Technology Agency under the Core Research for Evolutional Science and Technol-
ogy from November 2002 (Okamoto et al. 2005; Kubota et al. 2007), and its major
activity was completed in March 2008. Since April 2008, GSMaP activities have
been implemented under the JAXA Precipitation Measuring Mission (PMM) Sci-
ence Team. Since JAXA started near-real-time processing of the GSMaP on
November 2007 (Kachi et al. 2011), there have been various significant improve-
ments of the GSMaP in the GPM era. This paper summarizes the recent progress of
the GSMaP products and related algorithms. Section 20.2 provides an overview of
the GPM-era GSMaP products. Section 20.3 describes recent GSMaP algorithms.
Section 20.4 illustrates validation results in Japan and the United States. Conclusions
are presented in Sect. 20.5.

20.2 GSMaP Product List in the GPM Era

The GSMaP products in the GPM era mainly comprise the “standard product,”
“near-real-time product,” “real-time product”, and “reanalysis product”. Table 20.1
shows the GSMaP product list in the GPM era. The horizontal resolution is
0.1� � 0.1� lat/lon grid, and the temporal resolution is 1 h. All products are
accessible through the “JAXA Global Rainfall Watch” website (http://sharaku.
eorc.jaxa.jp/GSMaP/, last accessed 15 Oct. 2018) (see Fig. 20.1). In addition, the
standard products and the near-real-time products are also accessible via the JAXA
Globe-Portal (G-Portal) (https://www.gportal.jaxa.jp, last accessed 15 Oct. 2018).
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The standard products are processed 3 days after observations and consist of
satellite-only hourly precipitation rate (GSMaP_MVK, hereafter, MVK) and gauge-
adjusted hourly precipitation rate (GSMaP_Gauge, hereafter, GA).

On the other hand, the near-real-time products are processed 4 h after observa-
tions and consist of satellite-only hourly precipitation rate (GSMaP_NRT, hereafter,
NRT) and gauge-adjusted hourly precipitation rate (GSMaP_Gauge_NRT, hereafter
GA_NRT).

The near-real-time algorithm is based on the standard algorithm, but some
simplifications in the processing are implemented to keep operability and data
latency within near-real-time. The major differences between the near-real-time
and standard processing are as follows.

Table 20.1 GSMaP product list in the GPM era

Product
name Variables Resolution Latency

Update
interval

Standard
product

Hourly Precip Rate
(GSMaP_MVK)

Horizontal:
0.1 � 0.1 deg.
lat/lon
Temporal:
1 h

3 days 1 h

Gauge-adjusted Hourly Precip Rate
(GSMaP_Gauge)

Near-real-
time product

Hourly Precip Rate (GSMaP_NRT) 4 h

Gauge-adjusted Hourly Precip Rate
(GSMaP_Gauge_NRT)

Real-time
product

Hourly Precip Rate
(GSMaP_NOW)

0 h 0.5 h

Reanalysis
product

Hourly Precip Rate (GSMaP_RNL) Occasionally
reprocesses past
periods data

Gauge-adjusted Hourly Precip Rate
(GSMaP_Gauge_RNL)

Fig. 20.1 Image of “JAXA Global Rainfall Watch” website (http://sharaku.eorc.jaxa.jp/GSMaP/,
last accessed 15 Oct. 2018)
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• In the near-real-time processing, forecast data are used as atmospheric
information.

• Latest available data are used for sea surface temperature (SST) information.
• Only temporarily forward cloud movement is used in the PMW–IR combined

algorithm.
• Only statistical parameters are used in gauge-adjustment algorithm.

Furthermore, the real-time product “GSMaP_NOW” (hereafter, NOW) is
processed to produce estimates at the current hour. The NOW has been provided
over the Japan Meteorological Agency (JMA)‘s geostationary satellite “Himawari-
8” (Bessho et al. 2016) region since November 2015. Since November 2018, the
NOW has been extended to regions of the European Organization for the Exploita-
tion of Meteorological Satellites (EUMETSAT). Further extensions to other global
domains were established using satellite data from the National Oceanic and Atmo-
spheric Administration (NOAA) in June 2019. Major differences between real-time
and near-real-time processing are as follows.

• In the real-time processing, data that is available within 0.5 h after observations
are collected, while the data that is available within 3 h are collected in the near-
real-time processing.

• Data received at direct readout stations for Advanced Microwave Scanning
Radiometer-2 (AMSR2) and the Direct Broadcast Network (DBNet) are used to
increase PMW data collection in the real-time processing.

• A 0.5-h forward extrapolation (future direction) applied by cloud motion vector is
used to produce estimates at the current hour.

• The NOW product is updated half-hourly, while other products are updated
hourly.

These features and differences among products are directly related to accuracies
of the products, which are later verified in this paper using gauge-corrected ground-
radar dataset.

Reanalysis products (GSMaP_RNL and GSMaP_RNL_Gauge) are calculated
with Japanese 55-year reanalysis (JRA55) (Kobayashi et al. 2015; Harada et al.
2016) and occasionally reprocesses historical data. The data of March 2000 to
February 2014 are now available in the reanalysis product. Our preliminary analyses
show differences between the reanalysis and the standard products are small and
therefore, users can combine these for long-term analyses. This reanalysis product
has been scheduled to be integrated into the standard product around early 2020 in
the JAXA GPM mission.

In addition, the RIKEN, a research institute in Japan, has provided GSMaP
RIKEN Nowcast (GSMaP_RNC) data developed based upon Otsuka et al. (2016)
since 2017. This data is also available from JAXA/EORC ftp site.
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20.3 Algorithm Description

The GSMaP products were significantly updated on September 2014 and January
2017 after the GPM Core Observatory was launched. The product corresponding to
the algorithm updates on September 2014 is referred to as Product version V03 and
Algorithm version V6, and the product corresponding to the algorithm updates on
January 2017 is referred to as Product version V04 and Algorithm version V7. In this
section, algorithms are summarized referring to previous papers, and algorithm
versions are used for classification between both updates. Evolutions of the algo-
rithms from V6 to V7 are briefly summarized in Sect. 20.3.9. Currently, both V6 and
V7 algorithms are processed at the JAXA.

20.3.1 Overall Algorithm Framework

Core algorithms of the GSMaP products are based on those provided by the GSMaP
project: PMW precipitation retrieval algorithm, PMW–IR combined algorithm, and
gauge-adjustment algorithm. Figure 20.2 shows a process flowchart for the GSMaP
product.

The GSMaP algorithms use several ancillary data as operational inputs. JMA
global analysis (GANAL) and forecast (FCST) data set, which have 6-hourly and
0.5� grid box resolution, are used as ancillary data of atmospheric conditions to
calculate look-up tables (LUTs), which are referenced by the PMW algorithms.

Fig. 20.2 Process flowchart for the GSMaP product
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GANAL data are used to process standard products, and FCST data are used to
process near-real-time products. In the reanalysis product, the JRA-55 data
(6-hourly, TL319L60 model grid) are used instead of operational data. The JMA
merged satellite and in situ data global daily SST (MGDSST) data, which are on a
0.25� grid box, are used as ancillary data of SST for calculating LUTs, which are
referenced by the PMW algorithms.

The NOAA Climate Prediction Center (CPC) unified gauge-based analysis of
global daily precipitation (Chen et al. 2008), which is on a 0.5� grid box, has been
used as an input to calculate gauge-adjusted rainfall.

Climatological sea ice values from the JAXA Advanced Microwave Scanning
Radiometer for EOS (AMSR-E) product were used for screening sea ices in V6,
while ancillary data for surface snow were not used. In the V7, the NOAA National
Environmental Satellite, Data, and Information Service (NESDIS) multi-sensor
snow/ice cover maps were used as ancillary data to detect the sea ice and the surface
snow, which are referenced by the PMW algorithms.

20.3.2 Outline of the PMW Algorithm

The PMW algorithm retrieves global precipitation rates from PMW sensor bright-
ness temperatures (Tbs). The PMW algorithm has been improved based upon the
Microwave Imager (MWI) algorithm of Aonashi et al. (2009). The basic idea of the
PMW algorithm is to find precipitation rates that give Tb, computed through
radiative transfer model, that best fit with the observed Tbs. The MWI algorithm
employs polarization corrected temperatures (PCTs) at higher frequencies (37 and
85 GHz for the TMI) over land and coast, and Tbs with vertical polarization at lower
frequencies (10, 19, and 37 GHz for the TMI) in addition to the higher frequency
PCTs over ocean. Several modifications due to sensor specifications are highlighted
in Sect. 20.3.5.

20.3.3 Methodology in the PMW Algorithm

The PMW algorithm consists of a forward calculation part and a retrieval part. In the
forward calculation part, LUTs are calculated for homogeneous precipitation by
incorporating atmospheric and surface variables of the GANAL or FCST data and
precipitation physical models based on spaceborne precipitation radar observations
into the RTM program of Liu (1998). The precipitation physical models have been
developed in previous efforts (Takayabu 2008; Takahashi and Awaka 2005; Kozu
et al. 2009; Yamaji et al. 2017). In the construction of the model, the TRMM/PR data
were used in V6 algorithm, and both the TRMM/PR and GPM/DPR data were used
in the V7 algorithm. The land surface emissivity was used from the TRMM
observations (Furuzawa et al. 2012). LUTs for inhomogeneous precipitation are
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derived from the above LUTs using the approximations of Aonashi and Liu (2000)
and Kubota et al. (2009a).

The retrieval part of the PMW algorithm performs the detection of rainfall using
scattering signals over land, and emission signals over ocean. Methods of Seto et al.
(2005, 2008, 2016), Mega and Shige (2016), and Kida et al. (2009, 2010a) were
adopted for the rainfall detection over land, coastal areas, and ocean, respectively.
Seto et al. (2005) was used in both V6 and the V7 in the TMI over-land algorithm. In
the algorithms for the other PMW sensors, Seto et al. (2008) was applied in V6, and a
method using the DPR and the GMI (Seto et al. 2016), similar to Seto et al. (2005) of
TRMM, was applied in V7. In addition, the over-ocean detection is improved in V7
by consideration of cloud liquid water estimated from 37 GHz Tbs (Aonashi et al.
2016).

Dual-frequency PCTs (at 37 and 85 GHz for TMI) are employed in retrievals
using scattering signals. An adjustment method is introduced using indices of frozen
precipitation depth and surface temperature. In the over-ocean retrieval using emis-
sion signals, a rainfall rate is derived by minimizing a cost function for lower
frequency, vertically polarized Tbs (10, 19, and 37 GHz for the TMI), with the
scattering retrievals as the first guess.

20.3.4 Orographic/Non-orographic Rainfall Classification
Scheme

Over coastal mountain ranges, heavy rainfall can be caused by shallow orographic
rainfall, which is inconsistent with the assumption in the PMW algorithm that heavy
rainfall results from deep clouds with significant ice. For example, severe underes-
timation of the GSMaP rainfall estimates in old versions were found over orographic
rainfall areas in Japan (Kubota et al. 2009b). Therefore, orographic/non-orographic
rainfall classification scheme was developed (Shige et al. 2013; Taniguchi et al.
2013) and installed in the PMW algorithm. LUTs for orographic rainfall are calcu-
lated according to Shige et al. (2014). In addition, a detection scheme has been
developed for orographic rainfall areas where the LUTs for orographic rainfall are
applied. The scheme and modified one were installed in V6 (Yamamoto and Shige
2015) for the TMI and V7 (Yamamoto et al. 2017) for all sensors, respectively.

20.3.5 Modifications Due to Sensor Specifications

While the basic structure described above is common to the PMW algorithms,
several modifications have been applied because of sensor specifications. Shige
et al. (2009) developed a Microwave Sounder (MWS) algorithm which combines
an emission-based estimate from Tb data at 23 GHz and a scattering-based estimate
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from Tb data at 89 GHz over ocean, depending on a scattering index computed from
Tb at both 89 and 150 GHz. The scattering index, which is designed on the basis that
Tb decreases in response to scattering by precipitation at these frequencies, also
responds to emission in light rain with a low concentration of cloud liquid water,
leading to detection of light rain pixel (Kida et al. 2010b). In addition, the MWS
algorithm adopts a rain/no-rain classification method over land using 150 and
183 GHz channels, as described in Kida et al. (2017).

The Special Sensor Microwave Imager/Sounder (SSMIS) or Special Sensor
Microwave/Imager (SSM/I) do not have 10 GHz channels. Therefore, the over-
ocean algorithms for the SSMIS and the SSM/I us the normalized polarization
differences (Petty 1994) at 19 GHz, and combine them with emission-based esti-
mates from Tb at 19 GHz vertical polarization and scattering-based estimates from
the PCTs at 89 GHz (Hashizume et al. 2006; Kubota et al. 2011).

20.3.6 Snowfall Estimation Method

Recently, a snowfall estimation algorithm was implemented in the V7 algorithm
(Kubota et al. 2018). In the V6 or earlier versions, there was no snowfall estimation
in the GSMaP products. The snowfall estimation method can be divided into a
method of classifying precipitation phase (rain/snow) and if determined to be snow,
a method of estimating snowfall intensity. Here, the rain/snow classification method
is based upon the method of Sims and Liu (2015), with inputs of the GANAL/FCST
data. Based on the results of past ground observations, the method determines the
precipitation phase, whether rain or snow. The snowfall intensity estimation method
was developed using the CloudSat-GPM coincidence dataset, based upon the
method of Liu and Seo (2013). This statistical method which uses radar observations
to train the PMW data uses information contained in the first three principal
components that resulted from an empirical orthogonal function. In the V7, the
snowfall estimation method was installed for GMI and the SSMIS sensors.

20.3.7 PMW–IR Combined Algorithm

The PMW–IR combined algorithm integrates PMW data with infrared radiometer
data to achieve high temporal (1 h) and spatial (0.1 degree) resolution global
precipitation estimates. The product is produced based on a Kalman filter model
that refines the precipitation rate propagation based on the atmospheric moving
vector derived from two successive IR images (Ushio et al. 2009). Noise and
coefficients in the Kalman filter model are calculated once a week using IR and
PMW data during the past 30 days, as described in Fig. 20.2. As noted in Sect. 20.2,
both temporarily forward and backward cloud motions are used in the MVK, while
only temporarily forward cloud motion is used in the NRT and the NOW.
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20.3.8 Gauge-Adjustment Algorithm

The GA algorithm adjusts the MVK estimates with the NOAA/CPC unified gauge-
based analysis of global daily precipitation. The estimate is adjusted only over land.
The rain rate over ocean from GA and GA_NRT are the same as those from MVK
and NRT, respectively. The algorithm uses an optical estimation scheme, in which
the solution is calculated by maximizing the probability density function defined in
the system model (Mega et al. 2019). The hourly rain rate of the GA is adjusted by
this algorithm so that the sum of the 24-h rain of the GA rate is roughly the same as
the gauge measurement. A number of gauges available in each 0.5 deg. lat/lon grid
box was considered in V7, while it was not considered in V6. While the parameters
were assumed to be constant in the V6 GA_NRT, statistical parameters were
improved to be calculated from data during the past 30 days in the V7 GA_NRT.
On the other hand, a method similar to the GA_NRT V7 was also applied to the
GA_NRT V6 as a minor version-upgrade in December 2018. Therefore, the
GA_NRT method is essentially identical between V6 and V7 after December 2018.

20.3.9 Brief Summary of Evolutions from V6 to V7

In the above sub-sections, the algorithms were described for both V6 and the V7.
Table 20.2 provides a brief summary of evolutions in the algorithms from V6 to V7.

Table 20.2 Brief summary of evolutions in the algorithms from V6 to V7

Item V6 V7

Utilization of spaceborne radar data in
precipitation physical models

TRMM/PR TRMM/PR and GPM/DPR

Ancillary data for sea ice JAXA AMSR-E
(climatological)

NESDIS

Ancillary data for surface snow None NESDIS

Detection over the land for
MWI/SSMIS/GMI

Seto et al. (2008) Seto et al. (2016)

Detection over the ocean for
MWI/SSMIS/GMI

Kida et al. (2009,
2010a)

Kida et al. (2009, 2010a) and
Aonashi et al. (2016)

Orographic/non-orographic rainfall
classification scheme

Yamamoto and Shige
(2015) for the TMI

Yamamoto et al. (2017) for
all sensors

Snowfall estimation method Not implemented Implemented in
GMI/SSMIS

Consideration of gauge numbers in the
gauge-adjustment algorithm

Not included Included
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20.4 Validation Results of the GSMaP Products

The validation of satellite products using ground instruments can be helpful to
understand the products strengths and limitations. Validation results using gauge-
corrected radar data around Japan and the contiguous United States (CONUS) are
shown in this section. The GSMaP V6 products are analyzed here, and the validation
using the GSMaP V7 has been left for future works. As noted in the previous section,
the GA_NRT V6 had significant improvements in December 2018, and thus not
considered in the validations.

20.4.1 Comparisons of the GSMaP Products Around Japan

This sub-section compares the GSMaP Products listed in Sect. 20.2 around Japan
with reference to a ground-radar dataset calibrated by rain gauges provided by
the JMA, termed “Radar-AMeDAS” data. Here, observation areas of the Radar-
AMeDAS were limited to within 250 km of radar sites. In addition, the NOAA/
NESDIS hydro-estimator (H-E) (Vicente et al. 1998, 2002; Scofield and Kuligowski
2003) is also analyzed because the H-E is a well-known IR-based satellite rainfall
product with a latency of less than 30 min. Although previous work (e.g., Ebert et al.
1996; Smith et al. 1998; Beck et al. 2017) indicate that the IR-based products are less
accurate than the PMW-based product, the low latency of the IR-based products
can be attractive for users. The NOW system was developed with a higher priority
on low latencies, and comparisons between the H-E and the NOW are interesting as
both products have similar latencies.

Figure 20.3 shows the horizontal distribution of the daily rain amount around
Japan in 0.25 deg lat/lon grid on June 25, 2017. The rainfall pattern related to the
Baiu front, which is typical in a rainy season around Japan, was around the southern
coast of Japan’s main islands. Here, root mean square error (RMSE) and correlation
coefficient (CC) are adopted as statistical indices and noted in the figures. The CC is
sensitive to the rainfall spatial pattern, and the RMSE is sensitive to the rainfall
intensity. Among the GSMaP products, the GA has the lowest RMSE and highest
CC, while the NOW has the highest RMSE and lowest CC. On the other hand, the
NOW shows better results than the H-E for this case study (Fig. 20.3).

To obtain more reliable results, these analyses were extended to a 21-month
period: Apr. 1, 2017 to Dec. 31, 2018. Figure 20.4 shows the time series of the CC
for the GSMaP products and the H-E referenced to the JMA’s Radar-AMeDAS
around Japan, and Fig. 20.5 shows the time series of the RMSE. Table 20.3 shows
the CC and RMSE averaged values over 21 months. Table 20.3 clearly indicates the
accuracies of the GSMaP products, where GA > MVK > NRT > NOW. This
tendency was stable in the time series of the CC (Fig. 20.4) and the RMSE
(Fig. 20.5). The GA has the best accuracy because of the adjustment using the
gauge. As in Kubota et al. (2009b) and Kachi et al. (2011), seasonal changes of the
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spatial correlation coefficients were found for the MVK, the NRT, and the NOW,
because of poor skills caused by false signals related to surface snow in a cold
season. On the other hand, amplitudes of the seasonal changes were smaller in the
GA, and this suggests that the poor skills in the colder season were mitigated in the

Fig. 20.3 Distribution of the daily rain amount around Japan on June 25, 2017 for (a) JMA radar-
AMeDAS, (b) GA V6, (c) MVK V6, (d) NRT V6, (e) NOW V6, and (f) Hydro-Estimator (H-E)

Fig. 20.4 Time series of the correlation coefficient (CC) for the GSMaP products and the H-E with
reference to the JMA’s Radar-AMeDAS around Japan in 0.25 deg lat/lon grid and daily accumu-
lation from Apr. 1, 2017 to Dec. 31, 2018. Monthly mean was applied to the daily CC values. Open
circles denote the GA; closed circles denote the MVK; plusses denote the NRT; crosses denote the
NOW; and triangles denote the H-E
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GA. As noted in Sect. 20.3.2, some simplifications in the processing are
implemented in the NRT to keep operability and data latency in near-real-time,
and thus, results of the MVK are better than those of the NRT. With respect to
comparison of the NRT and the NOW, the NOW uses the PMW–IR combined
algorithm in wider areas than the NRT, due to decreases of the PMW coverage
caused by its earlier data collection. As noted in Sect. 20.3.2, the NOW adopted a
0.5-h forward extrapolation. However, degradation of the 0.5-h forward extrapola-
tion was examined with reference to JMA’s Radar-AMeDAS, and results showed
that this can be regarded as small (not shown). Therefore, the poorest accuracy of the
NOW may be due to the decreases of the PMW coverage. These results suggest an
evident trade-off between latency and accuracy, and the choice of a GSMaP product
should be dependent upon its purposes.

The H-E has the worst CC averaged value, and its RMSE average is slightly
worse than that of the NOW (Table 20.3). While the CC values for the NOW were
better than those for the H-E in all periods (Fig. 20.4), the H-E has the better RMSE
values than the NOW over some periods (Fig. 20.5). In the NOW, displacements of
rain peaks can occur because the cloud motion may be inconsistent with the rain
movement in areas of strong wind shear. Worse results of the NOW in RMSE

Fig. 20.5 Time series of the root mean square error (RMSE) for the GSMaP products and the H-E
with reference to the JMA’s Radar-AMeDAS around Japan in 0.25 deg lat/lon grid and daily
accumulation from Apr. 1, 2017 to Dec. 31, 2018. Monthly mean was applied to the daily RMSE
values. Open circles denote the GA; closed circles denote the MVK; plusses denote the NRT;
crosses denote the NOW; and triangles denote the H-E

Table 20.3 Values of the CC and RMSE averaged during 21 months: April 2017 to
December 2018

Product name GA MVK NRT NOW H-E

CC 0.71 0.63 0.61 0.56 0.46

RMSE (mm/h) 0.28 0.33 0.35 0.44 0.45
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implies such rain peak displacements may be problematic in the NOW. Thus, the
PMW-based real-time technique in the NOW showed better performances than the
IR-based estimates from the H-E, in particular, for spatial patterns evaluated by the
CC, while there can be still future tasks in the NOW, including issues of strong wind
shear.

20.4.2 Validation Using the US Radar Network

This sub-section provides validation results over the CONUS using Multi-Radar
Multi-Sensor (MRMS) precipitation data (Zhang et al. 2011, 2016). The MRMS is a
system with automated algorithms that quickly and intelligently integrates data
streams from multiple radars, surface observations, and various data sources. Here,
the Level-3 MRMS dataset processed in support of the GPM Mission (Kirstetter
et al. 2012; Tan et al. 2016) was used. The analysis is conducted over 3 months: June
2015 to August 2015. The original spatial resolution of the Level-3 MRMS is 0.01
degrees, and it was converted to the same grid of 0.1� � 0.1� as the GSMaP.

Figure 20.6 shows distributions of rainfall over June to August 2015 (92 days) for
the MRMS, MVK V6, and GA V6. In this paper, the MRMS was analyzed over
areas where the radar quality index (RQI) was more than 50. The RQI ranges
between from 0 (lowest confidence) to 100 (highest confidence) and observations
of the MRMS over Rocky Mountains were partly excluded by the condition of
the RQI > 50. In all the figures, rainfall is largest in the central portion of the US,
decreasing to the eastern as well as western parts.

Two-dimensional distribution functions between the MRMS and the GSMaP are
shown in Fig. 20.7. Here, daily rain amounts of the MRMS and the GSMaP were
calculated with 379 boxes of the 1.5� � 1.5� lat/lon grids over the CONUS, and
Fig. 20.7 shows that both GSMaP estimates corresponded well with that of the
MRMS. The statistical values denoted in Fig. 20.7 were calculated for every
0.2 mm h�1 bins of the MRMS up to 2.0–2.2 mm h�1 with more than 10 samples.

Fig. 20.6 Accumulated rainfall (mm year�1) over 3 months: June to August 2015 for (a) MRMS,
(b) MVK V6, and (c) GA V6. The MRMS was analyzed over areas where the RQI was more
than 50
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For the MVK and GA, the averages are basically distributed along the one-to-one
line, which suggests biases in both GSMaP products are relatively small. Here, errors
were calculated as normalized absolute differences, i.e., |GSMaP-MRMS|/MRMS
(%), in the bins. The largest value among the error for the MVK is 26.59%, found in
the bin of 1.0–1.2 mm h�1, and that for the GA is 22.75% found in the bin of
0.2–0.4 mm h�1. On the other hand, standard deviations of the GSMaP in bins of the
MRMS, denoted by the bars, were much larger in the MVK than in the
GA. The largest value among the standard deviations for the MVK is
1.13 mm h�1, and that for the GA is 0.51 mm h�1, found in the bin of
2.0–2.2 mm h�1. This suggests that the adjustment using the gauge data largely
reduced the daily variation of the errors.

20.5 Conclusions

As the Japanese GPM product, the GSMaP products have been provided by JAXA
to distribute hourly global precipitation map with 0.1� � 0.1� lat/lon grid. Since
JAXA started near-real-time processing of the GSMaP on November 2007, there
have been various significant updates to the GSMaP. This paper describes the
GSMaP products and related algorithms in the GPM era. It also shows validation
results over Japan and CONUS. Based upon the validation results around Japan, the
accuracy of the GSMaP products have been verified to be as follows: GA > MVK >
NRT > NOW. This suggests the evident trade-off between latency and accuracy, and
the choice of a GSMaP product should depend upon its purposes. The comparison
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Fig. 20.7 Two-dimensional distribution function of daily precipitation over 3 months from June to
August 2015. Horizontal axis shows the rain rate of the MRMS, and vertical axis shows rain rates of
(a) MVK and (b) GA. Hatch color shows the sample number of occurrences. The average value
(squares) and the standard deviation (1 sigma, bars) are shown for bins of 0.2 mm h�1 of the MRMS
with the horizontal axis as a reference. The broken line is a one-to-one line
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between the NOW and the H-E suggests that the PMW-based real-time technique
in the NOW can be better than the IR-based estimates, in particular, for the
spatial patterns. The validation results over the CONUS during Jun.-Aug. 2015
suggest that the adjustment using the gauge data largely reduced the daily variation
of the errors.

The Algorithm V6 released on September 2014 and V7 released on January 2017
after the launch of the GPM Core Observatory were described in this paper. The
following version, V8 is now scheduled to be released in 2020. Algorithm develop-
ments toward V8 are currently in progress. These will be described in future articles.
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Chapter 21
Improving PERSIANN-CCS Using Passive
Microwave Rainfall Estimation

Kuo-Lin Hsu, Negar Karbalee, and Dan Braithwaite

Abstract Re-calibrated PERSIANN-CCS is one of the algorithms used in “Inte-
grated Multi-satellitE Retrievals for GPM” (IMERG) to provide high-resolution
precipitation estimations from the NASA Global Precipitation Measurement
(GPM) program and retrospective data generation for the period covered by the
Tropical Rainfall Measurement Mission (TRMM). This study presents the develop-
ment of a re-calibrated PERSIANN-CCS algorithm for the next-generation GPM
multi-sensor precipitation retrieval algorithm (IMERG). The activities include
implementing the probability matching method to update PERSIANN-CCS using
passive microwave (PMW) rainfall estimation from low earth orbit (LEO) satellites
and validation of precipitation estimation using radar rainfall measurement. Further
improvement by the addition of warm rain estimation to the PERSIANN-CCS
algorithm using warmer temperature thresholds for cloud image segmentation is
also presented. Additionally, developments using multispectral image analysis and
machine learning approaches are discussed and proposed for future studies.

Keywords Precipitation · Rainfall · PERSIANN · GPM · TRMM · Microwave ·
Infrared · GEO · LEO · Raingauges · Multispectral imagery · Cloud classification ·
Deep neural network

21.1 Introduction

Satellite-based precipitation algorithms use information from the visible to infrared
(IR) bands of Geosynchronous Earth Orbit (GEO) satellites and the passive micro-
wave bands from Low Earth Orbit (LEO) satellites. Samples are available every
15–30 min from GEO satellites, but the information is indirectly related to surface
rainfall. Some improvements have been reported with cloud classification
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approaches that use texture measures and cloud-patch identification as well as
combining information from multi-spectral imagery (Adler and Negri 1988; Ba
and Gruber 2001; Behrangi et al. 2009a, 2010b; Bellerby 2004; Capacci and
Conway 2005; Griffith et al. 1978; Hong et al. 2004; Scofield 1987; Turk and Miller
2005; Wu 1985; Vicente et al. 1998). Microwave (MW) sensors on LEO satellites
can provide sensing of rain clouds more directly. Their low sampling frequency,
however, limits the effectiveness of the rainfall retrievals. Effective integration of
multiple LEO and GEO satellite information sources can be used to improve rainfall
retrievals at short-time scales. Improvements in precipitation retrieval have been
reported by locally adjusting GEO-IR retrievals using near-real-time LEO
PMW-based rainfall estimation (Behrangi et al. 2009b; Bellerby et al. 2009;
Bellerby 2004; Hsu et al. 1997; Hsu and Sorooshian 2009; Huffman et al. 2007;
Kidd et al. 2003; Marzano et al. 2004; Sorooshian et al. 2000; Tapiador 2008; Todd
et al. 2001; Turk and Miller 2005; Xu et al. 1999). The Self-Calibrating Multivariate
Precipitation Retrieval (SCaMPR) algorithm estimates rainfall at a fine temporal
resolution using PMW and GEO satellites. SCaMPR uses Special Microwave
Sensor Imager (SSM/I) data to distinguish between rain/no-rain pixels, and then
uses Geostationary Operational Environmental Satellites (GOES) data to calibrate
the relationship between Tb-RR via linear regression for the precipitating pixels
(Kuligowski 2002, 2010, 2016). Kidd (2003) used the histogram matching technique
between PMW rainfall data and IR cloud-top temperature to estimate rainfall over
Africa during a 4-month calibration period. More recent developments that include
morphing PMW rainfall according to cloud advection from GEO-IR imagery have
been found to be effective in improving rainfall retrievals (Behrangi et al. 2010b;
Bellerby et al. 2009; Hsu and Sorooshian 2009; Joyce et al. 2004; Joyce and Xie
2011; Ushio et al. 2009). The Climate Prediction Center morphing method
(CMORPH) uses motion vectors from dynamic GEO-IR images to fill the temporal
gaps between two available PMW rainfall estimates (Joyce et al. 2004). The Tropical
Rainfall Measuring Mission’s (TRMM) Multisatellite Precipitation Analysis
(TMPA) combined precipitation estimates from multiple satellites, as well as gauges
where feasible, to generate rainfall data with a 0.25� � 0.25� resolution every 3 h.

The PERSIANN algorithm is an adaptive, multi-platform precipitation estimation
algorithm, which uses an artificial neural network model to merge high quality,
sparsely sampled data from NASA, NOAA, and DMSP low-altitude polar-orbit
satellites with frequently sampled data from geosynchronous satellites (Hsu et al.
1997, 1999; Sorooshian et al. 2000). The near-global product is available at 0.25�

spatial resolution and hourly temporal resolution. Since the original development
work on PERSIANN, further enhancements and improvements have been ongoing
at UC Irvine. Some relevant activities include: (1) extending cloud classifications
from individual cloud pixels to individual cloud patches based on the PERSIANN-
Cloud Classification System (PERSIANN-CCS) (Hong et al. 2004, 2005; Hsu et al.
2007, 2010; Behrangi et al. 2010a); (2) improving rainfall estimates using enhanced
multi-spectral data from the GOES-R satellite (PERSIANN-MSA: Behrangi et al.
2010a, b); (3) developing rainfall estimates based on cloud patch dynamic tracking
(LMODEL: Bellerby et al. 2009; Hsu and Sorooshian 2009); (4) developing rainfall
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estimates based on the combination of LEO and GEO satellite information
(REFAME; Behrangi et al. 2010b, 2012); and (5) using machine learning algorithms
for rainfall estimation from multiple spectral images (Akbari Asanjan et al. 2018;
Hayatbini et al. 2019; Pan et al. 2019; Tao et al. 2016, 2017).

Building upon the success of TRMM, which operated from November 1997 to
April 2015, the Global Precipitation Measurement (GPM) satellite was launched in
February 2014. GPM is a concept based on using the available LEO-PMW satellite
data and adding GEO-IR-based precipitation data to provide global precipitation
estimation at near real time. One key dataset from the NASA GPM program is the
IntegratedMulti-Satellite Retrievals for GPM (IMERG). IMERG integrates LEO and
GEO satellite information as well as surface precipitation gauge analysis to provide
global precipitation (IMERG ATBD V.5.1, Huffman et al. 2018). IMERG is a
merged retrieval using algorithms developed from (1) TRMMMulti-satellite Precip-
itation Analysis (TMPA), (2) Climate Prediction Center Morphing with Kalman
Filter (CMORPH-KF), and (3) microwave re-calibrated PERSIANN-CCS (Huffman
et al. 2007, Joyce and Xie 2011, Hong et al. 2004). IMERGwas developed to provide
better quality and shorter time latency for global precipitation monitoring at
0.1� � 0.1� and half-hourly samples. The time latencies are around 4 and 12 h from
observation time for the “Early” and “Late” near real-time IMERG data products,
respectively. The “final” satellite-gaugemerged product is available around 2-months
after observation time (IMERG ATBD V.5.1, Huffman et al. 2018).

This study presents the improvements made to PERSIANN-CCS. Specifically,
we highlight the results of incorporating precipitation data from various sources
which is essential to improve estimates of PERSIANN-CCS. This is primarily
because the original algorithm uses IR data to estimate precipitation indirectly
from the cloud-top temperature and that is associated with some inherent uncer-
tainties. The scope of this manuscript is as follows. Re-calibration of PERSIANN-
CCS is described in Sect. 21.3. Evaluation of the re-calibrated PERSIANN-CCS is
provided in Sect. 21.4. Improvements made in warm rain estimation are discussed in
Sect. 21.4. Finally, conclusions and future directions are provided in Sect. 21.5.

21.2 Re-calibration of PERSIANN-CCS

High-resolution satellite rainfall products are needed for many hydro-meteorological
applications. In the NASA Global Precipitation Mission (GPM) program, the Inte-
grated Multi-satellitE Retrieval for GPM (IMERG) is designed to provide an effec-
tive near global precipitation retrieval by combining precipitation estimates from the
morphed passive microwave estimation (CMORPH-KF, Joyce and Xie 2011) and
the re-calibrated PERSIANN-CCS estimation (see Fig. 21.1) (Huffman et al. 2018).
The IMERG products are made available to provide half-hourly and monthly
precipitation estimates and related fields on 0.1� � 0.1� lat./long. grid over the
domain 60�N-60�S. The UC Irvine team has been working closely with NASA’s
GPM Multi-Satellite Working Group to develop a GPM multi-sensor precipitation
retrieval algorithm.
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21.2.1 PERSIANN-CCS

Rainfall estimations from PERSIANN-CCS consist of four major steps: (1) GEO-IR
cloud image segmentation, (2) feature extraction from GEO-IR cloud patches,
(3) patch feature classification, and (4) rainfall estimation. The classification and
rainfall estimation using PERSIANN-CCS is shown in Fig. 21.2 (Hong et al. 2004,
Hsu et al. 2010). PERSIANN-CCS implements image processing and pattern clas-
sification techniques based on analysis of GEO-IR (10.7 μm) cloud images. During
low-level image processing, a “watershed delineation process” using brightness
temperature (Tb ¼ 253 K) is applied to separate cloud patches from their image
background. This is followed by image extraction and interpretation, in which cloud
patches are treated as independent objects and described by object features such as
patch coldness, size, shape, and texture. Classification of cloud patch objects is based
on an unsupervised self-organizing feature map clustering scheme. When rainfall is
assigned to a classified patch group, it establishes an interpretative relationship
between the cloud patch property and rainfall. Finally, the classified patch group’s
rainfall distribution is described by a set of GEO-IR brightness temperature and
rainfall rate (Tb-R) functions. Parameters of the nonlinear Tb-R function are cali-
brated from spatially and temporally co-located satellite image and radar/PMW
rainfall maps.

Figure 21.3a shows cloud images as classified into 400 groups, where each group
is associated with a unique Tb-R function; for groups that are close to each other, the
Tb-R curves are similar. Here we have selected regions G0 through G6 showing
cloud groups with similar Tb-R functions, as labeled in Fig. 21.3a and b. For the
groups in region G0, the cloud Tb is high (clear weather pattern) and has no rain

Fig. 21.1 The major processing modules and data flows in IMERG. The blocks are organized by
contributing institution; the final code package is an integrated system. (Adapted from Huffman
et al. 2018)
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associated with it. The slopes of the Tb-R curves are steeper for the G2, G4, and G6
regions; these have higher corresponding rainfall rates, implying that those cloud
groups are relevant to the convective clouds of low, medium, and high altitudes. The
regions covered by G1, G3, and G5, however, have slopes of Tb-R that are less steep
and are associated with light or no-rain clouds at low, medium, and high altitudes,
respectively (Hong et al. 2004).

Fig. 21.2 Cloud image segmentation, feature extraction, classification, and rainfall estimation of
the PERSIANN-CCS algorithm

Fig. 21.3 (a) The Tb-R relationship of 20� 20 SOFM cloud patch groups and (b) the Tb-R curves
with respect to the SOFM groups G0~G6
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21.2.2 Passive Microwave Adjustment of PERSIANN-CCS
Estimation

Effective integration of LEO PMW rainfall with the more frequent samples from
GEO images can improve the sampling for precipitation events in space and time.
Figure 21.4 shows the constellation of LEO satellites with PMW sensors in the
modern era. Compared to GEO satellites, LEO satellites provide fewer sampled data
points per day and have significantly fewer samples altogether before 2002.

Multiple years (2008–2011) of concurrent and co-located PMW and PERSIANN-
CCS rainfall were used in this experiment. The probability matching method was
used to transfer PERSIANN-CCS rainfall toward the PMW rainfall distribution
based on all the available co-located samples. This method assumes that rainfall
from PERSIANN-CCS (Rccs) and PMW (Rpmw) are functionally related and that a
transformation can be used:

p Rccsið ÞdR ¼ p Rpmwið ÞdR ð21:1Þ

where the pairs of (Rccsi, Rpmwi) define the probability matching of the Rccs-Rpmw
relationship, with i varying to encompass probabilities ranging from 0 to 100%. The
cumulative distribution functions can be shown as:

Fig. 21.4 PMW sensor Equator-crossing time for 1200–2400 local time for the modern PMW
sensor era. Image by Eric Nelkin (SSAIl GSFC, 5 july 2017; current version at https://precip.gsfc.
nasa.gov/times_allsat.jpg, last accessed 5 Apr. 2019; also see Huffman et al. 2018)
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Z Rccsi

0
p Rccsið ÞdR ¼

Z Rpmwi

0
p Rpmwið ÞdR ð21:2Þ

For the unconditional probability distribution function (PDF), integration is from
0 to Rccsi; for a non-zero conditional PDFi, the integration begins at a threshold
(Rosenfeld et al. 1995). Figure 21.5 shows how PERSIANN-CCS rainfall is adjusted
with PMW rainfall estimates based on the Cumulative Distribution Function (CDF)
computed from the Probability Distribution Function (PDF). The left-side graph in
Fig. 21.5 describes the PDF for PMW (solid line) and CCS (dashed line) calculated
based on the concurrent samples of climatology data showing the probability of
rainfall rate. The right-side graph is the CDF function calculated based on the PDF of
PMW and PERSIANN-CCS data.

In this experiment, the PMW precipitation dataset (MWCOMB) was obtained
from the NOAA Climate Prediction Center (CPC). MWCOMB is a blended precip-
itation data from multiple sensors and orbits, such as DMSP SSM/I, NOAA AMSU-
B, and TRMM TMI (Ferraro et al. 1994, Kummerow et al. 2001, Weng et al. 2003,
Huffman et al. 2007). MWCOMB data is at 8 km resolution from 60�N to 60�S and
0� to 360�, but is regridded to 0.25� lat-long for this study.

Precipitation estimation from PERSIANN-CCS is at a 0.04� � 0.04� spatial
resolution every 0.5 h. The Cumulative Distribution Functions (CDFs) of both
datasets must be calculated from concurrent samples at the same spatial resolution.
Therefore, PERSIANN-CCS was also regridded to a 0.25� � 0.25� spatial resolu-
tion. To account for regional and seasonal variability, the PDFs were calculated for
5� � 5� overlapping subareas of the global coverage and for each month separately.
The probability matching adjustment is calculated separately for each month and
performed by using the long record of collocated PMW and PERSIANN-CCS rain
rates on a 0.25� � 0.25� grid, aggregated for each overlapping 5� � 5�. Once
computed, the probability mapping coefficients will be stored (as a table) for each
5� � 5� grid by calendar month and used as a lookup table for rainfall adjustment.

Fig. 21.5 Matching rainfall from PMW satellites with the rainfall from PERSIANN-CCS using
PMM rainfall. (Adapted from Karbalaee et al. 2017)
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Figure 21.6 shows a sample comparison of (a) PERSIANN-CCS rainfall,
(b) PMW re-calibrated PERSIANN-CCS rainfall, and (c) PMW rainfall, at 0330
UTC 2 August 2011. The rainfall distribution and intensity of the PMM-adjusted
PERSIANN rainfall is similar to that of PMW rainfall.

21.3 Evaluation of Re-calibrated PERSIANN-CCS
Estimation

For the validation of the microwave-adjusted PERSIANN-CCS (hereafter
MA-PERSIANN-CCS) estimates, one year of data (2012) was examined. The
results from using the PMM method show improvement in both the summer and
winter months, with the CDF of PERSIANN-CCS rainfall data adjusting toward the
CDF of PMW rainfall. PERSIANN-CCS rainfall estimates are available every
30 min from geostationary satellite imagery and cover the near-global area from
60�N to 60�S and 0� to 360�. On the other hand, PMW rainfall estimates, due to the
polar orbiting LEO satellites, are only available at limited spatial and temporal
resolutions. The PDF of PERSIANN-CCS adjusts toward PMW rainfall estimation
in a systematic way using the PMM method, while keeping the re-calibrated
MA-PERSIANN-CCS estimation at the original high spatial and temporal scales.

Fig. 21.6 (a) PERSIANN-CCS rainfall, (b) PMW recalibrated PERSIANN rainfall and (c) PMW
rainfall maps at 0330 UTC, 9 March 2012. (rain rate: mm h�1)
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For global validation the study area was divided into 8 longitudinal regions, 15�

each from 60�N to 60�S, in order to ensure the regions have sufficient samples. The
sample size is relatively higher during the warmer months, winter in the southern
hemisphere and summer in the northern hemisphere. Table 21.1 and Table 21.2
show the summary of statistical parameters calculated for each zone during summer
and winter months for 2012, namely bias, correlation coefficient, and root mean
square error (RMSE). Table 21.1 shows the seasonal statistical evaluations for
December, January, and February. During the winter (northern hemisphere) the
evaluation is more reliable from 0� to 60�S, with zones located in the southern
hemisphere showing improved bias, correlation coefficient, and RMSE values after
bias adjustment. Table 21.2 shows the seasonal statistical parameters calculated for
each zone for June, July, and August 2012 (summer in northern hemisphere).
Table 21.2 shows that bias, correlation coefficient, and RMSE have improved for
MA-PERSIANN-CCS in comparison with PERSIANN-CCS during summer 2012.

Table 21.1 Statistical parameters used for global validation calculated for 8 zones (December,
January, and February 2012). Statistics is provided based on the concurrent samples of test data over
the 3-month period. Bias & corr (no unit); RMSE (mm/3-month)

Winter-2012

PERSIANN-CCS MA-PERSIANN-CCS

Zone bias corr rmse bias corr rmse
60 N–45 N 0.72 0.61 14.16 �0.23 0.86 6.62

45 N–30 N 0.26 0.71 15.28 �0.13 0.89 9.60

30 N–15 N �0.13 0.38 11.58 �0.19 0.68 8.96

15N-0 �0.06 0.83 12.12 �0.05 0.92 8.63

0-15S 0.27 0.90 18.63 0.0008 0.94 9.32

15S–30S 0.08 0.87 13.72 �0.08 0.92 8.53

30S–45S �0.39 0.79 11.83 �0.12 0.86 9.32

45S–60S �0.51 0.69 8.71 �0.37 0.80 6.97

Table 21.2 Statistical parameters used for global validation calculated for 8 zones (June, July, and
August 2012). Statistics is provided based on the concurrent samples of test data over the 3-month
period. Bias & corr (no unit); RMSE (mm/3-month)

Summer-2012

PERSIANN-CCS MA-PERSIANN-CCS

Zone bias corr rmse bias corr rmse
60 N–45 N �0.50 0.52 13.95 �0.23 0.71 9.34

45 N–30 N �0.25 0.80 12.29 �0.11 0.89 8.96

30 N–15 N 0.06 0.91 13.24 �0.08 0.94 10

15N-0 0.05 0.87 16.55 �0.01 0.93 12.11

0-15S �0.07 0.91 7.36 �0.04 0.93 6.79

15S–30S �0.44 0.86 7.79 �0.28 0.88 6.49

30S–45S �0.25 0.70 11.81 �0.29 0.85 9.55

45S–60S 0.32 0.5 10.15 �0.30 0.72 7.08
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Further validation was performed, using Q2 radar data, over CONUS for
PERSIANN-CCS and MA-PERSIANN-CCS for winter (December, January, and
February) and summer (June, July, and August) of the year 2012. For evaluating the
performance of PERSIANN-CCS and MA-PERSIANN-CCS in comparison with
PMW and radar Q2, statistical parameters such as bias, correlation coefficient and,
root mean square error (RMSE) were calculated for winter and summer 2012 (see
Table 21.3 and Table 21.4). Table 21.3 gives the statistical results for PERSIANN-
CCS and MA-PERSIANN-CCS compared to PMW data and Table 21.4 shows the
statistical performance of PERSIANN-CCS, MA-PERSIANN-CCS, and PMW
against Q2 radar data as ground truth. During winter 2012, bias, correlation coeffi-
cient and RMSE between MA-PERSIANN-CCS and PMW shows improvement
compared to the same statistics for PERSIANN-CCS and PMW. This shows that
implementation of climatology data over the validation year 2012 has improved the
PERSIANN-CCS rainfall estimation toward PMW rainfall data. MA-PERSIANN-
CCS does not show improvement, however, for the winter season, compared with
radar Q2. The statistical parameters show the bias value of �0.37 for PERSIANN-
CCS decreased to �0.69 (more underestimation) between MA-PERSIANN-CCS
and radar Q2, for winter 2012. The reason for this is due to inconsistencies between
PMW and radar Q2 data. Statistical validation results for summer are also exhibited
in Table 21.3 and Table 21.4. As expected, all the statistics for MA-PERSIANN-
CCS show improvement over PERSIANN-CCS, for summer 2012. As compared to
radar Q2, MA-PERSIANN-CCS shows an improvement in bias of 53% during the
summer season with no significant changes in the other two statistics. In summary,
this is a systematic approach for reducing the bias between the GEO-based
PERSIANN-CCS and PMW estimates.

Table 21.3 Comparison between PERSIANN-CCS and MA-PERSIANN-CCS with PMW satel-
lite data over CONUS during winter and summer 2012. Statistics is provided based on the
concurrent samples of test data over the 3-month period. Bias & corr (no unit); RMSE (mm/3-
month)

CONUS year 2012

PERSIANN-CCS MA-PERSIANN-CCS

bias corr rmse bias corr rmse
Winter 0.59 0.61 8.35 �0.23 0.86 4.86

Summer �0.25 0.8 13.51 �0.07 0.84 10.93

Table 21.4 Comparison between PERSIANN-CCS, MA-PERSIANN-CCS, and PMW with Q2
ground based radar over CONUS during winter and summer 2012. Statistics is provided based on
the concurrent samples of test data over the 3-month period. Bias & corr (no unit); RMSE (mm/3-
month)

CONUS year 2012

PERSIANN-CCS MA-PERSIANN-CCS PMW

bias corr rmse bias corr rmse bias corr rmse
Winter �0.37 0.67 13.78 �0.69 0.7 16.83 �0.6 0.76 14.86

Summer �0.3 0.82 14.41 �0.14 0.72 14.75 �0.07 0.8 12.95
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21.4 Improving Warm Rain Estimation

The PERSIANN-CCS uses three Tb threshold levels (253, 235, and 220 K) to extract
the spatial features of each individual cloud patch. With the IR cloud segmentation
threshold at 253 K, the Tb-RR relationship of cloud patch groups, as shown in
Fig. 21.7a and b, can only cover the cloud pixels with brightness temperatures lower
than 253 K. Under this IR Tb threshold (253 K), rainfall from warm clouds
(Tb > 253 K) are not included. This experiment demonstrated that the warm rainfall
from the PERSIANN-CCS algorithm can be estimated using longwave IR temper-
ature thresholds greater than 253 K.

Figure 21.7a shows the cloud image from the longwave infrared channel and the
cloud coverage under the segmentation thresholds of IR Tb ¼ 253 K (Fig. 21.7b),
Tb ¼ 260 K (Fig. 21.7c) and Tb ¼ 280 K (Fig. 21.7d). As shown in Fig. 21.7d, the
segmentation threshold at higher brightness temperatures (e.g., 280K) can cover
warm clouds effectively.

The rainfall rate mapping curves (Tb-RR) of segmentation threshold Tb ¼ 253
and 280 K are presented in Fig. 21.8. By extending the IR brightness temperature
thresholds from Tb ¼ 253 to 280 K, the rainfall rate mapping curves (Tb-RR) of
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Fig. 21.7 (a) cloud image from longwave infrared channel; (b) segmentation of IR cloud image at
Tb ¼ 253 K, (c) segmentation of cloud image at Tb ¼ 260 K, and (d) segmentation of cloud image
at Tb ¼ 280 K
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PERSIANN-CCS are extended to the clouds of warmer brightness temperature
Tb > 253 K.

Figure 21.9 demonstrates rainfall rates estimated using the mapping curves from
segmentation at three different brightness temperature thresholds (Tb ¼ 253,
260 and 280 K). The satellite image of IR brightness temperature is displayed in
Fig. 21.9b, while the Q2 radar map is displayed in Fig. 21.9a. Rainfall maps from
three different segmentation thresholds (Tb ¼ 253, 260 and 280 K) are listed in the
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Fig. 21.8 PERSIANN-CCS mapping curves using IR Tb thresholds at (a) 253 and (b) 280 K
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Fig. 21.9c–e. As shown in the figures, heavy rainfall with low brightness tempera-
tures over the Great Lakes region and northern Ohio are retrieved from mapping
curves using Tb ¼ 253, 260 and 280 K. Another storm from warm clouds with
warmer brightness temperatures near Arizona is displayed in the radar map
Fig. 21.9a and satellite brightness temperature Fig. 21.9b. As shown in Fig. 21.9e,
rainfall estimation using mapping curves from segmentation Tb ¼ 280 K can cover
the warm rains effectively. Rainfall maps using segmentation thresholds from
Tb¼ 253 K and Tb¼ 260 K alone, however, cannot cover the warm rain effectively
from this event, as displayed in Fig. 21.9c and d.

21.5 Conclusions and Future Directions

Precipitation observations from satellites continue to be developed to improve the
spatial and temporal resolutions as well as the quality and reliability of the data.
Taking advantage of multi-sensor satellite observations in combination with differ-
ent in-situ measurements to generate a global precipitation map has become a
primary goal of the research community. In this study, we have reported methods
for improving PERSIANN-CCS using PMW rainfall estimation. A Probability
Matching Method was used for the bias correction of PERSIANN-CCS. The
regional and global evaluations of MA-PERSIANN-CCS show the statistics –

bias, correlation coefficient, and root mean square error, with respect to the PMW
data globally and radar Q2 measurements over CONUS – are improved, especially
in mid latitude regions. Experiments also extended to the improvement of rain
estimation from warm clouds. Our case study shows that warm rain can be detected
by PERSIANN-CCS by increasing the segmentation temperature threshold from
Tb ¼ 253 to 280 K.

For improving the estimation of warm rainfall, we will continue exploring the use
of a novel gradient-based segmentation technique that can integrate and segment
multiple spectral images. The newly developed technique is more flexible, and is
able to include a full temperature range of clouds from warm to cold with different
cloud top height. This algorithm is extendable from single-channel to hyperspectral
and high-spatial-resolution remote sensing data such as the current GOES-16 and
17 Advanced Baseline Imager (ABI) channels. Another focus of our development is
on the development of remote sensing of precipitation using advanced machine
learning techniques. Machine learning based methods have recently become very
popular in many earth science and remote sensing applications. Experiments show
that, when provided with a large amount of data and enhanced computing power,
Deep Neural Networks (DNNs) are capable of generating effective results. Our
studies have investigated the potential of Deep Neural Networks (DNNs) to improve
precipitation estimation (Tao et al. 2016, 2017) and will continue the development of
remotely-sensed precipitation based on emerging disciplines and techniques in
machine learning, computational statistics, and data mining.
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Chapter 22
TAMSAT

Ross Maidment, Emily Black, Helen Greatrex, and Matthew Young

Abstract Rainfall monitoring over Africa using satellite imagery is essential given
the lack of land-based rainfall measurements and the dependency of economies
largely based on climate-sensitive practices. Motivated by a need to monitor rainfall
deficits and its impact on crop yield over the Sahel, the TAMSAT Group have, since
the 1980s, helped pioneer the use of Meteosat thermal infrared (TIR) imagery for
rainfall estimation using cold cloud duration (CCD). Unlike other TIR-based algo-
rithms, the TAMSAT algorithm, which is calibrated using rain gauges, varies
spatially and temporally to account for the strong spatial and seasonal changes in
the rainfall climate across Africa. TAMSAT produce high-resolution (0.0375�),
operational rainfall estimates from 1983 to the delayed present for all Africa, at the
daily to seasonal time-step. Currently, TAMSAT is only one of a handful of datasets
that provide long-term (+30 years) and sub-monthly rainfall estimates for Africa.
The data, whose skill is comparable or better (depending on the metric) than other
satellite products, are used by a variety of stakeholders in the commercial, human-
itarian, agricultural and financial sectors. The temporal consistency and longevity of
the TAMSAT record makes it a valuable dataset for climate monitoring and risk
assessment.
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22.1 The History of TAMSAT

The African continent is a region where rainfall information is of utmost importance.
This is especially the case in semi-arid regions such as the Sahel and southern Africa
where the majority of livelihoods are highly sensitive to even small deviations in the
expected rainfall patterns, resulting in adverse socioeconomic problems that may
persist for many years (e.g., Boyd et al. 2013; Funk et al. 2013; Shiferaw et al. 2014).

With the exception of a few countries, the real-time African rain gauge network is
extremely sparse compared to other inhabited continents (see Fig. 22.1), making it
difficult to monitor real-time changes in rainfall using rain gauges alone. Several
countries also have poor historical rain-gauge records, making long-term assessment
of changes in rainfall challenging. As such, the use of satellite-derived rainfall
information over areas where there are few or no rain gauges is of great value.

The “Tropical Applications of Meteorology using SATellite and ground-based
observations” (TAMSAT) Group, was created in the late 1970s with the introduction
of the European Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT)‘s flagship Meteosat programme. The group, based within the Depart-
ment of Meteorology at the University of Reading (United Kingdom) – a world-
leading centre for weather and climate research – have pioneered the use of thermal
infra-red (TIR) satellite imagery in rainfall estimation over Africa since the 1980s.
Since this time, TAMSAT have been producing rainfall estimates operationally for
Africa, based on the use of satellite-derived cold cloud duration (CCD), which has its
roots in the work of Arkin and Meisner (1987) and the subsequent GOES Precipi-
tation Index (GPI) rainfall product. The TAMSAT method was originally devised in

Fig. 22.1 The WMO World Weather Watch global distribution of the Regional Basis Synoptic
Network weather stations providing SYNOP (surface synoptic observations) reports during October
2002. (WMO 2003). The colour denotes each station’s reporting rate
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response to the need for rapid in-season detection of below-average rainfall and
potential losses in crop yield across the Sahel, but has since been extended to all
Africa and is now used in a range of applications. Although the TAMSAT approach
for estimating rainfall was significantly revised in 2017, the essence of the estimation
method has remained unchanged in over 35 years.

The changes to the TAMSAT estimation approach in 2017 (used to generate
TAMSAT v3.0), aimed at addressing shortcomings in the previous methodology and
made possible by the availability of long (30+ years) daily rain gauge records for
many stations, have resulted in vast improvements to the rainfall estimates. In
particular, it has eliminated spatial discontinuities in the rainfall estimates that
arose from boundaries between large climatologically similar “calibration zones”
that were used in previous versions, and has reduced a large dry bias that was
characteristic in previous estimates (Maidment et al. 2017; Dinku et al. 2018).

There is currently a variety of satellite-based rainfall datasets that provide cover-
age for Africa (see Table 22.1). Each has varying characteristics (including data
inputs, temporal and spatial coverage/resolution, and latency) leading to different
levels of skill for different applications. There is therefore, no one perfect dataset for
all end-user applications. For example, some products that incorporate multiple
sensor inputs might be more suited to event-based estimation (see the ‘Primary
Function’ column in Table 22.1), but the incorporation of multiple sensors leads to
relatively short records which limits their use for rainfall monitoring. The TAMSAT
product falls in a different classification of multi-decadal products which also
provide near-real time updates, making them useful for seasonal monitoring.
Today, the TAMSAT Group are very active in ensuring the evolution of TAMSAT
products using new technologies and data, and continue to promote TAMSAT
products and related-research by regular attendance at the biennial EUMETSAT
Africa User Forum and other relevant meetings.

22.2 TAMSAT Products

TAMSAT produces Africa-wide rainfall estimates at the daily, pentadal (5-day),
dekadal (10-day), monthly and seasonal time-steps from January 1983 to the present
on a regular 0.0375� � 0.0375� (~ 4 km) grid. The primary product is the pentadal
rainfall total (pentads are defined as 1st–5th, 6th–10th, 11th–15th, 16th–20th, 21st–
25th and 26th-last day of the month). Daily rainfall estimates are derived by
disaggregating the pentadal rainfall total to daily rainfall totals by using the daily
CCD fractions (described in Maidment et al. 2017), while the dekadal, monthly and
seasonal estimates are derived by summing the respective pentadal estimates.

TAMSAT also produce rainfall anomalies for each time-step (except daily)
against a 30-year climatology (1983–2012) and quick-look images for all rainfall
estimates. The data files are released within 2 days after each pentad and available on
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Table 22.1 Summary of widely used satellite rainfall datasets providing coverage for Africa

Name
Data
inputa

Spatial
resolution

Temporal
resolution
(only
shorted
listed)

Spatial
coverage

Start
year

Primary
functionb Reference

TAMSAT TIR,
gauge

0.0375� Daily Africa 1983 Climate Maidment
et al. (2014,
2017) and
Tarnavsky
et al. (2014)

CHIRP TIR,
TMPA-
3B42

0.05� Daily 50�N-S,
0�–360�E

1981 Climate Funk et al.
(2015a, b)

CHIRPS TIR,
TMPA-
3B42,
gauge

0.05� Daily 50�N-S,
0�–360�E

1981 Climate Funk et al.
(2015a, b)

ARC TIR,
gauge

0.1� Daily 40�N-S,
20�W-
55�E

1983 Climate Novella and
Thiaw
(2013)

RFE TIR,
PMW,
gauge

0.1� Daily 40�N-S,
20�W-
55�E

1995 Weather Herman
et al. (1997)

GPCP TIR,
PMW,
gauge

2.5� Monthly Global 1979 Climate Huffman
et al. (2009)

GPCP-1DD TIR,
PMW,
gauge

1� Daily Global 1996 Weather Huffman
et al. (2001)

GPI TIR 2.5� Monthly 40�N-S 1986 Climate Arkin and
Meisner
(1987)

IMERG TIR,
PMW,
radar,
gauge

0.1� 30-min Global 2014 Weather Huffman
et al. (2015)

TRMM
3B42

TIR,
PMW,
radar,
gauge

0.25� 3 hourly 50�N-S,
0�–360�E

1997
(end
2015)

Weather Huffman
et al. (2007)
and
Kummerow
et al. (2000)TRMM

3B43
TIR,
PMW,
radar,
gauge

0.25� Monthly 50�N-S,
0�–360�E

1997
(end
2015)

Climate

CMORPH TIR,
PMW

0.07� 30-min 60�N-S 2002 Weather Joyce et al.
(2004)

PERSIANN TIR,
PMW

0.25� 6 hourly 60�N-S 2000 Weather Hsu and
Sorooshian
(2008)

(continued)

396 R. Maidment et al.



the TAMSAT website (http://www.tamsat.org.uk) in netCDF format. The calibra-
tion (described in the next section) and estimation process is summarised in
Fig. 22.2, with an example of a monthly estimate and anomaly given in Fig. 22.3.

Table 22.1 (continued)

Name
Data
inputa

Spatial
resolution

Temporal
resolution
(only
shorted
listed)

Spatial
coverage

Start
year

Primary
functionb Reference

CMAP TIR,
PMW,
gauge,
model

2.5� Pentad Global 1979 Climate Xie and
Arkin
(1997)

EPSAT-SG TIR,
PMW,
radar,
gauge

0.0375� 15-min Africa 2004 Weather Bergès et al.
(2010)

aTIR thermal infra-red, PMW passive microwave
bThe primary function gives the intended use of the dataset, although some datasets may have
interchangeable use. Datasets designated as climate refer to those products suited for climate
applications, such as climate research and long-term monitoring analysis, whilst datasets designated
weather refer to those products aimed at weather analysis, such as event-scale rain rates and rainfall
coverage
Adapted from Maidment et al. (2014)

Fig. 22.2 Schematic summarising the TAMSAT calibration and rainfall estimation process.
Squares denote inputs or outputs and ovals denote processes. (Adapted from Maidment et al. 2017)
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22.3 The TAMSAT Rainfall Estimation Approach

22.3.1 Overview

TAMSAT rainfall estimates are derived primarily from two inputs; Meteosat TIR
imagery from EUMETSAT, and in situ rainfall measurements from rain gauges,
used for calibration. The premise of the TAMSAT rainfall estimation methodology
is based on the detection of precipitating storm clouds, characterised by their cold
cloud tops, using TIR. Such clouds are readily identified from the warmer land
surface or shallow non-precipitating clouds below (this is illustrated in Fig. 22.4).

The assumptions behind the TAMSAT method are:

1. Rainfall predominantly comes from convective cumulonimbus storm clouds.
2. These clouds will only start precipitating once their tops have reached a certain

height. As temperature decreases with height throughout the atmosphere, the
height of the cloud top can be inferred by the temperature from the TIR imagery.
This is the threshold temperature (Tt), and can be defined as the cloud top
temperature that best distinguishes between rain and no rain (illustrated in
Fig. 22.5).

3. The amount of rainfall can be determined by the length of time the cloud top
temperature is colder than Tt. This is the cold cloud duration or CCD.

Fig. 22.3 TAMSAT v3.0 rainfall total (left) and rainfall anomaly (right) for August 2017
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4. Rainfall is linearly related to CCD, provided sufficient averaging of the data in
space and/or time.

The TAMSAT method can thus be categorised as a cloud indexing approach, in
that TIR imagery is used to identify areas of cold cloud, and in turn, maps of CCD.
To convert CCD to rainfall, we apply the following equations:

Fig. 22.4 Full disc (background) Meteosat-8 thermal-infrared image captured at 1800 UTC on
12 August 2005. The grey scale assigned signifies warmer (colder) surfaces as the darker (whiter)
regions. A subset (foreground) of this image projected onto a longitude-latitude grid over West
Africa giving the brightness temperature (scale in K) of the scene observed

Fig. 22.5 Schematic
illustrating the assumptions
in the TAMSAT algorithm.
Clouds with tops colder than
the threshold temperature
(Tt) are assumed to be
raining, while clouds with
tops warmer than Tt are
assumed not to be raining
(schematic by David
Grimes)
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If ðCCDT ¼ 0Þ, R ¼ 0

If ðCCDT > 0Þ, R ¼ a0 þ a1CCDT
ð22:1Þ

where R is rainfall, CCDT is the cold cloud duration at a given threshold temperature,
and a0, a1 are the offset and slope of the linear regression between R and CCDT.

The regression coefficients (a0 and a1) and the threshold temperature (Tt) at which
the CCDT is calculated are derived during the calibration stage. Where CCDT is
equal to zero, it is assumed rainfall is also zero.

The long-standing ethos of the TAMSAT system has been to provide a fully
automated, and pre-calibrated algorithm. As such, the TAMSAT calibration com-
pares gauges and CCD to derive the threshold temperature and regression coeffi-
cients, in the form of Africa-wide calibration maps, which are applied in near-real
time to estimate rainfall from satellite imagery. This approach overcomes the need
for contemporaneous rain gauge records, simplifying the operational implementa-
tion of the method.

22.3.2 Calibration Method

The calibration process, which is carried out periodically when additional rain gauge
records become available, can be summarised as follows:

• For all available daily gauge records in the TAMSAT archive, pixel-scale
daily CCD values at multiple threshold temperatures (213 K/�60 �C to 243 K/
�30 �C at 10 K intervals) are extracted. Gauge-CCD pairs for CCD values at 1 K
intervals between 213 and 243 K are then derived by interpolating between the
existing CCD thresholds.

• The daily gauge-CCD pairs are then spatially binned into 1� � 1� grid squares
across Africa to determine the Tt for each grid. A 1� � 1� grid is deemed large
enough to contain sufficient gauge-CCD pairs to derive stable calibration param-
eters, yet small enough to capture local variations in the rainfall climate. For each
threshold temperature, a contingency table is constructed (see Table 22.2) which
compares the occurrence of rainfall and CCD for all gauge-CCD pairs in each

Table 22.2 Contingency table for determining Tt. The occurrence threshold is set at zero for both
rainfall (mm) and CCD (hours). All gauge-CCD pairs are split into one of four possible groups (n11:
n22) with the counts for each group recorded

CCD ¼ 0 CCD > 0

Gauge = 0 n11 n12
Gauge > 0 n21 n22

n11 is the number of occasions where both zero rainfall and CCD is observed
n12 is the number of occasions where zero rainfall is recorded but CCD is detected
n21 is the number of occasions where rainfall is recorded but no CCD is detected
n22 is the number of occasions where both rainfall and CCD are greater than zero
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grid box (by considering the hits, misses, false alarms and correct negatives). The
Tt is the threshold temperature which maximises agreement and minimises
disagreement between rainfall and CCD. In practice, Tt is therefore the threshold
temperature whose occurrence of misses and false alarms are roughly balanced,
thus minimising any underestimation or overestimation of rainfall occurrence.
Given the lack of gauge observations in places, this is only done for boxes where
at least 100 gauge-CCD pairs exist. The derived Tt values are then spatially
interpolated to produce Africa-wide maps for each calendar month (see
Fig. 22.6).

• The derivation of a0 and a1 is based on 5-day sums of the daily gauge-CCD pairs.
For each 1� � 1� grid box, the gauge-CCD pairs are binned (by CCD value) and
regressed by comparing the mean rainfall against the mean CCD for each bin, to
obtain a0 and a1 respectively. This is repeated for each CCD threshold value
across all grid boxes and months. All regression coefficients are then modelled as
a function of Tt to produce maps of a0 and a1 based on the Tt map for the
respective month. Finally, these maps are then adjusted by the Climate Hazards
Group’s Precipitation Climatology (CHPclim) pentadal rainfall climatology
(described in Funk et al. 2015a, b) to account for geographical rainfall artefacts
(e.g., orographic enhancement) that the CCD and available rain gauge measure-
ments alone do not capture. This results in a set of 72 maps (one for each pentad)
of a0 and a1.

A novel feature of the TAMSAT approach that differs from other existing
TIR-based algorithms is that the parameters Tt, a0 and a1 vary both spatially and
temporally to account for the strong geographical and seasonal changes in the
rainfall climate across the African continent. While some other TIR-based
approaches use fixed calibration parameters (e.g., GPI), several studies have

Fig. 22.6 TAMSAT v3.0 threshold temperature (Tt) maps for January (left) and August (right)
respectively
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indicated that a single rainfall-CCD relationship is inadequate over Africa, especially
for products that depend entirely on satellite imagery (e.g., Dugdale et al. 1991;
Todd et al. 1999, 1995; Dybkjær 2003; Chadwick et al. 2010). This is evident in
Fig. 22.6 for example, which shows the Tt map used in the TAMSAT v3.0 calibra-
tion for January and August respectively. Across southern West Africa for example,
the Tt varies by around 30 K between the dry season (January) and peak of the West
African Monsoon (August), and also by a similar magnitude between the Guinea
Coast and the Sahel (between 10�W and 5�E) during August. These drastic changes
over southern West Africa during the rainy season are a result of a large influx of
low-level moisture from the Gulf of Guinea and enhanced mid-tropospheric subsi-
dence towards the coast (Omotosho 1988) which promotes the development of
considerably shallower rainfall systems (Schumacher and Houze 2003; Liu and
Zipser 2009; Mülmenstädt et al. 2015; Young et al. 2018), and necessitates the
need for a warmer threshold. Conversely, during the dry season, rainfall typically
only occurs when convective systems are very deep, reflected by a colder threshold.
This is also the case as one moves northward towards the Sahel where moisture
availability becomes more limited, and only the deepest of storm systems precipitate.

22.3.3 Strengths and Limitations

Many studies that have evaluated TAMSAT rainfall estimates using rain gauges, in
conjunction with other satellite products, have generally demonstrated that
TAMSAT data performs well and has comparable, or better skill than other datasets
(Laurent et al. 1998; Thorne et al. 2001; Tucker and Sear 2001; Dinku et al. 2007,
2018; Chadwick et al. 2010; Jobard et al. 2011; Maidment et al. 2013, 2017; Ayehu
et al. 2018; Young et al. 2014), although performance does vary depending on the
time-step and spatial aggregation of the data, as well as region and season in
question. Of the studies evaluating TAMSAT v3.0 against v2.0, the results indicate
that v3.0 is a major improvement over v2.0 and compares favourably with other
satellite products, particularly in regards to reducing bias (Maidment et al. 2017;
Dinku et al. 2018). The skill of the TAMSAT data is notable given that no rain gauge
measurements are directly included in the TAMSAT estimates, indicating that a
locally calibrated, TIR-based approach can provide reliable rainfall information.

The success of the TAMSAT method can be attributed to several reasons:

• Where rainfall is primarily convective in nature, CCD can act as a useful proxy
for rainfall. As the duration of cold cloud increases with the number of rain storms
that passes over a given point, the association between rainfall and CCD
increases. As such, the TAMSAT method is very well-suited for tropical regions
where precipitation is predominantly convective in origin, such as the flat, semi-
arid inland regions of Africa such as the Sahel and central southern Africa.

• As TAMSAT is locally calibrated, it is tuned to the expected CCD-rainfall
relationship for a given region.
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• As the Meteosat satellites follow a geostationary orbit, the on-board sensor is able
to provide full spatial coverage of the African continent (see Fig. 22.4) and at
frequent intervals (every 30-min for Meteosat First Generation of satellites and
every 15-min since the introduction of the Meteosat Second Generation in 2002).
Such coverage and sampling enable the CCD product to adequately capture the
rapid evolution of such systems anywhere across the continent.

Despite the skill, there are some notable shortcomings to the TAMSAT method
that users need to consider:

• Persistent cirrus, which is cold enough to be mistaken as precipitating storm
clouds, can lead to an overestimation of rainfall. In practice though, this is
typically not a significant problem across most months and locations.

• Extreme rainfall events are often underestimated as there is not enough informa-
tion in the CCD product to capture intense rain rates over short periods. In
practice, this is only a concern for daily rainfall amounts.

• The influence of large bodies of water (i.e. around lakes and near the coast) and
presence of complex topography (e.g., Ethiopian highlands) can create microcli-
mates that modulate the CCD-rainfall relationship.

• Long-lived shallow precipitating systems (e.g., stratiform rainfall) are
non-distinguishable from non-raining cloud, leading the TAMSAT algorithm to
have considerably lower skill during such events.

22.4 Usage and Applications

The TAMSAT Group have built up strong relationships with many African National
Meteorological and Hydrological Services (NMHS) and other stakeholders, across a
range of sectors, and have established themselves as a dependable source of reliable
rainfall information. TAMSAT have worked closely with many African agencies –
by developing TAMSAT products during TAMSAT-led workshops, and by provid-
ing capacity building through training Met Service staff to operate TAMSAT rainfall
estimation software and applying TAMSAT rainfall estimates appropriately. In
recent years, the bond between TAMSAT and African NMHS has strengthened
further by a WMO-led programme supporting forecasters to study at the University
of Reading and work with the TAMSAT Group. The value of such relationships is
paramount not only to the effective use of TAMSAT data, but also to the develop-
ment and evolution of TAMSAT rainfall estimates and related products, through
improved access to climate records and trialling newly developed tools.

TAMSAT data plays a key role in supporting climate services in many African
countries, for example, through the various agencies that access the data through
EUMETSAT’s EUMETCast distribution service, as well as the Enhancing National
Climate Services (ENACTS) (Dinku et al. 2016) and Rainwatch (Tarhule et al.
2009) programmes, that provide value-added services using TAMSAT data. The
data is also well used by the research community, for example, by furthering our
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understanding of rainfall variability and trends across Africa (e.g., Maidment et al.
2015; Dunning et al. 2016; Cattani et al. 2018).

In recent years, the focus of TAMSAT has broadened to encompass a range of
stakeholders in the commercial, humanitarian, agricultural and financial sectors. The
temporal consistency and longevity of the TAMSAT record makes it a valuable
dataset for risk assessment. In particular, as TAMSAT’s primary rainfall product
does not incorporate contemporaneous rain gauge measurements, its skill is unaf-
fected by changes in gauge coverage that can introduce time-dependent biases into
the rainfall record (Maidment et al. 2015). As an example of TAMSAT’s adoption
for risk management, TAMSAT rainfall is now widely used in weather index
insurance – a form of insurance that pays out in the event of a weather index
being breached (Black et al. 2016a, b). A temporally consistent record is especially
important in the insurance industry where premium rates are often calculated using a
historical burn analysis of long time-series. In 2017–2018, TAMSAT rainfall esti-
mation enabled over 1 Million farmers to be insured using weather index insurance.

The myriad of publicly available Earth Observation and reanalysis products
provide many opportunities to improve drought risk assessment. This raises the
question of how users can assess risk in the face of multiple sources of information.
The development of the TAMSAT-ALERT system (Brown et al. 2017; Asfaw et al.
2018) meets this need by deriving objective agricultural risk assessments based on
seasonal weather, the historical climatology, the condition of the land surface and
meteorological forecasts. Over the next years, TAMSAT will work with the human-
itarian and agricultural sectors, as well as NMHS to implement TAMSAT-ALERT
across Africa.
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Chapter 23
Algorithm and Data Improvements
for Version 2.1 of the Climate Hazards
Center’s InfraRed Precipitation
with Stations Data Set

Chris Funk, Pete Peterson, Martin Landsfeld, Frank Davenport,
Andreas Becker, Udo Schneider, Diego Pedreros, Amy McNally,
Kristi Arsenault, Laura Harrison, and Shraddhanand Shukla

Abstract To support global drought early warning, the Climate Hazards Center
(CHC) at the University of California, Santa Barbara developed the Climate Hazards
center InfraRed Precipitation with Stations (CHIRPS) dataset, in collaboration with
the US Geological Survey and NASA SERVIR. Specifically designed to support
early warning applications, CHIRPS has high a spatial resolution (0.05�), a long
period of record (1981 to the near present), and relatively low latencies. Here we will
describe a brief formal analysis of distributional bias in CHIRPS2.0. This analysis
reveals, as expected, that CHIRPS2.0 means are very similar to observed station
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data. However, a closer look suggests that low precipitation values are
underestimated and high values are over-estimated in the CHIRPS2.0. We describe
a potential correction for this below.

Keywords Precipitation · Rainfall · CHIRPS · Infrared · GEO · LEO · TMPA ·
Raingauges · FEWS NET · FAO · GPCC

23.1 Context – Increasing Food Insecurity
and the CHIRPS2.0 Dataset

Agricultural production shortfalls and food price volatility are severe problems for
millions of people. Global food production will need to increase by 70% by 2050 to
meet global demand (FAO 2009; Brown et al. 2017), as stagnating yield growth and
rapid population growth reduces per capita cereal production in many poorer nations
(Brown et al. 2017; FAO 2009; Funk and Brown 2009). The United Nations
(UN) Food and Agriculture Organization (FAO) estimates of food insecurity indi-
cate that the number of hungry people increased from 777 million in 2015 to
815 million in 2017. According to estimates from the FEWS NET, the number of
people facing near-famine conditions has increased 60% since 2015. In 2018, some
76 million individuals faced severe food shortages (https://fews.net/sites/default/
files/Food_assistance_needs_Peak_Needs_2018-Final.pdf, last accessed 29 Oct.
2018). Severe weather events in major food producing countries were a major factor
in recent (2007/8; 2011/12) food-price spikes, pushing the number of food insecure
people to over 1 billion and leading to civil unrest, economic strife, and geopolitical
tension (Anderson et al. 2014; Janetos et al. 2017). The most recent catastrophic
droughts in southern (2015–16) and eastern (2017) Africa led to major food short-
ages (GEOGLAM Crop Monitor for Early Warning Bulletins Nos. 5&13, www.
cropmonitor.org, last accessed 29 Oct. 2018) requiring a timely international
response (FEWSNET 2017; Funk et al. 2018).

However, as food insecurity increases, so does our ability to describe, model, and
predict the Earth’s agro-hydrological variations. These expansions arise through
enhanced earth observing systems, improved tools for interpreting these observa-
tions, and better developed networks of collaborating scientists. FEWS NET scien-
tists seek to entrain these advances to provide enhanced hydrological and
agricultural assessments which will, in turn, support food security monitoring in
the developing world. The outcomes of this project will directly support the UN
Sustainable Development Goal of Ending Hunger by 2030 through data sets that will
improve agricultural planning and productivity.

Recent crises in eastern and southern Africa underscore the importance of timely
and accurate monitoring of hydroclimatic extremes, mitigating food supply crises,
and mobilizing humanitarian assistance, yet many national governments are poorly
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positioned to understand crop conditions in their own countries and make necessary
decisions concerning food supply (Carletto et al. 2015).

Satellite precipitation retrievals are an absolute necessity to support global pre-
cipitation and agricultural monitoring (Funk et al. 2007; Kirschbaum et al. 2017).
The combined collection area of all operationally available global rainfall gauges
only covers two basketball courts (Kidd et al. 2017). Furthermore, the spatial
distribution of these gauges is highly skewed, with most observations available in
Europe, North America, Australia, and India. Since many of the most serious
hydrologic impacts are experienced in poor countries, rainfall gauge data are typi-
cally sparsest where the need is greatest. The problem of sparse data is getting worse,
as many meteorological agencies do not share their data. For example, at present,
only about 500 stations are available for Africa or South America (Fig. 23.1). The
reasons for this decline are diverse and not well understood; the degradation of
existing rain gauge networks in many countries and the adoption of cost recovery-
based proscriptions of data sharing are thought to be the most important causes. This
decline in station density increases the important role played by satellite precipitation
estimates. While new hydrologic monitoring tools like the Famine Early Warning
Networks System (FEWS NET) Land Data Assimilation System (FLDAS) offer
exciting new opportunities for improved drought detection (McNally et al. 2017),
they also rely on sub-daily precipitation fields.

Fig. 23.1 The number of monthly station data used in the production of the CHIRPS Final
precipitation data
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To support global drought early warning, the Climate Hazards Center (CHC) at
the University of California, Santa Barbara developed the Climate Hazards center
InfraRed Precipitation with Stations (CHIRPS) dataset, in collaboration with the US
Geological Survey and NASA SERVIR (Funk et al. 2015b). Specifically designed to
support early warning applications, CHIRPS has a high spatial resolution (0.05�), a
long period of record (1981 to the near present), and relatively low latencies. It
integrates a high-resolution climatology (Funk et al. 2015a), cold cloud duration
(CCD)-based precipitation estimates, and in situ gauge observations. Released in
2015, CHIRPS has rapidly become a fairly widely-used resource. Relief agencies
like FEWS NET need monitoring products with deep historical coverage that are
high resolution, reasonably accurate, and routinely updated in a timely fashion (Ross
et al. 2009). In September 2018, 1027 unique internet protocol addresses
downloaded 400,000 CHIRPS 2.0 products. CHIRPS has become an important
input into the early warning and hydrologic monitoring activities carried out by
FEWS NET and partner agencies such as the World Food Programme, the UN’s
FAO, the GEOGLAM Crop Monitor, and US Department of Agriculture’s Foreign
Agricultural Service (FAS). CHIRPS data, for example, helped catalyze (http://fews.
net/east-africa/somalia/special-report/february-21-2017, last accessed 29 Oct. 2018)
an early and effective response to the 2017 Somalia drought crisis, inform the 2016
Southern African Development Communities humanitarian appeal (https://
reliefweb.int/sites/reliefweb.int/files/resources/appeal_document_final_20160711.
pdf, last accessed 29 Oct. 2018), effectively capture (http://fews.net/sites/default/
files/documents/reports/FEWS%20NET_Ethiopia%202015%20Drought%20Map%
20Book_20151217_0.pdf, last accessed 29 Oct. 2018) Ethiopia’s 2015 drought—
the worst in 50 years—, and drive Afghanistan hydrologic models, indicating record
low snowpack levels in Afghanistan (https://earthobservatory.nasa.gov/images/
91851/record-low-snowpack-in-afghanistan, last accessed 29 Oct. 2018).

CHIRPS occupies a unique space within the universe of satellite-precipitation
estimates. The CHC’s approach to enhancing satellite remote sensing products
draws from “traditional” geostatistical climate analysis, in line with products like
those developed by the Global Precipitation Climatology Centre (GPCC, Becker
et al. 2013) or PRISM (Daly et al. 1994). The utilization of high resolution clima-
tologies is central to these approaches. Conceptually, this approach is similar to a
standard geostatistical decomposition in which a space-time data set is broken into
long-term mean and stationary time-varying components (Cressie and Wikle 2015).
As described, CHIRPS is constructed around the Climate Hazards Center Precipita-
tion Climatology (CHPclim). This ensures relatively low bias (Dinku et al. 2018;
Toté et al. 2015) relative to many other products. A secondary, but equally impor-
tant, aspect of CHIRPS’ use of CHPclim is that changes in station data networks
(Fig. 23.1), which can cause spurious trends, appear to be mitigated in CHIRPS
(Maidment et al. 2015). This arises when the station data and satellite precipitation
estimates have similar mean fields, since such similarity reduces discontinuities
when stations’ observations appear and disappear in the historical record. We will
discuss below, however, how the CHPclim-focused estimation process can also be a
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limitation, especially in arid regions where the mean is low and precipitation arrives
in infrequent pulses.

While the CHIRPS data set has proven useful, there are also several shortcomings
that have been identified—namely (i) systematic undercatch biases in the CHIRPS
precipitation climatology and (ii) a tendency to underestimate precipitation in arid
regions like eastern portion of East Africa, North Africa, and the Arabian Peninsula.

Another major advance employed in the CHPclim2.1 will be the inclusion of
many more high-quality climate normals and the gauge-undercatch correction of
these normals. On this front, scientists from the GPCC have kindly contributed the
79,200 quality-controlled climate normals used to produce the GPCC’s latest clima-
tology (Schneider et al. 2017). Another 27,917 stations were derived from the FAO
LocClim data archive (Raymo et al. 1996). Additional CHC normals (3964 stations)
were added for selected countries or regions where the CHC archive had especially
good coverage (Table 23.1). For Central America and Africa, these observations
were provided by collaborating national and regional experts.

A major limitation of the CHPclim, especially for mountainous extra-tropical
regions, has been the fact that CHPclim station normals were not corrected for
systematic gauge undercatch (Beck et al. 2017). As discussed in Schneider et al.
(2017), a systematic gauge-measuring error is generally an undercatch of the true
precipitation. The magnitude of the undercatch error varies with the physical features

Table 23.1 Counts of CHC
station climate normals added
to the GPCC and FAO archive

Country/region Count

Belize 9

Central America/Alfaro 77

Colombia 1971

Brazil 203

Central America/CATIE 190

El Salvador 24

Nicaragua 18

Panama 98

Guatemala 41

Haiti 10

GHA-Sahel 601

Mozambique 28

Ethiopia 188

Togo 9

Nigeria 40

Bangladesh 32

Thailand 57

Cambodia 19

Nepal 99

Sri Lanka 92

Vietnam 158

Total 3964

23 Algorithm and Data Improvements for Version 2.1 of the Climate Hazards Center’s. . . 413



of the measurement device, the nature of the precipitation phase (liquid, solid,
mixed) and intensity, and the local meteorological conditions. Many data sets have
used spatial maps of the seasonally varying gauge-measuring error (Legates and
Willmott 1990) to correct gauge undercatch (hereafter LW1990). Schneider et al.
(2017) uses an improved method for estimating systematic gauge errors based on
Fuchs et al. 2001). This method takes into account monthly weather conditions:
wind, temperature, relative humidity, precipitation phase, and intensity.

While correcting undercatch gauge data using time-varying weather data, as in
Schneider et al. (2017) is generally preferable to the static correction factors pro-
duced by LW1990, the CHIRPS2.1 process will need to use LW1990 estimates to
correct time-varying gauge data in near-real time. The CHIRPS process focuses on
producing satellite-only estimates (CHIRP) that are as close as possible to the mean
of the observed gauge observations. Hence the training data for the CHPclim 2.1 will
begin with the 29,689 quality-controlled CHC ‘anchor’ stations that are routinely
blended into the existing CHIRPS2.0 final product. These stations will be used to
calculate LW1990 corrected 1981–2010 climate normals. Next, normals from 3964
stations collected by the CHC for Asia and Latin America (Table 23.1) will be
screened and added if they are more than 10 km from an existing CHC anchor
stations. Estimates indicate that 601 stations will be added at this stage. A similar
process will be carried out for the ~72,000 GPCC climate normals, resulting in an
addition of ~28,229 long term mean values. Finally, ~5532 LW1990 undercatch-
corrected normals from the FAO LocClim archive will be added if they are more
than 10 km away from any previously selected stations. We anticipate that this step
may be mostly beneficial in Madagascar, parts of the Middle East, and the Maritime
Continent/Oceania region.

Poor performance in arid regions has been another potential concern reported by
drought early warning practitioners. For example, FEWS NET comparisons of
CHIRPS and livestock herd sizes in arid land regions in East Africa indicate weaker
relationships than those found for more “direct” products like the African Rainfall
Climatology version 2 (ARC2). “Direct” is used here in the sense that the satellite-
based component of the ARC2 (Novella and Thiaw 2013) is estimated using the
GOES Precipitation Index (GPI) regression with CCD values. While this simpler
approach can lead to large mean bias errors (Dinku et al. 2018; Toté et al. 2015), it
may be more effective at capturing rainfall in arid regions. While a full exploration of
this topic is beyond the scope of this chapter, we will describe a brief formal analysis
of distributional bias in CHIRPS2.0. This analysis reveals, as expected, that
CHIRPS2.0 means are very similar to observed station data. However, a closer
look suggests that low precipitation values are underestimated and high values are
over-estimated in the CHIRPS2.0. We describe a potential correction for this below.
Once sufficiently vetted, we anticipate that the enhanced CHPclim and bias-
corrected CHIRP will form the basis of the next major CHIRPS2.1 release.
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23.2 Description of the CHIRPS2.1 Methods

23.2.1 The CHIRPS2.1 Modeling Process

The CHIRPS2.1 modeling process consists of five steps (Fig. 23.2, Eqs. 23.1, 23.2
and 23.3): (1) First, an updated set of undercatch-corrected climate normals is
combined with the existing 0.05� CHPclim. (2) Then, for each pentad and grid
cell, a regression with the TRMM Multisatellite Precipitation Analysis (TMPA)
(Adler et al. 2010; Huffman et al. 2007) is used to translate 1999-present Climate
Prediction Center (CPC) (Janowiak et al. 2001) and 1983–1998 GridSat (Knapp
et al. 2011) geostationary satellite Thermal Infrared (TIR) cold cloud duration
(CCD) values into Infrared Precipitation Estimates (IRP, Eq. 23.1), which are then
expressed as percentage anomalies. (3) These percentage anomalies are then multi-
plied against the CHPclim, producing CHIRP estimates in mm. (4) In the experi-
mental CHIRP2.1 development process, a systematic relationship (described below)
between the IRP and CHIRP errors is used to calculate error estimates F(IRP), which
are subtracted from the CHIRP producing CHIRP2.1. Finally, (5) monthly and
pentadal station observations are integrated into CHIRP2.1, producing the
CHIRPS2.1 product (Eq. 23.2). The bias anomalies (S%) are based on station data
(S) corrected with LW1990 correction factors (Eq. 23.3). A small value (ε) is added
to the numerator and denominator to handle cases when S ! 0.

IRP ¼ b0 þ b1IRP ð23:1Þ

C2:1 ¼ IDW CHPclim
IRPþ ε

IRPþ ε

� �
þ F IRPð Þ, s%

� �
ð23:2Þ

Fig. 23.2 CHIRPS2.1 schema
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s% ¼ LW � Sþ ε

CHPclim
IRPþε
IRPþε

� �
þ F IRPð Þ þ ε

0
@

1
A ð23:3Þ

Working backwards, the CHIRPS2.1 product is an inverse distance weighted
(IDW) blend of TIR CCD-based estimates and time varying station observations
(Eq. 23.2). These CCD-based IRP estimates begin with local calibrations at every
pixel for every pentad with the TMPA data set (Eq. 23.1). In the 2.1 process, an
updated CHPclim is used and an IRP-based bias correction F(IRP) is also included.

This correction was based on IRP rather than CHPclim
IRPþε
IRPþε

� �
to limit the influence

of extremely low CHPclim values. In the final estimation of the CHIRPS2.1 pre-
dictions, LW1990 gauge undercatch correction ratios are used to adjust the station
data (Eq. 23.3).

The CHIRPS process explicitly seeks similarity with a high-quality merged
satellite product (TMPA) and high-quality interpolated gauge data sets like the
GPCC. Typically, the CHIRPS process results in precipitation estimates that perform
about as well as these data sets, but in a unique time frame (1981-now) suitable for
monitoring hydroclimatic extremes.

23.2.2 The CHPclim 2.1 Climatology

The climatology modeling methodology is a more sophisticated version of the
process used to derive the precipitation climatology underlying the CHIRPS product
(Funk et al. 2015a). Rather than breaking the globe into 56 modeling regions, a
modification of the R code now defines a continuous field. This field, furthermore, is
associated with a variable-modeling radius. Areas with dense observation networks
(like the United States) use a small modeling radius (dmax ~50 km), allowing the
modeling process to capture fine details. Areas with sparse observation networks use
a large radius (dmax ~300 km). The first step of the climatological modeling process
involves a series of moving window regressions (MWR) to create an initial predic-
tion of a 0.05� resolution temperature grid. The second step calculates the at-station
residuals from step 1 (station observations minus regression estimates), and then
interpolates these values using a modified inverse-distance weighting (IDW) inter-
polation scheme to create grids of MWR model residuals. A third step adjusts our
background climatology to a 1981–2010 baseline using undercatch-corrected CHC
precipitation observations.

23.2.2.1 Localized Correlation Estimates

Our process relies heavily on local regressions between our target variable and
background field. To produce the revised CHPclim, a single predictor was used –
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the original CHPclim climatology (Funk et al. 2015a). In this instance, MWR
becomes a distance weighted bivariate regression. At a certain location, we can
sample a number of points and background variables that fall within a certain
distance (dmax) and calculate distance weighted localized regression slopes. The
localized regression process finds a set of n neighboring points (within dmax) and
estimates their weighted correlation, w(d ). As in Funk et al. (2015a), this study uses
a cubic function of the distance (d ). The new version of the MWR model adjusts
dmax dynamically, based on the number of surrounding stations. In areas with dense
networks, dmax will be smaller.

w dð Þ ¼ 0 d > dmax

w dð Þ ¼ 1� d=dmaxð Þ3
h i3

d � dmax
ð23:4Þ

These weights are then used to estimate a localized regression slope.

Sx,y ¼ n� 1ð Þ�1
Xn
i¼1

w dið Þ
 !�1 Xn

i¼1

w dið Þ xi � xð Þ½ � yi � yð Þ½ � ð23:5Þ

Sx,x ¼ n� 1ð Þ�1
Xn
i¼1

w dið Þ
 !�1 Xn

i¼1

w dið Þ xi � xð Þ½ �2 ð23:6Þ

b1 ¼ Sx,y
Sx,x

ð23:7Þ

Local distance-weighted estimates of the covariance (Eq. 23.5) and predictor vari-
ance (Eq. 23.6) are used to produce an estimate of the local slope (Eq. 23.7).

For each location, a set of neighboring observations is obtained and a regression
model estimated using weighted least squares, with the weight of each observation
determined by its distance from the regression centroid (d in Eqs. 23.5, 23.6 and
23.7). For each region and month, a grid of center points is defined over land-only
locations. At each center point, station values within the radius (dmax) are collected,
and a regression model is fit based on weights determined by Eqs. 23.5, 23.6 and
23.7. The dmax values are defined individually for each location based on the density
of the available data.

23.2.2.2 Interpolation of Model Residuals

Following the MWR modeling procedure, at-station anomalies (the arithmetic
difference between the station normals and the nearest 0.05� regression estimate)
are calculated and interpolated using a modified IDW interpolation procedure. For
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each 0.05� grid cell, the cube of inverse distances is used to produce a weighted
average of the surrounding station residuals, r. This value is then modified based on
a local interpolation radius, dIDW, and the distance to the closest neighboring station
(dmin).

r� ¼ 1� dmin=dIDW

� �
r ð23:8Þ

This simple thresholding procedure forces the interpolated residual field to relax
towards zero based on the distance to the closest station. The dmin values change
based on the local-station density.

23.2.2.3 Adjusting the CHTclim Climatology

The GPCC/FAO/CHC station normals used to drive the MWR and IDW steps of the
climatology were selected to provide representative spatial coverage in data-sparse
areas like South America, Africa, and Central Asia. This coverage was maximized,
because we would like to have a reasonable CHPclim surface even in sparsely gauged
areas like Madagascar and Yemen. These two countries represent a range of chal-
lenges. In Madagascar, we find rapid topographically-induced changes in local
precipitation. In Yemen, where rainfall is much lower, we also find such changes,
but the high level of aridity makes it difficult to model. Hence, we include a
heterogeneous set of climate normals. The GPCC and FAO climate normals are
based on a ~1950–1980 baseline, and the CHC normals are based on a 1981–2010
averaging period. The GPCC normals are undercatch-corrected using the time-
varying Fuchs algorithm. The FAO and CHC normals are undercatch-corrected
using LW1990. As previously described, the CHC normals were identified first, and
then additional normals were added from the GPCC and, finally, the FAO archive.

After the MWR process is complete, a final bias correction pass is taken based on
arithmetic anomalies from LW1990-adjusted 1981–2010 normals from the CHC
monthly precipitation archive. This step aligns the climatologies with the 1981–2010
World Meteorological Organization (WMO) baseline. A secondary benefit is that this
alignment minimizes discrepancies between the CHIRP2.1 estimates and the gauge-
undercatch corrected CHC gauge observations. Finally, temporal resampling and
smoothing of the 12-monthly mean fields were used to derive 72 pentadal mean fields.

23.3 Experimental Results for the CHIRPS 2.1
Redistribution Process

We next describe experimental results for the CHIRPS2.1 “redistribution” process, F
(IRP) in Eq. 23.2. Redistribution refers to the manner in which we adjust low
precipitation values up, and high precipitation values down.
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23.3.1 CHIRP2.0 Systematic Bias Analysis

We begin by analyzing pentadal station, IRP, and CHIRP data. Daily Global
Historical Climate Network, Global Telecommunication System, and Conagua
stations from Mexico were pooled, and 14,197 stations identified for further analysis
(Fig. 23.3). These stations had at least 50% complete records in each pentad between
1981 and 2017. Each month is divided into six pentads, with the first five pentads
always having 5 days, and the last pentad containing the remainder of days in each
month. We also applied a spatial constraint, only examining data south of 40�N. This
selection, which made little difference in our results, was based on a primary interest
in evaluating CHIRP and IRP in tropical and semi-tropical regions. Individual
pentads having at least 1 mm of observed precipitation were selected, resulting in
a total of 9,880,569 total observations. Overall, the correlation between the IRP,
CHIRP, and the stations was modest (0.5), which is not surprising given that we are
comparing point observations at gauges with gridded satellite retrievals.

Next, systematic biases within this archive were quantified by using CHIRP2.0
values to stratify the data into 2 mm-wide bins ranging between 1 and 120 mm. The
station, IRP, and CHIRP2.0 means for each of these bins are shown in Fig. 23.4
together with a 1-to-1 line. While the overall means of the stations, IRP, and CHIRP
are in fairly close alignment, systematic biases at low and high precipitation values
can be observed (Fig. 23.4). At low precipitation events, when CHIRP2.0 is between
1 and 20 mm, the Mean Bias Error (MBE) of the CHIRP2.0 is 13 mm (Table 23.2).
For wet events when CHIRP2.0 is between 80 and 120 mm, we find a systematic
overestimation. Many more events are between 1 and 20 mm, resulting in a
substantial overall dry bias in the CHIRP2.0: �8.3 mm. Mid-range precipitation
events, between 60 and 80 mm, exhibit little systematic bias.

Fig. 23.3 Map of 14,197 stations used in the validation analysis
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The CHIRP2.0 bias structure has a systematic relationship with changes in IRP
values. Figure 23.5 shows the same binned mean IRP values as in Fig. 23.4 (x-axis)
along with the ratio between the binned bias errors and IRP means: biasbin/IRPbin

Table 23.2 Mean Bias Error (MBE) and Mean Absolute Error (MAE) by precipitation stratifica-
tion. All statistics in mm per pentad

CHIRP ranges
Obs
Counts

Stn
Mean

CHIRP2
MBE

CHIRP2.1
MBE

CHIRP2
MAE

CHIRP2.1
MAE

1 mm < P < 20 mm 8,653,967 13 �4 0 9 9

20 mm < P < 40 mm 3,456,028 30 �1 +4 19 21

40 mm < P < 60 mm 1,906,035 48 +1 0 29 29

60 mm < P < 80 mm 761,252 63 +5 �3 37 37

80 mm < P < 120 mm 365,034 79 +14 �4 47 45

120 mm < P 71,228 108 +40 +1 68 61

All data, 10 mm < P 15,954,854 26.5 �2 �0.4 16 17

Fig. 23.5 Empirical
correction factors obtained
from the station data and
IRP averages (yellow
circles) along with
regression estimates based
on the IRP means

Fig. 23.4 Plots of station
means (x-axis) and IRP (red
diamonds), CHIRP2.0 (blue
skinny diamonds) and
CHIRP2.1 (yellow circles)
means (y-axis). Data
stratified binned by
CHIRP2.0 values
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(y-axis). Also shown on this plot is a regression estimate, F(IRP), based on the
natural log of the IRP averages. F(IRP) ¼ �1.24 + 0.31 � ln(IRP), R2 ¼ 0.94. We
chose to estimate our errors as a function of IRP, as opposed to CHIRP2.0, because it
has been noted that low CHPclim values provide a severe limit when heavy
precipitation occurs in historically very dry regions. The multiplicative formulation
of the CHIRP and station unbiasing process makes CHIRPS2.0 unresponsive when
CHPclim ! zero. Locations with CHPclim values of zero will never have non-zero
CHIRPS2.0 values, no matter what the IRP or station data values are. Adding an
IRP-based bias correction may ameliorate this problem. Plans for CHIRP3.0 devel-
opment may involve a more ambitious approach based on a conditional estimation
process where the assumed mean value is allowed to vary with changing environ-
mental conditions.

23.3.2 CHIRP2.1 Systematic Bias Corrections

Next, we briefly explore the potential utility of IRP-based bias corrections. We
define a multiplicative bias coefficient, β, and use this to define our bias correction
factor F(IRP).

β ¼ b0 þ b1 ln IRPð Þ ð23:9Þ
F IRPð Þ ¼ �1βIRP ð23:10Þ

When applying this correction, one sets all IRP values with zero to a very small
non-zero value, so ln(IRP)! 1. At low values, when IRP is equal to 10, β is equal to
�1.9, so the bias correction process (Eqs. 23.9 and 23.10) is essentially adding
2� IRP estimates to the CHIRP estimates for low IRP values. When used to produce
experimental CHIRPS2.1 values for our pentadal data set, we find that the bias
correction process does in fact reduce systematic biases for low CHIRP values
(Table 23.2). Overall, however, little change was found in mean absolute error
values or the overall correlation between CHIRPS2.1 and the station pentads
(r � 0.5). At low precipitation ranges (< 20 mm), the IRP-based correction reduces
the bias by 4 mm, reducing the percent bias from ~ 33 to 0%. About half of
precipitation events belong to this category, so this change may be important,
especially in very arid regions. Across all precipitating events, where station precip-
itation was at least 1 mm, the bias is reduced from �2 to �0.2 mm, or from �7 to
�1%. At high precipitation values CHIRPS2.0 over-estimates rainfall. The
IRP-based bias correction reduces this systematic error as well.

The bias correction also affects both the variance of the CHIRP and the detection
frequencies of low precipitation events. F(IRP) increases CHIRP2.1 at low values
and reduces it at high values, such that we find a ~ 4 mm/20% reduction in the
overall standard deviation (Fig. 23.3). This shift in variance, however, has a distinct
spatial pattern (Fig. 23.6). In general, drier regions exhibit modest decreases in
variance while humid regions have small increases in variability (Table 23.3).

23 Algorithm and Data Improvements for Version 2.1 of the Climate Hazards Center’s. . . 421



Fig. 23.6 Change in standard deviation (CHIRPS2.1 minus 2.0). Red circles indicate a decline of
�2 mm or more, orange circles indicate decreases of between�1 and� 2 mm, grey circles indicate
change values between �1 and 1 mm, cyan circles had changes between +1 and + 2 mm, blue
circles had changes greater than +2 mm

Table 23.3 Pentad validation
statistics for events when
stations observed at least
1 mm of rainfall

Statistic CHIRP2.0 CHIRP2.1

Mean [mm] 24 26

Standard deviation [mm] 23 19

Mean error [mm] �1.7 mm �0.2

Percent bias [Mean Error/Mean] �7% �1%

Correlation 0.59 0.55

MAE [mm] 16.2 mm 16.7 mm

Hit percent, >20 mm 48% 56%

False alarm percent, > 20 mm 23% 35%

Miss percent, P > 20 mm 19% 11%

Probability of detection, >20 mm 72% 83%

False alarm ratio, > 20 mm 33% 38%

Hit percent, >30 mm 29 33

False alarm percent, > 30 mm 19 26

Miss percent, P > 30 mm 18 14

Probability of detection, >30 mm 61 70

False alarm ratio, > 30 mm 39 44

Hit percent, > 50 mm 10 9

False alarm percent, > 50 mm 9 9

Miss percent, P > 50 mm 15 16

Probability of detection, >50 mm 41 36

False alarm ratio, > 50 mm 48 49

Based on comparisons with station observations between 40�N
and 40�S with at least 50% valid observations between 1981 and
2017. If A, B, C, D represent hits, false alarms and misses, then the
Probability of Detection (POD) ¼ A/(A + C) and the False Alarm
Ratio (FAR) ¼ B/(B + A)
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23.3.3 Changes in the Ability to Detect Low Precipitation
Events

While our objective in this chapter has been to simply describe some possible
enhancements to the CHIRPS climatology and algorithm, we do conclude with a
brief assessment of changes in detection skill. We focus primarily on accuracy
characteristics associated with events of 20 mm or more, though Fig. 23.3 also
presents results for 30 + mm and 50 + mm categories. Overall, for the 20+ mm case,
we find substantial reductions in systematic bias. The overall frequency of hits
increases from 48 to 56%, while the number of misses decreases from 19 to 11%.
CHIRPS2.1 misses half the number of precipitation events greater than 20 mm. The
probability of detection increases from 72 to 83%. These changes, however, do come
at the cost of increases in the frequency of false alarms, which shifts from ~23% to
~35%, resulting in change of the FAR from 33 to 38%. Examining 30 + mm events
POD values reveals a shift from 61 to 70% as FAR values increase from 39 to 44%.
At 50 + mm, POD and FAR values exhibit relatively little change.

Calculating CHIRPS2.1 and 2.0 POD scores at each station location, for 20 + mm
precipitation events, indicated overall average POD scores of 61% and 71%. The
average POD increase between 2.0 and 2.1 was 11%, with tenth and 90th percentile
changes of 4% and 18%. The IRP-based correction consistently improved POD
scores. A map of these increases (Fig. 23.7, middle) shows a fairly consistent pattern
of positive changes. There are some locations, however, in North Africa and the
Middle East where the improvements were very low. These very arid areas may have
IRP estimates that are very close to zero, presumably because the TMPA data used to
train the CCD-based IRP estimates also had very low precipitation totals. The
increase in POD, however, also increases the chance of false detections. The bottom
panel of Fig. 23.7 shows changes in CHIRPS2.1 versus 2.0 FAR values. Most
stations were found to have increases in FAR of between 1 and 8%. The average
increase in FAR was 5%.

23.4 Conclusions

The CHIRPS2.1 algorithm is still a work in progress, but here we have described our
anticipated new algorithm and our process for developing an enhanced CHPclim2.1.
These changes are expected to help CHIRPS2.1 reduce dry biases, especially for low
precipitation intensities. These corrections will be achieved in two ways (1) by
correcting for systematic gauge undercatch both in the CHPclim2.1 and in the station
data used in the CHIRPS2.1, and by (2) modifying the CHIRP precipitation esti-
mates based on estimates of systematic errors. These errors appear to underestimate
precipitation at low values and overestimate at high values. Modeling these errors as
a function of the CCD-based regression estimates (IRP) may help boost rainfall
values in areas where the CHPclim is very low. The results presented here suggest
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modest improvements in hit rate metrics for low precipitation categories. More
validation and testing with the 2.1 beta version of the CHIRPS2.1 will be required
to assess the value of these changes. Hydrologic simulations using the FLDAS
(McNally et al. 2017) will also be run and compared to existing simulations based
on CHIRPS2.0. The results presented here, however, are quite promising. Anecdotal
evidence based on FLDAS simulations suggests that CHIRPS2.0 faces issues at low
precipitation levels, a common occurrence in the Middle East and northern and
eastern Africa. Similar performance issues have been reported by FEWS NET

Fig. 23.7 Top – CHIRP
POD for events with at least
20 mm of precipitation and
change in +20 mm POD
(CHIRPS2.1 minus 2.0).
Middle – Map of changes in
20 + mm POD (CHIRPS2.1
minus 2.0). Cyan circles
indicate POD increases
between 5 and 10 percent,
blue circles had changes
greater than 10 percent.
Average increase in POD
was 11%. Bottom – Map of
changes in FAR
(CHIRPS2.1 minus 2.0).
Orange circles indicate POD
increases between 0 and
5 percent, red circles had
changes greater than
5 percent. Average increase
in FAR was 4%
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analysts modeling livestock herd dynamics in eastern Africa. The new research
examined here indicates that these errors appear to be quite systematic and, at least
in aggregate, correctable.

Ultimately, however, the CHIRPS development team is working towards a
substantially different CHIRPS3.0 framework - a framework in which the assumed
‘prior’ distribution is allowed to change with environmental conditions. As a thought
experiment, assume we are estimating pentadal precipitation at the Santa Barbara
airport. Like many arid and semi-arid regions, southern California precipitation
totals are typically comprised of a few intense events. So, the pentadal CHPclim
mean will be small. The mean in such arid regions is not very meaningful. In place of
this static mean we will explore conditional relationships, probably comprised of
three terms: the probability of rain (p) and the shape and scale of a Gamma
distribution (α, β) associated with precipitation intensity, in mm per pentad. Local
estimates of these distribution parameters could be allowed to change in time,
increasing when large scale weather conditions (W) indicate shifts towards heavy
precipitation events. These conditional parameter sets (p|W, α|W, β|W) could be
calibrated such that their expected values converged on a distribution whose central
location matched the desired long term mean. In theory, such an approach could
provide the long-term low bias performance of the current CHIRPS algorithm while
allowing dry areas to receive high levels of precipitation when large-scale conditions
indicate large weather disturbances. The CHC’s new global MWR modeling frame-
work makes the developing of a set of global parameter grids describing the p|W, α|
W, β|W plausible.
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Chapter 24
Merging the Infrared Fleet
and the Microwave Constellation
for Tropical Hydrometeorology (TAPEER)
and Global Climate Monitoring (GIRAFE)
Applications

Rémy Roca, Adrien Guérou, Rômulo A. Jucá Oliveira, Philippe Chambon,
Marielle Gosset, Sophie Cloché, and Marc Schröder

Abstract Improved monitoring of the precipitation at global scale and in conven-
tional data sparse regions is needed to enhance our understanding of the functioning
of the water and energy cycle and our ability to forecast its evolution at various
scales. Decades of precipitation remote sensing research have shown that the
merging of the high frequency cloud top information derived from geostationary
infrared observations with the column hydrometeors vertical fluxes estimated from
much less frequent passive microwave observations could mitigate the short com-
ings of each approach and provide accurate accumulated rainfall estimates. The
classical merging technique is introduced in detail and some more recent develop-
ments on the estimation of the uncertainty of the daily accumulation are presented.
The products from tropical hydrometeorology and climate monitoring
implementations are shown. Their performances and sensitivity are discussed, with
emphasis on the configuration of the constellation. Finally, an outlook for future
developments is provided.
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24.1 Introduction

The knowledge of the accumulated precipitation amount and its uncertainty is
important to the water budget, be it at the global scale in relation to the energy
budget of the planet or at the catchment scale in relation to possible flooding. The
strong intermittency of the precipitation field nevertheless makes the estimation of
accumulation difficult by adding sampling issues to the instantaneous rates intensity
determination. Rain occurrence together with rain intensity when it rains are all
important aspect of the accumulated precipitation. The merging of the high fre-
quency cloud top information derived from geostationary infrared observations with
the column hydrometeors vertical fluxes estimated from much less frequent passive
microwave observations could mitigate the short comings of each approach and
provide accurate accumulated rainfall estimation (Kidd 2001) that accounts for the
highly variable precipitation.

Despite strong progress in the performances of the satellite remote sensing
products over the last decades as shown in this book or as reported under the
International Precipitation Working Group (IPWG) activities (Levizzani et al.
2018), new and more stringent requirements are arising that call for more accurate
accumulated estimation at various scales and latency. For instance, climate model
evaluation requires a long term accurate climatology at finer scales than before
(Tapiador et al. 2017), with global means that are consistent with the energy budget
(Tapiador et al. 2019) of the planet. Flood forecasting in the tropics used to require
only low latency products but with the advance in hydrological modeling, it now
also requires unbiased data in addition to low latency (Cassé et al. 2015; Gosset et al.
2018). On the user hand, the general demand for high quality global precipitation
products comes from an ample variety of user categories, such as, for example,
hydro-meteorological services, research institutions, universities, civil and environ-
mental protection agencies, governments, insurance and reassurance companies,
United Nations agencies (e.g., WMO, FAO, UNESCO, UNEP), water management
authorities, agriculture and food production ministries, transportation companies and
authorities. These specific demands are also reflected by the priority areas of the
WMO Global Framework for Climate Services (GFCS) that are agriculture and food
security, disaster risk reduction, health, and water availability. All these priority
areas need high-quality precipitation observations.

These various incentives have prompted the development and improvements of a
suite of accumulated precipitation products with multiple specifications, but all
based on the merging of infrared data from the geostationary fleet with the observa-
tions from the passive microwave constellation. The next two sections are dedicated
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to introducing the background underlying the estimation of accumulated precipita-
tion and the associated uncertainty. Implementations of the merging method dedi-
cated to the tropical water cycle science are then presented. Preliminary results from
an ongoing effort to provide a climate monitoring implementation are detailed, with
emphasis on its sensitivity to the constellation configuration. The final section
describes the plan for the future.

24.2 Merging Satellite Observations for Accumulation
and Uncertainty Estimation

24.2.1 Estimation of the Accumulated Precipitation

24.2.1.1 Background

The accumulated amount of precipitation over a domain and a period, A, can be
written as

A ¼ RRcon � α ð24:1Þ

where RRcond is the conditional instantaneous rain rate and α the precipitating
fraction of the domain (in space and time). The estimation problem is easily
separated into two separate steps: (i) the computation of the RRcond, and (ii) the
computation of the fraction.

Among the various approaches (Kummerow and Giglio 1995), the adjusted
GOES Precipitation Index technique (Xu et al. 1999) provides a direct way to use
both LEOmicrowave observations and GEO infrared measurements to constraint the
estimation of the two values. First, a space-time training volume is defined for which
all the instantaneous conditional rain rates estimates derived from the microwave
data are used. The average of these observations is built to estimate RRcond. Second,
over another training volume, the instantaneous precipitation detection results are
collocated with the geostationary infrared data and a histogram is built that permits
the identification of the IR Brightness Temperature thresholds that would fit, over the
training volume, the microwave derived precipitation fraction. This latter informa-
tion is further used over the application domain to estimate the precipitation fraction
using all the infrared observations.

24.2.1.2 Performance Sensitivity

The overall performances of such an estimation of accumulated precipitation
depends upon the overall performance of the microwave retrieval in both the
detection and the estimation steps, the statistical robustness of the average compu-
tation and its representativeness. Both are functions of the size of the relative training
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volume and density of observations from the constellation and of the application
volume.

The current generation of the L2 algorithm is based on a statistical approach to
identify the relevant hydrometeors profiles and surface rain-rate from microwave
channels observations (see Chap. 8) in a reference database. In most of these
algorithms, the retrieved profile is the most likely one or a combination of most
likely profiles (Kidd et al. 2016b). If the current meteorological situation is very
unlikely or poorly represented in the database, the individual retrieval is unlikely to
provide a relevant solution. On the other hand, assuming an accurate reference
database, these profiles are likely to provide a good estimate of the reference
database average conditions. In short, Bayesian retrievals are better when the method
finds many profiles to averaged together to compute RRcond. If the L2 retrievals are
still characterized by a systematic bias, its propagation into the final accumulation
products is not linear and usually damped as revealed by earlier error propagation
studies (Chambon et al. 2012a). Finally, the bias correction scheme also acts as to
mitigate the issue for the final product (Huffman et al. 2001; Roca et al. 2018).

The deterministic detection step is also an important source of performances
sensitivity. While recent advances promote the ability of the passive microwave
imagers to detect rainrates as low as 0.25 mm h�1 (Casella et al. 2015) the inclusion
of the very light rain part of the distribution in the adjustment approach is very
sensitive. It lowers the estimate of RRcond, thus decreasing the overall rainfall
estimation but simultaneously enhances the precipitating fraction. This is likely the
reason for the good performance of the actual method over convectively dominated
regions where the impact of this limitation is minimum. The treatment of the
detection/minimum rain rate threshold requires a careful approach.

Apart from issues pertaining to the quality of the Level 2 product, there is an
additional difficulty in the trade-off between training and application volume for
statistical robustness vs. representativeness. For instance, a large training volume
(for both RRcond and α estimation) of 10� � 10� � 1 month will allow a large number
of microwave data to be ingested even with a modest constellation. When used for
the IR threshold determination, however, that threshold might not be representative
of the cloud top temperature-precipitation detection for a given daily event in the
month. Similarly using a very dense constellation might ensure statistical robustness
for a small area, and consequently, a more representative training volume but might
not by itself grant the ability to use a short time (like hourly) application volume.

The optimization of such a retrieval thus requires comprehensive sensitivity
studies to adjust the free parameters. Fortunately, the design of such approach
makes it a particularly well-suited framework for data denial experiments.

24.2.1.3 Sensitivity to the Configuration of the Microwave Constellation

An observing system simulation experiment was performed by (Chambon et al.
2013) in order to evaluate the sensitivity of the estimated accumulated precipitation
to the microwave sensor constellation. Within this idealized framework, it was
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shown that algorithms of precipitation estimation, like the Tropical Amount of
Precipitation with an Estimate of ERrors (TAPEER), need to be adapted in order
to benefit from a dense constellation. In particular, it was only possible to detect the
improvements arising from the temporal sampling of Megha-Tropiques by decreas-
ing the size of the training volumes of the fusion algorithm. These results were
confirmed with real observations by Roca et al. (2018).

24.2.2 Estimation of the Uncertainty

24.2.2.1 Background

The total uncertainty on the final accumulated precipitation arises from all of the
individual source of uncertainty and their propagation at various levels of the
complex, highly nonlinear series of operations needed along the merging procedure.
Assuming all uncertainty sources are uncorrelated a general uncertainty budget of a
physical measure can be written as

εtotal � εcalibration þ εalgorithm þ εsampling ð24:2Þ

The calibration term relates to both the infrared geostationary data as well as the
microwave instruments of the constellation. The algorithm term encompasses both
the merging algorithm as well as the instantaneous rainrates retrieval uncertainty.
The sampling term is more straightforward and is directly related to the number of
available samples used for constructing the accumulation as detailed in the next
section. Both the use of an ad-hoc bias correction scheme with ancillary data and the
detection uncertainty further introduce non-linearity in the uncertainty budget and
make it difficult to estimate the individual terms. At the instantaneous retrieval level,
the impact of the uncertainty of the calibration (and other offsets in the simulated
brightness temperatures) of the microwave imagers to the rain rates estimates has
been explored (Elsaesser and Kummerow 2015) showing systematic error propaga-
tion, mainly in the low rain rates range. The systematization of such uncertainty
model to the full-blown constellation, including sounders is nevertheless not
straightforward. A systematic investigation of the various terms comprising the
total uncertainty budget for a merged product (Chambon et al. 2012a) led to a
number of generic elements. They used a Monte Carlo approach to deal with the
non-linearity of the process and have shown that.

• The random errors in the level 2 data do not affect the final products performances
very much but systematic errors do propagate to the final daily accumulated
precipitation estimates.

• The response is precipitation-regime dependent. Low and high rain rate system-
atic errors (respectively≦ 2 mm h�1 and≧ 10 mm h�1) do not significantly affect
the final daily accumulated precipitation estimates, even with strong errors
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(~100%). Systematic errors on intermediate rain rates (between 2 and 10 mm h�1)
do propagate more efficiently to the final daily accumulated precipitation
estimates.

• The response is not linear. In the most sensitive case, (medium rain rates,
systematic errors), a + 40% perturbation in the level 2 data yield a + 25% bias
in the final daily accumulated precipitation.

While a more systematic approach for the propagation of uncertainty from the
microwave algorithm part is clearly needed, these early studies suggests that to a
first approximation, the random uncertainty budget can be simplified to

εtotal � εsampling ð24:3Þ

and the systematic part of the uncertainty budget can be mitigated through the bias
correction scheme.

24.2.2.2 The Sampling Uncertainty

Roca et al. (2010) proposed a model for the computation of the sampling uncertainty
for accumulated precipitation. It takes the form of a standard error and is given by

εsamp ¼ σ
ffiffiffiffiffiffiffiffiffi

Nind
p ð24:4Þ

where σ is the variance of the geostationary derived rainmask over the 1� � 1� � 1 day
volume multiplied by the RRcond and Nind is the number of independent sample in the
computation of the mean and variance. The estimation of Nind is based on the
computations of variograms from the geostationary rain mask and is given by

Nind ¼ A

d2
T
τ

ð24:5Þ

where d and τ are the decorrelation scales, both in space and time, obtained from the
variograms (Roca et al. 2010). Figure 24.1 shows the monthly averaged map of the
relative uncertainty obtained from TAPEER1.5 products (see Sect. 24.3.2).

The uncertainty is computed on a 10� � 10� grid every 10 days to both minimize
the computational burden and while keeping the major variability of the variance
fields (Chambon et al. 2012a). In the intense rainfall areas, the sampling relative
uncertainty varies from 15% to 20% and tends to 15% as the rainfall increases.
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24.2.2.3 Bias Correction Scheme

The final step of the product realization is the application of the Bias Correction
Scheme (BCS). This ensures some consistency between the satellite derived prod-
ucts mentioned above with respect to selected other products. This step is often,
although improperly, called the calibration step of the final product. This statistical
adjustment depends on various hypotheses.

Indeed, it is possible to adjust the bias of the product either at the global scale
based on water and energy cycle closure arguments or at local scales making use of
ground data rich regions where available, or both. Each of these adjustment
approaches has its own advantages and weaknesses. It also relies strongly on the
reference dataset selection. For instance, over the ocean a budget approach can be
employed to characterize the products to first order by computing the water budget
over various ocean basins using multi-year averaged seasonal cycle (Rodell et al.
2015; Brown and Kummerow 2014) with the help of evaporation data from SeaFlux
and water vapour transport from ECMWF Reanalysis. Over the global land, the use
of the GPCC reference can be used to compute multi-year seasonal cycles for
comparison over various continental masses (Rodell et al. 2015), or simply used
as a part of the product (e.g., Huffman et al. 2001).

24.2.2.4 Summary and the 1� � 1� � 1 Day Optimum

Figure 24.2 presents a schematic summarizing the steps in producing the accumu-
lated rainfall and associated uncertainty.

The accumulated rainfall estimation using this merging technique requires
enough IR and microwave observations to ensure that the relationship between
rain/no rain IR threshold and the actual rain fraction are robust. This relationship,
between the cloud and the rain, is basically a statistical relationship that requires data
to be aggregated to some space/time resolution for it to hold. The physical con-
straints of the observing system used to characterize the high frequency/small scales

Fig. 24.1 The relative uncertainty in % as a function of daily rain accumulation for land (left) and
ocean (right) conditions for July 2012 all over the Tropics
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in the intermittent precipitation field put a physical limit on the scale of the
accumulation estimate. As a result, for a given set of observations, if the accumu-
lation is computed over a small space domain, the random uncertainty will grow
strongly (Bell and Kundu 2000) preventing its use for applications. Over large
domain, the random uncertainty vanishes as does the physical variability of interest.
A trade-off must be found. The merit of such an approach aggregated at the 1�/1 day
scale has already been discussed and is pursued here. Theoretically, it is nevertheless
possible to also consider lower resolutions of the products within our framework
assuming the representativeness of the IR-rain statistics is conserved in order to
avoid random error growth. Recent investigation for tropical conditions, in West
Africa, indeed suggests that the skill of such a merging technique at 1� day�1 would
still hold at 0.5�/6 h assuming observing conditions from the recent microwave
constellation and the MSG satellite (Guilloteau et al. 2016). Further research is
needed to assess whether it still holds in the past and in other regions. Similarly,
one can think of a product that complements the 1�/1 day baseline but could address,
for instance, 1�/30 min to resolve the diurnal cycle or 0.25�/daily scale for which the
statistical robustness of the estimate is more easily achieved.

Finally, the observing system limitation (Guilloteau et al. 2018) prevent the use of
this kind of approach for estimation at finer joint space and time scale that can
nevertheless be explored thanks to statistical downscaling techniques as pointed out
in Sect. 24.5.

24.3 Implementations for Tropical Water Cycle

24.3.1 Data

24.3.1.1 The Geostationary Data

Table 24.1 details the configuration of the geostationary infrared fleet for the month
of August and reveals the spectral similarities of the thermal channels as well as the
variety of space and time resolutions to deal with in the colocation step.

Level-1
Microwave Imager

Level-2
Instantaneous precipitation rate

Level-2
Instantaneous precipitation rate

Merging
Error modelling

Bias
Correction
Scheme

Accumulated
precipitation
and
uncertainty

Level-1
Microwave Sounder

Level-1
Geostationary IR

Fig. 24.2 Flow chart of the merging algorithm
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In the framework of both the TAPEER and the GIRAFE implementation, a
specific quality control procedure has been devised to handle the technical issues
found in the data (Szantai et al. 2011).

24.3.1.2 The BRAIN Data

The Bayesian Rain Algorithm including Neural Networks (BRAIN) algorithm
originates from the GPROF algorithm (Viltard et al. 2006) and differs some the
original versions by the use of a TRMM-PR database in the Bayesian scheme. In the
version used for the tropical water cycle implementation, for all of the microwave
imagers, the instantaneous rain rates are retrieved at a common resolution of 12 km,
making the collocation with IR and the multiplatform merging straightforward. The
analysis of the performance of the retrieval shows a rather good detection capability
over tropical West Africa but a systematic underestimation of the rain intensity
(Kacimi et al. 2013; Kirstetter et al. 2013; Roca et al. 2015, 2018).

24.3.2 The TAPEER Implementation

24.3.2.1 Common Aspects

The general implementation of the TAPEER algorithm has been presented in various
publications (Chambon et al. 2012b, 2013; Roca et al. 2018). The algorithm merges
the IR data (Table 24.1) with the BRAIN Level 2 from various platforms
(Table 24.2) and outputs the 1� � 1� daily accumulated precipitation amount and
the uncertainty estimate using the error model introduced in the previous section.

Table 24.1 The configuration of the geostationary infrared fleet for August 2016 used in the
precipitation products

Nominal
configuration GOES-W GOES-E MSG MFG HIMAWARI

Satellite GOES-15 GOES-13 MSG3 METEOSAT-
7

HIMAWARI-
8

IR channel (μm) 10.7 10.7 10.8 11.5 10.4

Nadir location 135�W 75�W 0�E 57�E 140.7�E
Time resolution
(min)

30 30 15 30 20a

Resolution at nadir
(km)

4 4 3 5 2

Effective long. Span 175�W–

120�W
120�W–

40�W
40�W–

40�E
40�E–100�E 100�E–

175�W
aThe nominal resolution is 10 min
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24.3.2.2 TAPEER 1.0 with MADRAS

Early tests of the TAPEER algorithm have been implemented using the MADRAS
observations in conjunction with other imagers. The initial results were found very
encouraging but the sudden demise of the instrument stopped the operational
implementation (Roca et al. 2015). It prompted the team to explore mitigation
solutions for the loss of the tropical sampling introduced by Megha-Tropiques and
the development of TAPEER 1.5.

24.3.2.3 TAPEER 1.5 with SAPHIR

As discussed in Sect. 24.2, the conditional rain rate and the rain fraction can be
estimated independently using different training volumes. Here we go one step
further and use to configuration of the constellation, one with only the imagers
used for the RRcond computations and another one, including rain detection results
from imagers and a rain-no rain mask derived from the SAPHIR sounder for the
computation of the rain fraction. A SAPHIR-derived rain-no rain mask based on
(Hong 2005) is available from the Megha-Tropiques water vapor products (Roca
et al. 2015). This two-constellations implementation benefits from a TRMM-PR
based bias correction scheme (Roca et al. 2018).

The boreal summer climatology of the products (Fig. 24.3) reveals the well-
known features of the monsoons and the ITCZ as well as the heavy rainfall

Table 24.2 The configuration of the passive microwave constellation (imagers and sounders) used
for the various TAPEER and GIRAFE products

Algorithm Imagers Sounders

TAPEER
1.0

AMSR-2, TMI, F15SSM/I,
F16/F17/F18 SSMIS,
MADRAS

None

TAPEER
1.5

AMSR-2, TMI, F15SSM/I,
F16/F17/F18 SSMIS

SAPHIR (Hong)

TAPEER
2.0

AMSR-2, GMI, F15SSM/I,
F16/F17/F18 SSMIS,
MADRAS

NPP, ATMS, METOPA.MHS, METOPB.MHS,
NOAA18.MHS, NOAA19.MHS, SAPHIR
(PRPS)

GIRAFE
1.0

AMSR-2, GMI, F15SSM/I,
F16/F17/F18 SSMIS,
MADRAS

NPP, ATMS, METOPA.MHS, METOPB.MHS,
NOAA18.MHS, NOAA19.MHS

Fig. 24.3 Map of the July–September 2012–2016 average daily precipitation from TAPEER 1.5
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characteristics of the Bay of Bengal. The patterns as well as the intensity are in good
agreement with existing similar scale products. The product shows significant
sensitivity of to the presence of the SAPHIR data (Roca et al. 2018). It is now
being used to investigate tropical meteorology and hydrometeorology science ques-
tions as summarized in Chap. 3). An important aspect of the product is the very
multiyear steady performance when compared to other global products over West
Africa (Gosset et al. 2018) that enables hydrometeorological studies.

Recent applications indicate that one key feature for rainfall product relevance for
hydrometeorology in West Africa is the reproduction of the early rise of the Niger in
July followed by several sharp peaks during the “red-flood” period (Cassé et al.
2015, 2016) which creates severe floods in Niamey. Reproducing this feature
requires a good representation of the convective systems’ rainfall near Niamey – a
skill shown by TAPEER 1.5 (Gosset et al. 2018). Figure 24.4 further illustrates the
usefulness of the uncertainty information of the product when used as the forcing to a
hydrological model for the 2016 season in Niger. The TAPEER 1.5 product is in
operation in the French scientific ground segment for the Megha-Tropiques mission
and the data are freely available at http://www.icare.univ-lille1.fr/mt (last accessed
16 Oct. 2018).

24.3.3 TAPEER-GPROFv5-PRPS

The most recent implementation of the algorithm is based on the use of a larger
amount of instantaneous rain rates retrievals made available via PPS of GPM based
on the GPROF and the PRPS algorithms.

Rain Niger Basin - 2016-12-31 Niamey : discharge ensembles
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Fig. 24.4 Hydrological application of TAPEER 1.5 over the Niger River basin. The left figure
shows the total rainfall accumulated over the Niger river basin in 2016 (1 January–31 December),
the right plot illustrates the simulation of the discharge in Niamey based on the hydrological model
MGB (Fleischmann et al. 2018) with TAPEER rainfall as forcing
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24.3.3.1 The GPROF and PRPS Data

GPROF has been enhanced for the GPM constellation and its actual version
(GPROF2017) is applicable to different PMW radiometers, such as imagers
(SSM/I, TMI, SSMI/S, GMI and AMSR-2) and sounders as well (i.e., MHS,
NPP). Given that GPROF is a physically-based Bayesian scheme which uses an
a-priori database and relates to the brightness temperatures for rainfall retrievals (see
Chap. 8), the GPM Version 5 (V5) a-priori database is used in GPROF2017
algorithm version. In this case, the GMI radiances are matched with 3 hydrometeor
sources: (i) Combined MS, (ii) DPR Ku, and (iii) Multi-Radar/MultiSensor System
(MRMS) ground-based radars (Kummerow et al. 2015; Kidd et al. 2016a).

In order to keep the full benefit of the MT orbit in the Tropics (demonstrated in
Roca et al. 2018), GPROF pwv retrieval (which does not yet include SAPHIR) is
complemented by PRPS retrieval (Kidd 2018) on SAPHIR. Precipitation Retrieval
and Profiling Scheme (PRPS) is also a Level 2 physically-based scheme for rainfall
retrieval, but developed uniquely for sounders (in this case for SAPHIR). The
estimate of precipitation from PRPS for SAPHIR considers the Level 1C SAPHIR
data and other four a-priori data as input: (i) database of DPR (rain rate) – SAPHIR
(Tc radiances); (ii) database index; (iii) topography data; and (iv) scan-position
correction database (Kidd et al. 2016a, 2018).

24.3.3.2 TAPEER 2.0

TAPEER 2.0 retains the principles of TAPEER 1.5, but uses different inputs. As
with previous implementations, the algorithm allows for diverse constellations to be
used for calculating the daily rain fraction and the constellation used for calculating
the conditional rain rate. With this flexible approach, the use of sounders and imagers
can thus be optimized according to the skills of the retrievals on each type of
platform. Sensitivity tests are currently carried out in order to finalize the choice of
parameters in TAPEER 2.0. Another novelty in TAPEER 2.0 is that unlike BRAIN,
the spatial resolution of GPROF (version 5) retrieval is platform dependent. The
co-location module of TAPEER 2.0, which creates the coincident data bases
between the geostationary data and the PMW retrieval, has thus been modified to
account for size and shape differences in the FOV of the different sensors.

24.3.3.3 Future Evolution

Future plans will focus on:

• The error model will continue to evolve the initial work by Chambon et al.
(2012a) in order to account for the propagation of level 2 uncertainties (bias;
random errors) into the level 4 data.
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• While TAPEER 1.5 is provided at the 1� � 1 day resolution, the work by
Guilloteau et al. (2017, 2018) demonstrated that information on rainfall at
much smaller scales can be extracted from satellite information by using stochas-
tic approaches. This will be implemented in TAPEER in some hot spot regions
(e.g., targeted tropical basins such as Niger river).

• The type and amount of information provided at level 2 is expected to evolve
rapidly in coming years. The TAPEER approach is flexible enough to absorb and
take advantages of these changes by

– Integrating level 2 data from the new constellations of satellites available in the
Tropics (e.g., nano satellites like in the TROPICS mission, Blackwell et al.
2018).

– Integrating the merging technique with probabilistic information which is
becoming available at level 2 (e.g., probability of rain rather than a simple
rain masks; quantiles of rain rates rather than a single rain values).

24.4 Implementation for Climate Monitoring

The demand for an improved precipitation climate product and service is related to
the need for better information on medium– and long-term trends of precipitation
and its extremes in various regions of the globe, especially those that are exposed to
floods, droughts and/or water scarcity. The changing climatic regimes impose a
serious reconsideration of our knowledge of the water cycle mechanisms, precipita-
tion above all. The accurate knowledge of precipitation distribution and variability
on a daily, monthly, seasonal, yearly, and decadal basis is vital as a support to
decisions by the national, European and other authorities. It is deemed relevant and
beneficial that Europe enters the arena of precipitation product provision for climate
services; and that the development, generation and provision of a global precipita-
tion climate data record will be pursued in a joint European effort.

This effort benefits from sustained European observing systems (e.g., Meteosat
Third Generation and EUMETSAT Polar System Second Generation), a maximized
utilization of well characterized radiances and brightness temperatures,
i.e. Fundamental Climate Data Records (FCDRs), traceability through the full
processing chain from Level 1 to Level 4, and a close cooperation with the in-situ
community, in particular the Global Precipitation Climatology Centre. The precip-
itation product would further be based on a suite of physically based algorithms for
instantaneous rain and snow rates, applicable to microwave sounders and imagers,
on a sound approach for blending the geostationary observations for accumulated
rainfall computations, and on an innovative uncertainty propagation model.

Initial elaborations of such products are ongoing within the EUMETSAT Climate
Monitoring SAF under the name Global Interpolated RAinFall Estimation
(GIRAFE). The preliminary outcomes of this long-term development are presented
in the next section.
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24.4.1 GIRAFE 1.0 – GPROFv5

This first implementation of GIRAFE is focused on estimating the 1� � 1� daily
liquid precipitation accumulation over the 55�S-55�N region. It follows the general
flow chart of the merging algorithm (Fig. 24.5). It relies on the use geostationary
observations of Table 24.1 and use the instantaneous rainfall estimation from
GPROF v5 (see Sect. 3.6.4.4) for both the imagers and the sounders as summarized
in Table 24.2. The rain-no rain detection step is deterministic with a flat threshold of
0.5 mm h�1 for each platform.

24.4.1.1 First Results

The map of estimated rainfall using GIRAFE and GPROF (Fig. 24.5) exhibits the
well-known structures of the tropical and extra-tropical precipitation climatology.
Under the current preliminary implementation, the intensity distribution is biased
low with respect to other climatologies.

24.4.1.2 Sensitivity to the Constellation Configuration

Using the ability of the merging approach to exercise data denial experiments, a
second run of GIRAFE is performed using only the imagers and no sounders. All
other things are equal to the baseline integration. Figure 24.6 shows the map of the
monthly mean difference between the two computations. While difference generally
span negative to positive values over the oceanic regions, the northern midlatitude
oceans are characterized by a systematic increase in monthly rainfall amount when

Fig. 24.5 Map of the monthly precipitation accumulation in mm for August 2016 from the full run
of GIRAFE
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the sounders are incorporated in the estimation. Conversely, over land the integration
using only imagers yield systematically larger monthly estimates in the tropics.

As a result, the conditional mean rain amount over land (ocean) is 3.5 mm day�1

(3.2) and 3.7 mm day�1 (3.6) for imagers only. The precipitation fraction for the
baseline run is 55% and 55% over land and ocean respectively while it is 56% and
49% for the imager only integration.

Over the tropical land, the systematic difference therefore arises from the sys-
tematic underestimation of the imagers and sounders integration over the 10–-
20 mm day�1 range as indicated by the analysis of the distribution of the daily
1� � 1� accumulation (Fig. 24.7). Over the ocean the situation is slightly more
complex with a significant overestimation for the low accumulation (up to
4 mm day�1) and an underestimation for the higher rain accumulation. Such a
response is also observed over the tropical Atlantic Ocean characterized by a west-
east gradient in the difference between the two configurations of GIRAFE. These
preliminary results show the great benefit of adding the sounders in the constellation
as well as the challenges of ingesting these together with the imagers retrievals in a
consistent way.

24.4.2 Future Evolution

The GIRAFE production is foreseen in 2021 with a first integration ranging from
2002 to 2020. In the upcoming years the GIRAFE developments will first focus on:

• using instantaneous retrievals of precipitation from HOAPS/imager;
• using instantaneous retrievals of precipitation from sounders;
• reaching global coverage and extend to snowfall;
• implementing a time varying uncertainty model.

Fig. 24.6 Map of the monthly mean difference between the two runs of GIRAFE with or without
the sounders in the constellation (mm day�1)

24 Merging the Infrared Fleet and the Microwave Constellation for Tropical. . . 443



24.4.2.1 The Evolution of the HOAPS Instantaneous Precipitation Rate
Estimate

Since the late 1980s, several groups at the Max-Planck Institute for Meteorology
(MPI-M) and the University of Hamburg (UHH) have been developing retrievals
based on SSM/I microwave observations. The retrieved parameters include precip-
itation, latent heat flux and various other parameters which were incorporated in a
data set, which was named the “Hamburg Ocean- Atmosphere Parameters and
Fluxes from Satellite Data” (HOAPS). Since version 3.1, EUMETSAT’s Climate
Monitoring-Satellite Application Facility (CM-SAF) releases the HOAPS data set,
in close cooperation with UHH and MPI-M. The latest version is HOAPS
4 (Andersson et al. 2017) which provides quasi-global coverage over the ice-free
ocean surface, i.e., within �180� longitude and � 80� latitude. The products are
available as both 6-hourly composites and monthly averages on a regular latitude/
longitude grid with a spatial resolution of 0.5� � 0.5� degrees. The temporal
coverage of HOAPS 4 ranges from July 1987 to December 2014. HOAPS relies
entirely on observations from SSM/I and SSMIS (Graw et al. 2017). An exception is
the utilization of SST data from AVHRR (Reynolds et al. 2007).

Fig. 24.7 GPM imagers
and sounders (in blue) and
GPM imagers only (in red)
precipitation volume
distributions over all the
region (top), over land
(middle) and ocean (bottom)
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The HOAPS 4 precipitation retrieval is an artificial neural network (Andersson
et al. 2010). Currently, CM-SAF is developing a new physical retrieval for precip-
itation. In a first step, background and first guess profiles are estimated which are
then used as input to a 1-dimensional variational scheme (1D-Var) to retrieve
precipitation. The background profile that is most consistent with the measured
conditions is estimated from the profile data set by constructing a weighted average
of selected profiles, similar to the Bayesian approach outlined in Chap. 7. The
selection is based on sensor derived data and SST only. The HOAPS 1D-Var
retrieval is an implementation of the Numerical Weather Prediction-SAF
(NWP-SAF) package containing the merged capabilities of the UK MetOffice and
ECMWF 1D-Var schemes (Deblonde et al. 2007), among others, with the extension
to handle hydrometeor profiles in precipitating scenes by using a multiple scattering
module in the Radiative Transfer model for TIROS Operational Vertical Sounder
(RTTOV) as the forward operator (Saunders et al. 2013). The 1D-Var scheme will be
further fine-tuned to optimize retrieval quality. Future developments also include an
extension of the state vector to allow retrieval applicability also over land areas
(Boukabara et al. 2011) and an uncertainty analysis using the uncertainty estimate
from the 1D-Var retrieval scheme and results from comparisons with ground-based
observations (e.g., from the Ocean Rainfall And Ice-phase precipitation measure-
ment Network, OceanRAIN, Klepp et al. 2018; Chap. 34 of volume 2).

24.4.2.2 Use of Sounders

As exemplified above, the use of sounders is an important aspect of the implemen-
tation of GIRAFE for climate monitoring that will benefit from two recent advances
on the sounders archive and sounder based retrievals (e.g., Laviola and Levizzani
2011). First on the climate data record aspect, the EUMETSAT CM-SAF is finaliz-
ing the AMSU-B FCDR that shows long term stability and homogeneity over the last
decade. Second, as exemplified in this chapter, the PRPS instantaneous precipitation
retrievals (Kidd 2018) has matured and will be used for the GIRAFE implementa-
tion. These advances will make it possibility to benefit from research satellite
observations such as SAPHIR data on board the Megha-Tropiques mission (see
Chap. 3). Efforts will nevertheless be needed to investigate the consistency among
the imagers and sounders retrievals in the RRcond computations as well as on the
uncertainty propagation.

24.4.2.3 Extension to the Poles and to Snow

Estimates of daily accumulated precipitation globally requires reaching out to the
poles. Poleward of 55�, the geostationary viewing angle and pixel deformation
prevents its classical use It is therefore planned to rely on a microwave only
estimation of both the conditional rainrates and the rain fraction. Fortunately, the
recent growth of the constellation including the sounders yield an impressive number
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of microwave data available for that region where more than 50 daily overpasses can
be used poleward of 70� (Fig. 24.8). Beyond the 55� and 70� latitude range, the
density of observations is characterized by a strong increase that will need to be
carefully accounted for.

Extending from the tropics and the TAPEER algorithm to the global GIRAFE
products not only requires a change to a microwave-only approach, but also for solid
precipitation to be accounted for. The retrieval of precipitation over land and the
retrieval of precipitation over polar regions is very challenging but instead of using a
surface temperature-based partitioning between rain and snowfall, at this stage, it is
envisioned to keep the same philosophy for snowfall as used for rainfall, using
dedicated the instantaneous snowfall rate initially developed in the H-SAF (Rysman
et al. 2018).

24.4.2.4 The Time Dependent Uncertainty Estimation

While the amount of geostationary data has been steady over the last two decades,
the constellation of passive microwave imagers and sounders has changed signifi-
cantly. Using the strength of the merging technique presented here, data denial
experiments (e.g., Roca et al. 2018) will be performed to assess the relative uncer-
tainty in the final products induced by changes in the constellation over time.

Fig. 24.8 Zonal mean number of overpass of the full-blown microwave constellation including
imagers, sounders and SAPHIR. Computations realized using the IXION package. (Capderou
2014)
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24.5 Conclusions

The combination of various passive microwave (imagers and sounders) instanta-
neous precipitation rate retrievals together with geostationary infrared data have
benefited from the recent decades of algorithms improvements. The so-derived
accumulation at the daily scale exhibits very good performances that enables their
use for various hydrometeorological applications, in particular over un-gauged
tropical lands. Similarly, global climate monitoring can also benefit from this
progress. Besides efforts to improve existing products, a European Initiative has
been formed to generate a new global precipitation product dedicated to climate
analysis and climate services. An associated white paper provides details on back-
ground, motivation, application areas, scientific methods and validation (Tapiador
et al. in preparation).

The accumulated rainfall amount perspective further provides a powerful frame-
work for investigating the uncertainty of the final products and its downstream
propagation from the various raw measurements. The uncertainty characterization
is a much-needed step before addressing smaller space and time scales where
downscaling techniques appear well suited for that endeavor. Similarly, the uncer-
tainty arising from the evolution of the configuration of the constellation of micro-
wave imagers and sounders over the recent decades will be tackled within this
framework, offering enhanced climate monitoring performances.
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