
Chapter 5
Exotic Bayesian Optimization

5.1 Constrained Global Optimization

GO and BO have been considered first in “essentially unconstrained” conditions,
where the solution was searched for within a bounded-box search space. Recently,
due to methodological and application reasons, there has been an increasing interest
in constrained global optimization (CGO).

x∗ = argmin
x∈X

f (x)

Subject to

ci (x) ≤ 0 i = 1, . . . , nc

A paper of general interest about a taxonomy of constraints in simulation-based
optimization is given in Le Digabel (2015). Some general remarks have to be taken
into account:

1. Even if the constraints are analytically defined, they presence without the con-
vexity assumption raises a whole new set of challenging topics, in particular, the
interaction between the feasible region and the surrogate probabilistic model.

2. Since BO assumes the objective function as black box, a natural extension is to
consider the constraints as black box as well (unknown constraints).

3. A relevant case is when the objective function is undefined, and cannot be there-
fore computed, outside the feasible region. In this case, we speak about partially
defined objective functions (Rudenko 1994; Sergeyev et al. 2007).

Point three is particularly relevant when the evaluation of the objective requires,
as in black box conditions, the execution of a simulation model which can return
a valid output or a failure message. An example of failure can be a computational
fluid dynamics solver that does not converge due to instability of the numerical
scheme (Sacher et al. 2018) or a hydraulic simulator if the input generates pressures
or flows physically impossible (Tsai et al. 2018). Also frequent is the case of a
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complex machine learning model where the training of the model, and therefore the
evaluation of the loss function, relies on gradient (stochastic) descent which may fail
to converge. Such an event prevents the exploration of a neighbourhood of a “not
computable” point and halts the sequential optimization procedure. A naïve solution,
in presence of a not computable point, is to associate to it a fixed high (low) penalty
value for the objective function to be minimized (maximized): still, determining
suitable value is not a trivial task and might imply, anyway, a loss of accuracy in the
Gaussian surrogate model and of sample efficiency.

There have been several attempts at leveraging BO framework into dealing with
constrained optimization: the main problem is to propose an acquisition function for
CBO.

The use of GP-and EI-based heuristics has been first proposed in Jones et al.
(1998) allowing for ci (x) to be black box and assuming their mutual independence
and with the objective function. A GP is given as a prior to each constraint. If f +

c is
the best feasible observation of f , the EI acquisition function is:

EI
(
x | f +

c

) =
{(

μ(x) − f +
c

)
�(Z) + σ(x)φ(Z) if σ(x) > 0
0 if σ(x) = 0

where φ and � are the probability distribution and the cumulative distribution func-
tions, respectively, and

Z =
{

μ(x)− f +
c

σ(x) if σ(x) > 0

0 if σ(x) = 0

In presence of constraints the formula becomes:

EIC
(
x | f +

c

) = EI(x | f +
c )

nc∏

i=1

P(ci (x) ≤ 0)

where the improvement of a candidate solution x over f is zero if x is not fea-
sible. When the noise in the constraints is taken into account, we may not know
which observations are feasible: for instance, the best GPmean value satisfying each
constraint ci (x) with a probability at least 1 − δi can be used (Letham et al. 2019).
Gramacy (2016) proposes a different approach for handling constraints in which they
are brought into the objective function via a Lagrangian. EI is no longer tractable ana-
lytically but can be evaluated numerically via Monte Carlo integration or quadrature
(Picheny2016).Relevant prior results onBOwith unknownconstraints proposednew
acquisition functions, such as integrated expected conditioned improvement (IECI)
(Gramacy and Lee 2011). Another approach is presented in Feliot et al. (2017) where
an adaptive Random Search is used to approximate feasible region while optimizing
the objective function. A penalty approach has been considered first in Gardner et al.
(2014), where a penalty is assigned directly to the acquisition function in case of
infeasibility, with the aim to move away from infeasible regions. A similar approach
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has been extended in Candelieri et al. (2018) also in the case in which the function is
partially defined: infeasibility is treated by assigning a fixed penalty as value of the
objective function (we refer as “BO with penalty”).

A new general approach is offered by information-based methods, which have
been extended to the constrained case (e.g. predictive entropy searchwith constraints,
PESC) inHernandez-Lobato et al. (2015): the code for PESC is included in Spearmint
and available at https://github.com/HIPS/Spearmint/tree/PESC.

The above approaches assume that the number of constraints is known a priori
and they are statistically independent.

The assumption of independence permits to compute the probability of feasibility
simply as the product of individual probabilities with respect to every constraint.
The result is multiplied by the acquisition function whose optimization would prefer
points satisfying the constraints with high probability.

The issue of partially defined function or equivalently “crash constraints” or “non-
computable domains” transforms the GP-based feasibility evaluation from a regres-
sion problem into a classification one. This classification approach has been analyzed
in several papers and discussed in the following.

In Basudhar et al. (2012) a probabilistic SVM (PSVM) is used to calculate the
so-called probability of feasibility and the optimization scheme alternates between
a global search for the optimal solution, depending on both this probability and
the estimated value of the objective function—modelled through a GP—and a local
refinement of the PSVM through an adaptive local sampling scheme. The most
common PSVM model is based on the sigmoid function (Vapnik 1998). For a given
sample x, the probability of belonging to the +1 class (i.e. “feasible”) is:

P(+1|x) = 1

1 + eAs(x)+B

The parameters A (A < 0) and B of the sigmoid function are found by maximum
likelihood. Two alternative formulations of the acquisition function are proposed:

max
x

EI(x)P(+1|x)

and

max
x

EI(x)

Subject to

P(+1|x) ≥ 0.5

Other approaches, also based on GP, and focused on cases where the objective
function cannot be computed (not computable domains or crash constraints) have
been proposed in Sacher et al. (2018); Bachoc et al. (2019).

The previous approaches use independent GPs to model the objective function
and the constraints, requiring two strong assumptions: a priori knowledge about the

https://github.com/HIPS/Spearmint/tree/PESC
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number of constraints and the independence among objective function and all the
constraints. Extending EI to account for correlations between constraints and the
objective function is still, according to Letham et al. (2019), an open challenge.

To overcome this limitation, a new approach, namely SVM-CBO (Support Vec-
tor Machine based Constrained BO), has been proposed in Candelieri and Archetti
(2019): themain contribution of the paper is the development of amethodwhich does
not require any of the two previous assumptions. The approach uses support vector
machine (SVM) to sequentially estimate and model the unknown feasible region (�)
within the search space (i.e. feasibility determination), without any assumption on
the number of constraints as well as their independence.

SVM-CBO is organized in two phases: the first is aimed to provide a first estimate
of� (feasibility determination) and the second is BO performed on such an estimate,
only. The motivation is that we are interested in obtaining a good approximation of
the overall feasible region and not only close to the optimal solution (i.e. feasibility
determination is a goal per se, in our approach). Another relevant difference with
Basudhar et al. (2012) is that SVM-CBO uses more efficiently the available “budget”
(i.e. maximum number of function evaluations): at every iteration, of both phase 1
and 2, we perform just one function evaluation, while in the boundary refinement
of Basudar et al. (2012) a given number np of function evaluations is performed in
the neighbourhood of the next point to evaluate, with the aim to locally refine the
boundary estimate. SVM-CBO is detailed in the following section.

5.2 Support Vector Machine—Constrained Bayesian
Optimization

We start with the definition of the problem, that is:

min
x∈Ω⊂X⊂Rd

f (x)

where f (x) has the following properties: it is black box, multi-extremal, expensive
and partially defined. The last feature means that f (x) is undefined outside that
feasible region �, which is a subset of overall bounded-box search space X ⊂ R

d .
Moreover, we consider the case that constraints defining the feasible region are also
black box.

We introduce some notation that will be used in the following:

• DΩ
n = {(xi , yi )}i=1,..,n is the feasibility determination dataset;

• D f
l = {(xi , f (xi ))}i=1,..,l is the function evaluations dataset, with l ≤ n (because

f (x) is partially defined on X ) and where l is the number of points where it was
possible to compute f out of the n queried so far;

and xi is the i-th queried point and yi = {+1,−1} defines if xi is feasible or
infeasible, respectively.
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Phase 1—Feasibility determination

The first phase of the approach aims to find an estimate Ω̃ of the actual feasible
region � in M function evaluations (Ω̃M = Ω̃). The sequence of function evalua-
tions is determined according to an SMBO process where the surrogate model—of
the feasible region, in this phase—provides the currently estimated feasible region
Ω̃n . As surrogate model we use the (non-linear) separation hyperplane of an SVM
classifier, trained on the set D�

n . The SVM classifier uses an RBF kernel to model
feasible regions with non-linear boundaries.

Let denote with hn(x) the argument of the SVM-based classification function:

hn(x) =
nSV∑

i=1

αi yi k(x̄i , x) + b

where αi and yi are the Lagrangian coefficient and the “feasibility label” of the i-th
support vector, x̄i , respectively, k(., .) is the kernel function (i.e. an RBF kernel, in
this study), b is the offset and nSV is the number of support vectors.

The boundaries of the estimated feasible region Ω̃n are given by hn(x) = 0 (i.e.
non-linear separation hyperplane). The SVM-based classification function provides
the estimated feasibility for any x ∈ X:

ỹ = sign(hn(x)) =
{+1 if x ∈ Ω̃n

−1 if x /∈ Ω̃n

With respect to the aim of the first phase, we propose a “feasibility acquisition
function” aimed at identifying the next promising point according to two different
goals:

• Improving the estimate of feasible region
• Discovering possible disconnected feasible regions.

To deal with the first goal, we use the distance of x from the boundaries of the
currently estimated feasible region Ω̃n , using the following formula from the SVM
classification theory:

dn(hn(x), x) = |hn(x)| =
∣∣∣∣
∣

nSV∑

i=1

αi yi k(x̄i , x) + b

∣∣∣∣
∣

To deal with the second goal, we introduce the concept of “coverage of the search
space”, defined by:

cn(x) =
n∑

i=1

e
−‖x̄i−x2‖

2σ2c
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So, cn(x) is a sum of n RBF functions centred on the points evaluated so far, with
σc a parameter to set the width of the corresponding bell-shaped curve.

Finally, the feasibility acquisition function is given by the sum of dn(hn(x), x) and
cn(x), and the next promising point is identified by solving the following optimization
problem:

xn+1 = argmin
x∈X

{dn(hn(x), x) + cn(x)}

Thus, we want to select the point associated with the minimal distance from
the boundaries of the current estimated feasible region and the minimal coverage
(i.e. max uncertainty). This allows us to balance between improving the estimate of
the feasible region and discovering possible disconnected feasible regions (in less
explored areas of the search space). It is important to highlight that, in phase 1, the
optimization is performed on the overall bounded-box search space X.

After the function evaluation of the new point xn+1, the following information is
available:

yn+1 =
{ +1 if xn+1 ∈ Ω; f (xn+1) is defined

−1 if xn+1 /∈ Ω : f (xn+1)is not defined

and the following updates are performed:

• Feasibility determination dataset and estimated feasible region Ω̃n+1

DΩ
n+1 = DΩ

n ∪ {(xn+1, yn+1)}
hn+1(x)|DΩ

n+1

n ← n + 1

• Only if x ∈ Ω , function evaluations dataset

D f
l+1 = D f

l ∪ {(xl+1, f (xl+1))}
l ← l + 1

The SMBO process for phase 1 is repeated until n = M .

Phase 2—Bayesian Optimization in the estimated feasible region

In this phase, a traditional BO process is performed but with the following relevant
differences:

• the search space is not box-bounded but the estimated feasible region Ω̃n identified
in phase 1
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• the surrogate model—a GP—is fitted only using the feasible solutions observed
so far, D f

l• the acquisition function for phase 2—lower confidence bound (LCB), in this
study—is defined on Ω̃n , only

Thus, the next point to evaluate is given by:

xn+1 = argmin
x∈Ω̃n

{LCBn(x) = μn(x) − βnσn(x)}

where μn(x) and σn(x) are the mean and the standard deviation of the current GP-
based surrogate model and βn is the inflate parameter to deal with the trade-off
between exploration and exploitation for this phase. It is important to highlight that,
contrary to phase 1, the acquisition function is here minimized on Ω̃n , only, instead
of the entire bounded-box search domain X.

The point xn+1 is just expected to be feasible, according to Ω̃n but the information
on its actual feasibility is known only after having checked whether f (xn+1) can or
cannot be computed (i.e. it is defined or not in xn+1). Subsequently, the feasibility
determination dataset is updated as follows:

DΩ
n+1 = DΩ

n ∪ {(xn+1, yn+1)}

and according to the two alternative cases:

• xn+1 is actually feasible: xn+1 ∈ �, yn+1 = +1;
the function evaluations dataset is updated as follows: D f

l+1 = D f
l ∪

{(xl+1, f (xl+1))}, with l ≤ n is the number of the feasible solutions with respect
to all the points observed. The current estimated feasible region Ω̃n can be consid-
ered accurate and retraining of the SVM classifier can be avoided: Ω̃n+1 = Ω̃n

• xn+1 is actually infeasible: xn+1 /∈ �, yn+1 = −1;
the estimated feasible region must be updated to reduce the risk for further infea-

sible evaluations

hn+1(x)|D f
l+1 ⇒ Ω̃n+1

The phase 2 continues until the overall available budget n = N is reached.
In Candelieri (2019) the SVM-CBO approach has been validated on five 2D test

functions for CGO and compared to “BO with penalty”. An overall budget of 100
function evaluations, divided as follows:

• 10 for initialization through Latin hypercube sampling (LHS);
• 60 for feasibility estimation (phase 1)
• and 30 for SMBO constrained to estimated feasible region (phase 2).

In the case of BO with penalty, the same budget has been divided as follows:
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• 10 evaluations for initialization (LHS)
• and 90 for BO (that is the sum of budget used for phase 1 and phase 2 in the
proposed approach).

For each independent run, the initial set of solutions identified through LHS is the
same for SVM-CBO and BO with penalty, in order to avoid differences in the values
of the gap metric due to different initialization.

The so-called Gap metric has been used to measure the improvement obtained
along the SMBO process with respect to global optimum f (x∗) and the initial best
solution f (x0) obtained from the initialization step:

Gn =
∣
∣ f (x0) − f

(
x+)∣∣

| f (x0) − f (x∗)|

where f
(
x+)

is the “best seen” up to iteration n. Gap metrics varies in the range [0,
1]. For statistical significance, the gap metrics have been computed on 30 different
runs, performed for every test function and for both SVM-CBO and BOwith penalty.

While gap metric allows for comparing SVM-CBO to BO with penalty, it was
important to introduce another performance measure to quantify how good is the
approximation of the feasible region, along the SMBO process. We have defined a
simple overlap metric as follows:

On

(
�, Ω̃n

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Vol(Ω̃n
⋂

Ω)
Vol(�)

if Vol
(
Ω̃n

)
< Vol(�)

∨(
Vol

(
Ω̃n

⋂
Ω

)

= Vol(�)
∧
Vol

(
Ω̃n

)
= Vol(�)

)

Vol(Ω̃n)
Vol(�)

otherwise

where � and Ω̃n are the actual and the estimated feasible regions, respectively, and
Vol() is the volume of a region. More precisely, the volume of a region is computed
as an approximation by simply generating a grid of points within the search space
and then counting the number of points falling into that region.

According to its definition, the overlap metric can vary in the range [0,∞), where
a good approximation of the feasible region is associated with a value equal to 1
while no overlap is associated with a value equal to 0. Values higher than 1 represent
situations where � ⊂ Ω̃n .

The following set of figures show the gap metric computed for every test func-
tion with respect to the number of function evaluations, excluding the initialization
through LHS. The value of gap metric at iteration 0 is the best seen at the end of the
initialization step (i.e. f (x0) in the gap metric formula). Each graph compares the
gap metric provided by SVM-CBO and BOwith penalty, respectively. Both the aver-
age and the standard deviation of the gap metric, computed on 30 independent runs
for each approach, are depicted. The higher effectiveness of the proposed approach
is clear, even considering the variance in the performances. The end of phase 1 is
represented by a vertical dotted line in the charts; a significant improvement of the
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SVM-CBO’s gapmetric is observed after this phase, in every test case. It is important
to remind that phase 1 of the SVM-CBO is aimed at approximating the unknown
feasible region, while the optimization process only starts with phase 2. Thus, the
relevant shift in the gap metric is motivated by the explicit model of the feasible
region learned in phase 1 (Fig. 5.1).

Finally, the following set of figures show how the overlap metric changes sequen-
tially over the SMBO process. Since 10 initial function evaluations are all used to
provide a first estimate of the feasible region, the x-axis is limited to 90, that is
the portion of the budget allocated for phase 1 and phase 2: during these phases—
particularly during phase 1—the estimate of the feasible region is updated and the
overlap metric changes consequently. The dotted line represents the mean overlap

Fig. 5.1 Comparison of gapmetrics for the proposed SVM-CBO approach versus BOwith penalty,
for each one of the five test functions, respectively
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metric and the shaded area represents the standard deviation. The figures show that
the proposed SVM-CBO approach achieves a reasonable overlap (higher than 77%)
between estimated and actual feasible region, already after 30–35 function evalua-
tions. The most difficult case was the one with a feasible region consisting of two
disconnected ellipses, but, before the end of budget, overlap metric achieved anyway
the value of 80% (Fig. 5.2).

SVM-CBOoffers a good estimation of the feasible search space, even for complex
feasible search spaces consisting of disconnected regions. Seldom, the BO process,
in phase 2, suggested infeasible points but, thanks to the update of the estimated
feasible region, it was able to quickly fall close to the optimum, without wasting

Fig. 5.2 Overlap metric measuring the quality of feasibility estimation provided by the proposed
approach, for each one of the five test functions, respectively
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further function evaluations outside the actual feasible region. Other important con-
siderations relative to significant reduction in computational costs are reported in
Candelieri (2019).

In the following, some explicative pictures relative to how SVM-CBO works are
reported, considering a 2D test function (i.e. Branin) where the unknown feasible
region consists of the inner areas within two disconnected ellipses.

Begin of phase 1: first estimation of the feasible region according to 10 functions
evaluations (i.e. initialization through LHS). The following symbols have been used:

• Solid black line: boundaries of the feasible region (feasible points are inside the
ellipses)

• Dotted blue line: boundaries of the estimated feasible region
• Green points: optima of (original) Branin’s test function; only one of them is
feasible!

• Blue/black points: evaluations resulting feasible/infeasible
• Points within diamonds—black or blue: support vectors of the two classes
• Red-circled points—black or blue: classification errors with respect to the two
classes

• Red asterisk: next point to evaluate.

Following, modifications of the estimated feasible region along with some itera-
tions (i.e. 1, 5, 9 and 10) of phase 1:
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Phase 1 - Iteration #1 Phase 1 - Iteration #5

Phase 1 - Iteration #9 Phase 1 - Iteration #10

Endof Phase 1 and beginning of Phase 2: level sets for the original box-constrained
objective function are also depicted. In the following figure, the estimated and actual
feasible regions are reported.
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End of Phase 2 (10 function evaluations more): blue triangles are function eval-
uations performed in phase 2. All the triangles are in the estimation of the feasible
region obtained at the end of phase 1. This means that the estimated feasible region
has not been updated during phase 2. The feasible global optimumhas been identified
in phase 2.

SVM-CBO has some limitations which can be relevant in some application con-
text. First, as any other constrained global optimization approach, it is not well-suited
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for dealing with problemswhere infeasible evaluations are “destructive”. This means
that cannot be applied—as is—for solving optimal (online) control of complex indus-
trial systems. This specific kind of problems, known as safe exploration–optimiza-
tion, will be addressed in the following section. Therefore, simulation–optimization
is the setting which might largely benefit from SVM-CBO, such as demonstrated
in the case of pump scheduling optimization in water distribution network by using
the hydraulic simulation software EPANET 2.0. Secondly, since the SVM classi-
fier models the overall boundary of the feasible region, instead of each individual
constraint, a sensitivity analysis cannot be performed. So, the advantage—not only
computational—of using one SVMcould be partially offset, in the case, we are facing
a problem requiring sensitivity analysis.

5.3 Safe Bayesian Optimization

The important difference with respect to CGO is that SafeOpt does not allow—at
least with a given probability—any function evaluations outside the feasible region.
Moreover, in SafeOpt the objective function is not necessarily partially defined:
indeed, a function evaluation is unsafe if the corresponding value of the objective
function violates the safety threshold.

It is important to highlight that: contrary to the rest of this book, where the global
optimization problem is defined as a minimization problem, for safe optimization
we consider a maximization problem, to be coherent with the literature on this topic.
Thus, we want to maximize some black-box expensive function without performing
function evaluations under a given value.

An approach is presented in Sui et al. (2015), which tries to optimize taking
into account the—supposedly known—Lipschitz constant of the objective function.
An extension of this approach is presented in Berkenkamp et al. (2016), where the
SafeOpt algorithm is applied on high-dimensional problems and without using the
information on Lipschitz constant.

The basic problemwas stated as:max
x∈X f (x), subject to the safety constraint f (x) ≥

h, where h is a safety threshold.
A new algorithm, namely StageOpt, has been proposed in Sui et al. (2018),

where the SafeOpt algorithm has been generalized and extended to be more effi-
cient and applicable to a broader class of problems. The goal is to optimize a black-
box objective function f : D → R from noisy evaluations at the sample points
x1, x2, . . . , xn ∈ X . Any point in the sequence, when sampled, must be “safe”,
which means that for each one of m unknown safety functions gi (x) : X → R it lies
above some safety threshold hi ∈ R.

This optimization problem is formulated as max
x∈X f (x) subject to the safety con-

straints gi (x) ≥ hi for i = 1, . . . ,m.
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This is a more general formalization of the original SafeOpt (Sui et al. 2015),
which used only a simple threshold on the value of the objective function, leading to
a single constraint g(x) = f (x) ≥ h.

As in constrained optimization, GPs are used to model both the objective function
and the constraints. An important assumption in StageOpt is that each safety function
gi is Li -Lipschitz continuous, with respect to some metric on X . This assumption
is usually satisfied by the most commonly used kernels (Srinivas et al. 2010; Sui
et al. 2015). Additionally, at least one initial “seed” set of safe points must be given,
denoted as S0 ⊂ X .

Since safe optimization works by safely expanding S0, it is not guaranteed to
identify the global optimizer x∗, specifically in the case that the region around x∗ is
disconnected from S0. The key component of SafeOpt is the one-step reachability
operator:

Rε(S) := S ∪
⋂

i

{
x ∈ X |∃x ′ ∈ S, gi

(
x ′) − ε − Lid

(
x ′, x

) ≥ hi
}

where S is the current set of safe points (initially S), d is a distance measure in R
d

and ε is the absolute error in considering x as safe. This operator allows to identify
the set of all the points estimated as safe depending on the previous evaluations
of f on S. Then, given the maximum number of function evaluations, N , we can
define the subset of X reachable after N iterations from the initial safe seed set S0
as the following: RN

ε (S0) := Rε(Rε . . . (Rε(S)) . . .), N times. Thus, the optimization
problem becomes:

x∗ = argmaxx∈RT
ε (S0) f (x).

StageOpt separates the safe optimization problem into two stages: an exploration
phase in which the safe region is iteratively expanded, followed by an optimization
phase in which Bayesian optimization is applied within the safe region. Similarly to
SVM-CBO, presented for constrained BO, the overall number of function evalua-
tions, N is divided into N1 for phase 1 and N2 for phase 2, with N = N1 + N2. To
map the uncertainty of the GP model at the generic iteration n, StageOpt used the
confidence intervals:

Qi
n(x) :=

[
μi
n(x) ± βnσ

i
n(x)

]

where βn defines the level of confidence. It is easy to note that they correspond to
the upper and lower confidence bound of the GP. In the formula, superscripts index
the corresponding safety functions, while subscripts index iterations, as usual. Then,
to guarantee both safety and progress in safe region expansion, StageOpt uses the
following confidence intervals Ci

n+1(x) := Ci
n(x)

⋂
Qi

n(x), with C
i
0(x) := [hi ,∞] so

that Ci
n+1 are sequentially contained in Ci

n for all n = 0, . . . , N . Upper and lower
bounds of Ci

n can be computed and denoted as uin and l
i
n , respectively.
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The first stage of StageOpt is safe region expansion. An increasing sequence
of safe subsets Sn ⊆ X is computed based on the confidence intervals of the GP
posterior:

Sn+1 =
⋂

i

⋃

x∈Sn

{
x ′ ∈ X |lin+1(x) − Lid

(
x, x ′) ≥ hi

}

At each iteration, StageOpt computes a set of expanders pointsGn while definition
is based on the function:

en(x) :=

∣∣∣∣
∣

⋂

i

{
x ′ ∈ X\Sn|uin(x) − Lid

(
x, x ′) ≥ hi

}
∣∣∣∣
∣

which (optimistically) quantifies the potential enlargement of the current safe set
after sample a new decision x . Then, Gn is defined as follows:

Gn = {x ∈ Sn : en(x) > 0}

Finally, at each iteration StageOpt selects the expander with the highest predictive
uncertainty, given by xn+1 = argmax

x∈Gn

uin − lin .

The second stage of StageOpt is BO applied within the safe region identified at
the end of the first stage. GP-UCB is used as acquisition function.

In Sui et al. (2018) is illustrated a graphical comparison of the behaviour of
SafeOpt (Berkenkamp et al. 2016; Sui et al. 2015) and StageOpt starting from the
same safe seed point. The figure is reported as follows (Fig. 5.3).

Initially, both algorithms select the same points, as they use the same definition
of safe expansion. However, StageOpt selects noticeably better optimization points
than SafeOpt due to the UCB criterion.

In real applications, it may be difficult to compute an accurate estimate of the
Lipschitz constants, which may have an adverse effect on the definition of the safe
region and its expansion dynamics. One might use one of the solutions for updating
L , outlined in Chap. 2, like DIRECT or MultL (Sergeyev and Kvasov 2017).

Within the safe optimization framework, one can use a modified version of
SafeOpt that defines safe points using only the GPs (Berkenkamp et al. 2016). This
modification can be directly applied to StageOpt as well. This alternative algorithm
is structured as follows:

1. a point x̄ is considered safe if the lower confidence bound of each safety GPs lies
above the respective threshold, that is li (x̄) > hi

2. a safe point x ′ is considered as an expander depending on an optimistic measure
of the expansion from x ′. More practically, for each constraint a “temporary” GP
is trained on the observations performed so far and an unsafe point x which rep-
resents an “artificial” evaluation: the associated value of the constraint function
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Fig. 5.3 Evolution of GPs in SafeOpt and StageOpt for a fixed safe seed; dashed lines correspond
to the mean and shaded areas to ±2 standard deviations. The first and third rows depict the utility
function, and the second and fourth rows depict a single safety function. The utility and safety
functions were randomly sampled from a zero-mean GP with a Matern kernel and are represented
with solid blue lines. The safety threshold is shown as the green line, and safe regions are shown
in red. The red markers correspond to safe expansions and blue markers to maximizations and
optimizations. We see that StageOpt identifies actions with higher utility than SafeOpt. (Source:
Sui et al. 2018)

in x is given by the upper confidence bound of the “current” GP (which is trained,
contrary to the “temporary” one, only on the observations performed so far). If
the lower bound of all the “temporary” GPs, computed at x is greater than the
associated safety threshold, then x results in a previously unsafe point which can
be considered safe with respect to the optimistic expansion from x ′. Safe points
x ′ that provide an optimistic expansion are considered as expanders.

Wemust remark that nobody, at our knowledge, has considered the safe optimiza-
tion problem subject to both the “usual” constraints ci (x) and the safety constraints
gi (x). The main difficulty in this challenge is that evaluating a point that is unsafe
- in SafeOpt - implies the termination of the optimization process while evaluating
an infeasible point - in CGO - only requires to update the estimate of the feasible
region.
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5.4 Parallel Bayesian Optimization

Performing function evaluations in parallel is a conceptually appealing way to solve
optimization problems in less time that would be required by a sequential approach.
Some global optimization methods, like Pure Random Search, are “embarrassingly
parallel”: this is not the case of BO, which is an intrinsically sequential process, so
that its parallelization raises important design issues.

The main distinction between the parallel methods proposed in literature are
between synchronous and asynchronous approaches. With respect to the first class
ofmethods, amulti-point version of EI, called q-EI has been proposed inGinsbourger
et al. (2008), defined as:

qEI
(
xn+1, . . . , xn+q

) = E

[
max

{(
min(y) − yn+1

)+
, . . . ,

(
min(y) − yn+q

)+}]

where y = {y1, . . . , yn} and (·)+ returns 0 if the argument is less than 0, otherwise
returns the argument itself. This means to deal with a minimum of dependent ran-
dom variables: the exact joint distribution of the q unknown function evaluations,
yn+1, . . . , yn+q , conditioned on previous observations through the currentGP is given
by:

(
yn+1, . . . , yn+q |D1:n

) ∼ N ((
μ(xn+1), . . . , μ(xn+q)

)
, 
q

)

where 
q is the covariance matrix updated with the q points xn+1, . . . , xn+q .
This synchronous parallelization approach is aimed at measuring the joint poten-

tial of a given additional set of q points to evaluate. The main idea is to consider q
synchronous processors and to maximize q-EI at each iteration; then the GP model
is updated with the entire set of new observations. However, as stated in Ginsbourger
et al. (2008), solving the maximization of q-EI can be unaffordable when both the
number of dimensions and the number of points q increase.

Computational approaches for parallelizing knowledge gradient (KG) have been
also proposed (Wu and Frazier 2016). The parallel KG, namely q-KG, is Bayes-
optimal for minimizing the minimum of the predictor of the GP if only one decision
is remaining. The q-KG algorithm will reduce to the parallel EI algorithm in the
noise-free setting and the final recommendation is restricted to the previous sampled
points. The basic issue is that computing q-KG and its gradient is very expensive.
Analogously to q-EI, the aim of q-KG is to identify a batch of q points to evaluate,
basically in a synchronous setting. Another interesting approach, namely “portfolio
allocation”, has been already discussed in Chap. 4.

To address the inefficiency due to the synchronization, a new asynchronous
approach, based on EI, is proposed in Ginsbourger et al. (2011). This approach,
namely expectation of EI (EEI), focuses on the case of asynchronous parallel BO,
where a new function evaluation is performed before all the other processors have
produced their result. At every time, observations in D1:n are divided in three dif-
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ferent groups: (i) already evaluated, (ii) currently under evaluation (aka “busy”) and
(iii) candidate points for forthcoming function evaluations. The main issue is how to
take busy points into account within the GP model.

The issue on how to inject partial knowledge from an ongoing evaluation at a
busy point into the EI criterion, without knowing the corresponding actual value of
the function, is basically solved probabilistically:

EEI
(
.; xbusy) =

∫
EI

(
.; xbusy, ybusy)pdf(Y (

xbusy
)|D)

ybusydybusy

where pdf
(
Y

(
xbusy

)|D)
is the probability density function of the random variable

Y
(
xbusy

)
conditional on the function evaluations performed so far and stored in

D = D1:n . It is important to highlight that E I
(
.; xbusy, ybusy) depends on ybusy

in a quite complicated non-linear way, without any chance to have an analytical
expression for EEI, even if Y

(
xbusy

)|D is known and simple. Therefore, EEI is
approximated by averaging on a sufficient number of ybusy sampled according to the
Y

(
xbusy

)|D.
A straightforward way of getting statistical estimates of EEI is based on Monte

Carlo sampling. The EEI approach relies on conditional simulations: it proved to be
a sensible criterion, but practically not straightforward to optimize.

Finally, in Kandasamy et al. (2018) a parallel version of Thompson sampling (TS)
is proposed. A theoretical analysis proves that a direct application of the sequential
TS algorithm, presented in Chap. 3, in either synchronous or asynchronous paral-
lel settings, offers a powerful result: performing n evaluations distributed among q
workers is equivalent to performing n evaluations in sequence. Experimental results
on simulation–optimization problems and hyperparameters optimization of a con-
volutional neural network prove that asynchronous TS outperforms many existing
parallel BO algorithms.

5.5 Multi-objective Bayesian Optimization

Multi-objective optimization is characterized by a set of objective functions to be
minimized fi : X → R, i = 1, ..,m. The solution to this kind of problem is not
unique and defined as x ∈ X : �x̄ ∈ X , such that f (x̄) ≺ f (x), where symbol ≺
denotes the dominance relation, that is:

∀i fi (x) ≤ fi (x̄) and ∃ j s.t. f j (x) < f j (x̄)

This allows to identify the Pareto front, defined by the values of different objective
functions and the set of corresponding dominant solutions x ∈ X .

In BO, a typical approach is to model every fi through a Gaussian process, GPi ,
with i = 1 . . . .,m. In Emerich and Klinkerberg (2008), the EI acquisition function
has been generalized to the multi-objective case by considering the volume of the
dominated region: the improvement provided by a new evaluation is the increase in



92 5 Exotic Bayesian Optimization

the dominated volume. This extension of EI to the multi-objective case is also known
as expected hyper-volume improvement (EHVI).

Given the n function evaluations performed so far, with values
f (xi ) = ( f1(xi ), . . . , fm(xi )), i = 1, . . . , n, we define the set Hn =
{y ∈ B, ∃i ≤ n, f (xi ) ≺ y}, where B ⊂ R

m is B = {y ∈ R
m; y ≤ ȳ} with

ȳ ∈ R
m is introduced to guarantee that Hn is finite. Thus, Hn is the subset of B

whose points are dominated by the previous evaluations.
Finally, the improvement provided by a new evaluation can be measured as:

I (xn+1) = |Hn+1| − |Hn|, where |·| denotes the volume in R
m .

Since Hn+1 ⊃ Hn , the value I (xn+1) is the increase in the volume of the dominated
region (Fig. 5.4).

Finally, maximizing EHVI means maximizing the expected improvement on
I
(
xn+1

)
and it can be analytically defined as follows:

EHVI(x) =
∫

B\Hn

Pn(ξ(x) ≺ y)dy

where Pn is the probability conditioned on x1, ξ(x1), …, xn , ξ(xn), with ξ =
(ξ1, . . . , ξm) is the vector of GPs modelling the corresponding objective functions
f = ( f1, . . . , fm).
In Feliot et al. (2017), the EHVI has been extended to the constrained multi-

objective optimization case and to the case in which the user expresses preference-
order constraints (Abdolshah et al. 2019) The EHVI acquisition function is now

Fig. 5.4 Example of an
improvement of the
dominated region. The
regions dominated by y1 and
y2 are represented in shaded
areas, with darker shades
indicating overlapping
regions. The hatched area
corresponds to the
improvement of the
dominated region resulting
from the observation of y3.
(Source Feliot 2017)
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considered as the dominant approach and some implementations are available in
Matlab and the R packages “Gpareto” and “mlrMBO” (Horn 2015).

The EHVI acquisition function has been also extended in Wada and Hinu (2019)
to deal with multi-point search.

An interesting application of multi-objective optimization to BO has been pro-
posed in Calvin and Zilinskas (2019), where the acquisition of the next point to eval-
uate is defined as a bi-objective optimization problem. In this paper, it is shown that
two well-known acquisition function, EI and PI, can be framed into the bi-objective
approach, whose the objectives areμ(x) and σ(x) of a probabilistic surrogate model.

5.6 Multi-source and Multi-fidelity Bayesian Optimization

Function evaluations in simulation-based experiments or black-box optimization are
usually expensive. The basic idea in multi-fidelity is that, in the initial stages of
the optimization, “cheaper” evaluation of the objective function might yield anyway
considerable information while reducing the computational cost. In this framework,
one is considering a collection of information sources, denoted by f (x, s), where s
represents a specific level of “fidelity” of the source. Usually, the lower s the higher
the fidelity, with f (x, 0) corresponding to the original objective function (Frazier
2018). Decreasing the fidelity decreases the accuracy of the approximation on f (x),
leading to a reduction in the cost of evaluation but to a poorer accuracy in the estimate
of the objective function.

In multi-fidelity, the aim is min
x∈X f (x) but observing f (x, s) at a sequence of

points and fidelities {(xi , yi )}1:n with a total cost lower than a given budget, that is∑n
i=1 c(sn) ≤ B, where c(sn) is the cost to evaluate at fidelity sn and B is the given

available budget.
Acquisition functions may present some limitations in the development of multi-

fidelity BO. Indeed, while KG, ES and PES can be applied, as shown in Poloczek
(2017), EI is useless because evaluating f (x, s) for s �= 0 never offers an improve-
ment in the best seen (i.e. EI = 0 for s �= 0), leading to the selection of the highest
fidelity source only (Frazier 2018).

Multi-fidelity optimization has been also considered for the optimization of
machine learning algorithms (Klein et al. 2017; Kandasamy et al. 2019). The prob-
lem of hyperparameter tuning is also considered in Sen et al. (2018) which proposes
to train the algorithm on a subsampled version of the whole dataset.

Multi-fidelity optimization has also been gaining a growing importance in several
applications also in analogue circuit synthesis (Zhang et al. 2019) and engineering
design (Linz et al. 2017) who propose an optimization algorithm that guides the
search for solutions on a high-fidelity model through the approximation of a level set
from a low-fidelity model. Using the probabilistic branch-and-bound algorithm to
approximate a level set for the low-fidelity model, they are able to efficiently locate



94 5 Exotic Bayesian Optimization

solutions inside of a target quantile, and therefore reduce the number of high-fidelity
evaluations needed in searches.

An interesting application of multi-fidelity BO is presented in Perdikaris et al.
(2016) for model inversion in hemodynamics and biomedical engineering (Costabal
et al. 2019). A comprehensive multi-fidelity framework, in the context of bandit
problems, has been proposed inKandasamy et al. (2017)where the objective function
and its approximations are sampled from a GP. Another interesting work is reported
in Ghoreishi and Allaire (2018) which proposes amulti-source information approach
for the constrained case.
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