
Chapter 4
The Acquisition Function

The acquisition function is the mechanism to implement the trade-off between explo-
ration and exploitation in BO.More precisely, any acquisition function aims to guide
the search of the optimum towards points with potential low values of objective func-
tion either because the prediction of f (x), based on the probabilistic surrogatemodel,
is low or the uncertainty, also based on the same model, is high (or both). Indeed,
exploiting means to consider the area providing more chance to improve the current
solution (with respect to the current surrogate model), while exploring means to
move towards less explored regions of the search space where predictions based on
the surrogate model are more uncertain, with higher variance.

This chapter is devoted to present some of the most relevant acquisition functions,
from the “traditional” towards the most recent ones.

4.1 Traditional Acquisition Functions

This section summarizes the most widely used acquisition functions.

4.1.1 Probability of Improvement

Probability of improvement (PI) was the first acquisition function proposed in the
literature Kushner (1964):

P I (x) = P
(
f (x) ≤ f

(
x+)) = �

(
f
(
x+) − μ(x)

σ (x)

)
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where f
(
x+)

is the best value of the objective function observed so far, μ(x) and
σ(x) are mean and standard deviation of the probabilistic surrogate model, such as
a GP, and �(·) is the normal cumulative distribution function.

One of the drawbacks of PI is that it is biased towards exploitation. To mitigate
this effect, one can introduce the parameter ξ which modulates the balance between
exploration and exploitation. The resulting equation is:

PI(x) = P
(
f (x) ≤ f

(
x+) + ξ

) = �

(
f
(
x+) − μ(x) − ξ

σ (x)

)

Low values of ξ favour exploitation while large values exploration.
Finally, the next point to evaluate is chosen according to: xn+1 =

argmaxx∈X PI(x).
However, a weak point of PI is to assign a value to a new point irrespective of the

potential magnitude of the improvement. This is the reason why the next acquisition
function was proposed.

4.1.2 Expected Improvement

Expected improvement (EI) was proposed initially in Mockus et al. (1978) and then
made popular in Jones et al. (1998) which measures the expectation of the improve-
ment on f (x)with respect to the predictive distribution of the probabilistic surrogate
model.

EI(x) =
{(

f
(
x+) − μ(x)

)
�(Z) + σ(x)φ(Z) if σ(x) > 0
0 if σ(x) = 0

where φ(Z) and�(Z) are the probability distribution and the cumulative distribution
of the standardized normal, respectively, where

Z =
{

f (x+)−μ(x)
σ (x) if σ(x) > 0

0 if σ(x) = 0

The EI is made up of two terms: the first is increased by decreasing the predictive
mean; the second by increasing the predictive uncertainty. Thus, EI, in a sense,
automatically balances, respectively, exploitation and exploration. When we want to
activelymanage the trade-off between exploration and exploitation, we can introduce
the parameter ξ . When exploring, points associated with high uncertainty of the
probabilistic surrogate model are more likely to be chosen, while when exploiting,
points associated with low value of the mean of the probabilistic surrogate model are
selected.
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EI(x) =
{(

f
(
x+) − μ(x) − ξ

)
�(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0

and

Z =
{

f (x+)−μ(x)−ξ

σ (x) if σ(x) > 0

0 if σ(x) = 0

The following figure shows how the selected points change depending on ξ .
Ideally, ξ should be adjusted dynamically to decreasemonotonicallywith the function
evaluations. Compared to PI (Fig. 4.1), it is possible to notice that EI (Fig. 4.2) is
less biased towards exploitation.

Finally, the next point to evaluate is chosen according to: xn+1 =
argmaxx∈X EI(x).

EI has been largely used since 1998 and specialized to specific contexts: Astudillo
and Frazier (2019) propose EI-CF a version of composite functions which leads to a
multi-output GP: the authors also note that constrained optimization can be regarded
as a special case of the optimization of composite functions and that EI-CF reduces

Fig. 4.1 GP trained depending on seven observations (top), PI with respect to different values of
ξ and max values corresponding to the next point to evaluate (bottom)
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Fig. 4.2 GP trained depending on seven observations (top), EI with respect to different values of
ξ and max values corresponding to the next point to evaluate (bottom)

to the expected improvement for constrained optimization. More importantly, both
PI and EI are structurally exploitative, increasing ξ from 0 to 0.2 - which is the
10% of the min-max range of f (x) - does not shift substantially xn+1. Higher values
of ξ flatten the acquisition function making it close to Random Search. To manage
effectively the exploitation-exploration balance a more effective acquisition function
is Upper-Lower Confidence Bound, given in the following section.

4.1.3 Upper/Lower Confidence Bound

Confidence bound—where upper and lower are used, respectively, for maximization
and minimization problems—is an acquisition function that manages exploration—
exploitation by being optimistic in the face of uncertainty, in the sense of considering
the best-case scenario for a given probability value (Auer 2002).

For the case of minimization, LCB is given by:

LCB(x) = μ(x) − ξσ (x)
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where ξ ≥ 0 is the parameter to manage the trade-off between exploration and
exploitation (ξ = 0 is for pure exploitation; on the contrary, higher values of ξ empha-
sizes exploration by inflating the model uncertainty). For this acquisition function,
there are strong theoretical results, originated in the context of multi-armed bandit
problems, on achieving the optimal regret derived by Srinivas et al. (2012). For the
candidate point xn , we observe instantaneous regret rn = f (xn)− f (x∗). The cumu-
lative regret RN after N function evaluations is the sum of instantaneous regrets:
RN = ∑N

n=1 rn . A desirable asymptotic property of an algorithm is to be no-regret:
limN→∞ RN

N = 0. Bounds on the average regret RN
N translate to convergence rates:

f
(
x+) = min xn≤N f (xn) in the first N function evaluations is no further from f (x∗)

than the average regret. Therefore, f
(
x+) − f (x∗) → 0, with N → ∞.

The following figure shows how the selected points changes depending on ξ .
Ideally, ξ should be adjusted dynamically to decreasemonotonicallywith the function
evaluations. Compared to PI (Fig. 4.1) and EI (Fig. 4.2), is clear the leaning of LCB
towards exploration and how this effect can be managed through the value of ξ

(Fig. 4.3).

Fig. 4.3 GP trained depending on seven observations (top), LCB with respect to different values
of ξ and min values corresponding to the next point to evaluate (bottom). Contrary to the other
acquisition functions, LCB is minimized instead of maximized
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Finally, the next point to evaluate is chosen according to xn+1 =
argminx∈X LCB(x), in the case of a minimization problem, or xn+1 =
argmaxx∈X UCB(x) in the case of a maximization problem.

4.2 New Acquisition Functions

4.2.1 Scaled Expected Improvement

Recently, a new improvement-based acquisition function has been proposed in Noè
& Husmeier (2018). The motivation is that EI does not account for the uncertainty in
improvement. The proposed acquisition function chooses the next point to evaluate
where the improvement is expected to be high with small variance.

More precisely, the variance of the improvement is computed analytically as:

V[I (x)] = k(x, x)
[(
Z2 + 1

)
�(Z) + Zφ(Z)

] − [E I (x)]2

where Z is defined as in EI. The new acquisition function consists in scaling EI by
{V[I (x)]}1/2, that is:

Scaled EI(x) = EI(x)/{V[I (x)]}1/2

The main result on a set of benchmarks is that the proposed acquisition func-
tion compares favourably with PI, EI, UCB/LCB and the entropy-based acquisition
functions to be presented in Sect. 4.2.4.

4.2.2 Portfolio Allocation

Several acquisition functions have been proposed, as reported in this book, so choos-
ing a good acquisition function is not trivial. Indeed, there are no guidelines in the
choice of acquisition function. Furthermore, the same acquisition function is not
necessarily the best choice on the entire optimization process.

An interesting mixed strategy has been proposed where the acquisition function
is chosen, adaptively at each iteration, from a “portfolio” (Brochu et al. 2010). The
selection mechanism is formalized as an on online multi-armed bandit problem: dif-
ferent strategies are investigated with the result that a hierarchical hedging approach
is the winning one. The basic algorithm, so-called GP-Hedge, is as follows:
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1: D1:n = {(x1, y1), . . . , (xn, yn)} is the initial set of evaluated point

2: N is the overall number of available function evaluations

3: Set initial “gains” gn = 0 with gn ∈ R
M , where M is the number of acquisition functions in

the portfolio

4: for i = n + 1, . . . , N do

5: compute the next point to evaluate, according to each acquisition function:
xi,k = argmax

x
αk(x |D1:n), k = 1, . . . , M

6: select one point xi , among the alternative xi,k , with probability:

pi,k = egi[k]∑M
l=1 e

gi[l]
(i.e., soft − max policy)

where gi[k] is the gain of the kth acquisition function at iteration i

7: evaluate objective function, eventually with noise, yi = f (xi ) + ε

8: update the function evaluations dataset D1:i = D1:n ∪ {(xi , yi )}
9: update GP and update gains gi[k] = gi−1[k] + μi

(
xi,k

)

10: endfor

Empirical evidence shows a significant improvement over EI and LCB, which is
anyway offset by the much higher computational cost.

4.2.3 Thompson Sampling

As described in Chap. 3, Thompson Sampling (TS) is a sequential optimization
process based on performing, iteratively, the following block of steps: updating a
posterior depending on a set of observations, drawing a sample from posterior as an
approximation to the function to be optimized, minimizing this sample function to
identify the next candidate point and evaluating the objective function at that point.

In a sense TS is in itself a sequential decision-making process, like BO, indeed the
acquisition function is replaced by a sample from the current probabilistic surrogate
model. However, in the literature, TS is considered just as an acquisition function in
BO—this is the reason why we have decided to reserve a small section also in this
chapter.

In the following figure, the difference in choosing the next point, depending on
TS and LCB, is depicted. The (TS) sample function from the GP is quite different
from LCB and, at least in this case, TS is less explorative than LCB. Indeed, TS is in
principle exploitative due to the sample minimization step. The exploration is given
by its Monte Carlo basis and can be enhanced by adopting an ε-greedy strategy (as
already seen in Chap. 3) (Fig. 4.4).

The following figure shows another case where TS is, instead, more explorative
than LCB (Fig. 4.5).
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Fig. 4.4 Next point to evaluate according to TS (ε = 0.4) and LCB: the sample from GP posterior
implies a more exploitative choice than LCB

Fig. 4.5 Next point to evaluate according to TS (ε = 0.4) and LCB: the sample from GP posterior
implies a more explorative choice than LCB
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Theoretical analysis was provided for the classical multi-armed bandit problem
and later extended to the analysis of the continuous case in Russo et al. (2018)
drawing on an analogy between TS and UCB.

4.2.4 Entropy-Based Acquisition Functions

The traditional acquisition functions, presented in Sect. 4.1, are based on probabilistic
measures of improvement in the f domain. Exploitation and exploration are repre-
sented, respectively, by the mean value and the “uncertainty bonus” represented by
the variance. Recent interest has been focused on querying at points that can help to
learnmost about the location of the unknownminimum, leading to information-based
acquisition functions. This informational approach was originally proposed in Ville-
monteix et al. (2009), and developer into the Entropy Search (Henning and Schuler
(2012)), Predictive Entropy Search (Hernández-Lobato et al. 2014). In both Entropy
Search (ES) and Predictive Entropy Search (PES), the basic idea is to maximize the
information about the global optimizer.

The current information about the global optimizer can be computed as the nega-
tive differential entropy of p(x∗|D1:n) and the next point to evaluate is given by the
maximization of the expected reduction in this quantity. The ES and PES acquisition
functions have the following equations, respectively:

ES : α(x) = H
(
p
(
x∗|D1:n

)) − E
[
H

(
p
(
x∗|D1:n ∪ {x, y}))]

PES : α(x) = H(p(y|D1:n, x)) − E
[
H

(
p
(
y|D1:n, x, x∗))]

where H [p(α)] = − ∫
p(α) log p(α)dα represents the differential entropy.

While ES uses the expectation is over p(x∗|D1:n), in PES the expectation is over
p(y|D1:n, x). Both p(x∗|D1:n) and its entropy are analytically intractable and must
be approximated through expensive simulation. This approach needs several approx-
imations and is anyway beset by numerical difficulties. To add further complexity
to the computation of this distribution, even if the global optimizer is unique, it is
not stable meaning that a small perturbation can result in an approximation far away
from the global optimum. PES is inspired by Thompson sampling and uses several
samples from posterior, at every iteration, to solve probabilistically the optimization
of the acquisition function.

The following figure depicts how PES improves over ES, when compared to the
ground truth (Fig. 4.6).

In Wang and Jegelka (2017), a computationally more effective solution is pro-
vided, based on sampling from the conditional distributions of a global optimum
given the observed data. A much cheaper and more robust acquisition function,
namely Max-value Entropy Search (MES) is proposed: instead of measuring the
information about the optimizer x∗, they use information about the optimal value
y∗. MES measures the gain in mutual information between the optimal value y∗ and
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Fig. 4.6 Ground truth (left), approximation producedby theESmethod (middle) and approximation
produced by the PES method (right). (Source Hernandez-Lobato et al. 2014)

the next point to evaluate, which can be approximated analytically by evaluating the
entropy of the predictive distribution:

MES : α(x) = H(p(y|D1:n, x)) − E
[
H

(
p
(
y|D1:n, x, y∗))]

In MES, the expectation is approximated using Monte Carlo estimation. Impor-
tantly,whileESandPES rely on the expensived-dimensional distribution p(x∗|D1:n),
MES relies on the one-dimensional p(y∗|D1:n) which is computationally much eas-
ier. The software for PES and MES can be downloaded at https://bitbucket.org/
jmh233/codepesnips2014 and https://github.com/zi-w/Max-value-Entropy-Search,
respectively. In the case that the value of f ∗ is known a priori, a more efficient
search for x∗ is propsed in Nguyen and Osborne (2019).

According to another approach Volpp et al. (2019), the acquisition function is
given by a neural network which uses as input the posterior prediction of the GP.

4.2.5 Knowledge Gradient

Knowledge gradient (KG) is an acquisition function based on revising the typical
assumption made in the BO process that the best evaluated point is returned as final
solution. KG revises this assumption by allowing to return any point as a solution,
even if it has not been previously evaluated. Another important difference with other
acquisition functions, which are usually “risk-seeker”, is that KG assumes risk neu-
trality (Berger (2013), meaning that any random x is evaluated depending on the
expected value f (x).

Let us denote this solution with x̄n; the value f (x̄n) is random under the posterior
and has the following expected value conditioned to D1:n:

μ∗
n := μn(x̄n) = min

x ′ μn
(
x ′)

https://bitbucket.org/jmh233/codepesnips2014
https://github.com/zi-w/Max-value-Entropy-Search
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If a further function evaluation were available, we could sample x one more time
and obtain the additional observation (xn+1, yn+1) and, consequently, the updated
posterior meanμn+1(·). The expected value of the solution after this further function
evaluation would be μ∗

n+1 = min
x ′ μn+1

(
x ′). Thus, the improvement in conditional

expected solution value is given by: μ∗
n − μ∗

n+1. As this quantity is unknown, before
evaluating f (xn+1), we can only compute its expected value, conditioned to the
previous observations at x1, . . . , xn . This quantity is named knowledge gradient and
can be computed at any x:

KGn(x) = E[μ∗
n − μ∗

n+1|xn+1 = x]

The simplest way to compute KG is through simulation: a possible value yn+1

is simulated at a certain xn+1, then the optimum of the new posterior mean μ∗
n+1

is computed, by considering the sampled value yn+1 as the actual value obtained
through function evaluation at xn+1. The simulation can be performed either by
Thompson sampling or directly by using μn(xn+1) and σn(xn+1). Finally, this value
is subtracted from μ∗

n to obtain the corresponding improvement in solution quality.
The entire procedure is repeated many times and the differences μ∗

n − μ∗
n+1 are

averaged on the simulated values yn+1. This allows to compute the expected value
required for the computation of the estimate of KGn(x), that converges to the actual
value as the number of samples increases.

Therefore, contrary to other acquisition functions, KG computes the posterior not
only at the sampled points but on the entire domain, estimating how a new function
evaluation will change the posterior. KG assigns a positive value on measurements
that cause the minimum of the posterior mean to improve. Thus, the next point to
evaluate is given by the maximization of KG.

According to Frazier et al. (2009), this provides a small performance benefit in
the case of BO with noise-free evaluations, but a substantial improvement in prob-
lems with noisy, derivative, multi-fidelity observations and other “exotic” problem
features. In these cases, the value of sampling comes not through an improvement in
the best solution at the sampled point, but through an improvement in the minimum
of the posterior mean across possible solutions. For instance, a derivative observa-
tion can provide information that the function is decreasing, along with a specific
direction, in the neighbourhood of the sampled point. Consequently, the minimum of
the posterior mean could be significantly smaller than the previous minimum, even
if the function value at the sampled point is worse than the best previously sampled
point. In these cases, KG can reportedly outperform EI (Wu et al. 2017; Poloczek
et al. 2017; Wu and Frazier 2016; Toscano-Palmerin and Frazier 2018) (Fig. 4.7).

The same variance reduction effect that gradients availability has on GP—as
shown in Chap. 3—is also observed in acquisition function. In particular, the fol-
lowing figure shows that both KG and EI, computed on a GP with derivatives, make
different sampling decisions (Wu and Frazier 2017) (Fig. 4.8).
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Fig. 4.7 Comparison between KG and EI on a maximization problem. The EI acquisition function
prefers to sample in the region around 0.5 and the KG policy prefers to sample in the region around
1.5. Thus, KG gives a chance to exploration while EI is biased towards exploitation. (Source https://
sigopt.com/blog/expected-improvement-vs-knowledge-gradient/)

Fig. 4.8 Plots in the top row show the approximations of f (x) modelled through a GP without
and with incorporating gradients observations. The posterior variance is smaller if the gradients are
incorporated. Both KG and EI are depicted, with and without embedding derivative information.
The plots in the bottom row depict the resulting GPs, without and with gradient, after the evaluation
at the new point suggested by EI and KG. (Source Wu and Frazier 2017)

4.2.6 Look-Ahead

Most of the acquisition functions consider only the impact of the next function eval-
uation: in this sense, they are also called “myopic”. This is a limitation addressed in
several papers: in Osborne et al. (2009), a two-step-ahead solution is presented; while

https://sigopt.com/blog/expected-improvement-vs-knowledge-gradient/
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in Marchant et al. (2014), partially observable Markov decision process (POMDP) is
used as a model and a Monte Carlo tree search is adopted to solve it. Another look-
ahead acquisition function has been proposed in (Lam et al. 2016)where approximate
dynamic programming is adopted to solve the problem of selecting the next candidate
point to evaluate. More specifically, a rollout heuristic was proposed for BO.

Another approach, GLASSES, has been suggested in Gonzalez et al. (2016),
proposing to model the n-step look-ahead problem as a Bayesian network and then
suggesting a computationally efficient approximation to solve the otherwise pro-
hibitively computational expensive inference process. At our knowledge, GLASSES
is no longer maintained, last update is from November 2015, based on Python 2.7,
while other tools presented in Chap. 6 are now based on Python 3.0 and higher.

4.2.7 K-Optimality

A very interesting approach has been recently proposed in Yan et al. (2018), address-
ing the issue of numerical instability in the kernel matrix K. If the next point to
evaluate, selected depending on the acquisition function, is too close to one of the
previous observations, it might lead to the computational issue reported in Chap. 3
that is the impossibility to compute the inverse of the matrix K and, consequently,
make inference through the GP. The new acquisition function proposed in Yan et al.
(2018) consists in theminimization of the condition number ofK, leading to amethod
named Sequentially Bayesian K-optimal (SBKO) design, which tries to avoid sam-
pling close to previous observations. Therefore, SBKO naturally forces the samples
to spread sparsely in the search space, providing an alternative exploration mecha-
nism.Apossible integration ofK-optimality intoBO is to consider one of the possible
acquisition functions, such as EI, and then select, among possible candidate points
with similar values of acquisition the one with smaller condition number. However,
this kind of approach leaves some cases undecided. More precisely, given two candi-
date points, x ′ and x ′′, it is not clear which select in the cases: (a) x ′ is better than x ′′
in terms of acquisition function but has a higher condition number or (b) x ′ is worse
than x ′′ in terms of acquisition function but has a lower condition number. To solve
these cases, Yan et al. (2018) proposes to consider the equation of parametrized EI
(reported in Sect. 4.1.2):

EI(x) =
{(

f
(
x+) − μ(x) − ξ

)
�(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0

where φ and � are the probability distribution and the cumulative distribution func-
tions, respectively, and

Z =
{

f (x+)−μ(x)−ξ

σ (x) if σ(x) > 0

0 if σ(x) = 0
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The approach consists in making the parameter ξ dependent on the condition
number κ through:

ξ(κ) = log κ

log κ + c log κT

where κT is a suitable threshold of the condition number and c is a constant that
controls the shape of ξ(κ). The approach addresses an important issue in BO but
numerical evidence is still partial.

4.3 Optimizing the Acquisition Function

The optimization of acquisition functions has been receiving comparably less atten-
tion than the development of new ones and in general of the other components of the
GP-BOmachinery. Indeed, the traditional acquisition functions are available analyt-
ically and the computational cost of their optimization is usually much smaller than
a single evaluation of the objective function: still the optimization of the acquisition
function plays a crucial role as it suggests the next point and it is quite difficult
anyway, in high-dimensional spaces, given their non-convexity and specific shape
features.

Commonly adopted techniques are random multi-start with local searches or
genetic algorithms. More precisely, taking into account the BO software and plat-
forms presented in Chap. 6, genetic algorithm (GA) and evolutionary algorithm
(EA) are the most widely adopted techniques to optimize the acquisition function.
DIRECT is also another common option; BFGS and L-BFGS implementations can
be also adopted in the case of a continuous probabilistic surrogate model, such as
GP.

A recent paper Wilson et al. (2018) takes a new approach to the optimization of
the acquisition function, looking especially at two different topics:

1. The gradient of acquisition function is estimated viaMonte Carlo integration and
then used in gradient-based optimization.

2. Greedy maximization of myopic acquisition function is shown, using submodu-
larity, to converge with a guaranteed accuracy.

In the first topic, they use infinitesimal perturbation analysis (Glasserman 1988),
also proposed in Kingma and Welling (2013) under the name of reparametrization
trick. The second topic is concerned with the family of myopic maximization (MM)
functions, defined as the expected max of a point-wise utility function: MM(X) =
Ey

[
α(y)

]
.

The family of MM functions is submodular (SM) and greedly maximizing SM
functions are guaranteed to produce near-optimal results Krause and Golovin (2014).
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