
Chapter 3
The Surrogate Model

This Chapter presents the first key component of BO, that is, the probabilistic surro-
gate model. Section 3.1 is focused on Gaussian processes (GPs); Sect. 3.2 introduces
the sequential optimization method known as Thompson sampling, also based on
GP; finally, Sect. 3.3 presents other probabilistic models which might represent, in
some cases, a suitable alternative to GP.

3.1 Gaussian Processes

Gaussian processes are a powerful formalism for implementing both regression and
classification algorithms: we focus on regression. While most of the regression algo-
rithmsprovide a deterministic output,GPs also offer a reliable estimate of uncertainty.
This chapter presents the basic mathematics underlying this powerful tool.

3.1.1 Gaussian Processes Regression

One way to interpret a Gaussian process (GP) regression model is to think of it as
defining a distribution over functions and with inference taking place directly in the
space of functions (i.e. function-space view) (Williams and Rasmussen 2006). A GP
is a collection of random variables, any finite number of which have a joint Gaussian
distribution. A GP is completely specified by its mean function μ(x) and covariance
function Cov

(
f (x), f

(
x ′)) = k

(
x, x ′):

μ(x) = E[ f (x)]
Cov

(
f (x), f

(
x ′)) = k

(
x, x ′) = E

[
( f (x) − μ(x))

(
f
(
x ′) − μ

(
x ′))]

and it is defined as:
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38 3 The Surrogate Model

f (x) ∼ GP
(
μ(x), k

(
x, x ′))

Usually, for notational simplicity we will take the prior of the mean function to
be zero, although this is not necessary.

A simple example of a Gaussian process can be obtained from a Bayesian linear
regression model f (x) = φ(x)Tw with prior w = N (

0,Σp
)
, where φ(x) and w are

p-dimensional vectors.More precisely,φ(x) is a functionmapping the d-dimensional
vector x into a p-dimensional vector.

Thus, the equations for mean and covariance become:

E[ f (x)] = φ(x)TE[w] = 0
E

[
f (x) f

(
x ′)] = φ(x)TE

[
wwT

]
φ
(
x ′) = φ(x)T�pφ

(
x ′)

This means that f (x) and f
(
x ′) are jointly Gaussian with zero mean and covari-

ance given by φ(x)T�pφ
(
x ′).

As consequence, the function values f (x1), . . . , f (xn) obtained at n different
points x1, . . . , xn are jointly Gaussian.

The covariance function assumes a critical role int theGPmodelling, as it specifies
the distribution over functions. To see this, we can draw samples from the distribution
of functions evaluated at any number of points; in detail, we choose a set of input
points X1:n = (x1, . . . , xn)

T and then compute the corresponding covariance matrix
element wise. This operation is usually performed by using pre-defined covariance
functions allowing to write covariance between outputs as a function of inputs (i.e.
Cov

(
f (x), f

(
x ′)) = k

(
x, x ′)). Finally, we can generate a random Gaussian vector

as:

f (X1:n) ∼ N (0,K(X1:n, X1:n))

and plot the generated values as a function of the inputs. This is basically known as
sampling from prior, whose core is sampling from a multivariate Gaussian distribu-
tion (Tong 1990).

Following an example of five different GP samples drawn from the GP prior: the
covariance function used is known as the squared exponential (SE) kernel, introduced
in Chap. 1 and that will be detailed in the following Sect. 3.1.2 (Fig. 3.1).

We are usually not primarily interested in drawing random functions from the
prior but want to incorporate the knowledge about the function obtained through the
evaluations performed so far. Such a knowledge will be then used by the acquisition
function (presented in Chap. 4) in order to associate an informational utility to each
point x ∈ X. We have usually access only to noisy function values, denoted by
y = f (x) + ε. Assuming additive independent identically distributed Gaussian
noise ε with variance λ2, the prior on the noisy observations becomes:

Cov
(
f (x), f

(
x ′)) = k

(
x, x ′) + λ2δxx ′
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Fig. 3.1 Five different
samples from the prior of a
GP with squared exponential
kernel as covariance function

where δxx ′ is a Kronecker delta which is equal to 1 if and only if x = x ′. Thus, the
covariance over all the function values y = (y1, . . . , yn) is:

Cov(y) = K(X1:n, X1:n) + λ2 I

Therefore, the predictive equations for GP regression, that are μ(x) and σ 2(x),
can be easily updated, by conditioning the joint Gaussian prior distribution on the
observations:

μ(x) = E[ f (x)|D1:n, x] = k(x, X1:n)
[
K(X1:n, X1:n) + λ2 I

]−1
y

σ 2(x) = k(x, x) − k(x, X1:n)
[
K(X1:n, X1:n) + λ2 I

]−1
k(X1:n, x)

These equations are the same reported in Sect. 1.2.1.
Following, a simple example of five different samples drawn at random from aGP

prior and posterior, respectively. Posterior is conditioned to six function observations
(Fig. 3.2).

Sampling from posterior can be, ideally, considered as generating functions from
the prior and rejecting the ones that disagree with the observations. Naturally, this
strategy would not be computationally very efficient. A more formal definition of
sampling from posterior will be presented in Sect. 3.2.

Fig. 3.2 Sampling fromprior versus sampling fromposterior (for the sake of simplicity,we consider
the noise-free setting)
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It is easy to notice that the mean prediction is a linear combination of n functions,
each one centred on an evaluated point. This allows to write μ(x) as:

μ(x) =
n∑

i=1

αi k(x, xi )

where the vector α = [
K(X1:n, X1:n) + λ2 I

]−1
y and αi is the i-th compo-

nent of the vector α, given by the product between the i-th row of the matrix[
K(X1:n, X1:n) + λ2 I

]−1
and the vector y.

This means that, to make a prediction at a given x, we only need to consider the
(n + 1)-dimensional distribution defined by the n function evaluations performed so
far and the new point x to evaluate.

Several covariance functions have been proposed and some of the most widely
adopted will be presented in the following subsection 3.1.2. Every covariance func-
tion has some hyperparameters to be set up, defining shape features of the GP, such as
smoothness and amplitude. The values of the hyperparameters are usually unknown
a priori and are set up depending on the observations D1:n . Summarizing with γ

the vector of the covariance’s hyperparameters, their values are usually set up via
marginal likelihood maximization, which is given, in the case of GP for regression,
in closed form:

p(y | X1:n, γ ) =
∫

p(y | f, X1:n)p( f |X1:n)d f

The GP’s hyperparameters γ appear non-linearly in the kernel matrix K and a
closed-form solutionmaximizing themarginal likelihood cannot be found in general.
In practice, gradient-based optimization algorithms are adopted to find a (local)
optimum of the marginal likelihood (e.g. conjugate gradients or BFGS).

An interesting generalization has been recently proposed in Berkenkamp et al.
(2019) where the values of hyperparameters are modified by iteratively reducing the
characteristic length-scale instead of setting them up through marginal likelihood
maximization.

3.1.2 Kernel: The Data Geometry of Bayesian Optimization

Acovariance function is the crucial ingredient in aGPpredictor, as it encodes assump-
tions about the function to approximate. From a slightly different viewpoint, it is clear
that both in supervised and unsupervised learning the notion of similarity between
data points is crucial; it is a basic assumption that points which are close in x are
likely to have similar target values y, and thus function evaluations that are near to
a given point should be informative about the prediction at that point. Under the GP
view, it is the covariance function that defines nearness or similarity.
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A stationary covariance function is a function of x − x ′. Thus, it is invariant to
translations in the input space. If further the covariance is a function only of

∣∣x − x ′∣∣
then it is called isotropic and it is invariant to all rigid motions. Finally, a dot product
covariance function depends only on x · x ′. Dot product covariance functions are
invariant to a rotation of the coordinates about the origin but not translations.

A general name for a function k of two arguments mapping a pair of inputs x
and x ′ into a scalar is kernel. For a kernel to be a covariance function the following
conditions must be satisfied:

• kernel symmetry if k
(
x, x ′) = k

(
x ′, x

)

• the matrix K with entries Ki j = k
(
xi , x j

)
, also known as Gram matrix must be

positive semidefinite (PSD).

Examples of covariance (aka kernel) functions:

Squared Exponential (SE) kernel:

kSE
(
x, x ′) = e− ‖x−x ′‖2

2�2

with � known as characteristic length-scale. The role of this hyperparameter is
to rescale any point x by 1/� before computing the kernel value.

A large length-scale implies long-range correlations, whereas a short length-scale
makes function values strongly correlated only if their respective inputs are very
close to each other.

This kernel is infinitely differentiable, meaning that the GP is very “smooth”.
Note, that the covariance between the outputs is written as a function of the inputs.
For this particular covariance function, we see that the covariance is almost unity
between variables whose corresponding inputs are very close and decreases as their
distance in the input space increases.

Matérn kernels:

kMat
(
x, x ′) = 21−ν


(ν)

(∣∣x − x ′∣∣√2ν

�

)ν

Kν

(∣∣x − x ′∣∣√2ν

�

)

with two hyperparameters ν and �, and where Kν is a modified Bessel function.
Note that for ν → ∞ we obtain the SE kernel.

The Matérn covariance functions become, particularly simple when ν is half-
integer: ν = p + 1/2, where p is a non-negative integer. In this case, the covariance
function is a product of an exponential and a polynomial of order p. The most widely
adopted versions, specifically in the machine learning community, are ν = 3/2 and
ν = 5/2.

kν=3/2
(
x, x ′) =

(
1 + |x−x ′|√3

�

)
e− |x−x ′|√3

�

kν=5/2
(
x, x ′) =

(
1 + |x−x ′|√5

�
+ (x−x ′)

2

3�2

)
e− |x−x ′|√5

�
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Rational Quadratic Covariance Function:

kRQ
(
x, x ′) =

(

1 +
(
x − x ′)2

2α�2

)−α

where α and � are two hyperparameters. This kernel can be considered as an infinite
sum (scale mixture) of SE kernels, with different characteristic length-scales. Indeed,
one of the most important properties of kernel functions is that a sum of kernels is a
kernel.

The following figure summarizes how the value of the four kernels decreases
with x moving away from x ′ = 0 (on the left side) and which are possible resulting
samples with different shape properties (on the right side) (Fig. 3.3).

The aforementioned kernels are just the most widely adopted in GP regression.
More details and a most comprehensive set of covariance functions are reported
in Williams and Rasmussen (2006), including non-stationary kernels and dot prod-
uct kernels. Kernel for BO is a very actively researched area, relevant papers are
Duvenaud et al. (2013; Shilton et al. (2018). Schultz et al. (2016) note that a kernel
mismatch about the smoothness of the objective function leads to a substantial drop
in accuracy and sample efficiency, which increases with the dimensions and cannot
be mitigated by GP’s hyperparameter tuning and the choice of acquisition functions.

A space-temporal kernel has been proposed in Nyikosa et al. (2018) to allow
the GP to capture all the instances of the function over time and track a temporally
evolving minimum. Some kernel issues have been considered in recent publications,
such as: kernel composition, safe optimization in relation to cognition (Schultz et al.
2018) aswell as kernel learning, adaptation and sparsity in order to dealwith functions

Fig. 3.3 Value of four different kernels with x moving away from x ′ = 0 (left) and four samples
from GP prior, one for each kernel considered (right). The value of the characteristic length-scale
is � 1 for all the four kernels; α of the RQ kernel is set to 2.25
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that are smooth in a subset of their domain and vary rapidly in another is analysed
in Peifer et al. (2019).

3.1.3 Embedding Derivative Observations in the Gaussian
Process

A relatively new part of GP regression, specifically useful for BO, is the integra-
tion of derivative information of f (x) in the modelling and optimization process.
Differentiation is a linear operator so that the derivative of a GP is also a GP:, if
the covariance function is sufficiently smooth, one can derive the joint distribution
over a function and its derivatives and then perform their Bayesian updating given
observations of function, derivatives and Hessians (Wu et al. 2017).

We consider a d-dimensional function sampled from a GP, f (·) ∼ GP(0, K ). Let

us denote the first order partial derivative operator as ∇(·) =
[

∂
∂x1

∂
∂x2

. . . ∂
∂xd

]T
.

Then the joint process [ f (x),∇ f (x)] has aGP distribution (see for instance Solak
et al. (2003)) with a covariance function given by four blocks:

k[ f, f ]
(
x, x ′) = cov

(
f (x), f

(
x ′)) = k

(
x, x ′)

k[ f,∇ f ]
(
x, x ′) = cov

(
f (x),∇ f

(
x ′)) = ∇x ′k

(
x, x ′)

k[∇ f, f ]
(
x, x ′) = cov

(∇ f (x), f
(
x ′)) = ∇xk

(
x, x ′)

k[∇ f,∇ f ]
(
x, x ′) = cov

(∇ f (x),∇ f
(
x ′)) = ∇x∇x ′k

(
x, x ′)

We can write this joint process more compactly as

[
f (x)

∇ f (x)

]
∼ GP

(
0,

[
k k[ f,∇ f ]

k[∇ f, f ] k[∇ f,∇ f ]

])

We can now apply the formulas to updateμ(x) and σ (x) and to derive the posterior
over function values f (xn+1) given a set of observations of function values and
gradients. LetK[f,∇f] denote the joint kernelmatrix for a set of observations of function
values and gradients. The joint distribution for

[
f (X1:n),∇ f (X1:n), f (xn+1)

]
is

⎡

⎣
f (X1:n)

∇ f (X1:n)
f (xn+1)

⎤

⎦ ∼ N
(
0,

[
K[f,∇f] k̄n+1

k̄n+1
ᵀ k(xn+1, xn+1)

])

where k̄n+1 =
[
k(xn+1, X1:n)ᵀ, k[ fn+1,∇ f ]

]ᵀ
, and the posterior over f (xn+1) is:

f (xn+1)|x1:n, [ f,∇ f ]1:n, xn+1 ∼ N (
μ̄(xn+1), σ̄

2(xn+1)
)
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where

μ̄(xn+1) = k̄
ᵀ
n+1K

−1
[ f,∇ f ][ f,∇ f ]ᵀ1:n

σ̄ 2(xn+1) = k(xn+1, xn+1) − k̄
ᵀ
n+1K

−1
[ f,∇ f ]k̄n+1

We use a similar derivation to incorporateHessian (second derivative) information
into a GP along with the function and gradient information.

Then the joint Gaussian of
[
f,∇ f,∇2 f (x)

]
is defined as,

⎡

⎣
f (x)

∇ f (x)
∇2 f (x)

⎤

⎦ ∼ GP
(
0,K[ f,∇ f,∇2 f ]

)

where

K[ f,∇ f,∇2 f ] =
⎡

⎢
⎣

k k[ f,∇ f ] k[ f,∇2 f ]
k[∇ f, f ] k[∇ f,∇ f ] k[∇ f,∇2 f ]
k[∇2 f, f ] k[∇2 f,∇ f ] k[∇2 f,∇2 f ]

⎤

⎥
⎦

The resulting joint kernel matrix is partitioned into nine blocks corresponding to
the covariances and cross-covariances over function values, gradients and Hessians.

We can now derive the posterior over function values f (xn+1) given a set
of observations of function, its gradients and Hessians. The joint distribution of[
f (X1:n),∇ f (X1:n),∇2 f (X1:n), f (xn+1)

]
is given by:

⎡

⎢⎢
⎣

f (X1:n)
∇ f (X1:n)
∇2 f (X1:n)
f (xn+1)

⎤

⎥⎥
⎦ ∼ N

(

0,

[
K[ f ,∇ f ,∇2 f ] k̄n+1

k̄n+1
ᵀ k(xn+1, xn+1)

])

where k̄n+1 =
[
k(xn+1, X1:n)ᵀ, k[ fn+1,∇ f ], k[ fn+1,∇2 f ]

]ᵀ
and the posterior over

f (xn+1) is:

f (xn+1)|x1:n,
[
f,∇ f,∇2 f

]
1:n, xn+1 ∼ N (

μ̄(xn+1), σ̄
2(xn+1)

)

where

μ̄(xn+1) = k̄
ᵀ
n+1K

−1
[ f,∇ f,∇2 f ]

[
f,∇ f,∇2 f

]ᵀ
1:n

σ̄ 2(xn+1) = k(xn+1, xn+1) − k̄
ᵀ
n+1K

−1
[ f,∇ f,∇2 f ]k̄n+1

The idea of using derivative information for optimization problems has been taken
up inHennig andKiefel (2013;Hennig (2013) and inWills andThomas (2017)which
has developed it along two different directions. The first, originally suggested in the
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papers by Henning, brings to the reinterpretation in probabilistic terms of standard
quasi-Newton like methods considered as particular instances of Gaussian process
or Bayesian regression. The second, more relevant for the subject of this book, is to
use the joint GP as a global model of the objective function and its derivatives.

A first remark is that adding a derivative observation reduces the uncertainty-
standard deviation of GP prediction. The following figure, drawn from Solak et al.
(2003) shows, from left to right, four samples from prior, four samples from posterior
of standard GP and four samples from posterior of a GPwith derivative observations.
Given the same set of observations, the variance of the resulting GP is lower when
derivative observations are included (Fig. 3.4).

The same pay-off effect of gradient estimation is shown in the following picture,
drawn from Eriksson et al. (2018). On the left, the level sets of the objective function
(Branin 2D) is depicted, in the middle and on the right, the mean of the GP without
and with derivative observations, is reported, respectively (Fig. 3.5).

The same authors propose a BO algorithm with derivatives, inspired by REMBO
(Wang et al. 2016). The algorithm estimates the active subspace spanned by the
dominant eigenvalues of the gradient covariance matrix and fits a GP on the set
of observations in this subspace. The optimization of the acquisition function,

Fig. 3.4 Four samples from prior, four samples from posterior of a standard GP and four samples
from posterior of a GP with derivative observations. (Source Solak et al. 2003)

Fig. 3.5 Original function (left) mean of a GP without derivative observations (middle) and mean
of a GP with derivative observations. (Source Eriksson et al. 2018)
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built on the updated model, brings the new point xn+1. The dataset is updated
with

[
xn+1, f (xn+1),∇ f (xn+1)

]
and, consequently, the GP’s hyperparameters are

updated considering also the information on gradients.

3.1.4 Numerical Instability

Numerical instability issues arise due to the inversion of the matrix[
K(X1:n, X1:n) + λ2 I

]
, required to update μ(x) and σ 2(x). The condition number

of this matrix, that is the ratio between the highest and lowest eigenvalue, gives a
bound on the accuracy of the matrix inversion. Large condition numbers are indica-
tors for numerical instability. Extreme eigenvalues appear when function values are
strongly correlated. Strong positive correlation between function values will result in
near-identical corresponding rows and columns in the kernel matrix K(X1:n, X1:n),
making it close to singular. Higher values of λ, on one side mitigate this instability,
on the other side lead to a degradation of the model’s accuracy.

Some heuristics have been proposed to control the condition number of the matrix[
K(X1:n, X1:n) + λ2 I

]
. The most common consists of adding an explicit penalty on

the signal-to-noise ratio,whenfitting theGPor adding a jitter term.Both are presented
in https://drafts.distill.pub/gp/.

The first method derives from the observation that the condition number grows
linearly with the number n of data points and quadratically with the signal-to-noise
ratio σ f

λ
(where σ 2

f is a multiplier used to regulate the maximum kernel value). More

precisely, emax
emin

= n
σ 2
f

λ2 +1,where emax and emin are the largest and smallest eigen value,
respectively. It is easy to understand that a high signal-to-noise ratio makes quickly
the matrix

[
K(X1:n, X1:n) + λ2 I

]
ill-conditioned. Therefore, although most of the

research works consider the noise-free setting, this should be avoided in practical
applications for numerical stability reasons. When fitting the GP by maximizing the
log-marginal likelihood, a penalty term is added to the log-marginal likelihood that
discourages extreme signal-to-noise ratios.

The second heuristic method, consisting of adding a jitter term, is also based on
the previous consideration: it basically adds some artificial “noise” to the function
evaluations.

In Zhigljavsky and Žilinskas (2019), authors studied the properties of a GP gen-
erated bya SE kernel where the exponent 2 has been replaced by 2-ε, with ε > 0.

An interesting solution, called K-optimality and aimed at choosing the next point
xn+1 to reduce the condition number, has been recently suggested in Yan et al. (2018)
and will be outlined in Chap. 4.

Finally, it is important to remark that using derivatives, as reported in previous
section, induces a faster onset of the numerical instability issue.

https://drafts.distill.pub/gp/


3.2 Thompson Sampling 47

3.2 Thompson Sampling

As previously mentioned, given a kernel k, there exists a feature map φ(x) such
that k

(
x, x ′) = φ(x)Tφ

(
x ′). In practice, one can use the spectral decomposition

of the matrix K = ��T to estimate the feature map φ(x) ∈ R
m , where �T =

[φ(x1), ..., φ(xn)] and {x1, ..., xn} are the points evaluated so far. The decomposition
we considered is derived from the Bochner’s theorem, as reported in (Basu and
Ghosh 2017), and based on the concept of spectral density of a kernel. For instance,
the spectral density S(s) of the SE covariance function is given by:

S(s) = (2π�2)
d
2 e−2π2�2s2

The spectral density can be treated as a probability density p(s) = S(s)/α with
α = ∫

S(s)ds a normalizing constant. The following figure shows p(s) for different
values of the value of the length scale of the SE kernel (Fig. 3.6).

InTS, the featuremapφ(x) is am-dimensional vector sampled as
√
2/m cos(Wx+

b), where [W]i ∼ p(s) and [b]i ∼ U(0, 2π), with i denoting the ith component of
the vectors W and b, and i = 1, ... , m.

Accordingly, the following figures show how the shape of the (prior) sample
modifies depending on the length scale (i.e. � is 0.2, 0.3 and 0.4, from left to right).
Every sample is generated by sampling [Wi ] ∼ p(s) and [b]i ∼ U(0, 2π) (Figs. 3.7
and 3.8).

Although Thompson sampling (TS) dates to (Thompson 1933), it has been
recently attracting attention in several studies on sequential optimization (Chapelle
and Li 2011; Kandasamy et al. 2017, 2018). Ouyang et al. (2017) propose a TS-based

Fig. 3.6 Spectral density of SE kernel with different values of the characteristic length-scale
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Fig. 3.7 Five different samples for GP prior for, respectively, � = 0.2, � = 0.3 and � = 0.4,
respectively

Fig. 3.8 Five different samples for GP posterior (� is learned through marginal likelihood maxi-
mization on the observations)

approach to learn the structure of an unknown Markov decision process (MDP) in a
reinforcement learning framework.

TS is an algorithm to sequentially optimize a black box function, coherently with
the optimization problem considered in this book:

min
x∈X⊂Rd

f (x)

As BO, TS uses a GP as a probabilistic surrogate model of the unknown objec-
tive function. The main difference is that TS samples, at every iteration, just one
mapping function φ(x) and a random vector θ drawn from the posterior distribution
θ |(D1:n, φ) = N (

A−1�T y, σ 2A−1), where A = �T� + σ 2 I . Then the new point
xn+1 to evaluate is just obtained as the minimizer of the GP sample f (x) = φ(x)T θ .
The function is evaluated at the new point, eventually with noise, and the function
evaluations dataset is updated consequently: Dn+1 = Dn ∪ {(xn+1, yn+1)}.
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The process is initialized by assuming a non-informative prior on the distribu-
tion of the minimizer and will stop when the variance of the distribution becomes
considerably small.

The following figure shows four different samples from GP posterior (after five
observations) and the corresponding minimizers to use as next point to evaluate. We
have decided to plot four different scenarios to highlight the probabilistic nature of
TS in selecting the next point. Although samples are different, giving some chance
to exploration, the bias towards exploitation is evident, motivating the ε-greedy
approach proposed in (Basu and Ghosh 2017) (Fig. 3.9).

As a final remark, it is clear that TS is a sequential optimization process per se,
and sampling from posterior is just one component of the method. It is again based
on a probabilistic surrogate model but, differently from BO, the next promising point
to evaluate is identified by minimizing a sample from the GP instead of a specific
acquisition function. Another way to look at this is to consider the sample function
as an acquisition function (as described in Chap. 4).

While the theory underlying TS and related converge issue are rooted in results
in functional analysis, like Bochner’s theorem and Winer–Khintchine theorem, its
implementation is relatively straightforward as shown before and demonstrated in
the pseudo code which follows, again inspired by (Basu and Ghosh 2017). There are
different implementations, notable (Bijl et al. 2016)

Fig. 3.9 Anexample of one iteration ofThompson sampling: four different samples forGPposterior
are reported along with the next point to evaluate chosen as the minimizer of the corresponding GP
sample
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TS can be biased towards exploitation, especially when σ 2 is large, leading the
process to potentially converge to a local minimum. To reduce the risk to get stuck
in a local optimum, an ε-greedy approach can be considered, as in (Basu and Ghosh
2017). That is, at every iteration n, we explore the entire region X uniformly (i.e. we
sample xn+1 ∼ U(X)), with probability ε > 0 or we sample xn+1 ∼ minx∈Xφ(x)T θ ,
with probability 1 − ε.

3.3 Alternative Models

A basic issue with GP is the assumption that optimization variables take real values.
In the case of integer-valued variables, such as the number of layers of a DNN,
the basic idea is rounding the solution to the closest integer while, in the case of
categorical variables, as many extra variables as possible categories are added and
chosen according to the largest one (as in Spearmint). These operations can be applied
in two different ways. In the so-called naïve approach they are performed before
updating the GP, so xn+1 is a mixed-integer vector, while in the “basic” approach
they are performed just before evaluating the objective function, so xn+1 ∈ R

d . The
naïve approachmight lead to a relevantmismatch between the (continuous) optimizer
of the objective function and the point evaluated. The basic approach overcomes this
limitation because GP ignores the approximation but it is expected to provide a
suboptimal solution. A more principled approach is suggested in Garrido-Merchán
and Hernández-Lobato (2018), who proposes a kernel that essentially embeds the
same transformation of the basic approach.

A radical solution consists in avoiding GP altogether and adopting alternative
models like random forests.
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3.3.1 Random Forest

Random forest (RF) is an ensemble learning method, based on decision trees, for
both classification and regression problems (Ho 1995). According to the originally
proposed implementation, RF aims at generating a multitude of decision trees, at
training time, and providing as output the mode of the classes (classification) the
mean/median prediction (regression) of the individual trees. The following figure
provides a schematic representation of the output provisioning mechanism of a RF
(Fig. 3.10).

Decision trees are ideal candidates for ensemble methods since they usually have
low bias and high variance, making them very likely to benefit from the averaging
process. RF mostly differs from other typical ensemble methods in the way it intro-
duces random perturbations into the training phase. The basic idea is to combine
bagging, to sample examples from the original dataset, and random selection of fea-
tures, in order to train every tree of the forest. Injecting randomness simultaneously
with both strategies yields one the most effective off-the-shelf methods in machine
learning, working surprisingly well for almost any kind of problems, allowing for
generating a collection of decision trees with controlled variance.

Although designed and presented as a machine learning algorithm, RF is also an
effective and efficient alternative to GP for implementing BO. To better understand
how RF, for regression, can replace GP, one has to consider that:

• The dataset, in the case of Machine Learning, is replaced by the design D1:n of
the BO process

• The features correspond to the dimensions of the global optimization problem.

Fig. 3.10 A schematic representation of the regression/classification performed by a random forest.
Voting mechanism is different for classification (e.g. simple or weighted majority) and regression
(e.g. mean or median)
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Moreover, since RF consists of an ensemble of different regressors, it is possible
to compute—as for GP—both μ(x) and σ(x), simply as mean and variance among
the individual outputs provided by the regressor. Due to the different nature of RF
and GP, the associated probabilistic surrogate models will also result significantly
different. The following figure offers an example. While GP is well-suited to model
smooth functions in search space spanned by continuous variables, RF can deal with
discrete and conditional variables. Discontinuity in the RF-based surrogate is given
by the underlying decision tree models (Fig. 3.11).

Another important property of RF is that the variance can be controlled, as
explained in the following.

Let’s denote with S the size of the forest (i.e. the number of decision trees in the
forest) and Ti (x) the output provided by the i-th decision tree for the input x, the
variance of the RF-based estimator, for the regression case, can be easily computed
as follows:

Var
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Ti (x)

)

= Cov
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⎝ 1
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(
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= ρσ 2 + σ 2 1 − ρ

S

Fig. 3.11 A graphical comparison between probabilistic surrogate models offered by a GP (blue)
and a RF (red), both fitted on the same set of observations
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where σ 2 is the maximum variance computed over all the Ti (x) and ρσ 2 =
max
i, j

Cov
(
Ti (x), Tj (x)

)
. The variance of the RF estimator is proportional to σ 2 and

ρ (i.e. if the number m of selected features decreases also σ 2 and ρ decrease) and
with the size S the forest increasing.

Finally, a basic description of the RF learning algorithm is provided. Thanks to
the bagging and random feature selection—step 2 and 4, respectively—RF results
more computationally efficient than GP, specifically when the number of decision
variables is larger than 20. Indeed, RF does not require to invert any kernel matrix
and training of every decision tree can be performed in parallel.

Random Forest learning algorithm

Given:

· S the size of the forest (i.e. number of decision trees in the forest)

· N the number of examples in the dataset (i.e. evaluations of the objective functions)

·M the number of features (i.e. decision variables) representing every example

· m the number of features (i.e. decision variables) to be randomly selected from theM available
for each leaf node of the tree to be split

· nmin the minimum node size in the tree

1: for i = 1 to S

2: sample, with replacement, a subset of N instances from the dataset

3: for every terminal node (leaf) of the i-th decision tree with size less than nmin

4: select m features (i.e. decision variables) at random from the M available

5: pick the best feature (i.e. decision variable) and split among the possible m

6: split the node in two children nodes (new leaves of the decision tree)

7: end for

8: end for

3.3.2 Neural Networks: Feedforward, Deep and Bayesian

The role of neural networks in BO is two-fold: as already discussed they are machine
learning algorithms typically optimized in the AutoML setting; on the other hand,
they can offer a well-suited alternative to GP. Indeed, as already highlighted in this
book, GPs are sample efficient but their computational complexity is cubic in the
number of points and do not scale well in high dimensions.

A relevant approach, Snoek et al. (2015) aims to replace the GP with a model
that scales better but retains most of the GP desirable properties such as flexibility
and well-calibrated uncertainty. More specifically, deep learning models are inves-
tigated adding a Bayesian linear regressor to the last hidden layer of a deep neural
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network (DNN), marginalizing only the output weights of the net while using a point
estimate for the remaining parameters. This results in adaptive basis regression, a
well-established statistical technique which scales linearly in the number of obser-
vations, and cubically in the basis function dimensionality. This allows to explic-
itly trade-off evaluation time and model capacity. The resulting algorithm DNGO
(Deep Networks for Global Optimization, https://github.com/Anmol6/DNGO-BO)
has been extensively tested for optimizing the hyperparameters of deep convolutional
neural networks. Empirical results show that DNGO provides the same modelling
properties of a GP but with a significantly lower computational cost.

The following figure (Fig. 3.12) shows ANN and DNN for creating alternative
surrogate models within BO framework and allows for a comparison of predictive
mean (solid blue line) and uncertainty (shaded blue region). The first line figures
show the surrogate models generated by DNN with three hidden layers, the first one
using only tanh as activation function and the second one using only sigmoid as the
activation function. The second line figures show the surrogate models generated by
ANN with one hidden layer with the same activation functions

The application of Bayesian methods to neural networks has a rich history in
machine learning, the goal ofBayesian neural networks is to uncover the full posterior
distribution over the network weights in order to capture uncertainty, to act as a
regularizer, and to provide a framework for model comparison. The full posterior

Fig. 3.12 Probabilistic surrogatemodels based on deep and artificial neural networks,with different
activation functions (i.e. sigmoid and tanh) for the neurons

https://github.com/Anmol6/DNGO-BO
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is, however, intractable for most forms of neural networks, necessitating expensive
approximate inference or Markov Chain Monte Carlo simulation.

In Springenberg et al. (2016), BNN have been suggested as a principled alter-
native to GP. The algorithm is called BOHAMIANN (Bayesian Optimization with
HAMIltonian Artificial Neural Network) and has been tested with a three layers neu-
ral network with 50 tanh units. The method has been presented also for multi-task
optimization (i.e. finding the set of optimizers for k black box functions, each with
the same domain X). An implementation of the algorithm is provided in RoBO, a
BO software reported in Chap. 6.

In order to deal with non-stationarity, a possible approach is to use deep Gaus-
sian processes. In Hebbal et al. (2019), functional composition of stationary GPs is
proposed, providing a multiple layer structure.
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