
Chapter 1
Automated Machine Learning
and Bayesian Optimization

1.1 Automated Machine Learning

1.1.1 Motivation

Automated machine learning (AutoML) is introduced in this chapter to illustrate
model selection and hyperparameter tuning and the specific features of the resulting
optimization problems.

These issues are important because an algorithm that scores well on one learning
task can score poorly on another, as summarized by the “no free lunch” (NFL)
theorem (Wolpert and Macready 1995): even the same algorithm, with different
hyperparameter values, can show very different performances (Wolpert 2002). NFL
theorems have since grown into a significant research domain: their impact on fields
like optimization and supervised learning is analysed in a recent survey paper (Adam
et al. 2019), in which specific results are given for early stopping and cross-validation
rules to conduct the training phase.

While this result emphasizes the role of the ML experts in the design of reli-
able applications, substantial research activity has been focusing on the possibility
to exploit the potential of ML by making it easy to be used off the shelf also by
non-experts, taking, in some sense, the “human out of the loop” (Shahriari 2016).
This requires automating the configuration of the algorithm and the tuning of their
hyperparameters.

The time-honoured approach to solve the problem of hyperparameter optimiza-
tion, namely grid search, is hardly feasible for more than 2/3 hyperparameters and
totally unsuitable in view of the growing complexity ofMLmodels as deep networks
which have many hyperparameters and may take hours or days to train the model.

Model selection and hyperparameter optimization are very important applications
of Bayesian optimization (BO) (Frazier 2018) and offer a good motivation of the
relevance assumed by BO in the ML community (Hutter et al. 2019). Section 1.2 is
devoted to illustrating the basic workflow of the sequential model-based optimization
(SMBO) and specifically of BO introducing its basic components: the surrogate
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model and the acquisition function. Section 1.3 is devoted to a specific application
showing the design and the implementationof a complexMLapplicationof predictive
analytics.

AutoML was formulated in Kotthoff et al. (2017) as “automatically and simulta-
neously choosing a learning algorithm and setting its hyperparameters to optimize
its empirical performance on a given dataset”. The more general definition of this
problem is also called combined algorithm selection and hyperparameter (CASH)
optimization.

This approach was originally built on WEKA and developed into Auto-WEKA
(Thornton et al. 2013)which uses BO for an optimal selection among the components
of WEKA for a given dataset and problem addressed (regression or classification).
More recently, a new and robust AutoML system auto-sklearn, based on scikit-learn,
has been proposed in Feurer et al. (2015).

This system uses several supervised learning algorithms, data preprocessing and
feature processingmethods, leading to an overall number of up 110machine learning
algorithms which can be compared according to their generalization capability that
is to make accurate “prediction” (regression or classification) on new data.

The evaluation of a ML algorithm means evaluating any performance index or
metric (e.g. accuracy or root-mean-squared error in classification and regression
tasks, respectively) which we shall indicate as loss function.

This evaluation is usually done by a k-fold cross-validation procedure. This proce-
dure consists in randomly dividing the set of data into k groups, or folds, of approx-
imately equal size. With an index i iterating from 1 to k, the ith fold is used as a
validation or testing set while the ML algorithm is trained on the training set consist-
ing of the remaining k−1 folds. This means that each algorithm must be trained and
validated k times, making this procedure time consuming and significantly expen-
sive, especially in the case of large databases or for those algorithms whose training
is expensive. Usually, a limited “budget” to train and test different configurations of
an ML algorithm is available, bounding the available computational resources such
as CPU, wall clock time, memory usage.

The successful application of ML in a broad range of domains and the shortage of
human experts has recently led to an increase in the demand of AutoML solutions.
Indeed, a growing number of commercial enterprises are addressing this demand:
Microsoft’s AzureMachine Learning, AmazonMachine Learning andGoogle’s plat-
forms (Prediction API, Vizier, Hypertune and the more recent AutoML Tables) offer
“machine learning” ecosystems with their own AutoML tools. The need of sample
efficient AutoML solutions cannot be overestimated also in view of the growing
awareness of the heavy carbon footprint of large scale machine learning models, in
particular deep learning. A recent paper (Strubell et al. 2019) argues that the cost of
the hyperparameter tuning and the required experimentation (Sect. 1.1.3) can reach
a tag of CO2 emissions in the range of tens of thousands Libs which can reach
hundreds of thousands if the neural architecture search (Sects. 1.1.2 and 1.1.4) is
also considered. The unprecedented scale of this challenge requires not only bet-
ter algorithms in the Bayesian framework but revolutionary solutions like quantum
computing. Bayesian Optimization, (Zhu et al. 2018), has turned out a good solu-
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tion for data -driven quantum circuit training, using the software tool OPTaas, of
Mindfoundry which is analysed in Chap. 6.

1.1.2 Model Selection

A learning algorithm A maps training data points x1, . . . , xn to their corresponding
“targets” y1, . . . , yn , where yi is continuous in the case of regression or a “label”
(categorical values) in the case of classification. All the pairs (xi , yi ) are organized
into a dataset D = {(xi , yi )}1:n .

The model selection problem is formulated as follows:

A∗ ∈ argmin
A∈A

1

k

k∑

i=1

L
(
A,D(i)

train,D(i)
valid

)

where L
(
A,D(i)

train,D(i)
valid

)
is the loss achieved by A when trained on D(i)

train and

evaluated on D(i)
valid. The set A contains all the available ML algorithms, A ={

A(1), . . . , A(h)
}
. We use k-fold cross-validation which splits the training data

into k equal-sized validation folds, D(1)
valid, . . . ,D(k)

valid, and associated training sets
D(1)

train, . . . ,D(k)
train, where D(i)

train = D\D(i)
valid.

The following figure (Fig. 1.1) displays a schematic representation of a model
selection problem.

Before going ahead, it is important to clarify the difference between “training”
and “validating” a ML model, as well as the difference between “parameters” and
“hyperparameters” of a ML algorithm.

Fig. 1.1 An example of model selection. A set of “base” algorithms are available in the set A,
where “base” refers to the adoption of default values for the algorithm’s hyperparameters
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The algorithm A is characterized by:

• a vector θ of “model parameters”, whose value is learned directly from data, during
the “training” phase

• a vector of “hyperparameters” γ ∈ � that change the way the algorithm “learns”
the values for θ . Hyperparameters can be set up manually or optimized on the
“validation” phase.

For instance, the weights on the connections of an artificial neural network are
parameters to be learned, while a number of hidden layers, a number of neurons in
each hidden layer, activation function and learning rate are hyperparameters.

The goal of training is to estimate the value θ̂ minimizing a given loss func-
tion Ltrain (e.g. classification error or root-mean-squared error for classification and
regression problems, respectively) on training dataD. The resultingMLmodel can be
then validated on a validation dataset (or fold, in the case of k-fold cross-validation),
measuring the corresponding loss function Lvalid. During validation, the estimate θ̂

does not change for each fold. The hyperparameters γ are not estimated during the
train, and they must be set up before training. Therefore, θ̂ as well as Ltrain and Lvalid

depend on the value of γ .
Many ML algorithms, such as in artificial neural networks or support vector

machines, use an analytical form for Ltrain, so that θ̂ can be estimated by gradient-
based methods. Other ML algorithms have no parameters (e.g. instance-based algo-
rithms such as k-nearest neighbours). On the contrary, Lvalid is black box and its
optimization, depending on the hyperparameters γ , requires derivative-free GO
approaches, such as BO.

When k-fold cross-validation is concerned, the commonway to compute the over-
allLvalid is to average the values obtained on the k different folds, as in a randomized
experiment.

The loss function computed on each fold Li
valid with i = 1, . . . , k, can be consid-

ered as an observation from a sample of k elements, whose size can be controlled
by some statistical tests. This approach could result in an early stopping when the
hyperparameter configuration is unlikely to yield a good result (Florea et al. 2018).
The same principle is used in hyperband (Li et al. 2016), halving sequentially the set
of configurations “deserving” more sampling.

1.1.3 Hyperparameter Optimization

Given n hyperparameters γ1, . . . , γn with domains �1, . . . , �n , the hyperparameter
space� is a subset of the product of these domains�1×· · ·×�n .� is a subset because
certain settings of one hyperparameter render other hyperparameters inactive. For
example, the parameters determining the specifics of the third layer of an artificial
neural network (ANN) are not relevant if the network depth is set to one or two.

Likewise, the hyperparameters of a support vector machine’s (SVM) polynomial
kernel are not relevant if we use a different kernel instead. More formally, we say
that a hyperparameter γi is conditional on another hyperparameter γ j ; that is γi is
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Fig. 1.2 An example of hyperparameter optimization for a support vectormachine (SVM) classifier
with linear or radial basis function (RBF) kernel. JC and Jσ are the ranges for values of the
regularization hyperparameter C and the RBF kernel’s hyperparameter σ

active if and only if hyperparameter γ j takes values from a given set Vi ( j) ⊂ � j ;
in this case, we call γ j a parent of γi . Conditional hyperparameters generate a tree-
structured space or, in some cases, a directed acyclic graph (DAG). Given such a
structured space �, the (hierarchical) hyperparameter optimization problem can be
written as:

γ ∗ ∈ argminγ∈�

1

k

k∑

i=1

L
(
Aγ ,D(i)

train,D(i)
valid

)
(1.1)

Figures 1.2 and 1.3 propose two examples of hyperparameter optimization for an
SVM and an ANN, respectively.

Fig. 1.3 An example of hyperparameter optimization for an artificial neural network (ANN) clas-
sifier with at maximum three hidden layers. J1, J2 and J3 are the ranges for number of neurons in
the hidden layer 1, 2 and 3, respectively
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The problemof hyperparameter optimization of a given learning algorithm is quite
similar to model selection. There are still some key differences in that hyperparam-
eters are often continuous, that hyperparameter spaces are often high dimensional,
like in deep neural networks, and that we can exploit correlation structure between
hyperparameter settings γ , γ ′ ∈ �.

1.1.4 Combined Algorithm Selection and Hyperparameter
Optimization

Given a set of algorithms A = {
A(1), . . . , A(h)

}
with associated hyperparameter

spaces, �(1), . . . , �(h), we define the combined algorithm selection and hyperpa-
rameter optimization problem (combined algorithm selection and hyperparameter
optimization, CASH) as computing:

A∗
γ ∗ ∈ argminA( j)∈A,γ∈�( j)

1

k

k∑

i=1

L
(
A( j)

γ ,D(i)
train,D(i)

valid

)
(1.2)

We note that this problem can be reformulated as a single combined hier-
archical hyperparameter optimization problem with hyperparameter space � =
�(1) ∪ . . . ∪ �(h) ∪ {γr }, where γr is a new root-level hyperparameter that selects
between algorithms A(1), . . . , A(h). The root-level hyperparameter of each subspace
�(i) is made conditional on γr . In principle, the problem can be tackled in various
ways: SMBO is a versatile stochastic optimization framework that can work with
both categorical and continuous hyperparameters and that can exploit the hierarchical
structure stemming from the conditional parameters (Kotthof et al. 2017) (Fig. 1.4).

1.1.5 Why Hyperparameter Optimization Is Important?

Figures 1.5 and 1.6 display a loss function, namely mean squared error (MSE),
computed on ten fold cross-validation, with respect to the hyperparameters of a
support vector machine (SVM) regression, namely the regularization C ∈ [0, 1000]
and the hyperparameter σ ∈ [0.002, 0.1] of the radial basis function (RBF) kernel.
Two different benchmark datasets have been used: CPU dataset (https://archive.ics.
uci.edu/ml/datasets/Computer+Hardware) and Yacht dataset (http://archive.ics.uci.
edu/ml/datasets/yacht+hydrodynamics). One can see how the performance metrics
(i.e. MSE) is impacted by hyperparameter value.

Another critical feature is that the value of the loss function, for each hyperparame-
ter configuration, is the outcome of the randomized process of k-fold cross-validation.
An often-overlooked point is to measure the uncertainty of the prediction error esti-

https://archive.ics.uci.edu/ml/datasets/Computer%2bHardware
http://archive.ics.uci.edu/ml/datasets/yacht%2bhydrodynamics
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Fig. 1.4 An example of CASH considering an SVM and an ANN classifier. Description of the
hyperparameters of each algorithm follows from Figs. 1.2 and 1.3, while γr is the further “root”
CASH hyperparameter introduced to model the choice between the types of machine learning
algorithm

Fig. 1.5 Error on ten fold cross-validation with respect to two hyperparameters of an SVM with
RBF kernel on the CPU dataset (left) and Yacht dataset (right)

mators which is important because the accuracy of model selection is limited by the
variance of model estimates. Cross-validation provides an unbiased estimate of the
prediction error on the training set, but the estimation of the variance is still crucial.
Seminal contributions to this problem are given in Nadeau and Bengio (2000) and
Bengio and Grandvalet (2004).

In a recent paper (Jiang and Wang 2017), a uniform normalized variance is pro-
posed which not only measures model accuracy but relates it to the number of folds.

Let us have a look at the simplest case in which we keep fixed the value of C of
an SVM and can choose among different kernels, represented by the options A to E.
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Fig. 1.6 MSE computed over k-fold cross-validation for an SVM classifier with five different
kernels (options A to E). On the left, the mean of MSE is reported, and on the right also variance
is depicted

If we consider the mean of MSE over the k-folds, we obtain the chart on the left,
but we ignore the variance, which is instead depicted in the figure on the right. The
variance makes the choice not so obvious. Indeed, there is a nonzero probability that
option C could turn out a better choice than E.

1.2 The Basic Structure of Bayesian Optimization

1.2.1 Sequential Model-Based Optimization

This is the reference problem, where we use x for the sake of generality:

x∗ = arg min
x∈X

f (x)

In the cases seen in previous Sect. 1.1 x = γ for the hyperparameter optimization
(1.1), while, in the most general case of CASH (1.2), x is a vector whose first
component is the decision variable associated with the ML algorithm to choose
in the set A and the remaining components are the associated hyperparameters γ.

When we are dealing with this optimization problem, we are faced with two kinds
of uncertainty:

1. Measurement uncertainty called “noise”. We can not observe f (xi ) but rather
a noisy value yi = f (xi ) + ε, where εis the observation noise, assumed to be
ε ∼ N (

0,λ2
)
(Fig. 1.7).

Manypapers are dealingwith noise (Frazier 2018), butmost of results inBOcanbe
obtainedwithout explicitly takingmeasurement noise into account. The “workhorse”
GP model can handle it without disrupting the basic algorithm structure.

2. Even removing the noise, as it is often assumed, we still have a problem of
“structural uncertainty”. For instance, if we have three noise-free evaluations of
f (x), D1:3 = {(xi , yi )}i=1,..,3, we still have infinite number of functions with
different minima and minimizers, compatibly with D1:3, as depicted in Fig. 1.8.
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Fig. 1.7 An example of GP model with noisy evaluation: for the same point, xi is possible to
observe different observations yi

Fig. 1.8 Different functions
compatible with the function
observations D1:3

Inmanycases,X is assumedahyper–rectangle (box-boundedor essentially uncon-
strained optimization). In this chapter, we present the basic structure of BO in which
the design variables, the hyperparameters, are assumed to be continuous.

We remark that BO can handle more complex design space: variables can be con-
tinuous, integer, categorical and conditional. This is in general the case of automatic
algorithm configuration (AAC), hyperparameter optimization in machine learning
and CASH.

Nonlinear constraints can be considered including the case in which they are
the results of a simulation model and are partially/completely unknown, as will be
discussed in Chap. 5.

We do not assume the existence in f (x) of structural properties like linear-
ity/convexity. We also assume that first and second derivatives are not available
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Fig. 1.9 A schematic representation of the Bayesian optimization process

to the optimizer. Where derivative information can be observed along with f (x), it
can be embedded in the learning process, as we shall see in Chap. 3.

In situations as the above, an approach is to create a surrogate model of the objec-
tive function and build on it a sequential model-based optimizer (SMBO) evaluating
f (x) at the points x1, x2, . . . , xn updating, on the basis of new values, the surrogate
and, as shown in Figs. 1.10 and 1.11, suggesting the next evaluation point. This
suggestion is performed by an acquisition function, which balances exploitation and
exploration (as better detailed in Sect. 1.2.3) and represets the “utility” to select a
point. The SMBO process is summarized in the schema and steps (Fig. 1.9).

Steps of the sequential model-based optimization process

STEP 1—Generating initial sample/design—by Random Search (Chap. 2) or other sampling
methods—and fitting the first (probabilistic) surrogate model (Sect. 1.2.2 and Chap. 3)

STEP 2—Identifying, depending on the acquisition function, the new promising point(s),
evaluating the function (Sect. 1.2.3 and Chap. 4)

STEP 3—Evaluating the objective function

STEP 4—Update the (probabilistic) surrogate model (Chap. 3)

STEP 5—Checking for termination criteria: if at least one is active, go to STEP 6, else go to
STEP 2

STEP 6—Return the current best solution (usually the “best seen”)

1.2.2 Surrogate Model

In this book we focus on probabilistic surrogate model, we must anyway remark
that deterministic surrogate models are also widely studied and applied in academia
and industry (Cozad et al. 2014). Probabilistic surrogate models are able to offer an
estimate of the uncertainty which is used to balance the trade-off between exploration
and exploitation. The Gaussian process is most widely adopted model. The idea
behind GP is that the values of the objective function correspond to realizations of
a multivariate Gaussian process that for each x returns a mean and a variance, as
reported in Figs. 1.10 and 1.11.
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Fig. 1.10 A GP conditioned to five observations (top) and corresponding “utility” (bottom). The
maximum indicates the next point where to evaluate the objective function

Fig. 1.11 How GP and acquisition function change after one more function evaluation, selected as
in Fig. 1.10

One way to interpret a Gaussian process (GP) regression model is to think of
it as defining a distribution over functions and with inference taking place directly
in the space of functions. A Gaussian process is a collection of random variables,
any finite number of which has a joint Gaussian distribution. A Gaussian process is
completely specified by its mean function μ(x) = E[ f (x)] and covariance function
k
(
x, x ′) = E

[
( f (x) − μ(x))

(
f
(
x ′) − μ

(
x ′))]. The covariance function k

(
x, x ′)

is also named kernel and amounts to impose a geometry to our decision space to
Gaussian process depending on observations.

The Gaussian process is initially fitted on a set of available observations D1:n
(STEP 1 of SMBO).



12 1 Automated Machine Learning and Bayesian Optimization

μn(x) = E[ f (x)|D1:n, x] = k(x, X1:n)
[
K(X1:n, X1:n) + λ2 I

]−1
y

σ 2
n (x) = k(x, x) − k(x, X1:n)

[
K(X1:n, X1:n) + λ2 I

]−1
k(X1:n, x)

where D1:n = {(xi , yi )}i=1,..,n is the set of observation performed so far, the vector
y gives the value of the function at the previous points, the covariance matrix K
has entries Ki j = k

(
xi , x j

)
, with i, j = 1, . . . , n, and k(x, X1:n) is a n-dimensional

vector with components ki = k(x, xi ).
GP also allows to build an “acquisition function” (such as the probability of

improvement, PI, over the best value observed so far, introduced in the next sub-
section) which modulates the trade-off between exploration and exploitation and
suggests the next promising candidate point xn+1.

The GP is useful also because it provides an analytical expression for the update
of mean and variance as a new function evaluation (xn+1, yn+1) arrives, by using the
same formulas and simply replacing n with n + 1.

In this chapter, the reference kernel for the GP is the squared exponential (SE):

kSE
(
x, x ′) = e−‖x−x ′2‖

2�2

With � known as characteristic length-scale. The role of this hyperparameter is
to rescale any point x by 1/� before computing the kernel value. A large length scale
implies long-range correlations, whereas a short length scale makes function values
strongly correlated only if their respective inputs are very close to each other.

One should not see GP as one-size-fit-all recipe: many different kernels, as well
as other models, have been suggested and are reviewed in Chap. 3. Also, many
acquisition functions have been suggested and will be reviewed in Chap. 4.

1.2.3 Acquisition Function

Besides the surrogate model, the other main building block is the utility function,
also named acquisition function or infill criterion.

Acquisition functions (STEP 2 of SMBO) are a critical part of the BO framework:
many have been proposed, and new ones are being suggested to cope with new
problems and take advantage of more computational power. Chapter 4 is devoted to
this topic.

The first utility function was probability of improvement (PI) (Kushner 1964):

P I (x) = P
(
f (x) ≤ f

(
x+)) = φ

(
f
(
x+) − μ(x)

σ (x)

)
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Fig. 1.12 A representation
of probability of
improvement

where f
(
x+)

is the best value of the objective function observed so far, μ(x) and
σ(x) are mean and standard deviation of the probabilistic surrogate model, such as
a GP, and φ(·) is the probability density function.

This function will be analysed in detail in Chap. 4. This picture shows that the
value of PI in x3, given the best y value obtained in x+, corresponds to the area
depicted in green (Fig. 1.12).

GP, as surrogate model, has several advantages, which explain why it is widely
used:

1. It provides a closed formula for mean and variance which can be analytically
updated through new observations and takes care of measurement uncertainty
and structural uncertainty (Figs. 1.4 and 1.5).

2. We can easily define an analytical acquisition function to deal with exploration—
exploitation dilemma (this is a defining feature of BO, and its relationship with
learning will be considered in Chap. 2).

3. The derivative of a GP is also a GP allowing to estimate in the training process
not only the value of the function but also its gradients and hessians, given
their, eventually noisy, observations: this enables to speed up the convergence
reducing the variance in the GP regression (Chap. 3). This possibility is yet not
really exploited in the available software being fraught with numerical instability,
as we shall discuss in Chap. 3.

On the other hand, GP-based BO does not scale well with the number of decision
variables (dimension of the design space). This is due, according to Kandasamy
et al. (2015), to the statistical difficulty to scale up nonparametric regression in
high dimensions and the computational challenge in maximizing the acquisition
function. In Chap. 4, we shall see that many approaches have been proposed to
mitigate these problems: random dropout and random embeddings of relevant search
space dimensions (Wang et al. 2016; Chen et al. 2012) and structural assumptions
such as the additive form of the objective function (Kandasamy et al. 2015).
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1.3 Automated Machine Learning for Predictive Analytics

This section is devoted to an optimized machine learning pipeline that has been
designed anddeveloped in the context of research and customer projects anddeployed
in a number of situations (Candelieri 2017; Candelieri and Archetti 2018).

According to this approach, time-series forecasting is based on two consecutive
phases: time-series clustering and artificial neural network (ANN) for regression.

As the loss function, we consider a measure of forecasting error, namely mean
absolute percentage error (MAPE).

The problem consists of hyperparameter optimization where the number of ANN
predictors to be learned in the second phase depends on the value of one of the
hyperparameters of the first phase (i.e. number of clusters). In Fig. 1.13, we provide
a representation of this problem:

Figure 1.14 summarizes the organization of the predictive pipeline. With respect
to the previous picture, an emphasis on data used for training the overall system is
also given.

Data was organized into a distinct time-series datasetD = {x1, . . . , xl} consisting
of l vectors, one for each day in the observation period, and where each vector xi
is a set of 24 ordered values, one for each hour of the day. The basic advantage of
using time-series clustering as first stage is that it might allow for the identification
of typical patterns within the time window of interest and, consequently, for splitting
the dataset into subsets (i.e. clusters) which are then used in the second stage.

The clustering algorithm, kernel k-means, is a generalization of the standard k-
means: it implicitly maps data from the input space, spanned by the original set of

Fig. 1.13 Hyperparameter optimization problem for the predictive analytics pipeline considered.
The number of ANN models to be trained in the second phase depends on the value of the hyper-
parameter defining the number of clusters in the first phase
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Fig. 1.14 Apredictive analytics pipeline for time-series forecasting: first stage is clustering through
kernel k-means; in the second stage, an ANN is learned on each cluster

data, to a higher-dimensional space, namely feature space. Therefore, kernel k-means
can discover clusters that are nonlinearly separable in input space.

The second stage of the pipeline consists in training k̄ different ANNs, one for
each one of the k̄ clusters resulting from the first stage. The first 6 values of the
time series and the remaining 24 − 6 = 18 are, respectively, the input and output
neurons of every ANN. For each ANN, the hyperparameters reported in Table 1.2
are optimized via SMBO. The number of ANNs is not given a priori, and it depends
on the number k̄ of clusters identified from the first stage. The training process for
the k̄ ANNs is performed in parallel.

Tables 1.1 and 1.2 summarize, separately for the two stages, the hyperparameters

Table 1.1 Decision variables/hyperparameters for the clustering phase

Hyperparameter Hyperparameter name Type Description

γ1 k̄ Integer Number of clusters.
Possible values are from
3 to 9

γ2 Kernel type Categorical Type of kernel used in
the kernel-based
clustering. Possible
kernels are:
linear, spline, RBF,
Laplace, Bessel,
polynomial

γ3 σ Numeric,
conditioned

Hyperparameter of the
RBF, Laplace and Bessel
kernels. Possible values
are in [10−5, 105]

γ4 Degree Integer,
conditioned

Hyperparameter of the
Bessel and polynomial
kernels. Possible values
are 2, 3 or 4
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Table 1.2 Decision variables/hyperparameters for the ANN learning phase

Hyperparameter Hyperparameter name Type Description

γ̄ k
1 Hidden layers Integer Number of hidden

layers in the artificial
neural network. Possible
values are 1, 2 or 3

γ̄ k
2 Neurons in the hidden

layer 1
Integer Number of neurons in

the hidden layer 1.
Possible values are from
1 to 20

γ̄ k
3 Neurons in the hidden

layer 2
Integer,
conditioned

Number of neurons in
the hidden layer 2 (if
x̄ k1 > 1). Possible values
are from 1 to 20

γ̄ k
4 Neurons in the hidden

layer 3
Integer,
conditioned

Number of neurons in
the hidden layer 3 (if
x̄ k1 > 2). Possible values
are from 1 to 20

γ̄ k
5 Algorithm Categorical Type of algorithm used

to train the artificial
neural network. Possible
values are: backprop,
rprop+, rprop-, sag, slr

γ̄ k
6 Learning rate Numeric,

conditioned
Learning rate of the
backprop algorithm.
Possible values are in
the range [0.1, 1.0]

γ̄ k
7 Error function Categorical Function used to

compute training error.
Possible values are: sse
and ce

γ̄ k
8 Activation function Categorical Function used to

compute the output of
every neuron. Possible
values are: logistic and
tanh

γ̄ k
9 Linear output Logical This hyperparameter

defines whether to use a
linear combination in
the output layer of the
artificial neural network
or not. Possible values
are TRUE or FALSE

of the predictive analytics pipelines (i.e. decision variables). According to the value
of the hyperparameter γ1 (i.e. the number of clusters), the number of hyperparameters
in the second phase is consequently defined: it is γ1 times 9. Since γ1 is an integer
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ranging from 3 to 9, this means that the overall number of hyperparameters for the
pipeline ranges from 4 + 3 × 9 = 31 to 4 + 9 × 9 = 85.

The performance measure is mean average percentage error (MAPE):

MAPE = 1

T

T∑

t=1

∣∣∣∣
At − Ft

At

∣∣∣∣

where At and Ft are the actual and forecasted values, respectively, at time t, and T
is the number of time steps predicted. Since we have a MAPE value for every time
series and an ANN is trained for every cluster, MAPE is aggregated as:

min
x∈X

{
f (x) = max

k=1,...,k̄
MAPEk

}

This predictive pipeline was developed in R by using the following packages:

• “mlrMBO” for BO (described in Chap. 6), by setting a random forest as surrogate
model and testing PI, EI and LCB as acquisition functions. The initial design has
been sampled according to latin hypercube sampling (LHS) procedure

• “kernlab” for implementing the kernel k-means clustering
• “neuralnet” for implementing the artificial neural networks.

The approach has been validated on two different datasets, one public and related
to energy consumption (https://archive.ics.uci.edu/ml/datasets/Appliances+energy+
prediction), and one collected during a European project and related to urban water
consumption. In both cases the first six actual values are sufficient to forecast, in one
shot, the overall consumption pattern for the day. The resulting value of prediction
error was very low (approximately 0.1%) for both the test cases considered.

This means that, when a new data comes (i.e. a vector of consumptions at the
first six hours of the day) it is assigned to one of the clusters and, consequently, the
corresponding predictor is selected and used to forecast. Thus, the overall pipeline
is flexible to adapt the choice of predictor to the incoming data.
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