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Preface

“Data culture is decision culture” it’s hard to disagree with this statement in
Mckinsey quarterly (2018, 3); the point is further stressed by the “takeaway”:
“Don’t approach data analysis as a cool science experiment or an exercise in
amassing data for data sake. The fundamental objective in collecting, analyzing
and deploying data is to make better decisions”.

This is an old objective, first put forward by the operations research community:
linear programming was in use, as an operational decision tool, already in Dantzig1

and around the same time the dynamic programming framework was proposed.
Optimization methods have since moved well beyond the traditional area of

engineering design and operations management and have become ubiquitous in all
branches of science, business and government.

It is also increasingly clear that in a data-driven environment, most of the times
we are called to take decisions in conditions of partial information and uncertainty:
decision-making, as data becomes available, bearing in mind the impact of our
decisions in the different futures which might unfold, raises new challenges and
requires a different mindset.

Data-driven optimization also arises when the objective function and/or con-
straints are analytically unknown and need to be learned during the search for the
optimal solution: evaluating the objective function in these cases might be very
expensive, like building a prototype of a system, drilling a borehole looking for ore,
treating a patient or simulating, ab initio, the pharmacological activity of a new
chemical compound. Also more common applications, like designing, training and
validating a machine learning application on a large dataset and optimizing its
configuration and hyperparameters fall into a simulation–optimization or black-box
framework and can be computationally challenging.

As in any learning process, a central issue is the so-called exploration vs
exploitation dilemma, which will be recurrent in this monograph: exploration
means devoting resources to learn about the structure of the problem, in particular

1Dantzig, G.B.: Alternate algorithm for the revised simplex method: Using a product form for the
inverse. Rand. (1953)
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possible solutions, while exploitation devotes resources to improve on solutions
already identified in the previous phase.

An algorithm suitable for such applications should, above all, be sample effi-
cient, because the cost of observations—which amount to function evaluations—is
the dominating cost and have global properties.

These requirements have important consequences:

1. To be sample efficient it must query, at a relatively low cost, the design space to
find the new point with maximal informative value.

2. The search for the new point must strike an effective balance between the needs
of exploration and exploitation.

We shall see how the Bayesian optimization (BO) framework allows to for-
mulate a mathematically principled way to satisfy these requirements.

We shall refer to this behaviour of searching for highly informative new data as
“active learning”.

“Learning enabled” optimization requires a model flexible enough to adjust its
parameters to new data, monitoring on line its performances, and be discriminating,
sifting through data streams in order to select from them which to harvest and
analyse on the basis of their informational utility.

Learning has been studied in many communities notably statistics and cognitive
sciences.

Among the statisticians, the Bayesians believe that all kinds of learning underpin
Bayes’ theorem and developed a branch of statistical thinking whose application,
due to computational difficulties, has been originally limited to relatively simple
problems. Things began to change due to the recent availability of computing
power and new computational methods which enabled the application of Bayesian
learning in large scale meaningful problems and its spreading to many domains
including machine learning (the big success of naïve Bayesian classifier in spam
classification) and optimization.

The Bayesian algorithmic optimizer updates its beliefs about the shape of the
objective function, the location the value of its global optimum and even the
number of local optima according to the evidence gathered thru function evalua-
tions. To do this, we need a model which can sum up our a priori beliefs (before
fresh data arrives) and update them as new data arrives, as mandated by the Bayes’
theorem:

Pðbeliefs j dataÞ ¼ PðbeliefsÞ � Pðdata j beliefsÞ=PðdataÞ

The models learned of the objective function are called also response surface or
surrogate model: they are only approximations of different “fidelity” of the
objective function, allow to account for the uncertainty in its estimation and can
drive in a principled way the search towards the optimum.
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Bayesian optimization is so far the best computational strategy at the cross-roads
between learning and optimization, exploring the environment or the space of
decision variables to gather efficiently new relevant information and to exploit it
towards optimal solutions.

All this seems natural and easy, yet to bring BO into action did require a number
of advances in software engineering, computational sciences and statistical learning
which have been critical for its successful deployment in many application
domains. The modelling and computational difficulties as well as the methods and
tools developed to overcome them are the subject of this book.

Who discovered Bayesian Optimization? Of course, Thomas Bayes2 in the
founding paper of Bayesian statistics, but it is fair to remind what a contemporary
of Bayes’, the Scottish philosopher David Hume wrote in his 1748 essay “An
enquiry concerning human understanding”: “a wise man proportions his beliefs to
the evidence” a statement fitting squarely in the Bayesian framework.

Closer to our time, the idea was put forward in Kushner3 and Mockus4 although,
not without reason, it could be partly traced back to a paper 1951 of Krige5 and its
subsequent development largely in the engineering community, under the name of
kriging, for simulation-based optimization.

Another class of algorithms, originated from the work of Strongin6 and called
information statistical approach, was further developed, alongside with space covering
methods, and has consolidated the foundations of Lipschitz Global Optimization.

BO quickly became one of the main strategies for global optimization, a domain
which received first systematic attention in the two volumes7,8 and whose meaning
was originally the optimization of non-convex /multi-extremal functions and later
grew to include simulation-based and black-box optimization.

An important point was the paper of Jones9 which started to consolidate BO as a
design tool in the engineering community and to spread it to the machine learning
research community10 where it has become the “de facto” standard for automatic

2Bayes, T. 1764. “An Essay Toward Solving a Problem in the Doctrine of
Chances”, Philosophical Transactions of the Royal Society of London 53, 370–418.
3Kushner, Harold J. “A new method of locating the maximum point of an arbitrary multipeak
curve in the presence of noise”. Journal of Basic Engineering 86, no. 1 (1964): 97–106.
4Močkus, J. (1975). On Bayesian methods for seeking the extremum. In Optimization
Techniques IFIP Technical Conference (pp. 400–404). Springer, Berlin, Heidelberg.
5Krige, D. G., 1951, A statistical approach to some basic mine valuation problems on the
Witwatersrand: J. Chem. Metal. Min. Soc. South Africa, v. 52, pp. 119–139.
6Strongin, R.G.: Multiextremal minimization of measurements with interference. Eng. Cybern. 16,
105–115 (1969).
7Dixon, L. C. W., Szegö, G. P.: Towards Global Optimisation: Proceedings of a Workshop at the
University of Cagliari, Italy, October 1974. (1975).
8Dixon, L. C. W., Szegò, G. P.: Towards global optimisation. North-Holland Amsterdam (1978).
9Jones, Donald R., Matthias Schonlau, and William J. Welch. “Efficient global optimization of
expensive black-box functions”. Journal of Global optimization 13, no. 4 (1998): 455–492.
10Bergstra, J. S., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter
optimization. In Advances in neural information processing systems (pp. 2546–2554).
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algorithm configuration and hyperparameter optimization as we shall explain in
Chap. 1.

BO, as we remarked before, is based on a surrogate model: true as it is that “all
models are wrong, some are useful”, the Gaussian processes offer the model that
turned out more useful as a probabilistic surrogate in BO. Gaussian processes are a
powerful nonparametric formalism for implementing both regression and classifi-
cation algorithms which also offer a reliable uncertainty estimate. Two early papers
on Bayesian Optimization are also Archetti11, with an analysis of unidimensional
Bayesian Optimization, and Archetti and Betrò12, for a general convergence anal-
ysis of sequential optimization of measurable random functions.

One way to interpret a Gaussian process (GP) regression model is to think of it
as defining a distribution over functions, and with inference taking place directly in
the space of functions. A Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution. A Gaussian process is
completely specified by its mean function l xð Þ ¼ E½f ðxÞ� and covariance function
k x; x

0� � ¼ E f xð Þ � lðxÞð Þ f x
0� �� lðx0Þ� �� �

also named kernel which amounts to
impose a geometry on our decision space (alike for support vector machines).
Given a prior belief, for instance on the basis of a random sampling, the Gaussian
process provides an analytical expression for the update of mean and variance
(posterior) as new function evaluations arrive which in turn allows to build the
analytic expression of an “acquisition “ function which suggests the new obser-
vation points and modulates the trade-off between exploration and exploitation.

Who should read this book?

This monograph can be useful for many kinds of readers but was basically written
having in mind three main audiences:

1. graduate and doctoral students, mostly in computer science, artificial intelli-
gence and optimization, who want to become knowledgeable in paradigmatic
learning enabled optimization method which has become the “de facto standard”
for hyperparameter optimization and algorithm configuration in the machine
learning community.

2. software engineers, who do not have a training in machine learning, but are
using industrial platforms, and want to understand the inside workings of BO as
a service for automated machine learning and black-box optimization.

3. researchers, from both academia and industry who look for a quick under-
standing of whether and how their specific activity can benefit from BO as a tool

11Archetti, F., Betrò, B.: A probabilistic algorithm for global optimization. Calc. 16, 335–343
(1979). https://doi.org/10.1007/BF02575933
12Archetti, F., Betro, B.: Stochastic models and optimization. Boll. Della Unione Mat. Ital. 5
(17-A), 295 (1980)
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for the design of experiments and the optimization of computationally expensive
simulation models.

The contents of this monograph are organized as follows.
Chapter 1 outlines the basic structure of BO with reference to the problem of

automated machine learning and the design of predictive analytics pipeline.
Chapter 2 shows how BO relates to global optimization, in particular

Lipschitz-based methods and Random Search. Section 2.4, in particular, shows
how BO could be regarded, along with approximate dynamic programming, an
early instance of learning enabled optimization, tightly knitted with key artificial
intelligence frameworks like a multi-armed bandit and reinforcement learning.

Chapter 3 presents the key components of a Gaussian process analysing several
widely used kernels and some computational issues. Anyway one should not see
GP as one-size-fit-all recipe: other models have been recently suggested including
Bayesian neural networks and deep neural networks which are presented in Sects. 3.
2 and 3.3.

Chapter 4 is dedicated to the different acquisition functions both the traditional
and the new ones, based on information theory which have been proposed to cope
with theoretical developments and emerging application fields.

Chapter 5 is considering “exotic” instances of BO with a specific reference to
constrained BO, where a novel approach has been proposed by the authors of this
book to cope with unknown constraints and partially defined objective functions.

Chapter 6 is a survey of the software resources available for BO, analysed with
respect to the following features: surrogate model, acquisition functions, language,
licence and last update.

Finally, Chap. 7 is a survey of applications in many industrial sectors: BO has
been in the last decade a burgeoning field largely due to the work of the machine
learning community, but its features have led to its adoption by different commu-
nities in several innovative applications: from the challenge of AlphaGO13 to
“machine learning for optimizing cookie recipe”14, through the operational opti-
mization of pump scheduling in water distribution systems, the design of drugs and
new materials, robotics and industrial automation, to name just a few, Bayesian
optimization has become a ubiquitous presence any time a machine learning
application has to be designed according to sample efficiency and performance
criterion.

Different reading paths can be obtained linking different chapters: Chaps. 1 and 6
are enough to set up a “naïve”, problem agnostic BO solution for a given machine
learning application or a black-box optimization problem.

13Chen, Yutian, Aja Huang, Ziyu Wang, Ioannis Antonoglou, Julian Schrittwieser, David Silver,
and Nando de Freitas. “Bayesian optimization in AlphaGo”. arXiv preprint arXiv:1812.06855
(2018).
14Solnik, Benjamin, Daniel Golovin, Greg Kochanski, John Elliot Karro, Subhodeep Moitra, and
D. Sculley. “Bayesian Optimization for a Better Dessert”. (2017).
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Adding Chaps. 3 and 4 gives the modelling and computational tools to tailor the
BO solution that fits one’s problem and software resources: these four chapters are
the “core” of the book.

Outside the core, Chap. 2 gives a conceptual framework to link BO with other
learning enabled optimization approaches. One should read it before Chap. 5 to
grasp the implications of the Lipschitz condition in “safe” BO.

This book is designed as a self-contained entry into the BO field. The coverage
of the topics, but the basic ones, is quite sketchy. The amount of theoretical basis is
minimal, just enough to keep it self-contained. Some more advanced contents are
exposed dealing with Thompson sampling in Chap. 3.

Citations are limited by the space constraints: so, the coverage of literature is
extensive but by no means complete. Albeit the purpose of this book is to provide a
working methodology, some references to incremental improvements and hints at a
historical perspective have been regarded by the authors as possibly helpful and
have been given in Chap. 2.

Milan, Italy Francesco Archetti
Antonio Candelieri
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Chapter 1
Automated Machine Learning
and Bayesian Optimization

1.1 Automated Machine Learning

1.1.1 Motivation

Automated machine learning (AutoML) is introduced in this chapter to illustrate
model selection and hyperparameter tuning and the specific features of the resulting
optimization problems.

These issues are important because an algorithm that scores well on one learning
task can score poorly on another, as summarized by the “no free lunch” (NFL)
theorem (Wolpert and Macready 1995): even the same algorithm, with different
hyperparameter values, can show very different performances (Wolpert 2002). NFL
theorems have since grown into a significant research domain: their impact on fields
like optimization and supervised learning is analysed in a recent survey paper (Adam
et al. 2019), in which specific results are given for early stopping and cross-validation
rules to conduct the training phase.

While this result emphasizes the role of the ML experts in the design of reli-
able applications, substantial research activity has been focusing on the possibility
to exploit the potential of ML by making it easy to be used off the shelf also by
non-experts, taking, in some sense, the “human out of the loop” (Shahriari 2016).
This requires automating the configuration of the algorithm and the tuning of their
hyperparameters.

The time-honoured approach to solve the problem of hyperparameter optimiza-
tion, namely grid search, is hardly feasible for more than 2/3 hyperparameters and
totally unsuitable in view of the growing complexity ofMLmodels as deep networks
which have many hyperparameters and may take hours or days to train the model.

Model selection and hyperparameter optimization are very important applications
of Bayesian optimization (BO) (Frazier 2018) and offer a good motivation of the
relevance assumed by BO in the ML community (Hutter et al. 2019). Section 1.2 is
devoted to illustrating the basic workflow of the sequential model-based optimization
(SMBO) and specifically of BO introducing its basic components: the surrogate

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
F. Archetti and A. Candelieri, Bayesian Optimization and Data Science,
SpringerBriefs in Optimization, https://doi.org/10.1007/978-3-030-24494-1_1
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2 1 Automated Machine Learning and Bayesian Optimization

model and the acquisition function. Section 1.3 is devoted to a specific application
showing the design and the implementationof a complexMLapplicationof predictive
analytics.

AutoML was formulated in Kotthoff et al. (2017) as “automatically and simulta-
neously choosing a learning algorithm and setting its hyperparameters to optimize
its empirical performance on a given dataset”. The more general definition of this
problem is also called combined algorithm selection and hyperparameter (CASH)
optimization.

This approach was originally built on WEKA and developed into Auto-WEKA
(Thornton et al. 2013)which uses BO for an optimal selection among the components
of WEKA for a given dataset and problem addressed (regression or classification).
More recently, a new and robust AutoML system auto-sklearn, based on scikit-learn,
has been proposed in Feurer et al. (2015).

This system uses several supervised learning algorithms, data preprocessing and
feature processingmethods, leading to an overall number of up 110machine learning
algorithms which can be compared according to their generalization capability that
is to make accurate “prediction” (regression or classification) on new data.

The evaluation of a ML algorithm means evaluating any performance index or
metric (e.g. accuracy or root-mean-squared error in classification and regression
tasks, respectively) which we shall indicate as loss function.

This evaluation is usually done by a k-fold cross-validation procedure. This proce-
dure consists in randomly dividing the set of data into k groups, or folds, of approx-
imately equal size. With an index i iterating from 1 to k, the ith fold is used as a
validation or testing set while the ML algorithm is trained on the training set consist-
ing of the remaining k−1 folds. This means that each algorithm must be trained and
validated k times, making this procedure time consuming and significantly expen-
sive, especially in the case of large databases or for those algorithms whose training
is expensive. Usually, a limited “budget” to train and test different configurations of
an ML algorithm is available, bounding the available computational resources such
as CPU, wall clock time, memory usage.

The successful application of ML in a broad range of domains and the shortage of
human experts has recently led to an increase in the demand of AutoML solutions.
Indeed, a growing number of commercial enterprises are addressing this demand:
Microsoft’s AzureMachine Learning, AmazonMachine Learning andGoogle’s plat-
forms (Prediction API, Vizier, Hypertune and the more recent AutoML Tables) offer
“machine learning” ecosystems with their own AutoML tools. The need of sample
efficient AutoML solutions cannot be overestimated also in view of the growing
awareness of the heavy carbon footprint of large scale machine learning models, in
particular deep learning. A recent paper (Strubell et al. 2019) argues that the cost of
the hyperparameter tuning and the required experimentation (Sect. 1.1.3) can reach
a tag of CO2 emissions in the range of tens of thousands Libs which can reach
hundreds of thousands if the neural architecture search (Sects. 1.1.2 and 1.1.4) is
also considered. The unprecedented scale of this challenge requires not only bet-
ter algorithms in the Bayesian framework but revolutionary solutions like quantum
computing. Bayesian Optimization, (Zhu et al. 2018), has turned out a good solu-
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tion for data -driven quantum circuit training, using the software tool OPTaas, of
Mindfoundry which is analysed in Chap. 6.

1.1.2 Model Selection

A learning algorithm A maps training data points x1, . . . , xn to their corresponding
“targets” y1, . . . , yn , where yi is continuous in the case of regression or a “label”
(categorical values) in the case of classification. All the pairs (xi , yi ) are organized
into a dataset D = {(xi , yi )}1:n .

The model selection problem is formulated as follows:

A∗ ∈ argmin
A∈A

1

k

k∑

i=1

L
(
A,D(i)

train,D(i)
valid

)

where L
(
A,D(i)

train,D(i)
valid

)
is the loss achieved by A when trained on D(i)

train and

evaluated on D(i)
valid. The set A contains all the available ML algorithms, A ={

A(1), . . . , A(h)
}
. We use k-fold cross-validation which splits the training data

into k equal-sized validation folds, D(1)
valid, . . . ,D(k)

valid, and associated training sets
D(1)

train, . . . ,D(k)
train, where D(i)

train = D\D(i)
valid.

The following figure (Fig. 1.1) displays a schematic representation of a model
selection problem.

Before going ahead, it is important to clarify the difference between “training”
and “validating” a ML model, as well as the difference between “parameters” and
“hyperparameters” of a ML algorithm.

Fig. 1.1 An example of model selection. A set of “base” algorithms are available in the set A,
where “base” refers to the adoption of default values for the algorithm’s hyperparameters
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The algorithm A is characterized by:

• a vector θ of “model parameters”, whose value is learned directly from data, during
the “training” phase

• a vector of “hyperparameters” γ ∈ � that change the way the algorithm “learns”
the values for θ . Hyperparameters can be set up manually or optimized on the
“validation” phase.

For instance, the weights on the connections of an artificial neural network are
parameters to be learned, while a number of hidden layers, a number of neurons in
each hidden layer, activation function and learning rate are hyperparameters.

The goal of training is to estimate the value θ̂ minimizing a given loss func-
tion Ltrain (e.g. classification error or root-mean-squared error for classification and
regression problems, respectively) on training dataD. The resultingMLmodel can be
then validated on a validation dataset (or fold, in the case of k-fold cross-validation),
measuring the corresponding loss function Lvalid. During validation, the estimate θ̂

does not change for each fold. The hyperparameters γ are not estimated during the
train, and they must be set up before training. Therefore, θ̂ as well as Ltrain and Lvalid

depend on the value of γ .
Many ML algorithms, such as in artificial neural networks or support vector

machines, use an analytical form for Ltrain, so that θ̂ can be estimated by gradient-
based methods. Other ML algorithms have no parameters (e.g. instance-based algo-
rithms such as k-nearest neighbours). On the contrary, Lvalid is black box and its
optimization, depending on the hyperparameters γ , requires derivative-free GO
approaches, such as BO.

When k-fold cross-validation is concerned, the commonway to compute the over-
allLvalid is to average the values obtained on the k different folds, as in a randomized
experiment.

The loss function computed on each fold Li
valid with i = 1, . . . , k, can be consid-

ered as an observation from a sample of k elements, whose size can be controlled
by some statistical tests. This approach could result in an early stopping when the
hyperparameter configuration is unlikely to yield a good result (Florea et al. 2018).
The same principle is used in hyperband (Li et al. 2016), halving sequentially the set
of configurations “deserving” more sampling.

1.1.3 Hyperparameter Optimization

Given n hyperparameters γ1, . . . , γn with domains �1, . . . , �n , the hyperparameter
space� is a subset of the product of these domains�1×· · ·×�n .� is a subset because
certain settings of one hyperparameter render other hyperparameters inactive. For
example, the parameters determining the specifics of the third layer of an artificial
neural network (ANN) are not relevant if the network depth is set to one or two.

Likewise, the hyperparameters of a support vector machine’s (SVM) polynomial
kernel are not relevant if we use a different kernel instead. More formally, we say
that a hyperparameter γi is conditional on another hyperparameter γ j ; that is γi is
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Fig. 1.2 An example of hyperparameter optimization for a support vectormachine (SVM) classifier
with linear or radial basis function (RBF) kernel. JC and Jσ are the ranges for values of the
regularization hyperparameter C and the RBF kernel’s hyperparameter σ

active if and only if hyperparameter γ j takes values from a given set Vi ( j) ⊂ � j ;
in this case, we call γ j a parent of γi . Conditional hyperparameters generate a tree-
structured space or, in some cases, a directed acyclic graph (DAG). Given such a
structured space �, the (hierarchical) hyperparameter optimization problem can be
written as:

γ ∗ ∈ argminγ∈�

1

k

k∑

i=1

L
(
Aγ ,D(i)

train,D(i)
valid

)
(1.1)

Figures 1.2 and 1.3 propose two examples of hyperparameter optimization for an
SVM and an ANN, respectively.

Fig. 1.3 An example of hyperparameter optimization for an artificial neural network (ANN) clas-
sifier with at maximum three hidden layers. J1, J2 and J3 are the ranges for number of neurons in
the hidden layer 1, 2 and 3, respectively
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The problemof hyperparameter optimization of a given learning algorithm is quite
similar to model selection. There are still some key differences in that hyperparam-
eters are often continuous, that hyperparameter spaces are often high dimensional,
like in deep neural networks, and that we can exploit correlation structure between
hyperparameter settings γ , γ ′ ∈ �.

1.1.4 Combined Algorithm Selection and Hyperparameter
Optimization

Given a set of algorithms A = {
A(1), . . . , A(h)

}
with associated hyperparameter

spaces, �(1), . . . , �(h), we define the combined algorithm selection and hyperpa-
rameter optimization problem (combined algorithm selection and hyperparameter
optimization, CASH) as computing:

A∗
γ ∗ ∈ argminA( j)∈A,γ∈�( j)

1

k

k∑

i=1

L
(
A( j)

γ ,D(i)
train,D(i)

valid

)
(1.2)

We note that this problem can be reformulated as a single combined hier-
archical hyperparameter optimization problem with hyperparameter space � =
�(1) ∪ . . . ∪ �(h) ∪ {γr }, where γr is a new root-level hyperparameter that selects
between algorithms A(1), . . . , A(h). The root-level hyperparameter of each subspace
�(i) is made conditional on γr . In principle, the problem can be tackled in various
ways: SMBO is a versatile stochastic optimization framework that can work with
both categorical and continuous hyperparameters and that can exploit the hierarchical
structure stemming from the conditional parameters (Kotthof et al. 2017) (Fig. 1.4).

1.1.5 Why Hyperparameter Optimization Is Important?

Figures 1.5 and 1.6 display a loss function, namely mean squared error (MSE),
computed on ten fold cross-validation, with respect to the hyperparameters of a
support vector machine (SVM) regression, namely the regularization C ∈ [0, 1000]
and the hyperparameter σ ∈ [0.002, 0.1] of the radial basis function (RBF) kernel.
Two different benchmark datasets have been used: CPU dataset (https://archive.ics.
uci.edu/ml/datasets/Computer+Hardware) and Yacht dataset (http://archive.ics.uci.
edu/ml/datasets/yacht+hydrodynamics). One can see how the performance metrics
(i.e. MSE) is impacted by hyperparameter value.

Another critical feature is that the value of the loss function, for each hyperparame-
ter configuration, is the outcome of the randomized process of k-fold cross-validation.
An often-overlooked point is to measure the uncertainty of the prediction error esti-

https://archive.ics.uci.edu/ml/datasets/Computer%2bHardware
http://archive.ics.uci.edu/ml/datasets/yacht%2bhydrodynamics
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Fig. 1.4 An example of CASH considering an SVM and an ANN classifier. Description of the
hyperparameters of each algorithm follows from Figs. 1.2 and 1.3, while γr is the further “root”
CASH hyperparameter introduced to model the choice between the types of machine learning
algorithm

Fig. 1.5 Error on ten fold cross-validation with respect to two hyperparameters of an SVM with
RBF kernel on the CPU dataset (left) and Yacht dataset (right)

mators which is important because the accuracy of model selection is limited by the
variance of model estimates. Cross-validation provides an unbiased estimate of the
prediction error on the training set, but the estimation of the variance is still crucial.
Seminal contributions to this problem are given in Nadeau and Bengio (2000) and
Bengio and Grandvalet (2004).

In a recent paper (Jiang and Wang 2017), a uniform normalized variance is pro-
posed which not only measures model accuracy but relates it to the number of folds.

Let us have a look at the simplest case in which we keep fixed the value of C of
an SVM and can choose among different kernels, represented by the options A to E.
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Fig. 1.6 MSE computed over k-fold cross-validation for an SVM classifier with five different
kernels (options A to E). On the left, the mean of MSE is reported, and on the right also variance
is depicted

If we consider the mean of MSE over the k-folds, we obtain the chart on the left,
but we ignore the variance, which is instead depicted in the figure on the right. The
variance makes the choice not so obvious. Indeed, there is a nonzero probability that
option C could turn out a better choice than E.

1.2 The Basic Structure of Bayesian Optimization

1.2.1 Sequential Model-Based Optimization

This is the reference problem, where we use x for the sake of generality:

x∗ = arg min
x∈X

f (x)

In the cases seen in previous Sect. 1.1 x = γ for the hyperparameter optimization
(1.1), while, in the most general case of CASH (1.2), x is a vector whose first
component is the decision variable associated with the ML algorithm to choose
in the set A and the remaining components are the associated hyperparameters γ.

When we are dealing with this optimization problem, we are faced with two kinds
of uncertainty:

1. Measurement uncertainty called “noise”. We can not observe f (xi ) but rather
a noisy value yi = f (xi ) + ε, where εis the observation noise, assumed to be
ε ∼ N (

0,λ2
)
(Fig. 1.7).

Manypapers are dealingwith noise (Frazier 2018), butmost of results inBOcanbe
obtainedwithout explicitly takingmeasurement noise into account. The “workhorse”
GP model can handle it without disrupting the basic algorithm structure.

2. Even removing the noise, as it is often assumed, we still have a problem of
“structural uncertainty”. For instance, if we have three noise-free evaluations of
f (x), D1:3 = {(xi , yi )}i=1,..,3, we still have infinite number of functions with
different minima and minimizers, compatibly with D1:3, as depicted in Fig. 1.8.
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Fig. 1.7 An example of GP model with noisy evaluation: for the same point, xi is possible to
observe different observations yi

Fig. 1.8 Different functions
compatible with the function
observations D1:3

Inmanycases,X is assumedahyper–rectangle (box-boundedor essentially uncon-
strained optimization). In this chapter, we present the basic structure of BO in which
the design variables, the hyperparameters, are assumed to be continuous.

We remark that BO can handle more complex design space: variables can be con-
tinuous, integer, categorical and conditional. This is in general the case of automatic
algorithm configuration (AAC), hyperparameter optimization in machine learning
and CASH.

Nonlinear constraints can be considered including the case in which they are
the results of a simulation model and are partially/completely unknown, as will be
discussed in Chap. 5.

We do not assume the existence in f (x) of structural properties like linear-
ity/convexity. We also assume that first and second derivatives are not available
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Fig. 1.9 A schematic representation of the Bayesian optimization process

to the optimizer. Where derivative information can be observed along with f (x), it
can be embedded in the learning process, as we shall see in Chap. 3.

In situations as the above, an approach is to create a surrogate model of the objec-
tive function and build on it a sequential model-based optimizer (SMBO) evaluating
f (x) at the points x1, x2, . . . , xn updating, on the basis of new values, the surrogate
and, as shown in Figs. 1.10 and 1.11, suggesting the next evaluation point. This
suggestion is performed by an acquisition function, which balances exploitation and
exploration (as better detailed in Sect. 1.2.3) and represets the “utility” to select a
point. The SMBO process is summarized in the schema and steps (Fig. 1.9).

Steps of the sequential model-based optimization process

STEP 1—Generating initial sample/design—by Random Search (Chap. 2) or other sampling
methods—and fitting the first (probabilistic) surrogate model (Sect. 1.2.2 and Chap. 3)

STEP 2—Identifying, depending on the acquisition function, the new promising point(s),
evaluating the function (Sect. 1.2.3 and Chap. 4)

STEP 3—Evaluating the objective function

STEP 4—Update the (probabilistic) surrogate model (Chap. 3)

STEP 5—Checking for termination criteria: if at least one is active, go to STEP 6, else go to
STEP 2

STEP 6—Return the current best solution (usually the “best seen”)

1.2.2 Surrogate Model

In this book we focus on probabilistic surrogate model, we must anyway remark
that deterministic surrogate models are also widely studied and applied in academia
and industry (Cozad et al. 2014). Probabilistic surrogate models are able to offer an
estimate of the uncertainty which is used to balance the trade-off between exploration
and exploitation. The Gaussian process is most widely adopted model. The idea
behind GP is that the values of the objective function correspond to realizations of
a multivariate Gaussian process that for each x returns a mean and a variance, as
reported in Figs. 1.10 and 1.11.
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Fig. 1.10 A GP conditioned to five observations (top) and corresponding “utility” (bottom). The
maximum indicates the next point where to evaluate the objective function

Fig. 1.11 How GP and acquisition function change after one more function evaluation, selected as
in Fig. 1.10

One way to interpret a Gaussian process (GP) regression model is to think of
it as defining a distribution over functions and with inference taking place directly
in the space of functions. A Gaussian process is a collection of random variables,
any finite number of which has a joint Gaussian distribution. A Gaussian process is
completely specified by its mean function μ(x) = E[ f (x)] and covariance function
k
(
x, x ′) = E

[
( f (x) − μ(x))

(
f
(
x ′) − μ

(
x ′))]. The covariance function k

(
x, x ′)

is also named kernel and amounts to impose a geometry to our decision space to
Gaussian process depending on observations.

The Gaussian process is initially fitted on a set of available observations D1:n
(STEP 1 of SMBO).
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μn(x) = E[ f (x)|D1:n, x] = k(x, X1:n)
[
K(X1:n, X1:n) + λ2 I

]−1
y

σ 2
n (x) = k(x, x) − k(x, X1:n)

[
K(X1:n, X1:n) + λ2 I

]−1
k(X1:n, x)

where D1:n = {(xi , yi )}i=1,..,n is the set of observation performed so far, the vector
y gives the value of the function at the previous points, the covariance matrix K
has entries Ki j = k

(
xi , x j

)
, with i, j = 1, . . . , n, and k(x, X1:n) is a n-dimensional

vector with components ki = k(x, xi ).
GP also allows to build an “acquisition function” (such as the probability of

improvement, PI, over the best value observed so far, introduced in the next sub-
section) which modulates the trade-off between exploration and exploitation and
suggests the next promising candidate point xn+1.

The GP is useful also because it provides an analytical expression for the update
of mean and variance as a new function evaluation (xn+1, yn+1) arrives, by using the
same formulas and simply replacing n with n + 1.

In this chapter, the reference kernel for the GP is the squared exponential (SE):

kSE
(
x, x ′) = e−‖x−x ′2‖

2�2

With � known as characteristic length-scale. The role of this hyperparameter is
to rescale any point x by 1/� before computing the kernel value. A large length scale
implies long-range correlations, whereas a short length scale makes function values
strongly correlated only if their respective inputs are very close to each other.

One should not see GP as one-size-fit-all recipe: many different kernels, as well
as other models, have been suggested and are reviewed in Chap. 3. Also, many
acquisition functions have been suggested and will be reviewed in Chap. 4.

1.2.3 Acquisition Function

Besides the surrogate model, the other main building block is the utility function,
also named acquisition function or infill criterion.

Acquisition functions (STEP 2 of SMBO) are a critical part of the BO framework:
many have been proposed, and new ones are being suggested to cope with new
problems and take advantage of more computational power. Chapter 4 is devoted to
this topic.

The first utility function was probability of improvement (PI) (Kushner 1964):

P I (x) = P
(
f (x) ≤ f

(
x+)) = φ

(
f
(
x+) − μ(x)

σ (x)

)
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Fig. 1.12 A representation
of probability of
improvement

where f
(
x+)

is the best value of the objective function observed so far, μ(x) and
σ(x) are mean and standard deviation of the probabilistic surrogate model, such as
a GP, and φ(·) is the probability density function.

This function will be analysed in detail in Chap. 4. This picture shows that the
value of PI in x3, given the best y value obtained in x+, corresponds to the area
depicted in green (Fig. 1.12).

GP, as surrogate model, has several advantages, which explain why it is widely
used:

1. It provides a closed formula for mean and variance which can be analytically
updated through new observations and takes care of measurement uncertainty
and structural uncertainty (Figs. 1.4 and 1.5).

2. We can easily define an analytical acquisition function to deal with exploration—
exploitation dilemma (this is a defining feature of BO, and its relationship with
learning will be considered in Chap. 2).

3. The derivative of a GP is also a GP allowing to estimate in the training process
not only the value of the function but also its gradients and hessians, given
their, eventually noisy, observations: this enables to speed up the convergence
reducing the variance in the GP regression (Chap. 3). This possibility is yet not
really exploited in the available software being fraught with numerical instability,
as we shall discuss in Chap. 3.

On the other hand, GP-based BO does not scale well with the number of decision
variables (dimension of the design space). This is due, according to Kandasamy
et al. (2015), to the statistical difficulty to scale up nonparametric regression in
high dimensions and the computational challenge in maximizing the acquisition
function. In Chap. 4, we shall see that many approaches have been proposed to
mitigate these problems: random dropout and random embeddings of relevant search
space dimensions (Wang et al. 2016; Chen et al. 2012) and structural assumptions
such as the additive form of the objective function (Kandasamy et al. 2015).
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1.3 Automated Machine Learning for Predictive Analytics

This section is devoted to an optimized machine learning pipeline that has been
designed anddeveloped in the context of research and customer projects anddeployed
in a number of situations (Candelieri 2017; Candelieri and Archetti 2018).

According to this approach, time-series forecasting is based on two consecutive
phases: time-series clustering and artificial neural network (ANN) for regression.

As the loss function, we consider a measure of forecasting error, namely mean
absolute percentage error (MAPE).

The problem consists of hyperparameter optimization where the number of ANN
predictors to be learned in the second phase depends on the value of one of the
hyperparameters of the first phase (i.e. number of clusters). In Fig. 1.13, we provide
a representation of this problem:

Figure 1.14 summarizes the organization of the predictive pipeline. With respect
to the previous picture, an emphasis on data used for training the overall system is
also given.

Data was organized into a distinct time-series datasetD = {x1, . . . , xl} consisting
of l vectors, one for each day in the observation period, and where each vector xi
is a set of 24 ordered values, one for each hour of the day. The basic advantage of
using time-series clustering as first stage is that it might allow for the identification
of typical patterns within the time window of interest and, consequently, for splitting
the dataset into subsets (i.e. clusters) which are then used in the second stage.

The clustering algorithm, kernel k-means, is a generalization of the standard k-
means: it implicitly maps data from the input space, spanned by the original set of

Fig. 1.13 Hyperparameter optimization problem for the predictive analytics pipeline considered.
The number of ANN models to be trained in the second phase depends on the value of the hyper-
parameter defining the number of clusters in the first phase
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Fig. 1.14 Apredictive analytics pipeline for time-series forecasting: first stage is clustering through
kernel k-means; in the second stage, an ANN is learned on each cluster

data, to a higher-dimensional space, namely feature space. Therefore, kernel k-means
can discover clusters that are nonlinearly separable in input space.

The second stage of the pipeline consists in training k̄ different ANNs, one for
each one of the k̄ clusters resulting from the first stage. The first 6 values of the
time series and the remaining 24 − 6 = 18 are, respectively, the input and output
neurons of every ANN. For each ANN, the hyperparameters reported in Table 1.2
are optimized via SMBO. The number of ANNs is not given a priori, and it depends
on the number k̄ of clusters identified from the first stage. The training process for
the k̄ ANNs is performed in parallel.

Tables 1.1 and 1.2 summarize, separately for the two stages, the hyperparameters

Table 1.1 Decision variables/hyperparameters for the clustering phase

Hyperparameter Hyperparameter name Type Description

γ1 k̄ Integer Number of clusters.
Possible values are from
3 to 9

γ2 Kernel type Categorical Type of kernel used in
the kernel-based
clustering. Possible
kernels are:
linear, spline, RBF,
Laplace, Bessel,
polynomial

γ3 σ Numeric,
conditioned

Hyperparameter of the
RBF, Laplace and Bessel
kernels. Possible values
are in [10−5, 105]

γ4 Degree Integer,
conditioned

Hyperparameter of the
Bessel and polynomial
kernels. Possible values
are 2, 3 or 4
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Table 1.2 Decision variables/hyperparameters for the ANN learning phase

Hyperparameter Hyperparameter name Type Description

γ̄ k
1 Hidden layers Integer Number of hidden

layers in the artificial
neural network. Possible
values are 1, 2 or 3

γ̄ k
2 Neurons in the hidden

layer 1
Integer Number of neurons in

the hidden layer 1.
Possible values are from
1 to 20

γ̄ k
3 Neurons in the hidden

layer 2
Integer,
conditioned

Number of neurons in
the hidden layer 2 (if
x̄ k1 > 1). Possible values
are from 1 to 20

γ̄ k
4 Neurons in the hidden

layer 3
Integer,
conditioned

Number of neurons in
the hidden layer 3 (if
x̄ k1 > 2). Possible values
are from 1 to 20

γ̄ k
5 Algorithm Categorical Type of algorithm used

to train the artificial
neural network. Possible
values are: backprop,
rprop+, rprop-, sag, slr

γ̄ k
6 Learning rate Numeric,

conditioned
Learning rate of the
backprop algorithm.
Possible values are in
the range [0.1, 1.0]

γ̄ k
7 Error function Categorical Function used to

compute training error.
Possible values are: sse
and ce

γ̄ k
8 Activation function Categorical Function used to

compute the output of
every neuron. Possible
values are: logistic and
tanh

γ̄ k
9 Linear output Logical This hyperparameter

defines whether to use a
linear combination in
the output layer of the
artificial neural network
or not. Possible values
are TRUE or FALSE

of the predictive analytics pipelines (i.e. decision variables). According to the value
of the hyperparameter γ1 (i.e. the number of clusters), the number of hyperparameters
in the second phase is consequently defined: it is γ1 times 9. Since γ1 is an integer
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ranging from 3 to 9, this means that the overall number of hyperparameters for the
pipeline ranges from 4 + 3 × 9 = 31 to 4 + 9 × 9 = 85.

The performance measure is mean average percentage error (MAPE):

MAPE = 1

T

T∑

t=1

∣∣∣∣
At − Ft

At

∣∣∣∣

where At and Ft are the actual and forecasted values, respectively, at time t, and T
is the number of time steps predicted. Since we have a MAPE value for every time
series and an ANN is trained for every cluster, MAPE is aggregated as:

min
x∈X

{
f (x) = max

k=1,...,k̄
MAPEk

}

This predictive pipeline was developed in R by using the following packages:

• “mlrMBO” for BO (described in Chap. 6), by setting a random forest as surrogate
model and testing PI, EI and LCB as acquisition functions. The initial design has
been sampled according to latin hypercube sampling (LHS) procedure

• “kernlab” for implementing the kernel k-means clustering
• “neuralnet” for implementing the artificial neural networks.

The approach has been validated on two different datasets, one public and related
to energy consumption (https://archive.ics.uci.edu/ml/datasets/Appliances+energy+
prediction), and one collected during a European project and related to urban water
consumption. In both cases the first six actual values are sufficient to forecast, in one
shot, the overall consumption pattern for the day. The resulting value of prediction
error was very low (approximately 0.1%) for both the test cases considered.

This means that, when a new data comes (i.e. a vector of consumptions at the
first six hours of the day) it is assigned to one of the clusters and, consequently, the
corresponding predictor is selected and used to forecast. Thus, the overall pipeline
is flexible to adapt the choice of predictor to the incoming data.
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Chapter 2
From Global Optimization to Optimal
Learning

What is the relation between finding the global minimum of the function below and
the learning paradigm (Fig. 2.1)?What learning models have in common with global
optimization methods? Outlining possible answers and linking them to other parts
of the book are the objective of this chapter.

Some references are in order to offer a framework for the development of global
optimization. The two volumes (Dixon and Szegö 1975, 1978), albeit predated by a
number of pioneering papers, might be regarded as the first concerted effort to raise
the issue of global optimization as a new topic in the optimization community and
have been highly influential for the development of the subject. Other volumes, of
general interest, which drove the development of the field of global optimization are

Fig. 2.1 Amulti-extremal two-dimensional objective function. (SourceSergeyev andKvasov 2017)
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Pardalos and Romeijn (2013), Pintér (2006), Powell and Ryzhov (2012), Locatelli
and Schoen (2013).

2.1 A Priori Analysis of Global Optimization Strategies

The aim of this section is not to deal with specific algorithms, but to highlight
the theoretical framework underlying the design of deterministic algorithms and to
assess the computational complexity of global optimization problems using “space-
covering” techniques.

Let X be a compact set in the N-dimensional Euclidean space RN . We define the
global optimization problem (GOP) as finding the couple x∗, f ∗ such that:

f ∗ = f ∗(x∗) ≤ f (x)∀x ∈ X

where f : X → R, f ∈ C(X).
The very definition of the problem is not well-posed in the mathematical sense.

Indeed, it is possible to choose multi-extremal functions, which are close to one
another as wewant while their global extrema are far apart. In other words, the global
minimizer x∗ does not depend continuously on the data of the problem. This problem,
which generates numerical instability, haunts also very recent approaches which
propose information theoretic-based acquisition functions, which will be considered
in Chap. 4.

On the other hand, the value f ∗ depends continuously on the data of the problem,
so we shall generally restrict the search to f ∗ for which we can show that, for
continuous functions, the GOP is well-posed.

Still it is not possible under the only continuity assumption, to bound the error
in the approximate solution: given the dataset D1:n , it is possible to build a smooth
function g, as shown in Fig. 1.4, interpolating the point in the dataset whose global
minimum g∗ is as far as we wish from f ∗.

The easiest way to bound the error in the approximate solution is to impose a
Lipschitz condition on f :

f ∈ L�,ρ(X) = {g : |g(x) − g(y)| ≤ �ρ(x, y)∀x, y ∈ X}

where

� is a known positive constant and
ρ is a continuous distance on X.

Under the Lipschitz condition, it is possible to design deterministic algorithms
(space-covering techniques) which provide an estimate of f ∗ whose distance from
the optimum can be deterministically controlled.

The design of these algorithms is based on three concepts (Archetti and Betrò
1978):
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• Strategy: for any n, a strategy is a vector-valued function mapping L�,ρ(X) into
Xn = X ×· · ·× X , (n-points strategies will be, in the following of this Section, be
indicated by Sn and the n-tuple they associate to f by Sn( f ) = (x1( f ), . . . , xn( f )).
If the strategy is constant in L�,ρ(X), i.e., it maps L�,ρ(X), into a point of Xn , then
it is termed passive. If the strategy depends on f so that x j ( f ), j = 1,…,n depends
on xl and f (xl), l = 1, . . . , j − 1, then it is termed sequential.

• Accuracy of Sn , Sn( f ) = (x1( f ), . . . , xn( f )), for f ∈ L�,ρ(X), is given by
A(Sn, f ) = mini=1,...,n f (xi ) − f ∗. The guaranteed accuracy of Sn in L�,ρ(X) is
A (Sn) = Sup f ∈L�,ρ (K ) A(Sn, f )

• Optimality: S∗
n is A-optimal if A

(
S∗
n

) = I n fSn A(Sn). Given δ > 0 if there exists
n∗ and Sn∗ such that A(Sn∗) ≤ δ, while no strategy Sn exists such that A(Sn) ≤ δ,
n < n∗, then Sn∗ is n-optimal.

In general, the problem of finding n-optimal strategies can be reduced to a space-
covering problem. Given a uniform grid in X with mesh size h, it can be shown that
a value h̄ exists such that, for h < h̄; n∗(h), the cardinality of the discrete optimal
covering, is equal to n∗. This result implies that A- and n- optimal strategies require,
for a given guaranteed accuracy δ in the approximation to f ∗, a number of function
evaluations which increases exponentially in the number of independent variables of
the problem.

Indeed, the space-covering problem is NP-complete and its optimization version
as integer linear program is NP-hardness. We could sum up this analysis of the
deterministic approach by the term “computational intractability” of GOP.

The equivalence with an integer programming problem spawned a number of
branch and bound-based approaches to the GOP, in particular probabilistic branch
and bound (Zhigljavsky 1990; Norkin et al. 1998; Zabinsky et al. 2011).

Still one could think that sequential strategies can perform better than passive
ones: this is not the case, at least in terms of guaranteed accuracy.

We remark that the above results are “worst case” concerned with the guaranteed
accuracy in L�,ρ(X) : for most functions in L�,ρ(X), a sequential strategy performs
better than passive ones, and for this reason, an important body of research has been
devoted to develop a sequential algorithm with early results due to (Evtushenko
1971; Shubert 1972; Strongin 1978). Recent results brought to the forefront the
design of new computational frameworks enabling algorithms with vastly improved
numerical performances (Sergeyev and Kvasov 2017) which shall be considered in
the next section.

2.2 Lipschitz Global Optimization (LGO)

Aswe have seen to obtain estimates of the global solution, some quantitative assump-
tions on the objective functions and constraints are required. A powerful as well as
natural assumption is that they have bounded rate of variation. This assumption is
justified because, at least in technical systems, the rate of change is typically limited
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(Strongin 1978, 1992). In many cases, the value of the Lipschitz constant L or an
upper bound can be dictated by the physical laws of the underlying process. This
technical condition is mathematically translated into the Lipschitz condition, which
allows, at least in one dimension, a simple geometric interpretation establishing a
lower bound as shown in Fig. 2.2.

ϕi (x) = max{zi−1 − L(x − xi−1), zi + L(x − xi )}

The function ϕi (x) over
[
xi−1, xi

]
is therefore a lower bound of f (x) over this

interval. The value where the minimum is attained is a reasonable suggestion for the
next evaluation point. In a sense, ϕi (x) gives a worst case estimate of the uncertainty
of the objective function.

This is the basic idea upon which various modifications have been proposed,
collectively labelled “geometric algorithms”.

There is a strong relation between these geometric approaches and the informa-
tional statistical approaches (Strongin 1978).

These approaches can be extended to the multidimensional case, bearing in mind
that finding the minimum of ϕi (x) is a multi-extremal problem, and in the worst case,
the number of evaluations is anyway exponential.

The restriction of the class of the objective function to the differentiable functions
with the first derivative satisfying a Lipschitz condition allows to develop efficient
geometric LGO methods: θi (x) is the new lower bound, built on smooth piecewise
quadratic auxiliary functionsψi (x), which speeds the searching process up (Fig. 2.3).

One of the first methods, for solving the one-dimensional LGO is due to Shubert
(1972). A significant advancement in LGO was proposed in Jones et al. 1993 under
the name of Dividing RECTangles (DIRECT) in which several estimates of the
Lipschitz constant are used at each iteration. Also, Strongin’s algorithm provides an
adaptive estimation of the Lipschitz constant during the global search.

DIRECT tries to balance global and local information, exploration–exploitation
in BO jargon, but it is basically driven by local information and therefore towards
exploitation. A new geometrical algorithm MultL, inspired by DIRECT, has been

Fig. 2.2 A geometric representation of the Lipschitz condition (left) and a graphic interpretation
of the Lipschitz condition (right). (Source Sergeyev and Kvasov 2017)
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Fig. 2.3 Smooth piecewise
quadratic auxiliary function
θi (x) (dashed line) for the
objective function f (x)
(thick line) with the
Lipschitz first derivative over[
xi−1, xi

]
. (Source Sergeyev

and Kvasov 2017)

proposed in Sergeyev and Kvasov (2006), which can be integrated with the efficient
diagonal partition strategy, discussed in Sergeyev and Kvasov (2017) to yield what is
widely regarded as the best LGO algorithm to solve hardmultidimensional black-box
optimization problems.

The main question is how to obtain the value of L. Many approaches have been
proposed for which the reader can address (Sergeyev and Kvasov 2017): the most
interesting one is an adaptive estimation of L which can yield either global estimate
of the Lipschitz constant or local estimate valid for some region.

Similar arguments have been used inMalherbe andVayatis (2017), which propose
a method to design sequential strategies for efficient optimization of a black-box
function under the only assumption that it has a finite Lipschitz constant.

Another critical issue is the “curse” of dimensionality: to mitigate it (Strongin
1992) uses Peano’s space-filling curves and solves the problem in one dimension,
albeit with an increase in the Lipschitz constant. Besides the theoretical and compu-
tational relevance of Lipschitz optimization by itself, Lipschitz and Bayesian opti-
mization can be hybridized quite naturally incorporating the Lipschitz inequality
bound in the acquisition function in order to prevent BO from considering x values
which cannot be globally optimal and prevent exploration on unnecessary regions
of the search space. The use of the Lipschitz condition has been first proposed in
Jalali et al. (2013) and more recently in Ahmed et al. (2018). The following fig-
ures show, respectively, (top-left) the GP model after 5 iterations, with its mean and
variance; (top-right) the excluded regions according to the (known) L and (bottom)
the combination of the two regions, showing how LBO helps cut off regions where
the posterior variance is high but can be excluded according to Lipschitz constant
(Fig. 2.4).

The Lipschitz condition has been also used with BO in the context of “safe
optimization”; when the objective function has a safety threshold which cannot be
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Fig. 2.4 AGP conditioned on four observations, withmean and variance (top-left), excluded search
areas due to the Lipschitz condition (top-right) and intersection between GP variances and excluded
zone (bottom)

crossed, and the acquisition functionmust suggest points in the safe region (Sergeyev
et al. 2019). This subject will be taken over in Chap. 5.

2.3 Random Search

Random Search (RS) methods have been first considered in Brooks (Brooks 1958)
and developed into a coherent general framework by (Rastrigin 1963). A masterful
analysis of the statistical issues associatedwithRS is contained inZhigljavsky (1985).
Its use has been recently advocated for hyperparameter optimization (Bergstra and
Bengio 2012) and reinforcement learning (Mania et al. 2018). Some topics are con-
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sidered also in more recent publications (Zhigljavsky and Zilinskas 2007; Zabinsky
2011; Zilinskas and Zhigljavsky 2016; Dodge et al. 2017).

According to the general RS framework, a sequence of random points x1, x2, …
is generated according to a pdf which might in general depend on previous points
x j and the values f

(
x j

)
.

Within this generic framework, different computational strategies can be embed-
ded. In the basic Random Search points, x1, x2, … are sampled from a uniform
distribution in the search space X and the sequence is stopped after a prefixed num-
ber of function evaluations or some statistical test is satisfied. (Archetti 1975.

Another specialization is when Pj is uniform distribution in the level set

A j =
(
xs.t. f (x) ≤ f

(
x+
j

))
, where f

(
x+
j

)
the “best seen” among the sample

x1, x2, . . . , x j .
The resulting algorithm, called pure adaptive search (Zhiglavsky 1985; Zabinsky

and Smith 1992), has theoretically very good convergence, but its actual compu-
tational efficiency is very poor because generating random points uniformly in A j

is itself computationally very expensive. Other contributions to RS for global opti-
mization areZhigljavsky andChekmasov (1996),Wang (2004),Missov andErmakov
(2009) and Zabinsky (2015).

Methods based on random sampling can be coupled effectivelywith local searches
according to the following pattern:

(i) Draw q points
{
x j ∈ X

}
, j = 1, . . . , q from a uniform distribution in X and

compute f
(
x j

)
.

(ii) Select the “most promising points” and start from them a local optimization
routine obtaining a least value fc.

(iii) Test whether fc is the global minimum of f in X.

The above cycle is repeated until the test is satisfied. In the simplest such algorithm,
the point yielding the least sampled value is used in (ii) as the starting point, and
the test in phase (iii) is satisfied if no improvement over fc observed in one or more
further executions of phase (i).

This simple test relies upon the fact that, as the sample size increases, the proba-
bility of not improving over fc decreases unless fc is the global minimum.

In this method, no more than one local optimization is performed in the region of
attraction of a minimum: this good feature, unfortunately, is obtained at the cost of
wasting most of the information contained in the sample.

Effective algorithms require amore balanced compromise between the conflicting
goals of making good use of the available information and of reducing the risk
of converging to a local minimum already found (exploration vs exploitation): an
effective way to accomplish this is through cluster analysis.

The third step is clearly the critical part of these algorithms: it is very difficult to
evaluate the probability of the result being exact or, more generally, the probability
that some meaningful index of the error does not exceed a prefixed level. Some
proposals have been suggested to frame the third step into correct statistical terms
and will be discussed in detail later in Sect. 2.3.3.
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2.3.1 General Properties of Uniform Sampling

The uniform sampling of f in X is meant to provide a sample, an “exploration
basis” for the inferential processes to be carried out on in the following stages of
the algorithm, rather than to provide directly an approximation to f *. Still, a “per
se” analysis of uniform sampling can be performed, albeit only to some extent and
in mainly negative terms. Let X0 ⊆ X be such that m(X0)/m(X) = α, where m(.)
denotes the volume: the probability P(X0; q) that at least one point in the sample{
x j

}
, j = 1 . . . ..q will belong to X0 is given by

P(X0; q) = 1 − (1 − α)q

Now, let X0 be a neighbourhood of x∗: one could derive, given a value α) and a
probability level P̄ , a sample size q̄ = log

(
1 − P̄

)
/ log(1 − α) and assume f ∗

q̄ =
min
j=1,q̄

f
(
x j

)
as an approximation to f*.

Nothing can be said, for finite values of q and without specific assumptions about
f, about the probability that the error f ∗

q̄ − f ∗ exceeds a prefixed value, nor can we
assure that the value f ∗

q̄ has been achieved in X0.

2.3.2 Cluster Analysis

Multi-start methods, based on a clever combination of RS and cluster analysis, can
be regarded as effective tools for the numerical solution of GOPwhen derivatives are
available and function evaluations are not too expensive. It is important to remark
that the derivative requirement reduces the usefulness of randommulti-start in hyper-
parameter optimization and in general black-box or simulation-based optimization.

The relevance of cluster analysis to the numerical solution of global optimization
problems, first stressed in Torn (1978), has been subsequently substantiated by a
number of implementations. A successful exploitation of clustering methods is given
in Boender et al. (1982), Locatelli and Schoen (1999), Schoen (1998), where random
and quasi-random linkage methods are considered. Very recent contributions to this
topic are Zilinskas et al. (2019) and Bagattini et al. (2019).

2.3.3 Stopping Rules

A basic fact about global optimization algorithms is that the global part of a suc-
cessful algorithm, actually the probabilistic part of it, is connected not with the
numerical approximation of the global optimum, which is effectively performed by
local searches, but rather with the control of these local searches and the decision
whether a local minimum can be accepted as the global one.
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A theoretical analysis of randommulti-start has been initiated by Zielinski (1981),
who constructed a multi-nomial distribution such that a set of local extrema obtained
by performing a number of local searches from uniformly distributed starting points
can be interpreted as a sample drawn from this multi-nomial distribution. Therefore,
a posteriori probability can be computed that another local search will lead to the
identification of a new local minimum and that can be used to determine optimal
Bayesian stopping rules. Its results were carried over by Betrò (1984), Betrò and
Rotondi (1984), Schoen (1998). A dynamic early stopping rule for Random Search
has been recently proposed in Florea and Andoine (2018).

Another approach employs tools from order statistics to obtain the distribution of
fc = min

j=1,q
f j , where

{
x j

} = 1 . . . q be uniformly distributed points in X (Clough

1969; Zhigljavsky and Zilinskas 2007). Unfortunately, an exceedingly large sample
is required for this approach to be of significant practical value.

An interesting hybridization of Random Search and BO has been proposed
recently in hyperband (Li et al. 2016) for the problem of hyperparameter optimiza-
tion. The approach focuses on speeding upRandomSearch through adaptive resource
allocation and early stopping. Hyperparameter optimization is defined as a pure-
exploration infinite-armed bandit problem where a resource, like data samples, is
allocated to randomly sampled configurations.

The basic idea is very simple. GivenN hyperparameter configurations to evaluate,
we devote initially 1 unit of budget to each configuration, then 2 units to the best
half and continue halving configurations and doubling individual allocations until
we have budget left.

Reportedly (Li et al. 2016), Hyperband outperforms BO: still it shares with RS
the problem of inefficient use of previous information. To overcome this drawback,
Falkner et al. (2017) propose the idea to integrate hyperband with a Tree Parzen
Estimator (TPE) model, described in Chap. 3.

The randomsampling of configurations is replaced by amodel-based search:when
the number of iterations for each configuration is reached, the halving procedure is
carried out.

In Wang et al.( 2018), the idea of combining hyperband and BO has been further
carried out for hyperparameter optimization in deep learning networks.

Another important connection is between Random Search and heuristics like
simulated annealing (SA) and genetic algorithm (GA): it is shown, in Zhigljavsky
and Zilinskas (2007), that any global RS can be formulated as aMarkovian algorithm
based on sampling from a Markov chain. One such algorithm is the SA which uses a
previously sampled point. One would expect that using even more information might
bring to the search more efficient. This can indeed be accomplished by developing
population-basedMarkovian algorithms, including popular GAs, that transition from
one group of points (current generation) to another group (next generation) by some
probability rules (Zhigljavsky and Zilinskas 2007, Sect. 2.3.4 e 3.5).

If generations have the same size N, the search algorithms are still Markovian in
the product space XN , i.e. the underlying Markov chain is of the N th order.



28 2 From Global Optimization to Optimal Learning

Evolutionary algorithms are increasingly used in stochastic and global optimiza-
tion. We are not getting in a specific analysis which would be outside the scope of
this book; still few things have to be remarked. Evolutionary or genetic algorithms
do not handle explicitly the exploration–exploitation dilemma. Given the population
nature, they are biased towards exploration which contributes to the global property
but also to a slow convergence (Sergeyev et al. 2018).

A strain of GAs has incorporated the aspects of Bayesian methods under the
name of Bayesian Optimization Algorithm (BOA) (Pelikan et al. 1999) and esti-
mation distribution algorithm (EDA) (Hauschild and Pelikan 2011), which uses
Bayesian networks to estimate the joint probability of promising solutions (strings),
and covariance weighted adaptation (CWA) which is a kind of “kernelization” of a
genetic algorithm (Hansen 2016). Another meta-heuristic, particle swarm optimiza-
tion (PSO), has been largely investigated for solving GOP (Parsopoulos and Vrahatis
2002). Close to the spirit of BO, the use of GP to assist an evolutionary method was
proposed in Ulmer et al. (2003).

2.4 Bandits, Active Learning and Bayesian Optimization

A very recent and stimulating contribution to the general issue of learning sequen-
tial strategies is given in a DeepMind’s technical report (Ortega et al. 2019). In this
section, we focus on the more specific issue of Active Learning (AL), a strategy
to select the most informative query point for predicting a varying environment,
as, for instance, the objective function f (x) modelled by a GP. GPs are the set-
ting where most of the AL researches have been focused. A relevant presentation
is provided in “Bandits, Global Optimization, Active Learning, and Bayesian Rein-
forcement Learning—understanding the common ground”, Autonomous Learning
Summer School, Leipzig, Sep 2014, by Marc Toussaint. More recently, Ling et al.
(2016) move one step further towards unifying BO, AL and multi-armed bandits
(MAB). MAB is the archetypal problem in online optimal learning. One-arm bandit
refers to a slot machine operated by a lever (arm); multi-armed refers to a collection
of slot machines Mi , i = 1,…, n each with different random reward r ∼ P(ri , θi )
for each machine.

We have money to play N times, and we should like to know the expected value
for each machine r̄i ; but the only way to get the actual reward is to put money in Mi ,
pull the lever and observe the outcome (i.e. the realization of ri ).

MAB is often used to model the A/B testing problem and recommender systems,
in which we are running an online advertisement system and we can choose, dynami-
cally, among different advertisements (e.g. banners) on the basis of their profitability.
The critical point in MAB problem is, as in BO, balancing exploration (pulling an
arm that might turn out to be a big winner) and exploitation (putting money on that
arm which resulted in the best winning obtained so far). Indeed, the choice of a
machine has two effects:
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• increase one’s knowledge
• increase one’s reward.

Learning policies in MAB face the exploration versus exploitation dilemma, i.e.
the search for a balance between exploring the environment to find profitable actions
while taking the empirically best action as often as possible (Auer et al. 2002).

The problem is to find a policy that maximizes the expected long-term return:∑
t γt rt where γt is the discount factor, defining the relative weights between imme-

diate and long-term rewards.
The player has a number of actions at ∈ (1, . . . , n) representing the choice of a

machine to play at time t; let rt ∈ R be the outcome with mean ȳ
A policy or strategy maps all the history to the next machine to play:

π : [
(a1, r1), . . . , (at−1, rt−1)

] → at

This can be interpreted as our usual dataset D1:n = {(xi , yi )}i=1,...,n where at = xi
and rt = yi .

Continuous global optimization can be seen as an infinite-arm bandit, in which
the actions are the variable x, the expected reward is modelled by the probabilistic
surrogate model, and the observed reward is the value of the objective function f(x).

This way BO can be seen naturally also as an instance of active learning: in
standard ML, the dataset is given; in AL, the sequential model-based optimizing
agent sequentially decides on each x, i.e. where to collect data.

We are concerned with GP-based optimization in the MAB setting, where the
reward is sampled from a GP distribution. To demonstrate convergence properties,
it is more convenient to work with the concept of “regret” instead of “reward”.

For the candidate action xt at round t , we incur instantaneous regret rt =
f (xt ) − f (x∗). The cumulative regret RT after T rounds is the sum of instanta-
neous regrets: RT = ∑T

t=1 rt . A desirable asymptotic property of an algorithm is
to be no-regret: lim

T→∞
RT
T = 0. Note that neither rt nor RT are ever revealed to the

algorithm. Bounds on the average regret RT
T translate to convergence rates for GP-

based BO: the value max
xt≤T

f (xt ) in the first T rounds is no further from f (x∗) than

the average of the f (xt ) samples.
An optimal policy π is the no-regret policy for the MAB and is offered by GP-

upper confidence bounding (GP-UCB), which computed by solving the auxiliary
problem:

xt+1 = argmax
x∈X

μt (x) + ξtσt (x)

where μt (x) and σt (x) are the mean and standard deviation of the GP at step t.
A proof of convergence of UCB, along with condition on ξt , is given in Srinivas

et al. (2009). It is easy to implement and became, along with EI, the most used
acquisition function in BO and will be discussed in Chap. 4.

The bandit problem is an archetype for
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• sequential decision-making
• decisions that influence knowledge as well as rewards/states
• exploration–exploitation
• online learning.

which are the same features characterizing global optimization, active learning and
reinforcement learning.

Another unifying perspective is Reinforcement Learning (RL). RL needs a differ-
ent set-up, namely a Markov Decision Process (MDP), specified by states, actions,
transitions and rewards. The definition of a value function is also needed, providing
a value of a state st = s at time step t, given the policy π . This value is denoted by
V π (s) and is computed as the expected return of costs (or rewards) when starting in
state s and by following, sequentially, the actions suggested by π :

V π (s) = Eπ

[ ∞∑

k=0

γ k · rt+k |st = s

]

where Eπ is the expected value given by following policy π , and γ ∈ [0, 1] is a
discount factor that is used to balance current and future rewards. When γ is small
the approach is said to be “myopic”, which means that it is only concerned about
short-term rewards, while when γ is large long-term rewards become also important.
Optimizing V π (s) is equivalent to solving the dynamic programming equation and
runs into the “curse of dimensionality”. Moreover, it requires the knowledge of the
complete structure of the MDP.

Most of the relevant real-life problems are to be solved in conditions of partial
knowledge, and agents interacting with the environment often need to compute poli-
cies with few or no data, where performing an action and observing its outcome is the
only way to obtain a better estimate of its value and to increase the knowledge about
the system. Approximate dynamic programming (ADP) is largely overlapping with
RL. Both are learning enabled policy optimization methods and can use Bayesian
learning.

BO and RL can be knitted together in different ways. One possibility is related to
how RL can improve BO: in Chap. 4 will be presented a mechanism to dynamically
choose, from a portfolio of alternatives, the most promising acquisition function.
Other possibilities are related to how BO can improve RL:

• BO for hyperparameter optimization of RL algorithm (Barsce et al. 2017), such
as the number of epochs, the number of episodes, the value of ε in the case of
ε-greedy policy, the learning rate and the discount factor.

• AGP approximates the reward function and a mechanism based on it, analogously
to the non-myopic acquisition function in BO, is used to select the next action in
a RL algorithm (Engel et al. 2003).

• BO for optimizing a “parametrized” policy: more precisely, the optimal value of
the policy’s parameters is identified through BO considering the reward cumulated
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along the “trajectories” along with episodes as a black-box function (Wilson et al.
2014).

In this paper, the probability of observing a trajectory τ = (s0, a0, . . . , aT−1, sT ),
i.e. a sequence of states and actions, given the agent follows a policy with parameters
θ is:

P(τ |θ) = P0(s0)
T∏

t=1

P(st |st−1, at−1)Pπ (at−1|st−1, θ)

where every trajectory τ begins in an initial state s0 and terminates after at most T
steps. A widely used policy is soft-max that in this case is parametrized as follows:

P(a|s) = e(θa ·φ(s))

∑

y∈A
e(θy ·φ(s))

with φ(s) a feature function mapping a state s into a vector.
The value of a trajectory is computed as the sum of the reward received by inter-

acting with the system:

R̄(τ ) =
T∑

t=0

R(st , at , st+1)

The objective function is the expected return and computed as:

η(θ) = ∫ R̄(τ )P(τ |θ)dτ

The goal of “policy search” is to identify the policy’s parameters θ that maximizes
expectation:

θ∗ = argmax
θ

η(θ)

The values of η(θ) are computed through Monte Carlo simulation.
The main features of this approach are a new kernel, which measures similarity

between trajectories and a new GP mean function which uses rewards and learned
transitions.

The exploration–exploitation dilemma, and the temporal trade-off over uncertain
rewards, is also a central topic in cognitive science. We are not getting in a specific
analysis, which would be outside the scope of this book, but we can quote at least
some recent results: Schulz (2012) which proposes a Bayesian mechanism that can
generalize beyond observed outcomes driving towards the formation of inductive
beliefs about novel options (Gershman 2018a), where GP-based BO with UCB is
suggested as a combined model of generalization and exploitation and (Gershman
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2018b) which considers random exploration, by inserting randomness in the choice
behaviour versus directed exploration driving choices towards uncertain options. This
behavioural problem can also be modelled as a spatially correlated multi-armed ban-
dit task in which rewards are distributed on a grid characterized by spatial correlation
(high rewards tend to cluster together) (Gopnik et al. 2017, Schulz et al. 2018a, b),Wu
et al. (2018) analyse how humans search for rewards under limited search horizons,
where the spatial correlation of rewards provides traction for generalization.

The issue of GP and cognition is also studied in a recent survey by Schulz et al.
(2018a).

The problem usually considered is function learning: Schulz et al. (2015) and
Schulz et al. (2016) use different kernels for different degrees of smoothness. Wilson
et al. (2015) propose a kernel learning framework “the human kernel” to account
for the inductive biases of human learners. Another GP-based approach is proposed
in Griffiths et al. (2009), where the equivalence between Bayesian linear regression
and GP provides a unifying framework for function learning.

A more direct approach has been taken in Borji and Itti (2013) who analyse how
the “problem-solving” behaviour of humans in the optimization of a black-box func-
tion compares to algorithms. The experimental results show that humans outperform
most optimization algorithms and that GP-based BO is the best predictor of human
behaviour. A recent paper addresses the study of cognitive model priors for predict-
ing human decisions (Peterson et al. 2019). This paper moves from the framework of
prospect theory and a remark that noisy human behaviour requires far larger datasets
than in the usual studies; the proposed approach is then carried out testing the predic-
tion accuracy of several machine learning algorithms for different cognitive models
and a very large dataset containing more than 200 k human judgements over 13 k
decision problems.
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Chapter 3
The Surrogate Model

This Chapter presents the first key component of BO, that is, the probabilistic surro-
gate model. Section 3.1 is focused on Gaussian processes (GPs); Sect. 3.2 introduces
the sequential optimization method known as Thompson sampling, also based on
GP; finally, Sect. 3.3 presents other probabilistic models which might represent, in
some cases, a suitable alternative to GP.

3.1 Gaussian Processes

Gaussian processes are a powerful formalism for implementing both regression and
classification algorithms: we focus on regression. While most of the regression algo-
rithmsprovide a deterministic output,GPs also offer a reliable estimate of uncertainty.
This chapter presents the basic mathematics underlying this powerful tool.

3.1.1 Gaussian Processes Regression

One way to interpret a Gaussian process (GP) regression model is to think of it as
defining a distribution over functions and with inference taking place directly in the
space of functions (i.e. function-space view) (Williams and Rasmussen 2006). A GP
is a collection of random variables, any finite number of which have a joint Gaussian
distribution. A GP is completely specified by its mean function μ(x) and covariance
function Cov

(
f (x), f

(
x ′)) = k

(
x, x ′):

μ(x) = E[ f (x)]
Cov

(
f (x), f

(
x ′)) = k

(
x, x ′) = E

[
( f (x) − μ(x))

(
f
(
x ′) − μ

(
x ′))]

and it is defined as:
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f (x) ∼ GP
(
μ(x), k

(
x, x ′))

Usually, for notational simplicity we will take the prior of the mean function to
be zero, although this is not necessary.

A simple example of a Gaussian process can be obtained from a Bayesian linear
regression model f (x) = φ(x)Tw with prior w = N (

0,Σp
)
, where φ(x) and w are

p-dimensional vectors.More precisely,φ(x) is a functionmapping the d-dimensional
vector x into a p-dimensional vector.

Thus, the equations for mean and covariance become:

E[ f (x)] = φ(x)TE[w] = 0
E

[
f (x) f

(
x ′)] = φ(x)TE

[
wwT

]
φ
(
x ′) = φ(x)T�pφ

(
x ′)

This means that f (x) and f
(
x ′) are jointly Gaussian with zero mean and covari-

ance given by φ(x)T�pφ
(
x ′).

As consequence, the function values f (x1), . . . , f (xn) obtained at n different
points x1, . . . , xn are jointly Gaussian.

The covariance function assumes a critical role int theGPmodelling, as it specifies
the distribution over functions. To see this, we can draw samples from the distribution
of functions evaluated at any number of points; in detail, we choose a set of input
points X1:n = (x1, . . . , xn)

T and then compute the corresponding covariance matrix
element wise. This operation is usually performed by using pre-defined covariance
functions allowing to write covariance between outputs as a function of inputs (i.e.
Cov

(
f (x), f

(
x ′)) = k

(
x, x ′)). Finally, we can generate a random Gaussian vector

as:

f (X1:n) ∼ N (0,K(X1:n, X1:n))

and plot the generated values as a function of the inputs. This is basically known as
sampling from prior, whose core is sampling from a multivariate Gaussian distribu-
tion (Tong 1990).

Following an example of five different GP samples drawn from the GP prior: the
covariance function used is known as the squared exponential (SE) kernel, introduced
in Chap. 1 and that will be detailed in the following Sect. 3.1.2 (Fig. 3.1).

We are usually not primarily interested in drawing random functions from the
prior but want to incorporate the knowledge about the function obtained through the
evaluations performed so far. Such a knowledge will be then used by the acquisition
function (presented in Chap. 4) in order to associate an informational utility to each
point x ∈ X. We have usually access only to noisy function values, denoted by
y = f (x) + ε. Assuming additive independent identically distributed Gaussian
noise ε with variance λ2, the prior on the noisy observations becomes:

Cov
(
f (x), f

(
x ′)) = k

(
x, x ′) + λ2δxx ′
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Fig. 3.1 Five different
samples from the prior of a
GP with squared exponential
kernel as covariance function

where δxx ′ is a Kronecker delta which is equal to 1 if and only if x = x ′. Thus, the
covariance over all the function values y = (y1, . . . , yn) is:

Cov(y) = K(X1:n, X1:n) + λ2 I

Therefore, the predictive equations for GP regression, that are μ(x) and σ 2(x),
can be easily updated, by conditioning the joint Gaussian prior distribution on the
observations:

μ(x) = E[ f (x)|D1:n, x] = k(x, X1:n)
[
K(X1:n, X1:n) + λ2 I

]−1
y

σ 2(x) = k(x, x) − k(x, X1:n)
[
K(X1:n, X1:n) + λ2 I

]−1
k(X1:n, x)

These equations are the same reported in Sect. 1.2.1.
Following, a simple example of five different samples drawn at random from aGP

prior and posterior, respectively. Posterior is conditioned to six function observations
(Fig. 3.2).

Sampling from posterior can be, ideally, considered as generating functions from
the prior and rejecting the ones that disagree with the observations. Naturally, this
strategy would not be computationally very efficient. A more formal definition of
sampling from posterior will be presented in Sect. 3.2.

Fig. 3.2 Sampling fromprior versus sampling fromposterior (for the sake of simplicity,we consider
the noise-free setting)
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It is easy to notice that the mean prediction is a linear combination of n functions,
each one centred on an evaluated point. This allows to write μ(x) as:

μ(x) =
n∑

i=1

αi k(x, xi )

where the vector α = [
K(X1:n, X1:n) + λ2 I

]−1
y and αi is the i-th compo-

nent of the vector α, given by the product between the i-th row of the matrix[
K(X1:n, X1:n) + λ2 I

]−1
and the vector y.

This means that, to make a prediction at a given x, we only need to consider the
(n + 1)-dimensional distribution defined by the n function evaluations performed so
far and the new point x to evaluate.

Several covariance functions have been proposed and some of the most widely
adopted will be presented in the following subsection 3.1.2. Every covariance func-
tion has some hyperparameters to be set up, defining shape features of the GP, such as
smoothness and amplitude. The values of the hyperparameters are usually unknown
a priori and are set up depending on the observations D1:n . Summarizing with γ

the vector of the covariance’s hyperparameters, their values are usually set up via
marginal likelihood maximization, which is given, in the case of GP for regression,
in closed form:

p(y | X1:n, γ ) =
∫

p(y | f, X1:n)p( f |X1:n)d f

The GP’s hyperparameters γ appear non-linearly in the kernel matrix K and a
closed-form solutionmaximizing themarginal likelihood cannot be found in general.
In practice, gradient-based optimization algorithms are adopted to find a (local)
optimum of the marginal likelihood (e.g. conjugate gradients or BFGS).

An interesting generalization has been recently proposed in Berkenkamp et al.
(2019) where the values of hyperparameters are modified by iteratively reducing the
characteristic length-scale instead of setting them up through marginal likelihood
maximization.

3.1.2 Kernel: The Data Geometry of Bayesian Optimization

Acovariance function is the crucial ingredient in aGPpredictor, as it encodes assump-
tions about the function to approximate. From a slightly different viewpoint, it is clear
that both in supervised and unsupervised learning the notion of similarity between
data points is crucial; it is a basic assumption that points which are close in x are
likely to have similar target values y, and thus function evaluations that are near to
a given point should be informative about the prediction at that point. Under the GP
view, it is the covariance function that defines nearness or similarity.
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A stationary covariance function is a function of x − x ′. Thus, it is invariant to
translations in the input space. If further the covariance is a function only of

∣∣x − x ′∣∣
then it is called isotropic and it is invariant to all rigid motions. Finally, a dot product
covariance function depends only on x · x ′. Dot product covariance functions are
invariant to a rotation of the coordinates about the origin but not translations.

A general name for a function k of two arguments mapping a pair of inputs x
and x ′ into a scalar is kernel. For a kernel to be a covariance function the following
conditions must be satisfied:

• kernel symmetry if k
(
x, x ′) = k

(
x ′, x

)

• the matrix K with entries Ki j = k
(
xi , x j

)
, also known as Gram matrix must be

positive semidefinite (PSD).

Examples of covariance (aka kernel) functions:

Squared Exponential (SE) kernel:

kSE
(
x, x ′) = e− ‖x−x ′‖2

2�2

with � known as characteristic length-scale. The role of this hyperparameter is
to rescale any point x by 1/� before computing the kernel value.

A large length-scale implies long-range correlations, whereas a short length-scale
makes function values strongly correlated only if their respective inputs are very
close to each other.

This kernel is infinitely differentiable, meaning that the GP is very “smooth”.
Note, that the covariance between the outputs is written as a function of the inputs.
For this particular covariance function, we see that the covariance is almost unity
between variables whose corresponding inputs are very close and decreases as their
distance in the input space increases.

Matérn kernels:

kMat
(
x, x ′) = 21−ν

(ν)

(∣∣x − x ′∣∣√2ν

�

)ν

Kν

(∣∣x − x ′∣∣√2ν

�

)

with two hyperparameters ν and �, and where Kν is a modified Bessel function.
Note that for ν → ∞ we obtain the SE kernel.

The Matérn covariance functions become, particularly simple when ν is half-
integer: ν = p + 1/2, where p is a non-negative integer. In this case, the covariance
function is a product of an exponential and a polynomial of order p. The most widely
adopted versions, specifically in the machine learning community, are ν = 3/2 and
ν = 5/2.

kν=3/2
(
x, x ′) =

(
1 + |x−x ′|√3

�

)
e− |x−x ′|√3

�

kν=5/2
(
x, x ′) =

(
1 + |x−x ′|√5

�
+ (x−x ′)

2

3�2

)
e− |x−x ′|√5

�



42 3 The Surrogate Model

Rational Quadratic Covariance Function:

kRQ
(
x, x ′) =

(

1 +
(
x − x ′)2

2α�2

)−α

where α and � are two hyperparameters. This kernel can be considered as an infinite
sum (scale mixture) of SE kernels, with different characteristic length-scales. Indeed,
one of the most important properties of kernel functions is that a sum of kernels is a
kernel.

The following figure summarizes how the value of the four kernels decreases
with x moving away from x ′ = 0 (on the left side) and which are possible resulting
samples with different shape properties (on the right side) (Fig. 3.3).

The aforementioned kernels are just the most widely adopted in GP regression.
More details and a most comprehensive set of covariance functions are reported
in Williams and Rasmussen (2006), including non-stationary kernels and dot prod-
uct kernels. Kernel for BO is a very actively researched area, relevant papers are
Duvenaud et al. (2013; Shilton et al. (2018). Schultz et al. (2016) note that a kernel
mismatch about the smoothness of the objective function leads to a substantial drop
in accuracy and sample efficiency, which increases with the dimensions and cannot
be mitigated by GP’s hyperparameter tuning and the choice of acquisition functions.

A space-temporal kernel has been proposed in Nyikosa et al. (2018) to allow
the GP to capture all the instances of the function over time and track a temporally
evolving minimum. Some kernel issues have been considered in recent publications,
such as: kernel composition, safe optimization in relation to cognition (Schultz et al.
2018) aswell as kernel learning, adaptation and sparsity in order to dealwith functions

Fig. 3.3 Value of four different kernels with x moving away from x ′ = 0 (left) and four samples
from GP prior, one for each kernel considered (right). The value of the characteristic length-scale
is � 1 for all the four kernels; α of the RQ kernel is set to 2.25
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that are smooth in a subset of their domain and vary rapidly in another is analysed
in Peifer et al. (2019).

3.1.3 Embedding Derivative Observations in the Gaussian
Process

A relatively new part of GP regression, specifically useful for BO, is the integra-
tion of derivative information of f (x) in the modelling and optimization process.
Differentiation is a linear operator so that the derivative of a GP is also a GP:, if
the covariance function is sufficiently smooth, one can derive the joint distribution
over a function and its derivatives and then perform their Bayesian updating given
observations of function, derivatives and Hessians (Wu et al. 2017).

We consider a d-dimensional function sampled from a GP, f (·) ∼ GP(0, K ). Let

us denote the first order partial derivative operator as ∇(·) =
[

∂
∂x1

∂
∂x2

. . . ∂
∂xd

]T
.

Then the joint process [ f (x),∇ f (x)] has aGP distribution (see for instance Solak
et al. (2003)) with a covariance function given by four blocks:

k[ f, f ]
(
x, x ′) = cov

(
f (x), f

(
x ′)) = k

(
x, x ′)

k[ f,∇ f ]
(
x, x ′) = cov

(
f (x),∇ f

(
x ′)) = ∇x ′k

(
x, x ′)

k[∇ f, f ]
(
x, x ′) = cov

(∇ f (x), f
(
x ′)) = ∇xk

(
x, x ′)

k[∇ f,∇ f ]
(
x, x ′) = cov

(∇ f (x),∇ f
(
x ′)) = ∇x∇x ′k

(
x, x ′)

We can write this joint process more compactly as

[
f (x)

∇ f (x)

]
∼ GP

(
0,

[
k k[ f,∇ f ]

k[∇ f, f ] k[∇ f,∇ f ]

])

We can now apply the formulas to updateμ(x) and σ (x) and to derive the posterior
over function values f (xn+1) given a set of observations of function values and
gradients. LetK[f,∇f] denote the joint kernelmatrix for a set of observations of function
values and gradients. The joint distribution for

[
f (X1:n),∇ f (X1:n), f (xn+1)

]
is

⎡

⎣
f (X1:n)

∇ f (X1:n)
f (xn+1)

⎤

⎦ ∼ N
(
0,

[
K[f,∇f] k̄n+1

k̄n+1
ᵀ k(xn+1, xn+1)

])

where k̄n+1 =
[
k(xn+1, X1:n)ᵀ, k[ fn+1,∇ f ]

]ᵀ
, and the posterior over f (xn+1) is:

f (xn+1)|x1:n, [ f,∇ f ]1:n, xn+1 ∼ N (
μ̄(xn+1), σ̄

2(xn+1)
)
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where

μ̄(xn+1) = k̄
ᵀ
n+1K

−1
[ f,∇ f ][ f,∇ f ]ᵀ1:n

σ̄ 2(xn+1) = k(xn+1, xn+1) − k̄
ᵀ
n+1K

−1
[ f,∇ f ]k̄n+1

We use a similar derivation to incorporateHessian (second derivative) information
into a GP along with the function and gradient information.

Then the joint Gaussian of
[
f,∇ f,∇2 f (x)

]
is defined as,

⎡

⎣
f (x)

∇ f (x)
∇2 f (x)

⎤

⎦ ∼ GP
(
0,K[ f,∇ f,∇2 f ]

)

where

K[ f,∇ f,∇2 f ] =
⎡

⎢
⎣

k k[ f,∇ f ] k[ f,∇2 f ]
k[∇ f, f ] k[∇ f,∇ f ] k[∇ f,∇2 f ]
k[∇2 f, f ] k[∇2 f,∇ f ] k[∇2 f,∇2 f ]

⎤

⎥
⎦

The resulting joint kernel matrix is partitioned into nine blocks corresponding to
the covariances and cross-covariances over function values, gradients and Hessians.

We can now derive the posterior over function values f (xn+1) given a set
of observations of function, its gradients and Hessians. The joint distribution of[
f (X1:n),∇ f (X1:n),∇2 f (X1:n), f (xn+1)

]
is given by:

⎡

⎢⎢
⎣

f (X1:n)
∇ f (X1:n)
∇2 f (X1:n)
f (xn+1)

⎤

⎥⎥
⎦ ∼ N

(

0,

[
K[ f ,∇ f ,∇2 f ] k̄n+1

k̄n+1
ᵀ k(xn+1, xn+1)

])

where k̄n+1 =
[
k(xn+1, X1:n)ᵀ, k[ fn+1,∇ f ], k[ fn+1,∇2 f ]

]ᵀ
and the posterior over

f (xn+1) is:

f (xn+1)|x1:n,
[
f,∇ f,∇2 f

]
1:n, xn+1 ∼ N (

μ̄(xn+1), σ̄
2(xn+1)

)

where

μ̄(xn+1) = k̄
ᵀ
n+1K

−1
[ f,∇ f,∇2 f ]

[
f,∇ f,∇2 f

]ᵀ
1:n

σ̄ 2(xn+1) = k(xn+1, xn+1) − k̄
ᵀ
n+1K

−1
[ f,∇ f,∇2 f ]k̄n+1

The idea of using derivative information for optimization problems has been taken
up inHennig andKiefel (2013;Hennig (2013) and inWills andThomas (2017)which
has developed it along two different directions. The first, originally suggested in the
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papers by Henning, brings to the reinterpretation in probabilistic terms of standard
quasi-Newton like methods considered as particular instances of Gaussian process
or Bayesian regression. The second, more relevant for the subject of this book, is to
use the joint GP as a global model of the objective function and its derivatives.

A first remark is that adding a derivative observation reduces the uncertainty-
standard deviation of GP prediction. The following figure, drawn from Solak et al.
(2003) shows, from left to right, four samples from prior, four samples from posterior
of standard GP and four samples from posterior of a GPwith derivative observations.
Given the same set of observations, the variance of the resulting GP is lower when
derivative observations are included (Fig. 3.4).

The same pay-off effect of gradient estimation is shown in the following picture,
drawn from Eriksson et al. (2018). On the left, the level sets of the objective function
(Branin 2D) is depicted, in the middle and on the right, the mean of the GP without
and with derivative observations, is reported, respectively (Fig. 3.5).

The same authors propose a BO algorithm with derivatives, inspired by REMBO
(Wang et al. 2016). The algorithm estimates the active subspace spanned by the
dominant eigenvalues of the gradient covariance matrix and fits a GP on the set
of observations in this subspace. The optimization of the acquisition function,

Fig. 3.4 Four samples from prior, four samples from posterior of a standard GP and four samples
from posterior of a GP with derivative observations. (Source Solak et al. 2003)

Fig. 3.5 Original function (left) mean of a GP without derivative observations (middle) and mean
of a GP with derivative observations. (Source Eriksson et al. 2018)
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built on the updated model, brings the new point xn+1. The dataset is updated
with

[
xn+1, f (xn+1),∇ f (xn+1)

]
and, consequently, the GP’s hyperparameters are

updated considering also the information on gradients.

3.1.4 Numerical Instability

Numerical instability issues arise due to the inversion of the matrix[
K(X1:n, X1:n) + λ2 I

]
, required to update μ(x) and σ 2(x). The condition number

of this matrix, that is the ratio between the highest and lowest eigenvalue, gives a
bound on the accuracy of the matrix inversion. Large condition numbers are indica-
tors for numerical instability. Extreme eigenvalues appear when function values are
strongly correlated. Strong positive correlation between function values will result in
near-identical corresponding rows and columns in the kernel matrix K(X1:n, X1:n),
making it close to singular. Higher values of λ, on one side mitigate this instability,
on the other side lead to a degradation of the model’s accuracy.

Some heuristics have been proposed to control the condition number of the matrix[
K(X1:n, X1:n) + λ2 I

]
. The most common consists of adding an explicit penalty on

the signal-to-noise ratio,whenfitting theGPor adding a jitter term.Both are presented
in https://drafts.distill.pub/gp/.

The first method derives from the observation that the condition number grows
linearly with the number n of data points and quadratically with the signal-to-noise
ratio σ f

λ
(where σ 2

f is a multiplier used to regulate the maximum kernel value). More

precisely, emax
emin

= n
σ 2
f

λ2 +1,where emax and emin are the largest and smallest eigen value,
respectively. It is easy to understand that a high signal-to-noise ratio makes quickly
the matrix

[
K(X1:n, X1:n) + λ2 I

]
ill-conditioned. Therefore, although most of the

research works consider the noise-free setting, this should be avoided in practical
applications for numerical stability reasons. When fitting the GP by maximizing the
log-marginal likelihood, a penalty term is added to the log-marginal likelihood that
discourages extreme signal-to-noise ratios.

The second heuristic method, consisting of adding a jitter term, is also based on
the previous consideration: it basically adds some artificial “noise” to the function
evaluations.

In Zhigljavsky and Žilinskas (2019), authors studied the properties of a GP gen-
erated bya SE kernel where the exponent 2 has been replaced by 2-ε, with ε > 0.

An interesting solution, called K-optimality and aimed at choosing the next point
xn+1 to reduce the condition number, has been recently suggested in Yan et al. (2018)
and will be outlined in Chap. 4.

Finally, it is important to remark that using derivatives, as reported in previous
section, induces a faster onset of the numerical instability issue.

https://drafts.distill.pub/gp/
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3.2 Thompson Sampling

As previously mentioned, given a kernel k, there exists a feature map φ(x) such
that k

(
x, x ′) = φ(x)Tφ

(
x ′). In practice, one can use the spectral decomposition

of the matrix K = ��T to estimate the feature map φ(x) ∈ R
m , where �T =

[φ(x1), ..., φ(xn)] and {x1, ..., xn} are the points evaluated so far. The decomposition
we considered is derived from the Bochner’s theorem, as reported in (Basu and
Ghosh 2017), and based on the concept of spectral density of a kernel. For instance,
the spectral density S(s) of the SE covariance function is given by:

S(s) = (2π�2)
d
2 e−2π2�2s2

The spectral density can be treated as a probability density p(s) = S(s)/α with
α = ∫

S(s)ds a normalizing constant. The following figure shows p(s) for different
values of the value of the length scale of the SE kernel (Fig. 3.6).

InTS, the featuremapφ(x) is am-dimensional vector sampled as
√
2/m cos(Wx+

b), where [W]i ∼ p(s) and [b]i ∼ U(0, 2π), with i denoting the ith component of
the vectors W and b, and i = 1, ... , m.

Accordingly, the following figures show how the shape of the (prior) sample
modifies depending on the length scale (i.e. � is 0.2, 0.3 and 0.4, from left to right).
Every sample is generated by sampling [Wi ] ∼ p(s) and [b]i ∼ U(0, 2π) (Figs. 3.7
and 3.8).

Although Thompson sampling (TS) dates to (Thompson 1933), it has been
recently attracting attention in several studies on sequential optimization (Chapelle
and Li 2011; Kandasamy et al. 2017, 2018). Ouyang et al. (2017) propose a TS-based

Fig. 3.6 Spectral density of SE kernel with different values of the characteristic length-scale
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Fig. 3.7 Five different samples for GP prior for, respectively, � = 0.2, � = 0.3 and � = 0.4,
respectively

Fig. 3.8 Five different samples for GP posterior (� is learned through marginal likelihood maxi-
mization on the observations)

approach to learn the structure of an unknown Markov decision process (MDP) in a
reinforcement learning framework.

TS is an algorithm to sequentially optimize a black box function, coherently with
the optimization problem considered in this book:

min
x∈X⊂Rd

f (x)

As BO, TS uses a GP as a probabilistic surrogate model of the unknown objec-
tive function. The main difference is that TS samples, at every iteration, just one
mapping function φ(x) and a random vector θ drawn from the posterior distribution
θ |(D1:n, φ) = N (

A−1�T y, σ 2A−1), where A = �T� + σ 2 I . Then the new point
xn+1 to evaluate is just obtained as the minimizer of the GP sample f (x) = φ(x)T θ .
The function is evaluated at the new point, eventually with noise, and the function
evaluations dataset is updated consequently: Dn+1 = Dn ∪ {(xn+1, yn+1)}.
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The process is initialized by assuming a non-informative prior on the distribu-
tion of the minimizer and will stop when the variance of the distribution becomes
considerably small.

The following figure shows four different samples from GP posterior (after five
observations) and the corresponding minimizers to use as next point to evaluate. We
have decided to plot four different scenarios to highlight the probabilistic nature of
TS in selecting the next point. Although samples are different, giving some chance
to exploration, the bias towards exploitation is evident, motivating the ε-greedy
approach proposed in (Basu and Ghosh 2017) (Fig. 3.9).

As a final remark, it is clear that TS is a sequential optimization process per se,
and sampling from posterior is just one component of the method. It is again based
on a probabilistic surrogate model but, differently from BO, the next promising point
to evaluate is identified by minimizing a sample from the GP instead of a specific
acquisition function. Another way to look at this is to consider the sample function
as an acquisition function (as described in Chap. 4).

While the theory underlying TS and related converge issue are rooted in results
in functional analysis, like Bochner’s theorem and Winer–Khintchine theorem, its
implementation is relatively straightforward as shown before and demonstrated in
the pseudo code which follows, again inspired by (Basu and Ghosh 2017). There are
different implementations, notable (Bijl et al. 2016)

Fig. 3.9 Anexample of one iteration ofThompson sampling: four different samples forGPposterior
are reported along with the next point to evaluate chosen as the minimizer of the corresponding GP
sample
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TS can be biased towards exploitation, especially when σ 2 is large, leading the
process to potentially converge to a local minimum. To reduce the risk to get stuck
in a local optimum, an ε-greedy approach can be considered, as in (Basu and Ghosh
2017). That is, at every iteration n, we explore the entire region X uniformly (i.e. we
sample xn+1 ∼ U(X)), with probability ε > 0 or we sample xn+1 ∼ minx∈Xφ(x)T θ ,
with probability 1 − ε.

3.3 Alternative Models

A basic issue with GP is the assumption that optimization variables take real values.
In the case of integer-valued variables, such as the number of layers of a DNN,
the basic idea is rounding the solution to the closest integer while, in the case of
categorical variables, as many extra variables as possible categories are added and
chosen according to the largest one (as in Spearmint). These operations can be applied
in two different ways. In the so-called naïve approach they are performed before
updating the GP, so xn+1 is a mixed-integer vector, while in the “basic” approach
they are performed just before evaluating the objective function, so xn+1 ∈ R

d . The
naïve approachmight lead to a relevantmismatch between the (continuous) optimizer
of the objective function and the point evaluated. The basic approach overcomes this
limitation because GP ignores the approximation but it is expected to provide a
suboptimal solution. A more principled approach is suggested in Garrido-Merchán
and Hernández-Lobato (2018), who proposes a kernel that essentially embeds the
same transformation of the basic approach.

A radical solution consists in avoiding GP altogether and adopting alternative
models like random forests.
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3.3.1 Random Forest

Random forest (RF) is an ensemble learning method, based on decision trees, for
both classification and regression problems (Ho 1995). According to the originally
proposed implementation, RF aims at generating a multitude of decision trees, at
training time, and providing as output the mode of the classes (classification) the
mean/median prediction (regression) of the individual trees. The following figure
provides a schematic representation of the output provisioning mechanism of a RF
(Fig. 3.10).

Decision trees are ideal candidates for ensemble methods since they usually have
low bias and high variance, making them very likely to benefit from the averaging
process. RF mostly differs from other typical ensemble methods in the way it intro-
duces random perturbations into the training phase. The basic idea is to combine
bagging, to sample examples from the original dataset, and random selection of fea-
tures, in order to train every tree of the forest. Injecting randomness simultaneously
with both strategies yields one the most effective off-the-shelf methods in machine
learning, working surprisingly well for almost any kind of problems, allowing for
generating a collection of decision trees with controlled variance.

Although designed and presented as a machine learning algorithm, RF is also an
effective and efficient alternative to GP for implementing BO. To better understand
how RF, for regression, can replace GP, one has to consider that:

• The dataset, in the case of Machine Learning, is replaced by the design D1:n of
the BO process

• The features correspond to the dimensions of the global optimization problem.

Fig. 3.10 A schematic representation of the regression/classification performed by a random forest.
Voting mechanism is different for classification (e.g. simple or weighted majority) and regression
(e.g. mean or median)
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Moreover, since RF consists of an ensemble of different regressors, it is possible
to compute—as for GP—both μ(x) and σ(x), simply as mean and variance among
the individual outputs provided by the regressor. Due to the different nature of RF
and GP, the associated probabilistic surrogate models will also result significantly
different. The following figure offers an example. While GP is well-suited to model
smooth functions in search space spanned by continuous variables, RF can deal with
discrete and conditional variables. Discontinuity in the RF-based surrogate is given
by the underlying decision tree models (Fig. 3.11).

Another important property of RF is that the variance can be controlled, as
explained in the following.

Let’s denote with S the size of the forest (i.e. the number of decision trees in the
forest) and Ti (x) the output provided by the i-th decision tree for the input x, the
variance of the RF-based estimator, for the regression case, can be easily computed
as follows:

Var

(
1

S

S∑

i=1

Ti (x)

)

= Cov

⎛

⎝ 1

S

S∑

i=1

Ti (x),
1

S

S∑

j=1

Tj (x)

⎞

⎠

= 1

S2

S∑

i=1

⎛

⎝
S∑

j �=i

Cov
(
Ti (x), Tj (x)

) + Var(Ti (x))

⎞

⎠

≤ 1

S2

S∑

i=1

(
(S − 1)ρσ 2 + σ 2)

= S(S − 1)ρσ 2 + Sσ 2

S2
= ρσ 2 + σ 2 1 − ρ

S

Fig. 3.11 A graphical comparison between probabilistic surrogate models offered by a GP (blue)
and a RF (red), both fitted on the same set of observations
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where σ 2 is the maximum variance computed over all the Ti (x) and ρσ 2 =
max
i, j

Cov
(
Ti (x), Tj (x)

)
. The variance of the RF estimator is proportional to σ 2 and

ρ (i.e. if the number m of selected features decreases also σ 2 and ρ decrease) and
with the size S the forest increasing.

Finally, a basic description of the RF learning algorithm is provided. Thanks to
the bagging and random feature selection—step 2 and 4, respectively—RF results
more computationally efficient than GP, specifically when the number of decision
variables is larger than 20. Indeed, RF does not require to invert any kernel matrix
and training of every decision tree can be performed in parallel.

Random Forest learning algorithm

Given:

· S the size of the forest (i.e. number of decision trees in the forest)

· N the number of examples in the dataset (i.e. evaluations of the objective functions)

·M the number of features (i.e. decision variables) representing every example

· m the number of features (i.e. decision variables) to be randomly selected from theM available
for each leaf node of the tree to be split

· nmin the minimum node size in the tree

1: for i = 1 to S

2: sample, with replacement, a subset of N instances from the dataset

3: for every terminal node (leaf) of the i-th decision tree with size less than nmin

4: select m features (i.e. decision variables) at random from the M available

5: pick the best feature (i.e. decision variable) and split among the possible m

6: split the node in two children nodes (new leaves of the decision tree)

7: end for

8: end for

3.3.2 Neural Networks: Feedforward, Deep and Bayesian

The role of neural networks in BO is two-fold: as already discussed they are machine
learning algorithms typically optimized in the AutoML setting; on the other hand,
they can offer a well-suited alternative to GP. Indeed, as already highlighted in this
book, GPs are sample efficient but their computational complexity is cubic in the
number of points and do not scale well in high dimensions.

A relevant approach, Snoek et al. (2015) aims to replace the GP with a model
that scales better but retains most of the GP desirable properties such as flexibility
and well-calibrated uncertainty. More specifically, deep learning models are inves-
tigated adding a Bayesian linear regressor to the last hidden layer of a deep neural
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network (DNN), marginalizing only the output weights of the net while using a point
estimate for the remaining parameters. This results in adaptive basis regression, a
well-established statistical technique which scales linearly in the number of obser-
vations, and cubically in the basis function dimensionality. This allows to explic-
itly trade-off evaluation time and model capacity. The resulting algorithm DNGO
(Deep Networks for Global Optimization, https://github.com/Anmol6/DNGO-BO)
has been extensively tested for optimizing the hyperparameters of deep convolutional
neural networks. Empirical results show that DNGO provides the same modelling
properties of a GP but with a significantly lower computational cost.

The following figure (Fig. 3.12) shows ANN and DNN for creating alternative
surrogate models within BO framework and allows for a comparison of predictive
mean (solid blue line) and uncertainty (shaded blue region). The first line figures
show the surrogate models generated by DNN with three hidden layers, the first one
using only tanh as activation function and the second one using only sigmoid as the
activation function. The second line figures show the surrogate models generated by
ANN with one hidden layer with the same activation functions

The application of Bayesian methods to neural networks has a rich history in
machine learning, the goal ofBayesian neural networks is to uncover the full posterior
distribution over the network weights in order to capture uncertainty, to act as a
regularizer, and to provide a framework for model comparison. The full posterior

Fig. 3.12 Probabilistic surrogatemodels based on deep and artificial neural networks,with different
activation functions (i.e. sigmoid and tanh) for the neurons

https://github.com/Anmol6/DNGO-BO
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is, however, intractable for most forms of neural networks, necessitating expensive
approximate inference or Markov Chain Monte Carlo simulation.

In Springenberg et al. (2016), BNN have been suggested as a principled alter-
native to GP. The algorithm is called BOHAMIANN (Bayesian Optimization with
HAMIltonian Artificial Neural Network) and has been tested with a three layers neu-
ral network with 50 tanh units. The method has been presented also for multi-task
optimization (i.e. finding the set of optimizers for k black box functions, each with
the same domain X). An implementation of the algorithm is provided in RoBO, a
BO software reported in Chap. 6.

In order to deal with non-stationarity, a possible approach is to use deep Gaus-
sian processes. In Hebbal et al. (2019), functional composition of stationary GPs is
proposed, providing a multiple layer structure.
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Chapter 4
The Acquisition Function

The acquisition function is the mechanism to implement the trade-off between explo-
ration and exploitation in BO.More precisely, any acquisition function aims to guide
the search of the optimum towards points with potential low values of objective func-
tion either because the prediction of f (x), based on the probabilistic surrogatemodel,
is low or the uncertainty, also based on the same model, is high (or both). Indeed,
exploiting means to consider the area providing more chance to improve the current
solution (with respect to the current surrogate model), while exploring means to
move towards less explored regions of the search space where predictions based on
the surrogate model are more uncertain, with higher variance.

This chapter is devoted to present some of the most relevant acquisition functions,
from the “traditional” towards the most recent ones.

4.1 Traditional Acquisition Functions

This section summarizes the most widely used acquisition functions.

4.1.1 Probability of Improvement

Probability of improvement (PI) was the first acquisition function proposed in the
literature Kushner (1964):

P I (x) = P
(
f (x) ≤ f

(
x+)) = �

(
f
(
x+) − μ(x)

σ (x)

)
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where f
(
x+)

is the best value of the objective function observed so far, μ(x) and
σ(x) are mean and standard deviation of the probabilistic surrogate model, such as
a GP, and �(·) is the normal cumulative distribution function.

One of the drawbacks of PI is that it is biased towards exploitation. To mitigate
this effect, one can introduce the parameter ξ which modulates the balance between
exploration and exploitation. The resulting equation is:

PI(x) = P
(
f (x) ≤ f

(
x+) + ξ

) = �

(
f
(
x+) − μ(x) − ξ

σ (x)

)

Low values of ξ favour exploitation while large values exploration.
Finally, the next point to evaluate is chosen according to: xn+1 =

argmaxx∈X PI(x).
However, a weak point of PI is to assign a value to a new point irrespective of the

potential magnitude of the improvement. This is the reason why the next acquisition
function was proposed.

4.1.2 Expected Improvement

Expected improvement (EI) was proposed initially in Mockus et al. (1978) and then
made popular in Jones et al. (1998) which measures the expectation of the improve-
ment on f (x)with respect to the predictive distribution of the probabilistic surrogate
model.

EI(x) =
{(

f
(
x+) − μ(x)

)
�(Z) + σ(x)φ(Z) if σ(x) > 0
0 if σ(x) = 0

where φ(Z) and�(Z) are the probability distribution and the cumulative distribution
of the standardized normal, respectively, where

Z =
{

f (x+)−μ(x)
σ (x) if σ(x) > 0

0 if σ(x) = 0

The EI is made up of two terms: the first is increased by decreasing the predictive
mean; the second by increasing the predictive uncertainty. Thus, EI, in a sense,
automatically balances, respectively, exploitation and exploration. When we want to
activelymanage the trade-off between exploration and exploitation, we can introduce
the parameter ξ . When exploring, points associated with high uncertainty of the
probabilistic surrogate model are more likely to be chosen, while when exploiting,
points associated with low value of the mean of the probabilistic surrogate model are
selected.
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EI(x) =
{(

f
(
x+) − μ(x) − ξ

)
�(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0

and

Z =
{

f (x+)−μ(x)−ξ

σ (x) if σ(x) > 0

0 if σ(x) = 0

The following figure shows how the selected points change depending on ξ .
Ideally, ξ should be adjusted dynamically to decreasemonotonicallywith the function
evaluations. Compared to PI (Fig. 4.1), it is possible to notice that EI (Fig. 4.2) is
less biased towards exploitation.

Finally, the next point to evaluate is chosen according to: xn+1 =
argmaxx∈X EI(x).

EI has been largely used since 1998 and specialized to specific contexts: Astudillo
and Frazier (2019) propose EI-CF a version of composite functions which leads to a
multi-output GP: the authors also note that constrained optimization can be regarded
as a special case of the optimization of composite functions and that EI-CF reduces

Fig. 4.1 GP trained depending on seven observations (top), PI with respect to different values of
ξ and max values corresponding to the next point to evaluate (bottom)
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Fig. 4.2 GP trained depending on seven observations (top), EI with respect to different values of
ξ and max values corresponding to the next point to evaluate (bottom)

to the expected improvement for constrained optimization. More importantly, both
PI and EI are structurally exploitative, increasing ξ from 0 to 0.2 - which is the
10% of the min-max range of f (x) - does not shift substantially xn+1. Higher values
of ξ flatten the acquisition function making it close to Random Search. To manage
effectively the exploitation-exploration balance a more effective acquisition function
is Upper-Lower Confidence Bound, given in the following section.

4.1.3 Upper/Lower Confidence Bound

Confidence bound—where upper and lower are used, respectively, for maximization
and minimization problems—is an acquisition function that manages exploration—
exploitation by being optimistic in the face of uncertainty, in the sense of considering
the best-case scenario for a given probability value (Auer 2002).

For the case of minimization, LCB is given by:

LCB(x) = μ(x) − ξσ (x)
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where ξ ≥ 0 is the parameter to manage the trade-off between exploration and
exploitation (ξ = 0 is for pure exploitation; on the contrary, higher values of ξ empha-
sizes exploration by inflating the model uncertainty). For this acquisition function,
there are strong theoretical results, originated in the context of multi-armed bandit
problems, on achieving the optimal regret derived by Srinivas et al. (2012). For the
candidate point xn , we observe instantaneous regret rn = f (xn)− f (x∗). The cumu-
lative regret RN after N function evaluations is the sum of instantaneous regrets:
RN = ∑N

n=1 rn . A desirable asymptotic property of an algorithm is to be no-regret:
limN→∞ RN

N = 0. Bounds on the average regret RN
N translate to convergence rates:

f
(
x+) = min xn≤N f (xn) in the first N function evaluations is no further from f (x∗)

than the average regret. Therefore, f
(
x+) − f (x∗) → 0, with N → ∞.

The following figure shows how the selected points changes depending on ξ .
Ideally, ξ should be adjusted dynamically to decreasemonotonicallywith the function
evaluations. Compared to PI (Fig. 4.1) and EI (Fig. 4.2), is clear the leaning of LCB
towards exploration and how this effect can be managed through the value of ξ

(Fig. 4.3).

Fig. 4.3 GP trained depending on seven observations (top), LCB with respect to different values
of ξ and min values corresponding to the next point to evaluate (bottom). Contrary to the other
acquisition functions, LCB is minimized instead of maximized
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Finally, the next point to evaluate is chosen according to xn+1 =
argminx∈X LCB(x), in the case of a minimization problem, or xn+1 =
argmaxx∈X UCB(x) in the case of a maximization problem.

4.2 New Acquisition Functions

4.2.1 Scaled Expected Improvement

Recently, a new improvement-based acquisition function has been proposed in Noè
& Husmeier (2018). The motivation is that EI does not account for the uncertainty in
improvement. The proposed acquisition function chooses the next point to evaluate
where the improvement is expected to be high with small variance.

More precisely, the variance of the improvement is computed analytically as:

V[I (x)] = k(x, x)
[(
Z2 + 1

)
�(Z) + Zφ(Z)

] − [E I (x)]2

where Z is defined as in EI. The new acquisition function consists in scaling EI by
{V[I (x)]}1/2, that is:

Scaled EI(x) = EI(x)/{V[I (x)]}1/2

The main result on a set of benchmarks is that the proposed acquisition func-
tion compares favourably with PI, EI, UCB/LCB and the entropy-based acquisition
functions to be presented in Sect. 4.2.4.

4.2.2 Portfolio Allocation

Several acquisition functions have been proposed, as reported in this book, so choos-
ing a good acquisition function is not trivial. Indeed, there are no guidelines in the
choice of acquisition function. Furthermore, the same acquisition function is not
necessarily the best choice on the entire optimization process.

An interesting mixed strategy has been proposed where the acquisition function
is chosen, adaptively at each iteration, from a “portfolio” (Brochu et al. 2010). The
selection mechanism is formalized as an on online multi-armed bandit problem: dif-
ferent strategies are investigated with the result that a hierarchical hedging approach
is the winning one. The basic algorithm, so-called GP-Hedge, is as follows:
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1: D1:n = {(x1, y1), . . . , (xn, yn)} is the initial set of evaluated point

2: N is the overall number of available function evaluations

3: Set initial “gains” gn = 0 with gn ∈ R
M , where M is the number of acquisition functions in

the portfolio

4: for i = n + 1, . . . , N do

5: compute the next point to evaluate, according to each acquisition function:
xi,k = argmax

x
αk(x |D1:n), k = 1, . . . , M

6: select one point xi , among the alternative xi,k , with probability:

pi,k = egi[k]∑M
l=1 e

gi[l]
(i.e., soft − max policy)

where gi[k] is the gain of the kth acquisition function at iteration i

7: evaluate objective function, eventually with noise, yi = f (xi ) + ε

8: update the function evaluations dataset D1:i = D1:n ∪ {(xi , yi )}
9: update GP and update gains gi[k] = gi−1[k] + μi

(
xi,k

)

10: endfor

Empirical evidence shows a significant improvement over EI and LCB, which is
anyway offset by the much higher computational cost.

4.2.3 Thompson Sampling

As described in Chap. 3, Thompson Sampling (TS) is a sequential optimization
process based on performing, iteratively, the following block of steps: updating a
posterior depending on a set of observations, drawing a sample from posterior as an
approximation to the function to be optimized, minimizing this sample function to
identify the next candidate point and evaluating the objective function at that point.

In a sense TS is in itself a sequential decision-making process, like BO, indeed the
acquisition function is replaced by a sample from the current probabilistic surrogate
model. However, in the literature, TS is considered just as an acquisition function in
BO—this is the reason why we have decided to reserve a small section also in this
chapter.

In the following figure, the difference in choosing the next point, depending on
TS and LCB, is depicted. The (TS) sample function from the GP is quite different
from LCB and, at least in this case, TS is less explorative than LCB. Indeed, TS is in
principle exploitative due to the sample minimization step. The exploration is given
by its Monte Carlo basis and can be enhanced by adopting an ε-greedy strategy (as
already seen in Chap. 3) (Fig. 4.4).

The following figure shows another case where TS is, instead, more explorative
than LCB (Fig. 4.5).
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Fig. 4.4 Next point to evaluate according to TS (ε = 0.4) and LCB: the sample from GP posterior
implies a more exploitative choice than LCB

Fig. 4.5 Next point to evaluate according to TS (ε = 0.4) and LCB: the sample from GP posterior
implies a more explorative choice than LCB
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Theoretical analysis was provided for the classical multi-armed bandit problem
and later extended to the analysis of the continuous case in Russo et al. (2018)
drawing on an analogy between TS and UCB.

4.2.4 Entropy-Based Acquisition Functions

The traditional acquisition functions, presented in Sect. 4.1, are based on probabilistic
measures of improvement in the f domain. Exploitation and exploration are repre-
sented, respectively, by the mean value and the “uncertainty bonus” represented by
the variance. Recent interest has been focused on querying at points that can help to
learnmost about the location of the unknownminimum, leading to information-based
acquisition functions. This informational approach was originally proposed in Ville-
monteix et al. (2009), and developer into the Entropy Search (Henning and Schuler
(2012)), Predictive Entropy Search (Hernández-Lobato et al. 2014). In both Entropy
Search (ES) and Predictive Entropy Search (PES), the basic idea is to maximize the
information about the global optimizer.

The current information about the global optimizer can be computed as the nega-
tive differential entropy of p(x∗|D1:n) and the next point to evaluate is given by the
maximization of the expected reduction in this quantity. The ES and PES acquisition
functions have the following equations, respectively:

ES : α(x) = H
(
p
(
x∗|D1:n

)) − E
[
H

(
p
(
x∗|D1:n ∪ {x, y}))]

PES : α(x) = H(p(y|D1:n, x)) − E
[
H

(
p
(
y|D1:n, x, x∗))]

where H [p(α)] = − ∫
p(α) log p(α)dα represents the differential entropy.

While ES uses the expectation is over p(x∗|D1:n), in PES the expectation is over
p(y|D1:n, x). Both p(x∗|D1:n) and its entropy are analytically intractable and must
be approximated through expensive simulation. This approach needs several approx-
imations and is anyway beset by numerical difficulties. To add further complexity
to the computation of this distribution, even if the global optimizer is unique, it is
not stable meaning that a small perturbation can result in an approximation far away
from the global optimum. PES is inspired by Thompson sampling and uses several
samples from posterior, at every iteration, to solve probabilistically the optimization
of the acquisition function.

The following figure depicts how PES improves over ES, when compared to the
ground truth (Fig. 4.6).

In Wang and Jegelka (2017), a computationally more effective solution is pro-
vided, based on sampling from the conditional distributions of a global optimum
given the observed data. A much cheaper and more robust acquisition function,
namely Max-value Entropy Search (MES) is proposed: instead of measuring the
information about the optimizer x∗, they use information about the optimal value
y∗. MES measures the gain in mutual information between the optimal value y∗ and
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Fig. 4.6 Ground truth (left), approximation producedby theESmethod (middle) and approximation
produced by the PES method (right). (Source Hernandez-Lobato et al. 2014)

the next point to evaluate, which can be approximated analytically by evaluating the
entropy of the predictive distribution:

MES : α(x) = H(p(y|D1:n, x)) − E
[
H

(
p
(
y|D1:n, x, y∗))]

In MES, the expectation is approximated using Monte Carlo estimation. Impor-
tantly,whileESandPES rely on the expensived-dimensional distribution p(x∗|D1:n),
MES relies on the one-dimensional p(y∗|D1:n) which is computationally much eas-
ier. The software for PES and MES can be downloaded at https://bitbucket.org/
jmh233/codepesnips2014 and https://github.com/zi-w/Max-value-Entropy-Search,
respectively. In the case that the value of f ∗ is known a priori, a more efficient
search for x∗ is propsed in Nguyen and Osborne (2019).

According to another approach Volpp et al. (2019), the acquisition function is
given by a neural network which uses as input the posterior prediction of the GP.

4.2.5 Knowledge Gradient

Knowledge gradient (KG) is an acquisition function based on revising the typical
assumption made in the BO process that the best evaluated point is returned as final
solution. KG revises this assumption by allowing to return any point as a solution,
even if it has not been previously evaluated. Another important difference with other
acquisition functions, which are usually “risk-seeker”, is that KG assumes risk neu-
trality (Berger (2013), meaning that any random x is evaluated depending on the
expected value f (x).

Let us denote this solution with x̄n; the value f (x̄n) is random under the posterior
and has the following expected value conditioned to D1:n:

μ∗
n := μn(x̄n) = min

x ′ μn
(
x ′)

https://bitbucket.org/jmh233/codepesnips2014
https://github.com/zi-w/Max-value-Entropy-Search
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If a further function evaluation were available, we could sample x one more time
and obtain the additional observation (xn+1, yn+1) and, consequently, the updated
posterior meanμn+1(·). The expected value of the solution after this further function
evaluation would be μ∗

n+1 = min
x ′ μn+1

(
x ′). Thus, the improvement in conditional

expected solution value is given by: μ∗
n − μ∗

n+1. As this quantity is unknown, before
evaluating f (xn+1), we can only compute its expected value, conditioned to the
previous observations at x1, . . . , xn . This quantity is named knowledge gradient and
can be computed at any x:

KGn(x) = E[μ∗
n − μ∗

n+1|xn+1 = x]

The simplest way to compute KG is through simulation: a possible value yn+1

is simulated at a certain xn+1, then the optimum of the new posterior mean μ∗
n+1

is computed, by considering the sampled value yn+1 as the actual value obtained
through function evaluation at xn+1. The simulation can be performed either by
Thompson sampling or directly by using μn(xn+1) and σn(xn+1). Finally, this value
is subtracted from μ∗

n to obtain the corresponding improvement in solution quality.
The entire procedure is repeated many times and the differences μ∗

n − μ∗
n+1 are

averaged on the simulated values yn+1. This allows to compute the expected value
required for the computation of the estimate of KGn(x), that converges to the actual
value as the number of samples increases.

Therefore, contrary to other acquisition functions, KG computes the posterior not
only at the sampled points but on the entire domain, estimating how a new function
evaluation will change the posterior. KG assigns a positive value on measurements
that cause the minimum of the posterior mean to improve. Thus, the next point to
evaluate is given by the maximization of KG.

According to Frazier et al. (2009), this provides a small performance benefit in
the case of BO with noise-free evaluations, but a substantial improvement in prob-
lems with noisy, derivative, multi-fidelity observations and other “exotic” problem
features. In these cases, the value of sampling comes not through an improvement in
the best solution at the sampled point, but through an improvement in the minimum
of the posterior mean across possible solutions. For instance, a derivative observa-
tion can provide information that the function is decreasing, along with a specific
direction, in the neighbourhood of the sampled point. Consequently, the minimum of
the posterior mean could be significantly smaller than the previous minimum, even
if the function value at the sampled point is worse than the best previously sampled
point. In these cases, KG can reportedly outperform EI (Wu et al. 2017; Poloczek
et al. 2017; Wu and Frazier 2016; Toscano-Palmerin and Frazier 2018) (Fig. 4.7).

The same variance reduction effect that gradients availability has on GP—as
shown in Chap. 3—is also observed in acquisition function. In particular, the fol-
lowing figure shows that both KG and EI, computed on a GP with derivatives, make
different sampling decisions (Wu and Frazier 2017) (Fig. 4.8).
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Fig. 4.7 Comparison between KG and EI on a maximization problem. The EI acquisition function
prefers to sample in the region around 0.5 and the KG policy prefers to sample in the region around
1.5. Thus, KG gives a chance to exploration while EI is biased towards exploitation. (Source https://
sigopt.com/blog/expected-improvement-vs-knowledge-gradient/)

Fig. 4.8 Plots in the top row show the approximations of f (x) modelled through a GP without
and with incorporating gradients observations. The posterior variance is smaller if the gradients are
incorporated. Both KG and EI are depicted, with and without embedding derivative information.
The plots in the bottom row depict the resulting GPs, without and with gradient, after the evaluation
at the new point suggested by EI and KG. (Source Wu and Frazier 2017)

4.2.6 Look-Ahead

Most of the acquisition functions consider only the impact of the next function eval-
uation: in this sense, they are also called “myopic”. This is a limitation addressed in
several papers: in Osborne et al. (2009), a two-step-ahead solution is presented; while

https://sigopt.com/blog/expected-improvement-vs-knowledge-gradient/


4.2 New Acquisition Functions 69

in Marchant et al. (2014), partially observable Markov decision process (POMDP) is
used as a model and a Monte Carlo tree search is adopted to solve it. Another look-
ahead acquisition function has been proposed in (Lam et al. 2016)where approximate
dynamic programming is adopted to solve the problem of selecting the next candidate
point to evaluate. More specifically, a rollout heuristic was proposed for BO.

Another approach, GLASSES, has been suggested in Gonzalez et al. (2016),
proposing to model the n-step look-ahead problem as a Bayesian network and then
suggesting a computationally efficient approximation to solve the otherwise pro-
hibitively computational expensive inference process. At our knowledge, GLASSES
is no longer maintained, last update is from November 2015, based on Python 2.7,
while other tools presented in Chap. 6 are now based on Python 3.0 and higher.

4.2.7 K-Optimality

A very interesting approach has been recently proposed in Yan et al. (2018), address-
ing the issue of numerical instability in the kernel matrix K. If the next point to
evaluate, selected depending on the acquisition function, is too close to one of the
previous observations, it might lead to the computational issue reported in Chap. 3
that is the impossibility to compute the inverse of the matrix K and, consequently,
make inference through the GP. The new acquisition function proposed in Yan et al.
(2018) consists in theminimization of the condition number ofK, leading to amethod
named Sequentially Bayesian K-optimal (SBKO) design, which tries to avoid sam-
pling close to previous observations. Therefore, SBKO naturally forces the samples
to spread sparsely in the search space, providing an alternative exploration mecha-
nism.Apossible integration ofK-optimality intoBO is to consider one of the possible
acquisition functions, such as EI, and then select, among possible candidate points
with similar values of acquisition the one with smaller condition number. However,
this kind of approach leaves some cases undecided. More precisely, given two candi-
date points, x ′ and x ′′, it is not clear which select in the cases: (a) x ′ is better than x ′′
in terms of acquisition function but has a higher condition number or (b) x ′ is worse
than x ′′ in terms of acquisition function but has a lower condition number. To solve
these cases, Yan et al. (2018) proposes to consider the equation of parametrized EI
(reported in Sect. 4.1.2):

EI(x) =
{(

f
(
x+) − μ(x) − ξ

)
�(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0

where φ and � are the probability distribution and the cumulative distribution func-
tions, respectively, and

Z =
{

f (x+)−μ(x)−ξ

σ (x) if σ(x) > 0

0 if σ(x) = 0
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The approach consists in making the parameter ξ dependent on the condition
number κ through:

ξ(κ) = log κ

log κ + c log κT

where κT is a suitable threshold of the condition number and c is a constant that
controls the shape of ξ(κ). The approach addresses an important issue in BO but
numerical evidence is still partial.

4.3 Optimizing the Acquisition Function

The optimization of acquisition functions has been receiving comparably less atten-
tion than the development of new ones and in general of the other components of the
GP-BOmachinery. Indeed, the traditional acquisition functions are available analyt-
ically and the computational cost of their optimization is usually much smaller than
a single evaluation of the objective function: still the optimization of the acquisition
function plays a crucial role as it suggests the next point and it is quite difficult
anyway, in high-dimensional spaces, given their non-convexity and specific shape
features.

Commonly adopted techniques are random multi-start with local searches or
genetic algorithms. More precisely, taking into account the BO software and plat-
forms presented in Chap. 6, genetic algorithm (GA) and evolutionary algorithm
(EA) are the most widely adopted techniques to optimize the acquisition function.
DIRECT is also another common option; BFGS and L-BFGS implementations can
be also adopted in the case of a continuous probabilistic surrogate model, such as
GP.

A recent paper Wilson et al. (2018) takes a new approach to the optimization of
the acquisition function, looking especially at two different topics:

1. The gradient of acquisition function is estimated viaMonte Carlo integration and
then used in gradient-based optimization.

2. Greedy maximization of myopic acquisition function is shown, using submodu-
larity, to converge with a guaranteed accuracy.

In the first topic, they use infinitesimal perturbation analysis (Glasserman 1988),
also proposed in Kingma and Welling (2013) under the name of reparametrization
trick. The second topic is concerned with the family of myopic maximization (MM)
functions, defined as the expected max of a point-wise utility function: MM(X) =
Ey

[
α(y)

]
.

The family of MM functions is submodular (SM) and greedly maximizing SM
functions are guaranteed to produce near-optimal results Krause and Golovin (2014).
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Chapter 5
Exotic Bayesian Optimization

5.1 Constrained Global Optimization

GO and BO have been considered first in “essentially unconstrained” conditions,
where the solution was searched for within a bounded-box search space. Recently,
due to methodological and application reasons, there has been an increasing interest
in constrained global optimization (CGO).

x∗ = argmin
x∈X

f (x)

Subject to

ci (x) ≤ 0 i = 1, . . . , nc

A paper of general interest about a taxonomy of constraints in simulation-based
optimization is given in Le Digabel (2015). Some general remarks have to be taken
into account:

1. Even if the constraints are analytically defined, they presence without the con-
vexity assumption raises a whole new set of challenging topics, in particular, the
interaction between the feasible region and the surrogate probabilistic model.

2. Since BO assumes the objective function as black box, a natural extension is to
consider the constraints as black box as well (unknown constraints).

3. A relevant case is when the objective function is undefined, and cannot be there-
fore computed, outside the feasible region. In this case, we speak about partially
defined objective functions (Rudenko 1994; Sergeyev et al. 2007).

Point three is particularly relevant when the evaluation of the objective requires,
as in black box conditions, the execution of a simulation model which can return
a valid output or a failure message. An example of failure can be a computational
fluid dynamics solver that does not converge due to instability of the numerical
scheme (Sacher et al. 2018) or a hydraulic simulator if the input generates pressures
or flows physically impossible (Tsai et al. 2018). Also frequent is the case of a
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complex machine learning model where the training of the model, and therefore the
evaluation of the loss function, relies on gradient (stochastic) descent which may fail
to converge. Such an event prevents the exploration of a neighbourhood of a “not
computable” point and halts the sequential optimization procedure. A naïve solution,
in presence of a not computable point, is to associate to it a fixed high (low) penalty
value for the objective function to be minimized (maximized): still, determining
suitable value is not a trivial task and might imply, anyway, a loss of accuracy in the
Gaussian surrogate model and of sample efficiency.

There have been several attempts at leveraging BO framework into dealing with
constrained optimization: the main problem is to propose an acquisition function for
CBO.

The use of GP-and EI-based heuristics has been first proposed in Jones et al.
(1998) allowing for ci (x) to be black box and assuming their mutual independence
and with the objective function. A GP is given as a prior to each constraint. If f +

c is
the best feasible observation of f , the EI acquisition function is:

EI
(
x | f +

c

) =
{(

μ(x) − f +
c

)
�(Z) + σ(x)φ(Z) if σ(x) > 0
0 if σ(x) = 0

where φ and � are the probability distribution and the cumulative distribution func-
tions, respectively, and

Z =
{

μ(x)− f +
c

σ(x) if σ(x) > 0

0 if σ(x) = 0

In presence of constraints the formula becomes:

EIC
(
x | f +

c

) = EI(x | f +
c )

nc∏

i=1

P(ci (x) ≤ 0)

where the improvement of a candidate solution x over f is zero if x is not fea-
sible. When the noise in the constraints is taken into account, we may not know
which observations are feasible: for instance, the best GPmean value satisfying each
constraint ci (x) with a probability at least 1 − δi can be used (Letham et al. 2019).
Gramacy (2016) proposes a different approach for handling constraints in which they
are brought into the objective function via a Lagrangian. EI is no longer tractable ana-
lytically but can be evaluated numerically via Monte Carlo integration or quadrature
(Picheny2016).Relevant prior results onBOwith unknownconstraints proposednew
acquisition functions, such as integrated expected conditioned improvement (IECI)
(Gramacy and Lee 2011). Another approach is presented in Feliot et al. (2017) where
an adaptive Random Search is used to approximate feasible region while optimizing
the objective function. A penalty approach has been considered first in Gardner et al.
(2014), where a penalty is assigned directly to the acquisition function in case of
infeasibility, with the aim to move away from infeasible regions. A similar approach
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has been extended in Candelieri et al. (2018) also in the case in which the function is
partially defined: infeasibility is treated by assigning a fixed penalty as value of the
objective function (we refer as “BO with penalty”).

A new general approach is offered by information-based methods, which have
been extended to the constrained case (e.g. predictive entropy searchwith constraints,
PESC) inHernandez-Lobato et al. (2015): the code for PESC is included in Spearmint
and available at https://github.com/HIPS/Spearmint/tree/PESC.

The above approaches assume that the number of constraints is known a priori
and they are statistically independent.

The assumption of independence permits to compute the probability of feasibility
simply as the product of individual probabilities with respect to every constraint.
The result is multiplied by the acquisition function whose optimization would prefer
points satisfying the constraints with high probability.

The issue of partially defined function or equivalently “crash constraints” or “non-
computable domains” transforms the GP-based feasibility evaluation from a regres-
sion problem into a classification one. This classification approach has been analyzed
in several papers and discussed in the following.

In Basudhar et al. (2012) a probabilistic SVM (PSVM) is used to calculate the
so-called probability of feasibility and the optimization scheme alternates between
a global search for the optimal solution, depending on both this probability and
the estimated value of the objective function—modelled through a GP—and a local
refinement of the PSVM through an adaptive local sampling scheme. The most
common PSVM model is based on the sigmoid function (Vapnik 1998). For a given
sample x, the probability of belonging to the +1 class (i.e. “feasible”) is:

P(+1|x) = 1

1 + eAs(x)+B

The parameters A (A < 0) and B of the sigmoid function are found by maximum
likelihood. Two alternative formulations of the acquisition function are proposed:

max
x

EI(x)P(+1|x)

and

max
x

EI(x)

Subject to

P(+1|x) ≥ 0.5

Other approaches, also based on GP, and focused on cases where the objective
function cannot be computed (not computable domains or crash constraints) have
been proposed in Sacher et al. (2018); Bachoc et al. (2019).

The previous approaches use independent GPs to model the objective function
and the constraints, requiring two strong assumptions: a priori knowledge about the

https://github.com/HIPS/Spearmint/tree/PESC
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number of constraints and the independence among objective function and all the
constraints. Extending EI to account for correlations between constraints and the
objective function is still, according to Letham et al. (2019), an open challenge.

To overcome this limitation, a new approach, namely SVM-CBO (Support Vec-
tor Machine based Constrained BO), has been proposed in Candelieri and Archetti
(2019): themain contribution of the paper is the development of amethodwhich does
not require any of the two previous assumptions. The approach uses support vector
machine (SVM) to sequentially estimate and model the unknown feasible region (�)
within the search space (i.e. feasibility determination), without any assumption on
the number of constraints as well as their independence.

SVM-CBO is organized in two phases: the first is aimed to provide a first estimate
of� (feasibility determination) and the second is BO performed on such an estimate,
only. The motivation is that we are interested in obtaining a good approximation of
the overall feasible region and not only close to the optimal solution (i.e. feasibility
determination is a goal per se, in our approach). Another relevant difference with
Basudhar et al. (2012) is that SVM-CBO uses more efficiently the available “budget”
(i.e. maximum number of function evaluations): at every iteration, of both phase 1
and 2, we perform just one function evaluation, while in the boundary refinement
of Basudar et al. (2012) a given number np of function evaluations is performed in
the neighbourhood of the next point to evaluate, with the aim to locally refine the
boundary estimate. SVM-CBO is detailed in the following section.

5.2 Support Vector Machine—Constrained Bayesian
Optimization

We start with the definition of the problem, that is:

min
x∈Ω⊂X⊂Rd

f (x)

where f (x) has the following properties: it is black box, multi-extremal, expensive
and partially defined. The last feature means that f (x) is undefined outside that
feasible region �, which is a subset of overall bounded-box search space X ⊂ R

d .
Moreover, we consider the case that constraints defining the feasible region are also
black box.

We introduce some notation that will be used in the following:

• DΩ
n = {(xi , yi )}i=1,..,n is the feasibility determination dataset;

• D f
l = {(xi , f (xi ))}i=1,..,l is the function evaluations dataset, with l ≤ n (because

f (x) is partially defined on X ) and where l is the number of points where it was
possible to compute f out of the n queried so far;

and xi is the i-th queried point and yi = {+1,−1} defines if xi is feasible or
infeasible, respectively.
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Phase 1—Feasibility determination

The first phase of the approach aims to find an estimate Ω̃ of the actual feasible
region � in M function evaluations (Ω̃M = Ω̃). The sequence of function evalua-
tions is determined according to an SMBO process where the surrogate model—of
the feasible region, in this phase—provides the currently estimated feasible region
Ω̃n . As surrogate model we use the (non-linear) separation hyperplane of an SVM
classifier, trained on the set D�

n . The SVM classifier uses an RBF kernel to model
feasible regions with non-linear boundaries.

Let denote with hn(x) the argument of the SVM-based classification function:

hn(x) =
nSV∑

i=1

αi yi k(x̄i , x) + b

where αi and yi are the Lagrangian coefficient and the “feasibility label” of the i-th
support vector, x̄i , respectively, k(., .) is the kernel function (i.e. an RBF kernel, in
this study), b is the offset and nSV is the number of support vectors.

The boundaries of the estimated feasible region Ω̃n are given by hn(x) = 0 (i.e.
non-linear separation hyperplane). The SVM-based classification function provides
the estimated feasibility for any x ∈ X:

ỹ = sign(hn(x)) =
{+1 if x ∈ Ω̃n

−1 if x /∈ Ω̃n

With respect to the aim of the first phase, we propose a “feasibility acquisition
function” aimed at identifying the next promising point according to two different
goals:

• Improving the estimate of feasible region
• Discovering possible disconnected feasible regions.

To deal with the first goal, we use the distance of x from the boundaries of the
currently estimated feasible region Ω̃n , using the following formula from the SVM
classification theory:

dn(hn(x), x) = |hn(x)| =
∣∣∣∣
∣

nSV∑

i=1

αi yi k(x̄i , x) + b

∣∣∣∣
∣

To deal with the second goal, we introduce the concept of “coverage of the search
space”, defined by:

cn(x) =
n∑

i=1

e
−‖x̄i−x2‖

2σ2c
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So, cn(x) is a sum of n RBF functions centred on the points evaluated so far, with
σc a parameter to set the width of the corresponding bell-shaped curve.

Finally, the feasibility acquisition function is given by the sum of dn(hn(x), x) and
cn(x), and the next promising point is identified by solving the following optimization
problem:

xn+1 = argmin
x∈X

{dn(hn(x), x) + cn(x)}

Thus, we want to select the point associated with the minimal distance from
the boundaries of the current estimated feasible region and the minimal coverage
(i.e. max uncertainty). This allows us to balance between improving the estimate of
the feasible region and discovering possible disconnected feasible regions (in less
explored areas of the search space). It is important to highlight that, in phase 1, the
optimization is performed on the overall bounded-box search space X.

After the function evaluation of the new point xn+1, the following information is
available:

yn+1 =
{ +1 if xn+1 ∈ Ω; f (xn+1) is defined

−1 if xn+1 /∈ Ω : f (xn+1)is not defined

and the following updates are performed:

• Feasibility determination dataset and estimated feasible region Ω̃n+1

DΩ
n+1 = DΩ

n ∪ {(xn+1, yn+1)}
hn+1(x)|DΩ

n+1

n ← n + 1

• Only if x ∈ Ω , function evaluations dataset

D f
l+1 = D f

l ∪ {(xl+1, f (xl+1))}
l ← l + 1

The SMBO process for phase 1 is repeated until n = M .

Phase 2—Bayesian Optimization in the estimated feasible region

In this phase, a traditional BO process is performed but with the following relevant
differences:

• the search space is not box-bounded but the estimated feasible region Ω̃n identified
in phase 1
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• the surrogate model—a GP—is fitted only using the feasible solutions observed
so far, D f

l• the acquisition function for phase 2—lower confidence bound (LCB), in this
study—is defined on Ω̃n , only

Thus, the next point to evaluate is given by:

xn+1 = argmin
x∈Ω̃n

{LCBn(x) = μn(x) − βnσn(x)}

where μn(x) and σn(x) are the mean and the standard deviation of the current GP-
based surrogate model and βn is the inflate parameter to deal with the trade-off
between exploration and exploitation for this phase. It is important to highlight that,
contrary to phase 1, the acquisition function is here minimized on Ω̃n , only, instead
of the entire bounded-box search domain X.

The point xn+1 is just expected to be feasible, according to Ω̃n but the information
on its actual feasibility is known only after having checked whether f (xn+1) can or
cannot be computed (i.e. it is defined or not in xn+1). Subsequently, the feasibility
determination dataset is updated as follows:

DΩ
n+1 = DΩ

n ∪ {(xn+1, yn+1)}

and according to the two alternative cases:

• xn+1 is actually feasible: xn+1 ∈ �, yn+1 = +1;
the function evaluations dataset is updated as follows: D f

l+1 = D f
l ∪

{(xl+1, f (xl+1))}, with l ≤ n is the number of the feasible solutions with respect
to all the points observed. The current estimated feasible region Ω̃n can be consid-
ered accurate and retraining of the SVM classifier can be avoided: Ω̃n+1 = Ω̃n

• xn+1 is actually infeasible: xn+1 /∈ �, yn+1 = −1;
the estimated feasible region must be updated to reduce the risk for further infea-

sible evaluations

hn+1(x)|D f
l+1 ⇒ Ω̃n+1

The phase 2 continues until the overall available budget n = N is reached.
In Candelieri (2019) the SVM-CBO approach has been validated on five 2D test

functions for CGO and compared to “BO with penalty”. An overall budget of 100
function evaluations, divided as follows:

• 10 for initialization through Latin hypercube sampling (LHS);
• 60 for feasibility estimation (phase 1)
• and 30 for SMBO constrained to estimated feasible region (phase 2).

In the case of BO with penalty, the same budget has been divided as follows:



80 5 Exotic Bayesian Optimization

• 10 evaluations for initialization (LHS)
• and 90 for BO (that is the sum of budget used for phase 1 and phase 2 in the
proposed approach).

For each independent run, the initial set of solutions identified through LHS is the
same for SVM-CBO and BO with penalty, in order to avoid differences in the values
of the gap metric due to different initialization.

The so-called Gap metric has been used to measure the improvement obtained
along the SMBO process with respect to global optimum f (x∗) and the initial best
solution f (x0) obtained from the initialization step:

Gn =
∣
∣ f (x0) − f

(
x+)∣∣

| f (x0) − f (x∗)|

where f
(
x+)

is the “best seen” up to iteration n. Gap metrics varies in the range [0,
1]. For statistical significance, the gap metrics have been computed on 30 different
runs, performed for every test function and for both SVM-CBO and BOwith penalty.

While gap metric allows for comparing SVM-CBO to BO with penalty, it was
important to introduce another performance measure to quantify how good is the
approximation of the feasible region, along the SMBO process. We have defined a
simple overlap metric as follows:

On

(
�, Ω̃n

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Vol(Ω̃n
⋂

Ω)
Vol(�)

if Vol
(
Ω̃n

)
< Vol(�)

∨(
Vol

(
Ω̃n

⋂
Ω

)

= Vol(�)
∧
Vol

(
Ω̃n

)
= Vol(�)

)

Vol(Ω̃n)
Vol(�)

otherwise

where � and Ω̃n are the actual and the estimated feasible regions, respectively, and
Vol() is the volume of a region. More precisely, the volume of a region is computed
as an approximation by simply generating a grid of points within the search space
and then counting the number of points falling into that region.

According to its definition, the overlap metric can vary in the range [0,∞), where
a good approximation of the feasible region is associated with a value equal to 1
while no overlap is associated with a value equal to 0. Values higher than 1 represent
situations where � ⊂ Ω̃n .

The following set of figures show the gap metric computed for every test func-
tion with respect to the number of function evaluations, excluding the initialization
through LHS. The value of gap metric at iteration 0 is the best seen at the end of the
initialization step (i.e. f (x0) in the gap metric formula). Each graph compares the
gap metric provided by SVM-CBO and BOwith penalty, respectively. Both the aver-
age and the standard deviation of the gap metric, computed on 30 independent runs
for each approach, are depicted. The higher effectiveness of the proposed approach
is clear, even considering the variance in the performances. The end of phase 1 is
represented by a vertical dotted line in the charts; a significant improvement of the
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SVM-CBO’s gapmetric is observed after this phase, in every test case. It is important
to remind that phase 1 of the SVM-CBO is aimed at approximating the unknown
feasible region, while the optimization process only starts with phase 2. Thus, the
relevant shift in the gap metric is motivated by the explicit model of the feasible
region learned in phase 1 (Fig. 5.1).

Finally, the following set of figures show how the overlap metric changes sequen-
tially over the SMBO process. Since 10 initial function evaluations are all used to
provide a first estimate of the feasible region, the x-axis is limited to 90, that is
the portion of the budget allocated for phase 1 and phase 2: during these phases—
particularly during phase 1—the estimate of the feasible region is updated and the
overlap metric changes consequently. The dotted line represents the mean overlap

Fig. 5.1 Comparison of gapmetrics for the proposed SVM-CBO approach versus BOwith penalty,
for each one of the five test functions, respectively



82 5 Exotic Bayesian Optimization

metric and the shaded area represents the standard deviation. The figures show that
the proposed SVM-CBO approach achieves a reasonable overlap (higher than 77%)
between estimated and actual feasible region, already after 30–35 function evalua-
tions. The most difficult case was the one with a feasible region consisting of two
disconnected ellipses, but, before the end of budget, overlap metric achieved anyway
the value of 80% (Fig. 5.2).

SVM-CBOoffers a good estimation of the feasible search space, even for complex
feasible search spaces consisting of disconnected regions. Seldom, the BO process,
in phase 2, suggested infeasible points but, thanks to the update of the estimated
feasible region, it was able to quickly fall close to the optimum, without wasting

Fig. 5.2 Overlap metric measuring the quality of feasibility estimation provided by the proposed
approach, for each one of the five test functions, respectively



5.2 Support Vector Machine—Constrained Bayesian Optimization 83

further function evaluations outside the actual feasible region. Other important con-
siderations relative to significant reduction in computational costs are reported in
Candelieri (2019).

In the following, some explicative pictures relative to how SVM-CBO works are
reported, considering a 2D test function (i.e. Branin) where the unknown feasible
region consists of the inner areas within two disconnected ellipses.

Begin of phase 1: first estimation of the feasible region according to 10 functions
evaluations (i.e. initialization through LHS). The following symbols have been used:

• Solid black line: boundaries of the feasible region (feasible points are inside the
ellipses)

• Dotted blue line: boundaries of the estimated feasible region
• Green points: optima of (original) Branin’s test function; only one of them is
feasible!

• Blue/black points: evaluations resulting feasible/infeasible
• Points within diamonds—black or blue: support vectors of the two classes
• Red-circled points—black or blue: classification errors with respect to the two
classes

• Red asterisk: next point to evaluate.

Following, modifications of the estimated feasible region along with some itera-
tions (i.e. 1, 5, 9 and 10) of phase 1:
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Phase 1 - Iteration #1 Phase 1 - Iteration #5

Phase 1 - Iteration #9 Phase 1 - Iteration #10

Endof Phase 1 and beginning of Phase 2: level sets for the original box-constrained
objective function are also depicted. In the following figure, the estimated and actual
feasible regions are reported.



5.2 Support Vector Machine—Constrained Bayesian Optimization 85

End of Phase 2 (10 function evaluations more): blue triangles are function eval-
uations performed in phase 2. All the triangles are in the estimation of the feasible
region obtained at the end of phase 1. This means that the estimated feasible region
has not been updated during phase 2. The feasible global optimumhas been identified
in phase 2.

SVM-CBO has some limitations which can be relevant in some application con-
text. First, as any other constrained global optimization approach, it is not well-suited
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for dealing with problemswhere infeasible evaluations are “destructive”. This means
that cannot be applied—as is—for solving optimal (online) control of complex indus-
trial systems. This specific kind of problems, known as safe exploration–optimiza-
tion, will be addressed in the following section. Therefore, simulation–optimization
is the setting which might largely benefit from SVM-CBO, such as demonstrated
in the case of pump scheduling optimization in water distribution network by using
the hydraulic simulation software EPANET 2.0. Secondly, since the SVM classi-
fier models the overall boundary of the feasible region, instead of each individual
constraint, a sensitivity analysis cannot be performed. So, the advantage—not only
computational—of using one SVMcould be partially offset, in the case, we are facing
a problem requiring sensitivity analysis.

5.3 Safe Bayesian Optimization

The important difference with respect to CGO is that SafeOpt does not allow—at
least with a given probability—any function evaluations outside the feasible region.
Moreover, in SafeOpt the objective function is not necessarily partially defined:
indeed, a function evaluation is unsafe if the corresponding value of the objective
function violates the safety threshold.

It is important to highlight that: contrary to the rest of this book, where the global
optimization problem is defined as a minimization problem, for safe optimization
we consider a maximization problem, to be coherent with the literature on this topic.
Thus, we want to maximize some black-box expensive function without performing
function evaluations under a given value.

An approach is presented in Sui et al. (2015), which tries to optimize taking
into account the—supposedly known—Lipschitz constant of the objective function.
An extension of this approach is presented in Berkenkamp et al. (2016), where the
SafeOpt algorithm is applied on high-dimensional problems and without using the
information on Lipschitz constant.

The basic problemwas stated as:max
x∈X f (x), subject to the safety constraint f (x) ≥

h, where h is a safety threshold.
A new algorithm, namely StageOpt, has been proposed in Sui et al. (2018),

where the SafeOpt algorithm has been generalized and extended to be more effi-
cient and applicable to a broader class of problems. The goal is to optimize a black-
box objective function f : D → R from noisy evaluations at the sample points
x1, x2, . . . , xn ∈ X . Any point in the sequence, when sampled, must be “safe”,
which means that for each one of m unknown safety functions gi (x) : X → R it lies
above some safety threshold hi ∈ R.

This optimization problem is formulated as max
x∈X f (x) subject to the safety con-

straints gi (x) ≥ hi for i = 1, . . . ,m.
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This is a more general formalization of the original SafeOpt (Sui et al. 2015),
which used only a simple threshold on the value of the objective function, leading to
a single constraint g(x) = f (x) ≥ h.

As in constrained optimization, GPs are used to model both the objective function
and the constraints. An important assumption in StageOpt is that each safety function
gi is Li -Lipschitz continuous, with respect to some metric on X . This assumption
is usually satisfied by the most commonly used kernels (Srinivas et al. 2010; Sui
et al. 2015). Additionally, at least one initial “seed” set of safe points must be given,
denoted as S0 ⊂ X .

Since safe optimization works by safely expanding S0, it is not guaranteed to
identify the global optimizer x∗, specifically in the case that the region around x∗ is
disconnected from S0. The key component of SafeOpt is the one-step reachability
operator:

Rε(S) := S ∪
⋂

i

{
x ∈ X |∃x ′ ∈ S, gi

(
x ′) − ε − Lid

(
x ′, x

) ≥ hi
}

where S is the current set of safe points (initially S), d is a distance measure in R
d

and ε is the absolute error in considering x as safe. This operator allows to identify
the set of all the points estimated as safe depending on the previous evaluations
of f on S. Then, given the maximum number of function evaluations, N , we can
define the subset of X reachable after N iterations from the initial safe seed set S0
as the following: RN

ε (S0) := Rε(Rε . . . (Rε(S)) . . .), N times. Thus, the optimization
problem becomes:

x∗ = argmaxx∈RT
ε (S0) f (x).

StageOpt separates the safe optimization problem into two stages: an exploration
phase in which the safe region is iteratively expanded, followed by an optimization
phase in which Bayesian optimization is applied within the safe region. Similarly to
SVM-CBO, presented for constrained BO, the overall number of function evalua-
tions, N is divided into N1 for phase 1 and N2 for phase 2, with N = N1 + N2. To
map the uncertainty of the GP model at the generic iteration n, StageOpt used the
confidence intervals:

Qi
n(x) :=

[
μi
n(x) ± βnσ

i
n(x)

]

where βn defines the level of confidence. It is easy to note that they correspond to
the upper and lower confidence bound of the GP. In the formula, superscripts index
the corresponding safety functions, while subscripts index iterations, as usual. Then,
to guarantee both safety and progress in safe region expansion, StageOpt uses the
following confidence intervals Ci

n+1(x) := Ci
n(x)

⋂
Qi

n(x), with C
i
0(x) := [hi ,∞] so

that Ci
n+1 are sequentially contained in Ci

n for all n = 0, . . . , N . Upper and lower
bounds of Ci

n can be computed and denoted as uin and l
i
n , respectively.
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The first stage of StageOpt is safe region expansion. An increasing sequence
of safe subsets Sn ⊆ X is computed based on the confidence intervals of the GP
posterior:

Sn+1 =
⋂

i

⋃

x∈Sn

{
x ′ ∈ X |lin+1(x) − Lid

(
x, x ′) ≥ hi

}

At each iteration, StageOpt computes a set of expanders pointsGn while definition
is based on the function:

en(x) :=

∣∣∣∣
∣

⋂

i

{
x ′ ∈ X\Sn|uin(x) − Lid

(
x, x ′) ≥ hi

}
∣∣∣∣
∣

which (optimistically) quantifies the potential enlargement of the current safe set
after sample a new decision x . Then, Gn is defined as follows:

Gn = {x ∈ Sn : en(x) > 0}

Finally, at each iteration StageOpt selects the expander with the highest predictive
uncertainty, given by xn+1 = argmax

x∈Gn

uin − lin .

The second stage of StageOpt is BO applied within the safe region identified at
the end of the first stage. GP-UCB is used as acquisition function.

In Sui et al. (2018) is illustrated a graphical comparison of the behaviour of
SafeOpt (Berkenkamp et al. 2016; Sui et al. 2015) and StageOpt starting from the
same safe seed point. The figure is reported as follows (Fig. 5.3).

Initially, both algorithms select the same points, as they use the same definition
of safe expansion. However, StageOpt selects noticeably better optimization points
than SafeOpt due to the UCB criterion.

In real applications, it may be difficult to compute an accurate estimate of the
Lipschitz constants, which may have an adverse effect on the definition of the safe
region and its expansion dynamics. One might use one of the solutions for updating
L , outlined in Chap. 2, like DIRECT or MultL (Sergeyev and Kvasov 2017).

Within the safe optimization framework, one can use a modified version of
SafeOpt that defines safe points using only the GPs (Berkenkamp et al. 2016). This
modification can be directly applied to StageOpt as well. This alternative algorithm
is structured as follows:

1. a point x̄ is considered safe if the lower confidence bound of each safety GPs lies
above the respective threshold, that is li (x̄) > hi

2. a safe point x ′ is considered as an expander depending on an optimistic measure
of the expansion from x ′. More practically, for each constraint a “temporary” GP
is trained on the observations performed so far and an unsafe point x which rep-
resents an “artificial” evaluation: the associated value of the constraint function
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Fig. 5.3 Evolution of GPs in SafeOpt and StageOpt for a fixed safe seed; dashed lines correspond
to the mean and shaded areas to ±2 standard deviations. The first and third rows depict the utility
function, and the second and fourth rows depict a single safety function. The utility and safety
functions were randomly sampled from a zero-mean GP with a Matern kernel and are represented
with solid blue lines. The safety threshold is shown as the green line, and safe regions are shown
in red. The red markers correspond to safe expansions and blue markers to maximizations and
optimizations. We see that StageOpt identifies actions with higher utility than SafeOpt. (Source:
Sui et al. 2018)

in x is given by the upper confidence bound of the “current” GP (which is trained,
contrary to the “temporary” one, only on the observations performed so far). If
the lower bound of all the “temporary” GPs, computed at x is greater than the
associated safety threshold, then x results in a previously unsafe point which can
be considered safe with respect to the optimistic expansion from x ′. Safe points
x ′ that provide an optimistic expansion are considered as expanders.

Wemust remark that nobody, at our knowledge, has considered the safe optimiza-
tion problem subject to both the “usual” constraints ci (x) and the safety constraints
gi (x). The main difficulty in this challenge is that evaluating a point that is unsafe
- in SafeOpt - implies the termination of the optimization process while evaluating
an infeasible point - in CGO - only requires to update the estimate of the feasible
region.
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5.4 Parallel Bayesian Optimization

Performing function evaluations in parallel is a conceptually appealing way to solve
optimization problems in less time that would be required by a sequential approach.
Some global optimization methods, like Pure Random Search, are “embarrassingly
parallel”: this is not the case of BO, which is an intrinsically sequential process, so
that its parallelization raises important design issues.

The main distinction between the parallel methods proposed in literature are
between synchronous and asynchronous approaches. With respect to the first class
ofmethods, amulti-point version of EI, called q-EI has been proposed inGinsbourger
et al. (2008), defined as:

qEI
(
xn+1, . . . , xn+q

) = E

[
max

{(
min(y) − yn+1

)+
, . . . ,

(
min(y) − yn+q

)+}]

where y = {y1, . . . , yn} and (·)+ returns 0 if the argument is less than 0, otherwise
returns the argument itself. This means to deal with a minimum of dependent ran-
dom variables: the exact joint distribution of the q unknown function evaluations,
yn+1, . . . , yn+q , conditioned on previous observations through the currentGP is given
by:

(
yn+1, . . . , yn+q |D1:n

) ∼ N ((
μ(xn+1), . . . , μ(xn+q)

)
, 
q

)

where 
q is the covariance matrix updated with the q points xn+1, . . . , xn+q .
This synchronous parallelization approach is aimed at measuring the joint poten-

tial of a given additional set of q points to evaluate. The main idea is to consider q
synchronous processors and to maximize q-EI at each iteration; then the GP model
is updated with the entire set of new observations. However, as stated in Ginsbourger
et al. (2008), solving the maximization of q-EI can be unaffordable when both the
number of dimensions and the number of points q increase.

Computational approaches for parallelizing knowledge gradient (KG) have been
also proposed (Wu and Frazier 2016). The parallel KG, namely q-KG, is Bayes-
optimal for minimizing the minimum of the predictor of the GP if only one decision
is remaining. The q-KG algorithm will reduce to the parallel EI algorithm in the
noise-free setting and the final recommendation is restricted to the previous sampled
points. The basic issue is that computing q-KG and its gradient is very expensive.
Analogously to q-EI, the aim of q-KG is to identify a batch of q points to evaluate,
basically in a synchronous setting. Another interesting approach, namely “portfolio
allocation”, has been already discussed in Chap. 4.

To address the inefficiency due to the synchronization, a new asynchronous
approach, based on EI, is proposed in Ginsbourger et al. (2011). This approach,
namely expectation of EI (EEI), focuses on the case of asynchronous parallel BO,
where a new function evaluation is performed before all the other processors have
produced their result. At every time, observations in D1:n are divided in three dif-



5.4 Parallel Bayesian Optimization 91

ferent groups: (i) already evaluated, (ii) currently under evaluation (aka “busy”) and
(iii) candidate points for forthcoming function evaluations. The main issue is how to
take busy points into account within the GP model.

The issue on how to inject partial knowledge from an ongoing evaluation at a
busy point into the EI criterion, without knowing the corresponding actual value of
the function, is basically solved probabilistically:

EEI
(
.; xbusy) =

∫
EI

(
.; xbusy, ybusy)pdf(Y (

xbusy
)|D)

ybusydybusy

where pdf
(
Y

(
xbusy

)|D)
is the probability density function of the random variable

Y
(
xbusy

)
conditional on the function evaluations performed so far and stored in

D = D1:n . It is important to highlight that E I
(
.; xbusy, ybusy) depends on ybusy

in a quite complicated non-linear way, without any chance to have an analytical
expression for EEI, even if Y

(
xbusy

)|D is known and simple. Therefore, EEI is
approximated by averaging on a sufficient number of ybusy sampled according to the
Y

(
xbusy

)|D.
A straightforward way of getting statistical estimates of EEI is based on Monte

Carlo sampling. The EEI approach relies on conditional simulations: it proved to be
a sensible criterion, but practically not straightforward to optimize.

Finally, in Kandasamy et al. (2018) a parallel version of Thompson sampling (TS)
is proposed. A theoretical analysis proves that a direct application of the sequential
TS algorithm, presented in Chap. 3, in either synchronous or asynchronous paral-
lel settings, offers a powerful result: performing n evaluations distributed among q
workers is equivalent to performing n evaluations in sequence. Experimental results
on simulation–optimization problems and hyperparameters optimization of a con-
volutional neural network prove that asynchronous TS outperforms many existing
parallel BO algorithms.

5.5 Multi-objective Bayesian Optimization

Multi-objective optimization is characterized by a set of objective functions to be
minimized fi : X → R, i = 1, ..,m. The solution to this kind of problem is not
unique and defined as x ∈ X : �x̄ ∈ X , such that f (x̄) ≺ f (x), where symbol ≺
denotes the dominance relation, that is:

∀i fi (x) ≤ fi (x̄) and ∃ j s.t. f j (x) < f j (x̄)

This allows to identify the Pareto front, defined by the values of different objective
functions and the set of corresponding dominant solutions x ∈ X .

In BO, a typical approach is to model every fi through a Gaussian process, GPi ,
with i = 1 . . . .,m. In Emerich and Klinkerberg (2008), the EI acquisition function
has been generalized to the multi-objective case by considering the volume of the
dominated region: the improvement provided by a new evaluation is the increase in
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the dominated volume. This extension of EI to the multi-objective case is also known
as expected hyper-volume improvement (EHVI).

Given the n function evaluations performed so far, with values
f (xi ) = ( f1(xi ), . . . , fm(xi )), i = 1, . . . , n, we define the set Hn =
{y ∈ B, ∃i ≤ n, f (xi ) ≺ y}, where B ⊂ R

m is B = {y ∈ R
m; y ≤ ȳ} with

ȳ ∈ R
m is introduced to guarantee that Hn is finite. Thus, Hn is the subset of B

whose points are dominated by the previous evaluations.
Finally, the improvement provided by a new evaluation can be measured as:

I (xn+1) = |Hn+1| − |Hn|, where |·| denotes the volume in R
m .

Since Hn+1 ⊃ Hn , the value I (xn+1) is the increase in the volume of the dominated
region (Fig. 5.4).

Finally, maximizing EHVI means maximizing the expected improvement on
I
(
xn+1

)
and it can be analytically defined as follows:

EHVI(x) =
∫

B\Hn

Pn(ξ(x) ≺ y)dy

where Pn is the probability conditioned on x1, ξ(x1), …, xn , ξ(xn), with ξ =
(ξ1, . . . , ξm) is the vector of GPs modelling the corresponding objective functions
f = ( f1, . . . , fm).
In Feliot et al. (2017), the EHVI has been extended to the constrained multi-

objective optimization case and to the case in which the user expresses preference-
order constraints (Abdolshah et al. 2019) The EHVI acquisition function is now

Fig. 5.4 Example of an
improvement of the
dominated region. The
regions dominated by y1 and
y2 are represented in shaded
areas, with darker shades
indicating overlapping
regions. The hatched area
corresponds to the
improvement of the
dominated region resulting
from the observation of y3.
(Source Feliot 2017)
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considered as the dominant approach and some implementations are available in
Matlab and the R packages “Gpareto” and “mlrMBO” (Horn 2015).

The EHVI acquisition function has been also extended in Wada and Hinu (2019)
to deal with multi-point search.

An interesting application of multi-objective optimization to BO has been pro-
posed in Calvin and Zilinskas (2019), where the acquisition of the next point to eval-
uate is defined as a bi-objective optimization problem. In this paper, it is shown that
two well-known acquisition function, EI and PI, can be framed into the bi-objective
approach, whose the objectives areμ(x) and σ(x) of a probabilistic surrogate model.

5.6 Multi-source and Multi-fidelity Bayesian Optimization

Function evaluations in simulation-based experiments or black-box optimization are
usually expensive. The basic idea in multi-fidelity is that, in the initial stages of
the optimization, “cheaper” evaluation of the objective function might yield anyway
considerable information while reducing the computational cost. In this framework,
one is considering a collection of information sources, denoted by f (x, s), where s
represents a specific level of “fidelity” of the source. Usually, the lower s the higher
the fidelity, with f (x, 0) corresponding to the original objective function (Frazier
2018). Decreasing the fidelity decreases the accuracy of the approximation on f (x),
leading to a reduction in the cost of evaluation but to a poorer accuracy in the estimate
of the objective function.

In multi-fidelity, the aim is min
x∈X f (x) but observing f (x, s) at a sequence of

points and fidelities {(xi , yi )}1:n with a total cost lower than a given budget, that is∑n
i=1 c(sn) ≤ B, where c(sn) is the cost to evaluate at fidelity sn and B is the given

available budget.
Acquisition functions may present some limitations in the development of multi-

fidelity BO. Indeed, while KG, ES and PES can be applied, as shown in Poloczek
(2017), EI is useless because evaluating f (x, s) for s �= 0 never offers an improve-
ment in the best seen (i.e. EI = 0 for s �= 0), leading to the selection of the highest
fidelity source only (Frazier 2018).

Multi-fidelity optimization has been also considered for the optimization of
machine learning algorithms (Klein et al. 2017; Kandasamy et al. 2019). The prob-
lem of hyperparameter tuning is also considered in Sen et al. (2018) which proposes
to train the algorithm on a subsampled version of the whole dataset.

Multi-fidelity optimization has also been gaining a growing importance in several
applications also in analogue circuit synthesis (Zhang et al. 2019) and engineering
design (Linz et al. 2017) who propose an optimization algorithm that guides the
search for solutions on a high-fidelity model through the approximation of a level set
from a low-fidelity model. Using the probabilistic branch-and-bound algorithm to
approximate a level set for the low-fidelity model, they are able to efficiently locate
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solutions inside of a target quantile, and therefore reduce the number of high-fidelity
evaluations needed in searches.

An interesting application of multi-fidelity BO is presented in Perdikaris et al.
(2016) for model inversion in hemodynamics and biomedical engineering (Costabal
et al. 2019). A comprehensive multi-fidelity framework, in the context of bandit
problems, has been proposed inKandasamy et al. (2017)where the objective function
and its approximations are sampled from a GP. Another interesting work is reported
in Ghoreishi and Allaire (2018) which proposes amulti-source information approach
for the constrained case.
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Chapter 6
Software Resources

This chapter is aimed to introduce frameworks developed in the Bayesian optimiza-
tion (BO) community describing many aspects of these tools, where it is possible to
retrieve the tool, inwhich language and version are available. Section 6.1 is devoted to
open source software, while industrial BO as a service solutions are analysed in 6.2.
Section 6.3 is devoted to BO solutions specifically developed for hyperparameters
optimization of machine learning algorithms. Section 6.4 presents relevant sources
for test problems, both in terms of test functions and generators. Finally, Sect. 6.5
reports some relevant non-Bayesian global optimization software. The software in
this section refers, basically, to the box-constrained case, with the exception of Pre-
dictive Entropy Search with Constraints (PESC) which is included in the open source
package Spearmint (https://github.com/HIPS/Spearmint/tree/PESC).

6.1 Open Source Software

In BO community, there are currently a variety of frameworks that implement the
sequential optimization process through Bayesian optimization. Several of them
use different combinations between the surrogate model and the acquisition func-
tion. However, most of them adopt Gaussian process (GP) as a surrogate model
inside of optimization process, with several acquisition functions as probability
of improvement (PI), expected improvement (EI), upper-confidence bound (UCB),
lower-confidence bound (LCB) and others.

mlrMBO (https://github.com/mlr-org/mlrMBO) (Bischl et al. 2017) is a flexible
and comprehensive R toolbox for BO. It is designed for both single and multi-
objective optimization with mixed continuous, categorical and conditional parame-
ters.

More advanced features are implemented such as parallelization,multi-point batch
proposal and visualization of optimization improving.

mlrMBO is designed in amodular style, so each component can easily be replaced
or adapted to specific use cases. Indeed, it is possible to use the main regression
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models inside the machine learning library R namedmlr, such as GP, Random Forest
(RF). It is also possible to define from scratch a new acquisition function and change
the optimizer.

Spearmint (https://github.com/HIPS/Spearmint), with an older version under
a different licence (available at https://github.com/JasperSnoek/spearmint), is a
Bayesian optimization library written in Python 2.7. Spearmint is the result of a
collaboration primarily between machine learning researchers at Harvard University
and the University of Toronto. It was implemented by the founders of the Bayesian
optimization start-upWhetlab, which was acquired by Twitter in 2015. This tool uses
as a surrogate model only GP and adopts EI as an acquisition function.

Metrics Optimization Engine (MOE) (https://github.com/Yelp/MOE) is a
Bayesian optimization librarywritten in C++with a Python 2.7wrapper that supports
GPU-based computations for improved speed. It was developed at Yelp and supports
onlyGP surrogatemodelwith just EI as an acquisition function.Another versionCor-
nell MOE (https://github.com/wujian16/Cornell-MOE), developed at Cornell Uni-
versity, is built onMOE, and it is easier to install and support parallel optimization and
optimization with derivatives. Indeed, this new version has several new acquisition
functions that take into account the derivative information. In addition to EI acqui-
sition function, derivative information EI (d-EI), batch knowledge gradient (d-KG)
and without derivative information knowledge gradient (q-KG) are implemented.

GPyOpt (https://github.com/SheffieldML/GPyOpt) is a Bayesian optimization
library written in Python, for both versions 2 and 3, implemented and maintained by
the machine learning group at Sheffield University. The initial package was based
on top of the Gaussian process regression library GPy (https://sheffieldml.github.io/
GPy/) written andmaintained for the same group of BO tool. Currently, the surrogate
models available in this package are GP, warped GP and RF. The main acquisition
functions implemented are PI, EI, LCB and Entropy Search (ES).

pyGPGO (https://github.com/hawk31/pyGPGO) (Jiménez and Ginebra 2017) is
a flexible BO library written in Python > 3.5 and implemented in a modular fashion.
The software was developed by the collaboration between Universitat Pompeu Fabra
andUniversitat Politècnica deCatalunya.With this library, it is possible to use several
surrogate models that include GP, RF, BoostedTrees (BT), t-Student Process (tSP)
and t-Student Process MCMC (tSPMCMC). It is also possible to define and add a
novel surrogate model for this library. The acquisition functions available are PI, EI,
UCB and ES.

pyBO (https://github.com/mwhoffman/pybo) (Hoffman and Shahriari 2014) is a
BO library written in Python, for both version 2 and 3, by Matthew W. Hoffman
and Bobak Shahriari (https://github.com/mwhoffman/pybo). It uses only a GP as
a surrogate model and implements several acquisition functions, which are PI, EI,
UCB, Thompson sampling (TS).

Sequential Model-based Algorithm Configuration (SMAC) (http://www.cs.ubc.
ca/labs/beta/Projects/SMAC/) (Hutter et al. 2011) is a library for optimizing
algorithm hyperparameters written Java. Currently, the original version was re-
implemented in Python 3 with name SMAC3 (https://github.com/automl/SMAC3).
This library is developed by theAutoMLGroup of theUniversity of Freiburg (https://
www.automl.org/automated-algorithm-design/algorithm-configuration/smac/). For
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the surrogate model, this library includes GP (from George package), RF (from
pyrfr package) and EI, PI and LCB for acquisition functions.

RobustBayesianOptimization (RoBo) (https://github.com/automl/RoBO) (Klein
et al. 2017) is a library written in Python 3. This library is implemented and main-
tained form Machine Learning Lab from the University of Freiburg (https://ml.
informatik.uni-freiburg.de/). Its structure is a modular and that allows to easily add
and exchange components in Bayesian optimization such as different surrogate mod-
els and acquisition functions. For the surrogate model, this library includes GP (from
George package), RF (from pyrfr package) and a native Bayesian neural networks
implementation. Also, the software for acquisition function includes EI, PI, LCB and
information gain. (https://www.automl.org/automl/robo/).

Random Embeddings Bayesian Optimization (REMBO) (https://github.com/
ziyuw/rembo) is a MATLAB package for applying Bayesian optimization to highly
dimensional problems. This library offers only GP as a surrogate model and UCB as
acquisition function.

Scikit-Optimize (https://scikit-optimize.github.io/) is a modular BO library writ-
ten in Python, for both versions 2 and 3, by the same authors of the most
famous Python machine learning library named Scikit-Learn (https://scikit-learn.
org/stable/). Based on the same prefix on its name, each surrogate model that can be
used inside of this package is wrapped on Scikit-Learn library, so is possible to use
most common surrogate models including GP, RF and Gradient Boosted Regression
Trees (GBRT).

fmfn/BayesianOptimization (https://github.com/fmfn/BayesianOptimization) is
a BO library written in Python, for both version 2 and 3. This package uses only GP
as a surrogate model using the Scikit-Learn library (https://scikit-learn.org/stable/)
(Pedregosa et al. 2011) andnatively implemented inside themost commonacquisition
functions that are PI, EI and UCB. A simple tutorial (http://philipperemy.github.io/
visualization/) is provided to show how to use this library.

GPflowOpt (https://github.com/GPflow/GPflowOpt) (Knudde et al. 2017) is a
Python package for BO design goals focus on a framework that can be extended with
custom acquisition functions and models. GPflowOpt includes some standard acqui-
sition functions as PI, EI, LCB. Besides, also implements the max-value entropy
search (MES) (Wang and Jegelka 2017). Finally for BO surrogate model, this frame-
work uses GPflow (https://github.com/GPflow/GPflow) Python library for the GP
implementations, based on using the TensorFlow library.

Auto-Keras (https://github.com/jhfjhfj1/autokeras/https://autokeras.com/) is an
open source Python 3.6 library for automated machine learning (AutoML). It is
developed by DATA Lab at Texas A&M University and community contributors.
Auto-Keras provides functions to automatically search for architecture and hyper-
parameters of deep learning models with Keras framework.

Hyperopt (https://github.com/hyperopt/hyperopt) (Bergstra et al. 2015) is a
Python library for serial and parallel optimization over awkward search spaces,
which may include real-valued discrete and conditional dimensions. Currently,
two search methods are implemented in this library: Random Search and
Tree Parzen Estimator (TPE). In addition, there is a version of this package,
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named Hyperopt-sklearn (https://github.com/hyperopt/hyperopt-sklearn) special-
ized to optimize the hyperparameters of models of Scikit-Learn machine learning
library. In the future, GP and RF will be implemented as surrogate models. A sim-
ple tutorial (https://towardsdatascience.com/an-introductory-example-of-bayesian-
optimization-in-python-with-hyperopt-aae40fff4ff0) is provided to show how to use
this library.

bayesopt (https://it.mathworks.com/help/stats/bayesian-optimization-workflow.
html#bva8nmd-1) is a MATLAB function available only inside Statistics and
Machine Learning Toolbox in MATLAB environment. Primarily target to optimize
regression and classification models, it can also be used to optimize different objec-
tive functions. For the surrogate model, the package provides just GP, while there are
some acquisition functions, such as EI, expected improvement plus, LCB and PI.

BayesOpt (https://github.com/rmcantin/bayesopt—https://bitbucket.org/rmcant
in/bayesopt/) (Martinez-Cantin 2014) is a library written in C++ extremely effi-
cient, portable and flexible. It offers common interfaces for several programming
languages C, C++, Python, MATLAB and Octave. The surrogate model, available in
this package, is only GP, and there are PI, EI, LCB and TS as acquisition functions.

PARyOpt Parallel Asynchronous Remote Bayesian Optimization (PARyOpt)
(https://bitbucket.org/baskargroup/paryopt) (Pokuri et al. 2018) is a Python 3.5 pack-
age for Bayesian optimization that also implements a parallel asynchronous version
of this efficient global optimization method. Besides, with this library is possible
to run the parallel optimization process in local, in remote or in their combination.
This package implements only GP as a surrogate model, and it utilizes the common
acquisition functions as PI, EI, LCB and UCB.

Pyro (https://github.com/pyro-ppl/pyro) (Bingham et al. 2019) is a probabilistic
programming language (PPL) developed at Uber AI Labs for implementing proba-
bilistic models. It is a library written in Python 3 that can perform Bayesian opti-
mization using GP as a surrogate model, and it is possible to implement a custom
acquisition function.

ProBO (https://github.com/willieneis/ProBO) (Neiswanger et al. 2019) is another
software environment based on probabilistic programming specific for BO. Proba-
bilistic programs aremodel tools that allowflexiblemodel composition incorporating
prior information and enabling automatic inference. Beyond the usual GP, ProBO
allows to choose from a library including latent factor models, deep Bayesian net-
works, hierarchical regression models and used them in BO.

G3PO (Github missing) (Lavin 2018) is an open source library written in C++
that uses a combination of Bayesian optimization and probabilistic programming.
Inside of this library is available only as a modified GP, as a surrogate model, that
allows embedding of prior information and only EI as acquisition function.

Probabilistic Harvard Optimizer Exploring Non-Intuitive Complex Surfaces
(PHOENICS) (https://github.com/aspuru-guzik-group/phoenics) (Häse et al. 2018)
is an open source Python 3.6 library that combines Bayesian optimization using
Bayesian kernel density estimation (BKDE) as a surrogate model.

Sherpa (https://github.com/sherpa-ai/sherpa) (Hertel et al. 2018) is an open source
Python 3 library for hyperparameters optimization using a variety of global opti-
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mization methods such as Random Search, Grid Search, Local Search, Bayesian
Optimization and Population-Based Training (PBT). In specific for Bayesian opti-
mization process, this library wraps the unique surrogate model GP from GPyOpt
library and uses only EI as an acquisition function. This library has a graphical
interface for seeing the improvements during the optimization process. The latest
documentation is available here (https://parameter-sherpa.readthedocs.io/en/latest/),
and there are also available some useful tutorials of using this library (https://www.
youtube.com/watch?v=L95sasMLgP4&feature=youtu.be).

Fast LineAr SearcH (FLASH) (Nair et al. 2018; Zhang et al. 2016) is an open
source Python 2.7 and 3 library for AutoML. In specific, this package performs
a two-layer Bayesian optimization, which first uses a parametric model to select
the most promising algorithms, then computes a nonparametric model to fine-tune
hyperparameters of the promising algorithms on a variety of dataset. The library has
GP and RF as surrogate models and implements EI and expected improvement per
second (EIPS) (Snoek et al. 2012) as acquisition functions.

COMmon Bayesian Optimization Library (COMBO) (https://github.com/
tsudalab/combo) is an open source Python 2.7 library for global optimization. This
package allows optimizing problemwith high dimensionality by Bayesian optimiza-
tion method. It implements EI, PI and TS as acquisition functions and GP as a
surrogate model.

Dragonfly (https://github.com/dragonfly/dragonfly) (Kandasamy et al. 2019) is
an open source Python (2.7 and 3.5) library for scalable and robust BO specific
for hyperparameters optimization. This library allows optimizing efficiently high-
dimensional problems exploiting the additive structure of the objective function,
and, adopts multi-fidelity optimization and parallelization techniques. Currently, GP
is the unique surrogate model implemented, and the following acquisition functions
are available in this library: PI, EI, UCB, top-two expected improvement (TTEI),
TS, Add-GP-UCB. Also, a comparison between open source Bayesian optimization
implementations is available on this tutorial: http://ash-aldujaili.github.io/blog/2018/
04/01/coco-bayesopt/.

6.2 Bayesian Optimization as a Service

In addition to the libraries introduced previously, there are other libraries, always
related to theBayesianoptimizationparadigm,which allowsoptimizing theparticular
objective function through the connection to a remote optimization service using a
cloud distributed computational power. With these libraries, the user, who has no
advanced knowledge in optimizationmethods, can adopt a single or a combination of
very sophisticated searchmethods. Indeed, for the majority of the following software
tools, the user is blind to the methods and architecture of each optimization system
and uses it through an API.

SigOpt (http://sigopt.com) is an example of “Black-Box Optimization as a Ser-
vice”. The core of this service was initially created for a project named MOE by the
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Cornell University. The user has to interact through REST API in several languages
like Java, R and Python with the most updated version of each language. The main
idea behind the optimization service is that the user is totally blind to the computa-
tional architecture infrastructure which uses with Bayesian optimization process. To
use this service, the user has to subscribe an Academia or Enterprise account.

OPTaaS is another black-box optimization service accessible via API in R and
Python languages, published by the companyMind Foundry. It deals with any type of
parameters (e.g. continuous, discrete, categorical, conditional). To use this service,
the user has to subscribe an Academia or Commercial account.

A simple tutorial (https://towardsdatascience.com/how-to-visualize-black-box-
optimization-problems-with-gaussian-processes-a6128f99b09d) is provided to show
how to use this optimization service.

VUKU (https://www.prowler.io/) is another example of “Black-BoxOptimization
as a Service”. This service is produced by PROWLER.io company. The structure of
this optimization service is more complex respect to above systems because uses in
the same optimization process multiple decision models.

SVM-CBO, presented in Chap. 5, is provided as a service by OAKSOptimization
AnalyticsKnowledge andSimulation (OAKS) (http://www.oaks.cloud/). SVM-CBO
addresses black-box optimization in presence of simulation optimization, partially
defined functions and non-computable domains.

6.3 Bayesian Optimization-Based Services
for Hyperparameters Optimization

SAS-Autotune (Koch et al. 2018) is a framework implemented in a particular SAS
language named PROC CAS (Cloud Analytic Services—https://documentation.sas.
com/?docsetId=proccas&docsetTarget=p09ouj759e7ysyn1b0ws8f0ho9e5.htm&
docsetVersion=3.1&locale=en) which is based on common algebraic specification
language (CASL). The system is designed to perform optimization of general
nonlinear functions over both continuous and integer variables, but it is mainly
specialized in optimizing hyperparameters in machine learning models. The system
can be run in a single machine mode or in distributed mode. The problem to optimize
could be single- or multi-objective.

This system combines a number of specialized sampling and search methods that
are very effective in tuning machine learning models. The search method used by
SAS-Autotune is genetic algorithm (GA), generating set search (GSS), Bayesian
optimization, DIRECT, Nelder-Mead and DIRECT hybrid.

Amazon SageMaker Automatic Model Tuning (https://aws.amazon.com/it/
blogs/aws/sagemaker-automatic-model-tuning/) is a service offered by Amazon for
its machine learning platform Amazon SageMaker. The user can use this service
through SageMaker Python SDK, which gives to the user the API access to service
of hyperparameters tuner on Amazon cloud platform.
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Google Vizier (https://ai.google/research/pubs/pub46180) (Golovin et al. 2017)
is a Google internal service for performing black-box optimization that has become
the parameter tuning of the engine at Google Cloud Platform (GCP). In specific,
this framework is used to optimize many of Google machine learning models and
other systems. Also, it constitutes the main capabilities core of HyperTune, a hyper-
parameter tuner in Google Cloud Machine Learning Engine on GCP. The system is
available in a “blind way”, as a service, to users that use Machine Learning Engine
on GCP, currently is possible to have a local open source version of Google Vizier
on GitHub written in Python 2.7 (https://github.com/tobegit3hub/advisor).

Internally, this cloud service or GitHub library version is able to optimize an
objective function with several methods including the most common methods: Grid
Search, Bayesian optimization, Random Search and Metaheuristic approaches as
Simulate Anneal, Covariance Matrix Adaptation Evolution Strategy (CMAES) and
Multi-objective Covariance Matrix Adaptation Evolution Strategy (MOCMAES)
(Tables 6.1 and 6.2).

6.4 Test Functions and Generators

In this section, we will introduce some benchmark functions (with surveys and
sites/repositories) reported in the literature of optimization community and gen-
erators for test functions that are used to evaluate the capacity of the optimization
framework/tool in terms of efficacy and effectiveness.

6.4.1 Survey and Site/Repository of Test Functions

In Jamil and Yang (2013), a rich set of 175 benchmark functions are described for
unconstrained optimization problems with diverse properties in terms of modality,
separability, and valley landscape. Besides, in Suganthan et al.( 2005) are reported 28
benchmark functions divided into three categories: unimodal functions, multimodal
function and composition functions.

For each test function, their implementations are available for R (https://cran.r-
project.org/web/packages/cec2013/cec2013.pdf), MATLAB, C and Java (http://web.
mysites.ntu.edu.sg/epnsugan/PublicSite/Shared Documents/Forms/AllItems.aspx)
languages.

Virtual Library of Simulation Experiments: Test functions and datasets are a
site/repository (https://www.sfu.ca/~ssurjano/optimization.html) that reports a suite
of functions and datasets for evaluating new approaches to the design and analysis
of experiments involving computer models. In specific, there is a section inside of
this repository dedicated only for the optimization problem, where benchmark func-
tions are grouped according to similarities in their significant physical properties and
shapes. For each test function a detailed description is provided as well as implemen-

https://ai.google/research/pubs/pub46180
https://github.com/tobegit3hub/advisor
https://cran.r-project.org/web/packages/cec2013/cec2013.pdf
http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/Shared
https://www.sfu.ca/%7essurjano/optimization.html
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Table 6.2 Industrial BO tools

Name tool Licence Language version

Sigopt Commercial/academic R, Python, Java

Google Vizier Commercial (Python 2.7 for open source
version)

OPTaaS Commercial/academic R, Python

SAS-Autotune Commercial PROC CAS

Amazon SageMaker Automatic
Model Tuning

Commercial Python

VUKU Commercial/academic(?) –

tations in both MATLAB and R. The website is in continuous updating and more
functions are being added in the next future.

Global Optimization: Methods and codes are a site/repository (http://www-
optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm) that
reports a suite of test functions for unconstrained and constrained global optimiza-
tion. There are detailed descriptions and implementation in MATLAB language of
these benchmark functions. The repository maintainer is Dr. Abdel-Rahman Hedar
from Computer Science and Information Sciences department of Assiut University
Egypt.

globalOptTests (https://cran.rstudio.com/web/packages/globalOptTests/
globalOptTests.pdf) is a R package that maps many well-known test functions
for unconstrained global optimization from GAMS notation to R functions. This
repository/package was proposed in 2014 in (Mullen 2014).

benchfunk (https://github.com/mwhoffman/benchfunk) is a Python 3 package
that provides a set ofmost common test functions (e.g. Sinusoidal, Branin,Hartamann
3D/6D, Goldestein) that can be used to benchmark global optimization and Bayesian
optimization algorithm.

optimization–evaluation (https://github.com/keit0222/optimization-evaluation)
is a Python 3 package that provides a set of benchmark functions divided
into unimodal functions, with single and multiple global minimum, and multi-
modal functions with a single global minimum (https://qiita.com/tomitomi3/items/
d4318bf7afbc1c835dda#ackley-function).

DEAP benchmarks (https://github.com/deap/deap) (De Rainville et al. 2012)
is a novel evolutionary computation framework written in Python 3 that has
inside a benchmarks test functions module (https://deap.readthedocs.io/en/master/
api/benchmarks.html#). This module contains a single and multi-objective test func-
tions implementations.

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
https://cran.rstudio.com/web/packages/globalOptTests/globalOptTests.pdf
https://github.com/mwhoffman/benchfunk
https://github.com/keit0222/optimization-evaluation
https://qiita.com/tomitomi3/items/d4318bf7afbc1c835dda#ackley-function
https://github.com/deap/deap
https://deap.readthedocs.io/en/master/api/benchmarks.html
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6.4.2 Test Functions Generators

GKLS (Gaviano et al. 2003) is a generator of several test functions, providing the
capability to modulate the “difficulty” of the global optimization problem. The cre-
ators of this generator, from which the name derives, areGaviano M.,Kvasov D. E.,
LeraD.,SergeyevY.D.By this generator, it is possible to generate non-differentiable,
continuously differentiable and twice continuously differentiable classes of test func-
tions for multi-extremal multidimensional box-constrained global optimization. For
each test class, it is possible to define 100 functions with arbitrary dimensions. Test
functions are generated by defining a convex quadratic function systematically dis-
torted by polynomials in order to introduce local minima. Besides the position of the
global minimum, this generator also defines the exact local minimum positions of the
test function. The parameters that user has to define for generating a test function are
five as following: problem dimension, number of local minima, the value of global
minimum, the radius of the attraction region of the global minimizer and the distance
from the global minimizer to the vertex of the quadratic function.

GlobalConstrained optimization problemGenerator (GCGen) (Gergel et al. 2019)
is a generator of constrained test functions. With GCGen, the modified GKLS func-
tion was used as the objective function, and the constraints were the exterior of the
balls with given centres and radii. For generating the test functions, in addition to
the traditional GKLS inputs (e.g. number of dimensions, the global minimum value,
the radius of the attraction region of the global minimum, etc.), one needs to provide
the number of constraints and the feasible fractions on the function’s domain. This
generator is available as open source at Github. (https://github.com/UNN-ITMM-
Software/GCGen).

6.5 Non-Bayesian Global Optimization Software

Since this topic is outside the focus of this book, what follows is just an indication
of well-known and widely used global optimization software.

• Lipschitz Global Optimizer (LGO) suite can handle in principle “all” models
defined by merely continuous or Lipschitz(-continuous) functions. The optimiza-
tion model to solve can be handed over to LGO as “black box”, without the need
for explicitly given model functions. This key feature makes LGO applicable in a
large variety of contexts (https://www.pinterconsulting.com/).

• BARON (https://minlp.com/baron) is a commercial global optimization software
offering deterministic guarantee for global optimality of nonlinear and mixed-
integer nonlinear problems. BARON is a general purpose solver that implements
a branch-and-reduce algorithm for solving mixed-integer nonlinear optimization
problems. Purely continuous, purely integer and mixed-integer nonlinear prob-
lems can be solved with the software. BARON can be used in combination with
ALAMO (https://minlp.com/alamo) which provides a machine learning-based
surrogate model.

https://github.com/UNN-ITMM-Software/GCGen
https://www.pinterconsulting.com/
https://minlp.com/baron
https://minlp.com/alamo
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Chapter 7
Selected Applications

It has been already pointed out in the preface that BO has been gaining increasing
importance in widespread and ubiquitous application domains.

This chapter is divided into two sections. Section 7.1 gives a brief overview of
several application domains where BO has enabled significant improvements over
previous design andmanagement tools. The choice of domains is driven by relatively
“unconventional” and not widely known applications. The authors are aware of the
arbitrariness and incompleteness of the choices given also the constraint on the length
of the chapter and that even very important points might have been unwillingly
skipped. The comments about software applications are intentionally short given
that the theme is dealt with also in other parts of the book.

Section 7.2 is devoted to a specific analysis of the BO applications to “Smart
water”. The authors have beenworking on this subject in someEuropean and national
projects. The issues dealt with in this section are common to many problems in
design and management of networked infrastructures like transportation, energy, etc.
which all require failures localization, and more generally the evaluation of network
resilience, demand forecasting and the integration of simulation and optimization
with multi-sourced data. In the reference problem of the energy cost optimization of
a real-life water distribution network, the sample efficiency of BO makes it possible
to handle black box and partially defined objective functions and constraints, as
introduced in Chap. 5, and to deal effectively with the issue of feasibility.

7.1 Overview of Applications

Neuroimaging: the relationship between stimuli and the neural response is analysed
in (Lorenz et al. 2016) where a BO approach is suggested to balance “dynamically
exploration and exploitation”. The brain activity associated to different stimuli, mea-
sured by real time fMRI, is compared to the target brain state. The distribution of the
brain activity is modelled as a GP which allows to formulate a Bayesian optimiza-
tion model using expected improvement as acquisition function. The results quoting

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
F. Archetti and A. Candelieri, Bayesian Optimization and Data Science,
SpringerBriefs in Optimization, https://doi.org/10.1007/978-3-030-24494-1_7
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(Lorenz et al. 2016) demonstrate the feasibility of a “Automatic Neuroscientist”
“turning on its head how a typical fMRI experiment is carried out”. The Bayesian
approach can adjust the experimental conditions in real time in order to maximize
similarity with a target pattern of brain activity and shows that it is possible to obtain
significant reductions in the time required to scan each individual in the parameter
space. Such a sample efficiency allows to tailor clinical rehabilitation therapy opti-
mizing the stimuli according to the individual response. Other contributions to this
field are Gordon et al. (2018) and Wang and Jin (2018) for the optimization of neu-
rostimulation strategies. Other contributions to this field are Lancaster et al. (2018)
and Lorenz et al. (2019).

Life sciences: BO has been used in the virtual physiological tool kit (Cooper et al.
2010) and to tune personalized models for patient vital sign monitoring (Cheng et al.
2017; Colopy et al. 2017, 2018; Cooper et al. 2010). Other applications are focused
on the optimization of exoskeleton design (Gordon et al. 2018) and tissue engineering
(Olofsson et al. 2018). An interesting sensor integration, driven by BO, is proposed
in (Kim et al. 2017) “human-in-the-loop Bayesian optimization of wearable device
parameters”. The objective is to minimize the metabolic cost in unaided human
subjects by tuning walking step frequencies has been accomplished in a sample
efficient way, by BO resulting as well in lower inter-subject variability and energy
expenditure. The following picture depicts how the BO logic is integrated into the
system (Fig. 7.1).

Drug design: the discovery of novel candidate molecules with potential activity
against desired targets is of central importance in the initial stages of the drug dis-
covery. Traditionally, this was achieved through high-throughput screening (HTS)
measuring in vitro simultaneously the effect of hundreds of chemical reactions set
up and measured in a robotized way. HTS has largely failed to meet the expectations
and this has led to the development of computational techniques and the growing
importance of virtual HTS.

Fig. 7.1 Human in the loop Bayesian optimization, taken from (Kim et al. 2017)
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Historically, this has been approached through QSAR model using cheminfor-
matics (Kitchen et al. 2004) or machine learning (Archetti et al. 2010; Fersini et al.
2014).

Advancements in computational chemistry have enabled to calculate in silico
several properties of pharmacological interest of amolecule, in particular the docking
energy given a proteic receptor: however, the very size of the chemical space of
candidate molecules requires an active approach in its exploration and the selection
the promising ones. Virtual screening could be regarded as a computational funnel
with lower fidelity surrogates being initially applied to streamline large candidate
sets and more accurate-but expensive techniques being used later when the candidate
pool is sufficiently small.

In this context, the sample efficiency of BO has enormous cost-saving poten-
tial in the discovery phase (Negoescu et al. 2011; Meldgaard et al. 2018; Pyzer-
Knapp 2018) and clinical trials. More recently, active search methodologies have
been used to improve the balance of exploitation of current data with the exploration
and acquisition of new knowledge. Another approach was recently proposed by
Griffiths and Hernàndez-Lobato (2017) which encodes continuous representations
of molecules leveraging, in continuous latent space, gradient-based optimization to
maximize some design metric.

BO is also used, (Sano et al. 2019), for pharmaceutical product development to
reduce the number of experiments required to obtain the optimal formulation and
process parameters.

Materials: some of the basic design problems in this field are closely related
to the pharmaceutical domain: how to design, in an efficient way, molecules with
significant performance metrics. A very interesting and specific reference is the
volume (Packwood 2017).

The properties of new possible materials can now be calculated in silico: BO
with its capacity of active learning can be applied to the analysis of huge databases
of previous materials design experiments to suggest the features of new materials
whose performance is evaluated by simulation in silico or through actual chemical
experimentation. The final goal is to improve the design and fabrication process
while reducing the number—and costs—of experimentations.

Relatively, simple examples are the prediction of compounds with low thermal
conductivity (Seko et al. 2015), optimal melting temperatures (Seko et al. 2014) and
elastic properties (Balachandran et al. 2016). Both (Seko et al. 2015) and (Solomou
et al. 2018) focus on shape memory alloys.

In a study by (Ju et al. 2017), BO was used to design nanostructures with high
thermal conductance: using the Python library COMBO from a library of 12,800
candidates structures only 438 candidate structures with excellent properties were
selected for further screening.

BO has been used to compute the energy minimizing atomic structure of complex
materials (Kiyohara et al. 2016).

The general problem in material design, as addressed by density functional theory
(DFT), requires a general methodology for:
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(a) choosing the adsorption site and the orientation for each molecule
(b) finding the energy minimizing conformation of the molecule.

The repeated execution of steps (a) and (b) could require impossibly long com-
putational time.

Bayesian optimization is shown experimentally to provide to reduce significantly
the computational time.

Active learning by Bayesian optimization in the design of new materials is also
used in the paper (Lookman et al. 2019).

Structural design: BO has been used in aeronautics (Li and Pan 2019; Palar et al.
2019; Chaudhuri et al. 2019), and inspection (Liang 2018). In Lam et al. (2016), it
was performed a multi-fidelity optimization using Statistical Surrogate Modelling
for Non-Hierarchical Information Sources. In Basudhar et al. (2012), the geometry
of a simplified aluminium wing is optimized to minimize its weigh under stability
requirements. An interesting constrained BO approach, described in (Ghoreishi and
Allaire 2018), has been tested on a two-dimensional aerodynamic design example.
The information sources are two computational fluid dynamic simulators.

Environment: BO has been applied inGarnett et al. (2010) to optimize the predic-
tive accuracy of a sensor network. Other applications are given in Pirot et al. (2019)
for the localization of contamination sources in a discretized spatial domain. Even in
cases where the geology is assumed to be perfectly known the localization process
generate multi-extremal objective functions: BO is shown to be effective, even with
a significant level of noise, in localizing the global minimizer which corresponds
to the contaminant source location. Another relevant application is for seismic full
waveform inversion (Galuzzi et al. 2018).

Energy: a paper of general interest is Dong and Chen (2019), which proposes a
BO algorithm to minimize online the cost of generation, energy storage and energy
purchase from the main grid. BO has also been used to improve the efficiency, i.e.
optimize the power output of nano-enhanced microbial fuel cells through the opti-
mization of the surface properties of the anodes (Azimi et al. 2012) and extended
(Dolatnia et al. 2015) the optimization of the whole experimental activity at pilot
scale. Other applications use BO to manage a wind and storage power plant par-
ticipating in energy pool market (Crespo-Vazquez et al. 2018), the design of the
controller in airborne wind energy systems (Baheri and Vermillion 2019) and the
optimal estimation of the rotor effective wind speed (Moustakis et al. 2019).

Automated control: among the many applications in which BO provides data-
efficient auto-tuning of control devices, we selected the calibration of the combustion
engine: a fixed control of the Proportional Integral Derivative (PID) parameters can
result in unstable control loops that could bring to engine to critical states. A BO
approach has been proposed in Schillinger et al. (2017) to optimize “safely” the
controller parameters: the loss function of the controller is modelled as a GP and the
LCB acquisition function is used to sample new points. A “safe” version of Bayesian
optimization has been presented in Chap. 5.

Another application of Bayesian optimization for auto-tuning is given in
Neumann-brosig et al. (2018).
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Robotics is another key application where BO is mostly applied in connection
with reinforcement learning. (Ghosh et al. 2018). In Bansal et al. (2017), the BO is
used to learn the goal-driven dynamic in robotic systems.

Recently, a safe Bayesian optimization algorithm, called SafeOpt (Chap. 5), has
been developed, which guarantees that the performance of the system never falls
below a critical value. In a recent paper (Marco et al. 2017), a framework is proposed
where auto-tuning methods model the performance objective using standard GP
models,while the specificity of the problem is represented by the covariance function.
Another recent study based on GP for generating safe policy search strategies is
presented in Polymenakos et al. (2019).

Software. A very significant application of BO to the tuning of software systems
is reported in (Letham et al. 2019). Across the board applications of BO are reported
in Golovin et al. (2017) for hyperparameter tuning. HyperTune Vizier is used across
Google to optimize hyperparameters of machine learning models, both for research
and production models. Vizier has reportedly made improvements to production
models underlying many Google products. The HyperTune subsystem can be used
also by external researchers and developers using Google Cloud Machine Learning,
for instance, for automated A/B testing tuning user–interface parameters or traffic-
serving parameters.

Recommender systems. The performance of the predictor of customers’ ratings
is highly dependent on a number of parameters, some general related to learning rate
and regularization terms and some specific as the number of latent factors (Aggarwal
2016). BO has been shown to be able to tune them in a sample efficient and effective
way. Another approach, referred to as top-k recommendation problem, formulates
directly the prediction problem using the BO framework (Vanchinathan et al. 2014).
Incorporating the prior information into the GP kernel allows us to make predictions
about unobserved item–context pairs. Another relevant approach is Bogunovic et al.
(2018) which combines a robust BO approach, namely StableOpt, and clustering to
induce a degree of robustness in RS.

Mobility A number of applications to urban mobility have been implemented
using tools from BO: in Zhan et al. (2018), it was performed hyperparameter opti-
mization for traffic times-series prediction. In Turchetta et al. (2018) the calibration
of agent-based transport simulations was performed through BO. An early applica-
tion of the BO scheme has been the development of adaptive collective routing using
GP- based dynamic congestion models (Liu et al. 2013) to minimize the collective
travel time of all vehicles in the system. A key property of the approach is the abil-
ity to efficiently reason about the long-term value of exploration, which enables to
balance the exploration–exploitation trade-off for entire fleet.

Finance: (Gonzalvez et al. 2019) explores the use of Gaussian processes and
Bayesian optimization for two problems: to forecast the movement of the yield curve
of US bonds and to improve the classical mean–variance model.

A trend following strategy is proposed depending on three variables:

1. the regularization term λ that regulates the turnover between two rebalancing
dates



116 7 Selected Applications

2. the window length that control the estimation of returns
3. the horizon time that measures the risk of assets.

The objective function considered, the Sharpe ratio, is optimized through BO.

7.2 Smart Water

7.2.1 Leakage Localization

The elements of the network are subject to failures, not uncommon given the typically
old age of the infrastructure. Breakages of pipes, in particular, generate bursts and
leaks which can inhibit supply service of the network (or a subnetwork) and induce
substantial loss of water, with an economic loss (no-revenue water), water quality
problems and unnecessary increase in water pressure and consequently energy costs.

The state of the WDN is usually monitored by a number of sensors which record
flows and pressures. When a leak occurs, sensors record a variation from normal
operating values. We name the vector of deviations the “signature” of the leak.

Ahydraulic simulation software is used to generate awide set of data emulating the
data from sensors according to different “leakage scenarios” in theWDN, consisting
in placing, in turn, a leak on each pipe and varying its severity in a given range.
Our choice of simulator is EPANET 2.0, widely used for modelling WDNs and
downloadable for free from the Environmental Protection Agency web site (http://
www.epa.gov/nrmrl/wswrd/dw/epanet.html).

The authors have developed a machine learning-based system which, given a new
leak signature, infers its location as a limited set of probably leaky pipes. Learning
is performed on a dataset obtained as vectors of N components, where N is the
overall number of sensors (N = Np + Nf , with Np = number of pressure sensors and
Nf number of flow sensors), (also the dimension of the signature) that is the input
space. According to Fig. 7.1, learning is performed in two stages: one unsupervised
(i.e. kernel k-means), aimed at grouping together similar “signatures” to reduce the
number of different “effects”, and one supervised (i.e. SVM classification), aimed
at estimating the group of signatures which the signature of a real leak belongs to
(Figs. 7.2 and 7.3).

The basic idea of the analytical framework has been presented in Candelieri et al.
(2015, 2017), the cluster assignment provided to each instance (i.e. signature) is
used as label to train the SVM classifier. While the clustering is used to model the
direct relation from leak scenario (i.e. leaky pipe and leak severity) to a group of
similar signatures, the SVM inverts this relation. Thus, when a reading from sensors
is acquired, the variations with respect to the faultlessWDNmodel are computed and
the resulting “signature” is given as input to the trained SVMwhich assigns the most
probable cluster the signature belongs to. Finally, the pipes relative to the scenarios
in that cluster are selected as “leaky pipes”. This indication, albeit not unequivocal
is much more informative than the actually used practice which yield information

http://www.epa.gov/nrmrl/wswrd/dw/epanet.html
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Fig. 7.2 Overall machine learning based leakage localization system. (Source Candelieri et al.
2017)

Fig. 7.3 Neptun DMA in Timisoara

at district level only. Although data can be gathered looking at historical leakage
events, they would be too sparse and of poor quality. The disambiguation inside the
cluster can be done “integrating” context information related to historical failure data
or data pipes like age, material, etc. This leak detection solution is accessible as a
web service and has been applied in a number of research and customer projects. The
following Fig. 7.4 depicts a district metered area (DMA), namely “Neptun”, of the
urban WDN in Timisoara, Romania, was a pilot of the European Project ICeWater.
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Fig. 7.4 Pilot zone “Abbiategrasso” in Milan

Neptune consists of 335 junctions (92 are consumption points) and 339 pipes. The
objective function is an aggregated measure of two-clustering performance indices,
detailed inCandelieri et al. (2015). The twohyper-parameters pf themachine learning
pipeline are: one integer that is the number k of clusters, and one continuous, that
is the RBF kernel’s parameter σ . The implementation and the numerical results are
reported in Candelieri et al. (2017).

7.2.2 Pump Scheduling Optimization

In this section, the authors are concerned with the operations of a urban water dis-
tribution network in particular pump scheduling optimization (PSO): which pumps
are to be operated and with which settings at different periods of the day, so that the
energy cost, the largest operational cost for water utilities, is minimized.

The papers most relevant to our exposition are (Candelieri et al. 2018; Naoum-
Sawaya et al. 2015; Przystałka 2018; Tsai 2018).

We outline the complete mathematical optimization model in order to clarify the
difference between the classical mathematical programming approach and BO.

The objective function is the energy cost:

minC = �t
T∑

t=1

ctE

( |P|∑

k=1

γ xti j q
t
i j

hti j
ηi j

)
,∀(i, j) ∈ P (7.1)

where
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• P—set of pumps, withP = P01 ∪PVS such thatP01 ∩PVS = ∅, andP01 is the set
of ON/OFF pumps and PVS is the set of Variable Speed Pumps (VSP). We remark
that each pump is located on a link and identified with the incident nodes.

• C—total energy cost over T time steps
• �t− time step width
• Ct

E− energy cost at time t
• γ− specific weight of water
• qt

i j− water flow associated to a generic link (i, j), when (i, j) ∈ P , qt
i j represents

the flow provided through a pump
• hti j− head loss on pump (i, j) ∈ P at time t
• ηi j− efficiency of the pump (i, j) ∈ P

and the decision variables are:

xti j ∈
{ {0, 1}with t = 1, . . . , T − status of pump (i, j) ∈ P01

[0, 1]with t = 1, . . . , T − speed of pump (i, j) ∈ PVS at time t

The optimization problem reported above is subject to the following set of con-
straints:

qt
i j ≤ q̄i j ∀(i, j) ∈ L\P, t ∈ T , limiting the maximum flow along each pipe

(i, j) ∈ L\P (i.e., belonging to the set of links L excluding pipes P)
qt
i j ≤ xti j q̄i j ∀(i, j) ∈ P, t ∈ T , limiting the maximum flow provided by every

pump (i, j) ∈ P∑
i q

t
i j − ∑

k q
t
jk = Dt

j ∀ j ∈ J,∀t ∈ T , defining the (water) mass balance equa-
tion for each node j ∈ J , where Dt

j is the demand at node j at time t.
The following four constraints are related to the conservation of energy based

on the hydraulic properties of water networks, where hti j models the head-loss (i.e.
the difference in heads) between two nodes i and j connected by a (i, j). Constraints
(7.2) and (7.4) are only enforced when the corresponding qt

i j are positive and are
otherwise redundant.

qt
i j

((
pti + Ei

) − (
ptj + E j

) − hti j
) ≥ 0 ∀(i, j) ∈ L\P∀t ∈ T (7.2)

(
pti + Ei

) − (
ptj + E j

) − hti j ≤ 0 ∀(i, j) ∈ L\P,∀t ∈ T (7.3)

xti j
((
pti + Ei

) − (
ptj + E j

) − hti j
) = 0 ∀(i, j) ∈ P,∀t ∈ T (7.4)

hti j =
(
ai j

(
qt
i j

)2 + bi jq
t
i j + ci j

)
∀(i, j) ∈ L,∀t ∈ T (7.5)

In the case tanks are included in the network, we need a further constraint setting
their minimum and the maximum levels.

Pt
j ≤ ptj ≤ P

t
j ∀ j ∈ T , that is the set of tanks, and t ∈ T
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The following constraint is the tankmass balance equationwhere A j is the surface
area of tank j ∈ T .

ptj = pt−1
j +

∑
i q

t
i j − ∑

k q
t
jk

�t A j
∀ j ∈ T ,∀ t ∈ T

Finally, the following constraint denotes the binary and non-negativity conditions.

qt
i j ≥ 0 ∀(i, j) ∈ P

In this case, the decision variables of the optimization problem are: the pump
schedule xti j , the head-loss h

t
i j and the flow for every pipe and pump qt

i j .
The goal of PSO is to identify the pump schedule, consisting in the status of each

pump, associated with the lowest energy cost while satisfying hydraulic feasibility
(i.e. water demand satisfaction, pressure level within a given operational range, etc.)
The status of a pump is its activation—in the case of an ON/OFF pump—or its
speed—in the case of a VSP, leading to discrete or continuous decision variables,
respectively. Nonlinearities, binary and continuous decision variables make PSO
computationally challenging, even for small WDNs.

For a survey of the optimization methods employed (Mala-Jetmarova et al. 2017).
Although the PSO objective function (7.1) has an apparently closed expression, its
exact resolution through mathematical programming requires to approximate the
flow equations (linearization or convexification) (Pecci et al. 2017) which regulates
the hydraulic behaviour of a pressurized WDN, according to constraints (7.2–7.5).

The time horizon usually adopted in PSO is one daywith hourly time steps, leading
to T = 24 time steps overall. This choice is basically motivated by the energy tariffs
which are typically characterized by a different energy price depending on the hour
of the day.

The optimal solution found by the mathematical programming algorithm is then
tested for feasibility through a hydraulic simulator. In case of unfeasible solution, fea-
sibility should be restored heuristically via local search or by improving the accuracy
of mathematical model.

As the size of the network increases, the number of decision variables (i.e. the
pump schedule xti j , the head-loss h

t
i j and the flow for every pipe and pump qt

i j ) grows
leading to increase in the number of function evaluations, computational resources
(simulation time increases with the number of hydraulic components of the WDN)
and memory requirements. Since the 1990s metaheuristics, such as genetic algo-
rithms and simulated annealing, have been increasingly applied given their versa-
tility and a problem-independent global approach that can be applied to complex
problems: anyway, in large search spaces, their slow convergence results in far too
long computations. Moreover, evolutionary algorithms do not cope well with con-
straints. In all the approaches, it is important to reduce the computational load of
hydraulic simulation: one way to do this is working on the mathematical model of
the hydraulic components through linearization/convexification of objective or con-
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straints, the other uses the sample efficiency of BO to limit the number of simulation
runs. We remark that we use EPANET for every function evaluation (Candelieri
et al. 2018) of the full model of the WDN, while mathematical programming uses
EPANET only ex-post to evaluate the feasibility of the optimal solution of the “sim-
plified” model. The proposed BO approaches are compared (Candelieri et al. 2018)
to two commercial products: an “optimization-as-a-service” cloud-based platform
(SigOpt) and the combination of two commercial products: ALAMO and BARON
for the generation of an accurate surrogate model and the successive optimization
process. A further approach, namely “Feasibility Set Approximation Probabilistic
Branch and Bound”, has been recently proposed to address the problem as a black-
box feasibility determination. The new stochastic partitioning algorithm is based
on an extension of probabilistic branch and bound (PB&B) to properly approxi-
mate the feasible set (Tsai et al. 2018). The algorithm iteratively maintains, prunes
and branches subregions to approximate the unknown target feasibility set with a
probabilistic guarantee of the accuracy. When the algorithm terminates, it provides
subregions with a relatively high concentration of high-quality solutions and returns
an estimation of the global optima.

In Candelieri et al. (2018), the BO approach and the combination of two com-
mercial products: ALAMO and BARON have been compared under the same exper-
imental setting, considering a real-life large-scale WDN in Milan, Italy. During the
European Project ICeWater, a pressure management zone (PMZ), namely “Abbi-
ategrasso”, was identified in the South of the city and isolated from the rest of the
network. The zone is served by a pump station with two pumps.

The objective function is partially defined depending on the computation of the
constraints, which are:

• Black box: because their evaluation requires to run EPANET
• Dependent. To give an example, let us consider three simple constraints violations:
(1) water demand in a node is not satisfied, (2) pressure is negative in at least a
junction and (3) one of the tanks is empty. For these reasons, approaches like ICEI,
introduced Chap. 5 cannot be applied.

To solve PSO, we have applied two schemes, the first (Candelieri et al. 2018)
assigns a fixed “penalty” as value of the objective function for evaluations outside
the feasible region. The second approach (i.e. SVM-CBO), presented in Chap. 5,
does not require constraints independence and consists in two consecutive phases:
the estimation of the feasible region and the BO constrained on such an estimate.

The number of overall function evaluations (i.e. EPANET simulation runs) has
been fixed at 1200, organized as follows, for the SVM-CBO:

• 400 for the initial design, via LHS
• 400 for phase 1 (feasibility determination)
• 400 for phase 2 (Constrained Bayesian optimization on the estimate of the feasible
region).

As far as the BO with penalty is concerned, the overall budget is dived in:
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• 400 for initial design, via LHS
• 800 for the BO process.

Tomake significant, the comparison between the two schemes, penalty and SVM-
CBO, they share the same initial design. They also share all the other choices, more
precisely the probabilistic surrogate model (GP) and the acquisition function (LCB),
so that the difference in the result can be only motivated by the usage, or not, of the
estimate of the feasible region. Since the value f (x∗) is not known for this case study,
the Gap metrics cannot be used as metric, differently from the test functions reported
in Chap. 5. The minimum value of the objective function observed at the end of the
approaches, that is the energy cost associated to the best seen pump schedule, has
been directly considered as metric.

As already reported by the authors in their previous work (Candelieri et al. 2018),
assigning a penalty to function evaluations outside the feasible region has the aim
to move towards feasible points/regions. Although this is usual the usual solution
adopted, it is quite naïve in this problem especially when the penalty cannot be made
dependent on the entity of violation. This leads to almost “flat” objective functions,
especially when the unknown feasible region results extremely narrow with respect
to the overall search space. As already reported, the real-life PSO case study seems
to be characterized by this kind of situation.

BO with penalty was not able to provide any improvement with respect to the
energy cost identified on the initial design that is 172.89e. On the contrary, SVM-
CBO was able to further reduce the energy to 168.60e, by identifying a new and
more efficient pump schedule. A significantly relevant result is that the improvement
has been registered exactly at the starting of phase 2, just shown for the test functions
in Chap. 5. This result proves that solving feasibility determination and constraining
the following sequential optimization process to an accurate estimate of the feasible
region can significantly improve the effectiveness and efficiency of the BO process.

A comment is due about the optimal value which is significantly lower than the
average pumping cost because the pilot zonewas equippedwithVSP’s andmonitored
and maintained specifically for the european project.
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