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Common Names

English Mouflon

German Mufflon

French Mouflon

Spanish Muflón

Italian Muflone

Russian Муфлóн

In Cyprus, the Greek name for this species of sheep is
Αγρινó.

Taxonomy and Systematics

The genus Ovis constitutes one of the most com-
plex mammalian genera owing to its evolution
and systematic. During the last centuries, wild

sheep taxonomy was revised many times based
on different criteria (morphologic, genetic, and
biogeographic, e.g., Valdez 1982; Festa-Bianchet
2000; Hiendleder et al. 2002; Rezaei et al. 2010).
Wild sheep taxonomy has been complicated by
the fact that the different species of the genusOvis
can crossbreed and produce fertile offspring
(Valdez et al. 1978; e.g., in the Asiatic mouflon/
Urial Ovis vignei hybrid zone; Fig. 2), leading
some authorities to consider, for instance, Asiatic
mouflon and Urial as the same species (Ovis
orientalis). A basic difference among classifica-
tions lies in the number of species recognized. No
definitive consensus was achieved, but most clas-
sifications distinguish at least three morphological
types (Bunch et al. 2006) and six wild species:
Pachyceriforms of Siberia and North America,
Ovis canadensis (bighorn sheep, 2n ¼ 54), Ovis
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dalli (Dall sheep, 2n ¼ 54), and Ovis nivicola
(snow sheep, 2n ¼ 52); Argaliforms of Central
Asia, Ovis ammon (Argali, 2n ¼ 56);
Moufloniforms of Eurasia, Ovis vignei (Urial,
2n ¼ 58), and Ovis gmelini (Asiatic mouflon,
2n ¼ 54). Note that the name Ovis orientalis has
often been used/recommended for Asiatic mou-
flon (Shackleton and IUCN/SSC Caprinae Spe-
cialist Group 1997), but as it seems to refer to a
hybrid of Alborz red sheep (Valdez 1982), the
name is unusable and may enter into homonymy
(Groves and Grubb 2011; Hadjisterkotis and
Lovari 2016).

The scientific denomination of mouflon pre-
sent in Mediterranean islands (Cyprus, Corsica,
and Sardinia), and subsequently introduced into
continental Europe during the eighteenth century
(Weller 2001; Fig. 1), is probably among the most
controversial (e.g., Cugnasse 1994; Gentry et al.
2004; Rezaei et al. 2010; Guerrini et al. 2015).
However, archaeological (Poplin 1979; Vigne
1992; Groves 1989) and genetic evidence (e.g.,
Chessa et al. 2009; Rezaei et al. 2010; Demirci
et al. 2013; Guerrini et al. 2015;Mereu et al. 2019;
Portanier et al. 2022) that has now accumulated
gives strong support for ranking them as subspe-
cies of Asiatic mouflon O. gmelini (see also sub-
section “Phylogeny and Phylogeography”). Most
recent genetic advances, based on microsatellite
and mitochondrial DNA, separate into two inde-
pendent subspecies the Corsican/Sardinian O. g.
musimon and the Cyprus populationsO. g. ophion
which had a separate evolutionary history (Chessa
et al. 2009; Guerrini et al. 2015, 2021; Sanna et al.

2015; Satta et al. 2021; Portanier et al. 2022). It
can also be mentioned that Cugnasse (1994)
suggested to differentiate Corsican and Sardinian
mouflon by using O. g. musimon var. corsicana
and O. g. musimon var. musimon, respectively, to
account for the demographic disconnection occur-
ring since Neolithic between the two island
populations.

Paleontology

The oldest fossil of mouflon Ovis shantungensis
was found in central Asia (China, Nihowan) and
would be dated >2 mya (Teilhard de Chardin and
Piveteau 1930). During the Pleistocene, the genus
Ovis has evolved from this ancestral area, through
successive speciation events, in at least six wild
species (see section “Taxonomy and Systemat-
ics”), while spreading along two major migration
routes: the first passing through northeastern Asia
and Bering Strait toward North America, the sec-
ond one going toward Eurasia and western
Europe. Nowadays, the genus Ovis is largely dis-
tributed over palearctic and nearctic regions
(Valdez 1982).

Mouflon present in Europe originated fromAsi-
atic mouflon that arrived about 8500 years before
the common era (BCE hereafter), at the onset of the
very first waves of human-mediated dispersal of
livestock across the Mediterranean Basin (Zeder
2008; Vigne et al. 2014). Relics of these very first
migrations include the historically genetically and
morphologically preserved mouflon populations

Fig. 1 A male (left), a female and a lamb (right) of Mediterranean mouflon (photographs © Daniel Maillard – www.
danielmaillard.com)
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presently restricted to the islands of Cyprus, Cor-
sica, and Sardinia (Chessa et al. 2009; Rezaei et al.
2010; Guerrini et al. 2015, 2021; Sanna et al. 2015;
Mereu et al. 2019; Satta et al. 2021; Portanier et al.
2022). In these islands, Asiatic mouflon would
have been introduced by Neolithic people, proba-
bly after a predomestication phase, between 4500
and 8500 years BCE as suggested by archaeolog-
ical evidences in Neolithic sites (Poplin 1979;
Groves 1989; Vigne 1992; Zeder 2008; Vigne
et al. 2012, 2014). The domestication process is
assumed to have remained primitive, likely limited
to protection against predators with few interac-
tions with humans and no morphological selection
(Rezaei 2007; Zeder 2008). In addition, by
returning to a feral state in mountainous areas of
these scarcely populated islands, these primitive
breeds survived, contrary to mainland populations,
to the second migration of improved breeds (with
productive traits such as wool, milk, and meat)
occurring 5000–6000 years later from southwest
Asia (Zeder 2008; Chessa et al. 2009; Barbato et al.
2017; Ciani et al. 2020).

Current Distribution

The native range of Asiatic mouflon includes 4
subspecies (Festa-Bianchet 2000) and extends
from eastern Turkey, Armenia, southern
Azerbaijan (including Nakhchivan Autonomous
Republic), and northern Iraq to western Iran (Zagros
mountains, southern Caucasus) for the Armenian
mouflon Ovis gmelini gmelini, with isolated
populations in central Iran for the Isfahan mouflon
Ovis gmelini isphahanica and southern Iran for the
LaristanmouflonOvis gmelini laristanica (Fig. 2). It
also includes an area where mouflon crossbreed
with Urial Ovis vignei sp. The population of Anato-
lian mouflonOvis gmelini anatolica in south-central
Turkey (Konya-Bozdag area), previously isolated, is
highly protected with most individuals being
enclosed since 1989. Two populations (Karaman-
Karadag and Ankara-Sariyar) have been created
from reintroductions between 2004 and 2007 with
individuals from the Konya-Bozdag area (60 and
120 founder individuals, respectively; Özüt 2009).
The last population estimates were around

700 Anatolian mouflon in the Konya-Bozdag-
enclosed population (after 200 individuals were
removed for reintroductions), and 50–100 individ-
uals outside the fences (Özüt 2009).

Populations created from feral individuals after
the very first domestication attempts of Asiatic
mouflon between the Neolithic and the Upper
Paleolithic are restricted to the Mediterranean
islands of Cyprus, Corsica, and Sardinia (see sec-
tions “Paleontology” and “Phylogeny and
Phylogeography”; Fig. 2). In Corsica, there are
two populations: one in the massif of Monte
Cinto (Northwest, >900 individuals), and one in
the massif of Bavella (Southeast, >200 individ-
uals; Benedetti et al. 2019; Portanier et al. 2022).
In Sardinia, the current distribution is limited to
the eastern part of the island (Ogliastra,
Gennardentu, Supramonte, and Albo; ~6000 indi-
viduals), Montiferru in the West, and a few man-
aged/protected areas where the species has been
introduced (Pabarile, Capo Figari, and Asinara;
Apollonio et al. 2010; Puddu and Maiorano
2016; Satta et al. 2021). The Cyprus mouflon is
present in the Paphos forest (North-West of the
island; ~3000 individuals; Hadjisterkotis 2001)
and recently extended its range toward Troodos
mountains (Nicolaou et al. 2016).

Since the eighteenth century (see subsection
“Phylogeny and Phylogeography”), mouflon
have been introduced as a new game species in
24 European countries: Andorra, Austria, Bel-
gium, Bulgaria, Croatia, the Czech Republic,
Denmark, Finland, France, Germany, Greece,
Hungary, Italy, Luxembourg, Netherlands,
Poland, Romania, Serbia, Slovakia, Slovenia,
Spain (including Canary islands, i.e., Tenerife,
La Palma, and La Gomera), Sweden, Switzerland,
and Ukraine (Fig. 2; Weller 2001; Linnell and
Zachos 2011; Cassinello 2018). Mouflon were
also introduced in Argentina, Chile, and the
USA (California, Texas, and Hawaii; Weller
2001) and are also present in fenced areas or
hunting estates in numerous countries. It has to
be noted that the population from Kerguelen
islands (French Southern and Antarctic Terri-
tories), of conservation concerns with endemic
plants, has been eradicated in the 2010s (Terres
Australes et Antarctiques Françaises 2013).
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Description

Size and Morphology

The complex genetic and demographic history of
island populations and of introduced populations
of mouflon (see sections “Paleontology” and “Phy-
logeny and Phylogeography”) has contributed,
through genetic founding effects and/or high vari-
ability in environmental conditions encountered, to

generate large inter-population variation in body
and horn development. This is well illustrated by
population-specific horn growth patterns (e.g.,
Hoefs 1982; Hoefs and Hadjisterkotis 1998;
Figs. 3.5 and 7.2 in Garel et al. 2006b). To account
for these inter-population differences, we summa-
rized in Table 1 >3500 adult morphological and
body mass measurements collected from known-
age animals in 9 French populations spanning a
large range of environments (ranging from 180 to

Map template: © Getty Images/iStockphoto

2
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1

Fig. 2 Current distribution of mouflon in Europe. Native
populations are represented in red (Ovis gmelini gmelini,
Ovis gmelini anatolica, Ovis gmelini isphahanica, and
Ovis gmelini laristanica; data from the International
Union for Conservation of Nature, http://maps.
iucnredlist.org/map.html?id¼15739) or pink (area where
Ovis gmelini gmelini and Ovis gmelini laristanica cross-
bred with Urial Ovis vignei sp.). Although some of these
subspecies are referenced as orientalis on the IUCN red
list, we used gmelini here in accordance with the section

“Taxonomy and Systematics” and, e.g., Festa-Bianchet
(2000). The mouflon populations onMediterranean islands
are represented in black ([1] Cyprus Ovis gmelini ophion)
and green ([2] Corsica and [3] Sardinia Ovis gmelini
musimon; data from Hadjisterkotis 2001; Corti et al.
2011; Puddu and Maiorano 2016). The European countries
where mouflon persist after being introduced are noted
with a blue point. Note that the countries where mouflon
are present only in captivity are not reported on this map
Map template: © Copyright Getty Images/iStockphoto
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2966 m a.s.l., from 2.97 to 8.90 �E, from 42.38 to
45.69 �N, and from Mediterranean/island areas up
to mountain ranges) and genetic origin (e.g., Garel
et al. 2005a; Portanier et al. 2017). Newborn
(<1 week) body mass ranges between 1.6 and
3.4 kg (Mottl 1960; Pfeffer 1967; Briedermann
1989; Hadjisterkotis 1996b). It has to be noted
that island populations might have undergone
island dwarfism during their evolutionary history
(e.g., shoulder height in Cyprus: males¼ 68.0 cm,
females ¼ 61.4 cm, n ¼ 13-13 versus continental
populations in Table 1; Pfeffer 1967; Hadjisterkotis
1993, 1996b).

Mouflon are among the smallest wild Ovis in
the world (Valdez 1982) with a marked sexual
dimorphism both in terms of size and body mass
(up to ~64% during autumn), horn and coat
(Table 1; see subsections “Pelage” and “Growth”).
While males have large horns, females may or may
not have short horns (Hoefs and Hadjisterkotis
1998; Garel et al. 2007). When present, the horns
of females are thin, often asymmetric with a circu-
lar shape. In males, horns are thick, with a triangu-
lar basis and a circumference that decreases from
the base to the tip (Fig. 1). They are also symmetric
and show three sides with a marked fronto-nuchal
edge and the fronto-orbital edge almost completely
rounded off. Differences in skull design between
males and females have been revealed and

hypothesized to play a role in the mitigation of
the considerable forces that exert on the horns and
skulls of mouflon during head-to-head horn clashes
(Schaffer 1968; Schaffer and Reed 1972; Jaslow
1989).

The high diversity in origin of populations and
in the environments that they inhabit has also
contributed to large inter-population variation in
phenotypic characteristics of this species. For
instance, marked differences in the proportion of
horned females among populations have been
documented: from 43% in the Corsican popula-
tion of Bavella (only 13% in the other Corsican
population of Cinto; Sanchis 2018) to values close
or equal to 0%, both in island populations (Sar-
dinia, Pfeffer 1967; S. Ciuti, pers. comm.; Cyprus,
Maisels 1988; Hadjisterkotis 1993) and in most of
the introduced populations (Pfeffer and Genest
1969; McClelland 1991). The fact that hornless
females is the rule in most introduced populations
would originate from a much larger contribution
of animals coming from Sardinia than Corsica
during the early phases of introduction of mouflon
in continental Europe (Pfeffer and Genest 1969;
Apollonio et al. 2010). Similarly, large variation
in the form of horns occurs in males that can partly
result, in some populations, from artificial selec-
tions against desirable or undesirable trophy char-
acteristics (Garel et al. 2007; Schröder et al.

Table 1 Adult morphological and body mass measure-
ments (95% prediction interval) in 9 French continental
and island populations of mouflon. Data were collected
both during spring-summer (capture) and autumn-winter
(capture and hunting). We reported values taken at

�7 years and �4 years old for males and females, respec-
tively, i.e., when asymptotic body growth has been reached
for most of the measurements (Hoefs and Hadjisterkotis
1998; Lincoln 1998; Garel et al. 2005d; Hamel et al. 2016)

Metrics Males Females Sample sizes (males–females) Populationsa

Tail length Bony, very short (<10 cm) – –

Body length (cm) 124.5–145.6 102.7–133.8 95–201 1, 2

Hind foot length (cm) 30.7–35.3 28.8–33.5 155–598 1, 3, 6

Shoulder height (cm) 70.6–86.8 61.4–80.4 97–200 1, 2

Neck circumference (cm) 30.1–48.8 20.8–33.6 99–294 1, 3

Horn length (cm) 48.6–90.3 0.5–19.1 295–121 1, 2, 3, 4, 6, 7, 8

Body massb (kg) 26.1–61.8 18.8–37.7 268–1078 1, 2, 3, 5, 6, 7, 8, 9
aPopulations: 1 – Caroux-Espinouse massif (43.63 �N, 2.97 �E); 2 – Gap-Chaudun massif (44.63 �N, 5.98 �E); 3 – Cinto
massif (42.38 �N, 8.90 �E); 4 – Chartreuse massif (45.33 �N, 5.79 �E); 5 –West Vercors massif (44.86 �N, 5.26 �E); 6 –
Bauges massif (45.69 �N, 6.24 �E); 7 – Queyras massif (44.76 �N, 6.88 �E); 8 – Brianconnais massif (44.97 �N, 6.61 �E);
and 9 – North-East Vercors massif (45.11 �N, 5.56 �E)
bCombining live bodymasses and eviscerated bodymasses converted into live bodymasses using the allometric equation:
live ¼ e0.4131 � eviscerated0.9687 calibrated on 88 animals for which we had both measurements
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2016). Horns in males can be heteronymous (left
horn first twists clockwise and then anticlock-
wise) or perverted (growth in the same plane
with sickle-shaped horns), curving back behind
the head toward the anterior-posterior axis of the
body, with tips directed above the neck (supra-
cervical) or at the sides of the neck (cervical;
Fig. 1; Pfeffer 1967; Groves and Grubb 2011).
In both cases, the basic growth pattern is converg-
ing with a relatively narrow tip-to-tip spread when
compared to greatest spread as animals aged.With
the notable exceptions of Cyprus and Armenian
mouflon, the supracervical horn growth is rare in
wild sheep (Hoefs and Hadjisterkotis 1998;
Groves and Grubb 2011; Hadjisterkotis et al.
2016). At the opposite, distinct homonymous
horn curl configuration also exists (left horn twists
clockwise), where the tip-to-tip spread equals the
widest spread with horn tips pointing outward the
anterior-posterior axis of the body as animals get
older. Intermediate types exist, with, for instance,
horns anglingmore vertically, with a more parallel
horn growth pattern with the tips turning inward
toward the neck/face in a tight circle (Pfeffer
1967; Groves and Grubb 2011).

Pelage

The typical pelage coloration exhibited by
females varies from light tan to dark brown
(Valdez 1982). The dorsal patch is absent or indis-
tinct. Lambs are similar in appearance to ewes. In
males, short, coarse, and thick hair forms the outer
coat (Frisina and Frisina 2000). The general color
of the coat on mature rams is rufous brown or foxy
red shading into chocolate brown on the head and
face. A black coat is found on sides of the neck,
throat, and chest with a band on the flanks and
down the withers, on the outer front surfaces of
the forelegs above the knees, and on the front and
outer sides of the hind limbs above the hocks
(Valdez 1982; Frisina and Frisina 2000). Ears are
grayish with the margins and part of their interior
that are white. White/grayish coat is also found as
a broad band on the rear border of the saddle patch
and on muzzle and chin shading into grayish
rufous in the middle of the black area on the

throat. Similarly, the buttocks and all under parts
are white, except for a narrow black streak down
the forelegs. Limbs also exhibit a streak of white
on their back surface above the knees and hocks.
In winter coat, the general color of the upper parts
deepens and becomes more of a chestnut brown.
The saddle patch on each side of body (not sys-
tematically present in some populations) lightens
until in many older rams it becomes nearly white
(Frisina and Frisina 2000). Both males and
females display a white facial mask which shows
a great inter-individual variability in size (Garel
et al. 2005d, 2006a; see also subsection “Age
Determination”).

Age Determination

Excepted in lambs (when less than 6 months old)
for which error in age determination is very
unlikely (Garel et al. 2006a), horn annulus tech-
nique in males (Geist 1966; Hemming 1969) and
tooth eruption and replacement of the lower inci-
sors in both sexes (Rieck 1975; Piegert and Uloth
2005) are the only reliable criteria used to esti-
mate age when handling animals. Tooth eruption
pattern allows a reliable estimation of age until
3.5 years in autumn-winter (the hunting season
for ungulates in most countries; e.g., Milner et al.
2006) during which five stages of tooth eruption
can be described: no permanent incisor for
lambs, two permanent incisors for yearlings,
four permanent incisors for 2.5 years old, six
permanent incisors for 2.5–3.5 years old, and
eight permanent incisors for �3.5 years old. In
males, the horn annulus technique (Geist 1966;
Hemming 1969), which is based on counts of
horn growth annuli, provides an index of age to
the nearest year. Horn growth annuli correspond
to drastic reduction of horn growth which mainly
results from hormone-induced factors related to
the reproductive cycle and from photoperiod (see
subsection “Horn Growth and Reproductive
Activity”). This index becomes less accurate as
the animal aged and the first horn annulus is
worn away.

From observations in the field, different mor-
phological criteria have been used to estimate the
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age categories of mouflon (Türcke and Schmincke
1965; Pfeffer 1967; Tomiczek 1989; Boussès and
Réale 1994). In males, observers have principally
relied on the position of the horn tip relative to the
base of the neck and eyes (the so-called circular
arc theory; Piegert and Uloth 2005). In females,
the size of the white facial mask, which corre-
sponds to a whitening of the hair of the face, was
considered to progress from the nostril toward the
face as animal aged. From these criteria, field
studies (e.g., Le Pendu et al. 1995; Ciucci et al.
1998; Cransac et al. 1998; Réale et al. 1999)
generally distinguished between lambs, yearlings
(1 year), and 2–3 wider age categories as animals
get older and inter-individual variation in age
criteria increases (e.g., 2–3, 4–6, and >6 years
old; Bourgoin et al. 2018). However, except in
lambs, errors in age determination are common
(>20% in adult males and>50% in adult females;
Boussès and Réale 1994; Garel et al. 2005d,
2006a).

Physiology

Thermoregulation

Mouflon, as all other homeothermic animals, reg-
ulate their own body temperature through internal
metabolic processes. Heat stress affects signifi-
cantly the heat balance, and the main thermoreg-
ulatory mechanisms are the reduction in heat
production, the increase in heat loss (Johnson
et al. 2003), and the molting of the pelage (Lin-
coln 1990). Seasonal changes in annual and daily
prolactin secretion and their relationships with
melatonin secretion, metabolism, and thermoreg-
ulation have been reported in mouflon. Seasonal
changes have been shown to be associated with
changes in day length, with highest and lowest
concentrations of prolactin occurring during sum-
mer (long days) and winter (short days), respec-
tively (Lincoln 1990; Santiago-Moreno et al.
2004). Spring molt is timely associated with rising
plasma prolactin concentrations, and hair growth,
that takes place between the summer and winter
solstices, coincides with low-plasma concentra-
tions of prolactin (Santiago-Moreno et al. 2004).

In addition, an endogenous circannual rhythm of
molting has been demonstrated in this species
(Allain et al. 1994). Lastly, it has also been
suggested that horns core might contribute to the
heat exchanges in mouflon and play as such a
thermoregulatory role in this species (Hoefs
2000).

Horn Growth and Reproductive Activity

The body mass is the prevailing factor determin-
ing horn growth throughout the first year of age
(Santiago-Moreno et al. 2006). Thus, young mou-
flon rams, aged up to 18 months, exhibit a regular
and nonseasonal development of horns through
the year under captive regimen (Santiago-Moreno
et al. 2000b). Afterward, in subadult (2 years old),
adult (�3 years old), and old ages (>10 years
old), the rate of horn growth shows a seasonal
pattern modulated by day length (Lincoln 1998)
with largest monthly growth occurring in spring
and summer (Santiago-Moreno et al. 2005a). The
greatest growth in length occurs within the first
2–3 years of life and subsequently decreases year
by year (e.g., Garel et al. 2005d).

The annual cycles of reproductive activity and
horn growth follow opposite trends (Lincoln
1990), although both are mainly regulated by
circulating testosterone levels and photoperiod
(Toledano-Diaz et al. 2007). The onset of horn
growth arrest in the mouflon coincides with max-
imum testosterone secretion in the premating sea-
son. The horn growth is at a minimum during the
period of optimum sperm production and maxi-
mum testis and accessory sex gland activity
(autumn). The rate of horn growth before the
mating season may be related to springtime tes-
tosterone levels (Toledano-Diaz et al. 2007;
Santiago-Moreno et al. 2012). The greater horn
growth in spring involves an appreciable use of
energy resources. The decrease of photoperiod in
autumn appears to act as a signal to stop horn
growth, allowing energy resources to be diverted
toward combat and the production of better qual-
ity semen. Interestingly, the improvement of
sperm quality in mouflon occurs between
September and December, coinciding with the
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premating and mating seasons in this species.
Normal sperm cell morphology is closely linked
to the correct progress of spermatogenesis and is
essential for optimum sperm function and fertili-
zation capacity (Martínez-Fresneda et al. 2019).
The resurgence of horn growth in spring is
positively correlated with the percentage of sper-
matozoa with morphological abnormalities
(Santiago-Moreno et al. 2003).

Reproductive Physiology

As reported in many species of large ungulates
(Gaillard et al. 2000), body mass, more than age,
appears to be the main factor controlling sexual
maturity and reproductive performance in mou-
flon ewes and rams (Lincoln 1989; Santiago-
Moreno et al. 2001b; Garel et al. 2005a). In
females, onset of puberty is thus found to depend
on a body mass threshold corresponding to ~80%
of the adult body mass (Santiago-Moreno et al.
2000a, 2001b; similar threshold has also been
found in other ungulates: Hewison 1996; Sand
1996) that can be reached in ewes during the
first or second year of life (Mottl 1960; Lincoln
1998; Santiago-Moreno et al. 2001b). Similarly,
males may initiate full spermatogenesis (male
puberty) during their first year of life (Lincoln
1998). However, in males, physical maturity is
also necessary for successful matings, and only
rams 3 years old or more have been observed in
rutting activities (Bon et al. 1992, 1995; Lincoln
1998).

During the reproductive period, ovulatory
activity, assessed by measuring the plasma pro-
gesterone concentration in blood samples, reveals
a mean duration of the oestrus cycle of 17 days.
Ovulations are expected to be highly synchro-
nized (Santiago-Moreno et al. 2001b) leading to
highly synchronized births (80% of births may
have occurred in 3–6 weeks; Bon et al. 1993a;
Hadjisterkotis and Bider 1993; Garel et al. 2005a).
Photoperiod is generally accepted as the primary
environmental cue influencing seasonal breeding
pattern, mediated via the pineal gland and mela-
tonin secretion (Santiago-Moreno et al. 2000c).
Other environmental variables, such as climate-

related seasonal variation in resource availability,
are also expected to shape the timing and syn-
chrony of reproduction in large herbivores
(Bunnell 1982; Rutberg 1987). Geographical var-
iation in these factors probably contributes to
explain the inter-population differences in the
timing and synchrony of breeding activities
reported in the literature (Pfeffer 1967; Lincoln
1989; Bon et al. 1993a; Santiago-Moreno et al.
2001b; Garel et al. 2005a). However, as a genetic
basis for photoresponsiveness has also been found
in both sheep (Ovis aries) and wild ruminants
(Santiago-Moreno et al. 2001b), the genetic his-
tory of populations (see sections “Paleontology”
and “Phylogeny and Phylogeography”) could also
contribute to the regional differences reported. In
females, the existence of an endogenous rhythm
of reproduction is synchronized through the cir-
cadian rhythm of melatonin secretion (Gómez-
Brunet et al. 2008). Uterine regression and
resumption of ovulatory activity after parturition
is about 25 days, although ovulatory activity in the
early postpartum period is not always associated
with successful conception and pregnancy
(Santiago-Moreno et al. 2001a).

Genetics

Chromosomes

2n ¼ 54 (Nadler et al. 1973)

Phylogeny and Phylogeography

The Armenian mouflon Ovis gmelini gmelini,
from western Iran and easternmost Turkey, and
the Anatolian mouflonO. g. anatolica, endemic to
central Anatolia (Fig. 2), are considered to be the
most likely ancestors of all breed of domestic
sheep (DNA analyses: Hiendleder et al. 2002;
Bruford and Townsend 2006; Demirci et al.
2013; Sanna et al. 2015; chromosome number:
Nadler et al. 1973; Valdez et al. 1978; type of
hemoglobin A: Bunch et al. 1978). It is also
widely acknowledged that mouflon present in
Europe are the feral descendants of the very first

21 Mouflon Ovis gmelini Blyth, 1841 495



domesticated Asiatic mouflon introduced by Neo-
lithic people during the first waves of sheep
domestication across the Mediterranean Basin
(see section “Paleontology”).

Some authors have initially considered mou-
flon present in Mediterranean islands and subse-
quently introduced into continental Europe (see
section “Current Distribution”) as belonging to a
full species O. musimon (Nadler et al. 1973). The
most recent classifications considered them either
as subspecies of Asiatic mouflon O. gmelini
musimon/ophion (e.g., Cugnasse 1994; Shackle-
ton and IUCN/SSC Caprinae Specialist Group
1997; Festa-Bianchet 2000; Hadjisterkotis and
Lovari 2016; see section “Taxonomy and System-
atics”) or of domestic sheep O. aries musimon/
ophion due to the predomestication phase that
they have undergone (e.g., Wilson and Reeder
2005; International Commission on Zoological
Nomenclature; Bern Convention, Table 2). How-
ever, while sheep domestication occurred
~9000 years BCE (Zeder 2008), divergence
times up to 110–171 kya between sheep and mou-
flon haplotypes have, for instance, been reported
in mitochondrial phylogeny of Sardinian and
Cyprus populations (Sanna et al. 2015; Mereu
et al. 2019). These populations thus did not orig-
inate from domestic sheep but have evolved sep-
arately. The same is expected for the Corsican
mouflon which share a large part of their history
with those from Sardinia (Satta et al. 2021;
Portanier et al. 2022). This gives support for con-
sidering mouflon on Mediterranean islands as
wild taxon rather than as domestic subspecies
(Guerrini et al. 2015; Portanier et al. 2022). They
should thus be unvaryingly referred to as Ovis
gmelini musimon/ophion, i.e. as subspecies of
the Asiatic mouflon. This taxonomic designation
should help protecting the rare gene pools of these
populations (Chessa et al. 2009; Guerrini et al.
2015; Hadjisterkotis and Lovari 2016; Mereu
et al. 2019; Portanier et al. 2022) which have
been preserved in their historical ranges from
genetic introgression from domestic breeds (see
subsection “Hybridization”).

Cyprus mouflon occupies a place apart in the
history of sheep domestication being at the start of
the migration routes toward western regions which

were reached by human expansion a few hundreds
of years later after the first archeological evidences
of domestication in the fertile crescent (Zeder 2008;
Mereu et al. 2016). Mouflon were introduced
2500–4000 years later in Corsica and Sardinia (Pop-
lin 1979; Vigne 1992; Portanier et al. 2022). This
history has contributed to the genetic isolation
among islands that persists since Neolithic times
and the likely existence of many historical events
to the present-day genetic differentiation among
Cyprus and western populations (Chessa et al.
2009; Guerrini et al. 2015, 2021). In addition, it
cannot be completely discarded that wild mouflon
would have arrived by their own on Cyprus during
the last ice age when the Mediterranean sea level
was 125 m below the current sea level
(Hadjisterkotis 2012). Cyprus is geographically
close to the native populations (Fig. 2), and Cyprus
mouflon was found to be phenotypically and genet-
ically closely related to Anatolian individuals carry-
ing the rare haplotype X at the D-loop region
(Demirci et al. 2013; Sanna et al. 2015; Guerrini
et al. 2021).

Mouflon from Corsica and Sardinia were later
introduced into continental Europe (Uloth 1972; see
also section “Current Distribution”). The first
recorded introduction would date of 1729–1731
(Uloth 1972; Tomiczek 1989; Weller 2001) by
Prince Eugen of Savoy in the game pasture of
Belvedere, near Vienna, Austria. The origin of con-
tinental mouflon populations is often uncertain, and
some evidences of crossbred with other domestic
sheep, feral, or wild mouflon have been reported,
raising caution on the genetic integrity of these
populations (but see subsection “Hybridization”).
Related to this uncertainty in the level of hybridiza-
tion within introduced populations, Cugnasse
(1994) suggested referring to them by adding the
suffix “� Ovis sp.” to the Latin name. This author
also suggested referring to Mediterranean mouflon
rather than European mouflon to keep track of the
geographical origin of the founding populations.

Genetic Diversity

Ancestral populations seem to exhibit depleted
levels of allelic richness and/or heterozygosity
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(e.g., Anatolian, Corsican, Sardinian and particu-
larly Cyprus populations, Özüt 2001; Guerrini
et al. 2015; Barbato et al. 2017; Satta et al. 2021;
Portanier et al. 2022). In some of these
populations, strong demographic bottlenecks
have been reported (e.g., Pfeffer 1967; Özüt
2001; Kaya et al. 2004; Satta et al. 2021), possibly
explaining this limited genetic diversity, although
genetic bottlenecks have not been detected in
Cyprus and Anatolian populations (Özüt 2001;
Guerrini et al. 2015). On the other hand, intro-
duced populations have been evidenced to have a
higher than expected heterozygosity (Kaeuffer
et al. 2007; Portanier et al. 2017) that may have
contributed to their persistence despite a very low
number of founder individuals (e.g., one male and
one female in Kerguelen Archipelago).

Genetic diversity is an important element in
conservation purposes since it can be linked to
individual phenotypes and fitness (e.g., twinning
rate, Kaeuffer et al. 2008; parasite resistance,
Portanier et al. 2019) and thus to the adaptive
potential of populations (Hedrick 2011). Several
populations benefit from conservation measures
such as a reintroduction programs (Corsica, Sar-
dinia, Cyprus, and Turkey; Hadjisterkotis and
Bider 1993; Özüt 2001; Berlinguer et al. 2005;
Rieu 2007) to increase population sizes, favor
population expansion, and enrich the genetic
diversity (see section “Management”). Cloning
and assisted reproductive technologies have even
been considered as conservation measures (Loi
et al. 2001; Hosseini et al. 2009; Hajian et al.
2011).

Hybridization

Introgression of domestic or non-native genetic
material, which may occur due to hybridization
between the different Ovis species, might be con-
sidered as a threat since it can cause phenotypic
modifications (e.g., be larger, Hess et al. 2006),
with possible negative effects on fitness (e.g., loss
of local adaptations, Burke and Arnold 2001)
and, when really high, raise questions about the
definition and the delimitation of a species. Sev-
eral Iranian populations have been shown to

hybridize with Urial (Valdez et al. 1978; Fig. 2).
Across Europe, hybridization occurs with domes-
tic sheep, either because of contact zones between
domestic and wild sheep (e.g., in Armenian and
Sardinian mouflon, Bleyhl et al. 2018; Satta et al.
2021), or due to deliberate crossbreeding with
primitive domestic breeds to improve fecundity
or body/trophy growth (Türcke and Schmincke
1965; Uloth 1972; Lorenzini et al. 2011; Ciani
et al. 2014; Schröder et al. 2016; Barbato et al.
2017). However, recent investigations in several
continental and island populations show that
introgression of domestic sheep into mouflon is
not systematic and most often negligible, espe-
cially in historical mouflon range of island
populations where populations appear overall
pure (Schröder et al. 2016; Barbato et al. 2017;
Iacolina et al. 2019; Mereu et al. 2019; Ciani et al.
2020). In harvested continental populations, the
removal of animals with undesirable characteris-
tics might have contributed to explain the low
level of introgression detected (Schröder et al.
2016; Iacolina et al. 2019). In island populations,
by occupying remote/mountainous areas, resi-
dent populations were less prone to genetic intro-
gression from domestic sheep, and such
introgressions from not locally adapted breeds
were most likely counterselected by natural and
sexual selection.

Population Genetics and Structuring

Genetic differentiation between mouflon
populations has been shown to be relatively high
(e.g., Corsica versus mainland France, Portanier
2018). Within populations, a marked sex-specific
genetic structure can also be expected (e.g., in
Sardinia, Satta et al. 2016, 2021, in Corsica,
Portanier et al. 2022 but see Barbanera et al.
2012 in Cyprus) due to the sex-specific space-
use (Marchand et al. 2015a, b, 2017) and the
strong spatial segregation between sexes (e.g.,
Bourgoin et al. 2018). In a French-introduced
population, this socio-spatial behavior has been
found to reduce gene flow among females socio-
spatial units (Petit et al. 1997; Portanier et al.
2017, 2018) and to contribute to the persistence
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of a historical genetic footprint more than 14 gen-
erations after mouflon introduction (Portanier
et al. 2017). The socio-spatial behavior of ewes
relies on a strong philopatry (Dubois et al. 1992,
1994; Martins et al. 2002) and a preponderant role
of habitat characteristics on female movements
and habitat selection (Marchand et al. 2015a,
2017; see section “Habitat and Diet”). Among
habitat characteristics, both natural and anthropo-
genic linear landscape features, and, to a lower
extent, habitats avoided during the rutting period
(i.e., habitat perceived as unsafe or offering low
quantity and quality resources), have been found
to be resistant to gene flow (Portanier et al. 2018).
Conversely, habitats selected during the rutting
period (i.e., perceived as safe or offering
resources) would be much more permeable. This
is the case for steep slopes (used as refuge against
predators) that appear to be an important determi-
nant of landscape genetic resistance in mouflon
(Portanier et al. 2018) as reported for several other
wild sheep species (see Epps et al. 2007; Roffler
et al. 2016).

Rams are expected to insure most of the gene
flow in mouflon (Portanier et al. 2017) due to their
relaxed spatial behavior (Dubois et al. 1993,
1996) and reproductive dispersal, i.e., excursions
outside their home ranges during the rutting
period (Martins et al. 2002; Malagnino et al.
2021), as well as the limited impacts of linear
landscape features on their movements (March-
and et al. 2017). This contributes to a much lower
genetic structuring in males than in females
(Portanier et al. 2017).

Life History

Growth

Few studies have reported information on the
prenatal growth pattern of mouflon. Santiago-
Moreno et al. (2005b) found 12 body size metrics
studied by transrectal ultrasonographic measure-
ments on captive ewes to be closely related to
gestational age by simple linear or allometric
models. The postnatal growth pattern of mouflon
has been better investigated (e.g., Hoefs 1982;

Garel et al. 2007), but more in males than in
females for which no reliable age criteria exist
above 4 years-old (see subsection “Age Determi-
nation”). In males, growth patterns were often
based upon hunting records, i.e., transversal data
that may bias age-related patterns (Cam et al.
2002), or from the longitudinal monitoring of a
restricted number of known-age animals
experiencing captive conditions with a supple-
mentary feeding (e.g., Lincoln 1998; Santiago-
Moreno et al. 2005a). To overcome these limits,
we analyzed data from free-ranging mouflon of
known-age trapped during spring (before summer
drought) in the Caroux-Espinouse population (for
more details on the population and study site, see
Garel et al. 2005a, 2007; Marchand et al. 2014a,
2015a). Mouflon show typical monomolecular
patterns of growth (Gaillard et al. 1997) with
males being larger and experiencing active growth
in body mass (n ¼ 662) and hind foot length
(n ¼ 392) for a longer period than females (n ¼
521 and 360, respectively). Sexual dimorphism
was marked from 6 months of age onward with
adult males that weighed in average 44.2% more
than adult females and that had skeletal size in
average 7.1% longer (see also Table 1 for data
collected all over the year). Males reached their
asymptotic body size and mass at 3 and 7 years-
old, i.e., approximately 1 and 3 years later than
females, respectively. As already mentioned for
phenotypic characteristics (see subsection “Size
and Morphology”), postnatal growth shows large
inter-population variation in this species (e.g.,
Figs. 3.5 and 7.2 in Garel et al. 2006b).

Reproduction

An early onset of reproduction (~6–10months-old)
has been reported in some populations (Land 1978;
Briedermann 1992; Garel et al. 2005a; Sanchis
2018) with up to 50% of female lambs pregnant
(see also subsection “Reproductive Physiology”).
However, in most mouflon populations, the first
reproductive attempt of females is considered to
arise at the second breeding season when females
have benefited of two seasons of growth (age at
first reproduction: 1.5 years-old; Türcke and

498 M. Garel et al.



Schmincke 1965; Valdez 1976; Hadjisterkotis and
Bider 1993; Boussès and Réale 1998; Garel et al.
2005a). High-pregnancy rates can be reached and
have been found both in wild and captive
populations (from six populations: median
[range]: 90.6% [83.3–99%], n [range] ¼ 106
[27–396]; Briedermann 1992; Garel et al. 2005a;
Nahlik 2001) and both in primiparous yearling
females (93%; Cugnasse et al. 1985) and adult
multiparous ones (Garel et al. 2005a).

From studies conducted at latitudes of 34–56 �N,
rutting season extends from mid-October to
December in most populations (e.g., Pfeffer 1967;
Bon et al. 1993a; Hadjisterkotis and Bider 1993;
Garel et al. 2005a). Females give birth to lamb
(s) after c. 148–159 days of gestation (Mottl 1960;
Türcke and Schmincke 1965; Briedermann 1992),
i.e., from late March to late May. Although females
are commonly considered as monotocous (Türcke
and Schmincke 1965; Boussès and Réale 1998;
Garel et al. 2005a), twins have been observed
(mostly from postmortem examination) in enclosed
populations (Briedermann 1992), in free-living
populations given supplemental feed (Nahlik
2001; Sanchis 2018), and in wild populations
(Briedermann 1992; Hadjisterkotis and Bider
1993; Boussès and Réale 1998; Garel et al.
2005a). High twinning rates have even been
reported in the wild population of the Kerguelen
Archipelago (in adult females: 36.4%; Boussès
and Réale 1998). In this population, the probability
of twinning increased with decreasing level of het-
erozygosity in ewes, but this correlation could result
from local genetic effects rather than general
inbreeding level (Kaeuffer et al. 2008). Some
authors have also posited that in such populations,
females would have partly inherited their reproduc-
tive ability (e.g., of twinning) from wild ancestors
crossbred with domestic sheep (Pfeffer 1967;
Boussès and Réale 1998; Garel et al. 2005a) in
which domestication processes hadmeat production
and greater prolificity as an initial aim (Chessa et al.
2009). None of the primiparous females autopsied
in the previous studies had twins, and the sex ratio of
fetuses was statistically balanced betweenmales and
females (Garel et al. 2005a).

To our knowledge, no data have been published
on the age-related reproductive success in males

which require access to hardly reachable data such
as the genetically reconstructed pedigree (see
Coltman et al. 2002 in bighorn sheep). However,
reproductive effort of many different species of
ungulates is consistently higher in prime-aged
than in younger males and very old age classes
(Mysterud et al. 2004). We may thus expect the
same marked age-structured pattern of reproduc-
tive success in mouflon rams. In females, for which
the presence/absence of a lamb provides more trac-
table data on their breeding success, observations
from ewes marked in the Caroux-Espinouse popu-
lation would suggest an increase in breeding prob-
ability in very old age classes (Richard 2016),
rather than the commonly expected lower and
more variable reproductive performance as animals
get older (Martín and Festa-Bianchet 2011). This
finding would provide some support to the terminal
investment hypothesis in female mouflon, i.e.,
when survival prospects are low (see Fig. 3), and
residual reproductive value approaches zero, indi-
viduals should invest all available resources in their
terminal breeding attempt (Williams 1966; Pianka
and Parker 1975; Clutton-Brock 1984).

Ewes may thus express a high reproductive
potential: with a breeding attempt the first year
of life in some populations, high reproductive
rates over their lifetime and a litter size that may
sometimes exceed 1. This reproductive output can
be modulated by environmental conditions
encountered as suggested by the linear decrease
in female productivity from continental rich envi-
ronments (lamb-ewes ratios >0.8) to Mediterra-
nean islands where resource shortage is common
(lamb-ewes ratios <0.5; Ciuti et al. 2009). For
instance, the wild population of Corsican mouflon
in Bavella experiences among the lowest lamb-
ewes ratio ever reported (0.22; Sanchis 2018);
while in captivity with a supplementary feeding,
>90% of adult females reproduce (G. Comiti,
pers. comm.). However, whether these low
lamb-ewes ratios are only a matter of low fecun-
dity in females and/or of low survival in lambs has
still been little investigated.

Surprisingly, high-reproductive investment has
also been reported in some populations facing
limiting conditions. In the population on Kergue-
len archipelago and in Soay sheep (Ovis aries) on
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St Kilda archipelago (a closely related species,
Chessa et al. 2009, with the same generation
time, Hamel et al. 2016), females may give birth
as 1 year and/or may produce twins, even under
severe environmental conditions, and even at a
cost of survival (Clutton-Brock et al. 1991,
1996; Boussès and Réale 1998; Tavecchia et al.
2005). Similarly, most of females in the Caroux-
Espinouse population did not postpone their first
breeding attempt in 40 years of monitoring,
despite marked environmental changes in
resources availability (Cugnasse et al. 1985;
Garel et al. 2005b; Richard 2016), whereas age
at primiparity is usually the first vital rate to be
impacted by density-dependent food limitation in
ungulates species (Bonenfant et al. 2009). Female
mouflon could thus adopt in some populations a
less conservative strategy than usually reported in

ungulate females (Festa-Bianchet and Jorgenson
1998; Gaillard and Yoccoz 2003; Toïgo et al.
2007; Loison et al. 1999), by investing more
energy in producing young and less in surviving
long (Richard 2016; see subsection “Survival”).

Survival

Studies of marked individuals throughout their
lifespan are also the only way to get reliable
information on demographic parameters (survival
and breeding probabilities) in free-ranging
populations (Festa-Bianchet et al. 2017). In mou-
flon, very few long-term (>10 years) monitorings
by capture-mark-recapture/resighting have been
performed. We thus relied again on the analysis
of data available from the French population of
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Fig. 3 Sex and age-specific survival probabilities (vertical
lines indicate 95% confidence interval) of known-age mou-
flon (red: n ¼ 730 females; blue: n ¼ 816 males;
1986–2018 period) monitored by Capture-Mark-
Resighting in the Caroux-Espinouse massif, France (see
Garel et al. 2004). These results are an update of previous
published survival analyses performed in this population

during a restricted period (1986–1995) of nonlimiting con-
ditions (Cransac et al. 1997; Dupuis et al. 2002; King and
Brooks 2003). This update allows to account for density-
dependent conditions encountered by this population after
1995 (Garel et al. 2007) and provides a comprehensive
analysis along a gradient of density-dependent resource
limitation
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mouflon inhabiting the Caroux-Espinouse massif
to illustrate age and sex-specific patterns in demo-
graphic parameters. In this population, mouflon
survival of both sexes fits to the marked
age-structured patterns classically reported in
ungulate species with a survival improving in
early life, reaching a plateau in prime age
(2–7 years old), and then declining from 8 years
onward (Loison et al. 1999; Gaillard et al. 2000;
Fig. 3). Survival also becomes more variable as
animals get older. This increase of mortality rate
with age (actuarial senescence) most likely results
from the decline in physiological functions with
aging and is expected in any age-structured pop-
ulation (Hamilton 1966; Gaillard et al. 2000; Gail-
lard and Yoccoz 2003).

Another general rule is that the male survival
should be lower and more variable than female
survival (Toïgo and Gaillard 2003) in large
iteroparous and highly dimorphic ungulates (sex-
ual size dimorphism SSD �20%; Ruckstuhl and
Neuhaus 2002). This is due to contrasted life-
history tactics between sexes (e.g., Clutton-Brock
et al. 1982; Jorgenson et al. 1997) which leadmales
to be more sensitive to food limitation than females
(Toïgo and Gaillard 2003). Mouflon with their
marked SSD (e.g., Table 1), and the limiting
resources conditions experienced by the Caroux-
Espinouse population (Garel et al. 2007), confirm
this pattern (sex-specific survivals over all age
classes are 0.751 [0.733; 0.769]95% in males and
0.785 [0.768; 0.801]95% in females) and illustrates
possible costs caused by sexual selection in males.
Although this gender difference is expected to
increase with age, there is no such evidence here
(Fig. 3). In accordance with this sex-specific sur-
vival pattern, maximal longevity reported for this
population is lower in males (14 years) than in
females (17 years). More generally, for both
sexes, very few (<1%) known-age animals have
been resighted or recaptured beyond 13 years-old.

Habitat and Diet

In its Caucasian original range, mouflon occupy
plains, hills, lowland steppes, plateau slopes,
mountain grasslands, and shrublands on dry and

open slopes, with a preference for slightly rugged
terrain where antipredator strategy for survival
mostly relies on a high visibility (Baskin and
Danell 2003; Bleyhl et al. 2018). However, as a
result of its long history of introduction (see sec-
tion “Current Distribution”) and of an important
behavioral plasticity, mouflon have been able to
persist and can now be found in highly variable
habitats, i.e., from coastal areas (e.g., Hawaii’s
Big Island) to high mountains (e.g., Alps), from
flat terrains to rugged habitats, and from open
areas to dense forests (e.g., pampa in Argentina
versus continental forests from Eastern Europe).

Spatial Movements and Home Range

Depending on gender (males generally use larger
areas as a result of reproductive dispersal during
the rutting period; Dubois et al. 1993, 1996;
Malagnino et al. 2021) and on habitats, the annual
home range of mouflon ranges from a few hun-
dred to a few thousands of hectares (e.g.,
200–350 ha in females-males from the Caroux-
Espinouse population, 950–1700 ha in females-
males from the Cinto population [Corsica,
France]; Marchand 2013). This space use pattern
and its variation between populations are gener-
ally related to the existence of seasonal or altitu-
dinal migration imposed by variation in resources
availability and by the presence of snow cover in
winter (due to the absence of interdigital mem-
brane between digits, deep snow strongly impedes
movements in mouflon). Both anthropogenic
(roads, tracks, and trails) and natural (ridges,
talwegs, and forest edges) linear features that
mouflon can easily cross can constitute behavioral
barriers for movements, delineating individual
home ranges and influencing intrapopulation
gene flow (Marchand et al. 2017; Portanier et al.
2018). As a result of females’ philopatry and poor
dispersal abilities in mouflon, a strong socio-
spatial segregation is often reported within
populations (Martins et al. 2002; Bourgoin et al.
2018), with the existence of several population
units that use specific ranges and have little con-
tacts and exchanges of individuals with each other
(Darmon et al. 2007; Portanier et al. 2017).
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Habitat Selection and Activity Pattern

Habitat selection and activity pattern of mouflon
mostly depend on the trade-off between foraging
resources, cover from risks imposed by potential
predators (including humans, either in hunted
populations or as a result of the “ghosts of preda-
tor past”; Byers 1997), and cover from adverse
climatic conditions (food/cover trade-off; Lima
and Dill 1990). Generally crepuscular and
bimodal, the activity of mouflon can be largely
modulated depending on seasonal and individual
constraints (Bourgoin et al. 2008; Pipia et al.
2008). Likewise, habitat selection is characterized
at the daily scale by an alternation between forag-
ing areas used during active periods and refuge
areas used during ruminating/resting periods.
Once again, this pattern can be modulated
depending on seasonal and/or individual con-
straints (Marchand et al. 2015a).

During the first months of lamb’s life in spring,
reproductive females generally use habitats offer-
ing both security and abundant resources, maxi-
mizing their own survival and survival of their
lamb(s) while providing enough food resources
to cover the increased energetic needs imposed by
lactation (Hadjisterkotis and Bider 1993;
Bourgoin et al. 2008; Ciuti et al. 2008, 2009;
Pipia et al. 2008). During this period of abundant
resources, males and nonreproductive females are
highly active and focus on favorable foraging
areas (Bourgoin et al. 2008; Pipia et al. 2008;
Marchand et al. 2015a).

During summer, in areas where temperatures
are high, mouflon are generally less active during
daytime, when they select thermal refuges, and
more active at nighttime when they focus on for-
aging areas (Bourgoin et al. 2011; Marchand et al.
2015b). Both males and females movements are
thus preferentially directed toward habitats offer-
ing thermal cover when diurnal temperature over-
runs a given threshold (~15–17 �C in Marchand
et al. 2015b; see also Sanchis 2018). In males, this
selection persists during nighttime. In females, a
concomitant increase in nocturnal activity rate has
been reported to compensate for the drastic reduc-
tion in activity level during the hottest period of
the day. This activity shift may contribute in

limiting thermoregulatory costs (Bourgoin et al.
2011). Thermal cover also influences habitat pref-
erences of males at a broader spatial scale (home
range) exemplifying the importance of this factor
for male fitness (Rettie and Messier 2000). Con-
versely, females often trade-off food and thermal
cover with refuges and better conditions for lamb
survival, especially at the home range scale
(Marchand et al. 2015a), and their behavioral
responses to hot summer conditions were thus
restricted to the hottest period of the day only
and by temporally shifting their feeding activity
to the night. Similar results were reported in Cor-
sica, where a site occupancy approach was used
over 30,000 ha to investigate habitat selection by
mouflon during summer (Sanchis 2018). Detec-
tion probability also strongly decreased with
increasing temperatures and could be divided by
up to 2 from 10 �C to 30 �C (Garel et al. 2005c;
Cazau et al. 2011; Sanchis 2018).

During autumn and winter, foraging resources
become scarce and mouflon spend most of their
time foraging. In some areas, food supply is pro-
vided and seems important for successful over-
wintering (Heroldova et al. 2007). In areas where
snow cover persists and where winters are harsh,
mouflon often move to lower altitudes and use
distinct areas than those used in summer (Baskin
and Danell 2003; Darmon et al. 2014). Altitudinal
migration, or even long-distance migration, have
been consequently reported in several mountain-
ous populations (Pfeffer and Settimo 1973;
Rigaud 1985; Dubois et al. 1993; Talibov et al.
2009), but little is known on the determinants, on
the proportion of individuals concerned, and on
the ecological and biological consequences for
mouflon populations. Collective migratory move-
ments have been observed in Corsica (P.
Benedetti, pers. comm.).

Whatever the season, these behavioral patterns
can also be modulated depending on the level of
human activities in natural areas (lethal, i.e., hunt-
ing, or nonlethal, such as recreational activities).
For instance, human disturbance generally results
in a temporal shift of activities toward nighttime
and an exacerbated selection of refuge areas dur-
ing daytime (Benoist et al. 2013; Marchand et al.
2014b; Sanchis 2018). However, the long-term
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consequences of this spatio-temporal shift related
to human activities, e.g., on energetic balance,
reproduction, and/or survival, remain unknown.

Feeding

Among large herbivores, mouflon have been clas-
sified as a “grazer” species based on the relative
consumption of grasses and browse and on the
morphology and physiology of their digestive sys-
tem (Hofmann 1989). Indeed, its diet is mostly
composedwith grasses and forbs when these plants
are available in sufficient quantity (Marchand et al.
2013). Besides, its rumen morphophysiology is
particularly suitable for grass digestion and con-
tains specific bacteria able to provide energy from
cellulosis contained in grasses (Clauss et al. 2009,
2010). However, when grasses are temporally/sea-
sonally and/or locally scarce, mouflon can feed on
dicots, i.e., forbs, shrubs, fruit, and even trees
(Marchand et al. 2013). As a result, >100 plant
species have been reported in mouflon diet. Like-
wise, mouflon have been able to persist and spread
in areas where grasses are uncommon (e.g., Ker-
guelen archipelago), calling into question the clas-
sification of mouflon as a grazer (see Clauss et al.
2010; Marchand et al. 2013). However, a strong
decrease in body mass has been observed in a
population facing an important loss of open
(i.e., grass-rich) areas and between individuals
with decreasing levels of open areas in their home
ranges (Garel et al. 2007; Marchand et al. 2014b).
This suggested that this mismatch between the
digestives features of mouflon and their actual
diets in most areas where it persists has to be
interpreted owing to the introduction history of
the species.

Behavior

Social Behavior

Mouflon is a gregarious species in which group
size and composition are unstable (fission-fusion
dynamics; Bon et al. 1990, 1993b). As a result of a
strong sexual size dimorphism (Table 1) and

sex-specific needs, adult males and females live
in segregated groups out of the rutting season and
can use different habitats depending on
sex-specific seasonal needs and constraints (sexual
segregation with both social and spatial compo-
nents; Bourgoin et al. 2018). Sexual segregation
between young males and females increases with
the age of males, resulting in young males often
found either in groups of females or in groups of
adult males. The social component appears to be
important not only for sexual segregation between
the sexes but also between age groups among
males (Cransac et al. 1998; Bourgoin et al. 2018).

Reproductive females generally isolate from
other individuals during a few hours-days for
lambing (Hadjisterkotis 1993; Marchand et al.
2021). As soon as their lamb is able to follow
their mother (follower type sensu Lent 1974),
they form groups of females and lambs that use
specific habitats offering both security and abun-
dant resources until weaning; which progressively
occurs around 3 months after births.

Mating Behavior

During the rutting season, two reproductive tac-
tics have been reported in mouflon rams,
depending mostly on their age (Bon et al. 1992).
Dominant old males generally tend receptive
females by following them and by impeding
attempts to mate of other males (tending tactic).
By contrast, young subordinate males rather
course females, attempting to breach the defense
of dominant males (coursing tactic). Whatever
their age, reproductive dispersal is often observed
in males during the rutting season, i.e., important
movements of males out of the home range they
use the rest of the year (Malagnino et al. 2021),
with consequences on gene flow (Portanier et al.
2018).

Inter- or intrasexual interactions consist in
repeated behavioral postures (McClelland 1991).
Interactions between males involve low-intensity
agonistic displays such as foreleg kicks and twists
(an animal closely approaches another one and
rotates its head approximately 90� with the horn
directed away from the recipient’s body). Head
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butting (in both sexes) and clashes (in males) pre-
dominate in intrasexual agonistic interactions, and
the former behavior is regularly used to initiate the
interaction in both sexes. Male-female interac-
tions show more variation in the behaviors
which initiate the encounter, but usually begin
by males performing twist, flehmen (male tightly
retracting its upper lip until it curls completely
away from its toothless upper jaw), or low stretch
(male stretches its head and neck as forward as
possible). Much more behavior components are
exhibited during male-male interactions as com-
pared to female-female encounters which are
often very brief.

Parasites and Diseases

Several studies on diseases of mouflon were
performed not only on island and introduced
populations across Europe, but also in Chile and
in the sub-Antarctic Kerguelen archipelago,
stressing the high diversity of both internal and
external parasites mouflon may host (see Hille
2003 for a review).

Ectoparasites

Among the external parasites, some infestations
by acarian and insects are sporadically reported in
mouflon, including the sarcoptic mange caused by
Sarcoptes scabiei (Bornstein et al. 2001; Poglayen
et al. 2018), hypodermosis caused by larvae of the
warble fly Hypoderma diana (Colwell 2001), and
oestrosis caused by larvae of the sheep nasal bot
fly Oestrus ovis (Moreno et al. 1999, 2015;
Poglayen et al. 2018).

The most prevalent ectoparasites are the ticks
belonging to the Ixodida order. The tick Ixodes
ricinus was observed in most of the study areas
within Europe and was often the only species
observed in northern and high-elevation areas
(e.g., Germany, Netherland, Poland, Czechoslova-
kia, Austria, and French Alps). In southern parts of
Europe (Cyprus: Ioannou et al. 2011; south of
France and Corsica: Grech-Angelini et al. 2016;
Mercier 2016; Italia: Poglayen et al. 2018) and

Ukraine (see Hille 2003 for a review), a higher
diversity of tick species was observed with five to
eight species per country, belonging to the genera
Haemaphysalis, Hyalomma, Rhipicephalus, and
Dermacentor. In the Caroux-Espinouse population,
the infestation of mouflon by ticks in spring was
positively correlated with the body mass of mou-
flon and with the level of rainfall, but negatively
correlated with the mean ambient temperature
(Bourgoin et al. 2014).

Ticks are of main concern as they can transmit
several pathogens of veterinary and zoonotic
importance. Mouflon have been shown to have
direct or indirect signs (high antibody titers) of
contamination with pathogens such as Anaplasma
phagocytophilum (anaplasmosis; Stefanidesova
et al. 2008; Silaghi et al. 2011; Kauffmann et al.
2017; Hornok et al. 2018), A. ovis (Ioannou et al.
2011), Borrelia burgdorferi s.l. (Lyme borreliosis;
Trávnicek et al. 1999; Zeman and Januška 1999;
Juřicová et al. 2000; Trávnicek et al. 2003;
Štefančíková et al. 2008),Babesia spp. (babesiosis;
Ferrer et al. 1998; Kauffmann et al. 2017),Coxiella
burnetii (Q fever; e.g., Martinov et al. 1989;
Hubalek et al. 1993; López-Olvera et al. 2009;
Candela et al. 2017), and Rickettsia sp. (Ioannou
et al. 2011; Hornok et al. 2018). Tick-borne
encephalitis virus (Zeman and Januška 1999;
Bagó et al. 2002) and tick paralysis (Konjevic
et al. 2007) were also reported in mouflon.

Endoparasites

Necropsies of mouflon from France and Germany
revealed the presence of 42 and 34 different spe-
cies/morphotypes of helminths in their digestive
and respiratory tracts, respectively (Gauthier et al.
2001; Hille 2003). The prevalence of lungworm
infections by Protostrongylidae, belonging mostly
to theMuellerius,Cystocaulus,Neostrongylus, and
Protostrongylus genera, is generally high (Gauthier
et al. 2001; Hille 2003; Panayotova-Pencheva
2006; Poglayen et al. 2018). The life cycle of
these parasites requires a gastropod as an interme-
diate host, while the less prevalent Dictyocaulus
sp., located in the trachea and the large bronchi at
the adult stage, has a direct life cycle.
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Regarding the parasitism of the digestive tract,
the prevalence and diversity of helminth species
are significant, especially for nematodes inhabiting
the abomasum and the small intestine of mouflon
(Gauthier et al. 2001; Hille 2003; Maerten 2014;
Poglayen et al. 2018). Most of these nematodes
belong to the order Strongylida, and some species
have a well-recognized pathogenicity and are
shared with domestic small ruminants, such as
Haemonchus contortus (Cerutti et al. 2010).
Isolation and counts of adult strongyles from mou-
flon hunted during autumn-winter showed an
increase of the infestation with age and a negative
relationship with body condition (Hille 2003;
Maerten 2014). In spring, the number of eggs
shed in feces is higher in young individuals, repro-
ductive females, and individuals in poor body con-
dition (Portanier et al. 2019; Bourgoin et al. 2021).
Both candidate gene (MHC DRB1 exon 2) and
neutral genetic diversity (16 microsatellites) have
been found to be associated with resistance to
gastrointestinal nematodes (Portanier et al. 2019).

Other helminths observed in the digestive tract
of mouflon include trematodes and cestodes.
The small liver fluke Dicrocoelium dendriticum
is the most common fluke and was reported in all
the European countries where parasitological
studies were conducted, while the pathogenic
common liver fluke Fasciola hepatica and the
rumen fluke Paramphistomum/Calicophoron
spp. are more rarely detected in mouflon (Gauthier
et al. 2001; Hille 2003; Poglayen et al. 2018;
Bourgoin et al. 2021). Moniezia expansa and
M. benedeni are the main adult cestodes develop-
ing in the small intestine of mouflon, especially in
lambs and young individuals (Hille 2003).

Intestinal infestations by the protozoan
Eimeria sp. are highly prevalent, and often
multi-infections with different species of Eimeria
occur. The intensity of fecal oocyst excretion is
generally the highest in mouflon in poor body
condition and in young mouflon (Hille 2003;
Bourgoin et al. 2021). More rarely described in
free-ranging mouflon, infestations by Giardia
duodenalis can be observed, especially in lambs
and young individuals (Cockenpot 2013).

Mouflon can play the role of the intermediate
host for different parasites. It includes Sarcocystis

sp., with cysts located in muscles (Goldova et al.
2008; Coelho et al. 2014; Poglayen et al. 2018)
and the zoonotic protozoan Toxoplasma gondii,
with potential consequences on the reproductive
success of ewes, and also risks for people con-
suming game meat (Gauss et al. 2006; Aubert
et al. 2010; Bartova and Sedlak 2012; Gotteland
et al. 2014; Verma et al. 2015; Heddergott et al.
2018; Almería et al. 2018). Larvae of cestodes can
be detected during a carcass examination of mou-
flon such as the metacestode larval stage of Taenia
hydatigena (Cysticercus tenuicollis) attached to
the peritoneum in the abdominal cavity, or
the hydatid cysts of Echinococcus granulosus in
the liver and/or lungs (Hadjisterkotis 1997). The
metacestode larval stage of Taenia multiceps
(Coenurus cerebralis) is located in the brain or
the spinal cord of the host and may cause nervous
or behavioral disorders (Hille 2003; Poglayen
et al. 2018).

Infectious Diseases

The infectious keratoconjunctivitis, caused by
Mycoplasma conjunctivae, has been reported in
mouflon in France (Cransac et al. 1997; Cugnasse
1997) and in the Spanish Pyrenees (Marco et al.
2009). Following epizootics, marked decreases in
abundance (Garel et al. 2005c) and survival prob-
abilities (Cransac et al. 1997) have been detected,
with a constant decline for males in all age class
(~�20%) and age-specific variation for females
(with survival probabilities declining by up to
�30–60% among lamb and young ewes).

Antibodies against other pathogens of veterinary
and zoonotic importance have also been detected in
mouflon, such as Salmonella abortusovis (abortive
salmonellosis; Martín-Atance et al. 2012),
Chlamydophila abortus (chlamydiosis; López-
Olvera et al. 2009), Mycobacterium avium ssp.
paratuberculosis (paratuberculosis; López-Olvera
et al. 2009), caprine arthritis-encephalitis virus
(Guiguen et al. 2000), bluetongue virus (Rossi
et al. 2014), and Schmallenberg virus (Rossi et al.
2017).

Other diseases have been searched for in a
limited number of individuals (Leptospira sp.,
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Mycoplasma agalactiae, andNeospora caninum):
None of the individuals tested were infected; how-
ever, this does not preclude the possibility of low
prevalence of these diseases. Mouflon are also
expected to be susceptible to diseases affecting
ruminants in general, such as brucellosis and
tuberculosis. However, the exact epidemiological
role of mouflon populations in the transmission of
all these infections remains to be determined.

Additional sanitary issues have been reported in
some mouflon populations. For instance, the
Cyprus population suffers from a large range of
bone problems similar to those of domestic animals
(Hadjisterkotis 1996c). The most important defects
are degenerative changes and spondylosis
(a.k.a. spondylosis deformans or ankylosing
spondylosis). At the articular processes and facets,
degenerative arthropathy is present and the reaction
of the osteophytes produces ankylosis of the artic-
ulations between vertebral bodies (intervertebral
parts) and between the costal facets and the head
of the ribs (costovertebral parts). Disk damagewith
osteophytosis and sometimes degenerative
changes of the vertebral body and a greater spinal
curvature were also observed mainly in males
throughout the thoracic vertebra, which could
result from the greater strain their spinal cords
endure, as in fights during the rutting season.
Affections of the hoofs have also been reported in
mouflon, among which the most common is the
contagious foot rot disease, caused by
Dichelobacter nodosus in association with
Fusobacterium necrophorum (Belloy et al. 2007;
Bennett et al. 2009). It is usually passed on from
domestic sheep to mouflon on shared pastures. An
inflammation and necrosis of the interdigital tissue
among feet is observed. The animals produce a
hyperplastic foot horn, show lameness, and often
feed in a recumbent position (Volmer et al. 2008).

Population Ecology

Population Dynamics

In line with its fast living strategies (at least in
females; see subsection “Reproduction”), mou-
flon have a short generation time (4.21 years;

Hamel et al. 2016), may reach in some
populations a very high population growth rate
(λ ¼ 1.34 in Kaeuffer et al. 2009), and show a
temporal variability in prime age survival similar
to that of breeding probability (Richard 2016).
This suggests a lower canalization of adult sur-
vival than usually reported in other ungulates
species (Gaillard and Yoccoz 2003). Variability
in environmental conditions encountered during
early life probably contributes to this temporal
variability in demographic rates (Lindström
1999) and has been found to generate
sex-specific cohort effects on phenotypic traits
such as body mass (Garel et al. 2007; Hamel
et al. 2016). Typically, female body mass shows
less phenotypic variability among cohorts and
stronger compensatory/catch-up growth than
males, whereas males show more progressive
changes throughout life. This supports that stron-
ger selective pressures for rapid growth in this
dimorphic species make males more vulnerable
to poor environmental conditions early in life and
less able to recover rapidly after a poor start.

As in any other ungulate species, population
dynamics of mouflon results from complex inter-
actions between per capita food resources
(Kaeuffer et al. 2009; in Soay sheep Catchpole
et al. 2000; Coulson et al. 2001), climatic condi-
tions (Hadjisterkotis 2002; Garel et al. 2004),
disease (Cransac and Hewison 1997), and, when
present, predation (either natural or from hunting;
Espuno 2004; Garel et al. 2005c). Age structure is
also expected to shape the response of demo-
graphic rates to density and environmental
stochasticity (Sæther 1997; Gaillard et al. 2000;
Coulson et al. 2001). In absence of predation/
hunting, mouflon populations could grow close
to their maximum growth rate over a wide range
of population densities (Bonenfant et al. 2009;
Kaeuffer et al. 2009) and, when resources are
not limiting (e.g. in populations released to a
new environment), should display a typical
“irruptive dynamics” (see Kaeuffer et al. 2009 in
the mouflon population of the Kerguelen archipel-
ago). In such a situation, the mouflon population
quickly reaches, and may exceed, the carrying
capacity of its environment, before collapsing
and entering in a second phase of successive
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irruptions. This pattern has also been documented
in Soay sheep (Clutton-Brock et al. 1991). In both
species, it has been related to the high-
reproductive potential of ewes (see subsection
“Reproduction”) in association with delayed
density-dependent processes on demographic
rates during the irruptive phases.

Phenotypic traits, such as body mass and tro-
phy size, have also been found to be density-
dependent and related to intraspecific competition
for resources (Garel et al. 2007; in Soay sheep see
Forchhammer et al. 2001). Yearly monitoring of
phenotypic measurements, such as lamb body
mass, could thus be used as an early warning
sign of food limitation in this species, providing
a quantitative basis when setting hunting quotas
(Morellet et al. 2007).

Competition with Other Ungulates

Numerous populations of mouflon also share habi-
tats with other wild or domestic ungulate species
(e.g., red deer Cervus elaphus, roe deer Capreolus
capreolus and axis deer Axis axis, Pyrenean
Rupicapra pyrenaica pyrenaica andAlpine chamois
Rupicapra rupicapra rupicapra, Iberian wild goat
Capra pyrenaica and Alpine ibex Capra ibex, aou-
dad Ammotragus lervia, wild boar Sus scrofa,
sheep, goat, and cow), resulting in a high potential
for competition, particularly between similar-sized
species (Pfeffer and Settimo 1973; Gonzales 1986;
Hadjisterkotis 1993; Heroldova 1996; Bertolino
et al. 2009; Darmon et al. 2012; Miranda et al.
2012; Chirichella et al. 2013; Redjadj et al. 2014;
Centore et al. 2018). Although important spatial
and/or diet overlaps have been reported with other
species in some areas where mouflon have been
introduced, contrasted results have been observed
in terms of competition for native species. Species-
specific adaptations to local environmental condi-
tions (e.g., differences in activity patterns or habitat
selection; Darmon et al. 2012, 2014) may contribute
to coexistence without negative impacts from mou-
flon in most cases. However, spatial adjustments,
diet overlap, and activity shifts in native species
related to the presence of mouflon were also
reported and interpreted as evidence for interspecific

competition (Bertolino et al. 2009; Chirichella et al.
2013; Centore et al. 2018). However, to our knowl-
edge, no study has evidenced so far a negative
impact of mouflon on bodymass, growth, reproduc-
tion, or survival of other ungulate species. By con-
trast, competition with livestock, and particularly
with domestic sheep, is a key concern for mouflon
(see section “Management”).

Effects of Climate Change

Thermal conditions during summer have been
identified as a major driver of spatial and temporal
behaviors in mouflon populations inhabiting
Mediterranean areas (Pipia et al. 2008; Bourgoin
et al. 2011; Marchand et al. 2015b; see subsection
“Habitat Selection and Activity Pattern”). How-
ever, behavioral adjustments identified did not
prevent females from losing up to 15% of activity
time over a 24-h period during hot summer days
(Bourgoin et al. 2011). In addition, as daily tem-
perature increases, ambient temperatures experi-
enced by mouflon never stopped increasing
despite shift in habitat selection (Marchand et al.
2015b). This suggested that this shift might be
insufficient to maintain ambient temperatures
around the threshold controlling thermoregulation
(~15–17 �C). In line with these findings,
fitness-related traits, such as body mass, and fit-
ness components, such as lamb survival and
female productivity, have been found to be
impacted by summer heatwaves and droughts
(Garel et al. 2004) or to be correlated with
temperature-related parameters (e.g., latitude;
Ciuti et al. 2009). As an example, a high lamb
mortality was recorded during the 4-month period
around the severe 2003 drought in the Caroux-
Espinouse population (Garel et al. 2004). Adults
harvested during the hunting season following
this severe drought were on average
3.4 � 0.8 kg lighter than those harvested in the
three previous hunting seasons, representing a
>11% and >17% mass loss in adult males and
females, respectively. In Cyprus, the higher mor-
tality in fall/early winter has also been partly
associated with the low resources quality and
quantity experienced by animals some months

21 Mouflon Ovis gmelini Blyth, 1841 507



earlier during the long hot and dry Cypriot sum-
mers (Hadjisterkotis 2002). These first insights
raise concerns on the long-term consequences of
global warming in Mediterranean areas where
mouflon populations will face in a near future
more intense and more frequent heatwaves
(Paeth and Hense 2005).

Conservation Status

The conservation status of mouflon is summarized
in Table 2.

Management

This species remains a paradox for conservation
and management (Garzón-Machado et al. 2012).
On the one hand, several native populations
(Özüt 2009; Hajian et al. 2011) and mouflon on
Mediterranean islands are of conservation con-
cern (Cassola 1985; Shackleton and IUCN/SSC
Caprinae Specialist Group 1997; Hadjisterkotis
and Lovari 2016; Portanier et al. 2022) and often
benefit locally of a protection status (e.g., for

Cyprus: “The Protection and Development of
Game and Wild Birds Law of 1974 (39/1974),
article 9,” for Corsica: “Ministerial order of 1st
March 2019, NOR: TREL1824291A”; see also
Apollonio et al. 2010). Though not always
assessed, several threats have been identified in
these areas: poaching, hunting (nontarget spe-
cies) and associated disturbance, habitat loss
(e.g., forest encroachment), hybridization with
sheep and more generally loss of genetic diver-
sity related to population isolation, competition
and sharing of pathogens with domestic herds,
and development of recreational activities in
natural areas (Hadjisterkotis 2001; Rieu 2007;
Khorozyan et al. 2009; Talibov et al. 2009;
Bleyhl et al. 2018; Satta et al. 2021; Brivio et
al. 2022). In its Caucasian original range, com-
petition with herds of several hundreds of
domestic sheep, usually accompanied by several
shepherds and 1–4 dogs/100 sheep, is a key
issue since it might have pushed mouflon into
marginal habitats (Khorozyan et al. 2009;
Talibov et al. 2009; Bleyhl et al. 2018; Brivio
et al. 2022).

These numerous threats justified important
efforts to improve the conservation status in its

Table 2 Summary of mouflon status in international agreements for conservation of animal and plant species

List Taxon Status Date Notes

IUCN red
list

O. gmelini Near Threatened
A2cde ver 3.1
(global)

2020-
03-18

Current population trend unknown. Four
subspecies included: Anatolian and Armenian
mouflon lumped into O. g. gmelini, Isfahan
mouflon O. g. isphahanica, Laristan mouflon
O. g. laristanica and Cyprus mouflon O. g. ophion

Bern
Convention

O. aries (musimon,
ammon)

Appendix 3a 1979

CITES O. gmelini Appendix 1b 2022-
06-22

Only the population of Cyprus. No other
population is included in the Appendices

Habitat
directive

O. gmelini
musimon
(or O. ammon
musimon)
O. orientalis
ophion (or O.
gmelini ophion)

Annex 2c

Annex 4d
1992 Natural populations in Corsica and Sardinia

aProtected Fauna species
bSpecies threatened with extinction. Trade in specimens of these species is permitted only in exceptional circumstances
(e.g., scientific research)
cAnimal and plant species of community interest whose conservation requires the designation of special areas of
conservation
dAnimal and plant species of community interest in need of strict protection
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native range and in Mediterranean islands during
the two last decades. As examples, between 2004
and 2007, two reintroductions of Anatolian mou-
flon occurred in central Turkey (Karaman-
Karadag and Ankara-Sariyar) using founder indi-
viduals from the Konya-Bozdag area (Özüt 2009).
In Cyprus and Corsica, some individuals have
been enclosed and reproduce in captivity for
reintroduction (Hadjisterkotis and Bider 1993;
Rieu 2007). However, the breeding program for
the Cyprus mouflon was considered a failure due
to the introduction of inbred animals with reduced
viability (Hadjisterkotis and Lambrou 2001).
Mouflon are also one of the first wild endangered
species for which cloning and assisted reproduc-
tive technologies have been considered as conser-
vation measures (Loi et al. 2001; Hosseini et al.
2009; Hajian et al. 2011). Managing habitats is
another simpler lever for mouflon conservation
(Khorozyan et al. 2009; Talibov et al. 2009;
Bleyhl et al. 2018). As an example, increasing
grass availability, e.g., by using prescribed burn-
ing or cutting when woody plants encroach
(Cazau et al. 2011), or by limiting competition
with domestic herds (Bleyhl et al. 2018; Brivio
et al. 2022), may help increasing forage abun-
dance for mouflon facing habitat loss. Likewise,
food supply is provided and seems important for
successful overwintering in some populations
where snow cover persists during winter (Nahlik
2001; Heroldova et al. 2007).

On the other hand, mouflon has been introduced
with success as a game species in numerous coun-
tries (see section “Current Distribution”), allowing
the development of thriving businesses based on
trophy hunting (Shackleton and IUCN/SSC
Caprinae Specialist Group 1997; Hofer 2002). In
some populations, this selective hunting may have
had detrimental effects on individual phenotypic
characteristics (Garel et al. 2007). Introduced mou-
flon have also sometimes raised management con-
cerns when negative impacts on ecosystems are
reported (Heroldova and Homolka 2001;
Michaelidou and Decker 2002). Severe impacts
on commercial forests or endemic plants have
been recordedwhenmouflon have been introduced
in forested areas and sites of high economical or
environmental values (e.g., Hawaii, Kerguelen,

and Canary islands; Rodríguez et al. 1988;
Rodríguez Luengo and Piñero 1991; Homolka
and Heroldova 1992; Chapuis et al. 2001; Hess
and Jacobi 2011). More generally, when grasses
become scarce, mouflon can locally/seasonally
cause damages on trees, artificial pastures,
vineyards, orchards, and/or crop fields (e.g., in
Cyprus see Hadjisterkotis and Vakanas 1997). As
a result, mouflon have been classified as invasive in
Hawaii and Canary islands and have been eradi-
cated fromKerguelen archipelago during the 2010s
(Giffin 1979; Garzón-Machado et al. 2012; Terres
Australes et Antarctiques Françaises 2013).

Both native and introduced populations of
mouflon may also play an important role in food
webs and in the maintenance and/or recovery of
carnivores and raptors (Poulle et al. 1997;
Cugnasse and Golliot 2000; Andersen et al.
2006; Herzog 2018). Mouflon newborns and
juveniles are indeed preys for the golden eagle
Aquila chrysaetos and for the red fox Vulpes
vulpes, but the impact of these predators on
populations may be limited and may not concern
adults (Hadjisterkotis 1996a; Cugnasse and
Golliot 2000). More direct killings were reported
by stray dogs than foxes, although foxes are also
one of the major scavengers of dead mouflon
(Constantinou and Hadjisterkotis 2016; Nasiadka
et al. 2021). By contrast, predators such as lynx
Lynx lxnx and wolf Canis lupus can play a signif-
icant role on population size and persistence. In
several areas where one of these predators recov-
ered during the last decades, marked drops in
mouflon populations were recorded (Poulle et al.
1997; Andersen et al. 2006; Möckel 2017; Herzog
2018). Mouflon seem particularly sensitive to pre-
dation by large carnivores during winter as move-
ments are impeded by snow and as group size is at
its highest in restricted winter ranges.

Future Challenges for Research
and Management

Further research is needed to inform managers on
the extent to which populations of mouflon can
adapt to the fast ongoing global changes, in par-
ticular in its native range (where knowledge is

21 Mouflon Ovis gmelini Blyth, 1841 509



critically lacking) and more generally where
populations are of conservation concerns.

Mouflon seem particularly sensitive to heat
stress and droughts, with both behavioral and
demographic side effects reported (Garel et al.
2004; Bourgoin et al. 2009; Marchand et al.
2015b) and a strong dependence on water avail-
ability during the hottest period in the most arid/
Mediterranean areas (Hadjisterkotis 2001). With
rising temperatures and more frequent/intense
droughts predicted (Paeth and Hense 2005), and
numerous expected consequences on mouflon
habitats, better understanding how the behavioral
ecology, dynamics, and distribution of mouflon
populations can be affected by global warming is
an important research avenue.

Likewise, habitat loss and interactions with
domestic livestock (competition, sharing of path-
ogens) have already been identified as major
threats for numerous populations of mouflon, in
particular in its native range (Hadjisterkotis 2001;
Khorozyan et al. 2009; Talibov et al. 2009; Bleyhl
et al. 2018; Brivio et al. 2022). Habitat fragmen-
tation and loss of connectivity imposed by the
development of human activities and associated
infrastructures, the cessation of ancestral migra-
tion routes, and disturbance imposed by the devel-
opment of recreational activities in natural areas
may constitute other challenges for most
populations of mouflon that are still to be evalu-
ated (Marchand et al. 2014a, 2017; Bleyhl et al.
2018). As the size of domestic herds generally
increases in mountainous areas (García-Martínez
et al. 2009), so do the populations of other wild
large herbivores that coexist with mouflon
(in Europe; Apollonio et al. 2010); it is likely
that questions of competition between wild and
domestic species, of the impact of introduced
mouflon on ecosystems, and of the sanitary issues
resulting from increasing interspecific contacts
will arise even more in many countries
(Khorozyan et al. 2009; Talibov et al. 2009;
Bleyhl et al. 2018).
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