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Preface

Lymphomas are a complex group of hematological malignancies that have distinc-
tive etiology, epidemiology, clinical behavior, and response to therapy. For decades, 
multidrug chemotherapy and/or radiation therapy constituted sole backbones to 
treat those patients. However, the development of resistance to conventional ther-
apy, due to a multitude of genetic, epigenetic, metabolic mechanisms among others, 
has contributed to hinder the therapeutic success in a significant proportion of 
patients.

More recently, remarkable advancements in the lymphoma field, with better 
understanding of lymphoma cell biology and its microenvironment, have contrib-
uted to the development of biologic or “targeted” agents and consequent rapid 
expansion of the therapeutic landscape. These agents are usually designed and 
developed based on specific target molecules present in key tumor or microenviron-
mental cells that once blocked or deregulated can lead to cell death, cell differentia-
tion, or immune system recognition. Many clinical studies have focused on testing 
targeted agents as monotherapy or in combination with conventional chemotherapy 
with the goal of improving outcomes or reducing acute or long-term complications 
associated with therapy. Unfortunately, despite the well-thought rational behind 
each targeted agent development, transient or unsatisfactory responses to those new 
therapies are commonly described, suggesting the development of tumor-related or 
host-related treatment resistance as a culprit to treatment failure. In this book, we 
will review different classes of targeted drugs that have been developed, approved, 
or are under investigation in the field of lymphoma therapy. Our focus is to provide 
a comprehensive review of the mechanisms of action or clinical response of several 
targeted agents and to discuss mechanisms of tumor-related or host-related resis-
tance and potentially how to overcome resistance. This understanding is crucial 
considering the dismal outcomes of patients with relapsed or refractory lymphomas. 
Collectively, the chapters offer a unique opportunity to review, understand, and 
reflect on the recent successes and pitfalls of the modern lymphoma therapy era.

Birmingham, AL, USA�   Ana C. Xavier 
Valhalla, NY, USA�   Mitchell S. Cairo
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Aims and Scope

For several decades, treatment of cancer consisted of chemotherapeutic drugs, radi-
ation, and hormonal therapies. Those were not tumor-specific and exhibited several 
toxicities. During the last several years, targeted cancer therapies (molecularly tar-
geted drugs) have been developed, consisting of immunotherapies (cell-mediated 
and antibody) drugs or biologicals that can block the growth and spread of cancer 
by interfering with surface receptors and with specific dysregulated gene products 
that control tumor cell growth and progression. These include several FDA-approved 
drugs/antibodies/inhibitors that interfere with cell growth signaling or tumor blood 
vessel development, promote the cell death of cancer cells, stimulate the immune 
system to destroy specific cancer cells, and deliver toxic drugs to cancer cells. 
Targeted cancer therapies are being used alone or in combination with conventional 
drugs and other targeted therapies.

One of the major problems that arise following treatment with both conventional 
therapies and targeted cancer therapies is the development of resistance, preexisting 
in a subset of cancer cells or cancer stem cells and/or induced by the treatments. 
Tumor cell resistance to targeted therapies remains a major hurdle, and, therefore, 
several strategies are being considered in delineating the underlining molecular 
mechanisms of resistance and the development of novel drugs to reverse both the 
innate and acquired resistance to various targeted therapeutic regimens.

The new series “Resistance of Targeted Anti-cancer Therapeutics” was inaugu-
rated and focuses on the clinical application of targeted cancer therapies (either 
approved by the FDA or in clinical trials) and the resistance observed by these thera-
pies. Each book will consist of updated reviews on a specific target therapeutic and 
strategies to overcome resistance at the biochemical, molecular, and both genetic 
and epigenetic levels. This new series is timely and should be of significant interest 
to clinicians, scientists, trainees, students, and pharmaceutical companies.

Los Angeles, CA, USA� Benjamin Bonavida
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Chapter 1
Mechanisms of Glucocorticoid Response 
and Resistance in Lymphoid Malignancies

Lauren K. Meyer and Michelle L. Hermiston

Abstract  Glucocorticoids (GC) are an integral component of multi-agent therapy 
regimens for a wide variety of lymphoid malignancies due to their potential effects 
to induce apoptosis in cells of the lymphoid lineage. Despite their clinical utility, de 
novo and acquired resistance to GC is a significant clinical problem that contributes 
to inferior outcomes for many of these diseases. This review summarizes what is 
currently known about mechanisms of GC resistance in lymphoid malignancies, 
with a particular focus on novel therapeutic strategies currently in preclinical or 
clinical development that are rationally-designed to overcome GC resistance and 
improve clinical outcomes.

Keywords  Apoptosis · Glucocorticoid · Leukemia · Lymphoma · Metabolism  
MicroRNA · Drug resistance · Signal transduction

Abbreviations

2-DG	 2-Deoxy-D-Glucose
3’UTR	 3’ Untranslated Region
B-CLL	 B-Cell Chronic Lymphocytic Leukemia
BFM	 Berlin-Frankfurt-Munster
cAMP	 Cyclic Adenosine Monophosphate
CDK	 Cyclin Dependent Kinase
ChIP-Seq	 Chromatin Immunoprecipitation with Sequencing
CHOP	 Cyclophosphamide, Adriamycin, Vincristine, and Prednisone
DBD	 DNA Binding Domain
DEX	 Dexamethasone
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DLBCL	 Diffuse Large B-Cell Lymphoma
EFS	 Event-Free Survival
GC	 Glucocorticoid(s)
GR	 Glucocorticoid Receptor
GRE	 Glucocorticoid Response Element
GST	 Glutathione S-Transferase
HDAC	 Histone Deacetylase
HSD	 Hydroxysteroid Dehydrogenase
LBD	 Ligand Binding Domain
LOH	 Loss of Heterozygosity
MAPK	 Mitogen Activated Protein Kinase
miR	 MicroRNA
MRD	 Minimal Residual Disease
NCoR	 Nuclear Co-Receptor
NHL	 Non-Hodgkin Lymphoma
NTD	 N-Terminal Transactivation Domain
PDE	 Phosphodiesterase
PDX	 Patient-Derived Xenograft
PGR	 Prednisone Good Responder
PKA	 Protein Kinase A
PPR	 Prednisone Poor Responder
RT-PCR	 Real-Time Polymerase Chain Reaction
T-ALL	 T-Cell Acute Lymphoblastic Leukemia
TCR	 T-Cell Receptor
WBC	 White Blood Cell

�Introduction

For decades, glucocorticoids (GCs) have been a key component of therapy for the 
treatment of lymphoid malignancies and are widely used in both frontline and sal-
vage therapy regimens [1, 2]. In many of these cancers, the response to GC therapy 
is a strong prognostic indicator that is related to both overall and event-free survival 
(EFS) rates [1, 3, 4]. In particular, patients with acute lymphoblastic leukemia 
(ALL) treated on Berlin-Frankfurt-Munster (BFM) protocols can be classified as 
having a prednisone good response (PGR) or a prednisone poor response (PPR), 
defined based on the response to an upfront 1 week window of monotherapy con-
sisting of the GC prednisone. In early ALL-BFM protocols, patients with a PPR had 
significantly inferior outcomes relative to patients with a PGR [1]. These data indi-
cate that therapeutic strategies to overcome GC resistance may significantly improve 
patient outcomes. The objective of this review is to highlight key concepts regarding 
GC resistance in lymphoid malignancies, with a specific focus on therapeutic strate-
gies designed to overcome GC resistance.

L. K. Meyer and M. L. Hermiston
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�Mechanism of Glucocorticoid Action

GCs are a class of steroid hormones that bind to the GC receptor (GR). In the 
absence of endogenous or exogenous GC ligand, GR is largely retained in the cyto-
plasm through its association with a variety of molecular chaperone proteins, 
including HSP70 and HSP90 [5]. Upon ligand binding, GR undergoes a conforma-
tional change that promotes translocation of the GC-GR complex to the nucleus, 
where it associates with DNA sequences known as GC response elements (GREs). 
These GREs function as enhancer elements to modulate the activity of associated 
gene promoters, which in turn mediate the activation or repression of target gene 
expression (Fig. 1.1) [6]. These effects of GCs are highly tissue-specific due to dif-
ferences in GRE binding patterns and transcriptional activities in different cell 
types. Importantly, while GCs exert pro-survival effects in many tissues, they 
potently induce cell death in cells of the lymphoid lineage [7], underlying their 
importance in the treatment of lymphoid malignancies.

While there is little overall consensus regarding the specific components of the 
GR-associated transcriptome that mediate the effects of GCs on lymphoid cells, 
many groups have demonstrated that activation of the intrinsic apoptotic pathway is 
required for GC-induced cell death [7]. Consistent with this idea, the concept of a 
“BCL2 rheostat” has been proposed whereby modulation of both the pro-and anti-
apoptotic components of the intrinsic apoptotic pathway results in an altered 

Fig. 1.1  Mechanisms of GC Action. GCs bind to a cytoplasmic GR (1), which induces transloca-
tion of the GC/GR complex to the nucleus (2). This complex binds to GREs to induce or repress 
transcription (3). In cells of the lymphoid lineage, this transcriptional activity alters the expression 
of components of the intrinsic apoptotic pathway, resulting in apoptosis (4)

1  Mechanisms of Glucocorticoid Response and Resistance in Lymphoid Malignancies
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apoptotic threshold that leads to cell death. Through an analysis of both basal and 
GC-induced expression of components of the intrinsic apoptotic pathway in pri-
mary ALL cells, Ploner et al. identified key expression patters that are associated 
with GC-induced apoptosis. Specifically, they noted potent induction of the pro-
apoptotic family members BIM and BMF, and demonstrated that loss of expression 
of either of these proteins is sufficient to decrease GC sensitivity. Conversely, they 
demonstrated that overexpression of anti-apoptotic family members, including 
BCL2, BCL-XL, and MCL1, impairs GC-induced apoptosis, an effect that is reversed 
upon experimental silencing of these genes [8]. Taken together, these data suggest 
that coordinate modulation of both pro-and anti-apoptotic family members contrib-
ute to GC-induced apoptosis. Jing et al. further elucidated the importance of such a 
BCL2 rheostat through an analysis of ALL patient derived xenograft (PDXs). Using 
chromatin immunoprecipitation with sequencing (ChIP-seq), this group identified a 
novel GR binding site within an intronic region of the BIM gene. When this region 
was mutated to abolish GR binding, GC-induced upregulation of BIM expression 
was lost and GC sensitivity was significantly decreased, providing further evidence 
that GR-mediated upregulation of BIM is required for GC sensitivity. Furthermore, 
this study elucidated a series of GR-mediated transcriptional events that lead to 
downregulation of BCL2 expression, and found that these events were also required 
for effective GC-induced apoptosis [9]. Given the importance of the intrinsic apop-
totic pathway in mediating GC sensitivity in lymphoid cells, it is not surprising that 
while diverse mechanisms of GC resistance have been elucidated in lymphoid 
malignancies, these mechanisms largely converge on a failure to appropriately mod-
ulate the intrinsic apoptotic pathway.

�Mechanisms of Glucocorticoid Resistance

�GR Intrinsic Mechanisms of GC Resistance

�NR3C1 Mutations

The GR protein, which is encoded by the NR3C1 gene, is comprised of three major 
functional domains: the ligand binding domain (LBD), the DNA biding domain 
(DBD), and the N-terminal transactivation domain (NTD), which interacts with the 
transcriptional machinery and the transcriptional coregulators to mediate the effects 
of GR on gene expression [5]. Mutations in each of these domains have been identi-
fied in the context of familial and sporadic generalized GC resistance, where they 
lead to complete or partial insensitivity to target tissues to both endogenous and 
exogenous GCs [10]. In addition to generalized GC resistance, localized GC resis-
tance that is attributable to NR3C1 mutations has been reported in a number of dis-
ease contexts, including asthma and autoimmune diseases [11]. Given the precedent 
for GC resistance mediated by GR mutations, many groups have hypothesized that 
pre-existing mutations in the GR gene, or mutations acquired over the course of GC 

L. K. Meyer and M. L. Hermiston
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therapy, may contribute to de novo or acquired GC resistance in lymphoid malig-
nancies. Much of this work has focused on CCRF-CEM cells, a cell line model of 
human T-cell ALL (T-ALL) that has been studied extensively in the context of GC 
sensitivity and resistance. Early studies involving CCRF-CEM identified consider-
able heterogeneity in the clonal composition of the cell line, leading to the subse-
quent isolation and characterization of a number of subclonal cell lines with varying 
degrees of GC sensitivity [12]. In an analysis of the parental CCRF-CEM cell line, 
a heterozygous mutation has since been identified in the LBD, and functional stud-
ies demonstrated impaired functionality of this mutant allele [13–16]. However, this 
same heterozygous mutation has since been identified in both GC sensitive and GC 
resistant subclones derived from the parental CCRF-CEM cell line, suggesting that 
additional events are required to confer GC resistance. Consistent with this idea, it 
has been shown that the GC resistant subclones derived form the GC sensitive 
parental cell line express this mutant allele in the absence of a wild-type allele, 
resulting in complete impairment of GR activity [13]. Interestingly, this LBD point 
mutation was identified in biopsy tissue taken after the initiation of treatment from 
the patient from whom CCRF-CEM cells were derived, suggesting that it was 
acquired in vivo and was likely selected for over the course of GC treatment [17].

Similar to CCRF-CEM cells, Jurkat cells, another human T-ALL cell line, are 
heterozygous for a mutation that impairs GR transcriptional activity. Unlike CCRF-
CEM cells however, Jurkat cells also express low basal levels of GR and fail to induce 
expression of GR upon GC exposure, resulting in profound GC resistance [18].

Based on this evidence supporting a role for NR3C1 mutations as a cause of GC 
resistance in cultured cell lines, multiple groups have conducted studies to determine 
whether such mutations cause clinically relevant GC resistance in patients receiving 
GC therapy for the treatment of lymphoid malignancies. In an analysis of a panel of 
cell lines derived from paired diagnostic and relapsed samples taken from pediatric 
patients with ALL, Beesley et al. identified significant variability in GC sensitivity. 
Upon sequencing the NR3C1 gene in these cell lines, this group identified a number 
of polymorphisms, all of which had previously been shown to have a negligible 
effect on GC sensitivity [11], but no deleterious mutations. This finding led them to 
conclude that NR3C1 mutations are not a common mechanism of naturally-acquired 
GC resistance [19]. Consistent with these findings, sequencing of NR3C1 in a larger 
cohort of diagnostic pediatric ALL samples revealed a similar distribution of poly-
morphisms, but these polymorphisms failed to correlate with the clinical response to 
prednisone therapy and did not occur at a significantly higher rate than previously 
reported in the general population [20], supporting the conclusion that NR3C1 muta-
tions are not a common cause of de novo GC resistance. However, there have been a 
number of reports demonstrating the presence of deleterious NR3C1 mutations that 
are undetectable at diagnosis but are significantly enriched at the time of disease 
relapse, suggesting that the acquisition of such mutations may confer acquired GC 
resistance [21–23]. Taken together, the existing data suggest that NR3C1 mutations 
are a relatively minor cause of GC resistance in human lymphoid malignancies, par-
ticularly at the time of diagnosis, but may be more important in the context of 
relapsed disease following the selective pressure of exposure to GC therapy.
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�Modulation of GR Expression and Function

In addition to GR mutations, expression levels of GR have been evaluated as a poten-
tial biomarker for GC sensitivity and resistance. Using large cohorts of diagnostic 
ALL samples, early clinical data suggested that the absolute number of GRs in lym-
phoblasts is positively correlated with the clinical response to GC monotherapy [24], 
the likelihood of disease remission [25], and with 5-year EFS rates [26]. More 
recently, GR expression has been shown to carry prognostic significance specifically 
in the context of pediatric B-cell ALL (B-ALL) harboring the ETV6/RUNX1 fusion 
oncogene. In these patients, deletions of NR3C1 resulting in loss of GR protein 
expression are associated with increased minimal residual disease (MRD) and with 
risk of relapse [27]. Despite these findings, other studies have failed to identify a 
clinically meaningful relationship between basal GR expression at diagnosis and the 
clinical response to GC therapy. In an analysis of GR protein expression in diagnos-
tic samples taken from patients treated on ALL-BFM protocols, there was no signifi-
cant difference in GR expression between PPR and PGR patient groups [28], 
suggesting that basal GR expression may be an unsuitable biomarker for predicting 
GC sensitivity. However, it has been shown that in lymphoid cells, exposure to GCs 
results in autoinduction of GR expression mediated by a direct transcriptional effect 
of GR [29], and multiple studies have demonstrated that expression levels of GR 
after autoinduction, rather than basal expression levels, are required for a GC 
response and may be a better predictor of GC sensitivity. Using a titratable expres-
sion system in human T-ALL cell line, Ramdas et al. demonstrated that basal levels 
of GR may be insufficient to confer GC sensitivity, but that levels comparable to 
those achieved following GC exposure and subsequent autoinduction of GR expres-
sion are sufficient to mediate GC-induced apoptosis [30]. Consistent with these data, 
a failure to autoinduce GR expression upon GC exposure has been implicated in GC 
resistance in Jurkat T-ALL cells [18] and in multiple myeloma cell lines [31].

Several studies have also identified other genetic and epigenetic events that lead 
to altered GR expression levels, and may therefore contribute to GC resistance. For 
example, loss-of-function mutations in the E3 ubiquitin ligase FBXW7 have been 
associated with a favorable prognosis and an early response to GC therapy in ALL 
[32, 33]. A later study demonstrated that FBXW7 mediates the ubiquitination and 
subsequent proteasomal degradation of GR, leading to insufficient GR levels to 
mediate GC-induced apoptosis. This same study found that inactivation of FBXW7 
in an in vitro system was sufficient to restore GR expression and consequently, GC 
sensitivity [34]. The NALP3 inflammasome has also been implicated as a modulator 
of cellular GR levels. In an analysis of GC resistant primary ALL samples, it was 
found that decreased promoter methylation of CASP1 and NLRP3 resulted in 
increased expression of the NALP3 inflammasome, and that the associated increase 
in caspase 1 activity caused increased cleavage of GR protein, leading to an attenu-
ated GC response mediated by a loss of GR protein expression [35]. Therefore, 
while basal GR expression has not proven to be a tractable biomarker with clinical 
utility for predicting GC sensitivity, altered levels of GR expression may nonethe-
less contribute to a poor GC response.
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In addition to GR expression levels, post-transcriptional processing of the GR 
mRNA results in multiple GR isoforms, which may also play a role in dictating GC 
sensitivity. GRα is the most abundant GR isoform and has been shown to mediate 
the pro-apoptotic effects of GCs in lymphocytes. Exon 9 of NR3C1 encodes a por-
tion of the LBD, and alternating splicing of this exon distinguishes the GRα isoform 
from the GRβ isoform [5]. The GRβ isoform does not bind GCs and does not have 
transcriptional activity, thereby impeding its pro-apoptotic activity [36]. Additionally, 
alternative splicing involving the intron between exons 3 and 4 gives rise to the GRγ 
isoform, which has an altered DBD. Therefore, GRγ retains ligand binding capacity 
but has limited transcriptional activity [5]. Finally, alternative splicing involving the 
LBD results in the production of the GR-A and GR-P isoforms, both of which fail 
to bind ligand [5]. As a result of the impaired activity of multiple GR isoforms, 
many groups have studied the relationship between GC sensitivity and the relative 
expression and distribution of these isoforms in a variety of lymphoid malignancies. 
One of the earliest such studies focused on a patient with chronic lymphocytic leu-
kemia (CLL) who was found to have generalized GC resistance. An analysis of the 
expression pattern of GR isoforms in cells taken from this patient demonstrated 
decreased GRα expression and increased GRβ expression, resulting in an altered 
ratio between the two isoforms [37]. Given the dominant negative effect of GRβ on 
GRα, this group concluded that the altered ratio may contribute to the generalized 
GC resistance observed in this patient. Consistent with these findings, an analysis of 
23 diagnostic ALL samples revealed an inverse correlation between the GRβ/GRα 
ratio and the number of apoptotic cells following in vitro exposure to prednisolone, 
further indicating that high expression of GRβ impairs GC sensitivity [38]. Relative 
to diagnostic samples, relapsed ALL samples have also been shown to have a 
decreased mRNA to protein ratio of GRα [39]. Similarly, GRγ expression has been 
shown to be increased in PPR patients relative to PGR patients, which is consistent 
with the idea that GRγ expression might impair the transcriptional activity of GRα, 
leading to an inferior GC response [40].

Further regulation of GR activity is mediated by the chaperone protein systems 
that interact with GR, the two most important of which are the HSP70 and HSP90 
systems. These chaperones assist with maintaining GR in a conformation in which 
it is competent for ligand binding and they facilitate the subsequent nuclear translo-
cation of ligand-bound GR [41]. Given the central role of chaperone proteins in 
modifying GR activity, several groups have hypothesized that aberrant expression 
or activity of these chaperone systems could contribute to GC resistance in lym-
phoid malignancies. However, in an analysis of PPR and PGHR patients treated on 
ALL–BFM trials, there was no correlation between in vivo GC sensitivity and 
HSP90 expression [42]. In a more in-depth analysis looking at mRNA expression of 
key chaperone proteins in GC sensitive versus GC resistant ALL cells, there were 
also no meaningful differences in transcript expression [43]. While this finding does 
not exclude the possibility that differences in protein expression of these chaperones 
may underlie differences in GC sensitivity, these studies suggest that chaperone 
proteins likely do not play a significant role in clinical GC resistance in lymphoid 
malignancies.
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�GR Extrinsic Mechanisms of GC Resistance

�Epigenetic Regulation of GR Activity

Changes in GR target gene expression require the association of ligand-bound GR 
with a GRE [6]. Some of the cell-and tissue-specificity of GCs may be mediated by 
differences in chromatin accessibility, as GR binding has been shown to occur pre-
dominantly at accessible chromatin sites [44]. Given the requirement for pre-
existing chromatin accessibility, a number of groups have assessed the role for an 
altered epigenetic landscape as a mediator of GC resistance. Chromatin accessibil-
ity is maintained in part through the activity of the SWI/SNF [44], and decreased 
expression of core components of this complex correlate with the occurrence of GC 
resistance in ALL cells [45]. In an analysis of gene expression and DNA methyla-
tion patterns in matched pairs of pediatric B-ALL samples obtained at the time of 
diagnosis and at relapse, Hogan et al. identified a distinct pattern of gene expression 
associated with relapse and found that this gene expression pattern co-occurred with 
increased promoter methylation [46]. With the addition of the DNA methyltransfer-
ase inhibitor decitabine, this relapse-specific gene expression pattern could be 
reverted, allowing for re-expression of hypermethylated genes. Exposure to 
decitabine, along with the histone deacetylase (HDAC) inhibitor vorinostat, resulted 
in significant potentiation of GC-induced apoptosis [47], suggesting that modifica-
tion of the epigenetic landscape may facilitate GR-mediated changes in gene expres-
sion that lead to apoptosis. Similarly, it was shown that elevated expression of a 
number of HDAC genes is common in patients who have a PPR [48]. Consistent 
with these findings, Jones et al. reported a high frequency of deletions of TBL1XR1, 
a component of the nuclear receptor corepressor (NCoR) complex, in patients with 
B-ALL. These deletions stabilize NCoR, which represses GR activity by decreasing 
its recruitment to target gene loci and by recruiting HDAC3 to further promote inhi-
bition of target gene expression. Treating these cells with an HDAC inhibitor was 
sufficient to restore GC sensitivity [49] Collectively, these data suggest that GC 
sensitivity is mediated in part by a permissive epigenetic landscape, and that the use 
of epigenetic modulators may represent a therapeutic strategy to enhance GC sensi-
tivity in lymphoid malignancies that are associated with an altered epigenetic 
landscape.

�Signal Transduction

Dysregulated signal transduction is a hallmark feature of many lymphoid malignan-
cies including T-ALL [50], B-ALL [51], and non-Hodgkin lymphoma (NHL) [52]. 
Importantly, the downstream effectors of these signal transduction pathways exhibit 
known cross-talk with GR signaling and transcriptional activity [53]. As a result of 
these interactions, aberrant regulation of these signal transduction pathways is an 
important cause of GC resistance in lymphoid malignancies and significant 
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attention has been devoted to the use of targeted signal transduction inhibitors as a 
strategy to overcome GC resistance.

Cyclic Adenosine Monophosphate (cAMP) Signaling
cAMP is a second messenger molecule that initiates signaling cascades responsible 
for mediating a variety of immune cell functions. cAMP is generated through the 
catalytic activity of adenylate cyclases and is degraded by a family of enzymes 
called phosphodiesterases (PDEs) [54]. It has long been known that in addition to 
GCs, activation of cAMP decreases lymphoid cell proliferation and induces apopto-
sis [55]. Furthermore, it has been shown in T-cell lines that stimulation of cAMP 
signaling has a synergistic effect to induce cell death when combined with the GC 
dexamethasone (DEX) [56], and that cAMP and GCs likely converge to promote the 
upregulation of BIM expression [57, 58], thereby facilitating the induction of apop-
tosis. Given the pro-apoptotic effects of cAMP and the effects of PDEs to decrease 
the cellular pool of cAMP, significant attention has been devoted to the development 
of PDE inhibitors [59], and a number of groups have evaluated the efficacy of PDE 
inhibitors as a means of overcoming GC resistance in lymphoid malignancies. In 
the CCRF-CEM cell line, both a non-specific PDE inhibitor and rolipram, a PDE4-
specific inhibitor, significantly potentiated DEX-induced apoptosis [60]. In primary 
CLL cells, rolipram synergized with GCs to induce apoptosis, and this effect was 
associated with increased GR-mediated transcriptional activity [61]. Furthermore, 
in these same cells, it was found that rolipram exposure resulted in an increase in 
both transcript and protein expression of GRα [62]. In patients, PDE4 overexpres-
sion has been observed in a cohort of primary diffuse large B-cell lymphoma 
(DLBCL) samples. Consistent with the data in leukemia cell lines, inhibition of 
PDE4 in DLBCL cells was sufficient to restore GC sensitivity [63]. Finally, in a 
large-scale gene expression analysis of primary DLBCL samples obtained from 
patients who received treatment with cyclophosphamide, adriamycin, vincristine, 
and prednisone (CHOP), elevation of PDE4 expression was enriched in patients 
with fatal or refractory disease relative to patients who were cured with CHOP 
therapy [64]. Taken together, these data suggest that alterations in cAMP pathway 
signaling may contribute to GC resistance in lymphoid malignancies and that thera-
peutic targeting of this pathway may have clinical utility.

Mitogen Activated Protein Kinase (MAPK) Signaling
The three best studied MAPKs are p38, ERK, and JNK, all of which become acti-
vated downstream of a signaling cascade induced by cellular exposure to mito-
genic stimuli [65]. Each of these MAPKs has been shown to modulate GC 
sensitivity, resulting in a considerable number of studies devoted to investigating 
the therapeutic potential of MAPK pathway signaling modulators as a means of 
enhancing GC sensitivity. In GC resistant clones derived from the parental CCRF-
CEM cells, inhibition of p38 MAPK decreased DEX sensitivity, while inhibition 
of ERK activity increased sensitivity. These data implicate p38 as a positive regula-
tor of GC activity and ERK as a negative regulator of GC activity [66], suggesting 
that distinct arms of the MAPK signaling cascade interact differently with the GR 
pathway. Consistent with these findings, it has been shown that exposing 
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CCRF-CEM cells to DEX results in increased phosphorylation and activation of 
p38, one substrate of which is GR itself. Specifically, this study demonstrated that 
p38 mediates Ser-211 phosphorylation of GR [67], which has been shown to 
increase the transcriptional activity of GR [5], thereby providing a mechanistic 
explanation for the positive effect of p38 activity on GC sensitivity. Another study 
demonstrated that inhibition of p38  in CCRF-CEM cells resulted in decreased 
induction of BIM expression upon DEX exposure, leading to an attenuated apop-
totic response and suggesting that p38 might further contribute to GC sensitivity by 
enabling the upregulation of BIM expression [68].

Other studies have focused on elucidating the molecular basis for the inhibitory 
effect of ERK signaling on GC sensitivity. Importantly, ERK has been shown to 
phosphorylate BIM, preventing it from interacting with other members of the intrin-
sic apoptotic pathway to induce apoptosis [69]. To determine whether this mecha-
nism contributes to ERK-mediated GC resistance, Rambal et al. demonstrated in 
ALL cell lines and primary patient samples a synergistic interaction between a 
MEK inhibitor and DEX, with simultaneous exposure to both agents resulting in 
increased BIM expression due to a reduction in ERK-mediated BIM phosphoryla-
tion [70]. In addition to ERK, JNK activation has previously been implicated as a 
negative regulator of GC sensitivity. In contrast to p38, JNK is known to catalyze an 
inhibitory phosphorylation of GR, resulting in decreased transcriptional activity 
[71]. Jones et al. further established the role of ERK and JNK as negative regulators 
of GC sensitivity through an shRNA screen designed to identify genes that modify 
prednisolone sensitivity in B-ALL cell lines. Interestingly, this screen identified 
MEK2, which activates ERK, and MEK4, which activates JNK, as important candi-
date GC resistance genes. Through a variety of functional studies, the authors dem-
onstrated that loss of MEK2 expression induced generalized chemosensitivity, 
including to GCs, through a p53-dependent mechanism and that loss of MEK4 
increased expression of GR, leading to improved GC sensitivity. Furthermore, they 
demonstrated the clinical relevance of these findings by assessing ERK activity in 
paired diagnostic and relapse samples from patients with B-ALL and found 
increased levels of phosphorylated ERK in the relapsed samples [72], consistent 
with the idea that aberrant activation of ERK signaling may contribute to GC resis-
tance. Given the large number of past and current clinical trials conducted in a wide 
variety of malignancies [73], the addition of small molecules that modulate MAPK 
pathway activity may be a feasible strategy for overcoming GC resistance in some 
lymphoid malignancies.

PI3K/AKT/mTOR Signaling
The PI3K/AKT/mTOR pathway is another signal transduction pathway that is com-
monly dysregulated in lymphoid malignancies and represents a potential therapeu-
tic target for strategies aimed at overcoming GC resistance. In a recent study 
involving a large cohort of pediatric T-ALL samples, AKT1 and PTEN mutations 
were two of only a handful of genetic lesions that had a univariable association with 
relapse [50], suggesting that mutational activation of this pathway may play a role 
in therapy resistance, including to GCs. In another analysis of primary B-ALL 
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samples, patients with increased phosphorylated AKT at diagnosis had a significantly 
inferior response to steroid-containing induction therapy and had decreased overall 
and relapse-free survival [74]. These studies provide correlative evidence for the 
role of aberrant PI3K/AKT/mTOR pathway activity in GC resistance. To more 
directly assess a mechanistic basis for this relationship, Piovan et al. demonstrated 
using co-immunoprecipitation that AKT1 binds to and phosphorylates GR on Ser-
134, a phosphorylation event that impairs nuclear translocation of ligand-activated 
GR. Using the PTEN-null CCRF-CEM cell line, the authors demonstrated through 
both in vitro and in vivo studies that combined treatment with GCs and the AKT 
inhibitor MK2206 is sufficient to reverse GC resistance [75]. One class of proteins 
that has been found to cooperate with AKT to modulate GC activity is the 14–3–3 
class of phospho-serine/threonine binding proteins, which regulate the subcellular 
localization of proteins with phosphorylated serine or threonine residues, including 
phosphorylated GR [76]. Consistent with this function, the 14–3–3σ protein inter-
acts with GR upon AKT1-mediated Ser-134 phosphorylation, resulting in impaired 
nuclear translocation of ligand-bound GR and leading to reduced transcriptional 
activity in the presence of GCs [76, 77]. Similarly, it has been shown that more 
proximal inhibition of this pathway with a PI3K inhibitor results in synergy when 
combined with GCs, both in vitro and in an in vivo xenograft model [78]. In B-ALL 
cell lines and primary diagnostic patient samples, PI3K inhibition augmented 
nuclear translocation of ligand-activated GR through a reduction in Ser-134 phos-
phorylation [79], further confirming the effect of aberrant PI3K/AKT pathway inhi-
bition to promote cytoplasmic retention of GR and prevent transcriptional 
activation.

One important downstream effector of PI3K/AKT pathway activation is mTOR 
[80], and many groups have studied the role of aberrant mTOR activation as a medi-
ator of GC resistance in lymphoid malignancies. Using a chemical genomics 
approach, Wei et al. compared a large number of drug-associated gene expression 
profiles with the gene expression signature of GC sensitive and resistant ALL cells. 
Through this analysis, they determined that the changes in gene expression associ-
ated with exposure to the mTOR inhibitor rapamycin matched that associated with 
GC sensitive cells, suggesting that rapamycin may show efficacy by altering the 
gene expression pattern in GC resistant cells to better mimic that of GC sensitive 
cells. They further demonstrated that exposure to rapamycin sensitized cells to GCs 
through a mechanism involving downregulation of expression of the anti-apoptotic 
protein MCL1 [81]. Similarly, Gu et  al. demonstrated a synergistic relationship 
between rapamycin and DEX in a panel of T-ALL cells, and further elucidated the 
mechanistic basis for this interaction by identifying a synergistic induction of 
expression of the pro-apoptotic BAX and BIM proteins in conjunction with 
downregulation of MCL1 [82]. In addition, it has been shown that simultaneous 
exposure to an mTOR inhibitor and GCs results in a synergistic induction of the 
cyclin-dependent kinase (CDK) inhibitor proteins p21 and p27 [82, 83], suggesting 
that mTOR inhibitors and GCs converge both to induce cell cycle arrest and acti-
vation of the intrinsic apoptotic pathway. This effect was further demonstrated 
in vivo using PDXs derived from primary patient T- and B-ALL samples, and the 
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combinatorial effect of mTOR inhibition and GCs was found to be particularly 
effective in T-ALL samples with loss of PTEN expression [84], providing further 
evidence that aberrant regulation of upstream PI3K/AKT pathway activity results in 
altered mTOR activity that can be targeted therapeutically to augment the GC 
response. Finally, given the direct effects of both AKT and mTOR on GC sensitivity, 
several groups have investigated the efficacy of the dual PI3K and mTOR inhibitor 
BEZ235, reasoning that dual inhibition at two critical points in this pathway may 
have a more profound effect to induce GC sensitivity. Indeed, in ALL cell lines and 
primary patient samples both in vitro and in vivo, synergy has been demonstrated 
between BEZ235 and DEX [85, 86], suggesting that multiple nodes within this 
pathway are viable therapeutic targets for augmenting GC sensitivity.

JAK/STAT Signaling
The JAK/STAT signaling pathway is the critical effector pathway of cytokine recep-
tor signaling, which plays a crucial role in mediating survival, proliferation, and 
differentiation of lymphoid cells [87]. Not surprisingly, aberrant activation of this 
pathway is common in lymphoid malignancies [50, 88], and significant attention 
has been devoted to assessing the role of JAK/STAT pathway inhibition as a novel 
treatment modality. Activation of cytokine receptors recruits JAK proteins to intra-
cellular domains of cytokine receptors, and these activated JAK proteins recruit and 
phosphorylate STAT proteins, which translocate to the nucleus and function as tran-
scription factors [87]. Interestingly, GR and one of these STAT proteins, STAT5, 
have been shown to physically interact at certain genomic loci. Specifically, STAT5 
is known to inhibit the action of GR on GR target genes [89]. Consistent with this 
inhibitory role of JAK/STAT signaling on GR activity, inhibition of this pathway 
has been shown to overcome GC resistance in a number of lymphoid malignancies. 
In Philadelphia chromosome-like B-ALL, which is associated with aberrant JAK/
STAT pathway activation, the combination of a JAK2 specific inhibitor and DEX 
demonstrated in vitro synergy and showed improved survival in an in vivo xenograft 
model [90]. Similarly, in primary diagnostic T-ALL samples, exposure to the cyto-
kine interleukin-7 resulted in increased JAK/STAT pathway activity that induced 
GC resistance and could be overcome with the addition of the JAK1/2 inhibitor 
ruxolitinib [91]. Finally, in CLL cells, GC resistance was found to be associated 
with autocrine activation of another STAT protein, STAT3, and inhibition of STAT3 
activation with ruxolitinib resulted in increased sensitivity to DEX in vitro [92].

NOTCH Signaling
NOTCH receptors are transmembrane receptors that, upon ligand binding, undergo 
a series of cleavage events to release the activated intracellular component of 
NOTCH from the membrane, allowing it to translocate to the nucleus and function 
as a transcription factor. The γ-secretase complex mediates the final step in this 
processing [93]. Due to the important role of NOTCH signaling in the pathogenesis 
of T-cell malignancies, inhibitors of this γ-secretase complex have been evaluated as 
potential therapeutic agents for the treatment of these diseases in combination with 
GCs. Specifically, in T-ALL cell lines, γ-secretase inhibitors have been shown to 
sensitize cells to the cytotoxic effects of DEX [94]. Several groups have 
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demonstrated that the combination of γ-secretase inhibitors and GCs facilitates 
autoinduction of GR and potentiates the induction of BIM expression, leading to 
increased cell death in both in vitro and in vivo model systems [95, 96]. Despite 
these promising preclinical findings, the clinical utility of γ-secretase inhibitors has 
been limited by severe gastrointestinal toxicity [97]. However, in an elegant study 
conducted in a T-ALL xenograft model, it was shown that simultaneous exposure to 
a γ-secretase inhibitor and DEX not only overcame GC resistance, but also attenu-
ated the toxicities associated with the γ-secretase inhibitor [95], suggesting that the 
combination of γ-secretase inhibitors and GCs may be a viable therapeutic strategy 
to enhance GC sensitivity. Finally, at least one study has evaluated the efficacy of an 
anti-NOTCH1 monoclonal antibody in a T-ALL PDX model and demonstrated 
potentiation of GC activity when given in combination [98].

Src Family Kinase Signaling
In T-cells, the Src family kinases Lck and Fyn mediate critical signal transduction 
events downstream of the T-cell receptor (TCR) [99]. Through the use of reverse-
phase protein arrays applied to PPR and PGR T-ALL samples, Lck was found to be 
aberrantly activated in PPR patients relative to PGR patients [100]. Consistent with 
these findings, inhibition of Lck with the Src family kinase inhibitor dasatinib has 
demonstrated in vitro efficacy to enhance GC sensitivity [101] and has been shown 
to impair the engraftment of T-ALL cells in vivo relative to treatment with either 
agent alone [100].

�Metabolism

In addition to studies demonstrating the importance of GR expression levels as a 
mediator of GC sensitivity, many groups have demonstrated that metabolic pro-
cesses that limit the availability of GC ligand can similarly contribute to GC resis-
tance. In normal physiology, the 11β-hydroxysteroid dehydrogenase (HSD) class of 
enzymes mediates the conversion between cortisol, the active endogenous hormone, 
and cortisone, the inert form of the hormone. Specifically, 11β-HSD1 regenerates 
cortisol from cortisone while 11β-HSD2 inactivates cortisol [102]. In an analysis of 
primary patient ALL samples, basal 11β-HSD1 expression was found to be higher 
in GC sensitive samples relative to GC resistant samples. Furthermore, 11β-HSD1 
expression was upregulated in response to DEX exposure specifically in the GC 
sensitive samples but not in the GC resistant samples, suggesting that 11β-HSD1 
may participate in a GC-regulated feedback loop to maintain the availability of 
ligand for GR binding [103]. The same group similarly analyzed 11β-HSD2 expres-
sion in the GC resistant T-ALL cell line MOLT4F and the GC sensitive CCRF-CEM 
cell line and demonstrated that 11β-HSD2 expression was higher in the setting of 
GC resistance. They further demonstrated that pharmacologic inhibition of 11β-
HSD2 was sufficient to potentiate GC-induced apoptosis [104]. Consistent with 
these findings, 11β-HSD2 expression was compared between GC resistant T-ALL 
cell lines, GC sensitive NHL cell lines, and normal peripheral T-cells. In the GC 
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resistant cell lines, 11β-HSD2 expression was found to be significantly elevated 
relative to the GC sensitive cell lines or normal T-cells [105]. To determine how 
11β-HSD2 is dynamically regulated in the presence of GCs, transcript and protein 
expression as well as enzymatic activity were assessed in the GC sensitive CEM-C7 
cell line after exposure to DEX. This analysis demonstrated a reduction in expres-
sion and enzymatic activity upon DEX exposure, suggesting that, in contrast to 
11β-HSD1, GC-induced downregulation of 11β-HSD2 may be important for main-
taining GC sensitivity [106].

In addition to HSDs, glutathione S-transferases (GSTs) are a class of enzymes 
involved in the metabolism of a wide variety of drugs, including steroids [107]. In 
an analysis of PGR and PPR patient samples from children treated on an ALL-BFM 
protocol, deletion of the GST family member GSTT1 was enriched in the PPR 
patient group and was associated with an increased risk of relapse [108]. These data 
suggest that genetic lesions involving GST genes might contribute to differences in 
clinical GC response, though further studies are needed to determine whether aber-
rant GST activity plays a significant role in altering the availability of GC ligand 
and whether this contributes to GC resistance.

While metabolism of GCs themselves may play a role in modulating GC sensi-
tivity, GC resistance has also been attributed to the aberrant activity of key bioener-
getic metabolic pathways. Specifically, it has been shown in both ALL cell lines and 
in primary patient ALL samples that GC resistance is associated with increased 
rates of glycolysis, oxidative phosphorylation, and cholesterol biosynthesis. In a 
gene expression profiling study using ALL cell lines, pathways involved in these 
metabolic processes emerged as the top biological pathways associated with GC 
resistance. Furthermore, when these gene sets were studied in the context of pri-
mary patient samples, enrichment for these gene sets was a strong predictor of 
relapse [109], suggesting that activation of these bioenergetic pathways may pro-
mote chemoresistance. The same group went on to demonstrate that inhibition of 
glycolysis, oxidative phosphorylation, or cholesterol biosynthesis was sufficient to 
sensitize GC resistant T-ALL cells to GCs [110], further supporting the idea that 
aberrant activation of cellular metabolic processes may confer GC resistance.

Based on these findings, significant attention has been devoted to studying the 
role of glucose metabolism as a modulator of GC sensitivity. In an analysis of a 
large cohort of primary B-ALL samples with varying degrees of in vitro predniso-
lone sensitivity, genes associated with carbohydrate metabolism were found to be 
differentially expressed between GC sensitive and GC resistant samples [111]. 
Furthermore, in ALL cell lines and primary patient samples, prednisolone resistance 
was found to correlate with increased glucose consumption, and inhibition of gly-
colysis with the metabolite 2-deoxy-D-glucose (2-DG) sensitized cells to GCs, sup-
porting the idea that excessive metabolic activity may impair GC-induced apoptosis 
[112]. To further assess the relationship between glucose consumption and GC sen-
sitivity, GC sensitive ALL cell lines and primary patient samples were exposed to 
DEX, which was found to inhibit glycolysis, leading to decreased glucose con-
sumption that was mediated by a reduction in the expression of the glucose trans-
porter GLUT1. This group went on to demonstrate that culturing cells in low glucose 
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conditions resulted in increased DEX-induced apoptosis [113]. Taken together, 
these data suggest that a reduction in glucose metabolism may be required for opti-
mal GC-induced apoptosis. Consistent with this idea, it was shown that in predniso-
lone sensitive primary B-ALL samples, MCL1 expression decreased upon exposure 
to prednisolone, while it did not decrease in prednisolone resistant samples. Genetic 
silencing of MCL1 was found to be associated with an increase in glucose con-
sumption, and simultaneous inhibition of glycolysis and silencing of MCL1 resulted 
in further sensitization to prednisolone [114]. The importance of excessive glucose 
metabolism as a mediator of GC resistance has also been studied in the context of 
NHL cell lines and primary patient samples. In these cells, inhibition of glycolysis 
was found to synergize with methylprednisolone to induce cell cycle arrest and 
apoptosis [115]. Providing a genetic explanation for the relationship between altered 
glucose metabolism and GC sensitivity, Chan et al. recently performed ChIP-seq to 
assess the binding pattern of transcription factors that are commonly inactivated in 
B-ALL, including PAX5 and IKZF1. They demonstrated that in B-ALL, these tran-
scription factors are recruited to genetic loci that encode positive and negative regu-
lators of glucose uptake. Re-expression of PAX5 and IKZF1 in B-ALL cells resulted 
in decreased glucose uptake and was sufficient to overcome prednisolone resistance 
[116]. The authors speculated that the hypermetabolic state associated with the 
deletion of these transcription factors facilitates leukemogenesis and simultane-
ously facilitates resistance to GC therapy.

In addition to glucose metabolism, aberrant lipid metabolism has also been 
shown to contribute to GC resistance. Specifically, lymphoid cells have been 
shown to have a unique dependency on exogenously synthesized cholesterol, and 
similar to glycolysis, GCs may exert their pro-apoptotic effects in part through 
inhibiting this cholesterol synthesis pathway. Indeed, in GC sensitive CEM-C7 
cells, DEX was found to inhibit cholesterol synthesis, while this did not occur 
effectively in GC resistant CEM-C1 cells. Furthermore, exposure of CEM-C7 
cells to exogenous cholesterol decreased DEX sensitivity, suggesting that DEX 
resistance may be mediated in part by increased cholesterol metabolism [117]. 
Further supporting these data, T-ALL PDXs treated with a GC-containing four-
drug induction regimen that acquired in vivo drug resistance were found to have 
altered cholesterol metabolism. In these samples, exposure to DEX and simvas-
tatin, an inhibitor of cholesterol biosynthesis, demonstrated ex vivo synergy 
[118]. These data suggest that additional preclinical studies may be warranted to 
evaluate the use of drugs that modulate bioenergetic pathways as a means of 
overcoming GC resistance.

�MicroRNAs

MicroRNAs (miRNAs) are short non-coding RNAs that are most commonly con-
tained within introns. Once transcribed, they bind to complementary sequences 
within the 3’ untranslated region (3’UTR) of target gene mRNAs. Through this 
activity, miRNAs function primarily as negative regulators of translation, though 
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they may have other repressive and activating roles [119]. Dysfunctional expression 
of miRNAs is a common feature of many cancers, including hematologic malignan-
cies. In ALL samples, a miRNA microarray analysis of paired diagnostic and relapse 
samples identified a distinct miRNA profile in the relapse samples relative to the 
diagnostic samples [120]. Similarly, in a study involving miRNA sequencing of 
samples from patients with Burkitt lymphoma, DLBCL, and follicular lymphoma, 
many miRNAs were found to be aberrantly expressed in lymphoma cells relative to 
normal lymphoid cells. Functionally, these miRNAs were found to be associated 
with altered regulation of key signal transduction pathways, including the Ras/
MAPK and PI3K/AKT signaling pathways, suggesting that these miRNAs may 
play a role both in lymphomagenesis and in chemoresistance, including GC resis-
tance [121].

MiR-17
In B-ALL cell lines, DEX exposure downregulated expression of miR-17  in GC 
sensitive but not in GC resistant cells. ChIP-seq analysis demonstrated that this is 
mediated by direct GR binding to the miR-17 locus specifically in GC sensitive 
cells. Functionally, miR-17 was found to target the BIM transcript for silencing, and 
pharmacologic inhibition of miR-17 increased DEX sensitivity with an associated 
increase in BIM expression [122].

MiR-100/99a
The miRNA species miR-100/99a has also been implicated in GC resistance and is 
known to be downregulated in samples from ALL patients with clinically high risk 
features. Specifically, low expression has been associated with inferior leukemia-
free and overall survival [123]. In cell lines, ectopic expression of miR-100/99a 
promoted DEX-induced apoptosis through a reduction in expression of the miR-
100/99a target FKBP51. The reduction in FKBP51 expression was associated with 
increased nuclear localization of ligand-bound GR and decreased expression of 
mTOR, subsequently leading to a reduction in MCL1 expression which further 
potentiated apoptosis [123].

MiR-124
The role of MiR-124 as a mediator of GC resistance was first appreciated in the 
context of sepsis, where it was found that miR-24 represses the GRα transcript 
[124], suggesting that its overexpression might mediate GC resistance by decreas-
ing the availability of GR protein for ligand binding. Indeed, miR-124 expression 
was found to be increased in prednisolone resistant ALL cell lines and in PPR 
patient samples and overexpression of miR-124 in ALL cells was associated with a 
reduction in GR protein expression [125]. However, at least one study has suggested 
the opposite effect of miR-124 in GC sensitivity. In DLBCL cells, miR-124 expres-
sion was found to decrease expression of PDE4B, thereby relieving the inhibitory 
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effect on cAMP signaling and increasing GC sensitivity [126]. Further studies are 
therefore needed to elucidate the role of miR-124 in modulating GC sensitivity in 
distinct lymphoid malignancies.

MiR-128b and miR-221
In MLL-AF4 ALL, miR-128b and miR-221 were found to be downregulated rela-
tive to other types of ALL. Overexpression of these miRNAs in MLL-AF4 ALL cell 
lines resulted in increased sensitivity to GCs, which was accompanied by down-
regulation of MLL, AF4, and their associated fusion genes [127]. Further implicat-
ing low miR-128b as a mediator of GC resistance in MLL-AF4 ALL, miR-128b 
mutations found in both cell lines and primary patient samples were shown to impair 
the appropriate processing of miR-128b. This resulted in GC resistance mediated by 
a failure to downregulate the expression of fusion oncogenes involving MLL and 
AF4, though the mechanisms by which MLL and AF4 themselves contribute to GC 
resistance are currently unknown [128].

MiR-142-3p
MiR-142-3p was initially shown in T-regulatory cells to target adenylyl cyclase 9 
mRNA for silencing, resulting in a reduction in the cellular pool of cAMP due to the 
loss of adenylyl cyclase enzymatic activity [129]. Elevated expression of miR-
142-3p in primary T-ALL samples was found to be associated with an increased risk 
of relapse and decreased leukemia-free survival relative to patients with lower miR-
142-3p expression. Consistent with its known effects on the adenylyl cyclase 9 tran-
script, high miR-142-3p expression was associated with increased cAMP pathway 
activity. Furthermore, miR-142-3p was found to target the GRα transcript for 
repression via direct binding to the 3’UTR. In this context, inhibition of miR-142-3p 
overcame GC resistance both by facilitating an increase in cAMP pathway activity 
and an increase in GRα expression [130].

MiR-182
In an analysis of a variety of murine and human malignant lymphoid cell lines, miR-
182 expression was higher in GC resistant cells relative to GC sensitive cells, and 
high expression was associated with decreased FOXO3A expression. One impor-
tant downstream target of FOXO3A is BIM, and high expression of miR-182 was 
also associated with a reduction in BIM expression. Consistent with this activity, 
overexpression of miR-182 restored BIM expression, thereby overcoming GC resis-
tance [131].

MiR-185-5p
Finally, miR-185-5p was found to be overexpressed in GC sensitive ALL cell lines. 
One target of miR-185-5p is the mTORC2 mRNA. Forced overexpression of miR-
185-5p in GC resistant ALL cells restored GC sensitivity with a concomitant reduc-
tion in mTORC2 activity [132].
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�Conclusion

Given the pleiotropic effects of GCs and the innumerable interactions between GR 
and a wide variety of cellular processes, it is not surprising that the mechanisms of GC 
resistance are complex and that our understanding of these mechanisms is constantly 
evolving (Fig. 1.2). However, despite a well-justified concern for GC resistance and 
its associated clinical implications, GCs are profoundly efficacious in the treatment of 
lymphoid malignancies and will undoubtedly remain an integral component of ther-
apy. Therefore, there is an urgent need to translate the findings from the numerous 
preclinical and clinical studies highlighted in this review into standard clinical prac-
tice for the treatment of these diseases. With the application of large-scale sequencing 
and epigenetic profiling technologies, the development of small molecule and bio-
logic therapeutics, and increasing access to patient-derived tissue samples, there is 
significant potential for the elucidation of additional causes of GC resistance and the 
identification and implementation of novel therapeutic strategies to overcome them.

Fig. 1.2  Mechanisms of GC Resistance. GC resistance may arise due to processes that impact any 
component of normal GR signaling, including the availability of GC ligand or GR (A), nuclear 
translocation of the activated GC/GR complex (B), transcriptional activity of ligand-bound (C), or 
the induction of apoptosis (D)
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Chapter 2
Resistance to Monoclonal Antibody 
Therapeutics in Lymphoma

Matthew J. Barth and Stanton C. Goldman

Abstract  With the long history of rituximab use in CD20 positive lymphomas and 
the recent approval of brentuximab vedotin for the treatment of Hodgkin lymphoma 
and anaplastic large cell lymphoma, monoclonal antibody-based therapies are com-
monly utilized for the treatment of many lymphomas. Following decades of experi-
ence with rituximab, much has been learned about the mechanisms of action and 
potential mechanisms of resistance to monoclonal antibody therapies, but a thor-
ough understanding of which mechanisms of action are most relevant to rituximab’s 
efficacy and which resistance mechanisms are most clinically relevant is still elu-
sive. Nonetheless, many approaches have been identified and continue to be inves-
tigated both pre-clinically and clinically to attempt to overcome or circumvent 
resistance to monoclonal antibody therapies in order to enhance treatment responses 
or improve survival at the time of relapse following monoclonal antibody based 
therapy.
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Abbreviations

ADCC	 Antibody-Dependent Cellular Cytotoxicity
ADPC	 Antibody-Dependent Phagocytic Cytotoxicity
AKT	 Protein Kinase B
ALCL	 Anaplastic Large Cell Lymphoma
ALL	 Acute Lymphoblastic Leukemia
B-NHL	 B-cell Non-Hodgkin Lymphoma
BiTE	 Bispecific T-cell Engaging
CDC	 Complement Dependent Cytotoxicity
CLL	 Chronic Lymphocytic Leukemia
DLBCL	 Diffuse Large B-Cell Lymphoma
EFS	 Event-Free Survival
ERK1/2	 Extracellular signal Related Kinase 1 and 2
GM-CSF	 Granulocyte-Macrophage Colony Stimulating Factor
HACA	 Human Anti-Chimera Antibodies
IFN-γ	 Interferon Gamma
IL-2	 Interleukin 2
IL-4	 Interleukin 4
MAPK	 Mitogen Activated Protein Kinase
MMAE	 Monomethyl Aurostatin E
MS4A1	 Membrane Spanning 4-Domain A1
NADPH	 Nicotinamide Adenine Dinucleotide Phosphate
NK-κB	 Nuclear Factor Kappa B
NK-cell	 Natural Killer Cells
PCD	 Programmed Cell Death
PLCγ2	 Phospholipase C Gamma 2
RIC	 Radioimmunoconjugate
ROS	 Reactive Oxygen Species
STAT3	 Signal Transducer and Activator of Transcription 3
SYK	 Spleen Associated Tyrosine Kinase
TNF-α	 Tumor Necrosis Factor alpha

�Introduction

The addition of monoclonal antibody therapy to the treatment of lymphoma has 
revolutionized its therapy over the past 2 decades. The proof of principle of mono-
clonal antibody therapies has been the addition of the anti-CD20 monoclonal anti-
body, rituximab, to therapy regimens for CD20 expressing mature B-cell lymphomas. 
The introduction of rituximab to the best backbone chemotherapy regimens for 
B-cell non-Hodgkin lymphoma (B-NHL) has improved event free survival (EFS) in 
high grade B-NHL.  Well conducted randomized phase 3 studies have shown an 
approximately 15–20% absolute improvement in EFS (vs. chemotherapy alone) in 
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favor of rituximab in elderly patients with diffuse large B-cell lymphoma (DLBCL), 
younger patients with DLBCL and more recently adults with Burkitt lymphoma 
[1–3]. Until recently it was unknown whether the same would be true for pediatric 
mature B-NHL where the multiagent chemotherapy results alone were already 
greater than 80% survival. A recent international study in advanced pediatric Burkitt 
and DLBCL was halted early after the rituximab arm demonstrated a superior 
1-year EFS (94%) compared to identical chemotherapy backbone alone (81%) [4]. 
Thus, rituximab (+ disease specific chemotherapy) is now considered standard of 
care in pediatric and adult patients with aggressive mature B-NHL.

While the success of rituximab is well documented, resistance to monoclonal 
antibody therapy has also been well described with multiple possible mechanisms 
of resistance reported. Numerous next generation monoclonal antibodies have been 
developed in an attempt to improve upon rituximab and circumvent mechanisms of 
resistance with varying degrees of success. Additionally, monoclonal antibodies 
modified to enhance interaction with host immune cells or conjugated to toxins or 
radiotherapeutic agents have been developed as an alternative approach to the use of 
naked monoclonal antibody therapies in the treatment of lymphoma. In this chapter, 
we will highlight resistance to monoclonal antibody therapies, focusing primarily 
on rituximab as the predominant monoclonal antibody utilized in the treatment of 
lymphoma, and the development of alternative approaches to overcome described 
mechanisms of resistance.

�Resistance to Monoclonal Antibody Therapy in the Clinic

The efficacy of rituximab in treating B-NHL was first established in the setting of 
relapsed low-grade B-NHL where 4 weekly doses of rituximab single agent therapy 
led to responses in approximately 50% of patients in initial trials [5–8]. In patients 
with relapsed or refractory aggressive B-NHL variants, 8 weekly doses of rituximab 
led to responses in about 30% of patients [9]. In the setting of aggressive disease, 
patients with primary refractory disease, non-large cell variants and more bulky 
disease tended to be less likely to respond to single agent rituximab [9]. In low grade 
lymphoma patients having previously responded to rituximab, responses were noted 
in 40% of patients upon retreatment with single agent rituximab [10, 11]. These 
initial trials highlighted a failure to respond in more than half of relapsed patients 
treated with rituximab upon initial single agent treatment with more than half of 
initial responders developing resistance upon re-treatment. As an initial therapy for 
low grade B-NHL, rituximab induced a slightly higher response rate of greater than 
60% as a single agent [12]. Rituximab also demonstrated the ability to sensitize 
lymphoma cells to the effects of cytotoxic chemotherapy and thus was subsequently 
combined with chemotherapy for treating both newly diagnosed and relapsed/
refractory lymphoma patients. The combination of chemotherapy and immunother-
apy with rituximab was initially investigated in the R-CHOP regimen (rituximab, 
cyclophosphamide, doxorubicin, vincristine and prednisone) with 95% of patients 
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with low grade B-NHL achieving a response [13, 14]. In the setting of aggressive 
B-NHL, similar response rates were noted [15]. Rituximab has subsequently been 
combined with a variety of chemotherapy regimens in both indolent and aggressive 
B-NHL and has become standard of care in the treatment of CD20-positive 
B-NHL.  However, with the introduction of rituximab to front-line therapy for 
B-NHL, a new phenomenon of resistance has been noted in the relapse setting. A 
large Phase 3 study of relapsed DLBCL, the CORAL study, highlighted the devel-
opment of resistance following treatment with rituximab containing regimens with 
patients having previously been treated with rituximab exhibiting an inferior sur-
vival upon treatment with rituximab containing salvage therapy compared to 
patients not having previously received a rituximab containing regimen [16]. The 
degree of contribution of rituximab to resistance is difficult to assess since current 
treatment essentially universally combines rituximab with chemotherapy. However, 
resistance has been noted both upon initial exposure and upon re-exposure to ritux-
imab heightening interest in the mechanisms of resistance to monoclonal antibody 
therapies and the development of new immunotherapeutic agents able to overcome 
resistance.

�Antibodies to Rituximab are Unlikely to Play a Role 
in Resistance

Monoclonal antibodies are large antigenic proteins and can theoretically be ineffec-
tive because of the formation of anti-antibodies, especially with repeated exposure. 
In addition, the less fully humanized antibodies are at higher risk of inducing an 
antibody response from the host. On the other hand, rituximab is a powerful humoral 
immunosuppressant with prolonged reduction of mature non-malignant B-cells and 
serum immunoglobulins. During our studies of the first trial of rituximab plus 
aggressive multi-agent chemotherapy in children and adolescents with de novo 
mature B-NHL, we could not demonstrate any formation of human anti-rituximab 
(HACA) antibodies [17]. In addition, by using a dose dense approach, we were able 
to demonstrate very high serum rituximab levels with t ½ of 26–29  days. Thus, 
reduced serum levels of antibody, through anti-antibody formation (or other mecha-
nisms), is unlikely to play a role in resistance.

�Mechanisms of Monoclonal Antibody Activity

To understand the mechanisms of resistance to monoclonal antibody therapy, one 
needs to initially understand the varying potential mechanisms of activity of mono-
clonal antibodies. Monoclonal antibodies can function to kill tumor cells through a 
variety of mechanisms. These primarily include antibody-dependent cellular 
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cytotoxicity (ADCC) or phagocytic cytotoxicity (ADCP), complement dependent 
cytotoxicity (CDC) and direct induction of programmed cell death (PCD) (Fig. 2.1) 
[18–20]. Additionally, monoclonal antibodies can function to sensitize tumor cells 
to the effect of cytotoxic chemotherapy exhibiting synergistic activity in combina-
tion immunochemotherapy regimens [21]. The most relevant mechanism of action 
of an individual anti-CD20 antibody can largely be defined by whether the antibody 
is a type I antibody (e.g. rituximab) or a type II antibody (e.g. tositumomab, obinu-
tuzumab). Type I anti-CD20 antibodies can localize CD20 into membrane lipid raft 
domains effectively activating complement and altering signal transduction through 
co-localization of receptors and effectors; while type II antibodies do not induce 
lipid raft localization and generally induce limited CDC, but more robust induction 
of PCD [22, 23].

ADCC/ADCP relies on the binding of the Fc fragment of the monoclonal anti-
body to receptors on surrounding immune effector cells [natural killer (NK) cells, 
monocyte/macrophages and neutrophils] inducing tumor cell death through trigger-
ing the immune effector cells to bind and kill the tumor. The role of ADCC on 
rituximab in vivo activity has been demonstrated by impaired activity in NK-cell 

Fig. 2.1  Mechanisms of rituximab activity. Rituximab binding to surface CD20 leads to lym-
phoma cell death through several reported mechanisms. (1) Binding of rituximab leads to the 
activation of complement leading to the formation of the membrane attack complex (MAC) result-
ing in cell lysis. (2) Binding of the Fc portion of rituximab by Fcγ receptors (FcγR) or rituximab 
bound complement C3b by complement receptors (CR) on effector cells leads to cell killing by 
antibody dependent cellular cytotoxicity (ADCC) or phagocytosis (ADCP). (3) Binding of ritux-
imab to CD20 leads to mobilization to lipid raft domains where crosslinking of CD20 bound 
rituximab leads to intracellular signaling and induction of apoptosis
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and neutrophil depleted mice and Fc receptor dependent activity [24, 25]. CDC 
relies on activation of the complement cascade through binding of the protein C1q 
to the Fc portion of the antibody leading to development of a membrane attack com-
plex leading to cell lysis. The dependence on complement for activity has been 
demonstrated by a lack of rituximab activity in mice deficient in C1q or with com-
plement depleted by exposure to cobra venom factor, though others have also dem-
onstrated that deficiency of complement proteins had little impact on rituximab 
activity suggesting that Fc-receptor dependent ADCC activity was more critical to 
rituximab activity in vivo [25, 26]. Additionally, some have suggested that comple-
ment activation may impair other antibody mediated mechanisms of cell killing like 
ADCC [27]. This detrimental effect of complement activation has also been sug-
gested in relation to an increase in progression free survival noted in follicular lym-
phoma and DLBCL patients with mutations in the gene encoding C1q that are 
known to cause lower C1q expression [28, 29].

While the direct induction of PCD by monoclonal antibodies has been demon-
strated in vitro, the mechanism of such an effect in vivo has been difficult to demon-
strate so that less is understood about the exact mechanism of antibody induction of 
cell death. The mechanism of induction of cell death also likely varies between 
antibody types with type I and type II anti-CD20 monoclonal antibodies demon-
strating varying mechanisms. Rituximab binding to CD20 on the surface of malig-
nant B-cells has been shown to induce a caspase-dependent apoptosis through 
activation of caspases 3 and 9 leading to PARP cleavage with these effects being 
inhibited by exposure to caspase inhibitors and enhanced by cross linking of CD20 
bound rituximab molecules [30–32]. While this suggests a caspase-dependent 
mechanism of cell death induction, others have reported cell death associated with 
rituximab binding that is independent of caspase activation and resistant to caspase 
inhibition [33]. Apoptosis induction may also be dependent on altered calcium 
transport leading to increased intracellular calcium following rituximab exposure 
with calcium chelators inhibiting the apoptosis induced by rituximab [31, 32]. The 
cellular function of membrane bound CD20 is likely to be a calcium channel critical 
to B-cell signaling. This shift in intracellular calcium after rituximab binding to 
CD20 has been shown to be secondary to activation of Src-family protein tyrosine 
kinases leading to phosphorylation of phospholipase C gamma 2 (PLCγ2) [34]. 
Additional intracellular signaling effects reported following rituximab binding have 
been noted on the mitogen activated protein kinase (MAPK), extracellular signal 
related kinase 1 and 2 (ERK1/2), signal transducer and activator of transcription 3 
(STAT3) and nuclear factor kappa B (NF-κB) signaling pathways [35–38]. 
Rituximab binding has also been shown to alter expression of Bcl-2 family member 
proteins and other inhibitors of apoptosis proteins. Chemosensitization observed 
following rituximab exposure may in large part be due to the documented ability of 
rituximab to overcome Bcl-2 associated resistance following chemotherapy expo-
sure [30, 39]. Some have also theorized that debris from apoptotic cells can have a 
“vaccination effect” leading to expansion of lymphoma specific cytotoxic T lym-
phocytes [40]. This effect has been demonstrated in mice where tumor re-challenge 
in mice previously treated with an anti-CD20 antibody led to impaired engraftment 
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and the identification of macrophage-associated ADCC leading to dendritic cell 
uptake of immune complexes inducing anti-tumor adaptive responses [41–43].

The exact role and contribution of each mechanism of activity to the efficacy of 
monoclonal antibody therapies is still not clearly understood and is likely disease- 
and antibody-dependent. Each of these mechanisms of activity has also been associ-
ated with proposed mechanisms of resistance (Table 2.1).

�Mechanisms of Monoclonal Antibody Resistance

�Antigenic Alterations Leading to Resistance

For a monoclonal antibody to exert its effect, it needs to first bind to its target anti-
gen. The level of expression or mutations in the surface antigen to which an anti-
body is targeted can impact the activity of the monoclonal antibody. One of the 
characteristics of CD20 that was believed to make it an ideal antigen for antibody 
targeting was a reported lack of internalization or shedding of the protein [18]. 
Despite this, early in the investigation of rituximab, reports began emerging 

Table 2.1  Mechanisms of resistance to monoclonal antibody therapy and approaches to 
overcoming resistance

Mechanisms  
of activity Mechanisms of resistance Approaches to circumventing resistance

CDC Complement depletion [49, 71, 72] Next generation mAbs with enhanced 
CDC activity [82–84]

Complement variants [26] Enhanced hexamer foundation [99]
Complement inhibitory proteins 
[73–79]

Complement replacement [71, 72]

ADCC FcγR polymorphisms [102, 103, 
105, 108, 110, 111, 113, 118]

Next generation mAbs with enhanced FcR 
affinity [121–129]

Inhibitory FcγR expression  
[100, 119, 120]

PCD/
Apoptosis

Altered Bcl-2 protein expression/
intracellular signaling [146, 147]

Type II antibodies with enhanced cell 
death induction [21, 124, 128, 150, 151]

Antigen 
binding

Antigen variants [46, 52, 53] Increase CD20 expression using epigenetic 
modulating agents or cytokines [19, 
59–64, 67, 68]

Antigen shedding [48, 49] Type II monoclonal antibodies [51]
Antigen internalization [50] Dose dense dosing [17, 143–145]
Circulating antigen [138–142]

ADC Drug transporter mediated  
efflux [158]

Alternative anti-neoplastic  
conjugates [160]

CDC, complement dependent cytotoxicity; ADCC, antibody dependent cellular cytotoxicity; 
PCD, programmed cell death; ADC, antibody-drug conjugate; mAB, monoclonal antibody
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describing the loss of CD20 expression in patients with relapsed B-NHL following 
exposure to anti-CD20 monoclonal antibody therapy [44–47]. Though the relative 
incidence of CD20 loss after rituximab exposure in the clinic has generally been 
believed to be low, investigation of alterations of CD20 expression levels in ritux-
imab resistant cells has indicated a possible role of this phenomenon in rituximab 
resistance.

In rituximab-resistant B-NHL cell lines developed by serial exposure of cell 
lines in culture to rituximab, decreased CD20 expression has been described in the 
resultant resistant cells reported to be due to transcriptional and post-transcriptional 
mechanisms [48]. Alternative splicing of CD20 mRNA may also impact rituximab 
response with an alternatively spliced, truncated version of the CD20 protein 
reported in B-lymphocytes that were either malignant or EBV transformed, but not 
present in non-transformed B-cells [49]. The variant CD20 was noted to increase in 
expression in rituximab-resistant cell lines developed by exposure to rituximab 
in vitro and also in primary patient cells following exposure to rituximab suggesting 
a role in development of rituximab resistance.

CD20 expression may also be altered after rituximab exposure secondary to anti-
genic modulation or “shaving”. Beum et al. described a so called “shaving effect” 
leading to loss of CD20 expression on malignant B-cells [50]. The described effect 
was reported both clinically, with reported rapid loss of CD20 and rituximab from 
B-cells without internalization, and in an experimental system where rituximab-
CD20 complexes were noted to be removed from B-cells and taken up by mono-
cytes in co-culture [51, 50]. Some reports have also suggested that, contrary to 
earlier data, CD20 may be internalized following rituximab binding. Beers et al. 
demonstrated using fluorescently labeled rituximab that internalization of the ritux-
imab-CD20 complex occurred following rituximab exposure with trafficking of 
rituximab-CD20 complexes noted to endosomes and lysosomes in B-cells [52]. 
Variability in the internalization of CD20 was noted with different types of mono-
clonal antibodies with the Type I rituximab antibody leading to internalization while 
a Type II tositumumab-like antibody did not, highlighting potential differences in 
the mechanism of action and resistance to different antibody constructs [52]. 
Utilization of a Type II antibody, like the humanized, glycoengineered Type II anti-
CD20 monoclonal antibody obinutuzumab may thus allow for activity without sig-
nificant modulation from internalization, though recent studies have also reported 
on the “shaving phenomenon” occurring with obinutuzumab as an alternate mecha-
nism for resistance in the absence of antigenic modulation [53].

In addition to antibody associated effects leading to altered expression of the 
CD20 antigen on the B-cell surface, others have reported on mutations in the gene 
encoding CD20 that may impair response to rituximab [54, 55]. For example, Turui 
et al. performed a mutation analysis of CD20 in 50 patients treated for a variety of 
NHL types including 9 patients with progressive disease [55]. They found that 11 
patients (22%) had a mutation in CD20 and that those with a C-terminal deletion 
mutation had a significantly lower expression of CD20 compared to patients with-
out a mutation or those with mutations defined as early termination or extracellular 
domain. Notably 4 of the 5 C-terminal deletions occurred in samples from patients 
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with progressive disease. Cells transfected with the C-terminal deletion mutated 
CD20 expressed similar CD20 RNA, but did not express CD20 on the cell surface 
with only weak cytoplasmic staining noted. These C-terminal mutations were sub-
sequently reported to affect the extracellular large loop of the CD20 antigen also 
impacting the rituximab binding site [56]. Another relapse case was noted to have a 
homozygous deletion of the membrane spanning 4-domains A1 (MS4A1) gene, the 
gene encoding CD20, at relapse leading to loss of CD20 [57]. While these muta-
tions have been reported, a larger analysis of DLBCL patients identified that such 
mutations occur at very low rates (0.4% of 264 newly diagnosed and 6% of 15 
relapsed DLBCL patients analyzed) and may not significantly contribute to resis-
tance except in a small percentage of cases [58].

Epigenetic regulation of the gene encoding CD20 has also been implicated in 
changes in CD20 surface antigen expression and thus possibly also related to ritux-
imab resistance [59, 60]. Tomia et al. reported on a case of CD20 negative relapsed 
DLBCL after rituximab exposure with increased CD20 expression following expo-
sure to the epigenetic modifier Trichostatin A [59]. A further analysis of mecha-
nisms of epigenetic regulation of decreased CD20 expression identified the role of 
the Sin3A-HDAC1 co-repressor complex in downregulating transcription of 
MS4A1 with expression of CD20 increased following exposure to the histone 
deacetylase inhibitor Trichostatin A [60]. Similarly, numerous epigenetic modifying 
agents have been identified that can alter CD20 protein expression and augment the 
activity of rituximab through their effects on DNA methylation, DNA acetylation or 
the recruitment of transcription factors leading to altered CD20 expression [61–66]. 
The potential clinical impact of epigenetic modifiers has also been investigated in 
combination with rituximab containing regimens with some promising early find-
ings [67, 68]. Alternative mechanisms of increasing CD20 expression have been 
reported using a variety of cytokines including granulocyte-macrophage colony 
stimulating factor (GM-CSF), tumor necrosis factor alpha (TNF-α), interferon 
gamma (IFN-γ), IL-4 and IL-2 suggesting possible roles of combination therapies 
involving cytokine based therapies to increase CD20 expression prior to rituximab 
therapy [69, 70, 21]. An additional approach to enhance targeting of tumor cells 
using monoclonal antibodies is the use of multivalent antibodies targeting multiple 
antigens on a tumor cell or having multiple binding sites for a single antigen. 
Examples include an antiCD20/CD22 bivalent antibody which has demonstrated 
enhanced in vitro and in vivo cell killing compared to the individual antibodies or a 
combination of the two single antibodies [71]. A combination of a type 1 and a type 
2 CD20 antibody into one bivalent antibody also exhibited enhanced CDC and 
direct killing [72]. In addition to approaches intended to enhance expression of 
CD20 to improve response to rituximab, antibodies targeting alternative lymphoma 
associated cell surface antigen targets continue to be developed for use in the setting 
of rituximab resistance or CD20 negative relapsed disease including, for example, 
monoclonal antibodies targeting CD19, CD22, CD79b, CD80 and CD40 with vary-
ing degrees of activity [73–78].
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�Complement Mediated Resistance

Binding of monoclonal antibodies to surface proteins can induce CDC via interac-
tions of the Fc portion of the antibody with complement proteins. In chronic lym-
phocytic leukemia (CLL), a rapid depletion of complement proteins has been 
observed which may represent a limitation of rituximab activity [51]. This possible 
source of resistance was further supported by evidence that infusing rituximab with 
complement containing fresh frozen plasma may enhance rituximab activity [79, 
80]. Polymorphisms in genes encoding C1q have also been reported to impact ritux-
imab activity in patients with follicular lymphoma also highlighting the potential 
important role of CDC in rituximab activity, especially when given without chemo-
therapy [28].

Tumor cells can also inhibit CDC killing through the expression of complement 
inhibitory proteins CD46, CD55 and CD59 with altered expression of complement 
inhibitory proteins identified as a possible mechanism of resistance to monoclonal 
antibody therapies [81]. B-NHL cells resistant to rituximab, including tumor cell 
lines and primary patient cells, have been shown to exhibit increased expression of 
CD55 and CD59 leading to impaired CDC activity of anti-CD20 monoclonal anti-
bodies [82–85]. The effect of complement inhibitory proteins on the CDC activity 
of rituximab has been demonstrated through increased rituximab associated CDC 
following inhibition of CD55 or CD59 [84, 81, 86, 87]. Despite this in vitro evi-
dence of the detrimental effect of high complement inhibitory protein expression on 
rituximab activity, clinical investigation of the effect of high complement inhibitory 
protein expression on treatment response to rituximab has been conflicting with 
some analysis suggesting higher levels of CD55 and CD59 in non-responders while 
others suggest no impact of varying levels of CD46, CD55 or CD59 on likelihood 
of response to rituximab [88, 89].

Novel monoclonal antibodies have been developed which exhibit enhanced CDC 
activity in comparison to rituximab [90]. CDC activity has been linked to the prox-
imity of antibody binding to the cell membrane and is dependent on redistribution 
of the antigen target into lipid soluble rafts within the cell membrane, an effect 
predominantly observed with Type I antibodies [91, 90]. The fully human type I 
anti-CD20 monoclonal antibody ofatumumab binds to a unique, more membrane-
proximal epitope of the CD20 antigen compared to rituximab and has a slower off-
rate while effectively inducing CD20 redistribution to lipid rafts [90, 92]. Likely 
secondary to these characteristics, ofatumumab has demonstrated enhanced CDC 
activity in comparison to rituximab including in the setting of rituximab resistance 
and high levels of CD55 and CD59 expression [90, 83, 93–95]. Clinically, ofatu-
mumab has induced a high rate of responses, particularly in CLL alone or in com-
bination with chemotherapy, and has received FDA approval for first line and 
refractory CLL alone and with various alkylator combinations. [96–100]. 
Ofatumumab demonstrated limited efficacy in aggressive B-NHL, where no signifi-
cant benefit was observed over rituximab, though some responses have been noted 

M. J. Barth and S. C. Goldman



37

in rituximab resistant disease. This highlights that CDC may play a larger role in 
certain B-cell malignancies (like CLL) compared to others [101–105].

An alternative approach to enhancing monoclonal antibody associated CDC 
relates to the formation of antibody hexamers in order to activate complement effec-
tively. This recently described hexamer formation of anti-CD20 antibodies increases 
C1q binding and enhances CDC activity [106]. Polymorphisms in the Fc portion of 
an antibody have been identified that enhance hexamer formation and thus increase 
CDC activity of the antibody. Introducing such polymorphisms into rituximab was 
shown to increase CDC in CLL samples and was also even shown to increase CDC 
induced by type II anti-CD20 monoclonal antibodies [107]. This represents another 
potential approach to overcoming resistance to CDC activity.

�Fcγ Receptor Associated Resistance

Much of the function of rituximab and other monoclonal antibodies is dependent on 
the interaction of the Fc portion of the antibody with Fcγ receptors (FcγR), in par-
ticular FcγRIIIa and FcγRIIa receptors on myeloid effector cells [108, 25, 109]. 
FcγR deficiency in mice abrogates the activity of monoclonal antibody therapies 
providing evidence for their crucial role in monoclonal antibody activity [108]. 
Polymorphisms in FcγR leading to altered affinity for Fc binding have been noted 
to impact the efficacy of rituximab in vitro and in vivo. In particular, the 158F vari-
ant of FcγRIIIa has been noted to impair responsiveness to rituximab compared to 
the 158V variant which has a higher affinity for binding IgG1 antibodies [110]. In 
patients with previously untreated follicular lymphoma treated with rituximab, 
response rates were significantly higher in patients homozygous for the FcγRIIIa 
158V variant compared to 158F carriers [111]. However, subsequent analysis in a 
variety of tumor types have provided conflicting results in particular in patients 
treated with rituximab in combination with chemotherapy [112–122]. There may 
also be an effect on toxicity associated with rituximab exposure as the high affinity 
FcγRIIIa 158V polymorphism has recently been associated with increased rates of 
late onset neutropenia following rituximab therapy [123–125]. Polymorphisms in 
FcγRIIa have also been implicated in response to rituximab, in particular the 
FcγRIIa H131R polymorphism which has been associated with improved response 
in tumors with a higher affinity H/H genotype, though similar to the FcγRIIIa poly-
morphisms, the impact on clinical outcome has been mixed with no impact noted in 
most recent studies of rituximab in combination with chemotherapy [121, 119, 118, 
126, 116, 113].

Additionally, the expression of other inhibitory FcγR, such as FcγRIIb, may 
impair response upon binding of effector macrophages [108]. This has been demon-
strated in transgenic mice lacking the FcγRII inhibitory receptor, in which tumors 
tend to be more responsive to monoclonal antibody therapies [108]. FcγRIIb has 
also been reported to interact with rituximab bound to CD20 to form a complex that 
promotes internalization of the rituximab-CD20 complex impairing Fc-dependent 
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functions and overall antibody efficacy [127, 52]. The clinical effect of high FcγRIIb 
has also been described in follicular lymphoma patients receiving rituximab mono-
therapy where patients with high FcγRIIb expression exhibited lower EFS [128].

With variability in FcγR binding affinity playing a potential role in response to 
rituximab, novel monoclonal antibodies have been developed with alterations aimed 
at enhancing Fc receptor affinity. Alterations to the Fc portion of monoclonal anti-
bodies have improved affinity for lower affinity FcγRs leading to improved ADCC 
activity. Afucosylation (manipulation of the oligosaccharides to remove fucose) of 
the Fc portion of antibodies was shown to decrease steric hindrance that likely 
inhibited FcγR binding leading to enhanced receptor affinity and increased ADCC 
[129–131].

Obinutuzumab is the prime example of a third generation type II, humanized, 
glycoengineered anti-CD20 monoclonal antibody. Obinutuzumab has been shown 
to exhibit enhanced pre-clinical activity compared to rituximab both from enhanced 
ADCC and from enhanced direct cell killing typical of type II antibodies [132–137]. 
Despite this promise related to pre-clinical activity, the clinical development of 
obinutuzumab has led to variable results. In CLL, as a single agent, obinutuzumab 
induced a rapid decrease in circulating CD20 positive cells associated with a signifi-
cant rate of infusion related reactions secondary to cytokine release [138]. In com-
bination with chlorambucil in newly diagnosed CLL patients with coexisting 
conditions, obinutuzumab demonstrated high response rates and progression free 
survival compared to chlorambucil monotherapy or the combination with rituximab 
[139]. In patients with relapsed/refractory indolent NHL, obinutuzumab monother-
apy induced responses in 62% of patients during a phase 1 dose escalation and 30% 
in the phase 2 portion of the trial including responses in patients having previously 
received rituximab [140]. The best overall response rate of all patients also seemed 
to be higher than that reported with ofatumumab as monotherapy in a similar popu-
lation. A subsequent randomized study of obinutuzumab in comparison with ritux-
imab reported a similar response rate of 44.6% in obinutuzumab treated patients 
compared to 26.7% with rituximab, as determined by a blinded review panel [138]. 
However, despite the apparent benefit in response, obinutuzumab did not lead to an 
improvement in progression free survival [138]. Due to an observed dose response 
effect with obinutuzumab, a randomized trial of 1000mg vs 2000mg was performed 
which seemed to confirm a higher response rate with increased dosing (67% vs 
49%) in previously untreated CLL patients [141]. In patients with relapsed indolent 
NHL following prior rituximab containing therapy, obinutuzumab was randomly 
studied in combination with bendamustine compared to bendamustine alone with 
obinutuzumab maintenance given in patients responding to the combination. While 
the end of induction response rate was no different between the two arms, the obinu-
tuzumab/bendamustine group experienced less events and had a prolonged progres-
sion free survival compared to bendamustine alone [142]. In DLBCL, obinutuzumab 
monotherapy resulted in responses in 32% of patients, a rate that is similar to 
responses to rituximab in rituximab naïve relapsed DLBCL patients, with 20% of 25 
rituximab-refractory patients achieving a response and a suggestion of increased 
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responses in a higher dose group [143]. In newly diagnosed DLBCL patients, 
obinutuzumab/CHOP was compared to rituximab/CHOP with no difference in EFS 
noted [144]. Obinutuzumab has gained regulatory approval in the United States for 
treatment of newly diagnosed CLL in combination with chlorambucil and in com-
bination with bendamustine followed by obinutuzumab monotherapy in patients 
with follicular lymphoma relapsed after a rituximab containing regimen. However, 
the results in aggressive NHL variants have been inconsistent and continue to be 
evaluated with no current indication for aggressive B-NHL to date.

�Circulating Antigen

Many cell surface antigens can also be identified in circulation. These circulating 
CD20 (cCD20) antigens have been identified in patients with CLL, Hodgkin lym-
phoma and NHL in addition to healthy controls [145–147]. Patients with B-NHL 
had significantly higher levels of cCD20 compared to normal controls [146]. In 
CLL, high levels of cCD20 have been correlated with disease stage and inversely 
correlated with overall survival [148]. It has been suggested that high levels of 
cCD20 may complex with therapeutic monoclonal antibodies leading to enhanced 
clearance, a mechanism suggested to contribute to the impaired efficacy of ritux-
imab in CLL [149]. A more recent report also suggested a role of cCD20 in clinical 
outcomes in B-NHL with patients with high cCD20 levels prior to receiving therapy 
and those with higher cCD20 after therapy having a significantly lower probability 
of survival [146]. Serum rituximab concentration has been correlated to response in 
some studies with patients achieving higher concentrations being more likely to 
respond and patients with higher disease burden generally attaining less ideal ritux-
imab levels [150–152, 17]. Binding of rituximab to cCD20 may hinder it’s binding 
to B-cell associated CD20 and possibly increase clearance leading to decreased 
rituximab concentrations which may be able to be overcome by increased rituximab 
dose intensity.

�Resistance to Apoptosis

As previously discussed, binding of monoclonal antibodies to surface antigens can 
induce intracellular signals leading to induction of apoptosis without the need of 
third party effector cells or complement activation. Alterations in the signaling path-
ways leading to apoptosis can thus lead to impaired ability of antibody to induce 
this effect. Multiple groups have generated NHL cell lines resistant to rituximab 
following serial exposure to the antibody and have demonstrated that alterations in 
pro- and anti-apoptotic regulators of apoptosis likely contribute to the development 
of resistance [153, 154]. While rituximab has demonstrated the ability to induce 
apoptosis, the importance of this effect on lymphoma cell death is unclear.
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Type II anti-CD20 monoclonal antibodies on the other hand have demonstrated 
a more significant induction of cell death when compared to rituximab. In experi-
ments assessing the cell killing effect of Type I vs. Type II antibodies, F(ab’)2 frag-
ments of Type II antibodies were able to induce significant cell death independent 
of Fc dependent mechanisms as opposed to the Type I antibody which required the 
Fc fragment to induce cell death primarily through complement activation [23]. 
Type II antibodies have been developed in order to improve on the cell death induc-
tion observed with rituximab. Obinutuzumab has also demonstrated significantly 
more induction of cell death than rituximab in vitro [132]. While as previously dis-
cussed, obinutuzumab has enhanced ADCC activity secondary to a glycoengineered 
Fc segment increasing FcR binding affinity, the same antibody without the glycoen-
gineering still maintained superior cell killing compared to rituximab highlighting 
the increased induction of PCD by this type II antibody [155]. Obinutuzumab, simi-
lar to a previously developed Type II antibody tositumomab, induces a caspase inde-
pendent cell death that correlates with high levels of homotypic adhesion not 
observed with rituximab, possibly indicating enhanced signaling effect [22, 133]. 
This caspase-independent cell death has also been identified to occur through the 
generation of reactive oxygen species (ROS) mediated by nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase independent of mitochondria and can be 
blocked by exposure to an ROS scavenger [156]. Though additional signaling 
effects of obinutuzumab compared to rituximab that may be related to an increased 
induction of cell death and possible chemosensitization continue to be investigated, 
there do appear to be differences in signaling effects compared to rituximab in cells 
that are either rituximab-sensitive or rituximab-resistant with more significant 
effects noted on activation of protein kinase B (AKT), spleen-associated tyrosine 
kinase (SYK) and PLCγ2 following obinutuzumab exposure in vitro [157, 158].

�Alternative Antibody Mediated Therapeutics

In addition to the use of naked monoclonal antibodies, other immunotherapy 
approaches utilize antibody-based approaches to direct therapy. Antibody drug con-
jugates (ADCs) or radioimmunoconjugates (RIC) utilize an antigen targeting anti-
body to deliver a drug or radioactive molecule that is covalently bound to the 
antibody to tumor cells in a targeted fashion. RICs have been thoroughly investi-
gated in B-NHL and have earned regulatory approval for some limited treatment 
indications including indolent lymphomas relapsed after rituximab therapy (I131-
tositumomab and ibritumomab tiuxetan) or newly diagnosed follicular lymphoma 
following a response to initial therapy (ibritumomab tiuxetan).

In addition to these radioimmunoconjugates, other antibody drug conjugates 
have been evaluated in lymphoma. The most established is Brentuximab vedotin, an 
ADC targeting CD30 conjugated with monomethyl auristatin E (MMAE), a potent 
microtubule stabilizing agent. Brentuximab vedotin demonstrated significant 
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responses in relapsed refractory Hodgkin lymphoma and anaplastic large cell 
lymphoma, two lymphoma types with high CD30 expression; and it is approved for 
use in adult classical Hodgkin lymphoma patients who have relapsed after stem cell 
transplant or 2 chemotherapy regimens, as consolidation after transplant or with 
newly diagnosed stage 3 or 4 disease and in relapsed systemic or anaplastic large 
cell lymphoma or mucosis fungoides [159, 160]. Despite low levels of CD30 expres-
sion, brentuximab vedotin has also exhibited activity in treatment of some B-NHLs, 
in particular DLBCL and primary mediastinal large cell lymphoma [161].

Since these agents rely on the antibody primarily for targeting purposes, resis-
tance mechanisms relating to Fc associated mechanisms of activity previously dis-
cussed are generally less relevant. However, changes in antigen expression can have 
a role in resistance to ADCs which continue to rely on antigen expression for appro-
priate delivery of their cargo. A single case of CD20 negative relapse following 
treatment with I131-tositumomab has been reported though this was a very early 
progression raising the question of monoclonal antibody blocking binding of anti-
CD20 antibody used for immunohistochemistry analysis [162]. Additionally, CD30 
negative relapse of ALCL has been reported following treatment with brentuximab 
vedotin [163, 164].

Similarly, since the efficacy of ADCs is dependent on the anti-neoplastic agent 
conjugated to the antibody, additional mechanisms of resistance common to other 
chemotherapeutic agents can contribute to resistance. Chen et al. described mecha-
nisms of resistance to brentuximab vedotin in ALCL and Hodgkin lymphoma cell 
lines generated to be resistant following serial exposure [165]. In addition to down-
regulation of CD30 expression affecting ADC targeting, resistance to MMAE was 
observed. MMAE intracellular accumulation was lower in resistant cells following 
exposure to the ADC or to free MMAE suggesting possible impaired delivery 
related to decreased antigen expression, but also resistance to MMAE itself. 
Investigation of mechanisms of resistance to the MMAE identified an increased 
expression of the multi-drug resistance gene MDR1, with resistance to MMAE par-
tially reversed following inhibition of p-glycoproteins. Similar increase in positivity 
for drug transporters was observed in patient samples from relapses following 
brentuximab vedotin therapy.

Additionally, altered induction of target cell apoptosis may contribute to resis-
tance to the conjugated molecule. For example, in pre-clinical investigation of a 
novel ADC targeting CD79b and conjugated with MMAE, increased expression of 
the anti-apoptotic Bcl-2 family protein Bcl-xL was demonstrated to be associated 
with resistance to this investigational ADC with enhanced responses noted follow-
ing inhibition of Bcl-2 family proteins using ABT-263 [166]. Alternative antibodies 
with enhanced antigen targeting or targeting alternative surface antigens, conjugates 
with more efficient conjugation of anti-neoplastic compounds and alternative anti-
neoplastic agents not known to be substrates for drug transporter mediated efflux 
represent potential options for alternative ADCs to circumvent these identified 
mechanisms of resistance.
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Another use of monoclonal antibody therapy is the ability to target tumor cells to 
cytotoxic effector cells using bi-specific antibodies that can bind the target cell and 
an effector cell. The prime example is the bispecific T-cell engaging (BiTE) antibody 
blinatumomab. Blinatumomab is a bivalent antibody targeting CD19 present on 
B-cells and CD3 on T-cells leading to enhanced immune-mediated clearance of 
tumor cells. It has been approved for use in acute lymphoblastic leukemia (ALL) 
and is under investigation in B-NHL with responses in 69% of 76 relapsed/refrac-
tory B-NHL patients including 55% of patients with DLBCL [75]. With data pri-
marily in ALL, resistance to blinatumomab has been noted with CD19-negative 
relapses and primary resistance possibly due to high expression of the checkpoint 
inhibitor ligand PD-L1 on tumor cells [167–169]. Alternative bispecific antibodies 
constructed to enhance immune surveillance of malignant cells continue to be 
developed and evaluated in B-NHL including a CD20-CD3 bispecific antibody 
[170].

�Summary

Monoclonal antibodies have been a cornerstone of therapy for lymphomas for 
decades following the first ever approval of a monoclonal antibody therapy, ritux-
imab, for the treatment of cancer. Despite the overwhelming success of rituximab in 
treating NHLs, resistance exists both in primary refractory cases and on relapse 
following treatment with rituximab. Mechanisms of resistance have been identified 
that target all described mechanisms of monoclonal antibody activity including 
altered antigen expression or binding, impaired CDC or ADCC, altered intracellular 
signaling effects and inhibition of direct induction of cell death. Multiple next gen-
eration anti-CD20 monoclonal antibody therapies developed to overcome described 
resistance mechanisms continue to be investigated with two, ofatumumab and 
obinutuzumab, already approved for the treatment of B-cell malignancies albeit 
with narrow indications. Alternative monoclonal antibody based immunotherapeu-
tic approaches more recently developed include the use of ADCs and bispecific or 
multivalent antibody constructs. The ADC brentuximab vedotin has approvals for 
indications in Hodgkin lymphoma and relapsed ALCL, while the BiTE antibody 
blinatumomab is approved for use in B-ALL. Understanding of these newer mono-
clonal antibody based therapeutic approaches and mechanisms of resistance to them 
continue to be studied, with alternative agents from each class already in develop-
ment to try to improve on the significant activity already observed with each agent.
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Chapter 3
Resistance to Antibody-Drug Conjugate

Jessica Hochberg and Sarah Alexander

Abstract  Immune therapies have shown significant efficacy in the treatment of 
pediatric lymphomas. Monoclonal antibodies, whether naked or conjugated have 
emerged as an attractive option for targeted therapy while minimizing toxicities. 
Monoclonal antibodies conjugated to small molecule drugs were developed as a 
way to combine highly potent agents with tumor specificity. Current challenges 
include careful selection of tumor targets, the management of potential toxicities, 
identification of ideal patient selection and therapy regimens, and a better under-
standing of antibody-drug conjugates (ADC) mechanisms of action and resistance. 
The right combination is critical for a successful ADC. Mechanisms of resistance to 
ADCs can be inherited to the ADC or acquired by the host environment and can 
developed against each of the individual components of the ADC. Given the rational 
design of ADCs, there is the ability to modify each of the components to develop 
improved agents that can overcome resistance.

Keywords  Pediatrics · Lymphoma · Antibody · Conjugates · Resistance  
Immunotherapy
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Ag-Ab	 Antigen-Antibody
AKT	 Activated Tyrosine Kinase
ALCL	 Anaplastic Large Cell Lymphoma
ALL	 Acute Lymphoblastic Leukemia
AML	 Acute Myeloid Leukemia
AVD	 Doxorubicin, Vinblastine, Dacarbazine
Bv	 Brentuximab Vedotin
CI	 Confidence Interval
COG	 Children’s Oncology Group
CR	 Complete Response
DLBCL	 Diffuse Large B-Cell Lymphoma
FDA	 Food and Drug Administration
GO	 Gemtuzumab Ozogamicin
HL	 Hodgkin Lymphoma
HR	 Hazard Ratio
IO	 Inotuzumab Ozogamicin
mAB	 Monoclonal Antibody
MF	 Mycosis Fungoides
MMAE	 Monomethylauristatin E
NHL	 Non-Hodgkin Lymphoma
OR	 Objective Response
pcALCL	 Primary cutaneous Anaplastic Large Cell Lymphoma
PFS	 Progression-Free Survival
RR	 Response Rate

�Introduction

Immune therapies play an increasing role in the treatment of cancer overall and have 
shown significant efficacy in the treatment of Hodgkin (HL) and Non-Hodgkin 
Lymphoma (NHL). Monoclonal antibodies, such as the CD20 targeted agent 
rituximab, emerged as an attractive option for targeted therapy while minimizing 
toxicities. Lessons learned from the use of rituximab in NHL have shown that 
monoclonal antibodies can be used alone and in combination with multi-agent che-
motherapy to improve outcomes in both pediatric and adult lymphoma. Furthermore, 
the use of novel immune therapy agents allows for the potential reduction in cyto-
toxic therapies and minimization of long term side effects. However, the clinical 
efficacy of naked antibodies as single agents remains limited. Thus, monoclonal 
antibodies conjugated to small molecule drugs were developed as a way to combine 
highly potent agents with tumor specificity. Over the past 30 years of antibody-drug 
conjugate (ADC) research, several new linkers, and conjugation strategies have 
been discovered. Designing an effective ADC is a complex process, requiring 
thoughtful combination of optimal antibody target, linker, and tolerable drug. 
Lessons learned from the first-generation of ADC’s have guided the design of 
improved compounds which are now in clinical trials. Current challenges include 

J. Hochberg and S. Alexander



59

careful selection of tumor targets, the management of potential toxicities, identifica-
tion of ideal patient selection and therapy regimens, and a better understanding of 
ADC mechanisms of action and resistance. Here we will review the structure and 
mechanisms of resistance to ADCs, specifically as they relate to lymphoma.

�ADC Structure and Components

ADCs are typically comprised of a fully humanized monoclonal antibody (mAb) 
targeting an antigen specifically/preferentially expressed on tumor cells, a cytotoxic 
drug, or payload, and a suitable linker (Fig.  3.1) [1]. The right combination is 

Fig. 3.1  Critical factors that influence ADC therapeutics. ADCs consist of a cytotoxic drug con-
jugated to a monoclonal antibody by means of a select linker. These components all affect ADC 
performance and their optimization is essential for development of successful conjugates. (from 
Siler Panowski, Sunil Bhakta, Helga Raab, Paul Polakis & Jagath R Junutula (2014) Site-specific 
antibody drug conjugates for cancer therapy, mAbs, 6:1, 34–45, DOI: https://doi.org/10.4161/
mabs.27022)
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critical for a successful ADC. The target antigen must be highly expressed on the 
surface of the tumor cells with relatively little expression on normal cells, thus mini-
mizing the chances of off target cytotoxicity. Upon binding, the antibody must be 
absorbed through rapid internalization followed by lysosomal degradation, and 
finally release of the cytotoxic drug inside the cell (Fig. 3.2) [1–3].

�Antibody Selection

The selection of mAbs for specific tumor targeting leads to ADCs precision act-
ing only on cancer cells, increasing the therapeutic index while minimizing off-
target side effects. Therefore, determining which antigen to target is the first and 
most important step in ADC development [2]. Overexpression on tumor cells 
with minimal to no expression on healthy cells ensures specific targeting deliv-
ery of cytotoxic agents. Monoclonal antibodies also must have the ability to 
bind strongly and then penetrate tumor. If the target antigen is shed easily from 
tumor tissues or if the antibody does not strongly bind, systemic clearance from 

Fig. 3.2  The ADC must enter tumor tissue from the vasculature, bind to its cell surface target, and 
then be internalized via the endosome–lysosome pathway, where the linker is cleaved and/or the 
antibody is degraded to release the payload, which ultimately diffuses into the cytoplasm to reach 
its target. (from John M. Lambert and Anna Berkenblit, Antibody–Drug Conjugates for Cancer 
Treatment. Annu. Rev. Med. 2018. 69:191–207)

J. Hochberg and S. Alexander



61

circulation can alter the potency and pharmacokinetics of the ADC [1]. There 
must remain a balance between internalization and disassociation rates of the 
antigen-antibody (Ag-Ab) complexes in order to ensure effective drug utiliza-
tion. Isotype selection of the mAb influences the ability of the ADC to stimulate 
immune system mediated actions with IgG1 able to support antibody-dependent 
cellular cytotoxicity (ADCC), whereas IgG2 and IgG4 are limited in this func-
tion [4]. Minimizing immune system actions can help limit unwanted side 
effects [1].

�Cytotoxic Agents

The most frequently used cytotoxic agents are DNA damaging (such as calicheami-
cin analogs) or anti-microtubule compounds (such as auristatin analogs) [5]. Other 
drugs used in clinical-stage ADCs are topoisomerase inhibitors, DNA-alkylators, 
and RNA polymerase II inhibitors [1]. Drugs are selected for high cytotoxicity, so 
that they can destroy tumor cells at intracellular concentrations achieved after ADC 
delivery.

�Linker Design

One of the main challenges in developing ADCs is to incorporate a linker that 
has high stability in systemic circulation for a prolonged period over several 
days and efficient lysosomal release of the drug only after internalization into 
the tumor. Premature release of drugs in the circulation can lead to systemic 
toxicity and a lower overall efficacy. Linkers are generally divided as cleavable 
and non-cleavable [2]. Cleavable linkers can be acid sensitive, only hydrolyzed 
in the lower pH environment of the lysosome; glutathione-sensitive disulfide 
linkers, where tumor cells express elevated levels of thiols; or lysosomal prote-
ase-sensitive peptide linkers. Non-cleavable linkers have better plasma stability 
which is beneficial in decreasing plasma drug release. Stability is achieved by 
attaching the linker to amino acid residues of the mAb through a non-reducible 
bond [2, 3, 6].

�ADC in Lymphoma

At the time of writing of this review there is one ADC, brentuximab vedotin (Bv), 
which is Food and Drug Administration (FDA) approved for the treatment of 
patients with HL and NHL. In addition, three ADCs are approved for other diseases 
including gemtuzumab ozogamicin for the treatment of newly-diagnosed adult 
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patients with CD33-positive acute myeloid leukemia (AML) and for children and 
adults with relapsed or refractory CD33-positive AML, inotuzumab ozogamicin 
(IO) for adults with relapsed or refractory B-cell precursor acute lymphoblastic leu-
kemia (ALL) and trastuzumab emtansine for patients with HER2 positive meta-
static breast cancer. There are dozens of ADCs in development, including more than 
20 being investigated for the treatment of patients with HL and NHL [7].

�Brentuximab Vedotin

Bv is a chimeric anti-CD30 monoclonal antibody linked by a cathepsin B sensitive 
cleavable dipeptide valine-citruline linker to monomethylauristatin E (MMAE). Bv 
was the first ADC approved by the FDA, originally in 2011 for the treatment of 
patients with relapsed anaplastic large cell lymphoma (ALCL) following systemic 
chemotherapy and for those with relapsed HL following autologous stem cell trans-
plant. Approval for the treatment of patients with relapsed and refractory ALCL was 
based on a phase 2 study in adults in which Bv was given at a dose of 1.8 mg per 
kilogram every 3 weeks. In this trial, 50 out of 58 (86%) patients achieved an objec-
tive response (OR), with 57% achieving complete response (CR) and 97% showing 
tumor reduction [8]. Subsequently, indications for Bv expanded to include treatment 
of adults with primary cutaneous ALCL (pcALCL) or CD30 negative expressing 
mycosis fungoides (MF) who have received prior systemic therapy. In addition the 
ECHELON-1 study in adults with newly diagnosed advanced stage HL demonstrated 
that Bv in combination with conventional AVD (doxorubicin, vinblastine, dacarba-
zine) chemotherapy (A + AVD) demonstrated 2-year modified progression-free sur-
vival (PFS) rates in the A + AVD and ABVD (doxorubicin, bleomycin, vinblastine, 
dacarbazine) groups of 82.1% [95% confidence interval (CI95), 78.8–85.0] and 77.2% 
(CI95, 73.7–80.4), respectively, with a hazard ratio (HR) for an event of progression, 
death, or modified progression of 0.77; CI95, 0.60–0.98; P = 0.04) [9, 10].

Bv has been shown to be active in adult patients with relapsed and refractory dif-
fuse large B cell lymphoma (DLBCL) with CD30 expression [11]. Safety of single 
agent Bv has been studied in children with relapsed and refractory HL and ALCL as 
well [12]. The safety and efficacy of Bv in combination with conventional chemo-
therapy for children with ALCL and for those with HL is being investigated through 
two Children’s Oncology Group (COG) trials (www.clinicaltrials.gov identifiers 
NCT01979536 and NCT02166463).

�Inotuzumab Ozogamicin

Inotuzumab ozogamicin (IO) is a humanized anti-CD22 monoclonal antibody 
with a cleavable hydrazine linker attached to N-acetyl-gamma-calicheamicin. It 
was FDA approved in 2017 for the treatment of adult patients with relapsed or 
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refractory precursor-B ALL. IO has been studied in multiple trials in adults with 
relapsed and refractory CD 22 positive indolent and aggressive B cell lympho-
mas as a single agent, in combination with rituximab and in combination with 
conventional chemotherapy with most studies describing favorable response 
rates while others showed no clear advantage when compared to alternate regi-
mens [13–15].

�ADC for Lymphoma in Development

There are numerous ADCs in all stages of pre-clinical and clinical trial develop-
ment. Anti-CD19 agents that have undergone phase 1/2 studies in patients with 
B-lineage NHL include denintuzumab mafotin, coltuximab ravtansine and lon-
castuximab tesirine [16–19]. Pinatuzumab vedotin is a CD22-targeted ADC 
linked to MMAE that has and is being studies as a single agent and in combina-
tion with rituximab and obinutuzumab [20]. Polatuzumab vedotin is an anti-
CD79b antibody conjugated to MMAE that has and is being investigated as a 
single agent and in combination with rituximab, obinutuzumab, conventional 
chemotherapy regimens in patents with DLBCL [21–23]. Additional ADC 
directed at CD19, 22 and 79b are in earlier phase clinical trials in addition to 
those directed at CD37, 70 and 25 [7].

�General Mechanisms of Resistance

Mechanisms of resistance to ADCs can be inherent to the ADC or acquired by the 
host environment and can develop against each of the individual components of the 
ADC, namely the mAb, linker mechanism or the cytotoxic drug (Fig. 3.3) [6].

�Antigen-Related Resistance

Changes in the levels of the antigen recognized by the mAb can occur through down 
regulation of cell surface protein expression, shedding of antigen or high level of 
expression of antigen in other tissues [6]. If the mAb is unable to bind sufficiently 
to the target cell, potency will be limited. Other mechanisms of antigen-related 
resistance may include masking or truncation of the epitope, or the presence of 
additional ligands to the antigen although these have not yet been reported in pre-
clinical models of ADCs for lymphoma.
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Fig. 3.3  The antibody binds to its target on the plasma membrane (1); then, ADC-target com-
plexes enter cells via receptor-mediated endocytosis (2). The internalized complexes are initially 
contained within endocytic vesicles that fuse to become early endosomes and eventually mature to 
lysosomes (3). The ADC undergoes catabolism to release the cytotoxic agent, which can then be 
transported from the lumen of lysosomes to the cytosol. The intracellular cytotoxic agent exerts its 
action, generally damaging DNA or inhibiting microtubule polymerization (4), which ultimately 
leads to cell death. Alterations in any of these events may lead to resistance acquisition. Circled 
letters indicate potential (red) or already described in the literature (green) mechanisms of resis-
tance to ADCs. The asterisks indicate mechanisms of resistance verified using patient-derived 
material. (from Sara García-Alonso, Alberto Ocana, and Atanasio Pandiella, Resistance to 
Antibody–Drug Conjugates. Cancer Res; 78 (9) May 1, 2018)

�Defects in Internalization and Lysosomal Function

ADC efficacy requires endocytosis of the antibody into the cell (Fig.  3.3) [6]. 
Endocytosis can occur by different internalization routes which have all been impli-
cated in possible resistance mechanisms [24]. Once delivered, impaired lysosomal 
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function can occur as a result of low proteolytic activity due to elevations in lyso-
somal pH [25].

�Drug Efflux Pumps

A common mechanism of resistance for chemotherapies is the elimination of the 
agent from the cellular cytoplasm by drug efflux pumps. Commonly used cytotoxic 
agents, such as calicheamicin, auristatins, maytansines, taxanes, and doxorubicin 
are well-known substrates of efflux transporters [26–28].

�Signaling Pathways and Apoptosis

Activation of downstream signaling pathways may contribute to the acquisition of 
resistance to ADCs. Activated PI3K/AKT signaling has been associated with gem-
tuzumab ozogamicin (GO) resistance in vitro in primary AML cells and it has been 
shown that the AKT inhibitor MK-2206 significantly sensitized resistant cells to 
GO or free calicheamicin [29]. A role for the pro-apoptotic proteins BAX and BAK 
in the regulation of GO sensitivity in AML has also been described previously as 
well as the overexpression of the anti-apoptotic proteins BCL-2 and BCL-X [30].

�Mechanisms of Resistance to ADC in Lymphoma

In the pivotal phase 2 trial of Bv in adults with relapsed and refractory ALCL, the 
overall response rate (RR) was 86% and, of those, 57% obtained a CR [8]. However, 
despite ongoing therapy, all of the patients who did not achieve a CR eventually 
developed progressive disease. Understanding the mechanisms for those who had 
no response or loss of response is currently a focus on intense research.

�Loss of Cell Surface Antigen

In vitro data using ALCL-derived cell lines selected for resistance to Bv has demon-
strated that a mechanism for the evolution of resistance is the downregulation of 
CD30 expression [31]. This mechanism of ADC resistance has been suggested in 
case reports of individuals treated with Bv for CD30 positive lymphomas who had 
initially responsive disease and were found to have had loss of CD30 expression on 
pathologic samples at the time of disease progression [32–34].
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�Drug Efflux Pumps

In HL cell lines resistant to Bv, increased MDR1 drug exporter expression have 
been identified as possible mechanism of drug resistance [35]. Additionally, in a 
mouse xenograft model of Bv resistant cell lines with MDR1 upregulation, resis-
tance was overcome by the addition of the MDR1 inhibitor cyclosporine [31]. 
MDR1 activity has been demonstrated in vitro to be associated with IO resistance in 
NHL and cell lines [28]. Similarly in NHL derived cells lines resistant to pinatu-
zumab vedotin and polatuzumab vedotin, MDR1 expression was identified as being 
the major driver of drug resistance. In this model, resistance was able to be over-
come by replacing the MMAE moiety with an anthracycline derivative, NMS249, 
in the ADC complex leading the authors to hypothesize that the return of drug sen-
sitivity was based on NMS249 being a poor substrate for MDR1.

�Changes in Apoptotic Regulation

BCL-XL is a member of the BCL-2 family and is a mitochondrial transmembrane 
anti-apoptotic protein. It is associated with chemotherapy resistance and poor prog-
nosis in adults with follicular lymphoma [36]. In vitro studies of an anti-CD79b-vc-
MMAE ADC demonstrated that the expression level of BCL-XL was associated 
with less sensitivity to the drug [37]. In a subsequent xenograft model, the authors 
were able to demonstrate that the BCL-2 inhibitor ABT-263 (known currently as 
navitoclax) was able to restore tumor responsiveness to treatment with 
anti–CD79b-vc-MMAE.

�Strategies for ADC Optimization

Given the rational design of ADCs, there is the ability to modify each of the compo-
nents to develop improved agents that can overcome resistance. Low levels of anti-
gen on tumor cells can be overcome by designing ADCs that have a significant 
bystander effect or by utilizing bispecific mAbs to recruit additional cytolytic 
immune cells [6]. Drug efflux pumps can be avoided by utilizing agents that are 
poor substrates for MDR1 or modifying the linker used for delivery [6]. Effective 
linker designs using hydrophobic compounds with homogenous drug-antibody con-
jugation were found to have enhanced potency [2]. Drug-to-antibody ratios also 
become very important in determining ADC efficacy. Drug-to-antibody ratio is 
defined as the number of drug molecules per mAb. This determines the dose needed 
to produce the desired efficacy. There is a limited number of drug molecules that 
can be efficiently delivered to the target site which significantly contributes to the 
pharmacokinetics of the ADC. If fewer drug molecules are conjugated per mAb, the 

J. Hochberg and S. Alexander



67

ADC system will not be effective clinically. However, too many drug molecules per 
mAb will make the ADC unstable, toxic and may lead to aggregation and increased 
immunogenic reactions [2, 38]. Most ADCs in current clinical development utilize 
conjugation to either lysine or cysteine residues of the antibody, which has led to an 
average drug-to-antibody ratio in the range of 3.5–4.0. This ratio was initially 
thought to minimize the amount of non-conjugated antibody and avoid too high of 
a ratio which can cause issues with manufacturing and stability [3]. Newer methods 
of ADC production have been developed for site-specific conjugation, which can 
enable lower drug-to-antibody ratios while avoiding excessive modification of the 
antibody. This approach is especially useful for highly potent or hydrophobic drugs, 
for which drug-to-antibody ratios greater than 2 are undesirable [3]. Likely, the best 
strategy for overcoming ADC resistance will be to combine with other cytotoxic 
and immune therapies such as multidrug chemotherapy regimens or with check-
point blockade [39].

�Conclusion

Drug resistance, either inherent or acquired, remains an obstacle to efficacy in 
oncology treatment. The need to develop improved treatment paradigms which uti-
lize the power of the immune system with the potential to minimize short and long 
term side effects of therapy make ADCs attractive novel agents. However, many of 
the same resistance concerns are emerging and novel mechanisms of ADC resis-
tance are being described with increased use. Further identification and character-
ization of these mechanisms of resistance will lead to more optimal ADC design 
with improved efficacy for all.
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Chapter 4
Resistance to Proteasome Inhibitor 
Therapy in Non-Hodgkin Lymphoma

Rodney R. Miles and Paul J. Galardy

Abstract  The proteasome is a cytosolic proteolytic system that not only degrades 
damaged proteins but also has a critical role in cellular function through highly-
regulated, targeted degradation of proteins. Inhibition of the proteasome system has 
been shown to have therapeutic potential in certain hematological malignancies. In 
this chapter, we will provide an overview of the ubiquitin proteasome system, focus-
ing our discussion in the mechanisms of action and resistance to small molecule 
proteasome inhibitors currently approved or in development for therapeutic use in 
cancer.

Keywords  Proteasome inhibitors · Non-Hodgkin lymphoma · Ubiquitin-
activating enzymes · Ubiquitin-conjugating enzymes · Bortezomib
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CHOP	 Cyclophosphamide, Doxorubicin, Vincristine, Prednisone
COG	 Children’s Oncology Group
CNS	 Central Nervous System
CR	 Complete Response
DLBCL	 Diffuse Large B-Cell Lymphoma
DUB	 Deubiquitinating Enzymes
E1	 Ubiquitin-Activating Enzyme
E2	 Ubiquitin-Conjugating Enzyme
E3	 Ubiquitin-Protein Ligases
ER	 Endoplasmic Reticulum
FDA	 Food and Drug Administration
GCB	 Germinal Center B-Cell Type
HL	 Hodgkin Lymphoma
IC50	 Half Maximum Inhibitory Concentration
IHC	 Immunohistochemical
LL	 Lymphoblastic Lymphoma
MCL	 Mantle Cell Lymphoma
MHC	 Major Histocompatibility Complex
MM	 Multiple Myeloma
NHL	 Non-Hodgkin Lymphoma
OS	 Overall Survival
ORR	 Overall Response Rate
PFS	 Progression-Free Survival
PMBCL	 Primary Mediastinal large B-Cell Lymphoma
R-CHOP	 Rituximab, Cyclophosphamide, Doxorubicin, Vincristine, Prednisone
R/R	 Relapsed/Refractory
VR-CAP	 Bortezomib, Rituximab, Cyclophosphamide, Doxorubicin, and 

Prednisone

�Introduction

Since the early 2000’s, proteasome inhibition has taken center stage for the therapy 
of the plasma cell cancer multiple myeloma (MM). Although efficacy has not been 
as robust in other cancers, proteasome inhibitors have found utility in hematologic 
cancers, and recent clinical trials through the Children’s Oncology Group (COG) 
have included bortezomib – the first in class proteasome inhibitor – in the initial 
therapy for patients with acute myeloid leukemia (AML) and T-cell acute lympho-
blastic leukemia (ALL)/lymphoma. While ongoing work continues to push the 
boundaries of where bortezomib and newer next-generation proteasome inhibitors 
fit into the therapy for these diseases, there has been tremendous insight into the 
mechanisms by which cancers may evade these novel therapeutics. Here we will 
provide an overview of the ubiquitin proteasome system, the small molecule inhibi-
tors of the proteasome that are approved and in development, and delve into the 
mechanisms of resistance with insight into potential avenues to preserve efficacy in 
non-Hodgkin lymphoma (NHL).
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�The Ubiquitin Proteasome System

The proteasome is the major cytosolic proteolytic system in eukaryotic cells. 
Comprised of a large multi-subunit complex, the proteasome recognizes and unfolds 
proteins marked for degradation, threads the polypeptide into the proteolytic cham-
ber, and releases peptide fragments following proteolysis (Fig. 4.1) [1]. These pep-
tides may be further degraded to recycle amino acids, or they may be incorporated 
into major histocompatibility complex proteins and trafficked to the cell surface for 
surveillance by T-lymphocytes [2]. While often envisioned as the garbage basket of 

Fig. 4.1  The 26S proteasome is composed of the 20s core particle with a 19S regulatory particle 
at each end. The core 20S proteasome particle is comprised of a series of four stacked rings with 
seven subunits each that include the three catalytic subunits β1, β2, and β5. The enzymatic ubiqui-
tination cascade involves an ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzymes 
(E2s), and ubiquitin-protein ligases (E3s) for specific protein substrate ubiquitination. Once ubiq-
uitinated, the protein is degraded by the proteasome or possibly targeted by deubiquitinating 
enzymes (DUBs) that remove ubiquitin
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the cell that degrades proteins that have become damaged or otherwise have reached 
the end of their usefulness, the targeted degradation of many proteins is essential for 
events including receptor tyrosine kinase signaling and signal transduction from 
these receptors to the nucleus [3], cell cycle transitions [4], DNA damage repair [5], 
gene transcription [6], and others [7]. As such, activity of the proteasome is regu-
lated at multiple levels, and inhibition of its activity has a broad array of cellular 
effects.

�Ubiquitination

A major mechanism that regulates the activity of the proteasome is the selective 
marking of proteins with the modifier ubiquitin. Itself a 76 amino acid protein, the 
addition of ubiquitin to proteins is regulated by a large family of enzymes that attach 
or remove ubiquitin, often in a substrate and signal-specific manner [7]. The attach-
ment of a single ubiquitin molecule, known as mono-ubiquitination, is affected by 
an enzymatic cascade that involves an ubiquitin-activating enzyme (E1) that expends 
ATP to install an energetic thioester on the C-terminus of ubiquitin. This enables its 
transfer to one of dozens of ubiquitin-conjugating enzymes (E2s) that work together 
with one of hundreds of ubiquitin-protein ligases (E3s) that bind to specific protein 
substrates to either directly transfer ubiquitin to the target (HECT-class E3s) or to 
simply act as a scaffold that brings the ubiquitin-loaded E2 in proximity with the 
targeted substrate [8]. In nearly all cases, the ubiquitin is attached to the ε-amino 
group on lysine side chains of the substrate [8]. Once a single ubiquitin has been 
attached, the process may be repeated with subsequent cycles of ubiquitination onto 
one of six potential lysine side chains on the initial ubiquitin molecule. Most protea-
some substrates are marked by the presence of poly-ubiquitin chains comprised of 
at least four ubiquitin molecules linked sequentially through lysine 48 on each ubiq-
uitin moiety [9]. Degradation of chains linked through lysine 11 generated by the 
anaphase promoting complex working with the Ube2c and Ube2s E2 enzymes has 
also been described [10]. Once marked by ubiquitination, modified proteins may 
either be recognized and degraded by the proteasome or they may be acted upon by 
one of nearly 100 ubiquitin isopeptidases (deubiquitinating enzymes, DUBs) that 
remove ubiquitin – possibly providing a reprise for the targeted protein [11, 12]. 
Although proteins may be degraded due to damage, the regulated ubiquitination of 
highly cancer relevant substrates such as cell cycle regulators is a highly orches-
trated to occur at specific instances to promote cell cycle progression. As such, the 
ubiquitin proteasome system is less a garbage dump and more like a molecular 
sniper that is poised to eliminate select proteins to allow cellular events to occur in 
a highly ordered fashion.
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�Proteasome Structures

The proteasome exists in several forms, with the most predominant being the 20S 
and 26S proteasome [13]. The core 20S proteasome particle is comprised of a series 
of four stacked rings with seven subunits each that assemble to form a barrel shaped 
structure [14, 15]. Within the core 20S particle are three catalytic subunits β1, β2, 
and β5 that are largely responsible for three catalytic activities of the particle known 
as the chymotrypsin-like, trypsin-like, and post-glutamyl peptide hydrolyzing 
respectively [14, 15]. These catalytic subunits may be replaced by subunits β1i, β2i, 
and β5i the expression of which is induced by interferon-γ to form what is termed 
the immunoproteasome [16]. The catalytic activity of this alternative form is altered 
compared with the constitutive proteasome to favor the production of peptides that 
associate with the major histocompatibility complex (MHC) proteins that are 
involved in presenting antigens to T lymphocytes [16, 17]. Proteasome inhibitors 
have variable inhibitory activities towards the various catalytic subunits, though 
most available compounds target both the constitutive and immunoproteasome sub-
units equally. Selective immunoproteasome inhibitors are under development with 
potential application in hematologic cancers and inflammatory diseases [18].

Each end of this cylindrical particle may be capped with one two protein com-
plexes known as the 11S or 19S regulatory particles [13]. The most common is the 
19S regulatory particle that contains receptors for polyubiquitin and ATPases that 
assist in the unfolding of protein substrates and deubiquitinating enzymes that 
remove ubiquitin from the substrates so that it may be recycled [19, 20]. The com-
bined structure that includes the 20S core particle with the 19S regulatory particle 
at each end is termed the 26S proteasome [5]. There is good evidence also that the 
activity of these deubiquitinating enzymes, counteracted by a proteasome-associated 
ubiquitin-protein ligase known as E4, will affect the rate at which relatively poorly 
ubiquitinated substrates are degraded [20, 21].

�Feedback Induction of Proteasome Assembly

While there has been substantial excitement about the use of proteasome inhibitors 
in lymphoid malignancies due to the success in myeloma, other cancers seem more 
resistant to inhibition of this enzyme complex that is thought to be central to all cel-
lular functions. While myeloma and other lymphoid cells may have enhanced sen-
sitivity due to the increased reliance on protein synthesis and therefore to stress 
induced by the unfolded protein response [1, 22], it has been unclear as to why other 
cancers seem able to bypass the fundamental need for targeted proteolysis. Studies 
that examine resistance mechanisms have noted that some cells increase the synthe-
sis of proteasomes in response to reduced proteasome activity [1, 23]. Through 
elegant work by the Deschais, Hay, and Goldberg laboratories, the mechanism that 
couples proteasome activity with the synthesis of its subunits was elucidated 
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[24–26]. The Nrf1 protein is synthesized as an endoplasmic reticulum (ER) resident 
protein and immediately engages with the ER-associated degradation pathway 
where it is retro-translocated to the cytosol with the assistance of p97. When protea-
somes are abundant and active, the Nrf1 protein is degraded coincidentally with its 
translocation from the ER to the cytosol. When proteasome activity is limiting, the 
Nrf1 protein is processed by an ER membrane protease to release a transcriptionally 
active domain that translocates to the nucleus and promotes the transcription of 
proteasome subunit genes. This mechanism therefore results in increased protea-
some assembly which then suppresses Nrf1 and resumes the baseline state. When 
combined with inhibitors that bind irreversibly to the proteasome, the effect is to 
enhance proteasome activity leading to clinical resistance. While irreversible pro-
teasome inhibitors may be more effective, strategies that also incorporate inhibition 
of the p97 assisted retro-translocation pathway are being explored as ways to cir-
cumvent this resistance mechanism [27, 28].

�Proteasome Inhibitors

�Bortezomib

Proteasome inhibitors were first developed as tools to aid in biochemistry studies 
seeking to understand the role of the proteasome in cell biology (Table 4.1). Because 
of the central role of the proteasome as a critical regulator in all cells and tissues, it 
was initially assumed that systemic inhibition of the proteasome would lead to 
unacceptable toxicity. The potential for interfering with the proteasome as a cancer 
therapy was hinted at in initial studies where blocking ubiquitination – or protea-
some function  – was found to cause cell cycle arrest in vitro. Developed by 
Millennium Pharmaceuticals (Cambridge, MA) and initially referred to as PS-341, 
bortezomib (Velcade®) was the first-in-class proteasome inhibitor and rapidly gen-
erated excitement given its profound inhibitory effects on the NCI-60 cell line panel 
with a low nanomolar half maximum inhibitory concentration (IC50) for the entire 
panel [29]. A dipeptide boronic acid compound, bortezomib shows greater selectiv-
ity towards the proteasome compared with commonly used biochemical tools such 

Table 4.1  Proteasome inhibitors in use or under development

Agent Binding site(s) Mode Route

Bortezomib β1, β5 Reversible IV
Carfilzomib β5 Irreversible IV
Ixazomib β5 Reversible PO
Oprozomiba β5 Irreversible PO
Delanzomib β1, β5 Reversible IV, PO
Marizomib β1, β2, β5 Irreversible IV, PO

ain development
IV, intravenous; PO, oral
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as MG-132 due to the reactivity of boronic acid with threonine residues at the 
proteolytic active sites [29]. With mechanisms that included inhibition of NF-κB 
activation and suppression of IL-6 release, the drug rapidly caught the attention of 
MM investigators where it showed potent activity in both drug sensitive and resis-
tant cell lines [30]. After it showed remarkable clinical activity in heavily pre-treated 
patients with advanced MM [31, 32], bortezomib earned US Food and Drug 
Administration (FDA) approval in 2003 (www.fda.gov) for the treatment of 
relapsed/refractory (R/R) MM and opened a new therapeutic avenue in cancer. The 
use of bortezomib in myeloma progressed rapidly due to its efficacy as an agent 
reserved for R/R disease and by 2007 had been incorporated into the up-front treat-
ment as part of the total-therapy 3 regimen [33]. With this success of course came 
interest in next generation proteasome inhibitors, particularly those that may have 
lower levels of toxicity (neuropathy due to off-target inhibition of HtrA2/Omi) [34], 
improved ease of administration, and the potential to circumvent bortezomib resis-
tance due to differing chemical structures. The efficacy of proteasome inhibitors in 
vitro showed a strong correlation with the degree of proteasome inhibition, though 
concern persisted relating to the extent to which patients would tolerate more 
lengthy and profound inhibition of this central enzymatic complex [1].

Bortezomib binds to and inhibits the β1 and β5 proteasome subunits, though its 
effect on β5 substantially outweighs that towards β1 [35–37]. Though potent and 
selective, the partial inhibition of chymotrypsin-like activity that maps to the β5 
subunit leaves substantial activity remaining that ultimately limits therapeutic effi-
cacy. This is compounded by the relatively rapid clearance of the drug from plasma, 
and the reversible nature by which bortezomib binds to β5 [1, 38]. The net effect of 
these characteristics is that the proteasome is inhibited for a relatively short time in 
target tissues, particularly those that may be sub-optimally perfused such as solid 
tumors that are outstripping blood supply. The search was then launched to develop 
better inhibitors that were more potent with slower recovery rates that may result in 
clinically efficacy in diseases beyond that seen in MM.

�Carlfizomib

With its ancestry based in the biochemical proteasome inhibitor epoximycin, carfil-
zomib is an irreversible inhibitor of the β5 subunit [39, 40]. Developed by Proteolyx 
(a partnership born out of the laboratories of Craig Crews and Ray Deschais), carfil-
zomib initially was designed to address the kinetic problems associated with bort-
ezomib. Unfortunately, the drug is rapidly cleared from the plasma due to distribution 
and rapid metabolism [40]. Furthermore, despite the irreversible nature of its bind-
ing with the proteasome, the recovery time of proteasome activity that was mea-
sured in tissues was only slightly improved over bortezomib [39]. Nonetheless, 
carfilzomib has strong activity in R/R MM patients due its differing structure and 
mechanism, including in cells that are resistant to bortezomib, and has a reduced 
incidence of neuropathy compared with bortezomib. In 2012, the FDA approved the 
use of carfilzomib for R/R MM.
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�Ixazomib and Delanzomib

As with bortezomib, ixazomib and delanzomib are boronic acid-based reversible 
proteasome inhibitors – but with the advantage of oral bioavailability [41, 42]. Both 
compounds primarily bind to and inhibit the β5/chymotrypsin-like activity with 
much lower activity towards the β1/caspase-like activity. Ixazomib is more selective 
compared with bortezomib with little of the off-target inhibition of HtrA2/Omi that 
is thought to produce the neuropathy seen in the latter [41]. With a weekly dosage 
frequency when combined with lenalidomide, and a favorable safety profile, ixazo-
mib has gained rapid approval in Europe and the US for the treatment of MM. The 
development of delanzomib is lagging behind that of ixazomib, and currently there 
are no open trials including this drug registered with Clinicaltrials.gov. This may be 
due to the occurrence of substantial skin toxicity compared with other agents and 
the lack of apparent clinical benefit compared to the other drugs under development 
[38, 43].

�Oprozomib

As ixazomib is an orally administered descendant obortezomib, oprozomib was 
developed as an orally bioavailable tripeptide epoxyketone related to carfilzomib 
[44]. As with carfilzomib, it is a selective inhibitor of the β5/chymotrypsin-like 
activity. Thus far oprozomib has shown encouraging pre-clinical activity in vitro 
and in xenograft studies with MM models [45]. There are currently several early 
phase trials examining the use of oprozomib alone or in combination with other 
conventional or targeted agents in refractory myeloma, hematologic malignancies, 
and solid tumors.

�Marizomib

In a complete departure from the other agents, marizomib is a naturally occurring 
compound derived from the marine actinomycete Salinospora tropica [46]. 
Structurally it also is a departure from prior inhibitors in that it lacks a peptide back-
bone structure having instead a bicyclic ring structure. It also differs in at least 
partially, though irreversibly, inhibiting all three subunits and activities of the pro-
teasome, though as with other agents its most potent activity is towards the β5 con-
tained chymotripsin-like activity [47]. Unique to this agent is the appearance of 
some central nervous system (CNS) toxicities and possible activity towards glioma 
cells. As such, there are three open studies actively investigating its use in patients 
with gliomas  – particularly glioblastoma multiforme [48]. As other proteasome 
inhibitors have little penetration of the blood brain barrier, marizomib may be 
uniquely situated to use in patients with brain tumors or hematologic malignancies 
involving the CNS.
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�Use of Proteasome Inhibitors in Lymphoma

The impact of proteasome inhibitors in MM is in part related to the dependency of 
myeloma cells on protein processing with high level immunoglobulin production 
[49]. However, proteasome inhibition also impacts signaling pathways as described 
earlier. This section will address the emerging therapeutic role of targeting signaling 
pathways via proteasome inhibition in B-cell non-Hodgkin lymphoma (NHL) 
(Table 4.2). Specifically, the discussion will center on mantle cell lymphoma (MCL) 
and subtypes of diffuse large B-cell lymphoma (DLBCL).

�Mantle Cell Lymphoma

Mantle cell lymphoma (MCL) is a lymphoma of mature B-cells that primarily 
affects older adults and accounts for around 4% of lymphomas in the US and 7–9% 
in Europe [50]. Mantle cell lymphoma responds well to therapy initially, but remis-
sions tend to be short with an overall survival (OS) of 3–6 years [51]. The clinical 
course is quite variable, however, with some patients showing highly aggressive 
disease and others an indolent course with long-term survival [51]. Standard therapy 
for MCL patients has often included cyclophosphamide, doxorubicin, vincristine, 
and prednisone (CHOP), with more recently the inclusion of the anti-CD20 mono-
clonal antibody rituximab (R-CHOP).

Table 4.2  Representative clinical trials using bortezomib in B-cell non-Hodgkin lymphoma

Disease Setting Therapy Results Reference

B-NHL R/R BTZ monotherapy ORR 41% 52
Indolent B-NHL. MCL R/R BTZ monotherapy ORR 58% 53

ORR 50% for MCL
Indolent B-NHL. MCL R/R BTZ, R, bendamustine ORR 83% 54

ORR 71% for MCL
MCL Frontline VR-CAP PFS 24.7 months vs. 

14.4 months for 
R-CHOP

55

DLBCL R/R BTZ + DA-EPOCH-B ORR 85% in ABC 
DLBCL

61

ORR 13% in GCB 
DLBCL

Waldenström 
macroglobulinemia

Frontline BTZ, R, 
dexamethasone

ORR 90–95% 64

ABC, activated B-cell; B-NHL, B-cell non-Hodgkin lymphoma; BTZ, bortezomib; CHOP, cyclo-
phosphamide, doxorubicin, vincristine, prednisone; DA-EPOCH, dose-adjusted etoposide, vin-
cristine, doxorubicin, cyclophosphamide, prednisone; GCB, germinal center B-cell; MCL, mantle 
cell lymphoma; ORR, overall response rate; PFS, progression-free survival; R/R, relapsed/refrac-
tory; R, rituximab; VR-CAP, bortezomib, rituximab, cyclophosphamide, doxorubicin, prednisone
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Bortezomib was first used in B-cell NHL in the R/R setting, where monotherapy 
achieved an overall response rate (ORR) of 41% [52, 53]. A similar phase 2 trial of 
R/R B-cell NHL including MCL found an ORR of 58%, with 50% for MCL patients 
[53]. When combined with bendamustine and rituximab, the ORR improved to 71% 
in pretreated patients including those refractory to rituximab [54]. The FDA 
approved bortezomib for the treatment of MCL in patients who have received at 
least one prior therapy in 2006 and for frontline therapy in 2014. A phase 3 study 
showed significant improvement in progression-free survival (PFS) with the replace-
ment of vincristine by bortezomib in R-CHOP (bortezomib, rituximab, cyclophos-
phamide, doxorubicin, and prednisone, VR-CAP) [55]. PFS in the VR-CAP group 
was 24.7 months vs. 14.4 months for R-CHOP (p < 0.001). Overall response rates 
and the durability of response were both superior with VR-CAP.

�Diffuse Large B-Cell Lymphoma

Diffuse large B-cell lymphoma (DLBCL) is one of the most common types of 
NHL.  Although it is curable for a subset of patients, biologic heterogeneity of 
DLBCL has increasingly been linked to variable responses to therapy and survival. 
In an early such study, two molecular subtypes of DLBCL were identified by gene 
expression profiling: the germinal center B-cell type (GCB) and the activated B-cell 
type (ABC) [56]. Highly expressed genes that defined the GCB subtype were also 
highly expressed in normal germinal center B-cells, while most of the genes that 
defined ABC DLBCL were expressed in activated peripheral blood B-cells. This 
study also demonstrated that the ABC subtype DLBCL patients had worse out-
comes, and identifying targeted therapies to improve outcomes in this subtype has 
been an ongoing objective of multiple studies since that time.

Several studies subsequently demonstrated the activation of and survival depen-
dence on NF-kB pathway activation in ABC DLBCL [57–60]. Because proteasome 
inhibition was known to negatively regulate NF-kB pathway activation, these stud-
ies led to a clinical trial using bortezomib in DLBCL. Bortezomib alone had no 
activity in DLBCL, but when combined with chemotherapy in relapsed DLBCL 
patients, it demonstrated a significantly higher response (83% vs. 13%; P < .001) 
and median OS (10.8 vs 3.4  months; P  =  .003) in ABC compared with GCB 
DLBCL.  Further, 41.5% of ABC DLBCL patients achieved complete remission 
(CR) compared to only 6.5% of GCB DLBCL. These results suggested that bort-
ezomib enhances the activity of chemotherapy in ABC but not GCB DLBCL [61].

The finding that proteasome inhibitor therapy is subtype-dependent in DLBCL 
has important implications for the diagnostic approach to this lymphoma. The 2017 
WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues recom-
mends that GCB/ABC subtyping be a part of routine initial diagnosis in DLBCL 
[62]. However, subtyping by gene expression profiling is still not widely available 
in clinical laboratories, and the upfront therapy remains the same for both subtypes. 
Although immunohistochemical (IHC) staining can be used as a surrogate assay to 
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attempt to subclassify DLBCL, the approach is less specific in well-controlled 
studies let alone among varied pathology practices utilizing different laboratories 
and IHC. For now, further clinical studies are necessary to better define the thera-
peutic role for proteasome inhibition in DLBCL. If subtyping of DLBCL to guide 
therapy becomes the standard of care, better assays will need to be deployed in 
clinical laboratories.

�Other Non-Hodgkin Lymphomas

Data supporting the use of proteasome inhibitors in other subtypes of B-cell NHL 
are quite limited. Primary mediastinal large B-cell lymphoma (PMBCL) is a much 
less common subtype of DLBCL that is distinct from GCB and ABC types by gene 
expression profiling [63]. This subtype shows more similarities to classical Hodgkin 
lymphoma (HL) and is characterized in part by NF-kB pathway activation [63]. 
This suggests a potential role for proteasome inhibitors in PMBCL therapy, but this 
has not yet been demonstrated in clinical trials. Proteasome inhibitors are also used 
to treat Waldenström macroglobulinemia, where bortezomib combined with dexa-
methasone and rituximab leads to overall response rates of 90–95%, although CRs 
are uncommon [64].

The potential role of bortezomib in T-lymphoblastic lymphoma (LL) therapy is 
currently under investigation by the COG. Due to the similarities between LL and 
ALL, most pediatric patients with LL are treated on regimens developed to treat 
ALL. The distinction between lymphoma and leukemia in lymphoblastic disease is 
based on the somewhat arbitrary designation of leukemia for those cases with ≥25% 
bone marrow blasts [62]. T-ALL blasts often have considerable activation of the 
NF-kB pathway, frequently as a consequence of activated Notch signaling [65]. 
Although similar data are lacking for T-LL, these patients were enrolled on an arm 
of this study and randomized to standard ALL therapy or standard ALL therapy plus 
bortezomib. The results of this trial are not yet available, but a positive signal may 
establish a role for bortezomib in T-LL therapy.

�Therapy Resistance

Studies of bortezomib resistance in lymphoma cell lines have implicated apoptotic 
pathways and the unfolded protein response. Roue et al. demonstrated a high cor-
relation between proteasome inhibitor resistance and up-regulation of the pro-
survival chaperone BiP/Grp78 in MCL cells [66]. The stabilization of BiP/Grp78 
was mediated by an increase in activity of heat shock protein of 90 kDa (Hsp90). 
With targeted inhibition of this pathway, bortezomib cytotoxicity was restored in 
MCL cell lines. Mechanisms of lymphoma resistance to bortezomib were explored 
by comparative analyses of two DLBCL cell lines, SUDHL-4 and SUDHL-6, which 
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are resistant and sensitive to bortezomib, respectively [67]. This study demonstrated 
bortezomib-induced apoptosis in sensitive SUDHL-6 cells, but not in resistant 
SUDHL-4 cells. Inhibition of the proteasome was similar in the two cell lines. Gene 
expression profiling was performed to compare up- and down-regulated transcripts 
in response to bortezomib in SUDHL-4 and SUDHL-6 cells. The resistant SUDHL-4 
cells showed induction of heat shock proteins and other chaperone proteins, which 
have been associated with bortezomib resistance. In the sensitive SUDHL-6 cell 
line, bortezomib induced ATF3 and ATF4, which induced apoptosis and the unfolded 
protein response, respectively [67]. Similar mechanisms of resistance have been 
described in MM, where bortezomib induces expression of ATF4 that in turn drives 
increased expression of the BCL2 family anti-apoptotic protein MCL-1 leading to 
increased cell survival [68].

�Conclusions

The proteasome is a cytosolic proteolytic system that not only degrades damaged 
proteins but also has a critical role in cellular function through highly-regulated, 
targeted degradation of proteins. Drugs that specifically inhibit the proteasome first 
showed clinical utility in myeloma, but the therapeutic realm for these compounds 
has expanded to include NHL. As with many targeted inhibitors in cancer therapy, 
resistance to proteasome inhibitor therapy often emerges. Ongoing and future stud-
ies seek to optimize combination therapies including proteasome inhibitors as well 
as to overcome resistance mechanisms.
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Chapter 5
Resistance to Histone Deacetylase 
Inhibitors in the Treatment of Lymphoma

Allyson Flower and Oussama Abla

Abstract  Outcomes for patients with lymphoma have improved through the use of 
chemo/immunotherapy. However, therapy for patients with advanced disease and 
relapsed/refractory disease remains inadequate. In addition, off target side effects 
result in significant short and long-term toxicity. The use of targeted molecular ther-
apy introduces an opportunity for improvement in efficacy and reduction in undesir-
able off target effects. Histone Deacetylase (HDAC) inhibitors are a class of targeted 
molecular therapies that have been extensively evaluated for the treatment of refrac-
tory malignancies including subtypes of lymphoma. However, critical resistance 
mechanisms are well described. Optimal efficacy of HDAC inhibitors in the treat-
ment of lymphoma is dependent upon successful strategies to overcome drug 
resistance.

Keywords  Lymphoma · Histone deacetylase inhibitor · Resistance · Epigenetics

Abbreviations

AITL	 Angioimmunoblastic T-Cell Lymphoma
AML	 Acute Myeloid Leukemia
CHOP	 Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone
CR	 Complete Response
CTCL	 Cutaneous T-Cell Lymphoma
DLBCL	 Diffuse Large B-Cell Lymphoma
ER	 Endoplasmic Reticulum

A. Flower (*) 
Division of Pediatric Hematology/Oncology, New York Medical College, Valhalla, NY, USA
e-mail: Allyson_flower@nymc.edu 

O. Abla 
The Hospital for Sick Children, Department of Pediatrics, University of Toronto,  
Toronto, ON, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24424-8_5&domain=pdf
mailto:Allyson_flower@nymc.edu


88

FDA	 Food and Drug Administration
FL	 Follicular Lymphoma
HAT	 Histone acetyltransferase
HDAC	 Histone Deacetylase
HDACi	 HDAC inhibitors
HL	 Hodgkin Lymphoma
MCL	 Mantle Cell Lymphoma
MM	 Multiple Myeloma
MZL	 Marginal Zone Lymphoma
NAD	 Nicotinamide Adenine Dinucleotide
NHL	 Non-Hodgkin Lymphoma
OR	 Overall Response
ORR	 Overall Response Rate
PCTCL	 Primary Cutaneous T-Cell Lymphoma
PFS	 Progression-Free Survival
PR	 Partial Response
PTCL	 Peripheral T-Cell Lymphoma
r/r	 relapsed/refractory
SLL	 Small Lymphocytic Lymphoma

�Introduction

Survival for patients with lymphoma has improved over time through the use of 
multi-agent chemotherapy and immunotherapy (Fig. 5.1) [1, 2]. However, outcomes 
for patients with advanced disease or relapsed/refractory (r/r) disease remain poor. 
Also, importantly, current therapies for the treatment of lymphoma can lead to 
harmful short and long-term toxicities including cardiac dysfunction, endocrine 
dysfunction and secondary malignancies. Histone deacetylases (HDACs) are a set 
of naturally occurring proteins that contribute to gene expression through epigenetic 
modification. Dysfunctional HDAC activity leads to aberrant gene expression, 
which ultimately results in the generation of malignancy [3–7]. HDAC inhibitors 
(HDACi) are a class of targeted molecular therapies that, in addition to extensive 
alternative mechanisms of action, reverse the activity of dysfunctional HDACs. 
HDACi have been extensively evaluated for the treatment of refractory malignan-
cies including subtypes of lymphoma, leading to United States Food and Drug 
Administration (FDA) approval of vorinostat for the treatment of primary cutaneous 
T-cell lymphoma (PCTCL), romidepsin for PCTCL and peripheral T-cell lymphoma 
(PTCL), and belinostat for PTCL. Panobinostat is approved by the FDA for use in 
combination with bortezomib for the treatment of multiple myeloma (MM), but also 
has activity against PCTLC and other lymphoma subtypes. Chidamide is approved 
by the China FDA for the treatment of r/r PTCL. However, the efficacy of HDACi 
in the treatment of lymphoma is limited by several well-described resistance mecha-
nisms including DNA damage repair, reactive oxygen species redox pathways, drug 
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Fig. 5.1  (a) NHL 5 year lymphoma specific survival by histologic type and age, 2000–2011. United 
States SEER data. Source: National Cancer Institute: SEER 18 [1]; (b) Hodgkin lymphoma survival 
by age, 1973–2014. United States SEER data. Source: National Cancer Institute: SEER 18 [2]
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efflux, cellular signaling, autophagy, endoplasmic stress pathway signaling, 
acquired resistance and target HDAC expression. This chapter will focus on HDACs, 
HDACi, drug resistance mechanisms, and strategies to overcome HDAC resistance 
in the setting of lymphoma.

�Histone Deacetylases

Within the cell nucleus, DNA is wrapped around 4 key histone proteins (H2A, H2B, 
H3, and H4) to form nucleosomes (Fig. 5.2). When compacted, nucleosomes form 
the structure of condensed chromatin. Each histone protein is attached to a lysine 
tail, which extends out from the nucleosome and is accessible for modification. 
DNA within the nucleosome is controlled, in part, by modification of the lysine tail. 
Acetylation is one mechanism by which the lysine tail is modified. This occurs 
through the action of histone acetyltransferases (HAT) and HDACs [8]. HATs add 
acetyl groups to the histone lysine tail. This action neutralizes the lysine tail and 
reduces the attraction of negatively charged DNA. As a result, chromatin forms an 
open structure, and DNA is accessible by transcription factors and RNA poly-
merase. HDACs are enzymes that control acetylation of histones and other essential 

Fig. 5.2  Modification of lysines in histone tails. DNA is wound around four core histone proteins: 
H2A, H2B, H3, and H4. Each of the histones possess lysine-rich tails and accessibility of the DNA 
is controlled by modifications to the tail. Lysines can either be multiply methylated, or acetylated. 
Methylation and deacetylation of lysines both contribute to a more condensed chromatin structure, 
preventing transcription of genes. Demethylation and acetylation promote a more open chromatin 
structure allowing for increased gene transcription [8]
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proteins by catalyzing deacetylation. Hypoacetylation results in condensed chroma-
tin structure and decreased gene transcription [9].

Acetylation is a key epigenetic mechanism by which gene expression is modified 
[10]. HATs and HDACs affect cellular function essential to survival and prolifera-
tion through their regulation of gene expression [9]. Acetylation of proteins is not 
limited to histones. Non-histone proteins p53, c-Myc, BCL-2, BCL-6, E2F, HIF1α, 
hsp90, Ku70, NFκΒ, pRb, and STAT3 are critical to cellular function and are also 
affected by HAT and HDAC regulated acetylation [11–13]. The effects of deregu-
lated acetylation have been implicated in the oncogenesis of some malignancies 
including diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and 
PTCL [3–7].

HDACs are classified as either zinc dependent or nicotinamide adenine dinucleo-
tide (NAD) dependent [14, 15]. HDACs are further grouped into 4 classes based on 
their similarity to yeast HDAC proteins. Tissue specificity of HDACs and distribu-
tion within the intracellular compartment varies. Class I HDACs (1, 2, 3 and 8) are 
ubiquitously expressed in human tissues. Class IIA HDACs (4, 5, 7 and 9) and Class 
IIB HDACs (6 and 10) are differentially expressed in human tissues. Class III 
HDACs are known as sirtuins. Activity of these HDACs is NAD dependent. HDAC 
11 is the only known Class IV HDAC [8]. Class I, IIA, IIB and IV HDACs are zinc 
dependent.

Expression of HDACs in lymphomas is not fully defined. Class I HDACs are 
ubiquitously expressed in lymphoid cell lines and primary lymphoid tumors whereas 
class II HDACs are differentially expressed (Table  5.1) [16]. The expression of 
HDACs in lymphoma subtypes, and among tumor tissue in individual patients is 
essential to the rationale for treatment of lymphoma with HDAC inhibitors. 
However, the specific targets of HDAC inhibitors in the treatment of lymphoma 
have not yet been identified.

Table 5.1  Immunoactivity of HDAC activity in reactive lymph nodes [16]

Cell type HDAC 1 HDAC 2 HDAC 3 HDAC 6 HDAC 10

Germinal center B-cells + + + – +
Mantle zone B-cells + + + – +
Plasma cells + + + + +
T-cells + + + – + strong
Follicular dendritic reticulum cells + weak + strong + – +
Interdigitating reticulum cells + weak + strong + – + weak
Fibroblastic reticulum cells + weak + strong + – +
Macrophages + weak + strong + – +
Sinus histiocytes + + strong + – +
Endothelial cells + + strong + – +
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�Histone Deacetylase Inhibitors

HDACis limit the deacetylation activity of HDACs. This results in unrestricted HAT 
mediated acetylation of histones and promotes gene transcription. In addition to 
histone proteins, HDACis regulate gene expression of non-histone proteins critical 
to cell proliferation and survival by multiple mechanisms.

HDACis induce cell cycle arrest in both healthy and malignant cells [17–20]. 
The cell cycle phase affected by HDAC inhibition is dose dependent. The same cell 
is affected in the G0/G1 phase at low doses or the G2/M phase at higher doses. Cell 
Cycle arrest is mediated by p21 or p15 [21]. In addition, cell cycle arrest is induced 
by HDACi mediated transcriptional repression of genes involved in DNA synthesis 
(CTP synthase, thymidylate synthetase) and reduced expression of cyclins [22]. 
HDAC inhibition upregulates proapoptotic proteins and downregulates anti-
apoptotic proteins in the Bcl-2 family and XIAP [23]. Extrinsic apoptosis is stimu-
lated by HDAC inhibition via increased expression of Fas, TNFα and TRAIL death 
receptors [24].

Other mechanisms by which HDACis induce cell death include inhibition of 
DNA repair, post translational modification of proteins, decreased angiogenesis, 
generation of reactive oxygen species, and promotion of inflammation and immu-
nity [12, 25–27]. HDAC inhibition results in decreased angiogenesis via enhanced 
degradation of HIF1α and decreased production of VEGF [28, 29]. The targeted 
anti-cancer activity of HDAC inhibitors is based on DNA repair mechanisms func-
tioning in healthy tissues, but not in malignant cells.

HDACis are classified by their chemical structure (hydroxamic acid, cyclic pep-
tide, electrophilic ketone, short chain fatty acid, or benzamide) (Fig. 5.3) [30–32]. 
Each HDACi differs in potency, pharmacodynamics and off-target effects. 
Selectivity also varies between HDACis. Vorinostat, panobinostat and balinostat 
inhibit both Class I and Class II HDACs. Mocetinostat and entinostat inhibit Class 
I HDACs only, while romidepsin preferentially inhibits Class II HDACs [33–35].

�Histone Deacetylase Inhibitor Use in Lymphoma

Three HDAC inhibitors are FDA approved for treatment of patients with r/r lym-
phoma in the United States. Ongoing clinical trials will further define their role as 
well as the role of emerging clinical grade HDAC inhibitors.

�Vorinostat (suberoylanilide hydroxamic acid)

Vorinostat belongs to the hydroxamic acid class of HDAC inhibitors. Vorinostat 
inhibits Class I and Class II HDACs. Single agent vorinostat demonstrated a 
response rate of 24–30% in patients with r/r PCTCL, which led to FDA approval in 
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Fig. 5.3  Structure of some of the histone deacetylase inhibitors currently in clinical trials [8]

2006 [36–38]. Safety of administration and activity of vorinostat against Hodgkin 
lymphoma (HL) and small lymphocytic lymphoma (SLL) were demonstrated in a 
small number of patients in a preliminary phase 1 clinical trial [39]. However, the 
objective response rate for a small number of patients with DLBCL was only 5.6% 
in an early phase 2 clinical trial [40].
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Although outcomes for patients with r/r HL treated with single agent vorinostat 
in a phase 2 clinical trial were dismal, an overall response rate (ORR) of 29% was 
demonstrated for patients with r/r indolent non-Hodgkin lymphoma (NHL). Though 
complete or partial response (CR/PR) was demonstrated for patients with FL or 
marginal zone lymphoma (MZL), no patient with mantle cell lymphoma (MCL) 
achieved a response [41]. Single agent vorinostat demonstrated a 49% ORR for 
patients with r/r FL [42]. Vorinostat is administered intravenously or orally. Common 
side effects associated with vorinostat include fatigue, diarrhea and nausea. 
Vorinostat has also been associated with thrombocytopenia, dehydration, and rare 
cases of pulmonary embolism, squamous cell carcinoma, severe anemia and QTc-
interval prolongation [43].

�Romidepsin (depsipeptide)

Romidepsin is a prodrug that is reduced to an active form intracellularly and has 
demonstrated activity against Class I HDACs and HDAC 6 [44, 45]. It has been 
shown to induce malignant cell differentiation, cell cycle arrest and apoptosis, 
inhibit angiogenesis and deplete hsp90 dependent proteins [46]. Romidepsin was 
approved by the FDA in 2009 for the treatment of r/r PCTCL and in 2011 for the 
treatment of r/r PTCL after demonstrating ORRs of 34–38% in affected patients 
[47–52]. Durable response of up to 48 months was demonstrated for patients with 
r/r PTCL after treatment with single agent romidepsin [53]. Patients with angioim-
munoblastic T-cell lymphoma (AITL) experienced a 33% overall response rate after 
treatment with single agent romidepsin [54]. Romidepsin is administered intrave-
nously. Adverse events associated with romidepsin include nausea, fatigue, infec-
tion, vomiting, anorexia, anemia and neutropenia. It has also been associated with 
hypomagnesemia and hypokalemia, which can lead to arrhythmia including pro-
longed QT.

�Panobinostat

Panobinostat inhibits Class I, II and IV HDACs. It has been shown to mediate acety-
lation of H3 and H4, increase p21 levels, disrupt the chaperone function of hsp90, 
induce cell cycle arrest, and induce apoptosis [55]. Panobinostat was FDA approved 
for use in combination with bortezoimb for the treatment of MM in 2015. 
Panobinostat also has activity against PCTCL, HL and DLBCL in clinical trials. 
Single agent panobinostat therapy resulted in disease response in a small number of 
patients with PCTCL [56]. An objective response rate of 27% was demonstrated for 
patients with r/r HL treated with panobinostat [57–59]. Patients with r/r DLBCL 
achieved response rates of 28% after treatment with panobinostat [60]. Panobinostat 
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is administered orally. The most common adverse events associated with panobino-
stat are nausea, vomiting, diarrhea and fatigue. Common adverse grade 3 and 4 
adverse events associated with panobinostat are thrombocytopenia, anemia and 
neutropenia.

�Belinostat

Belinostat is a pan-HDACi. It has been shown to inhibit cell proliferation, induce 
apoptosis, inhibit angiogenesis, and induce differentiation of malignant cells [61, 
62]. Belinostat was FDA approved for the treatment of r/r PTCL in 2014. The ORR 
for patients with r/r PTCL treated with single agent belinostat was 26% [63]. 
Belinostat is available for intravenous or oral administration. Adverse events associ-
ated with belinostat include nausea, vomiting, fatigue, pyrexia, and anemia.

�Mocetinostat

Mocetinostat inhibits HDAC 1, 2, 3, and 11 [64]. It has been shown to inhibit the 
expression of thymus and activation-regulated chemokine/chemokine ligand 17 [65]. 
Single agent mocetinostat demonstrated an ORR of 18% and 11% for the treatment 
of patients with r/r DLBCL and FL, respectively [66]. Mocetinostat has also induced 
disease stability in patients with r/r HL [67]. Mocetinostat is administered in oral 
form. Common adverse events associated with mocetinostat include fatigue, anemia, 
nausea, anorexia, hyponatremia, neutropenia, and thrombocytopenia.

�Entinostat

Entinostat inhibits HDAC 1 and 3. Entinostat inhibits cell proliferation by down-
regulation of XIAP and induction of apoptosis [68]. Etinostat has been shown to 
increase IL2, p40–70, IP10, and RANTES and to decrease I13 and IL4. As a result, 
TH1 cytokines are increased. Entinostat also induces expression of tumor associ-
ated antigens SSX2 and MAGE-A [68]. Entinostat has activity against HL.  The 
ORR for patients with r/r HL treated with single agent entinostat was 11% [69]. 
Entinostat is administered orally. The most common side effects associated with 
entinostat are thrombocytopenia, anemia, neutropenia, leukopenia, hypokalemia 
and hypophosphatemia.
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�HDACi Inhibitor Resistance Mechanisms

�DNA Damage and Repair Mechanisms

Through hyperacetylation of histones, HDACis alter DNA stability and increase 
exposure to cytotoxic agents, radiation and reactive oxidative species. In addition, 
HDACis decrease expression of genes encoding homologous recombination DNA 
repair proteins (RAD51, RAD52, BRCA1/2, CtIP, Bloom Syndrome Gene, 
Nijmegan Breakage Syndrome1, XRCC2) and non-homologous recombination 
end-joining DNA repair proteins (Ku70, Ku86, DNA-PKCs, XRCC4, DNA ligase 4) 
[70–78]. The mechanism by which normal cells escape HDACi induced DNA dam-
age has been demonstrated through the use of vorinostat [79]. Vorinostat induces 
accumulation of DNA DSBs in both normal and malignant cells. In malignant cells, 
vorinostat decreases levels of DNA repair proteins resulting in accumulation of 
DNA damage leading to cell death. Checkpoint kinase 1 (Chk1) has been proposed 
as the key factor for resistance to HDACis in normal cells [80]. Exposure of vorino-
stat, romidepsin or entinostat in combination with Chk1 inhibitor results accumula-
tion of DNA DSBs and induces cell death in normal cells. HDACis induce cell cycle 
arrest in G1 and G2/M and cell depletion in S phase [81–84]. The effect of HDAC 
inhibition on mitotic chromosome breakage occurs in malignant but not in normal 
cells and persists after withdrawal of exposure [79, 80, 85].

�Reactive Oxidative Species and Redox Pathways

Accumulation of reactive oxidative species induced by HDAC inhibition results in 
cell death. Thioredoxin is a thio reductase, which protects healthy cells from oxida-
tive damage caused by reactive oxidative species. There is a negative correlation 
between sensitivity to HDACis and thioredoxin level [39]. However, vorinostat 
selectively increases thioredoxin levels in healthy cells. This mechanism plays a 
role in healthy cell resistance to damage caused by HDACis. In contrast, exposure 
of vorinostat to transformed cells induces upregulation of thioredoxin binding pro-
tein, a negative regulator of thioredoxin. As a result, reactive oxidative species accu-
mulate and ultimately cause cell death. Increased expression of antioxidant genes 
including thioredoxin, super oxide dismutase 2, and glutathione reductase have 
been associated with HDACi resistance in acute myeloid leukemia (AML) cells [86, 
87]. Lethality of leukemia cells after exposure to HDAC inhibition was significantly 
diminished by reactive oxidative species scavengers [88, 89]. This evidence sug-
gests that modulation of reactive oxidative species after exposure to HDAC inhibi-
tion contributes to resistance in malignant cells.
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�Drug Efflux Mechanisms

P-glycoprotein-mediated transport of drugs across the cell membrane is a known 
entity contributing to multidrug resistance in cancer therapy. Exposure to HDAC 
inhibition including valproic acid, apicidin, romidepsin and sodium butyrate has 
been associated with increased levels of MDR1 mRNA and p-glycoprotein expres-
sion in cancer cells [90–94]. Romidepsin has been identified as a substrate of 
p-glycoprotein and romidepsin resistant cell lines express increased levels of 
p-gycoprotein [95, 96]. The increase in p-glycoprotein level is correlated with expo-
sure to romidepsin and is reversible upon withdrawal of exposure [94]. As a result, 
HDAC activity is not affected [93]. Verapamil mediated inhibition of p-glycoprotein 
or MDR1 inhibition results in reversal of resistance of romidepsin and apicidin [97]. 
MDR1 expression is increased in circulating peripheral blood mononuclear cells 
from patients with romidepsin resistant malignancies [98]. While romidepsin 
induces cell death in non-p-glycoprotein expressing cells, vorinostat and oxamflatin 
are active in both non-p-glycoprotein expressing and p-glycoprotein expressing 
cells [99].

�Cell Signaling-Related Mechanisms

Malignant cells may overcome HDAC-mediated cytotoxicity through the counter-
active mechanism of specific cell signaling pathways. The BCL-2 protein family 
consists of both pro-apoptotic and anti-apoptotic groups; antiapoptotic BCL-2 pro-
teins, proapoptotic BAX-like proteins, and proapoptotic BH3-only proteins [100]. 
The antiapoptotic activity of BCL-2 and BCL-XL limits HDACi-induced cell death. 
Cytotoxicity of transformed cells treated with vorinostat, sodium butyrate, valproic 
acid and entinostat is reduced in the presence of BCL-2 or BCL-XL [101–104]. The 
Eμ-myc mouse model provides a mechanism for evaluation of B-cell lymphoma 
with defined alterations in apoptotic pathways. Using this model, tumor cell apop-
tosis was correlated with therapeutic efficacy after exposure to vorinostat. This 
activity was found to be dependent upon the intrinsic apoptotic pathway, specifi-
cally proapoptotic BH3-only proteins Bid and Bim [100]. In contrast, overexpres-
sion of pro-apoptotic protein BCL-2 was associated with T-cell lymphoma resistance 
to vorinostat, romidepsin, and panobinostat [14, 105]. The apoptotic activity of 
panobinostat, romidepsin and m-carboxycinnamic acid bis-hydroxamide can be 
blocked by suppression of pro-apoptotic proteins BMV, BAX, or MCL-1 
[105–107].

Activation of nuclear factor kB is a contributor to drug resistance in solid tumors 
and hematologic malignancies [108]. Apoptosis is indirectly downregulated by 
nuclear factor kB mediated transcription of anti-apoptotic genes including TNF 
receptor associated factors, Mn-SOD, and BCL-XL [109]. Vorinostat, trichostatin 
A, entinostat and pabinostat activate nuclear factor kB in malignant cells. Through 
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this mechanism, the cytotoxicity of HDACis is reduced [110–113]. Exposure to 
HDAC inhibition in addition to nuclear factor kB inhibition eliminates nuclear fac-
tor kB-mediated resistance [110, 111, 113, 114].

The JAK/STAT pathway promotes oncogenesis through interaction with anti-
apoptotic target genes and plays a key role in drug resistance in solid tumors and 
hematologic malignancies [115]. HDACis downregulate transcription of STAT tar-
get genes [116]. In cutaneous T-cell lymphoma (CTCL) cell lines and peripheral 
blood lymphocytes, HDACis reduce expression of STAT protein expression [117]. 
However, overexpression of antiapoptotic STAT proteins is associated with resis-
tance to HDACis [118]. Increased expression of STAT proteins has also been asso-
ciated with therapy resistance in lymphoma cell lines. In addition, nuclear 
accumulation of STAT1 and pSTAT3 was associated with lack of clinical response 
in CTCL patients [119]. Vorinostat in combination with JAK2 inhibitor demon-
strated synergy in antiproliferative effect and downregulation of antiapoptotic genes 
[119]. This synergistic effect was also demonstrated through the use of panobinostat 
in combination with JAK inhibitor [120].

Retinoids modulate growth, differentiation, and apoptosis of cancer cells. 
Induction of TRAIL-mediated death signaling contributes to the therapeutic value 
of retinoids [121]. Inhibition of retinoic acid signaling is mediated by retinoic acid 
receptor α and preferentially expressed antigen of melanoma, and contributes to 
HDAC resistance [122]. Elimination of retinoic acid receptor α and preferentially 
expressed antigen of melanoma promotes HDAC inhibitor induced cell death [123].

�Autophagy

Autophagy is the process by which cells maintain homeostasis and is mediated by 
lysosome dependent degradation of cellular components. Autophagosomes engulf 
and deliver non-essential cellular components to the lysosome for processing [124]. 
Accumulation of autophagosomes has been associated with resistance to HDAC 
inhibition and autophagy genes are upregulated by HDACis [125]. Chloroquine or 
bafilomycin interfere with autophagy and increase cell death in HDAC inhibitor 
resistant cells [125, 126].

�Endoplasmic Reticulum Stress-Related Signaling

The endoplasmic reticulum (ER) is a cellular organelle that maintains homeostasis 
through control of protein synthesis, folding, delivery, and degradation [127]. 
Excessive unfolded proteins within the endoplasmic reticulum induce stress and 
promote the unfolded protein response. The unfolded protein response triggers glu-
cose regulated protein 78 to bind to unfolded proteins and chaperone them to the 
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proteasome for degradation [128]. HDAC inhibitors induce overexpression of 
GRP78, which leads to HDAC inhibitor resistance [129–132].

Acetylation of GRP78 by panobinostat or vorinostat leads to cellular apoptosis 
[133, 134]. This proapoptotic signaling is mediated by protein kinase RNA-like EF 
kinase (PERK), which activates CAAT/enahancer binding protein homologous pro-
tein (CHOP) [127, 133]. Depletion of PERK or inhibition of CHOP lead to HDAC 
inhibitor resistance [135].

�HDAC Expression in Lymphoma

The pattern of HDAC enzyme expression in lymphoma subtypes in incompletely 
understood. Amongst lymphoma tissue samples, expressions of class I and class II 
HDACs is variable (Table 5.1). Absent or low expression of HDAC targets in lym-
phoma is critical to the efficacy of selected HDACi therapy and is a mechanism of 
HDACi resistance. Class I HDACs are expressed in lymphoma cell lines and pri-
mary tumors including the non-malignant HL cellular microenvironment. The most 
variably expressed HDAC in lymphoma is HDAC 6, which is undetected or only 
weakly expressed in 64% of lymphoid cell lines and 93% of primary lymphoma 
tissue samples. Cells expressing HDAC 6 are more sensitive to Class I HDACi 
MGCD0103 [16]. Absent expression of HDAC 3 has been associated with vorino-
stat resistance and panobinostat cross resistance in CTCL T-cell leukemia/lym-
phoma [136].

�Acquired Resistance to HDAC Inhibitors

Exposure to therapeutic agents can lead to drug resistance in cancer cells. Due to 
their heterogeneity, malignant cells have the capacity to induce mutations to pro-
mote cell survival and support resistant stem cell-like cells lines [137, 138]. Cancer 
cells with acquired resistance to HDACis exhibit decreased acetylation of histones 
and loss of G2 checkpoint inhibition [139]. Acquired resistance to HDACis can 
cause cross resistance. Resistance to vorinostat causes cross resistance to hydroxamic 
acid and the aliphatic acid-based HDACis [139]. Cancer cells with resistance to 
dacinostat show cross resistance not only to other HDACis vorinostat and panobi-
nostat, but also to other chemotherapeutic agents. Hsp90 inhibitor reverses acquired 
resistance to dacinostat [140]. Belinostat resistant T-cell lymphoma cell lines show 
cross resistance with vorinostat, romidepsin, panobinostat, and ricolinostat [141].

Acquired resistance to HDAC inhibitors in malignant cells can be reversed. 
Reversible drug resistance is mediated by epigenetic modification. Restoration of 
HDAC3 expression by hypomethylation in cutaneous T-cell lymphoma and T-cell 
leukemia/lymphoma cell lines results in sensitization of cells previously proven to 
be vorinostat resistant [142].
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�Strategies to Overcome HDAC Inhibitor Resistance 
in Lymphoma Therapy

�Chemotherapy Sensitization

Open chromatin structure after HDACi therapy increases DNA exposure to chemo-
therapeutic agents. The use of panobinostat in combination with ifosfamide, carbo-
platin and etoposide resulted in significantly improved CR rates for patients with r/r 
HL in comparison to ifosfamide, carboplatin and etoposide alone. However, the 
addition of panobinostat resulted in significantly increased incidence of neutropenia 
and thrombocytopenia [143].

Belinostat, cyclophosphamide, doxorubicin, vincristine and prednisone each tar-
get cell cycle arrest with different mechanisms of action, and their antineoplastic 
effects are potentially additive. Belinostat used in combination with cyclophospha-
mide, doxorubicin, vincristine, and prednisone (CHOP) resulted in an overall 
response rate of 89% for patients with peripheral T-cell lymphoma. The most fre-
quent grade 3 or 4 adverse events included neutropenia and anemia [144].

Chidamide monotherapy for patients with r/r PTCL resulted in an ORR of 39%. 
However, when used in combination with CHOP-like, cisplatin based, or other che-
motherapy regimens, overall response (OR) and progression-free survival (PFS) 
were significantly improved. Grade 3 and 4 adverse events included neutropenia 
and thrombocytopenia [145, 146].

�Epigenetic Therapy

HDACs are one of many contributors to modification of DNA expression. In addi-
tion to acetylation, other epigenetic alternations including methylation, phosphory-
lation, ubiquitylation, and sumolyation influence gene expression without changing 
the DNA sequence. Alternative epigenetic factors also influence oncogenesis, and 
are potential targets for combination therapy.

The mTOR pathway influences cellular metabolism, growth and metabolism. 
Sirolimus is an mTOR inhibitor which has synergistic activity when used in combi-
nation with vorinostat. Patients with r/r HL experienced a response rate of 44% after 
treatment with sirolimus plus vorinostat with limited toxicity. The mTOR inhibitor 
everolimus used in combination with panobinostat resulted in objective responses in 
patients with indolent lymphoma, T-cell lymphoma, MCL and an ORR of 43% for 
patients with r/r HL. The toxicity profile included thrombocytopenia, neutropenia, 
anemia, infection, fatigue and dyspnea [147].

Bortezomib is a proteasome inhibitor. When used in combination with vorino-
stat, patients with r/r MCL achieved and ORR of 31.8%. However, limited activity 
was seen using these agents for the treatment of r/r DLBCL [148]. Patients with r/r 
PTCL achieved an ORR of 43% after treatment with combination borezominb plus 
panobinostat [149].
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�Immunotherapy

Rituximab is an anti-CD20 monoclonal antibody. Rituximab used in combination 
with panobinostat resulted in ORR of only 11% for patients with r/r DLBCL. The 
toxicity profile was similar to that seen with single agent HDAC inhibition and 
included thrombocytopenia, fatigue, anemia, diarrhea, nausea, lymphopenia, 
anorexia and hypophosphatemia [150].

Belinostat-resistant T-cell lymphoma cell lines exhibit decreased JAK/STAT 
activity and increased levels of reovirus receptor junctional adhesion molecule-A 
(JAM-A). After exposure to reovirus formulation, belinostat resistant T-cell lym-
phoma cell lines are sensitized both in vivo and in vitro. Enhanced sensitivity is 
associated with increased viral load and is mediated through endoplasmic reticulum 
stress mediated apoptosis. This preclinical data suggests that oncolytic reovirus is a 
promising therapeutic strategy for the treatment of HDAC resistant lymphomas. An 
early phase clinical trial is planned [141]

�Toxicity of HDAC Inhibitors

HDAC inhibitors are associated with a range of adverse effects including myelsu-
pression, diarrhea and cardiac arrythmias, specifically ST segment abnormalities 
and QTc interval prolongation, atrial fibrillation, and rarely ventricular tachyar-
rhythmias [151]. Monitoring of these and other side effects will be critical to the 
safety evaluation of HDAC inhibitors used alone or in combination with other 
agents in early phase clinical trials.

�Conclusion

The use of HDAC inhibitors for treatment of subtypes of lymphoma is promising. 
However, the efficacy of single agent HDAC inhibition for patients with r/r CTCL, 
PTCL and HL is limited. This may, in part, be due to the aggressive nature of these 
diseases. However, multiple mechanisms of drug resistance also contribute to 
refractoriness. A more comprehensive understanding of resistance mechanisms 
through the identification of key pathways is critical to the development of strate-
gies to overcome this limitation for the treatment of patients with lymphoma. The 
use of HDACi in combination with chemotherapy, alternative epigenetic modifiers 
or immunotherapy has demonstrated efficacy in lymphoma subtypes with limited 
toxicity. Evaluation of strategies to improve HDAC inhibitor efficacy in the treat-
ment of lymphoma is ongoing.
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Chapter 6
Resistance to Bruton’s Tyrosine Kinase 
Signaling Pathway Targeted Therapies

Yaya Chu, Mitchell S. Cairo, and Auke Beishuizen

Abstract  Activation of B-cell receptor (BCR) signaling is an important mecha-
nism of the development and growth of B-cell lymphomas. Bruton’s tyrosine kinase 
(BTK) is a key component of BCR signaling and functions as an important regula-
tor of cell proliferation and cell survival in various B-cell lymphomas. BTK inhibi-
tors, especially ibrutinib, have shown promising anti-tumor activity in preclinical 
and clinical studies. High response rates of ibrutinib were reported in patients with 
a variety of B-cell non-Hodgkin lymphoma (B-NHL) such as chronic lymphocytic 
leukemia (CLL) and mantle cell lymphoma (MCL). However, clinical evidence 
shows primary and acquired resistance to BTK inhibitors in patients. Understanding 
the molecular mechanisms underlying BTK inhibitors’ resistance is of paramount 
importance. In this review, we highlight the potential resistant mechanisms, which 
include mutational resistance in BTK, mutational resistance in other proteins than 
in BTK, chromosomal abnormalities, activation of prosurvival pathways, B-cell 
lymphoma 2 (BCL-2) family members mediated resistance, and tumor microenvi-
ronment mediated resistance. We also discuss the strategies that are utilized to over-
come BTK inhibitors’ resistance: non-covalent inhibitors of BTK, alternate kinase 
inhibitors, combination therapies with other oncogenic inhibitors, BCL-2 inhibitors, 
anti-CD20 antibodies, anti-CD19 chimeric antigen receptor (CAR) T cells, CD19/
CD3 bispecific antibody, or with inhibitors targeting other cellular processes.
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Abbreviations

ABC-DLBCL	 Activated B-Cell- Diffuse Large B-cell Lymphoma
AKT	 Protein Kinase B
AS-PCR	 Allele-Specific Polymerase Chain Reaction
BCR	 Activation of B Cell Receptor
BCL-2	 B-Cell Lymphoma 2
BL	 Burkitt Lymphoma
B-NHL	 B cell Non-Hodgkin Lymphoma
BLNK	 B-cell Linker Protein
BTK	 Bruton’s Tyrosine Kinase
CAR	 Chimeric Antigen Receptor
CCND1	 Cell Cycle Regulator Cycline D1
CLL	 Chronic Lymphocytic Leukemia
CARD11	 Caspase Recruitment Domain Family, Member 11
CDK4	 Cyclin-Dependent Kinase 4
CR	 Complete Response
CRM1/XPO1	 Chromosome Region Maintenance1/Exportin-1 Protein
CXCR4	 C-X-C Chemokine Receptor type 4
DPPYs	 Diphenylpyrimidine Derivatives
DLBCL	 Diffuse Large B-cell Lymphoma
DLT	 Dose-Limited Toxicities
EFS	 Event Free Survival
EGFR	 Epidermal Growth Factor Receptor
EIF2A	 Eukaryotic Translation Initiation Factor 2A
ERK	 Extracellular Signal-Regulated Kinase
FDA	 Food and Drug Administration
FL	 Follicular Lymphoma
FLIPI	 Follicular Lymphoma International Prognostic Index
GBC	 Germinal Center B cell
HCL	 Hairy cell Lymphoma
HDAC	 Histone Deacetylase
HL	 Hodgkin Lymphoma
IC50	 Half Maximal Inhibitory Concentration
IκB	 Inhibitor of Kappa B
IKKb	 Inhibitor of Kappa Light Polypeptide Gene Enhancer in B-cells
ITAM	 Immunoreceptor Tyrosine-Based Activation Motifs
Itk	 Interleukin-2-Inducible T-Cell Kinase
LCK	 Lymphocyte-Specific Protein Tyrosine Kinase
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LNA	 Locked Nucleic Acid
MALT1	 Mucosa Associated Lymphoid Tissue Lymphoma Translocation 

Protein 1
MAPK	 Mitogen-Activated Protein Kinase
MCL	 Mantle Cell Lymphoma
MLL2	 Mixed Lineage Leukemia 2
MOMP	 Mitochondrial Outer Membrane Permeability
MPFS	 Median Progression-Free Survival
MRD	 Minimal Residual Disease
mTOR	 Mechanistic Target of Rapamycin
MYD88	 Myeloid Differentiation Primary Response Gene (88)
MZL	 Marginal zone Lymphoma
NHL	 Non-Hodgkin’s Lymphoma
NF-κB	 Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B cells
NGS	 Next-Generation Sequencing
NIK	 NF-Kappa-B-Inducing Kinase
NSG	 NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ
OS	 Overall Survival
ORR	 Overall Response Rate
P	 Phosphorylation
PARP-1	 Poly [ADP-ribose] Polymerase 1
PFS	 Progression-Free Survival
PH	 Pleckstrin Homology
PI3K	 Phosphoinositide 3-Kinase
PIM1	 Serine/threonine Kinase pim-1
PIP3	 Phosphatidylinositol (3,4,5)-Trisphosphate
PLCγ2	 1-phosphatidylinositol-4,5-Bisphosphate Phosphodiesterase 

Gamma-2
PMBCL	 Primary Mediastinal B-cell Lymphoma
PR	 Partial Response
RPS15	 40S Ribosomal Protein S15
R/R	 Relapsed/Refractory
scFv	 Single Chain Fragment of Variable Region
SFK	 Src Family Tyrosine Kinases
SH2	 Src Homology 2
SH3	 Src Homology 3
SNPs	 Single Nucleotide Polymorphisms
SLL	 Small Lymphocytic Lymphoma
SYK	 Spleen Tyrosine Kinase
Tec	 Tyrosine Kinase Expressed in Hepatocellular Carcinoma
TLR	 Toll-Like Receptor
TME	 Tumor Microenvironment
TRAIL	 Tumor Necrosis Factor Related Apoptosis Inducing Ligand
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TRAIL-R	 Tumor Necrosis Factor Related Apoptosis Inducing Ligand 
Receptors

Txk	 Tyrosine-Protein Kinase TXK
WES	 Whole-Exome Sequencing
WM	 Waldenström’s Macroglobulinemia
XLA	 X-Linked Agammaglobulinemia
2p+	 Gain of the Short Arm of Chromosome 2

�Introduction

B-cell lymphoma represents a heterogeneous group of B-cell malignancies with 
distinct pathological characteristics, clinical features and prognoses [1]. The most 
common types of B-cell lymphoma include chronic lymphocytic leukemia (CLL)/
small lymphocytic lymphoma (SLL), diffuse large B-cell lymphoma (DLBCL), fol-
licular lymphoma (FL), mantle cell lymphoma (MCL), Waldenström’s macroglobu-
linemia (WM), and Burkitt lymphoma (BL). In children, the vast majority of B-cell 
lymphomas are BL and DLBCL, rarely primary mediastinal B-cell lymphoma 
(PMBCL) and FL are found. Cairo et  al. previously demonstrated that short but 
intensive chemotherapy is associated with an 80% 5-year event free survival (EFS) 
in patients with advanced mature B-cell non-Hodgkin lymphoma (B-NHL) [2–4]. 
Further, an international multi-cooperative group study showed a 90% 5-year over-
all survival (OS) in patients with newly diagnosed mature B-NHL [5–8]. 
Unfortunately, the outcome is dismal in patients with aggressive B-NHL, who 
relapse or progress due to chemoradiotherapy resistance [5, 8]. Therefore, facilitat-
ing the development of alternative novel therapeutic strategies is required to improve 
the outcome in patients with relapsed/refractory (R/R) B-cell lymphoma.

Activation of the BCR signaling pathway (Fig. 6.1) is critical to the development 
and maturation of B cells [9, 10] and the viability of a variety of B-cell lymphomas 
such as DLBCL [11], marginal zone lymphoma (MZL) [12], MCL, FL [13] and BL 
[14]. The BCR consists of the antigen-binding immunoglobulin heavy (IgH) and 
light (IgL) chains coupled to the heterodimeric CD79a and CD79b proteins, which 
contain tyrosine-based activation motifs [15]. Crosslinking of BCR by antigen trig-
gers the phosphorylation of tyrosines within the immunoreceptor tyrosine-based 
activation motifs (ITAMs) of CD79A and CD79B by Src family tyrosine kinases 
(SFKs) [15]. The phosphorylated ITAMs serve as a scaffolding platform for engag-
ing and activating Src homology 2 (SH2) domains containing kinases, including 
spleen tyrosine kinase (SYK). Activated SYK phosphorylates the B-cell linker pro-
tein (BLNK) to further recruit both Bruton’s Tyrosine Kinase (BTK) and phospho-
lipase C- γ2 (PLC- γ2) through their SH2 domains. BTK is then phosphorylated and 
activated by SYK to drive the activation of downstream signaling pathways such as 
phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) and nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) [16]. The complex of 
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caspase recruitment domain family member 11 (CARD11), mucosa-associated 
lymphoid tissue lymphoma translocation protein 1(MALT1), and B-cell lymphoma/
leukemia 10 (BCL10) is an important part of the pathway activating 
NF-κB. Additionally, the BCR co-receptor CD19 phosphorylation is also involved 
in BTK recruitment and activation by recruiting PI3K to generate phosphoinositide 

Fig. 6.1  Simplified B-cell receptor signaling. The BCR consists of the antigen-binding immuno-
globulin heavy (IgH) and light (IgL) chains coupled to the heterodimeric CD79a and CD79b pro-
teins. Antigen binding triggers the phosphorylation of tyrosines within the ITAMs of CD79A and 
CD79B by SFKs. And the phosphorylated ITAMs recruit SYK, which is followed by the activation 
of BLNK, BTK and PLCγ2. BTK is then phosphorylated and activated by Syk to drive the activa-
tion of PKCβ, PI3K/Akt/mTOR and NF-κB. PKCβ phosphorylates and activates ERK and NF-κB 
transcription factors. Ibrutinib, acalabrutinib, tirabrutinib, spebrutinib, and BGB-3111 inhibit BTK 
activities. The complex of CARD11, MALT1, and BCL10 is an important part of the pathway 
activating NF-κB. Additionally, the BCR co-receptor CD19 phosphorylation is also involved in 
BTK recruitment and activation by recruiting PI3K to generate PIP3 and activate the PI3K–AKT 
pathway. The activated ERK, PI3K/Akt/mTOR and NF-κB pathways upregulate the genes that are 
involved in cell proliferation and survival in B cell lymphoma
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phosphatidylinositol-3, 4, 5-trisphosphate (PIP3) [17]. The BCR signaling pathway 
offers a wealth of therapeutic targets such as SYK, BTK and PI3K, and drugs target-
ing these kinases are in development and clinical trials to evaluate their efficacy 
against a variety of B-cell lymphomas.

BTK is a member of the tyrosine kinase expressed in hepatocellular carcinoma 
(Tec) family of the non-receptor tyrosine kinases and was discovered during cloning 
the genes that were associated with X-linked agammaglobulinemia (XLA) in 1993 
[18, 19]. The gene encodes a 659 amino acid protein that consists of several putative 
domains: an N-terminal Pleckstrin homology (PH) domain that binds membrane 
PIP3, is followed by SH2, Src homology 3 (SH3), and proline rich domains that 
regulate binding to other cellular signaling molecules [20]. Activation of BTK cor-
relates with an increase in the phosphorylation of two regulatory BTK tyrosine 
residues: Y551 and Y223 [21]. Y551 within the Src kinase domain is transphos-
phorylated by the kinases Syk or Lyn during BCR signaling and promotes the cata-
lytic activity of BTK. Y223 is an autophosphorylation site within the BTK SH3 
domain and the phosphorylation of this site has little discernible influence on BTK 
catalytic activity in-vitro or in vivo but may be a mechanism to modify protein–pro-
tein interactions [21]. BTK has been widely characterized as a critical mediator in 
signaling through BCR and the Fcγ receptor (FcγR) and is important for B cell 
development, differentiation, proliferation and survival [22, 23]. Mutations in BTK 
gene lead to inactivating the BTK gene through an in-frame insertion of a lacZ 
reporter in mouse embryonic stem cells resulting in defects of B cell development 
from pre-B cells to immature B cells in the bone marrow and B-cell differentiation 
arrest during the maturation from IgD(low)IgM(high) to IgD(high)IgM(low) stages 
in the periphery [24]. In humans a wide spectrum of BTK loss-of-function muta-
tions such as a PH domain mutation in the BTK gene lead to an almost complete 
absence of peripheral B cells and antibodies in XLA [25, 26].

In this review, we summarize the clinical results of BTK inhibitors, discuss the 
resistant mechanisms of BTK inhibitors, especially ibrutinib, based on the clinical 
and preclinical studies in B-cell lymphoma. In the end, we describe current and 
future novel therapeutic strategies to overcome the resistance.

�Overview of BTK Inhibitors and Clinical Response

BTK is a regulator of normal B-cell development and is activated upon BCR stimu-
lation. Activation of the BCR signaling pathway has now emerged as a central onco-
genic pathway that promotes growth and survival in both normal and malignant 
B-cells. Antigenic activation of the dimeric membrane immunoglobulin B-cell 
receptor, which induces phosphorylation of BTK and PLCγ2, results in the activa-
tion of a number of signaling pathways including mitogen-activated protein kinase 
(MAPK), NF-κB and Akt [27] (Fig. 6.1). Selective and covalent BTK inhibitors 
such as ibrutinib can inhibit BTK activation to further block chronic active BCR 
signaling [28, 29].
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�Ibrutinib

Ibrutinib (PCI-32765, Imbruvica®) is the first-in-class, selective and irreversible 
small molecule inhibitor of BTK and covalently binds to cysteine residue 481 on the 
BTK kinase domain, thereby inhibiting the autophosphorylation of tyrosine 223 on 
exon 8 and resulting in irreversible inhibition of BTK enzymatic activity [30]. 
Ibrutinib has been demonstrated to be an active agent in activated B-cell-like diffuse 
large B cell lymphoma (ABC-DLBCL), a NHL subtype that is characterized by 
constitutively activated NF-κB signaling [31]. Preclinical studies of ibrutinib in 
CLL and MCL suggested that ibrutinib inhibits cell proliferation in-vitro in the 
range of 1.0–25.0 μM [32, 33].

Ibrutinib’s unique biochemistry and in vivo activities in mice and dogs paved the 
way for not only human clinical phase 1 trials but also phase 2 and 3 (Table 6.1) 
trials in patients with mature B-cell lymphomas [30]. In a phase 1 study, ibrutinib 
was well tolerated in 50 evaluable adults with R/R B-cell lymphomas including 
MCL, FL, DLBCL, MZL and CLL [34]. It was associated with an overall response 
rate (ORR) of 60%, including complete response (CR) 16% [34]. The safety and 
efficacy of ibrutinib in MCL and CLL patients who had received at least one prior 
therapy were evaluated in single-arm, open-label, multicenter trials (NCT01236391, 
NCT01105247) in 2013 [35, 36]. The drug demonstrated substantial improvement 
on a clinically significant endpoint over available therapies. In the MCL trial, a 
response rate of 68% (75 patients) was observed, with a CR of 21% and a partial 
response rate (PR) of 47% [35]. In the CLL trial, the ORR was 71% and the PR 
ranges from 15–20% based on the doses [36]. Based on the highly effective treat-
ment of refractory and relapsed adult patients with CLL and MCL, ibrutinib was 
granted breakthrough therapy designation and has been approved for the treatment 
in patients with R/R CLL or MCL with at least one prior therapy in 2013 [35–38].

To evaluate the efficacy and tolerability of ibrutinib in relapsed or refractory 
WM, and to examine the impact of myeloid differentiation primary response 88 
(MYD88) (L265P) and WHIM-like C-X-C chemokine receptor type 4 (CXCR4) 
mutations on ibrutinib response, 63 patients with R/R WM were enrolled for a phase 
2 study with an ORR of 90.5% and a major response rate (PR or better) of 73% with 
a median time to response of 4 weeks [39]. Patients with MYD88 mutation and wild 
type CXCR4 had better response to ibrutinib treatment than those with MYD88 
wild type or WHIM-like CXCR4 mutations: 100% OR for patients with 
MYD88L265PCXCR4WT vs. 85.7% OR MYD88L265PCXCR4WHIM vs 71.4% 
OR MYD88WTCXCR4WT. The estimated 2-year progression-free and overall sur-
vival rates among all patients were 69.1% and 95.2%, respectively. Grade > 2 treat-
ment related toxicities were observed. Based on the promising results, the Food and 
Drug Administration (FDA) approved ibrutinib for the treatment of patients with 
WM in 2015.

BTK expression was detected in approximately 20% of patients with classic 
Hodgkin lymphoma (HL) [40]. A single-agent ibrutinib at a dose of 560 mg was 
investigated in 2 primary refractory classic HL patients [41]. Two months after the 
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initiation of ibrutinib, positron emission tomography-computed tomography 
(PET-CT) showed near-complete regression of disease in one patient with subse-
quent disease progression. Another patient had a CR, which was still ongoing 
more than 6 months later. The activity of ibrutinib in patients with classic HL 
warrants prospective assessment. A phase 2 multicenter trial to evaluate the effi-
cacy and safety of ibrutinib in patients with R/R classical HL is ongoing 
(NCT02824029).

Primary FL cells have been found to maintain enhanced BCR pathway signaling 
when compared to normal B cells [42]. Sixteen patients with FL were treated with 
ibrutinib in the phase 1 study [43]. Of the cohort of 16 patients, 11 patients were 
treated at doses where full occupancy of BTK was achieved by ibrutinib. The OR 
rate was 55% and the median duration of response was 12.3 months and the median 
progression free survival (PFS) 13.4 months. Based upon drug occupancy and clini-
cal responses, a phase 2 Consortium Trial of ibrutinib in R/R FL was conducted 
[44]. ORR was 37.5% with a complete response rate of 12.5%, median progression-
free survival (PFS) of 14 months, and 2-year PFS of 20.4%. Response rates were 
higher among patients with rituximab-sensitive disease (52.6%) compared with 
those who had rituximab-refractory disease (16.7%; P  =  .04). Chemotherapy-
refractory patients also had a lower ORR than chemotherapy-sensitive patients. 
Patients with low- or intermediate-risk FLIPI (the Follicular Lymphoma International 
Prognostic Index) had a trend toward a higher response rate compared with high-
risk FLIPI (50% vs 25%; p = .19). The median PFS was 14.0 months and the 2-year 
PFS and OS were 20.4% and 79.0%, respectively. Similar results were found in a 
phase 2 study of ibrutinib in patients with chemoimmunotherapy-refractory FL (the 
DAWN study), which showed a significantly lower response rate of 20.9% in 
chemotherapy-refractory FL with a median PFS of 4.6 months, 10.9% CR and 63% 
1 year OS [45].

Due to activating mutations in CD79B, MYD88, and CARD11, the BCR sig-
naling, the toll-like receptor (TLR) and the NF-κΒ pathways are often constitu-
tively activated in ABC-DLBCL compared with germinal center B-cell (GCB) 
type DLBCL [46–48]. A phase 2 multicenter study was performed to determine if 
ibrutinib would be more efficacious in ABC-DLBCL compared with GCB-
DLBCL [49]. The ORR in patients with ABC type was 40%, whereas overall 
response rate in the GCB type was only 5%. The CR is 8% in ABC-DLBCL vs. 
0% in GCB-DLBCL; PR is 32% in ABC-DLBCL vs. 5.3% in GCB-DLBCL; PFS 
is 2.5 months in ABC vs. 1.28 in GCB [49]. Furthermore, ibrutinib had activity in 
patients with and without CD79b mutations, suggesting an alternative mechanism 
of BCR pathway dependence. This study indicates that further study of ibrutinib 
should be aimed at the ABC type of DLBCL with attention to the different somatic 
mutations [49].

Based on the early promising results of the phase 2 trial on CLL, a multicenter, 
open-label, randomized, phase 3 trial (RESONATE) was opened to the study of 
ibrutinib vs. ofatumumab in patients with relapsed or refractory CLL or SLL [50]. 
Ibrutinib significantly improved the PFS and the OS (90% vs. 81%; p = .005) and 
ORR (42.6% vs. 4.1%; p  <  .001). Patients with a 17p13.1 deletion also had a 
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markedly improved PFS with ibrutinib compared with ofatumumab. In this trial, 
ibrutinib was associated with a slightly increased risk of grade 3/4 (57% vs. 47%) 
adverse events (AE) compared with ofatumumab. Based on the superior efficacy of 
ibrutinib compared to ofatumumab in difficult-to-treat patients with R/R CLL or 
SLL, the FDA expanded the approval of ibrutinib to include treatment of CLL 
patients with 17p deletion. In the following phase 3 RESONATE-2 study, the effi-
cacy and safety of ibrutinib was compared with chlorambucil in patients 65 years of 
age or older with previously untreated CLL [51]. Consistent with the high-risk 
group, ibrutinib resulted in significantly longer PFS than that with chlorambucil 
with 98% OS at 24 months vs. 85% with chlorambucil. The relative risk of death 
with ibrutinib was 84% lower than that with chlorambucil (p = .001). The ORR was 
significantly higher in the ibrutinib group than in the chlorambucil group (86% vs. 
35%; p < .001). CR occurred in 4% of the patients in the ibrutinib group and in 2% 
of those in the chlorambucil group. The hematologic variables were significantly 
improved in the ibrutinib treated group. Grade III diarrhea (4%), grade III hyperten-
sion (4%), atrial fibrillation (6%) and grade III/IV hemorrhage (4%) were more 
common in the ibrutinib treated group. These results support the use of ibrutinib as 
a first-line agent in CLL.

Temsirolimus is an inhibitor of the mechanistic target of rapamycin (mTOR) 
pathway that has been used to treat patients with relapsed MCL with 22–40% ORR 
and a median OS of 12.8 months [52–54]. A randomized phase 3 clinical trial led by 
the European MCL Network compared ibrutinib with temsirolimus in patients with 
R/R MCL [55]. With a median follow-up of 20 months, ibrutinib treatment resulted 
in a 57% reduction in the risk of disease progression or death compared with temsi-
rolimus (p < .0001). The median progression-free survival (MPFS) was 14.6 months 
for the ibrutinib group vs. 6.2 months for the temsirolimus group. At a 2 year land-
mark, the PFS rate is 41% versus 7% and the ORR was 72–77% vs. 40–42% with a 
19% CR vs. 1% CR. Median OR was not reached for ibrutinib versus 21.3 months 
for temsirolimus. The reported AEs were consistent with previous studies, including 
diarrhea (29%), cough (22%), fatigue (22%), atrial fibrillation (4% with ibrutinib 
vs. 1% with temsirolimus) and major bleeding (10% with ibrutinib vs. 6% with 
temsirolimus).

We investigated the efficacy of ibrutinib alone and in selective adjuvant combina-
tions against BL in vitro and in a human BL xenografted immune-deficient NOD.
Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mouse model [56]. Our data demonstrated 
that phospho-BTK level was significantly reduced in BL cells treated with ibrutinib 
(p < .001). Moreover, we observed a significant decrease in cell proliferation as well 
as significant decrease in half maximal inhibitory concentration (IC50) of ibrutinib 
in combination with dexamethasone, rituximab, obinutuzumab, carfilzomib, and 
doxorubicin (p < .001). In vivo studies demonstrated ibrutinib-treated mice had a 
significantly prolonged survival compared to vehicle controls (p < .02). Our find-
ings demonstrate the significant in vitro and preclinical in vivo effects of ibrutinib in 
BL. Based on our preclinical results, there is an ongoing clinical trial comparing OS 
in children and adolescents with R/R BL treated with chemoimmunotherapy with or 
without ibrutinib (NCT02703272).
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�Second-Generation Inhibiors of BTK

Ibrutinib binds to Cys-481 of the BTK but it also binds to several other kinases [57]. 
These off-target effects of ibrutinib contribute to its activity and toxicity such as 
bleeding [50]. Therefore, second-generation BTK inhibitors such as acalabrutinib 
(ACP-196), Tirabrutinib (ONO/GS-4059, GS-4059), spebrutinib (CC-292, AVL-
292), and BGB-3111 are being developed with more selective kinase activity pro-
files (Table 6.2).

Table 6.2  Summary of clinical trials of second-generation BTK inhibitors

Inhibitor name
Off-
targets

Phase 
of 
trials N

Tumor 
subtypes

Overall response 
rate

Approved 
indication Ref.

Acalabrutinib NO 1/2 61 R CLL 95% ORR NO [165]
85% PR
10% PR with 
lymphocytosis
5% SD
For del(17)(p13.1): 
100% ORR
89% PR
11% PR with 
lymphocytosis
With prior idelalisib 
therapy: 100% ORR
75% PR
25% PR with 
lymphocytosis

Acalabrutinib NO 2 124 R/R MCL 81% ORR YES for 
R/R MCL

[62]
40% CR
72% medians for 
duration of response
67% PFS
87% OR

Tirabrutinib 
(ONO/
GS-4059)

NO 1 90 R/R CLL; 
MCL; 
DLBCL; FL; 
WM; MZL; 
SLL

PFS in CLL, MCL, 
and DLBCL: 874, 
341, and 54 days, 
respectively

NO [66]

CLL: 96% ORR
MCL: 91.7% ORR, 
50% PR, and 41.7% 
CR
DLBCL: 35% ORR, 
29% PR, 6.45% CR

BGB-3111 NO 1 25 CLL, MCL, 
WM, 
DLBCL, FL, 
MZL, HCL

64% OR (16/25), 
including 1 CR and 
6 SD

NO [67]

Y. Chu et al.



123

�Acalabrutinib

Acalabrutinib (ACP-196) binds covalently to BTK with greater in vivo potency and 
selectivity than ibrutinib [58]. In-vitro studies demonstrated that acalabrutinib and 
ibrutinib had similar molecular and biologic consequences in primary CLL cells but 
different effects on lymphocyte-specific protein tyrosine kinase (LCK) and proto-
oncogene tyrosine-protein kinase Src phosphorylation in primary T-lymphocytes 
[59]. The IC50 of acalabrutinib for the BTK protein is 5.1 nmol/L vs 1.5 nmol/L of 
ibrutinib, indicating a weaker BTK inhibition than ibrutinib. However, ACP-196 
demonstrated higher selectivity for BTK than ibrutinib when profiled against a panel 
of 395 non-mutant kinases (1 μM) in a competitive binding assay [60]. Importantly, 
ACP-196 did not inhibit epidermal growth factor receptor (EGFR), interleukin-2-in-
ducible T-cell kinase (Itk) or tyrosine-protein kinase TXK (Txk) [60]. The phase 1/2 
ACE-CL-001 trial of acalabrutinib monotherapy in patients with relapsed CLL 
showed that acalabrutinib was well tolerated and no major hemorrhage or atrial 
fibrillation was noted [61]. The clinical activity of acalabrutinib was rapid and robust. 
With a median follow up of 14.3 months, the ORR was 95% with 85% PR, 10% PR 
with lymphocytosis and 5% stable disease. The ORR was 100% for patients with 
del(17)(p13.1) with 89% PR, 11% PR with lymphocytosis. In the 4 patients with 
prior idelalisib therapy, the response rate was 100% (PR, 75%, PR with lymphocyto-
sis, 25%). A direct comparison of acalabrutinib with ibrutinib in a phase 3 study 
(NCT02477696) is active and on the way to recruit patients with high-risk CLL.

Acalabrutinib is also active in clinical trials as a single agent or in combination 
for the treatment of other lymphomas including MCL (NCT02213926), FL 
(NCT02180711), WM (NCT02180724), and DLBCL (NCT03205046). In 2015, a 
phase 2 trial (ACE-LY-004) was conducted on patients with R/R MCL 
(NCT02213926) [62]. One hundred twenty-four patients with R/R MCL were 
enrolled in this trial. At a median follow-up of 15.2 months, the ORR was 81% and 
CR was 40%. The Kaplan-Meier estimated medians for duration of response, PFS, 
and OR rates at 12 months were 72%, 67%, and 87%, respectively. Primarily grade 
1 or 2 adverse events were the most common. Consistent with CLL trials, atrial 
fibrillation and worse hemorrhage events were rare. The results demonstrated that 
acalabrutinib treatment provided a high rate of durable responses and a favorable 
safety profile in patients with relapsed or refractory MCL. Based on the promising 
results in the ACE- LY-004 trial and other clinical data, acalabrutinib was granted 
Breakthrough Therapy Designation by the FDA in 2017 for patients with MCL who 
have received at least one prior therapy.

�Tirabrutinib

Tirabrutinib (ONO/GS-4059) is an irreversible inhibitor with a greater selectivity for 
BTK than for LCK, proto-oncogene tyrosine-protein kinase Fyn (FYN), tyrosine-
protein kinase LynA (LYNA), and Itk [63]. In-vitro studies showed that IC50 of ONO/
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GS-4059 to BTK was 2 nmol/L and it induced apoptosis at nanomolar concentra-
tions in the activated DLBCL cell lines [64]. ONO/GS-4059 treatment resulted in 
inhibition of tumor growth in an ABC-DLBCL xenograft model [65]. These promis-
ing preclinical data prompted clinical evaluation of ONO/GS-4059. In a multicenter 
phase 1 dose escalation study, 90 patients with R/R B cell malignancies including 
CLL/SLL, MCL, DLBCL, FL, MZL, and WM, were enrolled in a 3 + 3 dose-escala-
tion study [66]. The overall estimated mean PFS in CLL, MCL, and DLBCL were 
874, 341, and 54 days, respectively. CLL patients had a 96% ORR. Of these patients, 
13 had loss of TP53 and 21 had unmutated immunoglobulin heavy-chain variable 
region (IGHV) gene segments. All 12 patients with TP53/17p deletion or TP53 muta-
tions had a response, with 9 remaining on study. MCL patients had 91.7% ORR, 50% 
PR, and 41.7% CR. DLBCL patients had 35% ORR, 29% PR, and 6.45% CR. A 
striking feature of this study was that ONO/GS-4059 across all disease subsets 
showed a low incidence of associated toxicities. ONO/GS-4059 may have significant 
advantages over other selective kinase inhibition in terms of reduced toxicities.

�BGB-3111

BCB-3111 is another more selective, irreversible BTK inhibitor with higher BTK 
specificity than ibrutinib [67, 68]. In biochemical and cellular assays, BGB-3111 
demonstrated nanomolar BTK inhibition activity and showed less off-target kinase 
inhibition against a panel of kinases [68]. Both in the MCL and ABC-DLBCL tumor 
cells xenografted models, BGB-3111 demonstrated dose-dependent antitumor 
effects and prolonged the overall survival of xenografts [68]. Additionally, BGB-
3111 demonstrated at least ten-fold weaker than ibrutinib in inhibiting rituximab 
induced antibody-dependent cellular cytotoxicity (ADCC), supporting the combi-
nation therapy with anti-CD20 antibodies in lymphoma [68]. In the phase 1 trial of 
BGB-3111, 24 patients with advanced lymphoma (CLL, MCL, WM, DLBCL, FL, 
MZL) and 1 with Hairy cell lymphoma (HCL) were enrolled [67]. Sixty-four per-
cent (16/25) of patients had objective responses, including 1 CR and 6 SD. Drug-
related AEs and dose-limited toxicities (DLT) were not reported. These preliminary 
phase 1 results suggest that BGB-3111 is safe and highly clinically active but clini-
cal efficacy remains to be further determined.

�Molecular Mechanisms of BTK Inhibitors’ Resistance

Despite the promising clinical responses of BTK inhibitors especially ibrutinib in a 
variety of B-cell lymphomas, cases of primary and secondary resistance were rec-
ognized [69]. Clinically, ibrutinib resistance presents in two forms: primary resis-
tance in which patients demonstrate lack of response at initial therapy due to disease 
transformation (Richter transformation, an aggressively ibrutinib-resistant disease), 
and secondary resistance which is characterized by an initial disease response but it 
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is subsequently lost due to the cell’s ability to bypass the target via alternative 
pathways or acquired mutations in the target or its pathway [15, 69, 70]. 
Understanding the molecular mechanisms (Fig.  6.2) underlying BTK inhibitors’ 
resistance is of paramount importance. The reported resistant mechanisms of BTK 
inhibitors, especially ibrutinib resistance are summarized in Table 6.3.

Fig. 6.2  Mechanisms of resistance of BTK inhibitors in B-cell lymphomas. Primary resistance of 
BTK inhibitors may be caused by sustained activation of other oncogenic pathways such as PI3K-
AKT/mTOR, MAPK/ERK independent of BTK. Acquired resistances include mutations in BTK, 
PLCγ2, CARD11 and the activation of alternative NF-kB or PI3K/mTOR pathways. MYD88 and 
CXCR4 mutations in WM patients trigger pro-survival NF-kB signaling, activate AKT and ERK and 
promote resistance to ibrutinib. Chromosomal abnormality such as del(8p) and 2p+ has been docu-
mented in acquired ibrutinib resistance. Overexpression of CRM1/XPO1 is involved in nuclear export 
of a number of tumor suppressor proteins such as p53 and BRCA1, which is associated with drug 
resistance. Mutations in CCND1 stabilize cycline D1 and subsequently activate cyclin-dependent 
kinase (CDK) 4 to phosphorylate and inactivate retinoblastoma (Rb) protein. This event leads to G1/S 
cell cycle progression, cell proliferation and ibrutinib resistance. Last, TME–lymphoma interactions 
activate integrin b1-integrin-linked kinase (ILK)/PI3K-AKT-mTOR to mediate ibrutinib resistance
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Table 6.3  Summary of the reported mechanisms of BTK inhibitors’ resistance

BTK inhibitor Diseases Resistance mechanism
Report 
year Ref.

Ibrutinib CLL Mutations: BTKC481S, PLCγ2 (R665W, 
L845F, S707Y)

2014 [72]

Ibrutinib CLL Mutations: PLCγ2 (S707F, M1141R, M1141K 
and D993H)

2016 [89]

Ibrutinib CLL Mutation: BTKT316A 2016 [76]
Ibrutinib CLL Mutations: EIF2A, RPS15, EP300, MLL2 2016 [89]
Ibrutinib CLL Del(8p) 2016 [89]

TRAIL receptor haploinsufficiency
Ibrutinib CLL 2p+ 2017 [166]

XPO1 overexpression
Ibrutinib Mouse 

Eμ-myc B 
cells

Myc amplification 2017 [92]

Ibrutinib MCL Activation of the alternative NF-kB pathway 2013 [100]
Ibrutinib MCL Mutations in TRAF2, BIRC3, Activation of 

alternative NK-kB pathway
2014 [100]

Ibrutinib MCL Mutations in CARD11 2016 [87]
Ibrutinib MCL Mutations in primary resistance: A20, BIRC2, 

epigenetic modifiers, EGFR family;
2016 [78]

Mutations in acquired resistance: PLCγ2, 
CARD11, epigenetic modifiers, NF-kB and 
PI3K/mTOR pathways

Ibrutinib MCL PI3K–AKT activation 2014 [102]
Ibrutinib MCL ERK1/2 and AKT activation 2014 [103]
Ibrutinib MCL Upregulating the c-Myc and mTOR signaling 

pathways and metabolic pathways
2017 [88]

Ibrutinib ABC-
DLBCL

Mutations in PIM1 2016 [80]

Ibrutinib and 
ONO/GS-4059

ABC-
DLBCL

NF-kB pathway activation 2017 [129]

Ibrutinib DLBCL Upregulation of IAP, survivin, cIAP2, BCL2 
and BCL6, PI3Kα and PI3Kβ;

2017 [105]

Downregulation of PTEN
Ibrutinib WM CXCR4S338X mutation leads to activation of 

both AKT and ERK
2015 [85]

Ibrutinib WM Mutations: BTKC481S, CXCR4, CARD11, 
PLCγ2

2017 [83]

Upregulation of Bcl-2 and AKT 2017 [106]

�Mutational Resistance in BTK

The development of mutations within the drug target that alter drug sensitivity is an 
important mechanism of acquired resistance to ibrutinib. Whole-exome sequencing 
(WES), Sanger sequencing, and Ion Torrent deep sequencing of pre-treatment and 
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relapse samples from six CLL patients confirmed a cysteine-to-serine mutation at 
BTK position 481 (C481S) in five of the six patients [71, 72]. No patient at baseline 
had evidence of mutations in either BTK on the basis of WES and Ion Torrent 
sequencing. This finding was further confirmed by another study using peripheral 
blood cells and cell free DNA samples from ibrutinib naïve and treated CLL patients 
with custom DNA or locked nucleic acid (LNA) oligos in a wild-type blocking 
polymerase chain reaction, followed by Sanger sequencing and Next-generation 
sequencing (NGS) methods [73]. Functional characterization demonstrated that 
mutant BTK has significantly lowered affinity to ibrutinib than nonmutant BTK 
[72]. When transfected to cells with mutant BTK, ibrutinib was significantly less 
effective at blocking BTK auto-phosphorylation and downstream signaling than 
nonmutant BTK [72]. The data from the mutational analyses, signal transduction 
and gene expression profiling strongly suggest C481S mutation confers resistance 
to ibrutinib leading to increased BCR signaling at patient’s relapse [74]. These func-
tional studies suggest that the C481S mutation in BTK confers resistance to ibruti-
nib by preventing irreversible drug binding [72, 75]. Another mutation in BTK that 
is associated with ibrutinib resistance was identified at the center of the positively-
charged binding pocket in the SH2 domain with a threonine to alanine change at 
BTKT316 site [76]. Unlike the C481, T474 and L528 mutations in the kinase 
domain to either directly attenuate or hinder ibrutinib binding, structure analysis 
revealed that T316A does not directly interfere with ibrutinib binding. In vitro cel-
lular and molecular studies demonstrated that ibrutinib did not inhibit the cell pro-
liferation of the transfected lymphoma cells with BTKT316A mutation and the 
degree of phosphorylation inhibition in p-BTK (Y223), p-PLCγ2, p-AKT and 
p-ERK following ibrutinib treatment was significantly less in C481S and T316A 
mutant cells than in wild type cells [76]. This data firmly established that the 
BTKT316A mutant is as capable as BTKC481S to confer ibrutinib resistance. The 
resistant BTK mutations were not detectable at the baseline before ibrutinib expo-
sure [72, 75]. It might be limited by the sensitivity of the detection methods that 
may not identify small numbers of BTK mutant CLL cells in the presence of large 
numbers of nonmutant CLL cells. To investigate this possibility, Fam’a, R. et al. 
used an allele-specific polymerase chain reaction (AS-PCR) which is highly sensi-
tive and can detect 1 mutant allele per 1000 wild-type alleles, to assess the occur-
rence of small subclones harboring the C481S codon mutations in ibrutinib-naive 
CLL patient samples [77]. Among CLLs that have not been exposed to ibrutinib, the 
BTK C481S variant was not detected, indicating the ibrutinib resistance in CLL is 
not mutation driven resistance [77].

�Mutational Resistance in Other Proteins than in BTK

Mutations in the prosurvival pathways to bypass BTK appear to be another common 
mechanism of resistance. The samples from relapsed CLL patients were detected to 
have gain-of-function mutations targeting PLCγ2, a direct downstream target of 
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BTK phosphorylation [72]. When transfected with PLCγ2 with the L845F mutation, 
or with the R665W mutation into human embryonic kidney (HEK) 293 T cells and 
DT40 cells, which lack endogenous PLCγ2 expression, upon activating BCR sig-
naling, phosphorylation of extracellular signal-regulated kinases (ERK) and AKT 
was less inhibited by ibrutinib than nonmutant cells [72]. In the phase 3 MCL 3001 
(RAY) trial, mutations were identified in NF-kB signaling pathways, both canonical 
(e.g., A20) and noncanonical (e.g., BIRC2); in epigenetic modifiers; and in the epi-
dermal growth factor receptor (EGFR) family in primary resistance to ibrutinib 
[78]. Mutations were found in PLCγ2, CARD11, epigenetic modifiers and alternate 
NF-kB or PI3K/mTOR pathways in the MCL patients with acquired resistance after 
a short treatment duration [78]. Serine/threonine kinase (PIM1) encodes a serine/
threonine kinase that is a critical regulator of tumorigenesis in a number of hemato-
logic malignancies [79]. Interestingly, in 48 DLBCL patient samples with available 
genomic profiling, PIM1 mutations appeared more frequently in patients with ABC-
DLBCL than those with GCB-DLBCL [80]. PIM1 mutations were also identified in 
patients with poor response to ibrutinib, indicating PIM1 mutations are associated 
with intrinsic ibrutinib resistance in ABC-DLBCL. In vitro studies demonstrated 
that introducing one of these mutations into an ABC-DLBCL cell line is sufficient 
to induce ibrutinib resistance through stabilizing the protein and enhancing NF-κB 
signaling [80]. The combination of pan-PIM inhibitors such as AZD-1208 with 
ibrutinib results in greater efficacy than ibrutinib as a single agent and can circum-
vent resistance. Activating somatic mutations in MYD88 and CXCR4 are present in 
90–95% and 30–40% of WM patients, respectively [81–83]. MYD88 mutations 
trigger pro-survival NF-kB signaling through BTK [84]. The WHIM-like CXCR4 
(S338X) somatic mutation activates AKT and ERK and promotes resistance to ibru-
tinib [85]. In a multicenter study that administered ibrutinib to rituximab refractory 
WM patients, patients with CXCR4 mutations showed delayed responses, and the 1 
patient with WT MYD88 showed no response to ibrutinib [86]. Xu et al. utilized 
Sanger sequencing, highly sensitive AS-PCR assays and targeted NGS to identify 
mutations associated with clinical progression in WM patients treated with ibrutinib 
[83]. Their study revealed that 5.1% patients on ibrutinib without clinical progres-
sion had BTKC481S mutation. And BTKC481 mutations are associated with 
mutated CXCR4 [83]. Akin as in CLL, BTKC481 mutations were not detected in 
baseline samples or ibrutinib-naïve WM patients. Additional mutations in ibrutinib 
resistant WM samples were identified in CARD11 and PLCγ2 [83]. CARD11 is a 
scaffold protein required for BCR induced NF-kB activation. Its mutation may 
result in a constitutive activation of B-cell receptor (BCR)/NF-κB signaling and 
render the mutant cells resistant or sensitive to some of the BCR/NF-κB inhibitors 
[47]. CARD11 mutations were observed in 5.5% of MCL samples [87]. When over-
expressed in vitro, CARD11 mutants conferred resistance to ibrutinib, providing 
new insights for ibrutinib resistance in MCL and continuous activation of NF-kB 
pathway.

In addition to acquisition of these mutations, other mechanisms of resistance, 
such as upregulation of potentially druggable survival pathways [88], clonal evolu-
tion of genetic alterations [89, 90], presence of BCL-6 abnormalities [91], complex 
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karyotype [91], TP53 abnormality [90, 91], MYC amplification [90–92] and base-
line del(17p) [90, 91], are associated with an increased risk of acquired resistance to 
ibrutinib.

�Chromosomal Abnormality

Deletions in chromosomes have been documented in acquired ibrutinib resistance 
such as large deletions in the short arm of chromosome 8 [89]. Deletions of chromo-
some 8p were reported as a recurrent event in B-NHL and tumor necrosis factor 
related apoptosis inducing ligand receptors (TRAIL-R) were identified as dosage-
dependent tumor suppressor genes in this region whose monoallelic deletion can 
impair TRAIL-induced apoptosis in B-cell lymphoma [93]. In ibrutinib resistant 
CLL patients, del(8p) was not present at baseline, but was detected at the time of 
progression on ibrutinib, indicating ibrutinib therapy favors the selection and expan-
sion of CLL subclones carrying del(8p) [89]. The region of del(8p) was confirmed 
to encompass TRAIL-R [89]. Treatment with TRAIL decreased cell viability in a 
greater proportion of non-del(8p) CLL samples compared to the del(8p) CLL sam-
ples (16% vs. 5%), indicating monoallelic deletion of chromosome 8p was suffi-
cient to abrogate the positive or negative effects of TRAIL on cell viability in vitro. 
The expected sensitivity to TRAIL in the pre-treatment samples and resistance in 
the relapse samples further confirmed the role of del(8p) in protection from TRAIL-
induced apoptosis [89]. Some ibrutinib resistant CLL patients acquired additional 
putative driver mutations in eukaryotic translation initiation factor 2A (EIF2A), 40S 
ribosomal protein S15 (RPS15), the histone acetyltransferase EP300 (Y1397F) and 
the chromatin regulator MLL2 (the mixed lineage leukemia 2) without detectable 
mutations in BTK and PLCγ2 genes, which likely confer proliferative advantage 
and bypass the BTK pathway [89].

The gain of the short arm of chromosome 2 (2p+) was reported as a frequent 
chromosomal abnormality in CLL [94, 95]. Using single nucleotide polymorphisms 
array and fluorescence in situ hybridization approaches, chromosome region main-
tenance1/Exportin-1 gene (CRM1/XPO1) was identified to be overexpressed in the 
tested 2p + CLL samples [95]. CRM1/XPO1 is a ubiquitous nuclear export receptor 
protein that regulates intracellular nuclear export of many substrates, including both 
proteins and ribonucleic acid (RNA) [96]. CRM1/XPO1 is often overexpressed in 
cancer cells and its overexpression is involved in nuclear export of a number of 
tumor suppressor proteins such as p53, BRCA1, retinoblastoma, forkhead box O 
(FOXO), cell cycle inhibitors (p21, p27) and other drug targets [96]. CRM1/XPO1 
overexpression and its mediated export has been associated with poor prognosis and 
resistance to therapy in various cancers [96]. Relapsed 2p+/CLL patients after treat-
ment showed a similar or increasing percentage of cells carrying a XPO1 gain com-
pared with the patients at the time of diagnosis, indicating the potential relevance of 
XPO1 in CLL drug resistance [95]. In vitro ibrutinib induced significantly lower 
programmed cell death in the 2p+/CLL cells compared with the 2p−/CLL control 
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cells, indicating XPO1 overexpression associated with 2p  +  is associated with 
ibrutinib resistance in the 2p+/CLL cells [95]. Further studies are needed to investi-
gate if the combination of selinexor, a selective inhibitor of XPO1 currently in Phase 
1/2 clinical trials, with ibrutinib can enhance cell death in the 2p+/CLL cells.

�Activaiton of Prosurvival Pathways

�Canonical and Non-canonical NF-kB Signaling Pathways

NF-kB signaling is an integral important part of the BCR signaling pathway in B 
cell lymphoma [97]. In canonical NF-κB pathway, NF-κB activation relies on induc-
ible degradation of inhibitor of kappa B (IκBs), leading to nuclear translocation of 
various NF-κB complexes, predominantly the p50/RelA dimmer [98]. While, in a 
non-canonical (alternative) NF-κB pathway, the RelB/p52 NF-κB complex activa-
tion uses a mechanism that relies on the inducible processing of p100 instead of 
degradation of IκBα [99]. The deregulated non-canonical NF-κB signaling has asso-
ciated with hematologic malignancies [99]. In a study of ibrutinib-resistance in 
MCL, Rahal et al. revealed that the resistant MCL cell lines depended on the alterna-
tive NF-kB pathway rather than on the canonical pathway [100]. RNA sequencing 
and single nucleotide polymorphism arrays showed recurrent mutations in TNF 
receptor associated factor 2 (TRAF2) or baculoviral IAP repeat containing 3 
(BIRC3) in 15% of these individuals in ibrutinib-insensitive cell lines. The BIRC3 
mutations were not only less efficient at destabilizing NIK (also known as NF-kappa-
B-inducing kinase, mitogen-activated protein 3 kinase 14 or MAP3K14) but also 
markedly impaired in their ability to suppress p52 production [100]. And these MCL 
cell lines with alternative NF-κB pathway alterations are dependent on the NIK 
signaling both in vitro and in vivo, suggesting that NIK inhibition may offer a novel, 
targeted therapeutic strategy for this ibrutinib-resistant population of patients [100].

�PI3K-AKT/mTOR Pathway

PI3K-AKT/mTOR activation represents a crucial downstream event of BCR/pre-
BCR signaling [101]. The relapse-specific C481S mutation is often absent in 
patients with primary resistance or progression following transient response to ibru-
tinib, suggesting alternative mechanisms of resistance in MCL [102]. Chiron et al. 
found that primary ibrutinib resistance or transient response seems not to stem from 
defective ibrutinib inhibition of BTKWT in MCL cells but rather may involve sus-
tained PI3K–AKT activation [102]. Ma et al. found that inhibition of ERK1/2 and 
AKT, but not BTK phosphorylation, correlates well with the extent of cell death to 
BTK inhibition in MCL cell lines as well as in primary tumors [103]. RNA-Seq and 
gene set enrichment analysis (GSEA) revealed the marked upregulation of 

Y. Chu et al.



131

components of the c-Myc and mTOR signaling pathways in the ibrutinib-resistant 
MCL patient samples, indicating that the activation of the pathways may mediate 
ibrutinib resistance [104]. The role of PI3K-AKT pathway in ibrutinib resistance is 
also reported in DLBCL and WM. DLBCL Ibrutinib resistance cell lines were gen-
erated by continuous culturing of parental DLBCL cell lines in increasing concen-
trations of ibrutinib [105]. In the resistant cells, besides the increased expression of 
inhibitors of apoptosis (IAP) family members, survivin, cIAP2 (cellular inhibitor of 
apoptosis protein 2) and oncogenic BCL2 and BCL6, the deoxyribonucleic acid 
(DNA) damage repair pathway, and the checkpoint kinase 1 (CHK1), PI3K iso-
forms PI3Kα and PI3Kβ were upregulated with decreased expression of PI3Kδ and 
phosphatase and tensin homolog (PTEN) which is a PI3K negative regulator. When 
treating these resistant cells with the PI3Kβ/δ isoform targeting Drug KA2237, 
metabolic activity (survival) and surviving of these cells were reduced [105]. 
Although ibrutinib is highly effective in WM, no complete remissions in WM 
patients treated with ibrutinib have been reported to date, indicating the WM cell’s 
ability to maintain their survival under ibrutinib-induced stress [106]. Paulus et al. 
developed ibrutinib resistant WM cell lines to identify the potential mechanisms of 
ibrutinib resistance in WM cells [106]. These cells exhibited decreased survival 
dependency on BTK-mediated signaling, but phospho-AKT level was increased in 
ibrutinib resistant WM cells. When the resistance cells were treated with clinical-
grade allosteric pan-AKT inhibitor, MK2206, pAKT level was marked reduced and 
apoptosis was enhanced as indicated by poly [ADP-ribose] polymerase 1 (PARP-1) 
cleavage. Remarkably, when cells were treated concurrently with ibrutinib and 
MK2206, pBTK and pAKT levels were significantly reduced with more robust 
cleavage of PARP-1 and resistant tumor cell viability was synergistically reduced. 
This data demonstrated that drug combination strategies encompassing BTK + AKT/
PI3K inhibition may potentially overcome ibrutinib resistance in WM [106].

�B-Cell Lymphoma-2 (BCL-2) Family Members Mediated 
Resistance

BCL-2 was initially discovered as a part of the t(14;18) chromosomal translocation 
in patients with NHLs [107]. The dysregulation of BCL-2 leads to high levels of 
Bcl-2 protein in B-cells, which alters the balance between pro-apoptotic and anti-
apoptotic members of the Bcl-2 family [108]. The resulting inhibition of apoptosis 
is thought to lead to chemoresistance [108]. Recent studies show that Bcl-2 is 
involved in ibrutinib resistance. CLL patient samples treated ex vivo with ibrutinib 
or acalabrutinib and the primary samples from CLL patients on clinical trials of 
both drugs show enhanced mitochondrial Bcl-2 dependence without significantly 
altering overall mitochondrial priming [109]. The Bcl-2 family regulators profiles 
restored to pre-treatment levels in the samples of CLL patients that developed ibru-
tinib resistance [110]. Treatment of DLBCL cells with ibrutinib increased Bcl-2 
expression and combination treatment with Bcl-2 inhibitors and ibrutinib 
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completely inhibited tumor growth in murine models of ABC-DLBCL [111]. In 
ibrutinib resistant WM cell lines, apoptosis regulators Bcl-2 and Mcl-1 expression 
were increased [106]. With Bcl-2 inhibitor, venetoclax compromised mitochondrial 
function in ibrutinib-resistant WM cells by increasing mitochondrial outer mem-
brane permeability (MOMP) with induction of apoptosis [106]. These data demon-
strated that drug combination strategies encompassing BTK + Bcl-2 inhibition can 
potentially overcome ibrutinib resistance.

�Cell Cycle Deregulation

Cell cycle regulator Cycline D1, encoded by CCND1, binds and activates cyclin-
dependent kinase (CDK) 4 to phosphorylate and inactivate retinoblastoma (Rb) pro-
tein [112]. This event leads to G1/S cell cycle progression and cell proliferation [112].

High-throughput sequencing has consistently revealed CCND1 was frequently 
mutated in MCL [113]. Recently, Mohanty et al. found some recurrent mutations 
located in the N-terminus of CCND1, which interfere with T286 phosphorylation 
and lead deregulated CCND1 turnover and increased protein levels [114]. More 
importantly, these mutated CCND1-expressing MCL cells were more resistant to 
ibrutinib [114]. In another study, it was found that tissue-specific proliferation of 
ibrutinib resistant MCL cells was driven by the activation CDK4 [102]. Cyclin-
dependent kinase 4 specific inhibitor palbociclib prolonged early G1 arrest and sen-
sitized resistant MCL cells to ibrutinib killing, suggesting a strategy to override 
acquired ibrutinib resistance [102].

�Tumor Microenvironment Mediated Resistance

Tumor microenvironment (TME) is known as a critical regulator of immune escape, 
progression, metastasis of cancer, and tumor resistance to various therapies [115]. 
The complex cell-signaling relationship between MCL cells, TME and ibrutinib 
resistance, is currently under investigation but it is less studied in other types of 
B-cell lymphoma [116]. Zhao et al. recently revealed how the TME contributes to 
the development of acquired ibrutinib resistance in MCL [117]. They found that 
co-culture of MCL cells with lymph node stromal cells or bone marrow stromal 
cells significantly increased pBTK, pERK and pAKT in MCL cell lines and primary 
MCL cells. Ibrutinib resistant MCL cells had a marked increase in adhesion to stro-
mal cells and enhanced clonogenic growth in the presence of ibrutinib. Combining 
kinomics, longitudinal drug screening with ex vivo, in vivo TME, and patient-
derived xenograft models, Zhao et al. identified a major kinase network involving 
PI3K-AKT-mTOR/integrin b1-integrin-linked kinase (ILK) as a central hub for 
TME–lymphoma interactions mediating ibrutinib resistance [117]. When PI3K 
inhibitor dactolisib or mTOR inhibitor AZD8055 was combined with ibrutinib, cell 
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survival, b1 expression, cell adhesion and clonogenic growth were substantially 
inhibited in all ibrutinib resistant MCL lines and in patient samples of acquired 
ibrutinib resistant MCL. AZD8055 in combination with ibrutinib induced remark-
able inhibition of ibrutinib resistant MCL, reduction of pAKT, pS6K1, p4EBP and 
b1 expression levels and reduced cell adhesion to stromal cells in these xenograft 
tumor cells [117]. Their finding suggested that combined disruption of BCR signal-
ing and central pathways resulting from kinome reprogramming is critical for over-
coming ibrutinib resistance in MCL.

�Novel Approaches to Overcome BTK Inhibitors Resistance

�Overcome Ibrutinib C481 Mutation Resistance with Non-
Covalent Inhibitors of BTK

Based on the improved understanding of ibrutinib resistance, several strategies have 
been utilized to overcome BTK inhibitor especially ibrutinib resistance. The second-
generation BTK inhibitors such as acalabrutinib are covalent, target-specific and 
have shown improved clinical responses. However, these covalent inhibitors often 
lose potency against BTK C481 mutations. One strategy to treat C481-mutant based 
ibrutinib resistance is to develop small molecule BTK inhibitors that do not depend 
upon binding to the C481 site for inhibition of BTK. Non-covalent inhibitors GDC-
0853, SNS-062 (Vecabrutinib®), and GNE-431 have been evaluated in preclinical 
and clinical studies with potency against C481 mutant BTK [118–120]. GDC-0853 
is a novel non-covalent, reversible, selective, orally bioavailable, and ATP-
competitive inhibitor of BTK that effectively blocks BCR signaling in the treatment 
of B-cell malignancies including CLL [118]. In vitro studies showed that GDC-
0853 reduced the activations of BTK, PLCγ2, AKT, and ERK. Unlike ibrutinib, 
GDC-0853 inhibited signaling of both WT and C481S mutated BTK in transfected 
HEK293T cell lines and preserved NK cell mediated ADCC with clinical anti-
CD20 antibodies [121]. In a phase 1 trial, unlike ibrutinib, GDC-0853 was able to 
inhibit BTK C481S mutants in CLL and NHL patients, demonstrated by reductions 
in C-C motif chemokine Ligand 3 (CCL3), which is one of the biomarkers to assess 
systemic inhibition of BTK in B-cell lymphoma [118]. SNS-062 is another non-
covalent inhibitor of BTK unaffected by the C481S mutation. Fabian et al. found 
that SNS-062 and ibrutinib demonstrated comparable activity in inhibiting BTK, 
decreasing the expression of B cell activation markers, and reducing CLL cell via-
bility in in BTK wild type CLL cells [119]. More importantly, SNS-062 was not 
affected by BTK C481S mutation but the activities of ibrutinib and acalabrutinib 
were hindered. SNS-062 also showed 6 times more potent than ibrutinib and more 
than 640 times more potent than acalabrutinib against C481S BTK [119]. Finally, 
the investigators found that SNS-062 diminished stromal cell protection in CLL 
cells, suggesting the drug can reduce the protection from the TME to CLL [119]. 
Their findings support clinical investigation of SNS-062 in patients with acquired 
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resistance to covalent BTK inhibitors. A phase 1b study is currently recruiting B 
lymphoid cancers (NCT03037645). Non-covalent inhibitor GNE-431 also showed 
excellent potency against the C481S, C481R, T474I, and T474  M mutants with 
nanomolar potency in-vitro, in cells, and in whole blood [120]. These non-covalent 
inhibitors may provide a potentially effective treatment option to ibrutinib resistant 
patients, but further studies are needed to demonstrate their clinical response.

�Utilize Alternate Kinase Inhibitors to Overcome Ibrutinib 
Resistance

Researchers have proposed and investigated several other salvage approaches to 
overcome BTK inhibitors’ resistance, which include using alternate kinase inhibi-
tors. Based on an in vitro CLL proliferation model, Cheng et al. demonstrated that 
the ibrutinib resistant CLL cells were sensitive to the inhibition of dasatinib (block-
ing multiple tyrosine kinases including LYN and BTK), and SYK inhibitors 
(Cerdulatinib (PRT062070) and PRT060318) and idelalisib (PI3Kδ inhibitor) [74]. 
In a recent study, the finding of the increased incidence of PI3Kα in DLBCL sheds 
light on the molecular basis of the intrinsic resistance of DLBCL to PI3Kδ inhibi-
tion observed in the clinic [122]. Copanlisib is a predominant PI3Kα/δ dual inhibi-
tor [122]. It led to significantly reduced cell viability in-vitro in both ibrutinib-sensitive 
and -resistant ABC-DLBCL cell lines by suppression of p-AKT and blocking 
nuclear factor-κB activation driven by CD79mut, CARD11mut, TNFAIP3mut, or 
MYD88mut [122]. Copanlisib also demonstrated potent in vivo anti-tumor effect in 
ibrutinib-resistant CARD11mutand/or MYD88mut DLBCL mice models [122]. 
Dasatinib was identified as the most DLBCL-specific agent in a drug screen com-
posed of 2160 FDA-approved drugs and other targeted drugs. Notably, dasatinib 
overcomes Ibrutinib-resistance caused by BTK C481S mutation through FYN sup-
pression [123]. These results are consistent with the previous report.

�Combine BTK Inhibitors with Other Oncogenic Inhibitors

The second strategy is to utilize drug combination that targets multiple components 
or multiple oncogenic pathways (Table 6.4). Most of the reported combination stud-
ies are in preclinical evaluation with promising results. For example, addition of 
ONO/GS-4059 + entospletinib (SYK inhibitor) or idelalisib, had an additive effect 
on induction of apoptosis in primary CLL cells. The addition of ABT-199 to ento-
spletinib, ONO/GS-4059, or idelalisib showed additive to synergistic effects on 
induction of apoptosis in primary CLL cells, and increased the maximal level of 
apoptosis [124]. The safety and tolerability of the combination was evaluated in a 
Phase 1b clinical trial [125]. ONO/GS-4059 at up to 160 mg in combination with 
entospletinib up to 400 mg daily was safe and well tolerated [125]. The combination 
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Table 6.4  Summary of combination therapies with BTK inhibitors

BTK inhibitor
Combination 
reagents

Role of the 
combination reagent Diseases

Study 
stage Year Ref.

ONO/
GS-4059

Idelalisib or 
Entospletinib 
or ABT-199

PI3Kδ inhibitor, 
SYK inhibitor, 
Bcl-2 inhibitor

CLL Preclinical 2015 [124]

Acalabrutinib ACP-319 PI3Kδ inhibition CLL Preclinical 2017 [126]
ONO/
GS-4059

Idelalisib PI3Kδ inhibition ABC-
DLBCL

Preclinical 2017 [129]

ONO/
GS-4059

Entospletinib SYK inhibitor CLL Preclinical 2015 [124]

ONO/
GS-4059

Entospletinib SYK inhibitor CLL; 
Non-GCB 
DLBCL; FL; 
WM; MCL; 
SLL; MZL

Phase 1b 
clinical

2017 [125]

Ibrutinib AZD2014 mTOR1/2 inhibitor ABC-
DLBCL

Preclinical 2014 [128]

PLS-123 Everolimus mTOR inhibitor MCL Preclinical 2018 [167]
Ibrutinib Ulixertinib ERK1/2 inhibitor MYD88 

mutated WM 
ABC 
DLBCL

Preclinical 2016 [132]

Ibrutinib Pimasertib MEK1/2 inhibitor DLBCL 
MCL

Preclinical 2016 [168]

PLS-123 N/A BTK/ PLC-γ2 dual 
inhibitor

B cell 
lymphoma

Preclinical 2015 [133]

QLX138 N/A BTK/MNK dual 
inhibitor

B cell 
lymphoma

Preclinical 2016 [134]

MDVN1003 N/A BTK/PI3Kδ dual 
inhibitor

B cell 
lymphoma

Preclinical 2017 [135]

Pyrimidine 
derivatives 
compounds

N/A BTK/JAK dual 
inhibitor

B cell 
lymphoma

Preclinical 2018 [136]

Ibrutinib Venetoclax 
(ABT-199)

Bcl-2 inhibitor MCL, 
ABC-
DLBCL, FL

Preclinical 2015, 
2017

[138, 
140]

Ibrutinib Venetoclax Bcl-2 inhibitor MCL Phase 2 
clinical

2018 [139]

Acalabrutinib Venetoclax Bcl-2 inhibitor CLL Preclinical 2018 [169]
ONO/
GS-4059

Venetoclax 
(ABT-199)

Bcl-2 inhibitor CLL Preclinical 2015 [124]

Ibrutinib Rituximab Anti-CD20 antibody High risk 
CLL

Phase 2 
clinical

2014 [141]

Ibrutinib Rituximab Anti-CD20 antibody R/R MCL Phase 2 
clinical

2016 [142]

Ibrutinib Rituximab Anti-CD20 antibody Naïve FL Phase 2 
clinical

2016 [143]

(continued)
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of acalabrutinib with the PI3K-delta inhibitor ACP-319 significantly reduced CLL 
tumor proliferation and tumor burden in the peripheral blood and spleen with reduced 
NF-κB signaling and enhanced expression of BCL-xL and MCL-1 than single-agent 
therapy [126]. Vistusertib (AZD2014) is an ATP-competitive mTOR inhibitor, which 
can block the activity of both the mTORC1 (rapamycin-sensitive) and mTORC2 
(rapamycin- insensitive) complexes and is highly selective against PI3K superfamily 
kinases [127]. The combination of ibrutinib and AZD2014 was shown to strongly 
induce apoptosis in ABC-DLBCL by regulation of 4EBP1 and cap-dependent trans-
lation (CDT) as well as Janus kinase (JAK) 3 / signal transducer and activator of 
transcription (STAT) 3, NF-κB, STAT3, and mTOR pathways [128]. The combina-
tion treatment of another mTOR inhibitor everolimus and the second-generation 
BTK inhibitor PLS-123 significantly induced cell apoptosis, blocked cell cycle 

Table 6.4  (continued)

BTK inhibitor
Combination 
reagents

Role of the 
combination reagent Diseases

Study 
stage Year Ref.

Acalabrutinib Rituximab Anti-CD20 antibody R/R FL Phase 1/2 
clinical

2015 [144]

Ibrutinib R-CHOP Rituximab + 
cyclophosphamide, 
doxorubicin, 
vincristine, and 
prednisone

Naïve 
B-NHL

Phase 1b 
clinical

2014 [145]

Ibrutinib Bendamustine 
+ rituximab

a nitrogen mustard 
drug + anti-CD20 
antibody

Naïve or R/R 
NHL

Phase 1/1b 
clinical

2015 [146]

Ibrutinib Bendamustine 
+ rituximab

a nitrogen mustard 
drug + anti-CD20 
antibody

R/R CLL Phase 3 
clinical

2016 [147]

ONO/
GS-4059

Obinutuzumab Anti-CD20 antibody ABC-
DLBCL

Preclinical 2017 [149]

Ibrutinib CTL019 Anti-CD19 CAR T MCL Preclinical 2016 [152]
Ibrutinib CD19/

CD3-scFv-Fc
Bispecific antibody CLL Preclinical 2018 [155]

Ibrutinib ACY1215 HDAC6 inhibitor MCL Preclinical 2012 [156]
Ibrutinib Panobinostat HDAC inhibitor ABC-

DLBCL
Preclinical 2017 [157]

Ibrutinib Palbociclib CDK4 inhibitor MCL Preclinical 2014 [102]
Ibrutinib PF-00477736 Chk1 inhibitor MCL Preclinical 2018 [158]
Ibrutinib Bortezomib Proteasome inhibitor Bortezomib-

sensitive 
or – resistant 
DLBCL 
MCL

Preclinical 2013 [160]

Ibrutinib Carfilzomib Proteasome inhibitor MCL Preclinical 2014 [161]
Ibrutinib VS-6063 Focal adhesion 

kinase inhibitor
MCL Preclinical 2018 [164]
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progression and synergistically downregulates activation of BCR, AKT/mTOR, 
JAK2/STAT3 and MAPK signaling in MCL cell lines in vitro and effectively inhib-
ited MCL tumor growth in vivo in severe combined immunodeficiency SCID mice. 
These combinations promise to be attractive therapeutic approaches in patients. 
However, further investigations are needed on ibrutinib resistant tumor cells.

The combinations of BTK inhibitors with PI3K inhibitors, MEK1/2 inhibitor, 
ERK1/2 inhibitor, or PIM1 inhibitor have been investigated in BTK inhibitor resis-
tant B lymphoma cells with promising results. The combination of ONO/GS-4059 
and idelalisib was investigated in ibrutinib resistant DLBCL cells. The acquired 
ibrutinib resistant DLBCL cells, which had loss of A20 and BTK C481F mutation, 
were insensitive to both idelalisib and ONO/GS-4059 as single agents but were 
significantly inhibited with the combination of both agents [129]. The decrease in 
p-IκBα by the combination suggested that inhibition of MAPK and NF-κB pathways 
might be the mechanism that leads to the decreased cell viability seen with combi-
nation treatment in this resistant cell line [129]. A clinical trial is currently underway 
to evaluate the combination of idelalisib and ONO/GS-4059 (NCT02457598) [129]. 
Activation of the ERK pathway is a very frequent observation in mature B-cell lym-
phoid tumors [130] and is implicated in the resistance to ibrutinib [85]. Pimasertib 
is a highly selective and ATP non-competitive MEK1/2 inhibitor and currently being 
tested in clinical phase 1/2 trials [131]. The combination of pimasertib and ibrutinib 
induced apoptosis with an increase of cleaved poly ADP ribose polymerase (PARP) 
and is active in ABC-DLBCL xenografts. MYD88 mutated WM and ABC DLBCL 
cells with BTK C481S mutation showed persistent activation of PLCγ2-ERK1/2 
signaling [132]. Ulixertinib (BVD-523, VRT752271) is a highly selective ERK1/2 
inhibitor that is currently under clinical investigation. The combination of ulixer-
tinib with ibrutinib produced higher levels of tumor cell killing than either agent 
alone, and significantly reduced interleukin 6 (IL-6) and interleukin 10 (IL-10) 
secretions which are associated with prosurvival signaling pathways [132]. The 
findings provide rationale for the investigation of ERK1/2 inhibitors in ibrutinib 
resistant MYD88 driven WM and ABC-DLBCL disease mediated by BTK muta-
tions. As described in the early section, PIM1 inhibitor AZD-1208 may be a good 
choice to combine with ibrutinib to suppress ibrutinib resistance in ABC-DLBCL 
cells with mutations in PIM1 through NF-kB pathway [80].

Dual inhibitors have emerged as an attractive strategy by inhibiting the cata-
lytic activity of BTK and other kinases such as PLC- γ2 kinase, Mitogen-Activated 
Protein Kinase interacting kinase (MNK kinase), PI3Kδ kinase and JAK3. PLS-
123 displayed impressive potency against BTK Tyr551 and PLC-γ2 Tyr1217 
phosphorylation [133]. It significantly reduced the phosphorylation of the BCR 
downstream signal pathways such as AKT/mTOR and MAPK [133]. Gene 
expression profile analysis further suggested that the different selectivity profile 
of PLS-123 led to significant downregulation of oncogenic gene tyrosine-protein 
phosphatase non-receptor type 11 (PTPN11) expression [133]. In addition, PLS-
123 mediated TME to attenuate lymphoma cell adhesion and migration [133]. 
MNK kinase is one of the key downstream regulators in the RAF/MEK/ERK 
signaling pathway and controls protein synthesis via regulating the activity of 
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eukaryotic translation initiation factor 4E (eIF4E) [134]. Through a structure-
based drug design approach, a potent BTK/MNK dual kinase inhibitor (QLX138) 
was discovered with covalent binding to BTK and non-covalent binding to MNK 
ability [134]. QLX138 enhanced the antiproliferative and apoptosis efficacies in-
vitro against a variety of B-cell lymphoma cells, which respond moderately to 
BTK inhibitor in-vitro [134]. MDVN1003 is a first-in-class dual inhibitor of BTK 
and PI3Kδ kinases [135]. MDVN1003 induced cell death of a B-cell lymphoma 
cell line and it reduced tumor growth in a B-cell lymphoma xenograft model more 
effectively than either ibrutinib or idelalisib [135]. JAK3 plays an important role 
in survival of B cells by regulating the activity of STAT3 (the antiapoptotic tran-
scription factors signal transducer and activator of transcription 3), STAT5 and 
the antiapoptotic PI3K-AKT pathway and its downstream targets [136].

Using diphenylpyrimidine derivatives (DPPYs) as scaffolds, Ge et  al. synthe-
sized a new class of DPPY derivatives bearing a variety of the flexible C-2 aniline 
side chains [136]. Some of the pyrimidine derivatives showed high inhibitory 
potency of BTK and JAK3. Flow cytometric analysis, and a xenograft model for 
in vivo evaluation indicated the efficacy and low toxicity of 2 derivatives in the treat-
ment of B-cell lymphoma [136]. These primary studies indicate that simultaneous 
inhibition of BTK and other kinases’ activity might be a new therapeutic strategy 
for B-cell lymphoma and may overcome BTK inhibitor resistance.

�Combine BTK Inhibitors With BCL-2 Inhibitors

The BH3-only mimetic Venetoclax® (ABT-199) selectively inactivates BCL-2 and 
is a promising drug for treatment of BCL2-dependent cancers [137]. The preclinical 
study shows that the combination of ibrutinib and Venetoclax® displayed strongly 
synergistic effects in MCL cell lines and primary cells from recurrent MCL patients, 
mechanistically, by perturbation of p-BTK and p-AKT mediated survival signals 
and of BCL2 family proteins [138]. A single-group, phase 2 study of the combina-
tion was conducted in R/R MCL patients compared with historical controls [139]. 
The CR rate at week 16 was 42%, which was higher than the historical result of 9% 
at this time point with ibrutinib monotherapy (p < .001) [139]. Seventy-eight per-
cent of the patients with a response were estimated to have an ongoing response at 
15 months [139]. The estimated rates of PFS were 75% at 12 months and 57% at 
18 months [139]. Minimal residual disease (MRD) clearance was confirmed by flow 
cytometry and allele-specific oligonucleotide polymerase chain reaction (ASO-
PCR), 67% and 38% respectively [139]. The side effects were generally low grade 
[139]. Additionally, the combination of ibrutinib and venetoclax also synergistically 
suppressed cell growth in ibrutinib-resistant ABC-DLBCL and FL cells that overex-
pressed BCL-2 in a preclinical study [140].
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�Combine BTK Inhibitors With Immunotherapies (Anti-CD20 
Antibodies, Anti-CD19 CAR T Cells, CD19/CD3 Bispecific 
Antibody)

The activity and safety of adding ibrutinib or acalabrutinib to rituximab based thera-
pies (alone, with rituximab-cyclophosphamide, doxorubicin, vincristine, and pred-
nisone (R-CHOP), or with bendamustine) have been evaluated in early phase trials 
in patients with high-risk CLL, R/R MCL, naïve FL, R/R FL or R/R B-NHL [141–
147] (Table 6.4). The encouraging results merit further investigation of the combi-
nations in phase 3 trials in BTK resistant patients. ABC-DLBCL often has low 
response rate to BTK inhibitors ibrutinib or ONO/GS-4059 [66, 148]. The combina-
tion of ibrutinib combined with rituximab did not result in improved efficacy com-
pared with respective monotherapy [149]. To overcome BTK inhibitor’s resistance 
in ABC-DLBCL, the combination of ONO/GS-4059 with obinutuzumab (glycoen-
gineered Type II CD20 antibody) or rituximab was evaluated for ABC-DLBCL in a 
preclinical study [149]. The combination was significantly better than the respective 
monotherapy with tumor growth inhibition of 90% for the obinutuzumab combina-
tion and 86% for the rituximab combination [149]. This result indicates that the 
combination of the second-generation inhibitor with rituximab and particularly 
obinutuzumab may be an effective treatment for resistant B-cell lymphoma.

Besides the combination with the antibody-based therapy, chimeric antigen 
receptor engineered T cells may be another good choice for the combination. 
Infusion of anti-CD19 CAR+ autologous T-cells (CART19, CTL019) into patients 
with B-cell lymphomas such as CLL and DLBCL leads to dramatic clinical 
responses [150, 151]. Taking the advantage of the vastly different mechanisms of 
action of CTL019 and ibrutinib, in a preclinical study, the combination of ibrutinib 
with CTL019 augmented the antitumor effect compared to single agent and leaded 
to prolonged remissions in MCL xenografts [152]. Strikingly, a recent study found 
that anti-CD19 modified CAR-T cells induced 71% ORR in CLL patients after 
ibrutinib failure [153]. Since ibrutinib has been shown to improve T-cell function in 
CLL [154], a novel CD19/CD3-scFv-Fc bispecific antibody was developed to work 
as an adjunct with ibrutinib to target ibrutinib-resistant disease [155]. CD19/CD3-
scFv-Fc was shown to have the ability to eliminate ibrutinib resistant CLL cells in 
vitro and in vivo [155].

�Combine BTK Inhibitors with Inhibitors Targeting Other 
Cellular Processes

The inhibitors involved in histone deacetylation, cell cycle regulation, protein deg-
radation, cell stress and TME also show promising anti-tumor effects when com-
bined with ibrutinib for resistant lymphoma diseases (Table 6.4). Treatment with 
ibrutinib plus ACY1215, a selective histone deacetylase 6 (HDAC6) inhibitor, 
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resulted in a three-fold increase in apoptosis induction in MCL tumor cell lines, 
pointing to a synergistic effect of BTK and HDAC6 inhibition in MCL [156]. 
Panobinostat, a non-selective histone deacetylase inhibitor, inhibited MyD88-driven 
NF-κB activation, and enhanced ibrutinib efficacy in MyD88 mutant ABC-DLBCL 
[157]. The unrestrained proliferation of relapsed lymphoma cells after ibrutinib 
treatment suggests that simultaneous targeting of cell cycle regulators may override 
some mechanisms of resistance [102, 158]. Cyclin-dependent kinase 4 (CDK4) spe-
cific inhibitor palbociclib has been shown to prolong early G1 arrest and sensitized 
resistant MCL cells to ibrutinib killing [102]. Checkpoint kinase 1 (Chk1) inhibitor 
PF-00477736 also showed a synergistic anti-tumor effect with ibrutinib in-vitro in 
MCL cell lines that are sensitive or resistant to ibrutinib [158]. The ubiquitin-
proteasome system degrades a variety of intracellular proteins, and plays an impor-
tant role in maintenance of the balance between pro and anti-apoptotic proteins, and 
signal transduction regulation [159]. Synergistic interactions between ibrutinib and 
proteasome inhibitor bortezomib (the first approved therapeutic proteasome inhibi-
tor) or carfilzomib (a selective proteasome inhibitor of the 20S proteasome) have 
been observed in a variety of DLBCL and MCL cells [160, 161]. However, further 
evaluations are needed for ibrutinib resistant cells. Additionally, heat shock proteins 
as molecular chaperones are exploited by tumor cells to buffer malignancy-
associated cellular stress and facilitate the maturation, activation, and stabilization 
of many oncoproteins [162]. It was reported that heat shock protein 90 (HSP90) 
inhibitor AUY922 overcame nonclassical NF-κB signaling and BTK C481S in 
MCL. Focal adhesion kinase (FAK) functions downstream of integrins and mediate 
signals from the extracellular matrix to tumor cells to enhance tumor cell prolifera-
tion, survival and migration in response to stromal interaction [163]. A recent study 
shows the role of FAK in bone marrow stroma-mediated enhancement of MCL 
proliferation and survival and the combined treatment of ibrutinib and defactinib 
(VS-6063), a FAK inhibitor in ibrutinib resistant MCL cells, was highly synergistic, 
and overcame the resistance by abrogation of the NF-κB signaling pathway [164].

�Conclusion

The BCR signaling pathway plays a crucial role in the development of B-cell lym-
phomas, providing a rationale to therapeutically target this pathway (Fig.  6.1). 
Several inhibitors targeting the members of this pathway have been developed and 
evaluated. Among these agents, BTK inhibitor ibrutinib with impressive clinical 
response and tolerability was the first to receive FDA approval for the treatment of 
patients with relapsed MCL and CLL. Ibrutinib has also shown promising activity 
in WM, FL and ABC-type DLBCL (Table 6.1). Ibrutinib has less kinase targeting 
specificity. It binds to BTK but also several other kinases. To improve the therapeu-
tic effect, second-generation BTK inhibitors with more selective kinase activity pro-
files are developed and evaluated in early clinical trials (Table  6.2). With the 
promising clinical response and safer profile, acalabrutinib was granted Breakthrough 
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Therapy Designation by the FDA for patients with MCL who have received at least 
one prior therapy. Since many B-cell lymphoma depends on BCR signaling, the 
potential utility of BTK inhibitors will be tremendous. However, some patients 
show PRs or no response to BTK inhibitors at initial treatment and others developed 
disease progression and drug resistance during ibrutinib treatment. A better under-
standing of the resistant mechanism will allow accurate molecular classification of 
patients and assist in designing or choosing targeted therapies unique to that resis-
tant mechanism. Advances in molecular genomics such as RNA-seq and whole 
genome sequencing have been instrumental in uncovering the ibrutinib resistant 
mechanisms. These mechanisms include mutational resistance in BTK and in other 
proteins, chromosomal abnormality, activation of prosurvival pathways, BCL-2 
family members mediated resistance, and tumor microenvironment mediated resis-
tance and potential other mechanims that are beyond our discussion in this review 
(Fig. 6.2 and Table 6.3). The resistant mechanisms of the second-generation BTK 
inhibitors are less studied and further investigation is needed to compare with ibru-
tinib resistance. Non-covalent inhibitors of BTK have been developed to bypass 
C481 mutation in ibrutinib. Extensive preclinical studies of utilization of the inhibi-
tors of alternate kinases other than BTK in the BCR pathway, and the combination 
therapies of BTK inhibitors with other oncogenic inhibitors, or with inhibitors 
involved in histone deacetylation, cell cycle regulation, protein degradation, cell 
stress and TME are encouraging to move on to clinical trials to overcome ibrutinib 
resistance. Furthermore, the combinations of BTK inhibitors with the novel agents 
of immunotherapies such as anti-CD20 antibodies, anti-CD19 CAR T cells, CD19/
CD3 bispecific antibodies hold great promise for eradicating resistance and achiev-
ing better clinical outcomes in patients with B-cell lymphoma.
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Chapter 7
Resistance to Checkpoint Blockade 
Inhibitors and Immunomodulatory Drugs

Anthony N. Audino and Mitchell S. Cairo

Abstract  Cancer therapy has evolved from surgery and radiation to multi-agent 
chemotherapy, and although we have seen decreased mortality and increased cure 
rates, most of this therapy has continued to focus on the tumor itself, and not on the 
tumor microenvironment. Various cells within the tumor microenvironment have 
been implicated in leading to resistance to immune therapy. Through a complex 
system of steps, T-cells become activated after presentation of a specific antigen. 
Because continuous T-cell activation can lead to lymphoproliferation and unwanted 
autoimmunity, the human T-cell immune system has evolved into a process of 
checks-and-balances, referred to as immune checkpoints, that allows for co-
inhibitory receptors to inhibit T-cell activation. Through the use of check point 
inhibitors, we have seen patients with cancers refractory to multiple treatments have 
durable responses, and in some, long term remissions. Some of the most studied 
inhibitors include Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T 
Lymphocyte-Associated Antigen 4 (CTLA-4), although more have been identified. 
As we continue to explore possible treatment options for cancer, we must also be 
diligent in preemptively investigating how and why some patients will become 
resistant to these treatments, and what, if any, actions can be taken to circumvent 
this resistance.

Keywords  Checkpoint blockade inhibitors, PD-1, CTLA-4 · Lymphoma · 
Resistance
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Abbreviations

APC	 Antigen Presenting Cells
ASCT	 Autologous Stem Cell Transplant
BV	 Brentuximab Vedotin
CAF	 Cancer Associated Fibroblasts
COG	 Children’s Oncology Group
CTLA-4	 Cytotoxic T-Lymphocyte Associated Antigen-4
FDA	 Food and Drug Administration
HL	 Hodgkin Lymphoma
HSC	 Hematopoietic Stem Cells
ICAM	 Intracellular Activation Motifs
ICOS+	 Inducible Costimulatory
IDO	 Indoleamine 2, 3-Droxygenase
ITAM	 Immunoreceptor Tyrosine Based Activation Motifs
LAG-3	 Lymphocyte Activation Gene 3
MDSC	 Myeloid Derived Suppressor Cells
MHC	 Major Histocompatibility Complex
MHC I	 Major Histocompatibility Complex Class I
MHC II	 Major Histocompatibility Complex Class II
NSCLC	 Non-small Cell Lung Cancer
ORR	 Objective Response Rate
OS	 Overall Survival
PD-1	 Programmed Cell Death Protein 1
PD-L1	 Programmed Cell Death Ligand 1
PD-L2	 Programmed Cell Death Ligand 2
PFS	 Progressive Free Survival
R/R	 Relapsed/Refractory
TAM	 Tumor Associated Macrophages
TCR	 T-Cell Receptors
TIM-3	 T-cell Immunoglobulin Mucin 3
Treg	 Regulatory T-cells

�Introduction

Cancer therapy has evolved over the last several decades from surgery and radiation 
to multi-agent chemotherapy, and although we have seen decreased mortality and 
increased cure rates, most of this therapy has continued to focus on the tumor itself, 
and not on the tumor microenvironment. As cancer therapy continues to advance, 
the cancer scientific community has begun to recognize that this microenvironment 
plays an active role in tumor development and progression, via recruitment of other 
cell through the release of signals and chemokines [1]. With this knowledge, many 
have speculated that the tumor microenvironment may play a role in resistance to 
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certain therapies, such as immune checkpoint blockade, and a reason why some 
patients may not have a continued durable response. Due to this, new therapies that 
focus on targeting the tumor microenvironment, in addition to the tumor itself, may 
be lead to better outcomes.

The tumor microenvironment is a dynamic milieu of immune cells that interact 
with each other and with the tumor, providing an atmosphere of chronic inflamma-
tion where the tumor can continue to grow and thrive [2]. Various cells within the 
tumor microenvironment have been implicated in leading to resistance to immune 
therapy, including regulatory T-cells (Treg), myeloid derived suppressor cells 
(MDSC), tumor associated macrophages (TAM) and cancer associated fibroblasts 
(CAF) [3, 4]. Various tumors, including Hodgkin lymphoma (HL), distinguished by 
the presence of Reed-Sternberg cells, can produce chemo-attractants that not only 
select for the infiltration of Treg cells instead of T-helper or T-effector cells, but also 
reprogram tumor infiltrating T-cells to less active Treg cells [5]. The Treg cells have 
the ability to suppress effector T-cells by secreting their own inhibitory cytokines, 
such as IL-10, IL-35, and transforming growth factor β [6]. The presence of MDSCs 
within the tumor microenvironment has not only been implicated in decreasing effi-
cacy of checkpoint inhibitors, but also in leading to tumor cell invasion, metastases, 
and promoting angiogenesis [6]. MDSC also express Indoleamine 2,3-dioxygenase 
(IDO), which promotes naïve T-cells into Treg cells [3]. TAMs have been shown to 
directly suppress T-cell function response via their expression of suppressor ligands, 
such as programmed death-ligand 1 (PD-L1) [7]. They are also known to secrete 
certain chemokines that suppress T-effector function directly and indirectly with the 
recruitment of Treg cells [7]. Finally, CAF can affect the success of therapy by 
directly excluding T-cells into the microenvironment via production of chemokines, 
or by impeding the entry of T effector cells into the microenvironment by producing 
an extracellular matrix that the cells cannot physically enter [1, 3].

This review will focus on the components of immune cell regulation within the 
tumor microenvironment and potential mechanisms of resistance to immune check-
point blockade.

�T-Cell Lymphocyte Physiology

T-lymphocytes, initially derived from pluripotent hematopoietic stem cells, trans-
verse the thymus gland in order to start the T-cell maturation process. This process 
consists of  the addition of cell surface markers and rearrangement of a series of 
germline genes which encode the T-cell receptor (TCR) [6, 8]. Initially, 
T-lymphocytes will express both CD4 and CD8, but ultimately the majority of 
T-cells will differentiate into either CD4 or CD8 T-cells as they migrate through the 
thymus prior to entering the peripheral blood circulation [9]. CD4 cells, also known 
as T-helper cells, typically interact with major histocompatibility complex class II 
(MHC II) molecules while CD8 lymphocytes, known as cytotoxic T-cells, interact 
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with major histocompatibility complex class I (MHC I) molecules on the surface of 
antigen presenting cells (APC) [10, 11].

�T-Cell Receptor

The TCR is a molecule that resides on the surface of the T-lymphocyte. The TCR 
recognizes antigens or peptides that are presented by an APC via the major histo-
compatibility complex (MHC). The majority of TCRs consist as a complex of  a 
heterodimer of α and β chains. The complex itself has a large extracellular domain, 
but only a short intracellular domain that is not able to produce an adequate signal 
transduction. It is therefore noncovalently bound to another complex known as CD3 
on the cell surface. CD3 is a co-receptor made up of four units that contain intracel-
lular activation motifs (ICAM) [8]. Another unit considered to be part of the CD3 
complex, Zeta (ζ), consists of a short extracellular domain and longer intracellu-
lar domain, also containing ICAM. Assembly of all these components, which takes 
place in the endoplasmic reticulum, is required to produce a stable complex that can 
be exported to the cell surface. In addition to the TCR, other co-receptors are needed 
in order to establish proper binding. Helper T-cells will have a CD4 co-receptor as 
part of the complex, while cytotoxic T-cells will have a CD8 co-receptor [12]. It is 
these CD4 and CD8 co-receptors which help the TCR recognize peptides that are 
presented by the APC via the MHC. It is this recognition that begins the process of 
T-cell activation.

�T-Cell Activation

Activation of T-cells is a process that requires multiple steps. The first step of this 
process requires an interaction between the T-cell receptor and the antigen being 
presented via the MHC molecule. This process is very specific in regards to T-cells, 
meaning that MHC I molecules will only be recognized by CD8+ T-cells and MHC 
II molecules will be recognized by CD4+ T-cells. It is this interaction that causes a 
downstream affect via several kinases and phosphatases, such as Lck, FYN, CD45 
and Zap70, which ultimately leads to the phosphorylation of immunoreceptor tyro-
sine based activation motifs within the cytoplasm of T-cells [8, 13] (Fig. 7.1). The 
second step in the process requires stimulation of co-receptors, such as CD28. The 
ligands of the CD28 co-receptor, B7–1 and B7–2, are expressed on the APC as well 
as stromal cells [6, 14]. It is the second step in this process that it is needed in order 
to make the T-cells fully functional and not anergic. The binding of CD28 with 
B7–1 and B7–2 has been shown to be required to promote T-cell activation, clonal 
expansion and acquisition of effector functions [15]. Once the T-cell has recognized 
the specific antigen signal, the last step in activation process takes place. In the last 
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step, cytokines (IL-2, IL-7, IL-15) produced by the APC induce the T-cell into func-
tional activation.

�T-Cell Inhibition

Because continuous T-cell activation can lead to lymphoproliferation and unwanted 
autoimmunity, which would be detrimental to the host, the human T-cell immune 
system has evolved into a process of checks-and-balances, referred to as immune 
checkpoints, that allows for co-inhibitory receptors to inhibit T-cell activation [15]. 
Some of the most studied inhibitors include programmed cell death protein 1 (PD-
1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), although there are 
more than twenty that have been identified, including lymphocyte activation gene 3 
(LAG-3), T-cell immunoglobulin mucin 3 (TIM-3), VISTA, KIR, TIGIT, BTLA and 
CD39 (Fig. 7.2 and Table 7.1) [15, 16].

Fig. 7.1  T-cell activation. The role of the TCR/CD3 complex and the CD4 receptor in the initia-
tion of early protein tyrosine phosphorylation. On binding to the peptide/MHC complex, the earli-
est recognizable event is activation of the Src-kinases, Lck and Fyn. This requires removal of a 
C-terminal phosphate (red dot) by the tyrosine phosphatase, CD45. This allows the kinase to 
unfold and to phosphorylate ITAM motifs (blue rectangles in the intracellular domains of CD3δ, 
ϵ, γ, and ζ). Tandem ITAM phosphorylations are required for the recruitment of ZAP-70, which 
attaches by a pair of SH2 domains (yellow half circles) [13]
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Fig. 7.2  Co-stimulatory and co-inhibitory molecules on T-cells (a) and co-inhibitory ligands on 
tumor cells (b). Potential targets of ICI on lymphocytes and tumor cells. (a) Activated T-cells (and 
natural killer cells to a certain extent) express multiple co-stimulatory and co-inhibitory check-
point molecules on their surface, all of which are potential targets for immunomodulation by 
checkpoint agonists (co-stimulatory molecules) or inhibitors (co-inhibitory molecules). (b) Tumor 
cells evade the host immune system by expressing ligands for co-inhibitory checkpoint molecules 
on T cells, hence targeting these ligands leads to inactivation of inhibitory pathways and reactiva-
tion of tumor-specific T cells. TCR: T-cell receptor; MHC-I: major histocompatibility complex I; 
TAA: tumor-associated antigen; LAG-3: lymphocyte-activation gene 3; CTLA-4: cytotoxic 
T-lymphocyte-associated protein 4; PD-1: programmed cell death protein 1; TIM-3: T-cell immu-
noglobulin and mucin-domain containing-3; TIGIT: T-cell immunoreceptor with Ig and ITIM 
domains; BTLA: B- and T-lymphocyte attenuator; VISTA: V-domain immunoglobulin suppressor 
of T-cell activation; KIR: killer cell immunoglobulin-like receptor; ICOS: inducible T-cell co-
stimulator; GITR: glucocorticoid-induced TNFR-related protein; HVEM: Herpesvirus entry medi-
ator, PD-L1: programmed death-ligand 1; PD-L2: programmed death-ligand 2 [16]
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Table 7.1  FDA approved checkpoint inhibitors [6, 16, 22–25, 27, 29–32, 34, 37, 40, 43, 45, 46, 
64, 65]

Target
Year 
approved Indication Efficacy

Side effects (Grade 
3/4)

Ipilimumab CTLA-4 2011 Unresectable or 
metastatic 
melanoma; 
expanded to 
pediatric patients 
≥12 years of age 
in 2017

Meta-analysis 
of 10 
prospective 
studies of 
1861 patients; 
3 year 
survival rate 
of 22% with 
some having 
10 year 
durable 
response

Pruritus, mucositis, 
immune mediated 
colitis, diarrhea, 
hepatotoxicity, 
endocrinopathies.

Nivolumab PD-1 2014 Metastatic 
melanoma, 
NSCLC, 
lymphoma, renal 
cell carcinoma, 
head and neck 
squamous 
cancers, 
hepatocellular 
carcinoma, 
metastatic DNA 
mismatch 
repair-deficient or 
microsatellite 
instability-high 
colorectal cancer

Melanoma: 
ORR of 40% 
and 1 year OS 
72.9% 
Hodgkin 
lymphoma: 
ORR ranging 
from 63–75%

Rash, pruritis, 
fatigue, diarrhea, 
nausea, pyrexia, 
colitis, 
hepatotoxicity, 
hypothyroid, 
arthralgia, dyspnea

Ipilimumab + 
Nivolumab

CTLA-4/
PD-1

2015 Metastatic 
melanoma

3 year OS 
58%

Diarrhea, 
hepatotoxicity

Pembrolizumab PD-1 2017 Metastatic 
melanoma, 
PD-L1+ NSCLC, 
head and neck 
squamous cancers

Melanoma: 
2 year OS 
55% Hodgkin 
Lymphoma: 
ORR 65%, 
with 16% CR 
and 48% PR

Fatigue, dyspnea, 
nausea, vomiting, 
diarrhea, and rash

Atezolizumab PD-L1 2016 Urothelial cell 
carcinoma, 
NSCLC

Urothelial 
cell: ORR 
28% NSCLC: 
Longer PFS

Infusion-related 
reaction, pneumonia, 
hypoxia, fatigue, 
anemia, 
musculoskeletal 
pain, hepatotoxicity, 
dysphagia, and 
arthralgia, 
pneumonitis, 
hepatitis, colitis, and 
thyroid disease

(continued)
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�Check Point Inhibitors

�CTLA-4

The first report of CTLA-4 being present on activated T-cells was in 1987 by Brunet 
and colleagues [17]. It  was not until 1996 that Brunet et  al. demonstrated that 
CTLA-4 blocking monoclonal antibodies were active in animal tumor models [18]. 
Initially, due to its similarities to CD28, CTLA-4 was thought to participate in the 
stimulation process of T-cells, but it was verified a few years later that it instead had 
the opposite role and functioned as an inhibitor to T-cell activation [15, 19]. Further 
investigation revealed that CTLA-4 induced T-cells enter an anergic state, as if the 
second step of T-cell activation had not occurred [19].

CTLA-4 is expressed on activated T-cells and competes with CD28, as they both 
share the common ligand, B7–1 [5]. It has been shown that the affinity and avidity 
for B7–1 in CTLA-4 is greater than CD28 [15, 20]. The interaction between B7–1 
and CTLA-4 allows for the downregulation of T-cell activation, which in a normal 
host, results in the prevention of autoimmunity and tissue damage [15, 16, 21]. 
CTLA-4 induces T-cell inactivation of two distinct mechanisms. First, CTLA-4 
competitively binds with B7–1 and B7–2, resulting in decreased ability for CD28 to 
interact with these ligands, and therefore allowing for stimulation of anti-tumor 
T-cells (Fig. 7.3a). Secondly, CTLA-4 has been shown to inhibit various intracellular 

Table 7.1  (continued)

Target
Year 
approved Indication Efficacy

Side effects (Grade 
3/4)

Avelumab PD-L1 2017 Metastatic Merkle 
cell carcinoma

Previous 
treatment: 
ORR 33% 
(11.4% CR 
and 21.6% 
PR) 
Treatment 
naïve: ORR 
60% (13.8% 
CR and 
48.3% PR)

Infusion-related 
reaction, 
pneumonitis, colitis, 
hepatitis, adrenal 
insufficiency, 
hypo- and 
hyperthyroidism, 
diabetes mellitus, 
and nephritis

Durvalumab PD-L1 2017 Urothelial cell 
carcinoma, 
NSCLC

Pre-treatment 
NSCLC: 
ORR 28%, 
longer PFS

Infection, 
pneumonitis, 
hepatitis, colitis, 
thyroid disease, 
adrenal 
insufficiency, and 
diabetes

CTLA-4, cytotoxic T lymphocyte-associated antigen 4; PD-1, programmed cell death protein 1; 
PD-L1, programmed cell death protein ligand; ORR, objective response rate; NSCLC, non-small 
cell lung cancer; PFS, progression-free survival; CR, complete response; PR, partial response
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signaling pathways, including NF-kB, AP1, MAPK, ERK and c-Jun NH2 terminal 
kinase signaling, leading to compromised Interleukin 2 (IL-2) production [15, 20].

From a clinical standpoint, CTLA-4, sometimes referred to as “the godfather of 
checkpoint inhibitors”, was the first checkpoint inhibitor  ulitized [21]. The first 
studies revolved around patients with melanoma. One of the first agents, ipilim-
umab, administered alone or combined with other agents, such as a glycoprotein 
100 peptide vaccine or dacarbazine, showed an objective response in patients with 
metastatic melanoma, leading to significantly longer overall survival (OS). 
Unfortunately, Grade 3 and Grade 4 adverse events were seen in as many as 15–56% 
of patients [22–25]. Their initial responses were encouraging, and as these patients 
were followed years out from their treatment, a durable response was noted in in 
approximately 20% of patients treated with this drug vs. placebo [6, 23].

As with melanoma, the first checkpoint inhibitor that was used in HL was also 
ipilimumab. This was initially done as a phase 1 study in fourteen patients who had 
relapsed or refractory (R/R) disease and had failed an allogeneic stem cell trans-
plant. With a single dose, 2 of the 14 patients achieved complete remission (CR) [5, 
16, 26]. This led to further research in larger studies. Further Phase 1/2 studies, 
combining ipilimumab with Brentuximab vedotin (BV) in eighteen R/R HL patients, 
showed an objective response rate (ORR) of 72%, with 50% of these patients being 

Fig. 7.3  Mechanism of T-cell activation through TCR and inhibition through CTLA-4 (a) and 
blockade by antibodies to CTLA-4 (b). Two immunologic signals are required for T-cell activation 
in the lymph node: stimulation of the T-cell receptor (TCR) by the MHC (immunologic signal 1), 
and stimulation of CD28 by the B7 costimulatory molecules (immunologic signal 2). However, 
binding of the B7 costimulatory molecules to CTLA-4 blocks immunologic signal 2, and therefore 
blocks T-cell activation. Antibody blockade of CTLA-4, for example, by ipilimumab, derepresses 
signaling by CD28, permitting T-cell activation [63]
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in CR [16, 27]. Finally, in 2011, 15 years after the discovery that CTLA-4 blocking 
antibodies were successful in animal tumor models, the US Food and Drug 
Administration (FDA) approved ipilimumab as the first inhibitory checkpoint inhib-
itor in the treatment of Stage IV melanoma (Fig. 7.3b).

�PD-1

PD-1 was identified shortly after CTLA-4 in 1992, and demonstrated inhibition to 
T-cells during long term antigen exposure or during times of inflammatory response 
or infection [15, 21, 24]. PD-1 has two main ligands that bind with it, PD-L1 and 
programmed death ligand 2 (PD-L2) (Fig.  7.4a). PD-L1 has been shown to be 
expressed in various cells, including hematopoietic cells, peripheral tissues and 
malignant cells, while PD-L2 seems to be exclusively associated with hematopoi-
etic cells, including dendritic cells, macrophages and mast cells [15, 16, 21]. While 
CTLA-4 is induced early on in the activation process, PD-1 has been shown to be 
induced at the later effector phase, therefore protecting cells in the periphery. PD-1 
accomplishes this by generating a signal to prevent phosphorylation of intracellular 
signals, reducing the activation of the T-cell [16, 28]. This is a common mechanism 
used by tumor cells to evade the immune system [6, 15].

Clinically, there are several PD-1 blocking antibodies under investigation for 
various tumor types (Fig. 7.4b). In 2016, the FDA approved pembrolizumab (an 
anti-PD-1 checkpoint inhibitor) for melanoma, after two pivotal studies, 
KEYNOTE-001 and KEYNOTE-002 [29]. The first study, KEYNOTE-001, a phase 

Fig. 7.4  Suppression of T-Cell activation through TCR by PD-1 binding to PD-1 Ligand (a) and 
activation of T-Cell by inhibitory PD-1 by antibody blockade (b). During long-term antigen expo-
sure, such as occurs in the tumor milieu, the programmed death 1 (PD-1) inhibitor receptor is 
expressed by T-cells (a); it suppresses the effect of the TCR on T-cell activation. Blockade of PD-1 
or its ligand (b) (e.g., by pembrolizumab or nivolumab) derepresses TCR signaling, thereby per-
mitting T-cell activation [63]
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I study, looked at 411 patients with advanced melanoma. Pembrolizumab showed a 
durable response in 34% of treated patients after 18  months. This response was 
maintained in 81% of patients, and median OS was over 2 years [30]. This was fol-
lowed by KEYNOTE-002 which consisted of patients who had disease progression 
while being treated or after being treated with ipilimumab. This study compared 
pembrolizumab versus standard chemotherapy. The pembrolizumab arm showed 
superiority over standard chemotherapy with longer duration of response as well as 
lower number of Grade 3 and Grade 4 adverse events [31]. Finally, another study, 
KEYNOTE-006, comparing ipilimumab vs. pembrolizumab, again showed superi-
ority of the latter, concluding that the new standard of care for advanced melanoma 
should be pembrolizumab [32].

As PD-1 blocking antibodies were being tested in patients with melanoma, stud-
ies were also being done in patients with R/R classical HL. Several of the first stud-
ies were done using pembrolizumab [33]. KEYNOTE-013 [34] was a Phase 1b 
study looking at the use of pembrolizumab in classical HL patients who had already 
failed treatment with BV. Thirty-one total patients were enrolled onto the study. The 
majority of the patients had already failed an autologous stem cell transplant 
(ASCT) and greater than four lines of previous therapy. Patients were given pem-
brolizumab on a biweekly schedule until disease progression was noted. Results 
revealed an ORR of 65%, with 16% of patients reaching CR and 48% of patients 
reaching a partial response. The progression free survival (PFS) and OS were 69% 
and 100% at 24 weeks, and almost half of the responders had a durable response at 
1 year follow-up (Fig. 7.5a–e) [34].

The follow-up Phase 2 study, KEYNOTE-087, showed similar results [35]. This 
larger study had a total of 210 enrolled patients. These patients were split into 3 
cohorts determined by their progression (cohort 1: patients who had failed ASCT 
and BV; cohort 2: patients who had failed salvage therapy plus BV but were ineli-
gible for ASCT; cohort 3: patients who had failed ASCT but did not receive BV). 
Patients in this study received a higher dose of medication (200 mg versus 100 mg) 
and it was given every 3 weeks. The ORR in this study was 69%, with 22.4% of 
patients achieving CR [35].

Following the success of pembrolizumab, other PD-1 inhibitors have undergone 
investigation. A Phase 1 study, CheckMate 039, was one of the first studies to look 
at nivolumab as a possible agent in refractory hematologic malignancies [36]. This 
study had a total of 23 heavily pretreated patients, most of which had already failed 
ASCT and BV. Patients received therapy every 3 weeks. The ORR for this group 
was a rather impressive 87%, with 17% of patients achieving CR, 70% of patients 
achieving PR and the remainder of patients having stable disease [36].

The follow-up nivolumab study was a Phase 2 study, CheckMate 205, which also 
studied R/R HL patients [37]. This study enrolled 243 patients that were split into 3 
cohorts based on exposure to BV (cohort 1: patients who had never received BV; 
cohort 2: patients who received BV only after ASCT; cohort 3: patients who received 
BV both before and after ASCT). Patients received therapy biweekly. Results 
showed an ORR ranging from 63–75% between all of the groups with a median PFS 
of 14.7 months [37].
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Due to the overall success of these trials,  in May of 2016, nivolumab was 
approved by the FDA for patients with relapsed classical HL and patients who pro-
gressed following ASCT and BV. Also, due to the high response rate and overall 
safe side effect profile, studies have expanded to the younger patients, including 
pediatric and adolescent and young adults with R/R HL. The Children’s Oncology 
Group (COG) is now enrolling patients as young as 5 years of age and up to 30 years 
of age on a risk adapted phase 2 study that is using nivolumab and BV followed by 
BV and bendamustine for patients with R/R CD30 positive classical HL 
(NCT02927769) [38].

�Combined Checkpoint Blockade Therapy

Due to the success of CTLA-4 and PD-1 inhibitors as monotherapy, researchers 
began to investigate possible approaches using a combination of both these inhibi-
tors. In one of the first studies, CheckMate 069, 142 untreated melanoma patients 

Fig. 7.5  Response to Pembrolizumab in adults with relapsed/refractory cHL waterfall maximal 
change (a); change from baseline in each Patient (b); response duration (c); probability of PFS (d) 
and OS (e) in adults with relapse/refractory cHL treated with Pembrolizumab. Response to treat-
ment. (a) Maximum percentage change from baseline in target lesions. (b) Change from baseline 
in target lesions. (c) Treatment exposure and response duration. Three patients had a formal 
response assessment before the protocol-required time point of 12  weeks. One patient only 
received one dose of pembrolizumab, discontinued treatment because of toxicity at 4 weeks, and 
had nonprotocol scans to assess response, which showed CR. The other two patients had nonpro-
tocol scans to confirm the clinical impression of progressive disease before the 12 week time point. 
Abbreviations: CR, complete response; PD, progressive disease; PR, partial response; SD, stable 
disease [34]
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were randomized to combined therapy with ipilimumab and nivolumab versus 
ipilimumab alone. This study showed a significantly greater PFS and as well as 
ORR in the group who received combination therapy versus monotherapy [39]. This 
study went on to show a 2 year OS of 64% in the combination group versus 54% in 
the monotherapy group [40].

The next study went one step further with 3 cohorts where patients received 
combination therapy with nivolumab and ipilimumab, nivolumab alone or ipilim-
umab alone [40]. Results of this study revealed that in patients with advanced mela-
noma, a significantly longer 3 year OS in the combination group of 58%, versus 
52% and 34% in the nivolumab and ipilimumab groups, respectively (Fig. 7.6) [40].

�PD-L1

Shortly after studies using PD-1 inhibitors started showing promise, other possible 
checkpoint inhibitors started to be investigated. As discussed previously, PD-L1, a 
known ligand for PD-1, is expressed by various cells, including hematopoietic cells, 
peripheral tissues and malignant cells. Overexpression of PD-L1 and PD-L2 has 
been associated with alterations in chromosome 9p.24.1, and these alterations have 
been identified in the malignant Reed-Sternberg cells of classical HL [20, 41, 42]. 
Similar alterations have been found in primary mediastinal B cell lymphoma and 
diffuse large B cell lymphoma [20]. Roemer et al. used a 9p24.1 fluorescent in situ 
hybridization assay to determine incidence of alterations in patients with classical 
HL. Their results showed that almost all patients had some type of alteration in the 
PD-L1 and PD-L2 loci, with the majority consisting of copy gain and amplification 
[42]. They also found that the highest level of expression, ones with amplification, 
seemed to have a higher incidence in patients with advanced disease, whereas early 
stage disease had less amplification. Further investigation showed a difference in 
patient outcome based on percent amplification. By dividing patients into 3 groups, 
early stage-favorable, early stage-unfavorable and advanced stage, based on clinical 
features and percent amplification, they identified a significant decrease in PFS 
related to an increased percent amplification. This led to their speculation that a pos-
sible change in treatment may be the addition PD-L1 blockade to standard therapy 
in these patients [42].

When PD-L1 binds to PD-1, it results in the T-cell entering an exhausted state, 
making it unavailable to be targeted by T-cells, therefore promoting cancer growth. 
One of the first PD-L1 immune checkpoint inhibitors approved for bladder cancer 
was atezolizumab [28]. This checkpoint inhibitor gained FDA approval following a 
study of 310 patients with inoperable, locally advanced or metastatic urothelial can-
cer that had failed platinum therapy. In this study, the ORR was 28% for those 
patients who expressed ≥5% PD-L1 positive tumor infiltrating immune cells [43].

A few months after being approved by the FDA for bladder cancer, atezolizumab 
was then approved for non-small cell lung cancer (NSCLC) [43]. In a Phase 3 trial 
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Fig. 7.6  Probability of PFS (a) and OS (b) in patients with advanced melanoma treated with ipili-
mumab, nivolumab or both. (a) Shows the Kaplan–Meier estimates of progression-free survival as 
assessed by the investigator. Patients were followed for a minimum of 36 months (dashed line). 
The median progression-free survival was 11.5 months (95% CI, 8.7–19.3) in the nivolumab-plus-
ipilimumab group and 6.9 months (95% CI, 5.1–9.7) in the nivolumab group, as compared with 
2.9 months (95% CI, 2.8–3.2) in the ipilimumab group. The rate of progression-free survival at 
2 years was 43% in the nivolumab-plus-ipilimumab group and 37% in the nivolumab group, as 
compared with 12% in the ipilimumab group. The 3 year rate of progression-free survival was 39% 
in the nivolumab-plus-ipilimumab group and 32% in the nivolumab group, as compared with 10% 
in the ipilimumab group. (b) Shows the Kaplan–Meier estimates of overall survival. The median 
overall survival was not reached in the nivolumab-plus-ipilimumab group and was 37.6 months 
(95% CI, 29.1 to not reached) in the nivolumab group and 19.9 months (95% CI, 16.9–24.6) in the 
ipilimumab group. The overall survival rate at 2 years was 64% in the nivolumab-plus-ipilimumab 
group and 59% in the nivolumab group, as compared with 45% in the ipilimumab group. The 
3 year rate of overall survival was 58% in the nivolumab-plus-ipilimumab group and 52% in the 
nivolumab group, as compared with 34% in the ipilimumab group. Symbols (tick marks, triangles, 
and circles) indicate censored data [40]
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comparing atezolizumab versus docetaxel, there was a significant improvement in 
OS in the atezolizumab  arm (13.8  months versus 9.6  months, P  =  0.0003). The 
atezolizumab group was also shown to have less severe side effects than the 
docetaxel group [44]. Further Phase 3 studies compared the addition of atezoli-
zumab to standard platinum based therapy versus standard therapy alone, and pre-
liminary results are in favor of the addition of atezolizumab, which demonstrated 
longer survival (8.3 months versus 6.8 months, P < 0.0001) [45].

Finally, avelumab, another PD-L1 inhibitor, has been studied in multiple tumors. 
A previous Phase 1b study in patients with advanced stage lung cancer showed an 
ORR in 12% of patients as well as stable disease in 38% [45]. This inhibitor has also 
been studied in metastatic Merkel cell carcinoma, a rare neuroendocrine cancer 
originating from the skin. Two cohorts were studied – Cohort A: those patients who 
had failed prior therapy; Cohort B: chemotherapy-naïve patients. In cohort A, an 
ORR was seen in 33% of patients (11.4% with CR and 21.6% with PR) with approx-
imately 74% of these patients having a durable response over 1 year. Cohort B had 
a greater ORR with 60% of patients seeing a response, 13.8% with CR and 48.3% 
with PR [46].

�Resistance to Checkpoint Blockade

With the addition of checkpoint inhibitors  as a possible treatment options for 
refractory/relapsed cancers, the scientific community has been reinvigorated in 
finding possible cures for some of the most difficult cancers to treat. Early studies 
have shown overall promising results in patients, with some patients even achiev-
ing a CR, something that could not be done with standard therapy. Unfortunately, 
although initial responses were positive in some patients, a number of patients did 
not seem to benefit at all from the same therapy. In some of the early melanoma 
studies, up to 60% of patients never benefited from treatment with a checkpoint 
inhibitor [2, 47, 48]. In addition, in those who did respond initially, up to 25% 
developed relapsed disease that no longer responded to the therapy [48]. Currently, 
studies are underway to determine why checkpoint inhibitors may benefit some 
patients, but not others, even though they have the same presumed cancer. Those 
who never benefited are thought to have a certain profile that may indicate a pri-
mary resistance, which may contain a component of adaptive immune resistance, 
while those with initial response and later loss of this response may have developed 
possible genetic mutations leading to an acquired resistance to treatment. Resistance 
to PD-1 checkpoint inhibitors can be due to both extrinsic and intrinsic factors 
relating to the tumor.
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�Extrinsic Factors

�Lack of Tumor Infiltrating T-Cells

The basis of PD-1 immune checkpoint inhibitors treating tumor cells is that there are 
functional T-cells present within the tumor microenvironment in order to carry out 
the cytotoxic effects needed to destroy tumor cells. Recent studies have shown that 
some tumor microenvironments, especially at times of relapse, are lacking these ever 
important T-cells [2, 48, 49]. Interestingly, it was demonstrated by Zaretzky et al. that 
the T-cells, although present and abundant, were only present at the tumor margins, 
and not within the tumor itself, making them less effective in exerting cytotoxic activ-
ity [49]. Another recent study concluded that pre-existing CD8+ T-cells were essen-
tial in anti-PD-1 therapy. This study showed that those patients whose pre-treatment 
tumor cells had a larger number of CD8+ T-cells as well as PD-1/PD-L1 expression, 
both in the margins and within the tumor microenvironment, had the most tumor 
regression [50]. This has led to some investigators proposing different strategies for 
use of immune checkpoint inhibitors based on type of tumor microenvironment 
(whether tumors are PD-L1+ and if they have tumor infiltrating CD8+ T-cells) [51].

Others have also reported the significance of tumor infiltrating T-cells in the suc-
cess of checkpoint blockade. One such study showed that sufficient T-cell infiltration, 
and not necessarily PD-L1 expression, was essential for an adequate response to 
checkpoint inhibition [52]. Due to this, they went on to postulate and show certain 
techniques that could be used in order to increase the population of infiltrating T-cells 
into the tumor microenvironment. By using the basis of previous studies that showed 
tumors can suppress chemokine production, Tang et al. have demonstrated that target-
ing LIGHT (also known as tumor necrosis factor superfamily member 14) can 
increase lymphocyte infiltration by activating lympotoxin β receptor (LTβR) signal-
ing (Fig. 7.7). The activation of LTβR then induces the production of chemokines and 
adhesion molecules in tumor tissues which ultimately attract lymphocytes to the 
tumor [52]. They theorized that this technique could overcome checkpoint inhibitor 
resistance in some cases.

Still others have shown that it may not only be the quantity of tumor infiltrating 
T cells that are present, but also the type. A recent publication has shown that 
Anti-PD-1 and Anti-CTLA-4 checkpoint inhibitors use distinct cellular mecha-
nisms, resulting in induction of different types of T-cells. While both these targeting 
agents induce subsets of exhausted-like CD8 T-cells, only CTLA-4 blockade 
induces the expansion of inducible costimulatory (ICOS+) Th1-like CD4 T-cells 
[53]. This data was eloquently demonstrated by using immunogenic MC38 colorec-
tal tumors from mice treated with anti-CTLA-4 and anti-PD-1 (Fig.  7.8). 
Interestingly, Wei et al. went on to demonstrate that the tumor infiltrating ICOS+ 
CD4 T cells that were induced by anti-CTLA-4 and anti-PD- 1 had separate and 
distinct transcriptional responses, with only 3 being shared among the top 15 cel-
lular pathways. While anti-PD-1 seemed to modulate mitochondrial and oxidative 
phosphorylation pathways, anti-CTLA-4 modulated pathways which involved cell 
cycle regulation (Fig. 7.9).
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�T-Cell Exhaustion

As stated earlier, the main function of PD-1 is to inhibit T-cells during long term 
antigen exposure or during times of inflammatory response or infection [15, 21, 24]. 
Chronic exposure to specific antigens can result in T-cell exhaustion, and more spe-
cifically, the level of expression of PD-1 signaling has been shown to define the 
level of exhaustion [47]. In the presence of exhausted T-cells, the PD-1high pheno-
type appears to affect the efficacy of PD-1 inhibitors, making them resistant to this 
treatment. In contrast, exhausted T-cells in the presence of the PD-1low or PD-1intermediate 
phenotype appear to respond to therapy, indicating that these cells can be “reinvigo-
rated” and induced from their exhausted state in order to function against tumor 
cells [2, 47]. T-cells have also been shown to express other inhibitory immune 
checkpoints, such as LAG-3, TIM-3 and CTLA-4 possibly leading to severe exhaus-
tion [6, 47]. Finally, the use of PD-1 independent pathways, such as release of IDO 
or adenosine from tumor cells has been shown to suppress T-cell function during 
treatment with PD-1 checkpoint inhibitors [6, 47].

Fig. 7.7  Targeting non-T cell-inflamed tumor tissues by antibody-guided LIGHT.  Targeting 
tumors with tumor necrosis factor superfamily member LIGHT activates lymphotoxin β-receptor 
signaling, leading to the production of chemokines that recruit massive numbers of T cells [52]

7  Resistance to Checkpoint Blockade Inhibitors and Immunomodulatory Drugs



172

Fig. 7.8  Identification of checkpoint-blockade-responsive MC38 tumor-infiltrating T-cell popula-
tions. (a) Density t-SNE plots of an equal number of CD3ε+ MC38 tumor-infiltrating T-cells from 
each treatment group; (b) overlaid t-SNE plot displaying equal number of events from each treat-
ment group (control, blue; anti-CTLA-4, green; anti-PD-1, red); (c) plot of CD8/Treg ratios dis-
played on a per-mouse basis with mean ± SD (p< 0.05, unpaired t test); (d) t-SNE plot of MC38 
infiltrating T-cells overlaid with color-coded clusters; (e) t-SNE plot of infiltrating T-cells overlaid 
with the expression of selected markers; (f) frequency of T-cell clusters displayed on a per-mouse 
basis with mean ± SD (∗, control versus anti-CTLA-4; #, control versus anti-PD-1; p < 0.05, 
Dunnett’s multiple comparison). T-cell compartments are denoted including CD8, Treg, and CD4 
effector (CD4eff) and (g) heatmap displaying normalized marker expression of each T-cell cluster. 
Representative data from three independent experiments is shown [53]
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�Innate Anti-PD-1 Resistance (IPRES) Signatures

Within the tumor microenvironment, there consists a milieu of cells, including other 
immune cells, stromal cells and an extracellular matrix [2]. It is these cells that help 
protect the tumor cell from being recognized as foreign. Twenty-six transcriptomic 
signatures, referred to as IPRES signatures, have been described as being related to 
PD-1/PD-L1 resistance [54]. These 26 signatures have been shown to express genes 
which are related to angiogenesis, wound healing, mesenchymal transition, cell 
adhesion, and extracellular matrix remodeling [2, 6, 54].

Fig. 7.9  Differential Transcriptional Regulation in MC38 Tumor-Infiltrating CD4 T Cells follow-
ing Anti-CTLA-4 and Anti-PD-1. (a) RNaseq analysis of FACS sorted MC38 tumor infiltrating 
activated ICOS+ CD4 T-cells. Heatmap of genes with significant differential mRNA expression 
identified by negative bionomial generalized linear models with likelihood ratio tests, comparing 
both treatment and control groups. Genes and samples are organized by two-way hierarchical 
clustering; (b) Venn diagram of genes identified as modulated significantly by only one or both 
anti-CTLA-4 and anti-PD-1 as determined by negative binomial generalized linear models with 
Wald tests, comparing each treatment to control samples. A 1% FDR cutoff was used for both 
statistical models; (c) The top 15 pathways modulated by anti-CTLA-4 compared to control identi-
fied by Ingenuity pathway analysis (IPA) of RNaseq expression analysis; (d) The top 15 pathways 
modulated by anti-PD-1 compared to control identified by IPA; (e) The top 15 pathways modulated 
by anti-CTLA-4 versus anti-PD-1 blockade as identified by IPA [53]
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�Intrinsic Factors

The cornerstone of PD-1 checkpoint inhibitors is the reactivation of T-cells and their 
ultimate recognition of tumor cell antigens, resulting in destruction of tumor cells. 
In order to evade this process, tumors have developed mechanisms of neoantigen 
loss, or total lack of antigen presentation.

�Tumor Immunogenicity

Recent data has shown a correlation between immunogenic mutations and response 
to checkpoint inhibitors. Specifically, tumors with 5–10 somatic mutations per 
mega-base of DNA have shown the most response to anti-PD-1 therapy. This is in 
contrast to tumors, especially those with between 0.1–1 somatic mutation per mega-
base of DNA, which have shown almost no response to therapy [55]. Tumors such 
as melanoma, renal cell carcinoma and non-small cell lung cancer, have shown a 
high immunogenic mutation load [56]. One study examined somatic nonsynony-
mous mutation burden in patients with NSCLC and its relation to PD-1 blockade 
[57]. Rivzi et  al. concluded that those patients with a higher median number of 
nonsynonymous mutations were more likely to have a durable response. 73% of the 
patients with a high nonsynonymous burden experienced durable clinical benefits as 
compared to 13% with a low number of mutations. Rivzi et al. went on to demon-
strate that both ORR was better, 63% versus 0% and PFS was better, 14.5 months 
versus 3.7 months, in this group (Fig. 7.10). It has also been demonstrated that some 
tumors can acquire the ability to decrease the number of neoantigens being pre-
sented, thus leading to decreased recognition by T-cells. One such study showed 
that in relapsed NSCLC patients, the loss of 7–18 putative mutation associated anti-
gens lead to clones resistant to PD-1 therapy [58]. The peptides produced by these 
neoantigens promoted T-cell expansion in autologous T-cell cultures, thus loss of 
these peptides affected immune response [58].

�Mutations of β-2-Microglobulin (β2M)

In addition to a quantitative loss of neoantigens, another mechanism of resistance is 
the loss of antigen presenting components, such as β2M, needed for presentation of 
the antigen to the T-cell. It has been well established that β2M is essential in the 
formation and transport of the MHC – I molecule to the surface of the presentation 
cell. Through its interactions with its alpha chain components, it allows for stability 
of the MHC I molecule during presentation of an antigen [59]. With a mutation of 
β2M, the end result is lack of antigen presentation, and ultimately lack of recogni-
tion by cytotoxic T-cells, allowing the tumor cell to evade apoptosis [6]. A recent 
study focusing on classical HL showed that of 108 tumor samples, 79% had 
decreased or absent expression of β2M/MHC I complex and concluded that those 
patients with a decrease in β2M/MHC I complex had a shorter PFS [60].
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�Mutation of Janus Kinase 1 and 2 (JAK1 and JAK2)

Another method of tumor escape exists with mutations of JAK1 and JAK2. In a 
recent publication by Zaretzky et al. [49], they examined 4 biopsy samples from 
diagnosis and relapse of melanoma patients who had initial response to PD-1 ther-
apy, followed by relapse of disease. In 2 of these samples, it was noted that there 
was a loss of function mutation in JAK1 and JAK2. It has previously been well 
established that Interferons produced by tumor specific T-cells can recognize certain 
antigens, such as PD-L1 on tumor cells, resulting in an anti-tumor effect by cyto-
toxic T-cells [54]. By acquiring loss of function mutations in JAK1 and JAK2, the 
end result is decreased response to interferon gamma, resulting in decreased PD-L1 
antigens and thus allows for tumor proliferation [48, 49].

Fig. 7.10  Nonsynonymous mutation burden associated with clinical benefit of anti–PD-1 therapy. 
(a) Nonsynonymous mutation burden in tumors from patients with DCB (n = 7) or with NDB 
(n = 9) (median 302 versus 148, Mann-Whitney P = 0.02); (b) PFS in tumors with higher nonsyn-
onymous mutation burden (n = 8) compared to tumors with lower nonsynonymous mutation burden 
(n = 8) in patients in the discovery cohort (HR 0.19, 95% CI 0.05–0.70, log-rank P = 0.01); (c) 
Nonsynonymous mutation burden in tumors with DCB (n = 7) compared to those with NDB (n = 8) 
in patients in the validation cohort (median 244 versus 125, Mann-Whitney P = 0.04); (d) PFS in 
tumors with higher nonsynonymous mutation burden (n = 9) compared to those with lower nonsyn-
onymous mutation burden (n = 9) in patients in the validation cohort (HR 0.15, 95% CI 0.04–0.59, 
log-rank P = 0.006); (e) ROC curve for the correlation of nonsynonymous mutation burden with 
DCB in discovery cohort. AUC is 0.86 (95% CI 0.66–1.05, null hypothesis test P = 0.02). Cut-off 
of ≥178 nonsynonymous mutations is designated by triangle and (f) Nonsynonymous mutation 
burden in patients with DCB (n = 14) compared to those with NDB (n = 17) for the entire set of 
sequenced tumors (median 299 versus 127, Mann-Whitney P = 0.0008); (g) PFS in those with 
higher nonsynonymous mutation burden (n = 17) compared to those with lower nonsynonymous 
mutation burden (n = 17) in the entire set of sequenced tumors (HR 0.19, 95% CI 0.08–0.47, log-
rank P = 0.0004). In (a), (c), and (f), median and interquartile ranges of total nonsynonymous 
mutations are shown, with individual values for each tumor shown with dots [57]

7  Resistance to Checkpoint Blockade Inhibitors and Immunomodulatory Drugs



176

�Expression of CD73 and Production of Adenosine

CD73 expression has been identified in several types of cancer, including colon can-
cer, melanoma and leukemia, and has also been linked to poor prognosis in triple 
negative breast cancer [61]. Recent studies have shown that CD73 leads to a down-
stream production of adenosine, which ultimately leads to tumor-induced immune 
suppression via activation of A2A receptors on T cells [62]. While therapy targeted 
against CD73 has not shown much effect, new studies looking at Adenosine Receptor 
2A Blockade are showing an increase in the efficacy of immune therapy with PD-1 
inhibitors. Beavis et al. showed that a dual blockade with PD-1 and A2A enhanced 
expression of interferon-gamma by CD8+ T cells leading to growth inhibition of 
tumors [62]. Because there are several A2A antagonists that have undergone safety 
studies  in other diseases, such as Parkinson’s disease, it is possible that studies 
using them in combination therapy with checkpoint inhibitors may not be far away.

�Conclusion

Cancer therapy has evolved over the last several decades and we have been fortunate to 
observe advancements in immunotherapy leading to successes in the treatment and 
cure of several cancers. While there remain some cancers that relapse or are refractory 
to therapy, there continues to be advancements in the field of tumor immunity with the 
development of novel drugs with different mechanisms of action, one such mechanism 
being the use of checkpoint inhibitor blockade. Through the use of such drugs, we have 
seen patients with cancers refractory to multiple treatments have durable responses, 
and in some, even go into a complete long term remissions. While this has been excit-
ing, there has been a realization that not everybody will have this same response, and 
even those who do initially, may not have a continued durable response. As we con-
tinue to explore possible treatment options for cancer, we must also be diligent in pre-
emptively investigating how and why some patients will become resistant to these 
treatments, and what, if any, actions can be taken to circumvent this resistance.
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Chapter 8
Resistance to Bispecific T-Cell Engagers 
and Bispecific Antibodies

Stacy L. Cooper and Patrick A. Brown

Abstract  Bispecific antibodies are an emerging novel therapeutic construct used to 
treat a variety of cancers. These drugs utilize a small fusion protein to link two 
single-chain antibodies, allowing for simultaneous binding of two different epit-
opes. Bispecific T-cell engagers (BiTE) are a subset of bispecific antibodies that 
bind the target antigen on the cancer cell while simultaneously binding a patient’s 
endogenous T-cell. By bringing these two cells in close proximity, the patient’s own 
immune system can be redirected to attack the cancer cell. Several mechanisms of 
resistance to these drugs exist, including extramedullary escape, loss of the target 
antigen, and inadequate endogenous immune response.

Keywords  Bispecific antibodies · BiTE · Blinatumomab · Non-Hodgkin  
lymphoma · Acute lymphoblastic leukemia

Abbreviations

B-ALL	 B Acute Lymphoblastic Leukemia
BiTE	 Bi-Specific Antigen Receptor T-Cells
CAR-T	 Chimeric Antigen Receptor T-cells
CNS	 Central Nervous System
CR	 Complete Response Rate
CRS	 Cytokine Release Syndrome
DLBCL	 Diffuse Large B-Cell Lymphoma
EM	 Extramedullary
EFS	 Event-Free Survival
FDA	 Food and Drug Administration

S. L. Cooper (*) · P. A. Brown 
Division of Pediatric Oncology, Department of Oncology, Johns Hopkins University School 
of Medicine, Baltimore, MD, USA
e-mail: scoope30@jhmi.edu; pbrown2@jhmi.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24424-8_8&domain=pdf
mailto:scoope30@jhmi.edu
mailto:pbrown2@jhmi.edu


182

HL	 Hodgkin Lymphoma
MCH	 Major Histocompatibility Complex
MLL	 Mixed Lineage Leukemia
NHL	 Non-Hodgkin Lymphoma
NK	 Natural Killer
ORR	 Overall Response Rate
OS	 Overall Survival
PD-L1	 Programmed Death Ligand 1
PD-1	 Programmed Death Protein 1
R/R	 Relapsed/Refractory
scFv	 Single-chain Fragment Variable
TCR	 T-Cell Receptor
Treg	 Regulatory T-Cell

�Introduction to Bispecific Antibodies and Bispecific T-Cell 
Engagers (BiTE)

Bispecific antibodies are novel therapeutic constructs able to recognize and concurrently 
bind two separate epitopes. Bispecific T-cell engagers (BiTEs) are a specific subset of 
bispecific antibodies that link the single-chain fragment variable (scFv) of a monoclonal 
antibody against the tumor antigen with a scFv from a monoclonal antibody directed 
against CD3 to bind an effector T cell. These two scFV are connected by a small linker 
protein that allows the fragments unrestricted rotation. By bringing the endogenous 
T-cell in close contact with the tumor cell, this allows the patient’s own immune system 
to be redirected to attack the tumor cells through the recruitment and activation of poly-
clonal T-cells. Simultaneous binding of the T-cell and the tumor cell to the BiTE results 
in T-cell activation, manifested by upregulation of CD25 and CD69, as well as secretion 
of activating cytokines such as IL-2, IL-4, IL-6, IL-10, IFN-y and TNF-α. This tempo-
rary cytolytic synapse produces tumor cell death through perforin/granzyme-induced 
apoptosis. While both antibody fragments must be bound to cause cell death, this pro-
cess is not dependent on the tumor antigen specificity of the T-cells, nor does it require 
costimulatory molecules [1]. Importantly, this antibody construct therefore allows this 
response to be independent of major histocompatibility complex (MHC), costimulatory 
molecules or T-cell receptor (TCR recognition) requirements, which are common 
escape mechanisms for many other antibody therapies [2, 3].

�Blinatumomab

Blinatumomab is a BiTE composed of two single-chain antibodies, with murine 
anti-CD3 on its C terminus and human anti-CD19 on its N terminus, covalently 
linked by a flexible peptide, thus simultaneously binding the patient’s CD3+ 
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endogenous T-cells as well as the CD19+ cells expressed by the malignant clone. 
CD19 is an attractive target for B-lineage hematologic malignancies, given its spec-
ificity for B-cells and near universal expression in these neoplasms. Its relatively 
small size compared to monoclonal antibodies, only 55kDa, allows for the target-
effector cells to be brought into close proximity, and is also thought to improve 
penetration into lymphomatous regions of disease [4]. Once both cells are bound, 
T-cell mediated cytotoxicity occurs via perforin and granzyme release, forming 
channels within the cell membrane of the tumor cell through which granzyme 
passes to activated intracellular caspases and cause cell death via apoptosis. 
Following this cell death, the T-cell disengages from the blinatumomab-B cell com-
plex and is able to target another malignant cell. Blinatumomab’s low effector to 
target cell ratio ensures that the same T-cell can be redirected to lyse multiple malig-
nant CD19+ cells [5]. The amount of disease burden at the initiation of therapy with 
blinatumomab has consistently been shown to be an important prognostic factor, 
with patients with >50% bone marrow blasts having significantly worse outcomes. 
This finding suggests that the ratio of effector to target cells is an important factor 
in optimal response [3].

Immunologic profiling of patients enrolled in the initial studies if blinatumomab 
for relapsed/refractory B-ALL was used to study the endogenous T-cell response to 
blinatumomab induced cytotoxic killing of the target cell. The peripheral blood 
T-cells in these patients were shown to consistently drop within hours of initiation 
of blinatumomab, with subsequent recovery to half baseline levels within 3 days 
and fully back to baseline by day 9. In many patients, this increase in T lymphocytes 
continued, reaching a mean maximal expansion by day 17 of treatment. This 
included polyclonal expansion of both CD4+ and CD8+ T-cells, with the greatest 
relative increase seen in effector memory T-cells (TEM) and terminally differentiated 
memory cells (TEMRA) cells. This temporary reallocation of the peripheral T-cells 
after initiation of blinatumomab appeared to be secondary to release of cytokines, 
specifically IL-2, IL-6, IL-10, IFN-y and TNFα [6].

Blinatumomab is generally well tolerated, with fever, headache and peripheral 
edema as the most common adverse events; and anemia, thrombocytopenia and 
hypokalemia as most common serious adverse events [7]. Two rare but serious side 
effects, cytokine release syndrome (CRS) and neurologic sequelae are usually 
reversible and manageable with supportive care [8]. Cytokine release syndrome is a 
potentially serious side effect related to a systemic inflammatory response, and 
manifests with fever, headache, and malaise and can progress to hypotension and 
multi-organ dysfunction. It is usually able to be managed with intravenous fluid 
resuscitation and the use of tocilizumab, an antibody targeting the IL-6 receptor, 
with severe refractory cases requiring the use of corticosteroids. Neurologic 
sequelae are another potential serious side effect of blinatumomab, manifesting 
with the entire spectrum of neurologic signs and symptoms, from headache and 
confusion to seizure and coma. It is managed with supportive care, as tocilizumab 
is not effective, with steroids are indicated in more severe, refractory cases that 
require intervention. Both CRS and neurotoxicity almost always resolve without 
any residual side effects [9].
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The initial phase 1 studies of blinatumomab were performed with adult patients 
with R/R B-cell non-Hodgkin lymphoma (NHL), and demonstrated that the drug 
was safe and feasible to give, with the potential for efficacy particularly in patients 
with diffuse large B cell lymphoma (DLBCL) [10]. In a phase 2 study of blinatu-
momab in adults with heavily pre-treated R/R DLBCL, twenty-one evaluable 
patients had an overall response rate (ORR) of 43%, with complete response (CR) 
in 19%. Notably, three of the four complete responses were durable, long-term 
responses in the absence of any additional treatment [11].

Much of the subsequent clinical experience with blinatumomab has been with 
patients with pre-B acute lymphoblastic leukemia (B-ALL), another hematologic 
malignancy that almost always expresses CD19. The first phase 2 study in adults with 
R/R B-ALL enrolled 36 patients, with 69% achieving CR/CRi, almost all of which 
were MRD negative remissions [12]. A multi-institutional, phase 3 trial in adults with 
R/R B-ALL enrolled more than 400 patients, randomized to either blinatumomab 
alone or standard cytotoxic chemotherapy, with the patients receiving blinatumomab 
having significantly higher rates of CR, event free survival (EFS) and overall survival 
(OS) [7]. The first phase 1/2 study of blinatumomab in pediatric patients with R/R 
B-ALL showed a similar side effect profile with a CR rate of 40% [13]. Most recently, 
a single arm, phase 2 trial treated 118 adults with B-ALL who achieved an MRD posi-
tive (> 0.1%) CR, and demonstrated that blinatumomab therapy in these patients 
achieved MRD negativity in 78%, with 54% relapse-free survival at 18 months [14].

Based on these clinical trials, blinatumomab was first approved by the US Food 
and Drug Administration (FDA) in 2014 for adults with R/R Philadelphia chromo-
some negative B-ALL, and expanded in 2018 to include adults and children with 
B-ALL in first or second complete morphologic remission with MRD > 0.1% [15].

Clinical trials for blinatumomab are currently underway for several other CD19+ 
hematologic malignancies, including R/R indolent B cell NHL (NCT02961881), 
maintenance therapy after achieving CR after upfront DLBCL therapy 
(NCT03023878), maintenance therapy after autologous transplant for R/R DLBCL 
(NCT03072771), maintenance therapy after allogeneic transplant for R/R NHL 
(NCT NCT02807883), and in combination with lenalidomide for B-cell NHL 
(NCT02568553).

�Other BiTE/Bispecific Antibodies Used in Lymphoma

Several other bispecific antibodies are currently in development for lymphoma. 
AFM11 is a tetravalent bispecific CD19/CD3 tandem antibody (TandAb), a mole-
cule that is similar BiTE but with two bindings sites each for CD19 and CD3, which 
is thought to improve its potency over traditional BiTE molecules. Clinical trials are 
currently underway to study this drug in R/R NHL and B-ALL (NCT02106091 and 
NCT02848911, respectively) [16].

CD30 is a surface marker expressed in Hodgkin lymphoma (HL), and thus 
another promising target antigen for antibody directed therapy. Several bispecific 
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antibodies targeting CD30 have been studied since the 1990s with some promising 
efficacy in early trials, although manufacturing challenges halted their development 
[17, 18]. One of these, AFM13, is a bispecific anti-CD30/CD16A antibody that 
binds natural killer (NK) cells to mediate lysis of HL cells. In a phase 1 dose escala-
tion study of 26 adults with heavily pre-treated R/R HL, AFM13 was found to be 
well tolerated, with 61% of achieving at least stable disease [19]. An ongoing phase 
1b clinical trial is ongoing in adults with R/R HL that combines AFM13 with a 
PD-1 inhibitor in an attempt to augment its efficacy (NCT02665650).

Other bispecific antibodies currently in development for patients with NHL 
include RG6026 (which targets CD20/TCB) [20], mosunetuzumab (which targets 
CD3/CD19) [21], RO7082859 (which targets CD3/CD20, NCT03075696), and 
REGN1979 (which targets CD3/CD20, NCT02651662).

�Mechanisms of Resistance and Relapse to BiTE and Bispecific 
Antibodies

While the mechanisms of resistance to bispecific antibodies and BiTE have yet to be 
fully elucidated, several major pathways have been identified. As discussed earlier in 
the chapter, the mechanism of action of bispecific antibodies is independent of MHC 
requirements, costimulatory molecules or TCR recognition, thus eliminating three 
common escape mechanisms seen in many other antibody-based therapies [2]. Of 
note, anti-mouse antibodies have never been detected in patients who have received 
bispecific antibodies, making this only a theoretical mechanism of resistance [22].

As blinatumomab is the bispecific antibody with the greatest clinical experience 
thus far, the understanding of resistance to BiTE and bispecific antibodies in general 
extends mainly from knowledge of the mechanisms known to affect blinatumomab. 
Therefore, the remainder of this discussion will primarily focus on the experience 
of resistance to blinatumomab.

Approximately half of all R/R B-ALL patients treated with blinatumomab are 
initially refractory, with half of the responders eventually relapsing through second-
ary mechanisms [23]. While not yet completely understood, three major pathways 
have been identified for this resistance: compartmental escape through extramedul-
lary sites, loss of target antigen, and inadequate endogenous T-cell response.

�Compartmental Escape to Extramedullary Sites

The central nervous system (CNS) and testes have long been identified as sanctu-
ary sites that allow malignant cells to be protected from systemic chemotherapy. 
As a result of tumor microenvironment factors in these areas, overt or occult dis-
ease in these sites could allow for protection and immunity from the systemic 
blinatumomab.
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In the long-term follow up studies of the phase 2 trial of blinatumomab in adult 
R/R B-ALL, two of the 21 evaluable patients who relapsed did so with extramedul-
lary disease (one CNS, one testicular) [24]. Additionally, studies of patients treated 
with blinatumomab have shown that both a history of extramedullary B-ALL as 
well as active extramedullary B-ALL at the time of initiation of blinatumomab have 
been shown to be associated with poor outcomes [25].

In a retrospective analysis of a single center’s 65 adult patients treated with blina-
tumomab for R/R B-ALL, among those patients who initially responded to blinatu-
momab but later relapsed, 40% relapsed with EM disease. Among those patients 
who were refractory to blinatumomab, 40% had extramedullary disease at the time 
of progression, including 5 patients with combined bone marrow and extramedul-
lary involvement at the time of initiation of blinatumomab who had documented 
complete marrow remission at the end of the first cycle but with progression of the 
EM involvement [25].

Studies of blinatumomab in NHL provide further evidence for blinatumomab’s 
decreased extramedullary efficacy, as the drug has been less effective in this patient 
population when to patients with B-ALL.  However, interestingly, patients with 
mature B-NHL show improved outcomes with higher drug dosages used when com-
pared to the dosages typically used in B-ALL, with only 1/15 patients achieving a 
CR at 15 ug/m2/day, but 8/35 patients achieving CR when the dose was escalated to 
60 ug/m2/day [10]. This was confirmed with another study demonstrating that the 15 
ug/m2/day dose of blinatumomab was able to achieve CR in the bone marrow dis-
ease in patients with stage IV NHL, but a dose escalation to 60 ug/m2/day was 
required for remission response in areas of nodal disease [26].

While the mechanism for this sanctuary site escape is not yet known, it is postu-
lated that it could be secondary to poor extramedullary site penetration by T-cells 
and/or blinatumomab, as well as extramedullary microenvironmental factors that 
inhibit the action of the drug.

�Loss of Target Antigen

Evolution of the malignant clone to cease expression of the target antigen is another 
mechanism of resistance to these antibodies. In patients treated with blinatumomab, 
loss of the CD19 target antigen has been reported, but is rare, occurring in approxi-
mately 10–20% of patients. In one of the largest retrospective reviews of 84 adult 
patients with R/R B-ALL treated with blinatumomab, surface marker expression 
was analyzed using flow cytometry and found that the overwhelming majority 
(92%) of non-responders and relapsed patients continued to express CD19 at high 
levels. Of the 38 refractory patients, only one patient lost CD19 expression after 
treatment, with two additional patients having a decrease in CD19 expression. Of 
the 30 patients who eventually relapsed after initial CR, four patients lost CD19 
expression in their relapsed clone [23]. Consistent with this, in the initial phase 1/2 
study of blinatumomab in pediatric patients with R/R B-ALL, 22% of the patients 
(5/70) experienced CD19 negative relapse or progression [27].

S. L. Cooper and P. A. Brown



187

Two major pathways are proposed for antigen loss as a mechanism of resistance, 
with much of the data extrapolated from relapse after chimeric antigen receptor 
T-cell therapy (CAR-T) in R/R B-ALL. This modality of immunotherapy is similar 
to BiTE, but uses the patient’s autologous T-cells that have been genetically engi-
neered to express a chimeric antigen receptor to bind the tumor antigen. CD19+ 
CAR-T cells are the construct with the greatest clinical experience, and share many 
features of mechanism of action, side effects and pathways of relapse with 
blinatumomab.

One mechanism for CD19 negative escape is specific loss of the CD19 target 
antigen from the malignant B-cells. Studies of relapse after CAR-T therapy have 
found evidence that this epitope loss can be secondary to deletions as well as de 
novo frameshift mutations in the CD19 gene, as well as alternative splicing of the 
CD19 mRNA [28]. One study of adult patients with CD19 negative relapses after 
blinatumomab therapy identified another novel mechanism of CD19 loss, as one 
patient with CD19 negative relapse was found to have leukemia cells without muta-
tion or deletion within the CD19 gene, and full length CD19 mRNA was identified. 
The team therefore hypothesized the resistance was secondary to abnormal traffick-
ing of the antigen, and were able to identify an abnormal glycosylation of the blasts, 
which was traced to an abnormality in CD81 that prevented normal processing of 
CD19 within the Golgi complex [29]. Thus, many different mechanisms can poten-
tially lead to loss of the CD19 antigen itself on the lymphoblasts.

The second mechanism for CD19 negative relapse is lineage switch, whereby the 
lymphoblasts are able to undergo alternate differentiation into myeloblasts that do not 
express CD19. While this was not demonstrated in the initial phase studies of blinatu-
momab, it has since been reported. This phenomenon is most well known in patients 
with MLL-rearranged leukemia, which is hypothesized to stem from a very early pro-
genitor with lymphomyeloid differentiation potential, which allows for the switch from 
lymphoid to myeloid lineage when selective chemotherapy pressure is applied [30, 31].

However, while lineage switch is most commonly described as a mechanism of 
resistance in patients with MLL-rearranged leukemia, it has also been reported after 
blinatumomab therapy even in cases of patients without this MLL rearrangement 
[32]. Additionally, new evidence is emerging based on studies of subclones in pre-B 
ALL treated with CD19+ CAR-T, suggesting that lineage switch results from plas-
ticity of the malignant cells, rather than clonal pressure [33].

�Suboptimal T-Cell Response to BiTE

One mechanism of resistance that is unique to BiTE that does not affect other bispe-
cific antibodies involves a poor response from the patient’s endogenous T-cells. As 
the cytotoxicity of BiTE relies on tumor lysis mediated by the patient’s immune 
system, suboptimal activation and expansion of these T-cells is becoming increas-
ingly recognized as a major mechanism of resistance to this class of drugs.
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The association between T-cell expansion and blinatumomab response has been 
well documented. The first evidence for this came from a phase 2 study of blinatu-
momab in 36 adult patients with R/R B-ALL, with response defined by morpho-
logic CR. At the end of the first cycle, those who responded showed an increase in 
peripheral blood CD4+ and CD8+ T-cells by an average of 243% and 245% above 
baseline, compared to the non-responders whose CD4+ and CD8+ T cells remained 
at baseline at the end of the cycle. Consistent with this, responders also showed 
higher peak serum concentration of IFN-y, IL-6 and IL-10 [34]. Long term follow-
up of these patients revealed a significantly more robust T-cell expansion in the ten 
long term survivors when compared to those who relapsed. Analysis of the T-cell 
kinetics demonstrated expansion of CD3+T cells in cycle 1 of those with survival 
more than 30 months, decreased but demonstrable T-cell expansion in those with 
initial CR but survival inferior to 30 months, and no evidence of T-cell expansion in 
patients refractory to blinatumomab. A similar trend was seen with CD3+ TEM cells, 
which are particularly important for blinatumomab-mediated cytotoxicity [35].

Another immune factor that predicts response to blinatumomab is the percentage 
of regulatory T-cells (Tregs), immune cells that function to down-regulate effector 
T-cell responses. Studies in patients with solid tumors have consistently demon-
strated high levels of intratumoral Tregs correlated with poor prognosis [36–38]. 
When T-cell subsets were analyzed in 42 adult patients with R/R B-ALL who 
received blinatumomab, no differences were seen in absolute number of total 
T-cells, or subsets of CD4+ and CD8+ T-cells. However, patients that were refrac-
tory to blinatumomab demonstrated a significantly higher percentage of Tregs in the 
peripheral blood when compared to patients who responded to blinatumomab. 
Subsequent in vitro experiments demonstrated that when Tregs were depleted from 
the samples from these non-responders, both CD4+ and CD8+ cells had increased 
proliferation [39].

Immune checkpoints are a complex system of inhibitory and stimulatory signals 
that allow for self-tolerance and prevention autoimmunity, as well as to limit the 
damage to nearby normal tissues when responding to a pathogen. Programmed 
Death Ligand 1 (PD-L1) and its receptor, Programmed Death Protein 1 (PD-1), are 
two critical checkpoint inhibitors that have been shown to have an emerging role in 
cancer immunotherapy. Binding of PD-L1 to PD-1 on T-cells results in inhibition of 
T-cell function, and lack of an immune response [40].

Upregulation of PD-L1 has been shown to result in T-cell dysfunction and inhibi-
tion of the adaptive immune response, and is becoming increasingly recognized as 
a pathway of immune evasion for BiTEs. In solid tumors as well as hematologic 
malignancies, high expression of PD-L1 has been associated with poor prognosis 
[41]. Antibodies targeting PD-1 and PD-L1 are thus promising targets for immuno-
therapy, as a way of bypassing this mechanism of resistance. Several of these have 
been approved by the FDA, including nivolumab (PD-1 inhibitor) in 2014, atezoli-
zumab (PD-L1 inhibitor) in 2016, pembrolizumab (PD-1 inhibitor) in 2017, and 
durvalumab (PD-L1 inhibitor) in 2017.

The earliest report supporting this theory of T-cell mediated resistance to blina-
tumomab involved an adult patient with primary refractory B-ALL treated with 
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blinatumomab after several failed attempts at induction with conventional chemo-
therapy. With 30% bone marrow blasts in his marrow prior to starting blinatu-
momab, he was found to be refractory to blinatumomab as well, with 60% CD19+ 
blasts after the first cycle. Immunohistochemistry performed before and after blina-
tumomab demonstrated an increase in both PD-1 expression by marrow lympho-
cytes (5% positive vs. 15% positive) as well as PD-L1 by the tumor cells (2% 
positive vs. 40% positive). After treatment with blinatumomab, the patient’s periph-
eral blood CD3+ T cells were collected and incubated with the patient’s blasts, and 
compared to co-culture of the blasts with healthy donor T-cells, the endogenous T 
cells were found to have significant decrease in cell lysis (8.5% vs. 93.6%), with a 
concomitant decrease in the levels of IFN-y produced by the patient’s T-cells com-
pared to those from a healthy donor [42].

Another study screened the immunologic co-signaling molecules on ten CD19+ 
primary ALL cell lines as compared to normal bone marrow samples, to determine 
the stimulatory and inhibitory profiles of B lymphoblasts. PD-L1 had significantly 
higher expression on the lymphoblasts, with CD86 as the most pronounced marker 
of activation on these cells. Specifically, samples from patients refractory to blina-
tumomab were found to have higher expression of PD-L1 when compared to 
responders to blinatumomab and controls, with higher markers of T-cell exhaustion, 
such as PD-1 and TIM3, on the T-cells of these patients when compared to healthy 
donor controls. Based on these findings, peripheral blood mononuclear cells from 
healthy donors and leukemia patients were co-cultured with the patient’s blasts and 
blinatumomab, with the presence and absence of antibodies against PDL-1 and/or 
CTLA-4. Proliferation of the T-cells was markedly increased with the addition of 
antibodies against PD-L1 alone, and with both PD-L1 and CTLA-4. This in vivo 
data led to the first report combining blinatumomab with checkpoint inhibition in a 
patient, when a 12  year-old girl with refractory ALL was refractory to blinatu-
momab monotherapy, with 45% marrow blasts at the end of the first cycle. 
Pembrolizumab, a PD-1 inhibitor, was added to her next cycle of blinatumomab, 
which was well tolerated and without significant toxicity. Marrow evaluation at the 
end of this cycle showed a morphologic CR, with the patient still alive at the time of 
manuscript publication [43].

�Conclusions and Future Directions

BiTE and bispecific antibodies are a promising therapeutic platform for treating 
hematologic malignancies. The major mechanisms of resistance include extramed-
ullary escape, loss of the target antigen, and for those antibodies relying on T-cell 
engagement, suboptimal response by the patient’s endogenous T-cells. More 
research is needed to better understand the mechanisms of resistance to these forms 
of immunotherapy, and ways to overcome them. There is already some promising 
progress being made in this arena. To address the extramedullary escape, additional 
research is needed to determine the optimal dose for targeting tumor cells outside of 
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the bone marrow. These studies will also be augmented by ongoing research into the 
microenvironment of leukemias and lymphomas, to determine the differences and 
any therapeutic implications between the bone marrow niche and the extramedul-
lary compartment. Regarding target antigen loss, there is robust research being done 
to determine ways to minimize this, including simultaneous targeting of several 
target antigens, as seen with early studies of bivalent CAR-T cells that target both 
CD19+ and CD22 [44]. And finally, in terms of augmenting the patient’s endoge-
nous T-cell response to BiTE, larger studies are ongoing to test whether the addition 
of checkpoint inhibitors can enhance the efficacy of this therapy (NCT02879695).

Disclosure of Conflict of Interest  No potential conflicts of interest were disclosed by SC. P.B. 
has received medical writing support from Amgen for an unrelated manuscript.
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Chapter 9
Resistance to Chimeric Antigen Receptor 
T-Cell Therapy

Ana C. Xavier and Luciano J. Costa

Abstract  Chimeric antigen receptor (CAR) T-cells are a form of adoptive immuno-
therapy constituted of autologous T-cells engineered with a receptors that is able to 
target tumor antigens. Treatment with CAR19 cells leads to rapid response in a 
significant proportion of patients with relapsed or refractory aggressive B-cell lym-
phomas. However, relapses post CAR-T cell therapy are common. In this chapter, 
we will discuss what is currently known about mechanisms of resistance to CAR-T 
cell therapy in B-cell lymphomas or leukemias.

Keywords  Lymphoma · Large B-cell · Diffuse; immunotherapy · Adoptive; drug 
resistance · Neoplasm
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CR	 Complete Response
CRS	 Cytokine Release Syndrome
DLBCL	 Diffuse Large B-Cell Lymphoma
Liso-cel	 Lisocabtagene Maraleucel
LOH	 Loss Of Heterozygosity
MCL	 Mantle Cell Lymphoma
OS	 Overall Survival
PFS	 Progression-Free Survival
PMBCL	 Primary Mediastinal B-Cell Lymphoma
PR	 Partial Response
r/r	 Relapsed/refractory
RR	 Response Rate
SCT	 Stem Cell Transplant
TCR	 T-Cell Receptor
tFL	 DLBCL arising from Follicular Lymphoma
Tisa-cel	 Tisagenlecleucel
WES	 Whole-genome sequencing

�Introduction

CD19-directed genetically modified autologous T-cell immunotherapy is comprised 
of autologous T-cells collected from a patient and genetically engineered to encode 
an anti-CD19 chimeric antigen receptor (CAR) (Fig. 9.1) [1]. The structure of the 
anti-CD19 CAR T cell products (CAR19) recently evaluated in B-cell lymphoma 
trials are displayed in Fig.  9.2 [2]. Treatment with CAR19 cells leads to rapid 
response in the majority of patients with relapsed or refractory (r/r) aggressive 
B-cell lymphomas, including complete responses (CR). Notwithstanding the rapid 
initial response, a significant proportion of patients will eventually face disease 

Fig. 9.1 (continued) transmembrane domain to intracellular signaling domains. Pro-inflammatory 
cytokines or co-stimulatory ligands expressed by the CAR T cells are depicted for the 4th genera-
tion. (C) Overview of so-called smart CAR T cell products. Pooled CAR T cell products consist of 
two or more single-targeting CAR T cell types with distinct antigen specificities. Multi-CAR T 
cells harbor several CAR molecules with different antigen specificities. A tandem CAR T ell 
expresses a CAR construct harboring two ligand-binding domains with different antigen specifici-
ties. In a conditional CAR T cell activation and co-stimulation are separated on two CAR con-
structs recognizing different target antigens. In the split CAR construct the ligand-binding or 
signaling domain is physically separated allowing controlled CAR T cell activation. iCAR T cells 
additionally express a receptor engineered to recognize an antigen expressed on normal tissue to 
provide an inhibitory signal in turn. In addition CAR T cells can be equipped with suicide genes or 
switches (e.g. iCasp9) allowing ablation of CAR T cells. (D) Left, status of published CAR T cell 
gene therapy trials or trials registered at clinicaltrials.gov including long-term follow-up studies. 
The status of one trial is unknown and not listed. The total number of clinical trials (dark blue bars) 
is compared to published clinical trials (light blue bars). The asterisk indicate zero trials. Right, 
phases of CAR T cell gene therapy trials. Long-term follow-up studies are not included. For nine 
trials, the phase classification is unknown. The asterisk indicate zero trials [1]
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Fig. 9.1  CAR T cell therapy – principle and clinical trial overview. (A) The CAR T cell therapy 
process. T-cells are isolated from blood of the patient or a donor, activated, and then genetically 
engineered to express the CAR construct (an example shown in gray above the vector particle in 
violet). After ex vivo expansion of the CAR T cells, they are formulated into the final product. The 
patient undergoes either a conditional chemotherapy or the CAR T cell product is directly infused. 
(B) Schematic representation of a T-cell receptor (TCR) and four types of CARs being displayed 
on the surface of a T-cell while contacting their antigen (red) on the tumor cells. The single-chain 
variable fragment (scFv) as ligand-binding domain mediating tumor cell recognition in CARs is 
shown in light blue with the VH and VL domains being connected via a along flexible linker and 
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relapses or progression, making crucial to understand mechanisms of treatment fail-
ure to CAR T cell therapy. Currently, CAR T cells with novel target antigens, such 
as CD22, CD20, κ-light chain for B-cell lymphomas, and CD30 for Hodgkin lym-
phoma and T-cell lymphomas are being investigated in several clinical trials 
(Fig. 9.1). While the era of CAR T cell therapy is in its infancy and there are large 
gaps in our understanding of the reasons cellular immunotherapy fails, a few mech-
anisms have become evident and will be the focus of our discussion in this 
chapter.

�Anti-CD19 CAR T Cell Therapy in Lymphoma

Axicabtagene ciloleucel (axi-cel) was granted the US Food and Drug Administration 
(FDA) regular approval in 2017 for the treatment of patients with r/r large B-cell 
lymphoma after two or more lines of systemic therapy, including diffuse large 
B-cell lymphoma (DLBCL), high-grade B-cell lymphomas, and DLBCL arising 
from follicular lymphoma (tFL). The approval was based on the results of a seminal 
Phase 2 study published by Neelapu et al. [3]. In this multicenter study (ZUMA-1 
trial), 111 patients with  r/r DLBCL, primary mediastinal B-cell lymphoma 

Fig. 9.2  Anti-CD19 CAR T cell products evaluated in pivotal trials in B-cell lymphomas. The 
intracellular domain of axicabtagene ciloleucel (ZUMA-1 trial) is composed of two signaling 
domains, CDɜζ and a co-stimulatory domain, CD28. Tisagenlecleucel (JULIET trial) and liso-
cabtagene maraleucel (TRANSCENT trial) use CD137 (4-1BB) as co-stimulatory domain. The 
co-stimulatory domain promotes the T-cell activation and persistence of CAR T cells [2]
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(PMBCL), or tFL were included. Patients received a target dose of 2 × 106 CAR19 
cells per kilogram of body weight after conditioning regimen of low-dose cyclo-
phosphamide and fludarabine. Axi-cel was administered to 101 patients, with objec-
tive response rate (RR) of 82%, and CR rate of 54%. Most CRs were durable, the 
overall rate of survival at 18  months was 52% [3]. At 27.1  months, the median 
overall survival (OS) was not reached, and the median progression-free survival 
(PFS) was 5.9 months [4]. Interestingly, CAR T cell levels during the first month of 
therapy seem to be associated with efficacy of the product [3, 5].

Tisagenlecleucel (tisa-cel) was approved by the US FDA in 2018 for adult 
patients with r/r DLBCL and tFL after at least two prior lines of therapy, including 
anthracycline and rituximab, or relapsing after an autologous stem cell transplant 
(SCT). Tisa-cel was tested in a Phase 2 multicenter study (JULIET trial) involving 
adult patients with r/r DLBCL [6]. A total of 93 patients received tisa-cel infusions 
and were included in the efficacy analysis of JULIET trial. The best overall 
response rate was 52%, including 40% of patients achieving CR and 12% achieving 
partial response (PR). At 12 months after the initial response, the rate of relapse-free 
survival was estimated to be 65% (79% among patients in CR) [6].

In addition to axi-cell and tisa-cel, lisocabtagene maraleucel (liso-cel) has also 
been studied in a Phase 1 multicenter study (TRANSCEND trial) [7]. The differ-
ence between liso-cell and tisa-cell or axi-cel is that liso-cel is a CAR T cell product 
administered in defined composition at a precise dose of CD8 and CD4 CAR T cells 
(Fig. 9.1). Adult patients with r/r DLBCL, PMBCL, tFL, or mantle cell lymphoma 
(MCL) were included and an interim analysis of the Phase 1 of the trial. Results 
showed that, with a median follow-up of 8  months, 80% of 73 patients treated 
achieved an objective response, and duration of response was not reached. The fre-
quency of objective response at 6 months was 47% [7]. Main toxicity associated to 
CAR-T cell therapy includes development of cytokine release syndrome (CRS), 
neurotoxicity and B-cell aplasia (Table  9.1). For patients experiencing a relapse 
after an autologous or allogeneic stem cell transplant (SCT), administration of 
CAR T cell therapy seems to be safe and efficacious [8–10].

There is very limited experience with the use of CAR T therapy to treat lym-
phoma in pediatric and adolescent patients. Recently, Rivers et  al. reported 5 
pediatric patients (range 12–18 years) with r/r CD19+ NHL (DLBCL, PMBCL, or 
gray zone B-cell) treated in an ongoing Phase 2 trial [11]. Patients received 1 × 
106/Kg CAR19 cells as a 1:1 ratio of CD4 and CD8 cells, following lymphodeple-
tion with fludarabine and cytarabine. One patients had history of auto/allo-SCT 
(PMBCL), 3 had had received immunotherapy (nivolumab or brentuximab vedo-
tin). Similar to adult patients, the most common side effects were (mild) CRS 
(n = 4) and (mild) neurotoxicity (N = 2). At 3 weeks, anti-tumor response was 
observed in 4/5 patients, and 2/3 evaluable subjects were in CR at week 9. One 
subject had a CD19− progression at week 9, after initial response. One subject 
obtained CR, but eventually recurred with CD19+ disease despite ongoing CAR-T 
cell persistence [11].
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�Mechanisms of CAR T Cell Resistance

�Immune Scape from Antigen Loss

A significant proportion of relapses post CAR T cell therapy seem to be associated 
with immune scape from antigen loss of CD19, but the exact mechanisms of antigen 
loss in lymphoma therapy have yet to be understood. However, insights into possi-
ble mechanisms of antigen loss are being revealed by several studies done in pedi-
atric and adult patients with B-acute lymphoblastic leukemia (ALL) suffering CD19 
negative (CD19−) B-ALL relapse after treatment with CAR19 cell therapy. Lack of 
CD19 expression has been shown to occur due to either mutations, alternative splic-
ing in CD19, or by mutations in the B-cell receptor protein CD81. Those mecha-
nisms are further discussed below.

Table 9.1  Toxicity associated to anti-CD19 CAR T cell therapy described in pivotal lymphoma 
trials

≥ Grade 3 toxicity
Axicabtagene 
ciloleucel (%) [3]

Tisagenlecleucel 
(%) [6]

Lisocabtagene 
maraleucel (%) [7]

Any 95 89 NR
Pyrexia 14 5 NR
Neutropenia 78 32 NR
Anemia 43 39 NR
Hypotension 14 9 NR
Thrombocytopenia 38 12 NR
Nausea – 1 NR
Fatigue 2 6 NR
Decreased appetite 2 4 NR
Headache 1 1 NR
Diarrhea 4 1 NR
Hypoalbuminemia 1 – NR
Hypocalcemia 6 – NR
Chills – 0 NR
Tachycardia 2 3 NR
Febrile neutropenia 31 16 NR
Vomiting 1 – NR
Hypokalemia 3 8 NR
Hyponatremia 10 – NR
Constipation – 1 NR
White-cell count 
decrease

29 31 NR

Hypophosphatemia 14 NR
Cytokine release 
syndrome

13 22.5 1

Neurologic event 28 12 13

NR, not reported
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�CD19 Mutation and CD19 Alternative Splicing (exon 2 skipping)

The most known mechanism of CAR19 resistance is the emerging dominance of 
leukemic cells harboring isoforms of CD19 lacking the transmembrane domain or 
the targeted exon, under the selective pressure of CAR T cells. Sotillo et al. detected 
hemizygous deletions within chromosome 16 spanning the CD19 locus and de novo 
frameshift and missense mutations in exon 2 of CD19 in some relapse samples [12]. 
The investigators also described alternatively spliced CD19 mRNA species, includ-
ing one lacking exon 2, and demonstrated that exon 2 skipping bypasses exon 2 
mutations in B-ALL cells and allows expression of the N-terminally truncated 
CD19 variant, which fails to trigger killing by CAR19 [12]. More recently, Fisher 
et al. analyzed the expression of CD19 isoforms in a cohort of subjects with CD19+ 
B-ALL [13]. They demonstrated that an alternatively spliced CD19 mRNA isoform 
lacking exon 2, and therefore the CAR19 epitope, but not isoforms lacking the 
transmembrane and cytosolic domains were expressed in the leukemia blasts at 
diagnosis and in the bone marrow of nonleukemia donors, suggesting that some of 
the CD19 isoforms contributing to CAR19 escape already preexist at diagnosis and 
could evolve as a dominant clone during CAR19 therapy [13].

Another mechanism of CD19 loss can be due to mutations in other genes that 
express other proteins of the B-cell receptor complex. To signal with the B-cell 
receptor, CD19 complexes with CD21, CD81, and CD225. Homozygous mutations 
in the CD81 gene have been demonstrated to cause congenital immunodeficiency in 
humans [14]. Braig et al. demonstrated resistance to anti-CD19/CD3 BiTE therapy 
(blinatumomab) in patients with B-ALL via disrupted CD19 membrane trafficking 
[15]. At relapse post blinatumomab, patient’s CD19− blasts were surface CD81−, 
which led to non-CD19 processing and maturation in the Golgi complex [15]. 
Although not yet demonstrated, it is highly plausible that the similar mechanism 
play a role in antigen scaping in B-cell lymphomas.

�Myeloid Switch

MLL-rearranged CD19+ B-cell ALL are responsive to CAR19 therapy as demon-
strated in a cohort of 7 patients who achieved CR after CAR T-cell therapy [16]. 
However, 2 patients relapsed, both with a myeloid phenotype leukemia approxi-
mately 1 months after CAR T cell infusion. One patient had no evidence of disease 
in the bone marrow after therapy on day 22 by flow cytometry, but karyotyping and 
FISH studies revealed persistent MLL rearrangement. On day 35, circulating blasts 
were present and expressed myeloperoxidase, CD4, and CD64 without CD19 or 
other B-cell lineage antigens, consistent with acute myeloid leukemia (AML). FISH 
for MLL rearrangement and IGH deep sequencing demonstrated that both B-ALL 
and AML were clonally related. Second patient was a young child with MLL-
rearranged CD19+ B-ALL who relapsed after 30 days of receiving CAR19 therapy 
with an abnormal myeloid population without B-lineage antigens but persistent 
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presence of MLL rearrangement [16]. CAR19 was detected in blood, and there was 
B-cell aplasia at the time of AML diagnosis. Deep sequencing of the IGH gene was 
negative for the rearrangement previously noted in the lymphoid blasts, suggesting 
myeloid relapse occurred form an immature stem cell clone [16]. Those two cases 
illustrate that myeloid switch is a mechanism of CAR T-cell resistance, likely due to 
presence of rearranged MLL, reprogramming or de-differentiation of previously 
committed B-cell lymphoid blasts (case 1) or myeloid differentiation of a noncom-
mitted precursor or selection of a preexisting myeloid clone after CAR19 therapy 
(case 2).

�Senescence and Exhaustion of CAR-T Cell Population

Yang et  al. demonstrated that the presence of T-cell receptor (TCR) antigen can 
provoke loss in CD8+ CAR T cell efficacy associated with T-cell exhaustion and 
apoptosis [17]. Using an immunocompetent, syngeneic murine model of CD19-
targeted CAR T cell therapy for B-ALL in which the CAR is introduced into T-cells 
with known TCR specificity, they demonstrated that loss of CD8 CAR T-cell effi-
cacy associated with T-cell exhaustion and apoptosis when TCR antigen is present 
[17]. Long et at. also demonstrated that tonic CAR CD3-ζ phosphorylation, trig-
gered by antigen-independent clustering of CAR single-chain variable fragments 
can induce early exhaustion of CAR T-cells that limit antitumor efficacy [18]. 
Interestingly, CD28 co-stimulation augments, whereas 4-1BB co-stimulation 
reduces, exhaustion induced by persistent CAR signaling [18].

�Accidental Transfection of Tumor Cells and CD19 “Masking”

The manufacturing process of CAR-T cell requires collection of mononuclear cells 
from peripheral blood by apheresis and several steps to T-cell purification, expan-
sion, and transfection of viral vector carrying the CAR.  Absence of circulating 
tumor cells has not been considered a critical requirement for such therapy given 
that occasional malignant B-cells collected during apheresis would be selected out, 
not expanded and/or not transduced during the manufacturing process.

However, Ruella et al. recently described a B-ALL patient treated with CAR19 
cell therapy who experienced a CD10+CD19− ALL relapse caused by accidental 
transfection of tumor cells with CD19 “masking” [19]. Evaluation of the leukemia 
cells revealed that the B-leukemia cells were CAR-transduced B-cell blasts (CARB) 
by immunophenotyping, suggesting that malignant B-cells can survive the manu-
facturing process and be transfected with the lentivirus containing the CAR [19]. 
Such transfection was not inconsequential and the lack of CD19 expression was not 
caused by any known mechanism of antigen loss. In fact, CD19 mRNA transcripts 
were identified at the baseline and at relapse, and CD19 protein expression was also 
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detected by immunohistochemistry. Confocal microscopy demonstrated that 
colocalization of CAR19 and CD19 on the cell surface of the relapsed leukemia, 
leading to the hypothesis that the lack of detection of CD19 by flow cytometry was 
due to CAR10 binding in cis to CD19 on the cell surface and “masking” the epitope 
detection by flow cytometry. Antigen masking by transduction of B-ALL with CAR 
was demonstrated in vitro to be also possible during the manufacturing process of 
anti-CD22 CAR-T cell products [19]. CARB would initially be a minute fraction of 
the disease burden and not interfere with response at first. Over time, however, it 
gives rise to a resistant subclone manifesting clinically as leukemia relapse. So far, 
this mechanism of resistance has only been described in B-ALL and it seems to be 
a rare phenomenon, but it remains at least hypothetically possible in aggressive 
lymphomas as well.

�Future Directions

One possible approach to overcome immune scape from antigen loss is the simulta-
neous or sequential targeting of more than one B-cell specific antigen. In fact, 
CD22-targeting CAR  T cells are effective in r/r B-ALL and have recently been 
proven active in patients with relapse after anti-CD19 CAR  T cell therapy [20]. 
Failure to anti-CD22 CAR  T appears linked to the decrease in antigen density, 
rather than modification of the CD22 molecule [20]. The concomitant targeting of 
both CD19 and CD22 can potentially reduce the risk of relapse given that it would 
be unlikely that a single cell would develop simultaneous mechanisms of scape for 
both targets. Clinical trials are currently being performed with CAR T cell products 
targeting both CD19 and CD22.

Another possible way to overcome resistance to CAR T cell therapy would be 
trying to revert tumor-induced immunosuppression and immune exhaustion using 
immune checkpoint inhibitors. Chong et  al. recently reported a case of a patient 
with DLBCL treated with PD-1 blocking antibody after progression post CAR19 
therapy [21]. Overexpression of PD-L1 has been demonstrated in relapsed DLBCL 
samples post CAR19. Following PD-1 blockade with pembrolizumab, the patient 
had a clinically significant response and expansion of CART19 cells. Currently the 
use of pembrolizumab is being tested in a clinical trial setting in patients with 
CD19+ lymphomas who failed post CAR19 therapy.
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