
Statistical GGP Game Decomposition

Aline Hufschmitt(B), Jean-Noël Vittaut, and Nicolas Jouandeau

LIASD, University of Paris 8, Saint-Denis, France
{alinehuf,jnv,n}@ai.univ-paris8.fr

Abstract. This paper presents a statistical approach for the decompo-
sition of games in the General Game Playing framework. General game
players can drastically decrease game search cost if they hold a decom-
posed version of the game. Previous works on decomposition rely on syn-
tactical structures, which can be missing from the game description, or on
the disjunctive normal form of the rules, which is very costly to compute.
We offer an approach to decompose single or multi-player games which
can handle the different classes of compound games described in Game
Description Language (parallel games, serial games, multiple games).
Our method is based on a statistical analysis of relations between actions
and fluents. We tested our program on 597 games. Given a timeout of 1 h
and few playouts (1k), our method successfully provides an expert-like
decomposition for 521 of them. With a 1 min timeout and 5k playouts,
it provides a decomposition for 434 of them.

Keywords: General Game Playing · Decomposition ·
Game description langage · Causality · Compound moves · Serial games

1 Introduction

Solving smaller sub-problems individually and synthesizing the resulting solu-
tions can greatly reduce the cost of search for a general game player. Previous
works on compound games show this and propose some approaches to solve
pre-decomposed single games [3,5] or multi-player games [12]. Sum of games
has been widely studied to solve games with specific complete decomposition
[1]. However, identifying such sub-problems is an essential prerequisite. In this
paper we focus on the decomposition of games described in Game Description
Language(GDL).

We identify different classes of compound games [7] which raise specific
issues for decomposition: games using a stepper like Asteroids1, synchronous or
asynchronous [3] parallel games respectively like Chinook2 or Double Tictactoe

1 In Asteroids the player must drive a small spaceship (in up to 50 steps) to an asteroid
and stop on it. If the ship stops before reaching the destination, the game ends with
the score 0.

2 Chinook is composed of two games of Checkers disputed on the white cells and the
black cells of the same board.

c© Springer Nature Switzerland AG 2019
T. Cazenave et al. (Eds.): CGW 2018, CCIS 1017, pp. 79–97, 2019.
https://doi.org/10.1007/978-3-030-24337-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24337-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-24337-1_4

80 A. Hufschmitt et al.

Dengji3, synchronous parallel games with compound moves like Snake-Parallel4,
serial games like Factoring-Turtle-Brain5, multiple games like Multiple-Sukoshi6

and impartial games starting with several piles of objects like Nim7.
Some characteristics of these games represent specific difficulties for decom-

position. Serial games are games with sequential subgames: when a subgame
terminates, another subgame starts. The second game is strongly linked to the
first one as the start of the second game depends on the first game state. Com-
pound moves are single actions that are responsible of effects related to different
subgames; the separation of these effects is critical to separate the subgames.

The Game Description Language used to described general games is a logic
language similar to Prolog which uses the closed world assumption and uses
negation as failure. The logical rules used to infer fluents that will be true in the
next state, given a partial description of the current state and a joint move of the
players, do not explicitly describe action effects. In the premises of these rules,
with head predicate next, some fluents describe some aspect of the current state
necessary for the rule head to be entailed but not a complete state. Therefore
the exploration of each game state from initial state is necessary to know exactly
in which state these rules can be entailed and what is the effect of actions. For
example, frame axioms indicate fluents that keep a true value from one state to
another given some specific actions: actions not present in these frame rules are
those susceptible to have a negative effect. However, among those, some may be
illegal when the rule applies. To identify these illegal actions, it is necessary to
acquire high level knowledge on the game to know that premises necessary for
action legality are incompatible with a premise of the preceding rules. However,
like it has been demonstrated with STRIPS-descriptions in planning domain [2],
a complete inference of all mutually exclusive fluents is intractable for complex
games.

In this paper we propose a statistical approach based on simulation to identify
the action effects and to decompose the different classes of compound games
mentioned above. We first present the previous works on decomposition (Sect. 2)
then define what is a correct decomposition of a game (Sect. 3). We present the
different aspects of our method to handle the different types of compound games
(Sect. 4). We present experimental results on 597 games (Sect. 5). Finally, we
conclude and present future work (Sect. 6).

3 At each turn a player chooses a Tictactoe grid from two to place one of his marks.
The goal is to win in both grids.

4 The goal of Snake is to move, for 50 steps, a snake that grows steadily without biting
its tail.

5 Factoring Turtle Brain is a series of LightsOn games where the player has to turn
on 4 lights: each lamp goes out gradually while he lights up the others.

6 Sukoshi is about creating a path by aligning ordered integers. In the multiple version
only one grid counts for the score, the others are useless.

7 In Nim each player takes in turn any number of matches in one of 4 stacks. Whoever
no longer has a match to pick loses.

Statistical GGP Game Decomposition 81

(role r)
(light a) (light b) (light c) (light d)
(<= (legal r (push ?x)) (not (true (on ?x))) (light ?x))
(<= (next (on ?x)) (does r (push ?x)))
(<= (next (on ?x)) (true (on ?x)))
(<= terminal (true (on a)))
(<= (goal r 0) (not (true (on b))) (not (true (on c))))
(<= (goal r 40) (true (on b)) (not (true (on c))))
(<= (goal r 60) (not (true (on b))) (true (on c)))
(<= (goal r 100) (true (on b)) (true (on c)))

Fig. 1. Minimalist game represented in GDL. The player can light 4 lamps. Turn on a
ends the game. It only gets the maximum score if b and c are lit at the end.

2 Previous Works

We assume familiarity of the reader with General Game Playing [4] as well
as with the Game Description Language (GDL) [8]. A GDL game description
takes the form of a set of assertions and logical rules. A set of keywords allows
to describe the game. Figure 1 give an example of GDL description. Keywords
are represented in bold. The syntax (<= a x ... y) means that a is true if the
conjunction of premises x∧...∧y is true; the variables are indicated by a question
mark. The legal predicate specify the legality of an action; next rules indicate
conditions under which a fluent is true in the next state; terminal signals if the
current state is a game end; goal completes the score reached by the player if
the current state is terminal. Rules are expressed in terms of actions (does) and
fluents (true) describing the game state.

To quickly evaluate the rules and carry out simulations of the game (play-
outs), Vittaut et al. [11] propose a fast instantiation using Prolog with tabling
that builds a rule graph similar to a propnet [9]. This rule graph is transformed
into a logic circuit [10] which can be quickly evaluated using binary operators.
This circuit uses the head of legal, next, goal or terminal rules as outputs, and
fluents (true) and actions (does) as inputs.

Günther et al. [6] propose a decomposition approach for single player games
by building a dependency graph between uninstantiated fluents and actions
nodes: the connected components of the graph represent the different subgames.
Edges are potential preconditions, positive and negative effects between fluents
and actions while action-independent fluents are isolated in a separate subgame
to prevent them from joining all subgames. Their program is tested on the game
Incredible.

Zhao et al. [13] present an extension of this approach to multi-player games
using partially instantiated fluents and actions in the dependency graph. Serial
games and compound move games are treated separately [12] and their detection
heavily rely on game description syntactic structures: rewriting some GDL rules
can prevent decomposition. For serial games, they use a separate specific detec-
tion: a predicate like game1over in Tictactoe Serial which is false in the legal
rules of the first subgame and true in the legal rules of the second one is used

82 A. Hufschmitt et al.

to split the game. Results are presented on the games Nim, Double CrissCross2
and several variants of Tictactoe (Double, Serial, Parallel).

In [7], we propose an approach which is more general but also off-line like the
aforementioned ones. It relies on weak heuristics to identify the effects of actions:
effects not explicitly described are ignored and can induce over-decomposition.
To solve the problem of the compound moves, we identify meta-actions sets
which represent a single effect of a compound move: a compound move with N
effects is part of N meta-action sets and actions with a single effect are meta-
action singletons. These meta-actions are sets of actions which have an identical
effect on a fluent of a particular subgame in the same conditions i.e. with the
same preconditions in the rules describing the next state and with at least one
fluent in common to precondition their legality. However this detection requires
the costly calculation of completely developed disjunctive normal form (DNFD)
of the game rules. The detection of serial games is limited to two subgames. To
separate them, this approach looks for expressions capable of partitioning the
legality of actions into two groups. The approach also detect useless subgames i.e.
with no influence on score, game termination and, in the case of serial subgames,
not allowing another usefull subgame to start. We consider actions of these
games as noop actions that can receive the same evaluation during the game
exploration. This decomposition is tested on 40 games: 7 games from trivial
(Tictactoe) to complex (Hex) and 33 compound games representative of the
different classes presented.

To limit the computation time, another version uses partially developed dis-
junctive normal form (DNF): auxiliary predicates are preserved as atoms and
are not completely developed. The decomposition using the DNF is quicker: for
some games, time decreases from one hour with DNFD to one second with DNF
(Fig. 8). However this version is less robust: depending on the rules formulation,
meta-action detection can fail as well as decomposition. Note that both versions
fail to correctly decompose Chomp and Blocker Parallel is not decomposed after
a one-hour timeout.

In this paper, we propose a more robust detection of action effects based
on statistical information collected during playouts. We use a circuit encoding
the game rules to perform fast simulations and collect information on the cor-
relation between fluent value changes and actions played. This circuit is also
used to infer preconditions relations using propagation and back-propagation
of different signals. We propose a concept of crosspoint which allows to detect
junctions between independent parts of a game played sequentially and allows
to decompose serial games with any number of subgames. Our approach does
not require the use of DNF. We tested our approach on significantly more games
than previous works (597 against 1,4 and 40).

3 Game, Subgame and Correct Decomposition

A game is described by a finite state machine the structure of which is a directed
acyclic graph. Let F be the set of the fluents. A state is a set s ⊂ F . A transition
is a couple (s, s′) ⊂ F 2.

Statistical GGP Game Decomposition 83

A decomposition is a tuple F1, ...Fn where
⋃n

i=1 Fi = F and ∀i, j, i �= j :
Fi ∩ Fj = ∅.

In a subgame i a state is a set si ⊂ Fi and a transition is a couple (si, s′
i) ⊂

F 2
i such that there exists a transition (s, s′) ⊂ F 2 in the global game where

si = s ∩ Fi and s′
i = s′ ∩ Fi.

Definition 1 (free choice of a transition). Given a state s = s1 ∪ s2 of
a global game where s1 is a state of the first subgame and s2 a state of the
second subgame, we can freely choose a transition (s1, s′

1) in the first subgame
and (s2, s′

2) in the second one, if, in the global game, there exists a transition
(s1 ∪ s2, s

′
1 ∪ s′

2) or a sequence of transitions (s1 ∪ s2, s
′
1 ∪ s2) followed by (s′

1 ∪
s2, s

′
1 ∪ s′

2).

Definition 2 (compatible decomposition). The decomposition of a game in
two subgames is compatible with the global game if in any subgame it is possible
to choose freely a transition from a state to a distinct one.

The extension of Definitions 1 and 2 to more than two subgames is straight-
forward.

Definition 3 (correct decomposition). A decomposition is correct if it is
compatible with the global game and there exists independent victory conditions
(evaluation function) in the subgames such that winning every subgames implies
winning the global game.

In the example given in Fig. 1, each lamp can be placed in a separate sub-
game: a transition can be freely chosen to switch on one of the lamps and inde-
pendent evaluation functions are identifiable because each lamp involved in the
calculation of the score provides a portion of the points.

In games with a binary score (win or loose), like Nonogram, evaluation func-
tions can nevertheless be identified as the condition of victory is composed of
distinct subgoals.

Given the aforementioned definitions, we however consider that a game like
Nine Board Tictactoe is not decomposable. In this game consisting of 9 Tictactoe
board arranged in 3 rows by 3 columns, each mark of a player in the cell of index i
of a given board determines the following board i where the opponent will have to
replicate, the aim being to align 3 marks in one of the board. Transitions depend
on previous moves and can not be chosen freely if each board is a subgame. A
game like Blocker is also non-decomposable. In this game, played on a 4 × 4
board, Crosser must put his mark in the cells to build a bridge across the board
while Blocker tries to block the road with its own marks. Even though it is
possible to freely choose the transitions in the 16 subgames consisting of only
one cell of the global game, there do not exist independent victory conditions
allowing to evaluate the score in one cell subgames. A single marked cell can be
part of a winning state as well as a loosing one.

84 A. Hufschmitt et al.

4 Method

To identify the different subgames we create a dependency graph; nodes are
meta-action sets (see Definition 8 and Sect. 4.4) and completely instantiated flu-
ents; edges represent effect or precondition relationships between them. We com-
pute edge weights to allow the identification of lightly connected parts of the
graph (Sect. 4.7). Construction of this graph is detailed in Sect. 4.6. The identi-
fied connected components represent the subgames.

For the analysis of relations between fluents and actions, we use the following
definitions:

Definition 4 (premises). Let F be the set of all the instantiated fluents and
f ∈ F a given positive or negative fluent. Let R be the set of all roles r. Let A
be the set of all instantiated players actions a = (does r o). Let h be the head
of a variable free GDL rule. g ∈ F ∪ A is a premise of h if:

– g is in the body of this rule, or
– g is in the body of a variable free GDL rule of head i and i is a premise of h.

g is an non-conflicting precondition of h if no conflict exists between g and
another premise of h i.e. if h is satisfiable when g is true.

g is an exclusive precondition of h if g ⇒ h i.e. if h is true when g is true
whatever the value of the other premises of h.

As action effects are not explicitly described in GDL rules, we define an effect
as a phenomenon the cause of which is not known a priori and observed during
a transition:

Definition 5 A positive effect f+ (resp. negative effect f−) is the value
change of a fluent f from false (resp. true) in a state, to true (resp. false) in the
next state. Let f∗ represents a given effect (positive or negative) on f ∈ F .

Some effects always happen simultaneously with other effects; we distinguish
between two sorts of co-occurring effects:

Definition 6 (Globally co-occurring effects (GCE)). GCE(f∗), the set of
globally co-occurring effects of f∗ consists of effects that always occur together
with f∗ regardless the actions that caused this effect on f . Let |GCE(f∗)| be the
number of times this co-occurrence is observed during the playouts.

Definition 7 (Action co-occurring effects (ACE)). ACE(a, f∗), the set of
co-occurring effects of f∗ for an action a, consists of effects occurring always
together with f∗ when the action a is played. Let |ACE(a, f∗))| be the number
of times this co-occurrence is observed during the playouts.

A meta-action is a set M of actions responsible for the same effects f∗ in the
same circumstances. These circumstances correspond to fluents necessary for the
actions legality, i.e. the premises of the legal rule for each a ∈ M , but also to
the premises used in conjunction with theses actions a ∈ M in the body of the

Statistical GGP Game Decomposition 85

rules of head (next f). These rules indicate whether the conditions are met for
the action to have an effect. Identifying the actions occurring with the same set
of preconditions in the different clauses of a rule of head (next f) requires the
calculation of the disjunctive normal form of this rule. However, by a comparison
of all sets of actions occurring with each precondition taken separately, it is also
possible to identify these actions.

Actions with no effect on f∗ but used in conjunction with the same fluent g
in the premises of (next f), correspond to a set A′ = A − (M ∪ I) with A given
at the Definition 4, M a meta-action set with an implicit effect f∗ and I a set
of illegal actions under the same conditions. These illegal actions may belong to
another subgame than f : in this case, the meta-action sets that have an effect
on the fluents of the other subgame are included in I. The comparison of actions
sets with a same effect, with actions sets with a same precondition in a next
rule, and with actions sets with a same precondition in their legal rule, allows
to identify meta-action sets even if the effects are not explicitly described in the
GDL rules.

We therefore propose the following definition of meta-action sets which does
not require rule DNF:

Definition 8 A meta-action set M(r, E ,N ,L) is a set of actions of role r such
that all the following conditions are verified:

– E �= ∅ and for each f∗ ∈ E, f∗ is an effect of each a ∈ M(r, E ,N ,L).
– for each fluent g ∈ N and for each action a ∈ M(r, E ,N ,L), g is used in

conjunction with a in the premises of (next f) with f∗ ∈ E, and a is not an
exclusive precondition of (next f).

– for each fluent h ∈ L and for each action (does r o) ∈ M(r, E ,N ,L), h is a
non-conflicting precondition of (legal r o). L = ∅ if (legal r o) is always
true for each action (does r o) ∈ M(r, E ,N ,L).

– there does not exist A′ � M(r, E ,N ,L) such that for each a′ ∈ A′, a fluent
g′ is used in conjunction with a′ in the premises of (next f ′), a′ is not an
exclusive precondition of (next f ′) and a′ has no effect on f ′.

To decompose serial games, we are looking for a state or group of states
that are necessarily visited during the game. No action sequence allows to reach
the rest of the game without going through one of these states. They can be
characterized by the presence of a crosspoint : one specific fluent or a conjunction
of fluents. For example, in Blocker Serial composed of two games of Blocker
played one after the other, the fluent game1overlock signals the end of the first
subgame and conditions the legality of the actions of the second subgame. In
Asteroids Serial, composed of two games of Asteroids, the first subgame ends
when the spaceship stops, which is represented by the conjunction of fluents
(north-speed1 0) ∧ (east-speed1 0) indicating a zero speed on the 2 cardinal
axes. These crosspoint can be identified from a causal graph representing the
causal relationships between actions and fluents. Each fluent inside a crosspoint
is a crosspoint component :

86 A. Hufschmitt et al.

Definition 9 Let G be a causal graph i.e. a directed graph representing the
causal relationships between the actions and the fluents (positive or negative) of
a game. Given C(G) the transitive closure of G, a fluent node x is a crosspoint
component if in C(G):

– there exists at least one edge to the node x, and
– there exists at least one edge from x to an action node, and
– x is not in the initial state of the game.

Let a crosspoint X be a set of at least one crosspoint component.

4.1 Simulation Based Detection of Action Effects

Our approach uses a statistical estimation of the number of action effects dur-
ing random playouts. Thus our playouts are gathering information to build the
decomposition. At each step of the game, each player indicates its move; the set
of all of these actions constitutes a joint move. In an alternate move game, only
one player has the choice between multiple legal moves while the other player
actions have no effect (often named noop). For each transition in a playout, the
joint move is associated with state changes. After a given number of simula-
tions, for each action a that occurs in |J(a)| distinct joint moves, we estimate
the probability P(a, f+) that a positive effect on fluent f follows action a:

P(a, f+) = (
∑

0<i<|J(a)|
E(J(a)i, f+)

O(J(a)i)
)/|J(a)|

with J(a) the set of joint moves containing action a, O(J(a)i) the number of
occurrences of a given joint move of this set during playouts and E(J(a)i, f+) the
number of times a positive effect on f has been implied by this joint move. The
probability that a negative effect f− follows the action a, is defined similarly.

P indicates the probability to observe a change when an action is played.
However the change of some fluents like step or control does not depend on
actions and some actions like noop have no effect on any fluents. The formulation
of the rules does not always make it possible to detect them. For example, the
presence of a noop action in the premises of the rules describing the next state
of a control or step fluent can prevent detection.

4.2 Filtering Action Effects

A positive value of P(a, f∗) does not indicate if there is an effect of a on f or a
simple correlation. A second step in identifying action effects is therefore needed
to check each potential effect suggested by a positive value of P(a, f∗) to filter
effects and eliminate correlations.

We first detect alternate moves: our purpose is to detect noop actions with
no effects and action-independent control fluent. A n-player game is a sequential
game when for each state n − 1 players have only one legal action which is
therefore considered as noop. The fluent that most frequently change when a

Statistical GGP Game Decomposition 87

noop action is played is the corresponding control fluent, which allows to detect
it. If the only actions present in the premise of some fluents are noop actions
then these fluents are considered action-independent.

For each action a, we then check each potential positive or negative effect
given by the probability P(a, f∗) to confirm or deny the link between a and f∗.
By observing the rules of the game, it is possible to decide if a rule describes an
explicit action effect or if it implies a possible effect. If no such rule is present in
the GDL description of the game, we can assume that the action cannot have a
positive effect on the fluent: we then set the probability to zero.

For example, an explicit positive effect of an action (does r o) on the fluent
f is described by a GDL rule like (<= (next f) (does r o) (not (true f)))
where f changes from false in the premises to true when action (does r o) is
chosen. A rule like (<= (next f) (not (does r x)) (not (true f))) can suggest
that action (does r o) has an implicit positive effect. Rules like (<= (next f)
(does r o)) or (<= (next f) (not (does r x))) which both do not indicate if
the fluent f is supposed to be true or not in the current state, can also implies a
positive effect of (does r o). Similarly, the absence of certain rule patterns can
be checked to eliminate negative effects.

By examining the co-occurring effects, we can also filter effects which cannot
be the result of some actions. We reconsider the different co-occurring effects
of each eliminated effect to detect erroneously assigned ones until no more is
filtered. An action a cannot be the cause of an effect f∗ if P(a, g∗) = 0 with
g∗ ∈ GCE(f∗). On the contrary, the effect f∗ of a is confirmed if there exists
a g∗ with P(a, g∗) > 0 and either g∗ ∈ GCE(f∗) with |GCE(f∗)| > Ψ or g∗ ∈
ACE(a, f∗) with |ACE(a, f∗)| > Θ, where Ψ and Θ are thresholds necessary to
only consider true co-occurring effects (sufficiently tested during playouts) and
eliminate false positives. If an effect f∗ can be confirmed for some actions a but
not for the other actions, we consider that other actions are not the cause of this
effect.

For multi-player games we also compare the probabilities of the effect
attributed to the different actions of a joint move. If an action a of a joint
move has a probability Φ times greater than another action b to be followed by
the effect f∗ then the cause of the effect is a and we update P(b, f∗) to a zero
value. If the same change occurs for any transition from initial state and never
in any other transition, it is considered independent of actions. When no more
effect can be eliminated, if no action is the cause of a fluent change, this fluent
is flagged as action-independent.

4.3 Action Independent Fluents

We use the circuit, to identify the preconditions of action independent fluents.
We back-propagate 4 possible states (undefined, true, false or both) from each
(next f) output where f is an action-independent fluent to flag its different
premises. Then, for each activated positive or negative fluent input, we check if
the fluent can change f from false to true (in this case, it is really a precondition,

88 A. Hufschmitt et al.

not a conflicting one) or if it can force f to remain true: then the inverse value
of the fluent has a negative effect on f .

4.4 Compound Moves and Meta-action Sets

To identify the meta-action sets according to Definition 8, we use the previous
detection of action effects and consider that P(a, f∗) > 0 denotes an effect of
a on f . We detect action preconditions in legal and next rules using the logic
circuit built from the rules.

(cell1 z)

(cell2 z)

(does r aa)

(does r ab)

(does r ba)

(does r bb)

(does r aa)

(does r ba)

(does r ab)

(does r bb)

(cell1 a)

(cell2 a)

(cell1 b)

(cell2 b)preconditions

effects

(a) Identification of action groups with a same precondition and responsible of a same
effect.

(cell1 z)

(cell1 z)

(cell2 z)

(cell2 z)

(does r aa)

(does r ab)

(does r ba)

(does r bb)

(does r aa)

(does r ba)

(does r ab)

(does r bb)

(cell1 a)

(cell1 b)

(cell2 a)

(cell2 b)

meta-action1

meta-action2

meta-action3

meta-action4

(b) Separation of meta-actions

Fig. 2. Graphic representation of meta-actions identification. Fluents with cell1 pred-
icate belong to the first subgame, those with predicate cell2 belong to the second one.
The identification of meta-actions allows to remove the links between fluents of both
subgames.

To find each fluent h that is a premise of a legal rule of head (legal r o),
we set the output (legal r o) to true and back-propagate the signal into the

Statistical GGP Game Decomposition 89

circuit with four possible states in the same way as in Sect. 4.3. We then check
that each of these fluents actually allows the action to be legal using a three state
propagation in the circuit i.e. it is a non-conflicting precondition (Definition 4).

To find each fluent g used in conjunction with an action a in the premises of
(next f), we set the input (does r o) to true and propagate the signal through
the circuit without taking care of the logic gates to label each gate depending
on this action including some next outputs. Then we back-propagate the signal
from the (next f) output using different flags to specifically label the gates
representing a conjunction between the action and another input (according De
Morgan law it can be an or gate inside a negation) and mark the fluent inputs
used in these conjunctions.

Then we compare the different action sets with a same effect, with a same
precondition in a next rule or with a same precondition in their legal rule and
recursively split each set until we find the meta-action sets (Fig. 2).

4.5 Serial Games and crosspoints Identification

To identify the crosspoints from the crosspoint components set as defined in Def-
inition 9, we build a causal graph G where nodes are actions, positive or negative
fluents. As the logical relations between nodes are represented by directed edges,
we add an edge y → z in G if:

(not game1overLock)

(cell1 * * b) (not (cell1 * * b))

(does px (m1 * *))

(does po (m1 * *))

(cell1 * * x)

(cell1 * * o)

(cell2 * * b)

game1overLock (does po (m2 * *))

(does px (m2 * *))

(cell2 * * x)

(cell2 * * o)

Fig. 3. Extremely simplified causal graph for the game Tictactoe Serial. m1, m2, po
and px stand respectively for mark1, mark2, playero and playerx. A set of terms with
variable arguments is represented using wildcards *. Some links are omitted to clarify
the graph. Game1overLock is identified as a crosspoint.

(1) y is an action and z is the result of an effect of y;
(2) y is a fluent (maybe action-independent) premise of (legal r p) with z =

(does r p);
(3) y is a fluent, z is an action and y ∧ z are premises of (next f) where f∗ is

an effect of z;
(4) y is a premise of (next z) where z is an action-independent fluent.

90 A. Hufschmitt et al.

A single crosspoint component x is a crosspoint if there do not exist two edges
x → y and y → x in C(G). For example, Fig. 3 shows a very simplified ver-
sion of the causal graph obtained for the game Tictactoe Serial. The fluent
game1overLock marks a clear boundary between two distinct parts of the game
and is a crosspoint.

Given Xc the set of identified crosspoint components, a set Xi ⊂ Xc is a
crosspoint candidate in C(G), if there exists a set of nodes Q such that, forall
x ∈ Xi and forall q ∈ Q, there exists an edge x → q. For each Xi which is a
crosspoint candidate, we add a node oi in G. Then we use the circuit to identify
the logical relations between each node oi and other nodes. In G, we add an edge
y → oi for each edge y → x with x ∈ Xi and we add an edge oi → y if:

(1) an action y = (does r p) is legal when all x ∈ Xi are true and there exist
x ∈ Xi where x is a premise of (legal r p);

(2) (next f) is possibly true when all x ∈ Xi are true and there exist x ∧ y
premises of (next f) where f∗ is an effect of the action y;

(3) y is an action independent fluent and y∗ is entailed when all x ∈ Xi are
true.

Xi is a crosspoint if there do not exist two edges oi → y and y → oi in C(G).
A crosspoint is discarded if it has another crosspoint or a fluent of the initial

state has a unique precondition or if it includes another crosspoint.

4.6 Building the Dependency Graph

We use all previously collected information to build the dependency graph nec-
essary to identify subgames. We add a node for each identified meta-action M
and for each fluent f8.

We add an edge between each meta-action M(r, E ,N ,L) and fluent f if:

(1) f ∈ L\C where C is the set of the detected control fluents (to avoid linking
them with actions from different subgames);

(2) f ∈ N\C ′ where C ′ is the set of the detected control fluents or, failing that,
the set of all action-independent fluents;

(3) f∗ ∈ E .

Edges (1) and (2) receive a weight of 1. The weight W of edges (3)
is the mean of the action effect probabilities: W =

∑
0<i<N

P(ai,f
∗)

N with
ai ∈ M(r, E ,N ,L).

We also add an edge for each precondition of an action-independent fluent. To
separate the serial subgames, we remove the links between each fluent present in
a crosspoint and the fluents or actions that are preconditioned by this crosspoint.

Some actions may not have been tested and some fluents change may have
never been observed during playouts. These actions and fluents are considered
to belong to all subgames until additional playouts provide more information.
8 Positive fluent (true f) and negative fluent (not (true f)) are represented by the

same node in the dependency graph.

Statistical GGP Game Decomposition 91

4.7 Subgoals to Fix Under- or Over-Decomposition

In some games, there does not exist a relationship between some internal struc-
tures outside of the game goals. It is the case for cells in Tictactoe, columns in
Connect Four9 or colored regions in Rainbow10. Conversely, in a game like Lights
On Parallel11, we would like to separate the four groups of lamps as lighting one
of them is sufficient to achieve victory. But, as each action of lighting a lamp has
a negative collateral effect on all other lamps (they gradually go dark), a logical
link exists in our dependency graph that connects subgames.

To solve these two problems, we collect subgoals using the circuit. The logic
gates of the goal sub-circuit are sorted such that if the output of a gate is used
as an input of another one it is examined first.

Each logic gate p of the sub-circuit is activated independently of the others
with a value o ∈ {true, false} and, using a three state logic to broadcast the sig-
nal, the state of the goal outputs is examined. If an output with the maximum
score for one of the players is activated, then the value o of the gate p represent
a victory condition. Otherwise, if a non-zero score can nevertheless be obtained
(the score 0 is false, a score greater than 0 is true or the value ¬o makes the
maximum score impossible to achieve), then the value o of the gate p represents
a subgoal. Each gate, the output value of which depends on a previously detected
subgoal, is removed from the subgoal search: this allows to collect only the min-
imal conditions necessary to obtain a non zero score. We proceed similarly for
victory conditions.

If several action-dependent subgames are detected, i.e. if the dependency
graph presents several subgraphs containing action nodes, we check if the game is
not over-decomposed. We verify that each detected subgoal or victory condition
does not depends on fluents which are in different subgames. If this happens, the
subgames are combined into one. It also allows us to verify that a subgame, if its
fluents are involved in the calculation of the score, makes it possible to obtain
at least a portion of the points.

If only one action dependent subgame is detected, it can group several sub-
games each allowing to obtain a maximum score but joined by collateral effects
of the actions. To check if such subgames exist, we remove all effects links the
weight of which is less than the threshold Ω from our dependency graph and then
the victory conditions are used as before to join the parts of the game forming
subgames guaranteeing the victory.

9 In Connect Four players drop colored tokens from the top into a seven-column,
six-row vertically suspended grid. The goal is to align 4 tokens.

10 Rainbow is a puzzle that consists in coloring a map such that no adjacent regions
have the same color.

11 Four game of LightsOn are played in parallel by a single player who chooses in which
subgame he wishes to act on each turn. The player gets 100 points if he wins any of
the 4 subgames.

92 A. Hufschmitt et al.

5 Experiments

There is no expert data specifying what the expected decomposition is for each of
the game descriptions in the repositories. According to the definitions in Sect. 3,
we have therefore established for 597 games found in the Base, Stanford and
Dresden repositories of http://games.ggp.org/12, the expected number of action-
dependent and action-independent subgames with the number of useless ones13.
But as it is possible to separate a game into N parts in different ways, in each
of our experiments, we manually checked each decomposition with more than 1
subgame to ensure that it agrees with Definitions 1, 2 and 314.

The experiments are performed on one core of an Intel Core i7 2.7 GHz with
8Go of 1.6 GHz DDR3. The value for the ratio and thresholds are empirically set
to the following values: Ψ = 3, Θ = 5, Φ = 1.5 and Ω = 0.1. These parameters
are not sensitive to slight variations. For example, the value of Ψ leads to ignoring
co-occurring effects during the first Ψ observations: the value of Ψ must be high
enough to rule out coincidences but paranoid value will just require a larger
number of playouts to achieve the same result.

For each game, we measure the time necessary to build the circuit, execute 5k
playouts and process the decomposition. Figure 4 shows that 70% of the games
can be decomposed in less than 1 min, a time compatible with GGP competitions
setup. Most of the time is used for the creation of the circuit. For example, once
the circuit is created, 35 s are sufficient to collect initial information, execute 5k
playouts and decompose Blocker Parallel that was not decomposed by previous
works. 40 games are not decomposed before the 1 h timeout, among them 32 are
decomposable (Fig. 6).

5 kp <1s <10s <30s <1min <3min <10min <30min <1h

total 72 307 391 434 491 527 540 557

Fig. 4. Number of games for which the stage of the decomposition is reached in the
given time (for 5k playouts).

The decomposition time and the grounding time are not correlated i.e. a
game description producing a lot of grounded rules do not take necessarily more
time to decompose. However, if the game tree is more complex, all actions and
their effects may not be tested during the 5k playouts used to collect information
therefore the decomposition is less reliable.

The decomposition process can be reiterated when more simulations have
been performed. In Fig. 5, we evaluate the number of correct decompositions
12 We excluded GDL-II descriptions using the sees predicate.
13 These data are available upon request to the main author.
14 Note that an expert-like decomposition may not equal a correct decomposition. For

example, a human expert would like to decompose Nine Board Tictactoe. However
such a decomposed game would be difficult to solve.

http://games.ggp.org/

Statistical GGP Game Decomposition 93

obtained after each group of 1k playouts. We find that 1k playouts are enough
to properly decompose 87% of the games. The only under-decomposed game after
10k playouts (Fig. 6) is Simultaneous Win 2 for which no subgoal (evaluation
function) could be identified for the subgames.

1kp 2kp 3kp 4-6kp 7kp 8kp 9-10kp

under-decomp. 9 5 4 2 2 2 1

decomposed 521 525 527 529 530 532 533

over-decomp. 26 26 25 25 24 22 22

Fig. 5. Number of games correctly decomposed after 1k to 10k playouts.

result after 10kp compound single

under-decomposed 1 -
decomposed 349 182

over-decomposed 20 5
timeout (1h) 32 8

total 402 195

Fig. 6. Number of games correctly decomposed or not after 10k playouts among com-
pound games or single games.

The result of the decomposition after 10k playouts is presented for compound
and single games separately (Fig. 6). The over-decomposition is, in a majority
of cases, due to the lack of information; more playouts would allow a proper
decomposition. For example, in Snake or Tron, a part of the game board is not
explored during playouts and constitutes a separate subgame.

Other cases of over-decomposition are observed for games that consist in
surviving for a number of steps (Queens, Max-Knights15): a wrong move ends the
game and the score depends on the current step. In this case, the role of the main
game is poorly detected: only the stepper is considered usefull. In some games
with simultaneous moves like Point Grab16 or Smallest17, each player is placed
in a separate subgame: the identified subgoals do not link the actions of both
players. Some games are more problematic: in Roshambo18 or Beat Mania19, an
15 The goal of Queens or Max-Knights is to place a given number of queens or knights

on a chessboard so that no chessman threatens another.
16 Point Grab is played in 30 steps. At each step, 2 players have the choice between

different useless actions or grab a point a or a point b. If both player choose the
same point, nobody wins.

17 Smallest is a game played in a maximum of 25 steps. At each step, four player choose
simultaneously a number. The player with the strictly smallest one wins 5 points.

18 Roshambo consists of 10 rounds of rock/paper/scissors/well.
19 Beat Mania is a 2 player game. The first player loose blocks from 3 different positions

and the other must catch them. Each missed or caught block earns points to the
corresponding player.

94 A. Hufschmitt et al.

effect of actions is to increment a counter composed of several fluents. The effect
on each separate fluent is not significant and action effects are not correctly
detected. A concept of meta-effect on a set of fluents would be necessary to
handle such games.

All the decomposable games for which the decomposition could not be
obtained in less than an hour, consist of a stepper associated with an action-
dependent subgame. The time required to create the circuit leaves almost no
time for decomposition. For these games, an ad-hoc detection of a stepper could
allow to obtain a decomposition more rapidly.

Interesting decompositions are obtained for games of Nonogram (5 × 5 and
10×10) the status of several cells can be decided independently of the others and
fluents and actions related to these cells are isolated in independent subgames
(Fig. 7). The remaining part of the board is decomposed in several subgames if
the mark to be placed in cells does not depend on the rest of the game. These
decompositions would allow to solve the game much more rapidly.

3

1

1

1

1

1

1

1

1 2

3

1

1 3

1 1

3

0

0

0

0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

8

9

10

11

1213

Fig. 7. Graphic representation of the decomposition obtained for the game Nonogram
5 × 5. The number in each cell represents the subgame to which it belongs.

We have compared the result of our decomposition with previous works
[6,7,13]: we obtain a correct decomposition for all the game tested in the afore-
mentioned papers20. No measure of decomposition time is indicated by Günther
et al. [6] and Zhao et al. [13]. Figure 8 parallels the results obtained in [7] with the
results obtained for the statistical approach presented in this article; it should
be noted that the DNF approach, although faster than the DNFD, is much
less reliable and heuristics used to detect causal links with both approaches are
very weak. Unlike this previous approach, we obtain a correct decomposition for
Chomp and Blocker Parallel within less than 1 h.

20 We do not test Double Crisscross 2 which is not available in repositories.

Statistical GGP Game Decomposition 95

Jeu DNFD DNF stats

Blocker Parallel >1hr >1hr ≈48min

Asteroids <1sec <1sec <2sec

EightPuzzle <2sec <2sec ≈3sec

Checkers >1hr <12min ≈28min

Breakthrough <16min <16min ≈14sec

Sheep and wolf >1hr <5sec ≈6sec

Tictactoe ≈1sec <1sec <1sec

Nineboardtictactoe >1hr <2sec <17sec

Tictactoex9 >1hr <5sec ≈11sec

Chomp <1sec <1sec <2sec

Multiplehamilton <1sec <1sec <2sec

Multipletictactoe <10sec <1sec ≈1sec

Blockerserial <20min <10min ≈3sec

Dualrainbow ≈1min <8sec ≈6sec

Asteroidsparallel <1sec <1sec ≈2sec

Dualhamilton <1sec <1sec <2sec

Dualhunter <2sec <2sec <3sec

Asteroidsserial <1sec <1sec <4sec

LightsOnParallel <8min <1sec <1sec

LightsOnSimul4 <8min <1sec ≈3sec

LightsOnSimultaneous <8min <1sec ≈3sec

Nim3 <2sec <2sec <2sec

Chinook <14sec <14sec ≈21sec

Double tictactoe dengji >1hr <1sec <1sec

SnakeParallel >1hr <2sec <7sec

TicTacToeParallel >1hr ≈2sec <2sec

Doubletictactoe >1hr <1sec <1sec

TicTacHeaven >1hr <2sec ≈17sec

TicTacToeSerial >1hr <1sec <1sec

ConnectFourSimultaneous >1hr <1sec <2sec

DualConnect4 >1hr <1sec <2sec

Jointconnectfour >1hr <1sec <2sec

Fig. 8. Comparison of results from [7] (DNFD, DNF) with those obtained with our
statistical approach (stats) for 32 games among the 40 they tested. Results of the 3
approaches are identical for the 8 remaining games.

6 Conclusion and Future Work

We presented a simulation based game decomposition approach we tested on a
large set of games. This approach provides a solution to the problem of identify-
ing the effects of actions. The analysis of information collected during playouts
allows to identify the explicit and implicit actions effects. It also allows to detect
alternate moves or steppers when the rule formulation tries to hide them. We
proposed an approach for the decomposition of serial games based on the identi-
fication of some crosspoints inside the game. We show also that it is possible to

96 A. Hufschmitt et al.

identify meta-actions without resorting to the disjunctive normal form of rules,
which is very costly to compute. We can then decompose a game like Break-
through which was not decomposed in less than 1 h in previous works.

We tested our approach on 597 games from http://games.ggp.org/. Our
results demonstrate that it is possible to transform the GDL rules into a logic
circuit, execute 5k playouts and process the decomposition in less than 1 min
for 70% of the games. We also show that 1k playouts are sufficient to obtain a
correct decomposition for 87% of the games.

Decompositions presented here are computed from the initial state of the
game. As a decomposition can be enhanced when more information is available
(more playouts are done), it is possible to detect fluents the value of which
changes once and for all in each new state, to use this information to remove
some links in the dependency graph and to discover new decompositions while
playing.

We have seen that some games present specific difficulties: games where
action effects on each fluent is not significant like in Roshambo or Beat Mania
or in which the goal is to survive N steps like in Queens or Max-Knights.
Our decomposition approach cannot handle games with fluents or actions
shared between several subgames like Tic-Block or Factoring-Mutually-Assured-
Destruction. We will investigate in the future how to handle these games without
significantly increasing computational cost for all games.

Approaches that synthesize subgame solutions to better solve a global game
are restricted to certain types of games that can easily be decomposed in an
ad-hoc way (puzzles or 2-player synchronous parallel games). As our approach
allows to obtain a decomposition sufficiently robust on a wide range of games in
a time compatible with the General Game Playing competition setup, our first
objective is to develop a player using the result of this decomposition to increase
its strength.

References

1. Berlekamp, E., Conway, J., Guy, R.: Winning Ways for your Mathematical Plays,
vol. 2. Academic, Cambridge (1982)

2. Blum, A., Furst, M.L.: Fast planning through planning graph analysis. Artif. Intell.
90(1–2), 281–300 (1997)

3. Cerexhe, T., Rajaratnam, D., Saffidine, A., Thielscher, M.: A systematic solution
to the (de-)composition problem in general game playing. In: Proceedings of ECAI,
pp. 1–6 (2014). http://cse.unsw.edu.au/∼mit/Papers/ECAI14.pdf

4. Genesereth, M.R., Love, N., Pell, B.: General game playing: overview of the
AAAI competition. AI Mag. 26(2), 62–72 (2005). http://aaaipress.org/ojs/index.
php/aimagazine/article/download/1813/1711

5. Günther, M.: Decomposition of single player games. Master’s thesis, TU-Dresden
(2007). http://www.inf.tu-dresden.de/content/institutes/ki/cl/study/assignments/
download/beleg guenther subgame detection.pdf

6. Günther, M., Schiffel, S., Thielscher, M.: Factoring general games. In: Proceed-
ings of the IJCAI-09 Workshop on General Game Playing (GIGA 2009), pp. 27–
33 (2009). http://www.general-game-playing.de/downloads/GIGA09 factoring
general games.pdf

http://games.ggp.org/
http://cse.unsw.edu.au/~mit/Papers/ECAI14.pdf
http://aaaipress.org/ojs/index.php/aimagazine/article/download/1813/1711
http://aaaipress.org/ojs/index.php/aimagazine/article/download/1813/1711
http://www.inf.tu-dresden.de/content/institutes/ki/cl/study/assignments/download/beleg_guenther_subgame_detection.pdf
http://www.inf.tu-dresden.de/content/institutes/ki/cl/study/assignments/download/beleg_guenther_subgame_detection.pdf
http://www.general-game-playing.de/downloads/GIGA09_factoring_general_games.pdf
http://www.general-game-playing.de/downloads/GIGA09_factoring_general_games.pdf

Statistical GGP Game Decomposition 97

7. Hufschmitt, A., Vittaut, J.-N., Méhat, J.: A general approach of game descrip-
tion decomposition for general game playing. In: Cazenave, T., Winands, M.H.M.,
Edelkamp, S., Schiffel, S., Thielscher, M., Togelius, J. (eds.) CGW/GIGA -2016.
CCIS, vol. 705, pp. 165–177. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-57969-6 12. http://giga16.ru.is/giga16-paper3.pdf

8. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game play-
ing: game description language specification. Technical report LG-2006-01, Stan-
ford University (2008)

9. Schkufza, E., Love, N., Genesereth, M.: Propositional automata and cell automata:
representational frameworks for discrete dynamic systems. In: Wobcke, W., Zhang,
M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 56–66. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89378-3 6

10. Vittaut, J.N.: LeJoueur: un programme de General Game Playing pour les jeux à
information incomplète et/ou imparfaite. Ph.D. thesis, Université Paris 8 (2017)

11. Vittaut, J.N., Méhat, J.: Fast instantiation of GGP game descriptions using prolog
with tabling. In: Proceedings of ECAI, pp. 1121–1122 (2014)

12. Zhao, D.: Decomposition of multi-player games. Master’s thesis, TU-
Dresden (2009). http://www.inf.tu-dresden.de/content/institutes/ki/cl/study/
assignments/download/dengji zhao master thesis.pdf

13. Zhao, D., Schiffel, S., Thielscher, M.: Decomposition of multi-player games.
In: Nicholson, A., Li, X. (eds.) AI 2009. LNCS (LNAI), vol. 5866, pp. 475–
484. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10439-8 48.
http://cgi.cse.unsw.edu.au/∼mit/Papers/AI09b.pdf

https://doi.org/10.1007/978-3-319-57969-6_12
https://doi.org/10.1007/978-3-319-57969-6_12
http://giga16.ru.is/giga16-paper3.pdf
https://doi.org/10.1007/978-3-540-89378-3_6
http://www.inf.tu-dresden.de/content/institutes/ki/cl/study/assignments/download/dengji_zhao_master_thesis.pdf
http://www.inf.tu-dresden.de/content/institutes/ki/cl/study/assignments/download/dengji_zhao_master_thesis.pdf
https://doi.org/10.1007/978-3-642-10439-8_48
http://cgi.cse.unsw.edu.au/~mit/Papers/AI09b.pdf

	Statistical GGP Game Decomposition
	1 Introduction
	2 Previous Works
	3 Game, Subgame and Correct Decomposition
	4 Method
	4.1 Simulation Based Detection of Action Effects
	4.2 Filtering Action Effects
	4.3 Action Independent Fluents
	4.4 Compound Moves and Meta-action Sets
	4.5 Serial Games and crosspoints Identification
	4.6 Building the Dependency Graph
	4.7 Subgoals to Fix Under- or Over-Decomposition

	5 Experiments
	6 Conclusion and Future Work
	References

