
Tristan Cazenave
Abdallah Saffidine
Nathan Sturtevant (Eds.)

7th Workshop, CGW 2018
Held in Conjunction with the 27th International Conference
on Artificial Intelligence, IJCAI 2018
Stockholm, Sweden, July 13, 2018
Revised Selected Papers

Computer Games

Communications in Computer and Information Science 1017

Communications
in Computer and Information Science 1017

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Krishna M. Sivalingam, Dominik Ślęzak, Takashi Washio, and Xiaokang Yang

Editorial Board Members

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Junsong Yuan
University at Buffalo, The State University of New York, Buffalo, NY, USA

Lizhu Zhou
Tsinghua University, Beijing, China

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Tristan Cazenave • Abdallah Saffidine •

Nathan Sturtevant (Eds.)

Computer Games
7th Workshop, CGW 2018
Held in Conjunction with the 27th International Conference
on Artificial Intelligence, IJCAI 2018
Stockholm, Sweden, July 13, 2018
Revised Selected Papers

123

Editors
Tristan Cazenave
LAMSADE, Université Paris-Dauphine
Paris, France

Abdallah Saffidine
University of New South Wales
Sydney, Australia

Nathan Sturtevant
University of Alberta
Edmonton, Canada

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-24336-4 ISBN 978-3-030-24337-1 (eBook)
https://doi.org/10.1007/978-3-030-24337-1

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9805-8291
https://doi.org/10.1007/978-3-030-24337-1

Preface

These proceedings contain the papers of the Computer Games Workshop (CGW 2018)
held in Stockholm, Sweden. The workshop took place on July 13, 2018, in conjunction
with the 27th International Conference on Artificial Intelligence (IJCAI 2018). The
Computer and Games Workshop series is an international forum for researchers
interested in all aspects of artificial intelligence (AI) and computer game playing.
Earlier workshops took place in Montpellier, France (2012), Beijing, China (2013),
Prague, Czech Republic (2014), Buenos Aires, Argentina (2015), New York, USA
(2016), and Melbourne, Australia (2017).

For the seventh edition of the Computer Games Workshop, 15 papers were
submitted in 2018. Each paper was sent to three reviewers. In the end, ten contributions
were accepted for presentation at the workshop, of which eight made it into these
proceedings.

The workshop also featured an invited talk by Marlos C. Machado titled “Revisiting
the Arcade Learning Environment: Evaluation Protocols and Open Problems for
General Agents,” joint work with Marc G. Bellemare, Erik Talvitie, Joel Veness,
Matthew Hausknecht, Michael Bowling.

The published papers cover a wide range of topics related to computer games. They
collectively discuss abstract games such as the game of Go (two papers) and video
games. Three papers deal with video games, two papers on General Game Playing, and
one discusses a Web-based game. Here we provide a brief outline of the eight
contributed papers.

“Spatial Average Pooling for Computer Go,” is by Tristan Cazenave. The paper
addresses Deep Reinforcement Learning for computer Go. It shows that using spatial
average pooling improves a value network for computer Go.

“Iterative Tree Search in General Game Playing with Incomplete Information,” is
authored by Armin Chitizadeh, and Michael Thielscher. In General Game Playing
(GGP) with incomplete information the lifted HyperPlay technique, which is based on
model sampling, is the state of the art. However, this method is known not to model
opponents properly, with the effect that it generates only pure strategies and is
short-sighted when valuing information. The papers addresses this limitations using
fictitious play to introduce an iterative tree search algorithm for incomplete-information
GGP.

“TextWorld: A Learning Environment for Text-Based Games,” is written by
Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes,
Emery Fine, James Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada,
Wendy Tay, and Adam Trischler. The paper introduces TextWorld, a sandbox learning
environment for the training and evaluation of reinforcement learning agents on
text-based games. TextWorld is a Python library that handles interactive play-through

of text games. It enables one to cast text-based games in the reinforcement learning
formalism and to develop a set of benchmark games, and evaluate several baseline
agents on this set.

“What’s in A Game? The Effect of Game Complexity on Deep Reinforcement
Learning,” is authored by Erdem Emekligil, Ethem Alpaydın. Deep Reinforcement
Learning works on some games better than others. The paper proposes to evaluate the
complexity of each game using a number of factors (the size of the search space,
existence/absence of enemies, existence/absence of intermediate reward, and so on).
Experiments are conducted on simplified Maze and Pacman environments.

“Analyzing the Impact of Knowledge and Search in Monte Carlo Tree Search in
Go,” is written by Farhad Haqiqat and Martin Müller. The paper focuses on identifying
the effects of different types of knowledge on the behavior of the Monte Carlo tree
search algorithm, using the game of Go as a case study. Performance of each type of
knowledge and of deeper search is measured according to the move prediction rate on
games played by professional players and the playing strength of an implementation in
the open source program Fuego.

“Statistical GGP Game Decomposition,” is authored by Aline Hufschmitt,
Jean-Noël Vittaut, and Nicolas Jouandeau. The paper presents a statistical approach for
the decomposition of games in the GGP framework. General game players can
drastically decrease game search cost if they hold a decomposed version of the game.
Previous works on decomposition rely on syntactical structures, which can be missing
from the game description, or on the disjunctive normal form of the rules, which is very
costly to compute. The program has been tested on 597 games. Given a timeout of
1 hour and few playouts (1k), their method successfully provides an expert-like
decomposition for 521 of them.

“Towards Embodied StarCraft II Winner Prediction,” is by Vanessa Volz, Mike
Preuss, and Mathias Kirk Bonde. Realtime strategy games (and especially StarCraft II)
are currently becoming the “next big thing” in game AI, as building human competitive
bots for complex games is still not possible. However, the abundance of existing game
data makes StarCraft II an ideal testbed for machine learning. The paper attempts to use
this for establishing winner predictors. Such predictors can be made available to human
players as a supportive AI component, but they can more importantly be used as state
evaluations in order to inform strategic planning for a bot.

“MOBA-Slice: A Time Slice-Based Evaluation Framework of Relative Advantage
Between Teams in MOBA Games,” is written by Lijun Yu, Dawei Zhang, Xiangqun
Chen, Xing Xie. Multiplayer online battle arena (MOBA) is currently one of the most
popular genres of digital games around the world. It is hard for humans and algorithms
to evaluate the real-time game situation or predict the game result. The paper introduces
MOBA-Slice, a time slice-based evaluation framework of relative advantage between
teams in MOBA games. MOBA-Slice is a quantitative evaluation method based on
learning, similar to the value network of AlphaGo. MOBA-Slice is applied to Defense
of the Ancients 2 (DotA2), a typical and popular MOBA game. Experiments on a large
number of match replays show that the model works well on arbitrary matches.

vi Preface

These proceedings would not have been produced without the help of many persons.
In particular, we would like to mention the authors and reviewers for their
help. Moreover, the organizers of IJCAI 2018 contributed substantially by bringing the
researchers together.

March 2018 Tristan Cazenave
Abdallah Saffidine
Nathan Sturtevant

Preface vii

Organization

Program Chairs

Tristan Cazenave Université Paris-Dauphine, France
Abdallah Saffidine University of New South Wales, Australia
Nathan Sturtevant University of Denver, USA

Program Committee

Hendrik Baier University of York, UK
Édouard Bonnet École Normale Supérieure de Lyon, France
Bruno Bouzy University of Paris Descartes, France
Michael Buro University of Alberta, Canada
Amy K. Hoover New Jersey Institute of Technology, USA
Nicolas Jouandeau University of Paris 8, France
Levi Lelis Universidade Federal de Viçosa, Brazil
Jialin Liu Queen Mary University of London, UK
Henryk Michalewski University of Warsaw, Poland
Martin Müller University of Alberta, Canada
Santiago Ontañón Drexel University, USA
Joseph C. Osborn University California Santa Cruz, USA
Aske Plaat Leiden University, The Netherlands
Malcolm Ryan Macquarie University, Australia
Jean-Noël Vittaut University of Paris 8, France

Contents

Video Games

Towards Embodied StarCraft II Winner Prediction 3
Vanessa Volz, Mike Preuss, and Mathias Kirk Bonde

MOBA-Slice: A Time Slice Based Evaluation Framework of Relative
Advantage Between Teams in MOBA Games. 23

Lijun Yu, Dawei Zhang, Xiangqun Chen, and Xing Xie

TextWorld: A Learning Environment for Text-Based Games 41
Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas,
Tavian Barnes, Emery Fine, James Moore, Matthew Hausknecht,
Layla El Asri, Mahmoud Adada, Wendy Tay, and Adam Trischler

General Game Playing

Statistical GGP Game Decomposition . 79
Aline Hufschmitt, Jean-Noël Vittaut, and Nicolas Jouandeau

Iterative Tree Search in General Game Playing with
Incomplete Information . 98

Armin Chitizadeh and Michael Thielscher

Machine Learning and Monte Carlo Tree Search

Spatial Average Pooling for Computer Go . 119
Tristan Cazenave

Analyzing the Impact of Knowledge and Search in Monte Carlo
Tree Search in Go. 127

Farhad Haqiqat and Martin Müller

What’s in a Game? The Effect of Game Complexity on Deep
Reinforcement Learning . 147

Erdem Emekligil and Ethem Alpaydın

Author Index . 165

Video Games

Towards Embodied StarCraft II Winner
Prediction

Vanessa Volz1(B), Mike Preuss2, and Mathias Kirk Bonde3

1 TU Dortmund University, Dortmund, Germany
vanessa.volz@tu-dortmund.de

2 Westfälische Wilhelms-Universität Münster, Münster, Germany
3 University of Copenhagen, Copenhagen, Denmark

Abstract. Realtime strategy games (and especially StarCraft II) are
currently becoming the ‘next big thing’ in Game AI, as building human
competitive bots for complex games is still not possible. However, the
abundance of existing game data makes StarCraft II an ideal testbed
for machine learning. We attempt to use this for establishing winner
predictors that in strong contrast to existing methods rely on partial
information available to one player only. Such predictors can be made
available to human players as a supportive AI component, but they can
more importantly be used as state evaluations in order to inform strategic
planning for a bot. We show that it is actually possible to reach accura-
cies near to the ones reported for full information with relatively simple
techniques. Next to performance, we also look at the interpretability of
the models that may be valuable for supporting human players as well
as bot creators.

Keywords: StarCraft II · Outcome prediction · Interpretability ·
Embodied gamestate evaluation

1 Introduction

Being able to evaluate a game state in terms of imbalance towards (advantage
for) one player is crucial to many types of generally applicable game-playing
algorithms, such as Monte-Carlo tree search (MCTS) [7]. Heuristics based on
expert knowledge are often used as an evaluation function (see survey in [20]),
but depending on the game in question, such a measure is difficult to construct
and verify. It is therefore beneficial to be able to learn game characteristics from
replay data instead, as this approach avoids human bias and is also generalisable
to other games, an important topic in current research [14]. One possible binary
(component of an) evaluation function of a given game state is whether the player
is likely to win or to lose. In this paper, we thus investigate embodied winner
prediction, i.e. only using information available to a single player (or bot).

c© Springer Nature Switzerland AG 2019
T. Cazenave et al. (Eds.): CGW 2018, CCIS 1017, pp. 3–22, 2019.
https://doi.org/10.1007/978-3-030-24337-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24337-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-24337-1_1

4 V. Volz et al.

In fact, such information may also be helpful to players because the data
driven heuristic may be more accurate than their own estimation of the current
state of the game, or be accurate in cases that are difficult to decide for a human.
We will address the differences between the (expert) human and machine learned
judgment of the overall game state.

Being able to predict the winner of a game is also important in the context
of dynamic difficulty adaptation [11] and in context of AI-assisted game design,
e.g. when evaluating the decidedness or tension of a game [6]. Furthermore,
the construction of such a predictor can improve the understanding of a game’s
characteristics and act as a basis for developing new strategies for human and AI
players. The characteristics could even be tracked over time in order to obtain
knowledge about the meta of the game.

The identification of game characteristics is especially important since AIs
in commercial games typically rely on domain knowledge, because more general
approaches would not fulfill resource or believability constraints.1. To do that,
the predictor should be interpretable as well. This has the added benefit of
facilitating the detection of overfitting issues.

In this paper, we thus investigate the feasibility of constructing a model for
winner prediction for a complex AAA game that is both (1) embodied and (2)
interpretable. To this end, we test different strategies, such as incorporating data
from multiple ticks and vary feature sets and models. We choose to conduct our
study on StarCraft II, as related AIs are a topic of active research [21] and we can
assume that winner prediction is a challenging task. Additionally, as of recently,
suitable data is available [22] in high quantity. The fact that the subject of
winner prediction in StarCraft (II) has been approached previously (cf. related
work Sect. 2.2) also demonstrates a high interest. However, to our knowledge,
there are no winner prediction methods that do not assume full observability
of all features and at the same time are interpretable and tested on human vs.
human replays (cf. Sect. 2.2). We aim to fill this gap with the work detailed in
this paper. Due to the lack of a single consistent definition of interpretability,
we instead anecdotally investigate it using the opinions and understanding of an
expert StarCraft II player.

In the following section, we first briefly introduce the StarCraft series and
then review the state-of-the-art of winner prediction on RTS games. Based on
our literature overview, we formulate several hypotheses to test in this paper.
To this end, we first describe our experimental setup in Sect. 3, including our
data collection and preprocessing approach, as well as the prediction models we
tested. We describe the results of our experiments and hypothesis tests in Sect. 4.
Afterwards, we analyse the interpretability of the obtained models. We conclude
our paper in Sect. 5 with a summary and possible directions of future work.

1 Duygu Cakmak: The grand strategy approach to AI at Emotech Meet AI 9 (London),
March 22nd 2018.

Towards Embodied StarCraft II Winner Prediction 5

2 Background and Related Work

2.1 StarCraft Series

Game Description. StarCraft II2 is a popular real-time strategy (RTS) game
with a science-fiction theme released by Blizzard in 2010, which was followed
up with further expansion packs in 2013, 2015, and 2016. It is the second game
in the series, the first StarCraft game was published in 1998. StarCraft II was
designed as an E-Sport [5] and has a massive following, regular tournaments
(e.g. World Championship Series) and professional players.

StarCraft II features three playable races (Terran, Protoss, Zerg) and several
game modes (1v1, 2v2, 3v3, 4v4 and campaign). Each player spawns with a town-
hall building and a small number of workers at a predetermined location on a
map, their base. The players can construct additional buildings, which can be
used to produce more workers and military units. The properties of the available
buildings and units are determined by the race played. There are additional
upgrade mechanisms available to buildings as well as units. Buildings, units,
and upgrades require different amounts of minerals and vespene gas, the two
resources in the game. Both can be gathered by worker units. The supply value,
which may be increased by additional buildings, poses a limit to the number of
units that can be built by a player.

The player that successfully destroys all their opponent’s buildings has won
the game. The game also ends if a player concedes or if a stalemate is detected
by the game.

StarCraft as Research Environment. The first game version, and specif-
ically its expansion pack StarCraft: Brood War, have been used in research
as a benchmark and competition framework3 for AI agents since 2009 [21]. In
2017, DeepMind and Blizzard published the StarCraft II Learning Environment
(SC2LE) [22]. The SC2LE provides an interface for AI agents to interact with
a multi-platform version of StarCraft II and supports the analysis of previously
recorded games.

Specifically, the SC2LE offers an interface through which a large set of game
state observations4 can be made available for every game tick in a replay or in
real-time. The information that can be obtained includes raw data on features
such as unit health and unit type in the form of heatmaps. At the same time, it
also includes aggregated information that is usually displayed to game observers
that can help to characterise a player’s progress. Examples include the resource
collection rate and the number of units destroyed represented as their value in
resources. The SC2LE consists of multiple sub-projects, which include, among
other things, a python wrapper library pysc25 used in this paper.

2 https://starcraft2.com.
3 http://bwapi.github.io/.
4 https://github.com/deepmind/pysc2/blob/master/docs/environment.md.
5 https://github.com/deepmind/pysc2.

https://starcraft2.com
http://bwapi.github.io/
https://github.com/deepmind/pysc2/blob/master/docs/environment.md
https://github.com/deepmind/pysc2

6 V. Volz et al.

Even before releasing SC2LE, Blizzard has been allowing players to save their
own StarCraft II games to a file using the .S2Replay format. These replays can
then be watched using the StarCraft II software and even analysed using the S2
Protocol published by Blizzard. s2protocol6 is a Python library that provides
a standalone tool to read information from .S2Replay files. The files contain
repositories with different information. The metadata repository, for example,
contains general information on the game and the players, such as the result, the
selected races, the game map, and the duration of the game as well as technical
details such as the StarCraft II build number. More details on the recorded
features, their interpretation, and how they are used in this paper can be found
in Sect. 3.

2.2 Outcome Prediction

With the release of SC2LE, the authors of the corresponding paper [22] also pre-
sented several use cases for their research environment, among them predicting
the outcome of a game given a game state. They test three different neural net-
works to predict game outcome based only on the observations a player makes
at a given time. The two best performing models both contain two convolutional
networks with 2 layers and 16 and 32 filters, respectively. To represent the game
state, they use spatial features gathered from the minimap, as well as other mea-
sures observable by the player, such as the supply cap. With this setup, they are
able to reach a prediction accuracy of about 60% after 8 min of game time and
approach 70% after 20 min.

However, due to the complexity of the models, as well as the applications of
learned spatial features, it is very difficult to interpret the resulting networks.
While not absolutely necessary, interpretability is a nice feature both for under-
standing game characteristics, as well as biasing AIs with the discovered patterns.
More importantly, more complex models always are more prone to overfitting. In
this paper we therefore investigate how better interpretable and smaller models
perform in comparison.

Additionally, the authors of [22] recognise that training a predictor not only
on information from the current gametick, but also including previous ticks in the
input, would likely increase prediction accuracy. We investigate this hypothesis
in this work by integrating different amounts of historic data as well as different
aggregation methods.

Lastly, the input that is used in the paper heavily depends on the exploratory
behaviour of the players. It is unclear how different scouting behaviours and the
resulting difference in information might influence the predictor. We thus chose
to focus on directly interpretable measures that are not influenced by information
gathering methods. However, it would be interesting to investigate this further
and compare it to predictors trained on fully observable game states. In this case,
we decided to investigate the baseline, i.e. no opponent information, instead.

6 https://github.com/Blizzard/s2protocol.

https://github.com/Blizzard/s2protocol

Towards Embodied StarCraft II Winner Prediction 7

Besides the paper described above, there are a number of related publications
on outcome predictors for StarCraft: Brood War, some of which are also used
within AI agents. In [15], for example, the authors predict the winner of StarCraft
matches using several time-dependent and -independent features collected from
human vs. human replays from the dataset described in [16]. The authors of
[15] stress the fact that, in contrast to many other publications (such as [17,
18]), they work on data that was not artificially generated or collected from
simplified StarCraft versions. Additionally, while similar work had previously
only considered Protoss vs. Protoss match-ups using the same dataset [8], in
[15] the authors investigate how separate models for each race match-up can be
combined. Both publications use features that express the difference between the
two players at a given time, e.g. in terms of number of units, as well as a measure
based on random rollouts similar to LDT2 (life time damage a unit can inflict)
as proposed in [10]. In [8], the authors reach an average prediction accuracy of
58.72% for 5–10 min of observed gameplay and 72.59% after 15 min (Protoss vs.
Protoss). In [15], the best accuracy reported for the separate model on Terran
vs. Terran matches is 63.5%, but it was only trained on 298 matches.

In this work, we also use human vs. human replays which we processed via the
SC2LE framework. We were however able to collect a larger dataset. Addition-
ally, we avoid using rollout-based measures, so that the model is computationally
efficient and can be used within a real-time SC2 agent to evaluate possible game
states. For this purpose, in contrast to the existing literature, we also do not
assume a fully observable game state. We however investigate how this limita-
tion affects model performance.

A third, more recent paper using the dataset from [16] again, investigates
how early winner predictions can be made [2]. It also assumes fully observable
game states, but they abstain from using simulation-based measures and do not
aggregate the obtained features. They are still able to achieve high prediction
accuracies of over 80% after only 5 min with a KNN model. We therefore include
a KNN in our comparison as well.

In addition, other types of predictions were tackled in the context of StarCraft
and StarCraft II, such as army combat outcomes [19], the opponent’s technology
tree [1] and a player’s league [3]. Winner prediction was tackled in other games
as well, for example in MOBAs [23]. However, as we do not intend to develop
new prediction techniques in this paper, we do not give a detailed overview of
related work for other games.

2.3 Research Questions

Based on the limitations and future work directions described in the papers
listed in the previous section, we formulate several research questions regarding
(A) prediction accuracy and (B) interpretability of trained models.

A1 Are specific models particularly (un-)suitable for this problem?
Previous studies introduce several model types. How effective are they in our
problem setting?

8 V. Volz et al.

A2 How important is opponent information?
Studies such as [2] obtain high accuracies with full observability. Are these
results transferable to our problem setting?

A3 How important is information on game progress?
[22] suggests it should improve accuracy. Is that true?

B1 Are resulting models interpretable by (expert) human players?
Can these models inform game designers and players?

B2 Can (expert) human players identify indicators for outcome?
Some features in related work [10] incorporate expert information. How does
this effect performance? How best to integrate it?

3 Experimental Setup

In Sect. 4, we will present the results of several experiments designed to investi-
gate the previously stated research questions. In the following, we describe our
experimental setup. All experiments rely on training machine learning classifiers
using supervised learning. We describe the models used in Sect. 3.4, as well as
how we collect and preprocess the data required for training (see Sects. 3.1 and
3.2, respectively). In Sect. 3.3, we characterise the obtained data in more detail,
specifically by discussing the obtained features, to facilitate interpretation of the
results.

The interpretation and subsumption of results is done by an expert StarCraft
II Terran player. He competed in the European Grandmaster league (16/17)
and analyses the success of different play styles in his function as game coach.7.
Whenever we refer to an expert opinion in the following, we describe the opinion
of this particular player.

3.1 Data Collection

The data utilized in our experiments was extracted from replays randomly
selected from the dataset published by Blizzard together with the SC2LE [22]. In
order to streamline our analysis, we chose to focus on Terran vs. Terran match-
ups exclusively (TvT in the following). This has the added benefit of being our
expert’s main area of expertise.

For each selected replay, we recorded its metadata using the s2protocol library
(see Sect. 2.1). In order to obtain information on the progression of the game,
we then added details on the players’ progress with a modified replay.py script
from the pysc2 library. The script outputs all available observations (cf. Sect. 3.3)
every 224 gameticks, which translates to about 10 s of gameplay.

Using this method, we were able to collect information on 4899 TvT games.
We then processed the collected information with R, thus generating datasets
characterising the players’ progress for each recorded gametick, i.e. every 10 s
starting from 10 s. The longest game we recorded ended after 1:53:30 h. Addi-
tionally, we also compiled a dataset containing information of all games at their
respective last gametick.
7 https://www.gamersensei.com/senseis/mperorm.

https://www.gamersensei.com/senseis/mperorm

Towards Embodied StarCraft II Winner Prediction 9

3.2 Preprocessing

A detailed look at the collected data made the need for preprocessing obvious.
Since the dataset is comprised of real-world data, it contains a considerable
amount of instances where players left and thus lost due to reasons not reflected
in their game progress. For example, after watching some replays, we observed
examples where players were idle when the game started and others, where
players lost on purpose by destroying their own buildings. Since this behaviour
is arguably not explainable by the collected data and would bias the trained
models, we sought to remove the corresponding replays from the datasets. Based
on discussion with the expert player, we thus remove games

1. in which at least one player performed 0 actions per minute,
2. that lasted 30 s or less,
3. where at least one player spent less than 50 minerals and already destroyed

one of their own buildings.

Condition (1) removes games where at least one player was not active. (2)
removes games where one player was not active, returned late to their PC and
conceded before enemy contact was possible. (3) removes games where a player
self-destructs intentionally, as friendly fire is not a sensible strategy until later in
the game. The latter behaviour might be observed if players intentionally want
to lower their player rating.

Within this preprocessing step, we removed 870 games, leaving us with 4029.
Of the remaining games, only 17 were a tie, i.e. less than 0.5%. We therefore
also removed all tied games, as they are highly uncharacteristic and our dataset
does not contain enough examples to train a predictor. After preprocessing, our
dataset contains data on both players of 4012 TvT replays.

3.3 Data Characterisation

From the recorded observations, we excluded features that contain no infor-
mation due to game logic-based reasons (i.e. information on upgrades, shields,
energy and warp gates, but also race) as well as such features that would not be
available during a game, such as player performance statistics (apm and mmr) and
game duration. Due to our choice of models, we also removed all discrete features
(map name). Furthermore, we removed features that did not vary (base build,
score type). The remaining features are listed in the following, presented as
Cartesian products, i.e. {A}x{B} = {(a, b)|a ∈ A, b ∈ B}.
gameloop, army count, score

{∅, collected, collection rate, spent} x {minerals, vespene}
{friendly fire, lost, killed, used, total used} x {minerals, vespene}

x {none, army, economy, technology}
{total value, killed value} x {structures, units}
{total} x {damage dealt, damage taken, healed} x {life}
{food} x {workers, used army, used economy, used}
{idle} x {production time, worker time, worker count}

10 V. Volz et al.

They mainly contain information on resource collection, usage and destruc-
tion, as well as units and structures, food supply, idle times, and damage. The
features are similar to those presented in the game observation screen and rep-
resent a player’s progress in different areas of the game (e.g. army vs. economy).
Other features are intended to reflect a player’s efficiency (e.g. information on
idleness). The features also include some information on the consequences of the
opponent’s actions (e.g. damage taken, resources lost). They do not, however,
include spatial data, nor any reflection on observations made by scouting. As
such, they are all easily available to a player or bot within a game.

3.4 Prediction Methods

Basically, we treat winner prediction as a binary classification problem, and
there are of course many available methods for this, as it is one of the two
fundamental activities in machine learning (the other one is regression). However,
we restrict ourselves to four well-known algorithms here. One could, e.g., add
Support Vector Machines or other methods, but we do not expect very different
results. We have performed some manual parameter testing to configure the
algorithms. However, performance differences due to parametrisation seem to be
small in all cases.

Decision Trees. Recursive partitioning [4] produces (usually binary) decision
trees that use simple rules for splitting the remaining data set into two parts
by means of a one variable condition at every node. Interpreted graphically, this
means that every decision represents a horizontal or vertical split through the
decision space, which is quite restrictive concerning the obtainable partitions.
However, the advantage of this method is that it can produce interpretable
models, even for people with limited knowledge of machine learning. We employ
the R package rpart with the following control parameters:
minsplit=20, cp=0.001, maxcompete=4, maxsurrogate=10,

usesurrogate=2, xval=30, surrogatestyle=1, maxdepth=4

KNN. (k-)Nearest neighbour methods work by utilising similarities between
existing data points. In principle, k may be any positive number, this is the
number of data points nearest to a new point that is used to decide how to
classify it. In its simplest case (1nn classification), we are looking only for the
nearest neighbour according to a distance function defined over the decision
space, and the new point then gets the same label as this neighbour. For k > 1,
the decision can be taken by majority vote or any other decision rule.

We utilize the knn method from the R package class, with k set to 3 and l to
0. Note that these algorithms do not possess a training step, they are computed
directly.

Random Forests. This is an ensemble method based on decision trees, where
different subsets of data and features are used to learn a large number (typically

Towards Embodied StarCraft II Winner Prediction 11

500) of decision trees which are then simultaneously used for classifying a new
data set by means of a voting scheme. The graphical interpretation of random
forests is similar to the one of decision trees, but much more fine-grained. Much
more complex surfaces can be approximated. For example, a line that is not axis-
parallel can be produced by simply putting many small lines together that are
shifted only by one pixel. On the other hand, it is of course much more difficult
to explain how a specific random forest actually makes decisions. One can of
course measure how important single features are, but this does not provide any
information on how they interact. More complex approaches are needed here to
identify meaningful features and their attribution [13].

In our experiments, we use the default parametrization (500 trees) of the R
method randomForest in a package of the same name.

Artificial Neural Networks. These are the predecessors of the currently
popular deep neural networks, being somewhat simpler (and usually smaller)
in structure. They also lack special layer types for processing graphical data,
known as convolutional layers. However, the basic working principle is the same.
The network consists of nodes that can have multiple inputs and outputs, and
each of these edges carries a weight. Within a node, an activation function (and
maybe a bias) is used to compute the output according to the weighted sum
of the input values. The weights are adapted during training in order to min-
imize the error, usually by means of a method named backpropagation. It is
a greedy optimization procedure (following the local gradient according to the
partial derivative). In principle, ANNs with at least 3 layers can learn all types
of existing functions. However, for complex functions, they may require a lot
of training and a large number of nodes, which in turn requires sophisticated
methods to enable interpretation [13].

In our experiments, we only use a very small ANN with a single hidden layer
with 7 nodes trained for 1000 iterations, implemented using the R package nnet.
The parameters were determined using a simple grid search as well as based on
observed convergence behaviour.

3.5 Training

All experiments are executed using the same settings for model train-
ing/computation. The available data is split, so that 90% of it is used for training
and 10% for validation, as is done in [22]. Like in [8], the data is split per game,
to ensure a fair evaluation. This way, we prevent instances, where data from the
same game, e.g. from different players or gameticks, is contained in both training
and test set.

We test our models for playtimes of 5–20 min, as these are characteristic
game lengths and this timeframe is comparable with related work, such as [2,8].
In addition, we also investigate the final stages of play, as in [15]. The prediction
accuracies are computed using 10% hold-outs in 30 independent runs on a HPC
cluster (LIDO2). A single evaluation of a model for all gameticks took between
a few minutes and 4 h, depending on the model and the settings.

12 V. Volz et al.

4 Experimental Analysis

In the following, we describe the experiments and results for each of the research
questions in Sect. 2.3. Most results are visualised in Fig. 1. The graphs show the
prediction accuracies of different models, where the experimental settings are
encoded as linetype (legend on top-left corners) and the model type as colour
(legend in caption). The values displayed are the mean accuracies as well as
mean accuracy ±1.5 standard deviation in a slightly lighter colour. Plot Fig. 1(b)
shows a parallel plot of different experiments, while all others show behaviour
in relation to the amount of observed gametime.

The different experiments are set up by varying different parameters that
slightly modify the dataset used for training and testing. The parameters we are
using are listed in the following, with default values in bold.

fs feature selection: {all, expert, expert2}
both both players? : {true, false}

tw time window: N0 (0)
da data aggregation: {NA, none, trend, combined}

Feature selection fs is usually set to all, meaning all features described in
Sect. 3.3. We have also created additional feature selection methods that only
select a subset of the available features based on which ones our expert player
deemed to be good indicators of the outcome. A detailed description of selected
features can be found in the following (paragraph B2). With parameter both,
data from the second player can be included or excluded. It is important to note
that if both=t, data from the players is included separately. Therefore, there
is no obvious connection between the two players in a game, and the resulting
model is thus still embodied. However, in order to avoid any correlations between
samples, we usually only include the data collected for one player.

The time window specifies how much historic data is available to the model.
For example, if tw=2 and we are training models after 10 min of gameplay, the
data from 9:40 min and 9:50 min would be available as well. By default, however,
only the gametick in question is available. The additional historic data is added
after being transformed by a data aggregation method da. More details on the
data aggregation methods tested can be found in the following (paragraph A3).

We also want to note that the implementation of the ANN model only allows
for a limited amount of features. For this reason, this model failed to run for a
few of the settings discussed in the following. In these cases, the corresponding
runs are excluded from the results and do not appear in the figures. The KNN
model computation timed out (8 h) for one experiment setting and is thus not
included in the corresponding plot.

In the following, we interpret our experimental results in the light of the
research questions formulated in Sect. 2.3 (A1, A2, A3, B1, B2).

A1: Model Comparison. In most of the work referenced in Sect. 2, several pre-
diction models were tested. In our study, we are therefore looking to apply the
best performing model types, i.e. KNNs in [2] and ANNs in [22] to our problem

Towards Embodied StarCraft II Winner Prediction 13

5 10 15 20

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

tw=0, fs=all

Gametime [min]

pr
ed

ic
tio

n
ac

cu
ra

cy
partially observable
fully observable

0.
80

0.
85

0.
90

0.
95

1.
00

last tick, tw=0

pr
ed

ic
tio

n
ac

cu
ra

cy

fs=all
both=t

fs=all
both=f

fs=expert
both=f

fs=expert2
both=f

5 10 15 20

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

tw=5, fs=all, da=none

Gametime [min]

pr
ed

ic
tio

n
ac

cu
ra

cy

both=f
both=t

)c()b()a(

5 10 15 20

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

fs=all, da=none, both=f

Gametime [min]

pr
ed

ic
tio

n
ac

cu
ra

cy

tw=0
tw=1
tw=5

5 10 15 20

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

fs=all, da=trend, both=f

Gametime [min]

pr
ed

ic
tio

n
ac

cu
ra

cy

tw=0
tw=1
tw=5

5 10 15 20

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

fs=all, da=combined, both=f

Gametime [min]
pr

ed
ic

tio
n

ac
cu

ra
cy

tw=0
tw=1
tw=5

)f()e()d(

Fig. 1. Prediction accuracy with different methods (a), at the end of the game with
different features (b), with and w/o both players datasets (c), and with different types of
historic information (d–f), over the most interesting game period (not (b)). Prediction
methods: • Decision tree, • ANN, • Random Forest, • KNN. (Color figure online)

setting. We focus on simple and small models as well as ones that are likely
interpretable, such as decision trees. For more details on the models and their
implementation in our analysis, see Sect. 3.4.

We have executed all experiments described above for a • decision
tree, • ANN, • random forest, and • KNN model. The achieved accuracies are
displayed in the respective graphs in Fig. 1. We observe that random forests per-
form well in general and achieve the best performance in most settings. Except
for the experiment visualised in Fig. 1(b), the decision tree and ANN have simi-
lar performance. In contrast to the expectations resulting from its stellar perfor-
mance in [2], our KNN model has the weakest performance in most of our tests.
However, the dataset the models in [2] were trained on are significantly smaller
than ours. It is also important to note that the random forest and ANN models
in particular could benefit from an even larger dataset.

Except for in the experiment on the last gametick displayed in Fig. 1(b),
all models seem to react similarly to additional or modified data. This means
the performance improves and decreases for the same experimental settings
by roughly the same amount. The algorithms also display very similar scaling
behaviour with an increasing length of observed gametime. Therefore, different
approaches should be tested in the future. Additionally, the fact that the most

14 V. Volz et al.

complex model, the random forest in our case, performs best in general, might
suggest that there are patterns in the data that are not picked up by a simple
model.

The only experimental setting where this relative behaviour of the models
is not displayed are the ones visualised in Fig. 1(b). For the last tick, ANNs
are in some cases competitive with random forests, while the decision tree and
KNN models obtain similar, but lower accuracies. A possible explanation for this
behaviour is that at the last tick, there certainly must be very good indicators
of the game outcome that should be easy to model. This is of course assuming
that the data was successfully preprocessed so that games with external causes
of conceit are removed. Seeing that the models reach accuracies of up to 95%,
our preprocessing method described in Sect. 3.2 seems to have been successful
in this regard. Additionally, all models have only a small standard deviation in
terms of prediction accuracy. This is a further indication that our preprocessing
method was successful in removing uncharacteristic outliers from the dataset.

Furthermore, we can observe that using different feature selection methods to
introduce expert information barely affects the performance of the random forest
models, but can improve the performance of all others. This could indicate that
the parametrisation of the models is sub-optimal and the predictor e.g. needed
more iterations to identify the best features. Alternatively, data-driven feature
selection methods could be used to boost algorithm performance.

Overall, we achieve competitive performance to the related work described
in Sect. 2.2. We were able to improve the results presented in [22], the most
comparable experimental setup, in terms of early prediction accuracy by around
5% at the 8 min mark. We achieved similar accuracies after 20 min of gametime
(around 70%), even with our considerably less complex modelling approach.
Improvements in terms of earlier prediction can also be observed when compared
to [8]. We have also achieved better results than the TvT win predictor reported
on in [15], but we had access to more data. We are, however, not able to reproduce
the extremely high prediction accuracies obtained in [2], even when assuming
complete observability (see below).

A2: Observability. Much of the work described in Sect. 2.2 allows fully observable
game states instead of our embodied perspective. In the following, we therefore
investigate how much the observability of the opponent’s behaviour affects pre-
diction accuracy. In Fig. 1(a), we visualise the performance improvement of our
models when information on the opponent is added. To do this, we train the
models on a modified dataset where each sample contains all features Sect. 3.3
for both players at the same time. All of the trained models show a significant
improvement of between 2–10%, depending on model and gametick.

This shows that the results from papers with the assumption of fully observ-
able game states are definitely not directly transferable to our situation and
work on embodied outcome prediction is therefore still necessary. This result
also seems to suggest that a suitable use of the scouting mechanics available
to players in StarCraft II will improve a player’s capacity for assessing their
own chances of winning. Furthermore, the fact that information on a single

Towards Embodied StarCraft II Winner Prediction 15

player’s progress is not sufficient to explain the outcome, strongly suggests that
no strategy exists that dominates all others. Otherwise, the winner of a game
would always be the player that best executed the dominating strategy. Instead,
the players seem to have multiple viable strategies available. This is even more
remarkable since we only analyse Terran vs Terran games. This was probably
intended by the game designers [5].

A3: Historic Data. The authors of [22] presume that prediction accuracy can
be significantly improved if it was based on more than just the observations
at a given time. This sentiment was echoed by our expert player. We therefore
investigate different ways to include information on previous gameticks in the
data. We compare the case where no historic data is used (tw=0), only the
previous observation is used (tw=1) and one where we look as far back as a
minute (tw=5). For each of these different settings of tw, we also experiment
with different aggregation methods of the data da. If the time window is set to
0, this parameter is obviously not meaningful and is thus usually set to NA. If
tw �= 0, however, historic data is either inserted as independent samples (none),
combined into a single sample (combined) or the observed trend (trend) is
computed (as the mean of consecutive differences of the observed values per
feature). While we do not encode any domain knowledge with none, we provide
a bit more information to the models. With combined we suggest a potential
correlation of the values and with trend, we specifically force the model to focus
on trend information.

The results are displayed in Figs. 1(d)–(f). Surprisingly, for da=none and
da=combined, we cannot observe a performance improvement when adding his-
toric data. In fact, the performance even seems to decrease for da=trend. The
latter might be a result of the specific modelling of the trend we chose in this
case, but the results are still unexpected. They could potentially be explained
by the fact that we have only recorded observations every 10 s of the game.
This limitation might not have been differentiated enough, as units are usually
killed and reproduced within very short time spans. However, this is generally
not true for (important) structures. Another potential reason could be that the
complexity of the relationship between historic and current data could not be
represented by our simple models and given a relatively small amount of data.
Given more data, deep learning approaches (especially those intended to capture
trends in data) might be better suited for this experiment and have a potential
to improve the results.

B1: Interpretability. In the following, we anecdotally investigate the inter-
pretability of our decision tree models, as they are the most suitable approach for
this analysis. To do this, we have generated decision trees for various scenarios,
namely

– Last tick prediction with expert features
– Prediction after 10 min with expert features

16 V. Volz et al.

– Prediction after 10 min, with expert features, but using historic data (trend
aggregations)

– Prediction after 10 min, with all features, but using historic data (trend aggre-
gations)

The resulting models are depicted in Fig. 2. See also paragraph B2 for more
details on the feature sets. They were able to obtain prediction accuracies of
approximately 0.898, 0.67, 0.556, 0.595, respectively. The last three models
depict the data observed at the same point in time and were generated from
the same split of training and test data to facilitate a comparison.

It is important to note, that studies suggest that non-experts can only simul-
taneously grasp 5–9 different variables with 3–15 values [12]. Therefore, to guar-
antee interpretability, the features would need to be discretised. Additionally, the
decision should be parameterised accordingly to prevent generating too many
branches. Interestingly, the decision tree trained on data containing all features
(i.e. fs=all), instead of just a subset, comes closest to the mentioned constraints
of interpretability.

Despite this caveat, we asked our human expert player to interpret the mod-
els, as they still contain interpretable information when focusing on different
branches separately. According to him, the first model seems very reasonable in
context of the game. It asks if the player has any army left. If not, then it tries
to assess with damage taken and dealt, whether the opponent has any army left
either. A human player would probably look at similar statistics.

The second model appears to be quite similar. What stands out as unex-
pected, is that both models use the number of idle workers. One possible inter-
pretation is that players have many idle workers if there is an imminent and
critical threat, which forces the player to pull their workers away from mining.
A large number of idle workers also indicates a non-efficient management of
resources and build order.

The third model seems much closer to the approach a human would take
to evaluate their chances of winning, i.e. interpret the trends in game data. If
the amount of damage done increases and the amount of damage taken does not
increase significantly in a time frame of 10 s (tw=1), this indicates the player won
a battle. Of course, a won battle generates a strong advantage over the other
player at that point in time. If the collection-rate increases compared to the last
observed game state, the player was able to expand their economy without being
punished for it. This is another indicator of success and can be interpreted as a
sign that winning chances are good.

Tree number 4 seems reasonable as well. However, resource production, which
is used as the main feature here, is very dependent on the strategy and thus
not an ideal predictor, especially with partial info. Furthermore, while resource
production is an important part, it is more telling how efficiently they are used for
military and economy (resources spent). This is because gathering resources
is relatively easy, the more difficult skill is developing and executing a good
and adaptive build order. Further down the tree, however, the distinctions are
comparable to the previous trees.

Towards Embodied StarCraft II Winner Prediction 17

food_used_army < 34

total_damage_ta >= 1600

lost_minerals_a >= 1718

total_damage_de < 2553

total_damage_de < 718

total_damage_ta >= 477

idle_worker_cou >= 11

idle_worker_cou >= 22

food_used_army < 70

lost_minerals_e >= 2444

killed_minerals < 1762Defeat

Defeat

Victory

Defeat

Victory

Defeat

Victory

Defeat

Victory

Defeat

Victory

Victory

yes no
killed_mineral < 338

food_used_army < 44

total_damage_d < 4684

collection_rat < 2309

lost_minerals_ >= 100

total_damage_t >= 2741

lost_minerals_ >= 462

food_used_army < 20

total_damage_d < 4740

killed_value_u < 938

total_damage_d >= 1066Defeat

Victory

Defeat

Victory

Defeat

Victory

Defeat

Defeat

Victory

Defeat

Victory

Victory

yes no

last tick, fs=expert, both=f 10mins, tw=0, fs=expert, both=f
)b()a(

total_damage_t < −145

total_damage_d >= −646

collection_rat >= −182

idle_productio >= −151

total_damage_t < −1168

idle_worker_ti >= −36

total_damage_d >= −242

idle_productio >= −70

food_used_army >= −6.5

total_value_un >= −138

killed_mineral < −325

Defeat

Defeat

Victory

Defeat

Victory

Victory

Defeat

Victory

Defeat

Victory

Defeat

Victory

yes no

collected_v >= −102

killed_valu >= −112 collected_m >= −408

used_minera >= −75

idle_produc >= −62 idle_worker < −57

idle_produc < −211Defeat Victory

Defeat Victory Defeat Victory

Defeat Victory

yes no

10mins, tw=1, fs=expert, both=f 10mins, tw=1, fs=all, both=f
)d()c(

Fig. 2. Decision trees learned for the last tick (a) and for the game state after 10min
(b–d) as samples for checking differences between machine learning based and expert
human reasoning.

Overall, according to the expert, it is hard to understand why model 3 has
a comparably weak prediction rate, as it definitely is the most human-like app-
roach. However, it is also surprising that predictions on the game state can

18 V. Volz et al.

be so good with so little information. Concluding, while there are caveats to
the interpretability from a formal standpoint, some models seem to be able to
capture the thought process of (expert) human players. Others seem to find dif-
ferent patterns in the data. This suggests that after applying suitable complexity
constraints and a careful evaluation and selection of the specific model to use,
decision trees have potential to be used to inform players.

B2: Domain Knowledge. Finally, we investigate ways to integrate domain knowl-
edge from expert players into the models. This is an approach that is commonly
used in industry, but also in research (see Sect. 2.2), in order to bias the machine
learning model suitably. In our case, we chose to test restricting the search space
for model training, hoping that this will improve the convergence properties of
the models. At the same time, it should reduce the risk of the models reflecting
non-interpretable data artifacts instead of underlying game characteristics.

From a human perspective, there is an extraordinary amount of features that
can be recorded by the SC2 research framework to describe a game state. This
includes all sorts of information from features readily available to the player such
as supply (known in the API as food) to information that no player would ever
have a chance of keeping track of, such as the total amount of damage they have
dealt in a match.

For many of these features, players would assume that they carry little to
no information related to the outcome of a match. Our expert player has thus
chosen two sets of features called expert and expert2 from the available ones
described in Sect. 3.3, the second set being even smaller than the first one. The
selected features were deemed to be the most important ones for predicting the
winner of the match. They are listed in the following:

Expert Feature Set:
gameloop
{∅, collection rate} x {minerals}
{killed, lost} x {minerals} x {economy, army}
{total value, killed value} x {units}
killed value structures
{total} x {damage dealt, damage taken} x {life}
{food} x {used army, used economy}

Expert2 Feature Set:
gameloop
{killed, lost} x {minerals} x {economy, army}
{total value, killed value} x {units}
{food} x {army, workers}

Food army, the amount of supply currently spent on army, was cho-
sen as it directly correlates with a player’s army size. If a player has lit-
tle to no army, especially in later stages of the game, this is a strong
indicator that they are losing. Food workers can also be a strong indica-

Towards Embodied StarCraft II Winner Prediction 19

tor of whether a player is winning or losing. If the player has few work-
ers left, they will not be able to rebuild an army, and thus risk losing if
their army is destroyed. Killed minerals army, killed minerals economy,
lost minerals army, and lost minerals economy were chosen as they can be
used to gauge which player won the battles. This is because these features allow
some information on the success of the opposing player. If a player has killed
significantly more minerals than they have lost, they are certainly in a favorable
position.
Killed value structures was chosen as a clear indicator of a critical situation
in the game. Players generally do not lose many structures.

It is important to note that the selected features do not necessarily coincide
with the features identified as most important by our models (cf. decision tree 4
in Fig. 2). A larger scale study on the usage of features by the different models
would be needed to allow general statements on feature selection. However, we
can observe the influence of restricting the feature sets on the models. The
corresponding plot can be found in Fig. 1(b).

The effect of this approach to integrating domain knowledge seems to depend
heavily on the model type and is not necessarily positive. This finding demon-
strates the difficulties of suitably biasing general machine learning approaches
to improve their performance. In our experiments, restricting the search space
did definitely decrease the computation time, however. From our data, we can-
not conclude whether a strictly data-based approach with more complex models
and larger amounts of data is more promising than identifying better ways to
integrate domain knowledge. Both appear to offer potential for improving the
prediction models.

In the following, we thus take a different approach to assessing domain knowl-
edge. Our expert player has attempted to go through his own replays to find sce-
narios, where either predicting the winner was easy or he failed to do so. Based
on this information, we outline how human players approach the subject of esti-
mating the likelihood of winning independent of our models. In one instance,
the outcome was reportedly easy to tell based on information gathered from
contacts with the opposing player. It is however unclear how this information
is reflected in the features we collected in our study. Deep learning approaches
trained on raw information collected from the minimap as done in [22] might be
able to capture this. Our data would only reflect the trades made for buildings
and military.

In scenarios where these trades are obvious, a predictor is likely able to pick
up on them. However, since units and structures are encoded via their resource
value in the recorded data, this can only be interpreted in a meaningful way if the
resource values accurately reflect the value of the unit or building in the game.
This is unlikely, because the value of certain units depends on the strategy of the
opponent. Instead, this issue could be approached by counting the number of
different units and structures individually, so that the tradeoffs can be identified
via data analysis. Different units have been encoded separately in [2] (mostly
by type, e.g. air and ground units). But this approach increases the number of

20 V. Volz et al.

features, which reduces the interpretability of the resulting models, which is why
it was avoided in this study.

An interesting avenue to characterising the difference between our trained
model predictors and human experience would be to identify enough replays
that are similar to scenarios where winner prediction is easy or hard for human
players. The models could then be used to evaluate the corresponding replays
to assess whether data-driven approaches could be used as information tools for
pro-players in these specific cases.

5 Conclusion and Outlook

In this paper, we have approached embodied winner prediction in StarCraft II
as a machine learning problem using replays collected and published by Blizzard
and DeepMind [22]. We were able to achieve competitive results, even with

– simple, interpretable models
– with simple features
– on human vs. human data.

While there is still potential for improvement of the respective models, finding
the best predictor was not the intent of this paper. Instead, we focus on inves-
tigating which directions of future research suggested in previous work seem
most promising. To this end, we identify several research questions, mostly tar-
geted towards the influence of observability and other information constraints
on achievable prediction accuracy. Furthermore, we give a detailed description
of our preprocessing method as well as a baseline accuracy for embodied winner
prediction in StarCraft II.

We demonstrate that while adding information on the opposing player can
facilitate the prediction of the winner, this is not necessarily true when adding
information on previous game states instead. This was a surprising result, but
it is possible that different methods of integration or a larger amount of data
might produce different results. Furthermore, we find that biasing trained models
with domain knowledge does also not necessarily translate into improved per-
formance. Finally, while we are able to produce models that contain information
comprehensible to an (expert) human player, more work is required to guarantee
and investigate interpretability.

Therefore, in the future, more research is required concerning different ways
of integrating different types of information into data-driven prediction models.
This is true for additional information and interpretative measures based on
domain knowledge (such as LTD2 [10] and the expression of strategy in [15]),
as well as for information gathered from previously made observations in the
same game. More work is also required towards formal definitions on the inter-
pretability of trained models for complex games. Frameworks that allow the
visual exploration of different features and their attribution [13] are a promising
approach to make even more complex models interpretable. Alternatively, the
feature space a more complex model learns can also be used as a proxy task to

Towards Embodied StarCraft II Winner Prediction 21

train simpler models on. This way, knowledge can be distilled into a less complex
model [9].

In terms of improvement of the achieved prediction accuracies, increasing the
complexity of the models as well as the amount and complexity of training data
(by adding more replays, but also spatial data) appears to be a promising app-
roach with hopefully interesting newly discovered patterns in the data. Another
way of enhancing the data is to include more historic data. A thusly enhanced
data set might even allow the use of deep learning models that are potentially
able to uncover more complexities. We ran preliminary tests with deep learn-
ing models on the existing data, which did not improve the obtained prediction
accuracies. But, given more or enhanced data, these methods definitely have
potential.

We, however, want to concentrate our future efforts on transferring our find-
ings on winner prediction to approaches on game state evaluation. While this
would certainly be an interesting topic for future StarCraft II AI research, we
want to focus more on its application to AI-assisted game design to express
aspects such as drama or decisiveness [6].

References

1. Alburg, H., et al.: Making and Acting on Predictions in StarCraft: Brood War.
University of Gothenburg (2014)

2. Álvarez-Caballero, A., et al.: Early prediction of the winner in StarCraft matches.
In: International Joint Conference on Computational Intelligence (2017)

3. Avontuur, T., Spronck, P., van Zaanen, M.: Player skill modeling in Starcraft
II. In: Ninth AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, Boston, MA, USA, pp. 2–8. AAAI Press (2014)

4. Breiman, L., et al.: Classiffication and Regression Trees. Wadsworth and Brooks,
Monterey (1984)

5. Browder, D.: The game design of STARCRAFT II: designing an E-Sport. In: Game
Developers Conference (GDC) (2011). http://www.gdcvault.com/play/1014488/
The-Game-Design-of-STARCRAFT

6. Browne, C., Maire, F.: Evolutionary game design. IEEE Trans. Comput. Intell. AI
Games 2(1), 1–16 (2010)

7. Browne, C.B., et al.: A survey of monte carlo tree search methods. IEEE Trans.
Comput. Intell. AI Games 4(1), 1–43 (2012)

8. Erickson, G., Buro, M.: Global state evaluation in StarCraft. In: AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, pp. 112–118 (2014)

9. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
In: NIPS Deep Learning Workshop (2014). https://arxiv.org/abs/1503.02531

10. Kovarsky, A., Buro, M.: Heuristic search applied to abstract combat games. In:
Kégl, B., Lapalme, G. (eds.) AI 2005. LNCS (LNAI), vol. 3501, pp. 66–78. Springer,
Heidelberg (2005). https://doi.org/10.1007/11424918 9

11. Lopes, R., Bidarra, R.: Adaptivity challenges in games and simulations: a survey.
IEEE Trans. Comput. Intell. AI Games 3(2), 85–99 (2011)

12. Miller, G.: The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychol. Rev. 63, 81–97 (1956)

http://www.gdcvault.com/play/1014488/The-Game-Design-of-STARCRAFT
http://www.gdcvault.com/play/1014488/The-Game-Design-of-STARCRAFT
https://arxiv.org/abs/1503.02531
https://doi.org/10.1007/11424918_9

22 V. Volz et al.

13. Olah, C., et al.: The building blocks of interpretability. Distill (2018). https://
distill.pub/2018/building-blocks

14. Perez-Liebana, D., et al.: General video game AI: competition, challenges and
opportunities. In: AAAI Conference on Artificial Intelligence, pp. 4335–4337 (2016)

15. Ravari, Y.N., Bakkes, S., Spronck, P.: StarCraft winner prediction. In: AAAI Con-
ference on Artificial Intelligence and Interactive Digital Entertainment (2016)

16. Robertson, G., Watson, I.D.: An improved dataset and extraction process for Star-
craft AI. In: FLAIRS Conference, pp. 255–260 (2014)

17. Sánchez-Ruiz-Granados, A.A.: Predicting the winner in two player StarCraft
games. In: CoSECivi, pp. 24–35 (2015)

18. Stanescu, M., et al.: Evaluating real-time strategy game states using convolutional
neural networks. In: IEEE Conference on Computational Intelligence and Games
(2016)

19. Stanescu, M., et al.: Predicting army combat outcomes in StarCraft. In: AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment, pp.
86–92 (2013)

20. Summerville, A., et al.: Understanding mario: an evaluation of design metrics for
platformers. In: Foundations of Digital Games. ACM, New York (2017)

21. Čertický, M., Churchill, D.: The current state of StarCraft AI competitions and
bots. In: Artificial Intelligence and Interactive Digital Entertainment Conference
(2017)

22. Vinyals, O., et al.: StarCraft II: A New Challenge for Reinforcement Learning.
CoRR abs/1708.04782 (2017). arXiv: 1708.04782

23. Yang, P., Harrison, B.E., Roberts, D.L.: Identifying patterns in combat that are
predictive of success in MOBA games. In: Foundations of Digital Games (2014)

https://distill.pub/2018/building-blocks
https://distill.pub/2018/building-blocks
http://arxiv.org/abs/1708.04782

MOBA-Slice: A Time Slice Based
Evaluation Framework of Relative

Advantage Between Teams
in MOBA Games

Lijun Yu1,2(B), Dawei Zhang2, Xiangqun Chen1, and Xing Xie2

1 Peking University, Beijing, China
yulijun@pku.edu.cn, cherry@sei.pku.edu.cn

2 Microsoft Research Asia, Beijing, China
zhangdawei@outlook.com, xing.xie@microsoft.com

Abstract. Multiplayer Online Battle Arena (MOBA) is currently one of
the most popular genres of digital games around the world. The domain
of knowledge contained in these complicated games is large. It is hard for
humans and algorithms to evaluate the real-time game situation or pre-
dict the game result. In this paper, we introduce MOBA-Slice, a time
slice based evaluation framework of relative advantage between teams in
MOBA games. MOBA-Slice is a quantitative evaluation method based on
learning, similar to the value network of AlphaGo. It establishes a foun-
dation for further MOBA related research including AI development. In
MOBA-Slice, with an analysis of the deciding factors of MOBA game
results, we design a neural network model to fit our discounted evalu-
ation function. Then we apply MOBA-Slice to Defense of the Ancients
2 (DotA2), a typical and popular MOBA game. Experiments on a large
number of match replays show that our model works well on arbitrary
matches. MOBA-Slice not only has an accuracy 3.7% higher than DotA
Plus Assistant (A subscription service provided by DotA2) at result pre-
diction, but also supports the prediction of the remaining time of a game,
and then realizes the evaluation of relative advantage between teams.

Keywords: Computer games · Applications of supervised learning ·
Game playing and machine learning

1 Introduction

Multiplayer Online Battle Arena (MOBA) is a sub-genre of strategy video games.
Players of two teams each control a playable character competing to destroy
the opposing team’s main structure, with the assistance of periodically spawned
computer-controlled units. Figure 1(a)1 is a typical map of a MOBA genre game.
MOBA is currently one of the most popular genres of digital games around
1 https://en.wikipedia.org/wiki/File:Map of MOBA.svg.

c© Springer Nature Switzerland AG 2019
T. Cazenave et al. (Eds.): CGW 2018, CCIS 1017, pp. 23–40, 2019.
https://doi.org/10.1007/978-3-030-24337-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24337-1_2&domain=pdf
https://en.wikipedia.org/wiki/File:Map_of_MOBA.svg
https://doi.org/10.1007/978-3-030-24337-1_2

24 L. Yu et al.

the world. Among championships of MOBA globally, Defense of the Ancients
2 (DotA2) has the most generously awarded tournaments. DotA2 is a typical
MOBA game in which two teams of five players collectively destroy enemy’s
structure, Ancient, while defending their own. The playable characters are called
heroes, each of which has its unique design, strengths, and weaknesses. The two
teams, Radiant and Dire, occupy fortified bases called plateau in opposite corners
of the map as Fig. 1(b)2 shows.

(a) A Typical MOBA Map (b) DotA 2 Mini Map

Fig. 1. Maps

In games with a scoring mechanism, we can easily tell which player or team
has an advantage from the scores. But the design of MOBA games such as DotA2
is complicated, with lots of variables changing during the whole game. So it is
hard to evaluate the real-time game situation in such a large domain of knowl-
edge. Traditionally, players and commentators assess the relative advantage by
intuitive feeling, their own experience and fuzzy methods. No unified standard
has been proposed, to the best of our knowledge. Such evaluation is needed in
further research related to MOBA. It plays an essential role in developing arti-
ficial intelligence for MOBA games, such as working as the reward function in
reinforcement learning models [20] or the evaluation function in Monte Carlo
planning models [5]. In strategy analysis, the effectiveness of strategies can also
be estimated by the change of relative advantage between teams.

In this paper, we introduce MOBA-Slice, which is able to evaluate any time
slice of a game quantitatively. Different from manually designed evaluation func-
tion, MOBA-Slice provides a model that learns from data, which is similar to the
value network of AlphaGo [18]. It establishes a foundation for further MOBA
related research including AI development and strategy analysis.

The main contribution of this paper is listed below.
2 https://dota2.gamepedia.com/File:Minimap 7.07.png.

https://dota2.gamepedia.com/File:Minimap_7.07.png

MOBA-Slice: An Evaluation Framework of MOBA Games 25

1. We introduce MOBA-Slice, a time slice based evaluation framework of rel-
ative advantage between teams in MOBA games. We analyze the deciding
factors of MOBA game result. A discounted evaluation function is defined to
compute the relative advantage. We design a supervised learning model based
on Neural Network to do this evaluation. MOBA-Slice is able to predict the
result and remaining time of ongoing matches.

2. We apply MOBA-Slice to DotA2 and prove the effectiveness of MOBA-Slice
with experiments. We embody MOBA-Slice on a typical MOBA game, DotA2.
We process a large number of DotA2 match replays to train our model. Exper-
iments show that the model is able to evaluate time slices of arbitrary DotA2
matches. In the aspect of predicting the game result, MOBA-Slice has an
accuracy 3.7% higher than DotA Plus Assistant.

2 MOBA-Slice

2.1 MOBA Game Result Analysis

In a MOBA game, the final victory is of the most significance. MOBA Game
Result (MGR) analysis is defined to describe the deciding factors of the result
of a match. For a certain time point, the future result of the game is considered
related to two aspects, current state and future trend. The current state describes
the game situation at this specific time slice, which is the foundation of future
development. The future trend represents how the match will develop from the
current state. Figure 2 shows the content of MGR analysis.

Fig. 2. MGR analysis

In details, the current state includes every information we can get to know
about the game from a particular time slice. As MOBA are multiplayer games

26 L. Yu et al.

where each player controls one character, we further divide the factors of cur-
rent status into individual and global state. The individual state contains the
information of each character, including its type, attributes such as position and
experience, statistics such as the count of deaths, the items it possesses, the skills
it masters, and so on. The global state describes the background environment
and the relationship between characters. The global information includes the
lineup depicting the types of characters in both teams. Lineup can also reveal
the advantage or disadvantage of a specific combination of characters. The posi-
tion and selected route of characters, the status of creeps and buildings are
considered in global state, as well. All the information mentioned above that
will be used to represent current state can be found in game records, such as
replay files.

Different from the current state, the part of future trend focuses on the level
of players. Given the same status as a start, different players and teams will
have distinct game processes and lead to various game results. We also divide
this part into individual ability and team cooperation. The ability of each player
individually can be measured through ranking systems such as TrueSkill [8,16].
We further include the part of team cooperation, as good members do not nec-
essarily mean a strong team. The detailed method to evaluate team cooperation
still requires further research and is not covered in this paper.

2.2 Discounted Evaluation

MGR analysis describes how the result of a match comes out, and reversely
we can use the future result to evaluate the current states. In Q learning [23],
the discount factor γ represents the difference in importance between future
rewards and present rewards. We can let γ = 1

1+r , where r is the discount rate.
The current value of a reward Ra after time t is calculated by γtRa. Inspired
by this, in the evaluation of current situation, we regard the future victory as
a reward. The farther we are from the victory, the less the current value of its
reward is. We use the logarithmic form of discount factor to simplify exponent
operation.

Definition 1. The function of discounted evaluation DE for a time slice TS is
defined as:

DETS (R, t) =
1

ln(1 + r)t
× R =

R

αt
(1)

where α = ln(1 + r), t is the remaining time of the game, and

R =

{
1,when Team A wins

−1,when Team B wins
(2)

DETS has several appealing properties:

1. The sign of its value represents the final result, positive for A’s victory, neg-
ative for B’s.

MOBA-Slice: An Evaluation Framework of MOBA Games 27

2. Its absolute value is inversely proportional to t.
3. The value approximately represents the advantage team A has in comparison

to team B.

Here is some explanation of property 3. In normal cognition, greater advan-
tage indicates more probability of winning, which would result in less time to
end the game. So we can suppose that there is a negative correlation between
the advantage gap between two teams and t. This assumption may be challenged
by the intuition that the game situation fluctuates and even reverses at times.
We can divide such fluctuation into random and systematic ones. The players’
faults that occur randomly can be smoothed in a large scale of data. Systematic
fluctuation is considered to be the result of misinterpretation of advantage. For
example, in games where team A wins, if the intuitionistic advantage of team A
usually gets smaller after certain time slice x, there is a reason to doubt that the
advantage of team A at x is over-estimated. Traditional ways to evaluate advan-
tage usually ignores the potential fluctuation and does not take game progress
into consideration. In our method, we can suppose the absolute value of the
advantage between teams keeps growing from the beginning as a small value till
the end. The value of function DETS changes in the same way.

Although the values of both R and t are unknown for a current time slice in
an ongoing match, we can train a supervised learning model to predict the value
of function DETS for each time slice. Based on property 3, the model would be
a good evaluator for relative advantage between teams.

2.3 Time Slice Evaluation Model

We intend to design a supervised learning model which takes time slices as
input and outputs the value of function DETS . Due to the current limitation
of research, we only consider the factors in the part of current state in MGR
analysis while designing models.

The structure of this Time Slice Evaluation (TSE) model is shown in
Fig. 3(a). TSE model contains two parts of substructures. The individual (Ind)
part calculates the contribution of each character in the game separately, which
corresponds to the individual state in MGR analysis. Different characters in
MOBA games have distinctive design, strengths, and weaknesses. This part
ignores any potential correlation between characters but learns the unique fea-
tures of each character. The global (Glo) part calculates the contribution of all
the characters in a match, corresponding to the global state in MGR analysis.
This part takes all the characters in a match as a whole and is designed to learn
the potential relationship of addition or restriction. To combine the Ind and Glo,
the outputs of the two parts are fed to lc layers of nc neurons activated by relu
function [15]. The output is calculated by one neuron activated by tanh function
to get a result in the range [−1, 1].

For a MOBA game which has ca playable characters in total, the Ind part
consists ca parts of subnets, each of which calculates a character’s contribution.
For cm characters in a time slice, we use their corresponding subnets to calculate

28 L. Yu et al.

(a) TSE Model (b) Subnet

(c) Ind Part

Fig. 3. Model structure

their contribution individually, sum for each team and then subtract team B from
team A to get the final result. Usually, in MOBA games each character is not
allowed to be used more than once, so each subnet is calculated at most once
for a time slice. But in practice, there is still a problem for Ind part to train in
batch. Different characters are used in different matches, so the outputs need to
be calculated with different sets of subnets. The data path in the model varies
for time slices from different matches.

With the structure defined in Fig. 3(c), batch training is implemented. If each
character takes nc dimensions of data, the input of a time slice can be reshaped
into a matrix A ∈ R

cm×nc . We create a distributer matrix D for each input,
which only contains cm non-zero elements. D[i, j] = 1 means that the id of the
i-th character in this game is j, so the i-th row of A will be at the j-th row
in matrix M = D · A and will be fed to the j-th subnet. In vector G ∈ R

1×ca ,
G[0, i] = 1 indicates character i is in team A and G[0, i] = −1 indicates character
i is in team B. Vector V ∈ R

ca×1 contains the output of all ca subnets. We finally
calculate the output by output = G · V .

The subnets of Ind part are feed-forward neural networks of the same scale.
Each subnet in Fig. 3(b) takes in nc dimensions of input and outputs with a neu-

MOBA-Slice: An Evaluation Framework of MOBA Games 29

ron activated by tanh. Each subnet has li hidden layers of ni neurons activated
by relu and applied dropout [19] at rate rd.

The Glo part is simply a multilayer feed-forward structure. It is like the
subnet of Ind part but in a much larger scale. It takes in a full time slice vector
and outputs with one neuron activated by tanh. The Glo part has lm fully
connected hidden layers with each nm neurons, activated by relu function and
applied dropout at rate rd.

To get better distribution, we set the output of TSE model:

y =
1

DETS (R, t)
=

αt

R
(3)

And it needs to be transformed to correspond to the range of tanh function:

yscaled = −1 + 2 × y − ymin

ymax − ymin
∈ [−1, 1] (4)

Let ŷ be the prediction from model. To transform it back. we can rescale ŷ by:

ŷrescaled = ymin +
ŷ + 1

2
× (ymax − ymin) (5)

and then prediction of t and R can be extracted as:

t̂ = |ŷrescaled |/α (6)

R̂ = sign(ŷrescaled) (7)

As a regression problem, mean absolute error (MAE) and mean squared error
(MSE) are chosen as metrics. MAE is also the loss function. We can further
calculate a rescaled MAE by

MAE rescaled (ŷ, yscaled) = MAE (ŷ, yscaled) × ymax − ymin

2
(8)

Lemma 1.
|ŷrescaled − y| ≥ α

∣∣t̂ − t
∣∣ (9)

Proof.

|ŷrescaled − y| =
∣∣∣∣αt̂

R̂
− αt

R

∣∣∣∣
=

{
α

∣∣t̂ − t
∣∣ when R̂ = R

α
∣∣t̂ + t

∣∣ ≥ α
∣∣t̂ − t

∣∣ when R̂ = −R

(10)

where |R| =
∣∣∣R̂∣∣∣ = 1 and t, t̂ ≥ 0

Theorem 1.
MAE rescaled (ŷ, yscaled) ≥ αMAE (t̂, t) (11)

30 L. Yu et al.

Proof.
MAE rescaled (ŷ, yscaled) = MAE (ŷrescaled , y)

=
∑N

i=1 |ŷrescaled − y|
N

≥
∑N

i=1 α
∣∣t̂ − t

∣∣
N

= αMAE (t̂, t)

(12)

So MAE rescaled (ŷ, yscaled)/α proves to be the upper bound of MAE (t, t̂). It
provides a more intuitive way to evaluate the model’s effectiveness, as its value
can be viewed in units of time to reveal the mean error of prediction.

3 Experiments

3.1 Apply MOBA-Slice to DotA2

We choose DotA2 as a typical MOBA game to apply MOBA-Slice. DotA2 gen-
erates a replay file to record all the information in a match. An open source
parser from OpenDota project3 can parse the replay file and generate inter-
val messages every second to record the state of each character. The following
information contained in interval messages is chosen to describe a time slice in
current experiments.

– Character - hero id
– Attributes: life state, gold, experience, coordinate(x, y)
– Statistics:

• deaths, kills, last hit, denies, assists
• stacked creeps, stacked camps, killed towers, killed roshans
• placed observer, placed sentry, rune pickup, team-fight participation

– Items: 244 types

There are 114 characters which are called heroes in DotA2. In a match, each
team chl4 ooses five heroes without repetition. A hero may die at times and
then respawn after a period of delay. The life state attribute is used to record
whether a hero is alive or dead. Gold and experience are two essential attributes
of a hero. Gold is primarily obtained by killing enemy heroes, destroying enemy
structures and killing creeps. Heroes can use their gold to purchase items that
provide special abilities. A hero’s experience level begins at level 1 and grows as
the game goes on. It is highly related to the level of a hero’s ability. The position
of a hero on the map is given in coordinate representation x and y.

Many kinds of statistics are generated automatically by the game engine and
the replay parser to help analyze the game. Deaths, kills, last hit, denies and
assists record these historical events during the fights. Stacked creeps, camps
and killed towers, roshans record the hero’s fight history regarding these units.
3 Replay parser from OpenDota project: https://github.com/odota/parser.

https://github.com/odota/parser

MOBA-Slice: An Evaluation Framework of MOBA Games 31

Invisible watchers, observer and sentry, are helpful items that allow watching
over areas and spy on enemies. Runes are special boosters that spawn on the
game map, which enhance heroes’ ability in various ways. A team-fight is a fight
provoked by several players with a considerable scale. There are 244 types of
items in DotA2 that can be purchased by a hero, according to our statistics.

In the aspect of global state, lineup is represented by the id of 10 heroes.
Position and route are reflected in the coordinates of heroes. Since skill of heroes
and status of creeps and buildings are not recorded in interval messages, we
do not involve these fields of information in current experiments. Using lower-
level parser such as manta4 and clarity5 to extract data from raw Protobuf
structured replay is likely to address this problem, but it significantly increases
the complexity of data processing.

3.2 Data Processing

The digital distribution platform developed by Valve Corporation, Steam, offi-
cially provides APIs6 for DotA2 game statistics. We use GetLeagueListing and
GetMatchHistory methods to get the list of all matches of professional game
leagues7. We then use OpenDota’s API8 to get detailed information of matches
including the URL of its replay file on Valve’s servers. After downloading and
decompressing them, we send replay files to OpenDota’s parser. With a massive
cost of CPU time, we get downloaded and parsed replay files of 105,915 matches
of professional leagues, with a total size of over 3 TB.

We scan parsed replay files and create time slice vectors every 60 s of game
time. In a vector, each of ten heroes has 263 dimensions, including 1 for hero id,
5 for attributes, 13 for statistics and 244 for items. Along with one dimension
recording the game time, each time slice vector has 2,631 dimensions. We also
generate the value of function DETS for each time slice, with the already known
game result. In this process, we notice that about 34 thousand replays are not
correctly parsed due to game version issues, file corruption or known limitation
of the parser. After dropping these invalid data, we get 2,802,329 time slices
generated from 71,355 matches. The distribution of match length is shown in
Fig. 4. The average length is about 40 min, with few matches shorter than 10 min
and very few matches longer than 100 min.

3.3 First Training of TSE Model

Considering that the beginning part of a game might be erratic, we choose to
only use time slices from the last 50% time in each match in the first experiment.
4 Manta: https://github.com/dotabuff/manta.
5 Clarity 2: https://github.com/skadistats/clarity.
6 Documentation of Steam APIs for DotA2: https://wiki.teamfortress.com/wiki/

WebAPI#Dota 2.
7 Data processing took place in Oct. 2017.
8 Documentation of OpenDota API for match data: https://docs.opendota.com/#

tag/matches.

https://github.com/dotabuff/manta
https://github.com/skadistats/clarity
https://wiki.teamfortress.com/wiki/WebAPI#Dota_2
https://wiki.teamfortress.com/wiki/WebAPI#Dota_2
https://docs.opendota.com/#tag/matches
https://docs.opendota.com/#tag/matches

32 L. Yu et al.

Fig. 4. Distribution of match length

Experiments with whole matches and other range of game time will be talked
about in Sect. 3.6. To simplify and get better distribution, we set r = e − 1 so
α = 1. Adam optimizer [11] is applied in the experiments.

To better know the optimized hyper-parameters of TSE model, we begin
with training and testing partially. We train separately the Ind part with the
input described above and yscaled as its output. Each subnet of the Ind part
takes in nc = 263 dimensions representing one hero, including 1 for game time,
5 for attributes, 13 for statistics and 244 for items, which is similar to one-tenth
of a time slice vector except that hero id is replaced. Due to its structure, only
cm
ca

of the Ind part is trained with every piece of data, so the training process is
slower than a fully connected model. For subnets, li = 3, ni = 40, rd = 0.5 are
proved to be the best, according to our experiments. We use 90% of the dataset
for training, 5% for validation and 5% for testing. This trained Ind part shows
an MAE of 0.1523 which indicates a prediction error of 11.15 min.

For the Glo part, we take the time slice vectors directly as input and yscaled
as output. nm = 400, lm = 4, rd = 0.5 are chosen as the hyper-parameters of the
best performance. On the same dataset as the Ind part, the Glo part shows a
rescaled MAE of 7.85 min.

For the remaining part of TSE model, nc = 4, lc = 3 are set. When we train
the whole TSE model, we regard it as a multi-output model to avoid training
different parts unequally. The loss is calculated by Eq. 13. ŷInd, ŷGlo and ŷ are
the outputs of Ind part, Glo part, and the whole model.

loss = MAE (y, ŷ) + μ × MAE (y, ŷInd) + ν × MAE (y, ŷGlo) (13)

μ = 0.3, ν = 0.3 are proved to be an efficient set of parameters in this training.
The whole model is trained on the same dataset as previous at first. Then a
10-fold cross validation at match level is applied to provide reliable result.

The result of experiments on partial and full TSE model is shown in Table 1.
The performance of TSE model indicates that it is an applicable model to fit

MOBA-Slice: An Evaluation Framework of MOBA Games 33

Table 1. Metrics of TSE model

MAE MSE Rescaled MAE (minutes)

Blind prediction 0.5178 0.3683 37.91

Ind part 0.1523 0.0339 11.15

Glo part 0.1072 0.0290 7.85

TSE model 0.1050 0.0287 7.69

TSE model (10-fold cross validation) 0.10539 0.02794 7.716

function DETS . Both the Ind part and the Glo part are valid compared with
blind prediction. The Glo part has a better performance than the Ind part. That
means only focusing on the individual contribution separately would result in a
significant loss of information. The correlation between heroes plays an essential
role in the matches. TSE model combines the two parts and is better than either
part, so the validity of both Ind part and Glo part is proven. As TSE model is
designed based on the split of individual and global state in MGR analysis, its
performance also supports MGR analysis.

3.4 Prediction on Continuous Time Slices

In the previous experiment, time slices are randomly shuffled. We can not dis-
cover how TSE model works on continuous time slices from a match. This time
we feed time slices generated from a match to the trained TSE model in chrono-
logical order and observe its performance on each match. Figure 5 shows the
performance of TSE model on four sample test matches. The horizontal axis t
represents the remaining time before the end of current match, which declines
as the match goes on. The vertical line in the middle splits the graphs into two
parts. The right side of it is the last 50% time of the game, which this TSE
model is trained to fit.

Focusing on the right side, we can see that TSE model successfully fits DETS

in the last half of matches. It works well on matches of arbitrary lengths no
matter Radiant or Dire wins. The predicted value usually fluctuates around the
real value. The missing variables such as skills of heroes can be a major reason
for such fluctuation.

The observations on whole matches above provide proof of the effectiveness
of MOBA-Slice on DotA2. As we can see from the figures, TSE model trained
with data of last half matches can evaluate time slices from the last half of new
matches thoroughly. This result shows that the functional relationship between
the state of a time slice and the game result described in DETS indeed exists, or
TSE model would never be able to work efficiently on new matches. With the
figures and the properties of DETS explained previously, we can see that TSE
model can do more than just evaluation. It is also useful enough to work as an
online prediction model for the game result and the remaining time.

34 L. Yu et al.

Fig. 5. Performance on sample matches

3.5 Comparison with DotA Plus Assistant on Result Prediction

In the progress of our research, a monthly subscription service called DotA Plus9

was unveiled in an update of DotA2 on March 12, 2018. As one part of DotA
Plus service, Plus Assistant provides a real-time win probability graph for every
match, as shown in Fig. 6. It is praised as the “Big Teacher” by Chinese players
due to its accurate prediction. Although Plus Assistant can not predict the
remaining time of a match, its prediction of game result can be used to evaluate
the corresponding ability of MOBA-Slice.

To compare DotA Plus Assistant with MOBA-Slice, we have to choose
matches played after its release date, so we can not use the previous dataset. The
tournament of DotA2 Asian Championship10 was held from March 29th to April
7th. This tournament has 105 matches totally, but 33 matches are unusable for
network failure or newly introduced heroes that are not included in the training
data of our TSE Model. An upsetting fact is that the winning probability data
is not available from the replay parser, and is suspected to be encrypted. So we
manually download the valid 72 matches in DotA2 client and watch their replay
to capture the winning probability graph. We discretize the winning probability
into 3 values: Radiant’s victory when above the middle line, Dire’s when below
9 Homepage of DotA Plus: https://www.dota2.com/plus.

10 Homepage of DotA2 Asian Championship: http://www.dota2.com.cn/dac/2018/
index/?l=english.

https://www.dota2.com/plus
http://www.dota2.com.cn/dac/2018/index/?l=english
http://www.dota2.com.cn/dac/2018/index/?l=english

MOBA-Slice: An Evaluation Framework of MOBA Games 35

Fig. 6. Win probability graph of DotA plus assistant

it, and unknown when at it. We also feed these matches to the trained TSE
model, and discretize the output according to the sign of value as property 1 of
DETS described: positive for Radiant’s victory, negative for Dire’s, and zero for
unknown.

As we have the prediction from both models, we sample the prediction and
compare with the real result to calculate the accuracy of a model at a specific
game time percent. For example, the prediction results of MOBA-Slice on each
match at the time point of 10% of game time are used to calculate the accuracy
of MOBA-Slice at 10% time point. The unknown predictions are always counted
as errors. We do this calculation every 10% of time for both models, and calculate
the average for all time points. As the result in Table 2, the average accuracy of
MOBA-Slice is 3.7% higher than DotA Plus Assistant at predicting the game
result.

Table 2. Prediction accuracy of MOBA-Slice and DotA Plus Assistant

Game time percent 10% 20% 30 % 40% 50% 60% 70% 80% 90% Average

DotA Plus Assistant 0.4167 0.5139 0.5972 0.6111 0.6806 0.7500 0.7778 0.8472 0.9444 0.6821

MOBA-Slice 0.5694 0.5417 0.6111 0.7083 0.7083 0.7222 0.8056 0.8611 0.9444 0.7191

3.6 Towards Better Performance

For the first 50% time of the match in Fig. 5, we can see that the error is much
larger. One possible reason is that this TSE model is not trained to fit the first

36 L. Yu et al.

Fig. 7. Experiments on different intervals

half of games, which contains different information from the last half. Changing
the range of data is a way to fix this problem. On the other hand, larger insta-
bility at the beginning of matches also counts. The game situation may break
our underlying assumption for the monotonicity of relative advantage between
teams. We can not avoid such instability as the game situation may change at
any time. But we can treat this as noise in the data. As long as the instability
in training data is relatively small, the models are effective.

We want to see the disparity of instability in different parts of matches, so
we train models with time slices from different intervals of game time. As TSE
model takes a longer time to train due to the structure of Ind part, we choose
to work with merely its Glo part.

As shown in Fig. 7, experiments are carried out for every 10 percent of game
time. We train with time slices from 0%–10% of game time and test on 0%–10%,
and then repeat training and testing on 10%–20% and so on. The loss decreases
as a match goes on, indicating the decline of instability. In other words, it is
much more difficult to evaluate the beginning of a match than the ending. In
interval 90%–100%, we can predict the game result with an average error of
about 1 min, which shows a high relevance of game situation and outcome. But
we can not train models specific for an interval of game time to evaluate ongoing
matches, as we do not know the length of a match until it ends. We further
experiment on larger intervals to find out a proper range of training data for
predicting arbitrary time slices.

Results in Fig. 8 are much better than in Fig. 7, since relatively more train-
ing data is fed to the model. The same trend that loss decreases as the game
progresses is seen in Fig. 8. However, if observed from right to left, Fig. 8 shows
something contrary to the common belief that training with more data results in
better performance. We find that as time interval gets larger, the model learns
from more time slices but the loss keeps growing. The instability of the beginning
part seems so large as to worsen the performance. It appears to be a trade-off
problem to choose the proper range of training data. The MAE in Fig. 8 cannot
be used to determine this as they are calculated on different test sets. We sup-
pose the best choice needs to be found in accordance with the performance of
MOBA-Slice in actual applications.

MOBA-Slice: An Evaluation Framework of MOBA Games 37

Fig. 8. Experiments on larger intervals

4 Related Work

With the continuously growing number of players, MOBA games have been
popular with young people all over the world. As the design of MOBA games is
complicated, the large domain of knowledge contained in these games is of great
research value. Research related to MOBA games mainly consists three aspects:
strategy analysis, result prediction, and AI developing.

Strategy analysis is proved efficient at improving the performance of profes-
sional players. Yang and Roberts [25] introduced a data-driven method to do
post-competition analysis and knowledge discovery, and evaluated on 3 games:
DotA, Warcraft III and Starcraft II. Hao et al. [10] studied player behavior and
optimal team positions through clustering. Bauckhage’s team [3] introduced a
spatio-temporal clustering method to partition game maps into meaningful areas.
Cavadenti’s group [4] implemented a data mining based method that discovers
strategic patterns from historical behavioral traces to help players improve their
skills. Hanke and Chaimowicz [9] developed a recommendation system for hero
line-ups based on association rules. In most strategy related researches, evalua-
tion of a game situation or the game result is used as a part of the algorithm to
tell the effectiveness of a strategy or to optimize toward a bigger winning rate. It
is hard for such evaluation to fully utilize the multitudinous variables of MOBA
games. In the research of strategy analysis, we also met the problem of evalua-
tion of strategy. This ended up with the proposal of MOBA-Slice. MOBA-Slice
is designed to provide reliable quantitative evaluation of game situations. We
now suggest using MOBA-Slice as the evaluation algorithm in strategy analysis
researches.

It is considered hard to predict the winners of a MOBA game, as the game sit-
uation is always changeful. There are so many factors and features to choose from
to build a prediction model. Conley and Perry [7] implemented K-Nearest Neigh-
bor (KNN) algorithm to predict with merely hero lineup information. Wang [22]
further used multi-layer feedforward neural networks and added game length
information into inputs, but did not improve significantly. Almeida’s team [1]
built classification models of Naive Bayes, KNN, and J48 based on the compo-
sition of heroes and the duration of match. Pu et al. [14] also worked towards

38 L. Yu et al.

identifying predictive information of winning team with graph modeling and
pattern extraction. Different from static prediction in previous works, DotA
Plus Assistant supports real-time prediction, but its algorithm remains business
secret. As a nice property of MOBA-Slice, it supports real-time prediction of
game results. And MOBA-Slice demonstrates better accuracy than DotA Plus
Assistant.

Artificial intelligence of MOBA games interests many researchers. Many rule
based bots and machine learning algorithms have been developed. Andersen et
al. [2] examined the suitability of online reinforcement learning in real-time strat-
egy games with Tank General as early as 2009. Synnaeve and Bessiere [21] used a
semi-supervised method with expectation-maximization algorithm to develop a
Bayesian model for opening prediction in RTS games. Kolwankar [12] employed
genetic algorithms to adjust actions in evolutionary AI for MOBA. Silva and
Chaimowicz [17] implemented a two-layered architecture intelligent agent that
handles both navigation and game mechanics for MOBA games. Wisniewski and
Miewiadomski [24] developed state search algorithms to provide an intelligent
behavior of bots. Pratama et al. [13] designed AI based on fuzzy logic with
dynamic difficulty adjustment to avoid static AI mismatching player and AI’s
difficulty level. AIIDE StarCraft AI competition [6] has been held every year
since 2010, with continuously rising popularity. Evaluation of situation is often
needed in artificial intelligence algorithms, which MOBA-Slice is designed to
provide. MOBA-Slice can work as the reward function in reinforcement learning
models [20] and the evaluation function in Monte Carlo planning models [5].

5 Conclusion

MOBA-Slice is a well-designed framework which evaluates relative advantage
between teams. It consists three parts: MGR analysis, discounted evaluation,
and TSE model. With MGR analysis we manage to describe the deciding fac-
tors of MOBA game result. Discounted evaluation function DETS has several
appealing properties one of which is representing the relative advantage between
teams. TSE model is designed to fit function DETS . Through applying MOBA-
Slice to DotA2, we prove its effectiveness with experiments on a large number
of match replays and comparison with DotA Plus Assistant. MOBA-Slice estab-
lishes a foundation for further MOBA related research which requires evaluation
methods, including AI developing and strategy analysis.

Here are several aspects listed for future work. The part of the future trend
in MGR analysis requires rating algorithm for players and teams. In the experi-
ments, information of heroes’ skills and the environment is not taken into consid-
eration due to the current limitation of data processing. More MOBA games can
be chosen to apply and test MOBA-Slice. Further, current TSE model is simply
based on single time slice. Sequential prediction models can be designed with
Recurrent Neural Network to take in time slice sequences, which will provide
more information about the game situation.

MOBA-Slice: An Evaluation Framework of MOBA Games 39

References

1. Almeida, C.E.M., et al.: Prediction of winners in MOBA games. In: Information
Systems and Technologies, pp. 1–6 (2017)

2. Andersen, K.T., Zeng, Y., Christensen, D.D., Tran, D.: Experiments with online
reinforcement learning in real-time strategy games. Appl. Artif. Intell. 23(9), 855–
871 (2009)

3. Bauckhage, C., Sifa, R., Drachen, A., Thurau, C.: Beyond heatmaps: spatio-
temporal clustering using behavior-based partitioning of game levels. In: Com-
putational Intelligence and Games, pp. 1–8 (2014)

4. Cavadenti, O., Codocedo, V., Boulicaut, J.F., Kaytoue, M.: What did i do wrong
in my MOBA game? Mining patterns discriminating deviant behaviours. In: IEEE
International Conference on Data Science and Advanced Analytics, pp. 662–671
(2016)

5. Chung, M., Buro, M., Schaeffer, J.: Monte carlo planning in RTS games. In: IEEE
Symposium on Computational Intelligence and Games, pp. 117–124 (2005)

6. Churchill, D.: Aiide StarCraft AI competition (2017). http://www.cs.mun.ca/
∼dchurchill/starcraftaicomp/index.shtml

7. Conley, K., Perry, D.: How does he saw me? A recommendation engine for picking
heroes in DotA 2 (2013)

8. Dangauthier, P., Herbrich, R., Minka, T., Graepel, T.: Trueskill through time:
revisiting the history of chess. In: International Conference on Neural Information
Processing Systems, pp. 337–344 (2007)

9. Hanke, L., Chaimowicz, L.: A recommender system for hero line-ups in
MOBA games (2017). https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/
view/15902/15164

10. Hao, Y.O., Deolalikar, S., Peng, M.: Player behavior and optimal team composition
for online multiplayer games. Comput. Sci. 4351–4365 (2015)

11. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (2015)

12. Kolwankar, S.V., Kolwankar, S.V.: Evolutionary artificial intelligence for
MOBA/action-RTS games using genetic algorithms, pp. 29–31 (2012)

13. Pratama, N.P.H., Nugroho, S.M.S., Yuniarno, E.M.: Fuzzy controller based AI for
dynamic difficulty adjustment for defense of the Ancient 2 (DotA2). In: Interna-
tional Seminar on Intelligent Technology and ITS Applications, pp. 95–100 (2017)

14. Pu, Y., Brent, H., Roberts, D.L.: Identifying patterns in combat that are predictive
of success in MOBA games. In: Foundations of Digital Games 2014 Conference
(2014)

15. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. CoRR
abs/1710.05941 (2017). http://arxiv.org/abs/1710.05941

16. Scholkopf, B., Platt, J., Hofmann, T.: TrueSkill: A Bayesian Skill Rating System.
MIT Press, Cambridge (2007)

17. Silva, V.D.N., Chaimowicz, L.: On the development of intelligent agents for MOBA
games, pp. 142–151 (2016)

18. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

19. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

http://www.cs.mun.ca/~dchurchill/starcraftaicomp/index.shtml
http://www.cs.mun.ca/~dchurchill/starcraftaicomp/index.shtml
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15902/15164
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15902/15164
http://arxiv.org/abs/1710.05941

40 L. Yu et al.

20. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT
Press, Cambridge (1998)

21. Synnaeve, G., Bessiere, P.: A Bayesian model for opening prediction in RTS games
with application to StarCraft. In: Computational Intelligence and Games, pp. 281–
288 (2011)

22. Wang, W.: Predicting multiplayer online battle arena (MOBA) game outcome
based on hero draft data (2016)

23. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992).
https://doi.org/10.1007/BF00992698

24. Wísniewski, M., Niewiadomski, A.: Applying artificial intelligence algorithms in
MOBA games. Studia Informatica Syst. Inf. Technol. 1, 53–64 (2016)

25. Yang, P., Roberts, D.L.: Knowledge discovery for characterizing team success or
failure in (A)RTS games. In: Computational Intelligence in Games, pp. 1–8 (2013)

https://doi.org/10.1007/BF00992698

TextWorld: A Learning Environment
for Text-Based Games

Marc-Alexandre Côté1(B), Ákos Kádár2, Xingdi Yuan1, Ben Kybartas3,
Tavian Barnes1, Emery Fine1, James Moore1, Matthew Hausknecht1,
Layla El Asri1, Mahmoud Adada1, Wendy Tay1, and Adam Trischler1

1 Microsoft Research, Montreal, Canada
macote@microsoft.com

2 Tilburg University, Tilburg, The Netherlands
3 McGill University, Montreal, Canada

The limits of my language mean the limits
of my world.

Ludwig Wittgenstein

Abstract. We introduce TextWorld, a sandbox learning environment
for the training and evaluation of RL agents on text-based games.
TextWorld is a Python library that handles interactive play-through of
text games, as well as backend functions like state tracking and reward
assignment. It comes with a curated list of games whose features and
challenges we have analyzed. More significantly, it enables users to hand-
craft or automatically generate new games. Its generative mechanisms
give precise control over the difficulty, scope, and language of constructed
games, and can be used to relax challenges inherent to commercial text
games like partial observability and sparse rewards. By generating sets
of varied but similar games, TextWorld can also be used to study gen-
eralization and transfer learning. We cast text-based games in the Rein-
forcement Learning formalism, use our framework to develop a set of
benchmark games, and evaluate several baseline agents on this set and
the curated list.

1 Introduction

Text-based games are complex, interactive simulations in which text describes
the game state and players make progress by entering text commands. They
are fertile ground for language-focused machine learning research. In addition
to language understanding, successful play requires skills like long-term memory
and planning, exploration (trial and error), and common sense.

Consider Zork (Infocom 1980), one of the genre’s most famous examples.
Figure 1 depicts Zork’s opening scene along with two player commands and the
corresponding system responses. As illustrated, the game uses natural language
to describe the state of the world, to accept actions from the player, and to report
subsequent changes in the environment. Through sequential decision making,
c© Springer Nature Switzerland AG 2019
T. Cazenave et al. (Eds.): CGW 2018, CCIS 1017, pp. 41–75, 2019.
https://doi.org/10.1007/978-3-030-24337-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24337-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-24337-1_3

42 M.-A. Côté et al.

Fig. 1. Intro to Zork

the player works toward goals which may or may not be specified explicitly. In
the nomenclature of reinforcement learning (RL), language is the action space
and also the observation space (Narasimhan et al. 2015). In text-based games,
the observation and action spaces are both combinatorial and compositional
– major challenges for reinforcement learning. Furthermore, text-based games
are partially observable since descriptive text does not communicate complete
information about the underlying game state or may do so ambiguously. As a
consequence of these (and other) challenges, hand-authored games like Zork are
beyond the capabilities of current learning algorithms (Narasimhan et al. 2015;
Haroush et al. 2018).

To help agents progress toward mastering text games in a controlled and sci-
entific manner, we introduce the TextWorld learning environment. TextWorld is
a sandbox environment (Wright 1996; Sukhbaatar et al. 2015) in which games of
varying complexity emerge from a set of underlying world mechanics. In this set-
ting, simpler games can act as stepping stones toward more complex games. Like
the Arcade Learning Environment (ALE, (Bellemare et al. 2013)), Gym (Brock-
man et al. 2016), and CommAI (Baroni et al. 2017), TextWorld enables interac-
tive play-through of a curated set of games. Unlike previous text-based environ-
ments, including TextPlayer and PyFiction, TextWorld’s sandbox functionality
enables users to handcraft games or to construct games automatically through
a suite of generative mechanisms.

Specifically, TextWorld features a logic engine that automatically builds game
worlds, populates them with objects and obstacles, and generates quests that
define a goal state and how to reach it. It automatically generates text descrip-
tions of underlying game states using an extensible vocabulary and a context-free
grammar (CFG). Common-sense rules encoded in the logic and grammar govern
generated worlds and the quests within them, to make these human-interpretable
and consistent with existing games: e.g., keys open locked doors and can be car-
ried or stored in containers; food items can be combined, cooked, and eaten.
Furthermore, because the vocabulary contains synonyms for most nouns, verbs,
and adjectives, different surface forms can be applied automatically to abstract
types to add variety and complexity: e.g., the <container> object may manifest
as a chest or cabinet ; the <move> action may manifest as walk or go.

https://github.com/danielricks/textplayer
https://github.com/MikulasZelinka/pyfiction

TextWorld: A Learning Environment for Text-Based Games 43

TextWorld’s generative nature has several downstream implications for learn-
ing. First, it means there exists a known and structured representation of the
partially observable game state. This enables exact state-tracking (Henderson et
al. 2014) and the corresponding assignment of intermediate rewards in training
(if desired). Second, agents can be trained on a potentially infinite set of related
text games rather than a finite collection as in previous learning environments.
By controlling parameters of the generative process for training and test games,
TextWorld can be used to investigate curriculum learning, generalization, and
transfer learning in RL. Tunable parameters include the length of quests, the size
of environments, the number of abstract action and object types, the number of
synonyms for each type, complexity of the descriptive grammar, and more.

A powerful feature of language which motivates our interest in text games
is that it abstracts away complex physical processes. For instance, through text
an agent could learn and use the concept that opening doors provides access to
connected rooms without going through the (literal) motions of turning knobs in
3D space and time. This level of abstraction can be useful for studying functions
of control, planning, etc. in isolation and in tandem with the function of language
itself.

The aim of this paper is to introduce TextWorld to the research community.
Its primary contributions are:

• A survey of the machine-learning challenges of and approaches to text-based
games, including a curated list of hand-authored games with corresponding
analysis;

• A detailed description of the TextWorld framework, its features, and how to
use it;

• An initial set of simple text games to be used as RL benchmarks;
• Evaluation of several baseline algorithms on both benchmark and hand-

authored games.

Subsequent works will more deeply investigate novel approaches to RL for text
games. Our hope is that TextWorld becomes a living resource, with contributors
developing new benchmarks and algorithms to push the state of the art forward.

The remainder of this paper is organized as follows. In Sect. 2 we introduce
text-based games, formalize them as RL problems and highlight their challenges.
In Sect. 3 we delve into details of the TextWorld framework, how it generates
and interacts with text games, and how it may be used to train RL agents.
Section 4 describes related frameworks and existing approaches to solving text
games, while Sect. 5 describes some of TextWorld’s benchmark tasks and our
experimental results. We discuss limitations of the framework and future work
in Sect. 6 before concluding.

44 M.-A. Côté et al.

2 Text Games from a Reinforcement Learning
Perspective

Text-based games are sequential decision-making problems that can be described
naturally by the Reinforcement Learning (RL) formalism. In this section, we
define some of the terminology found in text-based games, formalize the text-
based environment as an RL problem, discuss challenges faced by RL agents
in such environments, and show how these challenges motivate the need for a
framework like TextWorld. In the following, an “agent” is a model that takes
text information as input and outputs text commands to progress through a
game.

2.1 Text-Based Games

Text-based games are turn-based games usually played through a command line
terminal. At each turn, several lines of text describe the state of the game, and
the player may enter a text command to change this state in some desirable way
(i.e., to move towards a goal). A game’s built-in parser or interpreter deciphers
player commands and maps them to state changes (events in the game). The
genre became popular in the early 1980s especially with the release of Zork (Info-
com 1980), which featured rich storytelling and an advanced command parser.

2.1.1 Gameplay
Text-based games can be classified according to how the player issues commands
(see Fig. 2): in parser-based games, the player types text commands character
by character; in choice-based games, the player chooses from a given list of
command options; and in hypertext-based games, the player clicks on one
of several links present in the description. The work in this paper focuses on
parser-based games.

Fig. 2. Types of text-based games. Image from (He et al. 2015).

In text-based game terminology, each discrete in-game location is called a
room (e.g., “Kitchen”, “In front of the white house”, and so on). A game
may contain one or several rooms connected in some topology forming a map. To
explore the environment, the player issues navigational commands: go followed
by a cardinal direction (north, northeast, etc.) or an orthogonal direction (up,
down). Maps vary greatly from one game to another. Room exits and entrances

TextWorld: A Learning Environment for Text-Based Games 45

do not always match (e.g., go north and then go south may not return you to
where you started). Also, some navigational commands may not have a reciprocal
(e.g., in Zork (Infocom 1980), a trapdoor locks from behind preventing the player
from going back).

Most of the time, rooms contain objects the player can interact with
(e.g., take sandwich from table, eat sandwich, open door, etc.). Objects are
defined by their attributes, which also determine how the player can interact with
them (through object affordances). For instance, an object could be portable
(e.g., a lamp) or portable and edible (e.g., a sandwich).

One of the biggest challenges when playing parser-based games is figuring
out what are the commands that will be understood by the parser (i.e., that are
intended by the game’s author). Also, depending on the game, the result of some
commands may be stochastic (e.g., go up succeeds 75% of the time, but 25% of
the time results in the player falling down to a previous room). A detailed list
of puzzles and challenges traditionally found in text-based games can be found
in Appendix A.

2.2 Text-Based Games as POMDPs

Fundamentally, text-based games can be seen as partially observable Markov
decision processes (POMDP) (Kaelbling et al. 1998) where the environment
state is never observed directly. To act optimally, an agent must keep track of all
observations, i.e., textual feedback received after entering commands. Although
the observation can be augmented with feedback from commands like look and
inventory, which describe the agent’s surroundings and possessions, this infor-
mation is still limited to the current room.

Formally, a text-based game is a discrete-time POMDP defined by
(S, T,A,Ω, O,R, γ), where S is the set of environment states, T is the set of
conditional transition probabilities between states, A is the set of words that
are used to compose text commands, Ω is the set of observations, O is a set of
conditional observation probabilities, R : S ×A → R is the reward function, and
γ ∈ [0, 1] is the discount factor.

Environment States (S). The environment state at turn t in the game is
st ∈ S. It contains the complete internal information of the game, like the
position and state of every entity (rooms, objects, player, etc.), much of which
is hidden from the agent. When an agent issues a command ct (defined next),
the environment transitions to state st+1 with probability T (st+1|st, ct).

Actions (A). At each turn t, the agent issues a text command ct of at least one
word. In parser-based games, the interpreter can accept any sequence of charac-
ters (of any length) but will only recognize a tiny subset thereof. Furthermore,
only a fraction of recognized commands will actually change the state of the
world. The resulting action space is enormous and intractable for existing RL
algorithms. We make the following two simplifying assumptions:

• Word-level Commands are sequences of at most L words taken from a fixed
vocabulary V .

46 M.-A. Côté et al.

• Syntax Commands have the following structure: verb[noun phrase
[adverb phrase]], where [. . .] indicates that the sub-string is optional. In
this context, a noun phrase is a string identifying an object (e.g., “the big
wooden chest”). Similarly, an adverb phrase provides additional context for
the command (e.g., “with the red key”). To simplify the syntax further,
determiners are omitted.1

The agent’s action space is some vocabulary V plus a special token <return> that
indicates the end of a command. Each action ai

t ∈ A is a token, where t is the
turn in the game and i indicates the ith token in the command ct. A command is
a sequence of n ≤ L tokens ct = [a1

t , . . . , a
n
t] that respects the syntax previously

defined and ends with an
t = <return>.

The agent’s policy is a mapping between its states and actions. In TextWorld,
the agent’s policy πθ, where θ are the policy’s parameters, maps a state st and
words generated in the command so far to the next word to generate: ai

t =
πθ(st, a

0
t , ..., a

i−1
t).

Observations (Ω). The text information perceived by the agent at a given
turn t in the game is the agent’s observation, ot ∈ Ω, which depends on the
environment state and the previous command with probability O(ot|st, ct−1). In
other words, the function O selects from the environment state what information
to show to the agent given the command entered. For instance, if the agent tries
to open a chest, the observation returned by the environment might show that
the chest is locked.

Reward Function (R). Based on its actions, the agent receives reward signals
rt = R(st, at). The agent’s goal is to maximize the expected discounted sum of
rewards received E [

∑
t γtrt].

Most text-based games (including those in our curated list) have a scor-
ing mechanism whereby players receive points for completing (sub)quests and
reaching new locations. When available, this score can be used as a reward signal.
Otherwise, one could define reward signals by assigning a positive reward if the
agent completes the game. Intermediate rewards might also be inferred from the
interpreter’s feedback. Note that this feedback usually only contains information
about the results of individual commands (e.g., “I don’t know this verb!”,
“This chest is locked!”) rather than about overall progress.

2.3 RL Challenges in Text-Based Games

Complex environments make training RL agents challenging for several reasons.
Here, we list some conventional challenges known in the RL literature that are
also prevalent in text-based games.

Partial Observability. As mentioned, states of text-based games are partially
observable. Only the local information such as the current room description and
the player’s inventory is made available. Moreover, taking into account only the

1 Typical text-based game interpreters disregard determiners.

TextWorld: A Learning Environment for Text-Based Games 47

latest observation, it may be impossible to differentiate certain states based on
observations. For instance, seeing a blue locked chest in a room, it is impor-
tant for the agent to know whether or not it collected or saw a blue key in the
past. The environment might give the same feedback for two different commands
(e.g., “taken” might be the feedback for take blue key or take red apple). Fur-
thermore, important information about the environment might not be apparent
in the observation (e.g., whether a chest is locked or not, what it contains, etc.).
Observations may also be time-sensitive (e.g., the agent only gets a reward when
examining clues for the first time).

Large State Space. With large state spaces, tabular methods for solving RL
problems are no longer practical (Sutton and Barto 2018). Finding good approx-
imate solutions is still an active area of research. In text-based games, the state
space is combinatorial and enormous; the number of possible states increases
exponentially with the number of rooms and objects.

Large and Sparse Action Space. As with large state spaces, reasoning in an
environment with a large number of actions necessitates finding good approx-
imate solution methods to replace the tabular ones (Sutton and Barto 2018).
The text-based game setting is especially challenging since the action space is
large and sparse; the space of all word strings is much larger than the space
of admissible commands (i.e., commands that actually change the underlying
state st). In addition, the outcome or even the validity of some commands might
depend on a specific event or how much time has passed (e.g., the tide rises and
blocks the player in (Bates 1987)).

Exploration vs. Exploitation. Balancing exploration of the environment and
the exploitation of known information is a fundamental issue in RL (McFarlane
2003). Exploration is at the core of text-based games as they cannot be solved by
learning a purely reactive controller. Instead, a strategy that promotes directed
exploration must be used; the agent must deliberately explore the environment,
collecting information about objects and persons encountered along the way
(e.g., you never know what is in a box without opening it first). Such information
hints about the goal/purpose of the game, what dangers are present, and provides
clues that might become handy later in the game for solving puzzles. We expect
that agents, like humans, will benefit from exploration driven by curiosity.

Long-Term Credit Assignment. Knowing which actions were responsible
for obtaining a certain reward, especially when rewards are sparse, is another
fundamental issue in RL (Sutton and Barto 2018). Sparse rewards are inherent
to text-based games in which the agent must generate a sequence of actions
before observing a change in the environment state or getting a reward signal.
For instance, activating a switch might have no immediate effect although it is
essential for completing the game. Most text-based games feature sparse rewards,
on the order of a single positive reward every 10–20 steps when following an
optimal state trajectory.

48 M.-A. Côté et al.

2.3.1 Additional Challenges
By their very nature, text-based games bring additional challenges related to
natural language understanding.

Observation Modality. Observations consist in the environment’s textual
feedback to the previous command. This means that the observation space is
unbounded, consisting of arbitrary-length sequences of characters. To simplify
things, we assume that an observation is made of space-separated words that
may or may not be found in an English dictionary. One drawback of looking
only at words is that we may lose some information provided by the spacing
(e.g., ASCII art in Infidel (Berlyn 1983) or a sonar map in Seastalker (Galley
and Lawrence 1984)).

Understanding Parser Feedback. Text-based games process player input
using a parser. The parser varies from game to game in terms of the actions it
recognizes. For example, nearly all games recognize actions like get, take and
go, but only some games recognize verbs like tickle, swim, dig and bribe. Part
of the challenge of playing a parser-based text game is understanding which
verbs and objects are recognized by the parser. Making this task more difficult,
failure messages vary from game to game when the parser receives an invalid or
unrecognized command.

Common-Sense Reasoning and Affordance Extraction. To succeed at
text-based games, it is necessary to understand how to interact with everyday
objects. For example, if the description of a location includes a tree, it is likely
that a player could climb or chop the tree, but not eat or drive it. The problem
of identifying which verbs are applicable to a given object is called affordance
extraction and learning agents must solve it efficiently to make progress in text-
based games without exhaustive search.

Language Acquisition. Some objects and actions may be named with invented
words. Also, modifier words affect how some objects can be interacted with (this
is related to affordance extraction). The meaning of these words must be learned
on-the-fly while interacting with the environment. Text-based games also use
linguistic coreference, since it is more pleasant to humans, which can complicate
the task for learning machines.

2.4 RL with TextWorld

Solving a single text-based game often corresponds to tackling most of the above
challenges at once, which makes it very difficult for existing algorithms. What
would be useful is a way of testing and debugging RL agents in simpler settings
(e.g., one room with two objects where the goal is to eat the edible one). This is
the main purpose of TextWorld’s generative functionality (described in Sect. 3.2).
It can be used to focus on desired subsets of the challenges listed above.

First, it is possible to control the size of the state space (e.g., the number
of rooms, number of objects, and how many commands are required in order to

TextWorld: A Learning Environment for Text-Based Games 49

reach the goal optimally). At the moment, TextWorld has deterministic transi-
tions between states.

It is also possible to control the partial observability of the state by augment-
ing the agent’s observations. The environment can provide the agent with a list
of objects present in-game or even provide all information about the current
game state. For instance, instead of generating the observation that there is a
blue chest, the environment could state that the chest is locked and that inside
the chest there is a red apple. In this setting, the agent does not need to explore
to determine the layout of the world and the objects it contains.

TextWorld enables one to generate a large number of games and control
their shared characteristics (map, objects, goals, etc.). This is useful for focusing,
e.g., on language acquisition and affordance extraction: the agent can be trained
on games with a fixed number of rooms and object types but with different
object names. By interacting with objects, the agent should learn which have a
similar function and generalize from one game instance to another.

There are several ways to ease the language generation task. It is possible to
restrict the agent’s vocabulary to in-game words only or to restrict the verbs that
the agent can generate to those understood by the parser. It is also possible to
use a simplified grammar where object names are replaced with symbolic tokens
(e.g., “You see container1 and container2.”). Language generation can be
circumvented completely by converting every generated game into a choice-based
game. In this case, commands ct are the agent’s actions, i.e., the agent’s output
becomes an index into the set of admissible commands (see Sect. 3.3.1) rather a
sequence of words.

Finally, instead of earning rewards only at the end of a game if the agent
is successful, one can also provide intermediate rewards during training based
on environment state transitions and the ground truth winning policy (see
Sect. 3.1.1).

3 The TextWorld Learning Environment

TextWorld2 is a Python framework for training and testing RL agents on text-
based games. It enables generation from a game distribution parameterized by
the map size, the number of objects, quest length and complexity, richness of
text descriptions, and more. The framework’s architecture is shown in Fig. 3. We
detail the Engine component in Sect. 3.1, which covers how the internal state
of generated games is represented and how the transition function is defined.
The Generator component is described in Sect. 3.2, which explains the process
of automatic game generation. TextWorld can also be used to play existing text-
based games (see a curated list of games in Sect. 5.1) but provides more limited
information from the internal states of such games.

2 Code and documentation can be found at http://aka.ms/textworld.

http://aka.ms/textworld

50 M.-A. Côté et al.

TextWorld
Generator

Inform 7
TextWorld

Engine

Agent

Playthrough
Statistics

Git-Glulx

Game definition
- Map, objects
- Quest
- Descriptions

Knowledge base
Object types
• Door
• Container
• Supporter
• Food item
• ...

Actions
• Open
• Take
• Eat
• Put
• ...

Predicates
• at/in/on
• edible
• north_of
• open/closed
• ...

Themes
Medieval world
• Dungeons
• Gothic furniture
• Gates
• Weapons
• ...

Home world
• Rooms
• Furniture
• Doors
• Food
• ...

Game

Fig. 3. Overview of the framework. The two main components (in blue) of the proposed
pipeline: the game generator and the game engine, which handles interactive play.
Inform 7 and Git-Glulx are third-party libraries (in green) and the agent (in red)
should be provided by the user. Given some knowledge base, sampled game definitions
are first converted to Inform 7 code and compiled into a Glulx executable file. Then,
agents interact with the game by communicating with the Git-Glulx interpreter via
TextWorld. (Color figure online)

3.1 Game Engine

Game generation in TextWorld relies on a simple inference engine that ensures
game validity at every step in the generation process. A game is said to be valid
if it is possible to reach the end goal from the initial state. Although we could
have used an existing problem-solver for this purpose, we did not require the full
power of logical programming languages. TextWorld’s inference engine imple-
ments simple algorithms specific to our environments, such as a one-step forward
and backward chaining with or without fact creation (more on this in Sect. 3.2).
In future work our aim is to integrate the TextWorld framework with well estab-
lished frameworks such as GDL (Genesereth et al. 2005) or STRIPS (Fikes and
Nilsson 1971).

To better explain the framework, let’s consider the following simple text-
based environment. There is a kitchen with a table and a closed fridge in which
there is an apple. A visual representation can be seen in Fig. 4. The player is
represented by the small avatar and the letter P. Objects of the container type
are represented by a chest, supporters (or surfaces) are represented by a table

TextWorld: A Learning Environment for Text-Based Games 51

Fig. 4. Simple environment with one room (kitchen), a container (fridge), a sup-
porter (table), a food item (apple) and nothing in the player’s inventory.

and food-type items are represented by an apple symbol. The anchor symbol next
to certain objects means that they are fixed in place (i.e., cannot be taken).

TextWorld’s generated text-based games can be represented internally as a
Markov Decision Process (MDP) (Puterman 1994) defined by (S,A, T,R, γ),
where S is the set of environment states, A is the set of actions (with Ast

those
available in state st ∈ S), T (st, a, st+1) = P(st+1|st, a) is the state transition
function that depends on current state st and action taken a ∈ Ast

, R : S ×A →
R is the reward function, and γ ∈ [0, 1] is the discount factor. Text-based games
are episodic since they stop when the player reaches one of the winning (goal)
states G ⊂ S.

Note that the MDP part of the POMDP, defined in Sect. 2.2, is semantically
equivalent to the one described in this section. The sole exception is the action
space; in the POMDP, we assume there exists an underlying function that maps
text strings (generated by the agent) to the game actions defined in this section.
This is the role of the game’s interpreter.

Environment States (S). Game states are defined in terms of logical predi-
cates. Each predicate p(v1, . . . , vm) consists of a symbol p drawn from the alpha-
bet of predicates Σ followed by an m-tuple of variables. These predicates define
the relations between the entities (objects, player, room, etc.) present in the
game. A logical atom is a predicate whose variables are all are bound, i.e., free
variables (placeholders) have been substituted by concrete entities.

A game state s ∈ S consists in a multiset of logical atoms representing the
facts that are currently true about the world, also known as “resources” in linear
logic. Taking as an example Fig. 4, the state depicted there can be represented
as

st = at(fridge, kitchen) ⊗ at(table, kitchen) ⊗ in(apple, fridge)
⊗ open(fridge) ⊗ at(P, kitchen),

where the symbol ⊗ is the linear logic multiplicative conjunction operator.
The set of winning states G is composed of any state s for which all the

winning conditions (a set of facts) hold. The winning conditions are determined

52 M.-A. Côté et al.

during the game generation process (Sect. 3.2.2). For instance, a winning con-
dition could be as simple as in(apple, I), i.e., the apple being in the player’s
inventory.

State Transition Function (T). The state transition function is defined using
linear logic (Russell and Norvig 2016, Chap. 8) and is inspired in part by Cep-
tre (Martens 2015), a linear logic programming language. Logical rules are stored
in a knowledge base and define what is possible in the game. For the working
example, the relevant rules are

open(C) :: $at(P, R) ⊗ $at(C,R) ⊗ closed(C) � open(C)
close(C) :: $at(P, R) ⊗ $at(C,R) ⊗ open(C) � closed(C)

take(F,C) :: $at(P, R) ⊗ $at(C,R) ⊗ $open(C) ⊗ in(F,C) � in(F, I)
take(F, S) :: $at(P, R) ⊗ $at(S,R) ⊗ on(F, S) � in(F, I)
put(F, S) :: $at(P, R) ⊗ $at(C,R) ⊗ $open(C) ⊗ in(F, I) � in(F,C)

insert(F,C) :: $at(P, R) ⊗ $at(S,R) ⊗ in(F, I) � on(F, S)
eat(F, S) :: in(F, I) � eaten(F).

The uppercase italic letters represent variables for objects of a certain type
(F : food item, S: supporter, C: container and R: room). The entities P and
I represent the player and its inventory. The symbol � (lolli) is the linear
implication operator. The interpretation of the linear implication is such that
it consumes the resources on the left-hand-side (henceforth LHS) and generates
resources on the right-hand-side (henceforth RHS). The notation $ is a shorthand
meaning a predicate is implicitly carried over to the right-hand side. Given a state
and the set of rules, we can perform forward chaining. Applying a rule to state
s, whose LHS is satisfied by s, leads to a conclusion, which is a new collection
of atoms generated by the RHS of the selected rule.

Applying all possible rules for all conclusions leads to a proof-tree with
triplets (s, a, s′), where s is an assumption and rule a leads to the conclusion
s′. Adding control to forward chaining, by only exploring paths where unseen
states are introduced, leads to an algorithm that upon termination discovers all
s ∈ S in the MDP. Merging the duplicate states in the proof-tree provides the
underlying (S,A, T) of the MDP.

Action Space (A). An action is one of the rules defined in the knowledge base
for which all free variables have been “grounded”, i.e., substituted by bound vari-
ables appropriately. Actions available in the current state, Ast

, can be obtained
by performing a single step of forward-chaining given facts true in st. In other
words, the inference engine is used to retrieve all possible substitutions for every
rule that can be applied to st. In the initial state of the working example, the
available actions are

TextWorld: A Learning Environment for Text-Based Games 53

close(fridge) ::
$at(P, kitchen) ⊗ $at(fridge, kitchen) ⊗ open(fridge) � closed(fridge)

take(apple, fridge) ::
$at(P, kitchen) ⊗ $at(fridge, kitchen)
⊗ $open(fridge) ⊗ in(apple, fridge) � in(apple, I)

Reward Function (R). In the general case, games generated with TextWorld
only provide a positive reward when reaching a winning state s ∈ G. The goal is
to maximize the expected discounted sum of rewards received E [

∑
t γtrt] where

rt = R(st, at).

3.1.1 Intermediate Reward
Tracking the state of the player allows us to determine a winning policy (not
necessarily optimal) for any game state. A prerequisite is that a winning policy
exists from the player’s initial position (this is guaranteed for generated games).
If so, then by monitoring state changes we can update the winning policy accord-
ingly: if the agent performs the action dictated by the current winning policy, it
progresses to the next desired state and we simply shift the policy forward one
time-step; if the agent goes off the winning trajectory we add reciprocal actions
to the policy to undo or correct this negative progress; and if the agent changes
its state in a way that does not affect the quest, the winning policy does not
change.

In addition to the final reward, TextWorld can provide an intermediate
reward which is tied to the winning policy. After each command, if the winning
policy increases in length, meaning that as a result of the last action, additional
commands are required to solve the game, then we assign a negative reward. If
the winning policy shortens, meaning the last action brought the agent closer to
the goal, we assign a positive reward. Otherwise, the reward is 0.

3.2 Game Generation

TextWorld can be used as a sandbox environment in which predefined dynamics
govern emergent games. With this sandbox, it is possible to generate a combi-
natorial (not to say infinite) set of games from which an agent could learn the
underlying dynamics. Since we control the generation process, we can construct
games where the knowledge to be learned is interpretable to humans.

TextWorld’s game generator takes as input a high-level specification of a
game and outputs the corresponding executable game source code in the Inform 7
language (Appendix C). The game specification assigns values to parameters
such as the number of rooms, the number of objects, the length of the quest,
the winning conditions, and options for the text generation (e.g., theme, co-
references, adjectives, and so on).

54 M.-A. Côté et al.

Fig. 5. Comic strip showing a simple quest where the player has to find and eat the
apple.

3.2.1 World Generation
TextWorld generates maps through a simple procedure based on the Random
Walk algorithm (Pearson 1905). This enables us to generate a wide variety of
room configurations, which in turn makes the set of possible games very large.
The map generation process is parameterized by the number of rooms, the grid
size of the world, and whether room connections should have doors or not. The
grid size influences the compactness of the room configuration, where smaller
grids mean more compact maps with potentially more loops.

Once the map is generated, objects are added to the world uniformly across
the rooms. Some objects are portable (as opposed to fixed in place), which
means they can be nested on or in other objects that have the supporter or
container attribute, or placed on the floor of a room or in the player’s inventory.

3.2.2 Quest Generation
In TextWorld, the purpose of any game is to reach a winning state. The term
quest will be used to represent a sequence of actions the player must perform to
win the game. Note that this sequence does not have to be optimal or unique;
many trajectories could lead to a winning state.

We define quest generation as the process of determining interesting
sequences of actions from which to derive winning conditions. As discussed in
Sect. 3.1, the inference engine in TextWord can perform forward-chaining to con-
struct a tree of all possible action sequences given an environment. However, not
all paths are interesting (from a human or RL perspective). For this reason,
we impose a dependency constraint on the actions and reject paths containing
cycles. The dependency relation is defined as follows: action at depends on action
at−1 if and only if the RHS of at−1 generates the resource(s) required by the LHS

TextWorld: A Learning Environment for Text-Based Games 55

Fig. 6. Comic strip showing backward quest generation for the quest open fridge /
take apple from fridge / eat apple. The player is first placed in the kitchen. The
apple is created and placed in the player’s inventory at Step 2. The fridge is created
at Step 3, and the apple placed within it. In the last step the fridge is closed. This
becomes the game’s starting state.

of at. The winning condition of a given quest is the set of resources generated
by the RHS of the last action.

We can generate quests by modifying the forward chaining algorithm to
apply these constraints, calling the resulting process forward quest generation.
An example quest is depicted in Fig. 5. First, the player opens the door and
moves south to enter the kitchen. When in the kitchen, the player opens the
fridge, takes the apple, and finally eats it.

Backward Quest Generation. The end goal often defines the nature of a
quest and yields significant rewards for the agent. Thus, it is desirable to specify
the end goal in quest generation. The forward quest generation algorithm indi-
rectly allows this specification, by generating all possible quests from an initial
condition then searching for those that satisfy the ending constraint. However,
as the number of states and the length of the desired quest increases, this app-
roach becomes intractable. To remedy this, TextWorld also supports backward
chaining. Backward chaining simply reverses forward chaining, starting from a
specified end state rather than an initial state. The same dependency between
subsequent actions and cycle rejection apply.

Extending the World during Quest Generation. TextWorld’s generator
extends forward and backward chaining with a fact creation step, which may
occur before sampling a subsequent (or previous) action. Through fact creation,
the generative process can add missing objects and facts to the world as needed,
which yields more diverse quests and games. Figure 6 shows a simple example of
backward quest generation.

3.2.3 Text Generation
The Text Generation module takes logical elements of the game state and renders
them into coherent text. This serves as the observation provided to the agent.
The engine generates object names, room descriptions, and quest instructions
in constrained natural language using a context-free grammar (CFG) (Chomsky

56 M.-A. Côté et al.

1956). The ease of authoring such grammars has led to their adoption in various
natural language generation (NLG) systems for games (Ryan et al. 2016).

The module is essentially a set of grammars, each generating particu-
lar aspects: e.g., there are separate grammars for creating object names,
room descriptions, and instructions, respectively. Observable text is gener-
ated by iterating over all elements of the observation and filling templates
with the appropriate information. As an example for object description: For
a red box, the grammar may return “There is a [object-noun] here. It
is [object-adjective]”., which is filled to create “There is a box here.
It is red.” Some basic maintenance also ensures fluency, e.g., using “an” vs.
“a” when a noun begins with a vowel.

Using a context-free grammar gives a degree of textual variation, allowing
the same world and quest to be represented a number of ways while also ensuring
strict control over the results. While our current grammars function like a text
templating system, CFGs offer the possibility of deeper, recursive text generation
should it be desired. Our grammars can be extended and modified easily with
additional production rules, enabling the generation of simpler or more complex
sentence structures that may act as a level of game difficulty.

Object Names. Object names are assigned to each term in the game. Names are
randomly picked from the CFG and uniquely assigned to objects. The object’s
type is used to derive the start symbol sent to query the CFG for a name.
An object name can be decomposed into two parts: adjective and noun. The
adjective is optional, and may be used to create more complex object names,
and correspondingly more complex descriptions. Object name generation is in
general straightforward, and consists of selecting a random adjective and noun
and combining them. So, e.g., given the nouns “box” and “cup”, as well as
the adjectives “dusty” and “red”, there are four possible object names, “dusty
box”, “red box”, “dusty cup” and “red cup”. Adjectives are also used as hints
to the player; for example, a key’s adjective will always match the adjective of
what it opens, e.g., a “red key” will open the “red chest”.

Room Descriptions. The description of a room is the concatenation of the
room-level description of every object it contains, shown typically when enter-
ing the room or upon using the look command. The room-level description
of an object contains information the player should be aware of upon enter-
ing the room (e.g., “There is a chest here. It is open and you can see
some gold coins in it.”). The room’s description also mentions its possible
exits (e.g., “There is a path leading north.”). It is updated dynamically
based on changes to the states of objects in the room, for example listing whether
a container is open, closed, or locked, and which objects it contains.

Quest Instructions. We use instructions to explain to the player what to
do in a game. An instruction is a piece of text describing a particular action or
several different actions. For example, “Retrieve the blue key” could be used
to represent the action take blue key, whereas “Take the red key from the
locked chest” may represent the sequence of actions unlock chest / open chest

TextWorld: A Learning Environment for Text-Based Games 57

Fig. 7. The same generated game with two themed grammars: house and basic.

/ take red key. In TextWorld, instructions may optionally describe every action
of a quest (easier), only the final action (harder), or they may force the player
to figure out what to do from scratch (goal identification; hardest). Likewise,
the ability to combine actions into a single instruction can also be toggled;
identifying a sequence of actions from an instruction rather than a single action
is an additional challenge.

Text Generation Options. TextWorld offers some control over different
aspects of the text generation. Objects with similar attributes/states can be
grouped together when describing a room (e.g., “In here, you see two red
containers: a box and a chest.”). Objects mentioned in an instruction can
be referred to using one or several of their attributes (e.g., “Take the red
edible thing.”). Use of coreference (e.g., “There is a chest. It is open.
In it, you see nothing interesting.”) is also optional.

TextWorld also offers the choice between two themed grammars: house and
basic. The house theme describes the world as if the game takes place in a mod-
ern house. The second theme uses a simple grammar with almost no linguistic
variation (e.g., no adjectives, no multi-word names). In this case, objects with
the same attributes use a shared, prototypical prefix for their names followed by
a number (e.g., stand42). The basic grammar cuts down the vocabulary and
the language complexity to ease the training of neural generative models. These
house and basic themes can be seen applied to the same underlying game in
Fig. 7 (Fig. 8).

3.3 Game Interaction with TextWorld

Most basically, TextWorld can be used to play any text-based games that are
interpretable either by Z-machine (via the Frotz interpreter) or by Glulx (via a
custom git-glulx interpreter). The framework handles launching and interacting
with the necessary game processes. It provides a simple API for game interaction

58 M.-A. Côté et al.

Fig. 8. Visualization of the game shown in Fig. 7 using TextWorld’s integrated
game-state viewer. The winning sequence of commands for this game: go south /
go south / take tiny grape from chipped shelf / go west / put tiny grape on

dusty bench.

inspired by that of OpenAI’s Gym (Brockman et al. 2016). As an example,
playing a text-based game requires just a few lines of Python code:

3.3.1 Game Observation
The game state object contains useful information3 such as:

Feedback. The interpreter’s response to the previous command, i.e., any text
displayed on screen.

3 See the framework’s documentation for a list of all information obtainable from the
game state object.

TextWorld: A Learning Environment for Text-Based Games 59

Description. The description of the current room, i.e., the output of the look

command.
Inventory. The player’s inventory, i.e., the output of the inventory command.
Location. The name of the current room.
Score. The current score.

Game state information is fairly limited when it comes to existing games,
whereas games generated with TextWorld can provide much more information
if desired. Additional information includes:

Objective. Text describing what the player must do to win the game.
Admissible Commands. A list of commands that are guaranteed (i) to be

understood by the interpreter and (ii) to affect the game state or to return
information of the game state. Using this information in any way corresponds
to playing a choice-based game rather than a parser-based one.

Intermediate Reward. A numerical value representing how useful the last
command was for solving the game (as described in Sect. 3.1.1).

Winning Policy. A list of commands that guarantees winning the game starting
from the current game state.

4 Related Work

Text-based games are hard to solve, even for humans, because they require lan-
guage understanding, planning, and efficient exploration to a greater degree than
perception and reflexes (like most Atari games). Nonetheless, a few researchers
have tried different approaches that we report in Sect. 4.1. Since TextWorld is a
new learning environment, we compare it to relevant frameworks in Sect. 4.2.

4.1 Relevant Models

Narasimhan et al. (2015) develop a two-stage model called LSTM-DQN for
parser-based text games, using the deep Q-learning framework. Their model
encodes the agent’s observation o (a sequence of words) using mean-pooled
LSTM states. The resulting state representation is used by two sub-networks
to predict the Q-value over all verbs wv and object words wo independently. The
average of the 2 resulting scores gives the Q-values for the composed actions.

Q(s, (wv, wo)) =
Q(s, wo) + Q(s, wv)

2
(1)

Q(s, wo) = MLPo(s), Q(s, wv) = MLPv(s) (2)
s = LSTM(o), where o = w1 . . . wn (3)

They test their approach on 2 environments – Homeworld and Fantasyworld
– using the Evennia toolkit4. Homeworld is a small environment with 4 rooms, a

4 http://www.evennia.com/.

http://www.evennia.com/

60 M.-A. Côté et al.

vocabulary of 84 words, and 4 quests. Quests are also specified through text; for
example, “Not you are sleepy now but you are hungry now” (which indi-
cates that the player should obtain food but should not get into bed). Fantasy-
world is much larger, with a vocabulary size of 1340, and has stochastic state
transitions. The LSTM-DQN completes 100% of the quests in Homeworld and
96% of quests in Fantasyworld. The authors also perform transfer-learning exper-
iments by defining Homeworld2, which is made by shuffling the rooms and paths
from Homeworld. The LSTM-DQN is trained on Homeworld and the LSTM
component is transferred to Homeworld2. The transferred agent learns faster
than one without training on Homeworld.

He et al. (2015) introduce the Deep Reinforcement Relevance Network
(DRRN) for tackling choice-based text games. They evaluate the DRRN on
a deterministic game called “Saving John” and a larger-scale stochastic game
called “Machine of Death”. These games have vocabulary sizes 1762 and 2258
and action vocabulary sizes of 171 and 419, respectively. The DRRN takes as
input the observation o of the state s and action choices aj and computes a
Q-value for each possible pair:

Q(s, aj) = g(fs(o), fa(aj)), where o = w1 . . . wn (4)

The DRRN model converges on both games when trained with the DQN
algorithm with experience replay and Boltzmann exploration. It achieves opti-
mal cumulative-reward on Saving John and a suboptimal but stable policy on
Machine of Death. The authors test the DRRN trained on Machine of Death
on state-action pairs paraphrased by participants. They show high correlation
between the original and paraphrase Q(s, a, θ).

Note that neither the LSTM-DQN nor the DRRN conditions on previous
actions or observations. This means that neither has the capacity to deal with
partial observability.

Related work has been done to reduce the action space for parser-based
games. Haroush et al. (2018) introduce the Action Elimination Network to esti-
mate the probability of an action failing in a given scene. To achieve this, feed-
back from the game engine is also stored in the replay buffer in addition to
the standard <observation, action, reward> triplets. The elimination module
is trained with the stored quadruplets and assigns a score to each element in
the large set of actions. During ε-greedy exploration, at the greedy step the
agent is only allowed to consider the top-k actions, while during exploration,
random actions are rejected with a predefined probability if their score is below
a threshold.

Fulda et al. (2017) tried to accomplish something similar by training word
embeddings to be aware of verb-noun affordances. From that embedding, they
manually select a group of verb-noun pairs for which they assume the vector
emb(noun) − emb(verb) encodes the affordance relation. Using the average of
such vectors gives them an “affordance vector” that can be used to project the
embedding of new nouns to a region of the embedding space where relevant verbs
should be found.

TextWorld: A Learning Environment for Text-Based Games 61

Kostka et al. (2017) build an agent specifically targeting the domain of classic
text-based games. They pre-train an LSTM language model on fantasy books
that is used in their model to extract important keywords from scene descrip-
tions. Furthermore, they collect a list of possible commands from game solutions
and semi-automatically extract a large number of commands from online tutori-
als and decompiled game sources. Their system follows a modular design where
each typical phase of text-adventure gameplay is modeled by a separate algo-
rithm: command generation, battle mode, inventory management, exploration,
restart. Their model generates commands by finding keywords in the scene text
and cross-referencing the extracted command corpus to find plausible commands.

4.2 Frameworks

In the fields of AI in general and RL in particular, games have played a major role
in advancing the state of the art. The well-known Arcade Learning Environment
(ALE) (Bellemare et al. 2013), which provides an interface to Atari 2600 games,
led to human-level videogame play by deep RL algorithms (Mnih et al. 2015).
One limitation of ALE, however, is that it does not facilitate research in gener-
alization, metalearning, and transfer learning because the individual games are
too distinct from one other. Indeed, most research using ALE focuses on train-
ing a separate agent (with the same architecture) for each game (Machado et al.
2017).

ALE-style game collections exist in contrast to sandbox environments, in
which games emerge from a set of underlying world mechanics. Perhaps the
best known such environment is SimCity (Wright 1996). Sandboxes generate
a series of games that share components, and thereby naturally overcome some
limitations of collections. Sandbox environments also allow for the programmatic
construction of game variants whose difficulty can be tuned to form a curriculum.

The MazeBase environment (Sukhbaatar et al. 2015), possibly the sand-
box framework most similar to TextWorld, enables researchers to generate two-
dimensional grid-based games. Each grid point may contain a certain object
type, such as an obstacle, a pushable block, a switch, or the goal. Maps are pro-
vided in an egocentric text-based representation to the player. One of the main
motivations of MazeBase is to foster research in learning algorithms that reuse
knowledge and policies acquired in related environments and games. Quests and
the language in TextWorld are significantly more complex than in MazeBase.

The CommAI framework (Baroni et al. 2017) emphasizes the ability to gen-
erate curricula (Bengio et al. 2009), so that agents may learn incrementally from
environments of increasing complexity. Interaction with the environment takes
place at the lower level of bits rather than simplified natural language as in
TextWorld.

Recently, multimodal visuo-linguistic environments were introduced to study
grounded language learning through RL. Chaplot et al. (2017) customized the
VizDoom platform (Kempka et al. 2016) for language grounding experiments:
objects with certain properties are placed in a room and the agent is instrcuted
which object(s) to find. To perform similar experiments, Hermann et al. (2017)

62 M.-A. Côté et al.

Fig. 9. Normalized score for baselines evaluated on the curated list. Games where no
score was obtained are omitted.

add a language instruction component to the DeepMind Lab 3D navigation
environment (Beattie et al. 2016).

5 Benchmarks

In this section, we describe benchmark games that can be used through
TextWorld to evaluate RL agents and algorithms. This set is preliminary; we
plan to develop increasingly complex benchmarks in future work.

5.1 Curated List

Following Fulda et al. (2017), we compiled a list of 50 hand-authored text games
to use as an evaluation set. Games designed for human players require, and can
be used to measure, general capabilities like common-sense reasoning, planning,
and language understanding. We manually analyzed all games in the set to ensure
they are valid, with scores and interesting quests. From the original 50 proposed
by Fulda et al. (2017), we replaced 20 which were either parodies of text-based
games or did not provide scores. The information we collected for the games can
be found in Appendix B.

We evaluate three baselines on the proposed list. BYU5 and Golovin6 are
agents developed by Fulda et al. (2017) and Kostka et al. (2017), respectively,
and are described in Sect. 4.1. Both models were submitted to the Text-Based
Adventure AI Competition (Atkinson et al. 2018) which consisted in playing

5 Implementation from https://github.com/danielricks/BYU-Agent-2016.
6 Implementation from https://github.com/Kostero/text rpg ai.

https://github.com/danielricks/BYU-Agent-2016
https://github.com/Kostero/text_rpg_ai

TextWorld: A Learning Environment for Text-Based Games 63

20 hidden games. The third is the Simple baseline, which consists in sampling
uniformly a command from a predefined set7 at every step.

Each agent has 1000 steps to get a high score. If the agent loses the game, the
game is reset and play resumes until the step limit is reached. If the agent wins
(which never happens in practice), the game stops and the evaluation is done.
The procedure proposed here is slightly different from that in Fulda et al. (2017),
where they allow agents to play each game 1000 times for a maximum of 1000
steps each (i.e., a theoretical limit of a million interactions). Our main motivation
for having a small “time” budget is that we are interested in measuring the
generalization capabilities of agents. When using this evaluation, we assume the
agents are already trained (on other similar games) or encompass some prior
knowledge (which is the case for the three baselines).

Figure 9 reports the normalized score (i.e., maximum score achieved divided
by the game’s max possible score) for each baseline agent on the curated list.
Unsurprisingly, agents achieve a rather low score on a few games and zero on
many. Using the information we gathered during our analysis, we can make
educated guesses as to why some baselines perform well on certain games. For
instance, in Advent the player starts with 36 points, which explains why all
three baselines have the same score. As another example, the Detective game
can be solved with mostly navigational commands. This explains why the Simple
agent performs relatively well, since the commands it samples from are mostly
navigational.

5.2 Treasure Hunter

This benchmark is inspired by the task proposed in Parisotto and Salakhutdinov
(2017), where the agent spawns in a randomly generated maze and must find a
specific object. A colored “indicator” object near the agent’s starting position
determines which object the agent must retrieve. The agent earns a positive
reward for retrieving the correct object or a negative reward for an incorrect
object. There is a limited number of turns.

We adapted this task, which takes place in a 3D environment, to TextWorld.
In our setting, the maze is a randomly generated map (see Sect. 3.2.1) of rooms.
We randomly place the agent and two objects on the map. Then, we randomly
select which object the agent should recover and mention it in the welcome
message (our indicator). In navigating to and obtaining the desired object, the
agent may have to complete other tasks like finding keys and unlocking doors.

The aim of this benchmark is to assess skills of affordance extraction (agents
should determine verb-noun pairs that change the environment state); efficient
navigation (agents should avoid revisiting irrelevant rooms); and memory(agents
should remember which object to retrieve).

7 The exact set is: north, south, east, west, up, down, look, inventory, take all,
drop and YES.

64 M.-A. Côté et al.

We define the difficulty levels for this benchmark as follows:

• 1 to 10: Mode: easy, #rooms = 5, quest length linearly increasing from 1 to
5;

• 11 to 20: Mode: medium, #rooms = 10, quest length linearly increasing
from 2 to 10;

• 21 to 30: Mode: hard, #rooms = 20, quest length linearly increasing from 3
to 20;

where the modes are defined as

• Easy: Rooms are all empty except where the two objects are placed. Also,
connections between rooms have no door;

• Medium: Rooms may be connected by closed doors. Container objects are
added, and might need to be opened to find the object;

• Hard: Locked doors and containers are added which may need to be unlocked
(and opened) to reach the object.

Note that beyond the predefined difficulty levels, this benchmark can be
simplified by letting the agent directly tap into the game state information
(e.g., feedback, description, inventory and objective) or using a simpler grammar.

5.2.1 Evaluation: One-Life Game
One of our desiderata in building TextWorld is the ability to generate unseen
games, so that we can train and evaluate an agent’s performance on different
game sets. To support our claim of this need, we test two state-of-the-art agents
on a set of games generated by TextWorld, where the agents only see each game
once and therefore cannot memorize them.

Specifically, for each difficulty level described above, we generate 100 games.
We run each agent on these games for a maximum of 1000 steps. For each game,
when the agent picks up either the right object or the wrong one, it receives
+1 or −1 score, respectively, and the game terminates immediately; if the agent
exhausts all 1000 steps without finding any object, it receives 0 score.

Evaluation results are provided in Table 1, where we compare a choice-based8

random agent (i.e., at each game-step the baseline model randomly selects one
command from the list of admissible commands), the BYU agent and the Golovin
agent. We report the average score for different difficulty levels and the average
number of steps it took to finish the games (either win, lose, or exhaust).

8 Because of the compositional properties of language, a random parser-based agent
would perform poorly since most generated commands would not make sense. In this
work we use a choice-based random agent. It is not directly comparable to the other
two agents, but it can give a general idea how difficult the games are in different
difficulty levels.

TextWorld: A Learning Environment for Text-Based Games 65

Table 1. Model performance on one-life treasure hunter tasks.

Model Random BYU Golovin

Avg. score Avg. steps Avg. score Avg. steps Avg. score Avg. steps

level 1 0.35 9.85 0.75 85.18 0.78 18.16

level 5 −0.16 19.43 −0.33 988.72 −0.35 135.67

level 10 −0.14 20.74 −0.04 1000 −0.05 609.16

level 11 0.30 43.75 0.02 992.10 0.04 830.45

level 15 0.27 63.78 0.01 998 0.03 874.32

level 20 0.21 74.80 0.02 962.27 0.04 907.67

level 21 0.39 91.15 0.04 952.78 0.09 928.83

level 25 0.26 101.67 0.00 974.14 0.04 931.57

level 30 0.26 108.38 0.04 927.37 0.04 918.88

6 Current Limitations

Complex Quest Generation. We define a quest as a sequence of actions
where each action depends of the outcomes of its predecessor (Sect. 3.2.2). This
limits us to simple quests where each action is based on only the immediately
previous action. Quests are rarely so straightforward in text adventure games,
often being composed of multiple sub-quests. One method for generating more
complex quests would be by treating a quest as a directed graph of dependent
actions rather than a linear chain.

Time-Based Events. In the current implementation, there is no support for
triggering state changes without corresponding user actions. This would enable
doors that automatically lock after a certain number of player steps or traps
that trigger periodically (Fig. 10).

Non-Player Characters (NPCs). NPCs are characters that are not controlled
by the player and are capable of performing autonomous or reactive actions that
alter the game state. NPC interaction is quite common in several text-based
games, but is not currently supported by the game generator.

Multi-User Dungeon(MUD). Some text-based games allow multiple users to
interact with the world at the same time. Users may need to cooperate with each
other or to compete against each other, depending on the game. The framework
currently supports only single-agent games.

Text Generation. Using a CFG for text generation makes it difficult to ensure
continuity between sentences.

66 M.-A. Côté et al.

Fig. 10. A generated Treasure Hunter game with difficulty 20. The green rectangle
identifies the quest object, a passkey, which can be found on a rack in the washroom.
The player, P, is currently two rooms away in the basement separated by two closed
doors. (Color figure online)

7 Conclusion

We introduced TextWorld, a sandbox learning environment for the training and
evaluation of RL agents on text-based games. After surveying the machine-
learning challenges of text-based games, we cast them in the formalism of rein-
forcement learning. We described how the generative mechanisms of TextWorld
can be used to work up towards the full complexity of hand-authored games and
introduced a preliminary set of benchmark games for this purpose. We evaluated
several baseline agents on this set and a curated list of hand-authored games that
we analyzed.

In future work, we will develop more complex benchmark tasks and inves-
tigate novel approaches to representation learning, language understanding and
generation, and RL for text-based games.

Acknowledgement. We thank Adam Ferguson and Marion Zepf for many helpful
discussions on game analysis. We thank Alessandro Sordoni, Greg Yang, Philip Bach-
man, Ricky Loynd, Samira Ebrahimi Kahou, and Yoshua Bengio for helpful suggestions
and comments on research perspectives. We also thank Ruo Yu Tao for his help with
the visualization.

TextWorld: A Learning Environment for Text-Based Games 67

A Typical Text-Based Obstacles

Language. Language presents a number of difficulties Parser complexity (what
a parser can and cannot handle), distracting in-game descriptions, sar-
casm (e.g., If the game responds “Yeah right, that’s totally going to
work” when you enter a command, a solid understanding of sarcasm would
prevent you from repeating the command), and fictional languages.

Maze. One of the oldest text adventure obstacles, the most basic maze is a grid
of rooms with similar names and/or descriptions. The player has to find the
right path through the maze to reach a goal. Many text-based games take
care to innovate/complicate mazes. Some innovations include:

• Mazes whose solution is determined stochastically, either on a play-
through by play-through basis or on a turn by turn basis.

• Mazes whose configuration changes due to a player action, as in Zork
III (Infocom 1982), where the player can move some walls in the maze in
order to solve it.

• Mazes that are not solvable by navigation: In Photopia, for example, the
player is wearing a spacesuit while navigating the maze. If the player
removes the suit, it is revealed that the player has a pair of wings. The
player is then able to fly over the maze.

Clue Hunting. Detective games require the player to hunt for clues that will
tell them where to go next. In Sherlock, the game begins when the player
receives a coded poem that directs them to Westminster Abbey, where they
have to solve a number of riddle puzzles in order to find out where to find
five different gems, each of which provides the player with further clues. A
point of interest here is whether or not the player actually needs to get the
hints in order to win the game, or whether the player could win the game
if they already knew the contents of the hints. Sherlock (Bates 1987) is an
example of the former – some hints trigger crucial game state changes only
once the player examines them. Other games mix state-changing hints with
purely informative ones. For example, in Inhumane (Plotkin 1985), a clue
gives you directions through a maze which is still solvable if you don’t find
the clue. However, the end of the maze yields another clue. When you read
this second clue, an important portion of the map becomes available to the
player.

Treasure Hunting. Some treasures double as clues (as is the case with the gems
in Sherlock) while other treasures are necessary in order to unlock further
treasures. In Infidel, for example, you are given the opportunity to take some
gem clusters early in the game. Towards the end of the game, these clusters
are used to unlock a treasure chest. (Berlyn 1983).

Trivia. Many games base their puzzles off of trivia/world knowledge, which the
player might need to know in order to solve a puzzle. Many puzzles in the
Hitchhiker’s Guide to the Galaxy game are easier to solve if you are famil-
iar with the source material. For example, if you’ve read the book, you’d
already know that a Babel Fish is able to decode any language in the uni-
verse. In the game, then, you’ll know what to look for when confronted with

68 M.-A. Côté et al.

an alien language (Adams and Meretzky 1984). In The Enterprise Incidents,
the player must solve a word puzzle whose solution, the word firefly, is not
mentioned elsewhere in the game. (Desilets 2002) In Goldilocks is a FOX,
knowledge of fairy tales is required to solve puzzles involving magic beans,
bears, and porridge. (Guest 2002) Sherlock contains intricate riddle poems
whose solutions are allusions to famous historical figures buried in Westmin-
ster Abbey. The player is also required decode a riddle poem and realize that
references to “the conquest” and “the fire” refer to the Battle of Hastings
and the Great Fire of London, respectively. Finally, the player is expected to
know the dates for these two dates in order to subtract one from the other in
order to solve a puzzle. (Bates 1987) A number of modern text-based games
(Curses, OMNIQUEST, All Quiet on the Library Front, Inhumane, and the
later Zork games, to name a few) play off of established text adventure tropes,
clichés, and catchphrases (common passwords across games include “XYZZY”
and “Plugh” from Cave Adventure (Crowther and Woods 1976), and magic
spells learned in the Enchanter series carry over from game to game, although
they have to be ‘learned’ in-game in order to be used).

Self-Maintenance. Hunger, thirst, fatigue are the most common survival ele-
ments in text adventures. Players might have to keep space open in their
inventory for food and drink, and will be prompted from time to time that
they are getting hungry or thirsty, or that they might need to rest. Similar
obstacles that pop up are: hypothermia (when swimming in Zork III (Infocom
1982)), the classic lamp from Zork (Infocom 1980) (which reappears and is
innovated on in the sequels, where it can go out if you neglect to shake it or
turn it back on), and torches from Infidel (which you are required to regularly
dip in oil and light) (Berlyn 1983). One complication of self-maintenance is
whether the action is one time or continuous (in Infidel, for example, you need
to gather food and drink, but once they’re gathered, you have an unlimited
amount).

Combat. Combat can come in a variety of forms. At its most basic level, a
player will be confronted with an enemy and can thwart it by typing kill

enemy. To complicate things further, the player might not be equipped to kill
the enemy with their bare hands, and must first acquire a weapon before kill

enemy will return “enemy killed”. One level higher, the player might have to
attack enemy and dodge enemy or aim at X (where X = a weak spot you learn
about elsewhere in the game) before killing the enemy. Higher levels include
stochastic combat (where attacks may or may not land), optional combat
(where the only solution to the fight is to avoid it) and puzzle combat. In
Reverberations, for example, the player encounters an enemy in the cosmetics
section of a department store. To win the fight, the player must spray the
enemy with some nearby perfume. (Glasser 1996)

TextWorld: A Learning Environment for Text-Based Games 69

Time. In Wishbringer, the player has a limited amount of time at the start
of the game to deliver a note. The player must use this time to collect
items and information that will be inaccessible once they’ve delivered the
note. (Moriarty 1985) In Sherlock, the player is given 48 hours of in-game
time to solve the mystery. Certain locations and events are only accessible at
certain times. (Bates 1987)

Mechanical Puzzle. Some examples can be found in Infidel and Inhumane,
where the player has to move objects around a room, leave objects in rooms,
and prop open doors with wooden beams in order to avoid being caught in
traps. (Berlyn 1983) (Plotkin 1985)

Persistence. In some games, Anchorhead for example, you must repeat talk

to commands in order to get more information out of an NPC. (Gentry 1998)
Stochasticity. Some examples of stochasticity include randomly generated

maze configurations, randomly decided combat action outcomes, and ran-
domly selected code-words for puzzles. Text-based game players deal with
stochasticity with the UNDO action or by saving often and especially right
before taking any kind of risky action.

Cruelty Scale. The Cruelty Scale was designed by text-based game author
Andrew Plotkin as a broad method of determining the difficulty of text-
based games. The main element considered by the scale is whether or not the
game can be made impossible to win, and how obvious (or not) this is made
to the player. The scale has five ranks: Merciful games are impossible to die
or get stuck in, Polite games warn you before you do something that can
kill or trap you or otherwise render the game unwinnable. Tough games can
kill the player or be rendered unwinnable, but they’ll warn the player before
this happens. Nasty games can be rendered unwinnable without warning, but
there will be an indication that the game is now unwinnable after the fact.
Cruel games can be rendered unwinnable, and there’s no warning beforehand
and no indication afterwards.

Length. Text-based games vary wildly in length, from the solvable-in-twenty-
moves inform demo Acorncourt to the 1000+ moves required to complete
Anchorhead, text-based games have many elements that impact their length.
These include: Number of possible commands, number of rooms, length of
descriptive text, (Reverberations, for example, is solvable with a relatively
low number of commands (roughly 50), but features long descriptive passages
for almost every room and command) side quests and multiple endings, and
game difficulty. However, text-based game review sites and discussion boards
often divide games up into short demo type games, medium uncomplicated
games, and long difficult games.

B Curated List of Text-Based Games

See Table 2.

70 M.-A. Côté et al.

T
a
b
le

2
.
In

fo
rm

a
ti

o
n

w
e

co
ll
ec

te
d

d
u
ri

n
g

o
u
r

a
n
a
ly

si
s

o
f
te

x
t-

b
a
se

d
g
a
m

es
.

G
a
m
e

#
R
o
o
m
s
M

a
x

sc
o
re

M
a
z
e
T
ri
v
ia

S
e
lf
-

m
a
in
te

n
a
n
c
e

C
o
m
b
a
t
T
im

e
M

e
c
h
a
n
ic
a
l

P
u
z
z
le

P
e
rs
is
te

n
c
e
S
to

c
h
a
st
ic
it
y

F
o
rg

iv
e
n
e
ss

T
h
e
A
c
o
rn

C
o
u
rt

1
3
0

N
o

N
o

N
o

N
o

N
o

Y
e
s

N
o

N
o

M
e
rc

if
u
l

A
d
v
e
n
tu

re
3
0
+

3
5
0

Y
e
s

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o

T
o
u
g
h

A
d
v
e
n
tu

re
la
n
d

3
0
+

1
0
0

Y
e
s

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

T
o
u
g
h

A
ll

Q
u
ie
t
o
n

th
e
L
ib

ra
ry

F
ro

n
t

2
+

3
0

N
o

Y
e
s

N
o

N
o

N
o

N
o

N
o

N
o

M
e
rc

if
u
l

A
n
c
h
o
rh

e
a
d

3
0
+

1
0
0

N
o

Y
e
s

N
o

Y
e
s

Y
e
s

N
o

Y
e
s

N
o

C
ru

e
l

T
h
e
A
w
a
k
e
n
in

g
3
0
+

5
0

N
o

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o

P
o
li
te

B
a
la
n
c
e
s

1
0
+

5
1

N
o

Y
e
s

N
o

N
o

N
o

Y
e
s

N
o

N
o

P
o
li
te

B
a
ll
y
h
o
o

3
0
+

3
0
0

Y
e
s

Y
e
s

Y
e
s

N
o

Y
e
s

Y
e
s

N
o

Y
e
s

T
o
u
g
h

C
u
rs
e
s

3
0
+

5
5
0

N
o

Y
e
s

N
o

N
o

Y
e
s

N
o

Y
e
s

Y
e
s

P
o
li
te

C
u
tt
h
ro

a
t

3
0
+

2
5
0

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

P
o
li
te

D
e
e
p
h
o
m
e

1
0
+

3
0
0

Y
e
s

N
o

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o

P
o
li
te

D
e
te

c
ti
v
e

1
0
+

3
6
0

N
o

N
o

N
o

Y
e
s

N
o

N
o

N
o

N
o

C
ru

e
l

D
ra

g
o
n

A
d
v
e
n
tu

re
2
+

2
5

N
o

N
o

N
o

Y
e
s

N
o

N
o

N
o

N
o

M
e
rc

if
u
l

E
n
c
h
a
n
te

r
3
0
+

4
0
0

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

C
ru

e
l

T
h
e
E
n
te

rp
ri
se

In
c
id

e
n
ts

1
0

1
0

N
o

Y
e
s

N
o

N
o

Y
e
s

N
o

Y
e
s

N
o

M
e
rc

if
u
l

G
o
ld

il
o
c
k
s
is

a
F
O
X
!

3
0
+

1
0
0

Y
e
s

Y
e
s

N
o

N
o

N
o

Y
e
s

N
o

N
o

P
o
li
te

T
h
e
H
it
c
h
h
ik
e
r’
s
G
u
id

e
to

th
e
G
a
la
x
y

3
0
+

1
0
0

Y
e
s

Y
e
s

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

C
ru

e
l

H
o
ll
y
w
o
o
d

H
ij
n
x

1
0
+

1
5
0

Y
e
s

Y
e
s

N
o

Y
e
s

N
o

Y
e
s

N
o

N
o

N
a
st
y

In
fi
d
e
l

1
0
+

4
0
0

Y
e
s

Y
e
s

Y
e
s

N
o

N
o

Y
e
s

N
o

N
o

C
ru

e
l

In
h
u
m

a
n
e

1
0
+

4
0
0

Y
e
s

Y
e
s

N
o

N
o

N
o

Y
e
s

N
o

N
o

P
o
li
te

T
h
e
J
e
w
e
l
o
f
K
n
o
w
le
d
g
e

3
0
+

9
0

Y
e
s

N
o

N
o

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

T
o
u
g
h

L
e
a
th

e
r
G
o
d
d
e
ss
e
s
o
f
P
h
o
b
o
s

3
0
+

3
1
6

Y
e
s

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

C
ru

e
l

M
o
th

e
r
L
o
o
se

1
0
+

5
0

N
o

Y
e
s

N
o

N
o

N
o

N
o

N
o

N
o

M
e
rc

if
u
l

L
o
st

P
ig

2
+

7
N
o

N
o

N
o

N
o

N
o

Y
e
s

N
o

N
o

M
e
rc

if
u
l

T
h
e
L
u
d
ic
o
rp

M
y
st
e
ry

3
0
+

1
5
0

Y
e
s

N
o

N
o

N
o

N
o

Y
e
s

N
o

N
o

P
o
li
te

T
h
e
L
u
rk

in
g

H
o
rr
o
r

1
0
+

1
0
0

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o

P
o
li
te

T
h
e
M

e
te

o
r,

th
e
S
to

n
e
a
n
d

a
L
o
n
g

G
la
ss

o
f
S
h
e
rb

e
t
3
0
+

3
0

N
o

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

N
o

Y
e
s

C
ru

e
l

M
o
n
st
e
rs

o
f
M

u
rd

a
c

3
0
+

2
5
0

Y
e
s

N
o

N
o

Y
e
s

Y
e
s

N
o

N
o

Y
e
s

N
a
st
y

(c
o
n
ti
n
u
ed

)

http://ifdb.tads.org/viewgame?id=tqvambr6vowym20v
http://ifdb.tads.org/viewgame?id=fft6pu91j85y4acv
http://ifdb.tads.org/viewgame?id=dy4ok8sdlut6ddj7
http://ifdb.tads.org/viewgame?id=400zakqderzjnu1i
http://ifdb.tads.org/viewgame?id=op0uw1gn1tjqmjt7
http://ifdb.tads.org/viewgame?id=rwseuddvj1gbo481
http://ifdb.tads.org/viewgame?id=x6ne0bbd2oqm6h3a
http://ifdb.tads.org/viewgame?id=b0i6bx7g4rkrekgg
http://ifdb.tads.org/viewgame?id=plvzam05bmz3enh8
http://ifdb.tads.org/viewgame?id=4ao65o1u0xuvj8jf
http://ifdb.tads.org/viewgame?id=x85otcikhwp8bwup
http://ifdb.tads.org/viewgame?id=1po9rgq2xssupefw
http://ifdb.tads.org/viewgame?id=sjiyffz8n5patu8l
http://ifdb.tads.org/viewgame?id=vu4xhul3abknifcr
http://ifdb.tads.org/viewgame?id=ld1f3t5epeagilfz
http://ifdb.tads.org/viewgame?id=59ztsy9p01avd6wp
http://ifdb.tads.org/viewgame?id=ouv80gvsl32xlion
http://ifdb.tads.org/viewgame?id=jnfkbgdgopwfqist
http://ifdb.tads.org/viewgame?id=anu79a4n1jedg5mm
http://ifdb.tads.org/viewgame?id=wvs2vmbigm9unlpd
http://ifdb.tads.org/viewgame?id=hu60gp1bgkhlo5yx
http://ifdb.tads.org/viewgame?id=3p9fdt4fxr2goctw
http://ifdb.tads.org/viewgame?id=4wd3lyaxi4thp8qi
http://ifdb.tads.org/viewgame?id=mohwfk47yjzii14w
http://ifdb.tads.org/viewgame?id=r6g7pflngn3uxbam
http://ifdb.tads.org/viewgame?id=jhbd0kja1t57uop
http://ifdb.tads.org/viewgame?id=273o81yvg64m4pkz
http://ifdb.tads.org/viewgame?id=q36lh5np0q9nak28

TextWorld: A Learning Environment for Text-Based Games 71

T
a
b
le

2
.
(c
o
n
ti
n
u
ed

)

G
a
m
e

#
R
o
o
m
s
M

a
x

sc
o
re

M
a
z
e
T
ri
v
ia

S
e
lf
-

m
a
in
te

n
a
n
c
e

C
o
m
b
a
t
T
im

e
M

e
c
h
a
n
ic
a
l

P
u
z
z
le

P
e
rs
is
te

n
c
e
S
to

c
h
a
st
ic
it
y

F
o
rg

iv
e
n
e
ss

N
ig
h
t
a
t
th

e
C
o
m

p
u
te

r
C
e
n
te

r
1
0
+

1
0

Y
e
s

Y
e
s

N
o

N
o

N
o

N
o

N
o

N
o

M
e
rc

if
u
l

O
M

N
Iq

u
e
st

2
+

5
0

N
o

Y
e
s

N
o

Y
e
s

N
o

N
o

N
o

N
o

P
o
li
te

P
e
n
ta

ri
2
+

7
0

N
o

N
o

N
o

Y
e
s

Y
e
s

N
o

N
o

Y
e
s

P
o
li
te

P
la
n
e
tf
a
ll

1
0
+

8
0

N
o

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

P
o
li
te

P
lu

n
d
e
re

d
H
e
a
rt
s

1
0
+

2
5

N
o

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

N
o

N
o

P
o
li
te

R
e
tu

rn
to

K
a
rn

3
0
+

1
7
0

N
o

Y
e
s

N
o

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
a
st
y

R
e
v
e
rb

e
ra

ti
o
n
s

1
0
+

5
0

N
o

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

N
o

N
o

P
o
li
te

S
e
a
st
a
lk
e
r

3
0
+

1
0
0

N
o

N
o

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o

N
a
st
y

S
h
e
rl
o
c
k
:
T
h
e
R
id

d
le

o
f
th

e
C
ro

w
n

J
e
w
e
ls

3
0
+

1
0
0

N
o

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
a
st
y

S
o
rc

e
re

r
1
0
+

4
0
0

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
a
st
y

S
p
e
ll
b
re

a
k
e
r

3
0
+

6
0
0

Y
e
s

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

C
ru

e
l

S
p
ir
it
w
ra

k
3
0
+

2
5
0

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

P
o
li
te

T
h
e
T
e
m

p
le

1
0
+

3
5

N
o

Y
e
s

N
o

Y
e
s

Y
e
s

N
o

Y
e
s

N
o

P
o
li
te

T
h
e
a
tr
e

3
0
+

5
0

N
o

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o

P
o
li
te

T
ri
n
it
y

3
0
+

1
0
0

Y
e
s

Y
e
s

N
o

N
o

Y
e
s

Y
e
s

N
o

Y
e
s

T
o
u
g
h

T
ry

st
o
f
F
a
te

3
0
+

3
5
0

Y
e
s

Y
e
s

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

P
o
li
te

W
is
h
b
ri
n
g
e
r

3
0
+

1
0
0

Y
e
s

N
o

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

T
o
u
g
h

Z
e
n
o
n

1
0
+

2
0

N
o

N
o

N
o

N
o

Y
e
s

N
o

N
o

N
o

P
o
li
te

Z
o
rk

I
3
0
+

3
5
0

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

C
ru

e
l

Z
o
rk

II
3
0
+

4
0
0

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o

N
o

C
ru

e
l

Z
o
rk

II
I

3
0
+

7
Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

C
ru

e
l

Z
o
rk

:
T
h
e
U
n
d
is
c
o
v
e
re

d
U
n
d
e
rg

ro
u
n
d

1
0
+

1
0
0

Y
e
s

Y
e
s

N
o

N
o

Y
e
s

Y
e
s

Y
e
s

Y
e
s

T
o
u
g
h

http://ifdb.tads.org/viewgame?id=ydhwa11st460g9u3
http://ifdb.tads.org/viewgame?id=mygqz9tzxqvryead
http://ifdb.tads.org/viewgame?id=llchvog0ukwrphih
http://ifdb.tads.org/viewgame?id=xe6kb3cuqwie2q38
http://ifdb.tads.org/viewgame?id=ddagftras22bnz8h
http://ifdb.tads.org/viewgame?id=bx8118ggp6j7nslo
http://ifdb.tads.org/viewgame?id=dop7nbjl90r5zmf9
http://ifdb.tads.org/viewgame?id=56wb8hflec2isvzm
http://ifdb.tads.org/viewgame?id=j8lmspy4iz73mx26
http://ifdb.tads.org/viewgame?id=lidg5nx9ig0bwk55
http://ifdb.tads.org/viewgame?id=wqsmrahzozosu3r
http://ifdb.tads.org/viewgame?id=tqpowvmdoemtooqf
http://ifdb.tads.org/viewgame?id=kq9qgjkf2k6xn1c0
http://ifdb.tads.org/viewgame?id=bv8of8y9xeo7307g
http://ifdb.tads.org/viewgame?id=j18kjz80hxjtyayw
http://ifdb.tads.org/viewgame?id=ic0ebhbi70bdmyc2
http://ifdb.tads.org/viewgame?id=z02joykzh66wfhcl
http://ifdb.tads.org/viewgame?id=rw7zv98mifbr3335
http://ifdb.tads.org/viewgame?id=0dbnusxunq7fw5ro
http://ifdb.tads.org/viewgame?id=yzzm4puxyjakk8c4
http://ifdb.tads.org/viewgame?id=vrsot1zgy1wfcdru
http://ifdb.tads.org/viewgame?id=40hswtkhap88gzvn

72 M.-A. Côté et al.

B.1 Game Notes

Below are observations for some of the games we analyzed.

The Acorn Court Written as an Inform demo. Very short game with only one
room. Contains one multi-part spatial puzzle.

Adventure First IF. Difficult, stochastically generated mazes, introduces made
up words. We used the recompiled with Inform 6 (release 9) version which
starts with an initial score of 36 points.

Anchorhead Heavily text based. Requires a combination of world knowledge and
knowledge gleaned from in-game texts. When speaking with townspeople, you
have to occasionally be persistent. Awareness of Lovecraftian cliches is helpful.

Balances Another Inform demo, features made up words and spells that the
player must remember. Rare words used in the context of magic and fantasy
are also used.

Deephome Medium length game with an in game library the player can consult
in order to figure out the solutions to puzzles.

Dragon Adventure Short game written to introduce children to text based games.
Detective Poorly written game. Navigation isn’t very logical (you can walk east

into a room whose only exit is to the north). Gameplay is very simple - you
only need to use navigation commands to reach the end of the game.

Enchanter Long game with a complex spell-casting system that requires player
to memorize and record spells.

Goldilocks is a FOX! Requires trivia knowledge (you need to know about Jack
and the Beanstalk in order to know what to do when someone offers you
magic beans). Casual language with lots of pop cultural references.

Hitchhiker’s Guide to the Galaxy Incredibly difficult to play. Several stochastic
obstacles (A maze without a set solution, An object from a subset of objects
is randomly made into a crucial object). Features many irrational objects
and events, including objects showing up in your inventory without warning.
Leans on world knowledge a bit as well, as when the navigation controls
change to Port, Starboard, Aft, and Bow/Fore. Some puzzles are solvable if
you are familiar with the books. Language is also sarcastic and, at times,
deliberately misleads the player.

Infidel Many spatial puzzles. Draws on world knowledge (player must decode
hieroglyphics and pictograms). Instruction manual contains the navigation
instructions for finding the pyramid. Contains some potential one-way paths
(you need to tie a rope to an object in one room in order to re-enter it).

Inhumane Parody of infidel but with a more straightforward, simpler map. Has a
meta game where you try to nearly solve puzzles and then kill yourself. Some
familiarity with Infidel makes playing it easier. Contains some clue-hunting
that doubles as room unlocking, you can also find directions through a maze
in the game. Contains a gag ending triggered by entering s instead of south

or vice versa as your final command. There are mazes, but there are also
some unconnected rooms that have identical names (T-Intersections appear
in different areas).

http://ifdb.tads.org/viewgame?id=tqvambr6vowym20v
http://ifdb.tads.org/viewgame?id=fft6pu91j85y4acv
http://ifdb.tads.org/viewgame?id=op0uw1gn1tjqmjt7
http://ifdb.tads.org/viewgame?id=x6ne0bbd2oqm6h3a
http://ifdb.tads.org/viewgame?id=x85otcikhwp8bwup
http://ifdb.tads.org/viewgame?id=sjiyffz8n5patu8l
http://ifdb.tads.org/viewgame?id=1po9rgq2xssupefw
http://ifdb.tads.org/viewgame?id=vu4xhul3abknifcr
http://ifdb.tads.org/viewgame?id=59ztsy9p01avd6wp
http://ifdb.tads.org/viewgame?id=ouv80gvsl32xlion
http://ifdb.tads.org/viewgame?id=anu79a4n1jedg5mm
http://ifdb.tads.org/viewgame?id=wvs2vmbigm9unlpd

TextWorld: A Learning Environment for Text-Based Games 73

All Quiet on the Library Front Relatively simple treasure hunt with minimal
side-quests and Easter eggs. Contains some text-based game in-jokes that
do not impact the gameplay, but might be distracting.

Lost pig Game text is written in “cave-person speak”. Otherwise a simple pig
hunt with some magic spell based puzzles.

The Lurking Horror Medium length game that requires you to understand which
rooms are above which other rooms in order to guess the solution to a puzzle.

Spiritwrak Features a massive map with a working subway system. Uses an
Enchanter-style spell system.

Trinity Long game with surreal imagery. Map made of several sub-worlds linked
through a central hub.

Sherlock: The Riddle of the Crown Jewels Very dependent on world knowledge.
Time based. Some word puzzles. Player can easily get stuck in an unwinnable
state without knowing it, and is expected to have a familiarity with Victorian
England and British history and culture and general.

Wishbringer Designed for beginner players. Features a hint system and an object
that grants the player “wishes” that help them bypass puzzles.

Zork I Classic text-based game treasure hunt with dungeon theme. In addition
to the treasure hunt component, player has to contend with a thief, combat
with a troll, and navigate a maze. Knowledge about The Odyssey can help
the player defeat a Cyclops.

Zork II Sequel to Zork I. Contains a maze modelled after a baseball diamond
that confused some European players when first released.

Zork III Sequel to Zork II. High score can be achieved without winning the game.
Game rewards the player for finding innovative solutions to problems rather
than for solving puzzles, navigating to rooms, or retrieving objects.

C Inform 7

Inform refers to a domain-specific programming language and additional tooling
for interactive fiction (i.e., text-based games). It is regarded as the most natural
language-like programming language. It was originally created in 1993 by Gra-
ham Nelson and he later released Inform 7 (briefly known as Natural Inform).
We decide to use Inform7 so we could leverage Inform’s impressive parser that
benefited from more than two decades of tweaks/fixes. Inform 7 source compiles
to Inform 6 source, a weakly-typed multiple-inheritance traditional programming
language, before compiling to Z or glulx code. See http://inform7.com/ for more
information on Inform 7. Also, here is a supplemental resource for some of the
technical details: http://www.ifwiki.org/index.php/Inform 7 for Programmers.

http://ifdb.tads.org/viewgame?id=400zakqderzjnu1i
http://ifdb.tads.org/viewgame?id=mohwfk47yjzii14w
http://ifdb.tads.org/viewgame?id=jhbd0kja1t57uop
http://ifdb.tads.org/viewgame?id=tqpowvmdoemtooqf
http://ifdb.tads.org/viewgame?id=j18kjz80hxjtyayw
http://ifdb.tads.org/viewgame?id=j8lmspy4iz73mx26
http://ifdb.tads.org/viewgame?id=z02joykzh66wfhcl
http://ifdb.tads.org/viewgame?id=0dbnusxunq7fw5ro
http://ifdb.tads.org/viewgame?id=yzzm4puxyjakk8c4
http://ifdb.tads.org/viewgame?id=vrsot1zgy1wfcdru
http://inform7.com/
http://www.ifwiki.org/index.php/Inform_7_for_Programmers

74 M.-A. Côté et al.

References

Adams, D., Meretzky, S.: The Hitchhiker’s guide to the galaxy (1984). http://ifdb.tads.
org/viewgame?id=ouv80gvsl32xlion

Atkinson, T., Baier, H., Copplestone, T., Devlin, S., Swan, J.: The text-based adventure
AI competition. arXiv preprint arXiv:1808.01262 (2018)

Baroni, M., et al.: CommAI: evaluating the first steps towards a useful general AI.
arXiv preprint arXiv:1701.08954 (2017)

Bates, B.: Sherlock: the riddle of the crown jewels (1987). http://ifdb.tads.org/
viewgame?id=j8lmspy4iz73mx26

Beattie, C., et al.: DeepMind Lab. arXiv preprint arXiv:1612.03801 (2016)
Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environ-

ment: an evaluation platform for general agents. J. Artif. Intell. Res. (JAIR) 47,
253–279 (2013)

Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceed-
ings of the 26th Annual International Conference on Machine Learning, pp. 41–48.
ACM (2009)

Berlyn, M.: Infidel (1983). http://ifdb.tads.org/viewgame?id=anu79a4n1jedg5mm
Brockman, G., et al.: OpenAI Gym. arXiv preprint arXiv:1606.01540 (2016)
Chaplot, D.S., Sathyendra, K.M., Pasumarthi, R.K., Rajagopal, D., Salakhutdinov, R.:

Gated-attention architectures for task-oriented language grounding. arXiv preprint
arXiv:1706.07230 (2017)

Chomsky, N.: Three models for the description of language. IEEE Trans. Inf. Theory
2(3), 113–124 (1956). https://doi.org/10.1109/tit.1956.1056813

Crowther, W., Woods, D.: Aventure (1976). http://ifdb.tads.org/viewgame?
id=fft6pu91j85y4acv

Desilets, B.: The enterprise incidents (2002). http://ifdb.tads.org/viewgame?
id=ld1f3t5epeagilfz

Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem
proving to problem solving. Artif. Intell. 2(3–4), 189–208 (1971)

Fulda, N., Ricks, D., Murdoch, B., Wingate, D.: What can you do with a rock? Affor-
dance extraction via word embeddings. arXiv preprint arXiv:1703.03429 (2017)

Galley, S., Lawrence, J.: Seastalker (1984). http://ifdb.tads.org/viewgame?
id=56wb8hflec2isvzm

Genesereth, M., Love, N., Pell, B.: General game playing: overview of the aaai compe-
tition. AI Mag. 26(2), 62 (2005)

Gentry, M.: Anchorhead (1998). http://ifdb.tads.org/viewgame?id=op0uw1gn1tjqmjt7
Glasser, R.: Reverberations (1996). http://ifdb.tads.org/viewgame?id=dop7nbjl90r5

zmf9
Guest, J.J.: Goldilocks is a FOX! (2002). http://ifdb.tads.org/viewgame?id=59ztsy9p0

1avd6wp
Haroush, M., Zahavy, T., Mankowitz, D.J., Mannor, S.: Learning how not to act in text-

based games. In: International Conference on Learning Representations - Workshop
(2018)

He, J., et al.: Deep reinforcement learning with a natural language action space. arXiv
preprint arXiv:1511.04636 (2015)

Henderson, M., Thomson, B., Williams, J.D.: The second dialog state tracking chal-
lenge. In: Proceedings of the 15th Annual Meeting of the Special Interest Group on
Discourse and Dialogue (SIGDIAL), pp. 263–272 (2014)

http://ifdb.tads.org/viewgame?id=ouv80gvsl32xlion
http://ifdb.tads.org/viewgame?id=ouv80gvsl32xlion
http://arxiv.org/abs/1808.01262
http://arxiv.org/abs/1701.08954
http://ifdb.tads.org/viewgame?id=j8lmspy4iz73mx26
http://ifdb.tads.org/viewgame?id=j8lmspy4iz73mx26
http://arxiv.org/abs/1612.03801
http://ifdb.tads.org/viewgame?id=anu79a4n1jedg5mm
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1706.07230
https://doi.org/10.1109/tit.1956.1056813
http://ifdb.tads.org/viewgame?id=fft6pu91j85y4acv
http://ifdb.tads.org/viewgame?id=fft6pu91j85y4acv
http://ifdb.tads.org/viewgame?id=ld1f3t5epeagilfz
http://ifdb.tads.org/viewgame?id=ld1f3t5epeagilfz
http://arxiv.org/abs/1703.03429
http://ifdb.tads.org/viewgame?id=56wb8hflec2isvzm
http://ifdb.tads.org/viewgame?id=56wb8hflec2isvzm
http://ifdb.tads.org/viewgame?id=op0uw1gn1tjqmjt7
http://ifdb.tads.org/viewgame?id=dop7nbjl90r5zmf9
http://ifdb.tads.org/viewgame?id=dop7nbjl90r5zmf9
http://ifdb.tads.org/viewgame?id=59ztsy9p01avd6wp
http://ifdb.tads.org/viewgame?id=59ztsy9p01avd6wp
http://arxiv.org/abs/1511.04636

TextWorld: A Learning Environment for Text-Based Games 75

Hermann, K.M., et al.: Grounded language learning in a simulated 3D world. arXiv
preprint arXiv:1706.06551 (2017)

Infocom. Zork I (1980). http://ifdb.tads.org/viewgame?id=0dbnusxunq7fw5ro
Infocom. Zork III (1982). http://ifdb.tads.org/viewgame?id=vrsot1zgy1wfcdru
Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially

observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)
Kempka, M., Wydmuch, M., Runc, G., Toczek, J., Jaśkowski, W.: ViZDoom: a doom-

based AI research platform for visual reinforcement learning. In: 2016 IEEE Confer-
ence on Computational Intelligence and Games (CIG), pp. 1–8. IEEE (2016)

Kostka, B., Kwiecieli, J., Kowalski, J., Rychlikowski, P.: Text-based adventures of the
Golovin AI agent. In: 2017 IEEE Conference on Computational Intelligence and
Games (CIG), pp. 181–188. IEEE (2017)

Machado, M.C., Bellemare, M.G., Talvitie, E., Veness, J., Hausknecht, M., Bowling, M.:
Revisiting the arcade learning environment: evaluation protocols and open problems
for general agents. arXiv preprint arXiv:1709.06009 (2017)

Martens, C.: Ceptre: a language for modeling generative interactive systems. In:
Eleventh Artificial Intelligence and Interactive Digital Entertainment Conference
(2015)

McFarlane, R.: A survey of exploration strategies in reinforcement learning (2003).
https://www.cs.mcgill.ca/∼cs526/roger.pdf

Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

Moriarty, B.: Wishbringer (1985). http://ifdb.tads.org/viewgame?id=z02joykzh66wfhcl
Narasimhan, K., Kulkarni, T., Barzilay, R.: Language understanding for text-based

games using deep reinforcement learning. arXiv preprint arXiv:1506.08941 (2015)
Parisotto, E., Salakhutdinov, R.: Neural map: structured memory for deep reinforce-

ment learning. arXiv preprint arXiv:1702.08360 (2017)
Pearson, K.: The problem of the random walk. Nature 72(1867), 342 (1905)
Plotkin, A.: Inhumane (1985). http://ifdb.tads.org/viewgame?id=wvs2vmbigm9unlpd
Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming, 1st edn. Wiley, New York (1994). ISBN 0471619779
Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education

Limited, Kuala Lumpur (2016)
Ryan, J., Seither, E., Mateas, M., Wardrip-Fruin, N.: Expressionist: an authoring tool

for in-game text generation. In: Nack, F., Gordon, A.S. (eds.) ICIDS 2016. LNCS,
vol. 10045, pp. 221–233. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48279-8 20

Sukhbaatar, S., Szlam, A., Synnaeve, G., Chintala, S., Fergus, R.: MazeBase: a sandbox
for learning from games. arXiv preprint arXiv:1511.07401 (2015)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge (2018)

Wright, W.: SimCity. Erbe (1996)

http://arxiv.org/abs/1706.06551
http://ifdb.tads.org/viewgame?id=0dbnusxunq7fw5ro
http://ifdb.tads.org/viewgame?id=vrsot1zgy1wfcdru
http://arxiv.org/abs/1709.06009
https://www.cs.mcgill.ca/~cs526/roger.pdf
http://ifdb.tads.org/viewgame?id=z02joykzh66wfhcl
http://arxiv.org/abs/1506.08941
http://arxiv.org/abs/1702.08360
http://ifdb.tads.org/viewgame?id=wvs2vmbigm9unlpd
https://doi.org/10.1007/978-3-319-48279-8_20
https://doi.org/10.1007/978-3-319-48279-8_20
http://arxiv.org/abs/1511.07401

General Game Playing

Statistical GGP Game Decomposition

Aline Hufschmitt(B), Jean-Noël Vittaut, and Nicolas Jouandeau

LIASD, University of Paris 8, Saint-Denis, France
{alinehuf,jnv,n}@ai.univ-paris8.fr

Abstract. This paper presents a statistical approach for the decompo-
sition of games in the General Game Playing framework. General game
players can drastically decrease game search cost if they hold a decom-
posed version of the game. Previous works on decomposition rely on syn-
tactical structures, which can be missing from the game description, or on
the disjunctive normal form of the rules, which is very costly to compute.
We offer an approach to decompose single or multi-player games which
can handle the different classes of compound games described in Game
Description Language (parallel games, serial games, multiple games).
Our method is based on a statistical analysis of relations between actions
and fluents. We tested our program on 597 games. Given a timeout of 1 h
and few playouts (1k), our method successfully provides an expert-like
decomposition for 521 of them. With a 1 min timeout and 5k playouts,
it provides a decomposition for 434 of them.

Keywords: General Game Playing · Decomposition ·
Game description langage · Causality · Compound moves · Serial games

1 Introduction

Solving smaller sub-problems individually and synthesizing the resulting solu-
tions can greatly reduce the cost of search for a general game player. Previous
works on compound games show this and propose some approaches to solve
pre-decomposed single games [3,5] or multi-player games [12]. Sum of games
has been widely studied to solve games with specific complete decomposition
[1]. However, identifying such sub-problems is an essential prerequisite. In this
paper we focus on the decomposition of games described in Game Description
Language(GDL).

We identify different classes of compound games [7] which raise specific
issues for decomposition: games using a stepper like Asteroids1, synchronous or
asynchronous [3] parallel games respectively like Chinook2 or Double Tictactoe

1 In Asteroids the player must drive a small spaceship (in up to 50 steps) to an asteroid
and stop on it. If the ship stops before reaching the destination, the game ends with
the score 0.

2 Chinook is composed of two games of Checkers disputed on the white cells and the
black cells of the same board.

c© Springer Nature Switzerland AG 2019
T. Cazenave et al. (Eds.): CGW 2018, CCIS 1017, pp. 79–97, 2019.
https://doi.org/10.1007/978-3-030-24337-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24337-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-24337-1_4

80 A. Hufschmitt et al.

Dengji3, synchronous parallel games with compound moves like Snake-Parallel4,
serial games like Factoring-Turtle-Brain5, multiple games like Multiple-Sukoshi6

and impartial games starting with several piles of objects like Nim7.
Some characteristics of these games represent specific difficulties for decom-

position. Serial games are games with sequential subgames: when a subgame
terminates, another subgame starts. The second game is strongly linked to the
first one as the start of the second game depends on the first game state. Com-
pound moves are single actions that are responsible of effects related to different
subgames; the separation of these effects is critical to separate the subgames.

The Game Description Language used to described general games is a logic
language similar to Prolog which uses the closed world assumption and uses
negation as failure. The logical rules used to infer fluents that will be true in the
next state, given a partial description of the current state and a joint move of the
players, do not explicitly describe action effects. In the premises of these rules,
with head predicate next, some fluents describe some aspect of the current state
necessary for the rule head to be entailed but not a complete state. Therefore
the exploration of each game state from initial state is necessary to know exactly
in which state these rules can be entailed and what is the effect of actions. For
example, frame axioms indicate fluents that keep a true value from one state to
another given some specific actions: actions not present in these frame rules are
those susceptible to have a negative effect. However, among those, some may be
illegal when the rule applies. To identify these illegal actions, it is necessary to
acquire high level knowledge on the game to know that premises necessary for
action legality are incompatible with a premise of the preceding rules. However,
like it has been demonstrated with STRIPS-descriptions in planning domain [2],
a complete inference of all mutually exclusive fluents is intractable for complex
games.

In this paper we propose a statistical approach based on simulation to identify
the action effects and to decompose the different classes of compound games
mentioned above. We first present the previous works on decomposition (Sect. 2)
then define what is a correct decomposition of a game (Sect. 3). We present the
different aspects of our method to handle the different types of compound games
(Sect. 4). We present experimental results on 597 games (Sect. 5). Finally, we
conclude and present future work (Sect. 6).

3 At each turn a player chooses a Tictactoe grid from two to place one of his marks.
The goal is to win in both grids.

4 The goal of Snake is to move, for 50 steps, a snake that grows steadily without biting
its tail.

5 Factoring Turtle Brain is a series of LightsOn games where the player has to turn
on 4 lights: each lamp goes out gradually while he lights up the others.

6 Sukoshi is about creating a path by aligning ordered integers. In the multiple version
only one grid counts for the score, the others are useless.

7 In Nim each player takes in turn any number of matches in one of 4 stacks. Whoever
no longer has a match to pick loses.

Statistical GGP Game Decomposition 81

(role r)
(light a) (light b) (light c) (light d)
(<= (legal r (push ?x)) (not (true (on ?x))) (light ?x))
(<= (next (on ?x)) (does r (push ?x)))
(<= (next (on ?x)) (true (on ?x)))
(<= terminal (true (on a)))
(<= (goal r 0) (not (true (on b))) (not (true (on c))))
(<= (goal r 40) (true (on b)) (not (true (on c))))
(<= (goal r 60) (not (true (on b))) (true (on c)))
(<= (goal r 100) (true (on b)) (true (on c)))

Fig. 1. Minimalist game represented in GDL. The player can light 4 lamps. Turn on a
ends the game. It only gets the maximum score if b and c are lit at the end.

2 Previous Works

We assume familiarity of the reader with General Game Playing [4] as well
as with the Game Description Language (GDL) [8]. A GDL game description
takes the form of a set of assertions and logical rules. A set of keywords allows
to describe the game. Figure 1 give an example of GDL description. Keywords
are represented in bold. The syntax (<= a x ... y) means that a is true if the
conjunction of premises x∧...∧y is true; the variables are indicated by a question
mark. The legal predicate specify the legality of an action; next rules indicate
conditions under which a fluent is true in the next state; terminal signals if the
current state is a game end; goal completes the score reached by the player if
the current state is terminal. Rules are expressed in terms of actions (does) and
fluents (true) describing the game state.

To quickly evaluate the rules and carry out simulations of the game (play-
outs), Vittaut et al. [11] propose a fast instantiation using Prolog with tabling
that builds a rule graph similar to a propnet [9]. This rule graph is transformed
into a logic circuit [10] which can be quickly evaluated using binary operators.
This circuit uses the head of legal, next, goal or terminal rules as outputs, and
fluents (true) and actions (does) as inputs.

Günther et al. [6] propose a decomposition approach for single player games
by building a dependency graph between uninstantiated fluents and actions
nodes: the connected components of the graph represent the different subgames.
Edges are potential preconditions, positive and negative effects between fluents
and actions while action-independent fluents are isolated in a separate subgame
to prevent them from joining all subgames. Their program is tested on the game
Incredible.

Zhao et al. [13] present an extension of this approach to multi-player games
using partially instantiated fluents and actions in the dependency graph. Serial
games and compound move games are treated separately [12] and their detection
heavily rely on game description syntactic structures: rewriting some GDL rules
can prevent decomposition. For serial games, they use a separate specific detec-
tion: a predicate like game1over in Tictactoe Serial which is false in the legal
rules of the first subgame and true in the legal rules of the second one is used

82 A. Hufschmitt et al.

to split the game. Results are presented on the games Nim, Double CrissCross2
and several variants of Tictactoe (Double, Serial, Parallel).

In [7], we propose an approach which is more general but also off-line like the
aforementioned ones. It relies on weak heuristics to identify the effects of actions:
effects not explicitly described are ignored and can induce over-decomposition.
To solve the problem of the compound moves, we identify meta-actions sets
which represent a single effect of a compound move: a compound move with N
effects is part of N meta-action sets and actions with a single effect are meta-
action singletons. These meta-actions are sets of actions which have an identical
effect on a fluent of a particular subgame in the same conditions i.e. with the
same preconditions in the rules describing the next state and with at least one
fluent in common to precondition their legality. However this detection requires
the costly calculation of completely developed disjunctive normal form (DNFD)
of the game rules. The detection of serial games is limited to two subgames. To
separate them, this approach looks for expressions capable of partitioning the
legality of actions into two groups. The approach also detect useless subgames i.e.
with no influence on score, game termination and, in the case of serial subgames,
not allowing another usefull subgame to start. We consider actions of these
games as noop actions that can receive the same evaluation during the game
exploration. This decomposition is tested on 40 games: 7 games from trivial
(Tictactoe) to complex (Hex) and 33 compound games representative of the
different classes presented.

To limit the computation time, another version uses partially developed dis-
junctive normal form (DNF): auxiliary predicates are preserved as atoms and
are not completely developed. The decomposition using the DNF is quicker: for
some games, time decreases from one hour with DNFD to one second with DNF
(Fig. 8). However this version is less robust: depending on the rules formulation,
meta-action detection can fail as well as decomposition. Note that both versions
fail to correctly decompose Chomp and Blocker Parallel is not decomposed after
a one-hour timeout.

In this paper, we propose a more robust detection of action effects based
on statistical information collected during playouts. We use a circuit encoding
the game rules to perform fast simulations and collect information on the cor-
relation between fluent value changes and actions played. This circuit is also
used to infer preconditions relations using propagation and back-propagation
of different signals. We propose a concept of crosspoint which allows to detect
junctions between independent parts of a game played sequentially and allows
to decompose serial games with any number of subgames. Our approach does
not require the use of DNF. We tested our approach on significantly more games
than previous works (597 against 1,4 and 40).

3 Game, Subgame and Correct Decomposition

A game is described by a finite state machine the structure of which is a directed
acyclic graph. Let F be the set of the fluents. A state is a set s ⊂ F . A transition
is a couple (s, s′) ⊂ F 2.

Statistical GGP Game Decomposition 83

A decomposition is a tuple F1, ...Fn where
⋃n

i=1 Fi = F and ∀i, j, i �= j :
Fi ∩ Fj = ∅.

In a subgame i a state is a set si ⊂ Fi and a transition is a couple (si, s′
i) ⊂

F 2
i such that there exists a transition (s, s′) ⊂ F 2 in the global game where

si = s ∩ Fi and s′
i = s′ ∩ Fi.

Definition 1 (free choice of a transition). Given a state s = s1 ∪ s2 of
a global game where s1 is a state of the first subgame and s2 a state of the
second subgame, we can freely choose a transition (s1, s′

1) in the first subgame
and (s2, s′

2) in the second one, if, in the global game, there exists a transition
(s1 ∪ s2, s

′
1 ∪ s′

2) or a sequence of transitions (s1 ∪ s2, s
′
1 ∪ s2) followed by (s′

1 ∪
s2, s

′
1 ∪ s′

2).

Definition 2 (compatible decomposition). The decomposition of a game in
two subgames is compatible with the global game if in any subgame it is possible
to choose freely a transition from a state to a distinct one.

The extension of Definitions 1 and 2 to more than two subgames is straight-
forward.

Definition 3 (correct decomposition). A decomposition is correct if it is
compatible with the global game and there exists independent victory conditions
(evaluation function) in the subgames such that winning every subgames implies
winning the global game.

In the example given in Fig. 1, each lamp can be placed in a separate sub-
game: a transition can be freely chosen to switch on one of the lamps and inde-
pendent evaluation functions are identifiable because each lamp involved in the
calculation of the score provides a portion of the points.

In games with a binary score (win or loose), like Nonogram, evaluation func-
tions can nevertheless be identified as the condition of victory is composed of
distinct subgoals.

Given the aforementioned definitions, we however consider that a game like
Nine Board Tictactoe is not decomposable. In this game consisting of 9 Tictactoe
board arranged in 3 rows by 3 columns, each mark of a player in the cell of index i
of a given board determines the following board i where the opponent will have to
replicate, the aim being to align 3 marks in one of the board. Transitions depend
on previous moves and can not be chosen freely if each board is a subgame. A
game like Blocker is also non-decomposable. In this game, played on a 4 × 4
board, Crosser must put his mark in the cells to build a bridge across the board
while Blocker tries to block the road with its own marks. Even though it is
possible to freely choose the transitions in the 16 subgames consisting of only
one cell of the global game, there do not exist independent victory conditions
allowing to evaluate the score in one cell subgames. A single marked cell can be
part of a winning state as well as a loosing one.

84 A. Hufschmitt et al.

4 Method

To identify the different subgames we create a dependency graph; nodes are
meta-action sets (see Definition 8 and Sect. 4.4) and completely instantiated flu-
ents; edges represent effect or precondition relationships between them. We com-
pute edge weights to allow the identification of lightly connected parts of the
graph (Sect. 4.7). Construction of this graph is detailed in Sect. 4.6. The identi-
fied connected components represent the subgames.

For the analysis of relations between fluents and actions, we use the following
definitions:

Definition 4 (premises). Let F be the set of all the instantiated fluents and
f ∈ F a given positive or negative fluent. Let R be the set of all roles r. Let A
be the set of all instantiated players actions a = (does r o). Let h be the head
of a variable free GDL rule. g ∈ F ∪ A is a premise of h if:

– g is in the body of this rule, or
– g is in the body of a variable free GDL rule of head i and i is a premise of h.

g is an non-conflicting precondition of h if no conflict exists between g and
another premise of h i.e. if h is satisfiable when g is true.

g is an exclusive precondition of h if g ⇒ h i.e. if h is true when g is true
whatever the value of the other premises of h.

As action effects are not explicitly described in GDL rules, we define an effect
as a phenomenon the cause of which is not known a priori and observed during
a transition:

Definition 5 A positive effect f+ (resp. negative effect f−) is the value
change of a fluent f from false (resp. true) in a state, to true (resp. false) in the
next state. Let f∗ represents a given effect (positive or negative) on f ∈ F .

Some effects always happen simultaneously with other effects; we distinguish
between two sorts of co-occurring effects:

Definition 6 (Globally co-occurring effects (GCE)). GCE(f∗), the set of
globally co-occurring effects of f∗ consists of effects that always occur together
with f∗ regardless the actions that caused this effect on f . Let |GCE(f∗)| be the
number of times this co-occurrence is observed during the playouts.

Definition 7 (Action co-occurring effects (ACE)). ACE(a, f∗), the set of
co-occurring effects of f∗ for an action a, consists of effects occurring always
together with f∗ when the action a is played. Let |ACE(a, f∗))| be the number
of times this co-occurrence is observed during the playouts.

A meta-action is a set M of actions responsible for the same effects f∗ in the
same circumstances. These circumstances correspond to fluents necessary for the
actions legality, i.e. the premises of the legal rule for each a ∈ M , but also to
the premises used in conjunction with theses actions a ∈ M in the body of the

Statistical GGP Game Decomposition 85

rules of head (next f). These rules indicate whether the conditions are met for
the action to have an effect. Identifying the actions occurring with the same set
of preconditions in the different clauses of a rule of head (next f) requires the
calculation of the disjunctive normal form of this rule. However, by a comparison
of all sets of actions occurring with each precondition taken separately, it is also
possible to identify these actions.

Actions with no effect on f∗ but used in conjunction with the same fluent g
in the premises of (next f), correspond to a set A′ = A − (M ∪ I) with A given
at the Definition 4, M a meta-action set with an implicit effect f∗ and I a set
of illegal actions under the same conditions. These illegal actions may belong to
another subgame than f : in this case, the meta-action sets that have an effect
on the fluents of the other subgame are included in I. The comparison of actions
sets with a same effect, with actions sets with a same precondition in a next
rule, and with actions sets with a same precondition in their legal rule, allows
to identify meta-action sets even if the effects are not explicitly described in the
GDL rules.

We therefore propose the following definition of meta-action sets which does
not require rule DNF:

Definition 8 A meta-action set M(r, E ,N ,L) is a set of actions of role r such
that all the following conditions are verified:

– E �= ∅ and for each f∗ ∈ E, f∗ is an effect of each a ∈ M(r, E ,N ,L).
– for each fluent g ∈ N and for each action a ∈ M(r, E ,N ,L), g is used in

conjunction with a in the premises of (next f) with f∗ ∈ E, and a is not an
exclusive precondition of (next f).

– for each fluent h ∈ L and for each action (does r o) ∈ M(r, E ,N ,L), h is a
non-conflicting precondition of (legal r o). L = ∅ if (legal r o) is always
true for each action (does r o) ∈ M(r, E ,N ,L).

– there does not exist A′ � M(r, E ,N ,L) such that for each a′ ∈ A′, a fluent
g′ is used in conjunction with a′ in the premises of (next f ′), a′ is not an
exclusive precondition of (next f ′) and a′ has no effect on f ′.

To decompose serial games, we are looking for a state or group of states
that are necessarily visited during the game. No action sequence allows to reach
the rest of the game without going through one of these states. They can be
characterized by the presence of a crosspoint : one specific fluent or a conjunction
of fluents. For example, in Blocker Serial composed of two games of Blocker
played one after the other, the fluent game1overlock signals the end of the first
subgame and conditions the legality of the actions of the second subgame. In
Asteroids Serial, composed of two games of Asteroids, the first subgame ends
when the spaceship stops, which is represented by the conjunction of fluents
(north-speed1 0) ∧ (east-speed1 0) indicating a zero speed on the 2 cardinal
axes. These crosspoint can be identified from a causal graph representing the
causal relationships between actions and fluents. Each fluent inside a crosspoint
is a crosspoint component :

86 A. Hufschmitt et al.

Definition 9 Let G be a causal graph i.e. a directed graph representing the
causal relationships between the actions and the fluents (positive or negative) of
a game. Given C(G) the transitive closure of G, a fluent node x is a crosspoint
component if in C(G):

– there exists at least one edge to the node x, and
– there exists at least one edge from x to an action node, and
– x is not in the initial state of the game.

Let a crosspoint X be a set of at least one crosspoint component.

4.1 Simulation Based Detection of Action Effects

Our approach uses a statistical estimation of the number of action effects dur-
ing random playouts. Thus our playouts are gathering information to build the
decomposition. At each step of the game, each player indicates its move; the set
of all of these actions constitutes a joint move. In an alternate move game, only
one player has the choice between multiple legal moves while the other player
actions have no effect (often named noop). For each transition in a playout, the
joint move is associated with state changes. After a given number of simula-
tions, for each action a that occurs in |J(a)| distinct joint moves, we estimate
the probability P(a, f+) that a positive effect on fluent f follows action a:

P(a, f+) = (
∑

0<i<|J(a)|
E(J(a)i, f+)

O(J(a)i)
)/|J(a)|

with J(a) the set of joint moves containing action a, O(J(a)i) the number of
occurrences of a given joint move of this set during playouts and E(J(a)i, f+) the
number of times a positive effect on f has been implied by this joint move. The
probability that a negative effect f− follows the action a, is defined similarly.

P indicates the probability to observe a change when an action is played.
However the change of some fluents like step or control does not depend on
actions and some actions like noop have no effect on any fluents. The formulation
of the rules does not always make it possible to detect them. For example, the
presence of a noop action in the premises of the rules describing the next state
of a control or step fluent can prevent detection.

4.2 Filtering Action Effects

A positive value of P(a, f∗) does not indicate if there is an effect of a on f or a
simple correlation. A second step in identifying action effects is therefore needed
to check each potential effect suggested by a positive value of P(a, f∗) to filter
effects and eliminate correlations.

We first detect alternate moves: our purpose is to detect noop actions with
no effects and action-independent control fluent. A n-player game is a sequential
game when for each state n − 1 players have only one legal action which is
therefore considered as noop. The fluent that most frequently change when a

Statistical GGP Game Decomposition 87

noop action is played is the corresponding control fluent, which allows to detect
it. If the only actions present in the premise of some fluents are noop actions
then these fluents are considered action-independent.

For each action a, we then check each potential positive or negative effect
given by the probability P(a, f∗) to confirm or deny the link between a and f∗.
By observing the rules of the game, it is possible to decide if a rule describes an
explicit action effect or if it implies a possible effect. If no such rule is present in
the GDL description of the game, we can assume that the action cannot have a
positive effect on the fluent: we then set the probability to zero.

For example, an explicit positive effect of an action (does r o) on the fluent
f is described by a GDL rule like (<= (next f) (does r o) (not (true f)))
where f changes from false in the premises to true when action (does r o) is
chosen. A rule like (<= (next f) (not (does r x)) (not (true f))) can suggest
that action (does r o) has an implicit positive effect. Rules like (<= (next f)
(does r o)) or (<= (next f) (not (does r x))) which both do not indicate if
the fluent f is supposed to be true or not in the current state, can also implies a
positive effect of (does r o). Similarly, the absence of certain rule patterns can
be checked to eliminate negative effects.

By examining the co-occurring effects, we can also filter effects which cannot
be the result of some actions. We reconsider the different co-occurring effects
of each eliminated effect to detect erroneously assigned ones until no more is
filtered. An action a cannot be the cause of an effect f∗ if P(a, g∗) = 0 with
g∗ ∈ GCE(f∗). On the contrary, the effect f∗ of a is confirmed if there exists
a g∗ with P(a, g∗) > 0 and either g∗ ∈ GCE(f∗) with |GCE(f∗)| > Ψ or g∗ ∈
ACE(a, f∗) with |ACE(a, f∗)| > Θ, where Ψ and Θ are thresholds necessary to
only consider true co-occurring effects (sufficiently tested during playouts) and
eliminate false positives. If an effect f∗ can be confirmed for some actions a but
not for the other actions, we consider that other actions are not the cause of this
effect.

For multi-player games we also compare the probabilities of the effect
attributed to the different actions of a joint move. If an action a of a joint
move has a probability Φ times greater than another action b to be followed by
the effect f∗ then the cause of the effect is a and we update P(b, f∗) to a zero
value. If the same change occurs for any transition from initial state and never
in any other transition, it is considered independent of actions. When no more
effect can be eliminated, if no action is the cause of a fluent change, this fluent
is flagged as action-independent.

4.3 Action Independent Fluents

We use the circuit, to identify the preconditions of action independent fluents.
We back-propagate 4 possible states (undefined, true, false or both) from each
(next f) output where f is an action-independent fluent to flag its different
premises. Then, for each activated positive or negative fluent input, we check if
the fluent can change f from false to true (in this case, it is really a precondition,

88 A. Hufschmitt et al.

not a conflicting one) or if it can force f to remain true: then the inverse value
of the fluent has a negative effect on f .

4.4 Compound Moves and Meta-action Sets

To identify the meta-action sets according to Definition 8, we use the previous
detection of action effects and consider that P(a, f∗) > 0 denotes an effect of
a on f . We detect action preconditions in legal and next rules using the logic
circuit built from the rules.

(cell1 z)

(cell2 z)

(does r aa)

(does r ab)

(does r ba)

(does r bb)

(does r aa)

(does r ba)

(does r ab)

(does r bb)

(cell1 a)

(cell2 a)

(cell1 b)

(cell2 b)preconditions

effects

(a) Identification of action groups with a same precondition and responsible of a same
effect.

(cell1 z)

(cell1 z)

(cell2 z)

(cell2 z)

(does r aa)

(does r ab)

(does r ba)

(does r bb)

(does r aa)

(does r ba)

(does r ab)

(does r bb)

(cell1 a)

(cell1 b)

(cell2 a)

(cell2 b)

meta-action1

meta-action2

meta-action3

meta-action4

(b) Separation of meta-actions

Fig. 2. Graphic representation of meta-actions identification. Fluents with cell1 pred-
icate belong to the first subgame, those with predicate cell2 belong to the second one.
The identification of meta-actions allows to remove the links between fluents of both
subgames.

To find each fluent h that is a premise of a legal rule of head (legal r o),
we set the output (legal r o) to true and back-propagate the signal into the

Statistical GGP Game Decomposition 89

circuit with four possible states in the same way as in Sect. 4.3. We then check
that each of these fluents actually allows the action to be legal using a three state
propagation in the circuit i.e. it is a non-conflicting precondition (Definition 4).

To find each fluent g used in conjunction with an action a in the premises of
(next f), we set the input (does r o) to true and propagate the signal through
the circuit without taking care of the logic gates to label each gate depending
on this action including some next outputs. Then we back-propagate the signal
from the (next f) output using different flags to specifically label the gates
representing a conjunction between the action and another input (according De
Morgan law it can be an or gate inside a negation) and mark the fluent inputs
used in these conjunctions.

Then we compare the different action sets with a same effect, with a same
precondition in a next rule or with a same precondition in their legal rule and
recursively split each set until we find the meta-action sets (Fig. 2).

4.5 Serial Games and crosspoints Identification

To identify the crosspoints from the crosspoint components set as defined in Def-
inition 9, we build a causal graph G where nodes are actions, positive or negative
fluents. As the logical relations between nodes are represented by directed edges,
we add an edge y → z in G if:

(not game1overLock)

(cell1 * * b) (not (cell1 * * b))

(does px (m1 * *))

(does po (m1 * *))

(cell1 * * x)

(cell1 * * o)

(cell2 * * b)

game1overLock (does po (m2 * *))

(does px (m2 * *))

(cell2 * * x)

(cell2 * * o)

Fig. 3. Extremely simplified causal graph for the game Tictactoe Serial. m1, m2, po
and px stand respectively for mark1, mark2, playero and playerx. A set of terms with
variable arguments is represented using wildcards *. Some links are omitted to clarify
the graph. Game1overLock is identified as a crosspoint.

(1) y is an action and z is the result of an effect of y;
(2) y is a fluent (maybe action-independent) premise of (legal r p) with z =

(does r p);
(3) y is a fluent, z is an action and y ∧ z are premises of (next f) where f∗ is

an effect of z;
(4) y is a premise of (next z) where z is an action-independent fluent.

90 A. Hufschmitt et al.

A single crosspoint component x is a crosspoint if there do not exist two edges
x → y and y → x in C(G). For example, Fig. 3 shows a very simplified ver-
sion of the causal graph obtained for the game Tictactoe Serial. The fluent
game1overLock marks a clear boundary between two distinct parts of the game
and is a crosspoint.

Given Xc the set of identified crosspoint components, a set Xi ⊂ Xc is a
crosspoint candidate in C(G), if there exists a set of nodes Q such that, forall
x ∈ Xi and forall q ∈ Q, there exists an edge x → q. For each Xi which is a
crosspoint candidate, we add a node oi in G. Then we use the circuit to identify
the logical relations between each node oi and other nodes. In G, we add an edge
y → oi for each edge y → x with x ∈ Xi and we add an edge oi → y if:

(1) an action y = (does r p) is legal when all x ∈ Xi are true and there exist
x ∈ Xi where x is a premise of (legal r p);

(2) (next f) is possibly true when all x ∈ Xi are true and there exist x ∧ y
premises of (next f) where f∗ is an effect of the action y;

(3) y is an action independent fluent and y∗ is entailed when all x ∈ Xi are
true.

Xi is a crosspoint if there do not exist two edges oi → y and y → oi in C(G).
A crosspoint is discarded if it has another crosspoint or a fluent of the initial

state has a unique precondition or if it includes another crosspoint.

4.6 Building the Dependency Graph

We use all previously collected information to build the dependency graph nec-
essary to identify subgames. We add a node for each identified meta-action M
and for each fluent f8.

We add an edge between each meta-action M(r, E ,N ,L) and fluent f if:

(1) f ∈ L\C where C is the set of the detected control fluents (to avoid linking
them with actions from different subgames);

(2) f ∈ N\C ′ where C ′ is the set of the detected control fluents or, failing that,
the set of all action-independent fluents;

(3) f∗ ∈ E .

Edges (1) and (2) receive a weight of 1. The weight W of edges (3)
is the mean of the action effect probabilities: W =

∑
0<i<N

P(ai,f
∗)

N with
ai ∈ M(r, E ,N ,L).

We also add an edge for each precondition of an action-independent fluent. To
separate the serial subgames, we remove the links between each fluent present in
a crosspoint and the fluents or actions that are preconditioned by this crosspoint.

Some actions may not have been tested and some fluents change may have
never been observed during playouts. These actions and fluents are considered
to belong to all subgames until additional playouts provide more information.
8 Positive fluent (true f) and negative fluent (not (true f)) are represented by the

same node in the dependency graph.

Statistical GGP Game Decomposition 91

4.7 Subgoals to Fix Under- or Over-Decomposition

In some games, there does not exist a relationship between some internal struc-
tures outside of the game goals. It is the case for cells in Tictactoe, columns in
Connect Four9 or colored regions in Rainbow10. Conversely, in a game like Lights
On Parallel11, we would like to separate the four groups of lamps as lighting one
of them is sufficient to achieve victory. But, as each action of lighting a lamp has
a negative collateral effect on all other lamps (they gradually go dark), a logical
link exists in our dependency graph that connects subgames.

To solve these two problems, we collect subgoals using the circuit. The logic
gates of the goal sub-circuit are sorted such that if the output of a gate is used
as an input of another one it is examined first.

Each logic gate p of the sub-circuit is activated independently of the others
with a value o ∈ {true, false} and, using a three state logic to broadcast the sig-
nal, the state of the goal outputs is examined. If an output with the maximum
score for one of the players is activated, then the value o of the gate p represent
a victory condition. Otherwise, if a non-zero score can nevertheless be obtained
(the score 0 is false, a score greater than 0 is true or the value ¬o makes the
maximum score impossible to achieve), then the value o of the gate p represents
a subgoal. Each gate, the output value of which depends on a previously detected
subgoal, is removed from the subgoal search: this allows to collect only the min-
imal conditions necessary to obtain a non zero score. We proceed similarly for
victory conditions.

If several action-dependent subgames are detected, i.e. if the dependency
graph presents several subgraphs containing action nodes, we check if the game is
not over-decomposed. We verify that each detected subgoal or victory condition
does not depends on fluents which are in different subgames. If this happens, the
subgames are combined into one. It also allows us to verify that a subgame, if its
fluents are involved in the calculation of the score, makes it possible to obtain
at least a portion of the points.

If only one action dependent subgame is detected, it can group several sub-
games each allowing to obtain a maximum score but joined by collateral effects
of the actions. To check if such subgames exist, we remove all effects links the
weight of which is less than the threshold Ω from our dependency graph and then
the victory conditions are used as before to join the parts of the game forming
subgames guaranteeing the victory.

9 In Connect Four players drop colored tokens from the top into a seven-column,
six-row vertically suspended grid. The goal is to align 4 tokens.

10 Rainbow is a puzzle that consists in coloring a map such that no adjacent regions
have the same color.

11 Four game of LightsOn are played in parallel by a single player who chooses in which
subgame he wishes to act on each turn. The player gets 100 points if he wins any of
the 4 subgames.

92 A. Hufschmitt et al.

5 Experiments

There is no expert data specifying what the expected decomposition is for each of
the game descriptions in the repositories. According to the definitions in Sect. 3,
we have therefore established for 597 games found in the Base, Stanford and
Dresden repositories of http://games.ggp.org/12, the expected number of action-
dependent and action-independent subgames with the number of useless ones13.
But as it is possible to separate a game into N parts in different ways, in each
of our experiments, we manually checked each decomposition with more than 1
subgame to ensure that it agrees with Definitions 1, 2 and 314.

The experiments are performed on one core of an Intel Core i7 2.7 GHz with
8Go of 1.6 GHz DDR3. The value for the ratio and thresholds are empirically set
to the following values: Ψ = 3, Θ = 5, Φ = 1.5 and Ω = 0.1. These parameters
are not sensitive to slight variations. For example, the value of Ψ leads to ignoring
co-occurring effects during the first Ψ observations: the value of Ψ must be high
enough to rule out coincidences but paranoid value will just require a larger
number of playouts to achieve the same result.

For each game, we measure the time necessary to build the circuit, execute 5k
playouts and process the decomposition. Figure 4 shows that 70% of the games
can be decomposed in less than 1 min, a time compatible with GGP competitions
setup. Most of the time is used for the creation of the circuit. For example, once
the circuit is created, 35 s are sufficient to collect initial information, execute 5k
playouts and decompose Blocker Parallel that was not decomposed by previous
works. 40 games are not decomposed before the 1 h timeout, among them 32 are
decomposable (Fig. 6).

5 kp <1s <10s <30s <1min <3min <10min <30min <1h

total 72 307 391 434 491 527 540 557

Fig. 4. Number of games for which the stage of the decomposition is reached in the
given time (for 5k playouts).

The decomposition time and the grounding time are not correlated i.e. a
game description producing a lot of grounded rules do not take necessarily more
time to decompose. However, if the game tree is more complex, all actions and
their effects may not be tested during the 5k playouts used to collect information
therefore the decomposition is less reliable.

The decomposition process can be reiterated when more simulations have
been performed. In Fig. 5, we evaluate the number of correct decompositions
12 We excluded GDL-II descriptions using the sees predicate.
13 These data are available upon request to the main author.
14 Note that an expert-like decomposition may not equal a correct decomposition. For

example, a human expert would like to decompose Nine Board Tictactoe. However
such a decomposed game would be difficult to solve.

http://games.ggp.org/

Statistical GGP Game Decomposition 93

obtained after each group of 1k playouts. We find that 1k playouts are enough
to properly decompose 87% of the games. The only under-decomposed game after
10k playouts (Fig. 6) is Simultaneous Win 2 for which no subgoal (evaluation
function) could be identified for the subgames.

1kp 2kp 3kp 4-6kp 7kp 8kp 9-10kp

under-decomp. 9 5 4 2 2 2 1

decomposed 521 525 527 529 530 532 533

over-decomp. 26 26 25 25 24 22 22

Fig. 5. Number of games correctly decomposed after 1k to 10k playouts.

result after 10kp compound single

under-decomposed 1 -
decomposed 349 182

over-decomposed 20 5
timeout (1h) 32 8

total 402 195

Fig. 6. Number of games correctly decomposed or not after 10k playouts among com-
pound games or single games.

The result of the decomposition after 10k playouts is presented for compound
and single games separately (Fig. 6). The over-decomposition is, in a majority
of cases, due to the lack of information; more playouts would allow a proper
decomposition. For example, in Snake or Tron, a part of the game board is not
explored during playouts and constitutes a separate subgame.

Other cases of over-decomposition are observed for games that consist in
surviving for a number of steps (Queens, Max-Knights15): a wrong move ends the
game and the score depends on the current step. In this case, the role of the main
game is poorly detected: only the stepper is considered usefull. In some games
with simultaneous moves like Point Grab16 or Smallest17, each player is placed
in a separate subgame: the identified subgoals do not link the actions of both
players. Some games are more problematic: in Roshambo18 or Beat Mania19, an
15 The goal of Queens or Max-Knights is to place a given number of queens or knights

on a chessboard so that no chessman threatens another.
16 Point Grab is played in 30 steps. At each step, 2 players have the choice between

different useless actions or grab a point a or a point b. If both player choose the
same point, nobody wins.

17 Smallest is a game played in a maximum of 25 steps. At each step, four player choose
simultaneously a number. The player with the strictly smallest one wins 5 points.

18 Roshambo consists of 10 rounds of rock/paper/scissors/well.
19 Beat Mania is a 2 player game. The first player loose blocks from 3 different positions

and the other must catch them. Each missed or caught block earns points to the
corresponding player.

94 A. Hufschmitt et al.

effect of actions is to increment a counter composed of several fluents. The effect
on each separate fluent is not significant and action effects are not correctly
detected. A concept of meta-effect on a set of fluents would be necessary to
handle such games.

All the decomposable games for which the decomposition could not be
obtained in less than an hour, consist of a stepper associated with an action-
dependent subgame. The time required to create the circuit leaves almost no
time for decomposition. For these games, an ad-hoc detection of a stepper could
allow to obtain a decomposition more rapidly.

Interesting decompositions are obtained for games of Nonogram (5 × 5 and
10×10) the status of several cells can be decided independently of the others and
fluents and actions related to these cells are isolated in independent subgames
(Fig. 7). The remaining part of the board is decomposed in several subgames if
the mark to be placed in cells does not depend on the rest of the game. These
decompositions would allow to solve the game much more rapidly.

3

1

1

1

1

1

1

1

1 2

3

1

1 3

1 1

3

0

0

0

0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

8

9

10

11

1213

Fig. 7. Graphic representation of the decomposition obtained for the game Nonogram
5 × 5. The number in each cell represents the subgame to which it belongs.

We have compared the result of our decomposition with previous works
[6,7,13]: we obtain a correct decomposition for all the game tested in the afore-
mentioned papers20. No measure of decomposition time is indicated by Günther
et al. [6] and Zhao et al. [13]. Figure 8 parallels the results obtained in [7] with the
results obtained for the statistical approach presented in this article; it should
be noted that the DNF approach, although faster than the DNFD, is much
less reliable and heuristics used to detect causal links with both approaches are
very weak. Unlike this previous approach, we obtain a correct decomposition for
Chomp and Blocker Parallel within less than 1 h.

20 We do not test Double Crisscross 2 which is not available in repositories.

Statistical GGP Game Decomposition 95

Jeu DNFD DNF stats

Blocker Parallel >1hr >1hr ≈48min

Asteroids <1sec <1sec <2sec

EightPuzzle <2sec <2sec ≈3sec

Checkers >1hr <12min ≈28min

Breakthrough <16min <16min ≈14sec

Sheep and wolf >1hr <5sec ≈6sec

Tictactoe ≈1sec <1sec <1sec

Nineboardtictactoe >1hr <2sec <17sec

Tictactoex9 >1hr <5sec ≈11sec

Chomp <1sec <1sec <2sec

Multiplehamilton <1sec <1sec <2sec

Multipletictactoe <10sec <1sec ≈1sec

Blockerserial <20min <10min ≈3sec

Dualrainbow ≈1min <8sec ≈6sec

Asteroidsparallel <1sec <1sec ≈2sec

Dualhamilton <1sec <1sec <2sec

Dualhunter <2sec <2sec <3sec

Asteroidsserial <1sec <1sec <4sec

LightsOnParallel <8min <1sec <1sec

LightsOnSimul4 <8min <1sec ≈3sec

LightsOnSimultaneous <8min <1sec ≈3sec

Nim3 <2sec <2sec <2sec

Chinook <14sec <14sec ≈21sec

Double tictactoe dengji >1hr <1sec <1sec

SnakeParallel >1hr <2sec <7sec

TicTacToeParallel >1hr ≈2sec <2sec

Doubletictactoe >1hr <1sec <1sec

TicTacHeaven >1hr <2sec ≈17sec

TicTacToeSerial >1hr <1sec <1sec

ConnectFourSimultaneous >1hr <1sec <2sec

DualConnect4 >1hr <1sec <2sec

Jointconnectfour >1hr <1sec <2sec

Fig. 8. Comparison of results from [7] (DNFD, DNF) with those obtained with our
statistical approach (stats) for 32 games among the 40 they tested. Results of the 3
approaches are identical for the 8 remaining games.

6 Conclusion and Future Work

We presented a simulation based game decomposition approach we tested on a
large set of games. This approach provides a solution to the problem of identify-
ing the effects of actions. The analysis of information collected during playouts
allows to identify the explicit and implicit actions effects. It also allows to detect
alternate moves or steppers when the rule formulation tries to hide them. We
proposed an approach for the decomposition of serial games based on the identi-
fication of some crosspoints inside the game. We show also that it is possible to

96 A. Hufschmitt et al.

identify meta-actions without resorting to the disjunctive normal form of rules,
which is very costly to compute. We can then decompose a game like Break-
through which was not decomposed in less than 1 h in previous works.

We tested our approach on 597 games from http://games.ggp.org/. Our
results demonstrate that it is possible to transform the GDL rules into a logic
circuit, execute 5k playouts and process the decomposition in less than 1 min
for 70% of the games. We also show that 1k playouts are sufficient to obtain a
correct decomposition for 87% of the games.

Decompositions presented here are computed from the initial state of the
game. As a decomposition can be enhanced when more information is available
(more playouts are done), it is possible to detect fluents the value of which
changes once and for all in each new state, to use this information to remove
some links in the dependency graph and to discover new decompositions while
playing.

We have seen that some games present specific difficulties: games where
action effects on each fluent is not significant like in Roshambo or Beat Mania
or in which the goal is to survive N steps like in Queens or Max-Knights.
Our decomposition approach cannot handle games with fluents or actions
shared between several subgames like Tic-Block or Factoring-Mutually-Assured-
Destruction. We will investigate in the future how to handle these games without
significantly increasing computational cost for all games.

Approaches that synthesize subgame solutions to better solve a global game
are restricted to certain types of games that can easily be decomposed in an
ad-hoc way (puzzles or 2-player synchronous parallel games). As our approach
allows to obtain a decomposition sufficiently robust on a wide range of games in
a time compatible with the General Game Playing competition setup, our first
objective is to develop a player using the result of this decomposition to increase
its strength.

References

1. Berlekamp, E., Conway, J., Guy, R.: Winning Ways for your Mathematical Plays,
vol. 2. Academic, Cambridge (1982)

2. Blum, A., Furst, M.L.: Fast planning through planning graph analysis. Artif. Intell.
90(1–2), 281–300 (1997)

3. Cerexhe, T., Rajaratnam, D., Saffidine, A., Thielscher, M.: A systematic solution
to the (de-)composition problem in general game playing. In: Proceedings of ECAI,
pp. 1–6 (2014). http://cse.unsw.edu.au/∼mit/Papers/ECAI14.pdf

4. Genesereth, M.R., Love, N., Pell, B.: General game playing: overview of the
AAAI competition. AI Mag. 26(2), 62–72 (2005). http://aaaipress.org/ojs/index.
php/aimagazine/article/download/1813/1711

5. Günther, M.: Decomposition of single player games. Master’s thesis, TU-Dresden
(2007). http://www.inf.tu-dresden.de/content/institutes/ki/cl/study/assignments/
download/beleg guenther subgame detection.pdf

6. Günther, M., Schiffel, S., Thielscher, M.: Factoring general games. In: Proceed-
ings of the IJCAI-09 Workshop on General Game Playing (GIGA 2009), pp. 27–
33 (2009). http://www.general-game-playing.de/downloads/GIGA09 factoring
general games.pdf

http://games.ggp.org/
http://cse.unsw.edu.au/~mit/Papers/ECAI14.pdf
http://aaaipress.org/ojs/index.php/aimagazine/article/download/1813/1711
http://aaaipress.org/ojs/index.php/aimagazine/article/download/1813/1711
http://www.inf.tu-dresden.de/content/institutes/ki/cl/study/assignments/download/beleg_guenther_subgame_detection.pdf
http://www.inf.tu-dresden.de/content/institutes/ki/cl/study/assignments/download/beleg_guenther_subgame_detection.pdf
http://www.general-game-playing.de/downloads/GIGA09_factoring_general_games.pdf
http://www.general-game-playing.de/downloads/GIGA09_factoring_general_games.pdf

Statistical GGP Game Decomposition 97

7. Hufschmitt, A., Vittaut, J.-N., Méhat, J.: A general approach of game descrip-
tion decomposition for general game playing. In: Cazenave, T., Winands, M.H.M.,
Edelkamp, S., Schiffel, S., Thielscher, M., Togelius, J. (eds.) CGW/GIGA -2016.
CCIS, vol. 705, pp. 165–177. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-57969-6 12. http://giga16.ru.is/giga16-paper3.pdf

8. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game play-
ing: game description language specification. Technical report LG-2006-01, Stan-
ford University (2008)

9. Schkufza, E., Love, N., Genesereth, M.: Propositional automata and cell automata:
representational frameworks for discrete dynamic systems. In: Wobcke, W., Zhang,
M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 56–66. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89378-3 6

10. Vittaut, J.N.: LeJoueur: un programme de General Game Playing pour les jeux à
information incomplète et/ou imparfaite. Ph.D. thesis, Université Paris 8 (2017)

11. Vittaut, J.N., Méhat, J.: Fast instantiation of GGP game descriptions using prolog
with tabling. In: Proceedings of ECAI, pp. 1121–1122 (2014)

12. Zhao, D.: Decomposition of multi-player games. Master’s thesis, TU-
Dresden (2009). http://www.inf.tu-dresden.de/content/institutes/ki/cl/study/
assignments/download/dengji zhao master thesis.pdf

13. Zhao, D., Schiffel, S., Thielscher, M.: Decomposition of multi-player games.
In: Nicholson, A., Li, X. (eds.) AI 2009. LNCS (LNAI), vol. 5866, pp. 475–
484. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10439-8 48.
http://cgi.cse.unsw.edu.au/∼mit/Papers/AI09b.pdf

https://doi.org/10.1007/978-3-319-57969-6_12
https://doi.org/10.1007/978-3-319-57969-6_12
http://giga16.ru.is/giga16-paper3.pdf
https://doi.org/10.1007/978-3-540-89378-3_6
http://www.inf.tu-dresden.de/content/institutes/ki/cl/study/assignments/download/dengji_zhao_master_thesis.pdf
http://www.inf.tu-dresden.de/content/institutes/ki/cl/study/assignments/download/dengji_zhao_master_thesis.pdf
https://doi.org/10.1007/978-3-642-10439-8_48
http://cgi.cse.unsw.edu.au/~mit/Papers/AI09b.pdf

Iterative Tree Search in General Game
Playing with Incomplete Information

Armin Chitizadeh(B) and Michael Thielscher

UNSW Sydney, Kensington, NSW 2052, Australia
{a.chitizadeh,mit}@unsw.edu.au

Abstract. General Game Playing (GGP) is concerned with the develop-
ment of programs capable of effectively playing a game by just receiving
its rules and without human intervention. The standard game represen-
tation language GDL has recently been extended so as to include games
with incomplete information. The so-called Lifted HyperPlay technique,
which is based on model sampling, provides a state-of-the-art solution to
general game playing with incomplete information. However, this method
is known not to model opponents properly, with the effect that it gener-
ates only pure strategies and is short-sighted when valuing information.
In this paper, we overcome these limitations by adapting the classic idea
of fictitious play to introduce an Iterative Tree Search algorithm for
incomplete-information GGP. We demonstrate both theoretically and
experimentally that our algorithm provides an improvement over exist-
ing solutions on several classes of games that have been discussed in the
literature.

Keywords: General game playing with incomplete information ·
Learning · Valuing information · Fictitious play

1 Introduction

Designing a player for games with incomplete information1 has been studied in
different areas. Vector minimax is a well-known and relatively general technique,
which has been shown to solve the so-called strategy-fusion problem [6]. A lim-
itation of the vector minimax technique is to rely on a specific game structure:
It is limited to games in which all the moves can be seen except the first ones
by the random player, e.g. where cards are being shuffled [4]. Another relatively
general technique for playing incomplete-information games is Information Set
Monte Carlo Tree Search (ISMCTS) [2]. This technique generalizes the well-
known Monte Carlo tree search to incomplete-information games. Thanks to the
1 In game theory the term imperfect information is used to refer to the class of games

in which players lack full information about the state of the game. On the other
hand, in AI it is more common to use the expression incomplete information for
problems in which agents lack full information. It has become customary in GGP to
follow the standard AI terminology.

c© Springer Nature Switzerland AG 2019
T. Cazenave et al. (Eds.): CGW 2018, CCIS 1017, pp. 98–115, 2019.
https://doi.org/10.1007/978-3-030-24337-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24337-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-24337-1_5

Iterative Tree Search in General Game Playing with Incomplete Information 99

use of Monte Carlo simulations, this technique performs well for large games. One
of its limitation is given by the assumption that all states in an information set
are equally likely. Due to this limitation, ISMCTS fails to properly model oppo-
nents or to play games with non-uniform probability distributions over possible
states such as the famous Monty Hall problem [9]. Counterfactual Regret Min-
imization (CFR) [23] was introduced to solve the imperfect-information game
of poker. This technique performs well thanks to poker specific optimisations
[12]. However, its general implementation failed to perform equally well in other
games with incomplete information. One of the reasons is the high computa-
tional complexity of O(I2N), where I is the number of information sets and
N the total number of states in the game [13]. All of the previously mentioned
techniques perform well in some games, but it is believed that their success relies
heavily on game-specific expertise of their developers and tailored algorithms.

More recently, AlphaZero [20] was able to learn the game of chess from scratch
and through self-play to a point where it was able to beat Stockfish [16], the
hitherto best chess engine. AlphaZero uses a relatively general approach com-
pared to its predecessor AlphaGo [20]. However, AlphaZero is only applicable to
complete-information two-player board games [20].

General Game Playing is concerned with the development of an AI capable
of playing any arbitrary finite game effectively by just receiving the rules of
the game without any human intervention. GGP programs receive the game
rules in the form of the general Game Description Language (GDL), which
has a Prolog-like syntax [14]. The first version of GDL was designed to only
model deterministic games with full observability. Later, the extension GDL-II
was developed for general game playing with incomplete information [21]. This
extended general specification language allows to describe any finite game with
incomplete information and randomness, for example, Poker or Backgammon, to
a general game-playing system; however, designing such a system has remained
a challenge.

The first successful players for GGP-II approached the problem by ground-
ing all unknown variables and generating a set of sampled complete-information
game states. They then searched each state sample and averaged the reward
for moves over each of them in order to find the optimal move [3,17]. How-
ever, searching on a set of sampled complete-information states for a game with
incomplete information has its limitations, as pointed out in a recent paper
on a technique called lifted HyperPlay [18]. Specifically, when searching sepa-
rate complete-information samples, no extra value be put on moves that provide
additional information about the current game state. This was a limitation of all
previous approaches that combined search with complete-information sampling
and was the main motivation for the development of the two state-of-the-art
techniques in general game playing with incomplete information: HyperPlayer
with Incomplete Information (HP-II) [18] and the so-called Norns algorithm [8].

HP-II uses nested players to simulate games. Through this technique, it can
value knowledge-gathering moves, and it can also value moves that prevent the
opponents from gaining helpful knowledge. However, this comes at the price

100 A. Chitizadeh and M. Thielscher

of two main limitations of HP-II itself: high resource consumption [19] and,
more importantly, short-sightedness when it comes to valuing information, as
we will demonstrate in this paper. The aforementioned Norns algorithm, which
uses Action-Observation Trees (AOT) to simulate a game and to determine the
value of information, also suffers from high resource consumption and, more
importantly, is restricted to single-player games [8].

In this paper, we introduce Iterative Tree Search (ITS) to overcome the lim-
itations of HP-II and Norns. Our main motivation was to find a technique that,
in principle, can correctly solve GDL-II games in general provided their search
space is suitably small, rather than finding a technique that is applicable to large
games. Our ITS combines the classic idea of fictitious play [1] with incomplete
information tree search. Fictitious play learns the behavior of a rational oppo-
nent by self-playing a game several times. Incomplete information tree search is
able to model an information set at every step of the game.

The main contributions of our paper are as follows: We formally introduce
Iterative Tree Search as a new approach to general game playing with incomplete
information. We theoretically analyse both the ITS and the HP-II algorithm
and show the limitations of HP-II compared with ITS on different classes of
games. We also report on experimental results with an implementation of the
ITS algorithm to demonstrate its advantages over the existing techniques.

2 Background

In this section, we will briefly describe General Game Playing with Incomplete
Information (GGP-II) and Fictitious Play (FP). For further details we refer the
reader to [18] and [1].

2.1 General Game Playing with Incomplete Information

Players in General Game Playing (GGP) are given the rules of a game in the
declarative Game Description Language (GDL) [14]. States in GDL are defined
as sets of true facts. The initial state and terminal states are distinguished, and
rewards are given to players at terminal states. In GDL-II, Nature is modeled
as a special-purpose “random” player. This player chooses its moves at random
with uniform probability, and it has the same reward values at all terminal states.
Logical rules are used to describe the legal actions and their effects on a game
state. In GDL-II, players’ moves are hidden from each other, but players may
receive “observation tokens” after each joint move [21]. The only way of learning
something about the moves by other players is through these perceptions. Rules
of the game explicitly describe under which conditions a player makes an obser-
vation. When the game ends, players will be notified and are given a reward
value. In GGP, by convention the minimum reward value is 0 and the maximum
reward value is 100. The goal of players is to achieve the maximal reward.

Iterative Tree Search in General Game Playing with Incomplete Information 101

Formalisation. In this paper, we will not be concerned with a set of GDL
rules themselves but rather consider the induced game tree, including players’
perceptions [21]. GDL and GDL-II allow us to describe games with simultaneous
moves. For simplicity of explanation, we will use the standard transformation
by which joint-move incomplete-information games in GGP-II can be converted
into sequential incomplete-information games.

Definition 1. Let G = 〈S,R,M,Σ, s0, Z, u, do〉 be a game with incomplete
information, where:

– S is a set of states;
– R is a set of players, and R(s) is a function which given state s provides the

player whose turn it is;
– M is a set of moves, and M(s) is the list of legal moves at state s by the

player2;
– Σ is a set of perceptions, and Σ(s) is the list of perceptions for R(s) from

initial state to s;
– s0 ∈ S is the initial state of the game;
– Z ⊂ S is the set of terminal states, for which we have M(z) = ∅ for any

z ∈ Z;
– u : Z → �|R| is the terminal utility function;
– do : S × M → S is the successor function.

To illustrate this, we look at an extended cutting wire game (ECW), adapted
from a cooperative game presented in [18] and which we use later in
Sect. 4.1. Figure 1 shows the left part of the game tree. The roles are R =
{random, cutter, teller}. At first, the random player arms a bomb, and only the
teller sees which of two wires is used for this purpose. For the next two moves,
then, the teller can either decide to tell which wire was used, or wait. Telling first
costs 20 points and telling later costs 10 points for both players. Through telling,
the cutter is informed about which wire he should cut to disarm the bomb. At
the end, the cutter has to decide which wire to cut. Cutting the correct one gives
both players 100 points (minus the aforementioned costs). Otherwise, they get
0. We use the sequence of moves as subscript to denote a state in the game tree,
for example srtwr. Examples for the set of legal moves and list of percepts for
a state are: M(srw) = {wait2, tell2} and Σ(srtt) = [(), red, red] respectively. As
the cutter reaches its decision state srtt, he has received three perceptions along
the path. The first perception is empty because the first action by random does
not result in any perception for the cutter. The second and third both are “red”
because, in this particular state, the teller has chosen tell1 and tell2. The final
utility in this case u(srttr) = 70. The do(S,M) function returns the next state,
e.g. d(sr, wait) = srw.

2 Each move is unique. Having similar names for moves at different states does not
mean the moves are the same.

102 A. Chitizadeh and M. Thielscher

70
red

0
blue

tell2

80
red

0
blue

wait2

tell1

90
red

0
blue

tell2

100
red

0
blue

wait2

wait1

arm red

· · ·

arm blue

Fig. 1. Part of the game tree for the extended “cutting wire” game, with the red wire
being armed. The green circle means the node is in an information set together with
one other node in the other half of the game tree (because the cutter has not received
any observation token). (Color figure online)

2.2 Fictitious Play

In game theory, fictitious play has been suggested as a learning technique [1].
It was originally designed for one step joint-move games, that is, normal form
games. It is known to find a Nash equilibrium (NE) in the time-average sense for
two-player zero-sum games, for games solvable with iterated strict dominance,
and for so-called identical interest games as well as potential games [15]. Recently,
the technique has been extended to some sequential-form games, for example,
full-width extensive-from fictitious play (XFP) [10] and neural fictitious self-play
(NFSP) [11]. The XFP technique learns a strategy which is realization-equivalent
to the normal form fictitious play, meaning it considers a strategy as a whole. For
this reason, this technique suffers from the curse of dimensionality. The NFSP
technique uses sampling and neural networks to learn an NE strategy for the
game. It was able to play limited Texas Hold’em successfully, but this game has
no information-gathering moves.

The standard fictitious play updates a mixed policy after each iteration by
averaging the previously played moves [1]. The updating algorithm can be math-
ematically described as follow:

πt+1
r =

πt
r

t
+

π(b(πt
−r))

t + 1
(1)

Here, r is the player and t is the iteration index. πt
r is the mixed policy for player

r at iteration t and π−r is the mixed policy for all players except r. Mixed policy
πr defines the probabilities for player r to choose a move at each state where it
is this player’s turn.

Given the mixed policy π−r of other players, player r finds the best response
as follows:

b(π−r)t = argmax
m∈M

util(m,πt
−r) (2)

Here, b(π−r) is the best-response function which returns the best move mr for
player r given the mixed policy for the other players; and util(mr, π−r) is the

Iterative Tree Search in General Game Playing with Incomplete Information 103

reward function for player r if he plays move m given the strategy π−r for the
opponents. In this paper, we refer to π as a function which takes a move and
returns a policy with the probability of the given move being 1 and all others
being 0.

3 Iterative Tree Search

In this section, we will introduce a novel algorithm called the Iterative Tree
Search (ITS) for GGP-II. ITS is an offline search, meaning it finds the best
move before the game begins, and then during the game, it plays based on the
pre-calculated mixed move policy. We first need to generate the incomplete-
information tree and initialize its probabilities and utilities of the states; then
we need to update the states’ values and move probabilities iteratively, all within
the given time limit before the start of the game.

3.1 Initialising the Tree

The first step in initialising the incomplete-information game tree is to represent
indistinguishability of states. We use information sets for this purpose, which
can be determined from the observation tokens a player has received [21].

Definition 2. Let G be a GDL-II game as in Definition 1, then:

– I(s) : S → S∗ is the information set function which takes a state s and
returns a set of states. The given state and all the states in the returned set
are indistinguishable by the player for whom s is a decision node.

Since we are converting games into sequential form, the player for which states
are indistinguishable is always the player whose turn it is. The following equation
describes formally how an information set is generated:

I(s) = {x ∈ S : Σ(s) = Σ(x) ∧ ξr(s) = ξr(x) ∧ r = R(s)} (3)

Here, ξr : S → M∗ is the history function which provides the sequence of moves
of player r from the start to the provided state. In our ECW example, the
only non-singular information set is I(srww) = {srww, sbww}. We refer to this
information set as Iww.

Our ITS technique assigns probabilities to moves and states in each infor-
mation set. The probability of a state can be recursively calculated from the
probabilities of the moves. Through iteratively updating both probabilities, we
can obtain a mixed strategy for every information set in a game tree that can
be used to play optimally during the game.

When initializing the tree, we provide uniform probability to the moves in a
state. A mixed policy is beneficial in a sense that it can prevent the opponent
from predicting our moves. In the ECW example, the first iteration will be the
initial move probability of μ(tell1) = 1

2 .

104 A. Chitizadeh and M. Thielscher

3.2 Iterative Probability Update

After populating the probabilities of the moves, we calculate the probability of
every state in an information set to be the true state of the game.

Definition 3. Let G be a GDL-II game as above, then:

– μ : M → [0, 1] is the probability function which, given a move, returns the
probability of the move to be chosen by the player.

The initial value of μ0 is uniform over all the moves in a state, that is, μ0(m) =
1

|M(s)| for all m ∈ M(s). Based on Definition 3 we can define for player r the
mixed policy πr with move probability μ as follow:

πr = {μ(m)|r = R(s) ∧ m ∈ M(s)} (4)

Definition 4. Let G be a GDL-II game as defined, then:

– ρ : S → [0, 1] is the probability function which for a state returns the proba-
bility of the state to be the true state in its information set.

ρ can be calculated with the help of the probability factor.

– ρFactor(s′) = ρFactor(s) ∗ μ(m)
where s′ = do(s,m) and ρFactor(s0) = 1.

With this definition we can calculate the ρ of states in an information set as
follows:

ρ(s) =
ρFactor(s)

∑
sn∈I(s) ρFactor(sn)

(5)

We then need to calculate and assign utility values to all states in the game.
The utility of each state can be calculated based on the utilities of the successor
states and the probabilities of moves. The recursion will be as follow:

u(s) =
∑

m∈M(s)

[u(do(s,m)) ∗ μ(m)] (6)

The base cases are the utilities of terminals which are given as part of the game
description.

In our ECW example, at the first iteration all ρFactor() are equal at each
level. This game has a branching factor of two at all nonterminal nodes, hence
μ0(m) = 1

2 for all moves m in all states of the game. We can then calculate
ρFactor(srwt) = μ0(r) ∗ μ0(w) ∗ μ0(t) ∗ ρFactor(s0) which is 1

23 . As a result,
the values ρ(srww) and ρ(sbww) are 1

2 while all the others are 1 because they all
form their own singleton information set.

Iterative Tree Search in General Game Playing with Incomplete Information 105

At the next stage, we need to calculate the value of each move in its infor-
mation set and then set the move with the highest utility as the chosen one. To
calculate the reward of a move we will consider all the states in the information
set.

Definition 5. Let G be a GDL-II game as defined, then:

– chosenMove : I → M is the move selection function which chooses the move
with the highest reward for the player in an information set as:

chosenMove(i) = argmaxm

[∑

s∈i

ρ(s) ∗ ur(s′)
]

(7)

Here, for each s we have s′ = do(s,m) and r = R(s). Similar legal moves in an
information set have the same utility. As a result, the chosen move will be the
similar move for all the states in the same information set.

In the ECW example, for the cutter the chosenMove in singleton information
sets will be the move that leads to the highest possible utility at termination.
However, for cut red the average utility at Iww is ρ(srww) ∗u(srwwr)+ρ(sbww) ∗
u(sbwwr). This is similar to the cut blue action at Iww and equals 50. In the
long run, as the game is symmetric, ρ(srww) and ρ(sbww) will stay the same. So
chosenMove switches randomly between the two moves in Iww.

For the last stage, we need to update the move probability function μ as
follows: Let m be chosenMove and m′ all other moves.

μt+1(m) =
(μt(m) ∗ t) + 1

t + 1
(8)

μt+1(m′) =
μt(m′) ∗ t

t + 1
(9)

We will now reset all utilities for non-terminal states and ρFactor values.
The iteration can be continued until the end of the pre-game calculation. In this
way, we can come up with an approximation of optimal moves within a given
time limit.

Coming back to the ECW example, in the long run, for the cutter’s states
the probability of cutting the correct wire approaches 1 except for the states in
Iww in which the probabilities of cut blue and cut red stay the same. As can be
seen, the computational complexity of the algorithm is linear in the number of
game states.

106 A. Chitizadeh and M. Thielscher

The Iterative Tree Search is summarized as Algorithm 1 below.

Algorithm 1. Iterative Tree Search
1: Generate allInfomationSets � using (3)
2: t ← 0
3: for all m ∈ M do
4: Initialise μ(m)

5: while time allowed do
6: for all s ∈ S do
7: u(s) ← 0; ρFactor(s) ← 0; ρ(s) ← 0; t ← t + 1

8: ρFactor(s0) ← 1 � s0 is the initial state
9: for all s ∈ S & m ∈ M(s) do

10: s′ ← do(s, m)
11: ρFactor(s′) ← ρFactor(s) ∗ μ(m)

12: for all s ∈ S do
13: ρ(s) ← ρFactor(s)∑

sn∈I(s) ρFactor(sn)

14: for all s ∈ S & m ∈ M do � For terminals, it is already set
15: u(s) ← u(s) + (u(do(s, m)) ∗ μ(m))

16: for all i ∈allInfomationSets do
17: chosenMove(i)
18: ← argmax

m∈M(i)

[
∑

s∈i ρ(s) ∗ uR(s)(do(s, m))]]

19: for all I ∈ allInfomationSets do
20: μ(chosenMove(I)) = (μ(chosenMove(I))×t)+1

t+1

21: for all m ∈ M(I) & m �= chosenMove(i) do

22: μ(m) = μ(m)×t
t+1

4 Analysis

In the following, we characterize the classes of GDL-II games that our ITS can
solve. We will resort to the theory of fictitious play to this end. We also demon-
strate how HP-II fails in these games and show experimental results to confirm
our observations. All mentioned games have either been previously introduced
in the literature or are extensions of games from the literature.

4.1 Games with Dominant Pure Strategy and Single Player Games

ITS can correctly solve games in which there exists a dominant pure strategy.
Having a dominant strategy means playing one specific move at each information
set guarantees the player the highest reward. Also, it means that the actions of
the opponents will not affect the decision of the player. If a single-player game
with incomplete information has an optimal strategy, then this will be a pure
dominant strategy, as the random player has no intention of changing its strategy.

Iterative Tree Search in General Game Playing with Incomplete Information 107

The ITS algorithm at the first iteration assigns equal probabilities to all
moves from the same information set. This means that no μ(m) will ever have
zero probability. As the calculation progresses, the player with a dominant strat-
egy tends to play more of it because states on the path of a dominant strategy
have the highest rewards and the probability of the parent state never changes.
As a result, the probability of playing a dominant strategy increases with each
iteration. So ρ(s) ∗ ur(s′) always increases and will always be the chosen move.
We can use the ECW game to illustrate how ITS can correctly play this type of
games and also why HP-II fails.

Example: Extended Cutting Wire. The game was inspired by the “cutting
wire” game originally published to motivate the HP-II technique [18]. In the orig-
inal version, the teller can tell or wait only once. HP uses complete-information
sampling and therefore fails to solve this problem (since information gains can
have no value), but HP-II successfully solves the original version of the game.
We have extended the cutting wire in order to show that ITS can correctly value
information in deeper parts of the game tree while HP-II is “short-sighted” in
this regard. ITS correctly chooses to tell at the second level, where it is less
costly, while the HP-II player chooses to tell at the first level because of its
short-sightedness when valuing information.

HP-II uses nested players to overcome the limitations of model sampling as
used in HP. However, at each step it sees information-gathering moves only one
level ahead. This causes the algorithm to choose tell1 and wait2 rather than
wait1 and tell2. More precisely, the move selection policy of HP-II πhpii can be
described as:

argmaxm∈M(s)

⎡

⎣
∑

s′∈I(s)

eval(replay(s0, Ir∈R(do(s′,m)),πhp),πhp, n)

⎤

⎦ (10)

We have modified the algorithm to suit sequential games.3 At state sr, πhpii

chooses the move based on which of πhp(srw) or πhp(srt) gives the higher
expected reward. The HP-II policy, πhp, uses a Monte-Carlo search, so the move
wait1 returns 100+90

2 and move tell1 returns 70+80
2 . As a result, HP-II consid-

ers tell1 a better move than wait1. We refer to this problem as short-sighted
information valuation.

Our new ITS algorithm can correctly value the information anywhere in the
game tree. To illustrate this, recall the explanation for HP-II. As previously
described, for the arm red part of the game tree, the cutter’s utilities in the
long run will be: u(srtt) = 70, u(srtw) = 80, u(srwt) = 90 and u(srww) = 50.
Then using Eqs. (7) and (6) we obtain u(srw) = 90 and u(srt) = 80. As a
result, the chosenMove(I(sr)) will be wait1. Analogously, we can show that
chosenMove(I(sb)) is wait1 too.
3 The replay function replays from the initial state to the given state. In the sequential

ECW game, where the only information set belongs to the secondP layer, the replay
function will be reduced to a simple information set function.

108 A. Chitizadeh and M. Thielscher

To validate our claims we have run ITS with the extended cutting wire game.
The graph in Fig. 2 shows the probability of the tell move at the two different
stages of the game during the first 1,000 iterations. If the probability of the
telling action is high in any state, then the probability of waiting is low and vice
versa. As can be seen from the graph, the probability of choosing the telling
action twice quickly converges to zero at early iterations. The probability of
the first, more costly telling move also drops to almost zero in less than 1,000
iterations. In fact, after less than 200 iterations ITS will very likely choose to
wait first and then to tell.

Fig. 2. Probability of tell at different states during the first 1,000 iterations in the
extended cutting wire game.

4.2 Non-locality Problem

Frank and Basin [5] have formalized and analyzed the problem of non-locality.
Non-locality happens when an algorithm only considers children of a state to find
the best move for that state. Our ITS algorithm models the opponent, which
can be shown to lessen the impact of this problem.4

Example: The Game in Fig. 5 [6]. To show the ability of ITS algorithm to
solve games that exhibit the non-locality problem, we consider the motivating
example from [5]. In this game, the first move by random is only visible to the
secondP layer while players’ moves are visible to each other. The random choice
places the game in a particular world, and the utilities for the players depend on

4 Frank and Basin [7] have introduced the “Vector MiniMax” technique, which also
just lessens, rather than completely avoids, the impact of non-locality.

Iterative Tree Search in General Game Playing with Incomplete Information 109

their moves and the world they are in.5 Figure 3 depicts the game tree for this
game and shows firstP layer’s optimal strategy. This strategy guarantees that
the first player always receives 1 in w1. ITS is able to always play correctly at
states a and e from the first iteration on because these are the dominant moves.
Figure 4 shows the mixed strategy of the player at state d after 100 iterations.
After less than 100 iterations, our implemented ITS was also able to play left at
d with a probability of 99%.

a
b

d

1
0
0

left

0
1
1

right

e

0
0
0

left

1
0
0

right

c

f

0
0
0

w1:
w2:
w3:

Fig. 3. Game with non-locality problem represented in world model.

4.3 One-Step Joint-Move Two-Player Zero-Sum Games

We show that ITS reduces to fictitious play for this category of games, and
since fictitious play is known to solve these games, ITS can solve them too. For
ITS we convert this category of games into a two-step sequential game with
incomplete information. All moves of the firstP layer lead to states that are all
in the same information set. To show that the ITS algorithm works similar to
fictitious play for this class of games, we will show that the updating policy and
the move selection of fictitious play is similar to ITS. We refer to the player who
moves first as the firstP layer and call the opponent the secondP layer. For
both players, updating the mixed policy π via Eq. (1) is identical to updating μ
of moves in ITS, that is, Eqs. (8) and (9).

For the move selection policy of ITS we need to consider each player sepa-
rately. With regard to choosing the best move for the firstP layer in ITS, if we
combine Eqs. (7) and (6), then for chosenMove() we will get:

argmaxm1

[∑

s∈i

ρ(s) ∗
∑

m2∈M(s′)

[u(do(s′, m2) ∗ μ(m2))]
]

(11)

Here, s is the initial state s0 and is in a singleton information set; s′ is the
state after the initial state, referred to as sm1 in what follows. ρ(s0) is always

5 This game can, of course, be straightforwardly axiomatized in GDL-II as a GGP-II
game [22].

110 A. Chitizadeh and M. Thielscher

Fig. 4. Mixed strategy at state d in the non-locality game during the first 100 iterations.

equal to 1. We also substitute do(s′,m2) with sm1m2, which is a terminal state
with a fixed reward. Also, to simplify notation, we replace M(s′) with M2. For
chosenMove() we then obtain the following:

argmaxm1

[∑

m2∈M2

[u(sm1m2 ∗ μ(m2))]
]

(12)

Considering the relation of mixed move policy and mixed policy described in
Eq. (4), this equation is indeed equal to the best respond Eq. (2) for fictitious
play.

With regard to choosing the best move for the secondP layer in ITS, the
action of the firstP layer changes the probability of state ρ(s). Since the
secondP layer’s decision states are all in the same information set and are all gen-
erated from the initial state, ρFactor(sm1) = μ(m1). So ρ(sm1) = µ(m1)∑

m∈M2
µ(m) .

By definition the denominator is equal to 1. By substituting these in Eq. (7), for
chosenMove() we obtain:

argmaxm2∈M2

[∑

m1∈M1

μ(m1) ∗ u(sm1m2)
]

(13)

which is identical to Eq. (12) with m1 being replaced by m2. This completes the
proof that ITS reduces to basic fictitious play for this category of the games and
that, therefore, ITS is able to correctly play any one-step, joint-move zero-sum
game with two players. As an example, we look at Biased Penalty Kick, which
is a common game in game theory to show the ability of an algorithm to find a
Nash equilibrium (NE).

Example: Biased Penalty Kick. This is a well-known game to illustrate
opponent modeling and the value of playing a mixed strategy: If the kicker

Iterative Tree Search in General Game Playing with Incomplete Information 111

shoots right and the keeper catches, the keeper gets 60; otherwise, the kicker
gets 60. If the kicker shoots left the rewards will instead be 40. There is no pure
NE, and the optimal mixed strategy in a NE for the kicker is to shoot 40% right
and 60% left. For the goalkeeper, it is jumping 40% to the left and 60% to the
right.

While both HP and HP-II only deliver pure strategies, ITS can solve this
problem after just a few iterations as this game is a one-step joint-move game.
To verify this claim we have run our implemented ITS algorithm on this problem.
Figure 5 shows the mixed strategy of the goalkeeper for the first 10, 000 iterations.
ITS quickly finds the correct probabilities for both players.

Fig. 5. Mixed strategy of the goal keeper for the biased penalty kick game for the first
10,000 iterations.

4.4 Move Separable Games

In this category of games, each player is only responsible for moves in one stage of
the game. This means that when the secondP layer begins to move after a series
of moves by the firstP layer, then after the secondP layer has made their moves
the game ends, and also the firstP layer cannot interrupt the secondP layer’s
course of actions. If the random player exists in the game, its actions are visible
to the player of the corresponding stage of the game. In this class of games, the
secondP layer may or may not be able to see some or all of the actions performed
by the firstP layer. We will show that these games will be reduced to a game
where the firstP layer chooses a joint-move game for both players to play. HP-II
fails to solve games in this class as it can only find a pure strategy, whereas again
the ITS algorithm can solve this category of games.

First, consider the simpler case of games where the secondP layer cannot
see the firstP layer’s moves. The probability of a state to be the true state
in the information set of the secondP layer depends on the sequence of the

112 A. Chitizadeh and M. Thielscher

firstP layer’s moves. This sequence can be considered as one single, combined
move, whose probability is the same as the frequency with which the corre-
sponding sequence is chosen. The game can therefore obviously be reduced to a
one-step, joint-move game that is solvable by the ITS algorithm.

Now consider the case when the secondP layer can see some of the actions
of the firstP layer. The firstP layer can lead the secondP layer into one of
possible information sets. The ρ(s) of the states in each information set can
be changed by the unobserved moves of the firstP layer. Thus a game of this
type can be reduced to a game where the firstP layer chooses a subgame of
a one-step, joint-move game with the highest NE payout for himself among all
subgames and then play the subgame corresponding to the NE strategy. As
described in the previous section, ITS can solve this subgame and determine the
payout for each NE. Choosing the subgame with the highest NE payout then
just requires a simple search. In this way ITS can solve Move Separable Games.
We end our analysis with an example of a game from the literature that falls
into this category.

Example: Banker and Thief. This game was used in the HP-II paper [18]
to show the ability of HP-II to value the withholding of information. There are
two banks in this game, one of which has a faulty alarm system. The owner of
the bank that is faulty has to decide to distribute $100 between the two banks
in $10 notes. The thief can see the distribution of the money between the banks
but not which of the two is faulty. If the thief decides to rob the faulty bank then
he succeeds in getting the money, otherwise the banker receives all the money
left in his bank at the end of the game.

Using HP-II, the banker places $40 in the faulty bank and $60 in the other,
implicitly making the assumption that the thief is greedy and will choose to rob
the bank with $60, which means the banker wins. This strategy was considered
as the winning strategy in HP-II paper [18]. We claim that this is, in fact, a sub-
optimal strategy as the banker wrongly assumes the thief to be greedy. Indeed,
the thief might well assume the banker to assume that he is greedy, and hence he
will decide to go after the $40. The best strategy for this game must, therefore, be
a mixed strategy so that the thief becomes indifferent to choosing a bank. Only
then is the (mixed) strategy a Nash equilibrium. Different distributions lead to
different NE with different expected payout. The highest expected payout for
the banker is a $50-$50 distribution with an expected payout of $25, while the
expected payout for the $40-$60 distribution is just $24. Since this is a Move
Separable Game, ITS can solve it in contrast to HP-II.

To prove our claim, we have run our ITS algorithm with this game, but to
make it more challenging we added two extra safe banks. The banker can then
choose a distribution of his money in $10-chunks among four banks. There is
a total of 287 ways to do so. Table 1 shows the probabilities for some mixed
strategies for the banker in the case when the first bank has been selected as
faulty by the random player. The theoretical analysis for this variant of the
game shows that the optimal strategy is to put $50 in a faulty and $50 in any

Iterative Tree Search in General Game Playing with Incomplete Information 113

of the safe banks. As can be seen from the table, this is what the ITS algorithm
will do in 94% of the times after one million iterations. Figure 6 shows how the
probabilities for some of the 287 strategies evolve.

Table 1. Probability of choosing a money distribution by ITS in the banker and thief
game.

Money distribution 50 50 0 0 50 0 50 0 50 0 0 50 0 50 50 0 all others

Probability of choosing 35.67% 27.5% 30.88% 0% 5.95%

Fig. 6. The probability change toward equilibrium for four strategies in the banker and
thief game when the faulty bank is the first one.

5 Conclusion

We have introduced the Iterative Tree Search (ITS) algorithm as a significant
improvement over state-of-the-art algorithms, in particular HP-II, for general
game playing with incomplete information. While HP-II is short-sighted on valu-
ing information, our ITS algorithm has been shown to correctly value informa-
tion in a game by gathering information at the lowest possible cost that promises
the highest benefit. An ITS-based general game player is also able to withhold
information from opponents and to play a NE on a number of classes of games.
Moreover, HP-II is not able to compute mixed strategies, so it fails to find the
best strategy in games that require opponent modeling. With ITS we can over-
come these limitations by iteratively self-playing the game using an incomplete-
information tree and thus learn the expected behavior of a rational opponent.

114 A. Chitizadeh and M. Thielscher

References

1. Brown, G.W.: Iterative solution of games by fictitious play. Activity Anal. Prod.
Allocation 13(1), 374–376 (1951)

2. Cowling, P.I., Powley, E.J., Whitehouse, D.: Information set monte carlo tree
search. IEEE Trans. Comput. Intell. AI Games 4(2), 120–143 (2012)

3. Edelkamp, S., Federholzner, T., Kissmann, P.: Searching with partial belief states
in general games with incomplete information. In: Glimm, B., Krüger, A. (eds.) KI
2012. LNCS (LNAI), vol. 7526, pp. 25–36. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33347-7 3

4. Frank, I., Basin, D.: A theoretical and empirical investigation of search in imperfect
information games. Theor. Comput. Sci. 252(1–2), 217–256 (2001)

5. Frank, I., Basin, D.A.: Search in games with incomplete information: a case study
using bridge card play. Artif. Intell. 100(1–2), 87–123 (1998). https://doi.org/10.
1016/S0004-3702(97)00082-9

6. Frank, I., Basin, D.A., Matsubara, H.: Finding optimal strategies for imperfect
information games. In: AAAI/IAAI, pp. 500–507 (1998)

7. Frank, I., Basin, D.A., Matsubara, H.: Finding optimal strategies for imperfect
information games. In: Proceedings of the Fifteenth National Conference on Artifi-
cial Intelligence and Tenth Innovative Applications of Artificial Intelligence Confer-
ence, AAAI 98, IAAI 98, 26–30 July 1998, Madison, Wisconsin, USA, pp. 500–507
(1998). http://www.aaai.org/Library/AAAI/1998/aaai98-071.php

8. Geißer, F., Keller, T., Mattmüller, R.: Past, present, and future: an optimal online
algorithm for single-player GDL-II games. In: ECAI 2014–21st European Con-
ference on Artificial Intelligence, 18–22 August 2014, Prague, Czech Republic -
Including Prestigious Applications of Intelligent Systems (PAIS 2014), pp. 357–
362 (2014). https://doi.org/10.3233/978-1-61499-419-0-357,

9. Gill, R.: Monty hall problem. In: International Encyclopaedia of Statistical Science,
pp. 858–863 (2010)

10. Heinrich, J., Lanctot, M., Silver, D.: Fictitious self-play in extensive-form games.
In: International Conference on Machine Learning, pp. 805–813 (2015)

11. Heinrich, J., Silver, D.: Deep reinforcement learning from self-play in imperfect-
information games. CoRR abs/1603.01121 (2016)/. http://arxiv.org/abs/1603.
01121

12. Johanson, M.B.: Robust strategies and counter-strategies: building a champion
level computer poker player. Masters Abstracts Int. 46 (2007)

13. Long, J.R., Sturtevant, N.R., Buro, M., Furtak, T.: Understanding the success of
perfect information monte carlo sampling in game tree search. In: AAAI (2010)

14. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game
playing: game description language specification (2008)

15. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143
(1996)

16. Romstad, T., Costalba, M., Kiiski, J., et al.: Stockfish: a strong open source chess
engine. https://stockfishchess.org/. Accessed 1 May 2018

17. Schofield, M.J., Cerexhe, T.J., Thielscher, M.: Hyperplay: a solution to general
game playing with imperfect information. In: AAAI. Citeseer (2012)

18. Schofield, M.J., Thielscher, M.: Lifting model sampling for general game playing
to incomplete-information models. In: AAAI, pp. 3585–3591 (2015)

19. Schofield, M.J., Thielscher, M.: The scalability of the hyperplay technique for
imperfect-information games. In: AAAI Workshop: Computer Poker and Imper-
fect Information Games (2016)

https://doi.org/10.1007/978-3-642-33347-7_3
https://doi.org/10.1007/978-3-642-33347-7_3
https://doi.org/10.1016/S0004-3702(97)00082-9
https://doi.org/10.1016/S0004-3702(97)00082-9
http://www.aaai.org/Library/AAAI/1998/aaai98-071.php
https://doi.org/10.3233/978-1-61499-419-0-357
http://arxiv.org/abs/1603.01121
http://arxiv.org/abs/1603.01121
https://stockfishchess.org/

Iterative Tree Search in General Game Playing with Incomplete Information 115

20. Silver, D., et al.: Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv preprint arXiv:1712.01815 (2017)

21. Thielscher, M.: A general game description language for incomplete information
games. In: AAAI, vol. 10, pp. 994–999. Citeseer (2010)

22. Thielscher, M.: The general game playing description language is universal,
Barcelona, pp. 1107–1112, July 2011

23. Zinkevich, M., Johanson, M., Bowling, M., Piccione, C.: Regret minimization in
games with incomplete information. In: Advances in Neural Information Processing
Systems, pp. 1729–1736 (2008)

http://arxiv.org/abs/1712.01815

Machine Learning and Monte Carlo
Tree Search

Spatial Average Pooling for Computer Go

Tristan Cazenave(B)

Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE,
Paris, France

Tristan.Cazenave@dauphine.fr

Abstract. Computer Go has improved up to a superhuman level thanks
to Monte Carlo Tree Search (MCTS) combined with Deep Learning. The
best computer Go programs use reinforcement learning to train a policy
and a value network. These networks are used in a MCTS algorithm to
provide strong computer Go players. In this paper we propose to improve
the architecture of a value network using Spatial Average Pooling.

1 Introduction

Monte Carlo Tree Search (MCTS) has been successfully applied to many games
and problems [1]. The most popular MCTS algorithm is Upper Confidence
bounds for Trees (UCT) [9]. MCTS is particularly successful in games [8]. A
variant of UCT when priors are available is PUCT [11]. AlphaGo [12] uses a
variant of PUCT as its MCTS algorithm. AlphaGo Zero [14] and AlphaZero [13]
also use PUCT as their MCTS algorithm. Golois, our computer Go player, uses
as its MCTS algorithm the same variant of PUCT as AlphaGo.

AlphaGo uses a policy network to bias the choice of moves to be tried in the
tree descent, and a value network to evaluate the leaves of the tree. In AlphaGo
Zero, the evaluation of a leaf is uniquely due to the value network and playouts
are not used anymore. Moreover the policy and value network are contained in
the same neural network that has two heads, one for the policy and one for the
value.

AlphaGo and AlphaGo Zero were applied to the game of Go. The approach
has been extended to chess and Shogi with AlphaZero [13]. After a few hours
of self play and training with 5 000 Tensor Processing Units from Google, Alp-
haZero was able to defeat top Chess and Shogi programs (Stockfish and Elmo)
using a totally different approach than these programs. AlphaZero uses 1,000
times fewer evaluations than Stockfish and Elmo for the same thinking time. It
uses PUCT instead of AlphaBeta and a combined value and policy network.

The AlphaGo Zero approach has been replicated by many researchers. The
Leela Zero program is a community effort to replicate the AlphaGo Zero exper-
iments. People donate their GPU time to make Leela Zero play self-play games
[10]. The networks trained on self play games are then tested against the current
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-24337-1 6) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2019
T. Cazenave et al. (Eds.): CGW 2018, CCIS 1017, pp. 119–126, 2019.
https://doi.org/10.1007/978-3-030-24337-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24337-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-24337-1_6
https://doi.org/10.1007/978-3-030-24337-1_6
https://doi.org/10.1007/978-3-030-24337-1_6

120 T. Cazenave

best network and replace it if the result of the match is meaningful enough. The
best network is then used for randomized self-play. Most of the computing time
used by programs replicating the AlphaGo Zero approach is spent in self-play.

The ELF framework from Facebook AI Research [15] is an open source ini-
tiative to implement reinforcement algorithms for games. It has been applied to
the game of Go following the AlphaGo Zero approach [16]. The resulting ELF Go
program running on a single V100 GPU has beaten top Korean professionals Go
players 14 to 0 and Leela Zero 200 to 0. It was trained for two weeks using 2 000
GPUs. It is a strong superhuman level computer Go player, however it has the
same kind of weaknesses as Leela Zero and other Zero bots: it sometimes plays a
ladder that is not working and loses the game because of this ladder problem.

Another partially open source Go program is Phoenix Go by Tencent [20]. It
won the last computer Go tournament at Fuzhou, China in April 2018 defeating
FineArt and LeelaZero.

In this paper we are interested in improving a value network for Golois our com-
puter Go program. We have previously shown that residual networks can improve
a policy network [2,3]. We also use residual networks for our value network which
is trained on self-play games of the policy network. We propose to improve on
the standard residual value network adding Spatial Average Pooling layers to the
usual residual value network. Our experiments are performed using Golois with
and without Spatial Average Pooling. The AQ open source Go program [19] also
uses Spatial Average Pooling in its value network.

We now give the outline of the paper. The next section outlines the training
of a value network. The third section details the PUCT search algorithm. The
fourth section explains Spatial Average Pooling. The fifth section gives experi-
mental results. The last section concludes.

2 Training a Value Network

Training of the value network uses games self-played by the policy network.
Golois policy network has a KGS 4 dan level using residual networks and three
output planes [2,3,17].

The playing policy is randomized, Golois chooses a move randomly between
the moves advised by the policy network that have a probability of being the
best move greater than the probability of the best move minus 0.2. This policy
enable sufficient randomization while retaining a good level of play. This is the
randomization strategy that was used to make Golois policy network play on
KGS.

The architecture of the policy network uses nine residual blocks an three out-
put planes, one for each of the three next moves of the game. The network was
trained on games between professional players played between 1900 and 2015.

The architecture of our first value network is also based on residual networks
and has nine residual blocks. The first layer of the network is a convolutional
layer with 1 × 1 filters that takes the 47 input planes and transform them into
256 19 × 19 planes. The last layers of the network are a 1 × 1 convolution layer
that converse the 256 planes to a single plane, the single plane is then reshaped
into a one dimensional tensor and followed by two completely connected layers.

Spatial Average Pooling for Computer Go 121

In order to be able to play handicap games, Golois uses nine outputs for
its value network. One output for each possible final score of a self-play game
between 180.0 and 189.0. The final score is the score of the Black player. All
output neurons representing a score greater than the score of the self-played
game are set to one during training and all neurons strictly smaller are set to
zero. For example if the score of a game is 183.0, the first three outputs are set
to zero and the next six outputs are set to one.

When using the value network for a game, the corresponding neuron is used
for the evaluation of states. If the game is even and the komi is 7.5 the neuron for
a score greater than 184.0 is used, if the game is handicap one and the komi is 0.5
the neuron for a score greater than 180.0 is used. Using multiple outputs for the
value network has also been used independently for the CGI Go program [18].

3 PUCT

In order to be complete, the PUCT algorithm is given in Algorithm1. Lines 2–5
deals with getting the possible moves and stopping if the board is terminal. Line
6 gets the entry of the board in the transposition table. Each board is associated
to a Zobrist hash code that enables to calculate the index of the board in the
transposition table. An entry in the transposition table contains the total number
of playouts that have gone through the state, the mean of all the evaluations of
the children of the node and of the node itself, the number of playouts for each
possible moves, and the prior for each possible move given by the policy network.
The policy network uses a softmax activation for the output of the network, so
the priors given by the policy network can be considered as probabilities of each
move being the best. Lines 7–23 are executed when the state has already been
seen and is present in the transposition table. The goal is to find the move that
maximizes the PUCT formula. The PUCT formula is:

argmaxm(meanm + c × priorm ×
√

t

pm
)

with c being the PUCT constant, priorm being the probability for move m given
by the policy network, t being the sum of the number of playouts that have gone
through the node and pm being the number of playouts that start with move m.

On line 20 the move that maximizes the PUCT formula is played, then the
recursive call to PUCT is done online 22 for the selected child of the current
node. When PUCT returns from the call and gets the evaluation of the new leaf,
it updates the values of the current node with the result of the search on line
23. This means it increases by one the total number of playouts of the node, it
increases by one the playouts of move m and updates the mean of move m with
res.

Lines 25–27 are executed when the state is not part of the PUCT tree. In
this case it adds an entry in the transposition table for this state and gets the
evaluation of the board from the value network. We use MCTS without playouts.
The leaves are evaluated by the value network alone. The value network is run

122 T. Cazenave

on the eight symmetrical boards of the state to evaluate, and the average of the
eight evaluations is the evaluation of the leaf.

Algorithm 1. The PUCT algorithm.
1: PUCT (board, player)
2: moves ← possible moves on board
3: if board is terminal then
4: return evaluation (board)
5: end if
6: t ← entry of board in the transposition table
7: if t exists then
8: bestV alue ← −∞
9: for m in moves do

10: t ← t.totalP layouts
11: mean ← t.mean[m]
12: p ← t.playouts[m]
13: prior ← t.prior[m]

14: value ← mean + c × prior ×
√
t

p

15: if value > bestV alue then
16: bestV alue ← value
17: bestMove ← m
18: end if
19: end for
20: play (board, bestMove)
21: player ← opponent (player)
22: res ← PUCT (board, player)
23: update t with res
24: else
25: t ← new entry of board in the transposition table
26: res ← evaluation (board, player)
27: update t
28: end if
29: return res

We use tree parallelism for the PUCT search of Golois. Twelve threads are
running in parallel and share the same tree. Each thread is assigned to one of
the four GPUs and calls the forward pass of the policy and value networks on
this GPU.

We have also found that it improves the number of nodes per second to use a
minibatch greater than 8. The standard algorithm uses minibatch of size 8 since
there are eight symmetrical states for a leaf of the tree. However current GPUs
can be used more efficiently with larger minibatches. The best results we had
were with minibatches of size 16. We only get the value of leaf every two leaves.
It means that after the first call to PUCT, a second tree descent is performed
to get a second leaf to evaluate corresponding to 8 more states. The second tree
descent does not usually find the same leaf as the first tree descent since during

Spatial Average Pooling for Computer Go 123

each tree descent a virtual loss is added to the number of playouts of the selected
move. This ensures that the further tree descents do not always select the same
moves. So after the second descent, both the first leaf and the second leaf are
evaluated, with 8 symmetrical states each, resulting in a minibatch of 16 states.

4 Spatial Average Pooling

Spatial Average Pooling takes the average of a rectangle of cells of the input
matrix as the output of the layer. Table 1 illustrates the application of a 2 × 2
Spatial Average Pooling on a 4 × 4 matrix. The elements of the 4 × 4 matrix
are split into four 2 × 2 matrices and each 2 × 2 matrix is averaged to give each
element of an output 2 × 2 matrix.

Table 1. Spatial average pooling.

8 3 4 7
4 1 6 3
2 6 3 9
1 7 2 6

4 5
4 5

We used Spatial Average Pooling in the last layers of Golois value network
with a size 2 × 2 and a stride of 2 as in the Table 1 example.

When applying Spatial Average Pooling with a size 2 × 2 and a stride of 2
to 19 × 19 planes, we add a padding of one around the 19 × 19 plane. Therefore
the resulting planes are 10 × 10 planes. When applying Spatial Average Pooling
again to the 10 × 10 planes with a padding of one we obtain 6 × 6 planes. The
last convolutional layer of the value network is a single 6×6 plane. It is flattened
to give a vector of 36 neurons. It is then followed by a 50 neurons layer and the
final 9 neurons output followed by a Sigmoid (the value network outputs the
probability of winning between 0 and 1).

The Spatial Average Pooling is meaningful for a value network since such a
networks outputs a winning probability that is related to the estimated score
of the board. If neurons in the various planes represent the probability of an
intersection to be Black territory in the end, averaging such probabilities gives
the winning probability. So using Spatial Average Pooling layers can push the
value network to represent probabilities of ownership for the different parts of
the board and help the training process.

In AlphaGo Zero [14], policy and value networks share the same weights of
a network with two different heads. One head for the policy network and one
head for the value network. Our improvement of the value network can still be
used in such an architecture, using Spatial Average Pooling for the value head.

124 T. Cazenave

5 Experimental Results

Experiments make PUCT with a given network play against PUCT with another
network. 200 games are played between algorithms in order to evaluate them.
Each move of each game is allocated 0.5 seconds on a four GPU machine with 6
threads. This enables to play between 40 and 80 tree descents per move. In all
experiments we use a PUCT constant of 0.3 which is the best we found.

The experiments were done using the Torch framework [7], combining C++
code for the PUCT search with lua/Torch code for the forward passes of the
networks as well as for the training of the value networks. The minibatches are
created on the fly with C++ code that randomly chooses states of the self played
games and combine them in a size 50 minibatch. Each state is associated to the
result of the self played game. Once the minibatch is ready it is passed to the lua
code that deals with the computation of the loss and the Stochastic Gradient
Descent. We use the same 1,600,000 self played games for training the value
networks.

The value network including Spatial Average Pooling has 128 planes for each
layer. It starts with six residual blocks then applies Spatial Average Pooling,
followed by three residual blocks then another Spatial Average Pooling, followed
by three other residual blocks. The two fully connected layers of 50 and 9 neurons
complete the network. This value network is named SAP (6,3,3) in Table 2.

The competing value network is the standard residual value network used
in Golois. It has nine residual blocks with 256 planes per layer. It is named α
(9,256) in Table 2. Deeper residual value networks were trained for Golois without
giving much better results, that is why we kept the nine blocks value network.
The original AlphaGo used 13 layers convolutional networks while AlphaGo Zero
uses either 20 or 40 residual blocks with 256 planes. Our self-play data is not as
high level as the self-play data of AlphaGo Zero. That may explain why deeper
networks make little difference.

Table 2 gives the evolution of the training losses of the two networks with
the number of epochs. One epoch is defined as 5 000 000 training examples. The
minibatch size is 50, so an epoch is composed of 100,000 training steps. We can
see in Table 2 that SAP (6,3,3) starts training with a smaller loss than α (9,256),
but that eventually the losses are close after 63 epochs.

Table 2. Evolution of the training loss of the value networks.

Epochs 1 3 7 15 31 63

α (9,256) 677 560 532 522 516 510

SAP (6,3,3) 654 554 530 521 515 511

We made the SAP (6,3,3) value network play fast games against the α (9,256)
value network. Both networks use the same policy network to evaluate priors and
the parameters of the PUCT search such as the PUCT constant were tuned for

Spatial Average Pooling for Computer Go 125

the α (9,256) value network. We found that a small PUCT constant of 0.3 is best,
this may be due to the quality of the policy network that implies less exploration
and more confidence in the value network since it directs the exploration toward
the good moves.

SAP (6,3,3) wins 70.0% of the time against the usual residual value network.
The size of the network file for SAP (6,3,3) is 28,530,177 while the size of the
network file for α (9,256) is 85,954,310. The training time for 100 minibatches is
6.0 seconds for SAP (6,3,3) while the training time for 100 minibatches is 12.5
seconds for α (9,256).

Using this network, Golois reached an 8d level on the KGS Go server running
on a 4 GPU machine with approximately 2 500 tree descents and 9 seconds
thinking time per move.

6 Conclusion

We have proposed the use of Spatial Average Pooling to improve a value network
for the game of Go. The value network using Spatial Average Pooling is much
smaller than the usual residual value network and has better results.

We have also detailed our parallel PUCT algorithm that makes use of the
GPU power by making forward passes on minibatches of states instead of a single
state.

The value network we have trained has multiple output neurons instead of
one as in usual networks It enables it to be used with different komi values and
therefore to play handicap games correctly. It is important for game play on
servers such as KGS where due to its 8d strength it plays handicap games most
of the time.

In future work we plan to use Spatial Average Pooling for the value head of
a combined value/policy network. We also plan to improve the search algorithm
and its parallelization [4–6].

References

1. Browne, C., et al.: A survey of Monte Carlo tree search methods. IEEE TCIAIG
4(1), 1–43 (2012)

2. Cazenave, T.: Improved policy networks for computer go. In: Winands, M.H.M.,
van den Herik, H.J., Kosters, W.A. (eds.) ACG 2017. LNCS, vol. 10664, pp. 90–100.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71649-7 8

3. Cazenave, T.: Residual networks for computer go. IEEE Trans. Games 10(1), 107–
110 (2018)

4. Cazenave, T., Jouandeau, N.: On the parallelization of UCT. In: Proceedings of
the Computer Games Workshop, pp. 93–101. Citeseer (2007)

5. Cazenave, T., Jouandeau, N.: A parallel Monte-Carlo tree search algorithm. In:
van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS,
vol. 5131, pp. 72–80. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-87608-3 7

https://doi.org/10.1007/978-3-319-71649-7_8
https://doi.org/10.1007/978-3-540-87608-3_7
https://doi.org/10.1007/978-3-540-87608-3_7

126 T. Cazenave

6. Chaslot, G.M.J.-B., Winands, M.H.M., van den Herik, H.J.: Parallel Monte-Carlo
tree search. In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG
2008. LNCS, vol. 5131, pp. 60–71. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-87608-3 6

7. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a matlab-like environment
for machine learning. In: BigLearn, NIPS Workshop, number EPFL-CONF-192376
(2011)

8. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS,
vol. 4630, pp. 72–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75538-8 7

9. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

10. Pascutto, G.-C.: Leela zero (2018). http://zero.sjeng.org/
11. Rosin, C.D.: Multi-armed bandits with episode context. Ann. Math. Artif. Intell.

61(3), 203–230 (2011)
12. Silver, D., et al.: Mastering the game of go with deep neural networks and tree

search. Nature 529(7587), 484–489 (2016)
13. Silver, D., et al.: Mastering chess and Shogi by self-play with a general reinforce-

ment learning algorithm. arXiv preprint arXiv:1712.01815 (2017)
14. Silver, D., et al.: Mastering the game of go without human knowledge. Nature

550(7676), 354 (2017)
15. Tian, Y., Gong, Q., Shang, W., Wu, Y., Zitnick, C.L.: Elf: an extensive, lightweight

and flexible research platform for real-time strategy games. In: Advances in Neural
Information Processing Systems, pp. 2656–2666 (2017)

16. Tian, Y., Ma, J., Gong, Q., Sengupta, S., Chen, Z., Zitnick, C.L.: ELF OpenGo
(2018). https://github.com/pytorch/ELF

17. Tian, Y., Zhu, Y.: Better computer go player with neural network and long-term
prediction. In: ICLR (2016)

18. Wu, T.-R., et al.: Multi-labelled value networks for computer go. arXiv e-prints,
May 2017

19. Yamaguchi, Y.: AQ (2018). https://github.com/ymgaq/AQ
20. Zeng, Q., Zhang, J., Zeng, Z., Li, Y., Chen, M., Liu, S.: Phoenixgo (2018). https://

github.com/Tencent/PhoenixGo

https://doi.org/10.1007/978-3-540-87608-3_6
https://doi.org/10.1007/978-3-540-87608-3_6
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/11871842_29
http://zero.sjeng.org/
http://arxiv.org/abs/1712.01815
https://github.com/pytorch/ELF
https://github.com/ymgaq/AQ
https://github.com/Tencent/PhoenixGo
https://github.com/Tencent/PhoenixGo

Analyzing the Impact of Knowledge and
Search in Monte Carlo Tree Search in Go

Farhad Haqiqat(B) and Martin Müller(B)

University of Alberta, Edmonton, AB T6G 2R3, Canada
{haqiqath,mmueller}@ualberta.ca

Abstract. Domain-specific knowledge plays a significant role in the suc-
cess of many Monte Carlo Tree Search (MCTS) programs. The details
of how knowledge affects MCTS are still not well understood. In this
paper, we focus on identifying the effects of different types of knowledge
on the behaviour of the Monte Carlo Tree Search algorithm, using the
game of Go as a case study. We measure the performance of each type of
knowledge, and of deeper search by using two main metrics: The move
prediction rate on games played by professional players, and the play-
ing strength of an implementation in the open source program Fuego.
We compare the result of these two evaluation methods in detail, in
order to understand how effective they are in fully understanding a pro-
gram’s behaviour. A feature-based approach refines our analysis tools,
and addresses some of the shortcomings of these two evaluation methods.
This approach allows us to interpret different components of knowledge
and deeper search in different phases of a game, and helps us to obtain
a deeper understanding of the role of knowledge and its relation with
search in the MCTS algorithm.

Keywords: MCTS · Go · Knowledge · Evaluation · Features

1 Introduction

Go programs achieved success first on small boards due to the power of Monte
Carlo Tree Search, and later on the full 19× 19 board due to the power of knowl-
edge encoded in the deep neural networks. The MCTS based program Fuego [1]
was the first program able to beat a top human professional player in Go on a
9× 9 size board in 2008 [8]. Fuego achieved this level of play by using a MCTS
algorithm enhanced by simple knowledge of features and patterns. Despite the
successes that programs had on the 9× 9 size board, the full 19× 19 size board
remained out of reach until recently, when AlphaGo [17,18] far exceeded the
human level of play. AlphaGo uses a variant of MCTS with a very strong knowl-
edge obtained through learning with Neural Networks (NN) in order to improve
the search in MCTS.

Many studies have focused on increasing the strength of knowledge and meth-
ods of incorporating knowledge in MCTS based programs [4–6,16,20]. In order
c© Springer Nature Switzerland AG 2019
T. Cazenave et al. (Eds.): CGW 2018, CCIS 1017, pp. 127–146, 2019.
https://doi.org/10.1007/978-3-030-24337-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24337-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-24337-1_7

128 F. Haqiqat and M. Müller

to examine the obtained knowledge and the resulting programs, move prediction
and playing strength are used as the most common evaluation methods. In this
paper we investigate each of these methods and the impact of knowledge on the
MCTS-based program Fuego.

In Sect. 2 first we briefly describe simple features. Then in Sect. 3 we introduce
playing strength and move prediction as evaluation methods. We then describe
the research motivations for this work in Sect. 4. Then in Sect. 5 we describe
the experiments and analysis of the obtained result. In Sect. 6 we describe the
conclusions and future work. This paper is a condensed version of the results in
the first author’s MSc thesis [12].

2 Knowledge and Simple Features

We define knowledge as information gained by training methods that helps a
program to act in an informed manner, and improves the performance of a player
when applied. One method of obtaining knowledge is by using features. Features
are properties of a game state or a move, which can reveal information about
that state or move. Examples of move features in Go are whether it captures
any stone, or creates a ko situation. Coulom [6] defined a set of simple move
features that were extensively used and extended by other programs. In order to
use simple features, we need to evaluate them. Fuego uses Latent Factor Ranking
(LFR) [16] as its evaluation and training method for simple features.

3 Evaluation Methods

3.1 Playing Strength

One method for testing knowledge is comparing playing strength with and with-
out the use of that knowledge. In this scenario we use knowledge either as a
standalone player or integrate it into an available program, and play a num-
ber of matches against other programs or another version of itself. If we know
the level of strength of the opponent, then we can estimate the strength of our
program from the obtained results by using the Elo rating formula [7]. If we
integrate knowledge in an existing program, then we can estimate the quality of
the knowledge by measuring the increase in playing strength resulting from the
added knowledge.

3.2 Move Prediction

Move prediction is the act of predicting the next move in a game that was played
before. To predict a move, we select a position from a game and feed that position
to the game-playing engine. Then we compare the response received with the
next move played in the game. Games played by professional players are one of
the main data sources for training knowledge in Go. In order to evaluate the
obtained knowledge move prediction is very often used.

Analyzing the Impact of Knowledge and Search in MCTS in Go 129

Coulom [6] reported a 34.9% prediction rate for his feature-based knowledge
learning technique. Wistuba et al. [16] were able to reach 40.9% prediction rate.
Xiao et al. [20] were able to improve Wistuba’s [16] method to increase the
prediction rate by 2%. Clark et al. [5] used deep neural networks to increase the
prediction rate to 44%. Soon after, Maddison et al. reached 55% with a deeper
and larger network [15]. The current state of art in move predictors are deep
residual networks [13]. Cazenave reports a 58% prediction rate with such an
approach [4]. In general, stronger knowledge has led to stronger play. We want
to measure whether in different Fuego-based players, increases in prediction rate
correspond with increased playing strength.

4 Research Motivations

The relation between knowledge and search in Go programs and how these two
impact each other is an area that still needs more study. Research motivations
for this work are as following: 1. Examine current evaluation approaches used in
Go programs, which are: move prediction and playing against another program.
Understand the differences between each of these tests and how they relate to
each other, 2. Evaluate the impact of knowledge on the performance of a Go
program, 3. How does longer and deeper search improve the strength of a MCTS
program, in the presence of knowledge?, and 4. Can this increased strength be
explained in terms of simple feature knowledge?

Many researchers have studied simulation policies in Go, focusing on move
prediction as an evaluation method, or comparing the strength of two programs
[10,14,19]. Xiao et al. [21] report both improved move prediction and playing
strength of Fuego after adding stronger knowledge; however, no insight is given
to what those changes in the evaluation mean. Fernando et al. [9] analyze the
Fuego simulation policy and the impact of changes to it. No analysis was done
on evaluation methods and interpretation of the effect of added knowledge. Our
current work is the first such analysis.

5 Experimental Results and Discussion

In this section we first we describe the players used in our experiments, then
provide the results. We explain those results, and use them to investigate our
research motivations.

5.1 Fuego-Based Players Used in Our Experiments

In our experiments we have used the following players from the Fuego code base.

Playout Policy-Only Player: this simple player uses only the playout policy of
Fuego for generating the next move in the game, and it does not use search. This
player helps us to understand the playout policy in Fuego better, and also helps

130 F. Haqiqat and M. Müller

us to measure different aspects of the playout policy, such as move prediction
and playing strength.

Simple Features-Only Player: here, we use the prior knowledge in Fuego as a
stand-alone player. The highest evaluated move according to features is played.
Having a features-only player helps us to understand how the knowledge encoded
in features compares to search, and it also helps to better evaluate feature knowl-
edge.
No Knowledge Player: in order to examine how knowledge helps the performance
of a player, we turn off prior knowledge and move filtering in Fuego. This player
uses only MCTS with the default Fuego playout policy. This player helps us
better understand the impact of search on a player’s move prediction and playing
strength.

No Additive Player: Fuego by default uses additive knowledge to help its in-tree
policy focus more on high-ranking moves. We turn off the additive knowledge in
this player, and rollback Fuego to use MCTS with the UCT method. This player
helps us to better understand the role of additive knowledge in Fuego.

Default MCTS-Based Fuego Player: we need to be able to compare the results
obtained by other players with full-strength Fuego. This player uses the full
Fuego engine with all default settings.

Varying the Number of Simulations: for the MCTS-based players No Knowledge,
No Additive and Default we vary the number of simulations in {100, 300, 1000,
3000, 10000}. This helps us to understand the impact of more search on different
players.

5.2 Move Prediction

For the move prediction task, we used games from Pro Game Collection [3]. In
total we used 4621 games, after removing games that were played on board sizes
other than 19× 19. Table 1 shows the results of the move prediction task on all
the positions from these games. The players are Fuego-based engines described
in Sect. 5.1. The move prediction rate is the fraction of positions for which the
professional move was predicted correctly. For the No Knowledge, No Additive,
and Default Fuego players the number in the name represents the number of
simulations per move used by that player. Figure 1 shows the prediction rate for
different number of simulations.

The Playout Policy-Only and Simple Features-Only players do not use Monte
Carlo simulations. Playout Policy-Only predicted less than 22% of professional
moves. Simple Features-Only has a much higher prediction rate of approximately
31%. Given the fact that neither of those two players uses MCTS, the gap sig-
nifies the role of the knowledge obtained through a large set of simple features
trained by machine learning methods in the Simple Features-Only player, com-
pared to the combination of fast rules and small patterns in the Playout Policy-
Only player.

Analyzing the Impact of Knowledge and Search in MCTS in Go 131

Fig. 1. Graph of move prediction rate.

Removing all knowledge has a big negative impact on the prediction rate
in MCTS. It drops the prediction rate to 12% in the No Knowledge player
with 100 simulations. Search compensates for the lack of knowledge to some
degree. With 10000 simulations, the prediction rate of the No Knowledge player
increases to over 21%. Nonetheless, this is still far below the move prediction rate
of any MCTS player utilizing knowledge. This shows the role of knowledge in
giving direction to MCTS toward nodes with better outlook, when the number
of simulations is limited.

The prediction rate of the No Additive player is between approximately 28%
and 33%. Up to 1000 simulations, increasing the number of simulations improves
the prediction rate; however, after that it starts to drop. When we compare the
results of a No Additive player to the Default MCTS-based player with the same
number of simulations, we observe a similar pattern in change of prediction rate.
The difference between prediction rates of the Default Fuego player and the
No Additive player for simulations between 100 to 10000 are: 0.0015, 0.0024,
0.0061, 0.0139, 0.0178. This shows that as the number of simulations grows,
additive knowledge slows down the drop of prediction rate in the Default Fuego
player, and biases the selection policy in MCTS more towards professional player
moves. This widening gap can also be observed in Fig. 1.

Given the obtained results several new questions arise:

– Is there any difference in strength between players with similar prediction
rate?

– What role does the number of simulations play in players strength vs predic-
tion rate?

– Why does the prediction rate for No Additive and Default MCTS players
start to drop?

132 F. Haqiqat and M. Müller

In order to start investigating these questions, we conducted two experiments.
The first experiment measures the playing strength of players against each other.
The second measures the move prediction rate in different stages of the games.

5.3 Playing Strength

In order to answer the first two questions in Sect. 5.2, we created a round robin
tournament between all the 11 players described in Sect. 5.1. Each round consists
of 100 games between two players, with each player playing Black 50 times.
All players except the Simple Features-Only player use randomization, which
resulted in not having any duplicated games. We used GoGui [2] to perform
the tournament. We selected some interesting results from this tournament and
reported those in Fig. 2.

Fig. 2. Result of 100 game matches between pairs of players.

Default MCTS-Based Fuego vs No Additive Player. This compares the
experiments with same number of simulations between the No Additive and
default MCTS-based Fuego player. Increasing simulations does not change the
balance of strength between these two settings, and removing additive knowl-
edge had minimal impact on playing strength. This is consistent with what we
observed in the move prediction task. It can be concluded from the result that
these two players have almost the same playing strength against each other when
using the same number of simulations.

Analyzing the Impact of Knowledge and Search in MCTS in Go 133

No Knowledge vs Other MCTS-Based Players. The playing strength
of the No Knowledge player decreases most of the time against an opponent
with the same number of simulations as the number of simulations increases.
The role of knowledge becomes more important as a player’s strength increases.
Knowledge helps a player to avoid crucial mistakes in a game, where a stronger
opponent can better exploit those mistakes. While it seems that more search
should compensate for lack of knowledge, there are two reasons that we do not
see that effect in this group of experiments. First, the opponent also benefits from
an increased number of simulations. Second, in a player that uses the knowledge,
increasing the number of simulations leads to more visits of promising moves
that the knowledge picks. This enables the player to examine these moves more
deeply, and pick the best among them. The No Knowledge player is less focused
and needs more simulations to achieve the same effect.

Varying Number of Simulations, 300 vs 100. As expected from previous
experience with MCTS-based engines, we can see that in every case, a 3x increase
in number of simulations leads to a huge difference in playing strength. This is in
sharp contrast to the move prediction task in Table 1, where the difference was
small and sometimes even negative. This shows that using the move prediction
rate as a measure to examine a player is not as informative as we expected it
to be. There remain aspects of a player which strongly affect its comparative
strength against another player, which move prediction is unable to reveal.

No Additive vs Other MCTS-Based Players. In these experiments, remov-
ing the additive term has limited impact on playing strength. The biggest change
in playing strength between the No Additive and Default Fuego player is in 300
simulations, where Default Fuego player won 55% of games. Removing feature
knowledge decreases the playing strength by a huge margin, with win-rates of
only 7–17% for the No Knowledge player.

Simple Features-Only vs No Knowledge Players. This scaling experiment
shows how much search is needed to reach and surpass Simple Feature knowl-
edge. With 100 simulations, the No Knowledge player is weaker than feature
knowledge: it loses 67 games. With 300 simulations, the No knowledge player
surpasses the strength of the Simple Features-Only player, and with 1000 simu-
lations the No Knowledge player is much stronger, winning 98 of 100 games.

5.4 A Closer Look at Move Prediction Rate

In Sect. 5.2 of the previous experiment, surprisingly the move prediction rate did
not show any major difference between Default Fuego and the No additive player
when the number of simulations was varied between 100 to 1000, while Sect. 5.3
showed undeniable differences in strength between those players. We also want to
understand why the prediction rate starts to drop after 3000 simulations in the

134 F. Haqiqat and M. Müller

Default MCTS-based and No Additive players. In this experiment, we study the
effect of the game phase. We divide a game into six intervals from the opening
to the endgame, and measure the prediction accuracy of each player separately
for each interval. We created six intervals of 50 moves each, corresponding to
move 0 to move 300. Because of the limited number of available samples after
move 300 we ignored those final small endgame moves.

Figure 3 shows the move prediction accuracy per interval for Default Fuego
with 100 and 1000 simulations, and for No Additive with 100 and 1000 sim-
ulations. While Table 1 showed no noticeable difference between 100 and 1000
simulations, Fig. 3 shows that for the first 200 moves there is a major difference
in both Default Fuego and No Additive players, with a higher prediction rate for
the 1000 simulation player. This difference fades from moves 200–250 and turns
to the opposite for moves 251–300.

Figure 4 shows the prediction accuracy for experiments where we saw the
drop of prediction rate with 3000 and 10000 simulations for No Additive and
Default Fuego. We added the 300 simulation players as a baseline. In the open-
ing, the prediction rate for the Default Fuego players increases with number of
simulations, and for No Additive players remains very similar for the first 50
moves. From the second interval to the last, the prediction rate of the 300 simu-
lation players sharply increases. For the 3000 simulation players this increase is
more moderate. In the 10000 simulation players we observe a drop of prediction
rates for the first 250 moves, and then a slight rebound.

To explain the lower prediction rate in the late endgame in players using more
simulations, we need to look at how the selection policy in MCTS works. In a
game when one player’s winning probability is very high, there are many moves
that still result in that player winning, while being sub-optimal in terms of score.
The selection policy in Fuego maximizes winning probability, not score. After 200
moves, the winner of most of the games can be predicted with high confidence.
Fuego chooses a “safest” move according to its noisy simulations. Professional
players will not usually select such point-losing “safe” moves. Another reason
lies in the impact of knowledge on players with fewer simulations. Knowledge
is used to initialize the value of a node in the Monte Carlo tree. When the
number of simulations is still small, this initialization plays a major role in
MCTS search. Since it is based on features learned from professional games,
it biases the search toward professional moves. As the number of simulations
grows, its impact diminishes.

5.5 Move Prediction and Feature Frequency

Since the move prediction rate alone does not explain the difference in playing
strength, we try to find other differentiating factors between various players by
focusing on features. Features play a major role in the success of a player. Even
modern neural networks can be seen as a function that is built upon a complex
set of features computed in its nodes. In order to understand the significance
of different features, we use frequency of features, and we report the most fre-
quent features for each experiment. We count the number of times each feature

Analyzing the Impact of Knowledge and Search in MCTS in Go 135

1 2 3 4 5 6

10

20

30

40

Fig. 3. Move prediction accuracy per game phase for 100 and 1000 simulation players.
Each group has 50 moves.

1 2 3 4 5 6

30

35

40

Fig. 4. Move prediction accuracy per game phase for 300, 3000 ad 10000 simulation
players. Each group has 50 moves.

136 F. Haqiqat and M. Müller

is present in professional players’ moves throughout the game records to identify
frequency of features. We also record the same features over the moves gener-
ated by our computer-based players. Our goal is to gain insight on how players
differ. In each experiment, we count the number of times each feature exists in
the moves generated by one player. The result is a table of features with their
significance for the move prediction task.

We selected three baselines to analyze the results obtained from our compar-
ison. The first baseline is the frequency of features in all legal moves for every
position in all the professional games. The second one is the frequency of all
features in professional moves throughout all game records. The last baseline is
the frequency of features in the professional move which do not get any attention
from our player. In order to determine these moves, we record the number of
simulations allocated by Default Fuego for each professional move in each game
position. If the number of simulation for the professional move is less than 1%
of the move chosen by Default Fuego, that move is marked as a professional
move low with simulation count and its features are recorded. Figure 5 shows
the graphs for these baselines.

The two most prominent features in Fig. 5a are 117 and 122. They represent
a distance of 4 or more to the block of the last opponent stone and to the
block of the last own stone respectively. Their frequency is more than 85% over
all legal moves for each position. This is not surprising due to the size of the
19× 19 board, and the distribution of legal moves in each position. The next
two prominent features are 25 (moves on line 5 and upward) and 21 (moves on
the first line). While moves on line 5 and upward cover 1.68 times the area of
moves on the first line, they only happen 1.25 times more in the legal moves.
Comparing the frequency of these two features reveals that positions on the first
line of the board remain empty longer than other points in professional games.

Figure 5b shows features of professional players moves. Feature 176 (distance
2 to closest opponent stone) is true for 62% of professional moves and feature
177 (distance 3 to closest opponent stone) in 22%. In total 85% of professional
moves are in close proximity to opponent stones. Feature 157 and 158 (distance
2 and 3 to closest own stone) together cover almost 80% of professional moves,
showing that professionals play close to their own stones as well.

As in Fig. 5a, in Fig. 5c prominent features of professional moves missed by
Fuego are 122 and 117 with frequency of 68% and 60%. This shows that moves
that usually get ignored by Fuego are non-local responses to the opponent, or
“tenuki” moves that change the area of play.

Impact of More Simulations. Figure 6 shows the difference in feature fre-
quency of moves generated by default Fuego with 3000 and 100 simulations. The
main difference is in features 117 and 122 which indicate changing the area of
play, “tenuki”. Feature 25 (play on line number 5 and up) is another example
of the impact of more simulations on the area of play. We saw that this is one
of the prominent features of professional players moves. These results show that

Analyzing the Impact of Knowledge and Search in MCTS in Go 137

Fig. 5. Feature counts of baselines.

the player with more simulations can find centre and tenuki moves more often,
and becomes more similar to how professional players play in these situations.

Impact of the Additive Term. Figures 7a and b show the differences between
the default Fuego player and the No additive player with 3000 simulations. In
Fig. 7a, features 157 and 176 are for playing in distance of 2 to the closest own
stone and opponent colour respectively. They happen 6% and 4% more in the
default Fuego player which benefits from the additive term. This shows that
additive knowledge encourages playing close to previous stones. Feature 64 also
happens 3% more in the player using the additive term. This feature is for 3× 3
patterns used in the simulations policy. This is an expected behaviour as the
additive knowledge uses a local shape pattern to evaluate each move. Other
features in Fig. 7a have a very low frequency.

138 F. Haqiqat and M. Müller

Fig. 6. Top 10 differences between features count of default Fuego player with 3000
simulations and 100 simulations.

The No Additive player plays more often in empty areas of the board (feature
2153, 3× 3 empty pattern), and far from all other stones, features 117, 122 and
160 (distance 5 to closest own stone).

Impact of Simple Feature Knowledge with Increasing Number of Sim-
ulations. By comparing Figs. 8a and b and 8c and d we can understand the
impact of simple feature knowledge. Features 26 (distance 2 to last opponent
stone), 64 and 114 (distance 1 to block of last opponent stone) are more present
in the player with knowledge, while in Fig. 8b features 117 and 122 occur up to
42% more in the No Knowledge player. This shows that the No Knowledge player
with low number of simulations plays more randomly in all areas of the board
without any attention to the last own or opponent move, while the player with
knowledge responds locally to those moves more often.

As the number of simulations grows, we still observe in Figs. 8c and d the same
difference in style of play from default Fuego and the No Knowledge player. This
gap, however, narrows to half with consistency in relative frequency of features to
each other. To some degree more simulations compensate for the lack of knowledge
in the No Knowledge player, as we already observed in the move prediction task;
however, more simulations are not able to completely close the gap.

Features of Professional Moves. We ran another experiment to understand
why some professional moves are ignored in Fuego. We compared the statistics
of the default Fuego moves to the professional moves with low simulations in
Fig. 9. This helps to understand what kind of moves professional players make
that Fuego does not consider, and how often those moves happen. In Fig. 9a,
features 114, 115, 119, 157, 176 are all for moves with distance of 1 or 2 to the
own or opponent stones. This signifies the higher degree of locality of play in
Fuego versus professional players. Also 3× 3 simulation policy patterns (feature
64) occur 35% more in the default Fuego moves than in professional moves with
low number of simulations, showing that many professional moves do not follow

Analyzing the Impact of Knowledge and Search in MCTS in Go 139

Fig. 7. Difference between feature counts of default Fuego and No Additive player
when both players use 3000 simulations.

Fig. 8. Difference between feature counts of default Fuego and No Knowledge player.

140 F. Haqiqat and M. Müller

Fig. 9. Difference between feature counts of default Fuego with 3000 simulations moves
and professional moves.

traditional 3× 3 patterns as described in [11]. Looking at Fig. 9b, features 117,
122, 159, 160, 161, 178, 179 are all for moves with distance of 4 or more to stones
of either colour and feature 2153 is for the empty 3× 3 square. These features
happen up to 24% more in professional moves that received a very low number
of simulations from Fuego. This shows that Fuego systematically likes to play
locally, and moves with longer distance to the last own or opponent stone are
not appealing to the program.

Feature differences in Figs. 9c and d between the default Fuego moves and
all professional moves have similar feature differences to Figs. 9a and b, but with
different magnitude. First the magnitude of difference is much lower in Figs. 9c
and d. The other difference is that the most differentiating factor for the default
Fuego player is that it plays 12% more in distance 2 of opponent stones (feature
176) than professional players. Professional moves still occur more in distance
of 3 or more (features 116, 159, 160, 177, 178 and 179) to other stones, but the
gap to Fuego is smaller.

Analyzing the Impact of Knowledge and Search in MCTS in Go 141

5.6 Move Selection Analysis

The next experiment helps us to understand under what circumstances a player
can predict a professional move, while at other times it can not. We created an
experiment to measure the number of simulations relative to the initial weight
of a move. The results of this experiment are reported in Fig. 10.

For the Y-axis of Fig. 10 we measured two different cases. In the first case,
we measured the number of simulations sims,a for move a in state s relative to
the total number of simulations for state s in the professional game: sims,a

Σisims,i
.

For the second case, we measured the relative number of simulations sims,a for
move a in state s to the number of simulation sims,b for move b in state s: sims,a

sims,b
.

The Y-axis of Figs. 10a to d use the first case. For Figs. 10a and b, move a is the
move selected by default Fuego, and for Figs. 10c and d it is the move selected
by the professional player. The Y-axis of Figs. 10e and f uses the second case.
Move a is the move selected by the professional player and move b is the move
selected by default Fuego.

The X-axis of Fig. 10 has two different formats. In the first one, we use the
initial weight ws,a of move a in state s of the professional game. For the second
case, we compute the maximum weight ws,max for the state s, then compute the
relative weight of move a to the maximum weight ws,a

ws,max
. Since the weight of

a move can be negative, we normalize the relative value by a sigmoid function
sig(wa)

sig(wmax) . The X-axis of Figs. 10a, c and e uses the first format. The X-axis of
Figs. 10b, d and f uses the second format. Move a is selected by default Fuego
in Figs. 10a and b, and by professional players in Figs. 10c and f.

In order to understand the distribution of simulations, we created Fig. 11a.
It represents the relation between the weight of the feature for a move selected
by default Fuego and the percent of simulations that move has received. Most of
the moves selected by default Fuego have the majority of the simulations. Moves
with higher initial weights receive almost 100% of simulations. Moves selected
by Fuego have different ranges of weights from low to high. However, Fig. 10b
shows that even moves with low weights have weights close to the maximum
weight of that position, and most of the times are the maximum weight.

Figure 10c shows that professional players moves most of the time either
received the maximum number of simulations, or received close to zero. Moves
that have an in-between number of simulations make up a smaller portion of
professional moves. Figure 10d better illustrates this point. Figure 11b shows
that for professional moves to get the attention of Fuego, they need to have
higher evaluation by simple features.

We also compared the number of simulations for the professional moves and
the moves selected by default Fuego. Figure 10e shows that very often the move
played by professionals is the same as the Fuego move. However, if they dif-
fer, the chances of the professional move having a large number of simulations is
low. Most of the time, it has less than 20% compared to Fuego’s move. Figure 10f
plots the relative number of simulations and the relative heuristic weight of the
professional move to the move selected by default Fuego. The ratio of simulations

142 F. Haqiqat and M. Müller

Fig. 10. Comparison between number of simulations for initial feature weight.

Analyzing the Impact of Knowledge and Search in MCTS in Go 143

Fig. 11. Percent of average number of simulations for buckets of initial weights.

drops sharply as the relative weight of the professional player’s move decreases.
For professional moves that have a ratio of less than 0.9, their number of simu-
lations is near zero most of the time. Less than 7% of professional moves have
both higher weight than the move selected by Fuego, and fewer simulations.

This experiment showed us the importance of simple feature initialization on
the number of simulations a move receives. Fuego gives professional moves more
simulations if they have high evaluation by simple features and ignores them if
their simple feature evaluation is low.

The move selected by Fuego does not need to have high evaluation as seen
in Fig. 10a. It just needs to have an evaluation close to the maximum move
evaluation of that position. This can be observed in Fig. 10b. We also observed
in Figs. 10d and e how professional moves either receive close to the maximum
number of simulations or close to zero.

6 Conclusions and Future Work

In this work we investigated two popular evaluation methods: move prediction
and playing strength, and how they relate to each other. We noticed that move
prediction did not reveal important aspects of a player, and there remain many
details that an aggregated move prediction percentage can not express. Players
with similar move prediction rate can have very different playing strengths.

We used a playing strength experiment to understand the impact of the fol-
lowing concepts in MCTS: additive knowledge, simple feature knowledge, num-
ber of simulations, and playout policy. The additive term has a very small impact
on playing strength. Removing feature knowledge has a massive negative impact
on playing strength which only increases with more search.

144 F. Haqiqat and M. Müller

We analyzed the move prediction rate in several game stages in order to
capture differences between the players. With more search, the move prediction
rate drops near the end of a game, due to “safe” move selection in MCTS.

To find more differentiating factors between players, we examined feature
frequencies in the move prediction task for different players. We were able to find
features that differ remarkably between players, which can be used to define their
behaviour. We also found relations between the evaluation of feature knowledge
and the number of simulations a move receives.

For future work, we want to extend the study by including neural network-
based players and extending the experiments to understand the impacts of a
neural network in detail. Another promising extension of this work is trying to
understand neural networks in terms of both simple features and move predic-
tion, in order to find an interpretation of their behaviour with known features
of the Go game.

Acknowledgement. Financial support was provided by NSERC, The Natural Sci-
ences and Engineering Research Council of Canada.

A Detailed Move Prediction Results

Table 1. Result of move prediction for players based on Fuego.

Experiment Accuracy

Playout policy-only 0.2160

Simple features-only 0.3066

No knowledge 100 0.1212

No knowledge 300 0.1486

No knowledge 1000 0.1767

No knowledge 3000 0.1976

No knowledge 10000 0.2125

No additive 100 0.3209

No additive 300 0.3269

No additive 1000 0.3281

No additive 3000 0.3074

No additive 10000 0.2811

Default 100 0.3224

Default 300 0.3293

Default 1000 0.3342

Default 3000 0.3213

Default 10000 0.2989

Analyzing the Impact of Knowledge and Search in MCTS in Go 145

References

1. Fuego Source Code. http://fuego.sourceforge.net, SVN revision 2032. Accessed 16
Aug 2016

2. GoGui Project. https://sourceforge.net/projects/gogui/. Accessed 14 Dec 2016
3. Professional Games. https://badukmovies.com/pro games. Accessed 02 Nov 2016
4. Cazenave, T.: Residual networks for computer Go. IEEE Trans. Games 10(1),

107–110 (2018)
5. Clark, C., Storkey, A.: Training deep convolutional neural networks to play Go. In:

International Conference on Machine Learning, pp. 1766–1774 (2015)
6. Coulom, R.: Computing Elo ratings of move patterns in the game of Go. In: van den

Herik, H.J., Winands, M., Uiterwijk, J., Schadd, M. (eds.) Computer Games Work-
shop, Amsterdam, Netherlands, June 2007

7. Elo, A.E.: The Rating of Chessplayers, Past and Present. Arco Publishing, New
York (1978)

8. Enzenberger, M., Müller, M., Arneson, B., Segal, R.: Fuego an open-source frame-
work for board games and Go engine based on Monte Carlo tree search. IEEE
Trans. Comput. Intell. AI Games 2(4), 259–270 (2010)

9. Fernando, S., Müller, M.: Analyzing simulations in Monte Carlo tree search for the
game of Go. In: Computers and Games - 8th International Conference, CG 2013,
Yokohama, Japan, 13–15 August 2013, Revised Selected Papers, pp. 72–83 (2013)

10. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Proceed-
ings of the 24th International Conference on Machine Learning, pp. 273–280. ACM
(2007)

11. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with patterns
in Monte Carlo Go (2006)

12. Haqiqat, F.: Analyzing the impact of knowledge and search in Monte Carlo tree
search in Go. Master’s thesis, University of Alberta (2018)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

14. Huang, S.-C., Coulom, R., Lin, S.-S.: Monte-Carlo simulation balancing in practice.
In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2010. LNCS, vol. 6515, pp.
81–92. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17928-0 8

15. Maddison, C.J., Huang, A., Sutskever, I., Silver, D.: Move evaluation in Go using
deep convolutional neural networks. International Conference on Learning Repre-
sentations. arXiv preprint arXiv:1412.6564 (2014)

16. Wistuba, M., Schmidt-Thieme, L.: Move prediction in Go – modelling feature
interactions using latent factors. In: Timm, I.J., Thimm, M. (eds.) KI 2013. LNCS
(LNAI), vol. 8077, pp. 260–271. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40942-4 23

17. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

18. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature
550(7676), 354–359 (2017)

19. Silver, D., Tesauro, G.: Monte Carlo simulation balancing. In: Proceedings of the
26th Annual International Conference on Machine Learning, ICML 2009, pp. 945–
952. ACM, New York (2009)

http://fuego.sourceforge.net
https://sourceforge.net/projects/gogui/
https://badukmovies.com/pro_games
https://doi.org/10.1007/978-3-642-17928-0_8
http://arxiv.org/abs/1412.6564
https://doi.org/10.1007/978-3-642-40942-4_23
https://doi.org/10.1007/978-3-642-40942-4_23

146 F. Haqiqat and M. Müller

20. Xiao, C., Müller, M.: Factorization ranking model for move prediction in the game
of Go. In: AAAI, pp. 1359–1365 (2016)

21. Xiao, C., Müller, M.: Integrating factorization ranked features in MCTS: an exper-
imental study. In: Cazenave, T., Winands, M.H.M., Edelkamp, S., Schiffel, S.,
Thielscher, M., Togelius, J. (eds.) CGW/GIGA -2016. CCIS, vol. 705, pp. 34–43.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57969-6 3

https://doi.org/10.1007/978-3-319-57969-6_3

What’s in a Game? The Effect of Game
Complexity on Deep Reinforcement

Learning

Erdem Emekligil(B) and Ethem Alpaydın

Department of Computer Engineering, Boğaziçi University, 34342 Istanbul, Turkey
{erdem.emekligil,alpaydin}@boun.edu.tr

Abstract. Deep Reinforcement Learning (DRL) combines deep neural
networks with reinforcement learning. These methods, unlike their prede-
cessors, learn end-to-end by extracting high-dimensional representations
from raw sensory data to directly predict the actions. DRL methods were
shown to master most of the ATARI games, beating humans in a good
number of them, using the same algorithm, network architecture and
hyper-parameters. However, why DRL works on some games better than
others has not been fully investigated. In this paper, we propose that
the complexity of each game is defined by a number of factors (the size
of the search space, existence/absence of enemies, existence/absence of
intermediate reward, and so on) and we posit that how fast and well a
game is learned by DRL depends on these factors. Towards this aim, we
use simplified Maze and Pacman environments and we conduct experi-
ments to see the effect of such factors on the convergence of DRL. Our
results provide a first step in a better understanding of how DRL works
and as such will be informative in the future in determining scenarios
where DRL can be applied effectively e.g., outside of games.

Keywords: Deep reinforcement learning · Computer games

1 Introduction

In their seminal work, Mnih et al. [10] show that a Deep Q-learning Network
(DQN) can learn to play ATARI 2600 games end-to-end. The neural network
takes the raw screen image as input, which it processes through a number of
layers (first convolutional, then fully-connected), and its output units directly
control the actions of the joystick. They show that DQN needs no fine-tuning
for each task and that using the same learning algorithm, network architecture
and hyper-parameters, any one of the 49 games can be learned.

They report that DQN “outperforms competing methods in almost all the
games, and performs at a level that is broadly compatible with or superior to a
professional human games tester in the majority of games.” They also note that
“the games in which DQN excels are extremely varied in their nature,” but that

c© Springer Nature Switzerland AG 2019
T. Cazenave et al. (Eds.): CGW 2018, CCIS 1017, pp. 147–163, 2019.
https://doi.org/10.1007/978-3-030-24337-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24337-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-24337-1_8

148 E. Emekligil and E. Alpaydın

“games demanding more temporally extended planning strategies still constitute
a major challenge.”

Our main idea in this paper is that there are factors that define the com-
plexity of a game and that games that may appear different at first glance may
actually be similar in terms of such abstract factors, or vice versa. For instance,
whether the player is the only agent or if there are other agents, possibly hostile,
that can act is such a factor. We assume not only that there are such factors but
also that the speed a game is learned, e.g., by DQN, depends on these factors.

In this work, we are going to take the DQN as it is and test it on a number
of settings where we vary such factors. It should be noted here that our aim is
not to understand how DQN learns a particular task (game) or what its hidden
units or layers are doing to handle that task, but rather we take the totality of
DQN (the network, learning algorithm, and hyper-parameters) as a black-box
and want to see what type of task attributes affect DQN’s performance and how.
The settings we use is simple by design so that we can easily observe the effect
of changes on DQN’s convergence. We believe that such a study is informative
in understanding where and how DQN, or similar approaches, can best be used,
and finding out such abstract factors that define a learning task and how such
factors effect learning will especially be useful when we want to use models like
DQN outside of the game-playing domain.

2 Background

The DQN takes four consecutive screen images as input which it processes by
three convolutional and then two fully-connected layers with a final output layer
where there is one output for each valid joystick action. Q-learning is used to
update the network weights, with experience replay to randomize over data. We
do not discuss DQN any further here; the interested reader is referred to [10].

Since then, the related literature can be divided into two, as work where DQN
is generalized for other tasks, and works that strive to improve the performance
of DQN.

As examples of the first, Levine et al. [7] use supervised learning before
reinforcement learning for more complex tasks. Similarly in AlphaGo, Silver
et al. [14] take advantage of supervised data to initially train a network that
evaluates the Go board. They combine Monte Carlo tree search with a DQN
variant to create an agent that is able to beat the human player with the second
best Elo rating at the time. AlphaGo Zero [16] goes one step further and is
trained without any supervised data, and is able to beat AlphaGo. Alpha Zero
[15], which is the generalized version of AlphaGo Zero, learns to play Shogi
and Chess better than the best computer programs for each game. DQN is also
used outside of the domain of game-playing; for example, a version with 1D
convolution is used for simulating animal movements [12]. It is also altered for
control tasks such as cart-pole, locomotion and car driving problems by using
deep function approximators [8].

What’s in a Game? 149

As improvements to DQN, Double-DQN (DDQN) uses a backup network
as the target action value function [5]. The actual network is used for select-
ing the action with the maximum value whereas the target network is used for
estimating that action’s value. Instead of random picks in experience replay,
Schaul et al. [13] define different methods to prioritize the picks from replay
memory and show that prioritizing achieve major improvements. Wang et al.
[17] introduce a new architecture that combines a state value function and
an action advantage function. DQN is also adapted to work on distributed
[11] and multi-core CPU systems [9] using actor-critic (A3C) methods with
LSTMs. Unlike previous methods, Distributional DQN [2] can distinguish risky
actions and the Rainbow method [6] unites six previous developments over DQN
and show that these different methods achieve better results when they are
combined.

3 Factors that Define a Game

It is our contention in this paper that games that seem very different at first
glance may be very similar at a more abstract level and beyond their immediate
facade, games can be defined in terms of a number of factors, and furthermore
it is these factors that define the complexity of a game and the best strategy to
play it well.

There is previous work on the various characteristics of games and how they
effect playability, by humans and AI programs; see the book by Elias et al. [4].
Anderson et al. [1] compare performances of several tree-based search algorithms
such as MinMax, MCTS and A* on seven different games that they have created.
Yannakakis et al. [18] define five different factors based on [4] and explain their
effects on AI methods:

– Number of players. Is the game played by a single player or multiple players,
or does a single player play with/against computer controlled enemy units?

– Stochasticity. Does the outcome of the game determined only by the player?
– Time granularity. Is the game turn-based or real-time?
– Observability. Is the game partially observable or the player has perfect infor-

mation?
– Action space size. The number of the actions the player can take.

In our case, we take DQN as the game-learner and consider games that can
be learned by DQN, similar to the ATARI 2600 games, where we can define and
test the effect of such factors.

We start by clustering the ATARI 2600 games according to how DQN learns
them. We run DQN on 45 games and for each we record the convergence of DQN
in terms average game scores. We then use dynamic time-warping (DTW) [3]
to measure the distance between vectors of different lengths, each normalized
between 0 and 1, since each game runs for a different number of epochs. The
dendrogram achieved using average-linkage hierarchical clustering is shwown in
Fig. 1, with convergence plots of some example games.

150 E. Emekligil and E. Alpaydın

Fig. 1. Hierarchical clustering results of ATARI games, and the convergence of DQN
on some example games.

Games whose convergence plots are similar are placed nearby in the tree
and for certain cases, we can see that actually they correlate with similarities
between the games.

For example, Ms Pacman and Alien, connected early on, are very similar
both in terms of how DQN learns them and also in terms of how they are
played. They are similar in many aspects such as actions, objective, rewards and
so on; in both games, the agent tries to collect as many reward (food items)
as possible without getting caught by the enemy and both have power-up units
that temporarily give the ability to destroy opponents. Interestingly, Bank Heist
looks similar to these but in Bank Heist, instead of power-up, the agent can
counter enemies by bombs which changes the strategy. This difference changes
the convergence of DQN and this explains the distance of Bank Heist to Ms
Pacman and Alien on the tree.

Wizard of Wor and Alien are games that look very similar visually, but they
are played differently and hence the convergence behavior of DQN is different
and they are very distant in the dendrogram despite their visual similarity. River
Raid and Venture are two games on which DQN fails and that is why they are
on the same cluster. In Zaxxon and Robotank, the agent controls an airplane,
a tank and the main objective is survival whether from an airplane or a tank
crash. The games look similar, are played similarly and DQN convergence curves
on them are similar and that is why they are not far from each other on the
dendrogram.

What’s in a Game? 151

(a) 8× 8 maze (b) 12× 12 maze (c) 16× 16 maze

Fig. 2. Example mazes of different sizes with outer walls (black), the target (dark gray)
and the agent (light gray).

4 Maze Experiments

In this simple Maze task, the objective of the agent is to get to the stationary
target by moving one square, horizontally or vertically, in each step. The position
of the agent and the target are randomly chosen in each episode and a score of
100 is awarded when the agent reaches the target before the maximum number
of allowed moves ((Width + Height) ∗ 10).

In our experiments, we keep the original DQN network, learning algorithm,
and hyper-parameters of [10]1 and test it first on a maze. The only parameter
changed is the decay rate ε, which is adapted to the complexity of the maze
by setting it to its minimal value that allows convergence. Since our generated
mazes are much smaller, they are stretched to fit 84 × 84; the mazes contain the
outer walls so the actual playable area is one less on all four sides. Each agent
is evaluated after every 250,000 training frames for 125,000 test frames and the
average episode score is plotted.

4.1 The Effect of the Size of the Search Space

We start by testing the effect of the maze size, which is an indication of the
search space: A larger maze requires longer sequences of actions. We use mazes
of 8 × 8, 12 × 12 and 16 × 16. A maze contains only the outer walls, the agent
and the target. The walls are colored white, the target is dark gray, the agent is
light gray. The background is black (encoded as 0) to help the network to learn
faster (see Fig. 2; the colors are inverted to save from ink). We did five runs
with different random seeds and plot the one that best represents the average
behavior.

Because increasing the maze size increases the average number of actions
required to get to the goal, as expected, and as we see in Fig. 3, the number of
training epochs it takes for DQN to converge also increases.

1 We expand and use Nathan Sprague’s replication: https://github.com/spragunr/
deep q rl.

https://github.com/spragunr/deep_q_rl
https://github.com/spragunr/deep_q_rl

152 E. Emekligil and E. Alpaydın

Fig. 3. Convergence of DQN as a function of maze size. As expected, larger mazes take
longer to learn.

(a) Maze with a hori-
zontal wall

(b) Maze with a verti-
cal wall

(c) Maze with two
walls

Fig. 4. Example 12 × 12 mazes.

4.2 The Effect of Obstacles

The complexity of the path to solve the maze can be increased by adding obsta-
cles. The agent cannot just take any path to the goal but needs to recognize
and avoid the obstacles. In our experiments, we simulate this by a wall with a
single gate. The positions of agent and target, as well as the location of the gate
and the wall orientation are also randomly assigned in each episode. To make
the task more complex, we also experimented with two intersecting walls that
divide the maze into four playable areas connected by three randomly located
gates. Randomly generated examples are shown in Fig. 4.

We trained DQN on these three setups with different obstacle structures
(no wall, one wall, two walls) and three different sizes just like in the previous
experiment. In Fig. 5, we see that because adding walls increases the path com-
plexity and consequently the number of actions to achieve the goal, convergence
of DQN is much slower needing more training iterations; with larger mazes, the
differences get larger.

What’s in a Game? 153

Fig. 5. Convergence of DQN as a function of maze sizes and wall structures. With
more obstacles, learning gets slower.

4.3 The Effect of Hostile Agents

If the game-player is not the only agent that can change the environment, the
presence and actions of other agents make the task harder. In our maze exper-
iments, we added stationary unit-sized enemies that ends the game on contact
(without any reward), to test if the network can learn to recognize and avoid
them efficiently. As shown in Fig. 6, a different gray level is chosen to encode

154 E. Emekligil and E. Alpaydın

Fig. 6. A 12× 12 sample maze with outer walls (black), a target (dark gray), an agent
(light gray) and four enemies (medium gray).

Fig. 7. Convergence of DQN as a function of maze size and the number of enemies. It
is whether there is any enemy or not, rather than the number of enemies, that slows
down learning.

What’s in a Game? 155

(a) Maze with 1×1 in-
termediate reward

(b) Maze with 1×3 in-
termediate reward

(c) Maze with 3×3 in-
termediate reward

Fig. 8. 12 × 12 mazes with different sizes of intermediate rewards.

the enemy, and the locations of these enemy units are chosen randomly in each
episode.

Our results are given in Fig. 7, where we see that the presence of an enemy
makes the task harder to learn, regardless of maze size. The number of enemies,
as long as it is nonzero, does not seem to have a drastic effect. Plots with 2,
3, 4 enemies seem to be clustered together for mazes of 8 × 8 and 12 × 12; for
the maze of 16 × 16, we believe that the variability is due to chance. Once DQN
learns to recognize an enemy and how to avoid it, and it is enough to do enough
episodes with a single enemy for that, DQN can then recognize and avoid any
number of enemies that it later encounters.

4.4 The Effect of Intermediate Reward

In most games, the reward is given not only at the end but also at some special
intermediate state, such as destroying an enemy unit or passing through a check-
point. Such an intermediate reward is useful in hinting the learning agent that
it is on the correct path to the goal. In our maze experiments, we implement
this in the case with one wall with a gate and by giving a reward of 10 as an
intermediate reward upon reaching the gate. Afterwards, if the agent achieves
its goal an additional 90 points is given to get the same total of 100.

In this experiment, we use different sized mazes all having one wall. The
target and agent locations are forced to be on different sides of the wall (this was
not forced in previous experiments) and the intermediate reward area is given in
a different color, close to white. We tested using different sizes of intermediate
reward areas to check if extending the reward area increases the learning speed
(see Fig. 8).

As we can see in Fig. 9, adding an intermediate reward increases the learning
speed as the maze size gets larger. In the 8 × 8 setting, the search space is
already so small that no intermediate reward seems necessary. But especially in
the 16 × 16 maze with its larger search space it helps and is more helpful when
the intermediate reward area gets larger.

156 E. Emekligil and E. Alpaydın

Fig. 9. Convergence of DQN as a function of maze size and the intermediate reward
area. With small mazes intermediate reward does not help, but as the maze gets larger,
larger areas of intermediate reward help more.

5 Pacman Experiments

For our next set of experiments, we use the game of Pacman, which is a more
interesting maze game2. This environment provides customizable mazes and

2 We use the Pacman environment prepared for the course UC Berkeley CS188 Intro-
duction to AI, available at http://ai.berkeley.edu/reinforcement.html.

http://ai.berkeley.edu/reinforcement.html

What’s in a Game? 157

(a) Original setting (b) With intermediate re-
ward

(c) Harder left path

(d) Harder left path with
intermediate reward

(e) Harder paths on both
sides

(f) Harder paths on both
sides with intermediate re-
ward

(g) Harder left path with
further intermediate re-
ward

Fig. 10. The different setups of Ms. Pacman environment we tested DQN on. The
agent starts from the bottom and tries to get the goal at the top. Two enemy units are
shown at their spawn location in the center. Intermediate reward is colored in brighter
gray. Changes between setups are denoted with red circles

basic AI options for enemy units. We adapted the maze style of the Ms. Pacman
ATARI game to this environment and selected enemy units with random move-
ment capabilities. These enemies pursue their path until they reach the end and
select their next path randomly when they are at a junction point. A contact
with an enemy ends the game with −500 reward points. Intermediate reward
gives +10 points whereas the goal gives +500.

Just like in the maze experiments, we test for factors that change the com-
plexity of the game to see their effect on the convergence of DQN. There are
three factors: (a) There are two paths from the initial position at the bottom to
the goal at the top, and one can block either of them or not, (b) There may be

158 E. Emekligil and E. Alpaydın

(1) No enemies

(2) Two enemies

Fig. 11. Comparison of DQN convergences on original Pacman setup (a), harder left
path (c) and harder paths on both sides (e)

enemy units or not to avoid contact with, and (c) There may be intermediate
rewards on the correct path. We also try combinations of those factors and in
Fig. 10, we show the seven different setups. By training DQN in each of these
setups with zero or two enemy units, we experiment with a total of fourteen
different setups.

We start by closing some paths by adding obstacles (see Fig. 11). In setup
(c), we make one of the two possible routes longer by closing some paths and
in setup (e), both the leftmost and the rightmost solution paths are extended
by adding obstacles. We can see in Fig. 11(1) that extending the leftmost path
(c) decreases learning with respect to (a). However, if we examine Fig. 11(2), we
can see that adding some enemy units to (c) increases the learning speed, since
most of the time the agent gets destroyed in the leftmost path by the enemies,
thus the agent learns that it should not dwell on the leftmost path concentrating
on the correct path which is the rightmost path. If we compare setup (e) with
(a) and (c), we see that making all possible paths longer decreases the learning
speed, as expected.

What’s in a Game? 159

(1) No enemies

(2) Two enemies

Fig. 12. Comparison of DQN convergences on original Pacman setup (a) and interme-
diate reward (b)

If we examine setups (a) and (b) (see Fig. 12), we see that adding an inter-
mediate reward increases DQN’s learning speed considerably in the two-enemy
setup. This is expected since the intermediate reward helps algorithm to focus on
one of the two paths. In the no-enemy setup however, the agent learns getting the
intermediate reward quickly, but it tends to stay near the intermediate reward
for many epochs to come since ε value gets its lower bound in four epochs and the
agent cannot explore the target quickly. Thus, it decreases the learning speed.

The intermediate reward in setup (d) was actually designed to hinder learning
since it is en route to a longer path. In the no-enemy case, the results show that
this reward actually hinders learning as can be seen in Fig. 13. After the agent
takes this reward, instead of choosing the leftmost path, it uses the rightmost
path which is the closer one to the target. However, it results with even better
outcomes than setup (c) when there are enemies. The agent in this case is able
to learn to choose between left or right paths according to the closeness of the
enemies to those paths. In setup (g), we move the intermediate reward to a
further position on the left path and saw that it decreases learning speed in

160 E. Emekligil and E. Alpaydın

(1) No enemies

(2) Two enemies

Fig. 13. Comparison of DQN convergences on Pacman setup with harder left path (c),
early intermediate reward (d) and hard intermediate reward (g)

no-enemy setup, better than (d). This also helps learning when there are two
enemies and provides worse results than (d), because the risk of death is higher
in the path with the intermediate reward. Nevertheless, when the algorithm
converges, the agent is able to wait for risk of the opponents to pass and go back
if it is necessary.

Comparison of setups (e) and (f) are given in Fig. 14. Similar to the previ-
ous results, since the ε value gets to its minimum value quickly, the intermedi-
ate reward in this case (f) slows down the learning process. Slow down rate is
extremely high because most of the paths are blocked and the agent cannot get
the target. It helps when there are enemies, because enemies force the agent to
explore.

What’s in a Game? 161

(1) No enemies

(2) Two enemies

Fig. 14. Comparison of DQN convergences on Pacman setup with harder paths on
both sides (e) and intermediate reward (f)

6 Conclusions and Future Work

Deep reinforcement learning is a recent research area that combines deep neural
networks with reinforcement learning. The Deep Q-Network learns to play Atari
games end-to-end; but it learns some games better, some faster, and we do not
know why. Our assumption is that the complexity of a game depends on some
factors and these factors affect DQN’s learning speed and quality.

To validate this claim, we clustered the DQN convergence curves of 45 ATARI
2600 games. We find that there seems to be indeed a dependence between game
characteristics and DQN performance, that games that are played similarly are
learned similarly by DQN and are placed nearby in the clustering dendrogram,
whereas games that look the same visually but need different strategies are
placed far apart.

We defined variants of a Maze task on which we defined a number of factors
and tested their effect using DQN as it is, with no changes to the network
architecture or learning algorithm. The four factors we tested are the maze size,
presence/absence of walls, presence/absence of enemies, and presence/absence

162 E. Emekligil and E. Alpaydın

of intermediate reward. We see that larger mazes and the presence of enemy
units generally delay convergence since the environment becomes more complex.
Intermediate rewards, however, increase the learning speed since they provide a
hint for the main goal, dividing a long sequence into smaller sequences.

In the second set of experiments, we use a Pacman environment with similar
factors with a total of 14 different setups. We find that the factors affect learning
differently if there are enemies. Blocking a path with a wall usually decreases the
learning speed, but has the opposite effect if it is blocking many of the possible
paths thereby reducing possible actions.

Overall, most of the experiments led to expected results, but not all. These
cases should be further investigated to see if they are due to chance, or if there is
any dependence or interaction between factors that we cannot see immediately.
Another future research direction is to add more factors that affect the difficulty.
For example, in most games there is randomness. In our maze setup, the initial
positions of units are randomly selected but the moves of agents are not random;
it could certainly affect the learning performance if any random event should
occur during the game.

The ultimate aim is to transfer what we learn from DQN’s behavior on games
to what deep reinforcement learning can do in real life. From these experiments,
we would like to move a level up and define at a more abstract level, general
tasks and general strategies to solve them, as well as how such strategies can be
learned. Our work is one small step towards this aim.

Acknowledgements. We would like to express our gratitude to Yapı Kredi Teknoloji
A.Ş. for supporting us in participating to IJCAI 2018 events.

References

1. Anderson, D., Stephenson, M., Togelius, J., Salge, C., Levine, J., Renz, J.: Decep-
tive games. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS, vol.
10784, pp. 376–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77538-8 26

2. Bellemare, M.G., Dabney, W., Munos, R.: A distributional perspective on reinforce-
ment learning. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 449–458. JMLR. org. (2017)

3. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time
series. In: Proceedings of the 3rd International Conference on Knowledge Discovery
and Data Mining, AAAIWS 1994, pp. 359–370. AAAI Press (1994)

4. Elias, G.S., Garfield, R., Gutschera, K.R.: Characteristics of Games. The MIT
Press, Cambridge (2012)

5. Hasselt, H.V., Guez, A., Silver, D.: Deep reinforcement learning with double q-
learning. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelli-
gence, AAAI 2016, pp. 2094–2100. AAAI Press (2016)

6. Hessel, M., Modayil, J., van Hasselt, H., et al.: Rainbow: combining improvements
in deep reinforcement learning. In: Thirty-Second AAAI Conference on Artificial
Intelligence (2018)

https://doi.org/10.1007/978-3-319-77538-8_26
https://doi.org/10.1007/978-3-319-77538-8_26

What’s in a Game? 163

7. Levine, S., Finn, C., Darrell, T., et al.: End-to-end training of deep visuomotor
policies. J. Mach. Learn. Res. 17(39), 1–40 (2016)

8. Lillicrap, T.P., Hunt, J.J., Pritzel, A., et al.: Continuous control with deep rein-
forcement learning. ArXiv e-prints, September 2015

9. Mnih, V., Badia, A.P., Mirza, M., et al.: Asynchronous methods for deep reinforce-
ment learning. In: Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, 19–24 June 2016, pp. 1928–1937
(2016)

10. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control through deep
reinforcement learning. Nature 518(7540), 529–533 (2015)

11. Nair, A., Srinivasan, P., Blackwell, S., et al.: Massively parallel methods for deep
reinforcement learning. ArXiv e-prints, July 2015

12. Peng, X.B., Berseth, G., van de Panne, M.: Terrain-adaptive locomotion skills
using deep reinforcement learning. ACM Trans. Graph. 35(4), 81:1–81:12 (2016).
https://doi.org/10.1145/2897824.2925881

13. Schaul, T., Quan, J., Antonoglou, I., et al.: Prioritized experience replay. ArXiv
e-prints, November 2015

14. Silver, D., Huang, A., Maddison, C.J., et al.: Mastering the game of go with deep
neural networks and tree search. Nature 529(7587), 484–489 (2016)

15. Silver, D., Hubert, T., Schrittwieser, J., et al.: Mastering Chess and Shogi by self-
play with a general reinforcement learning algorithm. ArXiv e-prints, December
2017

16. Silver, D., Schrittwieser, J., Simonyan, K., et al.: Mastering the game of go without
human knowledge. Nature 550, 354–359 (2017)

17. Wang, Z., Schaul, T., Hessel, M., et al.: Dueling network architectures for deep
reinforcement learning. In: Proceedings of the 33rd International Conference on
International Conference on Machine Learning, ICML 2016, vol. 48, pp. 1995–
2003. JMLR.org (2016)

18. Yannakakis, G.N., Togelius, J.: Artificial Intelligence and Games. Springer, Heidel-
berg (2018). http://gameaibook.org

https://doi.org/10.1145/2897824.2925881
http://gameaibook.org

Author Index

Adada, Mahmoud 41
Alpaydın, Ethem 147

Barnes, Tavian 41
Bonde, Mathias Kirk 3

Cazenave, Tristan 119
Chen, Xiangqun 23
Chitizadeh, Armin 98
Côté, Marc-Alexandre 41

El Asri, Layla 41
Emekligil, Erdem 147

Fine, Emery 41

Haqiqat, Farhad 127
Hausknecht, Matthew 41
Hufschmitt, Aline 79

Jouandeau, Nicolas 79

Kádár, Ákos 41
Kybartas, Ben 41

Moore, James 41
Müller, Martin 127

Preuss, Mike 3

Tay, Wendy 41
Thielscher, Michael 98
Trischler, Adam 41

Vittaut, Jean-Noël 79
Volz, Vanessa 3

Xie, Xing 23

Yu, Lijun 23
Yuan, Xingdi 41

Zhang, Dawei 23

	Preface
	Organization
	Contents
	Video Games
	Towards Embodied StarCraft II Winner Prediction
	1 Introduction
	2 Background and Related Work
	2.1 StarCraft Series
	2.2 Outcome Prediction
	2.3 Research Questions

	3 Experimental Setup
	3.1 Data Collection
	3.2 Preprocessing
	3.3 Data Characterisation
	3.4 Prediction Methods
	3.5 Training

	4 Experimental Analysis
	5 Conclusion and Outlook
	References

	MOBA-Slice: A Time Slice Based Evaluation Framework of Relative Advantage Between Teams in MOBA Games
	1 Introduction
	2 MOBA-Slice
	2.1 MOBA Game Result Analysis
	2.2 Discounted Evaluation
	2.3 Time Slice Evaluation Model

	3 Experiments
	3.1 Apply MOBA-Slice to DotA2
	3.2 Data Processing
	3.3 First Training of TSE Model
	3.4 Prediction on Continuous Time Slices
	3.5 Comparison with DotA Plus Assistant on Result Prediction
	3.6 Towards Better Performance

	4 Related Work
	5 Conclusion
	References

	TextWorld: A Learning Environment for Text-Based Games
	1 Introduction
	2 Text Games from a Reinforcement Learning Perspective
	2.1 Text-Based Games
	2.2 Text-Based Games as POMDPs
	2.3 RL Challenges in Text-Based Games
	2.4 RL with TextWorld

	3 The TextWorld Learning Environment
	3.1 Game Engine
	3.2 Game Generation
	3.3 Game Interaction with TextWorld

	4 Related Work
	4.1 Relevant Models
	4.2 Frameworks

	5 Benchmarks
	5.1 Curated List
	5.2 Treasure Hunter

	6 Current Limitations
	7 Conclusion
	A Typical Text-Based Obstacles
	B Curated List of Text-Based Games
	B.1 Game Notes

	C Inform 7
	References

	General Game Playing
	Statistical GGP Game Decomposition
	1 Introduction
	2 Previous Works
	3 Game, Subgame and Correct Decomposition
	4 Method
	4.1 Simulation Based Detection of Action Effects
	4.2 Filtering Action Effects
	4.3 Action Independent Fluents
	4.4 Compound Moves and Meta-action Sets
	4.5 Serial Games and crosspoints Identification
	4.6 Building the Dependency Graph
	4.7 Subgoals to Fix Under- or Over-Decomposition

	5 Experiments
	6 Conclusion and Future Work
	References

	Iterative Tree Search in General Game Playing with Incomplete Information
	1 Introduction
	2 Background
	2.1 General Game Playing with Incomplete Information
	2.2 Fictitious Play

	3 Iterative Tree Search
	3.1 Initialising the Tree
	3.2 Iterative Probability Update

	4 Analysis
	4.1 Games with Dominant Pure Strategy and Single Player Games
	4.2 Non-locality Problem
	4.3 One-Step Joint-Move Two-Player Zero-Sum Games
	4.4 Move Separable Games

	5 Conclusion
	References

	Machine Learning and Monte Carlo Tree Search
	Spatial Average Pooling for Computer Go
	1 Introduction
	2 Training a Value Network
	3 PUCT
	4 Spatial Average Pooling
	5 Experimental Results
	6 Conclusion
	References

	Analyzing the Impact of Knowledge and Search in Monte Carlo Tree Search in Go
	1 Introduction
	2 Knowledge and Simple Features
	3 Evaluation Methods
	3.1 Playing Strength
	3.2 Move Prediction

	4 Research Motivations
	5 Experimental Results and Discussion
	5.1 Fuego-Based Players Used in Our Experiments
	5.2 Move Prediction
	5.3 Playing Strength
	5.4 A Closer Look at Move Prediction Rate
	5.5 Move Prediction and Feature Frequency
	5.6 Move Selection Analysis

	6 Conclusions and Future Work
	A Detailed Move Prediction Results
	References

	What's in a Game? The Effect of Game Complexity on Deep Reinforcement Learning
	1 Introduction
	2 Background
	3 Factors that Define a Game
	4 Maze Experiments
	4.1 The Effect of the Size of the Search Space
	4.2 The Effect of Obstacles
	4.3 The Effect of Hostile Agents
	4.4 The Effect of Intermediate Reward

	5 Pacman Experiments
	6 Conclusions and Future Work
	References

	Author Index

