
How We See Art and How Artists Make It

Stephen Grossberg

1 Introduction: From Strokes to Conscious
Percepts and Back

Whenever an artist manipulates a canvas, say by applying a
dab of color to a canvas, he or she immediately experiences a
conscious percept of the result. This percept emerges from
all the brain machinery whereby we consciously see and
know about our visual world. Artists typically have no
explicit knowledge about the brain processes that mediate
between painterly manipulations and the resulting conscious
percepts. Yet despite this intellectual chasm between action
and percept, the particular interests and aesthetic sensibilities
of different artists have led each of them to emphasize dif-
ferent combinations of these brain processes, and to thereby
create their own artistic style. In the hands of a master, the
results can be both astonishing and transcendently beautiful.

The corpus of works of art on two-dimensional surfaces,
across time and culture, provide an incredible richness of
issues that paintings elicit, both scientific and aesthetic. This
chapter reviews several of these issues through a discussion
of specific paintings by well-known artists that have been
chosen to illustrate how different combinations of brain
processes were used to achieve their aesthetic goals. Illus-
trative paintings or painterly theories by nine artists were
given a unified analysis in Grossberg and Zajac [44] using
neural design principles and mechanisms that have been
articulated and computationally characterized by the most
advanced neural models of how advanced brains consciously
see. This article also summarized, where possible,

descriptions of an artist’s stated goals, or summarized
reviews of the artist’s work written by art historians, cura-
tors, or critics.

The current chapter does not attempt to scientifically
explain why a painting looks beautiful, or how it may arouse
strong emotions. Such an analysis would require the study of
how perceptual, cognitive, and emotional processes interact.
Some promising approaches have been described whereby to
understand aesthetic emotions by using mathematical mod-
els of the mind (e.g., Perlovsky [54]). The current goal is to
first try to better understand the brain mechanisms of per-
ception and cognition whereby humans consciously see
paintings, and whereby painters have achieved their aes-
thetic goals. Further studies of beauty and of aesthetic
emotions may benefit from the considerable neural modeling
literature about the brain processes that create coordinated
conscious experiences of seeing, knowing, and feeling (e.g.,
Grossberg [32, 34]). These more comprehensive theoretical
insights would, in any case, need to build upon insights such
as those described herein.

In addition, Grossberg [34] summarizes some (but not
all!) of the basic brain processes that are needed to under-
stand how we perceive and recognize music.

The current summary will provide comments about the
numbered powerpoint slides in the lecture with the same title
as the current article that can be found at Online Resource 12
and Online Resource 13.

2 A Step-by-Step Theory of How We See Art
and How Artists Make It

Let’s begin by raising the basic question of how various
painters struggled to intuitively understand how they see in
order to generate desired aesthetic effects in their paintings
(Slides 1–3). Answering this question is made possible due to
neural modeling work that clarifies what goes on in each brain
as it consciously sees, hears, feels, or knows something. In
Grossberg [34], I provide a self-contained, non-technical
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summary of current modeling knowledge about how this
happens. The current article focuses only on one aspect of how
we consciously see. It also summarizes a claim concerning
why evolution was driven to discover conscious states in the
first place. This analysis begins with Slide 136 in the Sup-
plementary Materials to this book. It proposes how conscious
perception is used to close the loop between perception and
action, in this case between manipulating a painting, seeing it,
and then manipulating it again.

In brief, the chapter and its Supplementary Materials will
explain how multiple processing stages overcome the
incompleteness and ambiguities of the raw sensory data that
reaches our brains. These sensory data are hopelessly inad-
equate for triggering effective actions that can enable us to
survive in a changing world that is filled with potentially
life-threatening challenges. After these processing stages do
their work, the result is sufficiently complete, context-
sensitive, and stable perceptual representations upon which
to base effective actions. In civilized societies, these actions
include the strokes that create a painting. The article hereby
proposes that evolution discovered conscious states in order
to mark, or “light up”, the sufficiently complete,
context-sensitive, and stable perceptual representations that
can support effective actions, notably feature-category res-
onances for consciously knowing about objects, and
surface-shroud resonances for consciously seeing them and
triggering actions based upon them. These resonances will
be defined and discussed below.

Slide 5 summarizes some of the painters whose work will
be discussed. They include Jo Baer, Banksy, Ross Bleckner,
Gene Davis, Charles Hawthorne, Henry Hensche, Henri
Matisse, Claude Monet, Jules Olitski, and Frank Stella.
These painters were chosen to demonstrate how the paint-
ings of different artists, and even of different artistic move-
ments, can often be easily recognized due to their emphasis
on different combinations of brain processes. Works of
several other artists, such as Rembrandt, Graham Rust,
Georges Seurat, and Sean Williams, will also be briefly
mentioned to make specific points.

A reader can rightly ask: How can this kind of insight
about paintings be discovered in the first place. In order to
understand this, one needs to appreciate how scientists have
been discovering and developing brain models of psycho-
logical processes, including artistic processes like painting.
Slides 6–9 emphasize that, since “brain evolution needs to
achieve behavioral success,” neural models that hope to link
brain to mind need to discover and model the level of brain
processing that governs behavioral success. A half-century
of modeling has consistently shown that these are network
and system levels, which is why we study neural networks.

In order to complete such amodel, individual neuronsmust
be designed and connected in networks whose emergent, or
interactive, properties give rise to successful behaviors.

Keeping all these levels in mind at once—behavior, network,
neuron—requires an appropriate modeling language whereby
to link them. Such a mathematical model makes it much
simpler to understand how brains give rise to minds, not only
by articulating appropriate brain design principles and
mechanisms, but also by explaining the emergent properties
that they generate when they interact together in response to a
rapidly changing world. Unaided intuition cannot, by itself,
understand these emergent properties.

Although rigorous mathematical modeling and compu-
tational analyses are needed to understand how brains give
rise to minds in a way that feels inevitable, it is nonetheless
possible to explain the ideas upon which these models are
based using simple, self-contained, and intuitively under-
standable stories. That is what these articles try to illustrate.
In so doing, they clarify that perhaps the hardest obstacle to
understanding mind and brain is to know how to think about
each problem. Once one is on the right path, the technical
details can then often follow in a natural way. Finding such
paths requires guidance from lots of data.

This perspective argues that, as illustrated in Slides 10
and 11, to deeply understand how brains work, you need to
understand how evolution selects brain designs based on
their behavioral success. That is why the modeling method
and cycle that I have developed with many colleagues over
the past 50 years always starts with behavioral data, often
scores or even hundreds of experiments in a given area of
psychology. Having lots of data to guide one’s thinking
helps to rule out incorrect, but initially appealing, ideas.

The Art of Modeling consists in large part of figuring out
how to understand behavioral data, which one receives as
static curves that plot one variable against another, as
interactive, or emergent, properties of individual behaviors
as they adapt autonomously in real time to a changing world.
For example, one might be trying to understand why the
curve that summarizes the number of correct responses at
each position in a list after a fixed number of learning trials
has the shape that it does, with more correct responses at the
beginning and the end of the list than in its middle. This kind
of bowing effect occurs during essentially every experience
we have when we are trying to remember sequences of
events that we have experienced. If you look at these data in
the right way, you can see that they embody lots of exciting
philosophical paradoxes.

The results of such top-down analyses from behavioral
data have always been the discovery of brain design prin-
ciples that are translated into the simplest possible mathe-
matical models (Slide 11). Then mathematical and
computational analyses of these models are used to generate
emergent behavioral properties that explain much more
behavioral data than went into the hypotheses from which
the model was derived. In this way, the modeling loop
between behavior-to-design-to-model-to-behavior is closed.

80 S. Grossberg



In addition, and of critical importance, is the fact that the
mathematical models always look like part of a brain. As a
result, despite using no facts about the brain to derive these
models, they explain a body of known brain data, as well as
predict as yet unreported new brain data. Because this
derivation proceeds from behavior-to-design-to-
model-to-brain, it often proposes novel functional explana-
tions of both known and unknown brain data.

Once the connection is made between behavior and brain,
one can explain and predict lots of behavioral and brain data
using the currently derived model. After the explanatory and
predictive range of the model in its current form is under-
stood, one can press both top-down from behavioral data,
and bottom-up from brain data, to identify an additional
design principle that the model does not currently embody.
Then this new design principle is consistently added, “em-
bedded”, of “unlumped” into an expanded model, and the
cycle begins again, leading to a broader range of interdis-
ciplinary data that can be explained and predicted.

This cycle has been repeated many times during the past
50 years. As a result, we now have models that can indi-
vidually explain and predict psychological, neuroanatomical,
neurophysiological, biophysical, and even biochemical data.
In this sense, the classical mind/body problem is incremen-
tally being solved.

After going through this modeling cycle, what is the
result? Is the brain just a “bag of tricks” as even famous
neuroscientists like my colleague V. S. Ramachandran have
claimed in the past (Slide 12)? If that were the case, true
theories would be impossible.

Instead, as illustrated in Slide 13, a small number of
fundamental equations have sufficed to explain thousands of
interdisciplinary experiments, just as in physics. A some-
what larger number of modules, or microcircuits, that are
defined using these fundamental equations, are used in
specialized forms to compute useful, but not universal,
combinations of properties. These modules, in turn, are
assembled into modal architectures for carrying out different
kinds of biological intelligence. The word “modal” stands
for different modalities of intelligence, such as vision,
audition, cognition, emotion, and action. None of them
computes all possible computable functions in the manner of
a modern von Neumann computer. However, each of them is
general-purpose within its own modality of intelligence, can
respond adaptively to wide range of environmental chal-
lenges, and can seamlessly interact with other modal archi-
tectures to generate autonomous adaptive intelligence as we
know it.

What principles determine how modal architectures are
designed (Slide 14)? It is here that the novel computational
paradigms, and corresponding design principles that underlie
brain computing play a critical role in ensuring that we can
autonomously adapt to rapidly changing environments that

are filled with unexpected events. Two of these paradigms
are called Complementary Computing and Laminar Com-
puting (Slide 15). Together they also imply a third funda-
mental brain design that I call the Hierarchical Resolution of
Uncertainty. It is this latter design that requires multiple
processing stages before our brains can compute perceptual
representations that are complete, context-sensitive, and
stable enough to be used to generate effective actions. It is
because only such complete representations can be selec-
tively used to generate effective actions that conscious states
“light them up” to use them, and not earlier representations,
for this purpose. These are the processing stages that enable
a painter to apply paint to a canvas and consciously see and
appreciate his or her handiwork.

Complementary Computing asks what is the nature of
brain specialization (Slide 18). It provides an alterative to the
earlier idea that brains compute using independent modules
(Slide 17). There are lots of specialized brain regions in the
visual cortex, and at least three parallel cortical processing
streams with which to activate them. However, independent
modules should compute each property—such as luminance,
motion, binocular disparity, color, and texture—indepen-
dently of the others. In reality, huge perceptual and psy-
chophysical databases show that there are strong interactions
between these various perceptual qualities.

Complementary Computing explains how such special-
ization coexists with, and indeed requires, these interactions
by providing a very different answer to the question: What is
the nature of brain specialization? Complementary Com-
puting identifies new principles of uncertainty and comple-
mentarity that clarify why multiple parallel processing
streams exist in the brain, each with multiple processing
stages to realize a hierarchical resolution of uncertainty
(Slide 19).

There are analogies to computationally complementary
properties, such as a key fitting into a lock, and puzzle pieces
fitting together (Slide 20), but these analogies do not explain
the dynamism that is required to carry out Complementary
Computing. In particular, computing one set of properties at
a processing stage prevents that stage from computing a
complementary set of properties. These complementary
parallel processing streams are balanced against one another.
This kind of balance is reminiscent of classical ideas about
Yin and Yang, but again not explained by them. Instead,
prescribed interactions between these streams, at multiple
processing levels, overcome their complementary weak-
nesses and support intelligent and creative behaviors. They
do so, in particular, by creating conscious visual states that
can be used to guide looking and reaching behaviors,
including those used to create and see paintings.

Each row in Slide 21 summarizes a pair of computa-
tionally complementary processes and the cortical streams in
which they are proposed to occur. This list is not, however,
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exhaustive of all the complementary processes in our brains
(Figs. 1 and 2).

When one puts together the first four of them (Slide 22),
one is led to an emerging unified theory of visual intelli-
gence, starting at our photosensitive retinas and ending at the
prefrontal cortex, or PFC (Slide 23). Each box in the slide
functionally describes a basic process that occurs in the
corresponding part of the brain, and both the What and
Where cortical streams are included. The What, or ventral,
cortical stream carries out processes of perception and
recognition, whereas the Where, or dorsal, cortical stream
carries out processes of spatial representation and action.
The modeling work that I and my colleagues have carried
out over the years to explain hundreds of interdisciplinary
experiments support my hypothesis that the bottom-up,
horizontal, and top-down interactions between these various
processes help to overcome complementary processing
deficiencies that each process would experience if it had to
act alone.

Slides 24–26 begin to show what it means for visual
boundaries and surfaces to be complementary. Much psy-
chophysical evidence has supported my prediction that 3D

boundaries and surfaces are the basic functional units in
natural vision. This prediction was first made in Grossberg
[25] and was supported by computer simulations of percep-
tual and psychophysical data in Grossberg and Mingolla [39,
40] and Grossberg and Todorovic [43]. I began to extend it in
Grossberg [26, 27] to explanations and simulations of data
about 3D vision and figure-ground perception using the
Form-And-Color-And-DEpth (FACADE) model of 3D
vision and figure-ground separation, and its 3D LAMINART
model extension to simulate identified cell types within the
laminar circuits of visual cortex. This major research program
was carried out with multiple Ph.D. students and postdoctoral
fellows, including Rushi Bhatt, Yongqiang Cao, Nicolas
Foley, Gregory Francis, Alan Gove, Simon Hong, Piers
Howe, Seungwoo Hwang, Frank Kelly, Levin Kuhlmann,
Jasmin Leveille, John Marshall, Niall McLoughlin, Steven
Olson, Luiz Pessoa, Rajeev Raizada, William Ross, Aaron
Seitz, David Somers, Karthik Srinivasan, Guru Swami-
nathan, Massimiliano Versace, James Williamson, Lonce
Wyse, and Arash Yazdanbakhsh. The vision models were
complemented by the SACCART, SAC-SPEM, TELOS, and
lisTELOS models of the saccadic and smooth pursuit eye

Fig. 1 What is a visual boundary or grouping? (Slide 25)
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movements that occur during visual perception and planning,
and invariant object category learning. A parallel but distinct
line of work also developed the 3D FORMOTION model of
visual motion perception, with its extensions to visually-
based navigation and target tracking. See my personal web
page sites.bu.edu/steveg for many such archival articles and
https://en.wikipedia.org/wiki/Stephen_Grossberg for a list of
the names of available models and the areas of biological
intelligence to which they contribute.

Visual boundaries are emphatically not just edge detec-
tors. Rather, boundaries can form in response to many dif-
ferent kinds of images and scenes. Boundaries hereby give
rise to properties of texture pop-out, 3D shape from texture,
figure-ground separation, and visual illusions, among others
(Slide 25). This versatility spares our brains from having to
use specialized detectors for each of these types of stimuli,
only to have to figure out at a later processing stage how to
put all the information together. Such specialization cannot,

in any case, work in response to natural scenes if only
because edges, shading, texture, and figure-ground properties
are often overlaid at the same perceptual positions in a scene.

Neon color spreading is one of the visual illusions that
provides lots of useful information about the complementary
properties of visual boundaries and surfaces (Slide 26).
A typical neon-inducing image is constructed of black and
blue arcs, where the blue contrast relative to its white
background is smaller than that of the black contrast. When
these arcs are properly arranged, both boundary completion
and surface filling-in of a neon color spreading illusion are
caused. The boundary completion generates the illusory
square that passes through the positions where the blue and
black arcs touch. The surface filling-in causes the square to
be filled with a bluish hue.

Three properties of boundary completion and surface
filling-in are illustrated by neon color spreading (see the
bottom of Slide 26). The first two boundary properties are

Fig. 2 Visual boundary and surface computations are complementary (Slide 26)
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that boundaries are completed between pairs of inducers in
an oriented and inward fashion. If outward completion were
possible, then a single dot in an image could cause a radial
proliferation of boundaries that could seriously obstruct
vision. By comparison, the spread of the blue color through
the square is generated by small breaks in the blue bound-
aries where they touch the more contrastive black bound-
aries. The blue color can then spread in an unoriented
manner outward in all directions until it hits the square
illusory boundaries. These boundary and surface properties
are manifestly complementary: oriented versus unoriented;
inward versus outward.

Where do these boundaries and surfaces form? Slide 27
shows that boundaries are completed within several pro-
cessing stages of the interblob cortical stream from the lat-
eral geniculate nucleus, or LGN, through V1 interblobs, V2
interstripes, and V4. The surfaces are completed in the
parallel blob cortical stream processing stages of the V1
blobs, V2 thin stripes, and V4. These are two of the brain’s
computationally complementary processing streams (Fig. 2).

What does the third boundary completion property of “in-
sensitive to direction-of-contrast” mean in Fig. 2 (Slide 28)?
This has to do with the classical distinction between seeing
versus knowing, or seeing versus recognition. For example, in
Fig. 3 (Slide 29), the lower left image shows an Ehrenstein
Figure that is generated by blue lines pointing toward the center
of an imagined disk. One can both see and recognize this disk
because its interior is brighter than its background. This
brightness difference is a visual illusion that is due to filling in
of “brightness buttons” that are generated just beyond each of
the line ends, whence this brightness spreads within the illu-
sory circle that is also generated through the line ends.

In contrast, in response to the Offset Grating to the right
of the Ehrenstein Figure, a vertical boundary is generated
that passes through the line ends of the horizontal blue lines.
We can recognize this vertical boundary, but we cannot see
it: It is not brighter or darker, or nearer or further, from the
rest of the background. This percept shows that one can
consciously recognize objects that one cannot see. There are
hundreds of such amodal percepts.

Fig. 3 Seeing versus knowing (Slide 29)

84 S. Grossberg



One plausible answer to the question “Why do we see?”
is that “We see things to recognize them”. However, we can
recognize the vertical boundary that is generated by the
Offset Grating without seeing it. This is thus a counterex-
ample to the hypothesis that we see things in order to rec-
ognize them, because we can recognize this vertical
boundary without seeing it. This conclusion does not deny
that seeing objects does often help to recognize them, but it
shows that there must be a different answer to the question
“Why do we see?”

I earlier noted that, due to hierarchical resolution of
uncertainty, our brains seem to have created conscious states
of seeing so that we can selectively use those perceptual
representations upon which to base actions like looking and
reaching.

Slide 29 shows that some boundaries are invisible. Slide 30
provides one of several reasons why all boundaries are
invisible, at least within the interblob cortical stream that
generates boundaries. In particular, consider what happens if
you move along the circumference of the gray disk in the right
figure of this slide. One passes from gray-to-white, then
gray-to-black, then grey-to-white, etc. contrasts all along the
circumference. These reversals of relative contrast are often
foundwhen an object is seen in front of a textured background.

If our brains only had separate boundaries that compute
dark-to-light contrasts (e.g., gray-to-white) or light-to-dark
contrasts (e.g., gray-to-black), then each type of boundary
would have big holes in it. Brightness and color could spread
through these holes during the filling-in process and thereby
seriously degrade vision.

Slide 31 shows that boundary computation does begin
with oriented local contrast detectors, called simple cells,
that individually can respond to either a dark-to-light ori-
ented contrast, or a light-to-dark oriented contrast, but not to
both. If boundary processing ended here, then there would
be big holes in the resulting boundaries.

Instead, at each position, pairs of like-oriented simple cells
that are sensitive to opposite contrast polarities input to cells at
the next processing stage that are called complex cells. Each
complex cell can respond to both dark-to-light and
light-to-dark contrasts at, and close to, its preferred position
and orientation. Thus, by the time complex cells respond at the
circumference of the gray disk image in Slide 30, they would
build a boundary at every position around its circumference.

It is precisely because they pool signals from both
polarities—that is, are insensitive to direction-of-contrast—
as noted in Slide 32, the complex cells cannot represent
visual qualia like differences in relative luminance or color.
Said in another way: All boundaries are invisible! We can
experience how salient boundaries may be, but strong
boundary salience does not imply a visible difference of
qualia.

Despite being invisible, boundaries are extremely useful
in helping us to recognize objects, especially objects that are
partially occluded in a three-dimensional scene, as in Slide
33. The dashed red lines in Slide 34 illustrate where amodal
boundaries of partially occluded objects may be created in
order to help to recognize these objects. The abutting three
rectangles in the right image of Slide 35 gives rise to a
compelling 3D percept of a vertical rectangle that is partially
occluding, and in front of, a horizontal rectangle. Even
though we “know” that the horizontal rectangle is “behind”
the vertical rectangle, we do not see it.

This property of figure-ground separation is exploited in
all pictorial art, movies, and TV that use a 2D image to
generate representations of 3D objects. For example, the face
in the famous Mona Lisa painting of Leonardo da Vinci in
Slide 35 partially occludes the background of the scene. The
occluded collinear background boundaries can nonetheless
be amodally completed behind her, at least in the upper part
of the painting.

There are several basic reasons why boundary completion
and surface filling-in occur. One of these reasons is clarified
by inspecting Slide 36, which shows a side view of the
interior of an eye. After light passes through the lens of the
eye and the retinal fluid that helps to maintain the eye’s
shape, it needs to go past the nourishing retinal veins and all
the other cell layers in the retina before it hits the photore-
ceptors. The photoreceptors that are activated by the light
then send signals along axons via the optic nerve to the
brain.

Slide 37 shows a top-down view of the retina. It includes
the fovea, which is the part of the retina that is capable of
high acuity vision. Our eye movements focus the fovea upon
objects of interest several times each second. There is also a
blind spot that is as big as the fovea. Here is where the axons
from the photoreceptors are bundled together to form the
optic nerve. No light is registered on the blind spot.

Even the simplest objects may be occluded by retinal
veins and the blind spot at multiple positions before they can
activate the retina. Slide 38 shows how this can happen to
even a simple image like a blue line. This state of affairs
raises several questions. For one, why do we not see retinal
veins and the blind spot? This is true because our eyes
rapidly jiggle in their orbits, even when we think that they
are not moving. This jiggle generates transient visual signals
from objects in the world. These transients refresh the neural
responses to these objects. The veins and blind spot do not,
however, generate such transients because they move with
the eye. They are thus stabilized images. Hence, they fade.
You may have noticed in an opthalmologist’s or optome-
trist’s office your own retinal veins or blind spot when he or
she moves a small light alongside your eye in order to
examine it. That motion can create transients with respect to
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the borders of the veins and blind spot and makes them
momentarily visible.

Another important question is this: How do we see even
images like a line if they can be occluded in multiple posi-
tions? Slide 39 shows that boundary completion completes
boundaries within occluded regions and surface filling-in
spreads colors and brightnesses from surrounding regions to
complete the surface percepts of the occluded regions within
these boundaries.

The percepts that are generated across the occluded
regions are constructed at higher brain regions. Because they
are not provided directly by visual inputs to the retinas, they
are, mechanistically speaking, visual illusions. On the other
hand, we often cannot tell the difference between the regions
on the line that receive their signals directly from the retina,
and those that have completed boundaries and filled-in col-
ors and brightnesses. Both kinds of regions look equally
“real”. This raises the question in Slide 40: What do we call
a visual illusion? I believe that we tend to call illusions those
combinations of boundary and surface properties that look
unfamiliar or unexpected, as in the case of the invisible
vertical boundary that is generated by the Offset Grating in
Slide 29.

If boundaries are invisible, then how do we consciously
see? Slide 41 suggests that we see the results of surface
filling-in after boundaries define the compartments within
which lightness and color spread. Slide 42 summarizes the
fact that the stimulus that generates the percept called the
Craik-O’Brien–Cornsweet Effect has the same background
luminance, but a less luminous cusp abutting a more lumi-
nous cusp in the middle of the image (see the red line labeled
stimulus). These two regions are surrounded by a rectangular
black frame. The percept is, however, one of two uniform
gray regions (see the blue line labeled percept). This percept
may be explained by the fact that the boundaries which
surround the gray regions restrict filling-into each of them.
Then filling-in of the less luminous cusp in the left region
leads to the percept of a uniformly darker gray region than
does the filling-in of the more luminous cusp in the right
region. A more complete explanation, and simulations, of
this percept is given in Grossberg and Todorovic [43], as
well as of the very different percept that is seen when the
black region is replaced by a gray region that matches the
gray of the stimulus background. Many other brightness
percepts are also explained and simulated within that article.

We can now understand the last computationally com-
plementary property of boundary completion and surface
filling-in that is shown at the bottom of Slide 43. As I earlier
noted, “insensitive to direct-of-contrast” can also be sum-
marized by the statement that “all boundaries are invisible”.
“Sensitive to direction-of-contrast” can be recast as
“filling-in of visible color and lightness” since filled-in sur-
faces are what we can consciously see. Slide 44 can now

summarize my prediction from 1984 that all boundaries are
invisible in the interblob cortical stream, whereas all visible
qualia are surface percepts in the blob cortical stream.
I know many confirmatory experiments, but no contradictory
ones, to the present time.

3 Toward a Mechanistic Understanding
of the Aesthetic Struggles of Various
Painters

We can now begin to apply these ideas to provide a better
mechanistic understanding of the aesthetic struggles of var-
ious painters. Let us start with Henri Matisse. Slide 46 raises
the provocative question: Did artists like Matisse know that
all boundaries are invisible? Consider his painting, The
Roofs of Collioure, from 1905 to understand a sense in
which the answer to this question is Yes. Note that Matisse
constructed much of this painting using patches of color to
suggest surfaces. Slide 47 provides some quotations from
Matisse about his life-long struggle to understand “the
eternal conflict between drawing and color”. He wrote that
“Instead of drawing an outline and filling in the color…I am
drawing directly in color”.

The bottom image in this slide illustrates what this means.
The color patches in this painting trigger the formation of
amodal boundary webs in the cortical boundary stream.
These boundary webs are then projected to the cortical
surface stream where they organize the painting’s color
patches in surfaces. These surface colors are what we see in
the painting. By not “drawing an outline” to define these
surfaces, Matisse ensured that he did not darken these colors.
Generating vivid colors in their paintings was one of the
goals of the Fauve artistic movement to which some of
Matisse’s paintings contributed (Figs. 4 and 5).

Thus, as Slide 48 notes, when discussing The Roofs of
Collioure with your friends, you can impress them by saying
that this painting illustrates Complementary Computing in
art because it generates so many invisible boundary repre-
sentations to define its colorful surfaces.

Another Matisse painting from 1905, the Open Window,
Colloure, is illustrated in Slide 49. This painting brilliantly
combines surfaces that are created with sparse surface color
patches, as well as surfaces that are rendered with continu-
ously applied paint. Both types of surfaces blend together
into a single harmonious scene.

Many artists have experienced Matisse’s struggle to be
“drawing directly in color”, as noted in Slide 50. Slides 51
and 52 include quotes that summarize the approach to
painting by two famous plein air painters who belonged to
the Cape Cod school of art, including its founder, Charles
Hawthorne, and his most famous student, Henry Hensche.
Hawthorne wrote, in part, “Let color make form—do not
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make form and color it. Forget about drawing…” Hensche
expressed his own approach by summarizing the view of the
great Impressionist painter, Claude Monet, that “color

expressing the light key was the first ingredient in a painting,
not drawing…Every form change must be a color change…”
Monet himself reduced this perspective to its essentials by

Fig. 4 Complimentarity! Many
invisible boundaries! (Slide 48)

Fig. 5 Continously induced and
sparsely induced surfaces (Slide
49)
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writing, as summarized more fully in Slide 53, that “here is a
little square of blue, here an oblong of pink…paint it just as
it looks to you,…”

Slide 54 further illustrates this perspective using the
famous painting Femmes au bord de l’eau of the French
pointillist painter, Georges Seurat. Despite the fact that this
painting is constructed from little spots, or “points”, of color,
it is consciously perceived due to the way in which
boundaries complete between regions where feature con-
trasts change, and colors fill-in within these boundaries to
form visible surface percepts. Slides 55 and 56 point out (in
blue) that there are both large-scale boundaries that group
regions of this painted scene, and small-scale boundaries that
surround the individual color patches with which the paint-
ing was created. We can see both scales as our attention
focuses upon different aspects of the painting.

It is all very well and good to discuss boundary com-
pletion and surface filling-in using words and images. But
can we really understand these processes well enough to
develop rigorous neural models that can process complex
scenes? Slides 57–59 illustrate that the answer to this
question is emphatically Yes. Indeed, the same brain pro-
cesses of boundary completion and surface filling-in that
enable use to appreciate Impressionist paintings also enable
us to process natural images and images that are derived
from artificial sensors.

Slides 57 and 58 illustrates this by showing how a Syn-
thetic Aperture Radar, or SAR, image can be transformed by
such a neural model into an image that can be easily inter-
preted by human observers. SAR is the kind of radar that can
see through the weather, and is thus very useful in remote
sensing and international treaty verification applications
where SAR sensors in satellites and other airborne observers
can observe activities on the ground even during bad
weather conditions. The Input image in the upper left corner
of Slide 57 contains five orders of magnitude in the radar
return. This huge dynamical range is hard to represent on a
powerpoint slide, and much of the image is darkened relative
to the sparse, but very high intensity, pixels in it. The Fea-
ture image in the upper right corner of Slide 58 results from
a process of “discounting the illuminant”, or compensating
for variable intensities or gradients of illumination that could
otherwise prevent the extraction of information about object
form. This process normalizes the Input image without dis-
torting its relative intensities. Despite this normalization
process, the resulting images still exhibit its individual pix-
els, just as in the painting by Seurat.

The Boundary image in the lower left corner of Slide 58
shows the completed boundaries around and between sets of
pixels with similar contrasts. Finally, the Feature image
fills-in within the Boundary image. The result is the Surface
Filling-In image in the lower right corner of Slide 58. One
can here see a road that runs diagonally downward from the

middle of the top of the image toward its lower right. One
can also see individual posts along this road, the highway
that runs beneath it, and the trees and shadows that surround
the roads. The pixels in the Input image have here been
largely replaced by shaded object forms that human obser-
vers can understand.

Slide 59 shows that the filled-in surface representation in
Slide 58 is the result of processing the Input image using
three different spatial scales: small, medium, and large. The
small boundary scale detects local image contrasts best, such
as the individual posts on the road. The large boundary scale
detects more global features, such as the collinear structure
of the road. A separate surface network corresponds to each
boundary scale, and fills-in surface brightnesses within the
completed boundaries at each of these three boundary scales.
The final Surface Filling-in image in Slide 58 is a weighted
sum of the three Surface Filling-In images in the bottom row
of Slide 59.

4 Neural Models of Boundary Completion
by Bipole Cells

The next group of slides explains how these processes work
in a non-technical way. To this end, Slide 60 asks how our
brains compute boundaries inwardly and in an oriented
fashion between pairs or greater numbers of approximately
collinear inducers with similar orientations?

Slide 61 proposes that the cortical cells which complete
boundaries obey a property that I have called the bipole
property. This name describes the fact that these cells receive
signals from nearby cells via receptive fields that have two
branches, or poles, on either side of the cell body. Suppose,
for example, that a horizontal edge, as in one of the pac men
of a Kanizsa square stimulus, activates such a cortical cell
(shown in green). It then sends excitatory signals via
long-range horizontal connections (in green) to neighboring
cells. These signals do not, however, activate these neigh-
boring cells because inhibitory cells (in red) are also acti-
vated by the excitatory signals. These inhibitory cells inhibit
the cells that the excitatory cells are trying to excite. The
excitatory and inhibitory signals are approximately the same
size, so the target cell cannot get activated. It is a case of
“one-against-one”.

Slide 62 shows the case in which an entire Kanizsa square
is the stimulus. Now there are two pac men that are
like-oriented and collinear on each side of the stimulus.
Consider the pair of pac men at the top of the figure. Each of
them can activate a cell whose long-range excitatory con-
nections try to activate intervening cells. As before, they also
activate inhibitory interneurons that try to inhibit these target
cells. Why, then, does not the total inhibition cancel the total
excitation, as before?
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This does not happen because the inhibitory interneurons
also inhibit each other (see red connections). This recurrent
inhibition converts the network of inhibitory interneurons
into a recurrent, or feedback, competitive network. I proved
in Grossberg [23] that such a network tends to normalize its
total activity. Thus, no matter how many inhibitory
interneurons get activated, their total output remains
approximately the same. The total inhibition to the target
bipole cell thus does not summate like the excitatory signals
do as more inhibitory cells are activated. This is thus a case
of “two-against-one” so that the bipole cell can get activated
if two or more approximately like-oriented and collinear
neighboring cells send signals to it. This explains why
boundary completion occurs inwardly and in an oriented
manner from two or more neighboring cells, as noted in
Slide 29. Slide 62 also includes, at its upper right corner, a
schematic way to represent the longer-range excitatory (in
green) and shorter-range inhibitory (in red) effects on a
bipole cell’s firing.

Do bipole cells exist in our brains? I predicted that they
do in an article that I published in 1984. That same year, a
famous article was published in Science by von der Heydt
et al. [66] that provided experimental support for the pre-
diction in cortical area V2; see Slide 27. Slide 63 summa-
rizes key properties of their neurophysiological data. In
particular, either direct excitatory inputs to a bipole cell
body, or similarly oriented excitatory inputs to both “poles,”
or receptive fields, of a bipole cell, are needed to activate it.
Moreover, an input to a receptive field is still effective in
activating the cell if it is moved around within this receptive
field. If, however, only one pole gets activated, then no
matter how intensely this is done, the bipole cell does not
fire.

Slide 64 shows that additional evidence for this kind of
horizontal activation of cells in cortical area V1, which is the
cortical area that feeds into V2, and which itself receives
inputs from the Lateral Geniculate Nucleus, or LGN; see
Slide 27. Both the longer-range excitatory influence (in blue)
and the shorter-range inhibitory influence (in red) were
found both in psychophysical and neurophysiological
experiments by Kapadia et al. [49]. These excitatory effects
are, however, of shorter range than they are in V2, and
typically modulate, or sensitize, V1 cells to fire more to
inputs directly to them, rather than fire them without such
direct inputs.

Slide 65 shows some of the anatomical evidence for cells
with long-range oriented horizontal connections.

The top left image in Slide 66 shows the oriented bipole
cell receptive field that Ennio Mingolla and I used to sim-
ulate boundary grouping and completion properties in an
article of ours we published in 1985 (Grossberg and Min-
golla [39, 40]. The dot at the center of this image represents
the position of the bipole cell body. The lines at either side

of the cell body represent how strongly the cell body gets
activated by inputs to the cell’s two receptive fields. In
particular, the length of each line at every position and ori-
entation represents the relative strength of the connection to
the bipole cell body in response to an input with that position
and orientation. Note that inputs can be received by the cell
body from both collinear and nearly collinear positions and
orientations, with the most collinear positions and orienta-
tions delivering the largest inputs, other things being equal.
The upper right image represents psychophysical data of
Field et al. [17] that support bipole cell properties. The two
images in the bottom row represent the bipole receptive
fields that were used in modeling studies by two sets of other
authors.

5 Boundary Formation by the Laminar
Circuits of Visual Cortex

We are now ready to consider some of the main concepts and
mechanisms of Laminar Computing which, as Slide 68 notes,
is another new paradigm for understanding how our minds
work. Laminar Computing tries to clarify why all neocortical
circuits are organized into layers of cells, often six charac-
teristic layers in perceptual and cognitive cortices. Said more
directly: What do layers have to do with intelligence?

Slide 69 depicts a simplified diagram of the circuits in
cortical layer 2/3 that carry out perceptual grouping using
long-range, oriented, horizontal excitatory connections,
supplemented by short-range disynaptic inhibitory interneu-
rons, in the manner that I already summarized in Slides 61–
66. This slide also summarizes some of the article authors and
dates that have supported this conception. Slide 70 asks what
happens before layer 2/3. In particular, how do inputs reach
the grouping layer 2/3?

Slide 71 provides more information about how the ori-
ented local contrast detectors called simple cells, that were
mentioned in Slide 31, do their job. Simple cells are the first
cortical stage at which cells fire in response to preferred
orientations at their preferred positions and spatial scales.
Each simple cell can respond to either an oriented
dark-to-light contrast or an oriented light-to-dark contrast,
but not both. Slide 72 notes that simple cells are not suffi-
cient, as I already noted when discussing Slide 30. As
already noted in Slide 31, Slide 73 reminds us that simple
cells of like orientation and position, but opposite contrast
polarities, add their output signals at complex cells.

Slide 74 notes that complex cells are also not sufficient
because they do not respond adequately at line ends or
corners. Indeed, as Slide 75 remarks, multiple processing
stages are needed to accomplish another hierarchical reso-
lution of uncertainty. This one compensates for weaknesses
in the ability of simple cells to detect oriented contrasts.
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Slide 76 illustrates what goes wrong if only simple and
complex cells process line ends. At a bar end, these oriented
cells can respond at each position, as illustrated by the red
lines in the left image. However, they cannot respond at a line
end, as illustrated by the gap in the red boundary there. This
problem occurs for every choice of simple cell scale. One just
needs to choose the width of the line accordingly. Slide 77
asks: Who Cares? Why is this a problem in the first place?

Slide 78 shows that it is, in fact, a very serious problem
because color could flow out of every line end during the
process of surface filling-in, thereby leaving the scenic
representation awash in spurious color.

Slide 79 summarizes the problem that needs to be solved:
Somehow the brain needs to create a line end, called an end
cut, after the stage where complex cells act. After the end cut
forms, color will be contained within the line end. Slide 80
emphasizes that the process which creates end cuts carries
out a context-sensitive pattern-to-pattern map, not a pixel-to-
pixel map, since it would be impossible, looking just at a
pixel with no boundary, to decide if it needs to be part of an
end cut, or just left alone because nothing is happening in the
scene at that pixel.

Yet another processing stage is needed to carry out this
hierarchical resolution of uncertainty. Slide 81 depicts a
circuit that contains, in addition to simple and complex cells,
a subsequent stage of hypercomplex (or endstopped com-
plex) cells that are capable of generating end cuts. The
hypercomplex cells respond in two stages. The first com-
petitive stage is defined by an on-center off-surround, or
spatial competition, network. Using this network, each
complex cell excites like-oriented hypercomplex cells at its
position while inhibiting like-oriented hypercomplex cells at
nearby positions. In addition to receiving these excitatory and
inhibitory inputs, these hypercomplex cells are also tonically
active; that is, they are activated even in the absence of
external inputs, due to an internal source of activation.

In the absence of inputs from the first competitive stage,
firing of the hypercomplex cells due to their tonic activation
is inhibited by the second competitive stage, which is real-
ized by a competition between hypercomplex cells at the
same position that are tuned to different orientations. Max-
imal inhibition is delivered between hypercomplex cells that
are preferentially tuned to perpendicular orientations. When
all the hypercomplex cells receive only tonic activation, they
can inhibit each other equally using this orientational
competition.

Slide 82 explains how end cuts are created at the end of a
vertical black line on a white background. Near the end of
the vertical line, its vertical edges can activate vertical
complex cells which, in turn, can activate vertical hyper-
complex cells at its position, and inhibit vertical hyper-
complex cells at nearby positions, including positions
beyond the end of the line. Inhibition of these vertically

oriented hypercomplex cells removes their inhibition from
other oriented hypercomplex cells at the same positions. The
most inhibition is removed from hypercomplex cells that are
tuned to perpendicular orientations. When the activities of
these cells are disinhibited, their tonic activation can drive
them to fire. An end cut can hereby form.

Slide 83 shows the results of a computer simulation of
how complex cells (left image) and hypercomplex cells
(right image) respond to a line end. The line end is shown in
gray in both images. The lengths of the oriented lines are
proportional to the responses of the cells at those positions
and orientational preferences. The complex cell responses in
the left image exhibit strong vertically, and near vertically,
oriented responses along the vertical sides of the line.
Despite these strong responses along the sides of the line,
there are no responses at the bottom of the line. This is due
to the elongated shape of oriented simple and complex cells.
In the current simulation, the receptive field size is shown by
the dark dashed lines.

The hypercomplex cell responses in the right image of
Slide 83 show a strong end cut that is perfectly aligned with
the bottom of the line end (hyperacuity!) but also generates
responses at multiple nearly horizontal orientations (fuzzy
orientations). These near-horizontal hypercomplex cell
responses result from the near-vertical complex cell
responses.

Slides 84–86 illustrate some of the consequences of these
end cut properties. In particular, Slide 84 notes that some
kinds of printed fonts, such as Times and Times New Roman
fonts, build in their own end cuts, in the form of serifs,
which are marked in red. Thus, despite the fact that “our
brains try to make their own serifs” using end cuts, adding
serifs in fonts can facilitate readability. Slide 85 notes that
the fuzzy orientations that occur in end cuts allow lines that
are not perfectly parallel to nonetheless generate emergent
boundaries by cooperation among their end cuts. Finally,
Slide 86 notes that the global grouping that forms through
line ends may, or may not, go through their preferred per-
pendicular orientations. In the upper two images, the emer-
gent boundary is perpendicular to all the line ends. In the
lower image, it is not. The boundary that ultimately forms is
the one has the most support from all the inducers with
which it can group.

Slide 87 reminds us that all of these possibilities are due
to the fuzzy receptive fields of individual bipole cells. This
state of affairs raises the question: Why are not all the
groupings that form using fuzzy bipole cells themselves
fuzzy, which would cause a significant loss of acuity if it
were true? Why, moreover, do bipole cells have such fuzzy
receptive fields in the first place?

Slide 88 suggests that a fuzzy band of possible groupings
often does form initially (left image), and that this is a good
property: If bipole cell receptive fields were too sharply
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defined, then there would be a close-to-zero probability that a
grouping could ever get started. Keep in mind that our brains
are made of meat, not silicon. Initial fuzziness is essential to
initiate the grouping process using such an imperfect med-
ium. Having gotten a grouping started, then the challenge is
to choose the grouping with the most evidence, while sup-
pressing weaker groupings (right image). This is done using
another hierarchical resolution of uncertainty.

Slide 89 notes that sharp boundaries emerge from fuzzy
bipole cells due to interactions within the larger network of
which bipole cells form a part.

The computer simulations that are summarized in Slide
90 illustrate some of the sharp groupings that bipole cells
can create in such a network. Images (a), (c), (e), and
(g) represent the inputs to such a network. Each line in these
images is proportional to the size of the input to a cell
centered at the middle of the line and with the vertical ori-
entational preference of the line. Thus, every input is com-
posed of a “bar” of vertical features. The inputs differ only in
whether or not the bars are aligned in rows, columns, or
both. In (a), only the columns are aligned. In (c), both col-
umns and rows are aligned. In (e), only the rows are aligned.
And in (g), the rows are aligned and closer together.

Images (b), (d), (f), and (h) depict the steady-state
responses of the bipole cells in this network. In (b), vertical
boundaries are created between the bars. In (d), vertical and
horizontal boundaries are created. In (f), horizontal bound-
aries are created. And in (h), both horizontal and diagonal
boundaries are created, even though there are no diagonal
orientations in the inputs. These simulations illustrate that
the network is sensitive to the colinearity and orientations of
input inducers, and that sharp boundaries can be completed
using fuzzy bipole cell receptive fields. The simulation in
(h) also shows how emergent diagonals can be created if
there is enough evidence for them in the input inducers, just
as they are in response to the bottom display in Slide 86. The
rows needed to be brought closer together for this to happen
so that they fell within the span of the diagonally oriented
bipole cell receptive fields.

Slide 91 includes images that induce percepts which
illustrate the properties of the simulations in Slide 90. In
response to the upper left image of an E that is composed of
smaller A’s, the top horizontal boundary of the E groups
diagonal orientations of the A boundaries. The top horizontal
boundary of the S emerges from the perpendicular line ends
of the H’s, whereas the right vertical boundary of the S
emerges from collinear grouping of the right sides of the H’s.

These properties have inspired works of art. Slide 92
shows a typography portrait of Sean Williams in which all
the facial features and the hair exploit these properties of
boundary completion.

Slides 93–98 show how the processes that have already
been reviewed can explain the percept of neon color

spreading. Slide 94 depicts a neon color spreading image
that is composed of black crosses abutting red crosses. In
this image, the contrast of the red crosses with respect to the
white background is smaller than the contrast of the black
crosses with respect to the white background. In response to
this image, one of several percepts can be perceived. One
can either perceive red neon color filling local shapes around
the individual red crosses, such as diamonds or circles, or
one can perceive diagonal streaks of color passing through a
collinear array of red crosses.

Slide 95 depicts how neon color can appear to spread
beyond a red cross and be contained by the illusory circle
that is induced where the black and red regions touch. Let us
now see how the first steps in generating a neon percept are
caused in the simple-complex-hypercomplex network of
Slide 96.

Slide 97 considers what happens where a pair of collinear
black and red line ends touch. Vertically oriented complex
cells respond along their vertical boundaries. Because the
black-to-white contrast is larger than the red-to-white contrast,
the complex cells that are along the black line end become
more active than those along the red line end. Because of the
first competitive stage, the black vertical complex cells inhibit
red vertical hypercomplex cells more than conversely near
where the two line ends touch. As a result, these red bound-
aries are inhibited, or at least significantly weakened, thereby
causing a hole, or weakening, in them that is called an end gap.
Red color can spread outside the red crosses through these end
gaps during surface filling-in.

Due to the second competitive stage, the weakening of
the red vertical hypercomplex cell activities disinhibits other
oriented hypercomplex cells at those positions, especially
horizontal hypercomplex cells, thereby creating end cuts,
just as in the case of the line end in Slides 82 and 83.

After these end cuts form, the bipole cells that they
activate can create an emergent boundary that best interpo-
lates the end cuts, as illustrated by Slide 98. The red color
that spreads outside the red crosses is blocked from
spreading beyond this circular illusory boundary.

We can now apply these insights to better understand
how various paintings look, starting with the paintings of Jo
Baer (Slide 99). Slide 100 shows a group of three of Jo
Baer’s paintings side-by-side. All of them have a black
border. Within this border is a less contrastive border with a
specific color: red, green, or blue, from left to right. The
percepts show reddish, greenish, and bluish hues spread
throughout the intervening canvas. How does this percept
happen?

The main effect can be explained by the spatial compe-
tition of the first competitive stage (Slide 96), followed by
surface filling-in. The black-to-white and black-to-red con-
trasts are larger than the red-to-white contrasts in the left-
most image. As a result, the red-to-white boundary is
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weakened, so red color can spread through the interior of the
canvas. The same holds true for the green and blue contrasts.

A more vivid version of this effect was developed by
Baingio Pinna, who calls it the watercolor illusion [56, 57]. In
the image in Slide 101, there are four closed regions in which
a dark blue wiggly line abuts a light blue wiggly line, which
encloses a white interior region. The percepts within these
regions is one of light blue color filling their interiors. This
happens for the same reason that the Joe Baer effects do,
because the dark blue contrast with respect to both the white
background and the light blue contrast, is larger than the light
blue contrast with respect to the white background. The effect
is made stronger by using corrugated, or wiggly lines, whose
surface area relative to the surrounded white interiors is much
larger than straight lines would allow, thereby creating many
more positions at which light blue color can flow within the
weakened boundaries to fill the white interiors.

Slide 102 calls attention to the fact that the bluish regions
also seem to bulge slightly in front of the white backgrounds
that surround them. This may be explained as a special case
of how cells with multiple receptive field sizes, or spatial
scales, influence how we see objects in depth. Slide 103
shows more examples of this using shaded images that
create compelling percepts of objects in depth. These tech-
niques are called chiaroscuro and trompe l’oeil. Slide 104
notes that similar effects make many shaded and textured
objects in 2D pictures appear to have a 3D rounded shape.
I will now explain how responses of receptive fields with
multiple sizes can create form-sensitive webs of boundaries
that control filling-in of surfaces at multiple depths, thereby
leading to these rounded percepts.

Slide 105 describes one factor that helps to explain how
this happens. As an object approaches an observer, it gets
bigger on the retina. As a result, other things being equal, a
larger retinal image is closer. Slide 106 notes that smaller
scales can respond better to small scales, whereas larger scales
can respond better to larger scales so that, other things being
equal, bigger scales can be associated with nearer depths
during years of experience with perception-action cycles.

A big image on the retina is not, however, always due to a
nearer object. For example, a very large object far away, and
a smaller object nearby, can both generate retinal images of
the same size. Both retinal image size and depth from an
observer need to work together to disambiguate these dif-
ferent situations. How this “size-disparity correlation” gen-
erates more informative depth percepts is explained in
Grossberg [27, 28].

Slides 107–113 describe some of the processes that
enable an object like a shaded ellipse in a 2D picture to
generate a compelling percept of a 3D ellipsoid. Slide 107
notes that, if boundaries were just edge detectors, there
would be just a bounding edge of the ellipse (shown in red).

Slide 108 shows how the ellipse would then look after
filling-in occurs. It would have a uniform gray color after
filling-in within the bounding edge, and would look flat. We
know, however, from Slide 71 that simple cells are oriented
local contrast detectors, not just edge detectors.

Slide 109 notes that, because of the way that simple cells
respond to shaded images, different size detectors generate
dense form-sensitive boundaries, that I have called
“boundary webs” for short, at different positions and depths
along the shading gradient. Slides 110–112 show that
increasingly large receptive fields are sensitive to broader
bands of shading, starting from the bounding edge and
working toward the ellipse interior. Other things being equal,
the small scales signal “far”, larger scales signal “nearer”,
and the biggest scales signal “nearest”, other things being
equal.

As noted in Slide 113, the boundary web corresponding
to each scale captures the gray shading in the small
form-sensitive boundary compartments that it projects to the
surface stream, where it regulates how the gray color will
fill-in within that scale. We see this pattern of shading as it is
distributed across all the scales. Because different scales tend
to be associated with different depths, we perceive a shaded
percept in depth.

This view of how 3D shape percepts are generated is
supported by many computer simulations of human data
about visual perception. In particular, it has succeeded in
quantitatively simulating psychophysical data about human
judgments of depth in shape-from-texture experiments. In
Slide 114, although the 2D images of all of the five disks are
composed of spatially discrete black shapes on a white disk,
the ones to the left appear to have a rounded shape in depth,
whereas those to the right appear to be increasingly flat.
These percepts were quantitatively simulated using
multiple-scale boundary webs and the multiple-scale filled-in
surface representations that they induce.

Coming back in Slide 115 to the watercolor illusion, we
can now explain its bulge in depth as a consequence of a
multiple-scale boundary web, albeit one that is generated by
just a few abutting wiggly lines of decreasing contrast. The
chiaroscuro and trompe l’oeil images in Slide 116 also
generate multiple-scale boundary webs but use gradual
changes in contrast to induce them, so that more scales can
be involved, leading to more gradual and vivid perceived
changes in depth.

Slides 117–120 propose why the famous paintings by
Claude Monet of the Rouen cathedral at different times of
day lead to different conscious percepts. In Fig. 6 (Slide
118), the cathedral was painted at sunset when lighting was
almost equiluminant across most of the pointing. As a result,
color, rather than luminance, differences defined most of the
boundaries, which were correspondingly weakened. Fine
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architectural details were not represented, so that coarser and
spatially more uniform boundary webs were created, thereby
leading to less perceived depth in the painting.

Figure 7 (Slide 119), in contrast, shows the cathedral in
full sunlight that is very non-uniform across the painting,
thereby creating strong boundaries due to both luminance

Fig. 6 Equiluminant light
creates less depth in the painting
(Slide 118)

Fig. 7 Strongly non-uniform
light creates more depth in the
painting (Slide 119)
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and color differences. Due to the increased amount of detail,
the boundary webs that form are finer and more
non-uniform, leading to a more depthful percept.

Figure 8 (Slide 120) emphasizes another consequence of
full sunlight by marking some of the T-junctions that are
now clearly visible in the painting, leading to additional cues
to perceiving relative depth, as in the percept of a partially
occluded rectangle shown in red in this slide, and further
discussed in Slides 34 and 35.

Let us now consider how these same mechanisms help to
explain how quite different combinations of painterly prop-
erties are perceived. Let us start with the color field paintings
of Jules Olitski (Slide 121). Slide 122 summarizes four of
these “spray” paintings, so called because of the method that
was used to create them. Slide 123 contrasts the percepts
created by these spray paintings with those of Monet and
other Impressionists. In the spray paintings, there are no
discrete colored units (or at least very few), and no struc-
tured color or luminance gradients. Instead, diffuse boundary
webs are spread over the entire surface. When they fill in, the
resulting surface percepts are of a space filled with a colored
fog and a sense of ambiguous depth. The quote of Olitski at
the bottom of Slide 123 summaries his intention to create
this kind of effect.

Quite different percepts are seen in paintings of Ross
Bleckner (Slide 124). Slide 125 refers the reader to some of
his paintings that create self-luminous effects. To explain
self-luminous percepts requires a deeper analysis of how we
see surface color and brightness. Slide 126 claims that at

least two different processes can create these effects:
Boundary web gradients and lightness anchoring.

Slide 127 presents some examples of how a picture can
seem to glow if boundary web gradients exist; that is, if the
shading that creates boundary webs varies systematically
across space, from darker to lighter. Because the stronger
boundaries can inhibit the weaker boundaries more than
conversely, brightness can spread out of the inhibited weaker
boundaries into regions where it can be trapped. The four
images in the upper left corner illustrate how this brightness
is trapped within the interior square of the images.

These four images, working from left to right in the top
row, and then from left to right in the bottom row, have
increasingly steep boundary web gradients. The steepest
gradients enable stronger boundaries to more completely
inhibit the weaker boundaries near to them, allowing more
brightness to flow beyond them. This brightness summates
in the interior square, thereby creating an increasing bright
result that, in the final square, appears self-luminous.

The right column of Slide 127 shows a similar effect in its
top row with the example of the double brilliant illusion. The
rows beneath that summarize computer simulations using the
Anchored Filling-In Lightness Model (aFILM) that I
developed with my Ph.D. student, Simon Hong [35]. More
will be said about aFILM in the next few slides, since it can
explain the brightening effects due to boundary web gradi-
ents, as well as those due to lightness anchoring.

A remarkable percept is shown in the left pair of images
in the bottom row, where two vases are shown side by side.

Fig. 8 T-junctions where
vertical boundaries occlude
horizontal boundaries, or
conversely, lead to more depth in
the painting (Slide 120)
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The rightmost vase looked matte, or dull. A highlight was
manually attached to this dull vase to create the vase in the
left image. Now the entire vase looks glossy! This can be
explained by the fact that the highlight includes luminance
gradients that match the shape of the surrounding vase. The
\boundary web of the highlight can thus be assimilated into
the boundary web of the rest of the vase, thereby allowing
brightness to spread from the highlight across the vase. Beck
and Prazdny [2], who reported this percept, also rotated the
highlight and removed its luminance gradients. Both effects
prevented the rest of the vase from looking glossy, as would
be expected from the above explanation because the
brightness could then not flow into other shape-sensitive
boundary webs of the vase.

Slide 128 asks what is lightness anchoring, while Slide
129 furthermore notes that we have thus far only considered
how discounting the illuminant preserves the relative
activities of luminance values, without saturating, as they are
converted into perceived brightnesses. The phenomenon of
lightness anchoring shows that more is going on when we
perceive brightness.

Lightness anchoring additionally raises an issue that is
summarized in Slide 129; namely, how is the full dynamic
range of a cell used, not just its relative activities? Another
way of saying this is to ask: How do our brains compute
what is perceived to be white in a scene?

Slide 130 summarizes one hypothesis about how white is
perceived. The great American psychologist, Hans Wallach,
suggested that the highest luminance in a scene is perceived
as white, the so-called HLAW rule. Slide 131 shows that this
rule sometimes works, as in the top row of images. How-
ever, the bottom row of images shows that, if there is a very
intense light source in a scene, renormalizing it to make the
light source white can drive the rest of the scene into
darkness.

My Ph.D. student, Simon Hong, and I realized that if one,
instead, computes the blurred highest luminance as white
(BHLAW), then that problem can be avoided, as shown by
the computer simulations in Slide 132.

Slides 133 and 134 illustrate how the BHLAW rule
works. Slide 133 shows a cross-section of a luminance
profile in green, and the spatial kernel that defines the
BHLAW rule in red. In this situation, the width of the
luminance step is considerably narrower than that of the
blurring kernel. As a result, when this scene is anchored to
make the blurred highest luminance white, the maximal
brightness of the step is more intense than white. It therefore
appears to be self-luminous.

In contrast, if as shown in Slide 134, if the luminance step
in a scene is at least as wide as the blurring kernel, then when
the scene is anchored to make the blurred highest luminance
white, the entire luminance of the step is seen as white.

Returning now to look at at the two examples of Bleck-
ner’s paintings in Slide 135, we can see that the small bright
regions look self-luminous because of lightness anchoring,
whereas larger spatial luminance gradients look
self-luminous due to the escape of brightness from graded
boundary webs.

6 How Do We Consciously See a Painting?

None of the above results would make much sense if we
could not consciously see objects in the world, including
paintings. Fortunately, there has been considerable progress
during the past 40 years to incrementally understand both
how and why, from a deep computational perspective, we
become conscious. Slide 138 summarizes a definition of the
Hard Problem of Consciousness that expresses these issues.
Readers who want to study more details about the Hard
Problem than I will summarize here are invited to read my
non-technical article Grossberg [34] about this topic that I
published Open Access and also put on my web page sites.
bu.edu/steveg. In particular, Slide 138 asks why any physi-
cal state is conscious rather than unconscious, and why
conscious mental states “light up” in an observer’s brain.
Slides 139–141 summarize my hypothesis that our brains
“light up” to embody a conscious state when they go into a
resonant state. Slide 142 additionally proposes that “all
conscious states are resonant states”. As Slide 143 notes, not
all brain dynamics are resonant, so consciousness is not just
a “whir of information processing.

Slide 144 provides a non-technical definition of what a
resonant state is. Namely, a resonant state is a dynamical state
during which neuronal firings across a brain network are
amplified and synchronized when they interact via reciprocal
excitatory feedback signals during a matching process that
occurs between bottom-up and top-down pathways.

Slide 145 summarizes my central claim that conscious
states are part of adaptively behavioral capabilities that help
us to adapt to a changing world. Conscious seeing, hearing,
and reaching help to ensure effective actions of one kind or
another. In particular, conscious seeing helps to ensure
effective looking and reaching, conscious hearing helps to
ensure effective communication and speaking, and conscious
feeling helps to ensure effective goal-oriented action. This
lecture does not describe the brain machinery that clarifies
why evolution may have been driven to discover conscious
states. Grossberg [34] does attempt to do this.

In brief, that article argues that evolution was driven to
discover conscious states in order to use them to mark per-
ceptual and cognitive representations that are complete,
context-sensitive, and stable enough to control effective
actions. This link between seeing, knowing, consciousness,
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and action arises from the fact that our brains use design
principles such as complementary computing, hierarchical
resolution of uncertainty, and adaptive resonance. In par-
ticular, hierarchical resolution of uncertainty shows that
multiple processing stages are needed to generate a suffi-
ciently complete, context-sensitive, and stable representation
upon which to base a successful action. Using earlier stages
of processing could trigger actions that lead to disastrous
consequences. Conscious states “light up” the processing
stages that compute representations that can control effective
actions.

Slides 37–39 already illustrated this problem in the case
of visual perception. How, for example, can you look at a
part of a scene that is occluded by the blind spot? As sum-
marized in Slide 39, processes like boundary completion and
surface filling-in at higher processing stages are needed to
overcome these occlusions. Boundary completion and sur-
face filling-in are examples of hierarchical resolution of
uncertainty. After a sufficiently complete surface represen-
tation is generated, a resonance develops that marks this
representation as an adequate one upon which to base
looking and reaching.

Slide 146 focuses on this question for the case of seeing
and reaching. Slide 147 asks: What is this resonance? It
proposes that a surface-shroud resonance “lights up” surface
representations that are proposed to occur in prestriate visual
cortical area V4. Surface-shroud resonances are predicted to
occur between V4 and the posterior parietal cortex, or PPC,
where a form-fitting distribution of spatial attention occurs in
response to an active surface representation, and begins to
resonate with it in the manner that I will explain in Slides
154–157.

Slide 148 proposes that, just as a surface-shroud reso-
nance supports conscious seeing of visual qualia, a
feature-category resonance supports conscious recognition
of, or knowing about, visual objects and scenes.

How are feature-category resonances formed? Slides
149–153 briefly describe how feature-category resonances
are generated using mechanisms and circuits of Adaptive
Resonance Theory, or ART. As summarized in Slides 149
and 150, ART models how we learn to attend, recognize,
and predict objects and events in a changing world, without
being forced to forget things that we already know just as
quickly. In other words, ART proposes a detailed mecha-
nistic solution of the brain processes whereby our brains
solve the stability-plasticity dilemma that is summarized in
Slide 149; namely, how can we learn quickly without being
forced to forget just as quickly? I am glad to be able to write
that ART is currently the most advanced cognitive and
neural theory, with the broadest explanatory and predictive
range, about how our brains learn to attend, recognize, and
predict objects and events in a changing world. These pre-
dictive successes include psychological and neurobiological

experiments that have supported all of the main ART
predictions.

ARTs explanatory range has also enabled it to shed
mechanistic insight on how brain mechanisms may become
imbalanced to generate mental symptoms of mental disor-
ders that afflict millions of individuals, including Alzhei-
mer’s disease, autism, Fragile X syndrome, schizophrenia,
ADHD, visual and auditory neglect, medial temporal
amnesia, and problems with slow wave sleep ([19, 29, 33,
34, 36, 42]).

In addition to applications of ART to clarify properties of
mental diseases, it has been used in many large-scale appli-
cations to engineering and technology that need these prop-
erties. Some of these applications are listed in Slide 151,
including the use of ART by the Boeing company in a parts
design retrieval system that was used to design theBoeing 777.

ART can be used with confidence because its properties of
learning, recognition, and prediction have been mathemati-
cally proved and demonstrated through extensive computer
simulations on benchmark problems in a series of articles with
Gail Carpenter during the 1980s and 1990s (e.g., Carpenter [5,
6]; Carpenter et al. [7–14]), including the property that it
solves the stability-plasticity dilemma, which is also often
called the problem of catastrophic forgetting. Most learning
algorithms do experience catastrophic forgetting, including
the currently popular Deep Learning algorithm. During
learning by such an algorithm, an unpredictable part of pre-
viously learned memories can suddenly collapse. In other
words, learning in these algorithms is unreliable.

Their learning is also often inexplicable. One cannot
verify that even correct predictions have been made for
sensible reasons. This is a serious drawback when consid-
ering whether to depend upon them for life and death
decisions, such as medical decisions. In contrast, the adap-
tive weights of ART algorithms such as Fuzzy ARTMAP [9]
can, at any stage of learning, be represented as Fuzzy
IF-THEN rules which provide a transparent explanation of
how the algorithm is making its decisions.

How does ART manage to achieve these useful properties.
Intuitively, it is because ARTmodels learn expectations about
the world that focus attention upon the combinations of fea-
tures that it expects to be useful. But why do we learn expec-
tations and pay attention? Why are we intentional and
attentional beings? Slide 152 notes that top-down attentive
feedback encodes learned expectations that dynamically sta-
bilize learning and memory. In other words, learned expec-
tations and attention help us to solve the stability-plasticity
dilemma! ART models the neural networks that embody how
top-down expectations are learned, and how they enable us to
focus our attention upon information that is expected frompast
experience to be informative.

Feature-category resonances are part of this stability-
plasticity expectation-attention story. Slide 153 summarizes
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how a feature-category resonance develops between an
attended pattern of features, called a critical feature pattern
(depicted in light green), and an active recognition category
at the next processing stage. The reciprocal bottom-up and
top-down excitatory signals synchronize, amplify, and pro-
long cell activations. During such a resonance, the adaptive
weights, or LTM traces, in both the bottom-up adaptive
filters and the top-down expectations can learn to selectively
fire the active critical feature pattern and category when a
similar input pattern is experienced in the future. It is
because such a resonance triggers learning that I have called
the theory Adaptive Resonance Theory.

Feature-category resonances help to support conscious
recognition of visual objects and scenes, but they do not
directly support conscious “seeing”. Slides 154–158 provide
some basic information about the surface-shroud resonances
that do support conscious seeing. But first, what is an
attentional shroud? Slide 155 notes that an attentional shroud
is a surface-fitting distribution of spatial attention. Several
excellent visual experimentalists had earlier noted that spa-
tial attention tends to fit itself to surfaces that are attended.
I predicted, in addition, how such a shroud enables learning
of view-invariant object categories [19]. A view-invariant
object category is a recognition category that can be acti-
vated by any view of an observed familiar object. I showed
how shrouds support learning of such invariant categories by
controlling how the cells that will become invariant cate-
gories can remain active as our eyes explore its various
views to drive the category learning process. This insight
was later generalized to explain how view-, position-, and
size-invariant categories are learned ([14–16, 18, 38]). How
this learning process is proposed to happen is reviewed in
Grossberg [34]. Some of the archival articles that preceded
this review were written with various Ph.D. students, post-
doctoral fellows, and other faculty. They are listed in Slide
155. Here I focus on related issues.

Slide 156 illustrates a one-dimensional cross-section of a
simple scene in which two luminous bars occur, the left one
a little more luminous than the right one. Both bars send
topographic bottom-up excitatory signals to the spatial
attention region, where they trigger a widespread spatial
competition for attention.

In addition, as Slide 157 summarizes, the activated spatial
attention cells send topographic top-down excitatory signals
back to the surfaces that activated them. The totality of these
interactions defines a recurrent, or feedback, on-center
off-surround network whose cells obey the membrane
equations of neurophysiology, also called shunting interac-
tions. I mathematically proved in Grossberg [23]—see also
the review in Grossberg [24]—how such a network can
contrast-enhance the attentional activities that focus upon the
more luminous bar while also inhibiting the attention
focused on the less luminous one. Because such a network

tends to normalize the total activity across the network,
increasing attention to one bar automatically diminishes the
attention that is paid to the other bar.

The net effect of these recurrent interactions is a
surface-shroud resonance. Due to the top-down excitatory
signals, the attended surface appears to have greater contrast,
a property that has been reported both psychophysically and
neurophysiologically.

Slide 158 summarizes the claim that an active
surface-shroud resonance means that sustained spatial
attention focuses on the object surface. The recurrent inter-
actions sustain the attentional focus.

Slide 159 summarizes the critical claim that, in addition
to its role in sustaining spatial attention on an object, a
surface-shroud resonance supports conscious seeing of the
attended object, in particular, a painting, while our eyes
explore it. The talk does not summarize the large amount of
psychological and neurobiological data that are consistent
with this claim, but my article Grossberg [34] does do this.

Slide 160 summarizes the distinct resonances that support
knowing versus seeing. A surface-shroud resonance, with the
shroud in posterior parietal cortex (PPC), supports conscious
seeing, whereas a feature-category resonance, with the cate-
gory in inferotemporal cortex (IT), supports knowing.We can
know about a familiar object when we see it because both
resonances can synchronize their activities via shared circuits
in prestriate visual cortical areas such as V2 and V4.

This distinction also enables us to understand various
clinical data. For example, Slide 161 notes that, if the
knowing resonance is damaged, then patients with visual
agnosia can nonetheless accurately reach toward an object
even if they cannot describe the orientation or other prop-
erties in space of the object that they are reaching. This
example dramatizes the claim that seeing supports reaching,
even if knowing does not occur.

Slide 162 emphasizes dual, but coordinated, functions of
PPC in doing this. First, there is the top-down attention from
PPC to V4 that focuses sustained spatial attention upon an
object as part of a surface-shroud resonance. In addition,
there is a bottom-up command from this attentive focus to
motor control networks further downstream that carries out
an intention to move to the attended object. Attention and
intention are well-known to both be parietal cortical func-
tions, and some of the articles that have contributed to this
insight are listed. The theory clarifies why this so from the
perspective of explaining how and why we become con-
scious of visual qualia.

My final Slide 163 summarizes some of the brain designs
that this lecture has used to explain properties of how we
consciously see and know things, and how these processes
help to guide artists in making visual art. These designs
clarify that our brains compute very differently than tradi-
tional computers, and from the currently popular algorithm
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in machine learning and AI called Deep Learning. Adaptive
Resonance Theory has also been used in machine learning
and AI applications, as Slide 151 has illustrated. ART can
thus shed light upon the artistic process as well as provide
algorithms for large-scale applications in engineering and
technology that require autonomous adaptive intelligence in
response to rapidly changing environments that may be filled
with unexpected events. As I have already noted above,
ART has also been used to provide mechanistic neural
explanations of mental disorders that afflict millions of
individuals, such as Alzheimer’s disease, autism, Fragile X
syndrome, schizophrenia, ADHD, visual and auditory
neglect, medial temporal amnesia, and problems with slow
wave sleep. How ART contributes to such an understanding
is explained in a series of articles with several collaborators
[19, 29, 33, 34, 36, 42]. Deep Learning cannot do any of
these things. I therefore welcome artists, as well as scientists
and technologists, to further study ART and to help develop
its ability to provide new insights and applications in all of
these fields.
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