
Automatic Code Generation System
for Transactional Web Applications

Hector Florez(B) , Edwarth Garcia, and Deisy Muñoz

Universidad Distrital Francisco Jose de Caldas, Bogotá, Colombia
haflorezf@udistrital.edu.co, eogt04@gmail.com, deisy.dymo@gmail.com

Abstract. Every day new applications appear, but several of these
applications usually share a lot of features. Some applications are based
on frameworks; however, most features introduce a lot of source code
impacting the performance of an application especially when the appli-
cation is web-based. Thus, automatic code generators have gained atten-
tion in the last years because they provide the required elements to create
automatically final applications without introducing a source code that
is not part of the application model. In this paper, we present an app-
roach to generate transactional web applications based on a conceptual
model as the unique input. Through the conceptual model, modelers can
specify the entities, attributes, and relations of the application. Then, the
approach is able to generate: (a) the source code separated in UI, busi-
ness, and persistence layers, (b) the DDL (Data Definition Language)
scripts for the corresponding relational database, and a script to create
corresponding UML diagrams.

Keywords: Code generation · Conceptual model · Web application

1 Introduction

Nowadays, the amount of web applications developed in the world is increas-
ing rapidly. It might produce several issues in the development process. Since
projects are developed by several members of a development group, development
processes usually take long time even when the project is not too large. Develop-
ment time issues have been tackled by several authors and practitioners through
several strategies such as code reuse, components development, framework-based
development, code generation among others.

Code reuse allows developers to save time; however, usually it requires pre-
cise knowledge regarding the requirements solved by the code that is going to be
reused. Components development is a great strategy because developers can use
available components independently of the language; nevertheless, in most cases
such components are domain specific; then, sometimes available components do
not match to the desired requirements. Framework-based developments have
been used in the last years for web application with good results; nonetheless,
the final source code of the application usually includes a lot of instructions that
c© Springer Nature Switzerland AG 2019
S. Misra et al. (Eds.): ICCSA 2019, LNCS 11623, pp. 436–451, 2019.
https://doi.org/10.1007/978-3-030-24308-1_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24308-1_36&domain=pdf
http://orcid.org/0000-0002-5339-4459
https://doi.org/10.1007/978-3-030-24308-1_36


Automatic Code Generation System for Transactional Web Applications 437

belong to the framework affecting the performance of the application. Code gen-
eration is a strategy that has been used for several purposes because it produces
pure source code for final applications; however, such final applications have
several but specific services; then, usually developers need to complement the
generated source code in order to provide the implementation of all requirements.

In this paper, we present our strategy for developing PHP web applications
based on code generation. We designed and developed the code generator project
called DevPHP, which receives as input a conceptual model written in XML
and allows generating PHP projects with a 3-layer architecture based on Boot-
strap 41 as toolkit for supporting responsive web components and JQuery 32

as JavaScript library to support Ajax components. In addition, DevPHP gen-
erates the DDL (Data Definition Languages) scripts for creating the relational
database. Although the script can be used to create the database in any database
engine, the generated persistence layer also provides all source code for connec-
tions to MySQL3 databases. Finally, DevPHP also generates the UML model
that includes component, class, and use case diagrams to be opened and manip-
ulated using UML Designer4 by Obeo.

In order to validate our approach, we have created various XML conceptual
models, which have been run through DevPHP. The conceptual models created
represents projects in different domains and include different characteristics in
order to verify that the generated PHP code corresponds to the modeled project.
In addition, we measured the time required to create the model and estimated the
time required to create the corresponding PHP source code in order to identify
the relevance of this work.

The paper is structured as follows. Section 2 presents the related work.
Section 3 illustrates the proposed approach. Section 4 presents the results Finally,
Sect. 5 concludes the paper.

2 Related Work

There are some approaches related to automatic code generation of web-based
applications. Some of these approaches use XML technologies as the main input
for the code generation environment. For example, Li et al. [6] presented an
approach using XML, XSLT templates and java language in order to generate
automatically the source code of a JSP project, where repetitive patterns in the
generated web-based project such as addition, modification, deleting and sav-
ing information can be reduced improving the efficiency of developers. Another
example is proposed by Turau [16], who presented a framework where its speci-
fications in interfaces for persistence and implementations for the business layer
are defined in XML files generating a complete system prototype. Milosavljevic

1 https://www.getbootstrap.com/.
2 https://www.jquery.com/.
3 https://www.mysql.com/.
4 http://www.umldesigner.org/.

https://www.getbootstrap.com/
https://www.jquery.com/
https://www.mysql.com/
http://www.umldesigner.org/


438 H. Florez et al.

et al. [9] present another approach based on a tool that generates a set of stan-
dardized database-oriented JSP pages. The JSP pages are generated from the
mapping of JavaBeans components to the database. The mapping is specified
as an instance of an XML scheme document. These generated pages allow the
visualization of a database table or row, as well as provide the possibility to add
a new row, update or delete an existing row. Senthil [14] made a code generator
implemented in C# which use as an input a model in XML that generates the
data access layer code for Microsoft .NET/SQL server platform. Mbarki et al.
[7] applied the Model Driven Architecture (MDA) approach in web applications.
In this approach two metamodels are made, the first is a meta model to manage
the UML source; the second metamodel is responsible to generate an applica-
tion using MVC2 architecture. Later, mapping rules are used as a transformation
algorithm which allows generating an XML file containing all actions, forms, and
the JSP pages to generate the necessary code of the application.

Some other approaches use different strategies for the input of the code gen-
erator. For instance, Mgheder et al. [8] describe a different approach to generate
web user interfaces. In this approach, the web user interface is generated based
on metadata hosted in tables of a generic database. To access the database,
they use ADOdb, which is a PHP library that generalizes the database connec-
tion. By using the ADOdb library, the application can access to the database
metadata that contains the information regarding the tables in the database.
The flow to get web user interfaces can be summarized in: (a) create a database
based on system requirements; (b) get the metadata from Information Schema
or directly from the tables of the database; (c) translate the native type data
from the database into a generic meta-type table; (d) map the data from the
tables obtained in the last step; and (e) get the user interface without behavior
or customize properties.

Nadkarni et al. [10] describe WebEAV, which is a generic framework for web
development in applications that possess an entity-attribute-value (EAV) com-
ponent. This database architecture is widely used in clinical data repositories. It
addresses the problem of saving data on several thousand potential parameters
for a patient across all clinical specialties. The EAV design has a single table that
records data as one row per each action. Each row contains the entity, attribute,
and value information about the entity. The main objective of the framework
consists in the automatic generation of forms based on EAV data. These forms
must have different functionalities and need to be responsive according to the
business requirement. Furthermore, this framework generates the forms based on
metadata attributes in a schema. Besides, all these data are processed through
several rules depending on the system complexity. This approach develops Web
forms based on metadata extracted from the database. Sanchez et al. [12,13]
present a framework to develop PHP web applications based on 3-layer archi-
tecture and Model View Controller architectural pattern. Albhbah and Ridley
[1] et al., Propose a framework that allows the generation of Web forms from
the use of common sense rules and domain specific rules based on a database
metadata. RuleML (Rule Markup Language) is the format used to represent the



Automatic Code Generation System for Transactional Web Applications 439

rules taken from the metadata. The implementation begins creating a prototype
of database, from which the common rules and the domain specific rules will
be created taking its database metadata. Then a PHP script tests which rules
have to be implemented depending the database metadata tables to generate its
respective Web form.

These approaches are just focused in the automatic code generation on con-
crete points of a web. However, our approach is centred on creating a complete
web application where business, persistence and user interface layers are gener-
ated from the input of a XML conceptual model.

Finally, some other approaches are based on the concepts related to Model
Driven Engineering (MDE), where conceptual models must conform to desired
metamodels. For instance, Sanchez et al. [11] propose an approach based on
Model Transformation Chains (MTC) to generate source code for configuring
peripherals in mobile applications. Although this approach is very interesting,
it demands the creation of a metamodel in order to abstract the features of
the domain. In addition, Florez et al. [3] present a MDE approach to generate
the required source code to connect unitary reusable components in order to
produce a particular web application. Our approach does not need the creation
of a metamodel and is able to generate the final source code of a web application.

3 Proposed Approach

We proposed a code generation strategy based on conceptual models written in
XML presented in Fig. 1. In this strategy, the modeler is the person who creates
the XML model. Later, he runs DevPHP, which uses the XML model to generate
PHP source files that compose the PHP project.

Fig. 1. Code generation strategy.



440 H. Florez et al.

The XML model follows a specific structure based on the following XML
elements:

1. model. Is the main XML element that contains the attributes: (a) name, which
specifies the name of the PHP project; (b) acronym; (c) description that
allows including a short text regarding the project; and (d) language, which
defines the language of the user interface for the generated PHP project,
albeit the source code always is generated in English.

2. entity. This element allows modelers to create the concepts involved in the
project. It has the attributes: (a) name; (b) actor, which is boolean and deter-
mines whether the entity is an actor; (c) menuDeploy that allows excluding
an entity from the menu deployed in the user interface; and (d) delete,
which is also boolean and defines whether the information of this entity in
the generated PHP project can be deleted.

3. attribute. This element allows including attributes to entities and must be
included in the context of the element entity. It has the following attributes:
(a) name; (b) type that can be string, text, int, date, email, or password;
(c) mandatory, which establishes whether the attribute is mandatory in the
generated PHP project, when creating or editing information; (d) length for
setting the length of the attribute; however, when the length is not provided,
the attribute will have 45 characters by default; (e) url, which is boolean
and is used to specify that the attribute contains an url; (f) visible, which
is boolean and serves to show or hide desired attributes for searching services
in the generated PHP project; and (g) image, which is boolean and allows
including PNG files in the generated PHP project.

4. relation. This element must be included in the context of the element
entity and serves to include one relation to another entity. It has the
attributes: cardinality that can have the values 1 or * and entity that
established the target entity of the relation.

5. service. This element must be included in the context of the element entity
only when the attribute actor in the element entity has the value true. This
element serves to define which entities can be controlled by a desired actor
through the boolean attributes: create, get, edit, and delete.

By default, DevPHP includes the entity Administrator, which is used to
provide all required services to manipulate all information related to the gener-
ated PHP project. Furthermore, for each entity that is acting as actor, DevPHP
includes the entity Log. For instance, for the entity Administrator, it includes
the entity LogAdministrator. The entities Log allows storing the actions made
by actors in the generated PHP project. The log includes by default: action,
information regarding the action, date, time, operating system, IP address, and
browser.

Listing 1.1 presents a fragment of the XML model for a project that we
called RIS (Research Information System). RIS is intended to manage research
information of a research group. Thus, RIS has the entities: Researcher Role,
Researcher, Book, Book Chapter, Paper, Software, and Project.



Automatic Code Generation System for Transactional Web Applications 441

This fragment of the XML model just describes the entities ResearcherRole,
Researcher, Paper, and PaperResearcher. The entity PaperResearcher is used to
make a many-to-many relation between the entities Paper and Researcher. The
fragment of the XML has the following lines:



442 H. Florez et al.

1. Line 1 includes the element model with its corresponding attributes
2. Line 2 has the element entity with the concept ResearcherRole, which can

be deleted by administrators and is intended to classify researchers in the
system. In addition, lines 3 and 4 have the attributes name en and name es
for including the name of researcher roles in English and Spanish respectively,
while line 5 has a relation to the entity Researcher with cardinality * in order
to represent that one researcher role can have many researchers.

3. Line 7 has the element entity with the concept Researcher, which is actor.
It includes the attributes name, lastName, email, password, picture, isi, and
scopus specified in lines 8 to 14. Moreover, lines 15 and 16 describes rela-
tions to ResearcherRole with cardinality 1 and PaperResearcher with car-
dinality * indicating that one researcher is related to one researcher role
and one researcher can have many papers. Furthermore, lines 17 and 18
have the element service. The first one, has the attribute entity with
the value Researcher in order to define that one researcher can consult all
researchers, but cannot create, edit, nor delete researcher. The second one,
has the attribute entity with the value Paper in order to define that one
researcher can create, consult, and edit papers, but cannot delete any paper.

4. Line 20 has the element entity with the concept Paper, which can be deleted
by administrators. In lines 21 to 28, it has the attributes title, author, journal,
issn, volume, pages, year, and doi. Finally, line 29 has a relation to Paper-
Researcher with cardinality * indicating that one paper has been written by
many researchers.

5. Line 31 has the element entity with the concept PaperResearcher, which
can be deleted by administrators and includes in lines 32 and 33 relations to
Paper and Researcher

3.1 XML Model Validation

In order to generate a suitable project, the XML model that allows generating the
project must be properly organized, i.e., the entities, attributes of these entities
and relations have to be written with correct syntax and semantic. DevPHP
has a function that validates the XML model order, syntax, and semantics. The
explanation of this validation service is described as follows:

1. As the XML model contains n number of elements, it must have entities,
attributes, and relations (between entities) correctly arranged. The approach
used to organize the XML model is the use of a XSD file. This file can establish
the labels order of the XML model, the required parameters of the correspond-
ing label, the correct data type and the correct name of these parameters.

2. After this arrangement, the validation service evaluates the correct writing of
the parameters that have each general label (e.g the entity label has “name”
and “delete”) and the values of the parameters (e.g “actor” parameter’s values
must be true or false).

3. Later, it evaluates repetitions of general labels in the XML model.
4. Finally, it validates the correct definitions of the relations between entities.



Automatic Code Generation System for Transactional Web Applications 443

Listing 1.2 presents a fragment of the XSD file that is used to validate the
XML model file.

This fragment of the XSD validation file has the following lines:

1. Line 1 indicates the root element of the schema, which defines elements and
data types used in the schema based on the definitions stablished in the url
http://www.w3.org/2001/XMLSchema.

2. Line 2 defines the root element of the XML model. The element tag defines
the main definition of the XML model, which in this case is Model.

3. Line 3 defines a complex type, which is an XML that contains other elements
or attributes. In this case, the complex type element refers to elements and
attributes that the model tag contains in the XML model.

4. Line 4 defines a sequence of elements, in this case, the XML model contains
n number of elements and mn number of attributes per element.

5. Lines 5 and 6 define the correct order of customize and entity in the XML
model. Additionally minOccurs and maxOccurs define the number of elements
customize and entity that the XML model can contain. Since entity con-
tains n number of attributes and relations, these elements are defined in
typeEntity that does not appear in the current fragment.

6. Lines 8 to 13 define attribute elements that represent attributes inside ele-
ment tags in the XML model. The XSD file defines the element name, data
type that contains this element and the required use. Besides, the order of
the attributes is the same that must appear in the XML model.

http://www.w3.org/2001/XMLSchema


444 H. Florez et al.

4 Results

We created a full conceptual model for RIS, which is a system to manage
research information that we have introduced in the previous section. This model
includes entities with the concepts: Researcher Role, Researcher (as actor),
Book, Book Chapter, Paper, Software, and Project. However, it includes addi-
tional concepts that serve to relate the previous concepts. These entities are:
BookResearcher, BookChapterResearcher, PaperResearcher, SoftwareResearcher,
ProjectResearcher, BookProject, BookChapterProject, PaperProject, and Soft-
wareProject.

When running the conceptual model using DevPHP, it automatically includes
entities with the concepts Administrator, LogAdministrator, and LogResearcher.
The generated PHP project will include three main directories for organizing the
project in three layers: UI (user interface), business, and persistence. The UI layer
includes all PHP files for the front end of the project. In this layer, DevPHP gen-
erates one directory for each concept of the conceptual model and inside the folder
all PHP files related to the corresponding concept will be created. The business
layer includes PHP files for the back end with one class for each concept of the
conceptual model. Finally, the persistence layer includes PHP files with one class
for each concept; however, a class called Conection is generated, which includes
services to connect the project to MySQL databases. In addition, an additional
file is created with the SQL script of the corresponding relational database.

Moreover, additional folders are created to support the generated project.
Those folder are: css for Bootstrap cascade style sheet files, js for Bootstrap,
JQuery, and Validator Javascript files, img for images, and uml for creating the
UML model to be used in UML Designer by Obeo.

Fig. 2. Index page of RIS.

Figure 2 presents the index page of the generated PHP project RIS. In this
page, actors can log in through their email and password using the card located
at the right. It also offers the option to recover password. This option sends



Automatic Code Generation System for Transactional Web Applications 445

Fig. 3. Session page of administrator.

a new random password to the email registered by the user that is requesting
the password recovery. In the card located at the center, it shows the project
description that is included in the XML conceptual model. Finally, at the top,
it shows the project’s name, the project’s logo and the logo of our research
group. The generated project’s logo is a default image that can be replaced in
the generated project. Once an actor logs in the system, there is a session page
with information of the actor and a menu with the available services included in
the XML conceptual model. Figure 3 presents a screenshot of the session page.
In particular, the administrator has all services of the project; nevertheless,
services for deleting information must be defined in the XML conceptual model.
The menu for the administrator includes the following options:

– Create. This option allows creating a registry of a desired concept included
in the XML conceptual model.

– Get All. This option presents all registries of a desired concept included in
the XML conceptual model. In this option, for each registry, there are some
icons to offer services such as edit, delete, view more information that serves
when the concept has a lot of attributes, get all registries of a related concept,
and insert a new registry of a related concept.

– Search. This option allows finding results that match to one searching word
that must have more than 3 characters. These results have the same services
presented in the Get All option.

– Log. This options allows finding the actions made by actors in the systems.
Each registry includes the action, data involved in the action, date, time, IP
Address, Operating system, and browser.

Another result provided by DevPHP is an UML script that contains the cor-
responding class diagram, use case diagrams, and components diagram. Figure 4
presents a fragment of the generated class diagram for the project RIS. It just
includes the classes ResearcherRole, Researcher, LogResearcher (not included
in the XML conceptual model, but generated because Researcher is an actor),



446 H. Florez et al.

Paper, and PaperResearcher. Every class include all attributes defined through
the conceptual model and all methods required to manipulate the corresponding
data regarding each concept.

4.1 Results Validation

We have validated our approach by executing five conceptual models of different
project contexts. In addition, we analyzed the results of the five generated web
applications. The description of the five cases are as follows:

– The first case is a system, which allows managing research information of a
research group called RIS, which have been introduced in previous sections.

– The second case corresponds to a project for managing information and pro-
cesses for academic accreditation and self evaluation.

– The third case is a system for managing information of employees fulfillment
industrial enterprises.

– The fourth is a document management system specialized for managing thesis
documents in a university.

– The fifth is a system for syllabus information of universities academic pro-
grams.

Fig. 4. Generated class diagram.



Automatic Code Generation System for Transactional Web Applications 447

Table 1 presents the number of entities, attributes, relations and total lines
written for the XML model for every case web application, as well as the total
number of PHP files and code lines generated by DevPHP.

Table 1. Result validation.

Application Entities Attributes Relations XML lines PHP Files Code lines

Web App 1 16 54 18 144 145 16035

Web App 2 15 35 18 117 162 16350

Web App 3 9 32 8 71 94 9791

Web App 4 6 23 5 57 98 9261

Web App 5 6 20 5 49 82 8557

Figure 5 represents the results given in Table 1. Every orange circle repre-
sents one of the five web applications generated by DevPHP. Inside of each one,
there are two light orange circle, where the right one represents the input data
included in the XML conceptual model and the left one represents the output
data generated by DevPHP.

On the one hand, the small yellow circle represents the amount of entities,
while the small light purple circle represents the amount of the XML lines. On
the other hand, the light green circle represents the generated PHP files, while
the big light blue circle represents the total code lines.

We decided to take these values because the PHP files are generated from the
different entities features included in the conceptual model. In the same way, we
made the comparison with the resulting XML lines and code lines. With this in
mind, we can observe how much source code DevPHP generates just using the
corresponding XML conceptual model in order to offer not only a web application
written in PHP, but also SQL, Javascript, CSS and UML scripts.

Also, in order to compare the cost and effort of the previously mentioned web
applications, we used the function points model approach to verify the function
points of each web application case.

Function Point Analysis (FPA) [15] is a method used for measuring the func-
tional size of a software project. IFPUG [2] is a recognized standard that specifies
the use of FPA model. In this model, a software system consists of five com-
ponents that provide processing information to the user: External Input (EI),
External Output (EO), Internal Logical File (ILF), External Logical File (EIF),
External Inquiry (EQ). In order to identify these instances, they are classified
in complexity levels (Low, Average, High) and the number of each instance is
multiplied with the complexity level. For each project, we defined the complexity
as Average for every item in the FPA model. Equation 1 is used for calculating
the Unadjusted Function Point.

UFP =
5∑

i=i

3∑

j=1

xij × wij (1)



448 H. Florez et al.

Fig. 5. Result validation

The value for xij is the number of user function type and wij is the number of
complexity weight. This values can be found in IFPUG table of standard values
for the different function type. In this scenario, we define the number of EI, EO
and EQ with principals entities for every system with a low complexity.

The calculation of technical complexity adjustment is given by another table
that describes features of the operational environment system. This table can
be found as well in IFPUG table of Value Adjustment Factors for FPA model,
called (VAF) [4]. All web applications cases share similar features related to
the environment; consequently, we defined a default number for each of them
as the sum of these 14 factors. This number is called TDI (Total degree of
influence). Equation 2 calculates the Technical Complexity Adjustment, while
Eq. 3 calculates the function points.

TCA = 0.65 + 0.01 × TDI (2)

FP = UFP × TCA (3)



Automatic Code Generation System for Transactional Web Applications 449

Finally, using the macro-estimate technique Ball-park or Indicative Estimate
[5], which estimates the effort by using function points values, we used the Eq. 4
to establish the effort of every web application.

Ef =
FP

150
× FP 0.4 (4)

Where Ef is the effort measured in staff month. This measure indicates that
1 staff month is equivalent to 174 h.

The relation between function points and effort for each web application is
presented in Table 2. The second column designates the function points value
calculated through the Eq. 3. The third column shows the effort measured in
staff month determined through the Eq. 4. The last column describes the person
hours effort through the month staff value.

Since DevPHP works based on a XML file that represents a conceptual
model of a system, the required time to make a complete project is given by
the requirements analysis, the abstract representation of the system, as well as
the constructions of every entity, attributes, and relation between entities. Activ-
ity for creating entities spend around ten minutes including the definition of its
attributes. The time to evaluate and define the relations can spend around ten
minutes considering many to many or many to one relations. Thus, the develop-
ment effort for the web application cases using DevPHP are shown in Table 3.

From the estimation of function points and the month staff value shown in
Table 2, we determine that the time to develop the current web application cases
described in Table 1 can vary between 239.3 and 516 person-hours. This value
is given by the complexity of the web application and it can increase depending
of the business requirement. In addition, the time spent to develop these web
application cases using DevPHP was between 2.1 and 5.6 person-hours.

With this in mind, the time to develop some of these web applications using
DevPHP or pure development can vary between 200 and 500 h (e.g., the time
using DevPHP to develop the Web Application 1 was 5.6 h; nevertheless, based
on the estimated function points, the time to develop the same web application
is 516.9 h), which is an important effort saving and clearly a huge cost saving.

Table 2. Development effort estimation.

Application Function points Staff month effort Person-hours

Web App 1 78 3 516.9

Web App 2 62 2.1 370.6

Web App 3 53 1.7 302.9

Web App 4 45 1.4 239.3

Web App 5 45 1.4 239.3



450 H. Florez et al.

Table 3. Development effort estimation using DevPHP.

Application Person-hours

Web App 1 5.6

Web App 2 5.5

Web App 3 2.8

Web App 4 2.2

Web App 5 2.1

5 Conclusions

DevPHP is a tool that allows the minimization of time and effort in the develop-
ment of web applications built using PHP. In such a way, from the construction
of a consistent conceptual model DevPHP can generate a web application that
achieves the majority of requirements that a transactional web application could
have.

Projects generated by DevPHP are scalable and flexible considering that
DevPHP has been developed to generate projects with a 3-layer architecture;
therefore, the project can be edited by the developer depending on specific
requirements, either for creating new services or editing and deleting generated
project elements.

In order to make the best use of DevPHP it is necessary to create a consistent
conceptual model. For this the modeler requires to know how to abstract the sys-
tem requirements in entities, attributes, and relations. Once the web application
is generated by DevPHP, it might be upgraded using the generated components.

References

1. Albhbah, A.M., Ridley, M.J.: A rule framework for automatic generation of web
forms. Int. J. Comput. Theor. Eng. 4(4), 584 (2012)

2. Cuadrado-Gallego, J.J., Rodŕıguez, D., Machado, F., Abran, A.: Convertibility
between IFPUG and COSMIC functional size measurements. In: Münch, J., Abra-
hamsson, P. (eds.) PROFES 2007. LNCS, vol. 4589, pp. 273–283. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-73460-4 25

3. Florez, H., Leon, M.: Model driven engineering approach to configure software
reusable components. In: Florez, H., Diaz, C., Chavarriaga, J. (eds.) ICAI 2018.
CCIS, vol. 942, pp. 352–363. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-01535-0 26

4. Jones, C.: Applied Software Measurement: Global Analysis of Productivity and
Quality. McGraw-Hill Education Group, New York City (2008)

5. Lawrie, R.: Using functional sizing in software projects estimating. Charismatek
Software Metrics (2002)

6. Li, L., Yang, J., Liu, Z., Bao, L.: The research and application of web page code
automatic generation technology. In: 2011 2nd International Conference on Arti-
ficial Intelligence, Management Science and Electronic Commerce (AIMSEC), pp.
5246–5249. IEEE (2011)

https://doi.org/10.1007/978-3-540-73460-4_25
https://doi.org/10.1007/978-3-030-01535-0_26
https://doi.org/10.1007/978-3-030-01535-0_26


Automatic Code Generation System for Transactional Web Applications 451

7. Mbarki, S., Erramdani, M.: Toward automatic generation of mvc2 web applications.
INFOCOMP 7(4), 84–91 (2008)

8. Mgheder, M.A., Ridley, M.J.: Automatic generation of web user interfaces in PHP
using database metadata. In: 2008 Third International Conference on Internet and
Web Applications and Services, ICIW 2008, pp. 426–430. IEEE (2008)

9. Milosavljević, B., Vidaković, M., Konjović, Z.: Automatic code generation for
database-oriented web applications. In: Proceedings of the Inaugural Conference
on the Principles and Practice of Programming, 2002 and Proceedings of the Sec-
ond Workshop on Intermediate Representation Engineering for Virtual Machines,
2002, pp. 59–64. National University of Ireland (2002)

10. Nadkarni, P.M., Brandt, C.M., Marenco, L.: WebEAV: automatic metadata-driven
generation of web interfaces to entity-attribute-value databases. J. Am. Med. Inf.
Assoc. 7(4), 343–356 (2000)

11. Sanchez, D., Florez, H.: Model driven engineering approach to manage peripherals
in mobile devices. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10963, pp.
353–364. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95171-3 28

12. Sanchez, D., Mendez, O., Florez, H.: Applying the 3-layer model in the construction
of a framework to create web applications. In: IMCIC 2017–8th International Multi-
Conference on Complexity, Informatics and Cybernetics, Proceedings, vol. 2017-
March, pp. 364–369 (2017)

13. Sanchez, D., Mendez, O., Florez, H.: An approach of a framework to create web
applications. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10963, pp.
341–352. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95171-3 27

14. Senthil, J., Arumugam, S., Kapoor, S.M.A.A.: Automatic code generation for
recurring code patterns in web based applications and increasing efficiency of data
access code. Int. J. Comput. Sci. 9(3), 473–476 (2012)

15. Symons, C.R.: Function point analysis: difficulties and improvements. IEEE Trans.
Softw. Eng. 14(1), 2–11 (1988)

16. Turau, V.: A framework for automatic generation of web-based data entry appli-
cations based on XML. In: Proceedings of the 2002 ACM Symposium on Applied
Computing, pp. 1121–1126. ACM (2002)

https://doi.org/10.1007/978-3-319-95171-3_28
https://doi.org/10.1007/978-3-319-95171-3_27

	Automatic Code Generation System for Transactional Web Applications
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 XML Model Validation

	4 Results
	4.1 Results Validation

	5 Conclusions
	References




