
Guidelines for Architecture Design
of Software Product Line

Jeong Ah Kim1, DongGi Kim1(&), and JinSeok Yang2

1 Department of Computer Education, Catholic Kwandong University,
BeomIl Ro 579 24, Gangneung, Kangwon, Korea

clara@cku.ac.kr, remaindk0@gmail.com
2 18F, 145, Gasan digital 1-ro, Geumcheon-gu, Seoul, Korea

Abstract. Product Line Architecture design is a key activity for developing
successful Software Product Line projects. But it is difficult and complex task
since architecture of software product line should be considered with variability.
In this research, we addressed detail guidelines for identifying the component of
architecture from the feature model and defining the variability of component in
concerns of feature.

Keywords: Software development � Product-line architecture design �
Logical component modeling � Guidelines

1 Introduction

The objectives of traditional software development are to define, design, and imple-
ment the requirements for a single software application to be developed, and to produce
defect-free software. Although reuse framework was considered to efficiently conduct
this process, only common technical modules or general-purpose algorithm modules,
which are not related to the application field, were reusable. In other words, reuse for
improving productivity in the developing process for a single application was con-
sidered. This type of reuse cannot secure reusable organizational assets in similar
application fields for the future. The development that considers only a single software
application will not be able to secure general-purpose assets that can be used in a
specialized application field, because the diversity of customer, environment, and
infrastructure technology cannot be considered in the development phase of a single
software application. The construction of a product line is a process that creates the
foundation on which one or more applications with diversity can be developed rather
than a single application. Product-line engineering aims to create a customized product
based on a product line in which the concept of systematic asset management at the
organizational level is introduced [1]. From the developer’s perspective, the existing
development approach appears reproduced by reusing libraries or developing frame-
works [2]. Furthermore, managers and developers many not know how to introduce
this concept since they thing this is new development methodology. There are few
existing researches that are organized into an independent and complete methodology
in which the product-line engineering process can be implemented. Most research

© Springer Nature Switzerland AG 2019
S. Misra et al. (Eds.): ICCSA 2019, LNCS 11623, pp. 415–422, 2019.
https://doi.org/10.1007/978-3-030-24308-1_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24308-1_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24308-1_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24308-1_34&domain=pdf
https://doi.org/10.1007/978-3-030-24308-1_34

works focus on the existing single-system development methodology and the tech-
niques that can be applied to other areas [3–8].

In this study, guidelines for modeling activities of a product-line architecture model
included in the product-line architectural design stage are provided. A product-line
architecture design model, a design guideline that considers the variabilities and a
modeling method that uses a real unified modeling language (UML)-based modeling
tool are defined herein to develop a product-line architecture model. Furthermore, a
case model to which these models and methods are applied is presented.

2 Proposed Product-Line Architecture Design Model

A design model for the product-line architecture proposed is defined in this section.
The model defines three different views, each of which contains information according
to the design perspective and share a relationship with one another.

• Conceptual View: This view provides the logical components constituting the
product-line architecture, the information of the structure, and the interaction in
which the relationship between the logical components are defined.

• Execution View: This view provides the physical components (executable files or
libraries) where the identified logical components and their dependency information
are executed.

• Deployment View: This view provides information on the relationship between
physical computing devices and nodes to which physical components can be
deployed. It also provides information on the physical component instances that are
deployed and run on the nodes.

2.1 Conceptual View

The model elements of a conceptual view include at least one logical component and an
interface of that logical component. In addition, the conceptual view consists of a
structural relationship between the logical components and an interaction relationship
diagram between the interfaces of the logical components.

This view represents the logical components, which are logical elements necessary
to meet the product line requirements including features, and the interfaces that are
provided by those components. “Logical” in this context means that the implementa-
tion environment for the product line or technology is not considered. A logical
component (hereinafter referred to as a component) indicates a software module cap-
able of performing independent functions. It classifies complex software properly so
that the relevant software is manageable, and hides the complexity and diversity of
methods for the implemented interface. Through this feature, outdated components can
be replaced by new components that have different implementation methods.

A component control interface is a set of operations that does not have an imple-
mentation body due to the agreement by the developers to allow it to interact with other
components or applications. The operations defined in the component control interface
are implemented by the component. Therefore, a single component can be a unit that
implements multiple interfaces.

416 J. A. Kim et al.

The component data interface defines the dataset needed for establishing interaction
between components. The data interface defines the dataset that will be used by the
logical components and does not define an operation that undertakes the data processing.

A component group logically binds components that are functionally related.
However, this is not an essential element in the model. With component groups, an
abstract hierarchy between the components can be represented. By using the compo-
nent group, several components can be logically grouped together to simplify the
complexity that can arise from the relationship between the individual components.

The conceptual view provides a component structure diagram that can schematize
the relationship between the logical components, a component interaction diagram, and
a component interface diagram.

On the one hand, the component structure diagram represents the dependency
among the logical components, i.e., the structural association between the components.

On the other hand, the component interaction diagram sequentially represents the
interaction between the logical components to meet specific requirements, using the
interface implemented by those components.

Moreover, the component interface diagram represents the relationship between the
interface implemented by the logical component and the logical component that uses
the interface.

2.2 Execution View

An execution view has at least one physical component as a model element. It has a
dependency diagram between physical components. The physical components identi-
fied in the execution view must be correlated with at least one logical component. More
specifically, the physical component is divided into an executable component and a
library component. The executable component indicates a component that has the same
starting point as the main() function and, thus, can be executed independently, while
the library component indicates a component that is called by an executable component
during the execution and can be deployed independently. The execution view provides
a physical component structure diagram that can be used to schematize the relationship
between the declared physical components.

2.3 Deployment View

A deployment view has at least one computing device node as a model element. It also
has a phase information diagram between the nodes. The identified node in the
deployment view must have at least one physical component instance.

3 Guidelines for Applying Product-Line Architecture Design
Model

3.1 Guidelines for Logical Component Modeling

• GUIDELINE1: It is divided into two types of logical components: a logical com-
ponent with high cohesion and a logical component with low coupling. In other

Guidelines for Architecture Design of Software Product Line 417

words, one logical component is identified using a unit that has logical cohesion,
and it is then verified if the component has low coupling with other logical com-
ponents. Such a component is identified as an independent unit. Hence, the
requirements that have high mutual-functional relevance are grouped together, and
the implementation of the function is assigned to one logical component.

• GUIDELINE2: The features having high mutual-functional relevance among the
mandatory features are grouped together and the implementation of that function is
assigned to one logical component.

• GUIDELINE3: The optional and alternative features are identified as independent
logical components by separating them from the logical components that implement
the mandatory features.

• GUIDELINE4: If there is a structural relationship between the features, and an
optional feature in the child feature, then the logical component for the optional
feature is identified independently. Furthermore, an association is established with
the logical component that corresponds to the parent feature.

• GUIDELINE5: The logical components for the alternative features are indepen-
dently identified when a structural relationship between the features and an alter-
native feature in the child feature is found. Moreover, the inheritance relationship is
established with the logical component corresponding to the parent feature.

• GUIDELINE6: When a design is conducted using pattern styles, such as model-
view-controller (MVC) and client-server (C/S), it is possible to identify for each
element a corresponding logical component.

• GUIDELINE7: A two-level feature without any further sub-features is identified as
a logical component. If all the features defined at third-level are mandatory features,
then the features defined at two-level can be identified as logical components.

• GUIDELINE8: The logical components that correspond to the features defined at
three-level are identified. The mandatory features defined in three-level can be
grouped together and identified as one logical component, and the optional features
can be grouped together and identified as another logical component.

• GUIDELINE9: The top-level feature of the functional feature is identified as a
logical component, but the group feature is not. If there is a strong dependency
between the top and bottom features among the functional features, then the bottom
feature is not separated into an independent logical component. In this case, only the
top functional feature is identified as a logical component.

3.2 Interface Structuring Guidelines

• GUIDELINE10: Among the operations that will be implemented by the logical
component, those operations that will be provided to the outside of the product line,
or to other components, are defined as control interfaces.

• GUIDELINE11: Among the operations provided by the logical component, those
operations with different functions and characteristics are defined as independent
interfaces.

• GUIDELINE12: Among data in the logical component, data that will be provided to
other components is grouped into a dataset and is defined as a data interface.

418 J. A. Kim et al.

• GUIDELINE13: One feature can be identified as a single control interface. However,
if features among the mandatory features are grouped into one group, they can be
identified as a single interface. In the case where there is an excess number of oper-
ations that need to be defined, it is desirable to divide the interface based on the feature.
Although a reasonable number of operations included in the interface is academically
defined from 7 to 9, it is recommended to define this number as being less than 15.

• GUIDELINE14: The interface corresponding to the variable feature must be iden-
tified independently from other interfaces. Inevitably, variable features are matched
to the level of operation provided by the interface, but this is not recommended.

3.3 Physical Component Modeling Guidelines

• GUIDELINE15: The logical components with strong dependencies during the
execution are grouped together and identified as one physical component, the
independently executable logical components are identified as individual physical
components, and are identified by considering the distribution units.

• GUIDELINE16: A physical component that executes mandatory features cannot be
comprised of logical components that implement the optional feature alone.

• GUIDELINE17: In a real-time system, a task is modeled using executable com-
ponents. In a general system, an application is modeled using an executable
component.

• GUIDELINE18: All the components utilized by an executable component are
modeled using library components.

• GUIDELINE19: The logical components that perform similar functions can be
grouped together and identified as a single variable library component.

• GUIDELINE20: The name of a physical component can either be the same as the
name of the logical component or controller, or can be added to the name.

• The dependency relationships among the identified physical components can be
schematized into a structure diagram.

3.4 Node Modeling Guidelines

• GUIDELINE21: Product-line requirement-environment elements for hardware
defined in the performance requirements specification are confirmed, and each
hardware device is identified as a node.

• GUIDELINE22: An instance of the physical component defined by reviewing the
quality requirements such as performance, stability, and reliability is assigned to a
node.

• GUIDELINE23: At least one of the physical components to be deployed to the node
must be a mandatory component.

• GUIDELINE24: If the cardinality value of the feature executed by the physical
component is greater than 1, the physical component instances are assigned to
different nodes according to the hardware specification and the number of identified
nodes, to check whether the quality requirements such as performance can be
satisfied.

Guidelines for Architecture Design of Software Product Line 419

4 Example of Application

4.1 An Example of Identifying Logical Components from Feature Models

Table 1 shows a list of identified logical components that have a level of variability
similar to that of the first feature model and are functionally identifiable. Among the
features with a level of variability similar to that of the first feature model, Take-
offControl, LandingControl, WeaponControlOperation, FlightScenarioPlanning,
Login, and SensorOperation are the variable features. Among these features, as logical
components whose boundaries can be matched with the corresponding feature, Land-
ingController, TakeoffController, WeaponOperator, and LoginManager are identified
as independent logical components. The variability and feature traceability of the logical
component groups and the logical components are modeled using Rhapsody’s model
element tag attributes. The generation of the model for variability and feature trace-
ability can be conducted simultaneously by adding a new tag with a VAR name and
describing it in a feature expression for the features associated with that value.

4.2 Modeling Structural Relationship Between Logical Components

One or more UML class diagrams are used to define the structural relationships among
the logical components. In the example, the dependencies among the logical compo-
nent groups are modeled before the direct relationship among the logical components is
modeled. As shown in the figure below, the relationship between the identified logical
component groups is marked as dependency, and the data dependency is described.
The generation of model of the structural relationships at the logical component-group

Table 1. Identified logical component

Logical component group Logical component Feature Variability

FlightDeviceControlGroup LandingController LandingControl OPT
TakeoffController TakeoffControl OPT

FlightController FlightControl MAN
CommunicationGroup CommunicationInterface Communication MAN
SensorGroup DisplayViewer SensorOperation

ImageDisplay
OPT
MAN

ImageOperator SensorOperation
ImageOperation

OPT
MAN

LDRFOperator SensorOperation
LDRFOperation

OPT
OPT

ImageContrastAlgorLibrary SensorOperation
ImageContrastAlgor

OPT
ALT

WeaponControlGroup WeaponOperator WeaponControlOperation OPT
FlightScenarioGroup ScenarioFileManager ScenarioFileManagement MAN

MissionPlanEditor FlightScenarioPlanning
MissionPlan

OPT
OPT

FlightPlanEditor FlightScenarioPlanning
FlightPlan

OPT
OPT

420 J. A. Kim et al.

level by abstracting the complexities of direct relationships among the logical com-
ponents can enhance the understanding of the design.

4.3 Variability Modeling of Physical Components

The logical components assigned to the physical components in the example, and the
corresponding variability of the physical components, are listed in Table 2. The vari-
ability of a physical component depends on the variability of a logical component
assigned to that physical component. If one or more mandatory logical components are
assigned to it, then the physical component cannot become a variable element. On the
other hand, if all assigned logical components are optional design elements, then the
physical component must become a variable element.

According to the physical model’s variability modeling rules, ContrastAlgorLibrary,
ImageDisplayer, ScenarioEditor, SensorImageOperator, and WeaponController physi-
cal components could be specified as variable elements.

5 Conclusion

In this paper, three views and models for constructing a product-line architecture and
specific construction guidelines are presented. The conceptual view allowed to define
the logical units that make up the product-line architecture and the relationships among
them. The guidelines for identifying logical units based on feature models are pre-
sented. The execution view allowed to define the execution information of the logical
unit and suggested guidelines for distinguishing physical components from logical

Table 2. Association between logical component and physical component

Physical component Assigned logical component Variability

GCSApplication GCSApplication
InterCoponentGateway
�VP�LoginManager

ContrastAlgorLibrary �VP�ImageContrastAlgorLibrary �VP�
ImageDisplyer �VP�DisplayViewer �VP�
ScenarioEditor �VP�FlightPlanEditor

�VP�MissionPlanEditor
ScenarioFileManager

SensorImageOperator �VP�ImageOperator
�VP�LDRFOperator

�VP�

WeaponController �VP�WeaponOperator �VP�
Communicator CommunicationInterface
FlightDeviceController FlightController

�VP�LandingController
�VP�TakeoffController

Guidelines for Architecture Design of Software Product Line 421

components. In the deployment view, the relationship between the execution device
and the physical component could be defined, and, part of the execution device, the
criteria for identifying nodes was suggested. In this study, the modeling guidelines are
suggested to establish feature-based traceability, which is essential for successful
product-line engineering, and the traceability among models was suggested to be
defined naturally and by stages. To confirm its effectiveness, the guidelines were
applied to a GCS (Ground Control System) example. Although not applied to all
examples, a novice engineer who built the product line for the first time proved that it
was possible to apply the process more systematically according to the guidelines based
on the model, which is a byproduct of the previous stage.

References

1. Bosch, J.: Software product lines and software architecture design. In: Proceedings -
International Conference on Software Engineering, January 2001

2. Matinlassi, M.: Comparison of software product line architecture design methods: COPA,
FAST, FORM, KobrA and QADA. In: Proceeding ICSE 2004, Proceedings of the 26th
International Conference on Software Engineering, pp. 127–136 (2004)

3. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-Based
Software Architectures. Addison-Wesley Professional, Boston (2004)

4. Capilla, R., Ali Babar, M.: On the role of architectural design decisions in software product
line engineering. In: Morrison, R., Balasubramaniam, D., Falkner, K. (eds.) ECSA 2008.
LNCS, vol. 5292, pp. 241–255. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-88030-1_18

5. Tekinerdoganm, B., Cetin, S., Savcı, F.: Exploring architecture design alternatives for global
software product line engineering. In: Proceedings of 6th International Conference on
Software Engineering Advances, pp. 515–521 (2011)

6. Chaudhary, A., Verma, B.K., Raheja, J.L.: Product line development architectural model. In:
Proceedings of the 3rd IEEE International Conference on Computer Science and Information
Technology, pp. 749–753 (2010)

7. Gharibi, G., Zheng, Y.: ArchFeature: a modeling environment integrating features into
product line architecture. In: Proceedings of 31st Annual ACM Symposium (2016)

8. Lima, C., Chavez, C.: A systematic review on metamodels to support product line architecture
design. In: Proceedings of SBES 2016, Proceedings of the 30th Brazilian Symposium on
Software Engineering, pp. 12–22 (2016)

422 J. A. Kim et al.

http://dx.doi.org/10.1007/978-3-540-88030-1_18
http://dx.doi.org/10.1007/978-3-540-88030-1_18

	Guidelines for Architecture Design of Software Product Line
	Abstract
	1 Introduction
	2 Proposed Product-Line Architecture Design Model
	2.1 Conceptual View
	2.2 Execution View
	2.3 Deployment View

	3 Guidelines for Applying Product-Line Architecture Design Model
	3.1 Guidelines for Logical Component Modeling
	3.2 Interface Structuring Guidelines
	3.3 Physical Component Modeling Guidelines
	3.4 Node Modeling Guidelines

	4 Example of Application
	4.1 An Example of Identifying Logical Components from Feature Models
	4.2 Modeling Structural Relationship Between Logical Components
	4.3 Variability Modeling of Physical Components

	5 Conclusion
	References

