®

Check for
updates

ArchCaMO - A Maturity Model
for Software Architecture Description
Based on ISO/IEC/IEEE 42010:2011

Ademir A. C. Junior!®) @, Sanjay Misra?®, and Michel S. Soares!

! Federal University of Sergipe, Av. Marechal Rondon, s/n - Jardim Rosa Elze,
Sao Cristévao, Brazil
{ademiralcj,michel}@dcomp.ufs.br
2 Convenant University, KM 10 Idiroko Rd, Ota, Nigeria
sanjay.misra@covenantuniversity.edu.ng

Abstract. Academia and Industry have acknowledged that having a
fully described software architecture is a crucial asset for software devel-
opment and maintenance. The description of a software architecture is
read by many stakeholders when developing and maintaining complex
software systems which are composed by multiple elements, including
software, systems, hardware and processes. The software architecture as
a development product is useful for technical activities, such as describ-
ing the views and concerns of the future software products, as well as for
management activities, including allocating tasks to each team and as an
input for project management activities. One main issue when describing
the software architecture is knowing what elements must be included in
the architecture, and at what level of detail. Therefore, it is not unusual
that software architects have to deal with difficulties in terms of how to
describe the architecture. This paper brings two main purposes: first is
the idea of establishing levels of a maturity model for software architec-
tures, which can help in organizing, describing and communicating the
software architecture for multiple stakeholders, and, second, a way to
evaluate how mature is the software architecture.

Keywords: Software architecture - Maturity models -
ISO/IEC/IEEE 42010

1 Introduction

Software architecture has been defined in multiple ways since the 1960’s. From
the first ideas of structuring and decomposing complex systems into more man-
ageable modules [1-3], to modern definitions with focus on cooperating compo-
nents, decision making [4] and knowledge management (AKM) [5].

Software architecture has been considered by many researchers and practi-
tioners a fundamental asset in software development and maintenance [6-8]. For
instance, the authors of a book on documenting software architecture [9] express

© Springer Nature Switzerland AG 2019
S. Misra et al. (Eds.): ICCSA 2019, LNCS 11623, pp. 31-42, 2019.
https://doi.org/10.1007/978-3-030-24308-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24308-1_3&domain=pdf
http://orcid.org/0000-0003-1490-875X
http://orcid.org/0000-0002-3556-9331
http://orcid.org/0000-0002-7193-5087
https://doi.org/10.1007/978-3-030-24308-1_3

32 A. A. C. Junior et al.

that without an appropriate software architecture for the problem to be solved
by a software, the project will fail. Other authors also express the difficulties
brought by not using correctly a software architecture to handle the complexity
of software-intensive systems [10], or the importance of software architectures for
developing software systems that are better and more resilient to change when
compared to systems developed without a clear architectural definition [11].

However, despite its importance, the process of software architecting, the
evaluation of software architectures and even the social impact on the software
architecture in an organization are still neglected in software development [8,12,
13]. Creating a reliable, robust software architecture demands effort which will
be almost useless in case the architecture is not well-described and understood by
technical stakeholders. Software architects need to describe it on the necessary
level of detail, trying to solve ambiguity issues, and organize in such a way that
it is understandable, and with information that is easy to retrieve.

A case of technical debt occurs when the architectural documentation is
insufficient, incomplete, or outdated. One possible reason is due to the contest
between agilists and more process-oriented personnel [11,14]. The assumption
in this paper is that even though the importance of software architecture is
recognized, how to describe, and at what level of detail one has to describe the
software architecture, are still open issues in industry. It is frequent that industry
practitioners, and even researchers, do not even know how to start to describe
the architecture [8], do not know how much architecture to use [15,16], have
issues regarding agility in processes and what is named Big Design Up-Front
(BDUF) architecture [17], or even which architectural elements are necessary to
describe in the software architecture documents [18-20].

One possible solution for describing a software architecture is to rely on
models and standards such as Kruchten’s 4+1 Model [21] or ISO/IEC/IEEE
42010:2011 [22]. However, the issue here is that in practice it is hard to under-
stand such standards, as they are considered too high-level to be used in practice
or too complex to be easily understandable by the software development team.

The proposal in this paper is to describe a model named ArchCaMo to access
the level of architectural maturity using ISO/IEC/IEEE 42010:2011 as context.
The objective of ArchCaMo is twofold. First, the ArchCaMo model can be used
to evaluate current architectures, showing to development personnel at what
level of maturity their architecture conforms to. In addition, it is useful for those
organizations that are struggling with organizing, describing and communicating
the software architecture for multiple stakeholders. For each level of architecture
maturity, the organization knows exactly what to expect in terms of activities
and deliverables.

Although other maturity models for software architectures were proposed,
as described in the next section, to the best of our knowledge, no other models
were introduced with focus on ISO/IEC/IEEE 42010:2011.

ArchCaMO - A Maturity Model for Software Architecture Description 33

2 Related Works

Many maturity models were proposed in past decades in order to access capabil-
ity of organizations and departments of information technology. Among these,
SW-CMM and CMMI are well-known, and have been applied to evaluate soft-
ware development processes in many countries and for a variety of domains.

SW-CMM [23], and later its evolution, Staged CMMI [24], propose evaluation
in 5 levels, in which each level includes a number of activities, tasks, goals,
processes, practices and so on. Therefore, when an organization is certified at
some level, it is possible to know which activities and practices are performed,
indicating a level of discipline and organization for software development.

Few works have proposed to evaluate and access maturity levels of software
architectures.

For instance, in [25], authors contribute towards establishment of a compre-
hensive and unified strategy for process maturity evaluation of software product
lines, showing the maturity of the architecture development process in two orga-
nizations.

Authors of article [26] propose an architectural maturity model framework
to improve Ultra-Large-Scale Systems Interoperability. Although the authors
present an architectural maturity model, their focus was only on organizing an
interoperability maturity model, i.e., the maturity is evaluated from the inter-
operability point of view, and is not applicable for other architectural purposes.

The US Department of Commerce (DoC) has developed an IT Architecture
Capability Maturity Model (ACMM) [27]. The ACMM provides a framework
that represents the key components of a productive IT architecture process.
Their approach is to identify weak areas and provide an evolutionary path to
improving the overall architecture process. The DoC ACMM consists of six levels
and nine architecture characteristics.

To the best of our knowledge, no works have described a software architec-
ture maturity model based on ISO/IEC/IEEE 42010:2011, a standard to describe
software and system architectures, briefly introduced in the next section. There-
fore, novelty here regards not only the proposal of a new architectural capability
model for evaluation of software and systems architectures, but also the use of
a standard as a guide to the capability model.

ISO/IEC/IEEE 42010:2011 [22] addresses the creation, analysis and sustain-
ment of architectures of systems through the use of architecture descriptions.
This standard proposes a conceptual model of architecture description, includ-
ing concepts such as views, models, concerns, rationale, viewpoints, frameworks
and architecture description languages. The standard provides a core ontology
for description of software architectures.

Several terms which have some relation to software architecture are defined
in the standard. According to the standard Architecting is the process of con-
ceiving, expressing, defining, documenting, communicating and certifying proper
implementation of, maintaining and improving an architecture throughout a soft-
ware’s life cycle. An Architecture is the fundamental concept or properties of a

34 A. A. C. Junior et al.

system in its environment embodied in its elements, relationships, and in the
principles of its design and evolution.

ISO/IEC/IEEE 42010:2011 does not specify any format for recording archi-
tecture descriptions, but it describes the basic context of an architecture descrip-
tion. This context specifies that stakeholders have interests in one or more soft-
ware systems. These interests, better explained as concerns, include a variety
of extra-functional properties, such as maintainability, testability, and modular-
ity, but also project management concerns, including costs, schedule, business
goals and strategies. A concern pertains to any influence on a system in its
environment. Each system is situated in an environment, which is a context
determining the setting and circumstances of all influences upon a software sys-
tem. The environment of a software system includes developmental, business,
technological, operational, organizational, political, economic, regulatory, legal,
ecological and social influences.

Each class of stakeholder has more or less interest, depending on how impor-
tant a concern is regarding their own tasks and roles in the organization. For
instance, maintainability is a concern of software developers and architects, and
business goals and strategies are concerns for managers. Each system can exhibit
many architectures, as for instance, when considered in different environments.

An architecture can be expressed through several distinct architecture
descriptions, and the same architecture can characterize one or more software
systems, as a software product line sharing a common architecture.

Architecture descriptions have many uses for a variety of stakeholders
throughout the system life cycle. For instance, software developers use the archi-
tecture description for software design, development and maintenance activi-
ties. Clients, acquirers, suppliers and developers use the architecture descrip-
tion as part of contract negotiations, documenting the characteristics, features
and design of a software system. Infrastructure personnel use the architecture
description as a guide to operational and infrastructure support and configu-
ration management. Managers use the architecture description as a support to
software planning activities, such as establishing the schedule, budge, and the
team.

A complete description on ISO/TEC/IEEE 42010:2011 can be find in the
official standard document [22], and its practical use has been explored by many
researchers in past years, for instance in health systems [28,29], industry [30,31],
transportation systems [32], business [33], defense [34] and energy [35].

3 ArchCaMo - Architectural Capability Model

Instead of establishing in a rigid way activities, processes and tasks to be fol-
lowed, in ArchCaMo the idea is to structure the levels in such a way that the
organization can decide its own processes for each given practice to be executed
at each level.

ArchCaMO - A Maturity Model for Software Architecture Description 35

3.1 How the Levels Are Proposed

The ArchCaMo’s levels are based on, essentially, ISO/IEC/IEEE 42010:2011, a
Systematic Mapping Study (SMS) executed by the authors, and also the authors’
own experience in software architecture.

First, almost all the levels are linked to a topic of the standard. Therefore,
we did not change the standard, but we have organized it in such a way that the
architecture team can document the software/system’s architecture in a sequen-
tial manner.

The second reference for ArchCaMo’s levels is the SMS. We found initially 128
papers published between 2007 and 2018. After the selection phase, 19 studies
expressed that they have used ISO/IEC/IEEE 42010:2011 on their architecture
description, thus we identified what aspects/points of the standard were most
or least used in these studies. As a result, according to this classification and
our knowledge/experience about the standard, we proposed that the most used
features of ISO/IEC/IEEE 42010:2011 would be considered in the initial levels
and so on.

3.2 ArchCaMo Levels

The ArchCaMo model is defined in 5 levels. The initial level, Level 1, refers to
all companies/organizations that do not have a formalized way to define the
software architecture, so they may document some aspects that they need or
think that is necessary for the project. This level is classified as unstable from
the architectural point of view.

Levels 2 and 3. These levels are made up of most relevant aspects that are
necessary to describe a software architecture. The following tables describe each
level consisting of KAT (Key Architecture Item), the description of the KAI, and
the respective reference in ISO/IEC/IEEE 42010:2011.

Table 1. Level 2 - minimum architecture

KATI | Description Reference in the standard
2.1 | Environment is identified Item 4.2
2.2 | Systems of Interest are identified Item 5.2
2.3 | Supplementary information is identified Ttem 5.2
2.4 | Stakeholders are identified Item 5.3
2.5 | Concerns for each Stakeholder are identified | Item 5.3
2.6 | Viewpoints are defined Item 5.4
2.7 | Multiple Views are defined Item 5.5
2.8 | Models are defined Ttem 5.6

36 A. A. C. Junior et al.

Table 1 describes the Minimum Architecture, which is the name of Level 2.
This table is based on Context of architecture description and Conceptual model
of an architecture description of ISO/IEC/IEEE 42010:2011.

Table 2 describes the Defined Architecture, and it is also based on Conceptual
model of an architecture description, and Conceptual model of AD elements and
correspondences of ISO/IEC/IEEE 42010:2011.

Table 2. Level 3 - defined architecture

KAT | Description Reference in the standard
3.1 | Correspondence rules are identified Item 5.7.2
3.2 | Rationales for decisions are identified Item 5.8.1

3.3 | Concerns related to each decision are defined | Item 5.8.2

3.4 | Decisions are managed Item 5.8.2

Levels 4 and 5. The 2 upper levels represented in Tables 3 (Consistent Archi-
tecture) and 4 (Quantified and Improved Architecture) are related to aspects
that are needed to improve a software architecture situation in the life cycle
that is already structured, but still has possibilities of improvement.

Table 3 describes the Consistent Architecture, based on Conceptual model of
an architecture framework, and Conceptual model of an architecture description
language of ISO/IEC/IEEE 42010:2011.

Table 3. Level 4 - consistent architecture

KAT | Description Reference in the standard
4.1 | Known inconsistencies are recorded Item 5.7.1

4.2 | Use of Architecture Frameworks Item 6.1

4.3 | Use of Architecture description languages | Item 6.3

Table 4 describes the Consistent Architecture, based on Conceptual model of
an architecture framework, and Conceptual model of an architecture description
language of ISO/IEC/IEEE 42010:2011.

Table 4. Level 5 - quantified and improved architecture

KATI | Description Reference in the standard
5.1 | Metrics on elements of the other Item 7

levels are defined
5.2 | An Architecture Group is Page 2*

established

& Architecting takes place in the context of an organization (“person or
a group of people and facilities with an arrangement of responsibilities,
authorities and relationships”) [22]

ArchCaMO - A Maturity Model for Software Architecture Description 37

4 ArchCaMo Processes for Each Level

For each level, at least one architectural process is defined. These processes
are performed mostly by the architect, or team of software architects that are
responsible for the software product.

First of all, we suppose that not all organizations have a defined process for
defining, structuring, and evaluating their software architecture. Even though
some organizations that have a defined process may not fulfill all the KAI’s, it
does not mean that their architectural processes and products are irrelevant or
insufficient.

4.1 Level 2 - Minimum Architecture

e P2.1 - Environment is identified. There are many environments, not only
the place where the team is coding, but also, for instance, operational envi-
ronment, development environment, test environment, and so on. Addition-
ally, when defining the environment, this will generate non-functional require-
ments, and establish rules for the system.

e P2.2 - System-of-Interest is identified. System in which life cycle is under
consideration [36]. One way for identifying the system is the environment in
which the system is.

e P2.3 - Supplementary information is identified. This material shall be speci-
fied by the organization or project, which may include: date of issue and sta-
tus; authors, reviewers, approving authority, or issuing organization; change
history; summary; scope; context; glossary; version control information; con-
figuration management information and references [22].

e P2.4 - Stakeholders are identified. Each stakeholder is defined and ranked for
their relative importance for that specific software product. In consonance
with [22], these stakeholders shall be considered, and when applicable, iden-
tified in the architecture description: users of the system, operators of the
system, acquirers of the system, owners of the system, suppliers of the sys-
tem, developers of the system, builders of the system and maintainers of the
system.

e P2.5 - Concerns for each Stakeholder are identified. For each stakeholder, its
relative concerns are identified. In the ISO/IEC/IEEE 42010:2011 documen-
tation, one can find some concerns that should be identified when applicable.

e P2.6 - Viewpoints are defined. Through interpretation from architectures views
it is established the viewpoints which will frame specific established concerns.

e P2.7 - Multiple Views are defined. Each one of the multiple Views for describ-
ing the software architecture is defined to address the concerns held by one
or more of its stakeholders.

e P2.8 - Models are defined. From each viewpoint, models are defined using
modelling conventions established by the architecture team, appropriate to
the concerns to be addressed. Models are used to answer questions about the
system-of-interest.

38 A. A. C. Junior et al.

4.2 Level 3 - Defined Architecture

e P3.1 - Correspondence rules are identified. These correspondences are used for
indicating relations between two or more architecture models, and the rules
are used to establish constraints on two or more architecture models.

e P3.2 - Rationales for decisions are identified. Rationales are written in a list,
and the reasons regarding each decision are documented for future reference.

e P3.3 - Concerns related to each decision are defined.

e P3.4 - Decisions are managed. Each decision is identified and written using
a template defined by the architecture team. All decisions are identified, dis-
cussed, and written. At least a spreadsheet is used, but it is better to use a
specific software system to keep track of each entry.

4.3 Level 4 - Improved Architecture

e P4.1 - Known inconsistencies are recorded. An architecture description should
record the inconsistencies, and include an analysis of consistency of its archi-
tecture models and its views [22].

e P4.2 - Use of Architecture Frameworks. If the project is using an Architecture
Framework, it should include conditions of applicability [22].

e P4.3 - Use of Architecture Description Languages. The architecture description
language should support all the aspects of the system-of-interest [22].

4.4 Level 5 - Quantified and Evaluated Architecture

e P5.1 - Metrics on elements of the other levels are defined. The software archi-
tect evaluates costs and benefits from the metrics, comparing to the other
architectures that used ArchCaMo. For each architectural decisions, the archi-
tect analyzes the implications, extracting a number of metrics from it.

e P5.2 - An Architecture Group is established, which is responsible to get infor-
mation of the state of the art on software architecture. The group seeks to
improve the architecture by receiving input from many sources, including
research conferences on software architecture, books, articles and reports.
The Architecture Group is also responsible for searching for improvements,
as for instance, new methods, techniques, languages, processes, and so on, on
the theme of software architecture, and try to bring these approaches to be
deployed in the organization.

5 Application of ArchCaMo in a Research Paper

This section describes an application of ArchCaMo in a software architecture
proposed in an academic research paper. The paper [37] is a work in progress
towards the specification of a conceptual architecture of a smart system, for
supporting the management of disruptions in the manufacturing domain. More-
over, the work describes system architecture based on a number of interrelated
viewpoints according to ISO/IEC/IEEE 42010:2011.

ArchCaMO - A Maturity Model for Software Architecture Description

Table 5. ArchCaMO application level 2 in an example

KAI

Description

Reference in the standard

Identification in the paper
[37]

2.1

Environment is identified

Item 4.2

Manufacturing Domain

2.2

System-of-Interest is
identified

Item 5.2

Smart system for
supporting the
management of disruptions

2.3

Supplementary information
is identified

Item 5.2

Context of the EU-funded
H2020 DISRUPT

2.4

Stakeholders are identified

Item 5.3

System users (domain
experts, operational
managers and decision
makers), system
administrators, and
technology providers
(including the suppliers,
the developers/integrators,
the testers and the
maintainers of the system)

2.5

Concerns for each
Stakeholder are identified

Item 5.3

The purpose of the system
is to support the
disruption management
lifecycle; The system will
be added onto an existing
factory ecosystem; The
system will be based on a
distributed architecture,
consisting of loose coupling
of (potentially existing)
functional components, to
enable flexibility in the
system components and
their functionality. This
should reduce the risk for a
vendor lock-in

2.6

Viewpoints are defined

Item 5.4

Describes the system main
components, their
functionality and
interfaces; Describes the
environment into which the
system will be deployed,
including dependencies it
has on the environment,
and the mapping of system
components to the
environment

2.7

Multiple Views are defined

Item 5.5

Logical view, Informational
View and Physical View

2.8

Models are defined

Item 5.6

UML (Class, Component
and Deployment)

39

In this example, displayed in Table5, we read the research paper looking
for any characteristic of the architecture description that follows the maturity
model. After all analysis, we found that the description of the system architecture
fits in Level 2, the Minimum Architecture. This conclusion may be because this
is a short paper, or even it is a work in progress.

40 A. A. C. Junior et al.

The authors did not find evidences for any one of the processes of Level 3,
Level 4 or Level 5. Even if one of the KAI of any upper Level is fulfilled, the
architecture would still be classified at Level 2.

This paper was chosen among 19 relevant papers found in a Systematic
Mapping Study from another research. Even though this is a short paper, this
paper was the one with more features following the standard ISO/IEC/IEEE
42010:2011.

6 Conclusion

In this paper, a maturity model for Software Architecture based on the stan-
dard ISO/IEC/IEEE 42010:2011, named ArchCaMO, is presented. First, notions
about software models and software architecture models are briefly introduced.
Then, basic notions of the standard ISO/IEC/IEEE 42010:2011 are presented.

The 5 presented levels of ArchCaMO are based on the described rules of
ISO/IEC/IEEE 42010:2011. The initial level, Level 1, considered as unstable,
refers to all companies/organizations that do not have a formalized way to define
the software architecture. Levels 2 and 3 are made up of most relevant aspects
that are necessary to describe a software architecture. Levels 4 and 5 are related
to aspects that are needed to improve a software architecture situation in the
life cycle that is already structured.

After the levels description, how the levels work through the process is
described. To simplify these processes, the authors illustrated with an exam-
ple, a software architecture published in [37] taken from the literature, showing
each aspect of ISO/IEC/IEEE 42010:2011 that they have adopted.

ArchCaMO maturity model evaluates software architectures, providing a
direction to the software architecture team of how to manage a description of
software architectures from new and legacy systems.

As for future works, our proposal is to evaluate other software architectures
in the literature and in companies according to ArchCaMo.

Acknowledgment. This study was financed in part by the Fundacdo de Apoio a
Pesquisa e Inovagao Tecnoldgica do Estado de Sergipe.

References

1. Dijkstra, E.W.: The structure of THE-multiprogramming system. Commun. ACM
26(1), 49-52 (1968)

2. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15(12), 1053-1058 (1972)

3. Parnas, D.L.: A technique for software module specification with examples. Com-
mun. ACM 15(5), 330-336 (1972)

4. Tofan, D., Galster, M., Avgeriou, P., Schuitema, W.: Past and future of software
architectural decisions - a systematic mapping study. Inf. Softw. Technol. 56(8),
850-872 (2014)

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

ArchCaMO - A Maturity Model for Software Architecture Description 41

Capilla, R., Jansen, A., Tang, A., Avgeriou, P., Babar, M.A.: 10 years of software
architecture knowledge management: practice and future. J. Syst. Softw. 116, 191—
205 (2016)

Garlan, D.: Software architecture: a roadmap. In: Proceedings of the Conference
on The Future of Software Engineering, ICSE 2000, pp. 91-101 (2000)

Kruchten, P., Obbink, H., Stafford, J.: The past, present, and future for software
architecture. IEEE Softw. 23(2), 22-30 (2006)

Garlan, D.: Software architecture: a travelogue. Proc. Future Softw. Eng. FOSE
2014, 29-39 (2014)

Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn.
Addison-Wesley Professional (2012)

Oquendo, F.: Software architecture challenges and emerging research in software-
intensive systems-of-systems. In: Tekinerdogan, B., Zdun, U., Babar, A. (eds.)
ECSA 2016. LNCS, vol. 9839, pp. 3-21. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48992-6_1

Booch, G.: The economics of architecture-first. IEEE Softw. 24(5), 18-20 (2007)
Buchgeher, G., Weinreich, R., Kriechbaum, T.: Making the case for centralized
software architecture management. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.)
SWQD 2016. LNBIP, vol. 238, pp. 109-121. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-27033-3_8

Galster, M., Tamburri, D.A., Kazman, R.: Towards understanding the social and
organizational dimensions of software architecting. SIGSOFT Softw. Eng. Notes
42(3), 24-25 (2017)

Yang, C., Liang, P., Avgeriou, P.: A systematic mapping study on the combination
of software architecture and agile development. J. Syst. Softw. 111, 157-184 (2016)
Wirfs-Brock, R., Yoder, J., Guerra, E.: Patterns to develop and evolve architecture
during an agile software project. In: Proceedings of the 22nd Conference on Pattern
Languages of Programs, PLoP 2015, pp. 9:1-9:18 (2015)

Waterman, M., Noble, J., Allan, G.: How much up-front? A grounded theory of
agile architecture. In: Proceedings of the 37th International Conference on Software
Engineering, ICSE 2015, vol. 1, pp. 347-357 (2015)

Abrahamsson, P., Babar, M.A., Kruchten, P.: Agility and architecture: can they
coexist? IEEE Softw. 27, 16-22 (2010)

Ding, W., Liang, P., Tang, A., Vliet, H.V., Shahin, M.: How do open source com-
munities document software architecture: an exploratory survey. In: 2014 19th
International Conference on Engineering of Complex Computer Systems, pp. 136—
145 (2014)

Graaf, K.A., Liang, P., Tang, A., Van Vliet, H.: How organisation of architecture
documentation affects architectural knowledge retrieval. Sci. Comput. Program.
121, 75-99 (2016)

Diaz-Pace, J.A., Villavicencio, C., Schiaffino, S., Nicoletti, M., Vazquez, H.: Pro-
ducing just enough documentation: an optimization approach applied to the soft-
ware architecture domain. J. Data Seman. 5(1), 37-53 (2016)

Kruchten, P.B.: The 4+1 view model of architecture. IEEE Softw. 12(6), 42-50
(1995)

ISO/IEC/IEEE: Systems and Software Engineering - Architecture Description.
ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std
1471-2000), pp. 1-46 (2011)

Paulk, M.C., Weber, C.V., Curtis, B., Chrissis, M.B.: Capability maturity model
for software (version 1.1). Technical report CMU/SEI-93-TR-024 ESC-TR-93-177,
Software Engineering Institute, Pittsburgh, PA (1993)

https://doi.org/10.1007/978-3-319-48992-6_1
https://doi.org/10.1007/978-3-319-48992-6_1
https://doi.org/10.1007/978-3-319-27033-3_8
https://doi.org/10.1007/978-3-319-27033-3_8

42

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

A. A. C. Junior et al.

Chrissis, M.B., Konrad, M., Shrum, S.: CMMI for Development: Guidelines for
Process Integration and Product Improvement, 3rd edn. Addison-Wesley Profes-
sional (2011)

Ahmed, F., Capretz, L.F.: An architecture process maturity model of software
product line engineering. Innov. Syst. Softw. Eng. 7(3), 191-207 (2011)
Ostadzadeh, S.S., Shams, F.: Towards a software architecture maturity model for
improving ultra-large-scale systems interoperability. CoRR, abs/1401.5752 (2014)
Meyer, M., Helfert, M., O’Brien, C.: An analysis of enterprise architecture maturity
frameworks. In: Grabis, J., Kirikova, M. (eds.) BIR 2011. LNBIP, vol. 90, pp. 167—
177. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24511-4_13
Franca, J.M.S., de Lima, J.S., Soares, M.S.: Development of an electronic health
record application using a multiple view service oriented architecture. In: Pro-
ceedings of the 19th International Conference on Enterprise Information Systems,
ICEIS 2017, Porto, Portugal, 26-29 April 2017, vol. 2, pp. 308-315 (2017)
Crichton, R., Moodley, D., Pillay, A., Gakuba, R., Seebregts, C.J.: An architecture
and reference implementation of an open health information mediator: enabling
interoperability in the rwandan health information exchange. In: Weber, J., Perseil,
I. (eds.) FHIES 2012. LNCS, vol. 7789, pp. 87-104. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39088-3_6

Musil, J., Musil, A., Weyns, D., Biffl, S.: An Architecture framework for collective
intelligence systems. In: 2015 12th Working IEEE/IFIP Conference on Software
Architecture, pp. 21-30 (2015)

Van Heesch, U., Avgeriou, P., Hilliard, R.: A documentation framework for archi-
tecture decisions. J. Syst. Softw. 85(4), 795-820 (2012)

Karkhanis, P., Brand, M.G., Rajkarnikar, S.: Defining the C-ITS reference architec-
ture. In: 2018 IEEE International Conference on Software Architecture Companion
(ICSA-C), vol. 00, pp. 148-151 (2018)

Vidoni, M., Vecchietti, A.: Towards a reference architecture for advanced planning
systems. In: Hammoudi, S., Maciaszek, L., Missikoff, M.M., Camp, O., Cordeiro, J.
(eds.) Proceedings of the 18th International Conference on Enterprise Information
Systems (ICEIS), vol. 1, pp. 433-440 (2016)

Williams, J.L., Stracener, J.T.: First steps in the development of a Program Orga-
nizational Architectural Framework (POAF). Syst. Eng. 16(1), 45-70 (2013)
Effenberger, F., Hilbert, A.: Towards an energy information system architecture
description for industrial manufacturers: decomposition & allocation view. Energy
112, 599-605 (2016)

ISO/IEC/IEEE: Systems and software engineering-System life cycle processes
(2008)

Kavakli, E., Buenabad-Chvez, J., Tountopoulos, V., Loucopoulos, P., Sakellariou,
R.: WiP: an architecture for disruption management in smart manufacturing. In:
2018 IEEE International Conference on Smart Computing (SMARTCOMP), pp.
279-281 (2018)

https://doi.org/10.1007/978-3-642-24511-4_13
https://doi.org/10.1007/978-3-642-39088-3_6

	ArchCaMO - A Maturity Model for Software Architecture Description Based on ISO/IEC/IEEE 42010:2011
	1 Introduction
	2 Related Works
	3 ArchCaMo - Architectural Capability Model
	3.1 How the Levels Are Proposed
	3.2 ArchCaMo Levels

	4 ArchCaMo Processes for Each Level
	4.1 Level 2 - Minimum Architecture
	4.2 Level 3 - Defined Architecture
	4.3 Level 4 - Improved Architecture
	4.4 Level 5 - Quantified and Evaluated Architecture

	5 Application of ArchCaMo in a Research Paper
	6 Conclusion
	References

