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Abstract. In this work we evaluate a combination of the Weiss-Smith
and Choi-Merkle local preconditioners coupled with the density-based
Nonlinear Multiscale Viscosity (NMV) finite element method for solv-
ing steady compressible flows at low Mach numbers. The multiscale
formulation is based on the strategy of separating scales, in which the
subgrid scale space is spanned by bubble functions, allowing to use a
static condensation procedure in the local matrix system to define the
resolved scale problem. Also, a residual-based nonlinear viscosity opera-
tor is added to the Galerkin formulation in order to obtain a stabilized
formulation. As density-based methods do not work well in problems
with Mach numbers tending to zero, resulting in a degradation of the
solution accuracy, the resulting numerical method gathering those two
approaches allows to solve compressible flows in the incompressible limit.
We evaluate this methodology simulating a steady flow over the NACA
0012 airfoil under some regimes of inflow Mach numbers. The numerical
result exhibits promising solutions to compressible flow problems in the
incompressible limit.

Keywords: Local preconditioning · Compressible flows ·
Multiscale formulation

1 Introduction

It is well known that numerical formulations based on conservation variables
for solving the compressible Euler equations are not suitable when the flow is
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in the incompressible limit, that is, when density variations are negligible [4,7].
This difficulty is caused by the very different magnitude of the wave speeds
present in the system. Obviously, this problem can be overcome by writing the
incompressible form of the governing equations. However, in some situation it is
important to work with compressible flow solver since the numerical simulations
should ideally cover a wider range of flow regime, for example, in wind turbine
applications.

One way to overcome the difficulties of the numerical methods for flow at
low Mach numbers is to use local preconditioning techniques, whose goal is the
uniformization of the characteristic propagation speeds of the system [3,5,7].
Local preconditioning or preconditioning mass matrix scheme consists of pre-
multiplying the time derivatives by a properly preconditioned matrix, modifying
the time-marching behavior of the equations without altering the steady state
solutions [3,7].

Besides the reduction of the stiffness of the system of equations, local precon-
ditioning also improves accuracy at low speed and the convergence of the numer-
ical formulation. However, the major drawback of these methodologies is their
reduced capacity to perform robust computations in stagnation point regions
difficulting their use in an industrial context [3]. To overcome these robustness
issues, Colin et al. [3] have studied, in the context of finite volume method, a
robust low speed preconditioning formulation for viscous flows, called WSCM
(Weiss-Smith/Choi-Merkle) preconditioner. This preconditioner is based on the
Weiss-Smith (WS) [9] and on the CM [2,4] preconditioners. The change of a
parameter in the WSCM method allows to recover the methods WS and CM.

Bento et al. [1] proposed a nonlinear multiscale finite element method, called
NMV (Nonlinear Multiscale Viscosity) method, for solving compressible flows.
The method presents good results for flows in transonic and supersonic regimes,
but suffers severe deficiencies when the flow is in the incompressible limit, since
it is based on conservation variables.

In this work we combine the NMV method with the Weiss-Smith/Choi-
Merkle (WSCM) local preconditioner, presented in [3], for solving compressible
flows at low Mach numbers. The numerical experiments show that this numerical
methodology yields good results.

The remainder of this work is organized as follows. In Sect. 2 we present the
governing equations, whereas in Sect. 3 we describe the variational multiscale
formulation. The local preconditioner WSCM is briefly addressed in Sect. 4 and
the numerical experiments are presented in Sect. 5. Finally, the conclusions are
presented in Sect. 6.

2 Governing Equations

We consider the two-dimensional compressible Euler equations for an ideal gas
write in conservative variables without source terms as,

∂U
∂t

+ ∇ · F(U) = 0, in Ω × (0, Tf ], (1)
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where Tf is a positive real number, representing the final time and Ω is a domain
in R

2, with boundary Γ , U ∈ R
4 is the vector of conservative variables, and

F(U) ∈ R
4×2, is the Euler flux vector. Here,

U =

⎡
⎢⎢⎣

U1

U2

U3

U4

⎤
⎥⎥⎦ = ρ

⎡
⎢⎢⎣

1
u
v
E

⎤
⎥⎥⎦ , (2)

where ρ is the fluid density, u = [u v]T is the velocity vector, ρE is the total
energy, E is the total specific energy. Other important physical variables are the
pressure p and the Mach number M = ‖u‖

c , where c =
√

γ p
ρ is the speed of

sound, with γ = cp

cv
(γ > 1) being the ratio of specific heats, cp and cv are the

coefficients of specific heat at constant pressure and volume, respectively, and
‖ · ‖ is the Euclidean norm. The system (1) is closed by the equation of state

p = (γ − 1)
(
ρE − ρ

2
‖u‖2

)
. (3)

Alternatively, Eq. (1) can be rewritten as in the quasi-linear form:

∂U
∂t

+ Ax
∂U
∂x

+ Ay
∂U
∂y

= 0, in Ω × (0, Tf ], (4)

where Ax = ∂Fx

∂U and Ay = ∂Fy

∂U are the Jacobian matrices. Associated with
Eq. (4) we have a proper set of boundary and initial conditions to complete the
mathematical model,

BU = Z, on Γ × (0, Tf ], (5)
U(x, t) = U0, (6)

where B denotes a general boundary operator, and Z and U0 are given functions.

3 The Variational Multiscale Formulation

To define the multiscale finite element method for Euler equations, we con-
sider a triangular partition Th of the domain Ω into nel elements, where
Ω =

⋃nel

e=1 Ωe with Ωi ∩ Ωj = ∅, for i, j = 1, 2, . . . , nel and i �= j. The
function space VZhb is defined as the direct sum,

VZhb = VZh ⊕ Vb, (7)

where the subspaces VZh and Vb are given by

VZh = {Uh ∈ [H1(Ω)]4; Uh|Ωe
∈ [P1(Ωe)]4,BUh = Z on ΓD}, (8)

Vb = {Ub ∈ [H1
0 (Ω)]4; Ub|Ωe

∈ [span(ψb)]4, ∀ Ωe ∈ Th}, (9)
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with P1(Ωe) representing the set of first order polynomials in Ωe, H1(Ω) denotes
the Sobolev space of square-integrable functions whose first derivatives are also
square-integrable, H1

0 (Ω) is a space of function in H1(Ω) that vanish at the
boundary of Ω, and ψb is a bubble function. The space VZh represents the
resolved (coarse) scale space whereas Vb stands for the subgrid (fine) scale space.

The Nonlinear Multiscale Viscosity (NMV) method, presented in [1], adds a
nonlinear artificial viscosity operator to the Galerkin formulation, acting isotrop-
ically in all scales of the discretization. The amount of artificial viscosity is given
according to the YZβ shock-capturing viscosity method [8]. The NMV method
for the Euler equation consists of finding Uhb = Uh+Ub ∈ VZhb with Uh ∈ VZh,
Ub ∈ Vb such that

∫

Ω

Whb ·
(∂Uhb

∂t
+ Ah

x

∂Uhb

∂x
+ Ah

y

∂Uhb

∂y

)
dΩ +

nel∑
e=1

∫

Ωe

δh(Uh)
(∂Whb

∂x
· ∂Uhb

∂x
+

∂Whb

∂y
· ∂Uhb

∂y

)
dΩ = 0,∀ Whb ∈ V0hb,(10)

where Whb = Wh + Wb ∈ V0hb with Wh ∈ V0h, Wb ∈ Vb and the amount of
artificial viscosity, δh(Uh), is calculated on the element-level by using the YZβ
shock-capturing viscosity parameter [8],

δh(Uh) = ‖Y−1R(Uh)‖
(

2∑
i=1

∣∣∣∣
∣∣∣∣Y−1 ∂Uh

∂xi

∣∣∣∣
∣∣∣∣
2
) β

2 −1

‖Y−1Uh‖1−βhβ , (11)

where
R(Uh) =

∂Uh

∂t
+ Ah

x

∂Uh

∂x
+ Ah

y

∂Uh

∂y
(12)

is the residue of the problem on Ωe, Y is a diagonal matrix constructed from
the reference values of the components of U, h is the local length scale defined

as follow h =
(∑3

a=1 |j · ∇Na|
)−1

, j is a unit vector defined as j = ∇ρ/‖∇ρ‖
and Na is the interpolation function associated with node a. The local length h
is defined automatically taking into account the directions of high gradients and
spatial discretization domain.

The numerical solution is defined considering iterative procedures for space
and time. Given Ui

hb at iteration i, the nonlinear iterative procedure finds Ui+1
hb

satisfying the formulation (10), where YZβ shock-capturing viscosity parameter
is function of the iteration i (δh(Ui

h)). The numerical solution is advanced in time
by the predictor-corrector algorithm given in [6] and adapted for the multiscale
framework in [1] for the Euler equations.

4 Local Preconditioner for the Euler Equations

Local preconditioning or preconditioning mass matrix scheme consists of pre-
multiplying the time derivatives by a properly matrix in order to uniform the
eigenvalues, smoothing the discrepancy of the different time scales. It is applied
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to the set of continuous equations before any discretization is done. Denoting by
P the (nonsingular) preconditioning matrix, then the system of Eq. (4) after the
preconditioning process reads

P−1 ∂U
∂t

+ Ax
∂U
∂x

+ Ay
∂U
∂y

= 0

or
∂U
∂t

+ PAx
∂U
∂x

+ PAy
∂U
∂y

= 0, in Ω × (0, tf ]. (13)

The solutions of problems (4) and (13) evolve in time differently, but converge
in time to the same steady-state solution, since the time derivatives go to zero.

In this work we study a combination of the Weiss-Smith (WS) [9] and Choi-
Merkle (CM) [2,4] local preconditioners, presented in [3] with the name WSCM
method. An explicit expression for the WSCM preconditioner in conservative
variables [3] is

P = I + α

⎡
⎢⎢⎣

θ −u −v 1
uθ −uu −uv u
vθ −uv −vv v
Hθ −uH −vH H

⎤
⎥⎥⎦ , (14)

where

α =
γ − 1

c2

[
(1 − δ)ε − 1

]
, θ =

1
2
‖u‖2 + δ

εc2

(γ − 1)[(1 − δ)ε − 1]
(15)

and H is the total enthalpy. For Euler equations, the preconditioning parameter
ε is given by

ε = min
{

1,max
{

M2
lim,M2, σpgr

|Δp|
ρc2

}}
,

where M2
lim = 10−5, σpgr = 2. We define the maximum pressure variation (Δp)

on the triangle as

|Δp| = max{|p1 − p2|, |p1 − p3|, |p2 − p3|}, (16)

where pi is the pressure on the node i = 1, 2, 3. The value of the parameter
δ ∈ [0, 1] can define different preconditioners:

δ = 0 → Weiss-Smith (WS) preconditioner;
δ = 1 → Choi-Merkle (CM) preconditioner;

δ ∈ (0, 1) → Weiss-Smith/Choi-Merkle (WSCM) preconditioner.

5 Numerical Experiments

The flow over an airfoil is an attractive problem to analyze the numerical insta-
bility arising from low Mach number values, that occurs in several flow regimes
modeled by Euler equations. This section shows the results of a flow passing
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through a NACA 0012 airfoil at an angle of attack of 0◦ and varying the inflow
Mach number, M = 0.001, 0.01, 0.1, and 0.3.

The experiment was executed taking into account an unstructured triangular
mesh of 5,606 elements and 2,886 nodes, in the computational domain given by
a circle centered at the (0, 0) with radius 15, as shown in Fig. 1. Aiming to avoid
numerical instabilities of reflecting waves, we consider a prudent distance from
the airfoil to the inflow and outflow boundaries [5]. The inflow data is set up by

inflow

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ρ = 1.0;
u = 1.0;
v = 0.0;
T = 1.0,

(17)

where T is the temperature.

(a) NACA 0012 mesh (b) Detail of the NACA 0012 airfoil

Fig. 1. Unstructured triangular mesh of 5,606 elements and 2,886 nodes.

The numerical solution is advanced in time by the predictor-corrector algo-
rithm adapted for the multiscale framework in [1] for the Euler equations. A
restarted version of the GMRES solver is used to find the solution of the lin-
earized system in each nonlinear and time iterations. We set 30 vectors to Krylov
subspace base and 10−5 to solver tolerance. The time-step size is 10−3 and the
simulation runs until tf = 20.0 (20,000 steps), and 3 fixed nonlinear iterations.
In this example, we evaluate the (density-based) NMV method [1] combined
with the WSCM (Weiss-Smith/Choi-Merkle) local preconditioner for solving this
benchmark problem. We vary the parameter δ ∈ {0, 0.5, 1} in order to recover
the methods WS and CM. In the experiments we call NMV(WS), NMV(CM),
and NMV(WSCM), for δ = 0, δ = 1 and δ = 0.5, respectively, and by NMV(NP)
the non-preconditioned case. The tests are carried out with the intention of ana-
lyzing accuracy issues, specially in the incompressibility limit. Since the flow
at low speed presents an incompressible behavior, i.e., the density variation is
almost negligible, we use the pressure contour to analyze this experiment.
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(a) NMV(NP)

(b) NMV(WS)

Fig. 2. NACA 0012: Pressure contours for M = 0.001 at the inflow. In this experiment
are plotted the contour of p−pref with pref = 714, 279, because the variation of pressure
is very small.
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(c) NMV(CM)

(d) NMV(WSCM)

Fig. 2. (continued)
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(a) NMV(NP)

(b) NMV(WS)

Fig. 3. NACA 0012: Pressure contours for M = 0.01 at the inflow.
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(c) NMV(CM)

(d) NMV(WSCM)

Fig. 3. (continued)
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(a) NMV(NP)

(b) NMV(WS)

Fig. 4. NACA 0012: Pressure contours for M = 0.1 at the inflow.
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(c) NMV(CM)

(d) NMV(WSCM)

Fig. 4. (continued)
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(a) NMV(NP)

(b) NMV(WS)

Fig. 5. NACA 0012: Pressure contours for M = 0.3 at the inflow.



162 S. S. Bento et al.

(c) NMV(CM)

(d) NMV(WSCM)

Fig. 5. (continued)
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Figures 2, 3, 4, and 5 show the pressure contours for inflow Mach numbers,
M = 0.001, 0.01, 0.1, and 0.3, respectively. As expected, the numerical solutions
without local preconditioning, when the low Mach number approaches to zero,
are completely oscillatory, as shown in Fig. 2(a) for M = 0.001, and Fig. 3(a) for
M = 0.01.

On the other hand, the preconditioned formulation presents better results
for this problem, as shown in Fig. 2(b)–(d), 3(b)–(d), 4(b)–(d), and 5(b)–(d).
The three local preconditioners evaluated present good results for all inflow low
Mach numbers simulated, but the WSCM preconditioner presented a slightly
better solution in the transition regime, i.e., when M = 0.3, as we can see in
Fig. 5(b)–(d).

6 Conclusions

We applied the NMV method coupled with the Weiss-Smith (WS), Choi-Merkle
(CM), and Weiss-Smith/Choi-Merkle (WSCM) local preconditioners for solving
the NACA 0012 airfoil problem at low Mach numbers. We simulated the flow
over the NACA 0012 airfoil under the following regimes of inflow Mach numbers:
0.001; 0.01; 0.1; 0.3. The solutions obtained with the NMV without local pre-
conditioning are completely oscillatory in the low Mach number limit (e.g. for
M = 0.001, 0.01), since methods based on density variables fail in this case. On
the other hand, our numerical methodology combined with local preconditioning
exhibited promising results to this problem.

The study of other local preconditioning techniques and the extension of
this methodology to compressible Navier-Stokes equations will be addressed in
a further work.
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Esṕırito Santo State Research Support Foundations (FAPES).

References

1. Bento, S.S., de Lima, L.M., Sedano, R.Z., Catabriga, L., Santos, I.P.: A nonlinear
multiscale viscosity method to solve compressible flow problems. In: Gervasi, O.,
et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 3–17. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-42085-1 1

2. Choi, Y.H., Merkle, C.: The application of preconditioning in viscous flows. J. Com-
put. Phys. 105(2), 207–223 (1993)

3. Colin, Y., Deniau, H., Boussuge, J.F.: A robust low speed preconditioning formula-
tion for viscous flow computations. Comput. Fluids 47(1), 1–15 (2011)

4. Ginard, M.M., Bernardino, G., Vázquez, M., Houzeaux, G.: Fourier stability analysis
and local Courant number of the preconditioned variational multiscale stabilization
(P-VMS) for Euler compressible flow. Comput. Methods Appl. Mech. Eng. 301,
28–51 (2016)

5. Ginard, M.M., Vázquez, M., Houzeaux, G.: Local preconditioning and variational
multiscale stabilization for Euler compressible steady flow. Comput. Methods Appl.
Mech. Eng. 305, 468–500 (2016)

https://doi.org/10.1007/978-3-319-42085-1_1
https://doi.org/10.1007/978-3-319-42085-1_1


164 S. S. Bento et al.

6. Hughes, T.J.R., Tezduyar, T.E.: Finite element methods for first-order hyperbolic
systems with particular emphasis on the compressible Euler equations. Comput.
Methods Appl. Mech. Eng. 45(1), 217–284 (1984)

7. Lopez, E.J., Nigro, N.M., Sarraf, S.S., Damián, S.M.: Stabilized finite ele-
ment method based on local preconditioning for unsteady compressible flows in
deformable domains with emphasis on the low Mach number limit application. Int.
J. Numer. Methods Fluids 69(1), 124–145 (2012)

8. Tezduyar, T.E., Senga, M.: Stabilization and shock-capturing parameters in SUPG
formulation of compressible flows. Comput. Methods Appl. Mech. Eng. 195(13–16),
1621–1632 (2006)

9. Weiss, J., Smith, W.: Preconditioning applied to variable and constant density flows.
AIAA J. 33(11), 2050–2057 (1995)


	Local Preconditioning Techniques Coupled with a Variational Multiscale Method to Solve Compressible Steady Flows at Low Mach Numbers
	1 Introduction
	2 Governing Equations
	3 The Variational Multiscale Formulation
	4 Local Preconditioner for the Euler Equations
	5 Numerical Experiments
	6 Conclusions
	References




