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Abstract. This paper presents the application of collaborative reinforcement
learning models to enable the distributed learning of energy contracts negotia-
tion strategies. The learning model combines the learning process on the best
negotiation strategies to apply against each opponent, in each context, from
multiple learning sources. The diverse learning sources are the learning pro-
cesses of several agents, which learn the same problem under different per-
spectives. By combining the different independent learning processes, it is
possible to gather the diverse knowledge and reach a final decision on the most
suitable negotiation strategy to be applied. The reinforcement learning process is
based on the application of the Q-Learning algorithm; and the continuous
combination of the different learning results applies and compares several col-
laborative learning algorithms, namely BEST-Q, Average (AVE)-Q; Particle
Swarm Optimization (PSO)-Q, and Weighted Strategy Sharing (WSS)-Q.
Results show that the collaborative learning process enables players’ to correctly
identify the negotiation strategy to apply in each moment, context and against
each opponent.

Keywords: Collaborative reinforcement learning � Electricity markets �
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1 Introduction

Electricity markets are evolving into a local trading setting [1], which makes it difficult
for unexperienced players to achieve good agreements. One of the solutions to deal
with this issue is to provide players with decision support solutions capable of aiding
them in deciding which negotiation strategies to apply in each moment, context and
against each specific opponent, in order to reach the best possible results from nego-
tiations [2]. Different negotiation strategies have been proposed in the literature, e.g.
exploring the game theoretic dimension of the market [3], assessing risk management
in line with the portfolio theory [4], or by using forecasting approaches to predict prices
and optimize the bidding process [5]. However, current models are not capable of
adapting to different market circumstances and negotiating contexts, as they are limited
to specific market scenarios and are not integrated in actual market simulation or
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decision support systems. Thereby current approaches are not able to provide market
players with the means to change their behaviour in a real market environment, and
therefore pursuit the achievement of the best possible outcomes.

This paper addresses this limitation by providing a contribution towards the
adaptability of market players’ actions in bilateral energy contracts negotiations.
A collaborative reinforcement learning model is applied to enable combining the
learning process on the best negotiation strategies to apply against each opponent, in
each context, from multiple learning sources. The diverse learning sources are the
learning processes of several agents, which learn the same problem under different
perspectives (using different utility or results assessment functions). By combining the
different independent learning processes, it is possible to gather the diverse knowledge
and reach a final decision on the most suitable negotiation strategy to be applied. The
reinforcement learning process is based on the application of the Q-Learning algorithm
[6]; and the continuous combination of the different learning results applies and
compares several collaborative learning algorithms, namely BEST-Q, Average (AVE)-
Q; Particle Swarm Optimization (PSO)-Q, and Weighted Strategy Sharing (WSS)-Q
[7]. Results show that the collaborative learning process enables players’ to correctly
identify the best (a-priori identified) negotiation strategy to apply in each moment,
context and against each opponent. Moreover, the different algorithms enable the
adaptation according to needs of each learning process, i.e. faster, yet not so solid,
convergence; or slower convergence, but with higher guarantees of success.

After this introductory section, Sect. 2 presents the proposed methodology; Sect. 3
presents the experimental findings achieved when applying the proposed model, and
Sect. 4 presents the most relevant conclusions of this work.

2 Proposed Methodology

The approach proposed in this paper concerns the combination of the learning process
of different agents through collaborative learning. The different agents learn the same
problem under different perspectives, using different utility or results assessment
functions, which result from their own perspective when analysing the problem and the
corresponding context. Despite the independent learning processes, all agents use Q-
Learning as the reinforcement learning algorithm for this problem. The combination of
the different learning process is then applied through several collaborative learning
algorithms, namely BEST-Q, AVE-Q; PSO-Q, and WSS-Q [7].

2.1 Q-Learning

Q-Learning is a very popular reinforcement learning method. It is an algorithm that
allows the autonomous establishment of an interactive action policy. It is demonstrated
that the Q-Learning algorithm converges to the optimal proceeding when the learning
state-action pairs Q is represented in a table containing the full information of each pair
value [8]. The basic concept behind Q-Learning is that the learning algorithm is able to
learn a function of optimal evaluation over the whole space of state-action pairs
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s � a. This evaluation thus defines the confidence value Q that each action a is able to
represent the state s. The Q function performs the mapping as in Eq. (1).

Q : s � a! U ð1Þ

where U is the expected utility value when selecting action a in state s. As long as the
state does not omit relevant information, nor introduce new information, once the
optimal function Q is learned, the decision method will know precisely which action
results on the higher future reward under each state. The reward r is attributed to each
pair action-state in each iteration, representing the quality of this pair, and allows the
confidence value Q to be updated after each observation. r is defined as in (2).

ra;s;t ¼ 1� norm RPa;s;t;o;p � EPa;s;t;o;p

�� �� ð2Þ

where RPa,s,t,o,p represents the real price that has been established in a contract with an
opponent o, in state s, in time t, referring to an amount of power p; and EP a,s,t,o,p is the
estimation price of scenario that corresponds to the same player, amount of power and
state in time t. All r values are normalized in a scale from 0 to 1, in order to allow the Q
(s, a) function to remain under these values, so that the confidence values Q can be
easily assumed as probabilities of scenario occurrence under a context. Q(s, a) is
learned through by try an error, being updated every time a new observation (new
contract establishment) becomes available, following Eq. (3).

Qtþ 1 st; atð Þ ¼ Qt st; atð Þþ a rs;a;tþ cUt atþ 1ð Þ � Qt st; atð Þ� � ð3Þ

where a is the learning rate; c is the discount factor; and Ut (4) is the utility resulting
from action a under state s, obtained using the Q function learned so far.

Ut stþ 1ð Þ ¼ max
a

Q stþ 1; að Þ ð4Þ

The Q Learning algorithm is executes as follows:

• For each a and s, initialize Q(s, a) = 0;
• Observe new event;
• Repeat until the stopping criterion is satisfied:

– Select the action that presents the higher Q for the current state;
– Receive reward ra,s,t;
– Update Q(s, a);
– Observe new state s′;
– s ← s′.

As the visiting of all action-state pairs tends to infinite, the method guarantees a
generation of an estimative of Qt which converges to the value of Q. In fact, the actions
policy converges to the optimal policy in a finite time, however slowly. In order to
accelerate the convergence process, not only theQ value of the chosen action is updated,
but also that of all scenarios, since the r regarding all alternative scenarios can be
computed by comparing the estimated prices by each action and the actual values that
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have been verified in a new contract agreement. After each updating process, all
Q values are normalized, as in Eq. (5), so that they are always kept in a scale from 0 to 1,
thus facilitating the interpretation as the probability of each action in correctly repre-
senting the negotiation reality.

Q0 s; að Þ ¼ Q s; að Þ
max Q s; að Þ½ � ð5Þ

2.2 Collaborative Learning Approaches

2.2.1 BEST-Q
The BEST-Q algorithm selects, for each state-action pair, the best value (Q-value) from
all tables (Q-tables) of all agents, as in (6). Then each agent updates its individual Q-
table accordingly.

Qi s; að Þ  Qbest s; að Þ; 8i; s; a ð6Þ

where i is the agent.
The disadvantage of this approach is that optimum values (Q-values) are not found

because the values (Q-values) become equal after each update. However, the BEST-Q
algorithm can achieve good long-term simulation policy.

The BEST-Q algorithm uses as assumption the best confidence value for each state-
action pair according to all the data of the agents present in the environment. Each
agent updates its Q-table by updating the pairs with the best values obtained previously.

2.2.2 AVE-Q
The AVE-Q algorithm is similar to the BEST-Q except that each agent updates its Q-
values with the average of its current value and the best value (Q-value) for each state-
action from the tables (Q-tables) of all agents, as presented in (7)

Qi s; að Þ Qbest s; að ÞþQi s; að Þ
2

; 8i; s; a ð7Þ

The main disadvantage of the AVE-Q algorithm is that it does not eliminate the bad
values (Q-values) in the interaction stage. The AVE-Q algorithm is very similar to the
BEST-Q algorithms except for updating the agent. It uses as assumption the best value
of confidence for each state-action pair according to all the data of the agents present in
the environment and its current value of learning, so the table of the agent is updated
through the average of these two values. Each agent updates its Q-table by updating the
pairs with the previously obtained values.

2.2.3 PSO-Q
Multi-agent optimization known as Particle Swarm Optimization (PSO), is part of the
swarm intelligence methodologies and techniques. This algorithm was inspired by the
rules of alignment and cohesion of the flocks of birds, and its particularity is repre-
sented by the transmission and sharing of information [9].
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Each agent is initialized with a set of possible random solutions and the optimal
solution is searched for in each generation. The movement of each agent is influenced
by the global optimum and personal memory, with each agent having the ability to
adapt its speed that directs its movement and remembers the best position found to date
[10]. This movement follows the following four rules:

• Separation: there must be a separation between each agent, to avoid collisions.
• Alignment: it is necessary that each agent follows the same direction of neighboring

particles.
• Cohesion: it is necessary that each agent follows the same position of neighboring

particles.
• Deviation: in the encounter of an obstacle, it is necessary that the agent is able to

deviate.

The PSO-Q algorithm uses PSO to find the near-optimal solution. PSO is an
optimization method that repeatedly improves the candidate solution accordingly to
with the qualitative measure. PSO solves decision problems that have multiple decision
variables. In the PSO-Q algorithm the best values (Q-values) of each agent and the best
global values (Q-values) of all agents are used by each agent to update its Q-table, as in
(8) according to a velocity function Vi (9) that determines the movement of the particles
involved in the search process.

Qi s; að Þ Qi s; að ÞþVi s; að Þ; 8i; s; a ð8Þ

Vi s; að Þ ¼ WVi s; að ÞþC1R1 Pi s; að Þ � Qi s; að Þ½ �
þC2R2 G s; að Þ � Qi s; að Þ½ � ð9Þ

where W is the inertia component, which defines the degree in which the movement
will stay closer to the previous position; Pi(s,a) is the best Q-value of agent i for the
pair s x a, G(s,a) is the best global solution for the s x a pair, C1 and C2 are weight
components that determine the degree in which the new position will tend to the
personal and global best, respectively; and R1 and R2 are random values ranging [0, 1].

In the PSO-Q, the reinforcement learning problem is modeled as an optimization
problem in which the candidate solutions are the values (Q-values of the table), and the
qualitative measure is the Q-function. In the PSO-Q algorithm, the best values (Q-
values) of each agent and the best overall value of all agents are used for each agent to
update its Q-table.

2.2.4 WSS-Q
In the WSS (Weighted Strategy-Sharing) method, it is assumed that homogeneous Q-
Learning agents learn in some distinct environments, so their actions do not alter the
environment of other agents and no hidden state is produced.

Agents learn in two ways: individual learning mode and cooperative learning mode.
First, all agents are in the individual learning mode. The agent performs several
learning attempts. Each learning attempt starts from a random state and ends when the
agent reaches the goal. After a specified number of individual attempts, all agents
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switch to cooperative learning mode. In the collaborative mode, each agent delegates a
weight to the other agents according to their expertise (trust value). Then, each agent
updates through a weighted average with the values of the other tables resulting in a
new table.

Using the WSS-Q algorithm, each agent assumes a weight for the tables of the other
agents based on the relative skill of each agent. Subsequently, each agent uses the
weighted average of all values of tables (Q-tables) to update its own table (10).

Qi s; að Þ 
Xn

j¼1
Wi;jQj s; að Þ� �

; 8i; s; a ð10Þ

where Wij is the weight that agent i takes on the skill of agent j.

3 Case Study

3.1 Specifications

This case study considers 4 independent agents, which learn the same problem from
different perspectives. In summary, each agent needs to learn which, from 10 distinct
actions, is the best one; in which each action refers to the choice on a negotiation
strategy to be applied against an opponent in a bilateral negotiation. Table 1 shows the
a-priori defined best actions from each agent’s perspective.

From Table 1 it is visible that the best overall actions accordingly to the perspective
of the 4 agents are actions 2, 8 and 10.

The number of Q-Learning episodes to perform has the value 200 being that each
episode is composed of 1000 repetitions of the Q-Learning steps. The sharing of
information between agents in done at every 10 episodes. All agents initially start in
episode 1. The parameterization for Q-Learning is as follows: the discount factor is 0.9
for a slower exploration and a learning rate of 0.01 so that learning does not dispense
with the desired value.

3.2 Results

Figures 1, 2, 3 and 4 present the evolution of the Q-values of each action, from each
agent’s perspective, throughout all the episodes, when using the BEST-Q, AVE-Q,
PSO-Q and WSS-Q algorithms, respectively.

Table 1. Best a-priori actions for each agent

Agent id 1 2 3 4
Best actions # 10 10, 2 8, 2 8

Collaborative Reinforcement Learning of Energy Contracts Negotiation Strategies 207



From Fig. 1 is can be seen that the agents present partially identical graphs because
they use the best values of the other agents. The BEST-Q algorithm reaches a relative
convergence at around 360 iterations. From Fig. 2 one can see that the AVE-Q
algorithm in the first iterations presents a marked increase in values for the actions with
greater reinforcement. The algorithm reaches a balance from the 160 iterations. It is
concluded that AVE-Q reaches a quicker convergence that BEST-Q on the best actions.

From Fig. 3 it is visible that PSO-Q in the first iterations presents a marked increase
in values for the actions with greater reinforcement. The algorithm reaches a balance
from the 160 iterations. Although with the increase in the number of iterations another
action stands out; i.e. the algorithm allows to explore other possibilities and make a
management of learning with exploration and experience. In comparison with the

Fig. 1. Evolution Q-Values for BEST-Q

Fig. 2. Evolution Q-Values for AVE-Q
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previous algorithms this algorithm achieves a fast equilibrium allowing for the search
of new emergent good actions. From Fig. 4, one can see that the WSS algorithm
presents variations along the number of iterations. This algorithm limits the choice in
only 3 actions for the proposed problem (2, 8 and 10 as a-priori identified). In com-
parison with the previous algorithms this one identifies the best actions, but it does not
demonstrate a clear convergence, like the other algorithms.

Fig. 3. Evolution Q-Values for PSO-Q

Fig. 4. Evolution Q-Values for WSS-Q

Collaborative Reinforcement Learning of Energy Contracts Negotiation Strategies 209



4 Conclusions

This paper has presented the application of four collaborative reinforcement learning
algorithms (BEST-Q, AVE-Q, PSO-Q and WSS-Q) to the problem of identifying the
best action (negotiation strategy) that is learned independently by several different
agents, with different perspectives.

Results show that with BEST-Q all agents converge to the same Q-Tables, which
prevents them from adding their independent perspective on the problem; nevertheless,
the best actions are identified, among others that also present good potential. AVE-Q
converges quickly to the best actions. PSO-Q also converges quickly, but enables for
the future identification of other emerging good actions, due to the stochastic nature.
WSS-Q presents a great variation throughout the entire set of episodes, but it is the only
one that enables identifying the exact 3 a-priori best actions, while the 3 other algo-
rithms identify these 3 but also add some other relatively good actions into the mix.
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