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Abstract. Rewards and punishments in different forms are pervasive and
present in a wide variety of decision-making scenarios. By observing the out-
come of a sufficient number of repeated trials, one would gradually learn the
value and usefulness of a particular policy or strategy. However, in a given
environment, the outcomes resulting from different trials are subject to chance
influence and variations. In learning about the usefulness of a given policy,
significant costs are involved in systematically undertaking the sequential trials;
therefore, in most learning episodes, one would wish to keep the cost within
bounds by adopting learning stopping rules. In this paper, we examine the
deployment of different stopping strategies in given learning environments
which vary from highly stringent for mission critical operations to highly tol-
erant for non-mission critical operations, and emphasis is placed on the former
with particular application to aviation safety. In policy evaluation, two
sequential phases of learning are identified, and we describe the outcomes
variations using a probabilistic model, with closed-form expressions obtained
for the key measures of performance. Decision rules that map the trial obser-
vations to policy choices are also formulated. In addition, simulation experi-
ments are performed, which corroborate the validity of the theoretical results.

Keywords: Autonomous agent � Aviation safety � Decision rules �
Multi-agent � Reinforcement learning � Stopping rules

1 Introduction

In order to determine the feasibility or optimality of a given course of action, it is
necessary to observe and monitor the outcomes of repeated trials. Repetition is nec-
essary in order to ensure reliability and ongoing effectiveness particularly in an envi-
ronment which is subject to chance influence and where complete information on all
the underlying factors are not available. This is especially vital for mission critical
operations, such as aviation safety, where ongoing validation or monitoring of a given
policy is essential, but is also relevant for non-mission critical activities [18, 19, 21].
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In most practical situations, such trials cannot be performed in parallel but have to be
undertaken in a sequential manner. In the context of reinforcement learning, each
outcome can be classified as a reward or punishment. However, the cost of carrying out
such learning trials can be significant and such sequential validation can have varying
degrees of stringency. In this study, the stochastic structure of the environment is
explicitly modeled, and the performance measures of the associated validation costs are
analyzed.

In trialing or learning a given course of action, the observed rewards and punish-
ments are usually probabilistic. For instance, when one is experimenting a new route
between an originating point A and a destination B, an increase of the journey duration
by a given amount may be viewed as a punishment, whereas a reduction in the duration
of the same may be viewed as a reward, and having thus learned, say, the acceptability
of the new route, one would adopt the new route as a policy for traveling between A
and B.

Thus, through repeated trials resulting in outcomes of either reward or punishment,
one establishes the feasibility of the new policy and completes the learning phase.
Subsequent to the learning phase, the new policy, if learned successfully (i.e. when the
rewards to punishments ratio is sufficiently high) is adopted from that point onwards
without it being questioned or evaluated afterwards. In this particular example, the
learning is primarily done during the pre-adoption phase. In some situations, however,
even after the policy is adopted, ongoing validation and monitoring is still carried out
and this is especially necessary for safety-critical and mission-critical operations. If in
the course of ongoing monitoring, there is an overwhelming number of punishments
observed, then the adoption of the policy may be called into question, and termination
of the policy may be necessary.

In this paper, we study such learning reinforcement scenarios of stochastically
receiving rewards and punishments for both the pre-adoption phase as well as the post-
adoption phase. To be concrete, we shall use a scenario of aviation safety, as we believe
this scenario is sufficiently general and of particular relevance and currency to present
day concerns. Despite this, we wish to point out that many other everyday learning
situations are similar to this; examples include trialing a new machine translation
algorithm, learning the effectiveness of a new advertising channel, and route discovery
in self-drive vehicles.

An autonomous agent in reinforcement learning learns through the interaction with
the environment to maximize its rewards, while minimizing or avoiding punishments.
In most practical situations, the underlying environment is non-stationary and noisy [1,
4, 6, 20, 22], and the next state results from taking the same policy may not result in the
same outcome every time but appears to be stochastic [2, 7]. In [3]. Brafman and
Tennenholtz introduces a model-based reinforcement learning algorithm R-Max to deal
with stochastic games [5]. Such stochastic elements can notably increase the com-
plexity in multi-agent systems and multi-agent tasks, where agents learn to cooperate
and compete simultaneously [6, 10]. As other agents adapt and actively adjust their
policies, the best policy for each agent would evolve dynamically, giving rise to non-
stationarity [8, 9]. In these studies, the cost of a trial to receive either a reward or
punishment can be seen to be significant, and ideally, one would like to arrive at the
correct conclusion by incurring minimum cost. In reinforce learning algorithms, we are
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always in the hope to rapidly converge to an optimal policy with least volumes of data,
calculations, learning iterations, and minimal degree of complexity [11, 12]. To do so,
one should explicitly define the stopping rules for specifying the conditions under
which learning should terminate and a conclusion drawn as to whether the learning has
been successful or not based on the observations so far.

Establishing stopping rules, is an active research topic in reinforcement learning,
which is closely linked to the problems of optimal policies and policy convergence
[13]. Conventional approaches mainly aim for relatively small-scale problems with
finite states and actions. The stopping rules involved are well-defined for each category
of algorithms, such as utilizing Bellman Equation in Q-learning [14]. To deal with
continuous action spaces or state spaces, new algorithms, such as the Cacla algorithm
[15] and CMA-ES algorithm [16], are developed with specific stopping rules. Some
stopping rules for stochastic reinforcement learning under different assumptions have
been proposed and studied in [23, 24]. Still, most studies on stopping rules are
procedure-oriented and do not have a unified measurement where comparison may be
facilitated.

In our study here, in addition to learning from the observations in the pre-adoption
and post-adoption phases, we also focus in the stopping criteria, so that what has been
observed and learned can form the basis of policy decision making. The next section
provides a representation of the stochastic learning environment, and establishes
stopping rules for the different phases. An analysis of these rules is given in Sect. 3.
Assessment of the learning cost and the rewards ratio, along with experimental eval-
uation is given in Sect. 4, and the final conclusions are drawn in Sect. 5.

2 The Learning Environment and Stopping Rules

We assume that trials are systematically carried out in a sequential manner. Due to the
presence of a multiplicity unknown factors and hidden variables, indicating an envi-
ronment about which we have incomplete information, the outcome from different
trials will be subject to probabilistic influences. As mentioned earlier, we shall employ
the aviation safety learning situations to develop the main ideas. The reason for using
this situation is twofold:

i. it has a high degree of generality that is able to subsume a variety of learning
situations as special cases, and

ii. it has a particular relevance and interest to current concerns of airlines, aircraft
manufacturers, and passengers.

We shall divide the learning reinforcement of a policy into two distinct phases:

i. the pre-adoption phase, which we shall refer to as Phase I, and
ii. the post-adoption phase, which we shall refer to as Phase II.

The former phase is concerned with learning the acceptability of the policy through
systematic trials, while the latter is concerned with the continued validity of the policy
subsequent to adoption, and in this case, whether the policy should under some cir-
cumstances be discontinued. An especially relevant example is whether a particular
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aircraft model recently introduced should continue to be in service or should it be
discontinued, at least temporarily, for the safety and well-being of its passengers,
perhaps following some serious incidents.

Here, we are dealing with a sequence of independent learning trials, each of which
either results in a reward or punishment. In our particular aviation example, typically
for each trial a set of indicators are logged and a final score is computed which forms
the basis of a decision on either a pass (reward) or failure (punishment) for the trial is
attained. We let p and q, with p + q = 1, denote the probabilities of receiving a reward
or punishment respectively for a given trial. For example, if p > > q, then the decision
should be that of adopting the policy. In general the requirements for Phase I is much
more stringent for Phase II, and the cost of different decision rules will be analyzed in
the next section.

Let us consider the following two stopping rules.

Rule I: In the course of undertaking the learning trials, an agent concludes the
learning process when m consecutive rewards are obtained.
Rule II: In the course of undertaking the learning trials, an agent concludes the
learning process when m total rewards are obtained.

Rule I is a somewhat stringent stopping rule but is particular applicable for mission
critical operations where a high degree of reliability is required. It is also more widely
used for the proper learning phase (Phase I) than for the validation phase after learning
(Phase II). Rule II is a less stringent stopping rule and is often used for the validation
phase. In some applications, such as finding an optimal route from A to B for a self-
driving vehicle, it is mostly sufficient just to use Rule II for Phase I learning, and
usually no need for Phase II evaluation.

In addition, there is a significant difference between the objective of Phase I, and
that of Phase II. While the objective of Phase I is to aim to adopt the policy by
accumulating a sufficient number of rewards, the aim of Phase II, on the other hand, is
to look for alerts that may lead to a discontinuation of the policy. As we shall see, the
analysis in Phase II requires the application of the Reflection Principle [17], by
interchanging the probabilities p and q, as well as interchanging the rewards and
punishments. Such reversal of roles leads to a variation of Rule I and Rule II, which we
shall call Rule IR, and Rule IIR respectively, with the suffix R signifying reflection.

Rule IR: In the course of undertaking the validation trials, an agent concludes the
learning process when m’ consecutive punishments are received.
Rule IIR: In the course of undertaking the validation trials, an agent concludes the
learning process when m’ total punishments are received.

As we shall see in the next section, the use of Rule I for Phase I means that
acceptance of the policy is more stringent than that when Rule II is used. On the other
hand, the use of IIR in Phase II also signifies a more stringent requirement since
rejection of the policy is easier than that of using Rule IR (Table 1).
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3 Analysis of the Performance of the Stopping Rules

Rule I above is concerned with collecting a given number of consecutive reinforce-
ments or rewards, so that we shall first establish the probability of occurrence of such
an event for the first time. Let bn be the probability that m consecutive rewards occurs
at trial n, with n � m, not necessarily for the first time, and we denote by B(z) be the
corresponding probability generating function. From [17], this probability generating
function can be obtained as

B zð Þ ¼ 1� zþ qpmzmþ 1

1� zð Þ 1� pmzmð Þ : ð1Þ

Since we need to obtain the corresponding generating function for the probability
that the associated event occurs for the first time, we need to consider the relationship
between the two events. We shall use the random variable X to denote the number of
trials preceding and including the receiving of the first set of m consecutive rewards.
Thus X is the stopping time for Rule I, measured in terms of the number of trials, and
we let an be the probability

an ¼ Pr X ¼ n½ �; n ¼ m;mþ 1; . . .: ð2Þ

We denote by A(z) the probability generating function for the event that the
accumulation of m rewards occurs for the first time. It can be shown in [17] that the
generating function A(z) is related to B(z) by

A zð Þ ¼ B zð Þ � 1
B zð Þ : ð3Þ

From this, we obtain, after simplification,

A zð Þ ¼ pmzm

1� qm
Pm�1

k¼0 pkzk
: ð4Þ

Table 1. The typical learning scenarios for different types of applications for the two phases.

Phase I (learning) Phase II (validation)

Mission critical systems Rule I Rule IIR
Intermediate level 2 Rule I Rule IR
Intermediate level 1 Rule II Rule IIR
Non-mission critical systems Rule II IR
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From this, the mean and variance of X can be readily obtained after simplification,

E X½ � ¼ A
0 1ð Þ ¼ 1� pm

qpm
; ð5Þ

Var X½ � ¼ A00 1ð ÞþA0 1ð Þ � A0 1ð Þ2¼ 1
q2p2m

� 2mþ 1
qpm

� p
q2

; ð6Þ

where the apostrophe indicates derivative.
Next, we examine Rule II, and let the random variable Y be the number of

observations preceding and including the first reward; thus

Pr Y ¼ k½ � ¼ pqk�1; k ¼ 0; 1; 2; 3; . . . ð7Þ

The probability generating function for a random variable W which excludes the
reward itself has been obtained in [23] and is given by

p
1� qzð Þ :

The random variables W and Y are related by Y = W + 1, and since the generating
function of 1 is z, we have, for the probability generating function of Y,

pz
1� qzð Þ : ð8Þ

Since after the occurrence of the first reward, the process probabilistically repeats
itself again, so that we have for the number of trials to the mth reward, bearing in mind
that under Rule II, the rewards need not occur consecutively

Z ¼
Xm

k¼1

Yk; ð9Þ

where each Yk has the same distributional characteristics as Y. Consequently, the
probability generating function of F(z) corresponding to Z may be obtained

F zð Þ ¼ ½ pz
1� qzð Þ�

m ð10Þ

From this, the mean and variance of Z can be readily obtained by differentiation,

E Z½ � ¼ m
p
; ð11Þ

Var Z½ � ¼ mq
p2

: ð12Þ
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It is not hard to see that E(X) � E(Z), since achieving m consecutive rewards
necessarily implies achieving at least m total non-consecutive rewards, with equality
holding iff m = 1, since in this case, there is no difference between the two situations.

Figure 1 compares the average cost of sequential trials of the two rules. Here, the
left vertical axis is used for E(X), while, the right vertical axis is used for E(Z). We see
that the stringency of Rule I is manifested in a steep climb in the number of trials as
m increases, as opposed to a relatively moderate increase in Rule II.

4 Learning Cost Evaluation and Experimentation

The number of trials carried out to complete the learning episode is often a costly
process. Let h be the numerical representation of cost associated with a single trial, and
we can standardize on h as the cost unit so that and without loss of generality we can
set h = 1. Having specified m, a minimum observation cost of mh must therefore be
incurred. What is uncertain is the number of punishments obtained in the process, and
ideally to achieve minimum cost, this number should be small. Such average trialing
cost are given by Eqs. (5) and (11). Simulation experiments are carried out to compare
the actual average learning cost with theoretical predictions, and these are given in
Table 2. Table 3 gives the corresponding comparisons of the standard deviation from
Eqs. (6) and (12).

The mean number of trials required in order to accumulate m rewards has a direct
bearing on the adoption of the given policy. The learning overhead, or cost ratio, is
given by the ratio of the average total number of trials to the number of required
rewards m. For Rule I, this is given by

Fig. 1. Cost comparison of Rules I and II (p = 0.6).
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r1 mð Þ ¼ 1� pm

mqpm
; ð13Þ

and for Rule II, this is given by,

r2 mð Þ ¼ 1
p
: ð14Þ

Clearly, the decision for adoption or successful validation will tend to be positive
for small r1 and r2, but tends towards negative when r1 and r2 are large. Thus, decision
rules can be established by linking them to the cost thresholds h1 and h2, whereby, for
example, adoption decision is made whenever r1 < h1.

As indicated earlier, for some situations, only Phase I learning is necessary and
Phase II is not required. However, in the case of our aviation scenario, as indicated in
the previous section, both Phase I and Phase II are necessary, with Rule I used for
Phase I, and Rule IIR used for Phase II. In this case, assuming we have learned the
usefulness of the given policy, say, to put the particular aircraft in service, Rule IIR
would instead look for punishments that may cause termination of the service to
safeguard the safety and well-being of its passengers. We note that Rule IIR represents
a stricter criterion with a stronger propensity to termination, since discontinuation
would be harder if one uses Rule IR instead: we may decide to discontinue the service
if there is an accumulation of m′ punishments, not necessarily consecutive. From (11),
the mean number of observations E[Z′] relating to Rule IIR for Phase II is, by the
Reflection Principle,

E Z0½ � ¼ m0

q
: ð15Þ

Similarly, from (5), the mean number of observations E[X′] relating to Rule IR for
Phase II is, again by the Reflection Principle,

E X0½ � ¼ 1� qm

pqm
: ð16Þ

The associated cost ratios are summarized in Table 2 below.
Simulation experiments are performed to gauge the accuracy of the above results.

These are shown in Table 3 below. It compares the average values and the standard
deviations, with the latter corresponding to the square roots of the variances determined
above. For a given combination of parameters, 100,000 trial episodes are performed;
the expected values and standard deviations are calculated based on these 100,000
episodes. The error percentages are computed as follows:

Err ¼ theoretical prediction �empirical measurementj j
empirical measurements

� 100%:
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(a) E[X X] 

(c) E[Z

] (b) Std[

] (d) Std[Z]

Fig. 2. Simulation results with p = 0.6, m = 5.

Table 2. Cost ratios for the two phases.

Phase I Phase II

Mission critical systems (1 − pm)/(mqpm) 1/q
Intermediate level 2 (1 − pm)/(mqpm) 1 � qm

0� �
= m0pqm

0� �

Intermediate level 1 1/p 1/q
Non-mission critical systems 1/p (1 − qm′)/(m′pqm′)

Table 3. Comparison of the average trialing costs and the standard deviations.

m p E[X]
(th)

E[X]
(expt)

Err
(%)

E[Z]
(th)

E[Z]
(expt)

Err
(%)

std.
[X] (th)

std.
[X] (expt)

Err
(%)

std.
[Z] (th)

std.
[Z] (expt)

Err
(%)

3 0.6 9.07 9.05 0.247 5.0 4.99 0.200 7.01 7.01 0.018 1.83 1.81 0.863

0.75 5.48 5.47 0.018 4.0 4.00 0.000 3.40 3.38 0.307 1.15 1.15 0.006

0.9 3.71 3.72 0.129 3.33 3.33 0.100 1.46 1.46 0.584 0.61 0.61 0.355

5 0.6 29.65 29.77 0.397 8.33 8.35 0.199 26.00 26.16 0.599 2.36 2.36 0.142

0.75 12.86 12.84 0.121 6.67 6.66 0.100 9.31 9.31 0.035 1.49 1.49 0.142

0.9 6.94 6.93 0.031 5.56 5.56 0.080 3.24 3.23 0.469 0.79 0.78 0.253

7 0.6 86.81 87.02 0.242 11.67 11.67 0.029 81.44 81.91 0.673 2.79 2.79 0.292

0.75 25.97 25.85 0.461 9.33 9.34 0.071 20.89 20.84 0.226 1.76 1.77 0.355

0.9 10.91 10.91 0.057 7.77 7.78 0.029 5.79 5.80 0.142 0.93 0.93 0.405

10 0.6 410.95 412.69 0.422 16.67 16.67 0.019 402.81 405.22 0.597 3.33 3.34 0.181

0.75 67.03 67.05 0.030 13.33 13.33 0.025 59.51 59.37 0.244 2.11 2.10 0.334

0.9 18.68 18.67 0.037 11.11 11.11 0.010 7.01 7.01 0.018 1.83 1.81 0.863
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We see that the agreement is quite acceptable in all cases, with error below 1%.
Figure 2, plots the experimental data for the case p = 0.6, m = 5. We see that some
significant transient fluctuations are evident in the first 200 episodes, but gradually
settles to an equilibrium after around 400 episodes. While some fluctuations are still
present thereafter, they eventually converge to the values as predicted by the theory.
Although we have not shown the behavior for other parameter settings, they behave in
much the same way as those shown in Fig. 2.

5 Summary and Conclusion

In this paper, we have studied the practical situation of learning the usefulness of a
given policy for adoption by repeated sequential trials, each can result in a reward or a
punishment. The entire evaluation process may be divided into two distinct phases, one
for assessing initial acceptability, and one for assessing ongoing feasibility. Due to a
large number of unknown factors and incomplete information, the outcome of each trial
is subject to probabilistic variations and cannot be predicted exactly.

Such learning process requires suitable stopping criteria in order for the results of
the observations to be consolidated and learned. Here, the probabilistic influence of the
learning environment is explicitly modeled, where the outcome of each observational
trial is taken to be independent and identically distributed. Four operational stopping
rules, applicable to varying levels of mission-critical requirements, are established that
are applicable to the two phases of learning reinforcement.

The performance of these rules are analyzed, and closed-form expressions of key
measures of interest are given. In particular, cost ratios are obtained for the two phases
of learning for system operations exhibiting different characteristics, and decision rules
linking the trial outcomes to policy choices are developed. Experimentations have also
been carried out, and the experimental results exhibit good agreements with the the-
oretical findings.

The present study is applicable to a wide variety of learning situations in an
unknown environment based on rewards and punishments. The proposed method is
useful in helping to arrive at sound operational decisions, and the associated costs of
systematic evaluation has been calculated. While here we have adopted an independent,
identically distributed set of random variables for the outcomes, future studies may
relax on this assumption and examine situations where the outcomes are Markov
dependent or where the underlying random variables are not identically distributed;
doing so should be able to further enhance the usefulness of these results.
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