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Abstract. Data processing techniques, such as mathematical formu-
las, statistical methods and machine learning algorithms, require a set
of tools for evaluating knowledge extracted from data. In unsupervised
learning it is impossible to use referential or predictive estimation. There-
fore, the only reliable way to evaluate results of unsupervised learning
is information estimation. Unfortunately, information estimation suffer
from underfitting and overfitting. We propose a new method for evaluat-
ing unsupervised learning results, which is based on the Bayesian crite-
rion for optimal decision and an objective prior probability distribution
of partitions. We illustrate the proposed method application on Fisher’s
iris data set by comparing original label distribution with results of clus-
tering with different numbers of clusters. We show the method prevents
underfitting and overfitting and verify it by comparing the recommended
value with posterior distribution.

Keywords: Unsupervised learning · Information estimation ·
Bayesian criterion · Objective prior

1 Introduction

Data processing techniques, such as mathematical formulas, statistical methods
and machine learning algorithms, require a set of tools for evaluating knowledge
extracted from data. There are several ways to perform such estimation. Based
on the research presented in [1], we consider the following estimation methods:
referential, predictive and informational.

In unsupervised learning it is impossible to use referential or predictive esti-
mation. Referential methods require some reference model which is believed to
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represent our best guess about the knowledge hidden in data. Predictive meth-
ods also have limitation as they require some outer evaluation of predictions.
Therefore, the only reliable way to estimate results of unsupervised learning is
information estimation.

1.1 Information Measures Underfitting/Overfitting

Unfortunately, information estimation, like many other methods for solving opti-
mization problems, suffer from overfitting. Overfitting is a situation where a
model corresponds not only to the relations between variables, but also to ran-
dom noise in data [2]. A model incompleteness can be caused either by a bias—an
error that occurs since the model used is not able to describe the dependencies
in the data or by a variance—an error that occurs due to increased sensitivity to
noise. Bias and variance, in turn, are related to model complexity—a quantity
derived from the type of the model, the amount of input data and the number
of parameters. A model that is too simple has high bias and vice versa—a model
that is too complex has high variance.

Let us show that informational measures suffer from overfitting. In order to
do it consider the Fisher’s iris data set [3] and estimate mutual information of
two random variables A and B [4], where A is the real class of an instance and
B is some unique identifier, with respect to the original probability distribution
of instances. This data set contains N = 150 instances of A = 3 different classes,
therefore, P (n) = 1

150 , P (a) = 1
3 and P (b) = 1

150 . Mutual information MI(Y,X)
of two discrete random variables is determined by the formula

MI(Y,X) =
∑

x

∑

y

P (x, y) log
P (x, y)

P (x)P (y)
. (1)

Therefore, MI(A,N) ≈ 1, 58 and MI(B,N) ≈ 7, 23.
One can use mutual information to compare a result of classification with

a reference model or to estimate the amount of knowledge gained after data
processing. We are interested in unsupervised learning, therefore, in the second
case. For estimating the amount of extracted knowledge mutual information
is used in some algorithms for constructing decision trees. In such algorithms,
preference is given to attributes with the highest mutual information. Therefore,
for a decision tree of the mentioned data set one should choose the attribute B
as the first node, but the resulting model, consisting of 150 classes, would be too
complicated. Therefore, it is an example of overfitting.

There are various ways of avoiding overfitting:

– Cross-validation,
– Regularization,
– Prior probabilities,
– Bayes factor et al. [1].
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One of the typical methods for solving the problem described above is the regu-
larization of mutual information MI(X,Y ) using the entropy H(X). The ratio

IGR(X,Y ) =
MI(X,Y )

H(Y )
(2)

is called the information gain ratio [9].
However, there are cases, where IGR is not applicable. One case is where Y

is completely determined by X, i.e. there is a function f : X → Y . In this case
H(Y |X) = 0. Then, as

MI(Y |X) = H(Y ) − H(Y |X) (3)

it holds that,
H(Y |X) = 0 ⇒ MI(Y,X) = H(Y ) (4)

therefore,
H(X|Y ) = 0 ⇒ IGR(X,Y ) = 1 (5)

Thus, if there is a function f : X → Y , IGR is useless. Classification task
is indeed a search of a function for assigning labels to data, therefore, IGR
is useless for estimating classification in unsupervised learning. The example
described above is an example of classification.

1.2 Objective Priors

In this paper we suggest to consider objective priors for preventing overfit-
ting/underfitting. A prior probability distribution of a random variable is a dis-
tribution that characterizes its value before obtaining experimental data. There
is informative and uninformative, or objective, prior distributions. An uninfor-
mative, or objective, distribution expresses vague or general information about
a variable and has the following advantages:

– invariance with respect to parameters structure;
– inverse dependence on model complexity;
– independence from subjective assumptions.

Nowadays, applications of objective priors in regression and classification tasks
are actively researched [5–8].

An example of objective prior usage is adjusted mutual information [10].
The idea of adjusted mutual information is to adjust mutual information of two
random variables with joint probability distribution of their partitions. Suppose
there are N points, two partitions U and V , and the number of points ai = |Ui|
for Ui ⊆ U, i = 1...R and bj = |Vj | for Vj ∈ V, j = 1...C, then the total number
of ways to distribute the set N over the two partitions U and V is Ω

Ω =
(N !)2∏

i ai!
∏

j bj !
(6)
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Every two joint partitions U and V can be represented as a contingency table M

M = [nij ]i=1...R
j=1...C (7)

Suppose there is some contingency table M , then there are w different ways to
distribute points so that this M is obtained

w =
N !∏

i

∏
j nij !

(8)

Thus, the probability P (M |a, b) for some M with respect to the set M of all
possible contingency tables is determined by the formula

P (M |a, b) =
w

W
(9)

Mutual information MI(M) of the contingency table M is determined by
the formula

MI(M) =
∑

i

∑

j

nij

N
log

Nṅij

aibj
(10)

then the average mutual information of all possible joint partitions of ran-
dom variables X and Y is defined as the expectation of mutual information
E(MI(M)|a, b)

E(MI(X,Y )) = E(MI(M)|a, b) =
∑

M∈M
MI(M)P (M |a, b) (11)

Finally, adjusted mutual information AMI(X,Y ) is defined as follows

AMI(X,Y ) =
MI(X,Y ) − E(MI(X,Y ))

max(H(X),H(Y )) − E(MI(X,Y ))
(12)

Thus, hypergeometric distribution of two joint partitions is used in adjusted
mutual information as an objective prior. The most natural way to use adjusted
mutual information is to estimate clustering result. But again it estimates simi-
larity of a resulting partition to a reference partition, while we are interested in
a method for estimating knowledge gain.

2 A Bayesian Information Criterion Based
on an Objective Prior

In this paper we propose a new method for information estimation, intended to
estimate knowledge, gained in result of data processing, that is useful in unsu-
pervised learning. The method is applicable to functionally dependent random
variables and based on the Bayes criterion for optimal decision and an objective
prior probability distribution of partitions.
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2.1 Basic Definitions

Suppose there is a function f : X → Y , then for every yi ∈ Y there is an inverse
image Xi ⊆ X

Xi = {x : f(x) = yi} (13)

We consider partition part(X) = X1 ∪ ...∪Xk as a resulting model of X, knowl-
edge gain of which we are going to evaluate. A structure of a partition is described
by a number of subsets k and a partition n̄ of a number n = |X|, such that
ni = |Xi| and n1 + ... + nk = n.

We use relative entropy, or Kullback—Leibler divergence [11], for basic infor-
mation gain estimation

DKL(X||Y ) =
∑

i

P (xi) log
P (xi)
Q(xi)

(14)

Considering P (xi) = |Xi|
|X| and Q(xi) = 1

|X| , we get

DKL(part(X)||X) =
∑

i

|Xi|
|X| log |Xi| (15)

But we propose to adjust relative entropy with an objective prior to prevent
overfitting/underfitting.

2.2 The Bayesian Criterion for Optimal Decision

Preventing overfitting/underfitting means to find an optimal structure of a
model. In decision theory various criteria are used to find the optimal choice.
Given a set of all possible actions A, a set of states of nature Θ, its probability
distribution P (θ) and a utility function U(a, θ) for an action a ∈ A and a state
of nature θ ∈ Θ, consider the Bayes criterion for choosing an optimal action
a∗ [12]

a∗
b = argmax

i

∑

j

P (θj)U(ai, θj) (16)

Given a set X, we consider the set of all possible functions XX on X,
which forms the set of all possible partitions Part(X) of X. Every partition
part(X) ∈ Part(X) has a certain structure ki, n̄j . Assuming A = {k}, Θ = {n̄}
and U(ai, θj) = DKL(partij(X)||X), we get expected relative entropy
E(DKL(partk(X)||X)), EDKL for short, of a partition partk(X) for given num-
ber of subsets k

E(DKL(partk(X)||X)) =
∑

j

P (n̄j)DKL(partkj(X)||X) (17)

and the Bayesian criterion for optimal number of subsets k∗
b

k∗
b = argmax

i

∑

j

P (n̄j)DKL(partij(X)||X) (18)

It only requires to define the probability distribution P (n̄).
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2.3 The Objective Prior Distribution of Number Partitions

Let us define the objective prior distribution P (n̄) for Bayes criterion of optimal
number of subsets k∗

b . Given a set X, we denote a set of all possible functions
on X as F = XX and a set of functions that result in some number partition n̄i

as Fi ⊆ F . Let |X| = n and m is a number of elements of n̄ with a given value
v, such that v1 + ... + vm = k, then

P (n̄i) =
|Fi|
|F | (19)

where |F | = nn and

|Fi| =
n!

n1!...nk!
n!

k!(n − k)!
k!

v1!...vm!
(20)

Objective prior P (n̄i) and, therefore, the criterion k∗
b is defined for every

set X.

2.4 Other Criteria

There are other criteria in decision theory. If probability distribution P (θ) is
unknown, one can assume states of nature Θ to be equiprobable

a∗
l = argmax

i

∑

j

1
|Θ|U(ai, θj) (21)

or minimize possible loss

a∗
w = argmax

i
min
j

U(ai, θj) (22)

Laplace and Wald criteria respectively.
Performing analogous substitutions, we get Laplace criterion for optimal

number of subsets k∗
l

k∗
l = argmax

i

∑

j

1
|{n̄}|DKL(partij(X)||X) (23)

and Wald criterion for k∗
w

k∗
w = argmax

i
min
j

DKL(partij(X)||X) (24)

However, the last criterion does not help with underfitting, as for any n it holds
that k∗

w = 1, because

min DKL(part1(X)||X) = max DKL(part(X)||X) = 1 (25)

while Laplace criterion k∗
l may be used, if probability P (n̄) is too complex to

calculate.
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3 Evaluating Unsupervised Learning Results

Consider the Fisher’s iris data set, mentioned above, to demonstrate the pro-
posed method. We compare the original labels distribution with k = 3 with more
or less numbers of classes, k = 2 and k = 4 respectively. We use k-means clus-
tering algorithm for k = 2, 4 to compare expected relative entropy of particular
partitions. The results are given in the Table 1. As we can see, partitioning a set
of 150 objects yields more expected relative entropy for k = 4 than for k = 3
and k = 2.

Table 1. Results of comparing

k n̄ DKL P PDKL EDKL

2 53, 97 0.85 1.20e-281 1.02e-281 5.30e-278

3 50, 50, 50 0.78 4.32e-252 3.37e-252 6.13e-250

4 50, 40, 28, 32 0.72 5.38e-233 3.87e-233 1.15e-229

However, this function has a global maximum, i.e. there is k∗
b such that for

k′ > k∗
b expected relative entropy decreases. To show that, let us consider another

experiment. The idea is to simulate numerous results of various unsupervised
classification and clustering instances to get posterior distribution and calculate
expected relative entropy for every possible k. Thus, we will get a posterior
number of subsets k∗

p with the maximum expected relative entropy and compare
it with k∗

b .
Due to complexity issues we consider n = 75. The plot of expected relative

entropy for k = 1, ..., 75 is given at the Fig. 1. As we see, max(EDKL) = 1.20e−
02 for k∗

b = 47.
To simulate posterior k∗

b distribution, we considered various clustering meth-
ods that do not require k as an input parameter, such as hierarchical cluster-
ing [13], affinity propagation [14], mean shift [15] and DBSCAN [16], but it
turned out that their results have subjective bias, caused by hyperparameter
values, set by a user, or by an algorithm logic itself, which may differ from
objective dependencies beneath data. Therefore, we suggest to assign labels ran-
domly, assuming that for large number of samples s the distribution would be
similar to real results.

The result of the experiment is given at the Fig. 2. As we can see, k∗
p

comes near to k∗
b and equals to it nearly after 1000 samples. Thus, we demon-

strated that prior criterion k∗
b has global maximum and correlates with posterior

distribution.
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Fig. 1. Expected entropy for n = 75 and k = 1, ..., 75

Fig. 2. k∗
p for n = 75 and s = 1, ..., 10000
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4 Conclusion

Summing up, we suggested that information estimation is the only reliable way
to evaluate results of unsupervised learning and demonstrated that information
measures, like mutual information, suffer from underfitting and overfitting. We
considered objective priors as a method for preventing underfitting/overfitting,
since they have particular advantages, and proposed a new method for evaluating
partition of a set, considered as unsupervised classification or clustering result. It
includes, on the one hand, the Bayesian criterion for optimal decision, considering
number of subsets as set of actions, corresponding number partitions as states of
nature and relative entropy as utility function, and, on the other hand, the objec-
tive prior probability distribution of number partitions with respect to a number
of all set partitions. We illustrated the resulting criterion application on Fisher’s
iris data set by comparing original label distribution with results of clustering with
different numbers of clusters and demonstrated that the criterion has a global max-
imum and correlates with posterior distribution for large numbers.
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