
An Experimental Analysis of Heuristics
for Profile Reduction

S. L. Gonzaga de Oliveira1(B), C. Osthoff2,
and L. N. Henderson Guedes de Oliveira3

1 Universidade Federal de Lavras, Lavras, MG, Brazil
sanderson@ufla.br

2 Laboratório Nacional de Computação Cient́ıfica (LNCC), Petrópolis, RJ, Brazil
osthoff@lncc.br

3 Universidade do Estado do Rio de Janeiro, Nova Friburgo, RJ, Brazil
nelio@iprj.uerj.br

Abstract. This paper concentrates on low-cost heuristics for profile
reduction. Low-cost methods for profile reduction are mainly heuris-
tic in nature and based on graph-theoretic concepts. The contribution
of this paper is twofold. Firstly, the paper includes a section involving
a numerical examination of the current state-of-art metaheuristic and
graph-theoretic methods for matrix profile reduction. With the support
of extensive experiments, this paper shows that the metaheuristic-based
algorithm is capable of reducing the profile of some matrices where the
other algorithms do not perform well, but on average, the profile reduc-
tion obtained is similar for these algorithms, whereas the metaheuristic-
based algorithm takes seven orders of magnitude more running time.
These high execution times make the metaheuristic-based algorithm a
noncontender for sparse matrix factorization and related problems. Sec-
ondly, this paper experimentally evaluates a hybrid algorithm based on
the MPG and NSloan heuristics. This paper also evaluates the new
hybrid heuristic for profile reduction when applied to matrices arising
from two application areas against the most promising low-cost heuris-
tics for solving the problem. The results obtained on a set of standard
benchmark matrices show that the new hybrid heuristic method does not
compare favorably with existing low-cost heuristics for profile reduction
when applied to large-scale matrices.

Keywords: Profile reduction · Sparse matrices · Graph labelling ·
Combinatorial optimization · Graph theory · Search methods ·
Reordering algorithms · Renumbering · Ordering · Graph algorithm ·
Permutation of sparse matrices

1 Introduction

The solution of linear systems composed of large-scale sparse matrices is one
of the most relevant computational kernels in scientific computing. Specifically,
c© Springer Nature Switzerland AG 2019
S. Misra et al. (Eds.): ICCSA 2019, LNCS 11619, pp. 25–36, 2019.
https://doi.org/10.1007/978-3-030-24289-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24289-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-24289-3_3


26 S. L. Gonzaga de Oliveira et al.

the solution of many real-world and applied problems in science and engineer-
ing (e.g., thermal and model reduction problems) reduces to solving large-scale
sparse linear systems. The solution of large-scale sparse linear systems is usually
a part of the numerical simulation that demands a high computational cost in
execution times and memory requirements. Thus, the study to reduce the com-
putational cost of solving linear systems composed of large-scale sparse matrices
is a significant topic in numerical mathematics because of its importance in many
numerical simulations.

Iterative linear system solvers that handle large-scale sparse matrices tend to
suffer from poor memory performance because of the inefficient use of cache if
they do not consider the order of how to process the matrix rows and columns.
Simulations can generally gain substantial improvements in execution costs by
accessing data with an appropriate order (e.g., [2,4,6,9,10]). Thus, the simu-
lation should adequately label the vertices (of the sparse graph corresponding
to a sparse matrix) so that data associated with adjacent vertices tend to be
stored in nearby memory locations to improve cache hit rates. Therefore, spatial
locality (a cache block brings in variables that the near future computation will
use) should be considered an essential aspect when designing a new algorithm.

An appropriate vertex numbering is desirable to guarantee that the associ-
ated coefficient matrix will have a small profile for the low-cost solution of large
and sparse linear systems, and to reduce the memory requirements of a linear
system, depending on the data structure used. Thereby, the use of heuristics
for profile reduction is a way of designing an application to return a sequence
of graph vertices with spatial locality. The matrix profile reduction also favors
direct methods for solving linear systems. Reordering rows and columns of sparse
matrices also contributes to improving the arithmetic intensity of the sparse
matrix-vector multiplication [21], which is the most critical aspect in the kernel
of the conjugate gradient method [11,14]. As a consequence, the resulting linear
system is much easier to compute than the original linear system, even when the
linear system is composed of multiple right-hand side vectors [9]. Thus, heuristics
for profile reduction are used to obtain low processing and small storage costs
for solving large sparse linear systems.

The profile reduction is also crucial for increasing the effectiveness of data
structures to represent large-scale matrices, such as applications that use the
skyline data structure [7]. Another area where reordering rows and columns of
sparse matrices is of fundamental importance is in serial and parallel adaptive
mesh refinement. As the mesh is adapted, sparsity changes dynamically and
reordering should be employed [3].

Heuristics for profile reduction belong to a family of renumbering algorithms
that place nonzero coefficients of a sparse matrix close to the main diagonal. Let
A = [aij ] be an n × n symmetric matrix associated with a connected undirected
graph G = (V,E) where V and E are sets of vertices and edges, respectively.
The profile of a matrix A is defined as profile(A) =

∑n
i=1[βi] where βi =

i − min
1≤j≤i

[j | aij �= 0] and aii �= 0.



An Experimental Analysis of Heuristics for Profile Reduction 27

The profile minimization problem is a well known NP-hard [15] computa-
tional search problem studied for over a half-century. The reason is that it is
related to a vast range of scientific and engineering application areas. Thus,
practitioners have proposed a wide variety of heuristic methods for reordering
the rows and columns of a sparse matrix to reduce its profile (see [1,10] and ref-
erences therein). Since this is an intense field of research, practitioners continue
to devote efforts to developing heuristics for profile reductions that are capable
of reducing the profile of the instances to a considerable extent (e.g., see [17]).

Metaheuristic approaches are common alternatives to graph-theoretical opti-
mization techniques in several fields. Specifically, metaheuristic-based heuristics
for profile optimization have been proposed recently (see [17] and references
therein). Palubeckis [17] provides a list of applications that require the solu-
tion of the profile reduction problem where runtime is not a critical issue. Thus,
these applications may apply a metaheuristic algorithm for profile optimiza-
tion. In the case of a heuristic for profile reduction applied as a preprocessing
step while solving linear systems, however, there has been a limited exploration
of such techniques mainly because the heuristics for this problem must reach
low computational costs. In general, computational costs (time and space) of
metaheuristic-based heuristics for profile optimization are impractical when the
objective is to accelerate a linear system solver [1,8–10].

This paper focuses on the group of applications based on sparse matrix fac-
torization and related problems so that the experiments conducted here evaluate
low-cost (time and space) heuristics for profile reductions against the state-of-
the-art metaheuristic-based algorithm for this problem [17]. Apart from substan-
tially reducing the profile, a heuristic must also achieve low computational costs,
i.e., it can neither be slow nor show large memory requirements. To provide more
specific details, an adequate vertex labeling of a graph corresponding to a matrix
contained in a linear system may reduce the computational times of a (possibly
preconditioned) linear system solver, such as the conjugate gradient method [6]
(as previously mentioned, by improving cache hit rates [2,4]). Additionally, the
profile reductions obtained by a reordering algorithm are not directly propor-
tional to the computational time reduction of solving linear systems. Moreover,
the objective is to minimize the total computing time of the simulation including
the preprocessing time required by the reordering heuristic, at least when only
a single linear system is to be solved [10]. Therefore, a vertex labeling algorithm
must perform at low-cost [9].

This paper evaluates a modified heuristic against the Sloan’s [19], MPG [16],
NSloan [13], Sloan-MGPS [18], and Hu-Scott [12] heuristics. The new heuristic
for profile reduction is a hybrid algorithm of the MPG [16] and NSloan [13]
heuristics. This paper also compares the profile results obtained by these low-
cost heuristics with the state-of-the-art metaheuristic-based algorithm for profile
reduction [17].

Section 2 describes the heuristics evaluated in this computational experiment
and states a modified heuristic for profile reduction. Section 3 describes how this
paper conducted the tests in this computational experiment. Section 4 shows the
experimental results. Finally, Sect. 5 addresses the conclusions.



28 S. L. Gonzaga de Oliveira et al.

2 Related Work

Sloan [19] proposed one of the most important heuristics in this field. His
heuristic is still one of the most widely used reordering algorithm for reduc-
ing the profile size of sparse matrices (e.g., [1,9,10,13,16,18]). The reason is
that it is inexpensive (in terms of execution times and storage costs) and gener-
ates quality solutions. Sloan’s heuristic [19] employs two weights in its priority
scheme in order to label the vertices of the instance: w1, associated with the
distance d(v, e) from the vertex v to a pseudo-peripheral (target end) vertex
e that belongs to the last level of the level structure rooted at a starting ver-
tex s, and w2, associated with the degree of each vertex. The priority function
p(v) = w1 · d(v, e) − w2 · (deg(v) + 1) employed in Sloan’s heuristic [19] presents
different scales for both criteria. The value of deg(v) + 1 ranges from 1 to m + 1
(where m = max

v∈V
[deg(v)] is the maximum degree found in the graph G = (V,E)),

and d(v, e) ranges from 0 (when v = e) to the eccentricity �(e) (of the target end
vertex e).

The MPG [16], NSloan [13], and Sloan-MGPS [18] heuristics are based on
Sloan’s heuristic [19]. Specifically, the Sloan-MGPS heuristic [18] is essentially
the Sloan’s heuristic [19] with the starting and target end vertices given by
an algorithm named modified GPS [18] instead of using the original Sloan’s
algorithm for finding these two pseudo-peripheral vertices.

The MPG heuristic [16] employs two max-priority queues: t contains vertices
that are candidate vertices to be labeled, and q contains vertices belonging to
t and also vertices that can be inserted to t. Similarly to Sloan’s heuristic [19]
(and its variations), the current degree of a vertex is the number of adjacencies
to vertices that neither have been labeled nor belong to q. A main loop performs
three steps. First, a vertex v is inserted into q in order to maximize a specific
priority function. Second, the current degree cdeg(v) of each vertex v ∈ t is
observed: the algorithm labels a vertex v if cdeg(v) = 0, and the algorithm
removes from t a vertex v (i.e., t ← t−{v}) if cdeg(v) > 1. Third, if t is empty, the
algorithm inserts into t each vertex u ∈ q with priority pu ≥ pmax(q) − 1 where
pmax(q) returns the maximum priority among the vertices in q. The priority
function in the MPG heuristic is p(v) = d(v, e) − 2 · cdeg(v).

Kumfert and Pothen [13] normalized the two criteria used in Sloan’s algo-
rithm with the objective of proposing the Normalized Sloan (NSloan) heuristic
[13]. These authors used the priority function p(v) = w1 ·d(v, e)−w2 ·�d(s, e)/m�·
(deg(v) + 1).

Regarding Sloan’s [19], NSloan [13], and Sloan-MGPS [18] heuristics, this
paper established the two weights as described in the original papers. When the
authors suggested more than one pair of values in the original papers, exploratory
investigations were performed to determine the pair of values that obtains the
best profile results [10]. Thus, the two weights are assigned as w1 = 1 and w2 = 2
for Sloan’s and Sloan-MGPS [18] heuristics, and as w1 = 2 and w2 = 1 for the
NSloan heuristic [13].

In addition to the four low-cost heuristics for profile reductions selected from
reviews of the literature [9,10], this paper evaluates a modified MPG heuristic



An Experimental Analysis of Heuristics for Profile Reduction 29

in this paper. The new heuristic for profile reduction is essentially a hybrid
of the MPG [16] and NSloan [13] heuristics. Specifically, the new heuristic is
based on the MPG heuristic [16] in conjunction with the normalized scheme
proposed by Kumfert and Pothen [13]. This heuristic uses the priority function
p(v) = d(v, e) − 2 · d(s, e)/max

v∈V
[deg(v)] · (cdeg(v)). This paper refer to this new

heuristic as the NMPG heuristic.
The Hu-Scott heuristic [12] is a multilevel algorithm that uses a maximal

independent vertex set for coarsening the adjacency graph of the matrix and
Sloan-MGPS heuristic [18] on the coarsest graph. This paper also analyzes the
results yielded by the state-of-the-art metaheuristic algorithm for profile reduc-
tion [17] against five low-cost heuristics. The MSA-VNS heuristic is a hybrid
algorithm based on the multi-start simulated annealing (MSA) algorithm along
with the Variable Neighborhood Search (VNS) metaheuristic [17].

3 Description of the Tests

This paper divides the experiments into two main parts. The first part of the
experiments compares the results of five low-cost heuristics for profile reduc-
tions with the results obtained by the MSA-VNS heuristic [17]. Palubeckis [17]
compared the results of his heuristic with the results of the previous state-of-the-
art metaheuristic algorithms for profile reduction when applied to two groups of
matrices: 38 (ranging from 24 to 292 vertices) and 39 matrices (ranging from 307
to 2,680 vertices). The SuiteSparse matrix collection [5] contains these matrices.
Since the matrices of the first group are too small for today’s standards, this
paper uses the 39 matrices of the second group to compare the six heuristics
evaluated in this computational experiment.

Palubeckis [17] implemented his heuristic in the C++ programming language,
and performed his experiments on a workstation containing an Intel R© CoreTM

2 Duo CPU running at 3.0 GHz. To provide a reasonable comparison of the
running times, we performed the executions of the five low-cost heuristics for
profile reductions evaluated here on a workstation containing an Intel CoreTM 2
Duo CPU running at 2.3 GHz (Intel; Santa Clara, CA, United States). Although
the profile reduction heuristics evaluated here are deterministic algorithms, 10
serial runs for each matrix were carried out to obtain average results to mitigate
possible interferences in the execution costs.

This appraisal also employs the C++ programming language to implement
five low-cost heuristics for profile reduction (Sloan’s, MPG, NSloan, Sloan-
MGPS, and NMPG heuristics). The implementations of these five heuristics
for profile reductions appraised here employ binary heaps to code the priority
queues (although the original Sloan’s algorithm [19] used a linked list to code
it). A previous publication [10] shows the testing and calibration performed to
compare the implementations with the ones used by the original proposers of the
four low-cost heuristics (Sloan’s [19], MPG [16], NSloan [13], and Sloan-MGPS
[18]) to ensure that the codes employed here were comparable to the formerly
proposed algorithms.



30 S. L. Gonzaga de Oliveira et al.

A second part of the experiments uses 15 real symmetric matrices contained
in the SuiteSparse matrix collection [5]. We also used the Hu-Scott heuristic [12],
namely the MC73 routine, contained in the HSL [20], in this experiment. We
employed the Fortran programming language to use this routine. The worksta-
tions used in the execution of the simulations with these 15 matrices contained
an Intel R© CoreTM i7-4770 (CPU 3.40 GHz, 8 MB Cache, 8 GB of main memory
DDR3 1.333 GHz) (Intel; Santa Clara, CA, United States). We performed three
sequential runs for each large-scale matrix. The profile reduction depends on the
choice of the initial ordering, and this paper considers the original ordering given
in the instance contained in the SuiteSparse matrix collection [5].

4 Results and Analysis

The first part of the experiments (in Sect. 4.1) compares the profile results of
five low-cost heuristics (Sloan’s, MPG, NSloan, Sloan-MGPS, and NMPG) with
the results of the state-of-the-art metaheuristic algorithm for profile reduction
(i.e., the MSA-VNS heuristic [17]) when applied to instances ranging from 307
to 2,680 vertices. These experiments show that the MSA-VNS heuristic yields
better profile results than the five other heuristics evaluated do, at much higher
execution costs. Thus, the second part of the experiments (in Sect. 4.2) shows
the results of six low-cost heuristics for profile reductions (i.e., including the Hu-
Scott heuristic) when applied to 15 instances ranging from 19,994 to 1,228,045
vertices [up to 47,851,783 edges (or nonzero coefficients)].

4.1 Comparison of the Results Obtained Using State-of-the-Art
Metaheuristic Algorithm Against Five Low-Cost Heuristics

Tables 1 and 2 show the characteristics of the instance (name, size, original
profile (profile0)) and the average values of profile obtained when using six
heuristics applied to reduce the profile of 39 small matrices. Figure 1 shows that
the MSA-VNS heuristic [17] obtains better profile reductions than the five other
heuristics evaluated do in this computational experiment. The figure shows that
the MSA-VNS heuristic achieves much higher profile rate reduction than the five
other heuristics included in this appraisal when applied to some instances (e.g.,
can445, bcsstk20, can634, dwt869). Additionally, the MSA-VNS heuristic [17]
reduced the profile of the gr 30 30 and instances nos3, whereas, in general, the
five other low-cost heuristics increased the profiles of these two instances. On
the other hand, Fig. 1 shows that in general the profile rate reduction obtained
by the six heuristics evaluated are similar.

Figure 2 (in line charts for clarity) shows that the executions costs of the
MSA-VNS heuristic is much higher than the five other heuristics for profile reduc-
tion evaluated here. The experiments conducted here reveal that the MSA-VNS
heuristic [17] achieved its results with a higher processing cost of at least seven
magnitudes in relation to the five other heuristics evaluated. For example, Sloan’s
[19], NSloan [13], Sloan-MGPS [18], MPG [16], and NMPG heuristics computed



An Experimental Analysis of Heuristics for Profile Reduction 31

Table 1. Results of six heuristics applied to reduce the profile of 26 instances contained
in the SuiteSparse matrix collection [5]. Palubeckis [17] obtained the results of the MSA-
VNS heuristic (times in seconds) in simulations performed on an IntelR© CoreTM 2 Duo
running at 3.0 GHz [17]. The five other heuristics (times in milliseconds) were executed
on a machine containing an IntelR© CoreTM 2 Duo running at 2.3 GHz. (Continued on
Table 2.)

Matrix Result profile0
/size

MSA-
VNS (s)

SLOAN-
MGPS (ms)

MPG
(ms)

SLOAN
(ms)

NSLOAN
(ms)

NMPG
(ms)

dwt307 profile 7825 6172 6842 6883 6813 6842 6883

time (s) 307 266.2 0.017 0.042 0.004 0.011 0.044

dwt310 profile 2696 2630 2661 2657 2658 2641 2666

time (s) 310 42.5 0.009 0.037 0.004 0.006 0.039

dwt346 profile 8708 5788 6214 6189 6191 6214 6189

time (s) 346 272.5 0.019 0.056 0.006 0.012 0.059

dwt361 profile 5084 4631 4706 4755 4699 4706 4758

time (s) 361 181.3 0.012 0.038 0.004 0.008 0.040

plat362 profile 45261 8206 8517 8517 8511 8517 8517

time (s) 362 276.8 0.019 0.071 0.006 0.012 0.076

lshp406 profile 13224 5955 6282 6203.2 6260 6194 6191

time (s) 406 114.7 0.017 0.055 0.005 0.011 0.058

dwt419 profile 39726 6073 6794 6714 6836 6794 6714

time (s) 408 268.3 0.044 0.096 0.008 0.028 0.102

bcsstk06 profile 14691 12829 13771 13870 13691 13771 13870

time (s) 419 270.6 0.019 0.068 0.006 0.012 0.071

bcspwr05 profile 36248 2608 3849 4414 4095 3862 4803

time (s) 420 272.4 0.024 0.090 0.007 0.015 0.098

can445 profile 22321 14199 18035 16511 17295 18035 16511

time (s) 443 276.5 0.016 0.052 0.006 0.011 0.051

nos5 profile 27286 19896 20447 20494 20549 20447 20494

time (s) 445 275.7 0.050 0.083 0.009 0.031 0.087

bcsstk20 profile 4309 2602 3242 3124 3248 3177 3123

time (s) 485 291.1 0.013 0.066 0.007 0.008 0.067

dwt492 profile 33790 2805 2866 2958 2856 2861 2938

time (s) 492 269.1 0.014 0.067 0.007 0.009 0.067

494bus profile 40975 2592 4327 4738 4486 3882 4667

time (s) 494 287.5 0.017 0.046 0.005 0.010 0.045

dwt503 profile 35914 11428 14259 14164 13608 14259 14164

time (s) 503 753.7 0.035 0.081 0.008 0.022 0.087

dwt512 profile 6018 3820 4150 4167 4322 4150 4169

time (s) 512 696 0.022 0.085 0.011 0.013 0.088

lshp577 profile 22816 10035 10625 10499 10607 10488 10469

time (s) 577 457.8 0.028 0.078 0.007 0.018 0.082

dwt592 profile 28805 8816 9697 9580 9871 9177 9437

time (s) 592 576.7 0.027 0.074 0.008 0.017 0.078

dwt607 profile 30008 12431 13856 14470 13825 13856 14470

time (s) 607 739.9 0.042 0.114 0.012 0.026 0.119

can634 profile 68586 25170 38033 33896 34609 38033 33896

time (s) 634 767.1 0.099 0.122 0.014 0.062 0.129

662bus profile 45165 5994 9180 10023 9701 8587.1 10339

time (s) 662 762.4 0.032 0.075 0.006 0.021 0.071

nos6 profile 16229 9095 9095.000 9095.000 9095.000 9095.000 9095

time (s) 675 600.2 0.024 0.060 0.006 0.015 0.063

685bus profile 28621 5993 8547.700 9674.000 8560.000 8912.000 8716

time (s) 685 769.9 0.028 0.078 0.008 0.020 0.076

can715 profile 72423 20280 30423.000 29810.000 30695.000 30423.000 29810

time (s) 715 1697.1 0.078 0.115 0.011 0.049 0.122

nos7 profile 53144 34110 34698.000 35202.000 34473.000 34690.000 35321

time (s) 729 1380.7 0.084 0.127 0.011 0.052 0.132

dwt758 profile 23113 6364 6967.000 6534.000 6983.000 6490.000 6535

time (s) 758 1528.1 0.023 0.090 0.010 0.015 0.095



32 S. L. Gonzaga de Oliveira et al.

Table 2. Results of six heuristics applied to reduce the profile of 13 instances contained
in the SuiteSparse matrix collection. Palubeckis [17] obtained the results of the MSA-
VNS heuristic (times in seconds) in simulations performed on an IntelR© CoreTM 2 Duo
running at 3.0 GHz [17]. The five other heuristics (times in milliseconds) were executed
on a machine containing an IntelR© CoreTM 2 Duo running at 2.3 GHz. (Continued from
Table 1.)

Matrix Result profile0
/size

MSA-

VNS (s)

SLOAN-

MGPS (ms)

MPG

(ms)

SLOAN

(ms)

NSLOAN

(ms)

NMPG

(ms)

lshp778 profile 36284 15652 16630.000 16424.000 16592.000 16399.000 16373

time (s) 778 1364.3 0.046 0.118 0.009 0.027 0.123

bcsstk19 profile 74051 7240 8613.000 8450.000 9250.000 20837.000 22146

time (s) 817 1651.8 0.024 0.126 0.011 0.042 0.122

dwt869 profile 19528 11806 14672.000 14493.000 14918.000 14916.000 15521

time (s) 869 1609 0.040 0.100 0.011 0.027 0.106

dwt878 profile 26055 16903 18967.000 18227.000 18783.000 19522.000 18237

time (s) 878 1606.3 0.047 0.095 0.011 0.032 0.100

gr 30 30 profile 26970 23836 28764.000 26970.000 28664.000 26538.000 26970

time (s) 900 1616.5 0.070 0.098 0.012 0.041 0.104

dwt918 profile 108355 15007 16332.000 15768.000 16852.000 17754.000 19199

time (s) 918 1734.3 0.046 0.144 0.015 0.032 0.147

nos2 profile 3180 1907 1907.000 1910.000 1907.000 1907.000 1910

time (s) 957 1783.7 0.017 0.095 0.011 0.011 0.099

nos3 profile 39101 35916 39673.000 40195.000 39457.000 39673.000 40195

time (s) 960 1739.4 0.067 0.216 0.021 0.042 0.231

dwt992 profile 262306 31620 33013.200 33376.000 32960.000 33012.000 33376

time (s) 992 1678.4 0.053 0.193 0.017 0.034 0.208

dwt1005 profile 121070 29631 33980.000 33413.000 33737.000 33980.000 33413

time (s) 1005 1694.4 0.094 0.162 0.016 0.058 0.171

dwt1007 profile 25786 18880 22852.000 21321.900 22882.000 20184.000 21424

time (s) 1007 1613.5 0.060 0.114 0.015 0.034 0.121

dwt1242 profile 110188 31756 35611.000 36102.000 36377.000 33937.000 39951

time (s) 1242 1727.9 0.090 0.167 0.016 0.056 0.166

dwt2680 profile 587863 82575 87621.000 88130.000 87242.000 90123.000 91656

time (s) 2680 3221.4 0.230 0.389 0.041 0.164 0.406

Fig. 1. Results of six heuristics applied to reduce the profile of 39 instances contained
in the SuiteSparse matrix collection [5].



An Experimental Analysis of Heuristics for Profile Reduction 33

the instance dwt2680 (i.e., the largest instance contained in this dataset) in 0.04,
0.16, 0.23, 0.39, and 0.41 ms (in simulations performed on an Intel R© CoreTM 2
Duo running at 2.3 GHz), respectively, whereas the MSA-VNS heuristic com-
puted this instance in more than 3221 s (in simulations performed on an Intel R©

CoreTM 2 Duo running at 3.0 GHz). As an example, Sloan’s heuristic [19] com-
putes an instance composed of 1,228,045 vertices in two seconds.

Fig. 2. Execution times of six heuristics applied to reduce the profile of 39 instances
contained in the SuiteSparse matrix collection. Palubeckis [17] obtained the results of
the MSA-VNS heuristic (times in seconds (s)) in simulations performed on an IntelR©

CoreTM 2 Duo running at 3.0 GHz [17]. The simulations with the five other heuristics
(times in milliseconds (msecs)) were performed on an IntelR© CoreTM 2 Duo running
at 2.3 GHz.

On 34 of the 39 matrices contained in the dataset used here, the MSA-VNS
heuristic [17] delivers smaller profiles than any other previously known profile
reduction algorithm does. While this result is impressive, the MSA-VNS heuristic
is very slow, taking approximately 2n2 milliseconds for a matrix of order n. It is
not practical for larger instances.

The quality and time of the MSA-VNS algorithm may depend on the setting
of its parameters. However, we considered the results provided by its original
publication [17], which are expected to have the best parameters. Since low-cost
heuristics for profile reductions [10] yield in general reasonable profile results at
much lower costs than the state-of-the-art metaheuristic algorithm for profile
reduction [17], Sect. 4.2 concentrates on evaluating six low-cost heuristics for
profile reductions when applied to larger matrices (up to 1,228,045 vertices).

4.2 Results of Six Low-Cost Heuristics for Profile Reductions

This section describes the results of six low-cost heuristics for profile reduc-
tions applied to a dataset comprised of 15 symmetric matrices contained in the
SuiteSparse matrix collection. Table 3 shows the matrix’s name and size, the
value of the initial profile of the instance (profile0), and the average values of
profile obtained when using each heuristic. The same table also highlights the
best profile results.

Table 3 shows that the Hu-Scott heuristic yielded the highest number of best
profile results when applied to symmetric instances originating from thermal (in



34 S. L. Gonzaga de Oliveira et al.

Table 3. Results of six heuristics applied to reduce the profile of 15 symmetric matri-
ces contained in the SuiteSparse matrix collection [5] originating from thermal (four
matrices) and model reduction (11 matrices) problems.

matrix size profile0 Hu-Scott NMPG MPG NSloan Sloan-MGPS Sloan
thermal2 1,228,04553,657,335,080 587,662,601 586,063,633 584,643,264 587,246,981 609,179,419 593,981,740
thermo 204,31610,671,293,780 30,796,587 30,825,327 30,939,618 32,276,780 31,984,980mech dM 28,549,159

thermo 102,158 2,667,823,445 15,346,513 15,412,663 15,446,340 16,109,532 16,021,130mech TC 13,477,995

thermo 102,158 2,667,823,445 15,398,294 15,504,258 15,493,278 16,109,532 15,906,569mech TK 13,372,590

Nr. best results 0 3 0 1 0 0 0
bone010 986,703 8,846,266,758 187,539,3591,471,105,9792,231,282,1921,282,743,7041,687,120,7781,571,237,233
boneS10 914,898 6,345,023,0252,147,483,6473,742,417,5273,742,417,5273,823,790,1633,952,972,8333,890,992,689
boneS01 127,224 331,330,356 245,645,928 320,120,227 302,253,322 330,301,515 320,695,596 308,162,745
filter3D 106,437 260,719,523 68,760,290 86,376,100 87,199,353 95,192,166 98,931,960 97,975,438

rail 79841 79,841 551,148,483 11,968,229 8,910,916 12,851,179 9,830,923 14,398,928 13,732,868
t3dh 79,171 250,243,367 154,218,807 160,795,113 158,470,211 160,944,302 164,226,809 160,693,484

gas sensor 66,917 69,391,231 63,046,780 65,044,792 72,856,073 68,858,703 69,736,475 71,821,911
t3dl 20,360 14,726,265 14,392,289 14,146,144 14,081,961 44,263,732 14,754,577 14,654,390

rail 20209 20,209 60,032,258 1,295,632 1,172,744 1,744,663 1,214,743 1,562,130 1,632,981
LF10000 19,998 49,990 69,988 49,990 49,990 49,990 49,990 49,990
LFAT5000 19,994 84,958 54,978 34,984 34,984 34,984 34,984 34,984
Nr. best results 1 6 4 3 2 2 2

three instances) and model reduction (in six instances) problems. On the other
hand, the same table shows that the MPG heuristic delivered the best profile
result when applied to the highest matrix (thermal2 ) used in this study.

Figure 3 (in line charts for clarity) shows the execution times of the six low-
cost heuristics for profile reductions evaluated. The Sloan and NSloan heuristics
obtained lower execution times than the four other heuristics evaluated. On
average, the Hu-Scott, NMPG, and MPG heuristics obtained similar execution
times.

Fig. 3. Execution times (in seconds) of six heuristics for profile reductions in simula-
tions using 15 symmetric instances contained in the SuiteSparse matrix collection.

5 Conclusions

This computational experiment evaluated five existing low-cost heuristics for
profile reduction (variants of Sloan’s algorithm [19]) along with a new hybrid
heuristic based on the MPG [16] and NSloan [13] heuristics, termed NMPG



An Experimental Analysis of Heuristics for Profile Reduction 35

heuristic. This computational experiment also compared the results provided by
a metaheuristic algorithm based on simulated annealing and variable neighbor-
hood search metaheuristics [17] with low-cost heuristics for profile reduction.
As expected, the simulations conducted in this paper show that the state-of-
the-art metaheuristic algorithm for profile reduction [17] reaches better profile
results than low-cost heuristics do at much higher execution costs. Currently, no
metaheuristic-based heuristic for profile reduction exists in the literature that
can successfully reduce the profile of large-scale matrices at a reasonable amount
of time. In this field, scientific and engineering applications apply low-cost heuris-
tics for profile reductions when the computational time is a critical subject. Con-
sequently, in the case of instances of rather large dimensions, a practical option
is to use low-cost heuristics for obtaining satisfactory-quality solutions for prob-
lem instances defined by such matrices. The experiments conducted here were
carried out on several matrices arising from different application domains. The
results show that the metaheuristic algorithm provides better profile results, but
takes a lot more time than graph-theoretic heuristics for profile reduction.

This paper also applied six low-cost heuristics to 15 matrices arising from
thermal and model reduction problems. Numerical experiments show that the
NMPG heuristic provides, in general, further worthwhile gains when compared
with classical heuristics in this field (Sloan’s [19], MPG [16], NSloan [13], Sloan-
MGPS [18]). However, the NMPG heuristic for profile reduction did not perform
better than Hu-Scott heuristic did when applied to matrices arising from the
application domains used here.

The next step in this work is to evaluate low-cost heuristics for profile reduc-
tions implemented using parallel libraries (e.g., OpenMP, Galois, and Message
Passing Interface systems) and in GPU-accelerated computing. Similarly, regard-
ing massively parallel computing, an evaluation of these heuristics implemented
within the Intel R© Math Kernel Library running on Intel R© Xeon R© Many Inte-
grated Core Architecture and Scalable processors is another future step of this
investigation.

References

1. Bernardes, J.A.B., Gonzaga de Oliveira, S.L.: A systematic review of heuristics
for profile reduction of symmetric matrices. Procedia Comput. Sci. 51, 221–230
(2015). https://doi.org/10.1016/j.procs.2015.05.231

2. Burgess, D.A., Giles, M.: Renumbering unstructured grids to improve the perfor-
mance of codes on hierarchial memory machines. Adv. Eng. Softw. 28(3), 189–201
(1997)

3. Camata, J.J., Rossa, A.L., Valli, A.M.P., Catabriga, L., Carey, G.F., Coutinho,
A.L.G.A.: Reordering and incomplete preconditioning in serial and parallel adap-
tive mesh refinement and coarsening flow solutions. Int. J. Numer. Meth. Fluids
69(4), 802–823 (2012)

4. Das, R., Mavriplis, D.J., Saltz, J.H., Gupta, S.K., Ponnusamy, R.: The design and
implementation of a parallel unstructured Euler solver using software primitives.
AIAA J. 32(3), 489–496 (1994)

https://doi.org/10.1016/j.procs.2015.05.231


36 S. L. Gonzaga de Oliveira et al.

5. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38(1), 1–25 (2011)

6. Duff, I.S., Meurant, G.A.: The effect of ordering on preconditioned conjugate gra-
dients. BIT Numer. Math. 29(4), 635–657 (1989)

7. Felippa, C.A.: Solution of linear equations with skyline-stored symmetric matrix.
Comput. Struct. 5(1), 13–29 (1975)

8. Gonzaga de Oliveira, S.L., Abreu, A.A.A.M., Robaina, D.T., Kischnhevsky, M.: An
evaluation of four reordering algorithms to reduce the computational cost of the
Jacobi-preconditioned conjugate gradient method using high-precision arithmetic.
Int. J. Bus. Intell. Data Min. 12(2), 190–209 (2017)

9. Gonzaga de Oliveira, S.L., Bernardes, J.A.B., Chagas, G.O.: An evaluation of
reordering algorithms to reduce the computational cost of the incomplete Cholesky-
conjugate gradient method. Comput. Appl. Math. 37(3), 2965–3004 (2018)

10. Gonzaga de Oliveira, S.L., Bernardes, J.A.B., Chagas, G.O.: An evaluation of
low-cost heuristics for matrix bandwidth and profile reductions. Computat. Appl.
Math. 37(1), 641–674 (2018). (First Online: 5 July 2016)

11. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear sys-
tems. J. Res. Natl. Bur. Stan. 49(36), 409–436 (1952)

12. Hu, Y., Scott, J.A.: A multilevel algorithm for wavefront reduction. SIAM J. Sci.
Comput. 23(4), 1352–1375 (2001)

13. Kumfert, G., Pothen, A.: Two improved algorithms for envelope and wavefront
reduction. BIT Numer. Math. 37(3), 559–590 (1997)

14. Lanczos, C.: Solutions of systems of linear equations by minimized iterations. J.
Res. Natl. Bur. Stan. 49(1), 33–53 (1952)

15. Lin, Y.X., Yuan, J.J.: Profile minimization problem for matrices and graphs. Acta
Mathematicae Applicatae Sinica 10(1), 107–122 (1994)

16. Medeiros, S.R.P., Pimenta, P.M., Goldenberg, P.: Algorithm for profile and wave-
front reduction of sparse matrices with a symmetric structure. Eng. Comput. 10(3),
257–266 (1993)

17. Palubeckis, G.: A variable neighborhood search and simulated annealing hybrid
for the profile minimization problem. Comput. Oper. Res. 87, 83–97 (2017)

18. Reid, J.K., Scott, J.A.: Ordering symmetric sparse matrices for small profile and
wavefront. Int. J. Numer. Meth. Eng. 45(12), 1737–1755 (1999)

19. Sloan, S.W.: A Fortran program for profile and wavefront reduction. Int. J. Numer.
Meth. Eng. 28(11), 2651–2679 (1989)

20. STFC. The Science and Technology Facilities Council. HSL. A collection of Fortran
codes for large scale scientific computation. http://www.hsl.rl.ac.uk. Accessed Dec
2015

21. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

http://www.hsl.rl.ac.uk

	An Experimental Analysis of Heuristics for Profile Reduction
	1 Introduction
	2 Related Work
	3 Description of the Tests
	4 Results and Analysis
	4.1 Comparison of the Results Obtained Using State-of-the-Art Metaheuristic Algorithm Against Five Low-Cost Heuristics
	4.2 Results of Six Low-Cost Heuristics for Profile Reductions

	5 Conclusions
	References




