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Abstract. The N -body problem, in the field of astrophysics, predicts
the movements of the planets and their gravitational interactions. This
paper aims at developing efficient and high-performance implementa-
tions of two versions of the N -body problem. Adaptive tree structures
are widely used in N -body simulations. Building and storing the tree
and the need for work-load balancing pose significant challenges in high-
performance implementations. Our implementations use various cores
in CPU and GPU via efficient work-load balancing with data and task
parallelization. The contributions include OpenMP and Nvidia CUDA
implementations to parallelize force computation and mass distribution,
and achieve competitive performance in terms of speedup and running
time which is empirically justified and graphed. This research not only
aids as an alternative to complex simulations but also to other big
data applications requiring work-load distribution and computationally
expensive procedures.

Keywords: All-Pairs algorithm · Barnes-Hut algorithm · CUDA ·
N-body simulations · OpenMP · Parallel processing · Performance

1 Introduction

The N -body problem in astrophysics is the problem of predicting the individual
motions of a group of celestial bodies, interacting gravitationally [3]. Scientific
and engineering applications of such simulations to anticipate certain behaviors
include biology, molecular and fluid dynamics, semiconductor device simulation,
feature engineering, and others [14,15,18]. The gravitational N -body problem
[23] aims at computing the states of N bodies at a time T , given their ini-
tial states (velocities and positions). The naive implementation of the N -body
problem has a complexity of O(N2) which is inefficient in terms of both power
consumption and performance, leaving much room to improve the effectiveness
of the execution of these simulations using data and task parallelism, aided with
utilities such as OpenMP (distribution among processors) [9,16] and Nvidia
CUDA (distribution among Graphical Processing Units (GPUs)) [2].
c© Springer Nature Switzerland AG 2019
S. Misra et al. (Eds.): ICCSA 2019, LNCS 11619, pp. 193–208, 2019.
https://doi.org/10.1007/978-3-030-24289-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24289-3_16&domain=pdf
http://orcid.org/0000-0002-0489-9573
http://orcid.org/0000-0002-1230-8729
https://doi.org/10.1007/978-3-030-24289-3_16


194 T. Gangavarapu et al.

With Appel [7] and Barnes-Hut [8] algorithms, the N -body simulation is sig-
nificantly faster, with the time complexity of O(N) for Appel and O(NlogN) for
the Barnes-Hut algorithm. Even with such adaptive tree optimizations, signifi-
cant improvement in the performance can be seen when implemented in parallel.
In this paper, we review existing All-Pairs and Barnes-Hut algorithms to solve
the N -body problem, and then propose our method of parallelization to achieve
work-load balancing using data and task parallel approaches effectively. We then
draw conclusions from the presented results to assess the potential of paralleliza-
tion in terms of running time and speedup. The key contributions of this paper
are mainly three-fold:

– Design of OpenMP and CUDA implementations of the All-Pairs algorithm,
to parallelize force computation.

– Design of OpenMP implementation of the Barnes-Hut algorithm, to paral-
lelize both force computation and mass distribution.

– We present a detailed evaluation of the performance of the parallel algorithms
in terms of speedup and running time on galactic datasets [1] with bodies
ranging from 5 to 30, 002.

The rest of this paper is structured as follows: Sect. 2 gives a detailed overview
of the All-Pairs and Barnes-Hut algorithms to solve the N -body problem.
Section 3 reviews relevant existing works in the field of parallel N -body sim-
ulations. Section 4 explains our proposed approaches to parallelize the All-Pairs
and Barnes-Hut simulations and presents their implementations using OpenMP
and CUDA. Section 5 presents the evaluation of the proposed approaches and
Sect. 6 reviews the significant implications of such parallelization and concludes
with future enhancements.

2 The Gravitational N -Body Problem

The gravitational N -body problem [23] is concerned with interactions between
N bodies (stars or galaxies in astrophysics), where each body in a given system
of bodies, affects every other body. The creation of galaxies, effects of black holes,
and even the search for dark matter are associated with the N -body problem
[17], thus making it one of the most widely experimented problem.

The Problem: Given the initial states (velocities and positions) of N bodies,
compute the states of those bodies at time T using the instantaneous acceleration
on every body at regular time steps.

In this section, we present two commonly used algorithms: (1) All-Pairs,
which is best suited for a smaller number of bodies and (2) Barnes-Hut, which
scales efficiently to a large number of bodies (e.g., molecular dynamics); to solve
the N -body problem.

2.1 The All-Pairs Algorithm

The traditional All-Pairs algorithm is an exhaustive brute-force that computes
instantaneous pair-wise acceleration between each body and every other body.
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Any two bodies (Bi, Bj) in the system of N bodies are attracted to each other
with force (

−→
Fij) that is inversely proportional to the square of the distance (rij)

between them (see Eq. 1, G is the universal gravitational constant).

−→
Fij =

Gmimj

r2ij
r̂ij (1)

Also, a body (Bi) of mass (mi) experiences acceleration (−→ai ) due to the net
force acting on it (Fi =

∑
j �=i

−→
Fij) from N − 1 bodies (see Eq. 2).

−→
Fi = −→aimi (2)

From Eqs. 1 and 2, the instantaneous pair-wise acceleration (−→ai ) acting on a
body (Bi) due to another body (Bj) can be given by Eq. 3 (G is the universal
gravitational constant).

−→ai =
Gmj

r2ij
r̂ij (3)

The All-Pairs method given by Algorithm 1 essentially computes pair-wise
accelerations and updates the forces acting on all bodies, thus updating their
state. Such an update can be programmatically achieved by using an in-place
update of a double nested loop, thus resulting in a time complexity of O(N2).
Usually, the All-Pairs method is not used on its own, but as a kernel to com-
pute forces in close-range interactions [27]. Since the All-Pairs algorithm takes
substantial time to compute accelerations, it serves as an interesting target for
parallelization.

Algorithm 1. Sequential All-Pairs Algorithm (2 Dimensions)
1: Function calculate force() is
2: foreach i: body do
3: find force(i, particles)

4: Function find force(i: body, particles) is
5: foreach j in particles do
6: if j �= i then
7: d sq = distance(i, j)
8: force[i].x += d x * mass(i) / d sqˆ3
9: force[i].y += d y * mass(i) / d sqˆ3

2.2 The Barnes-Hut Algorithm

The Barnes-Hut algorithm [4,5,8,33] is one of the most widely used approxima-
tions of the N -body problem, primarily by clustering groups of distant close bod-
ies together into a “pseudo-body.” Empirical evidence proves that the Barnes-
Hut heuristic method requires far fewer operations than the All-Pairs method,
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thus useful in cases of a large number of bodies where an approximate but effi-
cient solution is more feasible.

Each pseudo-body has an overall mass and center of mass depending on the
individual bodies it contains (its children). The Barnes-Hut algorithm uses an
adaptive tree structure (quad-tree for 2D or oct-tree for 3D)1. A tree structure
is created with each node bearing four children (see Fig. 1).

Fig. 1. Example of a quad-tree used in the Barnes-Hut algorithm.

Once built, the tree describes the whole system, with internal nodes repre-
senting pseudo-bodies and leaf nodes representing the N bodies [13]. The tree
is then used in computation and updating of a body’s state. The Barnes-Hut
method given by Algorithm 2 implements the following steps to achieve the
realization of a spatial system into a quad-tree:

– Division of the whole domain into four square regions (quads).
– If any of these quads contain more than one body, recursively divide that

region into four square regions until each square holds a maximum of one
body.

– Once the tree is built, perform a recursive walk to calculate the center of mass
(−→c ) at every node as

∑
i
−→cimi/

∑
mi (i is a child of the node).

Each body uses the constructed tree to compute the acceleration it experi-
ences due to every other body. The Barnes-Hut algorithm approximates bodies
that are too far away using a fixed accuracy parameter (threshold (θ)), and the
approximation is called the opening condition. Based on the center of mass, the
opening condition is given by l/D < θ (see Fig. 2, blue body represents the body
under consideration) where l is the width of the current internal node and D is
the distance of the body from the center of mass of the pseudo-body. Threshold
determines the number of bodies to be grouped together and thus determines the
accuracy of computations. Heuristics show that Barnes-Hut method can approx-
imate the N -body problem in O(NlogN) time. Depending on the dispersion of
bodies in the system an adaptive tree is constructed (usually unbalanced) which
poses challenges of building, storing, and work-load balancing.
1 In this paper, we have considered quad-tree to implement the Barnes-Hut algorithm.
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D

l

Fig. 2. An example of the pseudo-bodies used in the Barnes-Hut algorithm.

3 Related Work

In 1994, the Virgo Consortium was founded to perform cosmological simulations
such as universe formation, tracking the creation of galaxies and black holes on
supercomputers; and the most significant problem worked on by them till date
is the “Millennium Run” [6]. Their simulations traced around 10 billion particles
(each particle represented 20 million galaxies) using code called GAlaxies with
Dark matter intEracT (GADGET) [31] along with MPI-HYDRA and FLASH,
initially written sequentially but has since been developed to run in parallel to
model a broad range of astronomical problems. MPI-HYDRA simulates galaxy
and star formations while FLASH simulates thermonuclear flashes seen on the
surface of compact stars.

There exist several works in the literature to optimize the N -body problem.
Starting with Appel [7], and Barnes and Hut [8] who optimized the N -body
problem using adaptive tree structures from O(N2) to O(N) and O(NlogN)
time complexities respectively. An O(N) fast multipole method was developed
by Greengard and Rokhlin [21,22], and they showed the fast multipole approach
(FMM) to be accurate to any precision. This was further extended by Sundaram
[32] to allow updating of different bodies at different rates which further reduced
the time complexity. However, adaptive multipole method in 3 dimensions is
complex and has an issue of large overheads.

Various approaches to parallelize the algorithms mentioned above have been
developed over the years. Salmon [29] used multipole approximations to imple-
ment the Barnes-Hut algorithm on NCUBE and Intel iPSC, message passing
architectures. An impressive performance was reported from extensive runs on
the 512 node Intel Touchstone Delta by Warren and Salmon [36]. Singh [30]
implemented the Barnes-Hut algorithm for the DASH, an experimental proto-
type. Bhatt et al. [10,19] implemented the filament fluid dynamic problem using
the Barnes-Hut method. 16 Intel Pentium Pro processors were used by War-
ren et al. [35] to obtain a sustained performance. Blelloch and Narlikar [11]
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Algorithm 2. Sequential Barnes-Hut Algorithm (2 Dimensions)
1: Function build tree() is
2: Reset Tree
3: foreach i: particle do
4: root node→insert to node(i)

5: Function insert to node(new particle) is
6: if num particles > 1 then
7: quad = get quadrant(new particle)
8: if subnode(quad) does not exist then
9: create subnode(quad)

10: subnode(quad)→insert to node(new particle)

11: else if num particles == 1 then
12: quad = get quadrant(new particle)
13: if subnode(quad) does not exist then
14: create subnode(quad)
15: subnode(quad)→insert to node(existing particle)
16: quad = get quadrant(new particle)
17: if subnode(quad) �= NULL then
18: create subnode(quad)
19: subnode(quad)→insert to node(new particle)

20: else
21: existing particle ← new particle
22: num particles++

23: Function compute mass distribution() is
24: if new particles == 1 then
25: center of mass = particle.position
26: mass = particle.mass

27: else
28: forall the child quadrants with particles do
29: quadrant.compute mass distribution
30: mass += quadrant.mass
31: center of mass = quadrant.mass * quadrant.center of mass

32: center of mass /= mass

33: Function calculate force(target) is
34: Initialize force ← 0
35: if num particles == 1 then
36: force = gravitational force(target, node)
37: else
38: if l/D < θ then
39: force = gravitational force(target, node)
40: else
41: forall the node : child nodes do
42: force += node.calculate force(node)

43: Function compute force() is
44: forall the particles do
45: force = root node.calculate force(particle)
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both implemented and compared in NESL (parallel programming language) the
Barnes-Hut algorithm, FMM, and the parallel multipole tree algorithm.

Board et al. [12] implemented an adaptive FMM method in three dimensions
on shared memory machines. Zhao and Johnsson [38] described a non-adaptive
version of Greengard and Rokhlin’s method in three dimensions on the Con-
nection Machine CM-2. Mills et al. [25] prototyped the FMM in Proteus (an
architecture-independent language) using data parallelization, which was then
implemented by Nyland et al. [26]. Pringle [28] implemented the FMM both in
two and three dimensions on the Meiko Computer Surface CS-1 which is a par-
allel computer with distributed memory and explicit message passing interface.

Liu and Bhatt [24] explained their experiences with parallel implementation
of the Barnes-Hut algorithm on the Connection Machine CM-5. A highly effi-
cient, high performance and scalable implementation of the N -body simulation
on FPGA was demonstrated by Sozzo et al. [18]. Totoo and Loidl [34] com-
pared the parallel implementation of the All-Pairs and Barnes-Hut algorithms
in Haskell, a functional programming language. The Tree-Code Particle-Mesh
method developed by Xue [37] combines the particle-mesh algorithm with mul-
tiple tree-code to achieve better solutions with low computational costs. Nylons
[27] accelerated the All-Pairs algorithm using CUDA and presented a sustained
performance. Burtscher and Pingali [13] implemented the Barnes-Hut algorithm
with irregular trees and complex traversals in CUDA.

4 Proposed Methodology

There are many considerations such as storage, load-balancing, and others in
parallelizing the algorithms to solve the N -body problem. Following subsections
elucidate on the challenges in parallelization and relevant parallel considerations
to overcome those challenges.

Algorithm 3. OpenMP Implementation of the All-Pairs Algorithm
1: Function calculate force() is
2: #pragma omp parallel for
3: foreach i: body do
4: find force(i, particles)

5: Function find force(i: body, particles) is
6: #pragma omp parallel for reduction (+ : force[i].x, force[i].y)
7: foreach j in particles do
8: if j �= i then
9: d sq = distance(i, j)

10: force[i].x += d x * mass(i) / d sqˆ3
11: force[i].y += d y * mass(i) / d sqˆ3
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4.1 Parallel All-Pairs Algorithm in OpenMP and CUDA

The traditional brute-force All-Pairs algorithm, with O(N2) time complexity
serves as an interesting target for parallelization. This approach can be easily
parallelized, as it is known in advance, precisely how much work-load balancing
is to be done. The work can be partitioned using a simple block partition strat-
egy since the number of bodies is known and updating each body takes the same
amount of calculation. Algorithm 3 provides pseudo-code of the All-Pairs algo-
rithm in parallel using OpenMP. We assign each process a block of bodies each
numPlanets/numProcessors in size, to compute forces acting on those bodies
(all processes perform the same number of computations). Thus, the work-load
is equally and efficiently partitioned among processes. Algorithm 4 reports the
pseudo-code of the All-Pairs algorithm in CUDA.

Algorithm 4. CUDA Implementation of the All-Pairs Algorithm
1: Function calculate force() is
2: foreach i: body do
3: find force <<< BLOCKS, THREADS PER BLOCK >>>

(index, particles, force, size)

4: Function find force(i: body, particles, force, size) is
5: j = particles[treadIdx.x + blockIdx.x * blockDim.x]
6: if j �= i then
7: d sq = distance(i, j)
8: force[i].x += d x * mass(i) / d sqˆ3
9: force[i].y += d y * mass(i) / d sqˆ3

4.2 Parallel Barnes-Hut Algorithm in OpenMP

The Barnes-Hut algorithm poses several challenges in the parallel implemen-
tation of which, decomposition and communication have a severe impact. To
begin with, the cost of building and traversing a quad-tree can increase signifi-
cantly when divided among processes. The irregularly structured and adaptive
nature of the algorithm makes the data access patterns dynamic and irregular,
and the nodes essential to a body cannot be computed without traversing the
quad-tree. Decomposition is associated with work-load balancing while commu-
nication bottleneck is a severe issue that requires the need for minimization of
communication volume.

Building a quad-tree needs synchronization. Since the computation of the
center of mass of a pseudo-body depends on the center of masses of corresponding
sub-bodies, data dependencies are predominant and thus implying tree level-
wise parallelization. For force computation, we need other particles’ center of
mass, but we do not modify the information and thus can be parallelized. The
value of the fixed accuracy parameter (θ) plays a prominent role and must be
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Algorithm 5. Force Computation Parallelization of Barnes-Hut Algorithm
1: Function compute force() is
2: #pragma omp parallel for
3: forall the particles do
4: force = root node.calculate force(particle)

5: Function calculate force(target body) is
6: force = 0
7: if num particles == 1 then
8: force = gravitational force(target body, node)
9: else

10: if l/D < θ then
11: force = gravitational force(target body, node)
12: else
13: #pragma omp parallel for
14: forall the node : child nodes do
15: #pragma omp critical
16: force += node.calculate force(node)

optimized. Higher values of θ imply that fewer nodes are considered in the force
computation thus increasing the window for error; while lower values of θ will
bring the Barnes-Hut approximation time complexity closer to that of the All-
Pairs algorithm. Algorithm 5 presents pseudo-code of force parallelization (as
explained above) of the Barnes-Hut algorithm.

In computing the center of mass of the nodes, some level of parallelization
can be achieved in-spite of data dependencies as the computation for each quad
in the tree is independent of the other which speeds up the process significantly.
Algorithm 6 depicts the parallelization of the center of mass computation.

Algorithm 6. Mass Distribution Parallelization of Barnes-Hut Algorithm
1: Function compute mass distribution() is
2: if new particles == 1 then
3: center of mass = particle.position
4: mass = particle.mass

5: else
6: #pragma omp parallel for
7: forall the child quadrants with particles do
8: quadrant.compute mass distribution
9: #pragma omp critical

10: mass += quadrant.mass
11: center of mass = quadrant.mass * quadrant.center of mass

12: center of mass /= mass
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Parallelization of the Barnes-Hut algorithm has many issues, the significant
issue being the lack of prescience on the number of computations per process;
which make it a complex parallelization problem. It can be observed that, with
the increase in the quad-tree traversal depth, the number of force calculations
increases significantly and the exact depth is dependent on the position of the
current body.

5 Evaluation, Results, and Analysis

The sequential All-Pairs algorithm was implemented in C++, with paralleliza-
tion in OpenMP and CUDA. OpenMP’s multi-threading [9] fork-join model was
used to fork a number of slave threads and separate the errand among them.
The separated tasks are then performed simultaneously, with run-time environ-
ment assigning threads to distinct tasks. The segment of code intended to run
in parallel is stamped likewise with a preprocessor order that is used to join
the outputs of the processes in order after they finish execution of their corre-
sponding task. Each thread can be identified with an ID, which can be acquired
using OpenMP’s omp get thread num() method. CUDA allows the programmer
to take advantage of the massive parallel computing power of an Nvidia graph-
ics card to perform any general-purpose computation [2,20]. To run efficiently
on CUDA, we used hundreds of threads (the more the number of threads, the
faster the computation). Since the All-Pairs algorithm can be broken down into
hundreds of threads, CUDA proves to be the best solution. GPUs use massive
parallel interfaces to connect with their memory and are approximately ten times
faster than a typical CPU-to-memory interface.

This section focuses on running the algorithms described in the above section,
in serial and in parallel. All the algorithms were tested using data with a number
of bodies ranging from 5 to 30, 002 in the galactic datasets [1]. All tests for
sequential and OpenMP implementations were performed on nearly identical
machines with the following specifications:

– Processor : i5 7200U @ 4× 3.1 GHz
– Memory : 8 GB DDR3 @ 1333 MHz
– Network : 10/100/1000 Gigabit Local Area Network (LAN) Connection

All tests for CUDA implementations were performed on a server with the
following specifications:

– Processor : Intel Xeon Processor @ 2 × 2.40 GHz
– Memory : 8 GB RAM
– Tesla GPU : 1 ×TESLA C-2050 (3 GB Memory)

Speedup (S) is a measure of the relative performance of any two systems,
here parallel implementations over sequential implementations. Speed up can be
estimated using Eq. 4.

S =
Timesequential
Timeparallel

(4)
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Fig. 3. Parallel vs. sequential running time for (left) 5 bodies in Planets [1], (center)
4,000 bodies in galaxymerge2 [1], and (right) 30,002 bodies in galaxy30k [1] using
Algorithm 3.

Note that the execution times collected to measure the performance and
impact of parallelization is collected five times to overrule bias caused by any
other system processes that are not under the control of the experimenter. In
every run for time measurement, the order of experimentation for a given dataset
is shuffled. The individual measurements are then averaged to represent the
running time taken by the parallel algorithm accurately.
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Fig. 4. Parallel vs. sequential running time for (left) 5 bodies in Planets [1], (center)
4,000 bodies in galaxymerge2 [1], and (right) 30,002 bodies in galaxy30k [1] using
Algorithm 4. (Serial execution takes more than 100 times the parallel execution time
and hence is not graphed).

In this paper, we graphed (see Figs. 3, 4, 5 and 6) the parallel implementa-
tions against their respective sequential implementations to visualize the effect
of speedup. We also present the results of the performance of the Barnes-Hut
algorithm when both force computation and mass distribution are parallelized
(see Table 1). Also, we present the effect of the fixed accuracy parameter (θ) on
the Barnes-Hut algorithm (see Fig. 7).

For inputs with a smaller number of celestial bodies, we observe that the
sequential execution is faster than parallelized OpenMP code in case of both All-
Pairs and Barnes-Hut algorithms (see Figs. 3 (left), 5 (left), and 6 (left)). Such
behavior can be attributed to the high cost of initialization of threads and their
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Fig. 5. Parallel vs. sequential running time for (left) 5 bodies in Planets [1], (center)
4,000 bodies in galaxymerge2 [1], and (right) 30,002 bodies in galaxy30k [1] using
Algorithm 5.
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Fig. 6. Parallel vs. sequential running time for (left) 5 bodies in Planets [1], (center)
4,000 bodies in galaxymerge2 [1], and (right) 30,002 bodies in galaxy30k [1] using
Algorithm 6.

communication overheads, which outweighs the execution time for a lesser num-
ber of bodies. With the increase in the number of bodies, the OpenMP parallel
implementation runs faster than its sequential counterpart which is attributed to
the fact that execution time is larger than the thread spawn overheads (see Figs. 3
(center) and (right), 5 (center) and (right), 6 (center) and (right)). However, it
can also be noticed from the graphs that increasing the threads beyond four,
either does not change (see Figs. 3 (center), (right) and 6 (center)) or increases
(see Figs. 5 (center), (right), and 6 (right)) the running time. This is because
the CPU on the testing machine does not support more than four cores. Greater
speedups are observed with the increase in the number of bodies. Also, it is
interesting to note that with better hardware that supports a greater number of
cores, the results can be bettered further.

While the OpenMP implementations have a bottleneck over the number of
cores on the test machine, parallelization with CUDA outperforms any such
limitations (see Fig. 4 (left), (center) and (right)). It can be observed that CUDA
implementation provides an exponential decrease in the running time, which is
because GPUs has an exponentially larger thread pool as compared to CPUs. It
can be seen from Fig. 4 (left) that, for a smaller number of bodies, the parallel
running time gradually decreases with the increase in the number of threads
per block due to the communication overhead over the peripheral component
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Table 1. Performance of the OpenMP parallelization with force computation and mass
distribution of the Barnes-Hut algorithm on various galactic datasets [1].

Dataset Size Serial time (s) Parallel time per thread count (s)

1 2 4 8 16 32

asteroids1000 1,000 0.023097 0.020348 0.021905 0.030464 0.063325 0.121116 0.221256

cluster2582 2,582 0.004927 0.005837 0.005042 0.011231 0.008328 0.011733 0.014243

collision1 2,000 0.004917 0.004829 0.004447 0.006030 0.005751 0.009468 0.012608

collision2 2,002 0.006227 0.006008 0.006098 0.006309 0.006821 0.009951 0.013182

galaxy1 802 0.015414 0.015616 0.015217 0.020928 0.045315 0.072090 0.110689

galaxy2 652 0.012274 0.012615 0.014664 0.023931 0.028826 0.040485 0.072064

galaxy3 2,001 0.091639 0.087738 0.084466 0.141264 0.264529 0.488200 0.975077

galaxy4 502 0.012875 0.013325 0.010431 0.012065 0.027304 0.037397 0.051786

galaxy10k 10,001 0.032405 0.032411 0.031647 0.027545 0.050811 0.075314 0.171779

galaxy20k 20,001 2.325312 2.357691 1.422882 0.557520 3.697054 7.312913 17.061886

galaxy30k 30,002 13.663441 14.492622 8.259973 3.813991 22.588013 48.301931 90.741782

galaxyform2500 2,500 0.007052 0.005922 0.006162 0.006707 0.008641 0.011501 0.016563

galaxymerge1 2,000 0.004920 0.005160 0.004812 0.006784 0.006742 0.008701 0.018789

galaxymerge2 4,000 0.011205 0.010364 0.003930 0.012193 0.011976 0.018860 0.024891

galaxymerge3 2,901 0.009433 0.009095 0.009045 0.015460 0.011692 0.012852 0.019202

planets 5 0.000070 0.000160 0.000526 0.002250 0.002246 0.002997 0.004918

saturnrings 11,987 0.024471 0.024749 0.020095 0.025863 0.032043 0.038763 0.064468

spiralgalaxy 843 0.017879 0.017627 0.023605 0.024740 0.052584 0.091534 0.166260

interconnect lanes. For 4, 000 bodies (see Fig. 4 (center)), the speedup of parallel
implementation was observed to be 100 and for 30, 002 bodies (see Fig. 4 (right)),
the speedup was approximately 250. These results establish the potential of
CUDA in parallel programming and multi-processing support over traditional
CPUs.

Table 1 presents the results of the OpenMP Barnes-Hut implementation with
both force parallelization and mass distribution. The results show that for a large
number of bodies (e.g., galaxy30k with 30, 002 bodies), the method proved to
be superior as compared to Algorithms 5 and 6. However, for a smaller number
of bodies (e.g., planets with 5 bodies), the method had a massive bottleneck of
communication overheads and thread spawn initialization.

The effect of the fixed accuracy parameter used for approximation in the
Barnes-Hut algorithm on running time is shown in Fig. 7. The value of θ deter-
mines the depth of traversal of the quad-tree. Smaller values of θ mean deeper
traversals, implying larger running times while larger values of θ imply lower
accuracy and lower running time. It was observed that the number of compu-
tations increased as θ ≈ 0.0. We experimentally found that with θ = 0.4, an
efficient trade-off between the running time and accuracy can be achieved (all
results presented above use θ = 0.4).
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Fig. 7. Effect of the fixed accuracy parameter on the Barnes-Hut algorithm.

6 Conclusions

In this paper, we analyzed two prominent approaches to solve the gravitational
N -body problem: the naive All-Pairs approach and an adaptive quad-tree based
Barnes-Hut approach. We presented data and task parallel implementations of
the algorithms considered, using OpenMP and CUDA. We evaluated the chal-
lenges in the parallelization of the Barnes-Hut algorithm and two significant
parallel considerations. It was observed that until a certain level of paralleliza-
tion the running time decreases and then increases afterward. The performance
analysis of these methods establishes the potential of parallel programming in
big data applications. We achieved a maximum speedup of approximately 3.6
with OpenMP implementations and about 250 with CUDA implementation.
The OpenMP implementations experienced a massive bottleneck of the number
of cores on the testing machine. Also, we experimentally determined the opti-
mal value of the fixed accuracy parameter for an efficient trade-off between the
running time and accuracy.

In the future, we aim at extending the Barnes-Hut implementation and FMM
approach to CUDA and message-passing clusters over the LAN, each node paral-
lelized using OpenMP; and also evaluate their performance in terms of speedup
and running time. We also aim at considering even larger samples of bodies to
evaluate our proposed parallel implementations effectively.
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