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Abstract. To protect data sharing from leakage in untrusted cloud, proxy re-
encryption is commonly exploited for access control. However, most proposed
schemes require bilinear pair to attain secure data sharing, which gives too
heavy burden on the data owner. In this paper, we propose a novel lightweight
proxy re-encryption scheme without pairing. Our scheme builds the pre-
encryption algorithm based on computational Diffie–Hellman problem, and
designs a certificateless protocol based on a semi-trusted Key Generation
Center. Theoretical analysis proves that our scheme is Chosen-Ciphertext-
Attack secure. The performance is also shown to achieve less computation
burden for the data owner compared with the state-of-the-art.

Keywords: Proxy re-encryption � No pairing � Certificateless �
Cloud data sharing

1 Introduction

Booming cloud computing has been developing very fast for many years, which brings
convenience for billions of users all over the world. However, widely used cloud
service has also caught the attention of attackers which have conducted many cloud
security accidents, especially cloud data leakage. Accumulating data leakage in cloud
environment makes cloud service untrusted for users.

To protect cloud data from leakage, encryption access control mechanisms has been
introduced for secure data sharing [16], including proxy re-encryption.

The notion of proxy re-encryption (PRE) was first introduced by Blaze et al. [1] in
1998, and they promoted the first bidirectional PRE scheme based on a simple mod-
ification of the El Gamal encryption scheme [13]. Proxy re-encryption (PRE) is a
cryptographic scheme which efficiently solve the problem of delegation of decryption

Supported by the National Key Research and Development Program of China
(No. 2016YFB0801301, No. 2016YFB0800402); the National Natural Science Foundation of
China (No. U1405254, No. U1536207).

© Springer Nature Switzerland AG 2019
X. Sun et al. (Eds.): ICAIS 2019, LNCS 11632, pp. 85–96, 2019.
https://doi.org/10.1007/978-3-030-24274-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24274-9_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24274-9_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24274-9_8&amp;domain=pdf
https://doi.org/10.1007/978-3-030-24274-9_8


rights. It allows a semi-trusted proxy with re-encryption keys, generated by the dele-
gator, to transform a ciphertext under a given public key of the delegator into a
ciphertext of the same message under a different public key the delegatee, while
learning nothing about the encrypted message. PRE schemes have many practical
applications due to its transformation property, such as cloud storage [2], distributed
file systems, encrypted email forwarding [1], outsourced filtering of encrypted spam
and so on.

Most of the PRE schemes in practical applications are constructed based on either
traditional Public Key Infrastructure (PKI) or Identity-Based Encryption (IBE) setting.
In the PKI setting, the authenticity of a user’s public key is assured by Digital Cer-
tificates, which is digitally signed and issued by a trusted third party called the Cer-
tification Authority (CA). It is the management of certificates, which is a costly and a
cumbersome process including the revocation, storage, distribution of certificates and
so on, that inherently makes PRE schemes based on PKI setting inefficient. In the IBE
setting, the secret keys of all the users are generated by a third party called the Private
Key Generator (PKG), therefore brings the key-escrow problem.

To solve both certificate management problem in the PKI setting and key-escrow
problem in the IBE setting, certificateless public key encryption (CLPKE) was first
introduced by Al-Riyami and Paterson [4] in 2003. CLPKE combines the advantages
of PKI and of IBE, while does not suffer from the aforementioned problems, therefore
indicates a new direction for the construction of the PRE schemes. The notion of
certificateless proxy re-encryption (CLPRE) was introduced by Sur et al. [5] in 2010.

We propose a lightweight proxy certificateless proxy re-encryption(CLPRE)
scheme for data sharing in untrusted cloud. Our scheme builds the pre-encryption
algorithm based on computational Diffie–Hellman problem, and designs a certificate-
less protocol based on a semi-trusted Key Generation Center. Compared with the proxy
re-encryption schemes state-of-the-art, our CLPRE scheme can be more lightweight for
data owner and achieve same security against Chosen Ciphertext Attack (CCA).

2 Related Work

Since the first bidirectional PRE scheme was promoted by Blaze et al. [1] in 1998, there
have been lots of works and promotions about PRE scheme. Ateniese et al. [3] proposed
a unidirectional PRE schemes in 2005, which is the first unidirectional PRE scheme
based on bilinear pairings and achieves CPA-secure (chosen-plaintext attack, CPA).

Canetti et al. [6] and Libert et al. [7] proposed the first bidirectional multi-hop and
the first unidirectional single hop scheme both achieve RCCA-secure (replayable
chosen ciphertext attack) in the standard model. For greater security, the construction
of CCA-secure (chosen-ciphertext attack, CCA) PRE scheme has become an significant
issue. In 2008, Deng et al. [8] proposed a bidirectional CCA secure PRE scheme
without the bilinear pairings. Later, Hanaoka et al. [9] proposed a generic construction
of CCA secure PRE scheme in the standard model.

All the PRE schemes are constructed based on either traditional Public Key
Infrastructure (PKI) or Identity-Based Encryption (IBE) setting. In order to avoid both
certificate management problem in the PKI setting and key-escrow problem in the IBE
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setting, certificateless public key encryption (CLPKE) first introduced by Al-Riyami
and Paterson [4] in 2003 is considered in the construction of the PRE schemes. In 2010,
Sur et al. [5] first introduced the notion of CLPRE and proposed a CCA secure CLPRE
scheme in the random oracle model, which was shown to be vulnerable to chosen
ciphertext attack by Zheng et al. [10]. In 2013, a CLPRE scheme using bilinear pairings
proposed by Guo et al. [11] satisfies RCCA-security in the random oracle model. A lot
of works have been proposed during these years [17]. Unfortunately, construction of
CLPRE schemes has so far depended on the costly bilinear pairings.

In 2005, Baek et al. [12] proposed an efficient certificateless public key encryption
(CLPKE) scheme that does not rely on the bilinear parings. In 2014, Yang et al. [14]
addressed a CLPRE scheme without bilinear pairing, which claimed to be CCA-secure
in the random oracle model, yet was shown to be vulnerable to chain collusion attack in
by Srinivasan et al. [15] in their work proposed in 2015. In that work, they proposed
the first CCA-secure unidirectional certificateless PRE scheme without bilinear pairing
under the Computational Diffie-Hellman (CDH) assumption in the random oracle
model.

3 Model

In order to describe our lightweight proxy re-encryption scheme for data sharing in
untrusted cloud more figurative and in details, Fig. 1 gives an overview of entities and
their activities in this framework.

Fig. 1. Model architecture of our lightweight proxy re-encryption scheme.
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Data Owner: Owner encrypts his data and uploads the ciphertext to the Cloud.
Owner decides which users are authorized to share data from cloud by generating re-
encryption keys for those authorized to transform the ciphertext.

Data User: Authorized users can share data from cloud by download the trans-
formed ciphertext from cloud and decrypt by their own.

Proxy: Proxy is a semi-trusted third party in untrusted cloud. It re-encrypt the
ciphertext in cloud under the private key of data owner into a ciphertext of the same
message under given private keys of authorized users, while learning nothing about the
encrypted data.

KGC: Key Generation Center is a semi-trusted fourth party, which means it is
honest but curious. KGC initialize the whole system, and generate partial keys for
everyone in the system. Users can generate his own public key and private key from
partial keys generated by KGC and secret value chosen by himself. At the same time,
KGC does not have any information about the secret value generated by the user and
hence cannot decrypt any ciphertext.

4 CLPRE Scheme

The detailed construction of our CLPRE scheme are as follows. User i and user j
represent the data owner and the authorized user respectively.

(1) Setup 1jð Þ: In the setup phase, on input a security parameter 1j, the Probabilistic
Polynomial Time (PPT) algorithm run by the Key Generation Center (KGC) out-
puts the public parameters params and master secret key msk. The algorithm works
as below:
Generate a k-bit prime q and a group G of order q. Pick a random generator g 2 G,
and then randomly pick s 2 Z

�
q, compute h ¼ gs;

Choose cryptographic hash functions H1 : 0; 1f g� �G ! Z
�
q, H2 : 0; 1f g�!

Z
�
q; H3 : G ! 0; 1f glþ l0 , H4 : G ! Z

�
q, H5 : 0; 1f g�! Z

�
q.

The public parameters are params ¼ q; l; l0;H1;H2;H3;H4;H5f g, where l; l0
denote the bit-length of a message and a randomness respectively, and master
secret key is msk ¼ s, which is stored secretly. The message space is M ¼ 0; 1f gl.

(2) PartialKeyExtract params;msk; IDið Þ: On input public parameters params,
master secret key msk and the user i’s identity IDi, this algorithm run by KGC
outputs the partial public key ppki and the partial secret key pski.
Pick a random ai 2 Z

�
q, and compute ai ¼ gai , xi ¼ ai þ sH1 IDi; aið Þ, return

ppki; pskið Þ ¼ ai; xið Þ.
(3) SetSecretValue params; IDið Þ: On input public parameters params, and user i’s

identity IDi, this algorithm run by user i outputs user i’s secret value vi.
Pick a random zi 2 Z

�
q, return vi ¼ zi.

(4) SetPrivateKey params; pski; við Þ: On input public parameters params, user i’s
partial secret key pski, user i’s secret value vi, this algorithm run by user i outputs
user i’s secret key ski.
Return ski ¼ xi; zið Þ:
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(5) SetPublicKey params; ppki; við Þ: On input public parameters params, user i’s
partial public key ppki, user i’s secret value vi, this algorithm run by user i outputs
user i’s public key pki.
Compute ui ¼ gzi , return pki ¼ ai; uið Þ.

(6) ReEncryptKey params; IDi; pki; skið Þ; IDj; pkj
� �

: On input public parameters
params, user i’s identity IDi, user i’s cryptographic key pair pki; skið Þ, user j’s
identity IDj and public key pkj, this algorithm run by user i outputs a re-encryption
key rki!j from user i to user j.

Parse pki as ai; uið Þ, ski as xi; zið Þ and pkj as aj; uj
� �

, compute Vj ¼ ajh
H1 IDj;ajð Þ, and

Wij ¼ H5 tzij k uxij k IDi k pki k IDj k pkj
� �

. Then compute Bi ¼ xiH4 uið Þþ zið Þ,
return rki!j ¼ BiWij.

(7) Encrypt params;m; pkið Þ: On input public parameters params, data

m 2 M M ¼ 0; 1f gl
� �

, and user i’s public key pki, this algorithm run by user i

outputs a second level ciphertext ci.
Parse pki as ai; uið Þ, pick a randomness r 2 0; 1f gl0 , compute Vi ¼ aihH1 IDi;aið Þ,
r ¼ H2 m k r k IDi k uið Þ, then compute c1 ¼ gr, c2 ¼ m k rð Þ � H3 Ar

i

� �
, in which

Ai ¼ VH4 uið Þ
i � ui. Return ci ¼ c1; c2ð Þ.

(8) ReEncrypt params; ci; rki!j
� �

: On inputs public parameters params, a second
level ciphertext ci, a re-encryption key rki!j, this algorithm run by proxy outputs a
first level ciphertext cj.

Parse ci ¼ c1; c2ð Þ, compute c
0
1 ¼ crki!j

1 , c
0
2 = c2, in which rki!j ¼ BiWij,

Bi ¼ xiH4 uið Þþ zið Þ. Return cj ¼ c
0
1; c

0
2

� �
.

(9) Decrypt params; pki; cið Þ: On input public parameters params, user i’s public key
pki, and a ciphertext ci, this algorithm run by user i outputs either a plaintext
m 2 M or an error symbol ⊥.
i. Decrypt2 params; pki; cið Þ: The algorithm is run by the data owner user i.

Parse pki as ai; uið Þ, ski as xi; zið Þ, ci ¼ c1; c2ð Þ, compute m k rð Þ ¼ c2�
H3 c xiH4 uið Þþ zið Þ

1

� �
, then compute r ¼ H2 m k r k IDi k uið Þ.

Check if the equation holds: gr ¼ c1.

Return m if it holds: m k rð Þ ¼ c2 � H3 c xiH4 uið Þþ zið Þ
1

� �
.

Otherwise return ⊥, which implies the ciphertext ci is wrongful.
ii. Decrypt1 params; pki; cið Þ: The algorithm is run by the authorized user j.

Parse pki as ai; uið Þ, ski as xi; zið Þ, ci ¼ c
0
1; c

0
2

� �
, compute Vj ¼ ajh

H1 IDj;ajð Þ,
Wji ¼ H5 Vzi

j k uxij k IDi k pki k IDj k pkj
� �

and m k rð Þ ¼ c02 �H3 c01=Wji

1

� �
,

r ¼ H2 m k r k IDj k uj
� �

.

Check if the equation holds: V
H4 ujð Þ
j � uj

� �rWji

¼ c
0
1.

Return m if it holds: m k rð Þ ¼ c02 � H3 c01=Wji

1

� �
.

Otherwise return ⊥, which implies the ciphertext ci is wrongful.
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5 Correctness

5.1 Correctness of PartialKey

As we can see from the PartialKeyExtract algorithm, ai ¼ gai , xi ¼ ai þ sH1 IDi; aið Þ,
the equation gpski ¼ gxi ¼ gai þ sH1 IDi;aið Þ ¼ aihH1 IDi;aið Þ ¼ ppkihH1 IDi;ppkið Þ will hold, if the
partial cryptographic key pair ppki; pskið Þ ¼ ai; xið Þ is properly generated by KGC.

5.2 Correctness of Ciphertext2

As we can see from the Encryt algorithm, c1 ¼ gr, c2 ¼ m k rð Þ � H3 Ar
i

� �
, the

equation gr ¼ gH2 mkrkIDikuið Þ ¼ g
H2 c2�H3 c

xiH4 uið Þþ zið Þ
1

� �
kIDikui

� �
¼ c1 will hold, if ci ¼

c1; c2ð Þ is a correctly second level ciphertext generated by user i.

5.3 Correctness of Ciphertext1

As we can see from the ReEncryt algorithm, c
0
1 ¼ crki!j

1 ¼ grð Þrki!j , in which

rki!j ¼ BiWij, c
0
2 ¼ c2 ¼ m k rð Þ � H3 Ar

j

� �
, the equation c

0
1 ¼ grBjWji ¼ ArWji

j ¼

V
H4 ujð Þ
j � uj

� �H2 mkrkIDjkuið ÞWji

¼ V
H4 ujð Þ
j � uj

� �H2 c
0
2�H3 c

01=Wji
1

� �
kIDjkui

� �
Wji

will hold, if

ci ¼ c
0
1; c

0
2

� �
is a correctly first level ciphertext generated by the proxy.

5.4 Correctness of Decrypt2

As mentioned above, c1 ¼ gr, c2 ¼ m k rð Þ � H3 Ar
i

� �
, hence m k rð Þ ¼ c2�

H3 Ar
i

� � ¼ c2 � H3 gBirð Þ ¼ c2 � H3 cBi
1

� � ¼ c2 � H3 c xiH4 uið Þþ zið Þ
1

� �
, in which Ai ¼

VH4ðuiÞ
i � ui, Bi ¼ xiH4 uið Þþ zið Þ.

5.5 Correctness of Decrypt1

As mentioned above, c
0
1 ¼ crki!j

1 , c
0
2 ¼ c2 ¼ m k rð Þ � H3 Ar

j

� �
, hence m k rð Þ ¼ c

0
2�

H3 Ar
j

� �
¼ c

0
2�H3 gBjrð Þ ¼ c

0
2�H3 cBj

1

� �
¼ c

0
2�H3 c

01=Wji

1

� �
.

5.6 Correctness of the Whole Scheme

For all m 2 M and all users’ cryptographic key pair pki; skið Þ, pkj; skj
� �

, these algo-
rithms should satisfy the following conditions of correctness:

(a) Decrypt2 params; ski;Encrypt params; IDi; pki;mð Þð Þ ¼ m
(b) Decrypt1 params; skj;ReEncrypt params; rki!j; ci

� �� � ¼ m
where ci ¼ Encrypt params; IDi; pki;mð Þ, rki!j ¼ ReEncryptKey params; IDi;ð
pki; skið Þ; IDj; pkjÞ.
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6 Security Proof

Two types of adversaries, Type I adversary AI and Type II adversary AII are con-
sidered for a CL-PRE. AI models an attacker from the outside (i.e. anyone except the
KGC) without access to the master secret key msk but may replace public keys of
entities (i.e. user i or user j) with values of its choice. AII models an honest-but-curious
KGC who has access to the master secret key msk, but is not allowed to replace public
keys of entities. In our model, Type I adversary AI is not considered since

Here we focus on the Type II adversary AII only and prove the chosen ciphertext
security of first level ciphertext.

Definition (CLPRE-CCA Security). We say a CLPRE scheme is CLPRE-CCA
secure if the scheme is 1st-IND-CLPRE-CCA secure and 2nd-IND-CLPRE-CCA
secure.

Theorem 1 (1st-IND-CLPRE-CCA security). The proposed CLPRE scheme is 1st-
IND-CLPRE-CCA secure against Type-II adversary AII in the random oracle model, if
the CDH assumption holds in G.

Lemma 1. Assume that H1;H2;H3;H4;H5 are random oracles, if there exists a 1st-
IND-CLPRE-CPA Type I adversary AII against the proposed CLPRE scheme with
advantage ε when running in time t, making at most qpk public key request queries, at
most qpak partial key extract queries, at most qsk private key extract queries, at most qpkr
public key replacement queries, at most qrk re-encryption key extract queries, at most
qre re-encryption queries, qdec2 decrypt2 queries, qdec1 decrypt1 queries, and qHi

random
oracle queries to Hi 1� i� 5ð Þ. Then, for any 0\v\�, there exists an algorithm C to
solve the ðt0; ε0Þ-CDH problem in G with

t0 � tþðqH þ 2qH1
þ 2qH2

þ qH3
þ qH4

þ qH5
þ qpk þ qpak þ qsk þ qrk þ qre

þ qdec2 þ qdec1ÞO 1ð Þ þ ð2qpk þ qpak þ 2qsk þ 5qrk þ 6qre
þ 2qdec2 þ 5qdec1Þte

ε0 � 1
qH3

2 ε� vð Þ
e 1þ qpak þ qrk
� �� s

0
@

1
A

where e is the base of the natural logarithm, we denote the time taken for exponenti-
ation operation in group G as te, and s denotes the advantage that AII can distinguish
the incorrectly-formed re-encryption keys in our simulation from all correctly-formed
re-encryption keys in a “real world” interaction.

Theorem 2 (2nd-IND-CLPRE-CCA security). The proposed CLPRE scheme is 2nd-
IND-CLPRE-CCA secure against Type-II adversary AII in the random oracle model, if
the CDH assumption holds in G.
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Lemma 2. Assume that H1;H2;H3;H4;H5 are random oracles, if there exists a 2nd-
IND-CLPRE-CPA Type I adversary AII against the proposed CLPRE scheme with
advantage ε when running in time t, making at most qpk public key request queries, at
most qpak partial key extract queries, at most qsk private key extract queries, at most qpkr
public key replacement queries, at most qrk re-encryption key extract queries, at most
qre re-encryption queries, qdec2 decrypt2 queries, qdec1 decrypt1 queries, and qHi

random
oracle queries to Hi 1� i� 5ð Þ. Then, for any 0\v\�, there exists an algorithm C to
solve the t0; ε0ð Þ-CDH problem in G with

t0 � tþðqH þ qH1
þ qH2

þ qH3
þ qH4

þ qH5
þ qpk þ qpak þ qsk þ qrk þ qre

þ qdec2 þ qdec1ÞO 1ð Þþ ð2qpk þ qpak þ 2qsk þ 5qrk þ 6qre
þ 2qdec2 þ 5qdec1Þte

ε0 � 1
qH3

2 ε� vð Þ
e 1þ qpak þ qrk
� �� s

0
@

1
A

where e is the base of the natural logarithm, we denote the time taken for exponenti-
ation operation in group G as te, and s denotes the advantage that AII can distinguish
the incorrectly-formed re-encryption keys in our simulation from all correctly-formed
re-encryption keys in a “real world” interaction.

Proof. We show how to construct an algorithm C which can solve the t0; ε0ð Þ-CDH
problem in group G.

Suppose C is given a CDH challenge tuple g; ga; gb
� � 2 G

3 with random unknown
a; b 2 Z

�
q as input. The goal of C is to compute the gab. C act as challenger and play the

2nd-IND-CLPRE-CPA “Game II” with adversary AII as follows.
“Game II”: This is a game between AII and the challenger C.
AII has access to the master secret key msk, but is not allowed to replace public

keys of entities.

Setup. C takes a security parameter 1j, runs Setup 1jð Þ algorithm to generate the system
parameter params ¼ q; l; l0;H1;H2;H3;H4;H5f g, and a master secret key msk ¼ s. C
gives params to AII while keeping msk secret.

Random Oracle Queries. H1;H2;H3;H4;H5 are random oracles controlled by C, who
maintains six hash lists Hlist; H1list; H2list; H3list; H4list; H5list. Whenever AII

request access to any hash function, C responds as follows:

H queries: On receiving a query \Q[ ; að Þ, C searches Hlist and returns a as answer
if found. Otherwise, chooses a 2R Z

�
q and returns a. C adds \Q[ ; að Þ to the Hlist.

H1 queries: On receiving a query \ID,a[ ;Xð Þ, C searches H1list and returns X as
answer if found. Otherwise, chooses X 2R Z

�
q and returns X. C adds \ID,a[ ;Xð Þ to

the H1list.
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H2 queries: On receiving a query \m;r; ID,u[ ;Rð Þ, C searches H2list and returns R
as answer if found. Otherwise, chooses R 2R Z

�
q and returns R. C adds

\m;r; ID,u[ ;Rð Þ to the H2list.

H3 queries: On receiving a query \t,u[ ;Að Þ, C searches H3list and returns A as
answer if found. Otherwise, chooses A 2R Z

�
q and returns A. C adds \t,u[ ;Að Þ to

the H3list.

H4 queries: On receiving a query \u[ ;Bð Þ, C searches H4list and returns B as
answer if found. Otherwise, chooses B 2R Z

�
q and returns B. C adds \u[ ;Bð Þ to the

H4list.

H5 queries: On receiving a query \k1; k2; IDi; pki; IDj; pkj [ ;W
� �

, C searches

H5list and returns W as answer if found. Otherwise, chooses W 2R Z
�
q and returns W. C

adds \k1; k2; IDi; pki; IDj; pkj [ ;W
� �

to the H5list.

Phase1. AII issues any one of the following queries adaptively.

Partial Key Compute. AII computes the partial private key pair ppkIDi
; pskIDi

� �
for

any IDi of its choice, by computing compute ai ¼ gai , xi ¼ ai þ sH1 IDi; aið Þ,
ppki; pskið Þ¼ ai; xið Þ. C maintains a list of partial keys computed by AII in a partial key
list IDi; ppkIDi

; pskIDi

� �
.

Public key request queries. On input ID by AII, the challenger C searches whether
there exists a tuple ID; pkID; coinð Þ 2 pklist. If not, C runs algorithm SetPublicKey to
generate the public key pkID for entity ID, then adds the tuple ID; pkID; coinð Þ to the
pklist and return pkID to AII. Otherwise, C returns pkID to AII. The value of coin is
decided the challenger C’s strategy.

Private key extract queries. On input identity ID by AII, the challenger C searches
whether there exists a tuple ID; pkID; coinð Þ 2 pklist. If coin 6¼ ?, C runs algorithm
SetPrivateKey to generate the private key skID for entity ID. If coin ¼ ?, C returns
“Reject”.

Re-encryption key extract queries. On input IDi; IDj
� �

by AII, the challenger C

searches whether there exists a tuple IDi; pkIDi
; coini

� � 2 pklist. If coini 6¼ ?, C

responds by running algorithm ReEncryptKey to generate the re-encryption key
rkIDi!IDj for entity IDi; IDj. Otherwise, C returns “Reject”.

Re-encryption queries. On input IDi; IDjCIDi
� �

by AII, the challenger C searches
whether there exists a tuple IDi; pkIDi

; coini
� � 2 pklist. If coini 6¼ ?, C responds by

running algorithm ReEncrypt to convert the second level ciphertext cIDi into the first
level ciphertext cIDj . Otherwise, returns “Reject”.
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Decryption queries for second level ciphertext. On input ID; cð Þ by AII, if c is a
second level ciphertext, C responds by running algorithm Decrypt2 using the related
private key to decrypt the C and returns the result to AII. Otherwise, returns “Reject”.

Decryption queries for first level ciphertext. On input ID; cð Þ by AII, if c is a first
level ciphertext, C responds by running algorithm Decrypt1 using the related private
key to decrypt the c and returns the result to AII. Otherwise, returns “Reject”.

Challenge. Once the adversary AII decides that Phase 1 is over, it outputs the chal-
lenge identity ID�, and two equal length plaintexts m0;m1 2 M. Moreover, AII is
restricted to choose a challenge identity ID� that trivial decryption is not possible. C
searches a tuple ID�; pkID� ; coin�

� � 2 pklist, then picks a random bit d 2 0; 1f g, and
computes the challenge ciphertext c� = Encrypt params; ID�; pkID� ;md

� �
, and returns

c� to AII.

Phase2. The adversary AII continues to query any of the above mentioned oracles with
the restrictions defined in the IND-CLPRE-CCA “Game II”.

Guess. Finally, the adversary AII outputs a guess d0 2 0; 1f g and wins the game if
d0 ¼ d.

We define the advantage of AII in “Game II” as
AdvIND�CLPRE�CCA

GameII;AII
kð Þ ¼ Pr X

0 ¼ X
� 	� 1

2



 

.
A CLPRE scheme is said to be t; εð Þ-2nd-IND-CLPRE-CCA secure if for any t-time

2nd-IND-CLPRE-CCA Type-II adversary AII we have AdvIND�CLPRE�CCA
GameII;AII

kð Þ ¼
Pr X0 ¼ X½ 	j j\ε. We simply say that a CLPRE scheme is 2nd-IND-CLPRE-CCA
secure if t is polynomial with respect to security parameter k and ε is negligible.

7 Performance Evaluation

We make comparison between our scheme and Sur et al.’s scheme, Yang et al.’s
scheme and Srinivasan et al.’s scheme, in terms of computational cost and ciphertext
size. The number of “bignum” operations that CLPRE schemes need to perform are
considered, other operations like addition or multiplication in group, XOR operation
and conventional hash function evaluation is omitted, since the computation of these
operations is efficient and far less than that of exponentiations or pairings. two modular
exponentiations and the three modular exponentiations can be computed at a cost of
about 1.17 and 1.25 exponentiations respectively, using simultaneous multiple expo-
nentiation algorithm mentioned in [23]. The Map-To-Point hash function is special and
far more expensive than conventional hash operation so it cannot be omitted.

From the Tables, we can find that all of our five algorithm listed in the table are
much more computation efficient than Sur et al. [5]’s scheme and Yang et al. [14]’s
scheme. Our encrypt algorithm and ciphertext size of the first and second level
ciphertext are more efficient than those in Srinivasan et al. [15]’s scheme (Table 1).
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8 Conclusion

We provide a lightweight proxy certificateless proxy re-encryption (CLPRE) scheme
without pairing. We also prove security of our CLPRE scheme against Type II
adversary AII under the CDH assumption in the random oracle model, and make
comparison with representative CLPRE scheme. The results show that our scheme is
much more computational and communicational efficient than Sur et al.’s scheme and
Yang et al.’s scheme, and outperform Srinivasan et al.’s scheme in terms of space
efficiency.
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